WorldWideScience

Sample records for thin self-supporting carbon

  1. Preparation of self-supporting carbon thin films

    CERN Document Server

    Lommel, B; Kindler, B; Klemm, J; Steiner, J

    2002-01-01

    For heavy-ion beam experiments, self-supporting carbon thin films are needed as targets, stripper foils and as backings (Nucl. Instr. and Meth. A 334 (1993) 69) for materials which cannot be produced self-supporting. Using resistance evaporation under high vacuum, self-supporting carbon foils with a thickness of 5 mu g/cm sup 2 and a diameter of 10 mm, a thickness of 10 mu g/cm sup 2 and a diameter of 50 mm up to a thickness of 50 mu g/cm sup 2 and a diameter of 300 mm can be obtained. Due to the energy impact of the heavy-ion beam, the amorphous carbon is restructured into textured graphite, as was found already by Dollinger et al. (Nucl. Instr. and Meth. A 303 (1991) 79). The discuss the production process as well as the change of the layer structure caused by the energy deposit.

  2. Large-area thin self-supporting carbon foils with MgO coatings

    CERN Document Server

    Stolarz, A

    2002-01-01

    Large area self-supporting carbon foils in the thickness of range of 8-22 mu g/cm sup 2 , coated with approximately 4 mu g/cm sup 2 MgO have been prepared by e-gun evaporation. They were mounted on frames with apertures of 130 cm sup 2. Problems related to the parting agent preparation, floating procedure, and mounting onto frames are discussed. Special precautions necessary to avoid damage during foil drying, storage and transportation are suggested.

  3. Preparation of self-supporting thin metal target films

    International Nuclear Information System (INIS)

    Wang Xiuying; Ge Suxian; Yin Jianhua; Yin Xu; Jin Genming

    1989-01-01

    The preparation method and equipment for thin metal self-supporting target without oil contamination are described. The influence of target films contaminated by oil vapor on accuracy of nuclear-physics experimental data are also discussed. The analytical results on carbon content in the prepared films of three elements show that the equipment is very effective for eliminating contamination

  4. Self-supported carbon electrodes obtained by tape casting

    Directory of Open Access Journals (Sweden)

    Rubio-Marcos, F.

    2006-06-01

    Full Text Available This paper describes the preparation and electrochemical response of self-supported carbon electrodes prepared by tape casting. The dc electrical conductivity, σ, of the electrodes was determined by four-wire resistance measurements and a relation between the graphite/organic additives ratio and the electrical conductivity was established. The application of these self-supported carbon electrodes as working electrodes in analytical techniques was also evaluated using norepinephrine as electroactive substance in cyclic voltammetry and chronoamperometry. The results were compared with the traditional electrodes, carbon paste electrodes (CPEs, showing that the new self-supported carbon electrodes had both lower background noise and higher analytical response.

    Este artículo describe la preparación y respuesta electroquímica de electrodos de carbono autosoportados preparados mediante colado en cinta. La conductividad eléctrica en corriente continua de este nuevo tipo de electrodos de carbono se ha determinado usando el método de cuatro puntas y se ha establecido una relación ente la relación grafito/aditivos orgánicos y la conductividad eléctrica. La aplicación de estos electrodos autosoportados como electrodos de trabajo en diversas técnicas electroanalíticas también se ha evaluado, empleando norepinefrina como analito en voltametría cíclica y en cronoamperometría. Los resultados se compararon con los obtenidos empleando los electrodos de pasta de carbono tradicionales como electrodos de trabajo, viéndose que la señal de los nuevos electrodos autosoportados poseía menor ruido de fondo y mayor respuesta analítica.

  5. Preparation of Silver and Silver-backing self-supported thin targets by high vacuum evaporation

    OpenAIRE

    Cabanelas, P.; Galaviz, D.; Henriques, A.; Sánchez-Benítez, A.; Teubig, P.; Velho, P.

    2016-01-01

    We have produced in the Nuclear Physics Center in Lisbon thin film self-supported targets of Ag, LiF/Ag and CaF$_2$/Ag by a high vacuum resistance evaporation method. The production setup, materials, methods, characterization and results are described.

  6. Elastic properties of self-supported circular thin copper films calculated from equilibrium thermal vibration.

    Science.gov (United States)

    Chang, Hsi-Hung; Hwang, Chi-Chuan; Shen, Yue-Ling

    2011-06-01

    Thermomechanical vibration of ultrathin, self-supported copper films due to thermal fluctuations is studied via the molecular dynamics simulation at room temperature. The elastodynamic theory with pre-stress is adopted to extract the physical properties of the films by comparing with the molecular dynamics data. The edge-clamped circular films consist of several atomic layers of fcc copper with the [100] direction normal to the film surface. From the time-history trajectories of atoms and their Fourier frequency spectrums, it was found that the fundamental resonant frequency non-monotonically varies with the film thickness due to the existence of residual stress in the film. Multiple resonant modes are adopted for modulus calculation and residual stress determination. The value of Young's modulus increases with increasing thickness of the film and the residual stress decreases with increasing thickness. Thicker films exhibit less residual stress, indicating the equilibrium distance between copper atoms changes with the film thickness.

  7. Carbon thin film thermometry

    Science.gov (United States)

    Collier, R. S.; Sparks, L. L.; Strobridge, T. R.

    1973-01-01

    The work concerning carbon thin film thermometry is reported. Optimum film deposition parameters were sought on an empirical basis for maximum stability of the films. One hundred films were fabricated for use at the Marshall Space Flight Center; 10 of these films were given a precise quasi-continuous calibration of temperature vs. resistance with 22 intervals between 5 and 80 K using primary platinum and germanium thermometers. Sensitivity curves were established and the remaining 90 films were given a three point calibration and fitted to the established sensitivity curves. Hydrogen gas-liquid discrimination set points are given for each film.

  8. Stopping powers of LiF thin films deposited onto self-supporting Al foils for swift protons

    Energy Technology Data Exchange (ETDEWEB)

    Damache, Smail [Division de Physique, CRNA, 02 Bd. Frantz Fanon, B.P. 399 Alger-gare, Algiers (Algeria); Moussa, Djamel [Université des Sciences et de la Technologie H. Boumediene (USTHB), Faculté de Physique, B.P. 32 El-Alia, 16111 Bab-Ezzouar, Algiers (Algeria); Ouichaoui, Saâd, E-mail: souichaoui@gmail.com [Université des Sciences et de la Technologie H. Boumediene (USTHB), Faculté de Physique, B.P. 32 El-Alia, 16111 Bab-Ezzouar, Algiers (Algeria)

    2013-08-01

    The energy losses of ∼(0.273–3.334) MeV protons in LiF thin films deposited by vacuum evaporation onto self-supporting Al foils have been measured using the transmission method. The thicknesses of selected and used LiF/Al target samples were accurately determined via systematic energy loss measurements for alpha particles from a very thin mixed {sup 241}Am/{sup 239}Pu/{sup 233}U radioactive source. The samples were investigated in detail for their stoichiometry and their impurity contents by backscattering Rutherford spectrometry and nuclear reaction analysis. Then, LiF stopping powers have been determined with overall relative uncertainty of less than 2.7% arising mainly from errors in the determination of target sample thicknesses. These S(E) data are reported and discussed in comparison to previous experimental data sets from the literature and to values calculated by the Sigmund–Schinner binary collision stopping theory both for molecular LiF, and for the LiF compound assuming Bragg–Kleeman’s additivity rule. Our S(E) data show to be in excellent agreement with the latter theory for molecular LiF over the whole proton energy range explored, which supports the use of modified electronic hydrogen wave functions for evaluating atomic shell corrections in the case of low-Z{sub 2} target materials. In contrast, they exhibit a slightly increasing deviation from theoretical values derived for the LiF compound with assuming stopping force additivity as the proton energy decreases from E ≈ 400 keV towards lower proton velocities. This deviation in excess relative to experimental data, amounting only up to (at most) ∼2.5%, can be ascribed to strong effects of 2s-state valence electrons of Li atoms within the LiF compound. Besides, the comparison to values calculated by the SRIM-2008 computer code indicates that this program satisfactorily accounts for our S(E) data above E ≈ 1.30 MeV but underestimates them with substantially increasing deviations (up to

  9. Method for making thin carbon foam electrodes

    Science.gov (United States)

    Pekala, Richard W.; Mayer, Steven T.; Kaschmitter, James L.; Morrison, Robert L.

    1999-01-01

    A method for fabricating thin, flat carbon electrodes by infiltrating highly porous carbon papers, membranes, felts, metal fibers/powders, or fabrics with an appropriate carbon foam precursor material. The infiltrated carbon paper, for example, is then cured to form a gel-saturated carbon paper, which is subsequently dried and pyrolyzed to form a thin sheet of porous carbon. The material readily stays flat and flexible during curing and pyrolyzing to form thin sheets. Precursor materials include polyacrylonitrile (PAN), polymethylacrylonitrile (PMAN), resorcinol/formaldehyde, catechol/formaldehyde, phenol/formaldehyde, etc., or mixtures thereof. These thin films are ideal for use as high power and energy electrodes in batteries, capacitors, and fuel cells, and are potentially useful for capacitive deionization, filtration and catalysis.

  10. Carbon nanofiber growth on thin rhodium layers

    NARCIS (Netherlands)

    Chinthaginjala, J.K.; Unnikrishnan, S.; Smithers, Mark A.; Smithers, M.A.; Kip, Gerhardus A.M.; Lefferts, Leonardus

    2012-01-01

    A thinlayer of carbon nanofibers (CNFs) was synthesized on a thin polycrystalline rhodium (Rh) metal layer by decomposing ethylene in the presence of hydrogen. Interaction of Rh crystals with carbon results in fragmentation and formation of Rh-nanoparticles, facilitating CNF growth. CNFs are

  11. A-few-second synthesis of silicon nanoparticles by gas-evaporation and their self-supporting electrodes based on carbon nanotube matrix for lithium secondary battery anodes

    Science.gov (United States)

    Kowase, Takayuki; Hori, Keisuke; Hasegawa, Kei; Momma, Toshiyuki; Noda, Suguru

    2017-09-01

    Rapid gas-evaporation method is proposed and developed, which yields Si nanoparticles (SiNPs) in a few seconds at high yields of 20%-60% from inexpensive and safe bulk Si. Such rapid process is realized by heating the Si source to a temperature ≥2000 °C, much higher than the melting point of Si (1414 °C). The size of SiNPs is controlled at tens to hundreds nanometers simply by the Ar gas pressure during the evaporation process. Self-supporting films are fabricated simply by co-dispersion and filtration of the SiNPs and carbon nanotubes (CNTs) without using binders nor metal foils. The half-cell tests showed the improved performances of the SiNP-CNT composite films as anode when coated with graphitic carbon layer. Their performances are evaluated with various SiNP sizes and Si/CNT ratios systematically. The SiNP-CNT film with a Si/CNT mass ratio of 4 realizes the balanced film-based capacities of 618 mAh/gfilm, 230 mAh/cm3, and 0.644 mAh/cm2 with a moderate Si-based performance of 863 mAh/gSi at the 100th cycle.

  12. Quantifying clustering in disordered carbon thin films

    International Nuclear Information System (INIS)

    Carey, J.D.

    2006-01-01

    The quantification of disorder and the effects of clustering in the sp 2 phase of amorphous carbon thin films are discussed. The sp 2 phase is described in terms of disordered nanometer-sized conductive sp 2 clusters embedded in a less conductive sp 3 matrix. Quantification of the clustering of the sp 2 phase is estimated from optical as well as from electron and nuclear magnetic resonance methods. Unlike in other disordered group IV thin film semiconductors, we show that care must be exercised in attributing a meaning to the Urbach energy extracted from absorption measurements in the disordered carbon system. The influence of structural disorder, associated with sp 2 clusters of similar size, and topological disorder due to undistorted clusters of different sizes is also discussed. Extensions of this description to other systems are also presented

  13. Thin carbon film serves as UV bandpass filter

    Science.gov (United States)

    1966-01-01

    Thin carbon film deposited on a 70 percent transparent screen provides a filter for narrow-band detectors in the extreme ultraviolet. The filter also suppresses scattered light and light of unwanted orders in vacuum spectrographs.

  14. Fabrication of ultra thin and aligned carbon nanofibres from ...

    Indian Academy of Sciences (India)

    Keywords. Nanofibres; carbon; nanotechnology; oxidation; aligned. Abstract. Ultra thin and aligned carbon nanofibres (CNFs) have been fabricated by heat treatment from aligned polyacrylonitrile (PAN) nanofibre precursors prepared by electrospinning. The alignment of the precursor nanofibres was achieved by using a ...

  15. Infrared analysis of thin films amorphous, hydrogenated carbon on silicon

    CERN Document Server

    Jacob, W; Schwarz-Selinger, T

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, ...

  16. The carbonization of thin polyaniline films

    Czech Academy of Sciences Publication Activity Database

    Morávková, Zuzana; Trchová, Miroslava; Exnerová, Milena; Stejskal, Jaroslav

    2012-01-01

    Roč. 520, č. 19 (2012), s. 6088-6094 ISSN 0040-6090 R&D Projects: GA AV ČR IAA400500905; GA AV ČR IAA100500902; GA ČR GAP205/12/0911 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : polyaniline * thin films * infrared spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.604, year: 2012

  17. Gettering of carbon dioxide by erbium thin films

    International Nuclear Information System (INIS)

    Mehrhoff, T.K.

    1980-01-01

    The interaction of carbon dioxide and erbium thin films is characterized for temperatures in the region of 300 to 900 0 C and partial pressure of carbon dioxide near 5 x 10 -7 Torr. Dynamic film pumping speeds were measured against a mercury diffusion pump of known pumping speed and conductance. A quadrupole mass spectrometer was used to monitor the carbon dioxide flow which originated from a calibrated leak in the 10 -6 standard cm 3 /s range. Data reduction was via a dedicated minicomputer with associated printer/plotter. Temperature ramp experiments with thin erbium films indicated a significant reaction above 300 0 C. The reaction was preceded by the desorption of water vapor, hydrogen and nitrogen and/or carbon monoxide from the film surface

  18. Advances in targetry with thin diamond-like carbon foils

    CERN Document Server

    Liechtenstein, V K; Olshanski, E D; Repnow, R; Levin, J; Hellborg, R; Persson, P; Schenkel, T

    2002-01-01

    Thin and stable diamond-like carbon (DLC) foils, which were fabricated at the Kurchatov Institute by sputter deposition, have proved recently to be advantageous for stripping and secondary electron timing of high energy heavy ions in a number of accelerator experiments. This resulted in expanding applications of these DLC foils which necessitated further development efforts directed toward the following applications of DLC targetry: (i) thin stripper foils for lower energy tandem accelerators, (ii) enlarged (up to 66 mm in diameter) stop foils for improved time-of-flight elastic recoil detection ion beam analysis, and (iii) ultra-thin (about 0.6 mu g/cm sup 2) DLC foils for some fundamental and applied physics experiments. Along with the fabrication of thin DLC stripper foils for tandem accelerators, much thicker (up to 200 mu g/cm sup 2) foils for post-stripping of heavy-ion beams in higher energy linacs, are within reach.

  19. Gettering of carbon dioxide by erbium thin films

    International Nuclear Information System (INIS)

    Mehrhoff, T.K.

    1980-01-01

    The interaction of carbon dioxide and erbium thin films is characterized at 300 to 900 0 C and 5 x 10 -7 torr. Temperature ramp experiments with thin erbium films indicated a significant reaction above 300 0 C, preceded by desorption of water vapor, hydrogen and nitrogen and/or carbon monoxide from the film surface. The sticking coefficients were plotted as a function of Langmuirs of carbon dioxide exposure. Between 400 and 600 0 C, the length of the exposure was found to be more important than the temperature of the exposure in determining the sticking coefficient. Some evolution of carbon monoxide was noted particularly in the 400 to 500 0 C region. An 80% conversion of carbon dioxide to carbon monoxide was measured at 500 0 C. The film pumping speeds were compared with published vapor pressure data for erbium. This comparison indicated that a significant portion of the pumping action observed at temperatures of 800 0 C and above was due to evaporation of erbium metal

  20. Effect of length of thinning area on the failure behavior of carbon steel pipe containing a defect of wall thinning

    International Nuclear Information System (INIS)

    Kim, Jin Weon; Park, Chi Yong

    2003-01-01

    The present study performed pipe failure tests using 102 mm-Sch. 80 carbon steel pipe with various simulated wall thinning defects, to investigate the effect of axial length of wall thinning and internal pressure on the failure behavior of pipe thinned by flow accelerated corrosion (FAC). The tests were conducted under loading conditions of four-point bending with and without internal pressure. The results showed that a failure mode of pipe with a defect depended on the magnitude of internal pressure and axial thinning length as well as stress type and thinning depth and circumferential angle. Both load carrying capability (LCC) and deformation capability (DC) were depended on stress type in the thinning area and dimensions of thinning defect. For applying tensile stress to the thinned area, the dependence of LCC on the axial length of wall thinning was determined by circumferential thinning angle, and the DC was proportionally increased with increase in axial length of wall thinning regardless of the circumferential angle. For applying compressive stress to thinned area, however, the LCC was decreased with increase in axial length of the thinned area. Also, the effect of internal pressure on failure behavior was characterized by failure mode of thinned pipe, and it promoted crack occurrence and mitigated a local buckling of the thinned area

  1. The carbon consequences of thinning techniques: stand structure makes a difference

    Science.gov (United States)

    Coeli Hoover; Susan Stout

    2007-01-01

    Using results from a 25-year study of thinning in a northwestern Pennsylvania Allegheny hardwood stand, we assess whether and how thinning method affected carbon sequestration and merchantable volume production. Plots were thinned to similar residual relative density by removing trees from different portions of the diameter distribution. Plots that were thinned from...

  2. Applications of thin carbon coatings and films in injection molding

    Science.gov (United States)

    Cabrera, Eusebio Duarte

    In this research, the technical feasibility of two novel applications of thin carbon coatings is demonstrated. The first application consists of using thin carbon coatings on molds for molding ultra-thin plastic parts (chemical vapor deposition (CVD) resulting in a graphene coating with carbide bonding to the mold surface. The coating resulted in a significant decrease of surface friction and consequently easiness of flow when compared to their uncoated counterparts. Thermoplastic polymers and their composites are a very attractive alternative but are hindered by the non-conductive nature of polymers. There are two general approaches used to date to achieve EMI shielding for plastic products. One is to spray a conductive metal coating onto the plastic surface forming a layer that must maintain its shielding effectiveness (SE), and its adhesion to the plastic throughout the expected life of the product. However, metal coatings add undesirable weight and tend to corrode over time. Furthermore, scratching the coating may create shielding failure; therefore, a protective topcoat may be required. The other approach is to use polymer composites filled with conductive fillers such as carbon black (CB), carbon nanofiber (CNF), and carbon nanotube (CNT). While conductive fillers may increase the electrical conductivity of polymer composites, the loading of such fillers often cannot reach a high level (painting using carbon black (CB). Such process can also be applied to injection molding for creating a top conductive layer. Increasing the amount of CB will increase the surface conductivity of the coated part, thus improving the paint transfer efficiency. However the CB levels needed to achieve the conductivity levels required for achieving EMI shielding would make the coating viscosity too large for proper coating. Nanopaper based composites are excellent candidates for EMI shielding because of the nanopaper's high concentration of carbon nanofibers (CNFs) (~2 wt% to 10 wt

  3. Printable Thin Film Supercapacitors Using Single-Walled Carbon Nanotubes

    KAUST Repository

    Kaempgen, Martti

    2009-05-13

    Thin film supercapacitors were fabricated using printable materials to make flexible devices on plastic. The active electrodes were made from sprayed networks of single-walled carbon nanotubes (SWCNTs) serving as both electrodes and charge collectors. Using a printable aqueous gel electrolyte as well as an organic liquid electrolyte, the performances of the devices show very high energy and power densities (6 W h/kg for both electrolytes and 23 and 70 kW/kg for aqueous gel electrolyte and organic electrolyte, respectively) which is comparable to performance in other SWCNT-based supercapacitor devices fabricated using different methods. The results underline the potential of printable thin film supercapacitors. The simplified architecture and the sole use of printable materials may lead to a new class of entirely printable charge storage devices allowing for full integration with the emerging field of printed electronics. © 2009 American Chemical Society.

  4. Selective etching of thin single-walled carbon nanotubes.

    Science.gov (United States)

    Kalbác, Martin; Kavan, Ladislav; Dunsch, Lothar

    2009-04-01

    Raman spectroscopy and in situ Raman spectroelectrochemistry were applied to study the selective etching of thin tubes by lithium vapor in doped single-walled carbon nanotubes (SWCNTs). A strong doping of SWCNTs after the reaction with Li vapor was confirmed by the vanishing of the radial breathing mode (RBM) and by a strong attenuation of the tangential displacement (TG) band in the Raman spectra. The Raman spectra of the Li-vapor-treated SWCNTs after subsequent reaction with water showed changes in the diameter distribution compared with that of a pristine sample (nanotubes with diameters of <1 nm disappeared from the Raman spectra). The samples were tested by the Raman pattern with five different laser lines, and a removal of narrower tubes was confirmed. The remaining wider tubes were not significantly damaged by the treatment with Li, as indicated by the D line in the Raman spectra. Furthermore, the small-diameter tubes are converted not into amorphous carbon but into lithium carbide, which could easily be removed by hydrolysis. The treated samples were further charged electrochemically. It was shown by spectroelectrochemistry that anodic charging may lead to removal of the residual chemical doping from the thicker nanotubes in the sample, but the thin nanotubes did not appear in the spectra. This is a further confirmation of the removal of the small-diameter tubes.

  5. Design of self-supporting surfaces

    KAUST Repository

    Vouga, Etienne

    2012-07-01

    Self-supporting masonry is one of the most ancient and elegant techniques for building curved shapes. Because of the very geometric nature of their failure, analyzing and modeling such strutures is more a geometry processing problem than one of classical continuum mechanics. This paper uses the thrust network method of analysis and presents an iterative nonlinear optimization algorithm for efficiently approximating freeform shapes by self-supporting ones. The rich geometry of thrust networks leads us to close connections between diverse topics in discrete differential geometry, such as a finite-element discretization of the Airy stress potential, perfect graph Laplacians, and computing admissible loads via curvatures of polyhedral surfaces. This geometric viewpoint allows us, in particular, to remesh self-supporting shapes by self-supporting quad meshes with planar faces, and leads to another application of the theory: steel/glass constructions with low moments in nodes. © 2012 ACM 0730-0301/2012/08-ART87.

  6. Plasma polymerized thin coating as a protective layer of carbon nanotubes grafted on carbon fibers

    International Nuclear Information System (INIS)

    Einig, A; Magga, Y; Bai, J B; Rumeau, P; Desrousseaux, S

    2013-01-01

    Nanoparticles addition is widely studied to improve properties of carbon fiber reinforced composites. Here, hybrid carbon fiber results from grafting of carbon nanotubes (CNT) by Chemical Vapor Deposition (CVD) on the carbon fiber for mechanical reinforcement and conductive properties. Both tows and woven fabrics made of the hybrid fibers are added to the matrix for composite processing. However handling hybrid fibers may induce unwilling health risk due to eventual CNT release and a protective layer is required. A thin coating layer is deposited homogeneously by low pressure plasma polymerization of an organic monomer without modifying the morphology and the organization of grafted CNTs. The polymeric layer effect on the electrical behavior of hybrid fiber is assessed by conductivity measurements. Its influence on the mechanical properties is also studied regarding the interface adhesion between fiber and matrix. The protective role of layer is demonstrated by means of friction constraints applied to the hybrid fiber.

  7. Preparation of diamond like carbon thin film on stainless steel and ...

    Indian Academy of Sciences (India)

    Diamond-like carbon; buffer layer; plasma CVD; surface characterization; biomedical applications. Abstract. We report the formation of a very smooth, continuous and homogeneous diamond-like carbon DLC thin coating over a bare stainless steel surface without the need for a thin Si/Cr/Ni/Mo/W/TiN/TiC interfacial layer.

  8. Elemental distribution in fluorinated amorphous carbon thin films.

    Science.gov (United States)

    Lamperti, A; Bottani, C E; Ossi, P M

    2005-01-01

    Focused ion beam-secondary ion mass spectrometry (FIB-SIMS) with 20 nm spatial resolution has been used to analyze amorphous fluorinated carbon thin films, deposited by plasma assisted chemical vapor deposition (PACVD), at micro- to nano-scale. Mass spectra and ion imaging of film surface were acquired and the presence and distribution of contaminants were investigated. Surface images show the secondary ion distribution for F(-), CH(-), CF(-). A change in size and topology of fluorine-rich areas is correlated with film hardness and with microstructure transition from diamond-like to polymer-like, as indicated by infrared and Raman spectroscopies. Based on the surface distributions of CF(-) and CH(-) and on the vibrational spectroscopy results, a mechanism of fluorine substitution for hydrogen and an attempt to explain the film structure and microstructure is proposed.

  9. Carbon and water fluxes from ponderosa pine forests disturbed by wildfire and thinning.

    Science.gov (United States)

    Dore, S; Kolb, T E; Montes-Helu, M; Eckert, S E; Sullivan, B W; Hungate, B A; Kaye, J P; Hart, S C; Koch, G W; Finkral, A

    2010-04-01

    Disturbances alter ecosystem carbon dynamics, often by reducing carbon uptake and stocks. We compared the impact of two types of disturbances that represent the most likely future conditions of currently dense ponderosa pine forests of the southwestern United States: (1) high-intensity fire and (2) thinning, designed to reduce fire intensity. High-severity fire had a larger impact on ecosystem carbon uptake and storage than thinning. Total ecosystem carbon was 42% lower at the intensely burned site, 10 years after burning, than at the undisturbed site. Eddy covariance measurements over two years showed that the burned site was a net annual source of carbon to the atmosphere whereas the undisturbed site was a sink. Net primary production (NPP), evapotranspiration (ET), and water use efficiency were lower at the burned site than at the undisturbed site. In contrast, thinning decreased total ecosystem carbon by 18%, and changed the site from a carbon sink to a source in the first posttreatment year. Thinning also decreased ET, reduced the limitation of drought on carbon uptake during summer, and did not change water use efficiency. Both disturbances reduced ecosystem carbon uptake by decreasing gross primary production (55% by burning, 30% by thinning) more than total ecosystem respiration (TER; 33-47% by burning, 18% by thinning), and increased the contribution of soil carbon dioxide efflux to TER. The relationship between TER and temperature was not affected by either disturbance. Efforts to accurately estimate regional carbon budgets should consider impacts on carbon dynamics of both large disturbances, such as high-intensity fire, and the partial disturbance of thinning that is often used to prevent intense burning. Our results show that thinned forests of ponderosa pine in the southwestern United States are a desirable alternative to intensively burned forests to maintain carbon stocks and primary production.

  10. Effects of thinning on aboveground carbon sequestration by a 45-year-old eastern white pine plantation: A case study

    Science.gov (United States)

    W. Henry McNab

    2012-01-01

    Aboveground carbon sequestration by a 45-year-old plantation of eastern white pines was determined in response to thinning to three levels of residual basal area: (1) Control (no thinning), (2) light thinning to 120 feet2/acre and (3) heavy thinning to 80 feet2/acre. After 11 years carbon stocks were lowest on the heavily...

  11. Organic/carbon nanotubes hybrid thin films for chemical detection

    Science.gov (United States)

    Banimuslem, Hikmat Adnan

    Metallophthalocyanines (MPcs) are classified as an important class of conjugated materials and they possess several advantages attributed to their unique chemical structure. Carbon nanotubes (CNT), on the other hand, are known to enhance the properties of nano-composites in the conjugated molecules, due to their one dimensional electronic skeleton, high surface area and high aspect ratio. In this thesis, work has been carried out on the investigation of different substituted metal-phthalocyanines with the aim of developing novel hybrid film structures which incorporates these phthalocyanines and single-walled carbon nanotubes (SWCNT) for chemical detection applications. Octa-substituted copper phthalocyanines (CuPcR[8]) have been characterised using UV-visible absorption spectroscopy. Obtained spectra have yielded an evidence of a thermally induced molecular reorganization in the films. Influence of the nature of substituents in the phthalocyanine molecule on the thin films conductivity was also investigated. Octa-substituted lead (II) phthalocyanines (PbPcR[8]) have also been characterized using UV-visible spectroscopy. Sandwich structures of ITO/PbPcR[8]/In were prepared to investigate the electronic conduction in PbPcR[8]. The variation in the J(V) behavior of the films as a result of heat treatment is expected to be caused by changes in the alignment inside the columnar stacking of the molecules of the films. Thin films of non-covalently hybridised SWCNT and tetra-substituted copper phthalocyanine (CuPcR[4]) molecules have been produced. FTIR, DC conductivity, SEM and AFM results have revealed the [mathematical equation]; interaction between SWCNTs and CuPCR[4] molecules and shown that films obtained from the acid-treated SWCNTs/CuPcR[4] hybrids demonstrated more homogenous surface. Thin films of pristine CuPCR[4] and CuPcR[4]/S WCNT were prepared by spin coating onto gold-coated glass slides and applied as active layers for the detection of benzo

  12. Aligned carbon nanotube thin films for DNA electrochemical sensing

    Energy Technology Data Exchange (ETDEWEB)

    Berti, F. [Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Firenze 50019 (Italy); Lozzi, L. [Department of Physics, University of L' Aquila, Coppito, L' Aquila 67100 (Italy); Palchetti, I. [Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Firenze 50019 (Italy); Santucci, S. [Department of Physics, University of L' Aquila, Coppito, L' Aquila 67100 (Italy); Marrazza, G. [Department of Chemistry, University of Florence, Via della Lastruccia 3, Sesto Fiorentino, Firenze 50019 (Italy)], E-mail: giovanna.marrazza@unifi.it

    2009-09-01

    Carbon nanotubes are interesting materials for DNA electrochemical sensing due to their unique electric properties: high surface area, fast heterogeneous electron transfer, and electrochemical stability. In this work aligned Carbon NanoTube (CNT) thin films were designed and tested as candidate platforms for DNA immobilization and for the development of an electrochemical genosensor. The films were prepared by Chemical Vapor Deposition (CVD) using acetylene and ammonia as precursor gases and nickel particles as catalyst. A preliminary electrochemical characterization was performed using cyclic voltammetry since, so far, these films have been used only for gas sensing. The surfaces were then covalently functionalized with a DNA oligonucleotide probe, complementary to the sequence of the most common inserts in the GMOs: the Promoter 35S. The genosensor format involved the immobilization of the probe onto the sensor surface, the hybridization with the target-sequence and the electrochemical detection of the duplex formation. Careful attention was paid to the probe immobilization conditions in order to minimize the signal due to non-specifically adsorbed sequences. For the detection of the hybridization event both label-free and enzyme-labelled methods were investigated. In case of the enzyme-labelled method a target concentration at nanomolar level can be easily detected, with a linear response from 50 nM to 200 nM, whereas the label-free method showed a linear response between 0.5 {mu}M and 10 {mu}M. The reproducibility was 11% and 20% with the enzyme-labelled method and the label-free method, respectively. The batch-to-batch reproducibility of the different sensors was also evaluated.

  13. Decomposition of ethylene carbonate on electrodeposited metal thin film anode

    Energy Technology Data Exchange (ETDEWEB)

    Bridel, Jean-Sebastien; Grugeon, Sylvie; Laruelle, Stephane; Tarascon, Jean-Marie [Laboratoire de Reactivite et Chimie des Solides, Universite de Picardie Jules Verne CNRS (UMR-6007), Faculte des Sciences, 33 rue Saint-Leu 80039, Amiens Cedex (France); Hassoun, Jusef; Reale, Priscilla; Scrosati, Bruno [Chemistry Department, University of Rome ' ' La Sapienza' ' , 00185 Roma (Italy)

    2010-04-02

    Metals capable of forming alloys with Li are of great interest as an alternative to present carbon electrodes, hence the importance of knowing their interactions with electrolytes is necessary. Herein we report further on the high-voltage extra irreversibility of Sn electrodeposited thin films vs. Li in EC-DMC 1 M LiPF{sub 6} electrolytes. We show that this high-voltage irreversibility is strongly dependent upon the electrolyte composition as demonstrated by its disappearance in EC-free electrolytes. This finding coupled with IR spectroscopy measurements provides direct evidence for the tin-driven catalytic degradation of EC during the discharge of Sn/Li cells. From an electrochemical survey of various metals, capable of alloying with Li, we found that Bi and Pb behaved like Sn while Si and Sb did not act as catalysts towards EC degradation. A rationale for such behaviour is proposed, a procedure to bypass EC degradation with the addition of VC is presented, and an explanation for the non-observance of catalytic-driven EC degradation for Sn/C composites is provided. (author)

  14. Scanning and transmission electron microscopy investigation of multiwall carbon nanotube/nickel oxide nanocomposite thin films

    CSIR Research Space (South Africa)

    Roro, Kittessa T

    2011-12-01

    Full Text Available Owing to their unique electronic and optical properties, nanocomposite thin films are widely used for converting solar radiation therapy into other conventional energy forms, such as heat and electricity. Carbon nanotube-based composites which can...

  15. Charging of carbon thin films in scanning and phase-plate transmission electron microscopy

    DEFF Research Database (Denmark)

    Hettler, Simon; Kano, Emi; Dries, Manuel

    2018-01-01

    A systematic study on charging of carbon thin films under intense electron-beam irradiation was performed in a transmission electron microscope to identify the underlying physics for the functionality of hole-free phase plates. Thin amorphous carbon films fabricated by different deposition...... as simulations of the electrostatic potential distribution. The described ESD-based model explains previous experimental findings and is of general interest to any phase-related technique in a transmission electron microscope....

  16. Amorphous silicon-carbon based nano-scale thin film anode materials for lithium ion batteries

    International Nuclear Information System (INIS)

    Datta, Moni Kanchan; Maranchi, Jeffrey; Chung, Sung Jae; Epur, Rigved; Kadakia, Karan; Jampani, Prashanth; Kumta, Prashant N.

    2011-01-01

    Research highlights: → Thin film amorphous C/Si. Good cycling response validates carbon matrix for Silicon anodes. → Thin film amorphous C/Si/C. Good cycling response validates carbon as an interface and matrix. - Abstract: The buffering effect of carbon on the structural stability of amorphous silicon films, used as an anode for lithium ion rechargeable batteries, has been studied during long term discharge/charge cycles. To this extent, the electrochemical performance of a prototype material consisting of amorphous Si thin film (∼250 nm) deposited by radio frequency magnetron sputtering on amorphous carbon (∼50 nm) thin films, denoted as a-C/Si, has been investigated. In comparison to pure amorphous Si thin film (a-Si) which shows a rapid fade in capacity after 30 cycles, the a-C/Si exhibits excellent capacity retention displaying ∼0.03% fade in capacity up to 50 cycles and ∼0.2% after 50 cycles when cycled at a rate of 100 μA/cm 2 (∼C/2) suggesting that the presence of thin amorphous C layer deposited between the Cu substrate and a-Si acts as a buffer layer facilitating the release of the volume induced stresses exhibited by pure a-Si during the charge/discharge cycles. This structural integrity combined with microstructural stability of the a-C/Si thin film during the alloying/dealloying process with lithium has been confirmed by scanning electron microscopy (SEM) analysis. The buffering capacity of the thin amorphous carbon layer lends credence to its use as the likely compliant matrix to curtail the volume expansion related cracking of silicon validating its choice as the matrix for bulk and thin film battery systems.

  17. Chemically robust carbon nanotube – PTFE superhydrophobic thin films with enhanced ability of wear resistance

    Directory of Open Access Journals (Sweden)

    Kewei Wang

    2017-06-01

    Full Text Available A chemically robust superhydrophobic nanocomposite thin film with enhanced wear resistance is prepared from a composite comprising polytetrafluoroethylene (PTFE and carbon nanotubes. The superhydrophobic thin films with hierarchical structure are fabricated by spraying an environmentally friendly aqueous dispersion containing carbon nanotubes and PTFE resin on silicon wafer. Thin films with a contact angle of 154.1°±2° and a sliding angle less than 2° remain superhydrophobic after abrading over 500 times under a pressure of 50 g/cm2. The thin film is also extremely stable even under much stress conditions. To further the understanding of the enhancement of wear resistance, we investigated the formation of microsized structure and their effects. The growth of microbumps is caused by attracting solution droplet to the hydrophilic islands on hydrophobic surface.

  18. Physical properties of chemical vapour deposited nanostructured carbon thin films

    International Nuclear Information System (INIS)

    Mahadik, D.B.; Shinde, S.S.; Bhosale, C.H.; Rajpure, K.Y.

    2011-01-01

    Research highlights: In the present paper, nanostructured carbon films are grown using a natural precursor 'turpentine oil (C 10 H 16 )' as a carbon source in the simple thermal chemical vapour deposition method. The influence of substrate surface topography (viz. stainless steel, fluorine doped tin oxide coated quartz) and temperature on the evolution of carbon allotropes surfaces topography/microstructural and structural properties are investigated and discussed. - Abstract: A simple thermal chemical vapour deposition technique is employed for the deposition of carbon films by pyrolysing the natural precursor 'turpentine oil' on to the stainless steel (SS) and FTO coated quartz substrates at higher temperatures (700-1100 deg. C). In this work, we have studied the influence of substrate and deposition temperature on the evolution of structural and morphological properties of nanostructured carbon films. The films were characterized by using X-ray diffraction (XRD), scanning electron microscopy (SEM), contact angle measurements, Fourier transform infrared (FTIR) and Raman spectroscopy techniques. XRD study reveals that the films are polycrystalline exhibiting hexagonal and face-centered cubic structures on SS and FTO coated glass substrates respectively. SEM images show the porous and agglomerated surface of the films. Deposited carbon films show the hydrophobic nature. FTIR study displays C-H and O-H stretching vibration modes in the films. Raman analysis shows that, high ID/IG for FTO substrate confirms the dominance of sp 3 bonds with diamond phase and less for SS shows graphitization effect with dominant sp 2 bonds. It reveals the difference in local microstructure of carbon deposits leading to variation in contact angle and hardness, which is ascribed to difference in the packing density of carbon films, as observed also by Raman.

  19. Carbon nanotube network thin-film transistors on flexible/stretchable substrates

    Science.gov (United States)

    Takei, Kuniharu; Takahashi, Toshitake; Javey, Ali

    2016-03-29

    This disclosure provides systems, methods, and apparatus for flexible thin-film transistors. In one aspect, a device includes a polymer substrate, a gate electrode disposed on the polymer substrate, a dielectric layer disposed on the gate electrode and on exposed portions of the polymer substrate, a carbon nanotube network disposed on the dielectric layer, and a source electrode and a drain electrode disposed on the carbon nanotube network.

  20. Flexible diamond-like carbon thin film coated on rubbers: fundamentals and applications

    NARCIS (Netherlands)

    Pei, Yutao

    2015-01-01

    Dynamic rubber seals are the major source of friction in lubrication systems and bearings, which may take up to 70% of the total friction. Our solution is to coat rubbers with flexible diamond-like carbon (DLC) thin film by which the coefficient of friction is reduced from above 1.5 to below 0.15.

  1. Flexible diamond-like carbon thin film coated rubbers: fundamentals and applications

    NARCIS (Netherlands)

    Pei, Y.T.

    2015-01-01

    Dynamic rubber seals are major sources of friction of lubrication systems and bearings, which may take up to 75% of the total friction. The solution we present is to coat rubbers with diamond-like carbon (DLC) thin film, by which the coefficient of friction is reduced to less than one tenth. Coating

  2. Preparation of Nanocrystalline Titania Thin Films by Using Pure and Water-modified Supercritical Carbon Dioxide.

    Czech Academy of Sciences Publication Activity Database

    Sajfrtová, Marie; Cerhová, Marie; Dřínek, Vladislav; Daniš, S.; Matějová, L.

    2016-01-01

    Roč. 117, NOV 2016 (2016), s. 289-296 ISSN 0896-8446 R&D Projects: GA ČR GA14-23274S Institutional support: RVO:67985858 Keywords : titania thin films * supercritical carbon dioxide * crystallization Subject RIV: CA - Inorganic Chemistry Impact factor: 2.991, year: 2016

  3. Pulsed laser deposition of multiwall carbon nanotube/NiO nanocomposite thin films

    CSIR Research Space (South Africa)

    Yalisi, B

    2011-07-01

    Full Text Available of multiwall carbon nanotube/NiO nanocomposite thin films Brian Yalisi1,2, Kittessa Roro1, Ngcali Tile1,2 and Andrew Forbes1,2,3 1CSIR- National Laser Centre, Pretoria, SA 2School of Physics, University of KwaZulu Natal, Durban, SA 3School of Physics...

  4. Modification of rubber surface with hydrogenated diamond-like carbon thin films

    NARCIS (Netherlands)

    Pei, Y. T.; Bui, X. L.; De Hosson, J. Th. M.; Laudon, M; Romanowicz, B

    2009-01-01

    Thin films of hydrogenated diamond-like carbon (DLC) have been deposited on hydrogenated nitrile butadiene rubber (HNBR) for reduction of friction and enhancement of wear resistance of dynamic rubber seals, by sputtering graphite targets in C(2)H(2)/Ar plasma. The wax removal and pre-deposition

  5. Properties of boron-carbon-nitrogen ternary thin films synthesized by pulsed laser deposition

    Science.gov (United States)

    Ren, ZhongMin; Lu, Yongfeng; Mai, ZhiHong; Cheong, B. A.; Chow, S. K.; Wang, Jian P.; Chong, Tow Chong

    1999-07-01

    Boron-Carbon-Nitride BxCyNz thin films were deposited by excimer laser ablation of boron carbide under nitrogen ion-beam bombardment. Thin films were deposited in the intersection of the ablated B-C plasma and nitrogen ion beam on the silicon substrates. The laser pulse energy was selected in the range of 30-100 mJ with pulse duration of 23 ns. The electronic and compositional properties of the deposited thin films were analyzed by x-ray photoelectron spectroscope, Raman and IR spectroscope, scanning tunneling microscopy and ellipsometry measurements. The influence of the ion beam bombardment on the optical, electrical and electronic properties of the deposited thin films was studied.

  6. Carbon accretion in unthinned and thinned young-growth forest stands of the Alaskan perhumid coastal temperate rainforest.

    Science.gov (United States)

    D'Amore, David V; Oken, Kiva L; Herendeen, Paul A; Steel, E Ashley; Hennon, Paul E

    2015-12-01

    Accounting for carbon gains and losses in young-growth forests is a key part of carbon assessments. A common silvicultural practice in young forests is thinning to increase the growth rate of residual trees. However, the effect of thinning on total stand carbon stock in these stands is uncertain. In this study we used data from 284 long-term growth and yield plots to quantify the carbon stock in unthinned and thinned young growth conifer stands in the Alaskan coastal temperate rainforest. We estimated carbon stocks and carbon accretion rates for three thinning treatments (basal area removal of 47, 60, and 73 %) and a no-thin treatment across a range of productivity classes and ages. We also accounted for the carbon content in dead trees to quantify the influence of both thinning and natural mortality in unthinned stands. The total tree carbon stock in naturally-regenerating unthinned young-growth forests estimated as the asymptote of the accretion curve was 484 (±26) Mg C ha -1 for live and dead trees and 398 (±20) Mg C ha -1 for live trees only. The total tree carbon stock was reduced by 16, 26, and 39 % at stand age 40 y across the increasing range of basal area removal. Modeled linear carbon accretion rates of stands 40 years after treatment were not markedly different with increasing intensity of basal area removal from reference stand values of 4.45 Mg C ha -1  year -1 to treatment stand values of 5.01, 4.83, and 4.68 Mg C ha -1  year -1 respectively. However, the carbon stock reduction in thinned stands compared to the stock of carbon in the unthinned plots was maintained over the entire 100 year period of observation. Thinning treatments in regenerating forest stands reduce forest carbon stocks, while carbon accretion rates recovered and were similar to unthinned stands. However, that the reduction of carbon stocks in thinned stands persisted for a century indicate that the unthinned treatment option is the optimal choice for short

  7. Deposit of thin films of nitrided amorphous carbon using the laser ablation technique

    International Nuclear Information System (INIS)

    Rebollo, P.B.; Escobar A, L.; Camps C, E.; Haro P, E.; Camacho L, M.A.; Muhl S, S.

    2000-01-01

    It is reported the synthesis and characterization of thin films of amorphous carbon (a-C) nitrided, deposited by laser ablation in a nitrogen atmosphere at pressures which are from 4.5 x 10 -4 Torr until 7.5 x 10 -2 Torr. The structural properties of the films are studied by Raman spectroscopy obtaining similar spectra at the reported for carbon films type diamond. The study of behavior of the energy gap and the ratio nitrogen/carbon (N/C) in the films, shows that the energy gap is reduced when the nitrogen incorporation is increased. It is showed that the refraction index of the thin films diminish as nitrogen pressure is increased, indicating the formation of graphitic material. (Author)

  8. Implementation of Carbon Thin Film Coatings in the Super Proton Synchrotron (SPS) for Electron Cloud Mitigation

    CERN Document Server

    Costa Pinto, P; Basso, T; Edwards, P; Mensi, M; Sublet, A; Taborelli, M

    2014-01-01

    Low Secondary Electron Yield (SEY) carbon thin films eradicate electron multipacting in accelerator beam pipes. Two magnetic cells of the SPS were coated with such material and installed. In total more than forty vacuum vessels and magnet interconnections were treated. The feasibility of the coating process was validated. The performance of the carbon thin film will be tested with LHC nominal beams after the end of the long shutdown 1. Particular attention will be drawn to the long term behaviour. This paper presents the sputtering techniques used to coat the different components; their characterization (SEY measurements on coupons, RF multipacting tests and pump down curves); and the technology to etch the carbon film in case of a faulty coating. The strategy to coat the entire SPS will also be described.

  9. Determination of low-energy ion-induced electron yields from thin carbon foils

    International Nuclear Information System (INIS)

    Allegrini, Frederic; Wimmer-Schweingruber, Robert F.; Wurz, Peter; Bochsler, Peter

    2003-01-01

    Ion beams crossing thin carbon foils can cause electron emission from the entrance and exit surface. Thin carbon foils are used in various types of time-of-flight (TOF) mass spectrometers to produce start pulses for TOF measurements. The yield of emitted electrons depends, among other parameters, on the energy of the incoming ion and its mass, and it has been experimentally determined for a few projectile elements. The electron emission yield is of great importance for deriving abundance ratios of elements and isotopes in space plasmas using TOF mass spectrometers. We have developed a detector for measuring ion-induced electron yields, and we have extended the electron yield measurements for oxygen to energies relevant for solar wind research. We also present first measurements of the carbon foil electron emission yield for argon and iron in the solar wind energy range

  10. Selective Etching of Thin Single-Walled Carbon Nanotubes

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Kavan, Ladislav; Dunsch, L.

    2009-01-01

    Roč. 131, č. 12 (2009), s. 4529-4534 ISSN 0002-7863 R&D Projects: GA AV ČR IAA400400804; GA ČR GC203/07/J067; GA AV ČR IAA400400911 Institutional research plan: CEZ:AV0Z40400503 Keywords : carbon nanotubes * Raman spectroelectrochemistry * Raman spectroscopy Subject RIV: CG - Electrochemistry Impact factor: 8.580, year: 2009

  11. Screen-printed carbon electrode modified on its surface with amorphous carbon nitride thin film: Electrochemical and morphological study

    Energy Technology Data Exchange (ETDEWEB)

    Ghamouss, F. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France); Tessier, P.-Y. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Djouadi, A. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Besland, M.-P. [Universite de Nantes, UMR CNRS 6502, Institut des Materiaux Jean Rouxel - IMN Faculte des Sciences and des Techniques de Nantes, 2 rue de la Houssiniere, 44322 Nantes Cedex 3 (France); Boujtita, M. [Universite de Nantes, UMR 6006-CNRS, FR-2465-CNRS, Laboratoire d' Analyse isotopique et Electrochimique de Metabolismes (LAIEM) (France)]. E-mail: mohammed.boujtita@univ-nantes.fr

    2007-04-20

    The surface of a screen-printed carbon electrode (SPCE) was modified by using amorphous carbon nitride (a-CN {sub x}) thin film deposited by reactive magnetron sputtering. Scanning electron microscopy and photoelectron spectroscopy measurements were used to characterise respectively the morphology and the chemical structure of the a-CN {sub x} modified electrodes. The incorporation of nitrogen in the amorphous carbon network was demonstrated by X ray photoelectron spectroscopy. The a-CN {sub x} layers were deposited on both carbon screen-printed electrode (SPCE) and silicon (Si) substrates. A comparative study showed that the nature of substrate, i.e. SPCE and Si, has a significant effect on both the surface morphology of deposited a-CN {sub x} film and their electrochemical properties. The improvement of the electrochemical reactivity of SPCE after a-CN {sub x} film deposition was highlighted both by comparing the shapes of voltammograms and calculating the apparent heterogeneous electron transfer rate constant.

  12. Charging of carbon thin films in scanning and phase-plate transmission electron microscopy.

    Science.gov (United States)

    Hettler, Simon; Kano, Emi; Dries, Manuel; Gerthsen, Dagmar; Pfaffmann, Lukas; Bruns, Michael; Beleggia, Marco; Malac, Marek

    2018-01-01

    A systematic study on charging of carbon thin films under intense electron-beam irradiation was performed in a transmission electron microscope to identify the underlying physics for the functionality of hole-free phase plates. Thin amorphous carbon films fabricated by different deposition techniques and single-layer graphene were studied. Clean thin films at moderate temperatures show small negative charging while thin films kept at an elevated temperature are stable and not prone to beam-generated charging. The charging is attributed to electron-stimulated desorption (ESD) of chemisorbed water molecules from the thin-film surfaces and an accompanying change of work function. The ESD interpretation is supported by experimental results obtained by electron-energy loss spectroscopy, hole-free phase plate imaging, secondary electron detection and x-ray photoelectron spectroscopy as well as simulations of the electrostatic potential distribution. The described ESD-based model explains previous experimental findings and is of general interest to any phase-related technique in a transmission electron microscope. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  13. Synthesis and characterization of thin films of nitrided amorphous carbon deposited by laser ablation

    International Nuclear Information System (INIS)

    Rebollo P, B.

    2001-01-01

    The objective of this work is the synthesis and characterization of thin films of amorphous carbon (a-C) and thin films of nitrided amorphous carbon (a-C-N) using the laser ablation technique for their deposit. For this purpose, the physical properties of the obtained films were studied as function of diverse parameters of deposit such as: nitrogen pressure, power density, substrate temperature and substrate-target distance. For the characterization of the properties of the deposited thin films the following techniques were used: a) Raman spectroscopy which has demonstrated being a sensitive technique to the sp 2 and sp 3 bonds content, b) Energy Dispersive Spectroscopy which allows to know semi-quantitatively way the presence of the elements which make up the deposited films, c) Spectrophotometry, for obtaining the absorption spectra and subsequently the optical energy gap of the deposited material, d) Ellipsometry for determining the refraction index, e) Scanning Electron Microscopy for studying the surface morphology of thin films and, f) Profilemetry, which allows the determination the thickness of the deposited thin films. (Author)

  14. Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;

    Science.gov (United States)

    Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil

    2017-09-01

    In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.

  15. Piezoresistivity of mechanically drawn single-walled carbon nanotube (SWCNT) thin films-: mechanism and optimizing principle

    Science.gov (United States)

    Obitayo, Waris

    The individual carbon nanotube (CNT) based strain sensors have been found to have excellent piezoresistive properties with a reported gauge factor (GF) of up to 3000. This GF on the other hand, has been shown to be structurally dependent on the nanotubes. In contrast, to individual CNT based strain sensors, the ensemble CNT based strain sensors have very low GFs e.g. for a single walled carbon nanotube (SWCNT) thin film strain sensor, GF is ~1. As a result, studies which are mostly numerical/analytical have revealed the dependence of piezoresistivity on key parameters like concentration, orientation, length and diameter, aspect ratio, energy barrier height and Poisson ratio of polymer matrix. The fundamental understanding of the piezoresistive mechanism in an ensemble CNT based strain sensor still remains unclear, largely due to discrepancies in the outcomes of these numerical studies. Besides, there have been little or no experimental confirmation of these studies. The goal of my PhD is to study the mechanism and the optimizing principle of a SWCNT thin film strain sensor and provide experimental validation of the numerical/analytical investigations. The dependence of the piezoresistivity on key parameters like orientation, network density, bundle diameter (effective tunneling area), and length is studied, and how one can effectively optimize the piezoresistive behavior of a SWCNT thin film strain sensors. To reach this goal, my first research accomplishment involves the study of orientation of SWCNTs and its effect on the piezoresistivity of mechanically drawn SWCNT thin film based piezoresistive sensors. Using polarized Raman spectroscopy analysis and coupled electrical-mechanical test, a quantitative relationship between the strain sensitivity and SWCNT alignment order parameter was established. As compared to randomly oriented SWCNT thin films, the one with draw ratio of 3.2 exhibited ~6x increase on the GF. My second accomplishment involves studying the

  16. Pathways to Mesoporous Resin/Carbon Thin Films with Alternating Gyroid Morphology

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qi [Department; Matsuoka, Fumiaki [Department; Suh, Hyo Seon [Institute; Materials; Beaucage, Peter A. [Department; Xiong, Shisheng [Institute; Materials; Smilgies, Detlef-M. [Cornell; Tan, Kwan Wee [Department; School; Werner, Jörg G. [Department; Nealey, Paul F. [Institute; Materials; Wiesner, Ulrich B. [Department

    2017-12-19

    Three-dimensional (3D) mesoporous thin films with sub-100 nm periodic lattices are of increasing interest as templates for a number of nanotechnology applications, yet are hard to achieve with conventional top-down fabrication methods. Block copolymer self-assembly derived mesoscale structures provide a toolbox for such 3D template formation. In this work, single (alternating) gyroidal and double gyroidal mesoporous thin-film structures are achieved via solvent vapor annealing assisted co-assembly of poly(isoprene-block-styrene-block-ethylene oxide) (PI-b-PS-b-PEO, ISO) and resorcinol/phenol formaldehyde resols. In particular, the alternating gyroid thin-film morphology is highly desirable for potential template backfilling processes as a result of the large pore volume fraction. In situ grazing-incidence small-angle X-ray scattering during solvent annealing is employed as a tool to elucidate and navigate the pathway complexity of the structure formation processes. The resulting network structures are resistant to high temperatures provided an inert atmosphere. The thin films have tunable hydrophilicity from pyrolysis at different temperatures, while pore sizes can be tailored by varying ISO molar mass. A transfer technique between substrates is demonstrated for alternating gyroidal mesoporous thin films, circumventing the need to re-optimize film formation protocols for different substrates. Increased conductivity after pyrolysis at high temperatures demonstrates that these gyroidal mesoporous resin/carbon thin films have potential as functional 3D templates for a number of nanomaterials applications.

  17. ZnO thin films on single carbon fibres fabricated by Pulsed Laser Deposition (PLD)

    Energy Technology Data Exchange (ETDEWEB)

    Krämer, André; Engel, Sebastian [Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena (Germany); Sangiorgi, Nicola [Institute of Science and Technology for Ceramics – National Research Council of Italy (CNR-ISTEC), via Granarolo 64, 48018 Faenza, RA (Italy); Department of Chemical Science and Technologies, University of Rome Tor Vergata, via della Ricerca Scientifica, 00133 Rome (Italy); Sanson, Alessandra [Institute of Science and Technology for Ceramics – National Research Council of Italy (CNR-ISTEC), via Granarolo 64, 48018 Faenza, RA (Italy); Bartolomé, Jose F. [Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC), C/Sor Juana Inés de la Cruz 3, 28049 Madrid (Spain); Gräf, Stephan, E-mail: stephan.graef@uni-jena.de [Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena (Germany); Müller, Frank A. [Otto Schott Institute of Materials Research (OSIM), Friedrich Schiller University Jena, Löbdergraben 32, 07743 Jena (Germany); Center for Energy and Environmental Chemistry Jena (CEEC Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena (Germany)

    2017-03-31

    Highlights: • Carbon fibres were entirely coated with thin films consisting of aligned ZnO crystals. • A Q-switched CO2 laser was utilised as radiation source. • Suitability of ZnO thin films on carbon fibres as photo anodes for DSSC was studied. - Abstract: Single carbon fibres were 360° coated with zinc oxide (ZnO) thin films by pulsed laser deposition using a Q-switched CO{sub 2} laser with a pulse duration τ ≈ 300 ns, a wavelength λ = 10.59 μm, a repetition frequency f{sub rep} = 800 Hz and a peak power P{sub peak} = 15 kW in combination with a 3-step-deposition technique. In a first set of experiments, the deposition process was optimised by investigating the crystallinity of ZnO films on silicon and polished stainless steel substrates. Here, the influence of the substrate temperature and of the oxygen partial pressure of the background gas were characterised by scanning electron microscopy and X-ray diffraction analyses. ZnO coated carbon fibres and conductive glass sheets were used to prepare photo anodes for dye-sensitised solar cells in order to investigate their suitability for energy conversion devices. To obtain a deeper insight of the electronic behaviour at the interface between ZnO and substrate I–V measurements were performed.

  18. Nanostructured silicon carbon thin films grown by plasma enhanced chemical vapour deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Coscia, U. [Dipartimento di Fisica, Università di Napoli “Federico II” Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); CNISM Unita' di Napoli, Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); Ambrosone, G., E-mail: ambrosone@na.infn.it [Dipartimento di Fisica, Università di Napoli “Federico II” Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); SPIN-CNR, Complesso Universitario MSA, via Cinthia, 80126 Napoli (Italy); Basa, D.K. [Department of Physics, Utkal University, Bhubaneswar 751004 (India); Rigato, V. [INFN Laboratori Nazionali Legnaro, 35020 Legnaro (Padova) (Italy); Ferrero, S.; Virga, A. [Dipartimento di Scienza Applicata e Tecnologia, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)

    2013-09-30

    Nanostructured silicon carbon thin films, composed of Si nanocrystallites embedded in hydrogenated amorphous silicon carbon matrix, have been prepared by varying rf power in ultra high vacuum plasma enhanced chemical vapour deposition system using silane and methane gas mixtures diluted in hydrogen. In this paper we have studied the compositional, structural and electrical properties of these films as a function of rf power. It is shown that with increasing rf power the atomic densities of carbon and hydrogen increase while the atomic density of silicon decreases, resulting in a reduction in the mass density. Further, it is demonstrated that carbon is incorporated into amorphous matrix and it is mainly bonded to silicon. The study has also revealed that the crystalline volume fraction decreases with increase in rf power and that the films deposited with low rf power have a size distribution of large and small crystallites while the films deposited with relatively high power have only small crystallites. Finally, the enhanced transport properties of the nanostructured silicon carbon films, as compared to amorphous counterpart, have been attributed to the presence of Si nanocrystallites. - Highlights: • The mass density of silicon carbon films decreases from 2.3 to 2 g/cm{sup 3}. • Carbon is incorporated in the amorphous phase and it is mainly bonded to silicon. • Nanostructured silicon carbon films are deposited at rf power > 40 W. • Si nanocrystallites in amorphous silicon carbon enhance the electrical properties.

  19. Development of carbon steel with superior resistance to wall thinning and fracture for nuclear piping system

    International Nuclear Information System (INIS)

    Rhee, Chang Kyu; Lee, Min Ku; Park, Jin Ju

    2010-07-01

    Carbon steel is usually used for piping for secondary coolant system in nuclear power plant because of low cost and good machinability. However, it is generally reported that carbon steel was failed catastrophically because of its low resistance to wall thinning and fracture toughness. Especially, flow accelerated corrosion (FAC) is one of main problems of the wall thinning of piping in the nuclear power plant. Therefore, in this project, fabrication technology of new advanced carbon steel materials modified by dispersion of nano-carbide ceramics into the matrix is developed first in order to improve the resistance to wall thinning and fracture toughness drastically compared to the conventional one. In order to get highly wettable fine TiC ceramic particles into molten metal, the micro-sized TiC particles were first mechanically milled by Fe (MMed TiC/Fe) in a high energy ball mill machine in Ar gas atmosphere, and then mixed with surfactant metal elements (Sn, Cr, Ni) to obtain better wettability, as this lowered surface tension of the carbon steel melt. According to microscopic images revealed that an addition of MMed TiC/Fe-surfactant mixed powders favorably disperses the fine TiC particles in the carbon steel matrix. It was also found that the grain size refinement of the cast matrix is achieved remarkably when fine TiC particles were added due to the fact that they act as nucleation sites during the solidification process. As a results, a cast carbon steel dispersed with fine TiC particles shows improved mechanical properties such as hardness, tensile strength and cavitation resistance compared to that of without particles. However, the slight decrease of toughness was found

  20. Amorphous carbon thin films deposited on Si and PET: Study of interface states

    International Nuclear Information System (INIS)

    Mariazzi, S.; Macchi, C.; Karwasz, G.P.; Brusa, R.S.; Laidani, N.; Bartali, R.; Gottardi, G.; Anderle, M.

    2005-01-01

    Thin carbon films with various thickness, deposited on different substrates (Si and poly-ethylene-terephthalate) at the same operating conditions in a ratio frequency plasma enhanced chemical vapor deposition system were characterized by Doppler broadening spectroscopy. The films and the substrates were depth profiled by a slow positron beam. The aim od these measurements was to study the open volume structure and the interface of the films. It was found that, independently from the substrate, the films were homogeneous and exhibited to some open volume distribution. On the contrary, the effective positron diffusion length in the Si substrate was found to change with the thickness of the carbon films. This behaviour was found to change with the thickness of the carbon films. This behaviour was interpreted as a change in the electric field at the carbon/silicon interface. (author)

  1. Interfacial properties of a carbyne-rich nanostructured carbon thin film in ionic liquid

    Science.gov (United States)

    Giacomo Bettini, Luca; Della Foglia, Flavio; Piseri, Paolo; Milani, Paolo

    2016-03-01

    Nanostructured carbon sp2 (ns-C) thin films with up to 30% of sp-coordinated atoms (carbynes) were produced in a high vacuum by the low kinetic energy deposition of carbon clusters produced in the gas phase and accelerated by a supersonic expansion. Immediately after deposition the ns-C films were immersed in situ in an ionic liquid electrolyte. The interfacial properties of ns-C films in the ionic liquid electrolyte were characterized by electrochemical impedance spectroscopy and cyclic voltammetry (CV). The so-prepared carbyne-rich electrodes showed superior electric double layer (EDL) capacitance and electric conductivity compared to ns-C electrodes containing only sp2 carbon, showing the substantial influence of carbynes on the electrochemical properties of nanostructured carbon electrodes.

  2. Microhardness studies on thin carbon films grown on P-type, (100) silicon

    Science.gov (United States)

    Kolecki, J. C.

    1982-01-01

    A program to grow thin carbon films and investigate their physical and electrical properties is described. Characteristics of films grown by rf sputtering and vacuum arc deposition on p type, (100) silicon wafers are presented. Microhardness data were obtained from both the films and the silicon via the Vickers diamond indentation technique. These data show that the films are always harder than the silicon, even when the films are thin (of the order of 1000 A). Vacuum arc films were found to contain black carbon inclusions of the order of a few microns in size, and clusters of inclusions of the order of tens of microns. Transmission electron diffraction showed that the films being studied were amorphous in structure.

  3. Preparation and electrochemical properties of gold nanoparticles containing carbon nanotubes-polyelectrolyte multilayer thin films

    International Nuclear Information System (INIS)

    Yu Aimin; Zhang Xing; Zhang Haili; Han, Deyan; Knight, Allan R.

    2011-01-01

    Highlights: → Gold nanoparticles containing carbon nanotubes-polyelectrolyte multilayer thin films were prepared via layer-by-layer self-assembly technique. → The electron transfer behaviour of the hybrid thin films were investigated using an electrochemical probe. → The resulting thin films exhibited an electrocatalytic activity towards the oxidation of nitric oxide. - Abstract: Multi-walled carbon nanotubes (MWCNT)/polyelectrolyte (PE) hybrid thin films were fabricated by alternatively depositing negatively charged MWCNT and positively charged (diallyldimethylammonium chloride) (PDDA) via layer-by-layer (LbL) assembly technique. The stepwise growth of the multilayer films of MWCNT and PDDA was characterized by UV-vis spectroscopy. Scanning electron microscopy (SEM) images indicated that the MWCNT were uniformly embedded in the film to form a network and the coverage density of MWCNT increased with layer number. Au nanoparticles (NPs) could be further adsorbed onto the film to form PE/MWCNT/Au NPs composite films. The electron transfer behaviour of multilayer films with different compositions were studied by cyclic voltammetry using [Fe(CN) 6 ] 3-/4- as an electrochemical probe. The results indicated that the incorporation of MWCNT and Au NPs not only greatly improved the electronic conductivity of pure polyelectrolyte films, but also provided excellent electrocatalytic activity towards the oxidation of nitric oxide (NO).

  4. Medium scale carbon nanotube thin film integrated circuits on flexible plastic substrates

    Science.gov (United States)

    Rogers, John A; Cao, Qing; Alam, Muhammad; Pimparkar, Ninad

    2015-02-03

    The present invention provides device components geometries and fabrication strategies for enhancing the electronic performance of electronic devices based on thin films of randomly oriented or partially aligned semiconducting nanotubes. In certain aspects, devices and methods of the present invention incorporate a patterned layer of randomly oriented or partially aligned carbon nanotubes, such as one or more interconnected SWNT networks, providing a semiconductor channel exhibiting improved electronic properties relative to conventional nanotubes-based electronic systems.

  5. Characterization of layer-by-layer self-assembled carbon nanotube multilayer thin films

    International Nuclear Information System (INIS)

    Xue Wei; Cui Tianhong

    2007-01-01

    Single-walled carbon nanotube (SWNT) multilayer thin films are deposited on silicon substrates with layer-by-layer self-assembly. The structural, mechanical, electrical, and thermal properties of the thin films are investigated using quartz crystal microbalance (QCM), nanoindentation, and rapid thermal annealing techniques, respectively. Scanning electron microscopy inspection shows that the SWNT multilayer is formed through a dense network of nanotube bundles. Based on the QCM measurement, the volume and mass ratios of SWNTs in the multilayer are calculated as 63.2% and 75%, respectively. Nanoindentation on the SWNT thin film shows that its Young's modulus and hardness are approximately 17 and 0.6 GPa, respectively. Current-voltage (I-V) and four-point probe techniques are used to study the electrical properties of the SWNT thin film after being heated at different temperatures. The conductance of the SWNT thin film at 300 deg. C is measured as 2.29 mS, which is 50 times higher than that at room temperature (0.045 mS)

  6. Initial Study on Thin Film Preparation of Carbon Nanodots Composites as Luminescence Material

    Science.gov (United States)

    Iskandar, F.; Aimon, A. H.; Akmaluddin, A. R.; Nuryadin, B. W.; Abdullah, M.

    2016-08-01

    Nowadays, the developments of phosphors materials require elements without noble metals and simple production process. Carbon nanodots (C-dots) are one of phosphor materials with wide range of emission band, and high biocompatibility. In this research thin film carbon nanodots composite have been prepared by spin coating method. Prior deposition, powder carbon nanodots were synthesized from a mixture of commercial urea as the nitrogen sources and citric acid as a carbon source by using hydrothermal and microwave-assisted heating method. The prepared powder was dispersed in transparent epoxy resin and then coated on glass substrate. The photoluminescence result for sample with 0.035 g citric acid exhibited an intense, single, homogeneous and broad spectrum with yellowish emission upon excitation at 365 nm. The Fourier Transform Infrared Spectroscopy (FTIR) result showed the existences of C=C, C-H, C=O, N-H and O-H functional groups which confirmed the quality of the sample. Further, based on UV-Vis measurement, the prepared thin film was highly transparent (transmittance 90%) with estimated film thickness around 764 nm. This result may open an opportunity for optoelectronic devices.

  7. Nanotribological Behavior of Carbon Based Thin Films: Friction and Lubricity Mechanisms at the Nanoscale

    Directory of Open Access Journals (Sweden)

    Costas A. Charitidis

    2013-04-01

    Full Text Available The use of materials with very attractive friction and wear properties has raised much attention in research and industrial sectors. A wide range of tribological applications, including rolling and sliding bearings, machining, mechanical seals, biomedical implants and microelectromechanical systems (MEMS, require thin films with high mechanical strength, chemical inertness, broad optical transparency, high refractive index, wide bandgap excellent thermal conductivity and extremely low thermal expansion. Carbon based thin films like diamond, diamond-like carbon, carbon nitride and cubic boron nitride known as “super-hard” material have been studied thoroughly as the ideal candidate for tribological applications. In this study, the results of experimental and simulation works on the nanotribological behavior of carbon films and fundamental mechanisms of friction and lubricity at the nano-scale are reviewed. The study is focused on the nanomechanical properties and analysis of the nanoscratching processes at low loads to obtain quantitative analysis, the comparison obtain quantitative analysis, the comparison of their elastic/plastic deformation response, and nanotribological behavior of the a-C, ta-C, a-C:H, CNx, and a-C:M films. For ta-C and a-C:M films new data are presented and discussed.

  8. Large carbon cluster thin film gauges for measuring aerodynamic heat transfer rates in hypersonic shock tunnels

    International Nuclear Information System (INIS)

    Srinath, S; Reddy, K P J

    2015-01-01

    Different types of Large Carbon Cluster (LCC) layers are synthesized by a single-step pyrolysis technique at various ratios of precursor mixture. The aim is to develop a fast responsive and stable thermal gauge based on a LCC layer which has relatively good electrical conduction in order to use it in the hypersonic flow field. The thermoelectric property of the LCC layer has been studied. It is found that these carbon clusters are sensitive to temperature changes. Therefore suitable thermal gauges were developed for blunt cone bodies and were tested in hypersonic shock tunnels at a flow Mach number of 6.8 to measure aerodynamic heating. The LCC layer of this thermal gauge encounters high shear forces and a hostile environment for test duration in the range of a millisecond. The results are favorable to use large carbon clusters as a better sensor than a conventional platinum thin film gauge in view of fast responsiveness and stability. (paper)

  9. A display module implemented by the fast high-temperatue response of carbon nanotube thin yarns.

    Science.gov (United States)

    Wei, Yang; Liu, Peng; Jiang, Kaili; Fan, Shoushan

    2012-05-09

    Suspending superaligned multiwalled carbon nanotube (MWCNT) films were processed into CNT thin yarns, about 1 μm in diameter, by laser cutting and an ethanol atomization bath treatment. The fast high-temperature response under a vacuum was revealed by monitoring the incandescent light with a photo diode. The thin yarns can be electrically heated up to 2170 K in 0.79 mS, and the succeeding cool-down time is 0.36 mS. The fast response is attributed to the ultrasmall mass of the independent single yarn, large radiation coefficient, and improved thermal conductance through the two cool ends. The millisecond response time makes it possible to use the visible hot thin yarns as light-emitting elements of an incandescent display. A fully sealed display with 16 × 16 matrix was successfully fabricated using screen-printed thick electrodes and CNT thin yarns. It can display rolling characters with a low power consumption. More applications can be further developed based on the addressable CNT thermal arrays.

  10. Combined sonochemical/CVD method for preparation of nanostructured carbon-doped TiO{sub 2} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Rasoulnezhad, Hossein [Semiconductor Department, Materials and Energy Research Center (MERC), Karaj (Iran, Islamic Republic of); Kavei, Ghassem, E-mail: kaveighassem@gmail.com [Semiconductor Department, Materials and Energy Research Center (MERC), Karaj (Iran, Islamic Republic of); Ahmadi, Kamran [Semiconductor Department, Materials and Energy Research Center (MERC), Karaj (Iran, Islamic Republic of); Rahimipour, Mohammad Reza [Ceramic Department, Materials and Energy Research Center (MERC), Karaj (Iran, Islamic Republic of)

    2017-06-30

    Highlights: • Combination of sonochemical and CVD methods for preparation of nanostructured carbon-doped TiO{sub 2} thin film on glass substrate, for the first time. • High transparency, monodispersity and homogeneity of the prepared thin films. • Preparation of the carbon-doped TiO{sub 2} thin films with nanorod and nanosphere morphologies. - Abstract: The present work reports the successful synthesis of the nanostructured carbon-doped TiO{sub 2} thin films on glass substrate by combination of chemical vapor deposition (CVD) and ultrasonic methods, for the first time. In this method the ultrasound waves act as nebulizer for converting of sonochemically prepared TiO{sub 2} sol to the mist particles. These mist particles were thermally decomposed in subsequent CVD chamber at 320 °C to produce the carbon-doped TiO{sub 2} thin films. The obtained thin films were characterized by means of X-ray Diffraction (XRD), Raman spectroscopy, diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and scanning electron microscopy (SEM) techniques. The results show that the prepared thin films have anatase crystal structure and nanorod morphology, which calcination of them at 800 °C results in the conversion of nanorods to nanoparticles. In addition, the prepared samples have high transparency, monodispersity and homogeneity. The presence of the carbon element in the structure of the thin films causes the narrowing of the band-gap energy of TiO{sub 2} to about 2.8 eV, which results in the improvement of visible light absorption capabilities of the thin film.

  11. Thin-Sheet zinc-coated and carbon steels laser welding

    International Nuclear Information System (INIS)

    Pecas, P.; Gouveia, H.; Quintino, L.

    1998-01-01

    This paper describes the results of a research on CO 2 laser welding of thin-sheet carbon steels (Zinc-coated and uncoated), at several thicknesses combinations. Laser welding has an high potential to be applied on sub-assemblies welding before forming to the automotive industry-tailored blanks. The welding process is studied through the analysis of parameters optimization, metallurgical quality and induced distortions by the welding process. The clamping system and the gas protection system developed are fully described. These systems allow the minimization of common thin-sheet laser welding defects like misalignment, and zinc-coated laser welding defects like porous and zinc ventilation. The laser welding quality is accessed by DIN 8563 standard, and by tensile, microhardness and corrosion test. (Author) 8 refs

  12. Growth of Hexagonal Columnar Nanograin Structured SiC Thin Films on Silicon Substrates with Graphene–Graphitic Carbon Nanoflakes Templates from Solid Carbon Sources

    Science.gov (United States)

    Liu, Xingfang; Sun, Guosheng; Liu, Bin; Yan, Guoguo; Guan, Min; Zhang, Yang; Zhang, Feng; Chen, Yu; Dong, Lin; Zheng, Liu; Liu, Shengbei; Tian, Lixin; Wang, Lei; Zhao, Wanshun; Zeng, Yiping

    2013-01-01

    We report a new method for growing hexagonal columnar nanograin structured silicon carbide (SiC) thin films on silicon substrates by using graphene–graphitic carbon nanoflakes (GGNs) templates from solid carbon sources. The growth was carried out in a conventional low pressure chemical vapor deposition system (LPCVD). The GGNs are small plates with lateral sizes of around 100 nm and overlap each other, and are made up of nanosized multilayer graphene and graphitic carbon matrix (GCM). Long and straight SiC nanograins with hexagonal shapes, and with lateral sizes of around 200–400 nm are synthesized on the GGNs, which form compact SiC thin films. PMID:28809227

  13. Comparison of the voltammetric behavior of metronidazole at a DNA-modified glassy carbon electrode, a mercury thin film electrode and a glassy carbon electrode

    OpenAIRE

    Brett, Ana Maria Oliveira; Serrano, Silvia H. P.; Gutz, Ivano G. R.; La-Scalea, Mauro A.

    1997-01-01

    The electroanalytical performance at three electrodes: DNA-modified galssy carbon electrode, mercury thin film electrode and glassy carbon electrode, for the study of the electrochemical reduction of metronidazole is compared. All three electrodes showed a similar trend in the reduction mechanism for metronidazole, depenent on pH in the acid and neutral region and independent in alkaline media, although there was a shift in the peak potentials to more negative values when a bare glassy carbon...

  14. Electrical transport and morphological study of PLD-grown nanostructured amorphous carbon thin films

    International Nuclear Information System (INIS)

    Kant, K Mohan; Reddy, N Mahipal; Rama, N; Sethupathi, K; Rao, M S Ramachandra

    2006-01-01

    Nanostructured carbon thin films have been actively investigated recently for their electroresistance (ER) properties. Furthermore, carbon films with nonlinear current-voltage (I-V) characteristics have potential application in field-emission devices. This has motivated us to study the effect of various growth parameters on the physical and morphological properties of carbon films grown by pulsed laser deposition (PLD). Carbon films have been deposited using a graphite target at different partial pressures of argon. The morphology of film surfaces deposited at various growth conditions was monitored using an atomic force microscope (AFM). AFM studies showed nanostructured grain growth with average grain size of about 80-90 nm. As the deposition time was decreased down to 1 min, the grain size was also found to decrease correspondingly. From Raman spectroscopic measurements an increase in the I(D)/I(G) ratio and a decrease in FWHM (G) clearly revealed the promotion of sp 2 hybridization as the substrate temperature increased. All the films show semiconducting behaviour with the dominant conduction process being the three-dimensional (3D) variable range hopping (VRH) mechanism. Nonlinear I-V curves were obtained for carbon films deposited on p-type Si indicating diode-like behaviour. The most significant result of this study was the observation of a large electroresistance value

  15. Fully integrated carbon nanotube composite thin film strain sensors on flexible substrates for structural health monitoring

    Science.gov (United States)

    Burton, A. R.; Lynch, J. P.; Kurata, M.; Law, K. H.

    2017-09-01

    Multifunctional thin film materials have opened many opportunities for novel sensing strategies for structural health monitoring. While past work has established methods of optimizing multifunctional materials to exhibit sensing properties, comparatively less work has focused on their integration into fully functional sensing systems capable of being deployed in the field. This study focuses on the advancement of a scalable fabrication process for the integration of multifunctional thin films into a fully integrated sensing system. This is achieved through the development of an optimized fabrication process that can create a broad range of sensing systems using multifunctional materials. A layer-by-layer deposited multifunctional composite consisting of single walled carbon nanotubes (SWNT) in a polyvinyl alcohol and polysodium-4-styrene sulfonate matrix are incorporated with a lithography process to produce a fully integrated sensing system deposited on a flexible substrate. To illustrate the process, a strain sensing platform consisting of a patterned SWNT-composite thin film as a strain-sensitive element within an amplified Wheatstone bridge sensing circuit is presented. Strain sensing is selected because it presents many of the design and processing challenges that are core to patterning multifunctional thin film materials into sensing systems. Strain sensors fabricated on a flexible polyimide substrate are experimentally tested under cyclic loading using standard four-point bending coupons and a partial-scale steel frame assembly under lateral loading. The study reveals the material process is highly repeatable to produce fully integrated strain sensors with linearity and sensitivity exceeding 0.99 and 5 {{V}}/{ε }, respectively. The thin film strain sensors are robust and are capable of high strain measurements beyond 3000 μ {ε }.

  16. Thin, Flexible Supercapacitors Made from Carbon Nanofiber Electrodes Decorated at Room Temperature with Manganese Oxide Nanosheets

    Directory of Open Access Journals (Sweden)

    S. K. Nataraj

    2013-01-01

    Full Text Available We report the fabrication and electrochemical performance of a flexible thin film supercapacitor with a novel nanostructured composite electrode. The electrode was prepared by in situ coprecipitation of two-dimensional (2D MnO2 nanosheets at room temperature in the presence of carbon nanofibers (CNFs. The highest specific capacitance of 142 F/g was achieved for CNFs-MnO2 electrodes in sandwiched assembly with PVA-H4SiW12O40·nH2O polyelectrolyte separator.

  17. Deposition of functional carbon compound thin films using synchrotron radiation ablation

    International Nuclear Information System (INIS)

    Miki, Hidejiro

    2002-01-01

    Various functional carbon compound thin films such as polyethylene (PE), poly-para-phenylene (PPP) and fullerene were prepared by the synchrotron radiation (SR) ablation method. High quality crystalline PPP and fullerene films were obtained by room-temperature deposition using SR ablation method. The mechanism involved in the SR ablation was considered. The C-C bond in PE with a normal chain of hydrocarbon is broken after SR irradiation. However, a C-C bond with π electron in a six-membered ring cannot be broken. (author)

  18. Deposition of functional carbon compound thin films using synchrotron radiation ablation

    CERN Document Server

    Miki, H

    2002-01-01

    Various functional carbon compound thin films such as polyethylene (PE), poly-para-phenylene (PPP) and fullerene were prepared by the synchrotron radiation (SR) ablation method. High quality crystalline PPP and fullerene films were obtained by room-temperature deposition using SR ablation method. The mechanism involved in the SR ablation was considered. The C-C bond in PE with a normal chain of hydrocarbon is broken after SR irradiation. However, a C-C bond with pi electron in a six-membered ring cannot be broken. (author)

  19. Effect of surface carbon contamination on the chemical states of N-doped ZnO thin films

    Science.gov (United States)

    Zhang, Hong; Li, Wanjun; Qin, Guoping; Fang, Liang; Ruan, Haibo; Tan, Mi; Wu, Fang; Kong, Chunyang

    2018-02-01

    Nitrogen-doped ZnO thin films [ZnO:N] and intentional surface carbon-contaminated ZnO:N thin films [ZnO:N@C] were grown on quartz substrates by radio frequency magnetron sputtering deposition method. The structural, electrical and optical properties as well as chemical states of elements were investigated by means of X-ray diffraction (XRD), Hall effect measurement (Hall), UV-Vis-Near infrared spectrophotometer and X-ray photoelectron spectroscopy (XPS). The results indicate that surface carbon contamination almost does not affect the band gap of ZnO:N thin films but has a strong impact on the crystal quality of ZnO:N thin film surface and results in a significant increase in tensile stress. The XPS analysis shows that the effect of surface carbon contamination treatment on the chemical states of ZnO:N thin films is remarkable. Because the stability of Zn-N bonds in N-rich local environments is nowhere near that of those in O-rich local environments, the N atoms in N-rich local environments easily bond with surface carbon atoms to form undesirable C-N bonds, thus resulting in a decrease of NO acceptors in N-rich local environments. Obviously, it is unfavorable to subsequently prepare high stability of N-doped p-type ZnO thin films.

  20. Swift heavy ion induced modifications of single walled carbon nanotube thin films

    Energy Technology Data Exchange (ETDEWEB)

    Vishalli, E-mail: vishalli_2008@yahoo.com [Department of Physics, Panjab University, Chandigarh 160014 (India); Raina, K.K. [Materials Research Laboratory, School of Physics and Materials Science, Thapar University, P.O. Box 32, Patiala 147004, Punjab (India); Avasthi, D.K. [Materials Science Group, Inter University Accelerator Centre, Aruna Asaf Ali Marg, P.O. Box 10502, New Delhi 110067 (India); Srivastava, Alok [Department of Chemistry, Panjab University, Chandigarh 160014 (India); Dharamvir, Keya [Department of Physics, Panjab University, Chandigarh 160014 (India)

    2016-04-15

    Thin films of single walled carbon nanotubes (SWCNTs) were prepared by Langmuir–Blodgett method and irradiated with swift heavy ions, carbon and nickel each of energy 60 MeV. The ion beams have different electronic energy loss (S{sub e}) values and the samples were exposed to various irradiation doses. The irradiated films were characterized using Raman and optical absorption spectroscopy. Raman spectroscopy results indicate the competing processes of defect creation and healing (annealing) of SWCNTs at lower fluences, while at higher fluences defect creation or damage dominates. In UV–Vis–NIR spectroscopy we find that there is decrease in the intensity of characteristic peaks with every increasing fluence, indicating decrease in the optically active states with irradiation.

  1. Conductivity enhancement of multiwalled carbon nanotube thin film via thermal compression method

    Science.gov (United States)

    Tsai, Wan-Lin; Wang, Kuang-Yu; Chang, Yao-Jen; Li, Yu-Ren; Yang, Po-Yu; Chen, Kuan-Neng; Cheng, Huang-Chung

    2014-08-01

    For the first time, the thermal compression method is applied to effectively enhance the electrical conductivity of carbon nanotube thin films (CNTFs). With the assistance of heat and pressure on the CNTFs, the neighbor multiwalled carbon nanotubes (CNTs) start to link with each other, and then these separated CNTs are twined into a continuous film while the compression force, duration, and temperature are quite enough for the reaction. Under the compression temperature of 400°C and the compression force of 100 N for 50 min, the sheet resistance can be reduced from 17 to 0.9 k Ω/sq for the CNTFs with a thickness of 230 nm. Moreover, the effects of compression temperature and the duration of thermal compression on the conductivity of CNTF are also discussed in this work.

  2. Percolation of Carbon Nanoparticles in Poly(3-Hexylthiophene Enhancing Carrier Mobility in Organic Thin Film Transistors

    Directory of Open Access Journals (Sweden)

    Chang-Hung Lee

    2014-01-01

    Full Text Available To improve the field-effect mobility of all-inkjet-printed organic thin film transistors (OTFTs, a composite material consisted of carbon nanoparticles (CNPs and poly(3-hexylthiophene (P3HT was reported by using homemade inkjet-printing system. These all-inkjet-printed composite OTFTs represented superior characteristics compared to the all-inkjet-printed pristine P3HT OTFTs. To investigate the enhancement mechanism of the blended materials, the percolation model was established and experimentally verified to illustrate the enhancement of the electrical properties with different blending concentrations. In addition, experimental results of OTFT contact resistances showed that both contact resistance and channel resistance were halved. At the same time, X-ray diffraction measurements, Fourier transform infrared spectra, ultraviolet-visible light, and photoluminescence spectra were also accomplished to clarify the material blending effects. Therefore, this study demonstrates the potential and guideline of carbon-based nanocomposite materials in all-inkjet-printed organic electronics.

  3. Ultra-Thin Optically Transparent Carbon Electrodes Produced from Layers of Adsorbed Proteins

    Science.gov (United States)

    Alharthi, Sarah A.; Benavidez, Tomas E.; Garcia, Carlos D.

    2013-01-01

    This work describes a simple, versatile, and inexpensive procedure to prepare optically transparent carbon electrodes, using proteins as precursors. Upon adsorption, the protein-coated substrates were pyrolyzed under reductive conditions (5% H2) to form ultra-thin, conductive electrodes. Because proteins spontaneously adsorb to interfaces forming uniform layers, the proposed method does not require a precise control of the preparation conditions, specialized instrumentation, or expensive precursors. The resulting electrodes were characterized by a combination of electrochemical, optical, and spectroscopic means. As a proof-of-concept, the optically-transparent electrodes were also used as substrate for the development of an electrochemical glucose biosensor. The proposed films represent a convenient alternative to more sophisticated, and less available, carbon-based nanomaterials. Furthermore, these films could be formed on a variety of substrates, without classical limitations of size or shape. PMID:23421732

  4. Carbon dioxide and water adsorption on highly epitaxial Delafossite CuFeO2 thin film

    Science.gov (United States)

    Rojas, S.; Joshi, T.; Borisov, P.; Sarabia, M.; Lederman, D.; Cabrera, A. L.

    2015-03-01

    Thermal programmed desorption (TPD) of CO2 and H2O from a 200 nm thick CuFeO2 Delafossite surface was performed in a standard UHV chamber, The CuFeO2 thin film grown using Pulsed Laser Deposition (PLD) over an Al2O3 (0001) substrate with controlled O2 atmosphere resulted with highly epitaxial crystal structure. The adsorption/desorption of CO2 and H2O process was also monitored with X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). Our results revealed that carbon dioxide interacts with CuFeO2 forming Fe carbonates compounds on its surface. Hydroxides were also formed on the surface due to water presence. Using TPD data, Arrhenius plots for CO2 and water desorption were done and activation energy for desorption was obtained. Funds FONDECyT 1130372; Thanks to P. Ferrari.

  5. Effect of diamond-like carbon thin film coated acrylic resin on candida albicans biofilm formation.

    Science.gov (United States)

    Queiroz, José Renato Cavalcanti; Fissmer, Sara Fernanda; Koga-Ito, Cristiane Yumi; Salvia, Ana C R D; Massi, Marcos; Sobrinho, Argermiro Soares da Silva; Júnior, Lafayette Nogueira

    2013-08-01

    The purpose of this study was to evaluate the effect of diamond-like carbon thin films doped and undoped with silver nanoparticles coating poly(methyl methacrylate) (PMMA) on Candida albicans biofilm formation. The control of biofilm formation is important to prevent oral diseases in denture users. Forty-five PMMA disks were obtained, finished, cleaned in an ultrasonic bath, and divided into three groups: Gc, no surface coating (control group); Gdlc, coated with diamond-like carbon film; and Gag, coated with diamond-like carbon film doped with silver nanoparticles. The films were deposited using a reactive magnetron sputtering system (physical vapor deposition process). The specimens were characterized by optical profilometry, atomic force microscopy, and Rutherford backscattering spectroscopy analyses that determined differences in chemical composition and morphological structure. Following sterilization of the specimens by γ-ray irradiation, C. albicans (ATCC 18804) biofilms were formed by immersion in 2 ml of Sabouraud dextrose broth inoculated with a standardized fungal suspension. After 24 hours, the number of colony forming units (cfu) per specimen was counted. Data concerning biofilm formation were analyzed using ANOVA and the Tukey test (p 0.05). The Tukey test showed no significant difference between Gdlc and Gag. Films deposited were extremely thin (∼50 nm). The silver particles presented a diameter between 60 and 120 nm and regular distribution throughout the film surface (to Gag). Diamond-like carbon films, doped or undoped with silver nanoparticles, coating the base of PMMA-based dentures could be an alternative procedure for preventing candidosis in denture users. © 2013 by the American College of Prosthodontists.

  6. Microstructural origin of resistance-strain hysteresis in carbon nanotube thin film conductors.

    Science.gov (United States)

    Jin, Lihua; Chortos, Alex; Lian, Feifei; Pop, Eric; Linder, Christian; Bao, Zhenan; Cai, Wei

    2018-02-27

    A basic need in stretchable electronics for wearable and biomedical technologies is conductors that maintain adequate conductivity under large deformation. This challenge can be met by a network of one-dimensional (1D) conductors, such as carbon nanotubes (CNTs) or silver nanowires, as a thin film on top of a stretchable substrate. The electrical resistance of CNT thin films exhibits a hysteretic dependence on strain under cyclic loading, although the microstructural origin of this strain dependence remains unclear. Through numerical simulations, analytic models, and experiments, we show that the hysteretic resistance evolution is governed by a microstructural parameter [Formula: see text] (the ratio of the mean projected CNT length over the film length) by showing that [Formula: see text] is hysteretic with strain and that the resistance is proportional to [Formula: see text] The findings are generally applicable to any stretchable thin film conductors consisting of 1D conductors with much lower resistance than the contact resistance in the high-density regime.

  7. Characterization of thin Zn-Ni alloy coatings electrodeposited on low carbon steel

    International Nuclear Information System (INIS)

    El Hajjami, A.; Gigandet, M.P.; De Petris-Wery, M.; Catonne, J.C.; Duprat, J.J.; Thiery, L.; Raulin, F.; Pommier, N.; Starck, B.; Remy, P.

    2007-01-01

    The characteristics of initial layer formation in alkaline bath for Zn-Ni (12-15%) alloy electrodeposition on low carbon steel plates are detected in a nanometric thickness range by electron probe microanalysis (EPMA), with both bulk sample and thin film on substrate correction procedure, glow discharge optical emission spectroscopy (GDOES) and gracing incidence X-ray diffraction (GIXRD). The Zn-Ni coatings were elaborated using either intensiostatic or potentiostatic mode. A preferential deposition of Ni, in the initial thin layer, is detected by these analyses; according to EPMA and GDOES measurements, a layer rich in nickel at the interface substrate/deposit is observed (90 wt.% Ni) and approved by GIXRD; the thin layer of Ni formed in the first moments of electrolysis greatly inhibits the Zn deposition. The initial layer depends upon the relative ease of hydrogen and metal discharge and on the different substrate surfaces involved. The electrodeposition of zinc-nickel alloys in the first stage is a normal phenomenon of codeposition, whereby nickel - the more noble metal - is deposited preferentially

  8. Highly transparent and conductive thin films fabricated with nano-silver/double-walled carbon nanotube composites.

    Science.gov (United States)

    Lee, Shie-Heng; Teng, Chih-Chun; Ma, Chen-Chi M; Wang, Ikai

    2011-12-01

    This study develops a technique for enhancing the electrical conductivity and optical transmittance of transparent double-walled carbon nanotube (DWNT) film. Silver nanoparticles were modified with a NH(2)(CH(2))(2)SH self-assembled monolayer terminated by amino groups and subsequent surface condensation that reacted with functionalized DWNTs. Ag nanoparticles were grafted on the surface of the DWNTs. The low sheet resistance of the resulting thin conductive film on a polyethylene terephthalate (PET) substrate was due to the increased contact areas between DWNTs and work function by grafting Ag nanoparticles on the DWNT surfaces. Increasing the contact area between DWNTs and work function improved the conductivity of the DWNT-Ag thin films. The prepared DWNT-Ag thin films had a sheet resistance of 53.4 Ω/sq with 90.5% optical transmittance at a 550 nm wavelength. After treatment with HNO(3) and annealing at 150 °C for 30 min, a lower sheet resistance of 45.8 Ω/sq and a higher transmittance of 90.4% could be attained. The value of the DC conductivity to optical conductivity (σ(DC)/σ(OP)) ratio is 121.3. Copyright © 2011 Elsevier Inc. All rights reserved.

  9. Graphene oxide/carbon nanoparticle thin film based IR detector: Surface properties and device characterization

    Directory of Open Access Journals (Sweden)

    Farzana Aktar Chowdhury

    2015-10-01

    Full Text Available This work deals with the synthesis, characterization, and application of carbon nanoparticles (CNP adorned graphene oxide (GO nanocomposite materials. Here we mainly focus on an emerging topic in modern research field presenting GO-CNP nanocomposite as a infrared (IR radiation detector device. GO-CNP thin film devices were fabricated from liquid phase at ambient condition where no modifying treatments were necessary. It works with no cooling treatment and also for stationary objects. A sharp response of human body IR radiation was detected with time constants of 3 and 36 sec and radiation responsivity was 3 mAW−1. The current also rises for quite a long time before saturation. This work discusses state-of-the-art material developing technique based on near-infrared photon absorption and their use in field deployable instrument for real-world applications. GO-CNP-based thin solid composite films also offer its potentiality to be utilized as p-type absorber material in thin film solar cell, as well.

  10. Electrical and magnetic properties of electrodeposited nickel incorporated diamond-like carbon thin films

    Science.gov (United States)

    Pandey, B.; Das, D.; Kar, A. K.

    2015-05-01

    Nanocomposite diamond-like carbon (DLC) thin films have been synthesized by incorporating nickel (Ni) nanoparticles in DLC matrix with varying concentration of nickel. DLC and Ni-DLC thin films have been deposited on ITO coated glass substrates employing low voltage electrodeposition method. Electrical properties of the samples were studied by measuring current-voltage characteristics and dielectric properties. The current approaches toward an ohmic behavior with metal addition. This tendency of increasing ohmicity is enhanced with increase in dilution of the electrolyte. The conductivity increases with Ni addition and interestingly it continues to increase with dilution of Ni concentration in the electrolyte in the range of our study. Magnetic properties for DLC and Ni-DLC thin film samples were examined by electron paramagnetic resonance (EPR) measurements and Super Conducting Quantum Interference Device (SQUID) measurements. g-Value for DLC is 2.074, whereas it decreases to 2.055 with Ni addition in the electrolyte. This decrement arises from the increased sp2 content in DLC matrix. The magnetic moment vs. magnetic field (m-H) curves of Ni-DLC indicate superparamagnetic behavior which may be due to ferromagnetic contribution from the incorporated nickel nanoparticles in the DLC matrix. The ZFC curve of Ni-DLC after the blocking temperature shows a combined contribution of ferromagnetic, superparamagnetic and paramagnetic nature of the materials persisting up to 300 K.

  11. Iron, nitrogen and silicon doped diamond like carbon (DLC) thin films: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Sekhar C., E-mail: Raysc@unisa.ac.za [Department of Physics, College of Science, Engineering and Technology, University of South Africa, Private Bag X6, Florida, 1710, Science Campus, Christiaan de Wet and Pioneer Avenue, Florida Park, Johannesburg (South Africa); Pong, W.F. [Department of Physics, Tamkang University, Tamsui 251, New Taipei City, Taiwan (China); Papakonstantinou, P. [Nanotechnology and Integrated Bio-Engineering Centre, University of Ulster, Shore Road, Newtownabbey BT37 0QB (United Kingdom)

    2016-07-01

    The X-ray absorption near edge structure (XANES), X-ray photoelectron spectroscopy (XPS), valence band photoemission (VB-PES) and Raman spectroscopy results show that the incorporation of nitrogen in pulsed laser deposited diamond like carbon (DLC) thin films, reverts the sp{sup 3} network to sp{sup 2} as evidenced by an increase of the sp{sup 2} cluster and I{sub D}/I{sub G} ratio in C K-edge XANES and Raman spectra respectively which reduces the hardness/Young's modulus into the film network. Si-doped DLC film deposited in a plasma enhanced chemical vapour deposition process reduces the sp{sup 2} cluster and I{sub D}/I{sub G} ratio that causes the decrease of hardness/Young's modulus of the film structure. The Fe-doped DLC films deposited by dip coating technique increase the hardness/Young's modulus with an increase of sp{sup 3}-content in DLC film structure. - Highlights: • Fe, N and Si doped DLC films deposited by dip, PLD and PECVD methods respectively • DLC:Fe thin films have higher hardness/Young's modulus than DLC:N(:Si) thin films. • sp{sup 3} and sp{sup 2} contents are estimated from C K-edge XANES and VB-PES measurements.

  12. Graphene oxide/carbon nanoparticle thin film based IR detector: Surface properties and device characterization

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, Farzana Aktar [Experimental Physics Division, Atomic Energy Centre, 4, Kazi Nazrul Islam Avenue, Dhaka-1000 (Bangladesh); Hossain, Mohammad Abul [Department of Chemistry, Faculty of Science, University of Dhaka, Dhaka-1000 (Bangladesh); Uchida, Koji; Tamura, Takahiro; Sugawa, Kosuke; Mochida, Tomoaki; Otsuki, Joe [College of Science and Technology, Nihon University, 1-8-14 Kanda Surugadai, Chiyoda-ku, Tokyo 101-8308 (Japan); Mohiuddin, Tariq [Department of Physics, College of Science, Sultan Qaboos University, Muscat (Oman); Boby, Monny Akter [Department of Physics, Faculty of Science, University of Dhaka, Dhaka-1000 (Bangladesh); Alam, Mohammad Sahabul, E-mail: msalam@ksu.edu.sa [Department of Physics, Faculty of Science, University of Dhaka, Dhaka-1000 (Bangladesh); Department of Chemical Engineering, College of Engineering & King Abdullah Institute for Nanotechnology, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia)

    2015-10-15

    This work deals with the synthesis, characterization, and application of carbon nanoparticles (CNP) adorned graphene oxide (GO) nanocomposite materials. Here we mainly focus on an emerging topic in modern research field presenting GO-CNP nanocomposite as a infrared (IR) radiation detector device. GO-CNP thin film devices were fabricated from liquid phase at ambient condition where no modifying treatments were necessary. It works with no cooling treatment and also for stationary objects. A sharp response of human body IR radiation was detected with time constants of 3 and 36 sec and radiation responsivity was 3 mAW{sup −1}. The current also rises for quite a long time before saturation. This work discusses state-of-the-art material developing technique based on near-infrared photon absorption and their use in field deployable instrument for real-world applications. GO-CNP-based thin solid composite films also offer its potentiality to be utilized as p-type absorber material in thin film solar cell, as well.

  13. Improvement in interfacial characteristics of low-voltage carbon nanotube thin-film transistors with solution-processed boron nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, Jun-Young; Ha, Tae-Jun, E-mail: taejunha0604@gmail.com

    2017-08-15

    Highlights: • We demonstrate the potential of solution-processed boron nitride (BN) thin films for nanoelectronics. • Improved interfacial characteristics reduced the leakage current by three orders of magnitude. • The BN encapsulation improves all the device key metrics of low-voltage SWCNT-TFTs. • Such improvements were achieved by reduced interaction of interfacial localized states. - Abstract: In this article, we demonstrate the potential of solution-processed boron nitride (BN) thin films for high performance single-walled carbon nanotube thin-film transistors (SWCNT-TFTs) with low-voltage operation. The use of BN thin films between solution-processed high-k dielectric layers improved the interfacial characteristics of metal-insulator-metal devices, thereby reducing the current density by three orders of magnitude. We also investigated the origin of improved device performance in SWCNT-TFTs by employing solution-processed BN thin films as an encapsulation layer. The BN encapsulation layer improves the electrical characteristics of SWCNT-TFTs, which includes the device key metrics of linear field-effect mobility, sub-threshold swing, and threshold voltage as well as the long-term stability against the aging effect in air. Such improvements can be achieved by reduced interaction of interfacial localized states with charge carriers. We believe that this work can open up a promising route to demonstrate the potential of solution-processed BN thin films on nanoelectronics.

  14. The production of carbon nanofibers and thin films on palladium catalysts from ethylene oxygen mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, Jonathan [Los Alamos National Laboratory; Doorn, Stephen [Los Alamos National Laboratory; Atwater, Mark [UNM MECH.ENG.; Leseman, Zayd [UNM MECH.ENG.; Luhrs, Claudia C [UNM ENG.MECH; Diez, Yolanda F [SPAIN; Diaz, Angel M [SPAIN

    2009-01-01

    The characteristics of carbonaceous materials deposited in fuel rich ethylene-oxygen mixtures on three types of palladium: foil, sputtered film, and nanopowder, are reported. It was found that the form of palladium has a dramatic influence on the morphology of the deposited carbon. In particular, on sputtered film and powder, tight 'weaves' of sub-micron filaments formed quickly. In contrast, on foils under identical conditions, the dominant morphology is carbon thin films with basal planes oriented parallel to the substrate surface. Temperature, gas flow rate, reactant flow ratio (C2H4:02), and residence time (position) were found to influence both growth rate and type for all three forms of Pd. X-ray diffraction, high-resolution transmission electron microscopy, temperature-programmed oxidation, and Raman spectroscopy were used to assess the crystallinity of the as-deposited carbon, and it was determined that transmission electron microscopy and x-ray diffraction were the most reliable methods for determining crystallinity. The dependence of growth on reactor position, and the fact that no growth was observed in the absence of oxygen support the postulate that the carbon deposition proceeds by combustion generated radical species.

  15. Amorphous Carbon Gold Nanocomposite Thin Films: Structural and Spectro-ellipsometric Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Montiel-Gonzalez, Z., E-mail: zeuzmontiel@hotmail.com [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, Ciudad Universitaria, Coyoacan 04510, Mexico D.F (Mexico); Rodil, S.E.; Muhl, S. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, Circuito exterior s/n, Ciudad Universitaria, Coyoacan 04510, Mexico D.F (Mexico); Mendoza-Galvan, A. [Centro de Investigacion y de Estudios Avanzados del Instituto Politecnico Nacional, Unidad Queretaro, 76010 Queretaro, Queretaro (Mexico); Rodriguez-Fernandez, L. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Circuito de la Investigacion Cientifica, Ciudad Universitaria, 04510, Mexico D.F (Mexico)

    2011-07-01

    Spectroscopic Ellipsometry was used to determine the optical and structural properties of amorphous carbon:gold nanocomposite thin films deposited by dc magnetron co-sputtering at different deposition power. The incorporation of gold as small particles distributed in the amorphous carbon matrix was confirmed by X-ray Diffraction, Rutherford Backscattering measurements and High Resolution Transmission Electron Microscopy. Based on these results, an optical model for the films was developed using the Maxwell-Garnett effective medium with the Drude-Lorentz model representing the optical response of gold and the Tauc-Lorentz model for the amorphous carbon. The gold volume fraction and particle size obtained from the fitting processes were comparable to those from the physical characterization. The analysis of the ellipsometric spectra for all the samples showed strong changes in the optical properties of the carbon films as a consequence of the gold incorporation. These changes were correlated to the structural modification observed by Raman Spectroscopy, which indicated a clustering of the sp{sup 2} phase with a subsequent decrease in the optical gap. Finally, measurements of Reflection and Transmission Spectroscopy were carried out and Transmission Electron Microscopy images were obtained in order to support the ellipsometric model results.

  16. Thin-film electroencephalographic electrodes using multi-walled carbon nanotubes are effective for neurosurgery.

    Science.gov (United States)

    Awara, Kousuke; Kitai, Ryuhei; Isozaki, Makoto; Neishi, Hiroyuki; Kikuta, Kenichiro; Fushisato, Naoki; Kawamoto, Akira

    2014-12-15

    Intraoperative morphological and functional monitoring is essential for safe neurosurgery. Functional monitoring is based on electroencephalography (EEG), which uses silver electrodes. However, these electrodes generate metal artifacts as silver blocks X-rays, creating white radial lines on computed tomography (CT) images during surgery. Thick electrodes interfere with surgical procedures. Thus, thinner and lighter electrodes are ideal for intraoperative use. The authors developed thin brain electrodes using carbon nanotubes that were formed into thin sheets and connected to electrical wires. The nanotube sheets were soft and fitted the curve of the head very well. When attached to the head using paste, the impedance of the newly developed electrodes was 5 kΩ or lower, which was similar to that of conventional metal electrodes. These electrodes can be used in combination with intraoperative CT, magnetic resonance imaging (MRI), or cerebral angiography. Somatosensory-evoked potentials, auditory brainstem responses, and visually evoked potentials were clearly identified in ten volunteers. The electrodes, without any artifacts that distort images, did not interfere with X-rays, CT, or MR images. They also did not cause skin damage. Carbon nanotube electrodes may be ideal for neurosurgery.

  17. Quasi-static and dynamic strain sensing using carbon nanotube/epoxy nanocomposite thin films

    International Nuclear Information System (INIS)

    Anand, Sandeep V; Roy Mahapatra, D

    2009-01-01

    Thin films are developed by dispersing carbon black nanoparticles and carbon nanotubes (CNTs) in an epoxy polymer. The films show a large variation in electrical resistance when subjected to quasi-static and dynamic mechanical loading. This phenomenon is attributed to the change in the band-gap of the CNTs due to the applied strain, and also to the change in the volume fraction of the constituent phases in the percolation network. Under quasi-static loading, the films show a nonlinear response. This nonlinearity in the response of the films is primarily attributed to the pre-yield softening of the epoxy polymer. The electrical resistance of the films is found to be strongly dependent on the magnitude and frequency of the applied dynamic strain, induced by a piezoelectric substrate. Interestingly, the resistance variation is found to be a linear function of frequency and dynamic strain. Samples with a small concentration of just 0.57% of CNT show a sensitivity as high as 2.5% MPa −1 for static mechanical loading. A mathematical model based on Bruggeman's effective medium theory is developed to better understand the experimental results. Dynamic mechanical loading experiments reveal a sensitivity as high as 0.007% Hz −1 at a constant small-amplitude vibration and up to 0.13%/μ-strain at 0–500 Hz vibration. Potential applications of such thin films include highly sensitive strain sensors, accelerometers, artificial neural networks, artificial skin and polymer electronics

  18. Structural, nanomechanical and variable range hopping conduction behavior of nanocrystalline carbon thin films deposited by the ambient environment assisted filtered cathodic jet carbon arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Panwar, O.S., E-mail: ospanwar@mail.nplindia.ernet.in [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India); Rawal, Ishpal; Tripathi, R.K. [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India); Srivastava, A.K. [Electron and Ion Microscopy, Sophisticated and Analytical Instruments, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India); Kumar, Mahesh [Ultrafast Opto-Electronics and Tetrahertz Photonics Group, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi - 110 012 (India)

    2015-04-15

    Highlights: • Nanocrystalline carbon thin films are grown by filtered cathodic jet carbon arc process. • Effect of gaseous environment on the properties of carbon films has been studied. • The structural and nanomechanical properties of carbon thin films have been studied. • The VRH conduction behavior in nanocrystalline carbon thin films has been studied. - Abstract: This paper reports the deposition and characterization of nanocrystalline carbon thin films by filtered cathodic jet carbon arc technique assisted with three different gaseous environments of helium, nitrogen and hydrogen. All the films are nanocrystalline in nature as observed from the high resolution transmission electron microscopic (HRTEM) measurements, which suggests that the nanocrystallites of size ∼10–50 nm are embedded though out the amorphous matrix. X-ray photoelectron spectroscopic studies suggest that the film deposited under the nitrogen gaseous environment has the highest sp{sup 3}/sp{sup 2} ratio accompanied with the highest hardness of ∼18.34 GPa observed from the nanoindentation technique. The film deposited under the helium gaseous environment has the highest ratio of the area under the Raman D peak to G peak (A{sub D}/A{sub G}) and the highest conductivity (∼2.23 S/cm) at room temperature, whereas, the film deposited under the hydrogen environment has the lowest conductivity value (2.27 × 10{sup −7} S/cm). The temperature dependent dc conduction behavior of all the nanocrystalline carbon thin films has been analyzed in the light of Mott’s variable range hopping (VRH) conduction mechanism and observed that all the films obey three dimension VRH conduction mechanism for the charge transport.

  19. Combined sonochemical/CVD method for preparation of nanostructured carbon-doped TiO2 thin film

    Science.gov (United States)

    Rasoulnezhad, Hossein; Kavei, Ghassem; Ahmadi, Kamran; Rahimipour, Mohammad Reza

    2017-06-01

    The present work reports the successful synthesis of the nanostructured carbon-doped TiO2 thin films on glass substrate by combination of chemical vapor deposition (CVD) and ultrasonic methods, for the first time. In this method the ultrasound waves act as nebulizer for converting of sonochemically prepared TiO2 sol to the mist particles. These mist particles were thermally decomposed in subsequent CVD chamber at 320 °C to produce the carbon-doped TiO2 thin films. The obtained thin films were characterized by means of X-ray Diffraction (XRD), Raman spectroscopy, diffuse reflectance spectroscopy (DRS), X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM) and scanning electron microscopy (SEM) techniques. The results show that the prepared thin films have anatase crystal structure and nanorod morphology, which calcination of them at 800 °C results in the conversion of nanorods to nanoparticles. In addition, the prepared samples have high transparency, monodispersity and homogeneity. The presence of the carbon element in the structure of the thin films causes the narrowing of the band-gap energy of TiO2 to about 2.8 eV, which results in the improvement of visible light absorption capabilities of the thin film.

  20. Preparation of thin nuclear targets

    International Nuclear Information System (INIS)

    Muggleton, A.H.F.

    1979-03-01

    Thin film backings, sources and targets are needed for many applications in low energy nuclear physics and nuclear chemistry experiments. A survey of techniques used in the preparation of nuclear targets is first briefly discussed. These are classified as chemical, mechanical and physical preparations. Vacuum evaporation, being the most generally used technique, is discussed in detail. It is highly desirable to monitor the film thickness and control the deposition rate during evaporation and to measure the final target thickness after deposition has concluded. The relative merits of various thickness measuring techniques are described. Stages in the fabrication and mounting of self-supporting foils are described in detail, with emphasis given to the preparation of thin self-supporting carbon foils used as target backings and stripper foils. Various target backings, and the merits of the more generally used release agents are described in detail. The preparations of more difficult elemental targets are discussed, and a comprehensive list of the common targets is presented

  1. Synthesis and characterization of boron carbon nitride thin films as protective overcoat for hard disk drives

    Science.gov (United States)

    Chen, Yanfeng

    The current goal in the magnetic storage industry is to reach the areal density of 1Tbit/in2 in a few years. This requires the head-media spacing (HMS), which includes media overcoat, lubricant layer, air bearing, and head overcoat, not to exceed 5.0 nm. Trade-off between these layers results in requiring the protective overcoat to be 1.0 nm or less. The protective overcoat must be hard, wear-resistant, continuous, thermally stable, and compatible with the magnetic layer and lubricant. This thesis work is mainly to develop protective overcoat for ultra high density hard disk drives (HDD). Amorphous carbon nitride (a-CNx) thin films were synthesized using pulseDC magnetron sputtering. The influence of substrate bias, substrate tilt, and substrate rotation on film growth and properties was studied. X-ray reflectivity (XRR) was used to measure film density, roughness and thickness. Surface roughness and thickness measurements from XRR are comparable to AFM and surface profiler measurements respectively. a-CNx films have good mechanical properties. Auger electron spectroscopy (AES) and high resolution transmission microscope (HRTEM) were used to obtain the film composition and microstructure. HRTEM cross sectioned experiments showed that CN x film is amorphous. Chemical corrosion experiments display drastic decrease of corrosion spots for thin films synthesized under optimum conditions. In pursuit of new materials for hard disk drive protective overcoat, boron carbide (B4C) and boron carbon nitride (BxC yNz) thin films were synthesized by pulse-DC magnetron sputtering. Effects of target power, target pulse frequency, substrate bias and pulse frequency on surface roughness were studied by AFM. Nitrogen incorporation into B4C films, which gives BxCyNz thin films, has a beneficial effect to decrease the film roughness. Auger electron spectroscopy was used to characterize the film composition. High-resolution cross-sectioned TEM studies showed that both films are amorphous

  2. Substrate temperature influence on the trombogenicity in amorphous carbon nitride thin coatings

    International Nuclear Information System (INIS)

    Galeano-Osorio, D.S.; Vargas, S.; Lopez-Cordoba, L.M.; Ospina, R.; Restrepo-Parra, E.; Arango, P.J.

    2010-01-01

    Carbon nitride thin films were obtained through plasma assisted physical vapor deposition technique by pulsed arc, varying the substrate temperature and investigating the influence of this parameter on the films hemocompatibility. For obtaining approaches of blood compatibility, environmental scanning electron microscopy (ESEM) was used in order to study the platelets adherence and their morphology. Moreover, the elemental chemical composition was determined by using energy dispersive spectroscopy (EDS), finding C, N and O. The coatings hemocompatibility was evaluated by in vitro thrombogenicity test, whose results were correlated with the microstructure and roughness of the films obtained. During the films growth process, the substrate temperature was varied, obtaining coatings under different temperatures, room temperature (T room ), 100 deg. C, 150 deg. C and 200 deg. C. Parameters as interelectrodic distance, voltage, work pressure and number of discharges, were remained constant. By EDS, carbon and nitrogen were found in the films. Visible Raman spectroscopy was used, and it revealed an amorphous lattice, with graphitic process as the substrate temperature was increased. However, at a critical temperature of 150 deg. C, this tendency was broken, and the film became more amorphous. This film showed the lowest roughness, 2 ± 1 nm. This last characteristic favored the films hemocompatibility. Also, it was demonstrated that the blood compatibility of carbon nitride films obtained were affected by the I D /I G or sp 3 /sp 2 ratio and not by the absolute sp 3 or sp 2 concentration.

  3. Substrate temperature influence on the trombogenicity in amorphous carbon nitride thin coatings

    Energy Technology Data Exchange (ETDEWEB)

    Galeano-Osorio, D.S.; Vargas, S.; Lopez-Cordoba, L.M.; Ospina, R. [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al Magdalena, Manizales (Colombia); Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al Magdalena, Manizales (Colombia); Arango, P.J. [Laboratorio de Fisica del Plasma, Universidad Nacional de Colombia Sede Manizales, Km. 9 via al Magdalena, Manizales (Colombia)

    2010-10-01

    Carbon nitride thin films were obtained through plasma assisted physical vapor deposition technique by pulsed arc, varying the substrate temperature and investigating the influence of this parameter on the films hemocompatibility. For obtaining approaches of blood compatibility, environmental scanning electron microscopy (ESEM) was used in order to study the platelets adherence and their morphology. Moreover, the elemental chemical composition was determined by using energy dispersive spectroscopy (EDS), finding C, N and O. The coatings hemocompatibility was evaluated by in vitro thrombogenicity test, whose results were correlated with the microstructure and roughness of the films obtained. During the films growth process, the substrate temperature was varied, obtaining coatings under different temperatures, room temperature (T{sub room}), 100 deg. C, 150 deg. C and 200 deg. C. Parameters as interelectrodic distance, voltage, work pressure and number of discharges, were remained constant. By EDS, carbon and nitrogen were found in the films. Visible Raman spectroscopy was used, and it revealed an amorphous lattice, with graphitic process as the substrate temperature was increased. However, at a critical temperature of 150 deg. C, this tendency was broken, and the film became more amorphous. This film showed the lowest roughness, 2 {+-} 1 nm. This last characteristic favored the films hemocompatibility. Also, it was demonstrated that the blood compatibility of carbon nitride films obtained were affected by the I{sub D}/I{sub G} or sp{sup 3}/sp{sup 2} ratio and not by the absolute sp{sup 3} or sp{sup 2} concentration.

  4. Impact of Argon gas on optical and electrical properties of Carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Usman, Arslan, E-mail: arslan.usman@gmail.com [Department of Physics, COMSATS Institute of Information Technology, Lahore (Pakistan); Rafique, M.S. [Department of Physics, University of Engineering & Technology, Lahore 54890 (Pakistan); Shaukat, S.F. [Department of Physics, COMSATS Institute of Information Technology, Lahore (Pakistan); Siraj, Khurram [Department of Physics, University of Engineering & Technology, Lahore 54890 (Pakistan); Ashfaq, Afshan [Institute of Nuclear Medicine and Oncology Lahore (INMOL), 54000 Pakistan (Pakistan); Anjum, Safia [Department of Physics, Lahore College for Women University (Pakistan); Imran, Muhammad; Sattar, Abdul [Department of Physics, COMSATS Institute of Information Technology, Lahore (Pakistan)

    2016-12-15

    Nanostructured thin films of carbon were synthesized and investigated for their electrical, optical, structural and surface properties. Pulsed Laser Deposition (PLD) technique was used for the preparation of these films under Argon gas environment. A KrF Laser (λ=248 nm) was used as source of ablation and plasma formation. It was observed that the carbon ions and the background gas environment has deep impact on the morphology as well as on the microstructure of the films. Time of Flight (TOF) method was used to determine the energies of the ablated carbon ions. The morphology of film surfaces deposited at various argon pressure was analysed using an atomic force microscope. The Raman spectroscopic measurement reveal that there is shift in phase from sp{sup 3} to sp{sup 2} and a decrease in FWHM of G band, which is a clear indication of enhanced graphitic clusters. The electrical resistivity was also reduced from 85.3×10{sup −1} to 2.57×10{sup −1} Ω-cm. There is an exponential decrease in band gap E{sub g} of the deposited films from 1.99 to 1.37 eV as a function of argon gas pressure.

  5. Rethinking Coal: Thin Films of Solution Processed Natural Carbon Nanoparticles for Electronic Devices.

    Science.gov (United States)

    Keller, Brent D; Ferralis, Nicola; Grossman, Jeffrey C

    2016-05-11

    Disordered carbon materials, both amorphous and with long-range order, have been used in a variety of applications, from conductive additives and contact materials to transistors and photovoltaics. Here we show a flexible solution-based method of preparing thin films with tunable electrical properties from suspensions of ball-milled coals following centrifugation. The as-prepared films retain the rich carbon chemistry of the starting coals with conductivities ranging over orders of magnitude, and thermal treatment of the resulting films further tunes the electrical conductivity in excess of 7 orders of magnitude. Optical absorption measurements demonstrate tunable optical gaps from 0 to 1.8 eV. Through low-temperature conductivity measurements and Raman spectroscopy, we demonstrate that variable range hopping controls the electrical properties in as-prepared and thermally treated films and that annealing increases the sp(2) content, localization length, and disorder. The measured hopping energies demonstrate electronic properties similar to amorphous carbon materials and reduced graphene oxide. Finally, Joule heating devices were fabricated from coal-based films, and temperatures as high as 285 °C with excellent stability were achieved.

  6. Plasma characterization of cross-beam pulsed-laser ablation used for carbon thin film deposition

    International Nuclear Information System (INIS)

    Sanchez Ake, C.; Sobral, H.; Villagran-Muniz, M.

    2007-01-01

    The dynamics of the interaction between two delayed plasmas induced by cross-beam pulsed-laser ablation was analyzed by fast photography using narrow interference filters. In this configuration, two perpendicular rotating carbon targets were ablated by two synchronized laser beams generating two interacting plasma plumes. A Nd: yttrium-aluminum-garnet (1064 nm) laser beam is focused onto a target generating a highly directed plume; subsequently an excimer laser (248 nm) produces a second perpendicular plasma, which expands through the plume region generated by the first laser. In the cross-beam configuration, collision processes cause a reduction in the C II ion kinetic energy from ∼ 110 to 35 eV; moreover, the species of the second plasma which travel on the normal direction to the target surface (toward the substrate) are mainly C II. Interaction between plasmas has been compared with laser-induced plume propagation through a background gas in terms to the drag model. Carbon thin films were deposited by the cross-beam technique for different delays between lasers. Raman spectroscopy was employed to study the changes in the bonding carbon films as a function of the kinetic energy of ablated C ions

  7. Preparation and investigation of diamond-like carbon nanocomposite thin films for nanophotonics

    Science.gov (United States)

    Panosyan, Zh.; Gharibyan, A.; Sargsyan, A.; Panosyan, H.; Hayrapetyan, D.; Yengibaryan, Y.

    2010-08-01

    Flexible Plasma Enhanced Chemical Vapor Deposition (PECVD) technology of Diamond Like Carbon (DLC) thin film preparation on the surface of Si and organic glasses has been elaborated. Modification of PECVD equipment has been implemented by integrating ion and magnetron sources. In this paper toluene (C7H8) has been used as a nanocmposite film forming hydrocarbon which decomposition yields to the multi component plasma in vacuum chamber. Nitrogen has been used as a dopand. Investigation of plasma composition influence to the optical and mechanical properties of DLC films has been observed. The presence of sp3 and sp2 hybridization states have been proven by Raman spectroscopy and their ratios have been estimated with the help of ID, IG characteristic lines for different technological conditions. High precision refractive index and thickness measurements of DLC films have been implemented by means of laser ellipsometer. Refractive indices of prepared films have been varied in the region 1.5-3.1 and thicknesses have been varied in the region 50-250 nm. Extraordinary change in refractive index has been explained with the help of formation of differently sized sp2 carbon based clusters in the sp3 matrix. Different types of carbon and hydrogen bonds have been observed in the obtained structures by means of FTIR. Obvious prospectives of DLC nanocomposite film as a promissing nanophotonic material has been discussed.

  8. Functionalized carbon nanotubes in ZnO thin films for photoinactivation of bacteria

    International Nuclear Information System (INIS)

    Akhavan, O.; Azimirad, R.; Safa, S.

    2011-01-01

    Highlights: → Unfunctionalized and functionalized MWCNT/ZnO thin films were synthesized by sol-gel method. → Zn-O-C carbonaceous bonds formed in the functionalized MWCNT/ZnO thin films. → The functionalized MWCNT/ZnO had stronger photoinactivation of the bacteria than the unfunctionalize type. → 10 wt% functionalized MWCNT content had the optimum antibacterial property. - Abstract: Two types of unfunctionalized and functionalized multi-wall carbon nanotubes (MWCNTs) were prepared to be applied in fabrication of MWCNT-ZnO nanocomposite thin films with various MWCNT contents. X-ray photoelectron spectroscopy indicated formation of functional groups on surface of the functionalized MWCNTs in the MWCNT-ZnO nanocomposite. Formation of the effective carbonaceous bonds between the ZnO and the MWCNTs was also investigated through photoinactivation of Escherichia coli bacteria on surface of the both unfunctionalized and functionalized MWCNT-ZnO nanocomposites. The functionalized MWCNT-ZnO nanocomposites showed significantly stronger photoinactivation of the bacteria than the unfunctionalized ones, for all of the various MWCNT contents (from 2 to 30 wt%). While the functionalized MWCNT-ZnO nanocomposites with the optimum MWCNT content of 10 wt% inactivated whole of the bacteria after 10 min UV-visible light irradiation, the unfunctionalized ones could inactivate only 63% of the bacteria under the same conditions. The significant enhancement of the photoinactivation of the bacteria onto the surface of the functionalized MWCNT-ZnO nanocomposites was assigned to charge transfer through Zn-O-C bands formed between the Zn atoms of the ZnO film and oxygen atoms of the carboxylic functional groups of the functionalized MWCNTs.

  9. Investigation of the Carbon Monoxide Gas Sensing Characteristics of Tin Oxide Mixed Cerium Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Muhammad B. Haider

    2012-02-01

    Full Text Available Thin films of tin oxide mixed cerium oxide were grown on unheated substrates by physical vapor deposition. The films were annealed in air at 500 °C for two hours, and were characterized using X-ray photoelectron spectroscopy, atomic force microscopy and optical spectrophotometry. X-ray photoelectron spectroscopy and atomic force microscopy results reveal that the films were highly porous and porosity of our films was found to be in the range of 11.6–21.7%. The films were investigated for the detection of carbon monoxide, and were found to be highly sensitive. We found that 430 °C was the optimum operating temperature for sensing CO gas at concentrations as low as 5 ppm. Our sensors exhibited fast response and recovery times of 26 s and 30 s, respectively.

  10. Dry-Transfer of Aligned Multi walled Carbon Nano tubes for Flexible Transparent Thin Films

    International Nuclear Information System (INIS)

    Cole, M.; Ying, K.; Zhang, Y.; Ferrari, A.; Hiralal, P.; Chi, L.; Milne, W.; Teo, K.

    2012-01-01

    Herein we present an inexpensive facile wet-chemistry-free approach to the transfer of chemical vapour-deposited multi walled carbon nano tubes to flexible transparent polymer substrates in a single-step process. By controlling the nano tube length, we demonstrate accurate control over the electrical conductivity and optical transparency of the transferred thin films. Uniaxial strains of up to 140% induced only minor reductions in sample conductivity, opening up a number of applications in stretchable electronics. Nano tube alignment offers enhanced functionality for applications such as polarisation selective electrodes and flexible super capacitor substrates. A capacitance of 17 F/g was determined for super capacitors fabricated from the reported dry-transferred MWCNTs with the corresponding cyclic volta grams showing a clear dependence on nano tube length.

  11. Capacitive behavior of carbon nanotube thin film induced by deformed ZnO microspheres

    Science.gov (United States)

    Tripathi, Rahul; Naidu Majji, Shanmukh; Ghosh, Rituparna; Nandi, Sukanta; Boruah, Buddha D.; Misra, Abha

    2017-09-01

    Multiwalled carbon nanotubes (CNTs) are uniformly distributed with piezoelectric microspheres. This leads to a large strain gradient due to an induced capacitive response, providing a 250% enhancement in electromechanical response compared with pristine CNTs. The fabricated large-area flexible thin film exhibits excellent pressure sensitivity, which can even detect an arterial pulse with a much faster response time (˜79 ms) in a bendable configuration. In addition, the film shows a rapid relaxation time (˜0.4 s), high stability and excellent durability with a rapid loading-unloading cycle. The dominant contribution of piezoelectric microspheres in a CNT matrix as opposed to nanoparticles showed a much higher sensitivity due to the large change in capacitance. Therefore, hybrid microstructures have various potential applications in wearable smart electronics, including detection of human motion and wrist pulses.

  12. Nanocomposite metal amorphous-carbon thin films deposited by hybrid PVD and PECVD technique.

    Science.gov (United States)

    Teixeira, V; Soares, P; Martins, A J; Carneiro, J; Cerqueira, F

    2009-07-01

    Carbon based films can combine the properties of solid lubricating graphite structure and hard diamond crystal structure, i.e., high hardness, chemical inertness, high thermal conductivity and optical transparency without the crystalline structure of diamond. Issues of fundamental importance associated with nanocarbon coatings are reducing stress, improving adhesion and compatibility with substrates. In this work new nanocomposite coatings with improved toughness based in nanocrystalline phases of metals and ceramics embedded in amorphous carbon matrix are being developed within the frame of a research project: nc-MeNxCy/a-C(Me) with Me = Mo, Si, Al, Ti, etc. Carbide forming metal/carbon (Me/C) composite films with Me = Mo, W or Ti possess appropriate properties to overcome the limitation of pure DLC films. These novel coating architectures will be adopted with the objective to decrease residual stress, improve adherence and fracture toughness, obtain low friction coefficient and high wear-resistance. Nanocomposite DLC's films were deposited by hybrid technique using a PVD-Physically Vapor Deposition (magnetron sputtering) and Plasma Enhanced Chemical Vapor Deposition (PECVD), by the use of CH4 gas. The parameters varied were: deposition time, substrate temperature (180 degrees C) and dopant (Si + Mo) of the amorphous carbon matrix. All the depositions were made on silicon wafers and steel substrates precoated with a silicon inter-layer. The characterisation of the film's physico-mechanical properties will be presented in order to understand the influence of the deposition parameters and metal content used within the a-C matrix in the thin film properties. Film microstructure and film hybridization state was characterized by Raman Spectroscopy. In order to characterize morphology SEM and AFM will be used. Film composition was measured by Energy-Dispersive X-ray analysis (EDS) and by X-ray photoelectron spectroscopy (XPS). The contact angle for the produced DLC's on

  13. Platinum nano-cluster thin film formed on glassy carbon and the application for methanol oxidation

    International Nuclear Information System (INIS)

    Chang, Gang; Oyama, Munetaka; Hirao, Kazuyuki

    2007-01-01

    As an interesting platinum nanostructured material, a Pt nano-cluster film (PtNCF) attached on glassy carbon (GC) is reported. Through the reduction of PtCl 4 2- by ascorbic acid in the presence of GC substrate, a Pt thin continuous film composed of small nano-clusters which had a further agglomerated nanostructure of small grains could be attached on the GC surface. It was found that the electrocatalytic ability of PtNCF for the methanol oxidation was apparently higher than those of the Pt nano-clusters dispersedly attached on GC or indium in oxides. In addition, the electrocatalytic performance of PtNCF per Pt amount was superior to that of Pt black on GC. These results indicate that, in spite of the continuous nanostructures, nano-grains of PtNCF worked effectively for the catalytic electrolysis. The present PtNCF can be regarded as an interesting thin film material, which can be easily prepared by one-step chemical reduction

  14. Parallel carbon nanotube stripes in polymer thin film with remarkable conductive anisotropy.

    Science.gov (United States)

    Huang, Jinrui; Zhu, Yutian; Jiang, Wei; Yin, Jinghua; Tang, Qingxin; Yang, Xiaodong

    2014-02-12

    In our previous study ( Mao et al. J. Phys. Chem. Lett. 2013 , 4 , 43 - 47 ), we proposed a novel method, that is, the shear-flow-induced hierarchical self-assembly of two-dimensional fillers (octadecylamine-functionalized graphene) into the well-ordered parallel stripes in a polymer matrix, to fabricate the anisotropic conductive materials. In this study, we extend this method to one-dimensional multiwalled carbon nanotubes (MWCNTs). Under the induction of shear flow, the dispersed poly(styrene ethylene/butadiene-styrene) (SEBS) phase and MWCNTs can spontaneously assemble into well-ordered parallel stripes in the polypropylene (PP) thin film. The electrical measurements indicate that the electrical resistivity in the direction parallel to the stripes is almost 6 orders of magnitude lower than that in the perpendicular direction, which is by far the most striking conductive anisotropy for the plastic anisotropic conductive materials. In addition, it is found that the size of the MWCNT stripe as well as the electrical property of the resulting anisotropic conductive thin film can be well-controlled by the gap of the shear cell.

  15. Carbon nanotubes length optimization for preparation of improved transparent and conducting thin film substrates

    Directory of Open Access Journals (Sweden)

    Mansoor Farbod

    2017-03-01

    Full Text Available Transparent and conductive thin films of multiwalled carbon nanotubes (MWCNTs with different lengths were prepared on glass substrates by the spin coating method. In order to reduce the MWCNTs length, they were functionalized. The initial length of MWCNTs (10–15 μm was reduced to 1200, 205 and 168 nm after 30, 60 and 120 min refluxing time, respectively. After post annealing at 285 °C for 24 h, the electrical and optical properties were greatly improved for functionalized MWCNT thin films. They strongly depend on the length of CNTs. The optical transmittance of the film prepared using 30 min reflux CNTs was 2.6% and 6.6% higher than that of the 60 min and 120 min refluxed samples respectively. The sheet resistance of this film showed reductions of 45% and 80% as well. The film also exhibited the least roughness. The percolative figure of merit, which is proportional to the transparency and disproportional to the sheet resistance, was found to be higher for the sample with 30 min refluxed MWCNTs.

  16. Plasma CVD of hydrogenated boron-carbon thin films from triethylboron

    Science.gov (United States)

    Imam, Mewlude; Höglund, Carina; Schmidt, Susann; Hall-Wilton, Richard; Birch, Jens; Pedersen, Henrik

    2018-01-01

    Low-temperature chemical vapor deposition (CVD) of B—C thin films is of importance for neutron voltaics and semiconductor technology. The highly reactive trialkylboranes, with alkyl groups of 1-4 carbon atoms, are a class of precursors that have been less explored for low-temperature CVD of B—C films. Herein, we demonstrate plasma CVD of B—C thin films using triethylboron (TEB) as a single source precursor in an Ar plasma. We show that the film density and B/C ratio increases with increasing plasma power, reaching a density of 2.20 g/cm3 and B/C = 1.7. This is attributed to a more intense energetic bombardment during deposition and more complete dissociation of the TEB molecule in the plasma at higher plasma power. The hydrogen content in the films ranges between 14 and 20 at. %. Optical emission spectroscopy of the plasma shows that BH, CH, C2, and H are the optically active plasma species from TEB. We suggest a plasma chemical model based on β-hydrogen elimination of C2H4 to form BH3, in which BH3 and C2H4 are then dehydrogenated to form BH and C2H2. Furthermore, C2H2 decomposes in the plasma to produce C2 and CH, which together with BH and possibly BH3-x(C2H5)x are the film forming species.

  17. The Effect of Type and Concentration of Modifier in Supercritical Carbon Dioxide on Crystallization of Nanocrystalline Titania Thin Films.

    Czech Academy of Sciences Publication Activity Database

    Sajfrtová, Marie; Cerhová, Marie; Jandová, Věra; Dřínek, Vladislav; Daniš, E.; Matějová, L.

    2018-01-01

    Roč. 133, MAR 2018 (2018), s. 211-217 ISSN 0896-8446 R&D Projects: GA ČR GA14-23274S Institutional support: RVO:67985858 Keywords : titania thin film * supercritical carbon dioxide * crystallization Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 2.991, year: 2016

  18. Adhesion improvement of hydrogenated diamond-like carbon thin films by pre-deposition plasma treatment of rubber substrate

    NARCIS (Netherlands)

    Bui, X.L.; Pei, Y.T.; Mulder, E.D.G.; Hosson, J.Th.M. De

    2009-01-01

    For reduction of friction and enhancement of wear resistance of dynamic rubber seals, thin films of hydrogenated diamond-like carbon (DLC) have been deposited on hydrogenated nitrile butadiene rubber (HNBR) via magnetron-enhanced plasma chemical vapor deposition (ME-PCVD). Pre-deposition plasma

  19. Antibacterial and Antibiofouling Properties of Light Triggered Fluorescent Hydrophobic Carbon Quantum Dots Langmuir-Blodgett Thin Films

    Czech Academy of Sciences Publication Activity Database

    Stanković, N. K.; Bodik, M.; Šiffalovič, P.; Kotlár, M.; Mičušik, M.; Špitalsky, Z.; Danko, M.; Milivojević, D. D.; Kleinová, A.; Kubát, Pavel; Capáková, Z.; Humpolíček, P.; Lehocký, M.; Todorović Marković, B. M.; Marković, Z. M.

    2018-01-01

    Roč. 6, č. 3 (2018), s. 4154-4163 ISSN 2168-0485 R&D Projects: GA ČR(CZ) GA17-05095S Institutional support: RVO:61388955 Keywords : Hydrophobic carbon quantum dots * Langmuir-Blodgett thin films * Photodynamic therapy * Singlet oxygen Subject RIV: CF - Physical ; Theoretical Chemistry OBOR OECD: Physical chemistry Impact factor: 5.951, year: 2016

  20. Structural and optical properties of gold-incorporated diamond-like carbon thin films deposited by RF magnetron sputtering

    Science.gov (United States)

    Majeed, Shahbaz; Siraj, K.; Naseem, S.; Khan, Muhammad F.; Irshad, M.; Faiz, H.; Mahmood, A.

    2017-07-01

    Pure and gold-doped diamond-like carbon (Au-DLC) thin films are deposited at room temperature by using RF magnetron sputtering in an argon gas-filled chamber with a constant flow rate of 100 sccm and sputtering time of 30 min for all DLC thin films. Single-crystal silicon (1 0 0) substrates are used for the deposition of pristine and Au-DLC thin films. Graphite (99.99%) and gold (99.99%) are used as co-sputtering targets in the sputtering chamber. The optical properties and structure of Au-DLC thin films are studied with the variation of gold concentration from 1%-5%. Raman spectroscopy, atomic force microscopy (AFM), Vickers hardness measurement (VHM), and spectroscopic ellipsometry are used to analyze these thin films. Raman spectroscopy indicates increased graphitic behavior and reduction in the internal stresses of Au-DLC thin films as the function of increasing gold doping. AFM is used for surface topography, which shows that spherical-like particles are formed on the surface, which agglomerate and form larger clusters on the surface by increasing the gold content. Spectroscopy ellipsometry analysis elucidates that the refractive index and extinction coefficient are inversely related and the optical bandgap energy is decreased with increasing gold content. VHM shows that gold doping reduces the hardness of thin films, which is attributed to the increase in sp2-hybridization.

  1. Structural and nanomechanical properties of nanocrystalline carbon thin films for photodetection

    Energy Technology Data Exchange (ETDEWEB)

    Rawal, Ishpal [Department of Physics, Kirorimal College, University of Delhi, Delhi 110007 (India); Panwar, Omvir Singh, E-mail: ospanwar@mail.nplindia.ernet.in; Tripathi, Ravi Kant; Chockalingam, Sreekumar [Polymorphic Carbon Thin Films Group, Physics of Energy Harvesting Division, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Srivastava, Avanish Kumar [Electron and Ion Microscopy, Sophisticated and Analytical Instruments, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India); Kumar, Mahesh [Ultrafast Optoelectronics and Tetrahertz Photonics Group, CSIR-National Physical Laboratory, Dr. K. S. Krishnan Road, New Delhi 110012 (India)

    2015-05-15

    This paper reports the effect of helium gas pressure upon the structural, nanomechanical, and photoconductive properties of nanocrystalline carbon thin (NCT) films deposited by the filtered cathodic jet carbon arc technique. High-resolution transmission electron microscopy images confirm the nanocrystalline nature of the deposited films with different crystallite sizes (3–7 nm). The chemical structure of the deposited films is further analyzed by x-ray photoelectron spectroscopy and Raman spectroscopy, which suggest that the deposited films change from graphitelike to diamondlike, increasing in sp{sup 3} content, with a minor change in the dilution of the inert gas (helium). The graphitic character is regained upon higher dilution of the helium gas, whereupon the films exhibit an increase in sp{sup 2} content. The nanomechanical measurements show that the film deposited at a helium partial pressure of 2.2 × 10{sup −4} has the highest value of hardness (37.39 GPa) and elastic modulus (320.50 GPa). At a light intensity of 100 mW/cm{sup 2}, the NCT films deposited at 2.2 × 10{sup −4} and 0.1 mbar partial pressures of helium gas exhibit good photoresponses of 2.2% and 3.6%, respectively.

  2. Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction

    Science.gov (United States)

    Zhang, Teng-Fei; Li, Zhi-Peng; Wang, Jiu-Zhen; Kong, Wei-Yu; Wu, Guo-An; Zheng, Yu-Zhen; Zhao, Yuan-Wei; Yao, En-Xu; Zhuang, Nai-Xi; Luo, Lin-Bao

    2016-12-01

    In this study, we present a broadband nano-photodetector based on single-layer graphene (SLG)-carbon nanotube thin film (CNTF) Schottky junction. It was found that the as-fabricated device exhibited obvious sensitivity to a wide range of illumination, with peak sensitivity at 600 and 920 nm. In addition, the SLG-CNTF device had a fast response speed (τr = 68 μs, τf = 78 μs) and good reproducibility in a wide range of switching frequencies (50-5400 Hz). The on-off ratio, responsivity, and detectivity of the device were estimated to be 1 × 102, 209 mAW-1 and 4.87 × 1010 cm Hz1/2 W-1, respectively. What is more, other device parameters including linear performance θ and linear dynamic range (LDR) were calculated to be 0.99 and 58.8 dB, respectively, which were relatively better than other carbon nanotube based devices. The totality of the above study signifies that the present SLG-CNTF Schottky junction broadband nano-photodetector may have promising application in future nano-optoelectronic devices and systems.

  3. Expeditious low-temperature sintering of copper nanoparticles with thin defective carbon shells

    Science.gov (United States)

    Kim, Changkyu; Lee, Gyoungja; Rhee, Changkyu; Lee, Minku

    2015-04-01

    The realization of air-stable nanoparticles, well-formulated nanoinks, and conductive patterns based on copper is a great challenge in low-cost and large-area flexible printed electronics. This work reports the synthesis of a conductively interconnected copper structure via thermal sintering of copper inks at a low temperature for a short period of time, with the help of thin defective carbon shells coated onto the copper nanoparticles. Air-stable copper/carbon core/shell nanoparticles (typical size ~23 nm, shell thickness ~1.0 nm) are prepared by means of an electric explosion of wires. Gaseous oxidation of the carbon shells with a defective structure occurs at 180 °C, impacting the choice of organic solvents as well as the sintering conditions to create a crucial neck formation. Isothermal oxidation and reduction treatment at 200 °C for only about 10 min yields an oxide-free copper network structure with an electrical resistivity of 25.1 μΩ cm (14.0 μΩ cm at 250 °C). Finally, conductive copper line patterns are achieved down to a 50 μm width with an excellent printing resolution (standard deviation ~4.0%) onto a polyimide substrate using screen printing of the optimized inks.The realization of air-stable nanoparticles, well-formulated nanoinks, and conductive patterns based on copper is a great challenge in low-cost and large-area flexible printed electronics. This work reports the synthesis of a conductively interconnected copper structure via thermal sintering of copper inks at a low temperature for a short period of time, with the help of thin defective carbon shells coated onto the copper nanoparticles. Air-stable copper/carbon core/shell nanoparticles (typical size ~23 nm, shell thickness ~1.0 nm) are prepared by means of an electric explosion of wires. Gaseous oxidation of the carbon shells with a defective structure occurs at 180 °C, impacting the choice of organic solvents as well as the sintering conditions to create a crucial neck formation

  4. Electroanalytical performance of nitrogen-containing tetrahedral amorphous carbon thin-film electrodes.

    Science.gov (United States)

    Yang, Xingyi; Haubold, Lars; DeVivo, Gabriel; Swain, Greg M

    2012-07-17

    Tetrahedral amorphous carbon (ta-C) consists of a mixture of sp(3)- and sp(2)-bonded carbon ranging from 60 to 40% (sp(3)/sp(3)+sp(2)) depending on the deposition conditions. The physical, chemical, and electrochemical properties depend on the sp(2)/sp(3) bonding ratio as well as the presence of incorporated impurities, such as hydrogen or nitrogen. The ability to grow ta-C at lower temperatures (25-100 °C) on a wider variety of substrates as compared to CVD diamond is an advantage of this material. Herein, we report on the structural and electrochemical properties of nitrogen-incorporated ta-C thin films (ta-C:N). The incorporation of nitrogen into the films decreases the electrical resistivity from 613 ± 60 (0 sccm N(2)) to 1.10 ± 0.07 Ω-cm (50 sccm N(2)), presumably by increasing the sp(2)-bonded carbon content and the connectedness of these domains. Similar to boron-doped diamond, these materials are characterized by a low background voltammetric current, a wide working potential window (~ 3 V), and relatively rapid electron-transfer kinetics for aqueous redox systems, including Fe(CN)(6)(-3/-4) and Ru(NH(3))(6)(+3/+2), without conventional pretreatment. Additionally, there is weak molecular adsorption of polar molecules (methylene blue) on the ta-C surface. Overall, the properties of the ta-C and ta-C:N electrodes are such that they could be excellent new choices for electroanalytical measurements.

  5. Self-supporting Topology Optimization for Additive Manufacturing

    OpenAIRE

    Zhao, Dengyang; Li, Ming; Liu, Yusheng

    2017-01-01

    The paper presents a topology optimization approach that designs an optimal structure, called a self-supporting structure, which is ready to be fabricated via additive manufacturing without the usage of additional support structures. Such supports in general have to be created during the fabricating process so that the primary object can be manufactured layer by layer without collapse, which is very time-consuming and waste of material. The proposed approach resolves this problem by formulati...

  6. Photostable epoxy polymerized carbon quantum dots luminescent thin films and the performance study

    Directory of Open Access Journals (Sweden)

    Chang Zhang

    Full Text Available High photostable epoxy polymerized carbon quantum dots (C-dots luminescent thin films were prepared and their performances were compared with the CdTe quantum dots (QDs. First, water soluble C-dots (λem = 543.60 nm were synthesized. Poly (ethylene glycol diglycidyl ether (PEG and diaminooctane were used as the polymer matrix to make the epoxy resin films. FT-IR spectra showed that there were vibration at 3448 cm−1 and 1644 cm−1 which contributed to -OH and -NH respectively. SEM observations showed that the polymerizations of the films were uniform and there were no structure defects. Mechanical tests showed the tensile modulus of C-dots composite films were 4.6, 4.9, 6.4 and 7.8 MPa respectively with corresponding 0%, 1%, 2% and 5% mass fraction of C-dots, while the tensile modulus of CdTe QDs films were 4.6 MPa under the same mass fraction of CdTe QDs. Compared with semiconductor QDs, the decay of quantum yield were 5% and 10% for the C-dots and CdTe QDs, respectively. The pictures in the continuous irradiation of 48 h showed that the C-dots film was more photostable. This study provides much helpful and profound towards the fluorescent enhancement films in the field of flexible displays. Keywords: Carbon-dots, Waterborne epoxy resin, Luminescent materials, Quantum dots displays

  7. In situ Raman spectroelectrochemistry as a tool for the differentiation of inner tubes of double-wall carbon nanotubes and thin single-wall carbon nanotubes.

    Science.gov (United States)

    Kalbác, Martin; Kavan, Ladislav; Dunsch, Lothar

    2007-12-01

    In situ Raman spectroelectrochemistry has been used to distinguish between thin single-wall carbon nanotubes (SWCNT) and the inner tubes of double-wall carbon nanotubes (DWCNT). The spectroelectrochemical method is based on the different change of the electronic structure of the inner tube in DWCNT and that of SWCNT during electrochemical charging, which is reflected in the Raman spectra. During electrochemical charging the inner tubes of DWCNT exhibit a delayed attenuation of the intensities of their Raman modes as referred to the behavior of SWCNT of similar diameter. The changes are pronounced for the radial breathing mode (RBM), and thus, these modes are diagnostic for the distinction of inner tubes of DWCNT from the thin SWCNT. The different sensitivities of inner and outer tubes to the applied electrochemical charging is a simple analytical tool for differentiation of SWCNT and DWCNT in a mixture. The significance of the proposed method is demonstrated on a commercial DWCNT sample.

  8. Chemical Processing for Sol-Gel Derived Metal Oxide Thin Films using Supercritical Carbon Dioxide Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Asai, Y; Narishige, S; Fujioka, K; Uchida, H; Koda, S, E-mail: uchidah@sophia.ac.jp [Sophia University, Department of Materials and Life Sciences, Tokyo 102-8554 (Japan)

    2011-10-29

    Chemical processing using supercritical carbon dioxide fluid (scCO{sub 2}) was demonstrated for lowering processing temperature of sol-gel-derived metal oxide thin films. The film processing was performed in a hot-wall closed vessel filled with scCO{sub 2} fluid. Precursor films of titanium dioxide (TiO{sub 2}) on soda-glass substrates prepared by sol-gel coating using Ti-alkoxide solution were converted to crystalline TiO{sub 2} (anatase) films successfully by the scCO{sub 2} treatment at a fluid pressure of 15 MPa and a substrate temperature of 300deg. C whereas no crystallization was occurred by conventional heat treatment at 400 deg. C. XPS analysis indicated that the interface reaction related to Si element was suppressed successfully by scCO{sub 2} treatment at 300 deg. C. These results suggest that the sol-gel synthesis using scCO{sub 2} fluid would be a cadidate for low-temperature processing of crystalline oxide films, which is more preferable than conventional techniques based on the heat treatment.

  9. Deodorisation effect of diamond-like carbon/titanium dioxide multilayer thin films deposited onto polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Ozeki, K., E-mail: ozeki@mx.ibaraki.ac.jp [Department of Mechanical Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan); Frontier Research Center for Applied Atomic Sciences, 162-1 Shirakata, Toukai, Ibaraki 319-1106 (Japan); Hirakuri, K.K. [Applied Systems Engineering, Graduate School of Science and Engineering, Tokyo Denki University, Ishizaka, Hatoyama, Hiki, Saitama 350-0394 (Japan); Masuzawa, T. [Department of Mechanical Engineering, Ibaraki University, 4-12-1, Nakanarusawa, Hitachi, Ibaraki 316-8511 (Japan)

    2011-04-15

    Many types of plastic containers have been used for the storage of food. In the present study, diamond-like carbon (DLC)/titanium oxide (TiO{sub 2}) multilayer thin films were deposited on polypropylene (PP) to prevent flavour retention and to remove flavour in plastic containers. For the flavour removal test, two types of multilayer films were prepared, DLC/TiO{sub 2} films and DLC/TiO{sub 2}/DLC films. The residual gas concentration of acetaldehyde, ethylene, and turmeric compounds in bottle including the DLC/TiO{sub 2}-coated and the DLC/TiO{sub 2}/DLC-coated PP plates were measured after UV radiation, and the amount of adsorbed compounds to the plates was determined. The percentages of residual gas for acetaldehyde, ethylene, and turmeric with the DLC/TiO{sub 2} coated plates were 0.8%, 65.2% and 75.0% after 40 h of UV radiation, respectively. For the DLC/TiO{sub 2}/DLC film, the percentages of residual gas for acetaldehyde, ethylene and turmeric decreased to 34.9%, 76.0% and 85.3% after 40 h of UV radiation, respectively. The DLC/TiO{sub 2}/DLC film had a photocatalytic effect even though the TiO{sub 2} film was covered with the DLC film.

  10. Cementitious Composites Engineered with Embedded Carbon Nanotube Thin Films for Enhanced Sensing Performance

    International Nuclear Information System (INIS)

    Loh, Kenneth J; Gonzalez, Jesus

    2015-01-01

    Cementitious composites such as concrete pavements are susceptible to different damage modes, which are primarily caused by repeated loading and long-term deterioration. There is even greater concern that damage could worsen and occur more frequently with the use of heavier vehicles or new aircraft carrying greater payloads. Thus, the objective of this research is to engineer cementitious composites with capabilities of self-sensing or detecting damage. The approach was to enhance the damage sensitivity of cementitious composites by incorporating multi-walled carbon nanotubes (MWNT) as part of the mix design and during casting. However, as opposed to directly dispersing MWNTs in the cement matrix, which is the current state-of-art, MWNT-based thin films were airbrushed and coated onto sand particles. The film-coated sand was then used as part of the mix design for casting mortar specimens. Mortar specimens were subjected to compressive cyclic loading tests while their electrical properties were recorded simultaneously. The results showed that the electrical properties of these cementitious composites designed with film-coated sand exhibited extremely high strain sensitivities. The electrical response was also stable and consistent between specimens. (paper)

  11. Cementitious Composites Engineered with Embedded Carbon Nanotube Thin Films for Enhanced Sensing Performance

    Science.gov (United States)

    Loh, Kenneth J.; Gonzalez, Jesus

    2015-07-01

    Cementitious composites such as concrete pavements are susceptible to different damage modes, which are primarily caused by repeated loading and long-term deterioration. There is even greater concern that damage could worsen and occur more frequently with the use of heavier vehicles or new aircraft carrying greater payloads. Thus, the objective of this research is to engineer cementitious composites with capabilities of self-sensing or detecting damage. The approach was to enhance the damage sensitivity of cementitious composites by incorporating multi-walled carbon nanotubes (MWNT) as part of the mix design and during casting. However, as opposed to directly dispersing MWNTs in the cement matrix, which is the current state-of-art, MWNT-based thin films were airbrushed and coated onto sand particles. The film-coated sand was then used as part of the mix design for casting mortar specimens. Mortar specimens were subjected to compressive cyclic loading tests while their electrical properties were recorded simultaneously. The results showed that the electrical properties of these cementitious composites designed with film-coated sand exhibited extremely high strain sensitivities. The electrical response was also stable and consistent between specimens.

  12. Modification of thin-film polyamide membrane with multi-walled carbon nanotubes by interfacial polymerization

    Science.gov (United States)

    Al-Hobaib, Abdullah S.; Al-Sheetan, Kh. M.; Shaik, Mohammed Rafi; Al-Suhybani, M. S.

    2017-12-01

    Polyamide thin-film composite (TFC) was fabricated on polysulfone (PS-20) base by interfacial polymerization of aqueous m-phenylenediamine (MPD) solution and 1,3,5-benzenetricarbonyl trichloride (TMC) in hexane organic solution. Multi-wall carbon nanotubes (MWCNT) were carboxylated by heating MWCNT powder in a mixture of HNO3 and H2SO4 (1:3 v/v) at 70 °C under constant sonication for different periods. Polyamide nanocomposites were prepared by incorporating MWCNT and the carboxylated MWCNT (MWCNT-COOH) at different concentrations (0.001-0.009 wt%). The developed composites were analyzed by Fourier transform infrared spectroscopy-attenuated total reflection, scanning electron microscopy, transmission electron microscopy, contact angle measurement, determination of salt rejection and water permeate flux capabilities. The surface morphological studies displayed that the amalgamation of MWCNT considerably changed the surface properties of modified membranes. The surface hydrophilicity was increased as observed in the enhancement in water flux and pure water permeance, due to the presence of hydrophilic nanotubes. Salt rejection was obtained between 94 and 99% and varied water flux values for TFC-reference membrane, pristine-MWCNT in MPD, pristine-MWCNT in TMC and MWCNT-COOH in MPD were 20.5, 38, 40 and 43 L/m2h. The water flux and salt rejection performances revealed that the MWCNT-COOH membrane was superior membrane as compared to the other prepared membranes.

  13. Deodorisation effect of diamond-like carbon/titanium dioxide multilayer thin films deposited onto polypropylene

    International Nuclear Information System (INIS)

    Ozeki, K.; Hirakuri, K.K.; Masuzawa, T.

    2011-01-01

    Many types of plastic containers have been used for the storage of food. In the present study, diamond-like carbon (DLC)/titanium oxide (TiO 2 ) multilayer thin films were deposited on polypropylene (PP) to prevent flavour retention and to remove flavour in plastic containers. For the flavour removal test, two types of multilayer films were prepared, DLC/TiO 2 films and DLC/TiO 2 /DLC films. The residual gas concentration of acetaldehyde, ethylene, and turmeric compounds in bottle including the DLC/TiO 2 -coated and the DLC/TiO 2 /DLC-coated PP plates were measured after UV radiation, and the amount of adsorbed compounds to the plates was determined. The percentages of residual gas for acetaldehyde, ethylene, and turmeric with the DLC/TiO 2 coated plates were 0.8%, 65.2% and 75.0% after 40 h of UV radiation, respectively. For the DLC/TiO 2 /DLC film, the percentages of residual gas for acetaldehyde, ethylene and turmeric decreased to 34.9%, 76.0% and 85.3% after 40 h of UV radiation, respectively. The DLC/TiO 2 /DLC film had a photocatalytic effect even though the TiO 2 film was covered with the DLC film.

  14. Solution-processed zinc oxide nanoparticles/single-walled carbon nanotubes hybrid thin-film transistors

    Science.gov (United States)

    Liu, Fangmei; Sun, Jia; Qian, Chuan; Hu, Xiaotao; Wu, Han; Huang, Yulan; Yang, Junliang

    2016-09-01

    Solution-processed thin-film transistors (TFTs) are the essential building blocks for manufacturing the low-cost and large-area consumptive electronics. Herein, solution-processed TFTs based on the composites of zinc oxide (ZnO) nanoparticles and single-walled carbon nanotubes (SWCNTs) were fabricated by the methods of spin-coating and doctor-blading. Through controlling the weight of SWCNTs, the ZnO/SWCNTs TFTs fabricated by spin-coating demonstrated a field-effect mobility of 4.7 cm2/Vs and a low threshold voltage of 0.8 V, while the TFTs devices fabricated by doctor-blading technique showed reasonable electrical performance with a mobility of 0.22 cm2/Vs. Furthermore, the ion-gel was used as an efficient electrochemical gate dielectric because of its large electric double-layer capacitance. The operating voltage of all the TFTs devices is as low as 4.0 V. The research suggests that ZnO/SWCNTs TFTs have the potential applications in low-cost, large-area and flexible consumptive electronics, such as chemical-biological sensors and smart label.

  15. Bulging Behavior of Thin-walled Welded Low Carbon Steel Tubes

    Directory of Open Access Journals (Sweden)

    XIE Wen-cai

    2017-01-01

    Full Text Available In order to investigate the deformation behaviour of welded tubes during hydraulic bulging process,the hydraulic bulging tests of thin-walled welded low carbon steel tubes (STKM11A were conducted on the tube hydroformability testing unit.The thickness distribution,profiles of bulging area and the strain distribution were all obtained.Results show that the thickness reduction of weld zone is just 2.4%-5.5% while its effective strain is just 0.05-0.10,which is very small and negligible compared with the parent material and means that just the geometric position of weld zone is changed with the continuous bulging.The thinnest points are located on the both sides of weld seam symmetrically and the angle between the thinnest point and weld seam is about 30°,at which the necking has been occurred.When the length of bulging area increases,the fracture pressure,the thickness reduction and the ultimate expansion ratio all decrease,and the profile of the bulging area gradually steps away from the elliptical model which is powerless for the ratio of length to diameter up to 2.0.Moreover,the strain state of the tube is transformed from biaxial tension to plane strain state with the increasing length of bulging area,on the basis of this the forming limit diagram of welded STKM11A steel tubes can be established.

  16. Preparation of self-supporting metallic foils of nickel isotopes

    International Nuclear Information System (INIS)

    Sugai, Isao.

    1975-01-01

    This is the fourth report on the practical methods of target preparation for use in low energy nuclear experiments following the previous one (INS-J-150). An electroplating method has been developed as a dependable and reproducible technique for making self-supporting metallic foils of nickel in the thickness range of 0.5 to 10 mg/cm 2 . The procedures minimized the necessary amount of material so that nickel isotopes could be processed economically. Impurity contamination of the nickel foils during the electroplating process was less than 500 ppm, and the thickness variation in each foil was less than 3% of the central thickness. (auth.)

  17. Laser Raman microprobe spectroscopy as a diagnostic for the characterisation of diamond and diamond like carbon (DLC) thin films

    International Nuclear Information System (INIS)

    Johnston, C.

    1990-10-01

    Invariably when manufacturing an artificial diamond film a mixture of carbon is deposited - tetragonally bonded (diamond), trigonally bonded (graphite) and other allotropic crystalline forms and amorphous carbons. This imposes a need for careful analysis to determine exactly what carbon types constitute the films. Raman spectroscopy is particularly sensitive to crystal and atomic structure and has a number of advantages which make it one of the most useful techniques for interrogating diamond and DLC thin films. Although Raman spectroscopy alone cannot fully characterise the film, it can give more information than simply what particular form of carbon or other impurities are present in the film. It can be used to determine the ratio of sp 2 to sp 3 bonding within the film, and to some extent the crystallite or domain size and the internal stress of the film. The use of laser Raman microprobe spectroscopy as a diagnostic tool in the analysis of diamond and DLC thin films is demonstrated for a variety of carbon films on various substrates and the characterisation of these films is discussed. (author)

  18. Test preparation and lifetime measurement of very thin carbon stripper foils made by a controlled DC arc-discharge method

    CERN Document Server

    Sugai, I; Oyaizu, M; Kawakami, H; Hattori, Y; Kawasaki, K; Hayashizaki, N

    2002-01-01

    We have prepared very thin plastic supported carbon stripper foils (1.2+-0.3 mu g/cm sup 2) using a controlled DC arc-discharge (CDAD) method. The lifetime of these foils was measured with 3.2 MeV Ne sup + ions. These foils recorded lifetimes about four times longer at the maximum and three times longer on the average than those commercially available foils produced by evaporation-condensation.

  19. Nanostructured TiO2/carbon nanosheet hybrid electrode for high-rate thin-film lithium-ion batteries

    OpenAIRE

    Moitzheim, Sébastien; Nimisha, C S; Deng, Shaoren; Cott, Daire J; Detavernier, Christophe; Vereecken, Philippe

    2014-01-01

    Heterogeneous nanostructured electrodes using carbon nanosheets (CNS) and TiO2 exhibit high electronic and ionic conductivity. In order to realize the chip level power sources, it is necessary to employ microelectronic compatible techniques for the fabrication and characterization of TiO2-CNS thin-film electrodes. To achieve this, vertically standing CNS grown through a catalytic free approach on a TiN/SiO2/Si substrate by plasma enhanced chemical vapour deposition (PECVD) was ...

  20. Thinning, Age, and Site Quality Influence Live Tree Carbon Stocks in Upland Hardwood Forests of the Southern Appalachians

    Science.gov (United States)

    Tara L. Keyser; Stanley J. Zarnoch

    2012-01-01

    This study examines the effects of thinning, age, and site quality on aboveground live tree carbon (ATC) (Mg/ha) stocks in upland hardwood forests of mixed-species composition in the southern Appalachian Mountains. In 1974, 80 plots ranging in size from 0.06 to 0.1 ha were established in even-aged, mixed-hardwood forests throughout the southern Appalachians. All trees...

  1. Nanocomposite Thin Film of Poly(3-aminobenzoic acid and Multiwalled Carbon Nanotubes Fabricated through an Electrochemical Method

    Directory of Open Access Journals (Sweden)

    Paphawadee Netsuwan

    2014-01-01

    Full Text Available The composite thin films of poly(3-aminobenzoic acid (PABA and multiwalled carbon nanotubes (MWNTs are successfully fabricated through an electrochemical method. The composite mixtures containing 50 mM of 3-aminobenzoic acid with various concentrations of MWNTs (1.0, 2.5, 5.0, 7.5, and 10 mg/mL in 0.5 M H2SO4 were prepared and used in this study. Cyclic voltammetry (CV was used for fabrication and monitoring the electropolymerization of the composite thin films with potential range of 0 to 1100 mV for 5 cycles at scan rate of 20 mV/s on indium tin oxide- (ITO-coated glass substrate. UV-vis absorption spectroscopy, atomic force microscopy (AFM, and scanning electron microscopy (SEM techniques were employed to characterize the obtained composite thin films. It was found that MWNTs can enhance the peak current of CV traces of the PABA/MWNTs composite thin films without affecting the UV-vis absorption spectra. The surface morphology of the thin films can be studied using AFM and SEM techniques.

  2. Bench Scale Thin Film Composite Hollow Fiber Membranes for Post-Combustion Carbon Dioxide Capture

    Energy Technology Data Exchange (ETDEWEB)

    Glaser, Paul [General Electric Global Research, Niskayuna, NY (United States); Bhandari, Dhaval [General Electric Global Research, Niskayuna, NY (United States); Narang, Kristi [General Electric Global Research, Niskayuna, NY (United States); McCloskey, Pat [General Electric Global Research, Niskayuna, NY (United States); Singh, Surinder [General Electric Global Research, Niskayuna, NY (United States); Ananthasayanam, Balajee [General Electric Global Research, Niskayuna, NY (United States); Howson, Paul [General Electric Global Research, Niskayuna, NY (United States); Lee, Julia [General Electric Global Research, Niskayuna, NY (United States); Wroczynski, Ron [General Electric Global Research, Niskayuna, NY (United States); Stewart, Frederick [Idaho National Lab. (INL), Idaho Falls, ID (United States); Orme, Christopher [Idaho National Lab. (INL), Idaho Falls, ID (United States); Klaehn, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); McNally, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rownaghi, Ali [Georgia Inst. of Technology, Atlanta, GA (United States); Lu, Liu [Georgia Inst. of Technology, Atlanta, GA (United States); Koros, William [Georgia Inst. of Technology, Atlanta, GA (United States); Goizueta, Roberto [Georgia Inst. of Technology, Atlanta, GA (United States); Sethi, Vijay [Western Research Inst., Laramie, WY (United States)

    2015-04-01

    GE Global Research, Idaho National Laboratory (INL), Georgia Institute of Technology (Georgia Tech), and Western Research Institute (WRI) proposed to develop high performance thin film polymer composite hollow fiber membranes and advanced processes for economical post-combustion carbon dioxide (CO2) capture from pulverized coal flue gas at temperatures typical of existing flue gas cleanup processes. The project sought to develop and then optimize new gas separations membrane systems at the bench scale, including tuning the properties of a novel polyphosphazene polymer in a coating solution and fabricating highly engineered porous hollow fiber supports. The project also sought to define the processes needed to coat the fiber support to manufacture composite hollow fiber membranes with high performance, ultra-thin separation layers. Physical, chemical, and mechanical stability of the materials (individual and composite) towards coal flue gas components was considered via exposure and performance tests. Preliminary design, technoeconomic, and economic feasibility analyses were conducted to evaluate the overall performance and impact of the process on the cost of electricity (COE) for a coal-fired plant including capture technologies. At the onset of the project, Membranes based on coupling a novel selective material polyphosphazene with an engineered hollow fiber support was found to have the potential to capture greater than 90% of the CO2 in flue gas with less than 35% increase in COE, which would achieve the DOE-targeted performance criteria. While lab-scale results for the polyphosphazene materials were very promising, and the material was incorporated into hollow-fiber modules, difficulties were encountered relating to the performance of these membrane systems over time. Performance, as measured by both flux of and selectivity for CO2 over other flue gas constituents was found to deteriorate over time, suggesting a system that was

  3. Thin-sheet zinc-coated and carbon steels laser welding

    Directory of Open Access Journals (Sweden)

    Peças, P.

    1998-04-01

    Full Text Available This paper describes the results of a research on CO2 laser welding of thin-sheet carbon steels (zinccoated and uncoated, at several thicknesses combinations. Laser welding has an high potential to be applied on sub-assemblies welding before forming to the automotive industry-tailored blanks. The welding process is studied through the analysis of parameters optimization, metallurgical quality and induced distortions by the welding process. The clamping system and the gas protection system developed are fully described. These systems allow the minimization of common thin-sheet laser welding defects like misalignement, and zinc-coated laser welding defects like porous and zinc volatilization. The laser welding quality is accessed by DIN 8563 standard, and by tensile, microhardness and corrosion tests.

    Este artigo descreve os resultados da investigação da soldadura laser de CO2 de chapa fina de acó carbono (simples e galvanizado, em diferentes combinações de espessura. A soldadura laser é um processo de elevado potencial no fabrico de tailored-blanks (sub-conjuntos para posterior enformação, constituidos por varias partes de diferentes materiais e espessuras para a indústria automóvel. São analisados os aspectos de optimização paramétrica, de qualidade metalúrgica da junta soldada e das deformações resultantes da soldadura. São descritos os mecanismos desenvolvidos de fixação das chapas e protecção gasosa, por forma a minimizar os defeitos típicos na soldadura laser de chapa fina como o desalinhamento e da soldadura laser de chapa galvanizada como os poros e a volatilização do zinco. Por fim apresentam-se resultados da avaliação da qualidade da soldadura do ponto de vista qualitativo através da norma DIN 8563, e do pontos de vista quantitativo através de ensaios de tracção, dureza e corrosão.

  4. A study of the chemical, mechanical, and surface properties of thin films of hydrogenated amorphous carbon

    Energy Technology Data Exchange (ETDEWEB)

    Vandentop, G.J.

    1990-07-01

    Amorphous hydrogenated carbon (a-C:H) films were studied with the objective of elucidating the nucleation and growth mechanisms, and the origin of their unique physical properties. The films were deposited onto Si(100) substrates both on the powered (negatively self-biased) and on the grounded electrodes from methane in an rf plasma (13.56 MHz) at 65 mTorr and 300 to 370 K. The films produced at the powered electrode exhibited superior mechanical properties, such as high hardness. A mass spectrometer was used to identify neutral species and positive ions incident on the electrodes from the plasma, and also to measure ion energies. The effect of varying ion energy flux on the properties of a-C:H films was investigated using a novel pulsed biasing technique. It was demonstrated that ions were not the dominant deposition species as the total ion flux measured was insufficient to account for the observed deposition rate. The interface between thin films of a-C:H and silicon substrates was investigated using angle resolved x-ray photoelectron spectroscopy. A silicon carbide layer was detected at the interface of a hard a-C:H film formed at the powered electrode. At the grounded electrode, where the kinetic energy is low, no interfacial carbide layer was observed. Scanning tunneling microscopy and high energy electron energy loss spectroscopy was used to investigate the initial stages of growth of a-C:H films. On graphite substrates, films formed at the powered electrode were observed to nucleate in clusters approximately 50 {Angstrom} in diameter, while at the grounded electrode no cluster formation was observed. 58 figs.

  5. Impact of the difference in power frequency on diamond-like carbon thin film coating over 3-dimensional objects

    Energy Technology Data Exchange (ETDEWEB)

    Nakaya, Masaki, E-mail: m-nakaya@kirin.co.jp [Packaging Technology Development Center, Technology Development Department, Kirin Brewery Co., Ltd., 1-17-1 Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-8682 (Japan); Shimizu, Mari [Packaging Technology Development Center, Technology Development Department, Kirin Brewery Co., Ltd., 1-17-1 Namamugi, Tsurumi-ku, Yokohama, Kanagawa 230-8682 (Japan); Uedono, Akira [Division of Applied Physics, Faculty of Pure and Applied Science, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2014-08-01

    With a type of capacitatively coupled plasma enhanced chemical vapor deposition (PECVD) technique, where two specially designed electrodes face to each other, the inner surface of hollow 3-dimensional objects such as poly(ethylene terephthalate) (PET) bottles can be coated with diamond-like carbon (DLC) thin film. DLC-coated PET bottles obtained with this technique have an enhanced gas barrier property, and therefore are applicable to industrial use such as for the extension of the shelf-life of contents sensitive to gas permeation. In this paper, the impact of power frequency ranging from 2.5 to 13.56 MHz was studied in order to research the behavior of plasma inside PET bottles and resultant properties. Different power frequency turned out to be influential on gas barrier property, the overall and distribution of tint, and adhesion between DLC and PET substrate. In addition, positron annihilation turned out to be powerful tool for the comparison of different coating conditions because it clarifies the homogeneity of DLC thin films through providing information on overall structure and thickness of them. These findings can be used for the optimization not only in the beverage PET bottle application, but also in other capacitatively coupled PECVD devices. - Highlights: • We demonstrated an effective methodology for the homogeneity of thin films. • We described the influence of power frequency on plasma and resultant thin film. • Diamond-like carbon coated on poly(ethylene terephthalate) bottles was used. • Different frequency provided homogenous thin films based on the above methodology. • For the industrial performance of the bottles, optimization was found at 6 MHz.

  6. Impact of the difference in power frequency on diamond-like carbon thin film coating over 3-dimensional objects

    International Nuclear Information System (INIS)

    Nakaya, Masaki; Shimizu, Mari; Uedono, Akira

    2014-01-01

    With a type of capacitatively coupled plasma enhanced chemical vapor deposition (PECVD) technique, where two specially designed electrodes face to each other, the inner surface of hollow 3-dimensional objects such as poly(ethylene terephthalate) (PET) bottles can be coated with diamond-like carbon (DLC) thin film. DLC-coated PET bottles obtained with this technique have an enhanced gas barrier property, and therefore are applicable to industrial use such as for the extension of the shelf-life of contents sensitive to gas permeation. In this paper, the impact of power frequency ranging from 2.5 to 13.56 MHz was studied in order to research the behavior of plasma inside PET bottles and resultant properties. Different power frequency turned out to be influential on gas barrier property, the overall and distribution of tint, and adhesion between DLC and PET substrate. In addition, positron annihilation turned out to be powerful tool for the comparison of different coating conditions because it clarifies the homogeneity of DLC thin films through providing information on overall structure and thickness of them. These findings can be used for the optimization not only in the beverage PET bottle application, but also in other capacitatively coupled PECVD devices. - Highlights: • We demonstrated an effective methodology for the homogeneity of thin films. • We described the influence of power frequency on plasma and resultant thin film. • Diamond-like carbon coated on poly(ethylene terephthalate) bottles was used. • Different frequency provided homogenous thin films based on the above methodology. • For the industrial performance of the bottles, optimization was found at 6 MHz

  7. Self-supported all-metal THz metamaterials

    Science.gov (United States)

    Moser, H. O.; Jian, L. K.; Chen, H. S.; Bahou, M.; Kalaiselvi, S. M. P.; Virasawmy, S.; Maniam, S. M.; Cheng, X. X.; Heussler, S. P.; bin Mahmood, Shahrain; Wu, B.-I.

    2009-08-01

    Ideal metamaterials would consist of metal conductors only that are necessary for negative ɛ and μ. However, most of present-day metamaterials include dielectrics for various support functions. Overcoming dielectrics, we manufactured free-standing THz metamaterials as bi-layer chips of S-string arrays suspended by window-frames at a small gap that controls the resonance frequency. Remaining problems concerning their useful range of incidence angles and the possibility of stacking have been solved by manufacturing the first self-supported free-standing all-metal metamaterials featuring upright S-strings interconnected by metal rods. Large-area slabs show maximum magnetic coupling at normal incidence with left-handed resonances between 3.2 - 4.0 THz. Such metamaterials which we dub the meta-foil represent an ideal platform for including index-gradient optics to achieve optical functionalities like beam deflection and imaging.

  8. Thin and flexible all-solid supercapacitor prepared from novel single wall carbon nanotubes/polyaniline thin films obtained in liquid-liquid interfaces

    Science.gov (United States)

    de Souza, Victor Hugo Rodrigues; Oliveira, Marcela Mohallem; Zarbin, Aldo José Gorgatti

    2014-08-01

    The present work describes for the first time the synthesis and characterization of single wall carbon nanotubes/polyaniline (SWNTs/PAni) nanocomposite thin films in a liquid-liquid interface, as well as the subsequent construction of a flexible all-solid supercapacitor. Different SWNTs/PAni nanocomposites were prepared by varying the ratio of SWNT to aniline, and the samples were characterized by scanning and transmission electron microscopy, Raman and UV-Vis spectroscopy, cyclic voltammetry and electrochemical impedance spectroscopy. The pseudo-capacitive behavior of the nanocomposites was evaluated by charge/discharge galvanostatic measurements. The presence of the SWNTs affected the electronic and vibrational properties of the polyaniline and also improved the pseudo-capacitive behavior of the conducting polymer. A very thin and flexible all-solid device was manufactured using two electrodes (polyethylene terephthalate-PET covered with the SWNT/PAni nanocomposite separated by a H2SO4-PVA gel electrolyte). The pseudo-capacitive behavior was characterized by a volumetric specific capacitance of approximately 76.7 F cm-3, even under mechanical deformation, indicating that this nanocomposite has considerable potential for application in new-generation energy storage devices.

  9. Hierarchically structured self-supported latex films for flexible and semi-transparent electronics

    International Nuclear Information System (INIS)

    Määttänen, Anni; Ihalainen, Petri; Törngren, Björn; Rosqvist, Emil; Pesonen, Markus; Peltonen, Jouko

    2016-01-01

    Graphical abstract: - Highlights: • Transparent self-supported latex films were fabricated by a peel-off process. • Various template substrates were used for creating e.g. hierarchically structured latex films. • Ultra-thin and semi-transparent conductive gold electrodes were evaporated on the latex films.Electrochemical experiments were carried out to verify the applicability of the electrodes. - Abstract: Different length scale alterations in topography, surface texture, and symmetry are known to evoke diverse cell behavior, including adhesion, orientation, motility, cytoskeletal condensation, and modulation of intracellular signaling pathways. In this work, self-supported latex films with well-defined isotropic/anisotropic surface features and hierarchical morphologies were fabricated by a peel-off process from different template surfaces. In addition, the latex films were used as substrates for evaporated ultrathin gold films with nominal thicknesses of 10 and 20 nm. Optical properties and topography of the samples were characterized using UV–vis spectroscopy and Atomic Force Microscopy (AFM) measurements, respectively. The latex films showed high-level transmittance of visible light, enabling the fabrication of semi-transparent gold electrodes. Electrochemical impedance spectroscopy (EIS) measurements were carried out for a number of days to investigate the long-term stability of the electrodes. The effect of 1-octadecanethiol (ODT) and HS(CH 2 ) 11 OH (MuOH) thiolation and protein (human serum albumin, HSA) adsorption on the impedance and capacitance was studied. In addition, cyclic voltammetry (CV) measurements were carried out to determine active medicinal components, i.e., caffeic acid with interesting biological activities and poorly water-soluble anti-inflammatory drug, piroxicam. The results show that the fabrication procedure presented in this study enables the formation of platforms with hierarchical morphologies for multimodal (optical and

  10. Hierarchically structured self-supported latex films for flexible and semi-transparent electronics

    Energy Technology Data Exchange (ETDEWEB)

    Määttänen, Anni, E-mail: anni.maattanen@abo.fi [Laboratory of Physical Chemistry, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland); Ihalainen, Petri, E-mail: petri.ihalainen@abo.fi [Laboratory of Physical Chemistry, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland); Törngren, Björn, E-mail: bjorn.torngren@abo.fi [Laboratory of Physical Chemistry, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland); Rosqvist, Emil, E-mail: emil.rosqvist@abo.fi [Laboratory of Physical Chemistry, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland); Pesonen, Markus, E-mail: markus.pesonen@abo.fi [Physics, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland); Peltonen, Jouko, E-mail: jouko.peltonen@abo.fi [Laboratory of Physical Chemistry, Faculty of Science and Engineering, Center for Functional Materials, Åbo Akademi University, Porthaninkatu 3, 20500, Turku (Finland)

    2016-02-28

    Graphical abstract: - Highlights: • Transparent self-supported latex films were fabricated by a peel-off process. • Various template substrates were used for creating e.g. hierarchically structured latex films. • Ultra-thin and semi-transparent conductive gold electrodes were evaporated on the latex films.Electrochemical experiments were carried out to verify the applicability of the electrodes. - Abstract: Different length scale alterations in topography, surface texture, and symmetry are known to evoke diverse cell behavior, including adhesion, orientation, motility, cytoskeletal condensation, and modulation of intracellular signaling pathways. In this work, self-supported latex films with well-defined isotropic/anisotropic surface features and hierarchical morphologies were fabricated by a peel-off process from different template surfaces. In addition, the latex films were used as substrates for evaporated ultrathin gold films with nominal thicknesses of 10 and 20 nm. Optical properties and topography of the samples were characterized using UV–vis spectroscopy and Atomic Force Microscopy (AFM) measurements, respectively. The latex films showed high-level transmittance of visible light, enabling the fabrication of semi-transparent gold electrodes. Electrochemical impedance spectroscopy (EIS) measurements were carried out for a number of days to investigate the long-term stability of the electrodes. The effect of 1-octadecanethiol (ODT) and HS(CH{sub 2}){sub 11}OH (MuOH) thiolation and protein (human serum albumin, HSA) adsorption on the impedance and capacitance was studied. In addition, cyclic voltammetry (CV) measurements were carried out to determine active medicinal components, i.e., caffeic acid with interesting biological activities and poorly water-soluble anti-inflammatory drug, piroxicam. The results show that the fabrication procedure presented in this study enables the formation of platforms with hierarchical morphologies for multimodal

  11. Adhesion enhancement of diamond-like carbon thin films on Ti alloys by incorporation of nanodiamond particles

    International Nuclear Information System (INIS)

    Zhang, C.Z.; Tang, Y.; Li, Y.S.; Yang, Q.

    2013-01-01

    Coating adherent diamond-like carbon (DLC) thin films directly on Ti alloys is technologically difficult. This research incorporates nanodiamond particles to form a diamond/DLC composite interlayer to enhance the adhesion of DLC thin films on Ti6Al4V substrates. Initially, nanodiamond particles were deposited on Ti6Al4V substrates by microwave plasma enhanced chemical vapor deposition from a methane–hydrogen gas mixture. A DLC thin film was then deposited, on top of the nanodiamond particles, by direct ion beam deposition. Scanning electron microscopy, Atomic force microscopy, X-ray Diffraction and Raman spectroscopy were used to characterize the microstructure and chemical bonding of the deposited particles and films, and Rockwell indentation testing was used to evaluate the adhesion of the deposited films. The results indicate that the pre-deposited nanodiamond particles significantly enhance the interfacial adhesion between the DLC thin film and the Ti6Al4V substrate, possibly by enhanced interfacial bonding, mechanical interlocking, and stress relief. - Highlights: ► Nanodiamond particles were deposited on Ti6Al4V before DLC deposition. ► Diamond/DLC composite film was formed by incorporation of nanodiamond particles. ► Greatly enhanced adhesion of diamond/DLC composite film on Ti6Al4V was achieved. ► Enhanced adhesion is by increased interfacial bonding and mechanical interlocking

  12. Adhesion enhancement of diamond-like carbon thin films on Ti alloys by incorporation of nanodiamond particles

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.Z.; Tang, Y. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, Canada S7N 5A9 (Canada); Li, Y.S. [Plasma Physics Laboratory, University of Saskatchewan, 116 Science Place, Saskatoon, SK, Canada S7N 5E2 (Canada); Yang, Q., E-mail: qiaoqin.yang@usask.ca [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK, Canada S7N 5A9 (Canada)

    2013-01-01

    Coating adherent diamond-like carbon (DLC) thin films directly on Ti alloys is technologically difficult. This research incorporates nanodiamond particles to form a diamond/DLC composite interlayer to enhance the adhesion of DLC thin films on Ti6Al4V substrates. Initially, nanodiamond particles were deposited on Ti6Al4V substrates by microwave plasma enhanced chemical vapor deposition from a methane–hydrogen gas mixture. A DLC thin film was then deposited, on top of the nanodiamond particles, by direct ion beam deposition. Scanning electron microscopy, Atomic force microscopy, X-ray Diffraction and Raman spectroscopy were used to characterize the microstructure and chemical bonding of the deposited particles and films, and Rockwell indentation testing was used to evaluate the adhesion of the deposited films. The results indicate that the pre-deposited nanodiamond particles significantly enhance the interfacial adhesion between the DLC thin film and the Ti6Al4V substrate, possibly by enhanced interfacial bonding, mechanical interlocking, and stress relief. - Highlights: ► Nanodiamond particles were deposited on Ti6Al4V before DLC deposition. ► Diamond/DLC composite film was formed by incorporation of nanodiamond particles. ► Greatly enhanced adhesion of diamond/DLC composite film on Ti6Al4V was achieved. ► Enhanced adhesion is by increased interfacial bonding and mechanical interlocking.

  13. Foam-like, microstructural SnO2-carbon composite thin films synthesized via a polyol-assisted thermal decomposition method.

    Science.gov (United States)

    Ng, See-How; Chew, Sau-Yen; Wang, Jia-Zhao; Chen, Jun; Dou, Shi-Xue; Liu, Hua-Kun

    2009-01-28

    Foam-like, microstructural SnO2-carbon composite thin films were synthesized by refluxing SnCl2.2H2O in ethylene glycol (EG) at 195 degrees C for 4 h under vigorous stirring in air followed by thermal decomposition of the as-synthesized precursor solution, whereby the products were deposited onto stainless steel (SS) substrates. Subsequently, the decomposed product, which now consists only of the microstructural SnO2-carbon composite thin film, without the addition of any binder and carbon black conductive agent, was directly applied as an anode material for use in a Li-ion rechargeable battery. Physical and electrochemical characterizations of the as-synthesized thin films were carried out. The foam-like, microstructural SnO2-carbon composite thin films that undergo thermal decomposition in air at 300 degrees C demonstrated the best cyclability, delivering a specific discharge capacity of approximately 496 mAh g(-1) beyond 100 cycles. We believe that the presence of a uniform, SnO2-carbon network throughout the foam-like thin film, acts not only as an improved conducting network but also buffered the volume expansion upon Li-Sn alloying, resulting in a much improved cycling of the composite thin film electrode.

  14. Influence of silver incorporation on the structural and electrical properties of diamond-like carbon thin films.

    Science.gov (United States)

    Dwivedi, Neeraj; Kumar, Sushil; Carey, J David; Tripathi, R K; Malik, Hitendra K; Dalai, M K

    2013-04-10

    A simple approach is proposed for obtaining low threshold field electron emission from large area diamond-like carbon (DLC) thin films by sandwiching either Ag dots or a thin Ag layer between DLC and nitrogen-containing DLC films. The introduction of silver and nitrogen is found to reduce the threshold field for emission to under 6 V/μm representing a near 46% reduction when compared with unmodified films. The reduction in the threshold field is correlated with the morphology, microstructure, interface, and bonding environment of the films. We find modifications to the structure of the DLC films through promotion of metal-induced sp2 bonding and the introduction of surface asperities, which significantly reduce the value of the threshold field. This can lead to the next-generation, large-area simple and inexpensive field emission devices.

  15. Carbon stocks across a chronosequence of thinned and unmanaged red pine (Pinus resinosa) stands.

    Science.gov (United States)

    Powers, Matthew D; Kolka, Randall K; Bradford, John B; Palik, Brian J; Fraver, Shawn; Jurgensen, Martin F

    2012-06-01

    Forests function as a major global C sink, and forest management strategies that maximize C stocks offer one possible means of mitigating the impacts of increasing anthropogenic CO2 emissions. We studied the effects of thinning, a common management technique in many forest types, on age-related trends in C stocks using a chronosequence of thinned and unmanaged red pine (Pinus resinosa) stands ranging from 9 to 306 years old. Live tree C stocks increased with age to a maximum near the middle of the chronosequence in unmanaged stands, and increased across the entire chronosequence in thinned stands. C in live understory vegetation and C in the mineral soil each declined rapidly with age in young stands but changed relatively little in middle-aged to older stands regardless of management. Forest floor C stocks increased with age in unmanaged stands, but forest floor C decreased with age after the onset of thinning around age 40 in thinned stands. Deadwood C was highly variable, but decreased with age in thinned stands. Total ecosystem C increased with stand age until approaching an asymptote around age 150. The increase in total ecosystem C was paralleled by an age-related increase in total aboveground C, but relatively little change in total belowground C. Thinning had surprisingly little impact on total ecosystem C stocks, but it did modestly alter age-related trends in total ecosystem C allocation between aboveground and belowground pools. In addition to characterizing the subtle differences in C dynamics between thinned and unmanaged stands, these results suggest that C accrual in red pine stands continues well beyond the 60-100 year management rotations typical for this system. Management plans that incorporate longer rotations and thinning in some stands could play an important role in maximizing C stocks in red pine forests while meeting other objectives including timber extraction, biodiversity conservation, restoration, and fuel reduction goals.

  16. Carbon stocks across a chronosequence of thinned and unmanaged red pine (Pinus resinosa) stands

    Science.gov (United States)

    Powers, Matthew D.; Kolka, Randall K.; Bradford, John B.; Palik, Brian J.; Fraver, Shawn; Jurgensen, Martin F.

    2012-01-01

    Forests function as a major global C sink, and forest management strategies that maximize C stocks offer one possible means of mitigating the impacts of increasing anthropogenic CO2 emissions. We studied the effects of thinning, a common management technique in many forest types, on age-related trends in C stocks using a chronosequence of thinned and unmanaged red pine (Pinus resinosa) stands ranging from 9 to 306 years old. Live tree C stocks increased with age to a maximum near the middle of the chronosequence in unmanaged stands, and increased across the entire chronosequence in thinned stands. C in live understory vegetation and C in the mineral soil each declined rapidly with age in young stands but changed relatively little in middle-aged to older stands regardless of management. Forest floor C stocks increased with age in unmanaged stands, but forest floor C decreased with age after the onset of thinning around age 40 in thinned stands. Deadwood C was highly variable, but decreased with age in thinned stands. Total ecosystem C increased with stand age until approaching an asymptote around age 150. The increase in total ecosystem C was paralleled by an age-related increase in total aboveground C, but relatively little change in total belowground C. Thinning had surprisingly little impact on total ecosystem C stocks, but it did modestly alter age-related trends in total ecosystem C allocation between aboveground and belowground pools. In addition to characterizing the subtle differences in C dynamics between thinned and unmanaged stands, these results suggest that C accrual in red pine stands continues well beyond the 60–100 year management rotations typical for this system. Management plans that incorporate longer rotations and thinning in some stands could play an important role in maximizing C stocks in red pine forests while meeting other objectives including timber extraction, biodiversity conservation, restoration, and fuel reduction goals.

  17. Radiative double electron capture in collisions of fully-stripped fluorine ions with thin carbon foils

    Science.gov (United States)

    Elkafrawy, Tamer Mohammad Samy

    Radiative double electron capture (RDEC) is a one-step process in ion-atom collisions occurring when two target electrons are captured to a bound state of the projectile simultaneously with the emission of a single photon. The emitted photon has approximately double the energy of the photon emitted due to radiative electron capture (REC), which occurs when a target electron is captured to a projectile bound state with simultaneous emission of a photon. REC and RDEC can be treated as time-reversed photoionization (PI) and double photoionization (DPI), respectively, if loosely-bound target electrons are captured. This concept can be formulated with the principle of detailed balance, in which the processes of our interest can be described in terms of their time-reversed ones. Fully-stripped ions were used as projectiles in the performed RDEC experiments, providing a recipient system free of electron-related Coulomb fields. This allows the target electrons to be transferred without interaction with any of the projectile electrons, enabling accurate investigation of the electron-electron interaction in the vicinity of electromagnetic field. In this dissertation, RDEC was investigated during the collision of fully-stripped fluorine ions with a thin carbon foil and the results are compared with the recent experimental and theoretical studies. In the current work, x rays associated with projectile charge-changing by single and double electron capture and no charge change by F9+ ions were observed and compared with recent work for O8+ ions and with theory. Both the F 9+ and O8+ ions had energies in the ˜MeV/u range. REC, in turn, was investigated as a means to compare with the theoretical predictions of the RDEC/REC cross section ratio. The most significant background processes including various mechanisms of x-ray emission that may interfere with the energy region of interest are addressed in detail. This enables isolation of the contributions of REC and RDEC from the

  18. SCIAMACHY WFM-DOAS XCO2: comparison with CarbonTracker XCO2 focusing on aerosols and thin clouds

    Directory of Open Access Journals (Sweden)

    J. P. Burrows

    2012-08-01

    Full Text Available Carbon dioxide (CO2 is the most important greenhouse gas whose atmospheric loading has been significantly increased by anthropogenic activity leading to global warming. Accurate measurements and models are needed in order to reliably predict our future climate. This, however, has challenging requirements. Errors in measurements and models need to be identified and minimised. In this context, we present a comparison between satellite-derived column-averaged dry air mole fractions of CO2, denoted XCO2, retrieved from SCIAMACHY/ENVISAT using the WFM-DOAS (weighting function modified differential optical absorption spectroscopy algorithm, and output from NOAA's global CO2 modelling and assimilation system CarbonTracker. We investigate to what extent differences between these two data sets are influenced by systematic retrieval errors due to aerosols and unaccounted clouds. We analyse seven years of SCIAMACHY WFM-DOAS version 2.1 retrievals (WFMDv2.1 using CarbonTracker version 2010. We investigate to what extent the difference between SCIAMACHY and CarbonTracker XCO2 are temporally and spatially correlated with global aerosol and cloud data sets. For this purpose, we use a global aerosol data set generated within the European GEMS project, which is based on assimilated MODIS satellite data. For clouds, we use a data set derived from CALIOP/CALIPSO. We find significant correlations of the SCIAMACHY minus CarbonTracker XCO2 difference with thin clouds over the Southern Hemisphere. The maximum temporal correlation we find for Darwin, Australia (r2 = 54%. Large temporal correlations with thin clouds are also observed over other regions of the Southern Hemisphere (e.g. 43% for South America and 31% for South Africa. Over the Northern Hemisphere the temporal correlations are typically much lower. An exception is India, where large temporal correlations with clouds and aerosols have also been found. For all other regions the temporal correlations with

  19. Controlled Zn-mediated grafting of thin layers of bipodal diazonium salt on gold and carbon substrates.

    Science.gov (United States)

    Torréns, Mabel; Ortiz, Mayreli; Turner, Anthony P F; Beni, Valerio; O'Sullivan, Ciara K

    2015-01-07

    A controlled, rapid, and potentiostat-free method has been developed for grafting the diazonium salt (3,5-bis(4-diazophenoxy)benzoic acid tetrafluoroborate (DCOOH)) on gold and carbon substrates, based on a Zn-mediated chemical dediazonation. The highly stable thin layer organic platforms obtained were characterized by cyclic voltammetry, AFM, impedance, XP, and Raman spectroscopies. A dediazonation mechanism based on radical formation is proposed. Finally, DCOOH was proved as a linker to an aminated electroactive probe. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Selective and Scalable Chemical Removal of Thin Single-Walled Carbon Nanotubes from their Mixtures with Double-Walled Carbon Nanotubes.

    Science.gov (United States)

    Komínková, Zuzana; Valeš, Václav; Kalbáč, Martin

    2015-11-02

    Double-walled carbon nanotubes (DWCNTs) are materials in high demand due to their superior properties. However, it is very challenging to prepare DWCNTs samples of high purity. In particular, the removal of single-walled carbon nanotubes (SWCNTs) contaminants is a major problem. Here, a procedure for a selective removal of thin-diameter SWCNTs from their mixtures with DWCNTs by lithium vapor treatment is investigated. The results are evaluated by Raman spectroscopy and in situ Raman spectroelectrochemistry. It is shown that the amount of SWCNTs was reduced by about 35 % after lithium vapor treatment of the studied SWCNTs-DWCNTs mixture. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Transition from self-supported to living: Older people's experiences

    Directory of Open Access Journals (Sweden)

    Sigrun Hvalvik

    2011-11-01

    Full Text Available To become dependent on professional support to accomplish the daily activities of life can be considered a turning point, involving a range of challenging changes in life. The purpose of the study was to describe the experiences of older home-dwelling individuals in transition from self-supported to supported living from a lifeworld perspective. Five women and five men were interviewed, and a descriptive phenomenological design was used. The findings showed that an attitude of acceptance was an essential characteristic for this group. An attitude of acceptance comprised: flexibility and tolerance, recognition and hopes, and valuation of self and situation. Finding themselves in a situation they had to submit to, they took an attitude of acceptance. An attitude of acceptance implied acknowledgement of the situation as well as positivity and desires to manage. This attitude may represent a significant potential for improvement. Awareness of this is crucial to support older individuals in a healthy way through the transition process. An attitude of acceptance, however, also implied an acceptance of discontinuity in their lives, renunciations, and denigration of own needs. But this aspect of the acceptance was trivialized by the participants and not equally obvious. Insight into this complexity is vital to avoid ignorance of older individuals’ vulnerability in the transition process.

  2. Self-Supporting Nanodiamond Gels: Elucidating Colloidal Interactions Through Rheology_

    Science.gov (United States)

    Adhikari, Prajesh; Tripathi, Anurodh; Vogel, Nancy A.; Rojas, Orlando J.; Raghavan, Sriunivasa R.; Khan, Saad A.

    This work investigates the colloidal interactions and rheological behavior of nanodiamond (ND) dispersions. While ND represents a promising class of nanofiller due to its high surface area, superior mechanical strength, tailorable surface functionality and biocompatibility, much remains unknown about the behavior of ND dispersions. We hypothesize that controlling interactions in ND dispersions will lead to highly functional systems with tunable modulus and shear response. Steady and dynamic rheology techniques are thus employed to systematically investigate nanodiamonds dispersed in model polar and non-polar media. We find that low concentrations of ND form gels almost instantaneously in a non-polar media. In contrast, ND's in polar media show a time-dependent behavior with the modulus increasing with time. We attribute the difference in behavior to variations in inter-particle interactions as well as the interaction of the ND with the media. Large steady and oscillatory strains are applied to ND colloidal gels to investigate the role of shear in gel microstructure breakdown and recovery. For colloidal gels in non-polar medium, the incomplete recovery of elastic modulus at high strain amplitudes indicates dominance of particle-particle interactions; however, in polar media the complete recovery of elastic modulus even at high strain amplitudes indicates dominance of particle-solvent interactions. These results taken together provide a platform to develop self-supporting gels with tunable properties in terms of ND concentration, and solvent type.

  3. Dry And Ringer Solution Lubricated Tribology Of Thin Osseoconductive Metal Oxides And Diamond-Like Carbon Films

    Directory of Open Access Journals (Sweden)

    Waldhauser W.

    2015-09-01

    Full Text Available Achieving fast and strong adhesion to jawbone is essential for dental implants. Thin deposited films may improve osseointegration, but they are prone to cohesive and adhesive fracture due to high stresses while screwing the implant into the bone, leading to bared, less osteoconductive substrate surfaces and nano- and micro-particles in the bone. Aim of this work is the investigation of the cohesion and adhesion failure stresses of osteoconductive tantalum, titanium, silicon, zirconium and aluminium oxide and diamond-like carbon films. The tribological behaviour under dry and lubricated conditions (Ringer solution reveals best results for diamond-like carbon, while cohesion and adhesion of zirconium oxide films is highest.

  4. Plasma-enhanced chemical-vapor deposition of titanium aluminum carbonitride/amorphous-carbon nanocomposite thin films

    Science.gov (United States)

    Shieh, Jiann; Hon, Min Hsiung

    2002-01-01

    A new nanocomposite, titanium aluminum carbonitride/amorphous-carbon thin film was prepared by radio-frequency (rf) plasma-enhanced chemical-vapor deposition using titanium tetrachloride, aluminum trichloride, methane, and nitrogen as reactants. Hydrogen was used as carrier gases. A substrate temperature of 500 °C and an rf power of 100 W were used in all depositions. The films were characterized by x-ray powder diffraction, Raman spectroscopy, x-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy. The results show that nanograins of titanium aluminum carbonitride were embedded in an amorphous-carbon matrix. The nanograins had a (200) preferred orientation with columnar cross-section morphology. Mechanical properties were analyzed by nanoindentation and hardness was demonstrated to increase via this microstructure design approach. The effects of microstructure on mechanical properties were also determined.

  5. Plasma-enhanced chemical-vapor deposition of titanium aluminum carbonitride/amorphous-carbon nanocomposite thin films

    International Nuclear Information System (INIS)

    Shieh Jiann; Hon, M.H.

    2002-01-01

    A new nanocomposite, titanium aluminum carbonitride/amorphous-carbon thin film was prepared by radio-frequency (rf) plasma-enhanced chemical-vapor deposition using titanium tetrachloride, aluminum trichloride, methane, and nitrogen as reactants. Hydrogen was used as carrier gases. A substrate temperature of 500 deg. C and an rf power of 100 W were used in all depositions. The films were characterized by x-ray powder diffraction, Raman spectroscopy, x-ray photoelectron spectroscopy, transmission electron microscopy, and scanning electron microscopy. The results show that nanograins of titanium aluminum carbonitride were embedded in an amorphous-carbon matrix. The nanograins had a (200) preferred orientation with columnar cross-section morphology. Mechanical properties were analyzed by nanoindentation and hardness was demonstrated to increase via this microstructure design approach. The effects of microstructure on mechanical properties were also determined

  6. Steady heat conduction-based thermal conductivity measurement of single walled carbon nanotubes thin film using a micropipette thermal sensor.

    Science.gov (United States)

    Shrestha, R; Lee, K M; Chang, W S; Kim, D S; Rhee, G H; Choi, T Y

    2013-03-01

    In this paper, we describe the thermal conductivity measurement of single-walled carbon nanotubes thin film using a laser point source-based steady state heat conduction method. A high precision micropipette thermal sensor fabricated with a sensing tip size varying from 2 μm to 5 μm and capable of measuring thermal fluctuation with resolution of ±0.01 K was used to measure the temperature gradient across the suspended carbon nanotubes (CNT) film with a thickness of 100 nm. We used a steady heat conduction model to correlate the temperature gradient to the thermal conductivity of the film. We measured the average thermal conductivity of CNT film as 74.3 ± 7.9 W m(-1) K(-1) at room temperature.

  7. Free standing diamond-like carbon thin films by PLD for laser based electrons/protons acceleration

    Energy Technology Data Exchange (ETDEWEB)

    Thema, F.T.; Beukes, P.; Ngom, B.D. [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa); Manikandan, E., E-mail: mani@tlabs.ac.za [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa); Central Research Laboratory, Sree Balaji Medical College & Hospital (SBMCH), Chrompet, Bharath University, Chennai, 600044 (India); Maaza, M., E-mail: maaza@tlabs.ac.za [UNESCO Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West, 7129, PO Box722, Western Cape Province (South Africa)

    2015-11-05

    This study we reports for the first time on the synthesis and optical characteristics of free standing diamond-like carbon (DLC) deposited by pulsed laser deposition (PLD) onto graphene buffer layers for ultrahigh intensity laser based electron/proton acceleration applications. The fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations indicate that the suitability of such free standing DLC thin-films within the laser window and long wave infrared (LWIR) spectral range and hence their appropriateness for the targeted applications. - Highlights: • We report for the first time synthesis of free standing diamond-like carbon. • Pulsed laser deposition onto graphene buffer layers. • Fingerprint techniques of micro-Raman, UV–VIS–NIR and the IR spectroscopic investigations. • Ultrahigh intensity laser based electron/proton acceleration applications. • This material's suitable for the laser window and long wave infrared (LWIR) spectral range.

  8. All-Printed Thin-Film Transistor Based on Purified Single-Walled Carbon Nanotubes with Linear Response

    Directory of Open Access Journals (Sweden)

    Guiru Gu

    2011-01-01

    Full Text Available We report an all-printed thin-film transistor (TFT on a polyimide substrate with linear transconductance response. The TFT is based on our purified single-walled carbon nanotube (SWCNT solution that is primarily consists of semiconducting carbon nanotubes (CNTs with low metal impurities. The all-printed TFT exhibits a high ON/OFF ratio of around 103 and bias-independent transconductance over a certain gate bias range. Such bias-independent transconductance property is different from that of conventional metal-oxide-semiconductor field-effect transistors (MOSFETs due to the special band structure and the one-dimensional (1D quantum confined density of state (DOS of CNTs. The bias-independent transconductance promises modulation linearity for analog electronics.

  9. Preparation of self-supporting mesostructured silica thin film membranes as gateable interconnects for microfluidics

    NARCIS (Netherlands)

    Garcia Juez, R.; Boffa, V.; Blank, David H.A.; ten Elshof, Johan E.

    2008-01-01

    A methodology for the preparation of self-standing 100–200 nm thick mesoporous silica membrane interconnects is reported. Interconnects may become an important component in future microfluidic device technology since it allows extension of microfluidic architectures into the third dimension. The

  10. Study of optical properties of vacuum evaporated carbon nanotube containing Se80Te16Cu4 thin films

    Science.gov (United States)

    Upadhyay, A. N.; Tiwari, R. S.; Singh, Kedar

    2016-08-01

    Thin films of Se80Te16Cu4 glassy alloy and 3 wt.% of carbon nanotubes (CNTs) containing Se80Te16Cu4 glassy composite were deposited on clean glass substrate by thermal evaporation technique. The scanning electron microscope and energy dispersive x-ray analysis were performed to investigate the surface morphology and elemental composition of as synthesised samples. The reflectance and transmittance spectra of as-deposited thin films were recorded (200-1100 nm) by using UV/VIS/NIR spectrophotometer. The optical band gap and optical constants such as absorption coefficient (α), refractive index (n) and extinction coefficient (k) of Se80Te16Cu4 and 3 wt.% CNTs-Se80Te16Cu4 glassy composite thin films were calculated. It is observed that optical properties alter due to CNTs incorporation in Se80Te16Cu4 glassy alloy. Effect on optical properties due to CNTs incorporation can be explained in terms of concentration of unsaturated bonds/defects in the localised states.

  11. Selective Deposition and Alignment of Single-Walled Carbon Nanotubes Assisted by Dielectrophoresis: From Thin Films to Individual Nanotubes

    Science.gov (United States)

    Li, Pengfei; Xue, Wei

    2010-06-01

    Dielectrophoresis has been used in the controlled deposition of single-walled carbon nanotubes (SWNTs) with the focus on the alignment of nanotube thin films and their applications in the last decade. In this paper, we extend the research from the selective deposition of SWNT thin films to the alignment of small nanotube bundles and individual nanotubes. Electrodes with “teeth”-like patterns are fabricated to study the influence of the electrode width on the deposition and alignment of SWNTs. The entire fabrication process is compatible with optical lithography-based techniques. Therefore, the fabrication cost is low, and the resulting devices are inexpensive. A series of SWNT solutions is prepared with concentrations ranging from 0.0125 to 0.2 mg/ml. The alignment of SWNT thin films, small bundles, and individual nanotubes is achieved under the optimized experimental conditions. The electrical properties of these samples are characterized; the linear current-voltage plots prove that the aligned SWNTs are mainly metallic nanotubes. The microscopy inspection of the samples demonstrates that the alignment of small nanotube bundles and individual nanotubes can only be achieved using narrow electrodes and low-concentration solutions. Our investigation shows that it is possible to deposit a controlled amount of SWNTs in desirable locations using dielectrophoresis.

  12. Electrochemical studies of iron/carbonates system applied to the formation of thin layers of siderite on inert substrates

    International Nuclear Information System (INIS)

    Ithurbide, A.; Peulon, S.; Mandin, Ph.; Beaucaire, C.; Chausse, A.

    2007-01-01

    In order to understand the complex mechanisms of the reactions occurring, a methodology is developed. It is based on the use of compounds electrodeposited under the form of thin layers and which are used then as electrodes to study their interactions with the toxic species. It is in this framework that is studied the electrodeposition of siderite on inert substrates. At first, have been studied iron electrochemical systems in carbonated solutions. These studies have been carried out with classical electrochemical methods (cyclic voltametry, amperometry) coupled to in-situ measurements: quartz microbalance, pH. Different compounds have been obtained under the form of homogeneous and adherent thin layers. The analyses of these depositions, by different ex-situ characterizations (XRD, IR, SEM, EDS..) have revealed particularly the presence of siderite. Then, the influence of several experimental parameters (substrate, potential, medium composition, temperature) on the characteristics of siderite thin layers has been studied. From these experimental results, models have been proposed. (O.M.)

  13. Selective Deposition and Alignment of Single-Walled Carbon Nanotubes Assisted by Dielectrophoresis: From Thin Films to Individual Nanotubes

    Directory of Open Access Journals (Sweden)

    Li Pengfei

    2010-01-01

    Full Text Available Abstract Dielectrophoresis has been used in the controlled deposition of single-walled carbon nanotubes (SWNTs with the focus on the alignment of nanotube thin films and their applications in the last decade. In this paper, we extend the research from the selective deposition of SWNT thin films to the alignment of small nanotube bundles and individual nanotubes. Electrodes with “teeth”-like patterns are fabricated to study the influence of the electrode width on the deposition and alignment of SWNTs. The entire fabrication process is compatible with optical lithography-based techniques. Therefore, the fabrication cost is low, and the resulting devices are inexpensive. A series of SWNT solutions is prepared with concentrations ranging from 0.0125 to 0.2 mg/ml. The alignment of SWNT thin films, small bundles, and individual nanotubes is achieved under the optimized experimental conditions. The electrical properties of these samples are characterized; the linear current–voltage plots prove that the aligned SWNTs are mainly metallic nanotubes. The microscopy inspection of the samples demonstrates that the alignment of small nanotube bundles and individual nanotubes can only be achieved using narrow electrodes and low-concentration solutions. Our investigation shows that it is possible to deposit a controlled amount of SWNTs in desirable locations using dielectrophoresis.

  14. Electro-oxidized epitaxial graphene channel field-effect transistors with single-walled carbon nanotube thin film gate electrode.

    Science.gov (United States)

    Ramesh, Palanisamy; Itkis, Mikhail E; Bekyarova, Elena; Wang, Feihu; Niyogi, Sandip; Chi, Xiaoliu; Berger, Claire; de Heer, Walt; Haddon, Robert C

    2010-10-20

    We report the effect of electrochemical oxidation in nitric acid on the electronic properties of epitaxial graphene (EG) grown on silicon carbide substrates; we demonstrate the availability of an additional reaction channel in EG, which is not present in graphite but which facilitates the introduction of the reaction medium into the graphene galleries during electro-oxidation. The device performance of the chemically processed graphene was studied by patterning the EG wafers with two geometrically identical macroscopic channels; the electro-oxidized channel showed a logarithmic increase of resistance with decreasing temperature, which is ascribed to the scattering of charge carriers in a two-dimensional electronic gas, rather than the presence of an energy gap at the Fermi level. Field-effect transistors were fabricated on the electro-oxidized and pristine graphene channels using single-walled carbon nanotube thin film top gate electrodes, thereby allowing the study of the effect of oxidative chemistry on the transistor performance of EG. The electro-oxidized channel showed higher values for the on-off ratio and the mobility of the graphene field-effect transistor, which we ascribe to the availability of high-quality internal graphene layers after electro-oxidation of the more defective top layers. Thus, the present oxidative process provides a clear contrast with previously demonstrated covalent chemistry in which sp(3) hybridized carbon atoms are introduced into the graphitic transport layer of the lattice by carbon-carbon bond formation, thereby opening an energy gap.

  15. Thin zeolite laminates for rapid and energy-efficient carbon capture

    OpenAIRE

    Akhtar, Farid; Ogunwumi, Steven; Bergstr?m, Lennart

    2017-01-01

    Thin, binder-less zeolite NaX laminates, with thicknesses ranging between 310 to 750??m and widths exceeding 50?mm and biaxial tensile strength in excess of 3?MPa, were produced by pulsed current processing. The NaX laminates displayed a high CO2 adsorption capacity and high binary CO2-over-N2 and CO2-over-CH4 selectivity, suitable for CO2 capture from flue gas and upgrading of raw biogas. The thin laminates displayed a rapid CO2 uptake; NaX laminates with a thickness of 310??m were saturated...

  16. Carbon thin films deposited by the magnetron sputtering technique using cobalt, copper and nickel as buffer-layers

    International Nuclear Information System (INIS)

    Costa e Silva, Danilo Lopes

    2015-01-01

    In this work, carbon thin films were produced by the magnetron sputtering technique using single crystal substrates of alumina c-plane (0001) and Si (111) and Si (100) substrates, employing Co, Ni and Cu as intermediate films (buffer-layers). The depositions were conducted in three stages, first with cobalt buffer-layers where only after the production of a large number of samples, the depositions using cooper buffer-layers were carried out on Si substrates. Then, depositions were performed with nickel buffer layers using single-crystal alumina substrates. The crystallinity of the carbon films was evaluated by using the technique of Raman spectroscopy and, then, by X-ray diffraction (XRD). The morphological characterization of the films was performed by scanning electron microscopy (SEM and FEG-SEM) and high-resolution transmission electron microscopy (HRTEM). The XRD peaks related to the carbon films were observed only in the results of the samples with cobalt and nickel buffer-layers. The Raman spectroscopy showed that the carbon films with the best degree of crystallinity were the ones produced with Si (111) substrates, for the Cu buffers, and sapphire substrates for the Ni and Co buffers, where the latter resulted in a sample with the best crystallinity of all the ones produced in this work. It was observed that the cobalt has low recovering over the alumina substrates when compared to the nickel. Sorption tests of Ce ions by the carbon films were conducted in two samples and it was observed that the sorption did not occur probably because of the low crystallinity of the carbon films in both samples. (author)

  17. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    Energy Technology Data Exchange (ETDEWEB)

    Wardaya, P. D., E-mail: pongga.wardaya@utp.edu.my; Noh, K. A. B. M., E-mail: pongga.wardaya@utp.edu.my; Yusoff, W. I. B. W., E-mail: pongga.wardaya@utp.edu.my [Petroleum Geosciences Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Ridha, S. [Petroleum Engineering Department, Universiti Teknologi PETRONAS, Tronoh, Perak, 31750 (Malaysia); Nurhandoko, B. E. B. [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Dept. of Physics, Institute of Technology Bandung, Bandung, Indonesia and Rock Fluid Imaging Lab, Bandung (Indonesia)

    2014-09-25

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic

  18. The thin section rock physics: Modeling and measurement of seismic wave velocity on the slice of carbonates

    International Nuclear Information System (INIS)

    Wardaya, P. D.; Noh, K. A. B. M.; Yusoff, W. I. B. W.; Ridha, S.; Nurhandoko, B. E. B.

    2014-01-01

    This paper discusses a new approach for investigating the seismic wave velocity of rock, specifically carbonates, as affected by their pore structures. While the conventional routine of seismic velocity measurement highly depends on the extensive laboratory experiment, the proposed approach utilizes the digital rock physics view which lies on the numerical experiment. Thus, instead of using core sample, we use the thin section image of carbonate rock to measure the effective seismic wave velocity when travelling on it. In the numerical experiment, thin section images act as the medium on which wave propagation will be simulated. For the modeling, an advanced technique based on artificial neural network was employed for building the velocity and density profile, replacing image's RGB pixel value with the seismic velocity and density of each rock constituent. Then, ultrasonic wave was simulated to propagate in the thin section image by using finite difference time domain method, based on assumption of an acoustic-isotropic medium. Effective velocities were drawn from the recorded signal and being compared to the velocity modeling from Wyllie time average model and Kuster-Toksoz rock physics model. To perform the modeling, image analysis routines were undertaken for quantifying the pore aspect ratio that is assumed to represent the rocks pore structure. In addition, porosity and mineral fraction required for velocity modeling were also quantified by using integrated neural network and image analysis technique. It was found that the Kuster-Toksoz gives the closer prediction to the measured velocity as compared to the Wyllie time average model. We also conclude that Wyllie time average that does not incorporate the pore structure parameter deviates significantly for samples having more than 40% porosity. Utilizing this approach we found a good agreement between numerical experiment and theoretically derived rock physics model for estimating the effective seismic wave

  19. Synthesis of Ag-doped hydrogenated carbon thin films by a hybrid ...

    Indian Academy of Sciences (India)

    Dr S Taktak is grateful to the Scientific and Technological. Research Council of Turkey (TUBITAK) for the award of the. 2219 International Post Doctoral Research Fellowship. References. Ahmed S F, Moon M W and Lee K R 2008 Appl. Phys. Lett. 92. 193502. Ahmed S F, Moon M W and Lee K R 2009 Thin Solid Films 517.

  20. Preparation of diamond like carbon thin film on stainless steel and ...

    Indian Academy of Sciences (India)

    Administrator

    nary stents, heart valves, and intra-ocular lenses are exposed to cells and fluids within the body and could experience corrosion. Bodily fluids contain ~1% sodium .... Visual inspection, following the completion of the deposition process, showed the formation of a scratch- resistant, hard, and gold-coloured thin film over the ...

  1. Thin polyaniline and polyaniline/carbon nanocomposite films for gas sensing

    Czech Academy of Sciences Publication Activity Database

    Lobotka, P.; Kunzo, P.; Kováčová, E.; Vávra, I.; Križanová, O.; Smatko, V.; Stejskal, Jaroslav; Konyushenko, Elena; Omastová, M.; Špitálský, Z.; Mičušík, M.; Krupa, I.

    2011-01-01

    Roč. 519, č. 12 (2011), s. 4123-4127 ISSN 0040-6090 Institutional research plan: CEZ:AV0Z40500505 Keywords : gas sensor * polyaniline thin film * nanocomposite Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.890, year: 2011

  2. Opto-electrical properties of amorphous carbon thin film deposited from natural precursor camphor

    Energy Technology Data Exchange (ETDEWEB)

    Pradhan, Debabrata [Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076 (India)]. E-mail: dpradhan@sciborg.uwaterloo.ca; Sharon, Maheshwar [Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400 076 (India)

    2007-06-30

    A simple thermal chemical vapor deposition technique is employed for the pyrolysis of a natural precursor 'camphor' and deposition of carbon films on alumina substrate at higher temperatures (600-900 deg. C). X-ray diffraction measurement reveals the amorphous structure of these films. The carbon films properties are found to significantly vary with the deposition temperatures. At higher deposition temperature, films have shown predominately sp{sup 2}-bonded carbon and therefore, higher conductivity and lower optical band gap (Tauc gap). These amorphous carbon (a-C) films are also characterized with Raman and X-ray photoelectron spectroscopy. In addition, electrical and optical properties are measured. The thermoelectric measurement shows these as-grown a-C films are p-type in nature.

  3. Responses of forest carbon and water coupling to thinning treatments at both the leaf and individual tree levels in a 16-year-old natural Pinus Contorta stand

    Science.gov (United States)

    Wang, Y.; Wei, A.; del Campo, A.; Li, Q.; Giles-Hansen, K.

    2017-12-01

    Large-scale disturbances in Canadian forests, including mountain pine beetle infestation in western Canada, forest fires, timber harvesting and climate change impacts, have significantly affected both forest carbon and water cycles. Thinning, which selectively removes trees at a given forest stand, may be an effective tool to mitigate the effect of these disturbances. Various studies have been conducted to assess the thinning effect on growth, transpiration, and nutrient availability; however, relatively few studies have been conducted to examine its effect on the coupling of forest carbon and water. Thus, the objective of this research is to evaluate the effect of thinning on forest carbon and water coupling at both the leaf and tree levels in a 16-year-old natural Pinus Contorta forest in the interior of British Columbia in Canada. We used water-use efficiency (WUE), the ratio of basal area increment (BA) to tree transpiration (E), as the indicator of the carbon and water coupling at individual tree level, and use intrinsic water-use efficiency (iWUE), the ratio of photosynthesis (A) to stomatal conductance (G), to represent the coupling at the leaf level. Field experiments were conducted in the Upper Penticton Watershed where the mean annual precipitation is 750 mm with seasonal drought during summer. A randomized block design was used, with three blocks each containing two thinning intensities and one unthinned plot (T1: 4,500, T2: 1,100, C: 26,400 trees per ha.). From May to October 2016, basal diameter, sap flow, and environmental conditions were monitored continuously at every 20 minutes, while A and G were measured weekly. Preliminary results showed that thinning significantly increased solar radiation, wind speed, and soil moisture in the treatment plots, where the changes observed were proportional to the intensity of the thinning; but thinning did not change stand level temperature and relative humidity. Thinning also significantly enhanced tree E and BA

  4. Thin Films of Reduced Hafnium Oxide with Excess Carbon for High-Temperature Oxidation Protection

    Science.gov (United States)

    2010-02-01

    deposited on the following substrates: Si, Si02 (fused silica), SiC (polished CVD slabs ), and highly oriented pyrolytic graphite (HOPG). For Si and...lost. SEM images of surfaces of films annealed in O2 show fissures (Fig. 14a) that become more pronounced for films with higher initial carbon...content (Fig. 14b). This indicates that the fissures are produced by the gaseous products of carbon oxidation (CO and CO2), which are generated in large

  5. The effects of deoxidation practice on the quality of thin foil low-carbon steel

    Directory of Open Access Journals (Sweden)

    Pereira Batista R.

    2017-01-01

    Full Text Available In converter steelmaking of AISI 1006 steel for thin foil products, two tapping practices are used with respect to deoxidation: silicon and manganese additions during tapping and aluminum deoxidation after complete tapping (“semikilled practice” and aluminum deoxidation during tapping, “fully killed practice”. There is a perception that the semikilled practice may be more economical and result in the same quality as the fully killed practice. In this work, the effects of the tapping practice on steel quality and cost variables were evaluated for thin foils of AISI 1006 steel. Oxygen and aluminum content, aluminum and ferro-alloy yield, the type of alumina inclusions formed, and the quality of the steel during thin foil rolling were evaluated and compared. It is shown that the fully killed practice leads to less reoxidation from slag, lower soluble oxygen, and lower total oxygen at the caster as well as better morphology of the remaining alumina inclusions than the semi-killed practice. Thus, the higher quality of the steel produced via the fully killed tapping deoxidation practice when compared with semi-killed tapping is demonstrated. It is also shown that a complete cost evaluation favors this practice in the case of products rolled for tin foil production.

  6. Self-supported porous Cobalt Oxide Nanowires with enhanced ...

    Indian Academy of Sciences (India)

    Development of hybrid electrocatalysts with high activity and good stability is crucial for oxygen evolution reaction (OER) of water electrocatalysis. In this work, cobalt oxide (Co₃O₄) nanowires loaded on carbon fiber paper (CFP) were synthesized via hydrothermal method and annealing. The as-synthesized ...

  7. Structure and interaction of polymer thin films with supercritical carbon dioxide

    Science.gov (United States)

    Sirard, Stephen Michael

    2003-06-01

    An understanding of colloid stability in CO2 as well as the interaction of CO2 with polymer thin films is necessary for the intelligent design of CO2-based processes for future materials applications. In-situ spectroscopic ellipsometry (SE) was used to measure the thickness and optical properties of nanoscale poly(dimethylsiloxane) (PDMS) and poly(methyl methacrylate) films exposed to compressed CO2 . Both the sorption and CO2-induced dilation of the thin films were measured simultaneously with SE and deviations between the thin films and the corresponding bulk films may be attributed to excess CO 2 at the free interface as well as the influence of film confinement and the compressible nature of CO2 on the orientation and mobility of the polymers. SE was also used to measure sorption equilibrium and kinetics and CO2-induced dilation of polyimide (6FDA-DAM:DABA 2:1) thin films to determine how a gas separation membrane's structure affects its susceptibility to CO2-induced plasticization. Both thermal annealing and chemical crosslinking reduced the polymer dilation to prevent large increases in the CO2 diffusion coefficient at high CO2 pressures. The CO2 permeability and polymer free volume strongly depend on the annealing temperature, and different effects are observed for the crosslinked and uncrosslinked membranes and for the thick and thin membranes. Neutron reflectivity (NR) and SE were used to characterize the structure of end-grafted d-PDMS brushes on SiOx wafers exposed to compressed CO2. NR revealed two distinct regions in the segment density profile as a function of distance from the surface. The thickness and volume fraction profiles for the brush change much more with solvent quality than has been seen in previous studies with incompressible solvents, due to the high asymmetry in the intermolecular interactions, as well as the large compressibility and free volume differences between the polymer segments and the solvent. Turbidity versus time measurements

  8. Investigation of Physical Properties and Electrochemical Behavior of Nitrogen-Doped Diamond-Like Carbon Thin Films

    Directory of Open Access Journals (Sweden)

    Rattanakorn Saensak

    2014-03-01

    Full Text Available This work reports characterizations of diamond-like carbon (DLC films used as electrodes for electrochemical applications. DLC thin films are prepared on glass slides and silicon substrates by radio frequency plasma enhanced chemical vapor deposition (RF-PECVD using a gas mixture of methane and hydrogen. In addition, the DLC films are doped with nitrogen in order to reduce electrical resistivity. Compared to the undoped DLC films, the electrical resistivity of nitrogen-doped (N-doped DLC films is decreased by three orders of magnitude. Raman spectroscopy and UV/Vis spectroscopy analyses show the structural transformation in N-doped DLC films that causes the reduction of band gap energy. Contact angle measurement at N-doped DLC films indicates increased hydrophobicity. The results obtained from the cyclic voltammetry measurements with Fe(CN63-/Fe(CN64- redox species exhibit the correlation between the physical properties and electrochemical behavior of DLC films.

  9. Enhanced efficiency of hybrid amorphous silicon solar cells based on single-walled carbon nanotubes and polymer composite thin film

    Science.gov (United States)

    Rajanna, Pramod M.; Gilshteyn, Evgenia P.; Yagafarov, Timur; Aleekseeva, Alena K.; Anisimov, Anton S.; Neumüller, Alex; Sergeev, Oleg; Bereznev, Sergei; Maricheva, Jelena; Nasibulin, Albert G.

    2018-03-01

    We report a simple approach to fabricate hybrid solar cells (HSCs) based on a single-walled carbon nanotube (SWCNT) film and thin film hydrogenated amorphous silicon (a-Si:H). Randomly oriented high-quality SWCNTs with conductivity enhanced by means of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate are used as a window layer and a front electrode. A series of HSCs are fabricated in ambient conditions with varying SWCNT film thicknesses. The polymethylmethacrylate layer drop-casted on fabricated HSCs reduces the reflection fourfold and enhances the short-circuit J sc , open-circuit V oc , and efficiency by nearly 10%. A state-of-the-art J-V performance is shown for SWCNT/a-Si HSC with an open-circuit voltage of 900 mV and an efficiency of 3.4% under simulated one-sun AM 1.5 G direct illumination.

  10. Formation of single-walled carbon nanotube thin films enriched with semiconducting nanotubes and their application in photoelectrochemical devices.

    Science.gov (United States)

    Wei, Li; Tezuka, Noriyasu; Umeyama, Tomokazu; Imahori, Hiroshi; Chen, Yuan

    2011-04-01

    Single-walled carbon nanotube (SWCNT) thin films, containing a high-density of semiconducting nanotubes, were obtained by a gel-centrifugation method. The agarose gel concentration and centrifugation force were optimized to achieve high semiconducting and metallic nanotube separation efficiency at 0.1 wt% agarose gel and 18,000g. The thickness of SWCNT films can be precisely controlled from 65 to 260 nm with adjustable transparency. These SWCNT films were applied in photoelectrochemical devices. Photocurrents generated by semiconducting SWCNT enriched films are 15-35% higher than those by unsorted SWCNT films. This is because of reducing exciton recombination channels as a result of the removal of metallic nanotubes. Thinner films generate higher photocurrents because charge carriers have less chances going in metallic nanotubes for recombination, before they can reach electrodes. Developing more scalable and selective methods for high purity semiconducting SWCNTs is important to further improve the photocurrent generation efficiency by using SWCNT-based photoelectrochemical devices.

  11. Modelling of Indirect Laser-induced Thin-film Ablation of Epoxy for Local Exposing of Carbon Fibers

    Science.gov (United States)

    Emonts, Michael; Fischer, Kai; Schmitt, Stefan; Schares, Richard Ludwig

    Laser radiation is used as enabling technology for intrinsic joining of high-strength CFRP laminates and fiber-reinforced thermoplastic injection moulding compounds by exposure of surface-near carbon fibers. Short-pulsed NIR laser sources represent an acceptable compromise with respect to ablation performance, remote process capability by use of compact 3D scanner and the capability for closed-loop process control. However, using such a laser source means also minimizing heat-affected zones (HAZ). Based on literature research about laser ablation of thin metal films, heat flow at CFRP and thermo-mechanical behavior in FRP by pyrolysis, an analytical model was generated for thin-film ablation of cured epoxy resins at the surface of CFRP laminates by lift-off of resin chips. A comparison between simulation and experimental results confirms the capability of the model to predict the exposure area and the HAZ with deviations below 15%. Threshold fluences for the HAZ (>1 J/cm2) and the resin ablation (>3 J/cm2) have been confirmed.

  12. Optical Characterization of Amorphous Hydrogenated Carbon (a-C:H) Thin Films Prepared by Single RF Plasma Method

    Science.gov (United States)

    Dogan, Mansuroglu; Kadir, Goksen; Sinan, Bilikmen

    2015-06-01

    Methane (CH4) plasma was used to produce amorphous hydrogenated carbon (a-C:H) films by a single capacitively coupled radio frequency (RF) powered plasma system. The system consists of two parallel electrodes: the upper electrode is connected to 13.56 MHz RF power and the lower one is connected to the ground. Thin films were deposited on glass slides with different sizes and on silicon wafers. The influence of the plasma species on film characteristics was studied by changing the plasma parameters. The changes of plasma species during the deposition were investigated by optical emission spectroscopy (OES). The structural and optical properties were analyzed via Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD) and UV-visible spectroscopy, and the thicknesses of the samples were measured by a profilometer. The sp3/sp2 ratio and the existing H atoms play a significant role in the determination of the chemical properties of thin films in the plasma. The film quality and deposition rate were both increased by raising the power and the flow rate.

  13. Light emission in forward and reverse bias operation in OLED with amorphous silicon carbon nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Reyes, R [Facultad de Ingenieria Quimica y Textil, Universidad Nacional de Ingenieria, Av. Tupac Amaru SN, Lima (Peru); Cremona, M [Departamento de Fisica, PontifIcia Universidade Catolica de Rio de Janeiro, PUC-Rio, Cx. Postal 38071, Rio de Janeiro, RJ, CEP 22453-970 (Brazil); Achete, C A, E-mail: rreyes@uni.edu.pe [Departamento de Engenheria Metalurgica e de Materiais, Universidade Federal do Rio de Janeiro, Cx. Postal 68505, Rio de Janeiro, RJ, CEP 21945-970 (Brazil)

    2011-01-01

    Amorphous silicon carbon nitride (a-SiC:N) thin films deposited by magnetron sputtering were used in the structure of an organic light emitting diode (OLED), obtaining an OLED operating in forward and reverse bias mode. The device consist of the heterojunction structure ITO/a-SiC:N/Hole Transport Layer (HTL)/ Electron Transport Layer (ETL)/a-SiC:N/Al. As hole transporting layer was used a thin film of 1-(3-methylphenyl)-1,2,3,4 tetrahydroquinoline - 6 - carboxyaldehyde - 1,1'- diphenylhydrazone (MTCD), while the tris(8-hydroxyquinoline aluminum) (Alq{sub 3}) is used as electron transport and emitting layer. A significant increase in the voltage operation compared to the conventional ITO/MTCD/Alq{sub 3}/Al structure was observed, so the onset of electroluminescence occurs at about 22 V in the forward and reverse bias mode of operation. The electroluminescence spectra is similar in both cases, only slightly shifted 0.14 eV to lower energies in relation to the conventional device.

  14. Nonlinear optical properties of polyaniline and poly (o-toluidine) composite thin films with multi walled carbon nano tubes

    Energy Technology Data Exchange (ETDEWEB)

    Nagaraja, K.K. [National University of Science and Technology “MISiS”, Leninskii pr. 4, Moscow 119049 (Russian Federation); Pramodini, S. [Department of Physics, School of Engineering and Technology, Jain University, Jakkasandra Post, Bengaluru 5621112, Karnataka (India); Poornesh, P., E-mail: poorneshp@gmail.com [Nonlinear Optics Research Laboratory, Department of Physics, Manipal Institute of Technology, Manipal University, Manipal 576 104, Karnataka (India); Telenkov, M.P. [National University of Science and Technology “MISiS”, Leninskii pr. 4, Moscow 119049 (Russian Federation); Kityk, I.V. [Electrical Engineering Department, Czestochowa University Technology, Czestochowa (Poland)

    2017-05-01

    We report the improved third-order nonlinear optical properties of polyaniline and poly (o-toluidine) with different doping concentrations of multi walled carbon nano tube (MWCNTs) composite thin films investigated using z-scan technique and continuous wave He–Ne laser at 633 nm wavelength was used as source of excitation. Thin films were prepared by spin coating technique on glass substrate. The structural properties of the composite films were analysed by X-ray diffraction studies and the characteristic peaks corresponding to MWCNTs and polymers have been observed. The surface morphology of the deposited films was analysed using scanning electron microscopy and it confirms that the polymer in the composites has been coated on the MWCNTs homogeneously. The z-scan results reveal that the films exhibit reverse saturable absorption and self-defocusing nonlinearity. The third-order nonlinear optical susceptibility χ{sup (3)} is found to be of the order of 10{sup −3} esu. Also, optical power limiting and clamping experiment was performed. The clamping values increases with increase in concentration and the lowest clamping observed for composite films are 1 mW and 0.7 mW.

  15. Suppression of sputtering of nickel by coverage with self-sustaining thin segregated carbon layers

    Energy Technology Data Exchange (ETDEWEB)

    Morita, K.; Tsuchiya, T.; Hayashibara, M.; Itoh, N. (Nagoya Univ. (Japan). Dept. of Crystalline Materials Science)

    1983-05-01

    Sputtering of two-layered films composed of nickel ( proportional 5000 A) and nickel carbine ( proportional1500 A) at 600/sup 0/C by 5 keV Ar/sup +/ bombardment on the nickel side has been studied using Rutherford backscattering of 1.3 MeV H/sup +/ ions. It is found that the removal rate of nickel atoms from specimens is dependent on ion current density and that the removal rate of nickel atoms is very much smaller than that of carbon atoms when the ion current density is low. During ion bombardment at a low current density carbon segregation by a thickness of nearly two monolayers is observed at the nickel surface. Thus suppression of the removal rate of nickel atoms is ascribed to coverage of the nickel surface with segregated carbon atoms which are continuously supplied by diffusion through the nickel film from the carbide layer.

  16. Development of Novel Magnetic Metal Oxide Thin Films and Carbon Nanotube Materials for Potential Device Applications

    Science.gov (United States)

    2016-05-09

    magnetic layer more than the deficiency of O2. In a spinel structure the Co2+ and Fe3+ ions are shared between 16 octahedral and 8 tetrahedral sites...stoichiometry of the cobalt- ferrite . We also enhanced the blocking field of the trilayer by depositing the soft magnetic layer in an applied field. Compared...epitaxial cobalt ferrite thin films, Phys. Rev. B 76, 054405 (2007). 5. J-G Lee, K. PyoChae and J. Chul Sur, Surface morphology and magnetic properties of

  17. Development and preparation of thin, supported targets and stripper foils

    International Nuclear Information System (INIS)

    Aaron, W.S.; Petek, M.; Zevenbergen, L.A.; Gibson, J.R.

    1989-01-01

    Usually, it is desirable to prepare thin films that are self-supporting so that any extraneous support materials will not interfere with experimental measurements. However, films with very low areal densities, films other than metals or films covering large areas may require the use of a backing or support. Two classes of supported thin films are being developed by the Isotope Research Materials Laboratory (IRML). Electrodeposition of oxide thin films is a fairly common target preparation technique that is usually performed on backings such as thin metal foils or low atomic number materials like Be and to a lesser extent, C foils. Techniques have been developed by IRML that result in electrodeposition of oxide films up to 500 μg/cm 2 on carbon foils or aluminized mylar. Electrodeposition is a very attractive target fabrication method since it is very efficient in the usage of rare and/or valuable isotopes. The ability to prepare these films on carbon or mylar foils provides a target that has, in most applications, far less interference resulting from the backing. Thin films of carbon, aluminum, boron and titanium are being used as stripper foils in the generation of neutral (H - →H 0 ) particle beams with energies of 50 MeV or greater. Neutralizer foils as large as 25 cm x 25 cm have been prepared from Al and C in thicknesses ranging from 5 to 12 μg/cm 2 that are mounted on thin nickel grids with a transmittance of approximately 90%. Significantly larger foils are currently under development. (orig.)

  18. Nitrogen rich carbon nitride thin films deposited by hybrid PLD technique

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav; Kulish, W.; Lančok, Ján; Popov, C.; Bulíř, Jiří; Delplancke-Ogletree, M. P.

    2002-01-01

    Roč. 374, - (2002), s. 207-210 ISSN 1058-725X Institutional research plan: CEZ:AV0Z1010914 Keywords : laser deposition * carbon nitride * radiofrequency discharge * hollow cathode discharge Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.457, year: 2002

  19. Utilization of carbon dioxide by Chlorella kessleri in outdoor open thin-layer culture units

    Czech Academy of Sciences Publication Activity Database

    Lívanský, Karel; Doucha, Jiří

    2005-01-01

    Roč. 116, - (2005), s. 201-212 ISSN 0342-1120 R&D Projects: GA ČR GV104/97/S055 Institutional research plan: CEZ:AV0Z50200510 Keywords : chlorella kessleri * carbon dioxide * microalga Subject RIV: EE - Microbiology, Virology

  20. Charge states of ions traversing thin carbon foils inferred from 7 MeV C2+ Coulomb explosion experiments

    International Nuclear Information System (INIS)

    Wegner, H.E.; Thieberger, P.

    1984-01-01

    The charge state of fast C + ions is assumed to reach some equilibrium value within a few atomic layers after entering a thin carbon stripping foil and then maintain that average charge state while passing through the rest of the foil. The final distribution of different charge states is then assumed to occur at or near the exit surface of the foil by various pickup and stripping processes. Experimentally, the final charge state distribution is easily measured; however, the average charge state inside the foil is difficult to measure in any direct way. This paper describes the experimental method and results of measuring this internal average charge state for 3.5 MeV carbon ions by utilizing the Coulomb explosion of 7 MeV C 2 + molecular ions. The interesting result is that the internal average charge state is 4.2+-x, and the final charge state distribution is not established at the exit surface of the foil, but beyond, approximately 100 A, a distance comparable to the foil thickness in this measurement

  1. Charge states of ions traversing thin carbon foils inferred from 7 MeV C2+ Coulomb explosion experiments

    International Nuclear Information System (INIS)

    Wegner, H.E.; Thieberger, P.

    1986-01-01

    The charge state of fast C + ions is assumed to reach some equilibrium value within a few atomic layers after entering a thin carbon stripping foil and then maintain that average charge state while passing through the rest of the foil. The final distribution of different charge states is then assumed to occur at or near the exist surface of the foil by various pickup and stripping processes. Experimentally, the final charge state distribution is easily measured; however, the average charge state inside the foil is difficult to measure in any direct way. This paper describes the experimental method and results of measuring this internal average charge state for 3.5 MeV carbon ions by utilizing the Coulomb explosion of 7 MeV C 2 + molecular ions. The interesting result is that the internal average charge state is 4.2 +/- x, and the final charge state distribution is not established at the exit surface of the foil, but beyond, approximately 100 a, a distance comparable to the foil thickness in this measurement. 1 reference, 6 figures

  2. Multifunctional carbon nanotubes/ruthenium purple thin films: preparation, characterization and study of application as sensors and electrochromic materials.

    Science.gov (United States)

    Husmann, Samantha; Zarbin, Aldo J G

    2015-04-07

    This work reports the preparation, characterization and application as both electrochromic materials and electrochemical sensors of novel materials: carbon nanotubes/ruthenium purple nanocomposites. Using an innovative route based on a heterogeneous electrochemical reaction involving iron oxide species encapsulated within the cavities of the carbon nanotubes, the nanocomposite materials were obtained as transparent thin films deposited over transparent electrodes. Several experimental parameters related to the nanocomposite synthesis were evaluated and related to the characteristics of the obtained materials, such as morphology and stability. The films were characterized by UV-Vis and Raman spectroscopy, scanning electron microscopy, X-ray diffraction, cyclic voltammetry and UV-Vis and Raman spectroelectrochemistry. Four different materials were applied as H2O2 sensors and exhibited impressive analytical parameters, including a limit of detection of 1.27 nmol L(-1) and a sensitivity of 39.6 A M(-1) cm(-2). These nanocomposites also showed great electrochromic properties, with high stability and coloration efficiency over 95% maintained during stability cycles.

  3. Recent Developments in Single-Walled Carbon Nanotube Thin Films Fabricated by Dry Floating Catalyst Chemical Vapor Deposition.

    Science.gov (United States)

    Zhang, Qiang; Wei, Nan; Laiho, Patrik; Kauppinen, Esko I

    2017-11-27

    Transparent conducting films (TCFs) are critical components of many optoelectronic devices that pervade modern technology. Due to their excellent optoelectronic properties and flexibility, single-walled carbon nanotube (SWNT) films are regarded as an important alternative to doped metal oxides or brittle and expensive ceramic materials. Compared with liquid-phase processing, the dry floating catalyst chemical vapor deposition (FCCVD) method without dispersion of carbon nanotubes (CNTs) in solution is more direct and simpler. By overcoming the tradeoff between CNT length and solubility during film fabrication, the dry FCCVD method enables production of films that contain longer CNTs and offer excellent optoelectronic properties. This review focuses on fabrication of SWNT films using the dry FCCVD method, covering SWNT synthesis, thin-film fabrication and performance regulation, the morphology of SWNTs and bundles, transparency and conductivity characteristics, random bundle films, patterned films, individual CNT networks, and various applications, especially as TCFs in touch displays. Films based on SWNTs produced by the dry FCCVD method are already commercially available for application in touch display devices. Further research on the dry FCCVD method could advance development of not only industrial applications of CNTs but also the fundamental science of related nanostructured materials and nanodevices.

  4. Characterization of diamond-like carbon thin film synthesized by RF atmospheric pressure plasma Ar/CH4 jet

    Science.gov (United States)

    Sohbatzadeh, Farshad; Safari, Reza; Etaati, G. Reza; Asadi, Eskandar; Mirzanejhad, Saeed; Hosseinnejad, Mohammad Taghi; Samadi, Omid; Bagheri, Hanieh

    2016-01-01

    The growth of diamond like carbon (DLC) on a Pyrex glass was investigated by a radio frequency (RF) atmospheric pressure plasma jet (APPJ). The plasma jet with capacitive configuration ran by a radio frequency power supply at 13.56 MHz. Alumina ceramic was used as dielectric barrier. Ar and CH4 were used in atmospheric pressure as carrier and precursor gases, respectively. Diamond like carbon thin films were deposited on Pyrex glass at substrate temperature and applied power of 130 °C and 250 Watts, respectively. Performing field emission scanning electron microscope (FE-SEM) and laser Raman spectroscopy analysis resulted in deposition rate and the ID/IG ratio of 21.31 nm/min and 0.47, respectively. The ID/IG ratio indicated that the coating possesses relative high sp3 content The optical emission spectroscopy (OES) diagnostic was applied to diagnose plasma jet species. Estimating electron temperature and density of the RF-APPJ resulted in 1.36 eV and 2.75 × 1014 cm-3 at the jet exit, respectively.

  5. Debris reduction for copper and diamond-like carbon thin films produced by magnetically guided pulsed laser deposition

    CERN Document Server

    Tsui, Y Y; Vick, D; Fedosejevs, R

    2002-01-01

    The effectiveness of debris reduction using magnetically guided pulsed laser deposition (MGPLD) is reported here. KrF laser pulses (248 nm) of 100 mJ energy were focused to intensities of 6x10 sup 9 W/cm sup 2 onto the surface of a copper or a carbon source target and a magnetic field of 0.3 T as used to steer the plasma around a curved arc of 0.5 m length to the deposition substrate. Debris counts were compared for films produced by the MGPLD and conventional PLD (nonguided) techniques. A significant reduction in particulates of size greater than 0.1 mu m was achieved using MGPLD. For the copper films, particulate count was reduced from 150 000 particles/cm sup 2 /nm to 50 particulates/cm sup 2 /nm and for diamond-like carbon thin films particulate count was reduced from 25 000 particles/cm sup 2 /nm to 1200 particles/cm sup 2 /nm.

  6. Self-supporting radioisotope generators with STC-55W Stirling converters

    International Nuclear Information System (INIS)

    Or, C.; Kumar, V.; Carpenter, R.; Schock, A.

    2000-01-01

    Previous Orbital Stirling generator designs rely on the spacecraft mounting structure to fasten the radiators, the converters, and the heat source assembly. This paper describes a self-supporting generator concept with a 1-piece honeycomb panel serving as a radiator and a rigid platform for the converters and the heat source assembly to be bolted on. This self-supporting generator allows for simpler mounting structure and more options on mounting location. Using this self-supporting generator concept, we derived four different design options to connect the converter pair rigidly to reduce vibration. This paper describes the four design options and their assembly procedure

  7. Investigation on single walled carbon nanotube thin films deposited by Langmuir Blodgett method

    Energy Technology Data Exchange (ETDEWEB)

    Vishalli,, E-mail: vishalli-2008@yahoo.com; Dharamvir, Keya [Department of Physics, Panjab University, Chandigarh (India); Kaur, Ramneek; Raina, K. K. [Materials Research Laboratory, School of Physics and Materials Science, Thapar University, Patiala (India)

    2015-05-15

    Langmuir Blodgett is a technique to deposit a homogeneous film with a fine control over thickness and molecular organization. Thin films of functionalized SWCNTs have been prepared by Langmuir Blodgett method. The good surface spreading properties of SWCNTs at air/water interface are indicated by surface pressure-area isotherm and the monolayer formed on water surface is transferred onto the quartz substrate by vertical dipping. A multilayer film is thus obtained in a layer by layer manner. The film is characterized by Atomic Force Microscope (AFM), UV-Vis-NIR spectroscopy and FTIR.AFM shows the surface morphology of the deposited film. UV-Vis-NIR spectroscopy shows the characteristic peaks of semiconducting SWCNTs. The uniformity of LB film can be used further in understanding the optical and electrical behavior of these materials.

  8. Deposit of thin films of nitrided amorphous carbon using the laser ablation technique; Deposito de peliculas delgadas de carbono amorfo nitrurado utilizando la tecnica de ablacion laser

    Energy Technology Data Exchange (ETDEWEB)

    Rebollo, P.B.; Escobar A, L.; Camps C, E. [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, C.P. 52045 Salazar, Estado de Mexico (Mexico); Haro P, E.; Camacho L, M.A. [Departamento de Fisica, Universidad Autonoma Metropolitana Iztapalapa (Mexico); Muhl S, S. [Instituto de Investigacion en Materiales, UNAM (Mexico)

    2000-07-01

    It is reported the synthesis and characterization of thin films of amorphous carbon (a-C) nitrided, deposited by laser ablation in a nitrogen atmosphere at pressures which are from 4.5 x 10 {sup -4} Torr until 7.5 x 10 {sup -2} Torr. The structural properties of the films are studied by Raman spectroscopy obtaining similar spectra at the reported for carbon films type diamond. The study of behavior of the energy gap and the ratio nitrogen/carbon (N/C) in the films, shows that the energy gap is reduced when the nitrogen incorporation is increased. It is showed that the refraction index of the thin films diminish as nitrogen pressure is increased, indicating the formation of graphitic material. (Author)

  9. INCREASING STAMPING FORMABILITY OF LOW-CARBON COLD ROLLED THIN STEEL SHEETS

    Directory of Open Access Journals (Sweden)

    I. Tatarkina

    2015-12-01

    Full Text Available The use of surfactant (épila was studied as a method for improving the cold-formability of steel sheets. The factors of the resulting effect were analyzed. Application of épila significantly reduces the surface roughness and decreases the stress concentrates. Epilam fills pores and microcracks, displaces moisture and gases, thereby reducing metal embrittlement. The application of épila pro-vides the highest category of drawing the low carbon sheet steel 08kp.

  10. Synthesis and characterization of thin films of nitrided amorphous carbon deposited by laser ablation; Sintesis y caracterizacion de peliculas delgadas de carbono amorfo nitrurado, depositadas por ablacion laser

    Energy Technology Data Exchange (ETDEWEB)

    Rebollo P, B

    2001-07-01

    The objective of this work is the synthesis and characterization of thin films of amorphous carbon (a-C) and thin films of nitrided amorphous carbon (a-C-N) using the laser ablation technique for their deposit. For this purpose, the physical properties of the obtained films were studied as function of diverse parameters of deposit such as: nitrogen pressure, power density, substrate temperature and substrate-target distance. For the characterization of the properties of the deposited thin films the following techniques were used: a) Raman spectroscopy which has demonstrated being a sensitive technique to the sp{sup 2} and sp{sup 3} bonds content, b) Energy Dispersive Spectroscopy which allows to know semi-quantitatively way the presence of the elements which make up the deposited films, c) Spectrophotometry, for obtaining the absorption spectra and subsequently the optical energy gap of the deposited material, d) Ellipsometry for determining the refraction index, e) Scanning Electron Microscopy for studying the surface morphology of thin films and, f) Profilemetry, which allows the determination the thickness of the deposited thin films. (Author)

  11. 20 CFR 411.180 - What is timely progress toward self-supporting employment?

    Science.gov (United States)

    2010-04-01

    ... Who Are Using a Ticket Introduction § 411.180 What is timely progress toward self-supporting... the previous 12-month progress certification period. In computing any 12-month progress certification...

  12. Graphitic carbon in a nanostructured titanium oxycarbide thin film to improve implant osseointegration

    International Nuclear Information System (INIS)

    Zanoni, R.; Ioannidu, C.A.; Mazzola, L.; Politi, L.; Misiano, C.; Longo, G.; Falconieri, M.; Scandurra, R.

    2015-01-01

    A nanostructured coating layer on titanium implants, able to improve their integration into bones and to protect against the harsh conditions of body fluids, was obtained by Ion Plating Plasma Assisted, a method suitable for industrial applications. A titanium carbide target was attached under vacuum to a magnetron sputtering source powered with a direct current in the 500–1100 W range, and a 100 W radio frequency was applied to the sample holder. The samples produced at 900 W gave the best biological response in terms of overexpression of some genes of proteins involved in bone turnover. We report the characterization of a reference and of an implant sample, both obtained at 900 W. Different micro/nanoscopic techniques evidenced the morphology of the substrates, and X-ray Photoelectron Spectroscopy was used to disclose the surface composition. The layer is a 500 nm thick hard nanostructure, composed of 60% graphitic carbon clustered with 15% TiC and 25% Ti oxides. - Highlights: • Nanostructured TiC protective layers were produced on Ti samples for prostheses. • Ion Plating Plasma-Assisted Deposition from TiC targets was used on Ti samples. • A model of the surface layer has been drawn from XPS, Raman, AFM, FIB/SEM, TEM. • The layer is mainly composed of graphitic carbon in addition to TiC and Ti oxides

  13. Electrodeposition of Uranium and Plutonium on Thin Carbon and Titanium Substrates

    International Nuclear Information System (INIS)

    Henderson, R.A.; Gostic, J.M.; Burke, J.T.; Fisher, S.E.; Wu, C.Y.

    2011-01-01

    Preparation of Pu and U targets on thin natural C (100 (micro)g/cm 2 ) and ti (2 and 3 (micro)m) substrates is described. The Actinide material of interest was first purified using ion exchange chromatography to remove any matrix contaminants or decay products present in the parent stock solution. The actinide solution was prepared in 0.05 M HNO 3 with a final aliquot volume not exceeding 100 (micro)L for the deposition procedure. The electroplating cells were developed in-house and were primarily made of Teflon. The source material deposited ranged from 125 to 400 (micro)g/cm 2 . It was determined that multiple layers of U and Pu were required to produce thicker targets on Ti. Plating efficiency was greatly affected by the cell volume, solution aliquot size, pre-treatment of the foils, solution mixing during palting, and the fit of the electrode contact with the target substrate. The final procedure used for deposition is described in detail.

  14. Age constraints for Palaeolithic cave art by U-Th dating of thin carbonate crusts

    Science.gov (United States)

    Hoffmann, Dirk; Pike, Alistair; Garcia-Diez, Marcos; Pettitt, Paul; Zilhão, João

    2015-04-01

    U-series dating is an important geochronological tool which is widely applied for instance in speleothem based palaeoclimate research. It has also great potential to provide age constraints for Archaeology, especially for sites or artefacts in cave environments. We present our methods to conduct precise U-Th dating of calcite crusts that formed on top of cave paintings. Recent developments in multi-collector (MC) inductively coupled plasma mass spectrometry (ICPMS) U-series dating greatly improved the precision of this method, and sample sizes needed to obtain reliable results were significantly reduced. Based on these developments the U-series technique can be applied for accurate dating of thin calcite crusts covering cave art at many sites, while taking care not to harm the art underneath. The method provides minimum ages for the covered art and, where possible, also maximum ages by dating the flowstone layer the art is painted on. The U-Th method has been used in a number of recent projects to date calcite precipitates above and occasionally below cave paintings in Spain. Initial results from Cantabria have shown that the earliest dated paintings are older than 41.4 ± 0.6 ka, dating at least to the Early Aurignacian period and present a far longer chronology than that based so far on radiocarbon dating. Here we outline our methodology and the steps we take to demonstrate the reliability of U-Th dates, and present some recent results of our ongoing U-Th dating programme.

  15. High energy ion beam induced modifications in diamond and diamond like carbon thin films

    International Nuclear Information System (INIS)

    Dilawar, N.; Sah, S.; Mehta, B.R.; Vankar, V.D.

    1996-01-01

    Diamond and DLC films deposited using hot-filament chemical vapour deposition technique at various parameters were irradiated with 50 MeV Si 4+ ions. The resulting microstructural changes were studied using X-ray diffraction and scanning electron microscopy. All the samples showed the development of β-SiC and hexagonal carbon phases at the expense of the diamond/DLC phase. The ERD analysis was carried out to determine the hydrogen concentration and its distribution in DLC films. The absolute hydrogen concentration in DLC samples is of the order of 10 22 atoms/cm 3 which gets depleted on irradiation. The DLC samples show a clear dependence of hydrogen content on the deposition parameters. (author)

  16. SERS activity of Ag decorated nanodiamond and nano-β-SiC, diamond-like-carbon and thermally annealed diamond thin film surfaces.

    Science.gov (United States)

    Kuntumalla, Mohan Kumar; Srikanth, Vadali Venkata Satya Siva; Ravulapalli, Satyavathi; Gangadharini, Upender; Ojha, Harish; Desai, Narayana Rao; Bansal, Chandrahas

    2015-09-07

    In the recent past surface enhanced Raman scattering (SERS) based bio-sensing has gained prominence owing to the simplicity and efficiency of the SERS technique. Dedicated and continuous research efforts have been made to develop SERS substrates that are not only stable, durable and reproducible but also facilitate real-time bio-sensing. In this context diamond, β-SiC and diamond-like-carbon (DLC) and other related thin films have been promoted as excellent candidates for bio-technological applications including real time bio-sensing. In this work, SERS activities of nanodiamond, nano-β-SiC, DLC, thermally annealed diamond thin film surfaces were examined. DLC and thermally annealed diamond thin films were found to show SERS activity without any metal nanostructures on their surfaces. The observed SERS activities of the considered surfaces are explained in terms of the electromagnetic enhancement mechanism and charge transfer resonance process.

  17. Antimicrobial Properties of Diamond-Like Carbon/Silver Nanocomposite Thin Films Deposited on Textiles: Towards Smart Bandages

    Directory of Open Access Journals (Sweden)

    Tadas Juknius

    2016-05-01

    Full Text Available In the current work, a new antibacterial bandage was proposed where diamond-like carbon with silver nanoparticle (DLC:Ag-coated synthetic silk tissue was used as a building block. The DLC:Ag structure, the dimensions of nanoparticles, the silver concentration and the silver ion release were studied systematically employing scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic absorption spectroscopy, respectively. Antimicrobial properties were investigated using microbiological tests (disk diffusion method and spread-plate technique. The DLC:Ag layer was stabilized on the surface of the bandage using a thin layer of medical grade gelatin and cellulose. Four different strains of Staphylococcus aureus extracted from humans’ and animals’ infected wounds were used. It is demonstrated that the efficiency of the Ag+ ion release to the aqueous media can be increased by further RF oxygen plasma etching of the nanocomposite. It was obtained that the best antibacterial properties were demonstrated by the plasma-processed DLC:Ag layer having a 3.12 at % Ag surface concentration with the dominating linear dimensions of nanoparticles being 23.7 nm. An extra protective layer made from cellulose and gelatin with agar contributed to the accumulation and efficient release of silver ions to the aqueous media, increasing bandage antimicrobial efficiency up to 50% as compared to the single DLC:Ag layer on textile.

  18. Secondary electron emission from the entrance and exit surfaces of thin carbon foils under fast ion bombardment

    International Nuclear Information System (INIS)

    Shi, C.R.; Toh, H.S.; Lo, D.; Livi, R.P.; Mendenhall, M.H.; Zhang, D.Z.; Tombrello, T.A.

    1985-01-01

    The total secondary electron emission (SEE) yield from the entrance and exit surfaces of thin carbon foils under fast ion ( 16 O, 19 F, 35 Cl) bombardment has been measured as a function of the ion energy and the ion beam current intensity. Using a retarding field, the energy distribution of secondary electrons integrated over almost all angles of emission in the backward and forward directions has also been measured. It is found that total forward emission is larger than backward emission by factors of up to 2.5, 2.7, and 3.4 for 16 O +3 , 19 F +3 , and 35 Cl +5 , respectively. It is suggested that the enhancement of forward SEE may be partly due to effects from the instantaneous charge state of the heavy ion beam in the solid in addition to the binary collisions of the projectile with individual electrons in the target. It is also shown that the total SEE yield from the entrance and exit surfaces of the target foils decreases with ion beam current intensity; this may be a beam-induced temperature effect. The total SEE yield in both the forward and backward directions is less sensitive to surface conditions for high velocity ions than for low velocity ions, and the total yield from both surfaces of the foils is proportional to the ion stopping power in the target, where the constant of proportionality depends on the properties of material. (orig.)

  19. In vivo biocompatibility evaluation of a new resilient, hard-carbon, thin-film coating for ventricular assist devices.

    Science.gov (United States)

    Takaseya, Tohru; Fumoto, Hideyuki; Shiose, Akira; Arakawa, Yoko; Rao, Santosh; Horvath, David J; Massiello, Alex L; Mielke, Nicole; Chen, Ji-Feng; Zhou, Qun; Dessoffy, Raymond; Kramer, Larry; Benefit, Stephen; Golding, Leonard A R; Fukamachi, Kiyotaka

    2010-12-01

    The purpose of this study was to evaluate in vivo the biocompatibility of BioMedFlex (BMF), a new resilient, hard-carbon, thin-film coating, as a blood journal bearing material in Cleveland Heart's (Charlotte, NC, USA) continuous-flow right and left ventricular assist devices (RVADs and LVADs). BMF was applied to RVAD rotating assemblies or both rotating and stator assemblies in three chronic bovine studies. In one case, an LVAD with a BMF-coated stator was also implanted. Cases 1 and 3 were electively terminated at 18 and 29 days, respectively, with average measured pump flows of 4.9 L/min (RVAD) in Case 1 and 5.7 L/min (RVAD) plus 5.7 L/min (LVAD) in Case 3. Case 2 was terminated prematurely after 9 days because of sepsis. The sepsis, combined with running the pump at minimum speed (2000 rpm), presented a worst-case biocompatibility challenge. Postexplant evaluation of the blood-contacting journal bearing surfaces showed no biologic deposition in any of the four pumps. Thrombus inside the RVAD inlet cannula in Case 3 is believed to be the origin of a nonadherent thrombus wrapped around one of the primary impeller blades. In conclusion, we demonstrated that BMF coatings can provide good biocompatibility in the journal bearing for ventricular assist devices. © 2010, Copyright the Authors. Artificial Organs © 2010, International Center for Artificial Organs and Transplantation and Wiley Periodicals, Inc.

  20. Adsorption of ethylene carbonate on lithium cobalt oxide thin films: A synchrotron-based spectroscopic study of the surface chemistry

    Science.gov (United States)

    Fingerle, Mathias; Späth, Thomas; Schulz, Natalia; Hausbrand, René

    2017-11-01

    The surface chemistry of cathodic lithium cobalt oxide (LiCoO2) in contact with the Li-ion battery solvent ethylene carbonate (EC) was studied via synchrotron based soft X-ray photoelectron spectroscopy (SXPS). By stepwise in-situ adsorption of EC onto an rf-magnetron sputtered LiCoO2 thin film and consecutive recording of SXPS spectra, the chemical and electronic properties of the interface were determined. EC partially decomposes and forms a predominantly organic adlayer. Prolonged exposure results in the formation of a condensed EC layer, demonstrating that the decomposition layer has passivating properties. Lithium ions deintercalate from the electrode and are dissolved in the adsorbate phase, without forming a large amount of Li-containing reaction products, indicating that electrolyte reduction remains limited. Due to a large offset between the LiCoO2 valence band and the EC HOMO, oxidation of EC molecules is unlikely, and should require energy level shifts due to interaction or double layer effects for real systems.

  1. Selective Dispersion of Highly Pure Large-Diameter Semiconducting Carbon Nanotubes by a Flavin for Thin-Film Transistors.

    Science.gov (United States)

    Park, Minsuk; Kim, Somin; Kwon, Hyeokjae; Hong, Sukhyun; Im, Seongil; Ju, Sang-Yong

    2016-09-07

    Scalable and simple methods for selective extraction of pure, semiconducting (s) single-walled carbon nanotubes (SWNTs) is of profound importance for electronic and photovoltaic applications. We report a new, one-step procedure to obtain respective large-diameter s- and metallic (m)-SWNT enrichment purity in excess of 99% and 78%, respectively, via interaction between the aromatic dispersing agent and SWNTs. The approach utilizes N-dodecyl isoalloxazine (FC12) as a surfactant in conjunction with sonication and benchtop centrifugation methods. After centrifugation, the supernatant is enriched in s-SWNTs with less carbonaceous impurities, whereas precipitate is enhanced in m-SWNTs. In addition, the use of an increased centrifugal force enhances both the purity and population of larger diameter s-SWNTs. Photoinduced energy transfer from FC12 to SWNTs is facilitated by respective electronic level alignment. Owing to its peculiar photoreduction capability, FC12 can be employed to precipitate SWNTs upon UV irradiation and observe absorption of higher optical transitions of SWNTs. A thin-film transistor prepared from a dispersion of enriched s-SWNTs was fabricated to verify electrical performance of the sorted sample and was observed to display p-type conductance with an average on/off ratio over 10(6) and an average mobility over 10 cm(2)/V·s.

  2. Antimicrobial Properties of Diamond-Like Carbon/Silver Nanocomposite Thin Films Deposited on Textiles: Towards Smart Bandages

    Science.gov (United States)

    Juknius, Tadas; Ružauskas, Modestas; Tamulevičius, Tomas; Šiugždinienė, Rita; Juknienė, Indrė; Vasiliauskas, Andrius; Jurkevičiūtė, Aušrinė; Tamulevičius, Sigitas

    2016-01-01

    In the current work, a new antibacterial bandage was proposed where diamond-like carbon with silver nanoparticle (DLC:Ag)-coated synthetic silk tissue was used as a building block. The DLC:Ag structure, the dimensions of nanoparticles, the silver concentration and the silver ion release were studied systematically employing scanning electron microscopy, energy dispersive X-ray spectroscopy and atomic absorption spectroscopy, respectively. Antimicrobial properties were investigated using microbiological tests (disk diffusion method and spread-plate technique). The DLC:Ag layer was stabilized on the surface of the bandage using a thin layer of medical grade gelatin and cellulose. Four different strains of Staphylococcus aureus extracted from humans’ and animals’ infected wounds were used. It is demonstrated that the efficiency of the Ag+ ion release to the aqueous media can be increased by further RF oxygen plasma etching of the nanocomposite. It was obtained that the best antibacterial properties were demonstrated by the plasma-processed DLC:Ag layer having a 3.12 at % Ag surface concentration with the dominating linear dimensions of nanoparticles being 23.7 nm. An extra protective layer made from cellulose and gelatin with agar contributed to the accumulation and efficient release of silver ions to the aqueous media, increasing bandage antimicrobial efficiency up to 50% as compared to the single DLC:Ag layer on textile. PMID:28773494

  3. Optical and structural characterization of silicon-carbon-nitride thin films for optoelectronics

    Energy Technology Data Exchange (ETDEWEB)

    Swatowska, Barbara; Stapinski, Tomasz [Department of Electronics, AGH University of Science and Technology, Krakow (Poland)

    2010-04-15

    Amorphous a-SiCN:H films were deposited by radio frequency Plasma Enhanced Chemical Vapour Deposition (PECVD) at 13.56 MHz from silane-methane-ammonia (SiH{sub 4}+CH{sub 4}+NH{sub 3}) gaseous mixture. Morphological, structural and optical characterization of a-SiCN:H in correlation with process parameters was done. High growth rate of films was influenced mainly by presence of ammonia and silane in technological process. FTIR spectra analysis of films revealed the influence of gaseous mixture content in PECVD process on their structure. The refractive index and optical gap depended on elemental composition of films. The total reflectivity of a-SiCN:H on monocrystalline silicon revealed increase with the decrease in carbon and nitrogen content. The a-SiCN:H films are smooth, homogeneous, chemically inert and wear resistive and also hydrogen rich, which is important from the application point of view (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. Plasma processing techniques for deposition of carbonic thin protective coatings on structural nuclear materials

    International Nuclear Information System (INIS)

    Andrei, V.; Oncioiu, G.; Coaca, E.; Rusu, O.; Lungu, C.

    2009-01-01

    Full text of publication follows: The production of nano-structured surface films with controlled properties is crucial for the development of materials necessary for the Advanced Systems for Nuclear Energy. Since the surface of materials is the zone through which materials interact with the environment, the surface science and surface engineering techniques plays an essential role in the understanding and control of the processes involved. Complex surface structures were developed on stainless steels used as structural nuclear materials: austenitic stainless steels based on Fe, austenitic steels with high content of Cr, ferrites resistant to corrosion, by various Plasma Processing methods which include: - Plasma Electrolytic (PE) treatments: the steel substrates were modified by nitriding and nitro-carburizing plasma diffusion treatments; - carbonic films deposition in Thermionic Vacuum Arc Plasma. The results of the characterization of surface structures obtained in various experimental conditions for improvement of the properties (corrosion resistance, hardness, wear properties) are reported: the processes and structures were characterized by correlation of the results of the complementary techniques: XPS, 'depth profiling', SEM, XRD, EIS. An overall description of the processes involved in the surface properties improvement, and some consideration about the new materials development for energy technologies are presented

  5. Ultra-thin clay layers facilitate seismic slip in carbonate faults.

    Science.gov (United States)

    Smeraglia, Luca; Billi, Andrea; Carminati, Eugenio; Cavallo, Andrea; Di Toro, Giulio; Spagnuolo, Elena; Zorzi, Federico

    2017-04-06

    Many earthquakes propagate up to the Earth's surface producing surface ruptures. Seismic slip propagation is facilitated by along-fault low dynamic frictional resistance, which is controlled by a number of physico-chemical lubrication mechanisms. In particular, rotary shear experiments conducted at seismic slip rates (1 ms -1 ) show that phyllosilicates can facilitate co-seismic slip along faults during earthquakes. This evidence is crucial for hazard assessment along oceanic subduction zones, where pelagic clays participate in seismic slip propagation. Conversely, the reason why, in continental domains, co-seismic slip along faults can propagate up to the Earth's surface is still poorly understood. We document the occurrence of micrometer-thick phyllosilicate-bearing layers along a carbonate-hosted seismogenic extensional fault in the central Apennines, Italy. Using friction experiments, we demonstrate that, at seismic slip rates (1 ms -1 ), similar calcite gouges with pre-existing phyllosilicate-bearing (clay content ≤3 wt.%) micro-layers weaken faster than calcite gouges or mixed calcite-phyllosilicate gouges. We thus propose that, within calcite gouge, ultra-low clay content (≤3 wt.%) localized along micrometer-thick layers can facilitate seismic slip propagation during earthquakes in continental domains, possibly enhancing surface displacement.

  6. Water-soluble polyelectrolyte-grafted multiwalled carbon nanotube thin films for efficient counter electrode of dye-sensitized solar cells.

    Science.gov (United States)

    Han, Jinkyu; Kim, Hyunju; Kim, Dong Young; Jo, Seong Mu; Jang, Sung-Yeon

    2010-06-22

    Water-soluble, polyelectrolyte-grafted multiwalled carbon nanotubes (MWCNTs), MWCNT-g-PSSNa, were synthesized using a "grafting to" route. MWCNT-g-PSSNa thin films fabricated by an electrostatic spray (e-spray) technique were used as the counter electrode (CE) for dye-sensitized solar cells (DSSCs). The e-sprayed MWCNT-g-PSSNa thin-film-based CEs (MWCNT-CE) were uniform over a large area, and the well-exfoliated MWCNTs formed highly interconnected network structures. The electrochemical catalytic activity of the MWCNT-CE at different thicknesses was investigated. The MWCNT-g-PSSNa thin film showed high efficiency as a CE in DSSCs. The power conversion efficiency (PCE) of the DSSCs using the MWCNT-g-PSSNa thin-film-based CE (DSSC-MWCNT) was >6% at a CE film thickness of approximately 0.3 microm. The optimum PCE was >7% at a film thickness of approximately 1 microm, which is 20-50 times thinner than conventional carbon-based CE. The charge transfer resistance at the MWCNT-CE/electrolyte interface was 1.52 Omega cm(2) at a MWCNT-CE thickness of 0.31 microm, which is lower than that of a Pt-CE/electrolyte interface, 1.78 Omega cm(2). This highlights the potential for the low-cost CE fabrication of DSSCs using a facile deposition technique from an environmentally "friendly" solution at low temperatures.

  7. Direct fabrication of metal-free hollow graphene balls with a self-supporting structure as efficient cathode catalysts of fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Yanqi; Liu, Mingda; Nie, Huagui, E-mail: huaguinie@126.com; Gu, Cancan; Liu, Ming; Yang, Zhi, E-mail: yang201079@126.com; Yang, Keqin; Chen, Xi’an; Huang, Shaoming, E-mail: smhuang@wzu.edu.cn [Wenzhou University, Nanomaterials and Chemistry Key Laboratory (China)

    2016-06-15

    Despite the good progress in developing carbon catalysts for oxygen reduction reaction (ORR), the current metal-free carbon catalysts are still far from satisfactory for large-scale applications of fuel cell. Developing hollow graphene balls with a self-supporting structure is considered to be an ideal method to inhibit graphene stacking and improve their catalytic performance. Herein, we fabricated metal-free hollow graphene balls with a self-supporting structure, through using a new strategy that involves direct metal-free catalytic growth from assembly of SiO{sub 2} spheres. To our knowledge, although much researches involving the synthesis of graphene balls have been reported, investigations into the direct metal-free catalytic growth of hollow graphene balls are rare. Furthermore, the electrocatalytic performance shows that the resulting hollow graphene balls have significantly high catalytic activity. More importantly, such catalysts also possess much improved stability and better methanol tolerance in alkaline media during the ORR compared with commercial Pt/C catalysts. The outstanding performances coupled with an easy and inexpensive preparing method indicated the great potential of the hollow graphene balls with a self-supporting structure in large-scale applications of fuel cell.Graphical AbstractHollow graphene balls with a self-supporting structure have been successfully fabricated, through using a new strategy that involves direct metal-free catalytic growth from 3D assembly of SiO{sub 2} spheres. The hollow graphene balls can exhibit a high catalytic activity, long-term stability, and an excellent methanol tolerance for the oxygen reduction reaction.

  8. Three-dimensional self-supported metal oxides for advanced energy storage.

    Science.gov (United States)

    Ellis, Brian L; Knauth, Philippe; Djenizian, Thierry

    2014-06-04

    The miniaturization of power sources aimed at integration into micro- and nano-electronic devices is a big challenge. To ensure the future development of fully autonomous on-board systems, electrodes based on self-supported 3D nanostructured metal oxides have become increasingly important, and their impact is particularly significant when considering the miniaturization of energy storage systems. This review describes recent advances in the development of self-supported 3D nanostructured metal oxides as electrodes for innovative power sources, particularly Li-ion batteries and electrochemical supercapacitors. Current strategies for the design and morphology control of self-supported electrodes fabricated using template, lithography, anodization and self-organized solution techniques are outlined along with different efforts to improve the storage capacity, rate capability, and cyclability. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. ASSESSING ONLINE SELF-SUPPORT: ANSWERS FACE THE PREMENSTRUAL DYSPHORIC DISORDER EMERGENCE

    Directory of Open Access Journals (Sweden)

    Agustin Quilez-Clavero

    2015-12-01

    Full Text Available Through the content analyze of two Internet self-support forums, spontaneously organized by women suffering Premenstrual dysphoric disorder, it is wanted The Social Work to attract its attention about the need of taking up professional initiatives generally to online Social Work practice and particularly to online self-support groups. This disorder is barely known. It causes serious consequences for the patients who have to tackle with frequent lack of understanding. This seriousness, often causes, affected are forced to drop out their jobs, or relationships like couples or friendships. Self-support becomes a relief to them who can express themselves on the Internet with people suffering the same situation. It has been a task for Social Work, supporting groups needing a convenient organization for obtaining an optimal empowerment. This challenge about Online Social Work practice is not common; consequently it is an interesting challenge for the Social Work of the beginning of the century.

  10. Disposable self-support paper-based multi-anode microbial fuel cell (PMMFC) integrated with power management system (PMS) as the real time "shock" biosensor for wastewater.

    Science.gov (United States)

    Xu, Zhiheng; Liu, Yucheng; Williams, Isaiah; Li, Yan; Qian, Fengyu; Zhang, Hui; Cai, Dingyi; Wang, Lei; Li, Baikun

    2016-11-15

    A paper-based multi-anode microbial fuel cell (PMMFC) integrated with power management system (PMS) was developed as a disposable self-support real-time "shock" biosensor for wastewater. PMMFCs were examined at three types of shocks (chromium, hypochlorite and acetate) in a batch-mode chamber, and exhibited various responses to shock types and concentrations. The power output of PMMFC sensor was four times as the carbon cloth (CC)-based MFCs, indicating the advantage of paper-based anode for bacterial adhesion. The power output was more sensitive than the voltage output under shocks, and thus preventing the false signals. The simulation of power harvest using PMS indicated that PMMFC could accomplish more frequent data transmission than single-anode MFCs (PSMFC) and CC anode MFCs (CCMMFC), making the self-support wastewater monitor and data transmission possible. Compared with traditional MFC sensors, PMMFCs integrated with PMS exhibit the distinct advantages of tight paper-packed structure, short acclimation period, high power output, and high sensitivity to a wide range of shocks, posing a great potential as "disposable self-support shock sensor" for real time in situ monitoring of wastewater quality. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Carbon isotope exchange between gaseous CO2 and thin solution films: Artificial cave experiments and a complete diffusion-reaction model

    Science.gov (United States)

    Hansen, Maximilian; Scholz, Denis; Froeschmann, Marie-Louise; Schöne, Bernd R.; Spötl, Christoph

    2017-08-01

    Speleothem stable carbon isotope (δ13C) records provide important paleoclimate and paleo-environmental information. However, the interpretation of these records in terms of past climate or environmental change remains challenging because of various processes affecting the δ13C signals. A process that has only been sparsely discussed so far is carbon isotope exchange between the gaseous CO2 of the cave atmosphere and the dissolved inorganic carbon (DIC) contained in the thin solution film on the speleothem, which may be particularly important for strongly ventilated caves. Here we present a novel, complete reaction diffusion model describing carbon isotope exchange between gaseous CO2 and the DIC in thin solution films. The model considers all parameters affecting carbon isotope exchange, such as diffusion into, out of and within the film, the chemical reactions occurring within the film as well as the dependence of diffusion and the reaction rates on isotopic mass and temperature. To verify the model, we conducted laboratory experiments under completely controlled, cave-analogue conditions at three different temperatures (10, 20, 30 °C). We exposed thin (≈0.1 mm) films of a NaHCO3 solution with four different concentrations (1, 2, 5 and 10 mmol/l, respectively) to a nitrogen atmosphere containing a specific amount of CO2 (1000 and 3000 ppmV). The experimentally observed temporal evolution of the pH and δ13C values of the DIC is in good agreement with the model predictions. The carbon isotope exchange times in our experiments range from ca. 200 to ca. 16,000 s and strongly depend on temperature, film thickness, atmospheric pCO2 and the concentration of DIC. For low pCO2 (between 500 and 1000 ppmV, as for strongly ventilated caves), our time constants are substantially lower than those derived in a previous study, suggesting a potentially stronger influence of carbon isotope exchange on speleothem δ13C values. However, this process should only have an

  12. A self-supported 40W direct methanol fuel cell system

    Indian Academy of Sciences (India)

    A self-supported 40W Direct Methanol Fuel Cell (DMFC) system has been developed and performance tested. The auxiliaries in the DMFC system comprise a methanol sensor, a liquid-level indicator, and fuel and air pumps that consume a total power of about 5W. The system has a 15-cell DMFC stack with active ...

  13. 20 CFR 416.1220 - Property essential to self-support; general.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Property essential to self-support; general. 416.1220 Section 416.1220 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL SECURITY... of part 404), nonbusiness income-producing property (houses or apartments for rent, land other than...

  14. Hierarchically triangular prism structured Co3O4: Self-supported fabrication and photocatalytic property

    Science.gov (United States)

    The formation of ammonium cobalt (II) phosphate was utilized to synthesize unprecedented 3D structures of Co3O4, triangular prisms and trunk-like structures, via a self-supported and organics-free method. The length of a triangular side of the prepared 3D triangular prisms is ~1...

  15. A self-supported 40W direct methanol fuel cell system

    Indian Academy of Sciences (India)

    Abstract. A self-supported 40W Direct Methanol Fuel Cell (DMFC) system has been developed and perfor- mance tested. The auxiliaries in the DMFC system comprise a methanol sensor, a liquid-level indicator, and fuel and air pumps that consume a total power of about 5 W. The system has a 15-cell DMFC stack with ...

  16. Use of alkali metal salts to prepare high purity single-walled carbon nanotube solutions and thin films

    Science.gov (United States)

    Ashour, Rakan F.

    Single-walled carbon nanotubes (SWCNTs) display interesting electronic and optical properties desired for many advanced thin film applications, such as transparent conductive electrodes or thin-film transistors. Large-scale production of SWCNTs generally results in polydispersed mixtures of nanotube structures. Since SWCNT electronic character (conducting or semiconducting nature) depends on the nanotube structure, application performance is being held back by this inability to discretely control SWCNT synthesis. Although a number of post-production techniques are able to separate SWCNTs based on electronic character, diameter, or chirality, most still suffer from the disadvantage of high costs of materials, equipment, or labor intensity to be relevant for large-scale production. On the other hand, chromatographic separation has emerged as a method that is compatible with large scale separation of metallic and semiconducting SWCNTs. In this work, SWCNTs, in an aqueous surfactant suspension of sodium dodecyl sulfate (SDS), are separated by their electronic character using a gel chromatography process. Metallic SWCNTs (m-SWCNTs) are collected as initial fractions since they show minimum interaction with the gel medium, whereas, semiconducting SWCNTs (sc- SWCNTs) remain adsorbed to the gel. The process of sc-SWCNT retention in the gel is found to be driven by the packing density of SDS around the SWCNTs. Through a series of separation experiments, it is shown that sc-SWCNTs can be eluted from the gel simply by disturbing the configuration of the SDS/SWCNT micellar structure. This is achieved by either introducing a solution containing a co-surfactant, such as sodium cholate (SC), or solutions of alkali metal ionic salts. Analysis of SWCNT suspensions by optical absorption provides insights into the effect of changing the metal ion (M+ = Li+, Na+, and K+) in the eluting solution. Salts with smaller metal ions (e.g. Li+) require higher concentrations to achieve

  17. Growth of carbon nanofiber coatings on nickel thin films on fused silica by catalytic thermal chemical vapor deposition: On the use of titanium, titanium-tungsten and tantalum as adhesion layers

    NARCIS (Netherlands)

    Thakur, D.B.; Tiggelaar, Roald M.; Gardeniers, Johannes G.E.; Lefferts, Leonardus; Seshan, Kulathuiyer

    2009-01-01

    Coatings of carbon nanofiber (CNF) layers were synthesized on fused silica substrates using a catalytic thermal chemical vapor deposition process (C-TCVD). The effects of various adhesion layers–titanium, titanium–tungsten and tantalum–under the nickel thin film on the attachment of carbon

  18. Influence of the diameter of single-walled carbon nanotube bundles on the optoelectronic performance of dry-deposited thin films

    Directory of Open Access Journals (Sweden)

    Kimmo Mustonen

    2012-10-01

    Full Text Available The optoelectronic performance of thin films of single-walled carbon nanotubes (SWCNTs was studied with respect to the properties of both individual nanotubes and their bundles. The SWCNTs were synthesized in a hot wire generator aerosol reactor, collected by gas filtration and dry-transferred onto various substrates. By thus completely avoiding liquid dispersion steps, we were able to avoid any artifacts from residual surfactants or sonication. We found that bundle lengths determined the thin-film performance, as would be expected for highly resistive bundle–bundle junctions. However, we found no evidence that contact resistances were affected by the bundle diameters, although they did play a secondary role by simply affecting the absorption. The individual SWCNT diameters and their graphitization level as gauged by the Raman D band intensity did not show any clear correlation with the overall performance.

  19. Strong evidence for enhanced multiple electron capture from surfaces in 46 MeV/u Pb81+ collisions with thin carbon foils.

    Science.gov (United States)

    Bräuning, H; Mokler, P H; Liesen, D; Bosch, F; Franzke, B; Krämer, A; Kozhuharov, C; Ludziejewski, T; Ma, X; Nolden, F; Steck, M; Stöhlker, T; Dunford, R W; Kanter, E P; Bednarz, G; Warczak, A; Stachura, Z; Tribedi, L; Kambara, T; Dauvergne, D; Kirsch, R; Cohen, C

    2001-02-05

    Strong evidence has been found for enhanced multiple electron capture into 46 MeV/u Pb81+ with a significant contribution from the entrance surface of thin carbon foils. Capture of up to five electrons has been observed. The multiple electron capture yield is found to increase with decreasing target thickness for thin targets. A simple model describing the data and showing the importance of capture from surfaces is discussed. Further evidence is found for a pronounced asymmetry between electron capture at the entrance and the exit surfaces. Absolute yields for multiple electron capture and projectile ionization are presented. The experimental total cross sections for single capture and ionization agree well with theory.

  20. Influence of Thin-Film Adhesives in Pullout Tests Between Nickel-Titanium Shape Memory Alloy and Carbon Fiber-Reinforced Polymer Matrix Composites

    Science.gov (United States)

    Quade, Derek J.; Jana, Sadhan; McCorkle, Linda S.

    2018-01-01

    Strips of nickel-titanium (NiTi) shape memory alloy (SMA) and carbon fiber-reinforced polymer matrix composite (PMC) were bonded together using multiple thin film adhesives and their mechanical strengths were evaluated under pullout test configuration. Tensile and lap shear tests were conducted to confirm the deformation of SMAs at room temperature and to evaluate the adhesive strength between the NiTi strips and the PMC. Optical and scanning electron microscopy techniques were used to examine the interfacial bonding after failure. Simple equations on composite tensile elongation were used to fit the experimental data on tensile properties. ABAQUS models were generated to show the effects of enhanced bond strength and the distribution of stress in SMA and PMC. The results revealed that the addition of thin film adhesives increased the average adhesive strength between SMA and PMC while halting the room temperature shape memory effect within the pullout specimen.

  1. Polyacrylonitrile block copolymers for the preparation of a thin carbon coating around TiO2 nanorods for advanced lithium-ion batteries.

    Science.gov (United States)

    Oschmann, Bernd; Bresser, Dominic; Tahir, Muhammad Nawaz; Fischer, Karl; Tremel, Wolfgang; Passerini, Stefano; Zentel, Rudolf

    2013-11-01

    Herein, a new method for the realization of a thin and homogenous carbonaceous particle coating, made by carbonizing RAFT polymerization derived block copolymers anchored on anatase TiO2 nanorods, is presented. These block copolymers consist of a short anchor block (based on dopamine) and a long, easily graphitizable block of polyacrylonitrile. The grafting of such block copolymers to TiO2 nanorods creates a polymer shell, which can be visualized by atomic force microscopy (AFM). Thermal treatment at 700 °C converts the polyacrylonitrile block to partially graphitic structures (as determined by Raman spectroscopy), establishing a thin carbon coating (as determined by transmission electron microscopy, TEM, analysis). The carbon-coated TiO2 nanorods show improved electrochemical performance in terms of achievable specific capacity and, particularly, long-term cycling stability by reducing the average capacity fading per cycle from 0.252 mAh g(-1) to only 0.075 mAh g(-1) . © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Multiplicity of secondary electrons emitted by carbon thin targets by impact of H0, H2+ and H3+ projectiles at MeV energies

    International Nuclear Information System (INIS)

    Vidovic, Zvonimir

    1997-01-01

    This work focuses on the study of the emission statistics of secondary electrons from thin carbon foils bombarded with H 0 , H 2 + and H 3 + projectiles in the 0.25 - 2.2 MeV energy range. The phenomenon of secondary electron emission from solids under the impact of swift ions is mainly due to inelastic interactions with target electrons. Phenomenological and theoretical descriptions as well as a summary of the main theoretical models are the subjects of the first chapter. The experimental set-up used to measure event by event the electron emission of the two faces of the thin carbon foils crossed by an energetic projectile is described in the chapter two. In this chapter there are also presented the method and the algorithms used to process experimental spectra in order to obtain the statistical distribution of the emitted electrons. Chapter three presents the measurements of secondary electron emission induced by H 0 atoms passing through thin carbon foils. The secondary electron yields are studied in correlation with emergent projectile charge state. We show the peculiar role of the projectile electron, whether it remains or not bound to the incident proton. The fourth chapter is dedicated to the secondary electron emission induced by H 2 + and H 3 + polyatomic ions. The results are interpreted in terms of collective effects in the interactions of the ions with solids. The role of the proximity of the protons, molecular ions fragments, upon the amplitude of these collected effects is evidenced from the study of the statistics of forward emission. The experiments allowed us to shed light on various aspects of atom and polyatomic ion interactions with solid surfaces. (author)

  3. Secondary electron emission of thin carbon foils under the impact of hydrogen atoms, ions and molecular ions, under energies within the MeV range

    International Nuclear Information System (INIS)

    Vidovic, Z.

    1997-06-01

    This work focuses on the study of the emission statistics of secondary electrons from thin carbon foils bombarded with H 0 , H 2 + and H 3 + projectiles in the 0.25-2.2 MeV energy range. The phenomenon of secondary electron emission from solids under the impact of swift ions is mainly due to inelastic interactions with target electrons. The phenomenological and theoretical descriptions, as well as a summary of the main theoretical models are the subject of the first chapter. The experimental set-up used to measure event by event the electron emission of the two faces of a thin carbon foil traversed by an energetic projectile is described in the chapter two. In this chapter are also presented the method and algorithms used to process experimental spectra in order to obtain the statistical distribution of the emitted electrons. Chapter three presents the measurements of secondary electron emission induced by H atoms passing through thin carbon foils. The secondary electron yields are studied in correlation with the emergent projectile charge state. We show the peculiar role of the projectile electron, whether it remains or not bound to the incident proton. The fourth chapter is dedicated to the secondary electron emission induced by H 2 + and H 3 + polyatomic ions. The results are interpreted in terms of collective effects in the interactions of these ions with solids. The role of the proximity of the protons, molecular ion fragments, upon the amplitude of these collective effects is evidenced from the study of the statistics of forward emission. These experiences allowed us to shed light on various aspects of atom and polyatomic ion inter-actions with solid surfaces. (author)

  4. Influence of the type of phospholipid head and of the conformation of the polyelectrolyte on the growth of calcium carbonate thin films on LB/LbL matrices.

    Science.gov (United States)

    Ramos, Ana P; Espimpolo, Daniela M; Zaniquelli, Maria Elisabete D

    2012-06-15

    Calcium carbonate is one of the most important biominerals, and it is the main constituent of pearls, seashells, and teeth. The in vitro crystallization of calcium carbonate using different organic matrices as templates has been reported. In this work, the growth of calcium carbonate thin films on special organic matrices consisting of layer-by-layer (LbL) polyelectrolyte films deposited on a pre-formed phospholipid Langmuir-Blodgett (LB) film has been studied. Two types of randomly coiled polyelectrolytes have been used: lambda-carrageenan and poly(acrylic acid). A precoating comprised of LB films has been prepared by employing a negatively charged phospholipid, the sodium salt of dimyristoilphosphatidyl acid (DMPA), or a zwitterionic phospholipid, namely dimyristoilphosphatidylethanolamine (DMPE). This approach resulted in the formation of particulate calcium carbonate continuous films with different morphologies, particle sizes, and roughness, as revealed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The crystalline structure of the calcium carbonate particles was analyzed by Raman spectroscopy. The randomly coiled conformation of the polyelectrolytes seems to be the main reason for the formation of continuous films rather than CaCO(3) isolated crystals. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Preparation of Carbon Nanotube/TiO2 Mesoporous Hybrid Photoanode with Iron Pyrite (FeS2) Thin Films Counter Electrodes for Dye-Sensitized Solar Cell

    OpenAIRE

    Bayram Kilic; Sunay Turkdogan; Aykut Astam; Oguz Can Ozer; Mansur Asgin; Hulya Cebeci; Deniz Urk; Selin Pravadili Mucur

    2016-01-01

    Multi-walled carbon nanotube (MWCNT)/TiO2 mesoporous networks can be employed as a new alternative photoanode in dye-sensitized solar cells (DSSCs). By using the MWCNT/TiO2 mesoporous as photoanodes in DSSC, we demonstrate that the MWCNT/TiO2 mesoporous photoanode is promising alternative to standard FTO/TiO2 mesoporous based DSSC due to larger specific surface area and high electrochemical activity. We also show that iron pyrite (FeS2) thin films can be used as an efficient counter electrode...

  6. Utilizing thin-film solid-phase extraction to assess the effect of organic carbon amendments on the bioavailability of DDT and dieldrin to earthworms

    Science.gov (United States)

    Andrade, Natasha A.; Centofanti, Tiziana; McConnell, Laura L.; Hapeman, Cathleen J.; Torrents, Alba; Anh, Nguyen; Beyer, W. Nelson; Chaney, Rufus L.; Novak, Jeffrey M.; Anderson, Marya O.; Cantrell, Keri B.

    2014-01-01

    Improved approaches are needed to assess bioavailability of hydrophobic organic compounds in contaminated soils. Performance of thin-film solid-phase extraction (TF-SPE) using vials coated with ethylene vinyl acetate was compared to earthworm bioassay (Lumbricus terrestris). A DDT and dieldrin contaminated soil was amended with four organic carbon materials to assess the change in bioavailability. Addition of organic carbon significantly lowered bioavailability for all compounds except for 4,4′-DDT. Equilibrium concentrations of compounds in the polymer were correlated with uptake by earthworms after 48d exposure (R2 = 0.97; p 40yr of aging. Results show that TF-SPE can be useful in examining potential risks associated with contaminated soils and to test effectiveness of remediation efforts.

  7. Electrodeposited synthesis of self-supported Ni-P cathode for efficient electrocatalytic hydrogen generation

    Directory of Open Access Journals (Sweden)

    Ruixian Wu

    2016-06-01

    Full Text Available One of the key challenges for electrochemical water splitting is the development of low-cost and efficient hydrogen evolution cathode. In this work, a self-supported Ni-P cathode was synthesized by a facile electrodeposition method. The composition and morphology were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy and transmission electron microscopy. The Ni-P cathode performed low onset over-potential, good catalytic activity and long-term stability under neutral and alkaline conditions. The mechanism of Ni-P electrode for hydrogen production was discussed by electrochemical impedance spectroscopy. The excellent performance of Ni-P cathode was mainly attributed to the synergistic effect of phosphate anions and the self-supported feature.

  8. A multisite randomized controlled trial on time to self-support among sickness absence beneficiaries

    DEFF Research Database (Denmark)

    Nielsen, Maj Britt D.; Vinsløv Hansen, Jørgen; Aust, Birgit

    2015-01-01

    BACKGROUND: In 2010, the Danish Government launched the Danish national return-to-work (RTW) programme to reduce sickness absence and promote labour market attainment. Multidisciplinary teams delivered the RTW programme, which comprised a coordinated, tailored and multidisciplinary effort (CTM...... randomly assigned beneficiaries to CTM (M1: n = 598; M2: n = 459; M3: n = 331) or to ordinary sickness absence management (OSM) (M1: n = 393; M2: n = 324; M3: n = 95). We used the Cox proportional hazards model to estimate hazard ratios (HR) comparing rates of becoming self-supporting between beneficiaries.......54-0.95). In M1, we found no difference between the two groups (HR = 0.99, 95% CI: 0.84-1.17). CONCLUSION: The effect of the CTM programme on return to self-support differed substantially across the three participating municipalities. Thus, generalizing the study results to other Danish municipalities...

  9. Effects of Ambient Air and Temperature on Ionic Gel Gated Single-Walled Carbon Nanotube Thin-Film Transistor and Circuits.

    Science.gov (United States)

    Li, Huaping; Zhou, Lili

    2015-10-21

    Single-walled carbon nanotube thin-film transistor (SWCNT TFT) and circuits were fabricated by fully inkjet printing gold nanoparticles as source/drain electrodes, semiconducting SWCNT thin films as channel materials, PS-PMMA-PS/EMIM TFSI composite gel as gate dielectrics, and PEDOT/PSS as gate electrodes. The ionic gel gated SWCNT TFT shows reversible conversion from p-type transistor behavior in air to ambipolar features under vacuum due to reversible oxygen doping in semiconducting SWCNT thin films. The threshold voltages of ionic gel gated SWCNT TFT and inverters are largely shifted to the low value (0.5 V for p-region and 1.0 V for n-region) by vacuum annealing at 140 °C to exhausively remove water that is incorporated in the ionic gel as floating gates. The vacuum annealed ionic gel gated SWCNT TFT shows linear temperature dependent transconductances and threshold voltages for both p- and n-regions. The strong temperature dependent transconductances (0.08 μS/K for p-region, 0.4 μS/K for n-region) indicate their potential application in thermal sensors. In the other hand, the weak temperature dependent threshold voltages (-1.5 mV/K for p-region, -1.1 mV/K for n-region) reflect their excellent thermal stability.

  10. Angular scattering of 1–50 keV ions through graphene and thin carbon foils: Potential applications for space plasma instrumentation

    International Nuclear Information System (INIS)

    Ebert, Robert W.; Allegrini, Frédéric; Fuselier, Stephen A.; Nicolaou, Georgios; Bedworth, Peter; Sinton, Steve; Trattner, Karlheinz J.

    2014-01-01

    We present experimental results for the angular scattering of ∼1–50 keV H, He, C, O, N, Ne, and Ar ions transiting through graphene foils and compare them with scattering through nominal ∼0.5 μg cm −2 carbon foils. Thin carbon foils play a critical role in time-of-flight ion mass spectrometers and energetic neutral atom sensors in space. These instruments take advantage of the charge exchange and secondary electron emission produced as ions or neutral atoms transit these foils. This interaction also produces angular scattering and energy straggling for the incident ion or neutral atom that acts to decrease the performance of a given instrument. Our results show that the angular scattering of ions through graphene is less pronounced than through the state-of-the-art 0.5 μg cm −2 carbon foils used in space-based particle detectors. At energies less than 50 keV, the scattering angle half width at half maximum, ψ 1/2 , for ∼3–5 atoms thick graphene is up to a factor of 3.5 smaller than for 0.5 μg cm −2 (∼20 atoms thick) carbon foils. Thus, graphene foils have the potential to improve the performance of space-based plasma instruments for energies below ∼50 keV

  11. Effect of nanoscale surface texture on the contact-pressure-dependent conduction characteristics of a carbon-nanotube thin-film tactile pressure sensor

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Chaehyun; Lee, Kunhak; Choi, Eunsuk; Kim, Ahsung; Kim, Jinoh; Lee, Seungbeck [Hanyang University, Seoul (Korea, Republic of)

    2011-01-15

    We report on a novel tactile pressure sensor structure that transfers the vertical pressure applied to the sample's surface to lateral strain in the carbon-nanotube thin film embedded in an elastomer by using a 'wavy' structured substrate contact surface. When pressure was applied to the poly(dimethylsiloxane) (PDMS) surface, it was transferred to a carbon-nanotube thin film (CNTF) underneath, where it stretched to conform to the wavy substrate surface. This resulted in an elongation, or lateral strain, in the CNTF layer, their reducing its conductance. The measurements showed that with an applied vertical pressure of 30 kPa, a 15% reduction in conductance was achieved with only a 500-nm deflection in the CNTF, and repeatedly applied pressures for 3,600 cycles (12 hours) resulted in only a 2% reduction in sensitivity, demonstrating the their film's high sensitivity and reliability. The mechanical stability and high sensitivity of the CNTF/PDMS hybrid with wavy substrate structures may make possible applications to future tactile pressure sensors.

  12. A facile and low-cost length sorting of single-wall carbon nanotubes by precipitation and applications for thin-film transistors.

    Science.gov (United States)

    Gui, Hui; Chen, Haitian; Khripin, Constantine Y; Liu, Bilu; Fagan, Jeffrey A; Zhou, Chongwu; Zheng, Ming

    2016-02-14

    Semiconducting single-wall carbon nanotubes (SWCNTs) with long lengths are highly desirable for many applications such as thin-film transistors and circuits. Previously reported length sorting techniques usually require sophisticated instrumentation and are hard to scale up. In this paper, we report for the first time a general phenomenon of a length-dependent precipitation of surfactant-dispersed carbon nanotubes by polymers, salts, and their combinations. Polyelectrolytes such as polymethacrylate (PMAA) and polystyrene sulfonate (PSS) are found to be especially effective on cholate and deoxycholate dispersed SWCNTs. By adding PMAA to these nanotube dispersions in a stepwise fashion, we have achieved nanotube precipitation in a length-dependent order: first nanotubes with an average length of 650 nm, and then successively of 450 nm, 350 nm, and 250 nm. A similar effect of nanotube length sorting has also been observed for PSS. To demonstrate the utility of the length fractionation, the 650 nm-long nanotube fraction was subjected to an aqueous two-phase separation to obtain semiconducting enriched nanotubes. Thin-film transistors fabricated with the resulting semiconducting SWCNTs showed a carrier mobility up to 18 cm(2) (V s)(-1) and an on/off ratio up to 10(7). Our result sheds new light on the phase behavior of aqueous nanotube dispersions under high concentrations of polymers and salts, and offers a facile, low-cost, and scalable method to produce length sorted semiconducting nanotubes for macroelectronics applications.

  13. Plasma Polymerized Thin Films of Maleic Anhydride and 1,2-methylenedioxybenzene for Improving Adhesion to Carbon Surfaces

    DEFF Research Database (Denmark)

    Drews, Joanna Maria; Goutianos, Stergios; Kingshott, Peter

    2007-01-01

    Low power 2-phase AC plasma polymerization has been used to surface modify glassy carbon substrates that are used as an experimental model for carbon fibers in reinforced composites. In order to probe the role of carboxylic acid density on the interfacial adhesion strength a combination...

  14. Nanostructured nitrogen and carbon codoped TiO2 thin films: Synthesis, structural characterization and optoelectronic properties

    Science.gov (United States)

    Ruzybayev, Inci

    characterization of pulsed laser deposited N-C codoped TiO2 thin films were investigated for dopant incorporation using N2 and CH4 gases. Polycrystalline anatase structured films were obtained. A 2 theta shift of the anatase (101) X-ray diffraction main peak towards lower values indicated carbon incorporation into the lattice. N incorporation was confirmed with observed Ti-N bonds using X-ray photoelectron spectroscopy. Optical data showed significant reduction, approximately 1.00 eV, of the band gap. The reduction of the band gap allowed the photons in the visible part of the solar spectrum to be absorbed. Through a collaborative work with scientists at Brookhaven National Laboratory and Yonsei University, precise modeling of the electronic structure of N-C codoped TiO2 films were carried out to reveal the underlying physics of band gap reduction. Experimental results were compared with first-principle density functional theory calculations. Hard X-ray photoelectron spectroscopy showed that O, N and C 2p states overlapped effectively and shifts in the valence band maximum towards the Fermi level were observed. Optical band gap results showed that N-C codoping is an effective route for band gap reduction in TiO2. Comparison of the measured valence band structure with theoretical photoemission density of states further revealed C substitution on the Ti site and N substitution on the O site. Finally, films grown using radio frequency (rf) magnetron sputtering were compared with the pulsed laser deposited films. Sputtered N-C codoped TiO2 films showed phase transformation from anatase to rutile at constant argon pressure with increasing doping concentration. Moreover, with slow-rate N-C codoping of TiO2, a texturing effect was observed in X-ray diffraction scans such that anatase (004) Bragg reflection plane became more favored over anatase (101). Optical band gap was reduced but the reduction was not as significant as in the films prepared with the pulsed laser deposition method

  15. High-performance thin-film-transistors based on semiconducting-enriched single-walled carbon nanotubes processed by electrical-breakdown strategy

    Energy Technology Data Exchange (ETDEWEB)

    Aïssa, B., E-mail: aissab@emt.inrs.ca [Centre Énergie, Matériaux et Télécommunications, INRS, 1650, boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada); Qatar Environment and Energy Research Institute (QEERI), Qatar Foundation, P.O. Box 5825, Doha (Qatar); Nedil, M. [Telebec Wireless Underground Communication Laboratory, UQAT, 675, 1" è" r" e Avenue, Val d’Or, Québec J9P 1Y3 (Canada); Habib, M.A. [Computer Sciences and Engineering Department, Yanbu University College, P.O. Box 30031 (Saudi Arabia); Abdul-Hafidh, E.H. [High Energy Physics Department, Yanbu University College, P.O. Box 30031 (Saudi Arabia); Rosei, F. [Centre Énergie, Matériaux et Télécommunications, INRS, 1650, boulevard Lionel-Boulet, Varennes, Quebec J3X 1S2 (Canada)

    2015-02-15

    Highlights: • We selectively burn metallic single wall carbon nanotubes (SWCNT) by electrical breakdown. • We successfully achieve a semiconducting enriched-SWCNT in TFT configuration. • High performance, like On/Off of 10{sup 5} and a subthreshold swing of 165 mV/decades were obtained. • After PMMA coating, the SWCNT–TFTs were found stables for more than 4 months. - Abstract: Over the past two decades, among remarkable variety of nanomaterials, single-walled carbon nanotubes (SWCNTs) remain the most intriguing and uniquely well suited materials for applications in high-performance electronics. The most advanced technologies require the ability to form purely semiconducting SWCNTs. Here, we report on our strategy based on the well known progressive electrical breakdown process that offer this capability and serves as highly efficient means for selectively removing metallic carbon nanotubes from electronically heterogeneous random networks, deposited on silicon substrates in a thin film transistor (TFT) configuration. We demonstrate the successful achievement of semiconducting enriched-SWCNT networks in TFT scheme that reach On/Off switching ratios of ∼100,000, on-conductance of 20 μS, and a subthreshold swing of less than 165 mV/decades. The obtained TFT devices were then protected with thin film poly(methyl methacrylate) (PMMA) to keep the percolation level of the SWCNTs network spatially and temporally stable, while protecting it from atmosphere exchanges. TFT devices were found to be air-stable and maintained their excellent characteristics in ambient atmosphere for more than 4 months. This approach could work as a platform for future nanotube-based nanoelectronics.

  16. Electrochemical studies of iron/carbonates system applied to the formation of thin layers of siderite on inert substrates; Etudes electrochimiques du systeme fer/carbonates appliquees a la formation de couches minces de siderite sur des substrats inertes

    Energy Technology Data Exchange (ETDEWEB)

    Ithurbide, A. [CEA Saclay, Dept. de Physico-Chimie (DEN/DPC/SECR/L3MR), 91 - Gif sur Yvette (France); Peulon, S. [Univ. d' Evry-val-d' Essonne, UMR 8587, CNRS, 91 - Evry (France); Mandin, Ph. [Ecole Nationale Superieure de Chimie de Paris (ENSCP), UMR 7575, 75 - Paris (France); Beaucaire, C. [CEA Saclay, Dept. de Physico-Chimie (DEN/DPC/SECR/L3MR), 91 - Gif sur Yvette (France); Chausse, A. [Univ. d' Evry-val-d' Essonne, UMR 8587, CNRS, 91 - Evry (France)

    2007-07-01

    In order to understand the complex mechanisms of the reactions occurring, a methodology is developed. It is based on the use of compounds electrodeposited under the form of thin layers and which are used then as electrodes to study their interactions with the toxic species. It is in this framework that is studied the electrodeposition of siderite on inert substrates. At first, have been studied iron electrochemical systems in carbonated solutions. These studies have been carried out with classical electrochemical methods (cyclic voltametry, amperometry) coupled to in-situ measurements: quartz microbalance, pH. Different compounds have been obtained under the form of homogeneous and adherent thin layers. The analyses of these depositions, by different ex-situ characterizations (XRD, IR, SEM, EDS..) have revealed particularly the presence of siderite. Then, the influence of several experimental parameters (substrate, potential, medium composition, temperature) on the characteristics of siderite thin layers has been studied. From these experimental results, models have been proposed. (O.M.)

  17. Room-Temperature Wet Chemical Synthesis of Au NPs/TiH2/Nanocarved Ti Self-Supported Electrocatalysts for Highly Efficient H2 Generation.

    Science.gov (United States)

    Amin, Mohammed A; Fadlallah, Sahar A; Alosaimi, Ghaida S; Ahmed, Emad M; Mostafa, Nasser Y; Roussel, Pascal; Szunerits, Sabine; Boukherroub, Rabah

    2017-09-06

    Self-supported electrocatalysts are a new class of materials exhibiting high catalytic performance for various electrochemical processes and can be directly equipped in energy conversion devices. We present here, for the first time, sparse Au NPs self-supported on etched Ti (nanocarved Ti substrate self-supported with TiH 2 ) as promising catalysts for the electrochemical generation of hydrogen (H 2 ) in KOH solutions. Cleaned, as-polished Ti substrates were etched in highly concentrated sulfuric acid solutions without and with 0.1 M NH 4 F at room temperature for 15 min. These two etching processes yielded a thin layer of TiH 2 (the corrosion product of the etching process) self-supported on nanocarved Ti substrates with different morphologies. While F - -free etching process led to formation of parallel channels (average width: 200 nm), where each channel consists of an array of rounded cavities (average width: 150 nm), etching in the presence of F - yielded Ti surface carved with nanogrooves (average width: 100 nm) in parallel orientation. Au NPs were then grown in situ (self-supported) on such etched surfaces via immersion in a standard gold solution at room temperature without using stabilizers or reducing agents, producing Au NPs/TiH 2 /nanostructured Ti catalysts. These materials were characterized by scanning electron microscopy/energy-dispersive spectroscopy (SEM/EDS), grazing incidence X-ray diffraction (GIXRD), and X-ray photoelectron spectroscopy (XPS). GIXRD confirmed the formation of Au 2 Ti phase, thus referring to strong chemical interaction between the supported Au NPs and the substrate surface (also evidenced from XPS) as well as a titanium hydride phase of chemical composition TiH 2 . Electrochemical measurements in 0.1 M KOH solution revealed outstanding hydrogen evolution reaction (HER) electrocatalytic activity for our synthesized catalysts, with Au NPs/TiH 2 /nanogrooved Ti catalyst being the best one among them. It exhibited fast kinetics

  18. Characterization of carbon thin films prepared by the thermal decomposition of spin coated polyacrylonitrile layers containing metal acetates

    International Nuclear Information System (INIS)

    Daranyi, Maria; Sarusi, Istvan; Sapi, Andras; Kukovecz, Akos; Konya, Zoltan; Erdohelyi, Andras

    2011-01-01

    Polyacrylonitrile (PAN) layers were cast from dimethyl-formamide solutions onto quartz substrates by spin coating and subsequently annealed at up to 1000 o C in N 2 atmosphere. Carbonization was catalyzed by nickel or cobalt added to the solution as acetate salts. The synthesized films were approx. 970 nm thick and were characterized by Raman and infrared spectroscopy as well as thermogravimetric and electrical conductance measurements. We discuss the effects of carbonization temperature and metal concentration on the morphology, composition and electrical properties of the formed carbon layer. Increasing the amount of catalyst and the pyrolysis temperature was beneficial for the process and resulted in carbonaceous films with a higher degree of structural order as evidenced by the decreasing Raman I D /I G ratio and the increasing electrical conductivity of the films. Cobalt is a better catalyst for PAN carbonization than nickel as far as the structure of the product film is concerned.

  19. Mechanical and tribological properties of carbon thin film with tungsten interlayer prepared by Ion beam assisted deposition

    Czech Academy of Sciences Publication Activity Database

    Vlčák, P.; Černý, F.; Tolde, Z.; Sepitka, J.; Gregora, Ivan; Daniš, S.

    2013-01-01

    Roč. 2013, FEB (2013) ISSN 2314-4874 Institutional support: RVO:68378271 Keywords : carbon coatings * ion beam deposition * XRD * nanoindentation Subject RIV: BM - Solid Matter Physics ; Magnetism http://dx.doi.org/10.1155/2013/630156

  20. Highly sensitive room temperature organic vapor sensor based on polybenzoxazine-derived carbon aerogel thin film composite

    Energy Technology Data Exchange (ETDEWEB)

    Thubsuang, Uthen [Materials Science and Engineering, School of Engineering and Resources, Walailak University, Nakhon Si Thammarat 80160 (Thailand); Sukanan, Darunee [The Petroleum and Petrochemical College and the Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330 (Thailand); Sahasithiwat, Somboon [National Metal and Materials Technology Center, Thailand Science Park (TSP), Khlong Luang, Pathum Thani 12120 (Thailand); Wongkasemjit, Sujitra [The Petroleum and Petrochemical College and the Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330 (Thailand); Chaisuwan, Thanyalak, E-mail: thanyalak.c@chula.ac.th [The Petroleum and Petrochemical College and the Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330 (Thailand)

    2015-10-15

    Graphical abstract: - Highlights: • Activated carbon aerogel with high surface area can be prepared from polybenzoxazine. • Activated carbon aerogel enhances the adsorption capacity of gas sensor. • Organic vapors with very low concentration can be detected by the as-prepared sensor. • The as-prepared sensor shows impressive short exposure and recovery time. • The response to different organic vapors can be tailored by changing polymer matrix. - Abstract: Gas sensing composites were fabricated using polybenzoxazine-based activated carbon aerogel as a conductive filler. The activated carbon aerogel is a nano-porous material, which has high pore volume of 0.57 cm{sup 3}/g and surface area of 917 m{sup 2}/g. The activated carbon aerogel/polybutadiene composite displayed good response of 11.2 and 6.7 to toluene and n-hexane, respectively, compared to those of graphite/polybutadiene composite. The activated carbon aerogel/polybutadiene composite also showed high sensitivity of 3.09 × 10{sup 2} ppm{sup −1} to toluene. However, the sensitivity of activated carbon aerogel/polybutadiene composite drastically decreased to 1.99 ppm{sup −1} and zero when exposed to acetone and water, respectively. Contrarily, when polyvinyl alcohol was used as a matrix, the sensitivity was about 4.19 ppm{sup −1} to water. While the composite was found to be not sensitive to toluene. The activated carbon aerogel/polybutadiene composite also showed good recovery as the electrical resistance came back to the original value within minutes when exposed to nitrogen gas.

  1. Highly sensitive room temperature organic vapor sensor based on polybenzoxazine-derived carbon aerogel thin film composite

    International Nuclear Information System (INIS)

    Thubsuang, Uthen; Sukanan, Darunee; Sahasithiwat, Somboon; Wongkasemjit, Sujitra; Chaisuwan, Thanyalak

    2015-01-01

    Graphical abstract: - Highlights: • Activated carbon aerogel with high surface area can be prepared from polybenzoxazine. • Activated carbon aerogel enhances the adsorption capacity of gas sensor. • Organic vapors with very low concentration can be detected by the as-prepared sensor. • The as-prepared sensor shows impressive short exposure and recovery time. • The response to different organic vapors can be tailored by changing polymer matrix. - Abstract: Gas sensing composites were fabricated using polybenzoxazine-based activated carbon aerogel as a conductive filler. The activated carbon aerogel is a nano-porous material, which has high pore volume of 0.57 cm 3 /g and surface area of 917 m 2 /g. The activated carbon aerogel/polybutadiene composite displayed good response of 11.2 and 6.7 to toluene and n-hexane, respectively, compared to those of graphite/polybutadiene composite. The activated carbon aerogel/polybutadiene composite also showed high sensitivity of 3.09 × 10 2 ppm −1 to toluene. However, the sensitivity of activated carbon aerogel/polybutadiene composite drastically decreased to 1.99 ppm −1 and zero when exposed to acetone and water, respectively. Contrarily, when polyvinyl alcohol was used as a matrix, the sensitivity was about 4.19 ppm −1 to water. While the composite was found to be not sensitive to toluene. The activated carbon aerogel/polybutadiene composite also showed good recovery as the electrical resistance came back to the original value within minutes when exposed to nitrogen gas

  2. Diamond-like nanocomposite: a novel promising carbon based thin film as antireflection and passivation coating for silicon solar cell

    Science.gov (United States)

    Jana, Sukhendu; Das, Sayan; De, Debasish; Mondal, Anup; Gangopadhyay, Utpal

    2018-02-01

    Presently, silicon nitride (SiN x ) is widely used as antireflection coating (ARC) on p-type silicon solar cell. But, two highly toxic gasses ammonia and silane are used. In the present study, the ARC and passivation properties of diamond-like nanocomposite (DLN) thin film on silicon solar cell have been investigated. The DLN thin film has been deposited by rf-PACVD process using liquid precursor HMDSO in argon plasma. The film has been characterized by FESEM, HRTEM, FTIR, and Raman spectroscopy. The optical properties have been estimated by UV–vis–NIR spectroscopy. The minimum reflection has been achieved to 0.75% at 630 nm. Both the short circuit current density and open circuit voltage has been increased significantly from 28.6 mA cm‑2 to 35.5 mA cm‑2 and 0.551 V to 0.613 V respectively. The field effect passivation has been confirmed by dark IV characterization of c-Si /DLN heterojunction structure. All these lead to enhancement of efficiency by almost 4% absolute, which is comparable to SiN x . The ammonia and silane free deposited DLN thin film has a great potential to use as ARC for silicon based solar cell.

  3. A Self-Supported Direct Borohydride-Hydrogen Peroxide Fuel Cell System

    Directory of Open Access Journals (Sweden)

    Ashok K. Shukla

    2009-04-01

    Full Text Available A self-supported direct borohydride-hydrogen peroxide fuel cell system with internal manifolds and an auxiliary control unit is reported. The system, while operating under ambient conditions, delivers a peak power of 40 W with about 2 W to run the auxiliary control unit. A critical cause and effect analysis, on the data for single cells and stack, suggests the optimum concentrations of fuel and oxidant to be 8 wt. % NaBH4 and 2 M H2O2, respectively in extending the operating time of the system. Such a fuel cell system is ideally suited for submersible and aerospace applications where anaerobic conditions prevail.

  4. Self-supporting structure design in additive manufacturing through explicit topology optimization

    Science.gov (United States)

    Guo, Xu; Zhou, Jianhua; Zhang, Weisheng; Du, Zongliang; Liu, Chang; Liu, Ying

    2017-08-01

    One of the challenging issues in additive manufacturing (AM) oriented topology optimization is how to design structures that are self-supportive in a manufacture process without introducing additional supporting materials. In the present contribution, it is intended to resolve this problem under an explicit topology optimization framework where optimal structural topology can be found by optimizing a set of explicit geometry parameters. Two solution approaches established based on the Moving Morphable Components (MMC) and Moving Morphable Voids (MMV) frameworks, respectively, are proposed and some theoretical issues associated with AM oriented topology optimization are also analyzed. Numerical examples provided demonstrate the effectiveness of the proposed methods.

  5. Performance of the preferred self-supporting radioisotope power system with STC 55-W Stirling converters

    International Nuclear Information System (INIS)

    Or, C.; Carpenter, R.; Schock, A.; Kumar, V.

    2000-01-01

    Orbital has designed various self-supporting radioisotope power system options utilizing STC 55-W Stirling converters for possible application to NASA's Europa Orbiter mission. The preferred generator design with mechanical coupling though the heat source housing was analyzed. The various parameters studied include radiator facesheet thickness, radiator size, separation distance between spacecraft and radiators, Sun angle, and mission phase with different solar constants and radioisotope thermal power. Analytical results show that the Europa EOM power goal of 210 W e can be met comfortably with the preferred power system of 2 generators, each with 2 GPHS modules and 2 STC 55-W Stirling converters

  6. Influence of van der Waals contact forces on the deformation mechanics of thin flexible membranes assembled from metallic or semiconducting single-wall carbon nanotubes

    Science.gov (United States)

    Hobbie, Erik K.; Harris, John; Iyer, Swathi; Huh, Ji Yeon; Fagan, Jeffrey A.; Hudson, Steven D.; Stafford, Christopher M.

    2011-03-01

    Thin membranes of single-wall carbon nanotubes (SWCNTs) assembled from either metallic or semiconducting SWCNTs are subjected to the compressive strains imposed by a stretched elastic substrate, and the mechanical characteristics of the membranes are inferred from the topography of the wrinkling instability that emerges. By depositing comparable films on quartz, we also use optical (UV-Vis-NIR) absorption spectroscopy to compute the effective London dispersion spectra of the purified materials, and from these we compute the attractive part of the van der Waals potential between nanotubes of identical electronic type as a function of separation and relative orientation. We find significant differences in the strength and shape of the contact potential depending on electronic type, which in turn are evident in the modulus and yield strain measured from the deformation of the films. Supported by the NSF through CMMI-0969155 and the DOE through DE-FG36-08GO88160.

  7. Metal-electrode-free Window-like Organic Solar Cells with p-Doped Carbon Nanotube Thin-film Electrodes

    Science.gov (United States)

    Jeon, Il; Delacou, Clement; Kaskela, Antti; Kauppinen, Esko I.; Maruyama, Shigeo; Matsuo, Yutaka

    2016-08-01

    Organic solar cells are flexible and inexpensive, and expected to have a wide range of applications. Many transparent organic solar cells have been reported and their success hinges on full transparency and high power conversion efficiency. Recently, carbon nanotubes and graphene, which meet these criteria, have been used in transparent conductive electrodes. However, their use in top electrodes has been limited by mechanical difficulties in fabrication and doping. Here, expensive metal top electrodes were replaced with high-performance, easy-to-transfer, aerosol-synthesized carbon nanotubes to produce transparent organic solar cells. The carbon nanotubes were p-doped by two new methods: HNO3 doping via ‘sandwich transfer’, and MoOx thermal doping via ‘bridge transfer’. Although both of the doping methods improved the performance of the carbon nanotubes and the photovoltaic performance of devices, sandwich transfer, which gave a 4.1% power conversion efficiency, was slightly more effective than bridge transfer, which produced a power conversion efficiency of 3.4%. Applying a thinner carbon nanotube film with 90% transparency decreased the efficiency to 3.7%, which was still high. Overall, the transparent solar cells had an efficiency of around 50% that of non-transparent metal-based solar cells (7.8%).

  8. Lightweight, flexible and thin Fe3O4-loaded, functionalized multi walled carbon nanotube buckypapers for enhanced X-band electromagnetic interference shielding

    Science.gov (United States)

    Bhaskara Rao, B. V.; Chengappa, Mithali; Kale, S. N.

    2017-04-01

    Electromagnetic interference (EMI) is undesirable and uncontrolled interference with the signal of intelligence. This is controlled by using either novel materials, or appropriate electronic design or a combination of both. In this context, functionalized multiwalled carbon nanotubes (FMWCNTs) have been proposed to use as EM shielding materials because of their promising electromagnetic properties, high flexibility, and high electrical conductivity. The non-functionalised MWCNTs does not demonstrate high shielding of electromagnetic waves but with acid functionalisation and further loading with optimized nanoparticles of Fe3O4, enhanced absorption (15.85 dB), enhanced reflection (9.43 dB), resulted in high total specific shielding effectiveness of around 49.56 dB (g cm-3)-1. All samples were light weight, flexible, thin and self-standing in the form of a buckypaper of thickness of 50 µm and density of 0.51 g cm-3. These buckypapers could be promising materials for electromagnetic shielding via both absorption and reflection. A fine amalgamated system of MWCNTs with half metallic Fe3O4, resulting in enhanced conductivity, in an extremely thin and flexible matrix, is considered to be the main contribution to these high shielding effectiveness values.

  9. One-step sub-10 μm patterning of carbon-nanotube thin films for transparent conductor applications.

    Science.gov (United States)

    Fukaya, Norihiro; Kim, Dong Young; Kishimoto, Shigeru; Noda, Suguru; Ohno, Yutaka

    2014-04-22

    We propose a technique for one-step micropatterning of as-grown carbon-nanotube films on a plastic substrate with sub-10 μm resolution on the basis of the dry transfer process. By utilizing this technique, we demonstrated the novel high-performance flexible carbon-nanotube transparent conductive film with a microgrid structure, which enabled improvement of the performance over the trade-off between the sheet resistance and transmittance of a conventional uniform carbon-nanotube film. The sheet resistance was reduced by 46% at its maximum by adding the microgrid, leading to a value of 53 Ω/sq at a transmittance of 80%. We also demonstrated easy fabrication of multitouch projected capacitive sensors with 12 × 12 electrodes. The technique is quite promising for energy-saving production of transparent conductor devices with 100% material utilization.

  10. STEP: Self-supporting tailored k-space estimation for parallel imaging reconstruction.

    Science.gov (United States)

    Zhou, Zechen; Wang, Jinnan; Balu, Niranjan; Li, Rui; Yuan, Chun

    2016-02-01

    A new subspace-based iterative reconstruction method, termed Self-supporting Tailored k-space Estimation for Parallel imaging reconstruction (STEP), is presented and evaluated in comparison to the existing autocalibrating method SPIRiT and calibrationless method SAKE. In STEP, two tailored schemes including k-space partition and basis selection are proposed to promote spatially variant signal subspace and incorporated into a self-supporting structured low rank model to enforce properties of locality, sparsity, and rank deficiency, which can be formulated into a constrained optimization problem and solved by an iterative algorithm. Simulated and in vivo datasets were used to investigate the performance of STEP in terms of overall image quality and detail structure preservation. The advantage of STEP on image quality is demonstrated by retrospectively undersampled multichannel Cartesian data with various patterns. Compared with SPIRiT and SAKE, STEP can provide more accurate reconstruction images with less residual aliasing artifacts and reduced noise amplification in simulation and in vivo experiments. In addition, STEP has the capability of combining compressed sensing with arbitrary sampling trajectory. Using k-space partition and basis selection can further improve the performance of parallel imaging reconstruction with or without calibration signals. © 2015 Wiley Periodicals, Inc.

  11. The relations between interpersonal self-support traits and emotion regulation strategies: a longitudinal study.

    Science.gov (United States)

    Xia, Ling-Xiang; Gao, Xin; Wang, Qian; Hollon, Steven D

    2014-08-01

    Although several cross-sectional surveys have shown that certain traits such as extraversion and neuroticism are related to emotion regulation, few studies have explored the nature of this relationship. The present study tried to explore the longitudinal relation between traits and emotion regulation strategies. The Interpersonal Self-Support Scale for Middle School Students (ISSS-MSS) and the Emotion Regulation Questionnaire (ERQ) were administrated to 374 middle school students two times across a 6-month interval. A path analysis via structural equation modeling of the five interpersonal self-support traits and the two emotion regulation strategies was tested. The results showed that interpersonal independence predicted expressive suppression and cognitive reappraisal, and that interpersonal initiative also predicted reappraisal, while reappraisal predicted interpersonal flexibility and interpersonal openness 6 month later. These results support the hypotheses that some personality traits influence certain emotion regulation strategies, while other traits may be influenced by specific emotion regulation strategies. Copyright © 2014 The Foundation for Professionals in Services for Adolescents. Published by Elsevier Ltd. All rights reserved.

  12. Hydrothermal core-shell carbon nanoparticle films: thinning the shell leads to dramatic pH response.

    Science.gov (United States)

    Xia, Fengjie; Pan, Mu; Mu, Shichun; Xiong, Yuli; Edler, Karen J; Idini, Ilaria; Jones, Matthew D; Tsang, Shik Chi; Marken, Frank

    2012-12-05

    Carbon nanoparticles with phenylsulfonate negative surface functionality (Emperor 2000, Cabot Corp.) are coated with positive chitosan followed by hydrothermal carbonization to give highly pH-responsive core-shell nanocarbon composite materials. With optimised core-shell ratio (resulting in an average shell thickness of ca. 4 nm, estimated from SANS data) modified electrodes exhibit highly pH-sensitive resistance, capacitance, and Faradaic electron transfer responses (solution based, covalently bound, or hydrothermally embedded). A shell "double layer exclusion" mechanism is discussed to explain the observed pH switching effects. Based on this mechanism, a broader range of future applications of responsive core-shell nanoparticles are envisaged.

  13. Photoelectrochemical properties of hierarchical nanocomposite structure: Carbon nanofibers/TiO.sub.2./sub./ZnO thin films

    Czech Academy of Sciences Publication Activity Database

    Kment, Štěpán; Hubička, Zdeněk; Kmentová, Hana; Klusoň, Petr; Krýsa, Josef; Gregora, Ivan; Morozová, Magdalena; Čada, Martin; Petráš, D.; Dytrych, Pavel; Slater, M.; Jastrabík, Lubomír

    2011-01-01

    Roč. 161, č. 1 (2011), s. 8-14 ISSN 0920-5861 R&D Projects: GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002; GA AV ČR KAN400720701 Institutional research plan: CEZ:AV0Z10100522; CEZ:AV0Z40720504 Keywords : thin layers * hollow cathode * TiO 2 * ZnO * CNFs * IPCE * photocatalysis Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.407, year: 2011

  14. In Situ Raman Spectroelectrochemistry as a Tool for the Differentiation of Inner Tubes of Double-Wall Carbon Nanotubes and Thin Single-Wall Carbon Nanotubes

    Czech Academy of Sciences Publication Activity Database

    Kalbáč, Martin; Kavan, Ladislav; Dunsch, L.

    2007-01-01

    Roč. 79, č. 23 (2007), s. 9074-9081 ISSN 0003-2700 R&D Projects: GA AV ČR KJB400400601; GA MŠk LC510 Institutional research plan: CEZ:AV0Z40400503 Keywords : spectroelectrochemistry * Raman spectroelectrochemistry * carbon nanotube Subject RIV: CG - Electrochemistry Impact factor: 5.287, year: 2007

  15. Selective and Scalable Chemical Removal of Thin Single-Walled Carbon Nanotubes from their Mixtures with Double-Walled Carbon Nanotubes

    Czech Academy of Sciences Publication Activity Database

    Komínková, Zuzana; Valeš, Václav; Kalbáč, Martin

    2015-01-01

    Roč. 21, č. 45 (2015), s. 16147 ISSN 1521-3765 R&D Projects: GA ČR GBP208/12/G016 Institutional support: RVO:61388955 Keywords : carbon nanotubes * electrochemical doping * in-situ Raman spectroelectrochemistry Subject RIV: CG - Electrochemistry

  16. Stress wave propagation in thin long-fiber carbon/epoxy composite panel. Numerical and experimental solutions

    Czech Academy of Sciences Publication Activity Database

    Kroupa, Tomáš; Červ, Jan; Valeš, František

    2007-01-01

    Roč. 1, č. 1 (2007), s. 127-136 ISSN 1802-680X. [Computational Mechanics 2007. Hrad Nečtiny, 05.11.2007-07.11.2007] R&D Projects: GA AV ČR(CZ) IAA200760611 Institutional research plan: CEZ:AV0Z20760514 Keywords : FRP composite * carbon-epoxy * orthotropic material Subject RIV: BI - Acoustics

  17. Complete characterization by Raman spectroscopy of the structural properties of thin hydrogenated diamond-like carbon films exposed to rapid thermal annealing

    International Nuclear Information System (INIS)

    Rose, Franck; Wang, Na; Smith, Robert; Xiao, Qi-Fan; Dai, Qing; Marchon, Bruno; Inaba, Hiroshi; Matsumura, Toru; Saito, Yoko; Matsumoto, Hiroyuki; Mangolini, Filippo; Carpick, Robert W.

    2014-01-01

    We have demonstrated that multi-wavelength Raman and photoluminescence spectroscopies are sufficient to completely characterize the structural properties of ultra-thin hydrogenated diamond-like carbon (DLC:H) films subjected to rapid thermal annealing (RTA, 1 s up to 659 °C) and to resolve the structural differences between films grown by plasma-enhanced chemical vapor deposition, facing target sputtering and filtered cathodic vacuum arc with minute variations in values of mass density, hydrogen content, and sp 3 fraction. In order to distinguish unequivocally between films prepared with different density, thickness, and RTA treatment, a new method for analysis of Raman spectra was invented. This newly developed analysis method consisted of plotting the position of the Raman G band of carbon versus its full width at half maximum. Moreover, we studied the passivation of non-radiative recombination centers during RTA by performing measurements of the increase in photoluminescence in conjunction with the analysis of DLC:H networks simulated by molecular dynamics. The results show that dangling bond passivation is primarily a consequence of thermally-induced sp 2 clustering rather than hydrogen diffusion in the film.

  18. Nitrogen-doped biomass-based ultra-thin carbon nanosheets with interconnected framework for High-Performance Lithium-Ion Batteries

    Science.gov (United States)

    Guo, Shasha; Chen, Yaxin; Shi, Liluo; Dong, Yue; Ma, Jing; Chen, Xiaohong; Song, Huaihe

    2018-04-01

    In this paper, a low-cost and environmental friendly synthesis strategy is proposed to fabricate nitrogen-doped biomass-based ultra-thin carbon nanosheets (N-CNS) with interconnected framework by using soybean milk as the carbon precursor and sodium chloride as the template. The interconnected porous nanosheet structure is beneficial for lithium ion transportation, and the defects introduced by pyridine nitrogen doping are favorable for lithium storage. When used as the anodes for lithium-ion batteries, the N-CNS electrode shows a high initial reversible specific capacity of 1334 mAh g-1 at 50 mA g-1, excellent rate performance (1212, 555 and 336 mAh g-1 at 0.05, 0.5 and 2 A g-1, respectively) and good cycling stability (355 mAh g-1 at 1 A g-1 after 1000 cycles). Furthermore, this study demonstrates the prospects of biomass and soybean milk, as the potential anode for the application of electrochemical energy storage devices.

  19. Comparative study of water and carbon dioxide adsorption on CuFeO2 and CuFe1-xGaxO2 highly epitaxial thin films

    Science.gov (United States)

    Rojas, S.; Joshi, T.; Borisov, P.; Lederman, D.; Cabrera, A. L.

    Thermal programmed desorption (TPD) of CO2 and H2O from a 200 nm thick CuFeO2 and 52 nm thick CuFe1-xGaxO2 delafossite surfaces was performed in a Ultra-high vacuum (UHV) chamber. The thin films with epitaxial quality were grown by Pulsed Laser Deposition (PLD) on Al2O3 (0001) substrates . The adsorption / desorption of CO2 and H2O process was also monitored with X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). Our results revealed that carbon dioxide is preferentially chemisorbed by CuFe1-xGaxO2 over water and we observed the opposite behavior with regard to chemisorption of CO2 and H2O over CuFeO2. Hydroxyls and metal carbonates were formed on the surface due to the chemisorption of H2O and CO2. Arrhenius plots for CO2 and H2O desorption were done and activation energy for desorption were obtained. Supported by FONDECyT 1130372.

  20. Influence of disorder on localization and density of states in amorphous carbon nitride thin films systems rich in π-bonded carbon atoms

    International Nuclear Information System (INIS)

    Alibart, F.; Lejeune, M.; Durand Drouhin, O.; Zellama, K.; Benlahsen, M.

    2010-01-01

    We discuss in this paper the evolution of both the density of states (DOS) located between the band-tail states and the DOS around the Fermi level N(E F ) in amorphous carbon nitride films (a-CN x ) as a function of the total nitrogen partial pressure ratio in the Ar/N 2 plasma mixture. The films were deposited by three different deposition techniques and their microstructure was characterized using a combination of infrared and Raman spectroscopy and optical transmission experiments, completed with electrical conductivity measurements, as a function of temperature. The observed changes in the optoelectronic properties are attributed to the modification in the atomic bonding structures, which were induced by N incorporation, accompanied by an increase in the sp 2 carbon bonding configurations and their relative disorder. The electrical conductivity variation was interpreted in terms of local effects on the nature and energy distribution of π and π* states.

  1. Flexible microstrip antenna based on carbon nanotubes/(ethylene-octene copolymer) thin composite layer deposited on PET substrate

    Science.gov (United States)

    Matyas, J.; Olejnik, R.; Slobodian, P.

    2017-12-01

    A most of portable devices, such as mobile phones, tablets, uses antennas made of cupper. In this paper we demonstrate possible use of electrically conductive polymer composite material for such antenna application. Here we describe the method of preparation and properties of the carbon nanotubes (CNTs)/(ethylene-octene copolymer) as flexible microstrip antenna. Carbon nanotubes dispersion in (ethylene-octene copolymer) toluene solution was prepared by ultrasound finally coating PET substrate by method of dip-coating. Main advantages of PET substrate are low weight and also flexibility. The final size of flexible microstrip antenna was 5 x 50 mm with thickness of 0.48 mm (PET substrate 0.25 mm) with the weight of only 0.402 g. Antenna operates at three frequencies 1.66 GHz (-6.51 dB), 2.3 GHz (-13 dB) and 2.98 GHz (-33.59 dB).

  2. Ultra-thin solution-based coating of molybdenum oxide on multiwall carbon nanotubes for high-performance supercapacitor electrodes

    KAUST Repository

    Shakir, Imran

    2014-02-01

    Uniform and conformal coating of ultrathin molybdenum oxide (MoO 3) thin film onto conducting MWCNTs was successfully synthesized through a facile, nontoxic and generally applicable precipitation method, followed by a simple heat treatment. The ultrathin MoO3 coating enables a fast and reversible redox reaction which improves the specific capacitance by utilizing the maximum number of active sites for the redox reaction, while the high porosity of the MWCNTs facilitates ion migration in the electrolyte and shorten the ion diffusion path. The ultrathin MoO3 coated MWCNTs electrodes show a very high specific capacitance of 1145 Fg -1 in 2 M Na2SO4 aqueous solution when 5 nm thick MoO3 was considered alone despite the low weight percentage of the MoO3 (16wt%). Furthermore, the ultrathin MoO3 coated MWCNTs supercapacitor electrodes exhibited excellent cycling performance of > 97% capacitance retention over 1000 cycles. © 2013 Elsevier Ltd.

  3. Study of Fluorine Addition Influence in the Dielectric Constant of Diamond-Like Carbon Thin Film Deposited by Reactive Sputtering

    Science.gov (United States)

    Trippe, S. C.; Mansano, R. D.

    The hydrogenated amorphous carbon films (a-C:H) or DLC (Diamond-Like Carbon) films are well known for exhibiting high electrical resistivity, low dielectric constant, high mechanical hardness, low friction coefficient, low superficial roughness and also for being inert. In this paper, we produced fluorinated DLC films (a-C:F), and studied the effect of adding CF4 on the above-mentioned properties of DLC films. These films were produced by a reactive RF magnetron sputtering system using a target of pure carbon in stable graphite allotrope. We performed measurements of electrical characteristic curves of capacitance as a function of applied tension (C-V) and current as a function of the applied tension (I-V). We showed the dielectric constant (k) and the resistivity (ρ) as functions of the CF4 concentration. On films with 65% CF4, we found that k = 2.7, and on films with 70% CF4, ρ = 12.3 × 1011 Ω cm. The value of the electrical breakdown field to films with 70% CF4 is 5.3 × 106 V/cm.

  4. Evaluation of a nitrogen-incorporated tetrahedral amorphous carbon thin film for the detection of tryptophan and tyrosine using flow injection analysis with amperometric detection.

    Science.gov (United States)

    Jarošová, Romana; Rutherford, Joy; Swain, Greg M

    2016-10-17

    We report on the analytical performance of a tetrahedral amorphous carbon (ta-C:N) thin-film electrode in flow injection analysis with amperometric detection. Two model redox analytes were used to evaluate the electrode response because of their positive detection potentials and propensity (i.e., reaction products) to adsorb and foul sp 2 carbon electrodes: tyrosine and tryptophan. ta-C:N electrodes are attractive for electroanalytical applications because they possesses many of the excellent properties of boron-doped nanocrystalline diamond (BDD) and they can be deposited at or near room temperature. The results show that the ta-C:N electrode exhibits lower background current and noise than glassy carbon (GC). The electrode was stable microstructurally at the positive potentials used for detection, ∼1.1 V, of these two amino acids and it exhibited superior analytical detection figures of merit as compared to GC and as good or superior to BDD. The linear dynamic range for both analytes at ta-C:N was from 0.1 to 100 μmol L -1 , the sensitivity was 8-12 mA L mol -1 , the short-term response variability was 1-2%, and the minimum detectable concentration was 89.7 ± 0.9 nM (18.3 μg L -1 or 0.46 ng) for tryptophan and 120 ± 11 nM (21.7 μg L -1 or 0.54 ng) for tyrosine. The analytical detection figures of merit for these amino acids at GC and BDD are also presented for comparison as is characterization data for the chemical composition and microstructure of the ta-C:N film.

  5. Self-supported fibrin-polyvinyl alcohol interpenetrating polymer networks: an easily handled and rehydratable biomaterial.

    Science.gov (United States)

    Bidault, Laurent; Deneufchatel, Marie; Vancaeyzeele, Cédric; Fichet, Odile; Larreta-Garde, Véronique

    2013-11-11

    A fibrin hydrogel at physiological concentration (5 mg/mL) was associated with polyvinyl alcohol (PVA) inside an interpenetrating polymer networks (IPN) architecture. Previously, PVA has been modified with methacrylate functions in order to cross-link it by free-radical polymerization. The fibrin network was synthesized by the enzymatic hydrolysis of fibrinogen by thrombin. The resulting self-supported materials simultaneously exhibit the properties of the fibrin hydrogel and those of the synthetic polymer network. Their storage modulus is 50-fold higher than that of the fibrin hydrogel and they are completely rehydratable. These materials are noncytotoxic toward human fibroblast and the fibrin present on the surface of PVAm-based IPNs favors cell development.

  6. Nanotubes oxidation temperature controls the height of single-walled carbon nanotube forests on gold micropatterned thin layers.

    Science.gov (United States)

    Lamberti, Francesco; Agnoli, Stefano; Meneghetti, Moreno; Elvassore, Nicola

    2010-07-06

    We developed a simple methodology for a direct control of the height of carboxylated single-walled carbon nanotube (SWNT) forests. We found that the important step is a good control of the oxidation temperature of the nanotubes. SWNTs oxidation at different temperature was followed by Raman and X-ray photoelectron spectroscopies. Atomic force microscopy images showed that micropatterned self-assembled monolayers forests have average height from 20 to 80 nm using SWNTs oxidized in the temperature ranging from 323 to 303 K, respectively.

  7. Experimental Study and Numerical Modelling of Low Velocity Impact on Laminated Composite Reinforced with Thin Film Made of Carbon Nanotubes

    Science.gov (United States)

    El Moumen, A.; Tarfaoui, M.; Hassoon, O.; Lafdi, K.; Benyahia, H.; Nachtane, M.

    2018-04-01

    In this work, polymer laminated composites based on Epon 862 Epoxy resin, T300 6 k carbon fibers and carbon nanotubes (CNTs) were tested with the aim to elucidate the effect of CNTs on impact properties including impact force and capacity to absorb impact energy. The polymer matrix was reinforced by a random distribution of CNTs with fraction ranging from 0.5 to 4.wt%. Composite panels were manufactured by using the infusion process. Taylor impact test was used to obtain the impact response of specimens. Projectile manufactured from a high strength and hardened steel with a diameter of 20 mm and 1.5 kg of mass was launched by a compressed gas gun within the velocity of 3 m/s. Impact force histories and absorbed energy of specimens were recorded. A numerical model was employed to simulate the impact performance. This model has been accomplished by forming a user established subroutine (VUMAT) and executing it in ABAQUS software. Finally, the effect of CNTs amount on dynamic properties of laminated composites was discussed.

  8. Experimental Study and Numerical Modelling of Low Velocity Impact on Laminated Composite Reinforced with Thin Film Made of Carbon Nanotubes

    Science.gov (United States)

    El Moumen, A.; Tarfaoui, M.; Hassoon, O.; Lafdi, K.; Benyahia, H.; Nachtane, M.

    2017-07-01

    In this work, polymer laminated composites based on Epon 862 Epoxy resin, T300 6 k carbon fibers and carbon nanotubes (CNTs) were tested with the aim to elucidate the effect of CNTs on impact properties including impact force and capacity to absorb impact energy. The polymer matrix was reinforced by a random distribution of CNTs with fraction ranging from 0.5 to 4.wt%. Composite panels were manufactured by using the infusion process. Taylor impact test was used to obtain the impact response of specimens. Projectile manufactured from a high strength and hardened steel with a diameter of 20 mm and 1.5 kg of mass was launched by a compressed gas gun within the velocity of 3 m/s. Impact force histories and absorbed energy of specimens were recorded. A numerical model was employed to simulate the impact performance. This model has been accomplished by forming a user established subroutine (VUMAT) and executing it in ABAQUS software. Finally, the effect of CNTs amount on dynamic properties of laminated composites was discussed.

  9. Cu assisted synthesis of self-supported PdCu alloy nanowires with enhanced performances toward ethylene glycol electrooxidation

    Science.gov (United States)

    Yan, Bo; Xu, Hui; Zhang, Ke; Li, Shujin; Wang, Jin; Shi, Yuting; Du, Yukou

    2018-03-01

    Self-supported PdCu alloy nanowires fabricated by a facile one-pot method have been reported, which copper assists in the morphological transformation from graininess to nanowires. The copper incorporated with palladium to form alloy structures cannot only cut down the usage of noble metal but also enhance their catalytic performances. The catalysts with self-supported structure and proper ratio of palladium to copper show great activity and long-term stability for the electrooxidation of ethylene glycol in alkaline solution. Especially for Pd43Cu57, its mass activity reaches to 5570.83 mA mg-1, which is 3.12 times as high as commercial Pd/C. This study highlights an accessible strategy to prepare self-supported PdCu alloy nanowires and their potential applications in renewable energy fields.

  10. Thin films of hydrogenated amorphous carbon (a-C:H) obtained through chemical vapor deposition assisted by plasma

    International Nuclear Information System (INIS)

    Mejia H, J.A.; Camps C, E.E.; Escobar A, L.; Romero H, S.; Chirino O, S.; Muhl S, S.

    2004-01-01

    Films of hydrogenated amorphous carbon (a-C:H) were deposited using one source of microwave plasma with magnetic field (type ECR), using mixtures of H 2 /CH 4 in relationship of 80/20 and 95/05 as precursory gases, with work pressures of 4X10 -4 to 6x10 -4 Torr and an incident power of the discharge of microwaves with a constant value of 400 W. It was analyzed the influence among the properties of the films, as the deposit rate, the composition and the bonding types, and the deposit conditions, such as the flow rates of the precursory gases and the polarization voltage of the sample holders. (Author)

  11. Preparation of Carbon Nanotube/TiO2 Mesoporous Hybrid Photoanode with Iron Pyrite (FeS2) Thin Films Counter Electrodes for Dye-Sensitized Solar Cell

    Science.gov (United States)

    Kilic, Bayram; Turkdogan, Sunay; Astam, Aykut; Ozer, Oguz Can; Asgin, Mansur; Cebeci, Hulya; Urk, Deniz; Mucur, Selin Pravadili

    2016-05-01

    Multi-walled carbon nanotube (MWCNT)/TiO2 mesoporous networks can be employed as a new alternative photoanode in dye-sensitized solar cells (DSSCs). By using the MWCNT/TiO2 mesoporous as photoanodes in DSSC, we demonstrate that the MWCNT/TiO2 mesoporous photoanode is promising alternative to standard FTO/TiO2 mesoporous based DSSC due to larger specific surface area and high electrochemical activity. We also show that iron pyrite (FeS2) thin films can be used as an efficient counter electrode (CE), an alternative to the conventional high cost Pt based CE. We are able to synthesis FeS2 nanostructures utilizing a very cheap and easy hydrothermal growth route. MWCNT/TiO2 mesoporous based DSSCs with FeS2 CE achieved a high solar conversion efficiency of 7.27% under 100 mW cm-2 (AM 1.5G 1-Sun) simulated solar irradiance which is considerably (slightly) higher than that of A-CNT/TiO2 mesoporous based DSSCs with Pt CE. Outstanding performance of the FeS2 CE makes it a very promising choice among the various CE materials used in the conventional DSSC and it is expected to be used more often to achieve higher photon-to-electron conversion efficiencies.

  12. Integrating seawater desalination and wastewater reclamation forward osmosis process using thin-film composite mixed matrix membrane with functionalized carbon nanotube blended polyethersulfone support layer.

    Science.gov (United States)

    Choi, Hyeon-Gyu; Son, Moon; Choi, Heechul

    2017-10-01

    Thin-film composite mixed matrix membrane (TFC MMM) with functionalized carbon nanotube (fCNT) blended in polyethersulfone (PES) support layer was synthesized via interfacial polymerization and phase inversion. This membrane was firstly tested in lab-scale integrating seawater desalination and wastewater reclamation forward osmosis (FO) process. Water flux of TFC MMM was increased by 72% compared to that of TFC membrane due to enhanced hydrophilicity. Although TFC MMM showed lower water flux than TFC commercial membrane, enhanced reverse salt flux selectivity (RSFS) of TFC MMM was observed compared to TFC membrane (15% higher) and TFC commercial membrane (4% higher), representing membrane permselectivity. Under effluent organic matter (EfOM) fouling test, 16% less normalized flux decline of TFC MMM was observed compared to TFC membrane. There was 8% less decline of TFC MMM compared to TFC commercial membrane due to fCNT effect on repulsive foulant-membrane interaction enhancement, caused by negatively charged membrane surface. After 10 min physical cleaning, TFC MMM displayed higher recovered normalized flux than TFC membrane (6%) and TFC commercial membrane (4%); this was also supported by visualized characterization of fouling layer. This study presents application of TFC MMM to integrated seawater desalination and wastewater reclamation FO process for the first time. It can be concluded that EfOM fouling of TFC MMM was suppressed due to repulsive foulant-membrane interaction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films.

    Science.gov (United States)

    Yang, Yingjun; Ding, Li; Han, Jie; Zhang, Zhiyong; Peng, Lian-Mao

    2017-04-25

    Solution-derived carbon nanotube (CNT) network films with high semiconducting purity are suitable materials for the wafer-scale fabrication of field-effect transistors (FETs) and integrated circuits (ICs). However, it is challenging to realize high-performance complementary metal-oxide semiconductor (CMOS) FETs with high yield and stability on such CNT network films, and this difficulty hinders the development of CNT-film-based ICs. In this work, we developed a doping-free process for the fabrication of CMOS FETs based on solution-processed CNT network films, in which the polarity of the FETs was controlled using Sc or Pd as the source/drain contacts to selectively inject carriers into the channels. The fabricated top-gated CMOS FETs showed high symmetry between the characteristics of n- and p-type devices and exhibited high-performance uniformity and excellent scalability down to a gate length of 1 μm. Many common types of CMOS ICs, including typical logic gates, sequential circuits, and arithmetic units, were constructed based on CNT films, and the fabricated ICs exhibited rail-to-rail outputs because of the high noise margin of CMOS circuits. In particular, 4-bit full adders consisting of 132 CMOS FETs were realized with 100% yield, thereby demonstrating that this CMOS technology shows the potential to advance the development of medium-scale CNT-network-film-based ICs.

  14. 3D Self-Supported Nanoarchitectured Arrays Electrodes for Lithium-Ion Batteries

    Directory of Open Access Journals (Sweden)

    Xin Chen

    2012-01-01

    Full Text Available Three-dimensional self-supported nanoarchitectured arrays electrodes (3DSNAEs consisting of a direct growth of nanoarchitectured arrays on the conductive current collector, including homogeneous and heterogeneous nanoarchitectured arrays structures, have been currently studied as the most promising electrodes owing to their synergies resulting from the multistructure hybrid and integrating heterocomponents to address the requirements (high energy and power density of superperformance lithium ion batteries (LIBs applied in portable electronic consumer devices, electric vehicles, large-scale electricity storage, and so on. In the paper, recent advances in the strategies for the fabrication, selection of the different current collector substrates, and structural configuration of 3DSNAEs with different cathode and anode materials are investigated in detail. The intrinsic relationship of the unique structural characters, the conductive substrates, and electrochemical kinetic properties of 3DSNAEs is minutely analyzed. Finally, the future design trends and directions of 3DSNAEs are highlighted, which may open a new avenue of developing ideal multifunctional 3DSNAEs for further advanced LIBs.

  15. Paired comparison of water, energy and carbon exchanges over two young maritime pine stands (Pinus pinaster Ait.): effects of thinning and weeding in the early stage of tree growth.

    Science.gov (United States)

    Moreaux, Virginie; Lamaud, Eric; Bosc, Alexandre; Bonnefond, Jean-Marc; Medlyn, Belinda E; Loustau, Denis

    2011-09-01

    The effects of management practices on energy, water and carbon exchanges were investigated in a young pine plantation in south-west France. In 2009-10, carbon dioxide (CO(2)), H(2)O and heat fluxes were monitored using the eddy covariance and sap flow techniques in a control plot (C) with a developed gorse layer, and an adjacent plot that was mechanically weeded and thinned (W). Despite large differences in the total leaf area index and canopy structure, the annual net radiation absorbed was only 4% lower in plot W. We showed that higher albedo in this plot was offset by lower emitted long-wave radiation. Annual evapotranspiration (ET) from plot W was 15% lower, due to lower rainfall interception and transpiration by the tree canopy, partly counterbalanced by the larger evaporation from both soil and regrowing weedy vegetation. The drainage belowground from plot W was larger by 113 mm annually. The seasonal variability of ET was driven by the dynamics of the soil and weed layers, which was more severely affected by drought in plot C. Conversely, the temporal changes in pine transpiration and stem diameter growth were synchronous between sites despite higher soil water content in the weeded plot. At the annual scale, both plots were carbon sinks, but thinning and weeding reduced the carbon uptake by 73%: annual carbon uptake was 243 and 65 g C m(-2) on plots C and W, respectively. Summer drought dramatically impacted the net ecosystem exchange: plot C became a carbon source as the gross primary production (GPP) severely decreased. However, plot W remained a carbon sink during drought, as a result of decreases in both GPP and ecosystem respiration (R(E)). In winter, both plots were carbon sources, plots C and W emitting 67.5 and 32.4 g C m(-2), respectively. Overall, this study highlighted the significant contribution of the gorse layer to mass and energy exchange in young pine plantations.

  16. A quantitative in vitro method to predict the adhesion lifetime of diamond-like carbon thin films on biomedical implants.

    Science.gov (United States)

    Falub, Claudiu Valentin; Thorwarth, Götz; Affolter, Christian; Müller, Ulrich; Voisard, Cyril; Hauert, Roland

    2009-10-01

    A quantitative method using Rockwell C indentation was developed to study the adhesion of diamond-like carbon (DLC) protective coatings to the CoCrMo biomedical implant alloy when immersed in phosphate-buffered saline (PBS) solution at 37 degrees C. Two kinds of coatings with thicknesses ranging from 0.5 up to 16 microns were investigated, namely DLC and DLC/Si-DLC, where Si-DLC denotes a 90 nm thick DLC interlayer containing Si. The time-dependent delamination of the coating around the indentation was quantified by means of optical investigations of the advancing crack front and calculations of the induced stress using the finite element method (FEM). The cause of delamination for both types of coatings was revealed to be stress-corrosion cracking (SCC) of the interface material. For the DLC coating a typical SCC behavior was observed, including a threshold region (60J m(-2)) and a "stage 1" crack propagation with a crack-growth exponent of 3.0, comparable to that found for ductile metals. The DLC/Si-DLC coating exhibits an SCC process with a crack-growth exponent of 3.3 and a threshold region at 470 Jm(-2), indicating an adhesion in PBS at 37 degrees C that is about eight times better than that of the DLC coating. The SCC curves were fitted to the reaction controlled model typically used to explain the crack propagation in bulk soda lime glass. As this model falls short of accurately describing all the SCC curves, limitations of its application to the interface between a brittle coating and a ductile substrate are discussed.

  17. Self-supported metallic nanopore arrays with highly oriented nanoporous structures as ideally nanostructured electrodes for supercapacitor applications.

    Science.gov (United States)

    Zhao, Huaping; Wang, Chengliang; Vellacheri, Ranjith; Zhou, Min; Xu, Yang; Fu, Qun; Wu, Minghong; Grote, Fabian; Lei, Yong

    2014-12-03

    Self-supported metallic nanopore arrays with highly oriented nanoporous structures are fabricated and applied as ideally nanostructured electrodes for supercapacitor applications. Their large specific surface area can ensure a high capacitance, and their highly oriented and stable nanoporous structure can facilitate ion transport. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Self-supported fibrous porous aromatic membranes for efficient CO2/N2 separations.

    Science.gov (United States)

    Meng, Lingbo; Zou, Xiaoqin; Guo, Shukun; Ma, Heping; Zhao, Yongnan; Zhu, Guangshan

    2015-07-22

    In this paper, we describe a new synthesis protocol for the preparation of self-supported hollow fiber membranes composed of porous aromatic framework PAF-56P and PSF. PAF-56P was facilely prepared by the cross-coupling reaction of triangle-shaped cyanuric chloride and linear p-terophenyl monomers. The prepared PAF-56P material possesses an extended conjugated network, the structure of which is confirmed by nuclear magnetic resonance and infrared characterizations, as well as a permanent porosity with a BET surface area of 553.4 m(2) g(-1) and a pore size of 1.2 nm. PAF-56P was subsequently integrated with PSF matrix into PAF-56P/PSF asymmetric hollow fiber membranes via the dry jet-wet quench method employing PAF-56P/PSF suspensions. Scanning electron microscopy studies show that PAF-56P particles are embedded in the PSF matrix to form continuous membranes. Fabricated PAF-56P/PSF membranes were further exploited for CO2 capture, which was exemplified by gas separations of CO2/N2 mixtures. The PAF-56P/PSF membranes show a high selectivity of CO2 over N2 with a separation factor of 38.9 due to the abundant nitrogen groups in the PAF-56P framework. A preferred permeance for CO2 in the binary CO2/N2 gas mixture is obtained in the range of 93-141 GPU due to the large CO2 adsorption capacity and a large pore size of PAF-56P. Additionally, PAF-56P/PSF membranes exhibit excellent thermal and mechanical stabilities, which were examined by thermal analysis and gas separation tests with the dependencies of temperatures and pressures. The merits of high selectivity for CO2, good stability, and easy scale up make PAF-56P/PSF hollow fiber membranes of great interest for the industrial separations of CO2 from the gas exhausts.

  19. Self-supporting method; an alternative method for steel truss bridge element replacement

    Science.gov (United States)

    Arsyad, Muhammad; Sangadji, Senot; As'ad, Sholihin

    2017-11-01

    Steel truss bridge often requires replacement of its element due to serious damage caused by traffic accidents. This replacement is carried out using temporary supporting structure. It would be difficult when the available space for the temporary structure is quite limited and or the position of work is at a high elevation. The self-supporting method is proposed instead of temporary supporting structure. This paper will discuss an innovative method of bridge rehabilitation by utilizing the existing bridge structure. It requires such temporary connecting structure that installed on the existing bridge element, therefore, the forces during replacement process could be transferred to the bridge foundation directly. By taking the case on a steel truss bridge Jetis Salatiga which requires element replacement due to its damages on two main diagonals, a modeling is carried out to get a proper repair method. Structural analysis is conducted for three temporary connecting structure models: “I,” “V,” and triangular model. Stresses and translations that occur in the structure are used as constraints. Bridge bearings are modeled in two different modes: fixed-fixed system and fixed-free one. Temperature load is given in each condition to obtain the appropriate time for execution. The triangular model is chosen as the best one. In the fixed-fixed mode, this method can be carried out in a temperature range 27-28.8° C, while in fixed-free one, the temperature it is allowed between 27-43.4 °C. The D4 is dismantled first by cutting the D4 leaving an area of 1140.2 mm2 or 127 mm web length to enable plastic condition until the D4 collapses. At the beginning of elongation occurs, immediately performed a slowly jacking on a temporary connecting structure so that the force on D4 is gradually transferred to the temporary connecting structure then the D4 and D5 are set in their place.

  20. The Apollo Number: space suits, self-support, and the walk-run transition.

    Directory of Open Access Journals (Sweden)

    Christopher E Carr

    Full Text Available BACKGROUND: How space suits affect the preferred walk-run transition is an open question with relevance to human biomechanics and planetary extravehicular activity. Walking and running energetics differ; in reduced gravity (<0.5 g, running, unlike on Earth, uses less energy per distance than walking. METHODOLOGY/PRINCIPAL FINDINGS: The walk-run transition (denoted * correlates with the Froude Number (Fr = v(2/gL, velocity v, gravitational acceleration g, leg length L. Human unsuited Fr* is relatively constant (approximately 0.5 with gravity but increases substantially with decreasing gravity below approximately 0.4 g, rising to 0.9 in 1/6 g; space suits appear to lower Fr*. Because of pressure forces, space suits partially (1 g or completely (lunar-g support their own weight. We define the Apollo Number (Ap = Fr/M as an expected invariant of locomotion under manipulations of M, the ratio of human-supported to total transported mass. We hypothesize that for lunar suited conditions Ap* but not Fr* will be near 0.9, because the Apollo Number captures the effect of space suit self-support. We used the Apollo Lunar Surface Journal and other sources to identify 38 gait events during lunar exploration for which we could determine gait type (walk/lope/run and calculate Ap. We estimated the binary transition between walk/lope (0 and run (1, yielding Fr* (0.36+/-0.11, mean+/-95% CI and Ap* (0.68+/-0.20. CONCLUSIONS/SIGNIFICANCE: The Apollo Number explains 60% of the difference between suited and unsuited Fr*, appears to capture in large part the effects of space suits on the walk-run transition, and provides several testable predictions for space suit locomotion and, of increasing relevance here on Earth, exoskeleton locomotion. The knowledge of how space suits affect gait transitions can be used to optimize space suits for use on the Moon and Mars.

  1. Fish gelatin thin film standards for biological application of PIXE

    Energy Technology Data Exchange (ETDEWEB)

    Manuel, Jack E., E-mail: jaelma@gmail.com [Ion Beam Modification and Analysis Laboratory, University of North Texas, Denton, TX 76203 (United States); Rout, Bibhudutta; Szilasi, Szabolcs Z.; Bohara, Gyanendra [Ion Beam Modification and Analysis Laboratory, University of North Texas, Denton, TX 76203 (United States); Deaton, James; Luyombya, Henry [Louisiana Accelerator Center, University of Louisiana at Lafayette, Lafayette, LA 70503 (United States); Briski, Karen P. [Department of Basic Pharmaceutical Sciences, University of Louisiana at Monroe, Monroe, LA 71209 (United States); Glass, Gary A. [Ion Beam Modification and Analysis Laboratory, University of North Texas, Denton, TX 76203 (United States)

    2014-08-01

    There exists a critical need to understand the flow and accumulation of metallic ions, both naturally occurring and those introduced to biological systems. In this paper the results of fabricating thin film elemental biological standards containing nearly any combination of trace elements in a protein matrix are presented. Because it is capable of high elemental sensitivity, particle induced X-ray emission spectrometry (PIXE) is an excellent candidate for in situ analysis of biological tissues. Additionally, the utilization of microbeam PIXE allows the determination of elemental concentrations in and around biological cells. However, obtaining elemental reference standards with the same matrix constituents as brain tissue is difficult. An excellent choice for simulating brain-like tissue is Norland® photoengraving glue which is derived from fish skin. Fish glue is water soluble, liquid at room temperature, and resistant to dilute acid. It can also be formed into a thin membrane which dries into a durable, self-supporting film. Elements of interest are introduced to the fish glue in precise volumetric additions of well quantified atomic absorption standard solutions. In this study GeoPIXE analysis package is used to quantify elements intrinsic to the fish glue as well as trace amounts of manganese added to the sample. Elastic (non-Rutherford) backscattered spectroscopy (EBS) and the 1.734 MeV proton-on-carbon {sup 12}C(p,p){sup 12}C resonance is used for a normalization scheme of the PIXE spectra to account for any discrepancies in X-ray production arising from thickness variation of the prepared standards. It is demonstrated that greater additions of the atomic absorption standard cause a viscosity reduction of the liquid fish glue resulting in thinner films but the film thickness can be monitored by using simultaneous PIXE and EBS proton data acquisition.

  2. Correlation Between Critical Thinking Disposition and Mental Self-Supporting Ability in Nursing Undergraduates: A Cross-Sectional Descriptive Study.

    Science.gov (United States)

    Wu, Defang; Luo, Yang; Liao, Xinyu

    2017-02-01

    There is universal agreement on the essential role of critical thinking in nursing practice. Most studies into this topic have provided descriptive statistical information and insights on related external factors such as educational environment and teaching strategies. However, there has been limited research into the psychological factors that may predict the disposition of students toward critical thinking. This study explored the relationship between the disposition of nursing students toward critical thinking and their mental self-supporting ability to obtain a profile and determine the psychological predictors of critical thinking. A cross-sectional descriptive study was conducted in 2013 using a convenience sample from four nursing schools. Four hundred six Chinese nursing undergraduates completed two questionnaires including (a) the California Critical Thinking Disposition Inventory (Chinese version) and (b) the Mental Self-Supporting Questionnaire for University Students. Pearson's correlation and linear regression analysis were used to investigate the relationship between these two variables and the predicted positive psychological qualities for the critical thinking disposition of participants. Average participant scores for critical thinking disposition and mental self-supporting were 280.91 ± 28.43 and 76.40 ± 8.47, respectively. Positive correlations were observed between these two variables (r = .583, p thinking disposition (R = .435, p thinking and mental self-supporting abilities.The four factors that had a major influence on critical thinking disposition included self-decision, self-cognition, self-confidence, and self-responsibility. Nursing educators should focus on improving the critical thinking ability of their students in these four aspects.

  3. Self-Supported Biocarbon-Fiber Electrode Decorated with Molybdenum Carbide Nanoparticles for Highly Active Hydrogen-Evolution Reaction.

    Science.gov (United States)

    Xiao, Jian; Zhang, Yan; Zhang, Zheye; Lv, Qiying; Jing, Feng; Chi, Kai; Wang, Shuai

    2017-07-12

    Devising and facilely synthesizing an efficient noble metal-free electrocatalyst for the acceleration of the sluggish kinetics in the hydrogen-evolution reaction (HER) is still a big challenge for electrolytic water splitting. Herein, we present a simple one-step approach for constructing self-supported biocarbon-fiber cloth decorated with molybdenum carbide nanoparticles (BCF/Mo 2 C) electrodes by a direct annealing treatment of the Mo oxyanions loaded cotton T-shirt. The Mo 2 C nanoparticles not only serve as the catalytic active sites toward the HER but also enhance the hydrophilicity and conductivity of resultant electrodes. As an integrated three-dimensional HER cathode catalyst, the BCF/Mo 2 C exhibits outstanding electrocatalytic performance with extremely low overpotentials of 88 and 115 mV to drive a current density of 20 mA cm -2 in alkaline and acidic media, respectively. In addition, it can continuously work for 50 h with little decrease in the cathodic current density in both alkaline and acidic solutions. Even better, self-supported tungsten carbide and vanadium carbide based electrodes also can be prepared by a similar synthesis process. This work will illuminate an entirely new avenue for the preparation of various self-supported three-dimensional electrodes made of transition-metal carbides for various applications.

  4. Aquifer configuration and geostructural links control the groundwater quality in thin-bedded carbonate-siliciclastic alternations of the Hainich CZE, central Germany

    Science.gov (United States)

    Kohlhepp, Bernd; Lehmann, Robert; Seeber, Paul; Küsel, Kirsten; Trumbore, Susan E.; Totsche, Kai U.

    2017-12-01

    The quality of near-surface groundwater reservoirs is controlled, but also threatened, by manifold surface-subsurface interactions. Vulnerability studies typically evaluate the variable interplay of surface factors (land management, infiltration patterns) and subsurface factors (hydrostratigraphy, flow properties) in a thorough way, but disregard the resulting groundwater quality. Conversely, hydrogeochemical case studies that address the chemical evolution of groundwater often lack a comprehensive analysis of the structural buildup. In this study, we aim to reconstruct the actual spatial groundwater quality pattern from a synoptic analysis of the hydrostratigraphy, lithostratigraphy, pedology and land use in the Hainich Critical Zone Exploratory (Hainich CZE). This CZE represents a widely distributed yet scarcely described setting of thin-bedded mixed carbonate-siliciclastic strata in hillslope terrains. At the eastern Hainich low-mountain hillslope, bedrock is mainly formed by alternated marine sedimentary rocks of the Upper Muschelkalk (Middle Triassic) that partly host productive groundwater resources. Spatial patterns of the groundwater quality of a 5.4 km long well transect are derived by principal component analysis and hierarchical cluster analysis. Aquifer stratigraphy and geostructural links were deduced from lithological drill core analysis, mineralogical analysis, geophysical borehole logs and mapping data. Maps of preferential recharge zones and recharge potential were deduced from digital (soil) mapping, soil survey data and field measurements of soil hydraulic conductivities (Ks). By attributing spatially variable surface and subsurface conditions, we were able to reconstruct groundwater quality clusters that reflect the type of land management in their preferential recharge areas, aquifer hydraulic conditions and cross-formational exchange via caprock sinkholes or ascending flow. Generally, the aquifer configuration (spatial arrangement of strata

  5. Principles of electron backscattering by solids and thin films

    International Nuclear Information System (INIS)

    Niedrig, H.

    1977-01-01

    The parameters concerning the electron backscattering from thin films and solids (atomic scattering cross-section, atomic number, single/multiple scattering, film thickness of self-supporting films and of surface films on bulk substrates, scattering angular distribution, angle of incidence, diffraction effects) are described. Their influence on some important contrast mechanisms in scanning electron microscopy (thickness contrast, Z/material contrast, tilting/topography contrast, orientation contrast) is discussed. The main backscattering electron detection systems are briefly described. (orig.) [de

  6. Carbon nanotube composite materials

    Science.gov (United States)

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2015-03-24

    A material consisting essentially of a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes dissolved in a solvent. Un-functionalized carbon nanotube concentrations up to 30 wt % and hydroxylated carbon nanotube concentrations up to 40 wt % can be used with even small concentrations of each (less than 2 wt %) useful in producing enhanced conductivity properties of formed thin films.

  7. The enhancement of photo-thermo-electric conversion in tilted Bi2Sr2Co2O(y) thin films through coating a layer of single-wall carbon nanotubes light absorber.

    Science.gov (United States)

    Wang, Shufang; Bai, Zilong; Yan, Guoying; Zhang, Hongrui; Wang, Jianglong; Yu, Wei; Fu, Guangsheng

    2013-07-29

    Light-induced transverse thermoelectric effect has been investigated in c-axis tilted Bi(2)Sr(2)Co(2)O(y) thin films coated with a single-wall carbon nanotubes light absorption layer. Open-circuit voltage signals were detected when the sample surface was irradiated by different lasers with wavelengths ranging from ultraviolet to near-infrared and the voltage sensitivity was enhanced as a result of the increased light absorption at the carbon nanotubes layer. Moreover, the enhancement degree was found to be dependent on the laser wavelength as well as the absorption coating size. This work opens up new strategy toward the practical applications of layered cobaltites in photo-thermo-electric conversion devices.

  8. Interfaces and thin films physics

    International Nuclear Information System (INIS)

    Equer, B.

    1988-01-01

    The 1988 progress report of the Interfaces and Thin Film Physics laboratory (Polytechnic School France) is presented. The research program is focused on the thin films and on the interfaces of the amorphous semiconductor materials: silicon and silicon germanium, silicon-carbon and silicon-nitrogen alloys. In particular, the following topics are discussed: the basic processes and the kinetics of the reactive gas deposition, the amorphous materials manufacturing, the physico-chemical characterization of thin films and interfaces and the electron transport in amorphous semiconductors. The construction and optimization of experimental devices, as well as the activities concerning instrumentation, are also described [fr

  9. Indirect additive manufacturing as an elegant tool for the production of self-supporting low density gelatin scaffolds.

    Science.gov (United States)

    Van Hoorick, Jasper; Declercq, Heidi; De Muynck, Amelie; Houben, Annemie; Van Hoorebeke, Luc; Cornelissen, Ria; Van Erps, Jürgen; Thienpont, Hugo; Dubruel, Peter; Van Vlierberghe, Sandra

    2015-10-01

    The present work describes for the first time the production of self-supporting low gelatin density (fused deposition modelling approach. To realize this, we have printed a sacrificial polyester scaffold which supported the hydrogel material during UV crosslinking, thereby preventing hydrogel structure collapse. After complete curing, the polyester scaffold was selectively dissolved leaving behind a porous, interconnective low density gelatin scaffold. Scaffold structural analysis indicated the success of the selected indirect additive manufacturing approach. Physico-chemical testing revealed scaffold properties (mechanical, degradation, swelling) to depend on the applied gelatin concentration and methacrylamide content. Preliminary biocompatibility studies revealed the cell-interactive and biocompatible properties of the materials developed.

  10. High hydrogen loading of thin palladium wires through alkaline earth carbonates' precipitation on the cathodic surface - evidence of a new phase in the Pd-H system

    Energy Technology Data Exchange (ETDEWEB)

    Celani, F.; Spallone, A.; Di Gioacchino, D. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, Frascati, RM (Italy); Marini, P.; Di Stefano, V.; Nakamura, M. [EURESYS, Rome (Italy); Pace, S. [Salerno Univ., Salerno (Italy). Dept. of Physics, Istituto Nazionale per la Fisica della Materia; Mancini, A. [ORIM S.r.l., Piediripa, MC (Italy); Tripodi, P. [Stanford Research Institut International, Stanford, CA (United States)

    2000-07-01

    A new protocol for the electrolytic loading of hydrogen (H) in thin palladium (Pd) wires has been developed. In order to increase the cathodic overvoltage, which is known to be the main parameter capable to enhance the electrolytic H loading of Pd, the catalytic action of the Pd surface versus H-H recombination has been strongly reduced by precipitation of a thin layer of alkaline-earth carbonates on the cathode. A set of electrolytes has been employed, containing small amounts of hydrochloric or sulfuric acid and strontium or calcium ions. The H loading has been continuously evaluated through ac measurements of the Pd wire resistance. Uncommonly low resistivity values, leading to an estimate of exceptionally high H loading, have been observed. Evidence of the existence of a new phase in the very high H content region of the Pd-H system has been inferred on the basis of the determination of the temperature coefficient of the electrical resistivity. Mainly for this purpose a thin layer of Hg was galvanically deposed on the cathodic surface, in order to prevent any H deloading during the measurements. The results have been fully reproduced in other 2 well equipped and experienced Laboratories (Italy, USA).

  11. Moderate temperature-dependent surface and volume resistivity and low-frequency dielectric constant measurements of pure and multi-walled carbon nanotube (MWCNT) doped polyvinyl alcohol thin films

    Science.gov (United States)

    Edwards, Matthew; Guggilla, Padmaja; Reedy, Angela; Ijaz, Quratulann; Janen, Afef; Uba, Samuel; Curley, Michael

    2017-08-01

    Previously, we have reported measurements of temperature-dependent surface resistivity of pure and multi-walled carbon nanotube (MWNCT) doped amorphous Polyvinyl Alcohol (PVA) thin films. In the temperature range from 22 °C to 40 °C with humidity-controlled environment, we found the surface resistivity to decrease initially, but to rise steadily as the temperature continued to increase. Moreover, electric surface current density (Js) was measured on the surface of pure and MWCNT doped PVA thin films. In this regard, the surface current density and electric field relationship follow Ohm's law at low electric fields. Unlike Ohmic conduction in metals where free electrons exist, selected captive electrons are freed or provided from impurities and dopants to become conduction electrons from increased thermal vibration of constituent atoms in amorphous thin films. Additionally, a mechanism exists that seemingly decreases the surface resistivity at higher temperatures, suggesting a blocking effect for conducting electrons. Volume resistivity measurements also follow Ohm's law at low voltages (low electric fields), and they continue to decrease as temperatures increase in this temperature range, differing from surface resistivity behavior. Moreover, we report measurements of dielectric constant and dielectric loss as a function of temperature and frequency. Both the dielectric constant and dielectric loss were observed to be highest for MWCNT doped PVA compared to pure PVA and commercial paper, and with frequency and temperature for all samples.

  12. Composite carbon foam electrode

    Science.gov (United States)

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1997-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid particles being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivty and power to system energy.

  13. Current state and perspectives for organo-halide perovskite solar cells. Part 1. Crystal structures and thin film formation, morphology, processing, degradation, stability improvement by carbon nanotubes. A review

    Directory of Open Access Journals (Sweden)

    Nigmat Ashurov

    2017-03-01

    Full Text Available The fundamental problems of the modern state of the studies of organic–inorganic organo-halide perovskites (OHP as basis for high efficiency thin film solar cells are discussed. Perovskite varieties and background properties are introduced. The chronology of development of the studies in this direction has been presented – structural aspects of these OHP perovskites, from early 2D to recent 3D MAPbI3 perovskites and important technological aspects of smooth thin film structure creation by various techniques, such as solvent engineering, spin- and dip - coating, vacuum deposition, cation exchange approach, nanoimprinting (particularly, a many-sided role of polymers. The most important theoretical problems such as electronic structure of lattice, impurity and defect states in pure and mixed perovskites, suppressed electron-hole recombination, extra-long lifetimes, and diffusion lengths are analyzed. Degradation effects associated with moisture and photo irradiation, as well as degradation of metallic electrodes to OHP solar cells have been considered. The application of carbon nanostructures: carbon nanotubes (CNT and graphene as stable semitransparent charge collectors to OHP perovskites is demonstrated on the example of original results of authors.

  14. Carbon thin films deposited by the magnetron sputtering technique using cobalt, copper and nickel as buffer-layers; Filmes finos de carbono depositados por meio da tecnica de magnetron sputtering usando cobalto, cobre e niquel como buffer-layers

    Energy Technology Data Exchange (ETDEWEB)

    Costa e Silva, Danilo Lopes

    2015-11-01

    In this work, carbon thin films were produced by the magnetron sputtering technique using single crystal substrates of alumina c-plane (0001) and Si (111) and Si (100) substrates, employing Co, Ni and Cu as intermediate films (buffer-layers). The depositions were conducted in three stages, first with cobalt buffer-layers where only after the production of a large number of samples, the depositions using cooper buffer-layers were carried out on Si substrates. Then, depositions were performed with nickel buffer layers using single-crystal alumina substrates. The crystallinity of the carbon films was evaluated by using the technique of Raman spectroscopy and, then, by X-ray diffraction (XRD). The morphological characterization of the films was performed by scanning electron microscopy (SEM and FEG-SEM) and high-resolution transmission electron microscopy (HRTEM). The XRD peaks related to the carbon films were observed only in the results of the samples with cobalt and nickel buffer-layers. The Raman spectroscopy showed that the carbon films with the best degree of crystallinity were the ones produced with Si (111) substrates, for the Cu buffers, and sapphire substrates for the Ni and Co buffers, where the latter resulted in a sample with the best crystallinity of all the ones produced in this work. It was observed that the cobalt has low recovering over the alumina substrates when compared to the nickel. Sorption tests of Ce ions by the carbon films were conducted in two samples and it was observed that the sorption did not occur probably because of the low crystallinity of the carbon films in both samples. (author)

  15. Ultrastrong Carbon Thin Films from Diamond to Graphene under Extreme Conditions: Probing Atomic Scale Interfacial Mechanisms to Achieve Ultralow Friction and Wear

    Science.gov (United States)

    2016-12-08

    requires complex numerical algorithms with multiple analysis parameters; the latter typically requires custom fixturing and suffers concerns about...Conference On Metallurgical Coatings & Thin Films (ICMCTF), San Diego, USA, April 20 – 24 - Yeau-Ren Jeng, 2015, “A Journey from In-situ Characterizations of

  16. Utilizing thin-film solid-phase extraction to assess the effect of organic carbon amendments on the bioavailability of DDT and dieldrin to earthworms

    Science.gov (United States)

    Improved approaches are needed to rapidly and accurately assess the bioavailability of persistent, hydrophobic organic compounds in soils at contaminated sites. The performance of a thin-film solid-phase extraction (TF-SPE) assay using vials coated with ethylene vinyl acetate polymer was compared to...

  17. Thin Places

    OpenAIRE

    Lockwood, Sandra Elizabeth

    2013-01-01

    This inquiry into the three great quests of the twentieth century–the South Pole, Mount Everest, and the Moon–examines our motivations to venture into these sublime, yet life-taking places. The Thin Place was once the destination of the religious pilgrim seeking transcendence in an extreme environment. In our age, the Thin Place quest has morphed into a challenge to evolve beyond the confines of our own physiology; through human ingenuity and invention, we reach places not meant to accommod...

  18. Study of sterilization-treatment in pure and N- doped carbon thin films synthesized by inductively coupled plasma assisted pulsed-DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Javid, Amjed [Center for Advanced Plasma Surface Technology (CAPST), NU-SKKU Joint Institute for Plasma Nano-Materials (IPNM), Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Department of Textile Processing, National Textile University, Faisalabad 37610 (Pakistan); Kumar, Manish, E-mail: manishk@skku.edu [Center for Advanced Plasma Surface Technology (CAPST), NU-SKKU Joint Institute for Plasma Nano-Materials (IPNM), Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Han, Jeon Geon, E-mail: hanjg@skku.edu [Center for Advanced Plasma Surface Technology (CAPST), NU-SKKU Joint Institute for Plasma Nano-Materials (IPNM), Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of)

    2017-01-15

    Highlights: • Pure and N-doped nanocrystallie carbon films are synthesized by ICP assisted pulsed DC plasma process. • ICP power induces the increase in average graphitic crystallite size from 4.86 nm to 6.42 nm. • Beneficial role of ICP source assistance to achieve high sputtering throughput (deposition rate ∼55 nm/min). • Post-sterilization electron-transport study shows N-doped carbon films having promising stability. - Abstract: Electrically-conductive nanocrystalline carbon films, having non-toxic and non-immunogenic characteristics, are promising candidates for reusable medical devices. Here, the pure and N- doped nanocrystalline carbon films are deposited by the assistance of inductively coupled plasma (ICP) in an unbalanced facing target pulsed-DC magnetron sputtering process. Through the optical emission spectroscopy study, the role of ICP assistance and N-doping on the reactive components/radicals during the synthesis is presented. The N-doping enhances the three fold bonding configurations by increasing the ionization and energies of the plasma species. Whereas, the ICP addition increases the plasma density to control the deposition rate and film structure. As a result, sputtering-throughput (deposition rate: 31–55 nm/min), electrical resistivity (4–72 Ωcm) and water contact angle (45.12°–54°) are significantly tailored. Electric transport study across the surface microchannel confirms the superiority of N-doped carbon films for sterilization stability over the undoped carbon films.

  19. Effect of antimicrobial on mechanical, barrier and optical properties of corn starch based self-supporting edible film

    Directory of Open Access Journals (Sweden)

    Tanima Chowdhury

    2013-10-01

    Full Text Available Antimicrobials like potassium sorbate, sodium propionate, and benzoic acid were incorporated in corn starch based formulation to investigate their effect on mechanical, water vapour barrier and optical properties of the developed self supporting edible film. The film was prepared by casting technique. When incorporated at 1.40% and above, potassium sorbate decreased the tensile strength (about 22% and increased the elongation (about 55% of control film; whereas, it increased the water vapour permeability by 15% only when added at 2.66%. At 2.66%, benzoic acid reduced the tensile strength by 24% and sodium propionate increased elongation by 17%. These two antimicrobials did not change the water vapour permeability. However, all the three antimicrobials adversely affected the optical properties by decreasing the whiteness index, increasing yellowness index, and reducing the surface gloss, with potassium sorbate showing the maximum effect. Among the three antimicrobials, sodium propionate appeared to be the best with minimum deterioration of film properties.

  20. Comparison of two different running models for the shock wave lithotripsy machine in Taipei City Hospital: self-support versus outsourcing cooperation.

    Science.gov (United States)

    Huang, Chi-Yi; Chen, Shiou-Sheng; Chen, Li-Kuei

    2009-10-01

    To compare two different running models including self-support and outsourcing cooperation for the extracorporeal shock wave lithotripsy (SWL) machine in Taipei City Hospital, we made a retrospective study. Self-support means that the hospital has to buy an SWL machine and get all the payment from SWL. In outsourcing cooperation, the cooperative company provides an SWL machine and shares the payment with the hospital. Between January 2002 and December 2006, we used self-support for the SWL machine, and from January 2007 to December 2008, we used outsourcing cooperation. We used the method of full costing to calculate the cost of SWL, and the break-even point was the lowest number of treatment sessions of SWL to make balance of payments every month. Quality parameters including stone-free rate, retreatment rate, additional procedures and complication rate were evaluated. When outsourcing cooperation was used, there were significantly more treatment sessions of SWL every month than when utilizing self-support (36.3 +/- 5.1 vs. 48.1 +/- 8.4, P = 0.03). The cost of SWL for every treatment session was significantly higher using self-support than with outsourcing cooperation (25027.5 +/- 1789.8 NT$ vs. 21367.4 +/- 201.0 NT$). The break-even point was 28.3 (treatment sessions) for self-support, and 28.4 for outsourcing cooperation, when the hospital got 40% of the payment, which would decrease if the percentage increased. No significant differences were noticed for stone-free rate, retreatment rate, additional procedures and complication rate of SWL between the two running models. Besides, outsourcing cooperation had lower cost (every treatment session), but a greater number of treatment sessions of SWL every month than self-support.

  1. Thin book

    DEFF Research Database (Denmark)

    En lille bog om teater og organisationer, med bidrag fra 19 teoretikere og praktikere, der deltog i en "Thin Book Summit" i Danmark i 2005. Bogen bidrager med en state-of-the-art antologi om forskellige former for samarbejde imellem teater og organisationer. Bogen fokuserer både på muligheder og...

  2. Thin Film

    African Journals Online (AJOL)

    a

    organic substances. KEY WORDS: Photoelectrocatalysis, Titanium dioxide, Cuprous oxide, Composite thin film, Photo electrode. INTRODUCTION ... reddish p-type semiconductor with a direct band gap of 2.0-2.2 eV [18, 19]. ... Photoelectrocatalytic removal of color from water using TiO2 and TiO2/Cu2O electrodes. Bull.

  3. Carbon activity meter

    International Nuclear Information System (INIS)

    Roy, P.; Krankota, J.L.

    1975-01-01

    A carbon activity meter utilizing an electrochemical carbon cell with gaseous reference electrodes having particular application for measuring carbon activity in liquid sodium for the LMFBR project is described. The electrolyte container is electroplated with a thin gold film on the inside surface thereof, and a reference electrode consisting of CO/CO 2 gas is used. (U.S.)

  4. Depth profiling of fluorine-doped diamond-like carbon (F-DLC) film: Localized fluorine in the top-most thin layer can enhance the non-thrombogenic properties of F-DLC

    Energy Technology Data Exchange (ETDEWEB)

    Hasebe, Terumitsu [Center for Science of Environment, Resources and Energy, Keio University Faculty of Science and Technology, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan); Department of Radiology, Tachikawa Hospital, 4-2-22, Nishiki-cho, Tachikawa, Tokyo 190-8531 (Japan)], E-mail: teru_hasebe@hotmail.com; Nagashima, So [Center for Science of Environment, Resources and Energy, Keio University Faculty of Science and Technology, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan); Kamijo, Aki [Department of Transfusion Medicine, the University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Yoshimura, Taichi; Ishimaru, Tetsuya; Yoshimoto, Yukihiro; Yohena, Satoshi; Kodama, Hideyuki; Hotta, Atsushi [Center for Science of Environment, Resources and Energy, Keio University Faculty of Science and Technology, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan); Takahashi, Koki [Department of Transfusion Medicine, the University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Suzuki, Tetsuya [Center for Science of Environment, Resources and Energy, Keio University Faculty of Science and Technology, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan)

    2007-12-03

    Fluorine-doped diamond-like carbon (F-DLC) has recently drawn a great deal of attention as a more non-thrombogenic coating than conventional DLC for blood-contacting medical devices. We conducted quantitative depth profiling of F-DLC film by X-ray photoelectron spectroscopy (XPS) in order to elucidate the effects of fluorine and fluorine distribution in F-DLC film in connection with the prevention of surface blood adhesion. F-DLC films were prepared on silicon substrates using the radio frequency plasma enhanced chemical vapor deposition method, and the thickness of films was {approx} 50 nm. 50-nm-thick F-DLC film samples were etched at 10-nm thickness intervals using argon plasma, and each surface was examined by XPS. Thereafter, each etched film layer was incubated with platelet-rich plasma isolated from human whole blood, and the platelet-covered area per unit area was evaluated for each surface. XPS spectra showed the localization of doped fluorine in the top-most thin layer of the film. Platelet-covered areas represented progressively larger portions of the surfaces of deeper etched layers, corresponding to the decreasing fluorine content in such sample surfaces. These results indicate that the localized fluorine in the top-most thin layer is one of the key factors in the promotion of the non-thrombogenicity of F-DLC film.

  5. The study of structural properties of carbon nanotubes decorated with NiFe₂O₄ nanoparticles and application of nano-composite thin film as H₂S gas sensor.

    Science.gov (United States)

    Hajihashemi, R; Rashidi, Ali M; Alaie, M; Mohammadzadeh, R; Izadi, N

    2014-11-01

    Nano-composite of multiwall carbon nanotube, decorated with NiFe2O4 nanoparticles (NiFe2O4-MWCNT), was synthesized using the sol-gel method. NiFe2O4-MWCNTs were characterized using different methods such as X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), high resolution transmission electron microscopy (HRTEM), atomic force microscopy (AFM) and vibrating sample magnetometer (VSM). The average size of the crystallites is 23.93 nm. The values of the saturation magnetization (MS), coercivity (HC) and retentivity (MR) of NiFe2O4-MWCNTs are obtained as 15 emu g(-1), 21Oe and 5 emu g(-1), respectively. In this research, NiFe2O4-MWCNT thin films were prepared with the spin-coating method. These thin films were used as the H2S gas sensor. The results suggest the possibility of the utilization of NiFe2O4-MWCNT nano-composite, as the H2S detector. The sensor shows appropriate response towards 100 ppm of H2S at 300°C. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Effect of pre-treatment of the substrate surface by energetic C+ ion bombardment on structure and nano-tribological characteristics of ultra-thin tetrahedral amorphous carbon (ta-C) protective coatings

    International Nuclear Information System (INIS)

    Rismani, E; Sinha, S K; Tripathy, S; Yang, H; Bhatia, C S

    2011-01-01

    Depositing an ultra-thin tetrahedral amorphous carbon (ta-C) protective coating on the surface of the recording heads in magnetic tape drives can improve the tribological problems at the head/tape interface. In this work the effect of pre-treatment of the surface of AlTiC substrate (main bearing surface of head in contact with tape) by C + ions of moderate energy (smaller than 400 eV) on the structural and tribo-mechanical behaviours of the coated surfaces is studied. Sample preparation consisted of two separate stages of surface pre-treatment and deposition of the protective film, and was done by means of filtered cathodic vacuum arc. Structure of the ta-C film and its interface with the substrate were studied by transmission electron microscopy and time-of-flight secondary ion mass spectrometry depth profiling. The results revealed the formation of a broader, dense atomically mixed layer at the ta-C film-substrate interface of the pre-treated samples comparing with that of the samples without pre-treatment. Chemical characterization of thin diamond-like carbon coatings was conducted by means of x-ray photoelectron spectroscopy and the surface pre-treatment was found to have a remarkable effect on increasing the sp 3 hybridization fraction in the ta-C overcoat. Nano-tribological properties of the treated surfaces were examined using ball-on-flat wear test at very low load (20 mN). There was a good correlation between the surface and structure characteristics of the film, and the tribological results and the pre-treated surfaces presented a very low coefficient of friction and higher wear life. The experimental results demonstrate the effectiveness of bombardment of the surface with C + ions of moderate ion energy to improve the structural and tribo-mechanical properties of the protective ta-C films on the magnetic head substrate material.

  7. Biomass accumulation and carbon sequestration after heavy mechanical thinning on post-fire Pinus pinaster see dings (Monte Fraguas, Guadalajara, Central Spain); Distribucion de biomasa y fijacion de carbono tras clareos mecanizados intensos en regenerado post-incendio Pinus pinaster Ait. (Monte Fraguas, Guadalajara, Espana)

    Energy Technology Data Exchange (ETDEWEB)

    Madrigal, J.; Hernando, C.; Guijarro, M.; Diez, C.; Jimenez, E.

    2006-07-01

    An experience has been conducted on Pinus pinaster stand in Guadalajara (Central Spain) affected by a wildfire in 1992 to evaluate biomass allocation of different seeding fractions and to quantify the differences between two heavy pine seeding mechanical thinning. Nine permanent plots ( 20 m x 20 m) were installed in the study area, in 2000. After measuring initial seeding density (10,000 seedlings/ha), a completely randomized block design was used. Three plots remained as control, three were treated with a heavy pine seedling thinning and the other three were treated with a very heavy pine seedling thinning. In each plot, a yearly dasonomic inventory and a biomass destructive inventory every two years, removing 10 representative seedlings of each treatment, were carried out. Multiplicative models (y=ax''b) have been elaborated in order to relate dasometric variables with the biomass obtained through destructive samplings. The highest correlation coefficients (from 0.80 to 0.97) were obtained for the stem groundline diameter. Results show that biomass accumulation of different seedling fractions is significantly different among treatments, being the increment of C higher with the heaviest thinning. These changes were higher the two first years after thinning. Nevertheless, Carbon sequestration of the stand was significantly higher in the control plots. Consequently, heavy thinning on post-fire Pinus pinaster seedlings makes better their vigour, and decreases forest fire hazard, but at the sama time, it produces an important extraction of Carbon sequestrated. (Author) 35 refs.

  8. Thin melanoma.

    Science.gov (United States)

    Elder, David E

    2011-03-01

    The incidence of malignant melanoma is increasing and a preponderance of the melanomas diagnosed today are "thin in terms of Breslow criteria. Although thin melanomas, as a group, are associated with a very good prognosis, a subset of these tumors may metastasize and cause death. These cases can be identified by using prognostic models, including the "standard" American Joint Committee on Cancer criteria, and other attributes identified in follow-up studies. To review the history of concepts of prognostic modeling in melanoma, focusing on thin melanomas. Selected literature. About 40 years ago, it was realized that malignant melanoma, once almost uniformly fatal, could be divided into categories with better or worse prognosis through the use of prognostic models. The first simple models, Clark levels of invasion and Breslow thickness, are still in use. Thickness remains the single most useful variable. Breslow recognized that melanomas less than 0.76 mm in thickness were associated with a very good prognosis, with no metastases in his limited initial study. The American Joint Committee on Cancer selected a cutoff of 1.0 mm, which achieves a similar result, with stage modifiers, although some metastases and deaths do occur with stage I lesions. Clark demonstrated an almost equally good prognosis for his level II invasive melanomas and recognized that most of these lesions, although invasive, lacked the ability to form tumors or to undergo mitosis in the dermis and were therefore "nontumorigenic" and "nonmitogenic" and lacked competence for metastasis. Studies of these low-risk melanomas have led to the development of criteria for earlier diagnosis and a steady, but still inadequate, improvement in prognosis for melanoma overall. Multivariable models currently can identify groups of patients within the "thin melanoma" category whose prognosis varies, from a disease-free survival of close to 100% to about 70%. Prognosis declines more or less linearly with increasing

  9. thin films

    Indian Academy of Sciences (India)

    The anionic precursor was 1% H2O2 solution. Both the cationic and anionic precursors were kept at room temperature (∼300 K). One SILAR cycle consists of two steps: (i) adsorption of Sn4+ ions on the substrate surface for 20 s and (ii) reaction with H2O2 solution for 40 s to form stable SnO2:H2O thin film on the substrate.

  10. Recent Developments in the Photophysics of Single-Walled Carbon Nanotubes for Their Use as Active and Passive Material Elements in Thin Film Photovoltaics

    Science.gov (United States)

    2013-01-01

    spanning from the ultraviolet to the near-infrared.2 The electrical and optical properties of semiconducting carbon nanotube species can be additionally...Owner Societies 2013 Faculty Grant. JLB graciously acknowledges funding from the Solar Photochemistry program of the U.S. Department of Energy, Office of

  11. Transfer-free synthesis of graphene-like atomically thin carbon films on SiC by ion beam mixing technique

    Science.gov (United States)

    Zhang, Rui; Chen, Fenghua; Wang, Jinbin; Fu, Dejun

    2018-03-01

    Here we demonstrate the synthesis of graphene directly on SiC substrates at 900 °C using ion beam mixing technique with energetic carbon cluster ions on Ni/SiC structures. The thickness of 7-8 nm Ni films was evaporated on the SiC substrates, followed by C cluster ion bombarding. Carbon cluster ions C4 were bombarded at 16 keV with the dosage of 4 × 1016 atoms/cm2. After thermal annealing process Ni silicides were formed, whereas C atoms either from the decomposition of the SiC substrates or the implanted contributes to the graphene synthesis by segregating and precipitating process. The limited solubility of carbon atoms in silicides, involving SiC, Ni2Si, Ni5Si2, Ni3Si, resulted in diffusion and precipitation of carbon atoms to form graphene on top of Ni and the interface of Ni/SiC. The ion beam mixing technique provides an attractive production method of a transfer-free graphene growth on SiC and be compatible with current device fabrication.

  12. Synthesis and characterization of natural dye and counter electrode thin films with different carbon materials for dye-sensitized solar cells.

    Science.gov (United States)

    Chang, Ho; Chen, Tien-Li; Kao, Mu-Jung; Chen, Chih-Hao; Chien, Shu-Hua; Jiang, Lii-Jenq

    2011-08-01

    This study aims to deal with the film of the counter electrode of dye-sensitized solar cells (DSSCs) and the preparation, structure and characteristics of the extract of natural dye. This study adopts different commercial carbon materials such as black lead, carbon black and self-made TiO2-MWCNT compound nanoparticle as the film of the counter electrodes. Moreover, for the preparation of natural dyes, anthocyanins and chlorophyll dyes are extracted from mulberry and pomegranate respectively. Furthermore, the extracted anthocyanins and chlorophyll are blended into cocktail dye to complete the preparation of natural dye. Results show that the photoelectric conversion efficiency of the single-layer TiO2-MWCNT counter electrode film and the cocktail dye of the DSSCs is 0.462%.

  13. THE CHARACTERISTICS OF THE SELF-SUPPORT STILT-HOUSES TOWARDS THE DISASTER POTENTIALITY AT THE CAMBAYA COASTAL AREA, MAKASSAR

    Directory of Open Access Journals (Sweden)

    Isfa Sastrawati

    2009-07-01

    Full Text Available Self-support stilt-houses at the coastal area have environment characteristics that are different from inland houses, and they have the disaster potentiality such as hurricanes, tidal waves, abrasion, earthquakes, and even tsunami. The stilt houses are very adaptable to climatic conditions and coastal disasters. The shape of the stilt houses at the coastal area must comply with aspects of safety, security, comfort, and health. This paper examines the characteristics of the stilt houses at the coastal area of Cambaya, Makassar, especially in terms of safety and security aspects. The aspects of safety and security include the resistance of the building construction towards disasters. Along with the development of the urban area, the demanding needs and limited financial-abilities, the owners of the houses at the Cambaya coastal area develop their houses by utilizing the empty space at the coastal area and the space under floor of the stilt house. The change of the building shape gives an effect on the poor quality of the building, building safety, and security. However, there are several stilt houses at Cambaya which could reduce the impacts of disasters on the safety of the residents through their local wisdom.

  14. An Untrodden Path: Versatile Fabrication of Self-Supporting Polymer-Stabilized Percolation Membranes (PSPMs) for Gas Separation.

    Science.gov (United States)

    Friebe, Sebastian; Mundstock, Alexander; Schneider, Daniel; Caro, Jürgen

    2017-05-11

    The preparation and scalability of zeolite or metal organic framework (MOF) membranes remains a major challenge, and thus prevents the application of these materials in large-scale gas separation. Additionally, several zeolite or MOF materials are quite difficult or nearly impossible to grow as defect-free layers, and require expensive macroporous ceramic or polymer supports. Here, we present new self-supporting zeolite and MOF composite membranes, called Polymer-Stabilized Percolation Membranes (PSPMs), consisting of a pressed gas selective percolation network (in our case ZIF-8, NaX and MIL-140) and a gas-impermeable infiltrated epoxy resin for cohesion. We demonstrate the performance of these PSPMs by separating binary mixtures of H 2 /CO 2 and H 2 /CH 4 . We report the brickwork-like architecture featuring selective percolation pathways and the polymer as a stabilizer, compare the mechanical stability of said membranes with competing materials, and give an outlook on how economic these membranes may become. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Self-supported poly(methyl methacrylate-acrylonitrile-vinyl acetate)-based gel electrolyte for lithium ion battery

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Y.H.; Zhou, D.Y.; Rao, M.M.; Cai, Z.P.; Liang, Y. [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Li, W.S.; Tan, C.L. [School of Chemistry and Environment, South China Normal University, Guangzhou 510006 (China); Key Lab of Electrochemical Technology on Energy Storage and Power Generation in Guangdong Universities, Guangzhou 510006 (China)

    2009-04-01

    Self-supported gel polymer electrolyte (GPE) was prepared based on copolymer, poly(methyl methacrylate-acrylonitrile-vinyl acetate) (P(MMA-AN-VAc)). The copolymer P(MMA-AN-VAc) was synthesized by emulsion polymerization and the copolymer membrane was prepared through phase inversion. The structure and the performance of the copolymer, the membrane and the GPE were characterized by FTIR, NMR, SEM, XRD, DSC/TG, LSV, CA, and EIS. It is found that the copolymer was formed through the breaking of double bond C=C in each monomer. The membrane has low crystallinity and has low glass transition temperature, 39.1 C, its thermal stability is as high as 310 C, and its mechanical strength is improved compared with P(MMA-AN). The GPE is electrochemically stable up to 5.6 V (vs. Li/Li{sup +}) and its conductivity is 3.48 x 10{sup -3} S cm{sup -1} at ambient temperature. The lithium ion transference number in the GPE is 0.51 and the conductivity model of the GPE is found to obey the Vogel-Tamman-Fulcher (VTF) equation. (author)

  16. The interplay of blocking properties with charge and potential redistribution in thin carbon-doped GaN on n-doped GaN layers

    Science.gov (United States)

    Koller, Christian; Pobegen, Gregor; Ostermaier, Clemens; Huber, Martin; Pogany, Dionyz

    2017-07-01

    In carbon-doped GaN (GaN:C) buffers used in a GaN-on-Si technology, the buffer is embedded in between transition and channel layers. This makes the analysis of buffer properties difficult due to e.g., carrier injection from or potential drop at these adjacent layers. Here, we analyze capacitance- and current-voltage characteristics of 200-300 nm thick GaN:C ([C] = 1019 cm-3) layers which are embedded between a top metal electrode and bottom n-doped GaN (n-GaN). Such structures allow a better potential control in GaN:C and thus determination of the band diagram quantitatively. The accumulation of negative charge (concentration up to 6 × 1017 cm-3) with bias is observed in GaN:C at both polarities. For biases Vappl GaN:C near to its interface with n-GaN so that GaN:C exhibits no potential drop and blocks leakage current. For Vappl > +1.7 V, accumulated negative charges in GaN:C raise an energy barrier of ˜1.1 eV for electron injection from n-GaN to GaN:C. This causes a potential drop in GaN:C leading to a significant leakage current increase. The Fermi level pinning in GaN:C at a commonly referred acceptor at EV + 0.7(±0.2) eV is extracted only from electrostatic considerations. The occupancy change of carbon acceptors is attributed to trapping processes where the dislocation-related conductive paths are supposed to be involved in carrier transport from the top metal electrode to the carbon defect.

  17. Radiation damage to amorphous carbon thin films irradiated by multiple 46.9 nm laser shots below the single-shot damage threshold

    Czech Academy of Sciences Publication Activity Database

    Juha, Libor; Hájková, Věra; Chalupský, Jaromír; Vorlíček, Vladimír; Ritucci, A.; Reale, A.; Zuppella, P.; Störmer, M.

    2009-01-01

    Roč. 105, č. 9 (2009), 093117/1-093117/3 ISSN 0021-8979 R&D Projects: GA AV ČR KAN300100702; GA MŠk LC510; GA MŠk(CZ) LC528; GA MŠk LA08024; GA AV ČR IAA400100701 Institutional research plan: CEZ:AV0Z10100523 Keywords : single-shot damage threshold * multiple-shot exposure damage * amorphous carbon * radiation erosion * capillary-discharge XUV laser Subject RIV: BH - Optics, Masers, Lasers Impact factor: 2.072, year: 2009

  18. EFFECTS OF METHANE GAS FLOW RATE ON THE OPTOELECTRICAL PROPERTIES OF NITROGENATED CARBON THIN FILMS GROWN BY SURFACE WAVE MICROWAVE PLASMA CHEMICAL VAPOR DEPOSITION

    OpenAIRE

    M. RUSOP; S. ABDULLAH; A. M. M. OMER; S. ADHIKARI; T. SOGA; T. JIMBO; M. UMENO

    2006-01-01

    We have studied the influence of the methane gas (CH4) flow rate on the composition and structural and electrical properties of nitrogenated amorphous carbon (a-C:N) films grown by surface wave microwave plasma chemical vapor deposition (SWMP-CVD) using Auger electron spectroscopy, X-ray photoelectron spectroscopy, UV-visible spectroscopy, four-point probe and two-probe method resistance measurement. The photoelectrical properties of a-C:N films were also studied. We have succeeded to grow a-...

  19. A new type of self-supported, polymeric Ru-carbene complex for homogeneous catalysis and heterogeneous recovery: synthesis and catalytic activities for ring-closing metathesis.

    Science.gov (United States)

    Chen, Shu-Wei; Kim, Ju Hyun; Shin, Hyunik; Lee, Sang-Gi

    2008-08-07

    A novel 2nd generation Grubbs-type catalyst tethering an isopropoxystyrene has been synthesized and automatically polymerized in solution to form a self-supported polymeric Ru-carbene complex, which catalyzed ring-closing metathesis homogeneously, but was recovered heterogeneously.

  20. Synthesis of self-supported non-precious metal catalysts for oxygen reduction reaction with preserved nanostructures from the polyaniline nanofiber precursor

    DEFF Research Database (Denmark)

    Hu, Yang; Zhao, Xiao; Huang, Yunjie

    2013-01-01

    Non-precious metal catalysts (NPMCs) for the oxygen reduction reaction (ORR) are an active subject of recent research on proton exchange membrane fuel cells. In this study, we report a new approach to preparation of self-supported and nano-structured NPMCs using pre-prepared polyaniline (PANI...

  1. X-ray absorption spectroscopy by full-field X-ray microscopy of a thin graphite flake: Imaging and electronic structure via the carbon K-edge

    Directory of Open Access Journals (Sweden)

    Carla Bittencourt

    2012-04-01

    Full Text Available We demonstrate that near-edge X-ray-absorption fine-structure spectra combined with full-field transmission X-ray microscopy can be used to study the electronic structure of graphite flakes consisting of a few graphene layers. The flake was produced by exfoliation using sodium cholate and then isolated by means of density-gradient ultracentrifugation. An image sequence around the carbon K-edge, analyzed by using reference spectra for the in-plane and out-of-plane regions of the sample, is used to map and spectrally characterize the flat and folded regions of the flake. Additional spectral features in both π and σ regions are observed, which may be related to the presence of topological defects. Doping by metal impurities that were present in the original exfoliated graphite is indicated by the presence of a pre-edge signal at 284.2 eV.

  2. The depth distribution functions of the natural abundances of carbon isotopes in Alfisols thoroughly sampled by thin-layer sampling, and their relation to the dynamics of organic matter in theses soils

    International Nuclear Information System (INIS)

    Becker-Heidmann, P.

    1989-01-01

    The aim of this study was to gain fundamental statements on the relationship between the depth distributions of the natural abundances of 13 C and 14 C isotopes and the dynamics of the organic matter in Alfisols. For this purpose, six Alfisols were investigated: four forest soils from Northern Germany, two of them developed in Loess and two in glacial loam, one West German Loess soil used for fruit-growing and one agricultural granite-gneiss soil from the semiarid part of India. The soil was sampled as succesive horizontal layers of 2 cm depth from an area of 0.5 to 1 m 2 size, starting from the organic down to the C horizon or the lower part of the Bt. This kind of completely thin-layer-wise sampling was applied here for the first time. The carbon content and the natural abundances of the 13 C and the 14 C isotopes of each sample were determined. The δ 13 C value was measured by mass spectrometry. A vacuum preparation line with an electronically controlled cooling unit was constructed thereto. For the determination of the 14 C content, the sample carbon was transferred into benzene, and its activity was measured by liquid scintillation spectrometry. From the combination of the depth distribution functions of the 14 C activity and the δ 13 C value, and with the aid of additional analyses like C/N ratio and particle size distribution, a conclusive interpretation as to the dynamics of the organic matter in the investigated Alfisols is given. (orig./BBR)

  3. High-performance printed carbon nanotube thin-film transistors array fabricated by a nonlithography technique using hafnium oxide passivation layer and mask.

    Science.gov (United States)

    Pillai, Suresh Kumar Raman; Chan-Park, Mary B

    2012-12-01

    The large-scale application of semiconducting single-walled carbon nanotubes (s-SWCNTs) for printed electronics requires scalable, repeateable, as well as noncontaminating assembly techniques. Previously explored nanotube deposition methods include serial methods such as inkjet printing and parallel methods such as spin-coating with photolithography. The serial methods are usually slow, whereas the photolithography-related parallel methods result in contamination of the nanotubes. In this paper, we report a reliable clean parallel method for fabrication of arrays of carbon nanotube-based field effect transistors (CNTFETs) involving shadow mask patterning of a passivating layer of Hafnium oxide (HfO(2)) over the nanotube (CNT) active channel regions and plasma etching of the unprotected nanotubes. Pure (99%) semiconducting SWCNTs are first sprayed over the entire surface of a wafer substrate followed by a two-step shadow masking procedure to first deposit metal electrodes and then a HfO(2) isolation/passivation layer over the device channel region. The exposed SWCNT network outside the HfO(2) protected area is removed with oxygen plasma etching. The HfO(2) thus serves as both the device isolation mask during the plasma etching and as a protective passivating layer in subsequent use. The fabricated devices on SiO(2)/Si substrate exhibit good device performance metrics, with on/off ratio ranging from 1 × 10(1) to 3 × 10(5) and mobilities of 4 to 23 cm(2)/(V s). The HfO(2)/Si devices show excellent performance with on/off ratios of 1 × 10(2) to 2 × 10(4) and mobilities of 8 to 56 cm(2)/(V s). The optimum devices (on HfO(2)/Si) have an on/off ratio of 1 × 10(4) and mobility as high as 46 cm(2)/(V s). This HfO(2)-based patterning method enables large scale fabrication of CNTFETs with no resist residue or other contamination on the device channel. Further, shadow masking circumvents the need for expensive and area-limited lithography patterning process. The device

  4. Application of Stabilized Silver Nanoparticles as Thin Films as Corrosion Inhibitors for Carbon Steel Alloy in 1 M Hydrochloric Acid

    Directory of Open Access Journals (Sweden)

    Ayman M. Atta

    2013-01-01

    Full Text Available Nanometer scaled materials have attracted tremendous interest as corrosion protective films due to their high ability to form self-assembled films on the metal surfaces. It is well known that the silver nanoparticles have higher reactivity towards aqueous acidic solution. The present work aims to prepare coated silver nanoparticles to protect carbon steel alloys from aqueous acidic corrosive media. In this respect, Ag nanoparticles colloid solutions were produced through reducing AgNO3 separately with trisodium citrate in an aqueous solution or in the presence of stabilizer such as poly(ethylene glycol thiol and poly(vinyl pyrrolidone. The morphology of the modified silver nanoparticles was investigated by TEM and DLS. UV-Vis absorption spectrum was used to study the effect of HCl on the stability of the dispersed silver nanoparticles. The corrosion inhibition efficiency of the poly (ethylene glycolthiol, the self-assembled monolayers of Ag nanoparticles, was determined by polarization method and electrochemical impedance spectroscopy (EIS. Polarization curves indicated that the coated silver poly (ethylene glycolthiol acted as a mixed type inhibitor. The data of inhibition efficiencies obtained measured by polarization measurements are in good agreement with those obtained with electrochemical impedance.

  5. Fabrication of a gas sensor array with micro-wells for VOCs gas sensing based on polymer/carbon nanotube thin films

    Science.gov (United States)

    Xie, Guangzhong; Xie, Tao; Zhu, Tao; Jiang, Yadong; Tai, Huiling

    2014-08-01

    In this paper, gas sensor array with micro-well was designed and prepared by Micro Electro-Mechanical Systems (MEMS) technology. The micro-well and interdigital electrodes of sensor array were prepared using photolithography process, reactive ion etching (RIE) process, wet etching and conventional vacuum evaporation. In the manufacture process of the gas sensor array, KOH wet etching process was mainly discussed. The optimum etching processing parameters were as follows: 30 wt% KOH solution at 80 °C, a cooling back-flow device and a magnetic stirrer. The multi-walled carbon nanotubes (MWCNTs)-polyethyleneoxide (PEO) and MWNTs-Polyvinylpyrrolidone (PVP) composite films were utilized as sensitive layers to test gas-sensing properties. Response performances of MWCNTs- PEO and MWNTs-PVP composite films to toluene vapor and methanol vapor at room temperature were investigated. The results revealed that the sensor array showed a larger sensitivity to toluene vapor than to methanol vapor. In addition, the sensing mechanisms were studied as well.

  6. Nanostructured thin film coatings with different strengthening effects

    Directory of Open Access Journals (Sweden)

    Panfilov Yury

    2017-01-01

    Full Text Available A number of articles on strengthening thin film coatings were analyzed and a lot of unusual strengthening effects, such as super high hardness and plasticity simultaneously, ultra low friction coefficient, high wear-resistance, curve rigidity increasing of drills with small diameter, associated with process formation of nanostructured coatings by the different thin film deposition methods were detected. Vacuum coater with RF magnetron sputtering system and ion-beam source and arc evaporator for nanostructured thin film coating manufacture are represented. Diamond Like Carbon and MoS2 thin film coatings, Ti, Al, Nb, Cr, nitride, carbide, and carbo-nitride thin film materials are described as strengthening coatings.

  7. Poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (3,4-ethylenedioxythiophene)-few walled carbon nanotube (PEDOT-FWCNT) nanocomposite based thin films for Schottky diode application

    International Nuclear Information System (INIS)

    Gupta, Bhavana; Mehta, Minisha; Melvin, Ambrose; Kamalakannan, R.; Dash, S.; Kamruddin, M.; Tyagi, A.K.

    2014-01-01

    Transparent, conductive films of poly (3,4-ethylenedioxythiophene) (PEDOT) and poly (3,4-ethylenedioxythiophene)-few walled carbon nanotube (PEDOT-FWCNT) nanocomposite were synthesized by in-situ oxidative polymerization and investigated for their Schottky diode property. The prepared films were characterized by UV–Vis spectroscopy, thermal gravimetric analysis (TGA), surface resistivity, cyclic voltametery, scanning electron microscopy (SEM) and high resolution transmission electron microscopy (HRTEM). SEM reveals the formation of homogeneous and adhesive polymer films while HRTEM confirms the uniform wrapping of polymer chains around the nanotube walls for PEDOT-FWCNT film. Improved thermal stability, conductivity and charge storage property of PEDOT in the presence of FWCNT is observed. Among different compositions, 5 wt. % of FWCNT is found to be optimum with sheet resistance and transmittance of 500 Ω sq −1 and 77%, respectively. Moreover, the electronic and junction properties of polymer films were studied and compared by fabricating sandwich type devices with a configuration of Al/PEDOT or PEDOT-FWCNT nanocomposite/indium tin oxide (ITO) coated glass. The measured current density-voltage characteristics show typical rectifying behavior for both configurations. However, enhanced rectification ratio and higher forward current density is observed in case of PEDOT-FWCNT based Schottky diode. Furthermore, reliability test depicts smaller hysteresis effect and better performance of PEDOT-FWCNT based diodes. - Highlights: • Single step synthesis of PEDOT and PEDOT-FWCNT nanocomposites films via in-situ oxidative polymerization. • Thermal, electrical and electrochemical properties of films show positive effect of FWCNT on PEDOT films. • Schottky diodes based on metal Al/PEDOT or PEDOT-FWCNT composites/ITO glass are fabricated. • Improved electrical characteristics with better reliability is achieved for PEDOT-FWCNT based diodes

  8. COST-EFFECTIVE METHOD FOR PRODUCING SELF SUPPORTED PALLADIUM ALLOY MEMBRANES FOR USE IN EFFICIENT PRODUCTION OF COAL DERIVED HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    J. Arps; K. Coulter

    2006-09-30

    In the past quarter, we have conducted additional characterization and permeation tests on different Pd alloy membranes including PdCuTa ternary alloy materials. We attempted to address some discrepancies between SwRI{reg_sign} and CSM relating to PdCu stoichiometry by preparing a range of PdCu membranes with compositions from {approx}58-65 at% Pd (bal. Cu). While some difficulties in cutting and sealing these thin membranes at CSM continue, some progress has been made in identifying improved membrane support materials. We have also completed an initial cost analysis for large-scale vacuum deposition and fabrication of thin Pd ally membranes and project that the process can meet DOE cost targets. Minimal progress was made in the past quarter relating to the testing of prototype membrane modules at Idatech. In the past quarter Idatech was acquired by a UK investment firm, which we believe may have impacted the ability of key technical personnel to devote sufficient time to support this effort. We are hopeful their work can be completed by the end of the calendar year.

  9. Self-supported formation of needlelike Co{sub 3}O{sub 4} nanotubes and their application as lithium-ion battery electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Lou, X.W. [School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853-5201 (United States); Deng, D.; Lee, J.Y. [Department of Chemical and Biomolecular Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore 119260 (Singapore); Feng, J. [Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, NY 14853-1301 (United States); Archer, L.A.

    2008-01-18

    A one-step, self-supported topotactic transformation approach for synthesizing electrochemically active Co{sub 3}O{sub 4} needlelike nanotubes is reported. Used as the active material in the negative electrode of a rechargeable lithium ion battery, the Co{sub 3}O{sub 4} nanotubes manifest ultrahigh Li storage capacity with improved cycle life and rate capability. These features are discussed in terms of the unique structure of the materials. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  10. Processing parameters investigation for the fabrication of self-supported and freeform polymeric microstructures using ultraviolet-assisted three-dimensional printing

    International Nuclear Information System (INIS)

    Farahani, R D; Lebel, L L; Therriault, D

    2014-01-01

    Ultraviolet-assisted three-dimensional (3D) printing (UV-3DP) was used to manufacture photopolymer-based microdevices with 3D self-supported and freeform features. The UV-3DP technique consists of the robotized deposition of extruded filaments, which are rapidly photopolymerized under UV illumination during the deposition process. This paper systematically studies the processing parameters of the UV-3DP technique using two photo-curable polymers and their associated nanocomposite materials. The main processing parameters including materials' rheological behavior, deposition speed and extrusion pressure, and UV illumination conditions were thoroughly investigated. A processing map was then defined in order to help choosing the proper parameters for the UV-3DP of microstructures with various geometries. Compared to self-supported features, the accurate fabrication of 3D freeform structures was found to take place in a narrower processing region since a higher rigidity of the extruded filament was required for structural stability. Finally, various 3D self-supported and freeform microstructures with high potential in micro electromechanical systems, micro-systems and organic electronics were fabricated to show the capability of the technique. (paper)

  11. Photoemission surface characterization of (0 0 1) In{sub 2}O{sub 3} thin film through the interactions with oxygen, water and carbon monoxide: Comparison with (1 1 1) orientation

    Energy Technology Data Exchange (ETDEWEB)

    Brinzari, V., E-mail: vbrinzari@mail.ru [State University of Moldova, str. Mateevich 60A, MD-2009 Chisinau, Republic of Moldova (Moldova, Republic of); Cho, B.K. [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of); Kamei, M. [National Institute for Material Science, Namiki, Tsukuba, Ibaraki (Japan); Korotcenkov, G., E-mail: ghkoro@yahoo.com [Gwangju Institute of Science and Technology, Gwangju (Korea, Republic of)

    2015-01-01

    Highlights: • SRPES of In{sub 2}O{sub 3}(0 0 1) thin film under heating activated gas exposures of O{sub 2}, H{sub 2}O, CO. • Changes in surface band bending and composition vs. these treatments. • Models of (0 0 1) surface terminations, compositions and zone diagrams. • Changes in VB spectra radically differ from the same ones for (1 1 1) film. • Adsorbed water species do not donate electrons into conduction band. - Abstract: Synchrotron radiation ultraviolet photoemission experiments at photon energies of 150 and 49 eV have been performed on (0 0 1) In{sub 2}O{sub 3} epitaxial layer with thickness of 120 nm grown by electron beam evaporation method. Valence band (VB) photoemission spectra have been monitored under separate oxygen, water and carbon monoxide exposures (100 L) at different sample temperatures within the range utilized for chemoresistive gas sensors operation (20–450 °C). Large changes in photoemission response within the whole VB were observed for all gases. Surface potential changes were identified as a shift of the valence band edge relative to the Fermi energy. It was found that the initial state of the In{sub 2}O{sub 3} surface after standard preparation procedure corresponded to highly reduced surface, close to “metallic” surface. Treatments in oxygen resulted in oxidation of the surface and regular upward band bending have been changing up to 0.27 eV. These two extreme states of the In{sub 2}O{sub 3} surface corresponded to the surface zone diagrams with accumulation layer and flat bands, respectively. Surface potential changes under water and carbon monoxide treatment have been irregular vs. temperature and small enough (<0.05 eV). However, the magnitudes of photoemission deviations under these treatments were large and comparable with intensity of an initial photoemission itself before the treatment (ΔI{sub ph} ∼ 10–40%). The obtained results have been compared with the ones previously received for (1 1 1) surface and

  12. Oriented growth of thin films of samarium oxide by MOCVD

    Indian Academy of Sciences (India)

    Unknown

    Infrared spectroscopic study reveals that films grown above 600°C are free of carbon. Keywords. MOCVD; thin films .... Simultaneous thermogravimetry and differential thermal analysis (TG/DTA) of the complex was carried ..... quality thin films of rare earth oxides by MOCVD, using the phenanthroline adducts of pentadionate ...

  13. Study of secondary electron emission from thin carbon targets with swift charged particles: heavy ions, hydrogen ions; Etude experimentale de l`emission electronique secondaire de cibles minces de carbone sous l`impact de projectiles rapides: ions lourds, ions hydrogene (atomiques, moleculaires ou sous forme d`agregats)

    Energy Technology Data Exchange (ETDEWEB)

    Billebaud, A.

    1995-07-12

    The main subject of this work is the study of electron emission from the two surfaces of thin solid targets bombarded with swift charged particles. The slowing down of swift ions in matter is mainly due to inelastic interaction with target electrons (ionization, excitation): the energy transfer to target electrons is responsible for the secondary electron emission process. The phenomenological and theoretical descriptions of this phenomena are the subject of the first chapter. We focused on secondary electron emission induced by different kind of projectiles on thin carbon foils. In chapter two we describe hydrogen cluster induced electron emission measurement between 40 and 120 keV/proton. These projectiles, composed of several atoms, allowed us to study and highlight collective effects of the electron emission process. We extended our study of electron emission to molecular (H{sub 2}{sup +}, H{sub 3}{sup +}) and composite (H{sup -}, H{sup 0}) projectiles at higher energies (<= 2 MeV): we have designed an experimental set-up devoted to electron emission statistics measurements which allowed us to study, among others things, the role of projectile electrons in secondary electron emission. This experiment is described in the third chapter. Finally, the fourth chapter describes new measurements of electron emission induced by energetic (13 MeV/u) and highly charged argon ion provided by the medium energy beam line (SME) of GANIL (Caen), which have been analyzed in the framework of a semi-empirical model of secondary electron emission. This set of experiments brings new results on composite projectile interaction with matter, and on the consequences of high energy deposition in solids. (author).

  14. Low-Cost Repairable Oxidation Resistant Coatings for Carbon-Carbon Composites via CCVD

    National Research Council Canada - National Science Library

    Hendrick, Michelle

    2000-01-01

    ...) thin film process to yield oxidation resistant coatings on carbon-carbon (C-C) composites. Work was on simple coatings at this preliminary stage of investigation, including silicon dioxide, platinum and aluminum oxide...

  15. Multiplicity of secondary electrons emitted by carbon thin targets by impact of H{sup 0}, H{sub 2}{sup +} and H{sub 3}{sup +} projectiles at MeV energies; Multiplicite des electrons secondaires emis par des cibles minces de carbone sous l`impact de projectiles H{sup 0}, H{sub 2}{sup +} et H{sub 3}{sup +} d`energie de l`ordre du MeV

    Energy Technology Data Exchange (ETDEWEB)

    Vidovic, Zvonimir [Inst. de Physique Nucleaire, Lyon-1 Univ., 69 - Villeurbanne (France)

    1997-06-24

    This work focuses on the study of the emission statistics of secondary electrons from thin carbon foils bombarded with H{sup 0}, H{sub 2}{sup +} and H{sub 3}{sup +} projectiles in the 0.25 - 2.2 MeV energy range. The phenomenon of secondary electron emission from solids under the impact of swift ions is mainly due to inelastic interactions with target electrons. Phenomenological and theoretical descriptions as well as a summary of the main theoretical models are the subjects of the first chapter. The experimental set-up used to measure event by event the electron emission of the two faces of the thin carbon foils crossed by an energetic projectile is described in the chapter two. In this chapter there are also presented the method and the algorithms used to process experimental spectra in order to obtain the statistical distribution of the emitted electrons. Chapter three presents the measurements of secondary electron emission induced by H{sup 0} atoms passing through thin carbon foils. The secondary electron yields are studied in correlation with emergent projectile charge state. We show the peculiar role of the projectile electron, whether it remains or not bound to the incident proton. The fourth chapter is dedicated to the secondary electron emission induced by H{sub 2}{sup +} and H{sub 3}{sup +} polyatomic ions. The results are interpreted in terms of collective effects in the interactions of the ions with solids. The role of the proximity of the protons, molecular ions fragments, upon the amplitude of these collected effects is evidenced from the study of the statistics of forward emission. The experiments allowed us to shed light on various aspects of atom and polyatomic ion interactions with solid surfaces. (author) 136 refs., 41 figs., 3 tabs.

  16. Capacitor with a composite carbon foam electrode

    Science.gov (United States)

    Mayer, Steven T.; Pekala, Richard W.; Kaschmitter, James L.

    1999-01-01

    Carbon aerogels used as a binder for granularized materials, including other forms of carbon and metal additives, are cast onto carbon or metal fiber substrates to form composite carbon thin film sheets. The thin film sheets are utilized in electrochemical energy storage applications, such as electrochemical double layer capacitors (aerocapacitors), lithium based battery insertion electrodes, fuel cell electrodes, and electrocapacitive deionization electrodes. The composite carbon foam may be formed by prior known processes, but with the solid partides being added during the liquid phase of the process, i.e. prior to gelation. The other forms of carbon may include carbon microspheres, carbon powder, carbon aerogel powder or particles, graphite carbons. Metal and/or carbon fibers may be added for increased conductivity. The choice of materials and fibers will depend on the electrolyte used and the relative trade off of system resistivity and power to system energy.

  17. Thin film processes II

    CERN Document Server

    Kern, Werner

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques.Key Features* Provides an all-new sequel to the 1978 classic, Thin Film Processes* Introduces new topics, and sever

  18. Applications for alliform carbon

    Energy Technology Data Exchange (ETDEWEB)

    Gogotsi, Yury; Mochalin, Vadym; McDonough, IV, John Kenneth; Simon, Patrice; Taberna, Pierre Louis

    2017-02-21

    This invention relates to novel applications for alliform carbon, useful in conductors and energy storage devices, including electrical double layer capacitor devices and articles incorporating such conductors and devices. Said alliform carbon particles are in the range of 2 to about 20 percent by weight, relative to the weight of the entire electrode. Said novel applications include supercapacitors and associated electrode devices, batteries, bandages and wound healing, and thin-film devices, including display devices.

  19. Thin Film Processes

    CERN Document Server

    Vossen, John L.

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques. Key Features * Provides an all-new sequel to the 1978 classic, Thin Film Processes * Introduces new topics, and several key topics presented in the original volume are updated * Emphasizes practical applications of major thin film deposition and etching processes * Helps readers find the appropriate technology for a particular application

  20. Nanostructured thin films and coatings mechanical properties

    CERN Document Server

    2010-01-01

    The first volume in "The Handbook of Nanostructured Thin Films and Coatings" set, this book concentrates on the mechanical properties, such as hardness, toughness, and adhesion, of thin films and coatings. It discusses processing, properties, and performance and provides a detailed analysis of theories and size effects. The book presents the fundamentals of hard and superhard nanocomposites and heterostructures, assesses fracture toughness and interfacial adhesion strength of thin films and hard nanocomposite coatings, and covers the processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. It also uses nanomechanics to optimize coatings for cutting tools and explores various other coatings, such as diamond, metal-containing amorphous carbon nanostructured, and transition metal nitride-based nanolayered multilayer coatings.

  1. Preparation of air-settled, roll-thinned phosphorus targets

    CERN Document Server

    Lozowski, W R

    1999-01-01

    Red sup 3 sup 1 P targets of 2.6 and 2.9 mg/cm sup 2+-0.1 mg/cm sup 2 with 1-cmx2-cm side dimensions were prepared for a nuclear mass measurement which required good thickness uniformity. The thinner target, with 50 mu g/cm sup 2 of gold flashed on both surfaces, withstood a 173-MeV alpha beam of 175 nA for 18 h. Adaptations will be described for an Indiana University Cyclotron Facility air-settling method used to distribute phosphorus powder, as well as the methods developed for subsequent pressing, roll thinning, and dry release to obtain self-supporting targets. An envelope of gold foil, in contact with the phosphorus during each step, was instrumental in the process.

  2. Thin films on cantilevers

    NARCIS (Netherlands)

    Nazeer, H.

    2012-01-01

    The main goal of the work compiled in this thesis is to investigate thin films for integration in micro electromechanical systems (MEMS). The miniaturization of MEMS actuators and sensors without compromising their performance requires thin films of different active materials with specific

  3. Nitrogen-Doped Nanoporous Carbon Membranes with Co/CoP Janus-Type Nanocrystals as Hydrogen Evolution Electrode in Both Acidic and Alkaline Environments

    KAUST Repository

    Wang, Hong

    2017-03-31

    Self-supported electrocatalysts being generated and employed directly as electrodes for energy conversion has been intensively pursued in the fields of materials chemistry and energy. Herein, we report a synthetic strategy to prepare freestanding hierarchically structured, nitrogen-doped nanoporous graphitic carbon membranes functionalized with Janus-type Co/CoP nanocrystals (termed as HNDCM-Co/CoP), which were successfully applied as a highly efficient, binder-free electrode in the hydrogen evolution reaction (HER). Benefited from multiple structural merits, such as a high degree of graphitization, three-dimensionally interconnected micro/meso/macropores, uniform nitrogen doping, well-dispersed Co/CoP nanocrystals, as well as the confinement effect of the thin carbon layer on the nanocrystals, HNDCM-Co/CoP exhibited superior electrocatalytic activity and long-term operation stability for HER under both acidic and alkaline conditions. As a proof-of-concept of practical usage, a 5.6 cm × 4 cm × 60 μm macroscopic piece of HNDCM-Co/CoP was prepared in our laboratory. Driven by a solar cell, electroreduction of water in alkaline conditions (pH 14) was performed, and H was produced at a rate of 16 mL/min, demonstrating its potential as real-life energy conversion systems.

  4. Mesoscale simulations of confined Nafion thin films

    OpenAIRE

    Vanya, Peter; Sharman, Jonathan; Elliott, James A.

    2017-01-01

    The morphology and transport properties of thin films of the ionomer Nafion, with thicknesses on the order of the bulk cluster size, have been investigated as a model system to explain the anomalous behaviour of catalyst/electrode-polymer interfaces in membrane-electrode assemblies. We have employed dissipative particle dynamics (DPD) to investigate the interaction of water and fluorocarbon chains with carbon and quartz as confining materials for a wide range of operational water contents and...

  5. Mesoscale simulations of confined Nafion thin films

    OpenAIRE

    Vanya, Peter; Sharman, J; Elliott, James Arthur

    2017-01-01

    The morphology and transport properties of thin films of the ionomer Nafion, with thicknesses on the order of the bulk cluster size, have been investigated as a model system to explain the anomalous behaviour of catalyst/electrode-polymer interfaces in membrane electrode assemblies. We have employed dissipative particle dynamics (DPD) to investigate the interaction of water and fluorocarbon chains with carbon and quartz as confining materials for a wide range of operational water contents and...

  6. Optical thin film devices

    Science.gov (United States)

    Mao, Shuzheng

    1991-11-01

    Thin film devices are applied to almost all modern scientific instruments, and these devices, especially optical thin film devices, play an essential role in the performances of the instruments, therefore, they are attracting more and more attention. Now there are numerous kinds of thin film devices and their applications are very diversified. The 300-page book, 'Thin Film Device and Applications,' by Prof. K. L. Chopra gives some general ideas, and my paper also outlines the designs, fabrication, and applications of some optical thin film devices made in my laboratory. Optical thin film devices have been greatly developed in the recent decades. Prof. A. Thelan has given a number of papers on the theory and techniques, Prof. H. A. Macleod's book, 'Thin Film Optical Filters,' has concisely concluded the important concepts of optical thin film devices, and Prof. J. A. Dobrowobski has proposed many successful designs for optical thin film devices. Recently, fully-automatic plants make it easier to produce thin film devices with various spectrum requirements, and some companies, such as Balzers, Leybold AG, Satis Vacuum AG, etc., have manufactured such kinds of coating plants for research or mass-production, and the successful example is the production of multilayer antireflection coatings with high stability and reproducibility. Therefore, it could be said that the design of optical thin film devices and coating plants is quite mature. However, we cannot expect that every problem has been solved, the R&D work still continues, the competition still continues, and new design concepts, new techniques, and new film materials are continually developed. Meanwhile, the high-price of fully-automatic coating plants makes unpopular, and automatic design of coating stacks is only the technique for optimizing the manual design according to the physical concepts and experience, in addition, not only the optical system, but also working environment should be taken into account when

  7. The 1989 progress report: interface physics and thin films

    International Nuclear Information System (INIS)

    Equer, B.

    1989-01-01

    The 1989 progress report of the laboratory of Interface Physics and Thin Films of the Polytechnic School (France) is presented. The properties and the interfaces of thin films, which show optoelectronic activity, are studied. The materials investigated are hydrogenated amorphous silicon compounds, amorphous compounds of silicon-germanium, silicon-carbon and silicon-mitrogen. The techniques developed for manufacturing and characterizing those materials are included. The published papers, the conferences and the Laboratory staff are listed [fr

  8. Nanometric thin film membranes manufactured on square meter scale: ultra-thin films for CO 2 capture

    KAUST Repository

    Yave, Wilfredo

    2010-09-01

    Miniaturization and manipulation of materials at nanometer scale are key challenges in nanoscience and nanotechnology. In membrane science and technology, the fabrication of ultra-thin polymer films (defect-free) on square meter scale with uniform thickness (<100 nm) is crucial. By using a tailor-made polymer and by controlling the nanofabrication conditions, we developed and manufactured defect-free ultra-thin film membranes with unmatched carbon dioxide permeances, i.e. >5 m3 (STP) m-2 h -1 bar-1. The permeances are extremely high, because the membranes are made from a CO2 philic polymer material and they are only a few tens of nanometers thin. Thus, these thin film membranes have potential application in the treatment of large gas streams under low pressure like, e.g., carbon dioxide separation from flue gas. © 2010 IOP Publishing Ltd.

  9. Thin Film & Deposition Systems (Windows)

    Data.gov (United States)

    Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

  10. Thin film hydrogen sensor

    Science.gov (United States)

    Cheng, Yang-Tse; Poli, Andrea A.; Meltser, Mark Alexander

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  11. A versatile new method for synthesis and deposition of doped, visible light-activated TiO2 thin films

    DEFF Research Database (Denmark)

    In, Su-il; Kean, A.H.; Orlov, A.

    2009-01-01

    A flexible and widely applicable method allows the deposition of carbon-doped visible light-activated photocatalytic TiO2 thin films on a variety of substrates.......A flexible and widely applicable method allows the deposition of carbon-doped visible light-activated photocatalytic TiO2 thin films on a variety of substrates....

  12. Electron field emission from amorphous semiconductor thin films

    International Nuclear Information System (INIS)

    Forrest, R.D.

    2001-01-01

    The flat panel display market requires new and improved technologies in order to keep up with the requirements of modem lifestyles. Electron field emission from thin film amorphous semiconductors is potentially such a technology. For this technology to become viable, improvements in the field emitting properties of these materials must be achieved. To this end, it is important that a better understanding of the emission mechanisms responsible is attained. Amorphous carbon thin films, amorphous silicon thin films and other materials have been deposited, in-house and externally. These materials have been characterised using ellipsometry, profilometry, optical absorption, scanning electron microscopy, atomic force microscopy, electron paramagnetic resonance and Rutherford backscattering spectroscopy. An experimental system for evaluating the electron field emitting performance of thin films has been developed. In the process of developing thin film cathodes in this study, it has been possible to add a new and potentially more useful semiconductor, namely amorphous silicon, to the family of cold cathode emitters. Extensive experimental field emission data from amorphous carbon thin films, amorphous silicon thin films and other materials has been gathered. This data has been used to determine the mechanisms responsible for the observed electron emission. Preliminary computer simulations using appropriate values for the different material properties have exhibited emission mechanisms similar to those identified by experiment. (author)

  13. Carbon nanotube polymer composition and devices

    Science.gov (United States)

    Liu, Gao [Oakland, CA; Johnson, Stephen [Richmond, CA; Kerr, John B [Oakland, CA; Minor, Andrew M [El Cerrito, CA; Mao, Samuel S [Castro Valley, CA

    2011-06-14

    A thin film device and compound having an anode, a cathode, and at least one light emitting layer between the anode and cathode, the at least one light emitting layer having at least one carbon nanotube and a conductive polymer.

  14. Thin film device applications

    CERN Document Server

    Kaur, Inderjeet

    1983-01-01

    Two-dimensional materials created ab initio by the process of condensation of atoms, molecules, or ions, called thin films, have unique properties significantly different from the corresponding bulk materials as a result of their physical dimensions, geometry, nonequilibrium microstructure, and metallurgy. Further, these characteristic features of thin films can be drasti­ cally modified and tailored to obtain the desired and required physical characteristics. These features form the basis of development of a host of extraordinary active and passive thin film device applications in the last two decades. On the one extreme, these applications are in the submicron dimensions in such areas as very large scale integration (VLSI), Josephson junction quantum interference devices, magnetic bubbles, and integrated optics. On the other extreme, large-area thin films are being used as selective coatings for solar thermal conversion, solar cells for photovoltaic conver­ sion, and protection and passivating layers. Ind...

  15. Thin Solid Oxide Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material, at least one metal and a catalyst...... material, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same. The present invention also relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous...... cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material and a catalyst material, wherein the electrolyte material is doper zirconia, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same...

  16. Controllable Synthesis of Copper Oxide/Carbon Core/Shell Nanowire Arrays and Their Application for Electrochemical Energy Storage

    Directory of Open Access Journals (Sweden)

    Jiye Zhan

    2015-10-01

    Full Text Available Rational design/fabrication of integrated porous metal oxide arrays is critical for the construction of advanced electrochemical devices. Herein, we report self-supported CuO/C core/shell nanowire arrays prepared by the combination of electro-deposition and chemical vapor deposition methods. CuO/C nanowires with diameters of ~400 nm grow quasi-vertically to the substrates forming three-dimensional arrays architecture. A thin carbon shell is uniformly coated on the CuO nanowire cores. As an anode of lithium ion batteries, the resultant CuO/C nanowire arrays are demonstrated to have high specific capacity (672 mAh·g−1 at 0.2 C and good cycle stability (425 mAh·g−1 at 1 C up to 150 cycles. The core/shell arrays structure plays positive roles in the enhancement of Li ion storage due to fast ion/electron transfer path, good strain accommodation and sufficient contact between electrolyte and active materials.

  17. Controllable Synthesis of Copper Oxide/Carbon Core/Shell Nanowire Arrays and Their Application for Electrochemical Energy Storage.

    Science.gov (United States)

    Zhan, Jiye; Chen, Minghua; Xia, Xinhui

    2015-10-09

    Rational design/fabrication of integrated porous metal oxide arrays is critical for the construction of advanced electrochemical devices. Herein, we report self-supported CuO/C core/shell nanowire arrays prepared by the combination of electro-deposition and chemical vapor deposition methods. CuO/C nanowires with diameters of ~400 nm grow quasi-vertically to the substrates forming three-dimensional arrays architecture. A thin carbon shell is uniformly coated on the CuO nanowire cores. As an anode of lithium ion batteries, the resultant CuO/C nanowire arrays are demonstrated to have high specific capacity (672 mAh·g -1 at 0.2 C) and good cycle stability (425 mAh·g -1 at 1 C up to 150 cycles). The core/shell arrays structure plays positive roles in the enhancement of Li ion storage due to fast ion/electron transfer path, good strain accommodation and sufficient contact between electrolyte and active materials.

  18. Porous Co{sub 3}O{sub 4} nanoplatelets by self-supported formation as electrode material for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jieqiang, E-mail: mse_wangjq@ujn.edu.c [School of Materials Science and Engineering, University of Jinan, Jinan 250022 (China); Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia); Du Guodong; Zeng Rong [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia); Niu Ben [School of Materials Science and Engineering, University of Jinan, Jinan 250022 (China); Chen Zhixin [School of Mechanical, Materials and Mechatronics, Faculty of Engineering, University of Wollongong, NSW 2522 (Australia); Guo Zaiping [School of Mechanical, Materials and Mechatronics, Faculty of Engineering, University of Wollongong, NSW 2522 (Australia); Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia); Dou Shixue [Institute for Superconducting and Electronic Materials, University of Wollongong, NSW 2522 (Australia)

    2010-06-30

    In this paper, we have reported a simple and rapid approach for the large-scale synthesis of beta-Co(OH){sub 2} nanoplatelets via the microwave hydrothermal process using potassium hydroxide as mineralizer at 140 deg. C for 3 h. Calcining the beta-Co(OH){sub 2} nanoplatelets at 350 deg. C for 2 h, porous Co{sub 3}O{sub 4} nanoplatelets with a 3D quasi-single-crystal framework were obtained. The process of converting the beta-Co(OH){sub 2} nanoplatelets into the Co{sub 3}O{sub 4} nanoplatelets is a self-supported topotactic transformation, which is easily controlled by varying the calcining temperature. The textural characteristics of Co{sub 3}O{sub 4} products have strong positive effects on their electrochemical properties as electrode materials in lithium-ion batteries. The obtained porous Co{sub 3}O{sub 4} nanoplatelets exhibit a low initial irreversible loss (18.1%), ultrahigh capacity, and excellent cyclability. For example, a reversible capacity of 900 mAh g{sup -1} can be maintained after 100 cycles.

  19. Thin epitaxial silicon detectors

    International Nuclear Information System (INIS)

    Stab, L.

    1989-01-01

    Manufacturing procedures of thin epitaxial surface barriers will be given. Some improvements have been obtained: larger areas, lower leakage currents and better resolutions. New planar epitaxial dE/dX detectors, made in a collaboration work with ENERTEC-INTERTECHNIQUE, and a new application of these thin planar diodes to EXAFS measurements, made in a collaboration work with LURE (CNRS,CEA,MEN) will also be reported

  20. Multifunctional thin film surface

    Energy Technology Data Exchange (ETDEWEB)

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  1. Thinning 'Elstar' apple with benzyladenine

    NARCIS (Netherlands)

    Maas, F.M.

    2006-01-01

    ‘Elstar’, the main apple cultivar grown in the Netherlands, requires adequate thinning to reach marketable fruit sizes and to achieve regular yields by preventing alternate bearing. At the moment, chemical thinning of ‘Elstar’ is the only economically feasible way of thinning. Thinning by hand is

  2. TEM characterization of nanodiamond thin films.

    Energy Technology Data Exchange (ETDEWEB)

    Qin, L.-C.; Zhou, D.; Krauss, A. R.; Gruen, D. M.; Chemistry

    1998-05-01

    The microstructure of thin films grown by microwave plasma-enhanced chemical vapor deposition (MPCVD) from fullerene C{sub 60} precursors has been characterized by scanning electron microscopy (SEM), selected-area electron diffraction (SAED), bright-field electron microscopy, high-resolution electron microscopy (HREM), and parallel electron energy loss spectroscopy (PEELS). The films are composed of nanosize crystallites of diamond, and no graphitic or amorphous phases were observed. The diamond crystallite size measured from lattice images shows that most grains range between 3-5 nm, reflecting a gamma distribution. SAED gave no evidence of either sp2-bonded glassy carbon or sp3-bonded diamondlike amorphous carbon. The sp2-bonded configuration found in PEELS was attributed to grain boundary carbon atoms, which constitute 5-10% of the total. Occasionally observed larger diamond grains tend to be highly faulted.

  3. Carbon layers for integrated optics

    Science.gov (United States)

    Prajzler, Vaclav; Huettel, Ivan; Schroefel, Josef; Nekvindova, Pavla; Gurovic, Jan; Mackova, Anna

    2003-07-01

    Study of fabrication and properties of the carbon layers by using the PACVD (Plasma Assisted Chemical Vapor Deposition) apparatus is reported. The layers were grown on silicon substrates with methane as the precursor and were then doped with the erbium ions by treating the fabricated samples in glycerin or in the solution of erbium nitrate. To obtain deeper erbium containing carbon layers (up to 1 μm) the "sandwich method" was used based on repetition (three times) of carbon deposition and subsequent diffusion of erbium after which followed annealing in vacuum oven. The obtained results proved that it is in principle possible to fabricate the erbium containing carbon thin optical layers.

  4. Fabrication technology for a series of cylindrical thin-wall cavity targets

    CERN Document Server

    Zheng Yong; Sun Zu Oke; Wang Ming Da; Zhou La; Zhou Zhi Yun

    2002-01-01

    Cylindrical thin-wall cavity targets have been fabricated to study the behavior of superthermal electrons and their effects on inertial confinement fusion (ICF). Self-supporting cavity targets having adjustable, uniform wall thickness, and low surface roughness were required. This required production of high-quality mandrels, coating them by sputtering or electroplating, developing techniques for measurement of wall thickness and other cavity parameters, improving the uniformity of rotation of the mandrels, and preventing damage to the targets during removal from the mandrels. Details of the fabrication process are presented. Experimental results from the use of these targets are presented. These results, in good agreement with simulations, indicate that the use of thin-wall cavity targets is an effective method for studying superthermal electrons in ICF.

  5. Baking process of thin plate carbonaceous compact

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Yoshio; Shimada, Toyokazu

    1987-06-27

    As a production process of a thin plate carbonaceous compact for separator of phosphoric acid fuel cell, there is a process to knead carbonaceous powder and thermosetting resin solution, to form and harden the kneaded material and then to bake, carbonize and graphitize it. However in this baking and carbonization treatment, many thin plate compacts are set in a compiled manner within a heating furnace and receive a heat treatment from their circumference. Since the above compacts to be heated tend generally to be heated from their peripheries, their baked conditions are not homogeneous easily causing the formation of cracks, etc.. As a process to heat and bake homogeneously by removing the above problematical points, this invention offers a process to set in a heating furnace a laminate consisting of the lamination of thin plate carbonaceous compacts and the heat resistant soaking plates which hold the upper and lower ends of the above lamination, to fill the upper and under peripheries of the laminate above with high heat conductive packing material and its side periphery with low heat conductive packing material respectively and to heat and sinter it. In addition, the invention specifies the high and low heat conductive packing materials respectively. (1 fig, 2 tabs)

  6. Mesoscale simulations of confined Nafion thin films

    Science.gov (United States)

    Vanya, P.; Sharman, J.; Elliott, J. A.

    2017-12-01

    The morphology and transport properties of thin films of the ionomer Nafion, with thicknesses on the order of the bulk cluster size, have been investigated as a model system to explain the anomalous behaviour of catalyst/electrode-polymer interfaces in membrane electrode assemblies. We have employed dissipative particle dynamics (DPD) to investigate the interaction of water and fluorocarbon chains, with carbon and quartz as confining materials, for a wide range of operational water contents and film thicknesses. We found confinement-induced clustering of water perpendicular to the thin film. Hydrophobic carbon forms a water depletion zone near the film interface, whereas hydrophilic quartz results in a zone with excess water. There are, on average, oscillating water-rich and fluorocarbon-rich regions, in agreement with experimental results from neutron reflectometry. Water diffusivity shows increasing directional anisotropy of up to 30% with decreasing film thickness, depending on the hydrophilicity of the confining material. A percolation analysis revealed significant differences in water clustering and connectivity with the confining material. These findings indicate the fundamentally different nature of ionomer thin films, compared to membranes, and suggest explanations for increased ionic resistances observed in the catalyst layer.

  7. Structural and Electrochemical Properties of Lithium Nickel Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Gyu-bong Cho

    2014-01-01

    Full Text Available LiNiO2 thin films were fabricated by RF magnetron sputtering. The microstructure of the films was determined by X-ray diffraction and field-emission scanning electron microscopy. The electrochemical properties were investigated with a battery cycler using coin-type half-cells. The LiNiO2 thin films annealed below 500°C had the surface carbonate. The results suggest that surface carbonate interrupted the Li intercalation and deintercalation during charge/discharge. Although the annealing process enhanced the crystallization of LiNiO2, the capacity did not increase. When the annealing temperature was increased to 600°C, the FeCrNiO4 oxide phase was generated and the discharge capacity decreased due to an oxygen deficiency in the LiNiO2 thin film. The ZrO2-coated LiNiO2 thin film provided an improved discharge capacity compared to bare LiNiO2 thin film suggesting that the improved electrochemical characteristic may be attributed to the inhibition of surface carbonate by ZrO2 coating layer.

  8. Bioenergy from trees: using cost-effective thinning to reduce forest fire hazards

    Science.gov (United States)

    Marie Oliver; Jeremy Fried; Jamie Barbour

    2009-01-01

    Increasingly large and severe wildfires threaten millions of forested acres throughout the West. Under certain conditions, mechanical thinning can address these hazardous conditions while providing opportunitiesto create renewable energy and reduce our carbon footprint but how do land managers decide whether thinning is a good idea? How do they decide where to begin,...

  9. Optical thin film deposition

    International Nuclear Information System (INIS)

    Macleod, H.A.

    1979-01-01

    The potential usefulness in the production of optical thin-film coatings of some of the processes for thin film deposition which can be classified under the heading of ion-assisted techniques is examined. Thermal evaporation is the process which is virtually universally used for this purpose and which has been developed to a stage where performance is in almost all respects high. Areas where further improvements would be of value, and the possibility that ion-assisted deposition might lead to such improvements, are discussed. (author)

  10. Thin Film Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K.

    1998-11-19

    The motivation to develop thin film technologies dates back to the inception of photovoltaics. It is an idea based on achieving truly low-cost photovoltaics appropriate for mass production and energy significant markets. The key to the idea is the use of pennies worth of active materials. Since sunlight carries relatively little energy in comparison with combustion-based energy sources, photovoltaic (PV) modules must be cheap to produce energy that can be competitive. Thin films are presumed to be the answer to that low-cost requirement. But how cheap do they have to be? The following is an oversimplified analysis that allows some insight into this question.

  11. Thin films and nanomaterials

    International Nuclear Information System (INIS)

    Jayakumar, S.; Kannan, M.D.; Prasanna, S.

    2012-01-01

    The objective of this book is to disseminate the most recent research in Thin Films, Nanomaterials, Corrosion and Metallurgy presented at the International Conference on Advanced Materials (ICAM 2011) held in PSG College of Technology, Coimbatore, India during 12-16 December 2011. The book is a compilation of 113 chapters written by active researchers providing information and critical insights into the recent advancements that have taken place. Important new applications are possible today in the fields of microelectronics, opto-electronics, metallurgy and energy by the application of thin films on solid surfaces. Recent progress in high vacuum technology and new materials has a remarkable effect in thin film quality and cost. This has led to the development of new single or multi-layered thin film devices with diverse applications in a multitude of production areas, such as optics, thermal barrier coatings and wear protections, enhancing service life of tools and to protect materials against thermal and atmospheric influence. On the other hand, thin film process techniques and research are strongly related to the basic research activities in nano technology, an increasingly important field with countless opportunities for applications due to the emergence of new properties at the nanoscale level. Materials and structures that are designed and fabricated at the nano scale level, offer the potential to produce new devices and processes that may enhance efficiencies and reduce costs in many areas, as photovoltaic systems, hydrogen storage, fuel cells and solar thermal systems. In the book, the contributed papers are classified under two sections i) thin films and ii) nanomaterials. The thin film section includes single or multi layer conducting, insulating or semiconducting films synthesized by a wide variety of physical or chemical techniques and characterized or analyzed for different applications. The nanomaterials section deals with novel or exciting materials

  12. Shear Thinning in Xenon

    Science.gov (United States)

    Bergm Robert F.; Moldover, Michael R.; Yao, Minwu; Zimmerli, Gregory A.

    2009-01-01

    We measured shear thinning, a viscosity decrease ordinarily associated with complex liquids such as molten plastics or ketchup, near the critical point of xenon. The data span a wide range of dimensionless shear rate: the product of the shear rate and the relaxation time of critical fluctuations was greater than 0.001 and was less than 700. As predicted by theory, shear thinning occurred when this product was greater than 1. The measurements were conducted aboard the Space Shuttle Columbia to avoid the density stratification caused by Earth's gravity.

  13. Carbonate rock depositional models: A microfacies approach

    Energy Technology Data Exchange (ETDEWEB)

    Carozzi, A.V.

    1988-01-01

    Carbonate rocks contain more than 50% by weight carbonate minerals such as calcite, dolomite, and siderite. Understanding how these rocks form can lead to more efficient methods of petroleum exploration. Micofacies analysis techniques can be used as a method of predicting models of sedimentation for carbonate rocks. Micofacies in carbonate rocks can be seen clearly only in thin sections under a microscope. This section analysis of carbonate rocks is a tool that can be used to understand depositional environments, diagenetic evolution of carbonate rocks, and the formation of porosity and permeability in carbonate rocks. The use of micofacies analysis techniques is applied to understanding the origin and formation of carbonate ramps, carbonate platforms, and carbonate slopes and basins. This book will be of interest to students and professionals concerned with the disciplines of sedimentary petrology, sedimentology, petroleum geology, and palentology.

  14. Electrodeposition of polymer electrolyte in nanostructured electrodes for enhanced electrochemical performance of thin-film Li-ion microbatteries

    Science.gov (United States)

    Salian, Girish D.; Lebouin, Chrystelle; Demoulin, A.; Lepihin, M. S.; Maria, S.; Galeyeva, A. K.; Kurbatov, A. P.; Djenizian, Thierry

    2017-02-01

    We report that electrodeposition of polymer electrolyte in nanostructured electrodes has a strong influence on the electrochemical properties of thin-film Li-ion microbatteries. Electropolymerization of PMMA-PEG (polymethyl methacrylate-polyethylene glycol) was carried out on both the anode (self-supported titania nanotubes) and the cathode (porous LiNi0.5Mn1.5O4) by cyclic voltammetry and the resulting electrode-electrolyte interface was examined by scanning electron microscopy. The electrochemical characterizations performed by galvanostatic experiments reveal that the capacity values obtained at different C-rates are doubled when the electrodes are completely filled by the polymer electrolyte.

  15. Epitaxial thin films

    Science.gov (United States)

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  16. Protein thin film machines.

    Science.gov (United States)

    Federici, Stefania; Oliviero, Giulio; Hamad-Schifferli, Kimberly; Bergese, Paolo

    2010-12-01

    We report the first example of microcantilever beams that are reversibly driven by protein thin film machines fueled by cycling the salt concentration of the surrounding solution. We also show that upon the same salinity stimulus the drive can be completely reversed in its direction by introducing a surface coating ligand. Experimental results are throughout discussed within a general yet simple thermodynamic model.

  17. Thin film metal-oxides

    CERN Document Server

    Ramanathan, Shriram

    2009-01-01

    Presents an account of the fundamental structure-property relations in oxide thin films. This title discusses the functional properties of thin film oxides in the context of applications in the electronics and renewable energy technologies.

  18. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  19. Optical response from functionalized atomically thin nanomaterials

    Energy Technology Data Exchange (ETDEWEB)

    Malic, Ermin; Berghaeuser, Gunnar; Feierabend, Maja [Department of Physics, Chalmers University of Technology, Gothenburg (Sweden); Knorr, Andreas [Institut fuer Theoretische Physik, Technische Universitaet Berlin (Germany)

    2017-10-15

    Chemical functionalization of atomically thin nanostructures presents a promising strategy to create new hybrid nanomaterials with remarkable and externally controllable properties. Here, we review our research in the field of theoretical modeling of carbon nanotubes, graphene, and transition metal dichalcogenides located in molecular dipole fields. In particular, we provide a microscopic view on the change of the optical response of these technologically promising nanomaterials due to the presence of photo-active spiropyran molecules. The feature article presents a review of recent theoretical work providing microscopic view on the optical response of chemically functionalized carbon nanotubes, graphene, and monolayered transition metal dichalcogenides. In particular, we propose a novel sensor mechanism based on the molecule-induced activation of dark excitons. This results in a pronounced additional peak presenting an unambiguous optical fingerprint for the attached molecules. (copyright 2017 by WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Carbon Nanomembranes

    Science.gov (United States)

    Angelova, Polina; Gölzhäuser, Armin

    2017-03-01

    This chapter describes the formation and properties of one nanometer thick carbon nanomembranes (CNMs), made by electron induced cross-linking of aromatic self-assembled monolayers (SAMs). The cross-linked SAMs are robust enough to be released from the surface and placed on solid support or over holes as free-standing membranes. Annealing at 1000K transforms CNMs into graphene accompanied by a change of mechanical stiffness and electrical resistance. The developed fabrication approach is scalable and provides molecular level control over thickness and homogeneity of the produced CNMs. The mechanisms of electron-induced cross-linking process are discussed in details. A variety of polyaromatic thiols: oligophenyls as well as small and extended condensed polycyclic hydrocarbons have been successfully employed, demonstrating that the structural and functional properties of the resulting nanomembranes are strongly determined by the structure of molecular monolayers. The mechanical properties of CNMs (Young's modulus, tensile strength and prestress) are characterized by bulge testing. The interpretation of the bulge test data relates the Young's modulus to the properties of single molecules and to the structure of the pristine SAMs. The gas transport through the CNM is measured onto polydimethylsiloxane (PDMS) - thin film composite membrane. The established relationship of permeance and molecular size determines the molecular sieving mechanism of permeation through this ultrathin sheet.

  1. Method of making carbon nanotube composite materials

    Science.gov (United States)

    O'Bryan, Gregory; Skinner, Jack L; Vance, Andrew; Yang, Elaine Lai; Zifer, Thomas

    2014-05-20

    The present invention is a method of making a composite polymeric material by dissolving a vinyl thermoplastic polymer, un-functionalized carbon nanotubes and hydroxylated carbon nanotubes and optionally additives in a solvent to make a solution and removing at least a portion of the solvent after casting onto a substrate to make thin films. The material has enhanced conductivity properties due to the blending of the un-functionalized and hydroxylated carbon nanotubes.

  2. Shear-thinning Fluid

    Science.gov (United States)

    2001-01-01

    Whipped cream and the filling for pumpkin pie are two familiar materials that exhibit the shear-thinning effect seen in a range of industrial applications. It is thick enough to stand on its own atop a piece of pie, yet flows readily when pushed through a tube. This demonstrates the shear-thinning effect that was studied with the Critical Viscosity of Xenon Experiment (CVX-2) on the STS-107 Research 1 mission in 2002. CVX observed the behavior of xenon, a heavy inert gas used in flash lamps and ion rocket engines, at its critical point. The principal investigator was Dr. Robert Berg of the National Institutes of Standards and Technology in Gaithersburg, MD.

  3. Biomass conversion and expansion factors are afected by thinning

    Directory of Open Access Journals (Sweden)

    Teresa Duque Enes

    2014-12-01

    Full Text Available Aim of the study: The objective of this paper is to investigate the use of Biomass Conversion and Expansion Factors (BCEFs in maritime pine (Pinus pinaster Ait. stands subjected to thinning.Area of the study: The study area refers to different ecosystems of maritime pine stands inNorthern Portugal.Material and methods: The study is supported by time data series and cross sectional data collected in permanent plots established in the North of Portugal. An assessment of BCEF values for the aboveground compartments and for total was completed for each studied stand. Identification of key variables affecting the value of the BCEFs in time and with thinning was conducted using correlation analysis. Predictive models for estimation of the BCEFs values in time and after thinning were developed using nonlinear regression analysis.Research highlights: For periods of undisturbed growth, the results show an allometric relationship between the BCEFs, the dominant height and the mean diameter. Management practices such as thinning also influence the factors. Estimates of the ratio change before and after thinning depend on thinning severity and thinning type. The developed models allow estimating the biomass of the stands, for the aboveground compartments and for total, based on information of stand characteristics and of thinning descriptors. These estimates can be used to assess the forest dry wood stocks to be used for pulp, bioenergy or other purposes, as well as the biomass quantification to support the evaluation of the net primary productivity.Keywords: carbon; softwood; thinning; volume; wood energy; maritime pine.

  4. Functional organic thin films

    OpenAIRE

    Scharnberg, Michael

    2007-01-01

    Organic thin films are used in many technological and engineering applications nowadays. They find use as coatings, sensors, detectors, as matrix materials in nanocomposites, as self-assembled monolayers for surface functionalization, as low-k dielectrics in integrated circuits and in advanced organic electronic applications like organic light emitting diodes, organic field effect transistors and organic photovoltaics (esp. organic solar cells) and many other applications. OLED displays are n...

  5. Thin film processes

    CERN Document Server

    Vossen, John L

    1978-01-01

    Remarkable advances have been made in recent years in the science and technology of thin film processes for deposition and etching. It is the purpose of this book to bring together tutorial reviews of selected filmdeposition and etching processes from a process viewpoint. Emphasis is placed on the practical use of the processes to provide working guidelines for their implementation, a guide to the literature, and an overview of each process.

  6. Thin film superconductor magnetic bearings

    Science.gov (United States)

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  7. Growth and characterization of MMA/SiO2 hybrid low-k thin films for ...

    Indian Academy of Sciences (India)

    We have successfully incorporated MMA monomer and eliminated the polymerization step to lower the dielectric constant of deposited thin film. The presence of peak of C=C bond in Fourier transform infrared (FTIR) spectra and carbon peak in energy dispersive (EDAX) spectra confirms the incorporation of carbon in the film ...

  8. Thin films of hydrogenated amorphous carbon (a-C:H) obtained through chemical vapor deposition assisted by plasma; Peliculas delgadas de carbono amorfo hidrogenado (a-C:H) obtenidas mediante deposito quimico de vapores asistido por plasma

    Energy Technology Data Exchange (ETDEWEB)

    Mejia H, J.A.; Camps C, E.E.; Escobar A, L.; Romero H, S.; Chirino O, S. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Muhl S, S. [IIM-UNAM, 04510 Mexico D.F. (Mexico)

    2004-07-01

    Films of hydrogenated amorphous carbon (a-C:H) were deposited using one source of microwave plasma with magnetic field (type ECR), using mixtures of H{sub 2}/CH{sub 4} in relationship of 80/20 and 95/05 as precursory gases, with work pressures of 4X10{sup -4} to 6x10{sup -4} Torr and an incident power of the discharge of microwaves with a constant value of 400 W. It was analyzed the influence among the properties of the films, as the deposit rate, the composition and the bonding types, and the deposit conditions, such as the flow rates of the precursory gases and the polarization voltage of the sample holders. (Author)

  9. Formation of carbon quantum dots and nanodiamonds in laser ablation of a carbon film

    Science.gov (United States)

    Sidorov, A. I.; Lebedev, V. F.; Kobranova, A. A.; Nashchekin, A. V.

    2018-01-01

    We have experimentally shown that nanosecond near-IR pulsed laser ablation of a thin amorphous carbon film produces carbon quantum dots with a graphite structure and nanodiamonds with a characteristic size of 20 - 500 nm on the substrate surface. The formation of these nanostructures is confirmed by electron microscopic images, luminescence spectra and Raman spectra. The mechanisms explaining the observed effects are proposed.

  10. Failure mode and fracture behavior evaluation of pipes with local wall thinning subjected to bending load

    International Nuclear Information System (INIS)

    Ahn, Seok Hwan; Nam, Ki Woo; Kim, Seon Jin; Kim, Jin Hwan; Kim, Hyun Soo; Do, Jae Yoon

    2003-01-01

    Fracture behaviors of pipes with local wall thinning are very important for the integrity of nuclear power plant. In pipes of energy plants, sometimes, the local wall thinning may result from severe Erosion-Corrosion (E/C) damage. However, the effects of local wall thinning on strength and fracture behaviors of piping system were not well studied. In this paper, the monotonic bending tests were performed of full-scale carbon steel pipes with local wall thinning. A monotonic bending load was applied to straight pipe specimens by four-point loading at ambient temperature without internal pressure. From the tests, fracture behaviors and fracture strength of locally thinned pipe were manifested systematically. The observed failure modes were divided into four types; ovalization, crack initiation/growth after ovalization, local buckling and crack initiating/growth after local buckling. Also, the strength and the allowable limit of piping system with local wall thinning were evaluated

  11. Thin film characterization by resonantly excited internal standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Di Fonzio, S. [SINCROTRONE TRIESTE, Trieste (Italy)

    1996-09-01

    This contribution describes how a standing wave excited in a thin film can be used for the characterization of the properties of the film. By means of grazing incidence X-ray reflectometry one can deduce the total film thickness. On the other hand in making use of a strong resonance effect in the electric field intensity distribution inside a thin film on a bulk substrate one can learn more about the internal structure of the film. The profile of the internal standing wave is proven by diffraction experiments. The most appropriate non-destructive technique for the subsequent thin film characterization is angularly dependent X-ray fluorescence analysis. The existence of the resonance makes it a powerful tool for the detection of impurities and of ultra-thin maker layers, for which the position can be determined with very high precision (about 1% of the total film thickness). This latter aspect will be discussed here on samples which had a thin Ti marker layer at different positions in a carbon film. Due to the resonance enhancement it was still possible to perform these experiments with a standard laboratory x-ray tube and with standard laboratory tool for marker or impurity detection in thin films.

  12. Pulsed laser deposition of anatase thin films on textile substrates

    Energy Technology Data Exchange (ETDEWEB)

    Krämer, André; Kunz, Clemens; Gräf, Stephan; Müller, Frank A.

    2015-10-30

    Highlights: • Anatase thin films were grown on carbon fibre fabrics by pulsed laser deposition. • A novel Q-switched CO{sub 2} laser was utilised as radiation source. • Coated fibres exhibit photocatalytic activity and are resistant against bending. - Abstract: Pulsed laser deposition (PLD) is a highly versatile tool to prepare functional thin film coatings. In our study we utilised a Q-switched CO{sub 2} laser with a pulse duration τ ≈ 300 ns, a laser wavelength λ = 10.59 μm, a repetition frequency f{sub rep} = 800 Hz and a peak power P{sub peak} = 15 kW to deposit crystalline anatase thin films on carbon fibre fabrics. For this purpose, preparatory experiments were performed on silicon substrates to optimise the anatase deposition conditions including the influence of different substrate temperatures and oxygen partial pressures. Processing parameters were then transferred to deposit anatase on carbon fibres. Scanning electron microscopy, X-ray diffraction analyses, Raman spectroscopy and tactile profilometry were used to characterise the samples and to reveal the formation of phase pure anatase without the occurrence of a secondary rutile phase. Methanol conversion test were used to prove the photocatalytic activity of the coated carbon fibres.

  13. Thin-Film Power Transformers

    Science.gov (United States)

    Katti, Romney R.

    1995-01-01

    Transformer core made of thin layers of insulating material interspersed with thin layers of ferromagnetic material. Flux-linking conductors made of thinner nonferromagnetic-conductor/insulator multilayers wrapped around core. Transformers have geometric features finer than those of transformers made in customary way by machining and mechanical pressing. In addition, some thin-film materials exhibit magnetic-flux-carrying capabilities superior to those of customary bulk transformer materials. Suitable for low-cost, high-yield mass production.

  14. Handbook of thin film technology

    CERN Document Server

    Frey, Hartmut

    2015-01-01

    “Handbook of Thin Film Technology” covers all aspects of coatings preparation, characterization and applications. Different deposition techniques based on vacuum and plasma processes are presented. Methods of surface and thin film analysis including coating thickness, structural, optical, electrical, mechanical and magnetic properties of films are detailed described. The several applications of thin coatings and a special chapter focusing on nanoparticle-based films can be found in this handbook. A complete reference for students and professionals interested in the science and technology of thin films.

  15. Designing shear-thinning

    Science.gov (United States)

    Nelson, Arif Z.; Ewoldt, Randy H.

    2017-11-01

    Design in fluid mechanics often focuses on optimizing geometry (airfoils, surface textures, microfluid channels), but here we focus on designing fluids themselves. The dramatically shear-thinning ``yield-stress fluid'' is currently the most utilized non-Newtonian fluid phenomenon. These rheologically complex materials, which undergo a reversible transition from solid-like to liquid-like fluid flow, are utilized in pedestrian products such as paint and toothpaste, but also in emerging applications like direct-write 3D printing. We present a paradigm for yield-stress fluid design that considers constitutive model representation, material property databases, available predictive scaling laws, and the many ways to achieve a yield stress fluid, flipping the typical structure-to-rheology analysis to become the inverse: rheology-to-structure with multiple possible materials as solutions. We describe case studies of 3D printing inks and other flow scenarios where designed shear-thinning enables performance remarkably beyond that of Newtonian fluids. This work was supported by Wm. Wrigley Jr. Company and the National Science Foundation under Grant No. CMMI-1463203.

  16. Scandium/carbon filters for soft x rays

    NARCIS (Netherlands)

    Artioukov, IA; Kasyanov, YS; Kopylets, IA; Pershin, YP; Romanova, SA

    2003-01-01

    This Note deals with thin-film soft x-ray filters for operation at the wavelengths near carbon K edge (similar to4.5 nm). The filters were fabricated by magnetron sputtering deposition of thin layers of scandium (total thickness 0.1-0.2 mum) onto films of polypropylene (thickness 1.5 mum) and

  17. Monitoring structural defects and crystallinity of carbon nanotubes

    Indian Academy of Sciences (India)

    We report the influence of catalyst formulation and reaction temperature on the formation of carbon nanotube (CNT) thin films by the chemical vapour deposition (CVD) method. Thin films of CNTs were grown on Fe–Mo/Al2O3-coated silicon wafer by thermal decomposition of methane at different temperatures ranging from ...

  18. Sensing of volatile organic compounds by copper phthalocyanine thin films

    Science.gov (United States)

    Ridhi, R.; Saini, G. S. S.; Tripathi, S. K.

    2017-02-01

    Thin films of copper phthalocyanine have been deposited by thermal evaporation technique. We have subsequently exposed these films to the vapours of methanol, ethanol and propanol. Optical absorption, infrared spectra and electrical conductivities of these films before and after exposure to chemical vapours have been recorded in order to study their sensing mechanisms towards organic vapours. These films exhibit maximum sensing response to methanol while low sensitivities of the films towards ethanol and propanol have been observed. The changes in sensitivities have been correlated with presence of carbon groups in the chemical vapours. The effect of different types of electrodes on response-recovery times of the thin film with organic vapours has been studied and compared. The electrodes gap distance affects the sensitivity as well as response-recovery time values of the thin films.

  19. Thin extractive membrane for monitoring actinides in aqueous streams.

    Science.gov (United States)

    Chavan, Vivek; Paul, Sumana; Pandey, Ashok K; Kalsi, P C; Goswami, A

    2013-09-15

    Alpha spectrometry and solid state nuclear track detectors (SSNTDs) are used for monitoring ultra-trace amount of alpha emitting actinides in different aqueous streams. However, these techniques have limitations i.e. alpha spectrometry requires a preconcentration step and SSNTDs are not chemically selective. Therefore, a thin polymer inclusion membrane (PIM) supported on silanized glass was developed for preconcentraion and determination of ultra-trace concentration of actinides by α-spectrometry and SSNTDs. PIMs were formed by spin coating on hydrophobic glass slide or solvent casting to form thin and self-supported membranes, respectively. Sorption experiments indicated that uptakes of actinides in the PIM were highly dependent on acidity of solution i.e. Am(III) sorbed up to 0.1 molL(-1) HNO₃, U(VI) up to 0.5 molL(-1) HNO₃ and Pu(IV) from HNO₃ concentration as high as 4 molL(-1). A scheme was developed for selective sorption of target actinide in the PIM by adjusting acidity and oxidation state of actinide. The actinides sorbed in PIMs were quantified by alpha spectrometry and SSNTDs. For SSNTDs, neutron induced fission-fragment tracks and α-particle tracks were registered in Garware polyester and CR-39 for quantifications of natural uranium and α-emitting actinides ((241)Am/(239)Pu/(233)U), respectively. Finally, the membranes were tested to quantify Pu in 4 molL(-1) HNO3 solutions and synthetic urine samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Sorbents based on carbonized rice peel

    International Nuclear Information System (INIS)

    Mansurova, R. M.; Taipova, R. A.; Zhylybaeva, N. K.; Mansurov, Z. A.; Bijsenbaev, M. A.

    2004-01-01

    The process receiving of sorbents based on carbonized rice peel (RP) was received and their sorption properties were investigated. Processing carbonization of samples leading on station, this was developed in laboratory of hybrid technology. Carbonization of samples was realized in nitric atmosphere on 400-8000 deg. C. On raising temperature of carbonization content of carbon in samples is rice, hydrogen and oxygen is reduce as a result isolation of volatility products is discover. The samples carbonized on 650 deg. C (910 m 2 /g) owners with maximum removed surface is discover. On carbonization temperature 600-800 deh. C the sorption of ions, which carbonized by sorbents based on rice peel is run to 95-100 %. Electron-microscopic investigation of samples leaded on EM-125 mechanism by accelerating pressure 100 kV. From electron-microscopic print of original samples of RP it is evident, that sample consists of carbonic fractions of different species: carbonic fiber of rounded fractions, fractions of ellipsoid form and of more thickly carbonic structure. Increasing sizes of pores and modification structure of synthesized sorbent is occur during carbonization process. The RP-samples, which carbonized by 650 deg. C has the higher specific surface. Samples consist of thin carbonic scum and reducing specific surface, by higher temperature

  1. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with

  2. X-ray Tomography using Thin Scintillator Films

    CERN Document Server

    Kozyrev, E A; Lemzyakov, A G; Petrozhitskiy, A V; Popov, A S

    2017-01-01

    2-14 μm thin CsI:Tl scintillation screens with high spatial resolution were prepared by the thermal deposition method for low energy X-ray imaging applications. The spatial resolution was measured as a function of the film thickness. It was proposed that the spatial resolution of the prepared conversion screens can be significantly improved by an additional deposition of a carbon layer.

  3. Thin film plasma coatings from dielectric free-flowing materials

    International Nuclear Information System (INIS)

    Timofeeva, L.A.; Katrich, S.A.; Solntsev, L.A.

    1994-01-01

    Fabrication of thin film plasma coatings from insulating free-flowing materials is considered. Molybdenum-tart ammonium coating of 3...5 μ thickness deposited on glassy carbon, aluminium, silicon, nickel, cast iron and steel substrates in 'Bulat-ZT' machine using insulating free-flowing materials cathod was found to form due to adsorption, absorption and dissuasion processes. The use of insulating free-flowing materials coatings allow to exclude pure metals cathods in plasma-plating process

  4. Preparation of redox polymer cathodes for thin film rechargeable batteries

    Science.gov (United States)

    Skotheim, Terje A.; Lee, Hung S.; Okamoto, Yoshiyuki

    1994-11-08

    The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.

  5. Ferromagnetic thin films

    Science.gov (United States)

    Krishnan, Kannan M.

    1994-01-01

    A ferromagnetic .delta.-Mn.sub.1-x Ga.sub.x thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of .delta.-Mn.sub.1-x Ga.sub.x overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of .delta.-Mn.sub.1-x Ga.sub.x and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4 .+-.0.05.

  6. The religion of thinness

    Directory of Open Access Journals (Sweden)

    Michelle Lelwica

    2011-01-01

    Full Text Available This paper examines the almost religious-like devotion of especially women in pursuing the goal of a thinner body. The quest for a slender body is analysed as a ‘cultural religion’, which the author calls the ‘Religion of Thinness’. The analysis revolves around four observations. The first is that for many women in the US today, the quest for a slender body serves what has historically been a ‘religious’ function: providing a sense of purpose that orients and gives meaning to their lives, especially in times of suffering and uncertainty. Second, this quest has many features in common with traditional religions, including beliefs, myths, rituals, moral codes, and sacred images—all of which encourage women to find ‘salvation’ (i.e., happiness and well-being through the pursuit of a ‘better’ (i.e., thinner body.Third, this secular faith draws so many adherents in large part because it appeals to and addresses what might be referred to as spiritual needs—including the need for a sense of purpose, inspiration, security, virtue, love, and well-being—even though it shortchanges these needs, and, in the long run, fails to deliver the salvation it promises. Fourth, a number of traditional religious ideas, paradigms and motifs tacit­ly inform and support the Religion of Thinness. More specifically, its soteri­ology resurrects and recycles the misogynist, anti-body, other-worldly, and exclusivist aspects of patriarchal religion. Ultimately, the analysis is not only critical of the Religion of Thinness; it also raises suspicions about any clear-cut divisions between ‘religion’, ‘culture’, and ‘the body’. In fact, examining the functions, features, and ideologies embedded in this secular devotion gives us insight into the constitutive role of the body in the production and apprehension of religious and cultural meanings.

  7. Hydrophobicity studies of polymer thin films with varied CNT concentration

    Science.gov (United States)

    M. Rodzi, N. H.; M. Shahimin, M.; Poopalan, P.; Man, B.; M. Nor, M. N.

    2013-12-01

    Surface functionalization studies for re-creating a `Lotus Leaf' effect (superhydrophobic) have been carried out for the past decade; looking for the material which can provide high transparency, low energy surface and high surface roughness. Fabrication of polydimethylsiloxane (PDMS) and multiwalled carbon nanotubes (MWCNT) hybrid thin film variations on glass to produce near-superhydrophobic surfaces is presented in this paper. There are three important parameters studied in producing hydrophobic surfaces based on the hybrid thin films; concentration of PDMS, concentration of MWCNT and droplet sizes. The study is carried out by using PDMS of varied cross linker ratio (10:1, 30:1 and 50:1) with MWCNT concentration of 1mg, 10mg and 15mg for 0.5 μl, 2.0 μl, 5.0 μl and 10 μl droplet sizes. The resulting hybrid thin films show that hydrophobicity increased with increasing cross linker ratio and MWCNT percentage in the PDMS solution. A near superhydrophobic surface can be created when using 15 mg of MWCNT with 50:1 cross linker ratio PDMS thin films, measured on 10 μl droplet size. The hybrid thin films produced can be potentially tailored to the application of biosensors, MEMS and even commercial devices.

  8. Oxygen Reduction Reaction Activity of Platinum Thin Films with Different Densities

    Energy Technology Data Exchange (ETDEWEB)

    Ergul, Busra; Begum, Mahbuba; Kariuki, Nancy; Myers, Deborah J.; Karabacak, Tansel

    2017-08-24

    Platinum thin films with different densities were grown on glassy carbon electrodes by high pressure sputtering deposition and evaluated as oxygen reduction reaction catalysts for polymer electrolyte fuel cells using cyclic voltammetry and rotating disk electrode techniques in aqueous perchloric acid electrolyte. The electrochemically active surface area, ORR mass activity (MA) and specific activity (SA) of the thin film electrodes were obtained. MA and SA were found to be higher for low-density films than for high-density film.

  9. An atomically thin matter-wave beamsplitter.

    Science.gov (United States)

    Brand, Christian; Sclafani, Michele; Knobloch, Christian; Lilach, Yigal; Juffmann, Thomas; Kotakoski, Jani; Mangler, Clemens; Winter, Andreas; Turchanin, Andrey; Meyer, Jannik; Cheshnovsky, Ori; Arndt, Markus

    2015-10-01

    Matter-wave interferometry has become an essential tool in studies on the foundations of quantum physics and for precision measurements. Mechanical gratings have played an important role as coherent beamsplitters for atoms, molecules and clusters, because the basic diffraction mechanism is the same for all particles. However, polarizable objects may experience van der Waals shifts when they pass the grating walls, and the undesired dephasing may prevent interferometry with massive objects. Here, we explore how to minimize this perturbation by reducing the thickness of the diffraction mask to its ultimate physical limit, that is, the thickness of a single atom. We have fabricated diffraction masks in single-layer and bilayer graphene as well as in a 1 nm thin carbonaceous biphenyl membrane. We identify conditions to transform an array of single-layer graphene nanoribbons into a grating of carbon nanoscrolls. We show that all these ultrathin nanomasks can be used for high-contrast quantum diffraction of massive molecules. They can be seen as a nanomechanical answer to the question debated by Bohr and Einstein of whether a softly suspended double slit would destroy quantum interference. In agreement with Bohr's reasoning we show that quantum coherence prevails, even in the limit of atomically thin gratings.

  10. Learning unit: Thin lenses

    Science.gov (United States)

    Nita, L.-S.

    2012-04-01

    Learning unit: Thin lenses "Why objects seen through lenses are sometimes upright and sometimes reversed" Nita Laura Simona National College of Arts and Crafts "Constantin Brancusi", Craiova, Romania 1. GEOMETRIC OPTICS. 13 hours Introduction (models, axioms, principles, conventions) 1. Thin lenses (Types of lenses. Defining elements. Path of light rays through lenses. Image formation. Required physical quantities. Lens formulas). 2. Lens systems (Non-collated lenses. Focalless systems). 3. Human eye (Functioning as an optical system. Sight defects and their corrections). 4. Optical instruments (Characteristics exemplified by a magnifying glass. Paths of light rays through a simplified photo camera. Path of light rays through a classical microscope) (Physics curriculum for the IXth grade/ 2011). This scenario exposes a learning unit based on experimental sequences (defining specific competencies), as a succession of lessons started by noticing a problem whose solution assumes the setup of an experiment under laboratory conditions. Progressive learning of theme objectives are realised with sequential experimental steps. The central cognitive process is the induction or the generalization (development of new knowledge based on observation of examples or counterexamples of the concept to be learnt). Pupil interest in theme objectives is triggered by problem-situations, for example: "In order to better see small objects I need a magnifying glass. But when using a magnifier, small object images are sometimes seen upright and sometimes seen reversed!" Along the way, pupils' reasoning will converge to the idea: "The image of an object through a lens depends on the relative distances among object, lens, and observer". Associated learning model: EXPERIMENT Specific competencies: derived from the experiment model, in agreement with the following learning unit steps I. Evoking - Anticipation: Size of the problem, formulation of hypotheses and planning of experiment. II

  11. Thin films deposited by laser ablation for the measurement of the ionizing and non-ionizing radiation

    International Nuclear Information System (INIS)

    Villarreal B, J.E.; Escobar A, L.; Camps, E.; Romero, S.; Gonzalez, P.; Salinas, B.

    2001-01-01

    In this work the obtained results to synthesize thin films of amorphous carbon with incorporated nitrogen and hydrogen are presented, as well as thin films of aluminium oxide using the laser ablation technique. The thin films were exposed to ionizing radiation (gamma rays of a 60 Co source, beta radiation of a 90 Sr source) and a non-ionizing radiation (UV radiation). The obtained results show that it is possible to obtain materials in thin film form with thickness of hundreds of nanometers, which present thermoluminescent response when being irradiated with ionizing radiation and non-ionizing radiation. (Author)

  12. Grazing incident small angle neutron scattering. Analysis of self-assembly of softmatters in thin films

    International Nuclear Information System (INIS)

    Yokoyama, Hideaki

    2009-01-01

    Grazing incident small angle scattering has been used for the analysis of surface and thin film structures. X-ray in particular is widely used for such analysis and called grazing incident small angle X-ray scattering (GISAXS). However, a very limited number of studied has been done using grazing incident small angle neutron scattering (GISANS) primarily due to low intensity of neutron beam. The arising JPARC neutron source will enable us to use GISANS to analyze thin film structures of softmatter. This report provides a basic concept of GISAS using an example of the analysis of nanocellular thin films fabricated by block copolymer template with supercritical carbon dioxide (BSTSC). (author)

  13. Amorphous Carbon: State of the Art - Proceedings of the 1st International Specialist Meeting on Amorphous Carbon (smac '97)

    Science.gov (United States)

    Silva, S. R. P.; Robertson, J.; Milne, W. I.; Amaratunga, G. A. J.

    1998-05-01

    The Table of Contents for the full book PDF is as follows: * Preface * GROWTH AND STRUCTURE * The Structure of Tetrahedral Amorphous Carbon * Growth of DLC Films and Related Structure and Properties * Deposition Mechanism of Diamond-Like Carbon * Relaxation of sp3 Bonds in Hydrogen Free Carbon Films During Growth * MODELLING * Correlations Between Microstructure and Electronic Properties in Amorphous Carbon Based Materials * Review of Monte Carlo Simulations of Diamondlike Amorphous Carbon: Bulk, Surface, and Interface Structural Properties * DEPOSITION * Preparation of Disordered Amorphous and Partially Ordered Nano Clustered Carbon Films by Arc Deposition: A Critical Review * Plasma Deposition of Diamond-Like Carbon in an ECR-RF Discharge * Deposition of Amorphous Hydrogenated Carbon-Nitrogen Films by PECVD Using Several Hydrocarbon / Nitrogen Containing Gas Mixtures * ELECTRONIC STRUCTURE * 'Defects' and Their Detection in a-C and a-C:H * Valence Band and Gap State Spectroscopy of Amorphous Carbon by Photoelectron Emission Techniques * Photoluminescence Spectroscopy: A Probe for Inhomogeneous Structure in Polymer-Like Amorphous Carbon * Raman Characterization of Amorphous and Nanocrystalline sp3 Bonded Structures * Ultraviolet Raman Spectroscopy of Tetrahedral Amorphous Carbon Thin Films * Excitation Energy Dependent Raman and Photoluminescence Spectra of Hydrogenated Amorphous Carbon * MECHANICAL PROPERTIES * Pulsed Laser Deposited a-C: Growth, Structure and Mechanical Properties * Mechanical Properties of Laser-Assisted Deposited Amorphous Carbon Films * Mechanical and Morphology Study on Tetrahedral Amorphous Carbon Films * Time-Dependent Changes in the Mechanical Properties of Diamond-Like Carbon Films * ELECTRONIC PROPERTIES * Electronic Transport in Amorphous Carbon * Electronic Properties of Undoped/Doped Tetrahedral Amorphous Carbon * The Inclusion of Graphitic Nanoparticles in Semiconducting Amorphous Carbon to Enhance Electronic Transport Properties

  14. Magnetic and electric properties of C-Co thin films prepared by vaccum arc technique

    Energy Technology Data Exchange (ETDEWEB)

    Tembre, A.; Clin, M.; Picot, J.-C. [Laboratoire de Physique de la Matiere Condensee, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens (France); Dellis, J.-L., E-mail: jean-luc.dellis@u-picardie.fr [Laboratoire de Physique de la Matiere Condensee, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens (France); Henocque, J. [Laboratoire de Physique de la Matiere Condensee, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens (France); Bouzerar, R. [Laboratoire de Physique des Systemes Complexes, Universite de Picardie Jules Verne, 33 rue Saint leu, 80039 Amiens (France); Djellab, K. [Plate-forme de Microscopie Electronique, Universite de Picardie Jules Verne, 33 rue Saint Leu, 80039 Amiens (France)

    2011-09-15

    Highlights: > Cobalt doped carbon thin films have been deposited by pulsed anodic electric arc technique. > The films are composed of well-crystallized cobalt layers and complex graphitic microstructure. > An insulating to a metallic state transition at 60 K is observed. > The magnetic susceptibility measurements show anomalous behaviour around 60 K. - Abstract: Cobalt doped carbon thin films have been deposited by a pulsed anodic electric arc technique. The films were characterized by high resolution transmission electron microscopy, electric measurements under dc magnetic fields, and ac magnetic susceptibility measurements within a temperature range 15-300 K. An insulating to a metallic state transition at a critical temperature around 60 K was observed.

  15. Carbon/carbon composite materials; Les composites carbone/carbone

    Energy Technology Data Exchange (ETDEWEB)

    Thebault, J.; Orly, P. [Societe Nationale d' Etude et de Construction de Moteurs d' Aviation (SNECMA), 33 - Le Haillan (France)

    2006-03-15

    Carbon/carbon composites are singular materials from their components, their manufacturing process as well as their characteristics. This paper gives a global overview of these particularities and applications which make them now daily used composites. (authors)

  16. Characterization of organic thin films

    CERN Document Server

    Ulman, Abraham; Evans, Charles A

    2009-01-01

    Thin films based upon organic materials are at the heart of much of the revolution in modern technology, from advanced electronics, to optics to sensors to biomedical engineering. This volume in the Materials Characterization series introduces the major common types of analysis used in characterizing of thin films and the various appropriate characterization technologies for each. Materials such as Langmuir-Blodgett films and self-assembled monolayers are first introduced, followed by analysis of surface properties and the various characterization technologies used for such. Readers will find detailed information on: -Various spectroscopic approaches to characterization of organic thin films, including infrared spectroscopy and Raman spectroscopy -X-Ray diffraction techniques, High Resolution EELS studies, and X-Ray Photoelectron Spectroscopy -Concise Summaries of major characterization technologies for organic thin films, including Auger Electron Spectroscopy, Dynamic Secondary Ion Mass Spectrometry, and Tra...

  17. Thin, Flexible IMM Solar Array

    Science.gov (United States)

    Walmsley, Nicholas

    2015-01-01

    NASA needs solar arrays that are thin, flexible, and highly efficient; package compactly for launch; and deploy into large, structurally stable high-power generators. Inverted metamorphic multijunction (IMM) solar cells can enable these arrays, but integration of this thin crystalline cell technology presents certain challenges. The Thin Hybrid Interconnected Solar Array (THINS) technology allows robust and reliable integration of IMM cells into a flexible blanket comprising standardized modules engineered for easy production. The modules support the IMM cell by using multifunctional materials for structural stability, shielding, coefficient of thermal expansion (CTE) stress relief, and integrated thermal and electrical functions. The design approach includes total encapsulation, which benefits high voltage as well as electrostatic performance.

  18. Flexible substrates as basis for photocatalytic reduction of carbon dioxide

    DEFF Research Database (Denmark)

    Jensen, Jacob; Mikkelsen, Mette; Krebs, Frederik C

    2011-01-01

    A photocatalytic system for converting carbon dioxide into carbon monoxide was designed and constructed. The system relies on thin films of the photocatalyst prepared at low temperature using spray coating. We formulated inks based on the well-known photocatalyst titanium dioxide and characterized...

  19. Method of making molten carbonate fuel cell ceramic matrix tape

    Science.gov (United States)

    Maricle, Donald L.; Putnam, Gary C.; Stewart, Jr., Robert C.

    1984-10-23

    A method of making a thin, flexible, pliable matrix material for a molten carbonate fuel cell is described. The method comprises admixing particles inert in the molten carbonate environment with an organic polymer binder and ceramic particle. The composition is applied to a mold surface and dried, and the formed compliant matrix material removed.

  20. Carbonized asphaltene-based carbon-carbon fiber composites

    Energy Technology Data Exchange (ETDEWEB)

    Bohnert, George; Lula, James; Bowen, III, Daniel E.

    2016-12-27

    A method of making a carbon binder-reinforced carbon fiber composite is provided using carbonized asphaltenes as the carbon binder. Combinations of carbon fiber and asphaltenes are also provided, along with the resulting composites and articles of manufacture.

  1. Embedded arrays of vertically aligned carbon nanotube carpets and methods for making them

    Science.gov (United States)

    Kim, Myung Jong; Nicholas, Nolan Walker; Kittrell, W. Carter; Schmidt, Howard K.

    2015-06-30

    According to some embodiments, the present invention provides a system and method for supporting a carbon nanotube array that involve an entangled carbon nanotube mat integral with the array, where the mat is embedded in an embedding material. The embedding material may be depositable on a carbon nanotube. A depositable material may be metallic or nonmetallic. The embedding material may be an adhesive material. The adhesive material may optionally be mixed with a metal powder. The embedding material may be supported by a substrate or self-supportive. The embedding material may be conductive or nonconductive. The system and method provide superior mechanical and, when applicable, electrical, contact between the carbon nanotubes in the array and the embedding material. The optional use of a conductive material for the embedding material provides a mechanism useful for integration of carbon nanotube arrays into electronic devices.

  2. Effect of Forest Structural Change on Carbon Storage in a Coastal Metasequoia glyptostroboides Stand

    Science.gov (United States)

    Cheng, Xiangrong; Yu, Mukui; Wu, Tonggui

    2013-01-01

    Forest structural change affects the forest's growth and the carbon storage. Two treatments, thinning (30% thinning intensity) and underplanting plus thinning, are being implemented in a coastal Metasequoia glyptostroboides forest shelterbelt in Eastern China. The vegetation carbon storage significantly increased in the underplanted and thinned treatments compared with that in the unthinned treatment (P carbon storage in the underplanted treatment were significantly higher than those in the unthinned treatment (P carbon storage in the underplanted and thinned treatments increased by 35.3% and 26.3%, respectively, compared with that in the unthinned treatment, an increase that mainly came from the growth of vegetation aboveground. Total ecosystem carbon storage showed no significant difference between the underplanted and thinned treatments (P > 0.05). The soil light fraction organic carbon (LFOC) was significantly higher at the 0–15 cm soil layer in the thinned and underplanted stands compared with that in the unthinned stand (P carbon sequestration for M. glyptostroboides plantations in the coastal areas of Eastern China. PMID:24187525

  3. Carbon sequestration in harvested wood products

    Science.gov (United States)

    K. Skog

    2013-01-01

    Carbon is continuously cycled among these storage pools and between forest ecosystems and the atmosphere as a result of biological processes in forests (e.g., photosynthesis, respiration, growth, mortality, decomposition, and disturbances such as fires or pest outbreaks) and anthropogenic activities (e.g., harvesting, thinning, clearing, and replanting). As trees...

  4. Optimum design of a self-supported power transmission tower type 2M2 for 230 kW; Diseno optimo de una torre de transmision autosoportada tipo 2M2, para 230 kW

    Energy Technology Data Exchange (ETDEWEB)

    Espejel Valdez, Eduardo [Instituto de Investigaciones Electricas, Cuernavaca (Mexico); Millan Monje, Alejandro; Honk Hernandez, Wenceslao [Comision Federal de Electricidad, (CFE), Mexico, D. F. (Mexico)

    1985-12-31

    A group of specialists from the Comision Federal de Electricidad (CFE) and of the Instituto de Investigaciones Electricas (IIE) analyzes the design of various types of power transmission towers in their application stage, in order to enhance them. In this article the structural characteristics of the self-supported tower type 2M2 for 230 kV of two circuits and of suspension, are presented. [Espanol] Un grupo de especialistas de la Comision Federal de Electricidad (CFE) y del Instituto de Investigaciones Electricas (IIE) analiza el diseno de diversos tipos de torres de transmision en su etapa de aplicacion, con el fin de mejorarlos. En este articulo se presentan las caracteristicas estructurales de la torre autosoportada tipo 2M2 para 230 kV, de dos circuitos y de suspension.

  5. Fabrication of ultra thin and aligned carbon nanofibres from ...

    Indian Academy of Sciences (India)

    Administrator

    fibres below 1 μm readily (Reneker and Chun 1996;. Reneker et al 2000; Deitzel et al 2001; Huang et al 2003). In recent years, electrospinning has received great interest due to its simplicity and versatility for fabricating ultrathin and continuous nanofibres. In electrospinning a polymer solution or melt is kept in a reservoir ...

  6. Properties of carbon thin films deposited by thermionic vacuum arc

    Czech Academy of Sciences Publication Activity Database

    Vladoiu, R.; Ciupina, V.; Surdu-Bob, C.; Lungu, C.P.; Janík, J.; Skalný, J. D.; Buršíková, V.; Buršík, Jiří; Musa, G.

    2007-01-01

    Roč. 9, č. 4 (2007), s. 862-866 ISSN 1454-4164 Institutional research plan: CEZ:AV0Z20410507 Keywords : DLC * mechanical properties * thermionic vacuum arc Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 0.827, year: 2007

  7. Fabrication and characterization of sputtered-carbon microelectrode arrays.

    Science.gov (United States)

    Sreenivas, G; Ang, S S; Fritsch, I; Brown, W D; Gerhardt, G A; Woodward, D J

    1996-06-01

    This paper describes a robust and reliable process for fabricating a novel sputter-deposited, thin-film carbon microelectrode array using standard integrated circuit technologies and silicon micromachining. Sputter-deposited carbon films were investigated as potential candidates for microelectrode materials. The surface properties and cross section of the microelectrode arrays were studied by atomic force microscopy and scanning electron microscopy, respectively. Electrical site impedance, crosstalk, and lifetime (dielectric integrity) of microelectrodes in the array were characterized. Electrochemical response of the microelectrodes to hexaammineruthenium(III) chloride and dopamine were investigated by fast-scan cyclic voltammetry and high-speed, computer-based chronoamperometry; results show that thin-film carbon microelectrodes are well-behaved electrochemically. The thin carbon films offer extremely good electrical, mechanical, and chemical properties and thus qualify as viable candidates for various electroanalytical applications, particularly acute neurophysiological studies.

  8. A simple visible light photo-assisted method for assembling and curing multilayer GO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro da Silva, Mauro Francisco, E-mail: mfps@usp.br [Escola Politécnica da Universidade de São Paulo, Departamento de Engenharia Metalúrgica e de Materiais, PMT-EPUSP e Departamento de Engenharia de Sistemas Eletrônicos, PSI-EPUSP, Av. Professor Mello Moraes, n° 2463, Cidade Universitária, CEP 05508-030, São Paulo, SP (Brazil); Pontifícia Universidade de São Paulo, Faculdade de Ciências Exatas e Tecnologia, Rua Marquês de Paranaguá, 111, CEP 01303-050, São Paulo, SP (Brazil); Oliveira, Débora Rose de [Instituto de Criminalística da Secretaria de Segurança do Estado de São Paulo, Núcleo de Química, Rua Moncorvo Filho, CEP 05507-060, São Paulo, SP (Brazil); Pontifícia Universidade de São Paulo, Faculdade de Ciências Exatas e Tecnologia, Rua Marquês de Paranaguá, 111, CEP 01303-050, São Paulo, SP (Brazil); and others

    2015-09-01

    A simple and efficient method for deposition of reduced graphene oxide (RGO) thin films onto arbitrary substrates is described. The present protocol consists in the application of radial compression to a thin layer of graphene oxide (GO) formed at the air–liquid interface of an ammoniacal dispersion of graphene oxide by continuous irradiation with visible light, that drives both the formation and curing of the film. Both infrared and near infrared luminescence spectroscopies were used for the proposition of a chemical mechanism in which the in situ singlet oxygen Δ{sup 1}O{sub 2}, generated by the photosensitization of molecular oxygen to visible light, initiates the formation and curing of the film. The GO and RGO films display Raman spectral signatures typical of graphene – based materials, with thickness of ca. 20 nm as evaluated by atomic force microscopy. The deposited films exhibited good transparency to visible light (max. 85%; 550 ± 2 nm), electrical resistivity equals to 14 ± 0.02 Ω m, sheet resistance equals to 5 kΩ sq{sup −1} with associated charge carrier mobility of 200 cm{sup 2}/V s. - Highlights: • Visible light photochemical assembly of self-supported graphene oxide thin films. • Graphene oxide photosensitizer for in situ production of singlet oxygen Δ{sup 1}O{sub 2}. • Δ{sup 1}O{sub 2}, as initiator of formation and curing of graphene oxide thin film. • Deposition of colloidal graphene oxide thin film by radial compression. • Deposition of graphene oxide thin film in arbitrary solid substrate.

  9. Carbon and oxide nanostructures. Synthesis, characterisation and applications

    Energy Technology Data Exchange (ETDEWEB)

    Yahya, Noorhana [Universiti Teknologi PETRONAS, Tronoh, Perak (Malaysia). Dept. of Fundamental and Applied Sciences

    2010-07-01

    This volume covers all aspects of carbon and oxide based nanostructured materials. The topics include synthesis, characterization and application of carbon-based namely carbon nanotubes, carbon nanofibres, fullerenes, carbon filled composites etc. In addition, metal oxides namely, ZnO, TiO2, Fe2O3, ferrites, garnets etc., for various applications like sensors, solar cells, transformers, antennas, catalysts, batteries, lubricants, are presented. The book also includes the modeling of oxide and carbon based nanomaterials. The book covers the topics: - Synthesis, characterization and application of carbon nanotubes, carbon nanofibres, fullerenes - Synthesis, characterization and application of oxide based nanomaterials. - Nanostructured magnetic and electric materials and their applications. - Nanostructured materials for petro-chemical industry. - Oxide and carbon based thin films for electronics and sustainable energy. - Theory, calculations and modeling of nanostructured materials. (orig.)

  10. Thin, Flexible Secondary Li-Ion Paper Batteries

    KAUST Repository

    Hu, Liangbing

    2010-10-26

    There is a strong interest in thin, flexible energy storage devices to meet modern society needs for applications such as interactive packaging, radio frequency sensing, and consumer products. In this article, we report a new structure of thin, flexible Li-ion batteries using paper as separators and free-standing carbon nanotube thin films as both current collectors. The current collectors and Li-ion battery materials are integrated onto a single sheet of paper through a lamination process. The paper functions as both a mechanical substrate and separator membrane with lower impedance than commercial separators. The CNT film functions as a current collector for both the anode and the cathode with a low sheet resistance (∼5 Ohm/sq), lightweight (∼0.2 mg/cm2), and excellent flexibility. After packaging, the rechargeable Li-ion paper battery, despite being thin (∼300 μm), exhibits robust mechanical flexibility (capable of bending down to <6 mm) and a high energy density (108 mWh/g). © 2010 American Chemical Society.

  11. Squirming through shear thinning fluids

    Science.gov (United States)

    Datt, Charu; Zhu, Lailai; Elfring, Gwynn J.; Pak, On Shun

    2015-11-01

    Many microorganisms find themselves surrounded by fluids which are non-Newtonian in nature; human spermatozoa in female reproductive tract and motile bacteria in mucosa of animals are common examples. These biological fluids can display shear-thinning rheology whose effects on the locomotion of microorganisms remain largely unexplored. Here we study the self-propulsion of a squirmer in shear-thinning fluids described by the Carreau-Yasuda model. The squirmer undergoes surface distortions and utilizes apparent slip-velocities around its surface to swim through a fluid medium. In this talk, we will discuss how the nonlinear rheological properties of a shear-thinning fluid affect the propulsion of a swimmer compared with swimming in Newtonian fluids.

  12. [Obesity and thinness in painting].

    Science.gov (United States)

    Schüller Pérez, Amador

    2004-01-01

    The obesity, serious frequenty sanitary problem, cause of complications that effects to the expectation of life, with aesthetic repercussion and with an increase in the last decades. Admitted the obesity android, gynoide, central or abdominal, wide aesthetic repercussion and physiopathologic like hyperdislipemias, metabolic alterations (diabetes mellitus, etc...), arterial hypertension, column arthrosis and outlying. Ethiopathologics co-factors, sedentariness, genotypic predisposition, endocrine alterations and of the leptina secretion. Illustrative cases of obesity in the painting of those that characteristic models are exposed, from slight grades to intense affecting to both genders. The thinness counterpoint of the obesity, multicausal process, less frequent than the obesity with aesthetic and psychological repercussion. It is the formed aesthetic thinness to the diverse types physiopathologic, without forgetting the constitutional and family form and the anorexy, the serial ones to disasters, wars, famines, etc..., the mystic thinness of saints and ascetics, and the serial one to consuming processes.

  13. Fracture toughness of thin specimen

    International Nuclear Information System (INIS)

    Machida, Kenji; Kikuchi, Masanori; Miyamoto, Hiroshi

    1991-01-01

    Three-dimensional elastic-plastic analyses were carried out on 1 and 2 mm-thick CCT specimens with or without side grooves. The valid effective thickness, 0.85 √(B o xB n ), was obtained from the 3-D analyses. The stretched-zone method is better than the R-curve method to determine the J in value of the thin specimen. However, a great many data should be gathered near the J in value. The J in value obtained using side-grooved specimens is always lower than that of non-side-grooved specimens. Considering the difficulty of machining the side groove, the side groove is not appropriate for the thin specimen. As the thickness decreases, the J in value decreases. However, it is possible to estimate the J ic value from the J in value obtained using thin CCT specimens. (author)

  14. Management Impacts on Carbon Dynamics in a Sierra Nevada Mixed Conifer Forest.

    Science.gov (United States)

    Dore, Sabina; Fry, Danny L; Collins, Brandon M; Vargas, Rodrigo; York, Robert A; Stephens, Scott L

    2016-01-01

    Forest ecosystems can act as sinks of carbon and thus mitigate anthropogenic carbon emissions. When forests are actively managed, treatments can alter forests carbon dynamics, reducing their sink strength and switching them from sinks to sources of carbon. These effects are generally characterized by fast temporal dynamics. Hence this study monitored for over a decade the impacts of management practices commonly used to reduce fire hazards on the carbon dynamics of mixed-conifer forests in the Sierra Nevada, California, USA. Soil CO2 efflux, carbon pools (i.e. soil carbon, litter, fine roots, tree biomass), and radial tree growth were compared among un-manipulated controls, prescribed fire, thinning, thinning followed by fire, and two clear-cut harvested sites. Soil CO2 efflux was reduced by both fire and harvesting (ca. 15%). Soil carbon content (upper 15 cm) was not significantly changed by harvest or fire treatments. Fine root biomass was reduced by clear-cut harvest (60-70%) but not by fire, and the litter layer was reduced 80% by clear-cut harvest and 40% by fire. Thinning effects on tree growth and biomass were concentrated in the first year after treatments, whereas fire effects persisted over the seven-year post-treatment period. Over this period, tree radial growth was increased (25%) by thinning and reduced (12%) by fire. After seven years, tree biomass returned to pre-treatment levels in both fire and thinning treatments; however, biomass and productivity decreased 30%-40% compared to controls when thinning was combined with fire. The clear-cut treatment had the strongest impact, reducing ecosystem carbon stocks and delaying the capacity for carbon uptake. We conclude that post-treatment carbon dynamics and ecosystem recovery time varied with intensity and type of treatments. Consequently, management practices can be selected to minimize ecosystem carbon losses while increasing future carbon uptake, resilience to high severity fire, and climate related

  15. Synthesis of wo3 nanogranular thin films by hot-wire CVD

    NARCIS (Netherlands)

    Houweling, Z.S.; Geus, J.W.; Schropp, R.E.I.

    2010-01-01

    By resistively heating tungsten filaments in a constant air flow under a reduced pressure, nanogranular amorphous WO3 thin films are deposited on glassy carbon substrates. The substrate surface temperature is monitored by a thermocouple. For deposition times of 15 min and longer, the films show

  16. Effect of operating conditions on thin layers of titanium posed on ...

    African Journals Online (AJOL)

    Effect of operating conditions on thin layers of titanium posed on steel 100C6 substrates with PVD method. ... Journal of Fundamental and Applied Sciences ... reaction between the two parts of the system which results the formation of carbides of Ti due to the diffusion of carbon from the substrate towards deposited layers.

  17. Sensitivity enhancement of metal oxide thin film transistor with back gate biasing

    NARCIS (Netherlands)

    Dam, V.A.T.; Blauw, M.A.; Brongersma, S.H.; Crego-Calama, M.

    2011-01-01

    In this work, a room-temperature sensing device for detecting carbon monoxide using a ZnO thin film is presented. The ZnO layer (thickness close to the Debye length), which has a polycrystalline structure, is deposited with atomic-layer deposition (ALD) on an Al2O3/Si substrate. The operating

  18. Modification of rubber surface with DLC thin films for low friction and self lubrication

    NARCIS (Netherlands)

    Bui, X. L.; Pei, Y. T.; Mulder, E. D. G.; De Hosson, J. Th. M.; DeHosson, JTM; Brebbia, CA

    2009-01-01

    Thin films of hydrogenated diamond-like carbon (DLC) have been deposited on hydrogenated nitrile butadiene rubber (HNBR) via magnetron-enhanced plasma chemical vapor deposition (ME-PCVD). Pre-deposition plasma treatment of HNBR substrate is proven to be crucial for the improvement of film

  19. Nanocomposite C-Pd thin films – a new material with specific spectral properties

    Directory of Open Access Journals (Sweden)

    M. Suchańska

    2013-09-01

    Full Text Available In this paper, the results of optical investigations for thin films of carbon-palladium (C-Pd nanocomposites are presented. This films were prepared using two steps method (PVD/ CVD. The optical and Raman spectroscopy has been used to characterize the material. The multinanolayer model was used to explain the specific spectral properties.

  20. Experimental High Speed Milling of the Selected Thin-Walled Component

    Directory of Open Access Journals (Sweden)

    Jozef Zajac

    2017-11-01

    Full Text Available In a technical practice, it is possible to meet thin-walled parts more and more often. These parts are most commonly used in the automotive industry or aircraft industry to reduce the weight of different design part of cars or aircraft. Presented article is focused on experimental high speed milling of selected thin-walled component. The introduction of this article presents description of high speed machining and specification of thin – walled parts. The experiments were carried out using a CNC machine Pinnacle VMC 650S and C45 material - plain carbon steel for automotive components and mechanical engineering. In the last part of the article, described are the arrangements to reduction of deformation of thin-walled component during the experimental high speed milling.

  1. Electrical transport mechanism in plasma polymerized 2, 6, diethylaniline thin films

    International Nuclear Information System (INIS)

    Matin, Rummana; Bhuiyan, A.H.

    2011-01-01

    Plasma polymerized 2, 6, diethylaniline (PPDEA) thin films were deposited at room temperature on to glass substrates by a capacitively coupled parallel plate glow discharge reactor. The surface of the PPDEA thin films has been found uniform and pinhole free from the scanning electron micrographs. The observation by electron dispersive X-ray analysis indicates the presence of carbon, nitrogen and oxygen in the PPDEA thin films. The current density-voltage characteristics of aluminum (Al)/PPDEA/Al structure of different film thicknesses have been studied at different temperatures. In the low voltage region, the conduction current obeys Ohm's law while the charge transport phenomenon appears to be Schottky type in the higher voltage region. The temperature dependence of the current density for different bias voltages was also investigated which confirms the possibility of Schottky emission in PPDEA thin films as well.

  2. Synthesis of carbon nanowall by plasma-enhanced chemical vapor deposition method.

    Science.gov (United States)

    Liu, Rulin; Chi, Yaqing; Fang, Liang; Tang, Zhensen; Yi, Xun

    2014-02-01

    Plasma-enhanced chemical vapor deposition (PECVD) is widely used for the synthesis of carbon materials, such as diamond-like carbons (DLCs), carbon nanotubes (CNTs) and carbon nanowalls (CNWs). Advantages of PECVD are low synthesis temperature compared with thermal CVD and the ability to grow vertically, free-standing structures. Due to its self-supported property and high specific surface area, CNWs are a promising material for field emission devices and other chemical applications. This article reviews the recent process on the synthesis of CNW by the PECVD method. We briefly introduce the structure and properties of CNW with characterization techniques. Growth mechanism is also discussed to analyze the influence of plasma conditions, substrates, temperature, and other parameters to the final film, which will give a suggestion on parameter modulation for desired film.

  3. Porous carbons

    Indian Academy of Sciences (India)

    ... area in the range of 2500 m2 /gm can be developed by controlled pyrolysis and physical activation of amorphous carbon fibres. Active carbon fibres with unmatchable pore structure and surface characteristics are present and futuristic porous materials for a number of applications from pollution control to energy storage.

  4. Porous carbons

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    Thus, these carbons can be used for adsorption of wide distributions of molecules from gas to liquid. The molecular adsorption within the pores is due to single layer or multilayer molecule deposition at the pore walls and hence results in different types of adsorption isotherm. On the other hand, activated carbon fibres with ...

  5. study in polymer thin films

    Indian Academy of Sciences (India)

    TECS

    carry out a careful study of steady state conduction of poly- styrene (PS) thin film thermo-electrets sandwiched be- tween metal electrodes both in doped and undoped forms. 2. Experimental. 2.1 Sample preparation. Polystyrene supplied by Polymer Chemical Industry,. Mumbai and naphthalene by S.G. Sisco Pvt Ltd., New ...

  6. Capillary thinning of polymeric filaments

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Szabo, Peter

    1999-01-01

    The capillary thinning of filaments of a Newtonian polybutene fluid and a viscoelastic polyisobutylene solution are analyzed experimentally and by means of numerical simulation. The experimental procedure is as follows. Initially, a liquid sample is placed between two cylindrical plates. Then...

  7. Capillary thinning of polymeric filaments

    DEFF Research Database (Denmark)

    Kolte, Mette Irene; Szabo, Peter; Hassager, Ole

    1998-01-01

    The capillary thinning of a polymeric filament is analysed experimentally as well as by means of numerical simulation. The experimental procedure is as follows. Initially a liquid sample is kept between two cylindrical plates. Then the bottom plate is lowered under gravity to yield a given strain...

  8. A KIRCHHOFF THIN SHELL THEORY,

    Science.gov (United States)

    imposing the principal of virtual work on the calss of deformations which satisfy the Kirchhoff hypotheses, i.e. those deformations which carry normals to...physically realistic unless the shell is in fact thin. Imposing the principal of virtual work yields a system of differential equations for the three

  9. Magnetization in permalloy thin films

    Indian Academy of Sciences (India)

    1VES College of Arts, Science and Commerce, Sindhi Society, Chembur, Mumbai 400 071,. India. 2UGC-DAE Consortium for Scientific Research, R5 Shed, ... gas alone, while PNR measurements on 5 and 10% sample show splitting in the spin-up and spin-down reflectivity. Keywords. Permalloy; NiFe thin films; NiFe ...

  10. A Review: Carbon Nanotube-Based Piezoresistive Strain Sensors

    Directory of Open Access Journals (Sweden)

    Waris Obitayo

    2012-01-01

    Full Text Available The use of carbon nanotubes for piezoresistive strain sensors has acquired significant attention due to its unique electromechanical properties. In this comprehensive review paper, we discussed some important aspects of carbon nanotubes for strain sensing at both the nanoscale and macroscale. Carbon nanotubes undergo changes in their band structures when subjected to mechanical deformations. This phenomenon makes them applicable for strain sensing applications. This paper signifies the type of carbon nanotubes best suitable for piezoresistive strain sensors. The electrical resistivities of carbon nanotube thin film increase linearly with strain, making it an ideal material for a piezoresistive strain sensor. Carbon nanotube composite films, which are usually fabricated by mixing small amounts of single-walled or multiwalled carbon nanotubes with selected polymers, have shown promising characteristics of piezoresistive strain sensors. Studies also show that carbon nanotubes display a stable and predictable voltage response as a function of temperature.

  11. Atomic layer deposition of copper thin film and feasibility of deposition on inner walls of waveguides

    Science.gov (United States)

    Yuqing, XIONG; Hengjiao, GAO; Ni, REN; Zhongwei, LIU

    2018-03-01

    Copper thin films were deposited by plasma-enhanced atomic layer deposition at low temperature, using copper(I)-N,N‧-di-sec-butylacetamidinate as a precursor and hydrogen as a reductive gas. The influence of temperature, plasma power, mode of plasma, and pulse time, on the deposition rate of copper thin film, the purity of the film and the step coverage were studied. The feasibility of copper film deposition on the inner wall of a carbon fibre reinforced plastic waveguide with high aspect ratio was also studied. The morphology and composition of the thin film were studied by atomic force microscopy and x-ray photoelectron spectroscopy, respectively. The square resistance of the thin film was also tested by a four-probe technique. On the basis of on-line diagnosis, a growth mechanism of copper thin film was put forward, and it was considered that surface functional group played an important role in the process of nucleation and in determining the properties of thin films. A high density of plasma and high free-radical content were helpful for the deposition of copper thin films.

  12. Fabrication of PDMS/SWCNT thin films as saturable absorbers

    International Nuclear Information System (INIS)

    Hernandez-Romano, I; Sanchez-Mondragon, J J; Davila-Rodriguez, J; Delfyett, P J; May-Arrioja, D A

    2011-01-01

    We present a novel technique to fabricate a saturable absorber thin film based on Polydimethylsiloxane doped with Single Wall Carbon Nanotubes. Using this film a passive mode-locked fiber laser in a standard ring cavity configuration was built by inserting the film between two angled connectors. Self-starting passively mode-locked laser operation was easily observed. The generated pulses have a width of 1.26 ps at a repetition rate of 22.7 MHz with an average power of 4.89 mW.

  13. Laser-assisted deposition of thin C60 films

    DEFF Research Database (Denmark)

    Schou, Jørgen; Canulescu, Stela; Fæster, Søren

    Metal and metal oxide films with controlled thickness from a fraction of a monolayer up more than 1000 nm and known stoichiometry can be produced by pulsed laser deposition (PLD) relatively easily, and (PLD) is now a standard technique in all major research laboratories within materials science...... bound carbon molecule with a well-defined mass (M = 720 amu) and therefore a good, organic test molecule. C60 fullerene thin films of average thickness of more than 100 nm was produced in vacuum by matrix-assisted pulsed laser evaporation (MAPLE). A 355 nm Nd:YAG laser was directed onto a frozen target...

  14. A comparative study of fingerprint thinning algorithms

    CSIR Research Space (South Africa)

    Khanyile, NP

    2011-08-01

    Full Text Available Thinning plays a very important role in the preprocessing phase of automatic fingerprint recognition/identification systems. The performance of minutiae extraction relies heavily on the quality of skeletons used. A good fingerprint thinning...

  15. Epoxy based photoresist/carbon nanoparticle composites

    DEFF Research Database (Denmark)

    Lillemose, Michael; Gammelgaard, Lauge; Richter, Jacob

    2008-01-01

    We have fabricated composites of SU-8 polymer and three different types of carbon nanoparticles (NPs) using ultrasonic mixing. Structures of composite thin films have been patterned on a characterization chip with standard UV photolithography. Using a four-point bending probe, a well defined stress...... is applied to the composite thin film and we have demonstrated that the composites are piezoresistive. Stable gauge factors of 5-9 have been measured, but we have also observed piezoresistive responses with gauge factors as high as 50. As SU-8 is much softer than silicon and the gauge factor of the composite...

  16. Laser applications in thin-film photovoltaics

    OpenAIRE

    Bartlome, R.; Strahm, B.; Sinquin, Y.; Feltrin, A.; Ballif, C.

    2009-01-01

    We review laser applications in thin-film photovoltaics (thin-film Si, CdTe, and Cu(In,Ga)Se2 solar cells). Lasers are applied in this growing field to manufacture modules, to monitor Si deposition processes, and to characterize opto-electrical properties of thin films. Unlike traditional panels based on crystalline silicon wafers, the individual cells of a thin-film photovoltaic module can be serially interconnected by laser scribing during fabrication. Laser scribing applications are descri...

  17. Nanocrystal thin film fabrication methods and apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Kagan, Cherie R.; Kim, David K.; Choi, Ji-Hyuk; Lai, Yuming

    2018-01-09

    Nanocrystal thin film devices and methods for fabricating nanocrystal thin film devices are disclosed. The nanocrystal thin films are diffused with a dopant such as Indium, Potassium, Tin, etc. to reduce surface states. The thin film devices may be exposed to air during a portion of the fabrication. This enables fabrication of nanocrystal-based devices using a wider range of techniques such as photolithography and photolithographic patterning in an air environment.

  18. TEMPERATURE-DEFORMATION CRITERION OF OPTIMIZATION OF FINE DRAWING HIGH CARBON WIRE ROUTE

    Directory of Open Access Journals (Sweden)

    Y. L. Bobarikin

    2012-01-01

    Full Text Available The temperature-deformation criterion of assessment and optimization of routes of the thin high-carbon wire drawing enabling to increase plastic properties of wire at retaining of its durability is offered.

  19. Simultaneous Hydrogen Sulphide and Carbon Dioxide Removal from Biogas by Water–Swollen Reverse Osmosis Membrane.

    OpenAIRE

    Izák, Pavel

    2016-01-01

    The simultaneous removal of carbon dioxide and hydrogen sulphide was studied for agrobiogas pre-treatment, using water–swollen thin hydrophilic film composites (TFC) based on industrially produced membranes.

  20. Covalently bonded disordered thin-film materials. Materials Research Society symposium proceedings Volume 498

    International Nuclear Information System (INIS)

    Siegal, M.P.; Milne, W.I.; Jaskie, J.E.

    1998-01-01

    The current and potential impact of covalently bonded disordered thin films is enormous. These materials are amorphous-to-nanocrystalline structures made from light atomic weight elements from the first row of the periodic table. Examples include amorphous tetrahedral diamond-like carbon, boron nitride, carbon nitride, boron carbide, and boron-carbon-nitride. These materials are under development for use as novel low-power, high-visibility elements in flat-panel display technologies, cold-cathode sources for microsensors and vacuum microelectronics, encapsulants for both environmental protection and microelectronics, optical coatings for laser windows, and ultra-hard tribological coatings. researchers from 17 countries and a broad range of academic institutions, national laboratories and industrial organizations come together in this volume to report on the status of key areas and recent discoveries. More specifically, the volume is organized into five sections. The first four highlight ongoing work primarily in the area of amorphous/nanocrystalline (disordered) carbon thin films; theoretical and experimental structural characterization; electrical and optical characterizations; growth methods; and cold-cathode electron emission results. The fifth section describes the growth, characterization and application of boron- and carbon-nitride thin films

  1. Matérn thinned Cox processes

    DEFF Research Database (Denmark)

    Andersen, Ina Trolle; Hahn, Ute

    2016-01-01

    and hard core behaviour can be achieved by applying a dependent Matérn thinning to a Cox process. An exact formula for the intensity of a Matérn thinned shot noise Cox process is derived from the Palm distribution. For the more general class of Matérn thinned Cox processes, formulae for the intensity...

  2. Matérn thinned Cox processes

    DEFF Research Database (Denmark)

    Andersen, Ina Trolle; Hahn, Ute

    of clustering and hard core behaviour can be achieved by applying a dependent Matérn thinning to a Cox process. An exact formula for the intensity of a Matérn thinned shot noise Cox process is derived from the Palm distribution. For the more general class of Matérn thinned Cox processes, formulae...

  3. Ultra-thin chip technology and applications

    CERN Document Server

    2010-01-01

    Ultra-thin chips are the "smart skin" of a conventional silicon chip. This book shows how very thin and flexible chips can be fabricated and used in many new applications in microelectronics, microsystems, biomedical and other fields. It provides a comprehensive reference to the fabrication technology, post processing, characterization and the applications of ultra-thin chips.

  4. “STRUCTURA”, fachada autoportante de ladrillo cara vista para cumplir los requisitos del nuevo CTE DB HE” = “STRUCTURA”, self-supporting face brick façade to comply with the new CTE DB HE requirements”

    Directory of Open Access Journals (Sweden)

    Concepción Río Vega

    2016-08-01

    Full Text Available La fachada autoportante de ladrillo cara vista es el resultado de una profunda reflexión sobre las diferentes soluciones de fachada de ladrillo que se han utilizado a lo largo de la historia. Ha sido promovida por Hispalyt en estrecha colaboración con el Departamento Técnico de Geohidrol S.A., empresa líder en la investigación, fabricación y comercialización de sistemas para cerramientos de fábrica. Cuando se analizan las diferentes soluciones de las fachadas de ladrillo, bajo la óptica de los requisitos del Código Técnico de la Edificación, la fachada autoportante 'STRUCTURA' se manifiesta como la solución óptima por su simplicidad, sus elevadas prestaciones y el bajo coste en recursos auxiliares. La fachada autoportante 'STRUCTURA' se caracteriza porque la hoja exterior del cerramiento se construye totalmente separada del edificio, gravitando sobre sí misma, lo cual permite la disposición de una cámara de aire (ventilada o no con aislamiento térmico continuo. De esta forma se elimina el puente térmico en el encuentro con los frentes de pilares y forjados, mejorando notablemente el rendimiento higrotérmico del edificio con el fin de cumplir el Documento Básico de Ahorro de Energía (DB HE, cuyos requisitos en la nueva versión aprobada en Septiembre de 2013 han experimentado un sustancial incremento respecto de los contenidos en la versión anterior. Desde el punto de vista de la respuesta mecánica, la fachada autoportante se fundamenta en el aprovechamiento del potencial que tienen los muros de ladrillo cuando se utilizan como soportes de sí mismos. A diferencia de las soluciones convencionales o de las que requieren elementos auxiliares de sostén dispuestos planta a planta, con la solución 'STRUCTURA' el muro de ladrillo se analiza como un elemento activo en el comportamiento estructural, de manera que su propio peso contribuye beneficiosamente en la resistencia frente a las acciones horizontales. Abstract The self-supporting

  5. Discharge cleaning of carbon deposits

    International Nuclear Information System (INIS)

    Mozetic, M.; Vesel, A.; Drenik, A.

    2006-01-01

    Experimental results of discharge cleaning of carbon deposits are presented. Deposits were prepared by creating plasma in pure methane. The methane was cracked in RF discharge at the output power of 250 W. The resultant radicals were bonded to the wall of discharge vessel forming a thin film of hydrogenated black carbon with the thickness of about 200nm. The film was then cleaned in situ by oxygen plasma with the density of about 1x10 16 m -3 , electron temperature of 5 eV, neutral gas kinetic temperature of about 100 0 C and neutral atom density of 6x10 21 m -3 . The treatment time was 30 minutes. The efficiency of plasma cleaning was monitored by optical emission spectroscopy. As long as the wall was contaminated with carbon deposit, substantial emission of the CO molecules was detected. As the cleaning was in progress, the CO emission was decreasing and vanished after 30 minutes when the discharge vessel became free of any carbon. The results are explained by interaction of plasma radicals with carbon deposits. (author)

  6. Thin-film deposition by laser ablation of dimethylpolysiloxane

    Energy Technology Data Exchange (ETDEWEB)

    Okoshi, Masayuki; Kuramatsu, Masaaki; Inoue, Narumi

    2002-09-30

    Transparent, well-insulated SiO{sub 2} thin films were deposited at room temperature by pulsed laser deposition with a dimethylpolysiloxane target. It could be asserted with confidence that the films deposited at the oxygen gas pressure of 4.4x10{sup -2} Torr were to be SiO{sub 2} by X-ray photoelectron spectroscopy (XPS). The XPS analyseso supported that carbon ejected from the target and background oxygen gas interacted to form a carbon-free SiO{sub 2} film, though a polymer target was used. However, an excessive oxygen gas pressure such as 4.4x10{sup -1} Torr caused to roughen the surface of the deposited films. Lowering the deposition rate helped to make a dense film and to improve electrical resistivity of the films up to 10{sup 9} {omega}m.

  7. Hybrid nanostructured thin-films by PLD for enhanced field emission performance for radiation micro-nano dosimetry applications

    Energy Technology Data Exchange (ETDEWEB)

    Manikandan, E., E-mail: maniphysics@gmail.com [UNESCO-UNISA AFNET in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS–National Research Foundation (NRF), 1 Old Faure Road, Somerset West, PO Box 722, Western Cape (South Africa); Materials Science Group (MSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603102 (India); Corrosion Science and Technology Group, Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam 603102 (India); Sree Balaji Medical College & Hospital (SBMCH), Bharath University, Chrompet, Chennai 600044 (India); Kennedy, J. [UNESCO-UNISA AFNET in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS–National Research Foundation (NRF), 1 Old Faure Road, Somerset West, PO Box 722, Western Cape (South Africa); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Kavitha, G. [UNESCO-UNISA AFNET in Nanosciences/Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk Ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), Materials Research Department, iThemba LABS–National Research Foundation (NRF), 1 Old Faure Road, Somerset West, PO Box 722, Western Cape (South Africa); PG& Research Dept of Physics, AM Jain College Affiliated to University of Madras, Chennai 600114 (India); and others

    2015-10-25

    We report the observation of hybrid nanostructured thin-films such as diamond-like carbon (DLC) signature on the ZnO epitaxial thin-films grown onto the device silicon/quartz substrate by reactive pulsed laser deposition (r-PLD) under the argon–oxygen (Ar|O{sub 2}) ambient at 573 K. Undoped and Carbon (C) doped epitaxial ZnO thin-film layer formation is revealed by the accelerator based ion-beam analysis (IBA) technique of resonant Rutherford backscattering spectrometry (RRBS), glancing-incidence X-ray diffraction (GIXRD) pattern, micro-Raman spectroscopy (μ-RS) and field-emission (F-E) studies. The RRBS and GIXRD results show the deposition of epitaxial thin-films containing C into ZnO. The μ-RS technique is a standard nondestructive tool (NDT) for the characterization of crystalline, nano-crystalline, and amorphous carbons (a-C). As grown ZnO and C-doped ZnO thin-films μ-RS result reveal the doping effect of C-impurities that appear in the form of DLC evident from Raman peaks at 1357 and 1575 cm{sup −1} along with a wurtzite structure peak at 438 cm{sup −1} with E{sub 2}(h) phonon of ZnO. The electron transport F-E result shows the hybrid thin-films has high conductivity than the un-doped film. Fabricated hybrid nanostructured thin-films materials could be very useful for the emerging applications of micro-nano dosimetry. - Highlights: • Observation of hybrid nanostructured diamond-like carbon (DLC) on ZnO epitaxial thin-films at 573 K. • Carbon doped epitaxial ZnO thin-film layer formation is revealed by RRBS, Micro-Raman. • Field-emission (F-E) study. • DLC formation evident from Raman peaks at 1357 and 1575 cm{sup −1} along with a wurtzite structure peak of ZnO. • The electron transport F-E result shows the hybrid thin-film has high conductivity than the undoped thin-film.

  8. Resolution of the carbon contamination problem in ion irradiation experiments

    Science.gov (United States)

    Was, G. S.; Taller, S.; Jiao, Z.; Monterrosa, A. M.; Woodley, D.; Jennings, D.; Kubley, T.; Naab, F.; Toader, O.; Uberseder, E.

    2017-12-01

    The widely experienced problem of carbon uptake in samples during ion irradiation was systematically investigated to identify the source of carbon and to develop mitigation techniques. Possible sources of carbon included carbon ions or neutrals incorporated into the ion beam, hydrocarbons in the vacuum system, and carbon species on the sample and fixture surfaces. Secondary ion mass spectrometry, atom probe tomography, elastic backscattering spectrometry, and principally, nuclear reaction analysis, were used to profile carbon in a variety of substrates prior to and following irradiation with Fe2+ ions at high temperature. Ion irradiation of high purity Si and Ni, and also of alloy 800H coated with a thin film of alumina eliminated the ion beam as the source of carbon. Hydrocarbons in the vacuum and/or on the sample and fixtures was the source of the carbon that became incorporated into the samples during irradiation. Plasma cleaning of the sample and sample stage, and incorporation of a liquid nitrogen cold trap both individually and especially in combination, completely eliminated the uptake of carbon during heavy ion irradiation. While less convenient, coating the sample with a thin film of alumina was also effective in eliminating carbon incorporation.

  9. [Characteristics of carbon storage of Inner Mongolia forests: a review].

    Science.gov (United States)

    Yang, Hao; Hu, Zhong-Min; Zhang, Lei-Ming; Li, Sheng-Gong

    2014-11-01

    Forests in Inner Mongolia account for an important part of the forests in China in terms of their large area and high living standing volume. This study reported carbon storage, carbon density, carbon sequestration rate and carbon sequestration potential of forest ecosystems in Inner Mongolia using the biomass carbon data from the related literature. Through analyzing the data of forest inventory and the generalized allometric equations between volume and biomass, previous studies had reported that biomass carbon storage of the forests in Inner Mongolia was about 920 Tg C, which was 12 percent of the national forest carbon storage, the annual average growth rate was about 1.4%, and the average of carbon density was about 43 t · hm(-2). Carbon storage and carbon density showed an increasing trend over time. Coniferous and broad-leaved mixed forest, Pinus sylvestris var. mongolica forest and Betula platyphylla forest had higher carbon sequestration capacities. Carbon storage was reduced due to human activities such as thinning and clear cutting. There were few studies on carbon storage of the forests in Inner Mongolia with focus on the soil, showing that the soil car- bon density increased with the stand age. Study on the carbon sequestration potential of forest ecosystems was still less. Further study was required to examine dynamics of carbon storage in forest ecosystems in Inner Mongolia, i. e., to assess carbon storage in the forest soils together with biomass carbon storage, to compute biomass carbon content of species organs as 45% in the allometric equations, to build more species-specific and site-specific allometric equations including root biomass for different dominant species, and to take into account the effects of climate change on carbon sequestration rate and carbon sequestration potential.

  10. Coaxial carbon plasma gun deposition of amorphous carbon films

    Science.gov (United States)

    Sater, D. M.; Gulino, D. A.; Rutledge, S. K.

    1984-01-01

    A unique plasma gun employing coaxial carbon electrodes was used in an attempt to deposit thin films of amorphous diamond-like carbon. A number of different structural, compositional, and electrical characterization techniques were used to characterize these films. These included scanning electron microscopy, scanning transmission electron microscopy, X ray diffraction and absorption, spectrographic analysis, energy dispersive spectroscopy, and selected area electron diffraction. Optical absorption and electrical resistivity measurements were also performed. The films were determined to be primarily amorphous, with poor adhesion to fused silica substrates. Many inclusions of particulates were found to be present as well. Analysis of these particulates revealed the presence of trace impurities, such as Fe and Cu, which were also found in the graphite electrode material. The electrodes were the source of these impurities. No evidence of diamond-like crystallite structure was found in any of the film samples. Details of the apparatus, experimental procedure, and film characteristics are presented.

  11. Carbon Stars

    Indian Academy of Sciences (India)

    Abstract. In this paper, the present state of knowledge of the carbon stars is discussed. Particular attention is given to issues of classification, evolution, variability, populations in our own and other galaxies, and circumstellar material.

  12. Thin layers in actinide research

    International Nuclear Information System (INIS)

    Gouder, T.

    1998-01-01

    Surface science research at the ITU is focused on the synthesis and surface spectroscopy studies of thin films of actinides and actinide compounds. The surface spectroscopies used are X-ray and ultra violet photoelectron spectroscopy (XPS and UPS, respectively), and Auger electron spectroscopy (AES). Thin films of actinide elements and compounds are prepared by sputter deposition from elemental targets. Alloy films are deposited from corresponding alloy targets and could be used, in principle, as replicates of these targets. However, there are deviations between alloy film and target composition, which depend on the deposition conditions, such as pressure and target voltage. Mastering of these effects may allow us to study stoichiometric film replicates instead of thick bulk compounds. As an example, we discuss the composition of U-Ni films prepared from a UNi 5 target. (orig.)

  13. Polycrystalline thin films : A review

    Energy Technology Data Exchange (ETDEWEB)

    Valvoda, V. [Charles Univ., Prague (Czech Republic). Faculty of Mathematics and Physics

    1996-09-01

    Polycrystalline thin films can be described in terms of grain morphology and in terms of their packing by the Thornton`s zone model as a function of temperature of deposition and as a function of energy of deposited atoms. Grain size and preferred grain orientation (texture) can be determined by X-ray diffraction (XRD) methods. A review of XRD analytical methods of texture analysis is given with main attention paid to simple empirical functions used for texture description and for structure analysis by joint texture refinement. To illustrate the methods of detailed structure analysis of thin polycrystalline films, examples of multilayers are used with the aim to show experiments and data evaluation to determine layer thickness, periodicity, interface roughness, lattice spacing, strain and the size of diffraction coherent volumes. The methods of low angle and high angle XRD are described and discussed with respect to their complementary information content.

  14. Thin films of soft matter

    CERN Document Server

    Kalliadasis, Serafim

    2007-01-01

    A detailed overview and comprehensive analysis of the main theoretical and experimental advances on free surface thin film and jet flows of soft matter is given. At the theoretical front the book outlines the basic equations and boundary conditions and the derivation of low-dimensional models for the evolution of the free surface. Such models include long-wave expansions and equations of the boundary layer type and are analyzed via linear stability analysis, weakly nonlinear theories and strongly nonlinear analysis including construction of stationary periodic and solitary wave and similarity solutions. At the experimental front a variety of very recent experimental developments is outlined and the link between theory and experiments is illustrated. Such experiments include spreading drops and bubbles, imbibitions, singularity formation at interfaces and experimental characterization of thin films using atomic force microscopy, ellipsometry and contact angle measurements and analysis of patterns using Minkows...

  15. Restoring forest structure and process stabilizes forest carbon in wildfire-prone southwestern ponderosa pine forests.

    Science.gov (United States)

    Hurteau, Matthew D; Liang, Shuang; Martin, Katherine L; North, Malcolm P; Koch, George W; Hungate, Bruce A

    2016-03-01

    Changing climate and a legacy of fire-exclusion have increased the probability of high-severity wildfire, leading to an increased risk of forest carbon loss in ponderosa pine forests in the southwestern USA. Efforts to reduce high-severity fire risk through forest thinning and prescribed burning require both the removal and emission of carbon from these forests, and any potential carbon benefits from treatment may depend on the occurrence of wildfire. We sought to determine how forest treatments alter the effects of stochastic wildfire events on the forest carbon balance. We modeled three treatments (control, thin-only, and thin and burn) with and without the occurrence of wildfire. We evaluated how two different probabilities of wildfire occurrence, 1% and 2% per year, might alter the carbon balance of treatments. In the absence of wildfire, we found that thinning and burning treatments initially reduced total ecosystem carbon (TEC) and increased net ecosystem carbon balance (NECB). In the presence of wildfire, the thin and burn treatment TEC surpassed that of the control in year 40 at 2%/yr wildfire probability, and in year 51 at 1%/yr wildfire probability. NECB in the presence of wildfire showed a similar response to the no-wildfire scenarios: both thin-only and thin and burn treatments increased the C sink. Treatments increased TEC by reducing both mean wildfire severity and its variability. While the carbon balance of treatments may differ in more productive forest types, the carbon balance benefits from restoring forest structure and fire in southwestern ponderosa pine forests are clear.

  16. Thin lead sheets in the decorative features in Pavia Charterhouse.

    Science.gov (United States)

    Colombo, Chiara; Realini, Marco; Sansonetti, Antonio; Rampazzi, Laura; Casadio, Francesca

    2006-01-01

    The facade of the church of the Pavia Charterhouse, built at the end of the 15th century, shows outstanding decorative features made of different stone materials, such as marbles, breccias and sandstones. Magnificent ornamental elements are made of thin lead sheets, and some marble slabs are inlaid with them. Metal elements are shaped in complex geometric and phytomorphic design, to form a Greek fret in black contrasting with the white Carrara marble. Lead pins were fixed to the back of the thin lead sheets with the aim of attaching the metal elements to the marble; in so doing the pins and the lead sheets constitute a single piece of metal. In some areas, lead elements have been lost, and they have been substituted with a black plaster, matching the colour of the metal. To the authors' knowledge, this kind of decorative technique is rare, and confirms the refinement of Renaissance Lombard architecture. This work reports on the results of an extensive survey of the white, orange and yellowish layers, which are present on the external surface of the lead. The thin lead sheets have been characterized and their state of conservation has been studied with the aid of Optical Microscopy, SEM-EDS, FTIR and Raman analyses. Lead sulphate, lead carbonates and oxides have been identified as decay products.

  17. High Hydrogen Loading of Thin Palladium Wires Through

    CERN Document Server

    Celani, F; Marini, P; Di Stefano, V; Nakamura, M; Pace, S; Vecchione, A; Mancini, A; Tripodi, P; Di Gioacchino, D

    2000-01-01

    A new protocol for the electrolytic loading of hydrogen (H) in thin palladium (Pd) wires has been developed. In order to increase the cathodic overvoltage, which is known to be the main parameter capable to enhance the electrolytic $9 H loading of Pd, the catalytic action of the Pd surface versus H-H recombination has been strongly reduced by precipitation of a thin layer of alkaline-earth carbonates on the cathode. A set of electrolytes has been employed, $9 containing small amounts of hydrochloric or sulphuric acid and strontium or calcium ions. The H loading has been continuously evaluated through ac measurements of the Pd wire resistance. Uncommonly low resistivity values, leading to $9 an estimate of exceptionally high H loading, have been observed. Evidence of the existence of a new phase in the very high H content region of the Pd-H system has been inferred on the basis of the determination of the temperature $9 coefficient of the electrical resistivity. For this purpose a thin layer of Hg was galvanic...

  18. Deposition techniques for the preparation of thin film nuclear targets

    International Nuclear Information System (INIS)

    Muggleton, A.H.F.

    1987-07-01

    This review commences with a brief description of the basic principles that regulate vacuum evaporation and the physical processes involved in thin film formation, followed by a description of the experimental methods used. The principle methods of heating the evaporant are detailed and the means of measuring and controlling the film thickness are elucidated. Types of thin film nuclear targets are considered and various film release agents are listed. Thin film nuclear target behaviour under ion-bombardment is described and the dependence of nuclear experimental results upon target thickness and uniformity is outlined. Special problems associated with preparing suitable targets for lifetime measurements are discussed. The causes of stripper-foil thickening and breaking under heavy-ion bombardment are considered. A comparison is made between foils manufactured by a glow discharge process and those produced by vacuum sublimation. Consideration is given to the methods of carbon stripper-foil manufacture and to the characteristics of stripper-foil lifetimes are considered. Techniques are described that have been developed for the fabrication of special targets, both from natural and isotopically enriched material, and also of elements that are either chemically unstable, or thermally unstable under irradiation. The reduction of metal oxides by the use of hydrogen or by utilising a metallothermic technique, and the simultaneous evaporation of reduced rare earth elements is described. A comprehensive list of the common targets is presented

  19. Anomalous electron transport in metal/carbon multijunction devices by engineering of the carbon thickness and selecting metal layer

    Science.gov (United States)

    Dwivedi, Neeraj; Dhand, Chetna; Rawal, Ishpal; Kumar, Sushil; Malik, Hitendra K.; Lakshminarayanan, Rajamani

    2017-06-01

    A longstanding concern in the research of amorphous carbon films is their poor electrical conductivity at room temperature which constitutes a major barrier for the development of cost effective electronic and optoelectronic devices. Here, we propose metal/carbon hybrid multijunction devices as a promising facile way to overcome room temperature electron transport issues in amorphous carbon films. By the tuning of carbon thickness and swapping metal layers, we observe giant (upto ˜7 orders) reduction of electrical resistance in metal/carbon multijunction devices with respect to monolithic amorphous carbon device. We engineer the maximum current (electrical resistance) from about 10-7 to 10-3 A (˜107 to 103 Ω) in metal (Cu or Ti)/carbon hybrid multijunction devices with a total number of 10 junctions. The introduction of thin metal layers breaks the continuity of relatively higher resistance carbon layer as well as promotes the nanostructuring of carbon. These contribute to low electrical resistance of metal/carbon hybrid multijunction devices, with respect to monolithic carbon device, which is further reduced by decreasing the thickness of carbon layers. We also propose and discuss equivalent circuit model to explain electrical resistance in monolithic carbon and metal/carbon multijunction devices. Cu/carbon multijunction devices display relatively better electrical transport than Ti/carbon devices owing to low affinity of Cu with carbon that restricts carbide formation. We also observe that in metal/carbon multijunction devices, the transport mechanism changes from Poole-Frenkel/Schottky model to the hopping model with a decrease in carbon thickness. Our approach opens a new route to develop carbon-based inexpensive electronic and optoelectronic devices.

  20. Infiltrated carbon foam composites

    Science.gov (United States)

    Lucas, Rick D. (Inventor); Danford, Harry E. (Inventor); Plucinski, Janusz W. (Inventor); Merriman, Douglas J. (Inventor); Blacker, Jesse M. (Inventor)

    2012-01-01

    An infiltrated carbon foam composite and method for making the composite is described. The infiltrated carbon foam composite may include a carbonized carbon aerogel in cells of a carbon foam body and a resin is infiltrated into the carbon foam body filling the cells of the carbon foam body and spaces around the carbonized carbon aerogel. The infiltrated carbon foam composites may be useful for mid-density ablative thermal protection systems.