WorldWideScience

Sample records for thin mo films

  1. Properties of MoO3 thin film polymorphs

    International Nuclear Information System (INIS)

    McCarron, E.M.; Carcia, P.F.

    1987-01-01

    Thin film polymorphs of molybdenum trioxide have been synthesized by RF sputtering. Films deposited on thermally floating substrates are polycrystalline and exhibit preferred orientation. Depending upon the oxygen partial pressure maintained during sputtering, the films can be made to crystallize in either the thermodynamically stable orthorhombic α MoO 3 form (unique 2D-layered structure) or the metastable monoclinic β MoO 3 phase (3D ReO 3 -related structure). Metastable β films can be converted thermally to the α phase and the transformation appears topotactic. Films deposited on the cooled substrates are amorphous. A correlation between the particular phase formed and adatom mobility is noted

  2. Size and dimensionality effects in superconducting Mo thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fabrega, L; Gil, O [Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus de la UAB, 08193 Bellaterra (Spain); Camon, A; Parra-BorderIas, M [Instituto de Ciencia de Materiales de Aragon and Departamento de Fisica de la Materia Condensada, CSIC-Universidad de Zaragoza, E-50009, Zaragoza (Spain); Fernandez-MartInez, I; Costa-Kraemer, J L; Briones, F [IMM-Instituto de Microelectronica de Madrid (CNM-CSIC), Isaac Newton 8, PTM, E-28760 Tres Cantos, Madrid (Spain); Sese, J [Instituto de Nanociencia de Aragon (Universidad de Zaragoza), C/Mariano Esquillor s/n, 50018 Zaragoza (Spain); Gonzalez-Arrabal, R, E-mail: lourdes@icmab.es [Instituto de Fusion Nuclear (Universidad Politecnica de Madrid), C/Jose Gutierrez Abascal 2, 28006 Madrid (Spain)

    2011-07-15

    Molybdenum is a low T{sub c}, type I superconductor whose fundamental properties are poorly known. Its importance as an essential constituent of new high performance radiation detectors, the so-called transition edge sensors (TESs) calls for better characterization of this superconductor, especially in thin film form. Here we report on a study of the basic superconducting features of Mo thin films as a function of their thickness. The resistivity is found to rise and the critical temperature decreases on decreasing film thickness, as expected. More relevant, the critical fields along and perpendicular to the film plane are markedly different, thickness dependent and much larger than the thermodynamic critical field of Mo bulk. These results are consistent with a picture of type II 2D superconducting films, and allow estimates of the fundamental superconducting lengths of Mo. The role of morphology in determining the 2D and type II character of the otherwise type I molybdenum is discussed. The possible consequences of this behaviour on the performance of radiation detectors are also addressed.

  3. Size and dimensionality effects in superconducting Mo thin films

    International Nuclear Information System (INIS)

    Fabrega, L; Gil, O; Camon, A; Parra-BorderIas, M; Fernandez-MartInez, I; Costa-Kraemer, J L; Briones, F; Sese, J; Gonzalez-Arrabal, R

    2011-01-01

    Molybdenum is a low T c , type I superconductor whose fundamental properties are poorly known. Its importance as an essential constituent of new high performance radiation detectors, the so-called transition edge sensors (TESs) calls for better characterization of this superconductor, especially in thin film form. Here we report on a study of the basic superconducting features of Mo thin films as a function of their thickness. The resistivity is found to rise and the critical temperature decreases on decreasing film thickness, as expected. More relevant, the critical fields along and perpendicular to the film plane are markedly different, thickness dependent and much larger than the thermodynamic critical field of Mo bulk. These results are consistent with a picture of type II 2D superconducting films, and allow estimates of the fundamental superconducting lengths of Mo. The role of morphology in determining the 2D and type II character of the otherwise type I molybdenum is discussed. The possible consequences of this behaviour on the performance of radiation detectors are also addressed.

  4. Phosphorous doped p-type MoS2 polycrystalline thin films via direct sulfurization of Mo film

    Directory of Open Access Journals (Sweden)

    Tomohiro Momose

    2018-02-01

    Full Text Available We report on the successful synthesis of a p-type, substitutional doping at S-site, MoS2 thin film using Phosphorous (P as the dopant. MoS2 thin films were directly sulfurized for molybdenum films by chemical vapor deposition technique. Undoped MoS2 film showed n-type behavior and P doped samples showed p-type behavior by Hall-effect measurements in a van der Pauw (vdP configuration of 10×10 mm2 area samples and showed ohmic behavior between the silver paste contacts. The donor and the acceptor concentration were detected to be ∼2.6×1015 cm-3 and ∼1.0×1019 cm-3, respectively. Hall-effect mobility was 61.7 cm2V-1s-1 for undoped and varied in the range of 15.5 ∼ 0.5 cm2V-1s-1 with P supply rate. However, the performance of field-effect transistors (FETs declined by double Schottky barrier contacts where the region between Ni electrodes on the source/drain contact and the MoS2 back-gate cannot be depleted and behaves as a 3D material when used in transistor geometry, resulting in poor on/off ratio. Nevertheless, the FETs exhibit hole transport and the field-effect mobility showed values as high as the Hall-effect mobility, 76 cm2V-1s-1 in undoped MoS2 with p-type behavior and 43 cm2V-1s-1 for MoS2:P. Our findings provide important insights into the doping constraints for transition metal dichalcogenides.

  5. Diffusion barrier performances of thin Mo, Mo-N and Mo/Mo-N films between Cu and Si

    International Nuclear Information System (INIS)

    Song Shuangxi; Liu Yuzhang; Mao Dali; Ling Huiqin; Li Ming

    2005-01-01

    In this work, we have studied the diffusion barrier performances of Mo, Mo-N and Mo/Mo-N metallization layers deposited by sputtering Mo in Ar/N 2 atmospheres, respectively. Samples were subsequently annealed at different temperatures ranging from 400 to 800 deg C in vacuum condition. The film properties and their suitability as diffusion barriers and protective coatings in silicon devices were characterized using four-point probe measurement, X-ray diffractometry, scanning electron microscopy, Auger electron spectroscopy and transmission electron microscopy analyses. Experimental results revealed that the Mo (20 nm)/Mo-N (30 nm) layer was able to prevent the diffusion reaction between Cu and Si substrate after being annealed at 600 deg C for 30 min. The adhesion between layers and the content of N atoms are the key parameters to improve the properties of Mo-based barrier materials. The Mo layer interposed between Cu and Mo-N diluted the high nitrogen concentration of the barrier and so enhanced the barrier performances

  6. Structural transformations in MoO{sub x} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Camacho-Lopez, M.A.; Haro-Poniatowski, E. [Departamento de Fisica, Laboratorio de Optica Cuantica, Universidad Autonoma Metropolitana Iztapalapa, Apdo. Postal 55-534, 09340, Mexico D. F. (Mexico); Escobar-Alarcon, L. [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, 11801, Mexico D. F. (Mexico)

    2004-01-01

    In this work, laser-induced crystallization in MoO{sub x} thin films (1.8{<=}x{<=}2.1) is reported. This transformation involves a MoO{sub x} oxidation and subsequently a crystallization process from amorphous MoO{sub 3} to crystalline {alpha}MoO{sub 3}. For comparison purposes crystallization is induced thermally, in an oven, as well. The crystallization kinetics is monitored by Raman spectroscopy; a threshold in the energy density necessary to induce the phase transformation is determined in the case of photo-crystallization. This threshold depends on the type of substrate on which the film is deposited. For the thin films deposited on glass substrates, the structural transformation is from amorphous MoO{sub x} to the thermodynamically stable {alpha}MoO{sub 3} crystalline phase. For the thin films deposited on Si(100) the structural transformation is from amorphous MoO{sub x} to a mixture of {alpha}MoO{sub 3} and the thermodynamically unstable {beta}MoO{sub 3} crystalline phases. The structural transformations are also characterized by scanning electron microscopy and light-transmission experiments. (orig.)

  7. Growth, structure and stability of sputter-deposited MoS2 thin films

    Directory of Open Access Journals (Sweden)

    Reinhard Kaindl

    2017-05-01

    Full Text Available Molybdenum disulphide (MoS2 thin films have received increasing interest as device-active layers in low-dimensional electronics and also as novel catalysts in electrochemical processes such as the hydrogen evolution reaction (HER in electrochemical water splitting. For both types of applications, industrially scalable fabrication methods with good control over the MoS2 film properties are crucial. Here, we investigate scalable physical vapour deposition (PVD of MoS2 films by magnetron sputtering. MoS2 films with thicknesses from ≈10 to ≈1000 nm were deposited on SiO2/Si and reticulated vitreous carbon (RVC substrates. Samples deposited at room temperature (RT and at 400 °C were compared. The deposited MoS2 was characterized by macro- and microscopic X-ray, electron beam and light scattering, scanning and spectroscopic methods as well as electrical device characterization. We find that room-temperature-deposited MoS2 films are amorphous, of smooth surface morphology and easily degraded upon moderate laser-induced annealing in ambient conditions. In contrast, films deposited at 400 °C are nano-crystalline, show a nano-grained surface morphology and are comparatively stable against laser-induced degradation. Interestingly, results from electrical transport measurements indicate an unexpected metallic-like conduction character of the studied PVD MoS2 films, independent of deposition temperature. Possible reasons for these unusual electrical properties of our PVD MoS2 thin films are discussed. A potential application for such conductive nanostructured MoS2 films could be as catalytically active electrodes in (photo-electrocatalysis and initial electrochemical measurements suggest directions for future work on our PVD MoS2 films.

  8. Photoluminescence properties of BaMoO4 amorphous thin films

    International Nuclear Information System (INIS)

    Marques, Ana Paula Azevedo; Melo, Dulce M.A. de; Longo, Elson; Paskocimas, Carlos A.; Pizani, Paulo S.; Leite, Edson R.

    2005-01-01

    BaMoO 4 amorphous and crystalline thin films were prepared from polymeric precursors. The BaMoO 4 was deposited onto Si wafers by means of the spinning technique. The structure and optical properties of the resulting films were characterized by FTIR reflectance spectra, X-ray diffraction (XRD), atomic force microscopy (AFM) and optical reflectance. The bond Mo-O present in BaMoO 4 was confirmed by FTIR reflectance spectra. XRD characterization showed that thin films heat-treated at 600 and 200 deg. C presented the scheelite-type crystalline phase and amorphous, respectively. AFM analyses showed a considerable variation in surface morphology by comparing samples heat-treated at 200 and 600 deg. C. The reflectivity spectra showed two bands, positioned at 3.38 and 4.37 eV that were attributed to the excitonic state of Ba 2+ and electronic transitions within MoO 2- 4 , respectively. The optical band gaps of BaMoO 4 were 3.38 and 2.19 eV, for crystalline (600 deg. C/2 h) and amorphous (200 deg. C/8 h) films, respectively. The room-temperature luminescence spectra revealed an intense single-emission band in the visible region. The PL intensity of these materials was increased upon heat-treatment. The excellent optical properties observed for BaMoO 4 amorphous thin films suggested that this material is a highly promising candidate for photoluminescent applications

  9. Annealing effect in structural and electrical properties of sputtered Mo thin film

    Energy Technology Data Exchange (ETDEWEB)

    Chelvanathan, P.; Zakaria, Z. [Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Yusoff, Y. [Department of Electrical, Electronic and System Engineering, FKAB, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Akhtaruzzaman, M. [Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Alam, M.M. [Advanced Materials Research Chair, Chemistry Department, College of Sciences, King Saud University, Riyadh 11451 (Saudi Arabia); Alghoul, M.A.; Sopian, K. [Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Amin, N., E-mail: nowshadamin@yahoo.com [Solar Energy Research Institute, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Department of Electrical, Electronic and System Engineering, FKAB, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor (Malaysia); Advanced Materials Research Chair, Chemistry Department, College of Sciences, King Saud University, Riyadh 11451 (Saudi Arabia)

    2015-04-15

    Highlights: • We deposited Mo thin film by DC-sputtering for solar cell back contact application. • We examined the changes in the film quality in terms of structural, and electrical upon vacuum thermal annealing. • Vacuum thermal annealing at different temperature changes the degree of preferred orientation of (1 1 0) and (2 1 1) significantly. • Correlation of structural and electrical parameters was carried out. - Abstract: In this study, the effects of vacuum annealing on the structural and electrical properties of DC-sputtered molybdenum (Mo) thin films have been investigated. Mo thin films were deposited by DC sputtering and subsequently subjected to vacuum annealing in a tube furnace from 350 to 500 °C. Films that were deposited with different temperatures showed good adhesion with soda lime glass substrate after “tape testing”. X-ray diffraction (XRD) spectra have indicated existence of (1 1 0) and (2 1 1) orientations. However, I(1 1 0)/I(2 1 1) peak intensity ratio decreased for all vacuum annealed Mo films compared to as-sputtered films indicating change of preferential orientation. This suggests vacuum annealing can be employed to tailor the Mo thin film atomic packing density of the plane parallel to the substrate. SEM images of surface morphology clearly show compact and dense triangular like grains for as-sputtered film, while annealed films at 350 °C, 400 °C and 450 °C indicate rice-like grains. Stony grains with less uniformity were detected for films annealed for 500 °C. Meanwhile, electrical resistivity is insensitive to the vacuum annealing condition as all films showed more or less same resistivity in the range of 3 × 10{sup −5}–6 × 10{sup −5} Ω cm.

  10. Gas sensing properties of nanostructured MoO{sub 3} thin films prepared by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, H.M.; Torres, J. [Grupo de Materiales con Aplicaciones Tecnologicas, Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia); Rodriguez-Garcia, M.E. [Departamento de Nanotecnologia, Centro de Fisica Aplicada y Tecnologia Avanzada, Universidad Nacional Autonoma de Mexico, Campus Juriquilla, Queretaro, Qro. (Mexico); Lopez Carreno, L.D., E-mail: ldlopezca@unal.edu.co [Grupo de Materiales con Aplicaciones Tecnologicas, Departamento de Fisica, Universidad Nacional de Colombia, Bogota (Colombia)

    2012-08-15

    Thin films of molybdenum trioxide (MoO{sub 3}) were deposited on common glass using the chemical spray pyrolysis technique. A (NH{sub 4}){sub 6}Mo{sub 7}O{sub 24}4H{sub 2}0 solution 0.1 M was used as the precursor one. The influence of substrate temperature on the crystallographic structure, surface morphology and electrical behavior of MoO{sub 3} thin films was studied. MoO{sub 3} can exist in two crystalline forms, the thermodynamically stable orthorhombic {alpha}-MoO{sub 3} and the metastable monoclinic {beta}-MoO{sub 3} phase. XRD-spectra showed a growth of {alpha}-MoO{sub 3} phase percentage as substrate temperature increases from 420 K up to 670 K. Films deposited in the 500-600 K range have a clearly porous surface structure of nanometer order as can be seen in SEM images. Changes up to six magnitude orders were observed in MoO{sub 3} thin films electrical resistance when films temperature varied from 100 K up to 500 K. The sensing property of these MoO{sub 3} films was also studied. The sensitivity was investigated in the temperature range 160 and 360 K for H{sub 2}O and CO gases, respectively. Both of them are of reducing nature. In all studied cases sensitivity decreases slowly as film temperature is raised. At room temperature the sensitivity changes from 12 up to 75% depending on substrate temperature. The sensitivity for CO gas was found to be lower than that of H{sub 2}O.

  11. Growth, Properties and Applications of Mo Ox Thin-Films Deposited by Reactive Sputtering

    DEFF Research Database (Denmark)

    Fernandes Cauduro, André Luis

    Transition metal-oxide (TMOs) thin-films are commonly used in optoelectronic devices such as in photovoltaics and light emitting diodes, using both organic, inorganic and hybrid technologies. In such devices, TMOs typically act as an interfacial layer, where its functionality is to facilitate hole...... properties of metal-oxide thin films through surface defect engineering is vital to fine-tune their optoelectronic properties, and thus also their integration in novel optoelectronic devices. In this work, MoOx thin-films with various different phases and compositions were prepared by direct-current reactive...... and electrical properties of the films. Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM) were applied to assess the surface morphology and crystallography of the films. In this thesis, changes in the electronic properties of the surface upon crystallization of the films were furthermore...

  12. Photoelectric characteristics of rare earth element Eu-doped MoS2 thin films

    Science.gov (United States)

    Shi, Weilin; Li, Zhichao; Wang, Lin; Wu, Shuyan; Zhang, Gaoning; Meng, Miaofei; Ma, Xiying

    2018-01-01

    We present the influences of rare earth element Eu3+ doping on the photoelectric characteristics of molybdenum disulfide (MoS2) films deposited on p-Si substrates using vapor deposition method. The surface topography, crystalline structure, light absorption, and luminescence properties of Eu3+ doped and undoped MoS2 thin films were investigated in detail. We found that the Eu3+ doped MoS2 films have better crystallinity, and their electron mobility and conductivity are approximately one order of magnitude higher than those of the undoped films. In addition, we observed that the light absorption and photoluminescence intensities of the doped films in the visible light range, they were enhanced by approximately two orders of magnitude than those of the undoped MoS2 films at room temperature. Moreover, we found that the photoelectric response characteristics of the doped MoS2 / Si heterojunction improved significantly. The results show that the Eu3+ doped MoS2 films can be used to fabricate high efficiency luminescent and optoelectronic devices.

  13. Synthesis and characterization of MoO3–WO3 composite thin films ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 36; Issue 1. Synthesis and characterization of MoO3–WO3 composite thin films by liquid phase deposition technique: Investigation of its photochromic properties. H M Farveez Ahmed Noor Shahina Begum. Volume 36 Issue 1 February 2013 pp 45-49 ...

  14. Shape controlled synthesis of CaMoO4 thin films and their photoluminescence property

    International Nuclear Information System (INIS)

    Marques, Ana Paula de Azevedo; Longo, Valeria M.; Melo, Dulce M.A. de; Pizani, Paulo S.; Leite, Edson R.; Varela, Jose Arana; Longo, Elson

    2008-01-01

    CaMoO 4 (CMO) disordered and ordered thin films were prepared by the complex polymerization method (CPM). The films were annealed at different temperatures and time in a conventional resistive furnace (RF) and in a microwave (MW) oven. The microstructure and surface morphology of the structure were monitored by atomic force microscopy (AFM) and high-resolution scanning electron microscopy (HRSEM). Order and disorder were characterized by X-ray diffraction (XRD) and optical reflectance. A strong photoluminescence (PL) emission was observed in the disordered thin films and was attributed to complex cluster vacancies. The experimental results were compared with density functional and Hartree-Fock calculations. - Graphical abstract: CaMoO 4 thin films were prepared by the complex polymerization method (CPM). The films were annealed at different temperatures and time in a conventional resistive furnace and in a microwave oven. A strong photoluminescence emission was observed in the disordered thin films and was attributed to complex cluster vacancies. The experimental results were confirmed by high level first principle calculations

  15. P-MoS2 / n-CdS thin film heterojunction

    International Nuclear Information System (INIS)

    El Maliki, H.; Gourmelon, E.; Bernede, J.C.; Pouzet, J.; Mebarki, M.; Khelil, A.; Zoaeter, M.

    1999-01-01

    Full text.Layered transition metal dichacolgenides such as MoS 2 are semiconductors that can be good candidates for solar energy conversion. Photo-electrochemical cells based on single crystals have achieved and efficiency of 17% (1). However, up to day, no solid rectifying contact has been put in evidence in the case of MoS 2 thin films.. Recently we have shown that such high crystalline quality MoS 2 films can be obtained onto textured tungsten slides. This allowed to try to grow sandwich rectifying structures. The bottom electrode will be W, MoS 2 being p-type, the n type film used was CdS and the upper electrode was indium. W foils textured along the (h00) direction were used as substrate and bottom electrode. The use of a W (textured) substrate induces the texturation of the MoS 2 films along the (001) direction when after evaporation of the constituents the films were annealed at T=1073 K for half an hour under argon atmosphere. Upon the MoS 2 a CdS thin film was deposited by chemical bath deposition (CBD). CdS thin films were prepared classically from a solution of cadmium sulfate, thiourea in hydrazine and ammonia. Ammonia was used adjust the solution pH to a value between 9 and 10. Bath temperature has been held constant at 343 K. Thin deposit films of CdS were yellow colored. They were constituted of an homogenous and adherent layer with a thickness of about 100 nm. It has been shown by x-ray diffraction the they were crystallized in their hexagonal structure. At least an indium film was deposited in order to achieve the structure M/MoS 2 p/CdSn/M. In order to check the equality of the W/MoS 2 contact, W/MoS 2 /W samples were also carried out by sputtering deposition of the tungsten upper electrode (300 nm thick). The thickness of the MoS 2 layers was about 500 nm. The J-V characteristics of a W/MoS 2 /W sample are ohmic. Moreover the resistance deduced from the slope ΔV/ΔI increases when the temperature decreases, which shows that there is not any

  16. Development of FeNiMoB thin film materials for microfabricated magnetoelastic sensors

    KAUST Repository

    Liang, Cai

    2012-12-07

    MetglasTM 2826MB foils of 25–30 μm thickness with the composition of Fe40Ni38Mo4B18 have been used for magnetoelastic sensors in various applications over many years. This work is directed at the investigation of ∼3 μm thick iron-nickel-molybdenum-boron (FeNiMoB) thin films that are intended for integrated microsystems. The films are deposited on Si substrate by co-sputtering of iron-nickel (FeNi), molybdenum(Mo), and boron (B) targets. The results show that dopants of Mo and B can significantly change the microstructure and magnetic properties of FeNi materials. When FeNi is doped with only Mo its crystal structure changes from polycrystalline to amorphous with the increase of dopant concentration; the transition point is found at about 10 at. % of Mo content. A significant change in anisotropic magneticproperties of FeNi is also observed as the Modopant level increases. The coercivity of FeNi filmsdoped with Mo decreases to a value less than one third of the value without dopant.Doping the FeNi with B together with Mo considerably decreases the value of coercivity and the out-of-plane magnetic anisotropyproperties, and it also greatly changes the microstructure of the material. In addition, doping B to FeNiMo remarkably reduces the remanence of the material. The filmmaterial that is fabricated using an optimized process is magnetically as soft as amorphous MetglasTM 2826MB with a coercivity of less than 40 Am−1. The findings of this study provide us a better understanding of the effects of the compositions and microstructure of FeNiMoB thin filmmaterials on their magnetic properties.

  17. Electrical transport properties of MoO3 thin films prepared by laser assisted evaporation

    International Nuclear Information System (INIS)

    Lopez-Carreno, L.D.; Pardo, A.; Zuluaga, M.; Torres, J.; Alfonso, J.E.; Cortes-Bracho, O.L.

    2007-01-01

    In the present paper the growth of MoO 3 thin films on common glass substrates are described. The films were prepared by evaporation of a MoO 3 target with a CO 2 laser (10.6 μm), operating in the continuous wave mode. The effect of substrate temperature on the crystallographic structure and electrical properties of MoO 3 thin films was studied. The chemical composition of the different species formed on the films surface was obtained by X-ray photoelectron spectroscopy (XPS) and the crystalline structure was studied with X-ray diffraction (XRD). The electrical conductivity of the films was determined using the standard four-points method. Conductivity of the films varied from de 10 -9 to 10 -5 (Ωcm) -1 in the 300-600 K temperature range. Arrhenius-type plots for the electrical conductivity indicate the presence of at least two different conduction mechanisms. The I-V characteristic curve shows an ohmic behavior only in the 4.5-60 V range. Outside this interval the I-V curve has a behavior described by a power law. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  18. Electrical transport properties of MoO{sub 3} thin films prepared by laser assisted evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Carreno, L.D.; Pardo, A.; Zuluaga, M.; Torres, J.; Alfonso, J.E. [Group of Materials with Technological Applications, GMAT, Physics Department, Universidad Nacional de Colombia, Bogota (Colombia); Cortes-Bracho, O.L. [Group of Materials with Technological Applications, GMAT, Physics Department, Universidad Nacional de Colombia, Bogota (Colombia); Electronic Engineering Department, Universidad Nacional de Colombia, Bogota (Colombia)

    2007-07-01

    In the present paper the growth of MoO{sub 3} thin films on common glass substrates are described. The films were prepared by evaporation of a MoO{sub 3} target with a CO{sub 2} laser (10.6 {mu}m), operating in the continuous wave mode. The effect of substrate temperature on the crystallographic structure and electrical properties of MoO{sub 3} thin films was studied. The chemical composition of the different species formed on the films surface was obtained by X-ray photoelectron spectroscopy (XPS) and the crystalline structure was studied with X-ray diffraction (XRD). The electrical conductivity of the films was determined using the standard four-points method. Conductivity of the films varied from de 10{sup -9} to 10{sup -5} ({omega}cm){sup -1} in the 300-600 K temperature range. Arrhenius-type plots for the electrical conductivity indicate the presence of at least two different conduction mechanisms. The I-V characteristic curve shows an ohmic behavior only in the 4.5-60 V range. Outside this interval the I-V curve has a behavior described by a power law. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  19. Correlation between hardness and stress in Al-(Nb, Mo, Ta) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Car, T., E-mail: car@irb.h [Rudjer Boskovic Institute, Division of Materials Science, Bijenicka cesta 54, 10000 Zagreb, P.O.B. 1016 (Croatia); Radic, N. [Rudjer Boskovic Institute, Division of Materials Science, Bijenicka cesta 54, 10000 Zagreb, P.O.B. 1016 (Croatia); Panjan, P.; Cekada, M. [Jozef Stefan Institute, Ljubljana (Slovenia); Tonejc, A. [Department of Physics, Bijenicka cesta 32, 10000 Zagreb, P.O.B. 331 (Croatia)

    2009-06-30

    The thin films of Al{sub x}Nb{sub 1-x} (95 {>=} x {>=} 20), Al{sub x}Mo{sub x} (90 {>=} x {>=} 20) and Al{sub x}Ta{sub 1-x} (95 {>=} x {>=} 20) were prepared by magnetron codeposition at room temperature. The average film thickness was from 325 to 400 nm, depending on the film composition. The structure of the as-deposited films was examined by the X-ray diffraction. The stress of the films was determined from the substrate deformation by the profilometer, and the microhardness (load 2 mN) was examined by the micro- and nano-hardness device. For the purpose of the examination of the hardness, the samples were deposited onto the sapphire wafers, while the examination of the film stress, was performed by using thin glass substrates. For all the Al-(Nb, Mo, Ta) alloy compositions, the microhardness is predominantly under the influence of the harder element, and monotonically decreases with the increase of the aluminum content. However, the microhardness of the amorphous AlTa films was higher than the bulk value of a harder element (Ta) in the alloy. A simple empirical linear relationship between the Vickers hardness, the bulk value hardness of the transition metal (harder element) and the elastic energy fraction of the identation deformation, was established. The elastic energy fraction in the microhardness is also linearly correlated with the stress in films.

  20. Formation, properties, and ion irradiation effects of hexagonal structure MoN thin films

    International Nuclear Information System (INIS)

    Christen, D.K.; Sekula, S.T.; Ellis, J.T.; Lewis, J.D.; Williams, J.M.

    1986-09-01

    Thin films (100-120 nm) of hexagonal structures MoN have been fabricated by reaction of Mo films in an NH 3 atmosphere. The as-formed films possessed superconducting transition temperatures T/sub c/ ≅ 13 0 K, with resistance ratios r = R(296K)/R(T/sub c/) in the range 5 to 10, low-temperature normal state resistivities rho 0 = 4 to 10 μΩ-cm, and extrapolated upper critical fields H/sub c2/(0) = 4.0 to 5.0 T. Thin film x-ray diffraction patterns revealed no visible second phase, with measured lattice parameters close to literature values. The effects of lattice disorder on the superconducting and electronic properties were investigated by irradiation with nitrogen ions of energy 45 and 340 keV, resulting in a nearly uniform damage profile without the introduction of any new chemical species. The results indicate that ordered hexagonal MoN shows some of the unusual properties characteristic of moderate-to-high T/sub c/ transition metal compounds, but is relatively insensitive to degradation of the superconducting properties by lattice disorder. For ion fluences PHI up to 2 x 10 16 N-ions/cm 2 , T/sub c/ is found to decrease monotonically and saturate at 9.5 0 K, almost 3/4 the initial value, while H/sub c2/(0) undergoes a gradual increase to 11T

  1. XPS study of organic/MoO3 hybrid thin films for aldehyde gas sensors. Correlation between average Mo valance and sensitivity

    International Nuclear Information System (INIS)

    Itoh, Toshio; Matsubara, Ichiro; Shin, Woosuck; Izu, Noriya; Nishibori, Maiko

    2010-01-01

    We investigate the formaldehyde gas sensing properties of poly(5,6,7,8-tetrahydro-1-naphthylamine)-intercalated MoO 3 thin films ((PTHNA) x MoO 3 ). The resistance responses of (PTHNA) x MoO 3 to formaldehyde increase with increasing intercalation temperature. X-ray photoelectron spectroscopy reveals that the molar ratio of Mo 5+ decreases with increasing intercalation temperature. (author)

  2. Structure and tribological properties of MoS2 low friction thin films

    Directory of Open Access Journals (Sweden)

    Paradecka Agnieszka

    2017-01-01

    Full Text Available The main aim of the studies was the deposition of the AlCrN film, covered by molybdenum disulphide (MoS2 – based lubricant, on the austenitic steel substrate. The AlCrN and MoS2 layers were deposited by PVD lateral rotating ARC-cathodes (LARC and magnetron sputtering technology on the X6CrNiMoTi17-12-2 respectively. Structural characterizations of the MoS2 thin films have been carried out using SEM (scanning electron microscopy and AFM (atomic force microscopy to determine the surface topography as well as HRTEM (high-resolution transmission electron microscopy and Raman spectroscopy for structural investigations. The tribological wear relationships using ball-on-disc test were specified for surface layers, determining the friction co-efficient and mass loss of the investigated surfaces. Tests of the coatings’ adhesion to the substrate material were made using the scratch test. HRTEM investigation shows an amorphous character of the MoS2 layer. In sliding dry friction conditions, the friction co-efficient for the investigated elements is set in the range between 0.4-0.5. The investigated coating reveals high wear resistance. The coating demonstrated a dense cross-sectional morphology as well as good adhesion to the substrate. The good properties of the PVD AlCrN+MoS2 coatings make them suitable in various engineering and industrial applications.

  3. Thermal stability of diamond-like carbon–MoS{sub 2} thin films in different environments

    Energy Technology Data Exchange (ETDEWEB)

    Niakan, H., E-mail: hamid.niakan@usask.ca [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Zhang, C. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada); Hu, Y. [Canadian Light Source, 101 Perimeter Road, Saskatoon, SK S7N 0X4 (Canada); Szpunar, J.A.; Yang, Q. [Department of Mechanical Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, SK S7N 5A9 (Canada)

    2014-07-01

    Diamond-like carbon (DLC) based coatings are ideal for low friction and wear resistant applications. For those tribological applications, the coatings may expose to high temperature environments. Therefore, the thermal stability of the coating is very important for its long-term performance. In this work, DLC–MoS{sub 2} composite thin films were synthesized using biased target ion beam deposition technique in which MoS{sub 2} was produced by sputtering a MoS{sub 2} target using Ar ion beams while DLC was deposited by an ion source with CH{sub 4} gas as carbon source. DLC films without MoS{sub 2} deposited under similar conditions were used as reference samples. After the deposition, DLC and DLC–MoS{sub 2} thin films were heat-treated in ambient air and low pressure environments at different temperatures ranging from 100 to 600 °C for 2 h. The effect of annealing on the structure, mechanical and tribological properties of the resulting films were studied by means of Raman spectroscopy, X-ray absorption near edge structure, scanning electron microscopy, nanoindentation, and ball-on-disk testing. The results showed that the structure, hardness, Young's modulus, friction coefficient and wear coefficient of the DLC films were stable up to 200 °C annealing in air and 300 °C in low pressure. At higher temperature, the annealing led to the transformation of sp{sup 3} to sp{sup 2}, which degraded the mechanical and tribological properties of the thin films. Comparing with the DLC films, the DLC–MoS{sub 2} thin films showed a slower rate of graphitization and higher structure stability throughout the range of annealing temperatures, indicating a relatively higher thermal stability. - Highlights: • Thermal stability of diamond-like carbon (DLC) and DLC–MoS{sub 2} films were evaluated. • DLC–MoS{sub 2} films can be synthesized by biased target ion beam deposition technique. • Comparing with DLC films, the DLC–MoS{sub 2} thin films showed higher

  4. Structural and magnetic characterization of martensitic Ni-Mn-Ga thin films deposited on Mo foil

    International Nuclear Information System (INIS)

    Chernenko, V.A.; Anton, R. Lopez; Kohl, M.; Barandiaran, J.M.; Ohtsuka, M.; Orue, I.; Besseghini, S.

    2006-01-01

    Three martensitic Ni 51.4 Mn 28.3 Ga 20.3 thin films sputter-deposited on a Mo foil were investigated with regard to their crystal and magnetic domain structures, as well as their magnetic and magnetostrain properties. The film thicknesses, d, were 0.1, 0.4 and 1.0μm. X-ray and electron diffraction patterns revealed a tetragonal modulated martensitic phase (10M) in the films. The surface topography and micromagnetic structure were studied by scanning probe microscopy. A maze magnetic domain structure featuring a large out-of-plane magnetization component was found in all films. The domain width, δ, depends on the film thickness as δ∼d. The thickness dependencies of the saturation magnetization, saturation magnetic field and magnetic anisotropy were clarified. Beam cantilever tests on the Ni-Mn-Ga/Mo composite as a function of magnetic field showed reversible strains, which are larger than ordinary magnetostriction

  5. Solution processed thin film transistor from liquid phase exfoliated MoS2 flakes

    Science.gov (United States)

    Zeng, Xiaoling; Hirwa, Hippolyte; Metel, Sonia; Nicolosi, Valeria; Wagner, Veit

    2018-03-01

    Two dimensional layers of dichalcogenide materials have attracted a lot of interests due to their potential applications in optoelectronics and energy storage. Hence, there is a large interest in establishing cheap, scalable processes for the production of low dimensional semiconducting dichalcogenide based films. In this work, well exfoliated MoS2 dispersions were prepared through a two-step liquid phase exfoliation process with N-methyl-pyrrolidone (NMP) and Isopropanol (IPA). The quality of the obtained MoS2 flakes was characterized by transmission electron microscopy, scanning electron microscopy, UV-Vis spectroscopy and Raman spectroscopy. For charge transport analysis, bottom-gate thin film transistors (TFTs) based on exfoliated MoS2 films were fabricated via spray coating technique. Electrical characterization of the obtained TFTs showed that adding a PMMA layer on top of the semiconductor lead to considerable improvements in the electrical performance. The analysis of the electrical characteristics suggests that the additional PMMA layer improves the charge transfer between adjacent flakes. Electrical measurements on TFTs with different channel length were used to separate the impact of the contact resistance and the channel resistance on the charge transport. The TFTs output curves showed non-linear current-voltage (I-V) characteristic. The non-linear behavior was attributed to the formation of Schottky barriers at the inter-flakes connection. In this work, we show a low-cost and scalable solution-based fabrication process that could boost the application of dichalcogenides in modern nanoelectronic devices.

  6. Few-Layer MoS2-Organic Thin-Film Hybrid Complementary Inverter Pixel Fabricated on a Glass Substrate.

    Science.gov (United States)

    Lee, Hee Sung; Shin, Jae Min; Jeon, Pyo Jin; Lee, Junyeong; Kim, Jin Sung; Hwang, Hyun Chul; Park, Eunyoung; Yoon, Woojin; Ju, Sang-Yong; Im, Seongil

    2015-05-13

    Few-layer MoS2-organic thin-film hybrid complementary inverters demonstrate a great deal of device performance with a decent voltage gain of ≈12, a few hundred pW power consumption, and 480 Hz switching speed. As fabricated on glass, this hybrid CMOS inverter operates as a light-detecting pixel as well, using a thin MoS2 channel. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Far-infrared study of superconducting MoGe thin films

    Science.gov (United States)

    Tashiro, H.; Graybeal, J. M.; Tanner, D. B.; Carr, G. L.

    2003-03-01

    Amorphous MoGe serves as a model system for studying the interplay between superconductivity and disorder [Phys. Rev. B 29, 4167 (1984)]. Thin films of α-MoGe, prepared by UHV co-sputtering onto sapphire substrates (with an α-Ge buffer layer), show progressively reduced T_c's as the thickness is decreased below 30 nm and the sheet resistance exceeds 100 Ω/sq. This suppression has been explained in terms of electron localization effects and reduced screening (i.e., an increase in μ^*, the renormalized Coulomb interaction parameter). We have measured the far-infrared transmission and reflection for a set of α-MoGe films to understand more fully this weakened superconducting state. Our results show the presence of an energy gap consistent with BCS theory and 2Δ/kTc near the BCS weak coupling limit of 3.5. We report a detailed analysis using the Mattis-Bardeen expressions for the optical conductivity, and possible deviations from these expressions, due to the localization, will be discussed. Funded by DOE contracts DE-FG02-02ER45984 at UF and DE-AC02-98CH10886 at BNL.

  8. Thickness-dependent electron mobility of single and few-layer MoS2 thin-film transistors

    Directory of Open Access Journals (Sweden)

    Ji Heon Kim

    2016-06-01

    Full Text Available We investigated the dependence of electron mobility on the thickness of MoS2 nanosheets by fabricating bottom-gate single and few-layer MoS2 thin-film transistors with SiO2 gate dielectrics and Au electrodes. All the fabricated MoS2 transistors showed on/off-current ratio of ∼107 and saturated output characteristics without high-k capping layers. As the MoS2 thickness increased from 1 to 6 layers, the field-effect mobility of the fabricated MoS2 transistors increased from ∼10 to ∼18 cm2V−1s−1. The increased subthreshold swing of the fabricated transistors with MoS2 thickness suggests that the increase of MoS2 mobility with thickness may be related to the dependence of the contact resistance and the dielectric constant of MoS2 layer on its thickness.

  9. Photo- and Electrochromic Properties of Activated Reactive Evaporated MoO3 Thin Films Grown on Flexible Substrates

    Directory of Open Access Journals (Sweden)

    K. Hari Krishna

    2008-01-01

    Full Text Available The molybdenum trioxide (MoO3 thin films were grown onto ITO-coated flexible Kapton substrates using plasma assisted activated reactive evaporation technique. The film depositions were carried out at constant glow power and oxygen partial pressures of 8 W and 1×10−3 Torr, respectively. The influence of substrate temperature on the microstructural and optical properties was investigated. The MoO3 thin films prepared at a substrate temperature of 523 K were found to be composed of uniformly distributed nanosized grains with an orthorhombic structure of α-MoO3. These nanocrystalline MoO3 thin films exhibited higher optical transmittance of about 80% in the visible region with an evaluated optical band gap of 3.29 eV. With the insertion of 12.5 mC/cm2, the films exhibited an optical modulation of 40% in the visible region with coloration efficiency of 22 cm2/C at the wavelength of 550 nm. The MoO3 films deposited at 523 K demonstrated better photochromic properties and showed highest color center concentration for the irradiation time of 30 minutes at 100 mW/cm2.

  10. Electrical and optical properties of In{sub 2}O{sub 3}:Mo thin films prepared at various Mo-doping levels

    Energy Technology Data Exchange (ETDEWEB)

    Kaleemulla, S., E-mail: skaleemulla@gmail.co [Thin Films Laboratory, Department of Physics, VIT University, Vellore 632014 (India); Madhusudhana Rao, N.; Girish Joshi, M. [Thin Films Laboratory, Department of Physics, VIT University, Vellore 632014 (India); Sivasankar Reddy, A. [Department of Mechanical Engineering, University of Coimbra, Coimbra (Portugal); Uthanna, S.; Sreedhara Reddy, P. [Department of Physics, Sri Venkateswara University, Tirupathi 517502 (India)

    2010-08-20

    The optically transparent conducting molybdenum-doped indium oxide thin films (In{sub 2}O{sub 3}:Mo) were prepared on glass substrates by an activated reactive evaporation method and the influence of molybdenum doping levels on the electrical and optical properties of the films had been investigated systematically. The films, synthesized at a substrate temperature of 573 K and a Mo-doping level of 3 at.%, exhibited a minimum electrical resistivity of 5.2 x 10{sup -4} {Omega} cm and an average optical transmittance of 90% in the visible region with a band gap of 3.68 eV.

  11. Transparent Conducting Mo-Doped CdO Thin Films by Spray Pyrolysis Method for Solar Cell Applications

    Science.gov (United States)

    Helen, S. J.; Devadason, Suganthi; Haris, M.; Mahalingam, T.

    2018-04-01

    Pure and 3%, 5%, and 7% molybdenum-doped cadmium oxide (CdO) thin films have been prepared on glass substrates preheated to 400°C using a spray pyrolysis technique, then analyzed using x-ray diffraction analysis, field-emission scanning electron microscopy, ultraviolet-visible spectroscopy, and photoluminescence and Hall measurements. The films were found to have polycrystalline nature with cubic structure. The crystallite size was calculated to be ˜ 12 nm for various doping concentrations. Doping improved the optical transparency of the CdO thin film, with the 5% Mo-doped film recording the highest transmittance in the optical region. The energy bandgap deduced from optical studies ranged from 2.38 eV and 2.44 eV for different Mo doping levels. The electrical conductivity was enhanced on Mo doping, with the highest conductivity of 1.74 × 103 (Ω cm)-1 being achieved for the 5% Mo-doped CdO thin film.

  12. Process parameter impact on properties of sputtered large-area Mo bilayers for CIGS thin film solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Badgujar, Amol C.; Dhage, Sanjay R., E-mail: dhage@arci.res.in; Joshi, Shrikant V.

    2015-08-31

    Copper indium gallium selenide (CIGS) has emerged as a promising candidate for thin film solar cells, with efficiencies approaching those of silicon-based solar cells. To achieve optimum performance in CIGS solar cells, uniform, conductive, stress-free, well-adherent, reflective, crystalline molybdenum (Mo) thin films with preferred orientation (110) are desirable as a back contact on large area glass substrates. The present study focuses on cylindrical rotating DC magnetron sputtered bilayer Mo thin films on 300 mm × 300 mm soda lime glass (SLG) substrates. Key sputtering variables, namely power and Ar gas flow rates, were optimized to achieve best structural, electrical and optical properties. The Mo films were comprehensively characterized and found to possess high degree of thickness uniformity over large area. Best crystallinity, reflectance and sheet resistance was obtained at high sputtering powers and low argon gas flow rates, while mechanical properties like adhesion and residual stress were found to be best at low sputtering power and high argon gas flow rate, thereby indicating a need to arrive at a suitable trade-off during processing. - Highlights: • Sputtering of bilayer molybdenum thin films on soda lime glass • Large area deposition using rotating cylindrical direct current magnetron • Trade of sputter process parameters power and pressure • High uniformity of thickness and best electrical properties obtained • Suitable mechanical and optical properties of molybdenum are achieved for CIGS application.

  13. A correlative experimental and ab initio approach to improve the fracture behavior of Mo thin films by alloying with Cu

    Science.gov (United States)

    Jörg, Tanja; Music, Denis; Cordill, Megan J.; Franz, Robert; Köstenbauer, Harald; Linke, Christian; Winkler, Jörg; Schneider, Jochen M.; Mitterer, Christian

    2017-09-01

    The effect of Cu alloying on the deformation behavior of Mo thin films is investigated as a feasible concept to overcome their poor ductility, which severely limits performance in flexible electronics. 50 nm thick Mo1-xCux films (with 0 ≤ x ≤ 0.51) were sputter-deposited on polyimide substrates and subjected to uniaxial tensile loading while measuring their electrical resistance in situ. A significant ductility enhancement is experimentally observed with increasing Cu content. This can be rationalized by considering the associated changes in bond character as the Cu additions weaken the covalent and hence shear resistant contribution to the overall bond character.

  14. Charge density waves in nanocrystalline thin films of blue bronze K0.3MoO3

    International Nuclear Information System (INIS)

    Starešinić, D.; Dominko, D.; Salamon, K.; Biljaković, K.; Tomeljak, A.; Schäfer, H.; Huber, T.; Demsar, J.; Socol, G.; Ristoscu, C.; Mihailescu, I.N.; Siketić, Z.

    2012-01-01

    Thin granular films of charge density wave (CDW) system K 0.3 MoO 3 were prepared by pulsed laser deposition and investigated by various standard characterization methods such as GI-XRD, electric transport, TOF-ERDA, AFM and UV–visible spectroscopy. While all these methods indicate that the thin films consist of nanometer grains of K 0.3 MoO 3 , it is only the non-destructive femtosecond time-resolved spectroscopy (fsTRS) that demonstrates the charge density wave nature of the ground state and therefore proves directly the presence of K 0.3 MoO 3 . Furthermore, the comparison of the fsTRS data obtained in thin films and in single crystals shows the reduction of the charge density wave transition temperature and of the photoinduced signal strength in granular thin films with respect to single crystals, which is attributed to the granularity and crystal growth morphology. Our results establish fsTRS technique as the essential tool for the detection and characterization of complex ground states in nano-sized systems.

  15. Growth parameter enhancement for MoS{sub 2} thin films synthesized by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Serna, Martha I.; Higgins, Marissa; Quevedo-Lopez, Manuel A. [Materials Science and Engineering Department, The University of Texas at Dallas, 800 W Campbell Road RL 10, Richardson TX 75080 (United States); Moreno, Salvador [Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080 (United States); Choi, Hyunjoo [Department of Advanced Materials Engineering, Kookmin University, Jeongneung-dong Seongbuk-gu, Seoul 136-702 (Korea, Republic of); Minary-Jolandan, Majid [Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080 (United States); Alan MacDiarmid Nanotech Institute, The University of Texas at Dallas, 800 W Campbell Road RL 10, Richardson TX 75080 (United States)

    2016-12-15

    Two-dimensional materials such as graphene and MoS{sub 2} have been the main focus of intense research efforts over the past few years. The most common method of exfoliating these materials, although efficient for lab-scale experiments, is not acceptable for large area and practical applications. Here, we report the deposition of MoS{sub 2} layered films on amorphous (SiO{sub 2}) and crystalline substrates (sapphire) using a pulsed laser deposition (PLD) method. Increased substrate temperature (∝700 C) and laser energy density (>530 mJ /cm{sup 2}) promotes crystalline MoS{sub 2} films < 20 nm, as demonstrated by fast Fourier transform (FFT) and transmission electron microscopy (TEM). The method reported here opens the possibility for large area layered MoS{sub 2} films by using a laser ablation processes. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Characterization of r.f. sputtered thin Mo, W and Si films as precursors to multilayer X-ray mirrors

    Science.gov (United States)

    Bhattacharyya, D.; Joseph, D.; Poswal, A. K.

    2006-08-01

    Single layers of Mo, W and Si thin films have been deposited by r.f. sputtering on float glass and c-Si substrates kept at room temperature. The films have been characterised by grazing incidence X-ray reflectometry (GIXR), X-ray transmission (XRT), Rutherford backscattering spectrometry (RBS), atomic force microscopy (AFM) and phase modulated spectroscopic ellipsometry (SE) studies. The thickness values obtained from the GIXR measurements have been used to calibrate the in situ thickness monitors. The surface roughness of the thin layers have also been determined from the GIXR measurements. The atomic mass density in the films have been obtained from the RBS measurements while X-ray absorption has been estimated from the XRT measurements. The surface morphology of the films has been investigated by the AFM micrographs. The Si thin films have also been characterized by the SE technique. The characterization of the samples by these complementary techniques have been very useful in optimizing the process parameters to obtain good quality layers as precursors to the fabrication of the multilayer X-ray mirrors based on Mo/Si and W/Si structures.

  17. Crystalline MoOx Thin-Films as Hole Transport Layers in DBP/C70 Based Organic Solar Cell

    DEFF Research Database (Denmark)

    Ahmadpour, Mehrad; Fernandes Cauduro, André Luis; dos Reis, Roberto

    Transition Metal Oxides such as Molybdenum oxide (MoOx) have been intensively used as hole transport layers in different organic, inorganic and hybrid technologies, demonstrating also important improvements on the power conversion efficiency as well as on the stability of different types of solar...... cells. Among several different deposition methods available for fabrication of MoOx thin-films, reactive sputtering arises as an interesting alternative due to its full control over the deposition parameters such as the deposition power, reactive gas partial pressure and the deposition rate....

  18. The Morphology and Microstructure of Thin-Film GaAs on Mo Substrates

    International Nuclear Information System (INIS)

    Jones, K. M.; Al-Jassim, M. M.; Hasoon, F. S.; Venkatasubramanian, R.

    1999-01-01

    The growth of GaAs thin films on Molybdenum foils was investigated in an attempt to find a low-cost substrate for GaAs. The films were grown by metalorganic chemical vapor deposition (MOCVD). The film thickness was in the 2-4(micro)m range, while the deposition temperature was in the 650-825 C range. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to investigate the film morphology and microstructure, respectively. The film morphology in general, and the grain size in particular, were found to be strongly dependent on the growth temperature. However, the defect structure observed in these films was relatively insensitive to the growth conditions

  19. Temperature-Dependent Electrical Properties of Al2O3-Passivated Multilayer MoS2 Thin-Film Transistors

    Directory of Open Access Journals (Sweden)

    Seok Hwan Jeong

    2018-03-01

    Full Text Available It is becoming more important for electronic devices to operate stably and reproducibly under harsh environments, such as extremely low and/or high temperatures, for robust and practical applications. Here, we report on the effects of atomic-layer-deposited (ALD aluminum oxide (Al2O3 passivation on multilayer molybdenum disulfide (MoS2 thin-film transistors (TFTs and their temperature-dependent electrical properties, especially at a high temperature range from 293 K to 380 K. With the aid of ultraviolet-ozone treatment, an Al2O3 layer was uniformly applied to cover the entire surface of MoS2 TFTs. Our Al2O3-passivated MoS2 TFTs exhibited not only a dramatic reduction of hysteresis but also enhancement of current in output characteristics. In addition, we investigated the temperature-dependent behaviors of the TFT performance, including intrinsic carrier mobility based on the Y-function method.

  20. Enhanced photovoltaic performances of graphene/Si solar cells by insertion of a MoS₂ thin film.

    Science.gov (United States)

    Tsuboi, Yuka; Wang, Feijiu; Kozawa, Daichi; Funahashi, Kazuma; Mouri, Shinichiro; Miyauchi, Yuhei; Takenobu, Taishi; Matsuda, Kazunari

    2015-09-14

    Transition-metal dichalcogenides exhibit great potential as active materials in optoelectronic devices because of their characteristic band structure. Here, we demonstrated that the photovoltaic performances of graphene/Si Schottky junction solar cells were significantly improved by inserting a chemical vapor deposition (CVD)-grown, large MoS2 thin-film layer. This layer functions as an effective electron-blocking/hole-transporting layer. We also demonstrated that the photovoltaic properties are enhanced with the increasing number of graphene layers and the decreasing thickness of the MoS2 layer. A high photovoltaic conversion efficiency of 11.1% was achieved with the optimized trilayer-graphene/MoS2/n-Si solar cell.

  1. Growth and hydrogenation of ultra-thin Mg films on Mo(111)

    DEFF Research Database (Denmark)

    Ostenfeld, Christopher Worsøe; Davies, Jonathan Conrad; Vegge, Tejs

    2005-01-01

    The growth and hydrogenation of ultra-thin magnesium overlayers have been investigated on a Mo(1 1 1) single crystal substrate. For increasing magnesium coverages we observe intermediate stages in the TPD and LEISS profiles, which illustrate the transition from one monolayer to multilayer growth....... are necessary to sustain this purely adsorbed state. Using predissociated hydrogen we show that the hydride formation is self-stabilizing and the hydride only decomposes at a temperature where a considerable desorption of magnesium occurs....

  2. Structural and adhesional properties of thin MoO3 films prepared by laser coating

    Science.gov (United States)

    Mihalev, Mihail; Hardalov, Chavdar; Christov, Christo; Michailov, Michail; Ranguelov, Bogdan; Leiste, Harald

    2014-05-01

    Laser marking plays an important role in numerous technological applications because of its flexibility, fastness and versatility. The present study deals with the structural and adhesional properties of thin MO3 layers on stainless steel substrates prepared by a specific modification of the laser coating technology known as "laser bonding". This approach consists in the local laser sintering of an initially deposited proper powder material, which forms under laser irradiation a layer with a definite graphical and topological design. The coatings, prepared of only MoO3 powder irradiated by a CO2 laser beam, are well bonded to the substrate and exhibit diffusive light reflection. Through applying a variety of methods for surface structural analysis, as micro-indentation, XRD, micro-Raman and SEM, this study also provides detailed information about the coatings' chemical bonding and composition. Our results reveal a good adhesion to the steel due to the formation of an amorphous interface between the MoO3 and the substrate. This amorphous interface arises from a "quenching" process of the molten MoO3 acting both as an oxidant and flux. Depending on the laser beam's intensity, energy and scanning velocity, we also observed recrystallization in specific areas of the coatings. The present study contributes to the better understanding of the adhesion, wear-resistance and hardness of MoO3 coatings obtained by laser bonding.

  3. Field-tuned superconductor–insulator transitions and Hall resistance in thin polycrystalline MoN films

    Science.gov (United States)

    Makise, Kazumasa; Ichikawa, Fusao; Asano, Takayuki; Shinozaki, Bunju

    2018-02-01

    We report on the superconductor–insulator transitions (SITs) of disordered molybdenum nitride (MoN) thin films on (1 0 0) MgO substrates as a function of the film thickness and magnetic fields. The T c of the superconducting MoN films, which exhibit a sharp superconducting transition, monotonically decreases as the normal state R sq increases with a decreasing film thickness. For several films with different thicknesses, we estimate the critical field H c and the product zν  ≃  0.6 of the dynamical exponent z and the correlation length exponent ν using a finite scaling analysis. The value of this product can be explained by the (2  +  1) XY model. We found that the Hall resistance ΔR xy (H) is maximized when the magnetic field satisfies H HP(T) \\propto |1  ‑  T/T C0| in the superconducting state and also in the normal states owning to the superconducting fluctuation corresponding to the ghost critical magnetic field. We measured the Hall conductivity δσ xy (H)  =  σ xy (H)  ‑  σ xyn and fit the Gaussian approximation theory for δσ xy (H) to the experimental data. Agreement between the data and the theory beyond H c suggests the survival of the Cooper pair in the insulating region of the SIT.

  4. Thin Film

    African Journals Online (AJOL)

    a

    organic substances. KEY WORDS: Photoelectrocatalysis, Titanium dioxide, Cuprous oxide, Composite thin film, Photo electrode. INTRODUCTION ... reddish p-type semiconductor with a direct band gap of 2.0-2.2 eV [18, 19]. ... Photoelectrocatalytic removal of color from water using TiO2 and TiO2/Cu2O electrodes. Bull.

  5. Interface Properties of Atomic-Layer-Deposited Al2O3 Thin Films on Ultraviolet/Ozone-Treated Multilayer MoS2 Crystals.

    Science.gov (United States)

    Park, Seonyoung; Kim, Seong Yeoul; Choi, Yura; Kim, Myungjun; Shin, Hyunjung; Kim, Jiyoung; Choi, Woong

    2016-05-11

    We report the interface properties of atomic-layer-deposited Al2O3 thin films on ultraviolet/ozone (UV/O3)-treated multilayer MoS2 crystals. The formation of S-O bonds on MoS2 after low-power UV/O3 treatment increased the surface energy, allowing the subsequent deposition of uniform Al2O3 thin films. The capacitance-voltage measurement of Au-Al2O3-MoS2 metal oxide semiconductor capacitors indicated n-type MoS2 with an electron density of ∼10(17) cm(-3) and a minimum interface trap density of ∼10(11) cm(-2) eV(-1). These results demonstrate the possibility of forming a high-quality Al2O3-MoS2 interface by proper UV/O3 treatment, providing important implications for their integration into field-effect transistors.

  6. Synthesis and characterization of MoB2−x thin films grown by nonreactive DC magnetron sputtering

    International Nuclear Information System (INIS)

    Malinovskis, Paulius; Lewin, Erik; Jansson, Ulf; Palisaitis, Justinas; Persson, Per O. Å.

    2016-01-01

    DC magnetron sputtering was used to deposit molybdenum boride thin films for potential low-friction applications. The films exhibit a nanocomposite structure with ∼10 nm large MoB 2−x (x > 0.4) grains surrounded by a boron-rich tissue phase. The preferred formation of the metastable and substoichiometric hP3-MoB 2 structure (AlB 2 -type) is explained with kinetic constraints to form the thermodynamically stable hR18-MoB 2 phase with a very complex crystal structure. Nanoindentation revealed a relatively high hardness of (29 ± 2) GPa, which is higher than bulk samples. The high hardness can be explained by a hardening effect associated with the nanocomposite microstructure where the surrounding tissue phase restricts dislocation movement. A tribological study confirmed a significant formation of a tribofilm consisting of molybdenum oxide and boron oxide, however, without any lubricating effects at room temperature.

  7. Structural, morphological, gas sensing and photocatalytic characterization of MoO{sub 3} and WO{sub 3} thin films prepared by the thermal vacuum evaporation technique

    Energy Technology Data Exchange (ETDEWEB)

    Arfaoui, A., E-mail: asma17687@gmail.com [Unité de physique des dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Touihri, S.; Mhamdi, A. [Unité de physique des dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Labidi, A. [Unité de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, BP 51, La Marsa, 2070 Tunis (Tunisia); Manoubi, T. [Unité de physique des dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia)

    2015-12-01

    Graphical abstract: - Highlights: • Outlining adequacy an original combination of several characterization means. • Structural, morphological and gas sensing properties for both MoO{sub 3} and WO{sub 3} thin films have been studied. • These films had high sensitivity to ethanol, which made them as a good candidate for the ethanol sensor. • The photocatalytic activity of MoO{sub 3} and WO{sub 3} thin films has been studied. - Abstract: Thin films of molybdenum trioxide and tungsten trioxide were deposited on glass substrates using a simplified thermal evaporation under vacuum method monitored by heat treatment in flowing oxygen at 500 °C for 1 h. The structural and morphological properties of the films were investigated using X-ray diffraction, Raman spectroscopy, atomic force microscopy and scanning electron microscopy. The X-ray diffraction analysis shows that the films of MoO{sub 3} and WO{sub 3} were well crystallized in orthorhombic and monoclinic phase respectively with the crystallites preferentially oriented toward (2 0 0) direction parallel a-axis for both samples. In literature, we have shown in previous papers that structural and surface morphology of metal thin films play an important role in the gas detection mechanism. In this article, we have studied the response evolution of MoO{sub 3} and WO{sub 3} thin films sensors ethanol versus time, working temperature and the concentration of the ethanol. It was found that these films had high sensitivity to ethanol, which made them as a good candidate for the ethanol sensor. Finally, the photocatalytic activity of the samples was evaluated with respect to the degradation reaction of a wastewater containing methylene blue (MB) under UV–visible light irradiation. The molybdenum trioxide exhibits a higher degradation rate than the tungsten trioxide thin films under similar experimental conditions.

  8. Characterization of thin MoO3 films formed by RF and DC-magnetron reactive sputtering for gas sensor applications

    International Nuclear Information System (INIS)

    Yordanov, R; Boyadjiev, S; Georgieva, V; Vergov, L

    2014-01-01

    The present work discusses a technology for deposition and characterization of thin molybdenum oxide (MoO x , MoO 3 ) films studied for gas sensor applications. The samples were produced by reactive radio-frequency (RF) and direct current (DC) magnetron sputtering. The composition and microstructure of the films were studied by XPS, XRD and Raman spectroscopy, the morphology, using high resolution SEM. The research was focused on the sensing properties of the sputtered thin MoO 3 films. Highly sensitive gas sensors were implemented by depositing films of various thicknesses on quartz resonators. Making use of the quartz crystal microbalance (QCM) method, these sensors were capable of detecting changes in the molecular range. Prototype QCM structures with thin MoO 3 films were tested for sensitivity to NH 3 and NO 2 . Even in as-deposited state and without heating the substrates, these films showed good sensitivity. Moreover, no additional thermal treatment is necessary, which makes the production of such QCM gas sensors simple and cost-effective, as it is fully compatible with the technology for producing the initial resonator. The films are sensitive at room temperature and can register concentrations as low as 50 ppm. The sorption is fully reversible, the films are stable and capable of long-term measurements.

  9. thin films

    Indian Academy of Sciences (India)

    The anionic precursor was 1% H2O2 solution. Both the cationic and anionic precursors were kept at room temperature (∼300 K). One SILAR cycle consists of two steps: (i) adsorption of Sn4+ ions on the substrate surface for 20 s and (ii) reaction with H2O2 solution for 40 s to form stable SnO2:H2O thin film on the substrate.

  10. Fabrication and electrical resistivity of Mo-doped VO2 thin films coated on graphite conductive plates by a sol-gel method

    Energy Technology Data Exchange (ETDEWEB)

    Choi, W.; Jung, H.M.; Um, S. [Hanyang Univ., Seoul (Korea, Republic of). School of Mechanical Engineering

    2008-07-01

    Vanadium oxides (VO2) can be used in optical devices, thermochromic smart windows and sensors. This paper reported on a study in which vanadium pentoxide (V2O5) powder was prepared and mixed with Molybdenum Oxides (MoO3) to form Mo-doped and -undoped VO2 thin films by a sol-gel method on graphite conductive substrates. The micro-structure and chemical compositions of the Mo-doped and -undoped VO2 thin films was investigated using X-Ray diffraction and scanning electron microscopy. Changes in electrical resistivity were measured as a function of the stoichiometric compositions between vanadium and molybdenum. In this study. Mo-doped and -undoped VO2 thin films showed the typical metal to insulator transition (MIT), where temperature range could be adjusted by modifying the dopant atomic ratio. The through-plane substrate structure of the Mo-doped layer influences the electrical resistivity of the graphite substrate. As the amount of the molybdenum increases, the electrical resistivity of the graphite conductive substrate decreases in the lower temperature range below the freezing point of water. The experimental results showed that if carefully controlled, thermal dissipation of VO2 thin films can be used as a self-heating source to melt frozen water with the electrical current flowing through the graphite substrate. 3 refs., 3 figs.

  11. Effect of processing parameters on microstructure of MoS2 ultra-thin films synthesized by chemical vapor deposition method

    Directory of Open Access Journals (Sweden)

    Yang Song

    2015-06-01

    Full Text Available MoS2 ultra-thin layers are synthesized using a chemical vapor deposition method based on the sulfurization of molybdenum trioxide (MoO3. The ultra-thin layers are characterized by X-ray diffraction (XRD, photoluminescence (PL spectroscopy and atomic force microscope (AFM. Based on our experimental results, all the processing parameters, such as the tilt angle of substrate, applied voltage, heating time and the weight of source materials have effect on the microstructures of the layers. In this paper, the effects of such processing parameters on the crystal structures and morphologies of the as-grown layers are studied. It is found that the film obtained with the tilt angle of 0.06° is more uniform. A larger applied voltage is preferred to the growth of MoS2 thin films at a certain heating time. In order to obtain the ultra-thin layers of MoS2, the weight of 0.003 g of source materials is preferred. Under our optimal experimental conditions, the surface of the film is smooth and composed of many uniformly distributed and aggregated particles, and the ultra-thin MoS2 atomic layers (1∼10 layers covers an area of more than 2 mm×2 mm.

  12. Growth of MoO3 nanostructured thin films as a function of O2-partial pressure

    Science.gov (United States)

    Sharma, Rabindar Kumar; Kumar, Prabhat; Reddy, G. B.

    2015-06-01

    In this report, we synthesized molybdenum trioxide (α-MoO3) nanostructured thin films (NSTs) with nanoflakes (NFs) on the Ni-coated glass substrates employing plasma assisted sublimation process (PASP) as a function of oxygen partial pressure (PO2). The effect of oxygen partial pressure on structural, morphological, and vibrational properties have been investigated systematically. The structural analysis divulged that all films deposited at different PO2 have pure orthorhombic phase, no impurity phase is detected under the limit of resolution. The morphological studies of samples is carried out by SEM, revealed that features as well as alignment of MoO3 NSTs can be monitored by PO2 and the sample having best features is obtained at 7.5×10-2 Torr. In addition, the more insight information is accomplished by TEM/HRTEM on the best featured sample, which confirmed the single crystalline nature of nanoflakes. The vibrational study of all samples are performed by FTIR, and strongly supports the XRD observations. All the results are in consonance with each other.

  13. A study on molybdenum sulphoselenide (MoSxSe2−x, 0 ≤ x ≤ 2) thin films: Growth from solution and its properties

    International Nuclear Information System (INIS)

    Anand, T. Joseph Sahaya; Shariza, S.

    2012-01-01

    Highlights: ► Effect of deposition time on the properties of molybdenum chalcogenide thin films. ► First time to compare the study of binary and ternary molybdenum chalcogenides. ► No previous report on ternary molybdenum sulphoselenide by electrodeposition. ► Semiconducting parameters by CV analysis promising to be good solar cell material. - Abstract: Thin films of molybdenum sulphoselenide, MoS x Se 2−x , (0 ≤ x ≤ 2) have been electrosynthesized on indium-tin-oxide (ITO)-coated glass and stainless steel substrates. The films were characterized for their structural, morphological and compositional characteristics. Their optical and semiconducting parameters were also analysed in order to determine the suitability of the thin films for photoelectrochemical (PEC)/solar cell applications. Structural analysis via X-ray diffraction (XRD) analysis reveals that the films are polycrystalline in nature. Scanning electron microscope (SEM) studies reveals the films were adherent to the substrate with uniform in nature which also confirmed by Transmission electron microscope (TEM). Compositional analysis via energy dispersive X-ray (EDX) technique confirms the presence of Mo, S and Se elements in the films. The optical studies show that the films are of direct bandgap. Results on the semiconductor parameters analysis of the films showed that the nature of the Mott–Schottky plots indicates that the films obtained are of n-type material. For all films, the semiconductor parameter values come in the better range of other transition metal chalcogenides which has proven that MoSSe thin films are capable as solar/PEC cell materials.

  14. Realization of Artificial Ice Systems for Magnetic Vortices in a Superconducting MoGe Thin Film with Patterned Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Latimer, M. L.; Berdiyorov, G. R.; Xiao, Z. L.; Peeters, F. M.; Kwok, W. K.

    2013-08-05

    We report an anomalous matching effect in MoGe thin films containing pairs of circular holes arranged in such a way that four of those pairs meet at each vertex point of a square lattice. A remarkably pronounced fractional matching was observed in the magnetic field dependences of both the resistance and the critical current. At the half matching field the critical current can be even higher than that at zero field. This has never been observed before for vortices in superconductors with pinning arrays. Numerical simulations within the nonlinear Ginzburg-Landau theory reveal a square vortex ice configuration in the ground state at the half matching field and demonstrate similar characteristic features in the field dependence of the critical current, confirming the experimental realization of an artificial ice system for vortices for the first time.

  15. Charge density waves in nanocrystalline thin films of blue bronze K{sub 0.3}MoO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Staresinic, D., E-mail: damirs@ifs.hr [Institute of Physics, P.O. Box 304, HR-10001 Zagreb (Croatia); Dominko, D., E-mail: ddominko@ifs.hr [Institute of Physics, P.O. Box 304, HR-10001 Zagreb (Croatia); Salamon, K., E-mail: ksalamon@ifs.hr [Institute of Physics, P.O. Box 304, HR-10001 Zagreb (Croatia); Biljakovic, K., E-mail: katica@ifs.hr [Institute of Physics, P.O. Box 304, HR-10001 Zagreb (Croatia); Tomeljak, A., E-mail: atomeljak@gmail.com [J. Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Department of Physics and Center for Applied Optics, University of Konstanz, D-78457 Konstanz (Germany); Schaefer, H., E-mail: hanjo.schaefer@uni-konstanz.de [Department of Physics and Center for Applied Optics, University of Konstanz, D-78457 Konstanz (Germany); Huber, T., E-mail: tim.huber@uni-konstanz.de [Department of Physics and Center for Applied Optics, University of Konstanz, D-78457 Konstanz (Germany); Demsar, J., E-mail: jure.demsar@uni-konstanz.de [J. Stefan Institute, Jamova 39, SI-1000 Ljubljana (Slovenia); Department of Physics and Center for Applied Optics, University of Konstanz, D-78457 Konstanz (Germany); Socol, G., E-mail: gabriel.socol@inflpr.ro [Laser-Surface-Plasma Interactions Laboratory, Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-54, Magurele, Ilfov (Romania); Ristoscu, C., E-mail: carmen.ristoscu@inflpr.ro [Laser-Surface-Plasma Interactions Laboratory, Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-54, Magurele, Ilfov (Romania); Mihailescu, I.N., E-mail: ion.mihailescu@inflpr.ro [Laser-Surface-Plasma Interactions Laboratory, Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, P.O. Box MG-54, Magurele, Ilfov (Romania); Siketic, Z., E-mail: zsiketic@irb.hr [Ruder Boskovic Institute, Bijenicka 54, Zagreb (Croatia)

    2012-06-01

    Thin granular films of charge density wave (CDW) system K{sub 0.3}MoO{sub 3} were prepared by pulsed laser deposition and investigated by various standard characterization methods such as GI-XRD, electric transport, TOF-ERDA, AFM and UV-visible spectroscopy. While all these methods indicate that the thin films consist of nanometer grains of K{sub 0.3}MoO{sub 3}, it is only the non-destructive femtosecond time-resolved spectroscopy (fsTRS) that demonstrates the charge density wave nature of the ground state and therefore proves directly the presence of K{sub 0.3}MoO{sub 3}. Furthermore, the comparison of the fsTRS data obtained in thin films and in single crystals shows the reduction of the charge density wave transition temperature and of the photoinduced signal strength in granular thin films with respect to single crystals, which is attributed to the granularity and crystal growth morphology. Our results establish fsTRS technique as the essential tool for the detection and characterization of complex ground states in nano-sized systems.

  16. Deformation behavior of Re alloyed Mo thin films on flexible substrates: In situ fragmentation analysis supported by first-principles calculations.

    Science.gov (United States)

    Jörg, Tanja; Music, Denis; Hauser, Filipe; Cordill, Megan J; Franz, Robert; Köstenbauer, Harald; Winkler, Jörg; Schneider, Jochen M; Mitterer, Christian

    2017-08-07

    A major obstacle in the utilization of Mo thin films in flexible electronics is their brittle fracture behavior. Within this study, alloying with Re is explored as a potential strategy to improve the resistance to fracture. The sputter-deposited Mo 1-x Re x films (with 0 ≤ x ≤ 0.31) were characterized in terms of structural and mechanical properties, residual stresses as well as electrical resistivity. Their deformation behavior was assessed by straining 50 nm thin films on polyimide substrates in uniaxial tension, while monitoring crack initiation and propagation in situ by optical microscopy and electrical resistance measurements. A significant toughness enhancement occurs with increasing Re content for all body-centered cubic solid solution films (x ≤ 0.23). However, at higher Re concentrations (x > 0.23) the positive effect of Re is inhibited due to the formation of dual-phase films with the additional close packed A15 Mo 3 Re phase. The mechanisms responsible for the observed toughness behavior are discussed based on experimental observations and electronic structure calculations. Re gives rise to both increased plasticity and bond strengthening in these Mo-Re solid solutions.

  17. Synthesis and characterization of MoO3–WO3 composite thin films ...

    Indian Academy of Sciences (India)

    from the treatment solution, washed with distilled water and dried at room temperature. Annealing of deposited film was carried out at different temperatures. 3. Characterization of deposited films. The surface morphology, elemental analysis and X-ray diffraction studies were carried out on the mixed oxide films deposited ...

  18. Synthesis and characterization of MoO3–WO3 composite thin films ...

    Indian Academy of Sciences (India)

    H M Farveez Ahmed and Noor Shahina Begum technique. The precursor solution for deposition of MoO3–. WO3 was prepared by dissolving Mo (99·9% pure, Fluka chemicals) and W (99·9%, Aldrich chemicals) powder sepa- rately in 30% ice-cold solution of H2O2 and acetic acid. The reaction mixtures were kept overnight ...

  19. Thin Films

    Directory of Open Access Journals (Sweden)

    M. Benmouss

    2003-01-01

    the optical absorption are consistent with the film color changes. Finally, the optical and electrochromic properties of the films prepared by this method are compared with those of our sputtered films already studied and with other works.

  20. Substrate induced tuning of compressive strain and phonon modes in large area MoS2 and WS2 van der Waals epitaxial thin films

    Science.gov (United States)

    Sahu, Rajib; Radhakrishnan, Dhanya; Vishal, Badri; Negi, Devendra Singh; Sil, Anomitra; Narayana, Chandrabhas; Datta, Ranjan

    2017-07-01

    Large area MoS2 and WS2 van der Waals epitaxial thin films with control over number of layers including monolayer is grown by pulsed laser deposition utilizing slower growth kinetics. The films grown on c-plane sapphire show stiffening of A1g and E12g phonon modes with decreasing number of layers for both MoS2 and WS2. The observed stiffening translate into the compressive strain of 0.52% & 0.53% with accompanying increase in fundamental direct band gap to 1.74 and 1.68 eV for monolayer MoS2 and WS2, respectively. The strain decays with the number of layers. HRTEM imaging directly reveals the nature of atomic registry of van der Waals layers with the substrate and the associated compressive strain. The results demonstrate a practical route to stabilize and engineer strain for this class of material over large area device fabrication.

  1. MoOx thin films deposited by magnetron sputtering as an anode for aqueous micro-supercapacitors

    Directory of Open Access Journals (Sweden)

    Can Liu

    2013-11-01

    Full Text Available In order to examine the potential application of non-stoichiometric molybdenum oxide as anode materials for aqueous micro-supercapacitors, conductive MoOx films (2 ≤ x ≤ 2.3 deposited via RF magnetron sputtering at different temperatures were systematically studied for composition, structure and electrochemical properties in an aqueous solution of Li2SO4. The MoOx (x ≈ 2.3 film deposited at 150 °C exhibited a higher areal capacitance (31 mF cm−2 measured at 5 mV s−1, best rate capability and excellent stability at potentials below −0.1 V versus saturated calomel electrode, compared to the films deposited at room temperature and at higher temperatures. These superior properties were attributed to the multi-valence composition and mixed-phase microstructure, i.e., the coexistence of MoO2 nanocrystals and amorphous MoOx (2.3 < x ≤ 3. A mechanism combining Mo(IV oxidation/reduction on the hydrated MoO2 grain surfaces and cation intercalation/extrusion is proposed to illustrate the pseudo-capacitive process.

  2. Theoretical stability, thin film synthesis and transport properties of the Mo{sub n} {sub +1}GaC{sub n} MAX phase

    Energy Technology Data Exchange (ETDEWEB)

    Meshkian, Rahele; Ingason, Arni Sigurdur; Dahlqvist, Martin; Petruhins, Andrejs; Lu, Jun; Rosen, Johanna [Department of Physics, Chemistry and Biology (IFM), Linkoeping University (Sweden); Arnalds, Unnar B. [Science Institute, University of Iceland, Reykjavik (Iceland); Magnus, Fridrik [Department of Physics and Astronomy, Uppsala University (Sweden)

    2015-03-01

    The phase stability of Mo{sub n} {sub +1}GaC{sub n} has been investigated using ab-initio calculations. The results indicate stability for the Mo{sub 2}GaC phase only, with a formation enthalpy of -0.4 meV per atom. Subsequent thin film synthesis of Mo{sub 2}GaC was performed through magnetron sputtering from elemental targets onto Al{sub 2}O{sub 3} [0001], 6H-SiC [0001] and MgO [111] substrates within the temperature range of 500 C and 750 C. High structural quality films were obtained for synthesis on MgO [111] substrates at 590 C. Evaluation of transport properties showed a superconducting behavior with a critical temperature of approximately 7 K, reducing upon the application of an external magnetic field. The results point towards the first superconducting MAX phase in thin film form. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  3. Influence of internal stress and layer thickness on the formation of hydrogen induced thin film blisters in Mo/Si multilayers

    Science.gov (United States)

    van den Bos, R. A. J. M.; Reinink, J.; Lopaev, D. V.; Lee, C. J.; Benschop, J. P. H.; Bijkerk, F.

    2018-03-01

    A Mo/Si multilayer film may blister under hydrogen exposure. In this paper, we investigate the impact of intrinsic stress on blister formation in multilayers by varying the Si thickness between 3.4–11 nm and changing the hydrogen ion exposure conditions. Increasing the thickness of a-Si is found to introduce a higher average compressive stress in the multilayer film. Measurements of the average film stress before and after hydrogen exposure did not reveal a correlation between stress relaxation and the observation of surface blisters. Comparing the experimentally observed blister size distribution to that predicted by elastic models of blistering due to pressure, and thin film buckling showed that increasing hydrogen pressure under the blister cap is the main cause of the observed blisters. It is also shown that hydrogen diffusion plays an essential role in the blister formation process as sufficient hydrogen is required to pressurize the blister.

  4. Optical properties of large-area MoS2 thin films grown via magnetron sputtering: Thickness and substrate dependence

    Science.gov (United States)

    Alkabsh, Asma; Samassekou, Hassana; Mazumdar, Dipanjan

    Transition metal dichalcogenides (TMDS) have gained exceptional attention because of their thickness dependent electronic structure which makes them suitable for electronic and optoelectronic applications. MoS2 is among the most promising material in this family. Recently we have successfully developed growth of large-area MoS2 using magnetron sputtering. In this work, we investigated the large-area optical properties of few and bilayer MoS2 grown on different amorphous underlayers (BN and SiO2) using spectroscopic ellipsometry (SE), UV-VIS and Raman spectroscopy. SE spectra provided thickness and optical constants within 1.0-3.0 eV range, whereas broadband (0.5-6.5 eV) transmission and reflectance measurements provided direct measurements of optical constants through Glover-Tinkham analysis. A comprehensive analysis of thickness and substance dependence of optical properties of our large-area films will be presented and compared with existing literature reports and first-principles electronic structure. Also, Raman measurements reveal interesting disorder related effects on our MoS2 films.

  5. Thin film processes II

    CERN Document Server

    Kern, Werner

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques.Key Features* Provides an all-new sequel to the 1978 classic, Thin Film Processes* Introduces new topics, and sever

  6. The Adhesion of CrN Thin Films Deposited on Modified 42CrMo4 Steel

    Directory of Open Access Journals (Sweden)

    O. Lupicka

    2017-01-01

    Full Text Available Here, the effect of adhesion of CrN hard coatings on modified 42CrMo4 steel substrate is presented. Modifications of the substrate are shot peening, nitriding, shot peening, and nitriding joined process. In the shot peening process, two variable process parameters were used: exposure time (t and air pressure (p. The nitriding process was conducted in the following parameters: nitriding potential Np = 4.86, nitriding time tn = 3 h, and temperature process T = 530°C. Modified substrates were characterized by surface hardness HV5 and hardness profiles on the cross section of samples and by surface roughness parameters. On such prepared substrates, the CrN coating was deposited. The adhesion of CrN coating on modified substrates was defined by the scratch test. Chemical and phase composition of the films was determined using EDS method and X-ray diffraction, respectively. The surface hardness of deposited films was also defined. The substrate of 42CrMo4 steel without mechanical and heat treatment coated by hard CrN film was used as a reference.

  7. Thin Film Processes

    CERN Document Server

    Vossen, John L.

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques. Key Features * Provides an all-new sequel to the 1978 classic, Thin Film Processes * Introduces new topics, and several key topics presented in the original volume are updated * Emphasizes practical applications of major thin film deposition and etching processes * Helps readers find the appropriate technology for a particular application

  8. Optical thin film devices

    Science.gov (United States)

    Mao, Shuzheng

    1991-11-01

    Thin film devices are applied to almost all modern scientific instruments, and these devices, especially optical thin film devices, play an essential role in the performances of the instruments, therefore, they are attracting more and more attention. Now there are numerous kinds of thin film devices and their applications are very diversified. The 300-page book, 'Thin Film Device and Applications,' by Prof. K. L. Chopra gives some general ideas, and my paper also outlines the designs, fabrication, and applications of some optical thin film devices made in my laboratory. Optical thin film devices have been greatly developed in the recent decades. Prof. A. Thelan has given a number of papers on the theory and techniques, Prof. H. A. Macleod's book, 'Thin Film Optical Filters,' has concisely concluded the important concepts of optical thin film devices, and Prof. J. A. Dobrowobski has proposed many successful designs for optical thin film devices. Recently, fully-automatic plants make it easier to produce thin film devices with various spectrum requirements, and some companies, such as Balzers, Leybold AG, Satis Vacuum AG, etc., have manufactured such kinds of coating plants for research or mass-production, and the successful example is the production of multilayer antireflection coatings with high stability and reproducibility. Therefore, it could be said that the design of optical thin film devices and coating plants is quite mature. However, we cannot expect that every problem has been solved, the R&D work still continues, the competition still continues, and new design concepts, new techniques, and new film materials are continually developed. Meanwhile, the high-price of fully-automatic coating plants makes unpopular, and automatic design of coating stacks is only the technique for optimizing the manual design according to the physical concepts and experience, in addition, not only the optical system, but also working environment should be taken into account when

  9. Coupling Two-Dimensional MoTe2and InGaZnO Thin-Film Materials for Hybrid PN Junction and CMOS Inverters.

    Science.gov (United States)

    Lee, Han Sol; Choi, Kyunghee; Kim, Jin Sung; Yu, Sanghyuck; Ko, Kyeong Rok; Im, Seongil

    2017-05-10

    We report the fabrication of hybrid PN junction diode and complementary (CMOS) inverters, where 2D p-type MoTe 2 and n-type thin film InGaZnO (IGZO) are coupled for each device process. IGZO thin film was initially patterned by conventional photolithography either for n-type material in a PN diode or for n-channel of top-gate field-effect transistors (FET) in CMOS inverter. The hybrid PN junction diode shows a good ideality factor of 1.57 and quite a high ON/OFF rectification ratio of ∼3 × 10 4 . Under photons, our hybrid PN diode appeared somewhat stable only responding to high-energy photons of blue and ultraviolet. Our 2D nanosheet-oxide film hybrid CMOS inverter exhibits voltage gains as high as ∼40 at 5 V, low power consumption less than around a few nW at 1 V, and ∼200 μs switching dynamics.

  10. Thin films on cantilevers

    NARCIS (Netherlands)

    Nazeer, H.

    2012-01-01

    The main goal of the work compiled in this thesis is to investigate thin films for integration in micro electromechanical systems (MEMS). The miniaturization of MEMS actuators and sensors without compromising their performance requires thin films of different active materials with specific

  11. Thin Film & Deposition Systems (Windows)

    Data.gov (United States)

    Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

  12. Carbon thin film thermometry

    Science.gov (United States)

    Collier, R. S.; Sparks, L. L.; Strobridge, T. R.

    1973-01-01

    The work concerning carbon thin film thermometry is reported. Optimum film deposition parameters were sought on an empirical basis for maximum stability of the films. One hundred films were fabricated for use at the Marshall Space Flight Center; 10 of these films were given a precise quasi-continuous calibration of temperature vs. resistance with 22 intervals between 5 and 80 K using primary platinum and germanium thermometers. Sensitivity curves were established and the remaining 90 films were given a three point calibration and fitted to the established sensitivity curves. Hydrogen gas-liquid discrimination set points are given for each film.

  13. Thin film hydrogen sensor

    Science.gov (United States)

    Cheng, Yang-Tse; Poli, Andrea A.; Meltser, Mark Alexander

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  14. Thin film device applications

    CERN Document Server

    Kaur, Inderjeet

    1983-01-01

    Two-dimensional materials created ab initio by the process of condensation of atoms, molecules, or ions, called thin films, have unique properties significantly different from the corresponding bulk materials as a result of their physical dimensions, geometry, nonequilibrium microstructure, and metallurgy. Further, these characteristic features of thin films can be drasti­ cally modified and tailored to obtain the desired and required physical characteristics. These features form the basis of development of a host of extraordinary active and passive thin film device applications in the last two decades. On the one extreme, these applications are in the submicron dimensions in such areas as very large scale integration (VLSI), Josephson junction quantum interference devices, magnetic bubbles, and integrated optics. On the other extreme, large-area thin films are being used as selective coatings for solar thermal conversion, solar cells for photovoltaic conver­ sion, and protection and passivating layers. Ind...

  15. Multifunctional thin film surface

    Energy Technology Data Exchange (ETDEWEB)

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  16. Surface, Nanomechanical, and Optical Properties of Mo-Doped GeGaAs Thin Film Deposited by Thermionic Vacuum Arc

    Science.gov (United States)

    Pat, Suat; Şenay, Volkan; Özen, Soner; Korkmaz, Şadan

    2016-01-01

    Mo-doped and undoped GeGaAs layers have been deposited by the thermionic vacuum arc (TVA) method, an alternative, fast plasma deposition technique. The thicknesses of the deposited layers were identical. The surface, mechanical, and optical properties of the deposited layers were studied to determine the influence of Mo doping on GeGaAs. The transparency of GeGaAs was shifted towards the near-infrared region by Mo doping. Bandgap values shifted by approximately 0.3 eV. In other words, the bandgap value of Mo-doped GeGaAs was nearly equal to that of GaAs materials. The average roughness and grain size of the Mo-doped material were smaller than for the GeGaAs layer. The particle distributions of the Mo-doped and undoped GeGaAs were almost perfect Gaussians. However, the mean height of the Mo-doped GeGaAs grains was six times that for undoped GeGaAs. The surface was homogeneous. The Mo-doped layer showed greater absorbance than the GeGaAs material. The produced Mo-doped sample showed hybrid properties.

  17. Recent Advancement on the Optical Properties of Two-Dimensional Molybdenum Disulfide (MoS2 Thin Films

    Directory of Open Access Journals (Sweden)

    Mingxiao Ye

    2015-03-01

    Full Text Available The emergence of two-dimensional (2D materials has led to tremendous interest in the study of graphene and a series of mono- and few-layered transition metal dichalcogenides (TMDCs. Among these TMDCs, the study of molybdenum disulfide (MoS2 has gained increasing attention due to its promising optical, electronic, and optoelectronic properties. Of particular interest is the indirect to direct band-gap transition from bulk and few-layered structures to mono-layered MoS2, respectively. In this review, the study of these properties is summarized. The use of Raman and Photoluminescence (PL spectroscopy of MoS2 has become a reliable technique for differentiating the number of molecular layers in 2D MoS2.

  18. Characterization Of Annealed Pulsed Laser Deposited (PLD) Thin Films of Cesium Oxythiomolybdate (Cs2MoOS3)

    National Research Council Canada - National Science Library

    Storng, Karla

    2002-01-01

    .... In the presence of silicon nitride, the oxidation reactions change. The purpose of the present research was to determine the chemistry of Cs2MoOS3 coatings grown by pulsed laser deposition (PLD...

  19. Thin films and nanomaterials

    International Nuclear Information System (INIS)

    Jayakumar, S.; Kannan, M.D.; Prasanna, S.

    2012-01-01

    The objective of this book is to disseminate the most recent research in Thin Films, Nanomaterials, Corrosion and Metallurgy presented at the International Conference on Advanced Materials (ICAM 2011) held in PSG College of Technology, Coimbatore, India during 12-16 December 2011. The book is a compilation of 113 chapters written by active researchers providing information and critical insights into the recent advancements that have taken place. Important new applications are possible today in the fields of microelectronics, opto-electronics, metallurgy and energy by the application of thin films on solid surfaces. Recent progress in high vacuum technology and new materials has a remarkable effect in thin film quality and cost. This has led to the development of new single or multi-layered thin film devices with diverse applications in a multitude of production areas, such as optics, thermal barrier coatings and wear protections, enhancing service life of tools and to protect materials against thermal and atmospheric influence. On the other hand, thin film process techniques and research are strongly related to the basic research activities in nano technology, an increasingly important field with countless opportunities for applications due to the emergence of new properties at the nanoscale level. Materials and structures that are designed and fabricated at the nano scale level, offer the potential to produce new devices and processes that may enhance efficiencies and reduce costs in many areas, as photovoltaic systems, hydrogen storage, fuel cells and solar thermal systems. In the book, the contributed papers are classified under two sections i) thin films and ii) nanomaterials. The thin film section includes single or multi layer conducting, insulating or semiconducting films synthesized by a wide variety of physical or chemical techniques and characterized or analyzed for different applications. The nanomaterials section deals with novel or exciting materials

  20. Optical thin film deposition

    International Nuclear Information System (INIS)

    Macleod, H.A.

    1979-01-01

    The potential usefulness in the production of optical thin-film coatings of some of the processes for thin film deposition which can be classified under the heading of ion-assisted techniques is examined. Thermal evaporation is the process which is virtually universally used for this purpose and which has been developed to a stage where performance is in almost all respects high. Areas where further improvements would be of value, and the possibility that ion-assisted deposition might lead to such improvements, are discussed. (author)

  1. Thin Film Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K.

    1998-11-19

    The motivation to develop thin film technologies dates back to the inception of photovoltaics. It is an idea based on achieving truly low-cost photovoltaics appropriate for mass production and energy significant markets. The key to the idea is the use of pennies worth of active materials. Since sunlight carries relatively little energy in comparison with combustion-based energy sources, photovoltaic (PV) modules must be cheap to produce energy that can be competitive. Thin films are presumed to be the answer to that low-cost requirement. But how cheap do they have to be? The following is an oversimplified analysis that allows some insight into this question.

  2. Epitaxial thin films

    Science.gov (United States)

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  3. Nanostructured thin film coatings with different strengthening effects

    Directory of Open Access Journals (Sweden)

    Panfilov Yury

    2017-01-01

    Full Text Available A number of articles on strengthening thin film coatings were analyzed and a lot of unusual strengthening effects, such as super high hardness and plasticity simultaneously, ultra low friction coefficient, high wear-resistance, curve rigidity increasing of drills with small diameter, associated with process formation of nanostructured coatings by the different thin film deposition methods were detected. Vacuum coater with RF magnetron sputtering system and ion-beam source and arc evaporator for nanostructured thin film coating manufacture are represented. Diamond Like Carbon and MoS2 thin film coatings, Ti, Al, Nb, Cr, nitride, carbide, and carbo-nitride thin film materials are described as strengthening coatings.

  4. Thin film metal-oxides

    CERN Document Server

    Ramanathan, Shriram

    2009-01-01

    Presents an account of the fundamental structure-property relations in oxide thin films. This title discusses the functional properties of thin film oxides in the context of applications in the electronics and renewable energy technologies.

  5. Absence of traditional magnetoresistivity mechanisms in Sr2FeMoO6 thin films grown on SrTiO3, MgO and NdGaO3 substrates.

    Science.gov (United States)

    Saloaro, M; Majumdar, S; Huhtinen, H; Paturi, P

    2012-09-12

    Magnetoresistive double perovskite Sr(2)FeMoO(6) thin films were grown with two different deposition pressures on SrTiO(3), MgO and NdGaO(3) substrates by pulsed laser deposition and thorough structural, magnetic and magneto-transport characterization was made. According to x-ray diffraction, all the films were phase pure and fully textured. Indication of substrate dependent strain and low angle grain boundaries was found, especially in films on MgO. Both the deposition pressure and the choice of the substrate have a strong influence on the saturation magnetization, M(s), and Curie temperature, T(C). The structural and magnetic data indicate the presence of anti-site disorder (ASD) in the films. The temperature dependence of resistivity showed semiconductive behaviour at temperatures below 100 K and metallic behaviour at higher temperatures. The semiconductive behaviour was found to increase with increasing ASD. In good quality films, up to 12% negative magnetoresistance (MR) was observed and films grown on MgO and NGO substrates also showed low field MR. However, the most significant observation of this study was that the magnetoresistivity of these Sr(2)FeMoO(6) thin films could not be explained with any traditional MR mechanism, but carried the clear signature of superposition of different mechanisms, in particular low angle grain boundary tunnelling and suppression of antiferromagnetically ordered domains under a magnetic field.

  6. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  7. Protein thin film machines.

    Science.gov (United States)

    Federici, Stefania; Oliviero, Giulio; Hamad-Schifferli, Kimberly; Bergese, Paolo

    2010-12-01

    We report the first example of microcantilever beams that are reversibly driven by protein thin film machines fueled by cycling the salt concentration of the surrounding solution. We also show that upon the same salinity stimulus the drive can be completely reversed in its direction by introducing a surface coating ligand. Experimental results are throughout discussed within a general yet simple thermodynamic model.

  8. Ion-beam assisted deposition of C-, Ti-, Zr-, Mo-based thin films on silicon substrate

    International Nuclear Information System (INIS)

    Tashlykov, I.S.; Vesh, V.; Vendler, Eh.

    2004-01-01

    With the help pf RBS/channeling method and scattering spectrum computer simulation C-, Ti-, Zr- and Mo-based coatings deposited by ion beam assisted deposition technique on Si substrate have been investigated. Si, O, C, and H atoms were found to be incorporated into the coatings composition. Radiation damage of silicon near the coating-substrate interface region does not depend on the mass of bombarding ions [ru

  9. Thin film superconductor magnetic bearings

    Science.gov (United States)

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  10. Functional organic thin films

    OpenAIRE

    Scharnberg, Michael

    2007-01-01

    Organic thin films are used in many technological and engineering applications nowadays. They find use as coatings, sensors, detectors, as matrix materials in nanocomposites, as self-assembled monolayers for surface functionalization, as low-k dielectrics in integrated circuits and in advanced organic electronic applications like organic light emitting diodes, organic field effect transistors and organic photovoltaics (esp. organic solar cells) and many other applications. OLED displays are n...

  11. Thin film processes

    CERN Document Server

    Vossen, John L

    1978-01-01

    Remarkable advances have been made in recent years in the science and technology of thin film processes for deposition and etching. It is the purpose of this book to bring together tutorial reviews of selected filmdeposition and etching processes from a process viewpoint. Emphasis is placed on the practical use of the processes to provide working guidelines for their implementation, a guide to the literature, and an overview of each process.

  12. Handbook of thin film technology

    CERN Document Server

    Frey, Hartmut

    2015-01-01

    “Handbook of Thin Film Technology” covers all aspects of coatings preparation, characterization and applications. Different deposition techniques based on vacuum and plasma processes are presented. Methods of surface and thin film analysis including coating thickness, structural, optical, electrical, mechanical and magnetic properties of films are detailed described. The several applications of thin coatings and a special chapter focusing on nanoparticle-based films can be found in this handbook. A complete reference for students and professionals interested in the science and technology of thin films.

  13. Impact of reduced graphene oxide on MoS{sub 2} grown by sulfurization of sputtered MoO{sub 3} and Mo precursor films

    Energy Technology Data Exchange (ETDEWEB)

    Pacley, Shanee, E-mail: shanee.pacley@us.af.mil; Brausch, Jacob; Beck-Millerton, Emory [U.S. Air Force Research Laboratory (AFRL)/Wright Patterson Air Force Base, Wright Patterson, Ohio 45433-7707 (United States); Hu, Jianjun; Jespersen, Michael [University of Dayton Research Institute, 300 College Park, Dayton, Ohio 45469 (United States); Hilton, Al [Wyle Laboratories, 4200 Colonel Glenn Hwy, Beavercreek, Ohio 45431 (United States); Waite, Adam [University Technology Corporation, 1270 N Fairfield Rd., Beavercreek, Ohio 45432 (United States); Voevodin, Andrey A. [Department of Materials Science and Engineering, University of North Texas, 1155 Union Circle, Denton, Texas 76203 (United States)

    2016-07-15

    Monolayer molybdenum disulfide (MoS{sub 2}), a two dimensional semiconducting dichalcogenide material with a bandgap of 1.8–1.9 eV, has demonstrated promise for future use in field effect transistors and optoelectronics. Various approaches have been used for MoS{sub 2} processing, the most common being chemical vapor deposition. During chemical vapor deposition, precursors such as Mo, MoO{sub 3}, and MoCl{sub 5} have been used to form a vapor reaction with sulfur, resulting in thin films of MoS{sub 2}. Currently, MoO{sub 3} ribbons and powder, and MoCl{sub 5} powder have been used. However, the use of ribbons and powder makes it difficult to grow large area-continuous films. Sputtering of Mo is an approach that has demonstrated continuous MoS{sub 2} film growth. In this paper, the authors compare the structural properties of MoS{sub 2} grown by sulfurization of pulse vapor deposited MoO{sub 3} and Mo precursor films. In addition, they have studied the effects that reduced graphene oxide (rGO) has on MoS{sub 2} structure. Reports show that rGO increases MoS{sub 2} grain growth during powder vaporization. Herein, the authors report a grain size increase for MoS{sub 2} when rGO was used during sulfurization of both sputtered Mo and MoO{sub 3} precursors. In addition, our transmission electron microscopy results show a more uniform and continuous film growth for the MoS{sub 2} films produced from Mo when compared to the films produced from MoO{sub 3}. Atomic force microscopy images further confirm this uniform and continuous film growth when Mo precursor was used. Finally, x-ray photoelectron spectroscopy results show that the MoS{sub 2} films produced using both precursors were stoichiometric and had about 7–8 layers in thickness, and that there was a slight improvement in stoichiometry when rGO was used.

  14. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with

  15. Ferromagnetic thin films

    Science.gov (United States)

    Krishnan, Kannan M.

    1994-01-01

    A ferromagnetic .delta.-Mn.sub.1-x Ga.sub.x thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of .delta.-Mn.sub.1-x Ga.sub.x overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of .delta.-Mn.sub.1-x Ga.sub.x and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4 .+-.0.05.

  16. Structure and magnetic properties of NdFeB thin films with Cr, Mo, Nb, Ta, Ti, and V buffer layers

    International Nuclear Information System (INIS)

    Jiang, H.; O'Shea, M.J.

    2000-01-01

    Layers of NdFeB of the form A(20 nm)/NdFeB(d nm)/A(20 nm) where A represents Cr, Mo, Nb, Ta, Ti, V were prepared on a silicon substrate by magnetron sputtering. The purpose is to determine how (i) the chosen buffer layer and (ii) NdFeB layer thickness d (especially d 2 Fe 14 B with no preferred crystalline orientation. Our highest coercivities occur for buffer layer elements from row five of the periodic table, 20 kOe (1600 kA/m) in a Nb buffered sample with d of 180 nm and 17 kOe (1350 kA/m) in a Mo buffered sample with d of 180 nm. Buffer layers from row four (Ti, V, and Cr) and row six (Ta) all give lower coercivities. Our largest energy product, 10.3 MG-Oe (82 kJ/m 3 ), is obtained for the Mo buffered sample. Average Nd 2 Fe 14 B crystallite size for this sample is 27 nm. Only the Cr and Ti buffered films show a large coercivity (≥2 kOe) for d of 54 nm with the Cr films showing the highest coercivity, 2.7 kOe (215 kA/m). In films subjected to a rapid thermal anneal (anneal time 30 s) we find that both the coercivity and energy product are larger than in samples subjected to a 20 min anneal. In our Nb buffered systems we obtain coercivities as high as 26.3 kOe (2090 kA/m) after a rapid thermal anneal

  17. Characterization of organic thin films

    CERN Document Server

    Ulman, Abraham; Evans, Charles A

    2009-01-01

    Thin films based upon organic materials are at the heart of much of the revolution in modern technology, from advanced electronics, to optics to sensors to biomedical engineering. This volume in the Materials Characterization series introduces the major common types of analysis used in characterizing of thin films and the various appropriate characterization technologies for each. Materials such as Langmuir-Blodgett films and self-assembled monolayers are first introduced, followed by analysis of surface properties and the various characterization technologies used for such. Readers will find detailed information on: -Various spectroscopic approaches to characterization of organic thin films, including infrared spectroscopy and Raman spectroscopy -X-Ray diffraction techniques, High Resolution EELS studies, and X-Ray Photoelectron Spectroscopy -Concise Summaries of major characterization technologies for organic thin films, including Auger Electron Spectroscopy, Dynamic Secondary Ion Mass Spectrometry, and Tra...

  18. Interfaces and thin films physics

    International Nuclear Information System (INIS)

    Equer, B.

    1988-01-01

    The 1988 progress report of the Interfaces and Thin Film Physics laboratory (Polytechnic School France) is presented. The research program is focused on the thin films and on the interfaces of the amorphous semiconductor materials: silicon and silicon germanium, silicon-carbon and silicon-nitrogen alloys. In particular, the following topics are discussed: the basic processes and the kinetics of the reactive gas deposition, the amorphous materials manufacturing, the physico-chemical characterization of thin films and interfaces and the electron transport in amorphous semiconductors. The construction and optimization of experimental devices, as well as the activities concerning instrumentation, are also described [fr

  19. Low resistivity molybdenum thin film towards the back contact of dye ...

    Indian Academy of Sciences (India)

    . 3.5 Electrical properties of Mo thin films. The electrical properties of 400 nm Mo thin films measured by four-point probe are listed in table 1. The lowest resistivity was 10.52E−06 cm (at 1 mA applied current) when the sputtering power 150 W.

  20. Improved photoelectrical properties of MoS(2) films after laser micromachining.

    Science.gov (United States)

    Lu, Junpeng; Lu, Jia Hui; Liu, Hongwei; Liu, Bo; Chan, Kim Xinhui; Lin, Jiadan; Chen, Wei; Loh, Kian Ping; Sow, Chorng Haur

    2014-06-24

    Direct patterning of ultrathin MoS2 films with well-defined structures and controllable thickness is appealing since the properties of MoS2 sheets are sensitive to the number of layer and surface properties. In this work, we employed a facile, effective, and well-controlled technique to achieve micropatterning of MoS2 films with a focused laser beam. We demonstrated that a direct focused laser beam irradiation was able to achieve localized modification and thinning of as-synthesized MoS2 films. With a scanning laser beam, microdomains with well-defined structures and controllable thickness were created on the same film. We found that laser modification altered the photoelectrical property of the MoS2 films, and subsequently, photodetectors with improved performance have been fabricated and demonstrated using laser modified films.

  1. Thin-Film Power Transformers

    Science.gov (United States)

    Katti, Romney R.

    1995-01-01

    Transformer core made of thin layers of insulating material interspersed with thin layers of ferromagnetic material. Flux-linking conductors made of thinner nonferromagnetic-conductor/insulator multilayers wrapped around core. Transformers have geometric features finer than those of transformers made in customary way by machining and mechanical pressing. In addition, some thin-film materials exhibit magnetic-flux-carrying capabilities superior to those of customary bulk transformer materials. Suitable for low-cost, high-yield mass production.

  2. Beryllium thin films for resistor applications

    Science.gov (United States)

    Fiet, O.

    1972-01-01

    Beryllium thin films have a protective oxidation resistant property at high temperature and high recrystallization temperature. However, the experimental film has very low temperature coefficient of resistance.

  3. Low-temperature atomic layer deposition of MoS{sub 2} films

    Energy Technology Data Exchange (ETDEWEB)

    Jurca, Titel; Wang, Binghao; Tan, Jeffrey M.; Lohr, Tracy L.; Marks, Tobin J. [Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL (United States); Moody, Michael J.; Henning, Alex; Emery, Jonathan D.; Lauhon, Lincoln J. [Department of Materials Science and Engineering, and the Materials Research Center, Northwestern University, Evanston, IL (United States)

    2017-04-24

    Wet chemical screening reveals the very high reactivity of Mo(NMe{sub 2}){sub 4} with H{sub 2}S for the low-temperature synthesis of MoS{sub 2}. This observation motivated an investigation of Mo(NMe{sub 2}){sub 4} as a volatile precursor for the atomic layer deposition (ALD) of MoS{sub 2} thin films. Herein we report that Mo(NMe{sub 2}){sub 4} enables MoS{sub 2} film growth at record low temperatures - as low as 60 C. The as-deposited films are amorphous but can be readily crystallized by annealing. Importantly, the low ALD growth temperature is compatible with photolithographic and lift-off patterning for the straightforward fabrication of diverse device structures. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  4. Ta-based amorphous metal thin films

    Energy Technology Data Exchange (ETDEWEB)

    McGlone, John M., E-mail: mcglone@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331-5501 (United States); Olsen, Kristopher R. [Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003 (United States); Stickle, William F.; Abbott, James E.; Pugliese, Roberto A.; Long, Greg S. [Hewlett-Packard Company, Corvallis, OR, 97333 (United States); Keszler, Douglas A. [Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003 (United States); Wager, John F. [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331-5501 (United States)

    2015-11-25

    With their lack of grains and grain boundaries, amorphous metals are known to possess advantageous mechanical properties and enhanced chemical stability relative to crystalline metals. Commonly, however, they exhibit poor high-temperature stability because of their metastable nature. Here, we describe two new Ta-based ternary metal thin films that retain thermal stability to 600 °C and above. The new thin-film compositions, Ta{sub 2}Ni{sub 2}Si{sub 1} and Ta{sub 2}Mo{sub 2}Si{sub 1}, are amorphous, exhibiting ultra-smooth surfaces (<0.4 nm) and resistivities typical of amorphous metals (224 and 177 μΩ cm, respectively). - Highlights: • New Ta-based amorphous metals were sputter deposited from individual targets. • As-deposited amorphous structure was confirmed through diffraction techniques. • Electrical and surface properties were characterized and possess smooth surfaces. • No evidence of crystallization up to 600 °C (TaNiSi) and 800 °C (TaMoSi). • Ultra-smooth surfaces remained unchanged up to crystallization temperature.

  5. Preparation of thin vyns films

    International Nuclear Information System (INIS)

    Blanc, R.; Chedin, P.; Gizon, A.

    1965-01-01

    The fabrication of thin films of VYNS resin (copolymer of chloride and vinyl acetate) of superficial density from 3 to 50 μg/cm 2 with solutions in cyclohexanone is presented. Study and discussion of some properties compared with formvar film (polyvinyl formals). It appears that both can be used as source supports but formvar films are prepared more easily and more quickly, in addition they withstand higher temperatures. The main quality of VYNS is that they can be easily separated even several days after their preparation [fr

  6. Laser applications in thin-film photovoltaics

    OpenAIRE

    Bartlome, R.; Strahm, B.; Sinquin, Y.; Feltrin, A.; Ballif, C.

    2009-01-01

    We review laser applications in thin-film photovoltaics (thin-film Si, CdTe, and Cu(In,Ga)Se2 solar cells). Lasers are applied in this growing field to manufacture modules, to monitor Si deposition processes, and to characterize opto-electrical properties of thin films. Unlike traditional panels based on crystalline silicon wafers, the individual cells of a thin-film photovoltaic module can be serially interconnected by laser scribing during fabrication. Laser scribing applications are descri...

  7. Nanocrystal thin film fabrication methods and apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Kagan, Cherie R.; Kim, David K.; Choi, Ji-Hyuk; Lai, Yuming

    2018-01-09

    Nanocrystal thin film devices and methods for fabricating nanocrystal thin film devices are disclosed. The nanocrystal thin films are diffused with a dopant such as Indium, Potassium, Tin, etc. to reduce surface states. The thin film devices may be exposed to air during a portion of the fabrication. This enables fabrication of nanocrystal-based devices using a wider range of techniques such as photolithography and photolithographic patterning in an air environment.

  8. study in polymer thin films

    Indian Academy of Sciences (India)

    TECS

    carry out a careful study of steady state conduction of poly- styrene (PS) thin film thermo-electrets sandwiched be- tween metal electrodes both in doped and undoped forms. 2. Experimental. 2.1 Sample preparation. Polystyrene supplied by Polymer Chemical Industry,. Mumbai and naphthalene by S.G. Sisco Pvt Ltd., New ...

  9. Magnetization in permalloy thin films

    Indian Academy of Sciences (India)

    1VES College of Arts, Science and Commerce, Sindhi Society, Chembur, Mumbai 400 071,. India. 2UGC-DAE Consortium for Scientific Research, R5 Shed, ... gas alone, while PNR measurements on 5 and 10% sample show splitting in the spin-up and spin-down reflectivity. Keywords. Permalloy; NiFe thin films; NiFe ...

  10. Relation between film thickness and surface doping of MoS2 based field effect transistors

    Science.gov (United States)

    Lockhart de la Rosa, César J.; Arutchelvan, Goutham; Leonhardt, Alessandra; Huyghebaert, Cedric; Radu, Iuliana; Heyns, Marc; De Gendt, Stefan

    2018-05-01

    Ultra-thin MoS2 film doping through surface functionalization with physically adsorbed species is of great interest due to its ability to dope the film without reduction in the carrier mobility. However, there is a need for understanding how the thickness of the MoS2 film is related to the induced surface doping for improved electrical performance. In this work, we report on the relation of MoS2 film thickness with the doping effect induced by the n-dopant adsorbate poly(vinyl-alcohol). Field effect transistors built using MoS2 films of different thicknesses were electrically characterized, and it was observed that the ION/OFF ratio after doping in thin films is more than four orders of magnitudes greater when compared with thick films. Additionally, a semi-classical model tuned with the experimental devices was used to understand the spatial distribution of charge in the channel and explain the observed behavior. From the simulation results, it was revealed that the two-dimensional carrier density induced by the adsorbate is distributed rather uniformly along the complete channel for thin films (<5.2 nm) contrary to what happens for thicker films.

  11. Structural and optical properties of electrodeposited molybdenum oxide thin films

    International Nuclear Information System (INIS)

    Patil, R.S.; Uplane, M.D.; Patil, P.S.

    2006-01-01

    Electrosynthesis of Mo(IV) oxide thin films on F-doped SnO 2 conducting glass (10-20/Ω/□) substrates were carried from aqueous alkaline solution of ammonium molybdate at room temperature. The physical characterization of as-deposited films carried by thermogravimetric/differential thermogravimetric analysis (TGA/DTA), infrared spectroscopy and X-ray diffraction (XRD) showed the formation of hydrous and amorphous MoO 2 . Scanning electron microscopy (SEM) revealed a smooth but cracked surface with multi-layered growth. Annealing of these films in dry argon at 450 deg. C for 1 h resulted into polycrystalline MoO 2 with crystallites aligned perpendicular to the substrate. Optical absorption study indicated a direct band gap of 2.83 eV. The band gap variation consistent with Moss rule and band gap narrowing upon crystallization was observed. Structure tailoring of as-deposited thin films by thermal oxidation in ambient air to obtain electrochromic Mo(VI) oxide thin films was exploited for the first time by this novel route. The results of this study will be reported elsewhere

  12. Laser scribing of polycrystalline thin films

    Science.gov (United States)

    Compaan, A. D.; Matulionis, I.; Nakade, S.

    2000-07-01

    We have investigated the use of several different types of lasers for scribing of the polycrystalline materials used for thin-film solar cells: CdTe, CuInGaSe 2 (CIGS), ZnO, SnO 2, Mo, Al, and Au. The lasers included four different neodymium-yttrium-aluminum garnet (Nd:YAG) (both 1064 and 532 nm wavelengths), a Cu vapor (511/578 nm), an XeCl excimer (308 nm), and a KrF excimer (248 nm). Pulse durations ranged from ˜0.1 to ˜250 ns. We found that the fundamental and frequency-doubled wavelengths of the Nd:YAG systems work well for almost all of the above materials except for the transparent conductor ZnO. The diode-laser-pumped Nd:YAG was particularly convenient to use. For ZnO the uv wavelengths of the two excimer lasers produced good results. Pulse duration was found generally not to be critical except for the case of CIGS on Mo where longer pulse durations (≥250 ns) are advantageous. The frequently observed problem of ridge formation along the edges of scribe lines in the semiconductor films can be eliminated by control of intensity gradients at the film through adjustment of the focus conditions.

  13. Low resistivity molybdenum thin film towards the back contact of dye ...

    Indian Academy of Sciences (India)

    The molybdenum thin film was grown on the glass substrate by direct current sputtering techniques of which the sputtering power was 150Wat 18 sccm flow rate of Ar. At such sputtering parameters, the Mo film can reach the lowest resistivity of 1.28E−6 cm at 400 nm thick. And the reflection of Mo membrane was 82%.

  14. Microstructure of Thin Films

    Science.gov (United States)

    1990-02-07

    resultant film could be varied right up to virtually pure aluminum oxide simply by varying the background oxygen pressure. More recently we have been...aT , m..a, lot,, o ,,f,02,d I4 k -1-1..... autocovariance lengths, less than 0.5 um, indicate that , 514n, ob0 o p’,Ofclllc....,,o,,oy0,1- agua sblrt

  15. Cubic erbium trihydride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.P., E-mail: dpadams@sandia.gov; Rodriguez, M.A.; Romero, J.A.; Kotula, P.G.; Banks, J.

    2012-07-31

    High-purity, erbium hydride thin films have been deposited onto {alpha}-Al{sub 2}O{sub 3} and oxidized Si by reactive sputtering methods. Rutherford backscattering spectrometry and elastic recoil detection show that films deposited at temperatures of 35, 150 and 275 Degree-Sign C have a composition of 3H:1Er. Erbium trihydride films consist of a face-centered cubic erbium sub-lattice with a lattice parameter in the range of 5.11-5.20 A. The formation of cubic ErH{sub 3} is intriguing, because previous studies demonstrate a single trihydride phase with a hexagonal metal sub-lattice. The formation of a stable, cubic trihydride phase is attributed to a large, in-plane stress resulting from ion beam sputter deposition. - Highlights: Black-Right-Pointing-Pointer Cubic erbium trihydride thin films produced by ion beam sputter deposition. Black-Right-Pointing-Pointer Face-centered cubic metal sub-lattice verified by X-ray and electron diffraction. Black-Right-Pointing-Pointer Composition evaluated using four different techniques. Black-Right-Pointing-Pointer Film stress monitored during deposition. Black-Right-Pointing-Pointer Formation of cubic erbium trihydride attributed to a large, in-plane film stress.

  16. Polycrystalline thin films : A review

    Energy Technology Data Exchange (ETDEWEB)

    Valvoda, V. [Charles Univ., Prague (Czech Republic). Faculty of Mathematics and Physics

    1996-09-01

    Polycrystalline thin films can be described in terms of grain morphology and in terms of their packing by the Thornton`s zone model as a function of temperature of deposition and as a function of energy of deposited atoms. Grain size and preferred grain orientation (texture) can be determined by X-ray diffraction (XRD) methods. A review of XRD analytical methods of texture analysis is given with main attention paid to simple empirical functions used for texture description and for structure analysis by joint texture refinement. To illustrate the methods of detailed structure analysis of thin polycrystalline films, examples of multilayers are used with the aim to show experiments and data evaluation to determine layer thickness, periodicity, interface roughness, lattice spacing, strain and the size of diffraction coherent volumes. The methods of low angle and high angle XRD are described and discussed with respect to their complementary information content.

  17. Thin films of soft matter

    CERN Document Server

    Kalliadasis, Serafim

    2007-01-01

    A detailed overview and comprehensive analysis of the main theoretical and experimental advances on free surface thin film and jet flows of soft matter is given. At the theoretical front the book outlines the basic equations and boundary conditions and the derivation of low-dimensional models for the evolution of the free surface. Such models include long-wave expansions and equations of the boundary layer type and are analyzed via linear stability analysis, weakly nonlinear theories and strongly nonlinear analysis including construction of stationary periodic and solitary wave and similarity solutions. At the experimental front a variety of very recent experimental developments is outlined and the link between theory and experiments is illustrated. Such experiments include spreading drops and bubbles, imbibitions, singularity formation at interfaces and experimental characterization of thin films using atomic force microscopy, ellipsometry and contact angle measurements and analysis of patterns using Minkows...

  18. Preparation and characterization of DC sputtered molybdenum thin films

    Directory of Open Access Journals (Sweden)

    Abd El-Hady B. Kashyout

    2011-03-01

    Full Text Available Molybdenum (Mo thin films have been deposited on soda-lime glass substrates using a DC magnetron sputtering system. Their electrical resistivity, and their morphological, structural and adhesive properties have been examined with respect to the deposition power, deposition time and substrate temperature. The electrical resistivity of the Mo films could be reduced by increasing any of the above parameters. Within the range of the investigated deposition parameters, the films showed a mono-crystalline nature with a preferred orientation along the (1 1 0 plane. The Mo films adhesion to the soda-lime glass could be improved by increasing the substrate temperature. At a deposition power of 200 W, deposition time of 20 min and substrate temperature of 450 °C, Mo thin film exhibiting mono-crystalline structure with thickness equal to 450 nm and electrical resistivity equal to 1.85 × 10−4 Ω cm was obtained.

  19. A comparison of surface properties of metallic thin film photocathodes

    CERN Document Server

    Mistry, Sonal; Valizadeh, Reza; Jones, L.B; Middleman, Keith; Hannah, Adrian; Militsyn, B.L; Noakes, Tim

    2017-01-01

    In this work the preparation of metal photocathodes by physical vapour deposition magnetron sputtering has been employed to deposit metallic thin films onto Cu, Mo and Si substrates. The use of metallic cathodes offers several advantages: (i) metal photocathodes present a fast response time and a relative insensitivity to the vacuum environment (ii) metallic thin films when prepared and transferred in vacuum can offer smoother and cleaner emitting surfaces. The photocathodes developed here will ultimately be used in S-band Normal Conducting RF (NCRF) guns such as that used in VELA (Versatile Electron Linear Accelerator) and the proposed CLARA (Compact Linear Accelerator for Research and Applications) Free Electron Laser test facility. The samples grown on Si substrates were used to investigate the morphology and thickness of the film. The samples grown onto Cu and Mo substrates were analysed and tested as photocathodes in a surface characterisation chamber, where X-Ray Photoelectron spectroscopy (XPS) was emp...

  20. Flexible thin film magnetoimpedance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kurlyandskaya, G.V., E-mail: galina@we.lc.ehu.es [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); Ural Federal University, Laboratory of Magnetic sensoric, Lenin Ave. 51, 620083 Ekaterinburg (Russian Federation); Fernández, E. [BCMaterials UPV-EHU, Vizcaya Science and Technology Park, 48160 Derio (Spain); Svalov, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); Ural Federal University, Laboratory of Magnetic sensoric, Lenin Ave. 51, 620083 Ekaterinburg (Russian Federation); Burgoa Beitia, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); García-Arribas, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); BCMaterials UPV-EHU, Vizcaya Science and Technology Park, 48160 Derio (Spain); Larrañaga, A. [SGIker, Servicios Generales de Investigación, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain)

    2016-10-01

    Magnetically soft thin film deposited onto polymer substrates is an attractive option for flexible electronics including magnetoimpedance (MI) applications. MI FeNi/Ti based thin film sensitive elements were designed and prepared using the sputtering technique by deposition onto rigid and flexible substrates at different deposition rates. Their structure, magnetic properties and MI were comparatively analyzed. The main structural features were sufficiently accurately reproduced in the case of deposition onto cyclo olefine polymer substrates compared to glass substrates for the same conditions. Although for the best condition (28 nm/min rate) of the deposition onto polymer a significant reduction of the MI field sensitivity was found satisfactory for sensor applications sensitivity: 45%/Oe was obtained for a frequency of 60 MHz. - Highlights: • [FeNi/Ti]{sub 3}/Cu/[FeNi/Ti]{sub 3} films were prepared by sputtering at different deposition rates. • Polymer substrates insure sufficiently accurate reproducibility of the film structure. • High deposition rate of 28 nm/min insures the highest values of the magnetoimpedance sensitivity. • Deposition onto polymer results in the satisfactory magnetoimpedance sensitivity of 45%/Oe.

  1. Flexible thin film magnetoimpedance sensors

    International Nuclear Information System (INIS)

    Kurlyandskaya, G.V.; Fernández, E.; Svalov, A.; Burgoa Beitia, A.; García-Arribas, A.; Larrañaga, A.

    2016-01-01

    Magnetically soft thin film deposited onto polymer substrates is an attractive option for flexible electronics including magnetoimpedance (MI) applications. MI FeNi/Ti based thin film sensitive elements were designed and prepared using the sputtering technique by deposition onto rigid and flexible substrates at different deposition rates. Their structure, magnetic properties and MI were comparatively analyzed. The main structural features were sufficiently accurately reproduced in the case of deposition onto cyclo olefine polymer substrates compared to glass substrates for the same conditions. Although for the best condition (28 nm/min rate) of the deposition onto polymer a significant reduction of the MI field sensitivity was found satisfactory for sensor applications sensitivity: 45%/Oe was obtained for a frequency of 60 MHz. - Highlights: • [FeNi/Ti] 3 /Cu/[FeNi/Ti] 3 films were prepared by sputtering at different deposition rates. • Polymer substrates insure sufficiently accurate reproducibility of the film structure. • High deposition rate of 28 nm/min insures the highest values of the magnetoimpedance sensitivity. • Deposition onto polymer results in the satisfactory magnetoimpedance sensitivity of 45%/Oe.

  2. Nanocolumnar Crystalline Vanadium Oxide-Molybdenum Oxide Antireflective Smart Thin Films with Superior Nanomechanical Properties.

    Science.gov (United States)

    Dey, Arjun; Nayak, Manish Kumar; Esther, A Carmel Mary; Pradeepkumar, Maurya Sandeep; Porwal, Deeksha; Gupta, A K; Bera, Parthasarathi; Barshilia, Harish C; Mukhopadhyay, Anoop Kumar; Pandey, Ajoy Kumar; Khan, Kallol; Bhattacharya, Manjima; Kumar, D Raghavendra; Sridhara, N; Sharma, Anand Kumar

    2016-11-17

    Vanadium oxide-molybdenum oxide (VO-MO) thin (21-475 nm) films were grown on quartz and silicon substrates by pulsed RF magnetron sputtering technique by altering the RF power from 100 to 600 W. Crystalline VO-MO thin films showed the mixed phases of vanadium oxides e.g., V 2 O 5 , V 2 O 3 and VO 2 along with MoO 3 . Reversible or smart transition was found to occur just above the room temperature i.e., at ~45-50 °C. The VO-MO films deposited on quartz showed a gradual decrease in transmittance with increase in film thickness. But, the VO-MO films on silicon exhibited reflectance that was significantly lower than that of the substrate. Further, the effect of low temperature (i.e., 100 °C) vacuum (10 -5 mbar) annealing on optical properties e.g., solar absorptance, transmittance and reflectance as well as the optical constants e.g., optical band gap, refractive index and extinction coefficient were studied. Sheet resistance, oxidation state and nanomechanical properties e.g., nanohardness and elastic modulus of the VO-MO thin films were also investigated in as-deposited condition as well as after the vacuum annealing treatment. Finally, the combination of the nanoindentation technique and the finite element modeling (FEM) was employed to investigate yield stress and von Mises stress distribution of the VO-MO thin films.

  3. Superconducting fluctuations in molybdenum nitride thin films

    Science.gov (United States)

    Baskaran, R.; Thanikai Arasu, A. V.; Amaladass, E. P.; Vaidhyanathan, L. S.; Baisnab, D. K.

    2018-02-01

    MoN thin films have been deposited using reactive sputtering. The change in resistance near superconducting transition temperature at various magnetic fields has been analyzed based on superconducting fluctuations in the system. The Aslamazov and Larkin scaling theory has been utilized to analyze the conductance change. The results indicate that most of the measurements show two dimensional (2D) nature and exhibit scaling behavior at lower magnetic fields (7T). We have also analyzed our data based on the model in which there is no explicit dependence of Tc. These analyses also substantiate a crossover from a 2D nature to a 3D at larger fields. Analysis using lowest Landau level scaling theory for a 2D system exhibit scaling behavior and substantiate our observations. The broadening at low resistance part has been explained based on thermally activated flux flow model and show universal behavior. The dependence of Uo on magnetic field indicates both single and collective vortex behavior.

  4. Optimization of MoSe{sub 2} formation for Cu(In,Ga)Se{sub 2}-based solar cells by using thin superficial molybdenum oxide barrier layers

    Energy Technology Data Exchange (ETDEWEB)

    Duchatelet, A., E-mail: aurelien.duchatelet@edf.fr [Institute of Research and Development on Photovoltaic Energy (IRDEP), UMR 7174 EDF-CNRS-Chimie ParisTech, 6 quai Watier 78401, Chatou Cedex (France); Savidand, G. [Institute of Research and Development on Photovoltaic Energy (IRDEP), UMR 7174 EDF-CNRS-Chimie ParisTech, 6 quai Watier 78401, Chatou Cedex (France); Vannier, R.N. [Unité de Catalyse et Chimie du Solide (UCCS), UMR 8181, Ecole Nationale Supérieure de Chimie de Lille, Bat C7a-BP 90108, F-59652, Villeneuve d' Ascq (France); Lincot, D., E-mail: Daniel-Lincot@chimie-paristech.fr [Institute of Research and Development on Photovoltaic Energy (IRDEP), UMR 7174 EDF-CNRS-Chimie ParisTech, 6 quai Watier 78401, Chatou Cedex (France)

    2013-10-31

    During the formation of Cu(In,Ga)Se{sub 2} thin films deposited on Mo substrate by the selenization of Cu-In-Ga precursor, the reaction of Mo with Se can lead to a high consumption of Mo back contact and the formation of a thick MoSe{sub 2} layer, thus deteriorating the electrical properties of the back contact. In this study, the effect of thermal oxidation pre-treatment on Mo has been investigated to control the growth of MoSe{sub 2}. It has been demonstrated that a thin and covering MoO{sub 2} layer can block the selenization of Mo. Using this effect, a MoSe{sub 2} layer with controlled thickness can be formed by adding a thin and controlled Mo layer on top of an oxidized Mo substrate. In this configuration, only the Mo added on top of oxidized Mo forms MoSe{sub 2} and the whole Mo protected by MoO{sub 2} remains after selenization. Thanks to this Glass/Mo/MoO{sub 2}/Mo substrate configuration and the metallic behavior of MoO{sub 2}, the good electrical properties of the back contact are kept after selenization. - Highlights: • Selenization of Cu-In-Ga on Mo substrate produces thick detrimental MoSe{sub 2} layer. • MoO{sub 2} layer on Mo surface blocks MoSe{sub 2} formation. • Mo layer on top of MoO{sub 2}/Mo substrate enables to control MoSe{sub 2}.

  5. Ambipolar MoS2 Thin Flake Transistors

    NARCIS (Netherlands)

    Zhang, Yijin; Ye, Jianting; Matsuhashi, Yusuke; Iwasa, Yoshihiro

    Field effect transistors (FETs) made of thin flake single crystals isolated from layered materials have attracted growing interest since the success of graphene. Here, we report the fabrication of an electric double layer transistor (EDLT, a FET gated by ionic liquids) using a thin flake of MoS2, a

  6. Simple Formation of Nanostructured Molybdenum Disulfide Thin Films by Electrodeposition

    Directory of Open Access Journals (Sweden)

    S. K. Ghosh

    2013-01-01

    Full Text Available Nanostructured molybdenum disulfide thin films were deposited on various substrates by direct current (DC electrolysis form aqueous electrolyte containing molybdate and sulfide ions. Post deposition annealing at higher temperatures in the range 450–700°C transformed the as-deposited amorphous films to nanocrystalline structure. High temperature X-ray diffraction studies clearly recorded the crystal structure transformations associated with grain growth with increase in annealing temperature. Surface morphology investigations revealed featureless structure in case of as-deposited surface; upon annealing it converts into a surface with protruding nanotubes, nanorods, or dumbbell shape nanofeatures. UV-visible and FTIR spectra confirmed about the presence of Mo-S bonding in the deposited films. Transmission electron microscopic examination showed that the annealed MoS2 films consist of nanoballs, nanoribbons, and multiple wall nanotubes.

  7. Organic Thin Films for Photonics Applications

    National Research Council Canada - National Science Library

    Thorner, John

    1999-01-01

    The Organic Thin Films for Photonics Applications Topical Meeting provided an interdisciplinary forum for the presentation and discussion of new and previously unpublished results on advanced organic...

  8. Analysis of Hard Thin Film Coating

    Science.gov (United States)

    Shen, Dashen

    1998-01-01

    MSFC is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using electron cyclotron resonance chemical vapor deposition (ECRCVD) to deposit hard thin film an stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  9. Thin films for emerging applications v.16

    CERN Document Server

    Francombe, Maurice H

    1992-01-01

    Following in the long-standing tradition of excellence established by this serial, this volume provides a focused look at contemporary applications. High Tc superconducting thin films are discussed in terms of ion beam and sputtering deposition, vacuum evaporation, laser ablation, MOCVD, and other deposition processes in addition to their ultimate applications. Detailed treatment is also given to permanent magnet thin films, lateral diffusion and electromigration in metallic thin films, and fracture and cracking phenomena in thin films adhering to high-elongation substrates.

  10. Progress in thin film techniques

    International Nuclear Information System (INIS)

    Weingarten, W.

    1996-01-01

    Progress since the last Workshop is reported on superconducting accelerating RF cavities coated with thin films. The materials investigated are Nb, Nb 3 Sn, NbN and NbTiN, the techniques applied are diffusion from the vapour phase (Nb 3 Sn, NbN), the bronze process (Nb 3 Sn), and sputter deposition on a copper substrate (Nb, NbTiN). Specially designed cavities for sample evaluation by RF methods have been developed (triaxial cavity). New experimental techniques to assess the RF amplitude dependence of the surface resistance are presented (with emphasis on niobium films sputter deposited on copper). Evidence is increasing that they are caused by magnetic flux penetration into the surface layer. (R.P.)

  11. Thin film solar energy collector

    Science.gov (United States)

    Aykan, Kamran; Farrauto, Robert J.; Jefferson, Clinton F.; Lanam, Richard D.

    1983-11-22

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  12. Minerals deposited as thin films

    International Nuclear Information System (INIS)

    Vazquez, Cristina; Leyt, D.V. de; Custo, Graciela

    1987-01-01

    Free matrix effects are due to thin film deposits. Thus, it was decided to investigate this technique as a possibility to use pure oxide of the desired element, extrapolating its concentration from analytical curves made with avoiding, at the same time, mathematical corrections. The proposed method was employed to determine iron and titanium concentrations in geological samples. The range studied was 0.1-5%m/m for titanium and 5-20%m/m for iron. For both elements the reproducibility was about 7% and differences between this method and other chemical determinations were 15% for titanium and 7% for iron. (Author) [es

  13. Interfacial Properties of CZTS Thin Film Solar Cell

    Directory of Open Access Journals (Sweden)

    N. Muhunthan

    2014-01-01

    Full Text Available Cu-deficient CZTS (copper zinc tin sulfide thin films were grown on soda lime as well as molybdenum coated soda lime glass by reactive cosputtering. Polycrystalline CZTS film with kesterite structure was produced by annealing it at 500°C in Ar atmosphere. These films were characterized for compositional, structural, surface morphological, optical, and transport properties using energy dispersive X-ray analysis, glancing incidence X-ray diffraction, Raman spectroscopy, scanning electron microscopy, atomic force microscopy, UV-Vis spectroscopy, and Hall effect measurement. A CZTS solar cell device having conversion efficiency of ~0.11% has been made by depositing CdS, ZnO, ITO, and Al layers over the CZTS thin film deposited on Mo coated soda lime glass. The series resistance of the device was very high. The interfacial properties of device were characterized by cross-sectional SEM and cross-sectional HRTEM.

  14. Thin liquid films dewetting and polymer flow

    CERN Document Server

    Blossey, Ralf

    2012-01-01

    This book is a treatise on the thermodynamic and dynamic properties of thin liquid films at solid surfaces and, in particular, their rupture instabilities. For the quantitative study of these phenomena, polymer thin films haven proven to be an invaluable experimental model system.   What is it that makes thin film instabilities special and interesting, warranting a whole book? There are several answers to this. Firstly, thin polymeric films have an important range of applications, and with the increase in the number of technologies available to produce and to study them, this range is likely to expand. An understanding of their instabilities is therefore of practical relevance for the design of such films.   Secondly, thin liquid films are an interdisciplinary research topic. Interdisciplinary research is surely not an end to itself, but in this case it leads to a fairly heterogeneous community of theoretical and experimental physicists, engineers, physical chemists, mathematicians and others working on the...

  15. Pulse electrodeposition of Prussian Blue thin films

    International Nuclear Information System (INIS)

    Najafisayar, P.; Bahrololoom, M.E.

    2013-01-01

    The effects of pulse electrodeposition parameters like peak current density and frequency on the electrochemical properties of Prussian Blue thin films were investigated. Electrochemical Impedance Spectroscopy, Cyclic Voltammetry and Chronoamperometry tests were carried out on Prussian Blue thin films which were pulse electrodeposited on Indium Tin Oxide coated glass substrates. The results showed that increase in the peak current densities and using higher pulsating frequencies during electrodeposition decreases the charge transfer resistance of the thin films while the diffusion coefficient of electroactive species in the films is increased as a consequence of using the same pulsating parameters. In addition, pulse electrodeposition technique does not alter deposition mechanism and morphology of the Prussian Blue thin films. - Highlights: • Prussian Blue thin films were pulse electrodeposited onto the ITO coated glass. • Pulse current condition affected thin films' electrochemical properties. • High pulsating current and frequency lower thin films' charge transfer resistance. • High pulsating current and frequency increase diffusion coefficient in thin films

  16. Excimer Laser Deposition of PLZT Thin Films

    National Research Council Canada - National Science Library

    Petersen, GAry

    1991-01-01

    .... In order to integrate these devices into optical systems, the production of high quality thin films with high transparency and perovskite crystal structure is desired. This requires development of deposition technologies to overcome the challenges of depositing and processing PLZT thin films.

  17. Permalloy Thin-film Magnetic Sensors

    NARCIS (Netherlands)

    Groenland, J.P.J.; Eijkel, C.J.M.; Fluitman, J.H.J.; de Ridder, R.M.

    1992-01-01

    An introduction to the theory of the anisotropic magnetoresistance effect in ferromagnetic thin films is given, ending in a treatment of the minimalization of the free energy which is the result of the intrinsic and extrinsic anisotropies of the thin-film structure. The anisotropic magnetoresistance

  18. Characterization of nanocrystalline cadmium telluride thin films ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Structural, electrical and optical characteristics of CdTe thin films prepared by a chemical deposi- tion method, successive ionic layer adsorption and reaction (SILAR), are described. For deposition of CdTe thin films, cadmium acetate was used as cationic and sodium tellurite as anionic precursor in aqueous me-.

  19. Characterization of nanocrystalline cadmium telluride thin films ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 2. Characterization of nanocrystalline ... Structural, electrical and optical characteristics of CdTe thin films prepared by a chemical deposition method, successive ionic layer adsorption and reaction (SILAR), are described. For deposition of CdTe thin films, ...

  20. Coefficient of friction and wear of sputtered a-C thin coatings containing Mo

    Czech Academy of Sciences Publication Activity Database

    Novák, P.; Musil, Jindřich; Čerstvý, R.; Jäger, Aleš

    2010-01-01

    Roč. 205, č. 5 (2010), s. 1486-1490 ISSN 0257-8972. [International Conference on Metallurgical Coatings and Thin Films /37./. San Diego, CA, 26.04.2010-30.04.2010] Institutional research plan: CEZ:AV0Z10100520 Keywords : Mo-C coating * mechanical properties * friction * wear * magnetron sputtering Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.135, year: 2010

  1. Laser thermoreflectance for semiconductor thin films metrology

    Science.gov (United States)

    Gailly, P.; Hastanin, J.; Duterte, C.; Hernandez, Y.; Lecourt, J.-B.; Kupisiewicz, A.; Martin, P.-E.; Fleury-Frenette, K.

    2012-06-01

    We present a thermoreflectance-based metrology concept applied to compound semiconductor thin films off-line characterization in the solar cells scribing process. The presented thermoreflectance setup has been used to evaluate the thermal diffusivity of thin CdTe films and to measure eventual changes in the thermal properties of 5 μm CdTe films ablated by nano and picosecond laser pulses. The temperature response of the CdTe thin film to the nanosecond heating pulse has been numerically investigated using the finite-difference time-domain (FDTD) method. The computational and experimental results have been compared.

  2. Nanostructured thin films and coatings functional properties

    CERN Document Server

    Zhang, Sam

    2010-01-01

    The second volume in ""The Handbook of Nanostructured Thin Films and Coatings"" set, this book focuses on functional properties, including optical, electronic, and electrical properties, as well as related devices and applications. It explores the large-scale fabrication of functional thin films with nanoarchitecture via chemical routes, the fabrication and characterization of SiC nanostructured/nanocomposite films, and low-dimensional nanocomposite fabrication and applications. The book also presents the properties of sol-gel-derived nanostructured thin films as well as silicon nanocrystals e

  3. Suppression of the superconductivity in ultrathin amorphous Mo78Ge22 films observed by STM

    Science.gov (United States)

    Lotnyk, D.; Onufriienko, O.; Samuely, T.; Shylenko, O.; Komanický, V.; Szabó, P.; Feher, A.; Samuely, P.

    2017-08-01

    In contact with a superconductor a normal metal modifies its properties due to Andreev reflection. In the current work the local density of states (LDOS) of superconductor-normal metal Mo78Ge22-Au bilayers are studied by means of STM applied from the Au side. Three bilayers have been prepared on silicate glass substrate consisting of 100, 10 and 5 nm MoGe thin films covered always by 5 nm Au layer. The tunneling spectra were measured at temperatures from 0.5 to 7 K. The two-dimensional cross-correlation between topography and normalized zero-bias conductance indicates a proximity effect between 100 and 10 nm MoGe thin films and Au layer where a superconducting gap slightly smaller than that of bulk MoGe is observed. The effect of the thinnest 5 nm MoGe layer on Au leads to much smaller gap moreover the LDOS reveals almost completely suppressed coherence peaks. This is attributed to a strong pair-breaking effect of spin-flip processes at the interface between MoGe films and the substrate.

  4. Micromechanics of substrate-supported thin films

    Science.gov (United States)

    He, Wei; Han, Meidong; Wang, Shibin; Li, Lin-An; Xue, Xiuli

    2017-09-01

    The mechanical properties of metallic thin films deposited on a substrate play a crucial role in the performance of micro/nano-electromechanical systems (MEMS/NEMS) and flexible electronics. This article reviews ongoing study on the mechanics of substrate-supported thin films, with emphasis on the experimental characterization techniques, such as the rule of mixture and X-ray tensile testing. In particular, the determination of interfacial adhesion energy, film deformation, elastic properties and Bauschinger effect are discussed.

  5. Thin film bioreactors in space

    Science.gov (United States)

    Hughes-Fulford, M.; Scheld, H. W.

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers us an opportunity to learn more about basic biological systems with one important variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would enable us to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  6. BDS thin film damage competition

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, C J; Thomas, M D; Griffin, A J

    2008-10-24

    A laser damage competition was held at the 2008 Boulder Damage Symposium in order to determine the current status of thin film laser resistance within the private, academic, and government sectors. This damage competition allows a direct comparison of the current state-of-the-art of high laser resistance coatings since they are all tested using the same damage test setup and the same protocol. A normal incidence high reflector multilayer coating was selected at a wavelength of 1064 nm. The substrates were provided by the submitters. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials, and layer count will also be shared.

  7. Method of producing thin cellulose nitrate film

    International Nuclear Information System (INIS)

    Lupica, S.B.

    1975-01-01

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent

  8. Schottky contact analysis of photovoltaic chalcopyrite thin film absorbers

    International Nuclear Information System (INIS)

    Schlenker, E.; Mertens, V.; Parisi, J.; Reineke-Koch, R.; Koentges, M.

    2007-01-01

    Current-voltage and capacitance-voltage measurements serve to analyze thermally evaporated Al Schottky contacts on Cu(In, Ga)Se 2 based photovoltaic thin film devices, either taken as grown or etched in a bromine-methanol solution. The characteristics of the Schottky contacts on the as-grown films give evidence for some dielectric layer developing between the metal and the semiconductor. Etching the semiconductor surface prior to evaporation of the Al front contact yields a pure metal-semiconductor behavior, including effects that can be attributed to an additional diode at the Mo contact. Simulations confirm the experimental results

  9. Rhenium-doped MoS2 films

    Science.gov (United States)

    Hallam, Toby; Monaghan, Scott; Gity, Farzan; Ansari, Lida; Schmidt, Michael; Downing, Clive; Cullen, Conor P.; Nicolosi, Valeria; Hurley, Paul K.; Duesberg, Georg S.

    2017-11-01

    Tailoring the electrical properties of transition metal dichalcogenides by doping is one of the biggest challenges for the application of 2D materials in future electronic devices. Here, we report on a straightforward approach to the n-type doping of molybdenum disulfide (MoS2) films with rhenium (Re). High-Resolution Scanning Transmission Electron Microscopy and Energy-Dispersive X-ray spectroscopy are used to identify Re in interstitial and lattice sites of the MoS2 structure. Hall-effect measurements confirm the electron donating influence of Re in MoS2, while the nominally undoped films exhibit a net p-type doping. Density functional theory (DFT) modelling indicates that Re on Mo sites is the origin of the n-type doping, whereas S-vacancies have a p-type nature, providing an explanation for the p-type behaviour of nominally undoped MoS2 films.

  10. Optical constant of thin gold films

    DEFF Research Database (Denmark)

    Yakubovsky, D. I.; Fedyanin, D. Yu; Arsenin, A. V.

    2017-01-01

    The performance of metal-based devices is limited by ohmic losses in the metal, which are determined by electron scattering. The structural properties of gold thin films also play an important role in the film quality, which may affect its' optical properties and the overall capability of the dev......The performance of metal-based devices is limited by ohmic losses in the metal, which are determined by electron scattering. The structural properties of gold thin films also play an important role in the film quality, which may affect its' optical properties and the overall capability...... and spectroscopic ellipsometry, the structural morphology and optical properties of polycrystalline gold thin films (fabricated by e-beam deposition at a low sputtering rate smooth gold) in the thickness range of 20 - 200 nm. By extracting the real and imaginary dielectric function and the Drude parameter...... predicts optical losses based on structure of the gold films....

  11. Plasmonic modes in thin films: quo vadis?

    Directory of Open Access Journals (Sweden)

    Antonio ePolitano

    2014-07-01

    Full Text Available Herein, we discuss the status and the prospect of plasmonic modes in thin films. Plasmons are collective longitudinal modes of charge fluctuation in metal samples excited by an external electric field. Surface plasmons (SPs are waves that propagate along the surface of a conductor with applications in magneto-optic data storage, optics, microscopy, and catalysis. In thin films the electronic response is influenced by electron quantum confinement. Confined electrons modify the dynamical screening processes at the film/substrate interface by introducing novel properties with potential applications and, moreover, they affect both the dispersion relation of SP frequency and the damping processes of the SP.Recent calculations indicate the emergence of acoustic surface plasmons (ASP in Ag thin films exhibiting quantum well states and in graphene films. The slope of the dispersion of ASP decreases with film thickness. We also discuss open issues in research on plasmonic modes in graphene/metal interfaes.

  12. Stabilized thin film heterostructure for electrochemical applications

    DEFF Research Database (Denmark)

    2015-01-01

    The invention provides a method for the formation of a thin film multi-layered heterostructure upon a substrate, said method comprising the steps of: a. providing a substrate; b. depositing a buffer layer upon said substrate, said buffer layer being a layer of stable ionic conductor (B); c...... or less; and e. repeating steps b. and c. a total of N times, such that N repeating pairs of layers (A/B) are built up, wherein N is 1 or more. The invention also provides a thin film multi-layered heterostructure as such, and the combination of a thin film multi-layered heterostructure and a substrate...

  13. Macro stress mapping on thin film buckling

    International Nuclear Information System (INIS)

    Goudeau, P.; Villain, P.; Renault, P.-O.; Tamura, N.; Celestre, R.S.; Padmore, H.A.

    2002-01-01

    Thin films deposited by Physical Vapour Deposition techniques on substrates generally exhibit large residual stresses which may be responsible of thin film buckling in the case of compressive stresses. Since the 80's, a lot of theoretical work has been done to develop mechanical models but only a few experimental work has been done on this subject to support these theoretical approaches and nothing concerning local stress measurement mainly because of the small dimension of the buckling (few 10th mm). This paper deals with the application of micro beam X-ray diffraction available on synchrotron radiation sources for stress mapping analysis of gold thin film buckling

  14. Study of zinc oxide thin film characteristics

    OpenAIRE

    Johari Shazlina; Muhammad Nazalea Yazmin; Zakaria Mohd Rosydi

    2017-01-01

    This paper presents the characterization of ZnO thin films with the thickness of 8nm, 30nm, and 200nm. The thin films were prepared using sol-gel method and has been deposited onto different substrate of silicon wafer, glass and quartz. The thin films were annealed at 400, 500 and 600°C. By using UV-Vis, the optical transmittance measurement were recorded by using a single beam spectrophotometer in the wavelength 250nm to 800nm. However, the transmittance in the visible range is hardly influe...

  15. Femtosecond laser surface structuring of molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: Kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Mthunzi, P. [Council for Scientific and Industrial Research (CSIR), Biophotonics Lab: National Laser Centre Pretoria, 0001 (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Itala (Italy); Sechoghela, P.; Mongwaketsi, N. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Ramponi, R. [Institute for Photonics and Nanotechnologies (IFN)–CNR, Piazza Leanardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa)

    2015-10-30

    Highlights: • Color change of the molybdenum thin film from shinny to violet–yellowish color after laser irradiation at various laser powers. • Formation of the molybdenum dioxide coating after laser exposure, as confirmed by the X-ray diffraction spectrometry. • Selective solar absorbing nature of the laser exposed films. • Study of the binding energies is presented in this contribution using the XPS spectrometry. - Abstract: This contribution reports on the femtosecond surface structuring of molybdenum thin coatings deposited by electron beam evaporation onto Corning glass substrates. The 1-D type periodic grating lines created by such an ablation showed that the widths of the shallow grooves followed a logarithmic dependence with the laser energy incident on the molybdenum film. The electronic valence “x” of the created oxide surface layer MoO{sub x} was found to be incident laser power dependent via Rutherford backscattering spectrometry, X-ray photoelectron spectroscopy and X-ray diffraction investigations. Such a photo-induced MoO{sub x}–Mo nanocomposite exhibited effective selective solar absorption in the UV–vis–IR spectral range.

  16. Room temperature ferromagnetism down to 10 nanometer Ni–Fe–Mo alloy films

    International Nuclear Information System (INIS)

    Banerjee, Mitali; Majumdar, A.K.; Rai, S.; Tiwari, Pragya; Lodha, G.S.; Banerjee, A.; Nair, K.G.M; Sarkar, Jayanta; Choudhary, R.J.; Phase, D.M.

    2013-01-01

    Magnetic behavior of a few pulsed laser deposited soft ferromagnetic thin films of Ni–Fe–Mo alloys of different thickness on sapphire single crystals is interpreted on the basis of their structural characteristics. Highly textured thin films have high void density due to island-like growth. X-ray reflectivity (XRR) of the thin films indicate that instead of a uniform density there are effectively three layers with density gradient across the thickness, which is further supported by atomic force microscopy and cross-sectional scanning electron microscopy. Rutherford backscattering spectroscopy and energy dispersive spectrum measurements reveal that the composition in the films is not too far from that of the bulk target with a trend of enhanced Fe yield in the films. The structural disorder strongly affected the magnetic property of the films resulting in much higher values of the Curie temperature T C and coercive field H C than those of the bulk targets. Bifurcations of low-field zero-field-cooled and field-cooled magnetization reflect the disorder-induced anisotropy in the thin films. The spin wave stiffness constants D are higher than their bulk counterparts which are supportive of the enhanced Fe yield in the films. The saturation magnetization, M calculated from measurements in field transverse to the films strongly supports the thickness found from XRR. Finally, even the 10 nm thin films have sizable M and H C and T C > 300 K, making them good candidates for magnetic applications. Overall, the magnetic behavior and the structural characteristics have reasonably complemented each other. - Highlights: • Correlated structural and magnetic properties of pulsed laser grown Ni–Fe–Mo filmsFilm thickness from scanning microscopy agrees with X-ray reflectivity analysis. • Experiments reveal that targets and the films have somewhat similar compositions. • Low-field M(T) shows spin-glass-like features in all films in contrast to the bulk. • Even 10

  17. High density nonmagnetic cobalt in thin films

    OpenAIRE

    Banu, Nasrin; Singh, Surendra; Basu, Saibal; Roy, Anupam; Movva, Hema C. P.; Dev, B. N.

    2017-01-01

    Recently high density (HD) nonmagnetic (NM) cobalt has been discovered in a cobalt thin film, grown on Si(111). This cobalt film had a natural cobalt oxide at the top. The oxide layer forms when the film is taken out of the electron-beam deposition chamber and exposed to air. Thin HD NM cobalt layers were found near the cobalt/silicon and the cobalt-oxide/cobalt interfaces, while the thicker mid-depth region of the film was hcp cobalt with normal density and normal magnetic moment. If an ultr...

  18. Magnetic Properties of FeNi-Based Thin Film Materials with Different Additives

    Directory of Open Access Journals (Sweden)

    Cai Liang

    2014-07-01

    Full Text Available This paper presents a study of FeNi-based thin film materials deposited with Mo, Al and B using a co-sputtering process. The existence of soft magnetic properties in combination with strong magneto-mechanical coupling makes these materials attractive for sensor applications. Our findings show that FeNi deposited with Mo or Al yields magnetically soft materials and that depositing with B further increases the softness. The out-of-plane magnetic anisotropy of FeNi thin films is reduced by depositing with Al and completely removed by depositing with B. The effect of depositing with Mo is dependent on the Mo concentration. The coercivity of FeNiMo and FeNiAl is reduced to less than a half of that of FeNi, and a value as low as 40 A/m is obtained for FeNiB. The surfaces of the obtained FeNiMo, FeNiAl and FeNiB thin films reveal very different morphologies. The surface of FeNiMo shows nano-cracks, while the FeNiAl films show large clusters and fewer nano-cracks. When FeNi is deposited with B, a very smooth morphology is obtained. The crystal structure of FeNiMo strongly depends on the depositant concentration and changes into an amorphous structure at a higher Mo level. FeNiAl thin films remain polycrystalline, even at a very high concentration of Al, and FeNiB films are amorphous, even at a very low concentration of B.

  19. Magnetic properties of FeNi-based thin film materials with different additives

    KAUST Repository

    Liang, C.

    2014-07-04

    This paper presents a study of FeNi-based thin film materials deposited with Mo, Al and B using a co-sputtering process. The existence of soft magnetic properties in combination with strong magneto-mechanical coupling makes these materials attractive for sensor applications. Our findings show that FeNi deposited with Mo or Al yields magnetically soft materials and that depositing with B further increases the softness. The out-of-plane magnetic anisotropy of FeNi thin films is reduced by depositing with Al and completely removed by depositing with B. The effect of depositing with Mo is dependent on the Mo concentration. The coercivity of FeNiMo and FeNiAl is reduced to less than a half of that of FeNi, and a value as low as 40 A/m is obtained for FeNiB. The surfaces of the obtained FeNiMo, FeNiAl and FeNiB thin films reveal very different morphologies. The surface of FeNiMo shows nano-cracks, while the FeNiAl films show large clusters and fewer nano-cracks. When FeNi is deposited with B, a very smooth morphology is obtained. The crystal structure of FeNiMo strongly depends on the depositant concentration and changes into an amorphous structure at a higher Mo level. FeNiAl thin films remain polycrystalline, even at a very high concentration of Al, and FeNiB films are amorphous, even at a very low concentration of B. 2014 by the authors.

  20. Performance Characterization of Monolithic Thin Film Resistors

    Science.gov (United States)

    Yin, Rong

    Thin film resistors have a large resistance range and stable performance under high temperature operating condition. Thin film resistors trimmed by laser beam are able to achieve very high precision on resistance value. As a result, thin film resistors have been widely used to improve the performance of integrated circuits such as operational amplifier, analog-to-digital (A/D) and digital -to-analog (D/A) converters, etc. In this dissertation, a new class of thin film resistors, silicon chrome (SiCr) thin film resistors, has been investigated at length. From thin film characterization to aging behavior modelling, we have carried out a series of engineering activities. The characteristics of the SiCr thin film incorporated into three bipolar processes were first determined. After laser trimming, we have measured a couple of physical parameters of the SiCr film in the heat affected zone (HAZ). This is the first time the sheet resistance and the temperature coefficient of resistance (TCR) of thin film in the HAZ have been characterized. Both thermal and d.c. load accelerated aging tests were performed. The test structures were subjected to the aging for 1000 hours. Based on the test data, we not only evaluated the classical thermal aging model for untrimmed thin film resistors, but also established several empirical thermal aging models for trimmed resistors and d.c. load aging models for both trimmed and untrimmed thin film resistors. All the experiments were carried out for both conventional bar resistors and our new Swiss Cheese (SC) resistors. For the first time, the performance of laser trimmed SC resistors, which was experimentally evaluated, shown a clear superiority over that of trimmed bar resistors. Besides these experiments, we have examined different die attach techniques and their effects on thin film resistors. Also, we have developed a number of hardware systems and software tools, such as a temperature controller, d.c. current source, temperature

  1. Structural, topographical and magnetic evolution of RF-sputtered Fe-Ni alloy based thin films with thermal annealing

    International Nuclear Information System (INIS)

    Lisha, R; Geetha, P; Anantharaman, M R; Hysen, T; Avasthi, D K; Ramanujan, R V

    2014-01-01

    Metglas 2826 MB having a nominal composition of Fe 40 Ni 38 Mo 4 B 18 is an excellent soft magnetic material and finds application in sensors and memory heads. However, the thin-film forms of Fe 40 Ni 38 Mo 4 B 18 are seldom studied, although they are important in micro-electro-mechanical systems/nano-electro-mechanical systems devices. The stoichiometry of the film plays a vital role in determining the structural and magnetic properties of Fe 40 Ni 38 Mo 4 B 18 thin films: retaining the composition in thin films is a challenge. Thin films of 52 nm thickness were fabricated by RF sputtering technique on silicon substrate from a target of nominal composition of Fe 40 Ni 38 Mo 4 B 18 . The films were annealed at temperatures of 400 °C and 600 °C. The micro-structural studies of films using glancing x-ray diffractometer (GXRD) and transmission electron microscope (TEM) revealed that pristine films are crystalline with (FeNiMo) 23 B 6 phase. Atomic force microscope (AFM) images were subjected to power spectral density analysis to understand the probable surface evolution mechanism during sputtering and annealing. X-ray photoelectron spectroscopy (XPS) was employed to determine the film composition. The sluggish growth of crystallites with annealing is attributed to the presence of molybdenum in the thin film. The observed changes in magnetic properties were correlated with annealing induced structural, compositional and morphological changes. (papers)

  2. Thermal conductivity model for nanoporous thin films

    Science.gov (United States)

    Huang, Congliang; Zhao, Xinpeng; Regner, Keith; Yang, Ronggui

    2018-03-01

    Nanoporous thin films have attracted great interest because of their extremely low thermal conductivity and potential applications in thin thermal insulators and thermoelectrics. Although there are some numerical and experimental studies about the thermal conductivity of nanoporous thin films, a simplified model is still needed to provide a straightforward prediction. In this paper, by including the phonon scattering lifetimes due to film thickness boundary scattering, nanopore scattering and the frequency-dependent intrinsic phonon-phonon scattering, a fitting-parameter-free model based on the kinetic theory of phonon transport is developed to predict both the in-plane and the cross-plane thermal conductivities of nanoporous thin films. With input parameters such as the lattice constants, thermal conductivity, and the group velocity of acoustic phonons of bulk silicon, our model shows a good agreement with available experimental and numerical results of nanoporous silicon thin films. It illustrates that the size effect of film thickness boundary scattering not only depends on the film thickness but also on the size of nanopores, and a larger nanopore leads to a stronger size effect of the film thickness. Our model also reveals that there are different optimal structures for getting the lowest in-plane and cross-plane thermal conductivities.

  3. Thin film production method and apparatus

    Science.gov (United States)

    Loutfy, Raouf O.; Moravsky, Alexander P.; Hassen, Charles N.

    2010-08-10

    A method for forming a thin film material which comprises depositing solid particles from a flowing suspension or aerosol onto a filter and next adhering the solid particles to a second substrate using an adhesive.

  4. Highly stretchable wrinkled gold thin film wires.

    Science.gov (United States)

    Kim, Joshua; Park, Sun-Jun; Nguyen, Thao; Chu, Michael; Pegan, Jonathan D; Khine, Michelle

    2016-02-08

    With the growing prominence of wearable electronic technology, there is a need to improve the mechanical reliability of electronics for more demanding applications. Conductive wires represent a vital component present in all electronics. Unlike traditional planar and rigid electronics, these new wearable electrical components must conform to curvilinear surfaces, stretch with the body, and remain unobtrusive and low profile. In this paper, the piezoresistive response of shrink induced wrinkled gold thin films under strain demonstrates robust conductive performance in excess of 200% strain. Importantly, the wrinkled metallic thin films displayed negligible change in resistance of up to 100% strain. The wrinkled metallic wires exhibited consistent performance after repetitive strain. Importantly, these wrinkled thin films are inexpensive to fabricate and are compatible with roll to roll manufacturing processes. We propose that these wrinkled metal thin film wires are an attractive alternative to conventional wires for wearable applications.

  5. Epitaxy, thin films and superlattices

    International Nuclear Information System (INIS)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au)

  6. Epitaxy, thin films and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au) 14 tabs.; 58 ills., 96 refs.

  7. Preparation of MoSex>3/Mo-NPs catalytic films for enhanced hydrogen evolution by pulsed laser ablation of MoSe2 target

    Science.gov (United States)

    Fominski, V. Yu.; Romanov, R. I.; Fominski, D. V.; Shelyakov, A. V.

    2018-02-01

    The peculiarities of pulsed laser ablation of MoSe2 targets which caused the formation of a complex plume containing atoms (Mo and Se) and Mo nanoparticles (Mo-NPs) have been studied. Investigations of the composition, structure, and catalytic activity toward the hydrogen evolution reaction (HER) for MoSex/Mo-NPs films prepared by pulsed laser deposition (PLD) in a vacuum and in a buffer He gas were carried out. For He pressure of 30 Pa, a shock wave could be the dominant mechanism of material transport, resulting in the deposition of an Se-enriched flux of chemically active atoms and leading to the growth of amorphous films with an increased Se content. Mo nanoparticles allowed for a larger surface area of the MoSex∼3.1/Mo-NPs catalyst deposited 5 cm from the target. However, for deposition in He at 10 cm, the amount of Mo NPs in the film appreciably decreased. Factors that could impact on the transport of nanoparticles through a buffer gas were considered. The amorphous MoSex∼3.1/Mo-NPs films prepared by PLD in He gas exhibited excellent HER performance. Quasicrystal MoSex<2/Mo-NPs films obtained by vacuum PLD were obviously inferior to amorphous films. Despite the formation of edge-oriented MoSe2 nanocrystals, the vacuum-deposited films had a large majority of metallic Mo and a deficiency of Se, which could adversely affect their HER performance.

  8. Spray pyrolysis synthesized Cu(In,Al)(S,Se)2 thin films solar cells

    Science.gov (United States)

    Aamir Hassan, Muhammad; Mujahid, Mohammad; Woei, Leow Shin; Wong, Lydia Helena

    2018-03-01

    Cu(In,Al)(S,Se)2 thin films are prepared by the Spray pyrolysis of aqueous precursor solutions of copper, indium, aluminium and sulphur sources. The bandgap of the films was engineered by aluminium (Al) doping in CISSe films deposited on molybdenum (Mo) coated glass substrate. The as-sprayed thin films were selenized at 500 °C for 10 min. Cadmium sulphide (CdS) buffer layer was deposited by chemical bath deposition process. Solar cell devices were fabricated with configuration of glass/Mo/CIASSe/CdS/i-ZnO/AZO. The solar cell device containing thin film of Cu(In,Al)(S,Se)2 with our optimized composition shows j-V characteristics of Voc = 0.47 V, jsc = 21.19 mA cm-2, FF = 52.88% and power conversion efficiency of 5.27%, under AM 1.5, 100 mW cm-2 illumination.

  9. Oscillatory behavior of the magnetic properties of Nd–Fe–B films with Mo and Mo–Cu additions

    International Nuclear Information System (INIS)

    Urse, M.; Grigoras, M.; Lupu, N.; Borza, F.; Chiriac, H.

    2013-01-01

    A series of Ta/NdFeB/Ta thin films with Mo and Mo–Cu additions embedded by alloying and by stratification have been prepared by r.f. sputtering. The influence of additions, their embedding mode, and annealing temperature on the structural and magnetic behavior of Ta/NdFeB/Ta thin films is presented. The use of additions of Mo and Mo–Cu leads to refined grain structure and improvement in the hard magnetic characteristics of Ta/NdFeB/Ta thin films. The Ta/[NdFeBMo(540 nm)/Ta films and Ta/[NdFeB(180 nm)/MoCu(dnm)] × n/Ta multilayer films present enhanced coercivities and M r /M s ratios in comparison with the Ta/NdFeB(540 nm)/Ta films. The stratification of Ta/NdFeB/Ta thin films with Mo–Cu interlayers leads to an oscillatory behavior of hard magnetic characteristics of the Ta/[NdFeB(180 nm)/MoCu(dnm)] × n/Ta multilayer films, when the thickness, d, of Mo–Cu interlayers varies by increments of 1 nm. When the thickness of Mo–Cu interlayers varies by increments of 2 nm the oscillatory behavior of the magnetic characteristics is not revealed. For a thickness of the Mo–Cu interlayer of 3 nm in the Ta/[NdFeB(180 nm)/MoCu(3 nm)] × 3/Ta thin films annealed at 650 °C, the c-axis of part of the hard magnetic Nd 2 Fe 14 B grains is oriented out-of-plane

  10. Sputter-deposited low reflectance vanadium oxide-molybdenum oxide thin films on silicon

    Science.gov (United States)

    Nayak, Manish Kumar; Esther, A. Carmel Mary; Bera, Parthasarathi; Dey, Arjun

    2017-09-01

    A single layer antireflective, smart, crystalline and nanocolumnar pulsed RF magnetron sputtered vanadium oxide-molybdenum oxide thin film on silicon is proposed for the alternate antireflective material for silicon based futuristic solar cell application. The VO-MO film with 130 nm thickness grown at 200 W shows significant low reflectance (1% within the 500-600 nm region). The VO-MO film with lowest reflectance shows a phase transition at around 55 °C which is beneficial due to film inherent variable IR emittance behaviour which may be helpful for eliminating excess heat load generated during in-service of silicon solar cell.

  11. Laser processing for thin-film photovoltaics

    Science.gov (United States)

    Compaan, Alvin D.

    1995-04-01

    Over the past decade major advances have occurred in the field of thin- film photovoltaics (PV) with many of them a direct consequence of the application of laser processing. Improved cell efficiencies have been achieved in crystalline and polycrystalline Si, in hydrogenated amorphous silicon, and in two polycrystalline thin-film materials. The use of lasers in photovoltaics includes laser hole drilling for emitter wrap-through, laser trenching for buried bus lines, and laser texturing of crystalline and polycrystalline Si cells. In thin-film devices, laser scribing is gaining increased importance for module interconnects. Pulsed laser recrystallization of boron-doped hydrogenated amorphous silicon is used to form highly conductive p-layers in p-i-n amorphous silicon cells and in thin-film transistors. Optical beam melting appears to be an attractive method for forming metal semiconductor alloys for contact formation. Finally, pulsed lasers are used for deposition of the entire semiconductor absorber layer in two types of polycrystalline thin-film cells-those based on copper indium diselenide and those based on cadmium telluride. In our lab we have prepared and studied heavily doped polycrystalline silicon thin films and also have used laser physical vapor deposition (LPVD) to prepare 'all-LPVD' CdS/CdTe solar cells on glass with efficiencies tested at NREL at 10.5%. LPVD is highly flexible and ideally suited for prototyping PV cells using ternary or quaternary alloys and for exploring new dopant combinations.

  12. Laser applications in thin-film photovoltaics

    Science.gov (United States)

    Bartlome, R.; Strahm, B.; Sinquin, Y.; Feltrin, A.; Ballif, C.

    2010-08-01

    We review laser applications in thin-film photovoltaics (thin-film Si, CdTe, and Cu(In,Ga)Se2 solar cells). Lasers are applied in this growing field to manufacture modules, to monitor Si deposition processes, and to characterize opto-electrical properties of thin films. Unlike traditional panels based on crystalline silicon wafers, the individual cells of a thin-film photovoltaic module can be serially interconnected by laser scribing during fabrication. Laser scribing applications are described in detail, while other laser-based fabrication processes, such as laser-induced crystallization and pulsed laser deposition, are briefly reviewed. Lasers are also integrated into various diagnostic tools to analyze the composition of chemical vapors during deposition of Si thin films. Silane (SiH4), silane radicals (SiH3, SiH2, SiH, Si), and Si nanoparticles have all been monitored inside chemical vapor deposition systems. Finally, we review various thin-film characterization methods, in which lasers are implemented.

  13. Deposition and Characterization of Molybdenum Thin Film Using Direct Current Magnetron and Atomic Force Microscopy

    Directory of Open Access Journals (Sweden)

    Muhtade Mustafa Aqil

    2017-01-01

    Full Text Available In this paper, pure molybdenum (Mo thin film has been deposited on blank Si substrate by DC magnetron sputtering technique. The deposition condition for all samples has not been changed except for the deposition time in order to study the influence of time on the thickness and surface morphology of molybdenum thin film. The surface profiler has been used to measure the surface thickness. Atomic force microscopy technique was employed to investigate the roughness and grain structure of Mo thin film. The thickness and grain of molybdenum thin film layer has been found to increase with respect to time, while the surface roughness decreases. The average roughness, root mean square roughness, surface skewness, and surface kurtosis parameters are used to analyze the surface morphology of Mo thin film. Smooth surface has been observed. From grain analysis, a uniform grain distribution along the surface has been found. The obtained results allowed us to decide the optimal time to deposit molybdenum thin film layer of 20–100 nm thickness and subsequently patterned as electrodes (source/drain in carbon nanotube-channel transistor.

  14. Humidity sensing characteristics of hydrotungstite thin films

    Indian Academy of Sciences (India)

    Wintec

    variety of tungstate materials, such as thick-film manga- nese tungstate, have been applied as humidity sensors. (Qu and Mayer 1997). The humidity sensing characteristics of bulk metal oxide–tungsten oxide systems have also been studied in the literature (Ichinose 1993). Thin films of tungsten oxide have been prepared ...

  15. A thin film magnetoresistive angle detector

    NARCIS (Netherlands)

    Eijkel, C.J.M.; Wieberdink, Johan W.; Fluitman, J.H.J.; Popma, T.J.A.; Groot, Peter; Leeuwis, Henk

    1990-01-01

    An overview is given of the results of our research on a contactless angle detector based on the anisotropic magnetoresistance effect (AMR effect) in a permalloy thin film. The results of high-temperature annealing treatment of the pemalloy film are discussed. Such a treatment suppresses the effects

  16. Measurements of acoustic properties for thin films

    International Nuclear Information System (INIS)

    Kushibiki, J.; Maehara, H.; Chubachi, N.

    1982-01-01

    A measurement method for determining thin-film acoustic properties, such as characteristic acoustic impedance, sound velocity, density, and stiffness constant, is developed with a simple measurement principle and high measurement accuracy. The acoustic properties are determined from a maximum reflection loss and a center frequency obtained through a frequency response of the reflection loss for an acoustic transmission line composed of a sapphire/film/water system by using the acoustic pulse mode measurement system in the UHF range. The determination of the acoustic properties is demonstrated for sputtered fused quartz film, low-expansion borosilicate glass films, and chalcogenide glass films of evaporated As 2 S 3 and As 2 Se 3 , within the measurement accuracy around 1--2%. It is also found that the acoustic properties of thin films are generally different from those of bulk materials, depending on the fabrication techniques and conditions

  17. Large grain gallium arsenide thin films

    Science.gov (United States)

    Chu, S. S.; Chu, T. L.; Firouzi, H.; Han, Y. X.; Chen, W. J.; Wang, Q. H.

    Polycrystalline gallium arsenide films deposited on tungsten/graphite substrates have been used for the fabrication of thin film solar cells. Gallium arsenide films deposited on foreign substrates of 10 microns or less thickness exhibit, in most cases, pronounced shunting effects due to grain boundaries. MOS solar cells of 9 sq cm area with an AM1 efficiency of 8.5 percent and p(+)/n/n(+) homojunction solar cells of 1 sq cm area with an AM1 efficiency of 8.8 percent have been prepared. However, in order to further improve the conversion efficiency before the development of effective passivation techniques, gallium arsenide films with large and uniform grain structure are necessary. The large grain gallium arsenide films have been prepared by using (1) the arsine treatment of a thin layer of molten gallium on the substrate surface and (2) the recrystallized germanium films on tungsten/graphite as substrates.

  18. Thin-film calorimetry. In-situ characterization of materials for lithium-ion batteries

    Energy Technology Data Exchange (ETDEWEB)

    Omelcenko, Alexander; Wulfmeier, Hendrik; Albrecht, Daniel; Fritze, Holger [Clausthal Univ. of Technology, Goslar (Germany). Inst. of Energy Research and Physical Technologies; El Mofid, Wassima; Ivanov, Svetlozar; Bund, Andreas [Ilmenau Univ. of Technology (Germany). Dept. of Electrochemistry

    2017-11-15

    Thin-film calorimetry allows for qualitative and quantitative in-situ analysis of thermodynamic properties of thin films and thin-film systems from room temperature up to 1000 C. It is based on highly sensitive piezoelectric langasite resonators which serve simultaneously as planar temperature sensors and substrates for the films of interest. Generation or consumption of heat during phase transformations of the films cause deviations from the regular course of the resonance frequency. Thermodynamic data such as phase transformation temperatures and enthalpies are extracted from these deviations. Thin-film calorimetry on Sn and Al thin films is performed to prove the concept. The results demonstrate high reproducibility of the measurement approach and are in agreement with literature data obtained by established calorimetric techniques. The calibration of the system is done in different atmospheres by application of defined heat pulses via heating structures. The latter replace the films of interest and simulate phase transformations to provide detailed analysis of the heat transfer mechanisms occurring in the measurement system. Based on this analysis, a data evaluation concept is developed. Application-relevant studies are performed on thin films of the lithium-ion battery materials NMC(A), NCA, LMO, and MoS{sub 2}. Their phase transformation temperatures and enthalpies are evaluated in oxidizing and reducing atmospheres. Furthermore, their thermodynamic stability ranges are presented. Finally, measurements on all-solid-state thin-film batteries during electrochemical cycling are performed. They demonstrate the suitability of the system for in-situ investigations.

  19. Electrochemical fabrication of nanoporous polypyrrole thin films

    International Nuclear Information System (INIS)

    Li Mei; Yuan Jinying; Shi Gaoquan

    2008-01-01

    Polypyrrole thin films with pores in nanometer scale were synthesized by direct electrochemical oxidation of pyrrole in a mixed electrolyte of isopropyl alcohol, boron trifluoride diethyl etherate, sodium dodecylsulfonate and poly(ethylene glycol) using well-aligned ZnO nanowires arrays as templates. The thin films exhibit high conductivity of ca. σ rt ∼ 20.5 s/cm and can be driven to bend during redox processes in 1.0 M lithium perchlorate aqueous solution. The movement rate of an actuator based on this nanoporous film was measured to be over 90 o /s at a driving potential of 0.8 V (vs. Ag/AgCl)

  20. Polymer surfaces, interfaces and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stamm, M. [Max-Planck-Institut fuer Polymerforschung, Mainz (Germany)

    1996-11-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs.

  1. Polymer surfaces, interfaces and thin films

    International Nuclear Information System (INIS)

    Stamm, M.

    1996-01-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs

  2. Restructuring in block copolymer thin films

    DEFF Research Database (Denmark)

    Posselt, Dorthe; Zhang, Jianqi; Smilgies, Detlef-M.

    2017-01-01

    Block copolymer (BCP) thin films have been proposed for a number of nanotechnology applications, such as nanolithography and as nanotemplates, nanoporous membranes and sensors. Solvent vapor annealing (SVA) has emerged as a powerful technique for manipulating and controlling the structure of BCP...... thin films, e.g., by healing defects, by altering the orientation of the microdomains and by changing the morphology. Due to high time resolution and compatibility with SVA environments, grazing-incidence small-angle X-ray scattering (GISAXS) is an indispensable technique for studying the SVA process......, providing information of the BCP thin film structure both laterally and along the film normal. Especially, state-of-the-art combined GISAXS/SVA setups at synchrotron sources have facilitated in situ and real-time studies of the SVA process with a time resolution of a few seconds, giving important insight...

  3. Cold cathode emission studies on topographically modified few layer and single layer MoS2 films

    Science.gov (United States)

    Gaur, Anand P. S.; Sahoo, Satyaprakash; Mendoza, Frank; Rivera, Adriana M.; Kumar, Mohit; Dash, Saroj P.; Morell, Gerardo; Katiyar, Ram S.

    2016-01-01

    Nanostructured materials, such as carbon nanotubes, are excellent cold cathode emitters. Here, we report comparative field emission (FE) studies on topographically tailored few layer MoS2 films consisting of ⟨0001⟩ plane perpendicular (⊥) to c-axis (i.e., edge terminated vertically aligned) along with planar few layer and monolayer (1L) MoS2 films. FE measurements exhibited lower turn-on field Eto (defined as required applied electric field to emit current density of 10 μA/cm2) ˜4.5 V/μm and higher current density ˜1 mA/cm2, for edge terminated vertically aligned (ETVA) MoS2 films. However, Eto magnitude for planar few layer and 1L MoS2 films increased further to 5.7 and 11 V/μm, respectively, with one order decrease in emission current density. The observed differences in emission behavior, particularly for ETVA MoS2 is attributed to the high value of geometrical field enhancement factor (β), found to be ˜1064, resulting from the large confinement of localized electric field at edge exposed nanograins. Emission behavior of planar few layers and 1L MoS2 films are explained under a two step emission mechanism. Our studies suggest that with further tailoring the microstructure of ultra thin ETVA MoS2 films would result in elegant FE properties.

  4. DC magnetron sputtering prepared Ag-C thin film anode for thin film lithium ion microbatteries

    International Nuclear Information System (INIS)

    Li, Y.; Tu, J.P.; Shi, D.Q.; Huang, X.H.; Wu, H.M.; Yuan, Y.F.; Zhao, X.B.

    2007-01-01

    An Ag-C thin film was prepared by DC magnetron co-sputtering, using pure silver and graphite as the targets. The microstructure and morphology of the deposited thin film were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Electrochemical performances of the Ag-C thin film anode were investigated by means of discharge/charge and cyclic voltammogram (CV) tests in model cells. The electrochemical impedance spectrum (EIS) characteristics and the chemical diffusion coefficient, D Li of the Ag-C thin film electrode at different discharging states were discussed. It was believed that the excellent cycling performance of the Ag-C electrode was ascribed to the good conductivity of silver and the volume stability of the thin film

  5. Critical behavior of ferromagnetic Ising thin films

    International Nuclear Information System (INIS)

    Cossio, P.; Mazo-Zuluaga, J.; Restrepo, J.

    2006-01-01

    In the present work, we study the magnetic properties and critical behavior of simple cubic ferromagnetic thin films. We simulate LxLxd films with semifree boundary conditions on the basis of the Monte Carlo method and the Ising model with nearest neighbor interactions. A Metropolis dynamics was implemented to carry out the energy minimization process. For different film thickness, in the nanometer range, we compute the temperature dependence of the magnetization, the magnetic susceptibility and the fourth order Binder's cumulant. Bulk and surface contributions of these quantities are computed in a differentiated fashion. Additionally, according to finite size scaling theory, we estimate the critical exponents for the correlation length, magnetic susceptibility, and magnetization. Results reveal a strong dependence of critical temperature and critical exponents on the film thickness. The obtained critical exponents are finally compared to those reported in literature for thin films

  6. Magnetostrictive thin films prepared by RF sputtering

    International Nuclear Information System (INIS)

    Carabias, I.; Martinez, A.; Garcia, M.A.; Pina, E.; Gonzalez, J.M.; Hernando, A.; Crespo, P.

    2005-01-01

    Fe 80 B 20 thin films have been prepared by ion beam sputtering magnetron on room temperature. The films were fabricated on different substrates to compare the different magnetic and structural properties. In particular the growth of films on flexible substrates (PDMS, Kapton) has been studied to allow a simple integration of the system in miniaturized magnetostrictive devices. X-ray diffraction patterns indicate that films are mainly amorphous although the presence of some Fe nanoparticles cannot be ruled out. The coercive field of thin films ranges between 15 and 35 Oe, depending on substrate. Magnetostriction measurements indicate the strong dependence of the saturation magnetostriction with the substrate. Samples on flexible substrates exhibit a better performance than samples deposited onto glass substrates

  7. Dynamics of Polymer Thin Film Mixtures

    Science.gov (United States)

    Besancon, Brian M.; Green, Peter F.; Soles, Christopher L.

    2006-03-01

    We examined the influence of film thickness and composition on the glass transition temperature (Tg) and mean square atomic displacements (MSD) of thin film mixtures of deuterated polystyrene (dPS) and tetramethyl bisphenol-A polycarbonate (TMPC) on Si/SiOx substrates using incoherent elastic neutron scattering (ICNS). The onset of dissipative motions, such as those associated with the glass transition and sub-Tg relaxations, are manifested as ``kinks'' in the curve of elastic intensity (or MSD) versus temperature. From the relevant kinks, the Tg was determined as a function of composition and of film thickness. The dependence of the Tg on film thickness exhibited qualitatively similar trends, at a given composition, as determined by the ICNS and ellipsometry measurements. However, with increasing PS content, the values of Tg measured by INS were consistently larger then those measured by ellipsometry. These results are examined in light of existing models on the thin film glass transition and component blend dynamics.

  8. Effect of substrate temperature on the structure, electrical and optical properties of Mo doped ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Guifeng; Zhao, Xiaoli; Zhang, Hui; Wang, He; Liu, Feifei; Zhang, Xiaoqiang [Key Lab. for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China); Gao, Jianbo [China Institute of Atomic Energy, Beijing 102413 (China); Zhao, Yanmin; Zhang, Chao [No. 18TH Research Institute, China Electronics Technology Group Corporation, Tianjin 300384 (China); Tao, Junguang, E-mail: taojunguang@163.com [Key Lab. for New Type of Functional Materials in Hebei Province, School of Materials Science and Engineering, Hebei University of Technology, Tianjin 300130 (China)

    2016-09-15

    Highlights: • MZO thin films were prepared by RF magnetron sputtering from ZnO target and DC magnetron sputtering from Mo target. • All films are polycrystalline with preferential c-axis growth. • The various properties of films fabricated at varied substrate temperature have been studied. • The valence of the Mo ions in the ZnO matrix is mixture of +5 and +6. - Abstract: Mo-doped ZnO (MZO) transparent conductive thin films were prepared on glass substrate under various substrate temperature from 50 °C to 200 °C. The microstructural, electrical and optical properties of the MZO films were investigated by X-ray diffraction (XRD), Hall effect and UV–vis spectrophotometer. Based on XRD measurements, all films are polycrystalline with preferential c-axis growth. The lowest resistivity was obtained to be 2.8 × 10{sup −3} Ω·cm. According to X-ray photoelectron spectroscopy (XPS) measurement, the valence of the Mo ions in the ZnO matrix is a mixture of +5 and +6. In addition, the transmittance of the film is ∼80% throughout the visible light region. Our results indicate that the MZO films are suitable for potential transparent optoelectronic applications.

  9. Enhanced pinning in superconducting thin films with graded pinning landscapes

    Science.gov (United States)

    Motta, M.; Colauto, F.; Ortiz, W. A.; Fritzsche, J.; Cuppens, J.; Gillijns, W.; Moshchalkov, V. V.; Johansen, T. H.; Sanchez, A.; Silhanek, A. V.

    2013-05-01

    A graded distribution of antidots in superconducting a-Mo79Ge21 thin films has been investigated by magnetization and magneto-optical imaging measurements. The pinning landscape has maximum density at the sample border, decreasing linearly towards the center. Its overall performance is noticeably superior than that for a sample with uniformly distributed antidots: For high temperatures and low fields, the critical current is enhanced, whereas the region of thermomagnetic instabilities in the field-temperature diagram is significantly suppressed. These findings confirm the relevance of graded landscapes on the enhancement of pinning efficiency, as recently predicted by Misko and Nori [Phys. Rev. B 85, 184506 (2012)].

  10. Thin Films in the Photovoltaic Industry

    International Nuclear Information System (INIS)

    Jaeger-Waldau, A.

    2008-03-01

    In the past years, the yearly world market growth rate for Photovoltaics was an average of more than 40%, which makes it one of the fastest growing industries at present. Business analysts predict the market volume to increase to 40 billion euros in 2010 and expect rising profit margins and lower prices for consumers at the same time. Today PV is still dominated by wafer based Crystalline Silicon Technology as the 'working horse' in the global market, but thin films are gaining market shares. For 2007 around 12% are expected. The current silicon shortage and high demand has kept prices higher than anticipated from the learning curve experience and has widened the windows of opportunities for thin film solar modules. Current production capacity estimates for thin films vary between 3 and 6 GW in 2010, representing a 20% market share for these technologies. Despite the higher growth rates for thin film technologies compared with the industry average, Thin Film Photovoltaic Technologies are still facing a number of challenges to maintain this growth and increase market shares. The four main topics which were discussed during the workshop were: Potential for cost reduction; Standardization; Recycling; Performance over the lifetime.

  11. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 Angstrom), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 Angstrom of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films

  12. Thermal conductivity of dielectric thin films

    International Nuclear Information System (INIS)

    Lambropoulos, J.C.; Jolly, M.R.; Amaden, C.A.; Gilman, S.E.; Sinicropi, M.J.; Diakomihalis, D.; Jacobs, S.D.

    1989-05-01

    A direct reading thermal comparator has been used to measure the thermal conductivity of dielectric thin film coatings. In the past, the thermal comparator has been used extensively to measure the thermal conductivity of bulk solids, liquids, and gases. The technique has been extended to thin film materials by making experimental improvements and by the application of an analytical heat flow model. Our technique also allows an estimation of the thermal resistance of the film/substrate interface which is shown to depend on the method of film deposition. The thermal conductivity of most thin films was found to be several orders of magnitude lower than that of the material in bulk form. This difference is attributed to structural disorder of materials deposited in thin film form. The experimentation to date has centered primarily on optical coating materials. These coatings, used to enhance the optical properties of components such as lenses and mirrors, are damaged by thermal loads applied in high-power laser applications. It has been widely postulated that there may be a correlation between the thermal conductivity and the damage threshold of these materials. 31 refs., 11 figs., 8 tabs

  13. Organic thin films and surfaces directions for the nineties

    CERN Document Server

    Ulman, Abraham

    1995-01-01

    Physics of Thin Films has been one of the longest running continuing series in thin film science consisting of 20 volumes since 1963. The series contains some of the highest quality studies of the properties ofvarious thin films materials and systems.In order to be able to reflect the development of todays science and to cover all modern aspects of thin films, the series, beginning with Volume 20, will move beyond the basic physics of thin films. It will address the most important aspects of both inorganic and organic thin films, in both their theoretical as well as technological aspects. Ther

  14. Exfoliated thin Bi{sub 2}MoO{sub 6} nanosheets supported on WO{sub 3} electrode for enhanced photoelectrochemical water splitting

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Ying; Jia, Yulong; Wang, Lina [State Key Laboratory for Oxo Synthesis & Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Yang, Min [State Key Laboratory for Oxo Synthesis & Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000 (China); Bi, Yingpu, E-mail: yingpubi@licp.cas.cn [State Key Laboratory for Oxo Synthesis & Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000 (China); Qi, Yanxing, E-mail: qiyx@licp.cas.cn [State Key Laboratory for Oxo Synthesis & Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou 730000 (China)

    2016-12-30

    Highlights: • Thin Bi{sub 2}MoO{sub 6} nanosheets were prepared by microwave assisted ultrasonic separation. • The thin Bi{sub 2}MoO{sub 6} nanosheets could be more favorable to charge shift and separation. • The WO{sub 3}/thin Bi{sub 2}MoO{sub 6} exhibits superior photoelectric activity than WO{sub 3}/Bi{sub 2}MoO{sub 6} film. • The efficient photoelectric property results from facilitated charge separation. - Abstract: Thin Bi{sub 2}MoO{sub 6} nanosheets are obtained by a microwave-assisted ultrasonic separation process. After exfoliation, the thinner and uniform nanosheets with a thickness of about 10 nm were obtained. The exfoliated nanosheets would provide many amazing functionalities such as high electron mobility and quantum Hall effects. Therefore, thin Bi{sub 2}MoO{sub 6} supported on WO{sub 3} electrode (WO{sub 3}/thin Bi{sub 2}MoO{sub 6}) exhibits facilitated charge separation than pure WO{sub 3} film and the un-exfoliated Bi{sub 2}MoO{sub 6} nanosheets supported on WO{sub 3} electrode (WO{sub 3}/Bi{sub 2}MoO{sub 6}). As a result, WO{sub 3}/thin Bi{sub 2}MoO{sub 6} shows remarkably stable photocurrent density of 2.2 mA/cm{sup 2} at 0.8 V{sub SCE} in 0.1 M Na{sub 2}SO{sub 4} which is higher than that of that of WO{sub 3} (1.1 mA/cm{sup 2}) and WO{sub 3}/Bi{sub 2}MoO{sub 6} (1.5 mA/cm{sup 2}).

  15. Novel p-Type Conductive Semiconductor Nanocrystalline Film as the Back Electrode for High-Performance Thin Film Solar Cells.

    Science.gov (United States)

    Zhang, Ming-Jian; Lin, Qinxian; Yang, Xiaoyang; Mei, Zongwei; Liang, Jun; Lin, Yuan; Pan, Feng

    2016-02-10

    Thin film solar cells, due to the low cost, high efficiency, long-term stability, and consumer applications, have been widely applied for harvesting green energy. All of these thin film solar cells generally adopt various metal thin films as the back electrode, like Mo, Au, Ni, Ag, Al, graphite, and so forth. When they contact with p-type layer, it always produces a Schottky contact with a high contact potential barrier, which greatly affects the cell performance. In this work, we report for the first time to find an appropriate p-type conductive semiconductor film, digenite Cu9S5 nanocrystalline film, as the back electrode for CdTe solar cells as the model device. Its low sheet resistance (16.6 Ω/sq) could compare to that of the commercial TCO films (6-30 Ω/sq), like FTO, ITO, and AZO. Different from the traditonal metal back electrode, it produces a successive gradient-doping region by the controllable Cu diffusion, which greatly reduces the contact potential barrier. Remarkably, it achieved a comparable power conversion efficiency (PCE, 11.3%) with the traditional metal back electrode (Cu/Au thin films, 11.4%) in CdTe cells and a higher PCE (13.8%) with the help of the Au assistant film. We believe it could also act as the back electrode for other thin film solar cells (α-Si, CuInS2, CIGSe, CZTS, etc.), for their performance improvement.

  16. Domains in Ferroic Crystals and Thin Films

    CERN Document Server

    Tagantsev, Alexander K; Fousek, Jan

    2010-01-01

    Domains in Ferroic Crystals and Thin Films presents experimental findings and theoretical understanding of ferroic (non-magnetic) domains developed during the past 60 years. It addresses the situation by looking specifically at bulk crystals and thin films, with a particular focus on recently-developed microelectronic applications and methods for observation of domains with techniques such as scanning force microscopy, polarized light microscopy, scanning optical microscopy, electron microscopy, and surface decorating techniques. Domains in Ferroic Crystals and Thin Films covers a large area of material properties and effects connected with static and dynamic properties of domains, which are extremely relevant to materials referred to as ferroics. In most solid state physics books, one large group of ferroics is customarily covered: those in which magnetic properties play a dominant role. Numerous books are specifically devoted to magnetic ferroics and cover a wide spectrum of magnetic domain phenomena. In co...

  17. Nanostructured thin films and coatings mechanical properties

    CERN Document Server

    2010-01-01

    The first volume in "The Handbook of Nanostructured Thin Films and Coatings" set, this book concentrates on the mechanical properties, such as hardness, toughness, and adhesion, of thin films and coatings. It discusses processing, properties, and performance and provides a detailed analysis of theories and size effects. The book presents the fundamentals of hard and superhard nanocomposites and heterostructures, assesses fracture toughness and interfacial adhesion strength of thin films and hard nanocomposite coatings, and covers the processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. It also uses nanomechanics to optimize coatings for cutting tools and explores various other coatings, such as diamond, metal-containing amorphous carbon nanostructured, and transition metal nitride-based nanolayered multilayer coatings.

  18. Solid surfaces, interfaces and thin films

    CERN Document Server

    Lüth, Hans

    2015-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin-film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological structure, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure research, particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures. A special chapter of the book is devoted to collective phenomena at interfaces and in thin films such as superconductivity and magnetism. The latter topic includes the meanwhile important issues giant magnetoresistance and spin-transfer torque mechanism, both effects being of high interest in information technology. In this new edition, for the first time, the effect of spin-orbit coupling on surface states is treated. In this context the class of the recently detected topological insulators,...

  19. Solid Surfaces, Interfaces and Thin Films

    CERN Document Server

    Lüth, Hans

    2010-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure physics particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures as well as to superconductor/semiconductor interfaces and magnetic thin films. The latter topic was significantly extended in this new edition by more details about the giant magnetoresistance and a section about the spin-transfer torque mechanism including one new problem as exercise. Two new panels about Kerr-effect and spin-polarized scanning tunnelling microscopy were added, too. Furthermore, the meanwhile important group III-nitride surfaces and high-k oxide/semiconductor interfaces are shortly discu...

  20. Capillary stress in microporous thin films

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, J.; Hurd, A.J.; Frink, L.J.D.; Swol, F. van [Sandia National Labs., Albuquerque, NM (United States); Brinker, C.J. [Sandia National Labs., Albuquerque, NM (United States). Ceramic Processing Science Dept.]|[Univ. of New Mexico, Albuquerque, NM (United States). Center for Micro Engineering Ceramics; Raman, N.K. [Univ. of New Mexico, Albuquerque, NM (United States). Center for Micro Engineered Ceramics

    1996-06-01

    Development of capillary stress in porous xerogels, although ubiquitous, has not been systematically studied. The authors have used the beam bending technique to measure stress isotherms of microporous thin films prepared by a sol-gel route. The thin films were prepared on deformable silicon substrates which were then placed in a vacuum system. The automated measurement was carried out by monitoring the deflection of a laser reflected off the substrate while changing the overlying relative pressure of various solvents. The magnitude of the macroscopic bending stress was found to reach a value of 180 MPa at a relative pressure of methanol, P/Po = 0.001. The observed stress is determined by the pore size distribution and is an order of magnitude smaller in mesoporous thin films. Density Functional Theory (DFT) indicates that for the microporous materials, the stress at saturation is compressive and drops as the relative pressure is reduced.

  1. Vibration welding system with thin film sensor

    Science.gov (United States)

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  2. The future of rare earth thin films

    International Nuclear Information System (INIS)

    Gasgnier, M.

    1986-01-01

    This paper presents some recent applications in the rare earth field and also may be, some of the future new developments of laboratory works. The field of investigations will concern only materials which contain at least one rare earth element (lanthanide series, from La to Lu, Sc and Y). After a rapid survey of the experimental procedures relative to the preparation and to the analytical characterization of thin films, technological applications in various fields of research are briefly reviewed: for polycrystalline metals (superconductors, neutron absorption, photovoltaic effect...), alloys (hydrogen storage, superconductors) and compounds (target for intense neutron sources, radiology...) and for amorphous magnetic thin films. 81 refs [fr

  3. Intrinsically conductive polymer thin film piezoresistors

    DEFF Research Database (Denmark)

    Lillemose, Michael; Spieser, Martin; Christiansen, N.O.

    2008-01-01

    We report on the piezoresistive effect in the intrinsically conductive polymer, polyaniline. A process recipe for indirect patterning of thin film polyaniline has been developed. Using a specially designed chip, the polyaniline thin films have been characterised with respect to resistivity...... and strain sensitivity using two- and four-point measurement method. We have found that polyaniline has a negative gauge factor of K = -4.9, which makes it a candidate for piezoresistive read-out in polymer based MEMS-devices. (C) 2007 Elsevier B.V. All rights reserved....

  4. Micro-sensor thin-film anemometer

    Science.gov (United States)

    Sheplak, Mark (Inventor); McGinley, Catherine B. (Inventor); Spina, Eric F. (Inventor); Stephens, Ralph M. (Inventor); Hopson, Jr., Purnell (Inventor); Cruz, Vincent B. (Inventor)

    1996-01-01

    A device for measuring turbulence in high-speed flows is provided which includes a micro-sensor thin-film probe. The probe is formed from a single crystal of aluminum oxide having a 14.degree. half-wedge shaped portion. The tip of the half-wedge is rounded and has a thin-film sensor attached along the stagnation line. The bottom surface of the half-wedge is tilted upward to relieve shock induced disturbances created by the curved tip of the half-wedge. The sensor is applied using a microphotolithography technique.

  5. A generalized theory of thin film growth

    Science.gov (United States)

    Du, Feng; Huang, Hanchen

    2018-03-01

    This paper reports a theory of thin film growth that is generalized for arbitrary incidence angle during physical vapor deposition in two dimensions. The accompanying kinetic Monte Carlo simulations serve as verification. A special theory already exists for thin film growth with zero incidence angle, and another theory also exists for nanorod growth with a glancing angle. The theory in this report serves as a bridge to describe the transition from thin film growth to nanorod growth. In particular, this theory gives two critical conditions in analytical form of critical coverage, ΘI and ΘII. The first critical condition defines the onset when crystal growth or step dynamics stops following the wedding cake model for thin film growth. The second critical condition defines the onset when multiple-layer surface steps form to enable nanorod growth. Further, this theory also reveals a critical incidence angle, below which nanorod growth is impossible. The critical coverages, together with the critical incidence angle, defines a phase diagram of thin growth versus nanorod growth.

  6. Lattice Mismatch in Crystalline Nanoparticle Thin Films.

    Science.gov (United States)

    Gabrys, Paul A; Seo, Soyoung E; Wang, Mary X; Oh, EunBi; Macfarlane, Robert J; Mirkin, Chad A

    2018-01-10

    For atomic thin films, lattice mismatch during heteroepitaxy leads to an accumulation of strain energy, generally causing the films to irreversibly deform and generate defects. In contrast, more elastically malleable building blocks should be better able to accommodate this mismatch and the resulting strain. Herein, that hypothesis is tested by utilizing DNA-modified nanoparticles as "soft," programmable atom equivalents to grow a heteroepitaxial colloidal thin film. Calculations of interaction potentials, small-angle X-ray scattering data, and electron microscopy images show that the oligomer corona surrounding a particle core can deform and rearrange to store elastic strain up to ±7.7% lattice mismatch, substantially exceeding the ±1% mismatch tolerated by atomic thin films. Importantly, these DNA-coated particles dissipate strain both elastically through a gradual and coherent relaxation/broadening of the mismatched lattice parameter and plastically (irreversibly) through the formation of dislocations or vacancies. These data also suggest that the DNA cannot be extended as readily as compressed, and thus the thin films exhibit distinctly different relaxation behavior in the positive and negative lattice mismatch regimes. These observations provide a more general understanding of how utilizing rigid building blocks coated with soft compressible polymeric materials can be used to control nano- and microstructure.

  7. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.

    2014-10-30

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  8. Silver buffer layers for YBCO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, J. [Tel Aviv Univ. (Israel). Center for Technol. Education Holon

    1999-09-01

    A simple economical conventional vacuum system was used for evaporation of YBCO thin films on as-deposited unbuffered Ag layers on MgO substrates. The subsequent heat treatment was carried out in low oxygen partial pressure at a relative low temperature and short dwelling time. The films thus obtained were characterized for electrical properties using dc four probe electrical measurements and inspected for structural properties and chemical composition by scanning electron microscopy (SEM). (orig.)

  9. Mechanical integrity of thin films

    International Nuclear Information System (INIS)

    Hoffman, R.W.

    1979-01-01

    Mechanical considerations starting with the initial film deposition including questions of adhesion and grading the interface are reviewed. Growth stresses, limiting thickness, stress relief, control aging, and creep are described

  10. Mesoscale simulations of confined Nafion thin films

    Science.gov (United States)

    Vanya, P.; Sharman, J.; Elliott, J. A.

    2017-12-01

    The morphology and transport properties of thin films of the ionomer Nafion, with thicknesses on the order of the bulk cluster size, have been investigated as a model system to explain the anomalous behaviour of catalyst/electrode-polymer interfaces in membrane electrode assemblies. We have employed dissipative particle dynamics (DPD) to investigate the interaction of water and fluorocarbon chains, with carbon and quartz as confining materials, for a wide range of operational water contents and film thicknesses. We found confinement-induced clustering of water perpendicular to the thin film. Hydrophobic carbon forms a water depletion zone near the film interface, whereas hydrophilic quartz results in a zone with excess water. There are, on average, oscillating water-rich and fluorocarbon-rich regions, in agreement with experimental results from neutron reflectometry. Water diffusivity shows increasing directional anisotropy of up to 30% with decreasing film thickness, depending on the hydrophilicity of the confining material. A percolation analysis revealed significant differences in water clustering and connectivity with the confining material. These findings indicate the fundamentally different nature of ionomer thin films, compared to membranes, and suggest explanations for increased ionic resistances observed in the catalyst layer.

  11. Magnetocaloric effect of thin Terbium films

    Science.gov (United States)

    Mello, V. D.; Anselmo, D. H. A. L.; Vasconcelos, M. S.; Almeida, N. S.

    2017-12-01

    We report a theoretical study of the magnetocaloric effect of Terbium (Tb) thin films due to finite size and surface effects in the helimagnetic phase, corresponding to a temperature range from TC=219 K to TN=231 K, for external fields of the order of kOe. For a Tb thin film of 6 monolayers submitted to an applied field (ΔH =30 kOe, ΔH =50 kOe and ΔH = 70 kOe) we report a significative change in adiabatic temperature, ΔT / ΔH , near the Néel temperature, of the order ten times higher than that observed for Tb bulk. On the other hand, for small values of the magnetic field, large thickness effects are found. For external field strength around few kOe, we have found that the thermal caloric efficiency increases remarkably for ultrathin films. For an ultrathin film with 6 monolayers, we have found ΔT / ΔH = 43 K/T while for thicker films, with 20 monolayers, ΔT / ΔH = 22 K/T. Our results suggest that thin films of Tb are a promising material for magnetocaloric effect devices for applications at intermediate temperatures.

  12. Profilometry of thin films on rough substrates by Raman spectroscopy

    KAUST Repository

    Ledinský, Martin

    2016-12-06

    Thin, light-absorbing films attenuate the Raman signal of underlying substrates. In this article, we exploit this phenomenon to develop a contactless thickness profiling method for thin films deposited on rough substrates. We demonstrate this technique by probing profiles of thin amorphous silicon stripes deposited on rough crystalline silicon surfaces, which is a structure exploited in high-efficiency silicon heterojunction solar cells. Our spatially-resolved Raman measurements enable the thickness mapping of amorphous silicon over the whole active area of test solar cells with very high precision; the thickness detection limit is well below 1 nm and the spatial resolution is down to 500 nm, limited only by the optical resolution. We also discuss the wider applicability of this technique for the characterization of thin layers prepared on Raman/photoluminescence-active substrates, as well as its use for single-layer counting in multilayer 2D materials such as graphene, MoS2 and WS2.

  13. Thin diamond films for tribological applications

    International Nuclear Information System (INIS)

    Wong, M.S.; Meilunas, R.; Ong, T.P.; Chang, R.P.H.

    1989-01-01

    Diamond films have been deposited on Si, Mo and many other substrates by microwave and radio frequency plasma enhanced chemical vapor deposition. Although the adhesion between the diamond film and most of the metal substrates is poor due to residual thermal stress from the mismatch of thermal expansion coefficients, the authors have developed processes to promote the growth of uniform and continuous diamond films with enhanced adhesion to metal substrates for tribological applications. The tribological properties of these films are measured using a ring-on-block tribotester. The coefficients of friction of diamond films sliding against a 52100 steel ring under the same experimental conditions are found to be significantly different depending on the morphology, grain size and roughness of the diamond films. However, under all cases tested, it is found that for uniform and continuous diamond films with small grain size of 1-3 micrometers, the coefficient of friction of the diamond film sliding against a steel ring under lubrication of a jet of mineral oil is about 0.04

  14. Optical characterization of niobium pentoxide thin films

    International Nuclear Information System (INIS)

    Pawlicka, A.

    1996-01-01

    Thin films of Nb 2 O 5 were obtained by sol-gel method using ultrasonic irradiation and deposited by dip-coating technique. After calcination at temperatures superior than 500 deg C these films (300 nm thick) were characterized by cyclic voltametry and cronoamperometry. The memory measurements, color efficiency, optical density as a function of wave number and applied potential were effectuated to determine their electrochromic properties. The study of electrochromic properties of these films shows that the insertion process of lithium is reversible and changes their coloration from transparent (T=80%) to dark blue (T=20%). (author)

  15. Pyroelectric coupling in thin film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Karpov, Victor G.; Shvydka, Diana [Department of Physics and Astronomy, University of Toledo, OH (United States)

    2007-07-15

    We propose a theory of thin film photovoltaics in which one of the polycrystalline films is made of a pyroelectric material grains such as CdS. That film is shown to generate strong polarization improving the device open circuit voltage. Implications and supporting facts for the major photovoltaic types based on CdTe and CuIn(Ga)Se{sub 2} absorber layers are discussed. Band diagram of a pyroelectric (CdS) based PV junction. Arrows represent the charge carrier photo-generation. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. Correlated dewetting patterns in thin polystyrene films

    CERN Document Server

    Neto, C; Seemann, R; Blossey, R; Becker, J; Grün, G

    2003-01-01

    We describe preliminary results of experiments and simulations concerned with the dewetting of thin polystyrene films (thickness < 7 nm) on top of silicon oxide wafers. In the experiments we scratched an initially flat film with an atomic force microscopy (AFM) tip, producing dry channels in the film. Dewetting of the films was imaged in situ using AFM and a correlated pattern of holes ('satellite holes') was observed along the rims bordering the channels. The development of this complex film rupture process was simulated and the results of experiments and simulations are in good agreement. On the basis of these results, we attempt to explain the appearance of satellite holes and their positions relative to pre-existing holes.

  17. Tailored piezoelectric thin films for energy harvester

    NARCIS (Netherlands)

    Wan, X.

    2013-01-01

    Piezoelectric materials are excellent materials to transfer mechanical energy into electrical energy, which can be stored and used to power other devices. PiezoMEMS is a good way to combine silicon wafer processing and piezoelectric thin film technology and lead to a variety of miniaturized and

  18. Reliability growth of thin film resistors contact

    Directory of Open Access Journals (Sweden)

    Lugin A. N.

    2010-10-01

    Full Text Available Necessity of resistive layer growth under the contact and in the contact zone of resistive element is shown in order to reduce peak values of current flow and power dissipation in the contact of thin film resistor, thereby to increase the resistor stability to parametric and catastrophic failures.

  19. Thermoviscoelastic models for polyethylene thin films

    DEFF Research Database (Denmark)

    Li, Jun; Kwok, Kawai; Pellegrino, Sergio

    2016-01-01

    This paper presents a constitutive thermoviscoelastic model for thin films of linear low-density polyethylene subject to strains up to yielding. The model is based on the free volume theory of nonlinear thermoviscoelasticity, extended to orthotropic membranes. An ingredient of the present approach...

  20. Incipient plasticity in metallic thin films

    NARCIS (Netherlands)

    Soer, W. A.; De Hosson, J. Th. M.; Minor, A. M.; Shan, Z.; Asif, S. A. Syed; Warren, O. L.

    2007-01-01

    The authors have compared the incipient plastic behaviors of Al and Al-Mg thin films during indentation under load control and displacement control. In Al-Mg, solute pinning limits the ability of dislocations to propagate into the crystal and thus substantially affects the appearance of plastic

  1. Thin film hydrous metal oxide catalysts

    Science.gov (United States)

    Dosch, Robert G.; Stephens, Howard P.

    1995-01-01

    Thin film (metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  2. Polyaniline. Thin films and colloidal dispersions

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Sapurina, I.

    2005-01-01

    Roč. 77, č. 5 (2005), s. 815-826 ISSN 0033-4545 R&D Projects: GA MŠk ME 539; GA AV ČR IAA4050313 Grant - others:IUPAC project 2002-019-1-400 Keywords : polyaniline * thin films * dispersions Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.679, year: 2005

  3. A ferroelectric transparent thin-film transistor

    NARCIS (Netherlands)

    Prins, MWJ; GrosseHolz, KO; Muller, G; Cillessen, JFM; Giesbers, JB; Weening, RP; Wolf, RM

    1996-01-01

    Operation is demonstrated of a field-effect transistor made of transparant oxidic thin films, showing an intrinsic memory function due to the usage of a ferroelectric insulator. The device consists of a high mobility Sb-doped n-type SnO2 semiconductor layer, PbZr0.2Ti0.8Os3 as a ferroelectric

  4. Flexoelectricity in barium strontium titanate thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Seol Ryung; Huang, Wenbin; Yuan, Fuh-Gwo; Jiang, Xiaoning, E-mail: xjiang5@ncsu.edu [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Shu, Longlong [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Electronic Materials Research Laboratory, International Center for Dielectric Research, Xi' an Jiao Tong University, Xi' an, Shaanxi 710049 (China); Maria, Jon-Paul [Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-10-06

    Flexoelectricity, the linear coupling between the strain gradient and the induced electric polarization, has been intensively studied as an alternative to piezoelectricity. Especially, it is of interest to develop flexoelectric devices on micro/nano scales due to the inherent scaling effect of flexoelectric effect. Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin film with a thickness of 130 nm was fabricated on a silicon wafer using a RF magnetron sputtering process. The flexoelectric coefficients of the prepared thin films were determined experimentally. It was revealed that the thin films possessed a transverse flexoelectric coefficient of 24.5 μC/m at Curie temperature (∼28 °C) and 17.44 μC/m at 41 °C. The measured flexoelectric coefficients are comparable to that of bulk BST ceramics, which are reported to be 10–100 μC/m. This result suggests that the flexoelectric thin film structures can be effectively used for micro/nano-sensing devices.

  5. Flexoelectricity in barium strontium titanate thin film

    International Nuclear Information System (INIS)

    Kwon, Seol Ryung; Huang, Wenbin; Yuan, Fuh-Gwo; Jiang, Xiaoning; Shu, Longlong; Maria, Jon-Paul

    2014-01-01

    Flexoelectricity, the linear coupling between the strain gradient and the induced electric polarization, has been intensively studied as an alternative to piezoelectricity. Especially, it is of interest to develop flexoelectric devices on micro/nano scales due to the inherent scaling effect of flexoelectric effect. Ba 0.7 Sr 0.3 TiO 3 thin film with a thickness of 130 nm was fabricated on a silicon wafer using a RF magnetron sputtering process. The flexoelectric coefficients of the prepared thin films were determined experimentally. It was revealed that the thin films possessed a transverse flexoelectric coefficient of 24.5 μC/m at Curie temperature (∼28 °C) and 17.44 μC/m at 41 °C. The measured flexoelectric coefficients are comparable to that of bulk BST ceramics, which are reported to be 10–100 μC/m. This result suggests that the flexoelectric thin film structures can be effectively used for micro/nano-sensing devices.

  6. Magnetic surfaces, thin films, and multilayers

    International Nuclear Information System (INIS)

    Parkin, S.S.P.; Renard, J.P.; Shinjo, T.; Zinn, W.

    1992-01-01

    This paper details recent developments in the magnetism of surfaces, thin films and multilayers. More than 20 invited contributions and more than 60 contributed papers attest to the great interest and vitality of this subject. In recent years the study of magnetic surfaces, thin films and multilayers has undergone a renaissance, partly motivated by the development of new growth and characterization techniques, but perhaps more so by the discovery of many exciting new properties, some quite unanticipated. These include, most recently, the discovery of enormous values of magnetoresistance in magnetic multilayers far exceeding those found in magnetic single layer films and the discovery of oscillatory interlayer coupling in transition metal multilayers. These experimental studies have motivated much theoretical work. However these developments are to a large extent powered by materials engineering and our ability to control and understand the growth of thin layers just a few atoms thick. The preparation of single crystal thin film layers and multilayers remains important for many studies, in particular, for properties dependent. These studies obviously require engineering not just a layer thicknesses but of lateral dimensions as well. The properties of such structures are already proving to be a great interest

  7. Functional planar thin film optical waveguide lasers

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav

    2012-01-01

    Roč. 9, č. 2 (2012), 91-99 ISSN 1612-2011 R&D Projects: GA ČR(CZ) GAP106/10/1477 Institutional research plan: CEZ:AV0Z10100522 Keywords : waveguide laser * planar waveguides * thin films * pulsed laser deposition * optical waveguides * laser materials Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.714, year: 2012

  8. Dielectric loss of strontium titanate thin films

    Science.gov (United States)

    Dalberth, Mark Joseph

    1999-12-01

    Interest in strontium titanate (STO) thin films for microwave device applications continues to grow, fueled by the telecommunications industry's interest in phase shifters and tunable filters. The optimization of these devices depends upon increasing the phase or frequency tuning and decreasing the losses in the films. Currently, the dielectric response of thin film STO is poorly understood through lack of data and a theory to describe it. We have studied the growth of STO using pulsed laser deposition and single crystal substrates like lanthanum aluminate and neodymium gallate. We have researched ways to use ring resonators to accurately measure the dielectric response as a function of temperature, electric field, and frequency from low radio frequencies to a few gigahertz. Our films grown on lanthanum aluminate show marked frequency dispersion in the real part of the dielectric constant and hints of thermally activated loss behavior. We also found that films grown with conditions that optimized the dielectric constant showed increased losses. In an attempt to simplify the system, we developed a technique called epitaxial lift off, which has allowed us to study films removed from their growth substrates. These free standing films have low losses and show obvious thermally activated behavior. The "amount of tuning," as measured by a figure of merit, KE, is greater in these films than in the films still attached to their growth substrates. We have developed a theory that describes the real and imaginary parts of the dielectric constant. The theory models the real part using a mean field description of the ionic motion in the crystal and includes the loss by incorporating the motion of charged defects in the films.

  9. Gravitationally driven drainage of thin films

    Science.gov (United States)

    Naire, Shailesh

    In this thesis we develop theory for an experiment done by Snow and coworkers at Dow Corning that involves a vertically-oriented, thinned polyurethane film with silicone surfactant, draining under gravity. We present the mathematical formulation for a 1+1- and 2+1-dimensional model to study the evolution of a vertically-oriented thin liquid film draining under gravity when there is an insoluble surfactant with finite surface viscosity on its free surface. This formulation has all the ingredients that include: surface tension, gravity, surface viscosity, the Marangoni effect, convective and diffusive surfactant transport; essential to describe the behavior of a vertical draining film with surfactant. We study a hierarchy of mathematical models with increasing complexity starting with the flat film model where gravity balances viscous shear and surface tension is neglected, this is generalized to include surface tension. We further generalize to incorporate variable surface viscosity and more complicated constitutive laws for surface tension as a function of surfactant concentration. Lubrication theory is employed to derive three coupled nonlinear partial differential equations (PDEs) describing the free surface shape, a component of surface velocity and the surfactant transport at leading order. A large surface viscosity limit recovers the tangentially-immobile model; for small surface viscosity, the film is mobile. Transition from a mobile to an immobile film is observed for intermediate values of surface viscosity and Marangoni number. The above models reproduce a number of features observed in experiments, these include film shapes and thinning rates which can be correlated to experiment. The 2+1-dimensional model for simplified surface properties has also been studied. Numerical experiments were performed to understand the stability of the system to perturbations across the film. An instability was seen in the mobile case; this was caused by a competition

  10. Thin film preparation of semiconducting iron pyrite

    Science.gov (United States)

    Smestad, Greg P.; Ennaoui, Ahmed; Fiechter, Sebastian; Hofmann, Wolfgang; Tributsch, Helmut; Kautek, Wolfgang

    1990-08-01

    Pyrite (Fe52) has been investigated as a promising new absorber material for thin film solar cell applications because of its high optical absorption coefficient of 1OL cm1, and its bandgap of 0.9 to 1.0 eV. Thin layers have been prepared by Metal Organic Chemical Vapor Deposition, MOCVD, Chemical Spray Pyrolysis, CSP, Chemical Vapor Transport, CVT, and Sulfurization of Iron Oxide films, 510. It is postulated that for the material FeS2, if x is not zero, a high point defect concentration results from replacing 2 dipoles by single S atoms. This causes the observed photovoltages and solar conversion efficiencies to be lower than expected. Using the Fe-O-S ternary phase diagram and the related activity plots, a thermodynamic understanding is formulated for the resulting composition of each of these types of films. It is found that by operating in the oxide portion of the phase diagram, the resulting oxidation state favors pyrite formation over FeS. By proper orientation of the grains relative to the film surface, and by control of pinholes and stoichiometry, an efficient thin film photovolatic solar cell material could be achieved.

  11. Study of zinc oxide thin film characteristics

    Directory of Open Access Journals (Sweden)

    Johari Shazlina

    2017-01-01

    Full Text Available This paper presents the characterization of ZnO thin films with the thickness of 8nm, 30nm, and 200nm. The thin films were prepared using sol-gel method and has been deposited onto different substrate of silicon wafer, glass and quartz. The thin films were annealed at 400, 500 and 600°C. By using UV-Vis, the optical transmittance measurement were recorded by using a single beam spectrophotometer in the wavelength 250nm to 800nm. However, the transmittance in the visible range is hardly influenced by the film thickness, substrate used and annealed temperature and the averages are all above 80%. On surface morphology observed by AFM and FESEM, the results show that the increase of film thickness and annealed temperature will increase the mean grain size, surface-to-volume ration and RMS roughness. Besides that, higher annealing temperature cause the crystalline quality to gradually improve and the wurtzite structure of ZnO can be seen more clearly. Nonetheless, the substrate used had no effect on surface morphology, yet the uniformity of deposition on silicon wafer is better than glass and quartz.

  12. Practical design and production of optical thin films

    CERN Document Server

    Willey, Ronald R

    2002-01-01

    Fundamentals of Thin Film Optics and the Use of Graphical Methods in Thin Film Design Estimating What Can Be Done Before Designing Fourier Viewpoint of Optical Coatings Typical Equipment for Optical Coating Production Materials and Process Know-How Process Development Monitoring and Control of Thin Film Growth Appendix: Metallic and Semiconductor Material Graphs Author IndexSubject Index

  13. Density functional study of ferromagnetism in alkali metal thin films

    Indian Academy of Sciences (India)

    model (UJM), and it is argued that within LSDA or GGA, alkali metal thin films cannot be claimed to have an FM ground state. Relevance of these results to the experiments on transition metal-doped alkali metal thin films and bulk hosts are also discussed. Keywords. Alkali metal; thin films; magnetism; density functional ...

  14. Optical and electrical properties of nickel xanthate thin films

    Indian Academy of Sciences (India)

    Keywords. Nickel xanthate thin film; organometallic thin film; chemical bath deposition. Abstract. Nickel xanthate thin films (NXTF) were successfully deposited by chemical bath deposition, on to amorphous glass substrates, as well as on - and -silicon, indium tin oxide and poly(methyl methacrylate). The structure of the ...

  15. Electrochemical fabrication of nanoporous polypyrrole thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li Mei [Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 (China); Yuan Jinying [Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 (China)], E-mail: yuanjy@mail.tsinghua.edu.cn; Shi Gaoquan [Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 (China)], E-mail: gshi@mail.tsinghua.edu.cn

    2008-04-30

    Polypyrrole thin films with pores in nanometer scale were synthesized by direct electrochemical oxidation of pyrrole in a mixed electrolyte of isopropyl alcohol, boron trifluoride diethyl etherate, sodium dodecylsulfonate and poly(ethylene glycol) using well-aligned ZnO nanowires arrays as templates. The thin films exhibit high conductivity of ca. {sigma}{sub rt} {approx} 20.5 s/cm and can be driven to bend during redox processes in 1.0 M lithium perchlorate aqueous solution. The movement rate of an actuator based on this nanoporous film was measured to be over 90{sup o}/s at a driving potential of 0.8 V (vs. Ag/AgCl)

  16. Thin film diamond microstructure applications

    Science.gov (United States)

    Roppel, T.; Ellis, C.; Ramesham, R.; Jaworske, D.; Baginski, M. E.; Lee, S. Y.

    1991-01-01

    Selective deposition and abrasion, as well as etching in atomic oxygen or reduced-pressure air, have been used to prepare patterned polycrystalline diamond films which, on further processing by anisotropic Si etching, yield the microstructures of such devices as flow sensors and accelerometers. Both types of sensor have been experimentally tested in the respective functions of hot-wire anemometer and both single- and double-hinged accelerometer.

  17. Pulsed-laser-induced nanoscale island formation in thin metal-on-oxide films

    OpenAIRE

    Henley, SJ; Carey, JD; Silva, SRP

    2005-01-01

    he mechanisms controlling the nanostructuring of thin metal-on-oxide films by nanosecond pulsed excimer lasers are investigated. When permitted by the interfacial energetics, the breakup of the metal film into nanoscale islands is observed. A range of metals (Au, Ag, Mo, Ni, Ti, and Zn) with differing physical and thermodynamic properties, and differing tendencies for oxide formation, are investigated. The nature of the interfacial metal-substrate interaction, the thermal conductivity of the ...

  18. Flexible magnetic thin films and devices

    Science.gov (United States)

    Sheng, Ping; Wang, Baomin; Li, Runwei

    2018-01-01

    Flexible electronic devices are highly attractive for a variety of applications such as flexible circuit boards, solar cells, paper-like displays, and sensitive skin, due to their stretchable, biocompatible, light-weight, portable, and low cost properties. Due to magnetic devices being important parts of electronic devices, it is essential to study the magnetic properties of magnetic thin films and devices fabricated on flexible substrates. In this review, we mainly introduce the recent progress in flexible magnetic thin films and devices, including the study on the stress-dependent magnetic properties of magnetic thin films and devices, and controlling the properties of flexible magnetic films by stress-related multi-fields, and the design and fabrication of flexible magnetic devices. Project supported by the National Key R&D Program of China (No. 2016YFA0201102), the National Natural Science Foundation of China (Nos. 51571208, 51301191, 51525103, 11274321, 11474295, 51401230), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2016270), the Key Research Program of the Chinese Academy of Sciences (No. KJZD-EW-M05), the Ningbo Major Project for Science and Technology (No. 2014B11011), the Ningbo Science and Technology Innovation Team (No. 2015B11001), and the Ningbo Natural Science Foundation (No. 2015A610110).

  19. Nanocomposite thin films for triggerable drug delivery.

    Science.gov (United States)

    Vannozzi, Lorenzo; Iacovacci, Veronica; Menciassi, Arianna; Ricotti, Leonardo

    2018-05-01

    Traditional drug release systems normally rely on a passive delivery of therapeutic compounds, which can be partially programmed, prior to injection or implantation, through variations in the material composition. With this strategy, the drug release kinetics cannot be remotely modified and thus adapted to changing therapeutic needs. To overcome this issue, drug delivery systems able to respond to external stimuli are highly desirable, as they allow a high level of temporal and spatial control over drug release kinetics, in an operator-dependent fashion. Areas covered: On-demand drug delivery systems actually represent a frontier in this field and are attracting an increasing interest at both research and industrial level. Stimuli-responsive thin films, enabled by nanofillers, hold a tremendous potential in the field of triggerable drug delivery systems. The inclusion of responsive elements in homogeneous or heterogeneous thin film-shaped polymeric matrices strengthens and/or adds intriguing properties to conventional (bare) materials in film shape. Expert opinion: This Expert Opinion review aims to discuss the approaches currently pursued to achieve an effective on-demand drug delivery, through nanocomposite thin films. Different triggering mechanisms allowing a fine control on drug delivery are described, together with current challenges and possible future applications in therapy and surgery.

  20. Thin-film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.

    1987-10-01

    Cadmium telluride, with a room-temperature band-gap energy of 1.5 eV, is a promising thin-film photovoltaic material. The major objective of this research has been to demonstrate thin-film CdTe heterojunction solar cells with a total area greater than 1 sq cm and photovoltaic efficiencies of 13 percent or more. Thin-film p-CdTe/CdS/SnO2:F/glass solar cells with an AM1.5 efficiency of 10.5 percent have been reported previously. This report contains results of work done on: (1) the deposition, resistivity control, and characterization of p-CdTe films by the close-spaced sublimation process; (2) the deposition of large-band-gap window materials; (3) the electrical properties of CdS/CdTe heterojunctions; (4) the formation of stable, reproducible, ohmic contacts (such as p-HgTe) to p-CdTe; and (5) the preparation and evaluation of heterojunction solar cells.

  1. Thin film bismuth iron oxides useful for piezoelectric devices

    Science.gov (United States)

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  2. 2D Organic-Inorganic Hybrid Thin Films for Flexible UV-Visible Photodetectors

    KAUST Repository

    Velusamy, Dhinesh Babu

    2017-02-13

    Flexible 2D inorganic MoS and organic g-CN hybrid thin film photodetectors with tunable composition and photodetection properties are developed using simple solution processing. The hybrid films fabricated on paper substrate show broadband photodetection suitable for both UV and visible light with good responsivity, detectivity, and reliable and rapid photoswitching characteristics comparable to monolayer devices. This excellent performance is retained even after the films are severely deformed at a bending radius of ≈2 mm for hundreds of cycles. The detailed charge transfer and separation processes at the interface between the 2D materials in the hybrid films are confirmed by femtosecond transient absorption spectroscopy with broadband capability.

  3. Thermally evaporated mechanically hard tin oxide thin films for opto-electronic apllications

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, Sumanta K.; Rajeswari, V. P. [Centre for Nano Science and Technology, GVP College of Engineering (Autonomous), Visakhapatnam- 530048 (India)

    2014-01-28

    Tungsten doped tin oxide (WTO) and Molybdenum doped tin oxide (MoTO) thin film were deposited on corn glass by thermal evaporation method. The films were annealed at 350°C for one hour. Structural analysis using Xray diffraction data shows both the films are polycrystalline in nature with monoclinic structure of tin oxide, Sn{sub 3}O{sub 4}, corresponding to JCPDS card number 01-078-6064. SEM photograph showed that both the films have spherical grains with size in the range of 20–30 nm. Compositional analysis was carried out using EDS which reveals the presence of Sn, O and the dopant Mo/W only thereby indicating the absence of any secondary phase in the films. The films are found to contain nearly 6 wt% of Mo, 8 wt% of W as dopants respectively. The transmission pattern for both the films in the spectral range 200 – 2000 nm shows that W doping gives a transparency of nearly 80% from 380 nm onwards while Mo doping has less transparency of 39% at 380nm. Film hardness measurement using Triboscope shows a film hardness of about 9–10 GPa for both the films. It indicates that W or M doping in tin oxide provides the films the added advantage of withstanding the mechanical wear and tear due to environmental fluctuations By optimizing the optical and electrical properties, W/Mo doped tin oxide films may be explored as window layers in opto-electronic applications such as solar cells.

  4. Investigation of electrodeposited cuprous oxide thin films

    Science.gov (United States)

    Mortensen, Emma L.

    This dissertation focuses on improvements to electrodeposited cuprous oxide as a candidate for the absorber layer for a thin film solar cell that could be integrated into a mechanical solar cell stack. Cuprous oxide (Cu2O) is an earth abundant material that has a bandgap of 2 eV with absorption coefficients around 102-106 cm-1. This bandgap is not optimized for use as a single-junction solar cell, but could be ideal for use in a tandem solar cell device. The theoretical efficiency of a material with a bandgap of 2.0 eV is 20%. The greatest actual efficiency that has been achieved for a Cu2O solar cell is only 8.1%. For the present work the primary focus has been on improving the microstructure of the absorber layer film. The Cu2O films were fabricated using electrodeposition. A seeding layer was developed using gold (Au); which was manipulated into nano-islands and used as the substrate for the Cu2O electrodeposition. The films were characterized and compared to determine the growth mechanism of each film using scanning electron microscopy (SEM). X-ray diffraction (XRD) was used to establish and compare the chemical phases that were present in each of the films. The crystal structure of the Cu2O film grown on gold was explored using transmission electron microscopy (TEM), and this helped confirm the effect that the gold had on the growth of Cu2O. The Tauc method was then used to determine the bandgap of the films of Cu2O grown on both substrates and this showed that the Au based Cu2O film was a superior film. Electrical tests were also completed using a solar simulator and this established that the film grown on gold exhibited photoconductivity that was not seen on the film without gold. In addition, for this thesis, a method for depositing an n-type Cu2O film, based on a Cu-metal solution-boiling process, was investigated. Three forms of copper were tested: a sheet of copper, electrodeposited copper, and sputtered copper. The chemical phases were observed using

  5. Deposition and characterization of CuInS2 thin films deposited over copper thin films

    Science.gov (United States)

    Thomas, Titu; Kumar, K. Rajeev; Kartha, C. Sudha; Vijayakumar, K. P.

    2015-06-01

    Simple, cost effective and versatile spray pyrolysis method is effectively combined with vacuum evaporation for the deposition of CuIns2 thin films for photovoltaic applications. In the present study In2s3 was spray deposited over vacuum evaporated Cu thin films and Cu was allowed to diffuse in to the In2S3 layer to form CuInS2. To analyse the dependence of precursor volume on the formation of CuInS2 films structural, electrical and morphological analzes are carried out. Successful deposition of CuInS2thin films with good crystallinity and morphology with considerably low resistivity is reported in this paper.

  6. Thermal conductivities of thin, sputtered optical films

    International Nuclear Information System (INIS)

    Henager, C.H. Jr.; Pawlewicz, W.T.

    1991-05-01

    The normal component of the thin film thermal conductivity has been measured for the first time for several advanced sputtered optical materials. Included are data for single layers of boron nitride (BN), aluminum nitride (AIN), silicon aluminum nitride (Si-Al-N), silicon aluminum oxynitride (Si-Al-O-N), silicon carbide (SiC), and for dielectric-enhanced metal reflectors of the form Al(SiO 2 /Si 3 N 4 ) n and Al(Al 2 O 3 /AIN) n . Sputtered films of more conventional materials like SiO 2 , Al 2 O 3 , Ta 2 O 5 , Ti, and Si have also been measured. The data show that thin film thermal conductivities are typically 10 to 100 times lower than conductivities for the same materials in bulk form. Structural disorder in the amorphous or very fine-grained films appears to account for most of the conductivity difference. Conclusive evidence for a film/substrate interface contribution is presented

  7. Optical thin films and coatings from materials to applications

    CERN Document Server

    Flory, Francois

    2013-01-01

    Optical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. This book provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas.$bOptical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. Optical thin films and coatings provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas. Part one explores the design and manufacture of optical coatings. Part two highlights unconventional features of optical thin films including scattering properties of random structures in thin films, optical properties of thin film materials at short wavelengths, thermal properties and colour effects. Part three focusses on novel materials for optical thin films and coatings...

  8. Substrate heater for thin film deposition

    Science.gov (United States)

    Foltyn, Steve R.

    1996-01-01

    A substrate heater for thin film deposition of metallic oxides upon a target substrate configured as a disk including means for supporting in a predetermined location a target substrate configured as a disk, means for rotating the target substrate within the support means, means for heating the target substrate within the support means, the heating means about the support means and including a pair of heating elements with one heater element situated on each side of the predetermined location for the target substrate, with one heater element defining an opening through which desired coating material can enter for thin film deposition and with the heating means including an opening slot through which the target substrate can be entered into the support means, and, optionally a means for thermal shielding of the heating means from surrounding environment is disclosed.

  9. Multiferroic oxide thin films and heterostructures

    KAUST Repository

    Lu, Chengliang

    2015-05-26

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  10. Quantifying clustering in disordered carbon thin films

    International Nuclear Information System (INIS)

    Carey, J.D.

    2006-01-01

    The quantification of disorder and the effects of clustering in the sp 2 phase of amorphous carbon thin films are discussed. The sp 2 phase is described in terms of disordered nanometer-sized conductive sp 2 clusters embedded in a less conductive sp 3 matrix. Quantification of the clustering of the sp 2 phase is estimated from optical as well as from electron and nuclear magnetic resonance methods. Unlike in other disordered group IV thin film semiconductors, we show that care must be exercised in attributing a meaning to the Urbach energy extracted from absorption measurements in the disordered carbon system. The influence of structural disorder, associated with sp 2 clusters of similar size, and topological disorder due to undistorted clusters of different sizes is also discussed. Extensions of this description to other systems are also presented

  11. Thin film photovoltaic panel and method

    Science.gov (United States)

    Ackerman, Bruce; Albright, Scot P.; Jordan, John F.

    1991-06-11

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  12. Domain switching of fatigued ferroelectric thin films

    International Nuclear Information System (INIS)

    Tak Lim, Yun; Yeog Son, Jong; Shin, Young-Han

    2014-01-01

    We investigate the domain wall speed of a ferroelectric PbZr 0.48 Ti 0.52 O 3 (PZT) thin film using an atomic force microscope incorporated with a mercury-probe system to control the degree of electrical fatigue. The depolarization field in the PZT thin film decreases with increasing the degree of electrical fatigue. We find that the wide-range activation field previously reported in ferroelectric domains result from the change of the depolarization field caused by the electrical fatigue. Domain wall speed exhibits universal behavior to the effective electric field (defined by an applied electric field minus the depolarization field), regardless of the degree of the electrical fatigue

  13. Thin films for gas sensors

    Science.gov (United States)

    Pires, Jose Miguel Alves Correia

    Nos ultimos anos tem-se assistido a um aumento dos investimentos na investigacao de novos materiais para aplicacao em sensores. Apesar de ja existir um bom numero de dispositivos explorados comercialmente, muitas vezes, quer devido aos elevados custos de producao, quer devido a uma crescente exigencia do ponto de vista das caracteristicas de funcionamento, continua a ser necessario procurar novos materiais ou novas formas de producao que permitam baixar os custos e melhorar o desempenho dos dispositivos. No campo dos sensores de gases tem-se verificado continuos avancos nos ultimos anos. Continua todavia a ser necessario conhecer melhor, tanto os processos de producao dos materiais, como os mecanismos que regulam a sensibilidade dos dispositivos aos gases, de modo a orientar adequadamente a investigacao dos novos materiais, nomeadamente no que se refere a optimizacao dos parâmetros que nao satisfazem ainda os requisitos do mercado. Um dos materiais que tem mostrado melhores qualidades para aplicacao em sensores de gases de tipo resistivo e o dioxido de estanho. Este material tem sido produzido sob diversas formas e usando diferentes tecnicas, como sejam: sol-gel [1], pulverizacao catodica (sputtering) por magnetrao [2-4], sinterizacao de pos [5, 6], ablacao laser [7] ou RGTO [8]. Os resultados obtidos revelam que as caracteristicas dos dispositivos sao muito dependentes das tecnicas usadas na sua producao. A deposicao usando sputtering reactivo por magnetrao e uma tecnica que permite obter filmes finos de oxido de estanho com diferentes caracteristicas, quer do ponto de vista da estrutura, quer da composicao, e por isso, tambem, com diferentes sensibilidades aos gases. No âmbito deste trabalho, foram produzidos filmes de SnO2 usando sputtering DC reactivo com diferentes condicoes de deposicao. Os substratos usados foram lâminas de vidro e o alvo foi estanho com 99.9% de pureza. Foi estudada a influencia da atmosfera de deposicao, da pressao parcial do O2, da

  14. The carbonization of thin polyaniline films

    Czech Academy of Sciences Publication Activity Database

    Morávková, Zuzana; Trchová, Miroslava; Exnerová, Milena; Stejskal, Jaroslav

    2012-01-01

    Roč. 520, č. 19 (2012), s. 6088-6094 ISSN 0040-6090 R&D Projects: GA AV ČR IAA400500905; GA AV ČR IAA100500902; GA ČR GAP205/12/0911 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : polyaniline * thin films * infrared spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.604, year: 2012

  15. Thin film interfaces for microelectrochemical sensors

    Science.gov (United States)

    Tvarozek, Vladimir; Ivanic, Rastislav; Jakubec, Andrej; Novotny, Ivan; Rehacek, Vlastimil

    2001-09-01

    Planar microelectrochemical chips with thin film electodes of different shapes and arrangement, have been developed and fabricated. Micro electrochemical cell with closely vertically spaced electrodes allows to exploit the effect of redox recycling and an increase of collection efficiency for a high current amplification. PC simulations of electro- mechanical properties of sl-BLM is useful tool for evaluation and prediction of BLM behavior. Non-symmetric microelectrode arrays were designed and fabricated for electrical monitoring of human skin.

  16. Thin-film silicon solar cell technology

    Czech Academy of Sciences Publication Activity Database

    Shah, A. V.; Schade, H.; Vaněček, Milan; Meier, J.; Vallat-Sauvain, E.; Wyrsch, N.; Kroll, U.; Droz, C.; Bailat, J.

    2004-01-01

    Roč. 12, - (2004), s. 113-142 ISSN 1062-7995 R&D Projects: GA MŽP SN/320/11/03 Institutional research plan: CEZ:AV0Z1010914 Keywords : thin-film silicon modules * hydrogenerated amorphous silicon(a-Si:H) * hydrogenerated microcrystalline (ćc-Si:H) * transparent conductive oxydes(TCOs) * building -integrated photovoltaics(BIPV) Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.196, year: 2004

  17. Mesoscale simulations of confined Nafion thin films

    OpenAIRE

    Vanya, Peter; Sharman, Jonathan; Elliott, James A.

    2017-01-01

    The morphology and transport properties of thin films of the ionomer Nafion, with thicknesses on the order of the bulk cluster size, have been investigated as a model system to explain the anomalous behaviour of catalyst/electrode-polymer interfaces in membrane-electrode assemblies. We have employed dissipative particle dynamics (DPD) to investigate the interaction of water and fluorocarbon chains with carbon and quartz as confining materials for a wide range of operational water contents and...

  18. Mesoscale simulations of confined Nafion thin films

    OpenAIRE

    Vanya, Peter; Sharman, J; Elliott, James Arthur

    2017-01-01

    The morphology and transport properties of thin films of the ionomer Nafion, with thicknesses on the order of the bulk cluster size, have been investigated as a model system to explain the anomalous behaviour of catalyst/electrode-polymer interfaces in membrane electrode assemblies. We have employed dissipative particle dynamics (DPD) to investigate the interaction of water and fluorocarbon chains with carbon and quartz as confining materials for a wide range of operational water contents and...

  19. Optical characterization of thin solid films

    CERN Document Server

    Ohlídal, Miloslav

    2018-01-01

    This book is an up-to-date survey of the major optical characterization techniques for thin solid films. Emphasis is placed on practicability of the various approaches. Relevant fundamentals are briefly reviewed before demonstrating the application of these techniques to practically relevant research and development topics. The book is written by international top experts, all of whom are involved in industrial research and development projects.

  20. P-type CuxS thin films: Integration in a thin film transistor structure

    International Nuclear Information System (INIS)

    Nunes de Carvalho, C.; Parreira, P.; Lavareda, G.; Brogueira, P.; Amaral, A.

    2013-01-01

    Cu x S thin films, 80 nm thick, are deposited by vacuum thermal evaporation of sulfur-rich powder mixture, Cu 2 S:S (50:50 wt.%) with no intentional heating of the substrate. The process of deposition occurs at very low deposition rates (0.1–0.3 nm/s) to avoid the formation of Cu or S-rich films. The evolution of Cu x S films surface properties (morphology/roughness) under post deposition mild annealing in air at 270 °C and their integration in a thin film transistor (TFT) are the main objectives of this study. Accordingly, Scanning Electron Microscopy studies show Cu x S films with different surface morphologies, depending on the post deposition annealing conditions. For the shortest annealing time, the Cu x S films look to be constructed of grains with large dimension at the surface (approximately 100 nm) and consequently, irregular shape. For the longest annealing time, films with a fine-grained surface are found, with some randomly distributed large particles bound to this fine-grained surface. Atomic Force Microscopy results indicate an increase of the root-mean-square roughness of Cu x S surface with annealing time, from 13.6 up to 37.4 nm, for 255 and 345 s, respectively. The preliminary integration of Cu x S films in a TFT bottom-gate type structure allowed the study of the feasibility and compatibility of this material with the remaining stages of a TFT fabrication as well as the determination of the p-type characteristic of the Cu x S material. - Highlights: • Surface properties of annealed Cu x S films. • Variation of conductivity with annealing temperatures of Cu x S films. • Application of evaporated Cu x S films in a thin film transistor (TFT) structure. • Determination of Cu x S p-type characteristic from TFT behaviour

  1. Structural, electrical and magnetic studies of Co:SnO{sub 2} and (Co,Mo):SnO{sub 2} films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Dalui, S., E-mail: ssdalui@fc.ul.pt [University of Lisbon, Physics Dept. and ICEMS, 1749-016 Lisboa (Portugal); Instituto Superior de Engenharia de Lisboa and ICEMS, 1959-007 Lisboa (Portugal); Rout, S. [University of Lisbon, Physics Dept. and ICEMS, 1749-016 Lisboa (Portugal); Silvestre, A.J. [Instituto Superior de Engenharia de Lisboa and ICEMS, 1959-007 Lisboa (Portugal); Lavareda, G. [New University of Lisbon, Mater. Sci. Dept. and CTS, 2829-516 Caparica (Portugal); Pereira, L.C.J. [Instituto Superior Técnico, ITN and CFMCUL, 2686-953 Sacavém (Portugal); Brogueira, P. [Instituto Superior Técnico, Physics Dept. and ICEMS, 1049-001 Lisboa (Portugal); Conde, O. [University of Lisbon, Physics Dept. and ICEMS, 1749-016 Lisboa (Portugal)

    2013-08-01

    Here we report on the structural, optical, electrical and magnetic properties of Co-doped and (Co,Mo)-codoped SnO{sub 2} thin films deposited on r-cut sapphire substrates by pulsed laser deposition. Substrate temperature during deposition was kept at 500 °C. X-ray diffraction analysis showed that the undoped and doped films are crystalline with predominant orientation along the [1 0 1] direction regardless of the doping concentration and doping element. Optical studies revealed that the presence of Mo reverts the blue shift trend observed for the Co-doped films. For the Co and Mo doping concentrations studied, the incorporation of Mo did not contribute to increase the conductivity of the films or to enhance the ferromagnetic order of the Co-doped films.

  2. Aluminum nitride and nanodiamond thin film microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Knoebber, Fabian; Bludau, Oliver; Roehlig, Claus-Christian; Williams, Oliver; Sah, Ram Ekwal; Kirste, Lutz; Cimalla, Volker; Lebedev, Vadim; Nebel, Christoph; Ambacher, Oliver [Fraunhofer-Institute for Applied Solid State Physics, Freiburg (Germany)

    2010-07-01

    In this work, aluminum nitride (AlN) and nanocrystalline diamond (NCD) thin film microstructures have been developed. Freestanding NCD membranes were coated with a piezoelectrical AlN layer in order to build tunable micro-lens arrays. For the evaluation of the single material quality, AlN and NCD thin films on silicon substrates were fabricated using RF magnetron sputtering and microwave chemical vapor deposition techniques, respectively. The crystal quality of AlN was investigated by X-ray diffraction. The piezoelectric constant d{sub 33} was determined by scanning laser vibrometry. The NCD thin films were optimized with respect to surface roughness, mechanical stability, intrinsic stress and transparency. To determine the mechanical properties of the materials, both, micromechanical resonator and membrane structures were fabricated and measured by magnetomotive resonant frequency spectroscopy and bulging experiments, respectively. Finally, the behavior of AlN/NCD heterostructures was modeled using the finite element method and the first structures were characterized by piezoelectrical measurements.

  3. Multiferroic RMnO3 thin films

    Science.gov (United States)

    Fontcuberta, Josep

    2015-03-01

    Multiferroic materials have received an astonishing attention in the last decades due to expectations that potential coupling between distinct ferroic orders could inspire new applications and new device concepts. As a result, a new knowledge on coupling mechanisms and materials science has dramatically emerged. Multiferroic RMnO3 perovskites are central to this progress, providing a suitable platform to tailor spin-spin and spin-lattice interactions. With views towards applications, the development of thin films of multiferroic materials have also progressed enormously and nowadays thin-film manganites are available, with properties mimicking those of bulk compounds. Here we review achievements on the growth of hexagonal and orthorhombic RMnO3 epitaxial thin films and the characterization of their magnetic and ferroelectric properties, we discuss some challenging issues, and we suggest some guidelines for future research and developments. En ce qui concerne les applications, le développement de films minces de matériaux multiferroïques a aussi énormément progressé, et de nos jours des films minces de manganites avec des propriétés similaires à celles des matériaux massifs existent. Nous passons en revue ici les résultats obtenus dans le domaine de la croissance de couches minces épitaxiés de RMnO3 hexagonal et orthorhombique et de la caractérisation de leurs propriétés magnétiques et ferroélectriques. Nous discutons certains enjeux et proposons quelques idées pour des recherches et développements futurs.

  4. The properties of metal contacts on TiO2 thin films produced by reactive magnetron sputtering

    Directory of Open Access Journals (Sweden)

    Brus V. V.

    2010-10-01

    Full Text Available The article deals with research on volt-ampere characteristics of metal contacts (Al, Cr, In, Mo, Ti on titanium dioxide thin films and influence of annealing in vacuum on their electric properties. Volt-ampere characteristics measurements were taken by three-probe method. There was established that indium contact on TiO2 thin films possessed sharply defined ohmic properties.

  5. Decomposition of oxidezed lead and aluminium thin films on molybdenum substrates

    International Nuclear Information System (INIS)

    Makarovskij, N.A.

    1981-01-01

    The decomposition of oxidized solid phase lead and aluminium thin films on molybdenum substrates in the process of diffusion annealing in the 5x10 -5 mm Hg vacuum at temperatures from 280 to 320 deg C and from 500 to 560 deg C, respectively, is investigated. The conclusion is made that failure of oxidized lead and aluminium thin film coatings is carried out by the mechanism of volumetric self-diffusion. Experimentally established values of activation energies of the process of lead (Qsub(Mo)sup(Pb)=29 kcal/mol) and aluminium (Qsub(Mo)sup(Al)=35 kcal/mol) film failure are close to corresponding activation energies of lead and aluminium volumetric self-diffusion, which agrees with the conclusions made [ru

  6. Spin-torque ferromagnetic resonance in arbitrarily magnetized thin films

    Science.gov (United States)

    Sklenar, Joseph

    The spin Hall effect (SHE) in non-magnetic metals can be used to generate spin-transfer-torque (STT), subsequently inducing ferromagnetic resonance (FMR) in magnetic thin films; this experimental method is termed spin-torque ferromagnetic resonance (ST-FMR). Most ST-FMR experiments that are reported have an applied magnetic field in the plane of the sample and the research focuses on material combinations that have large and efficient STT. The most common way ST-FMR signals are detected is through an anisotropic magnetoresistance (AMR) rectification process. In this work we will present ST-FMR results in thin films where the magnetization has both an in-plane and out-of-plane component. The arbitrary magnetization direction is achieved by tipping the applied magnetic field out of the sample plane. We find that when the material system is a permalloy/Pt bilayer, ST-FMR signals are not mirror-symmetric upon magnetic field reversal . This is because the combination of both a STT from the bulk SHE and the Oersted field-like torque from the device do not drive the dynamics in the same manner when the field is reversed. We interpret our results in the Py/Pt experiment by extending an already established ST-FMR lineshape model to describe the general case of arbitrarily magnetized films. We compare and contrast our Py/Pt experiment with another system we measured, a Py/MoS2 bilayer. For the Py/MoS2 system, in-plane experiments suggest that a large STT is present and are comparable to what is observed for the more traditional Py/Pt system . On the other hand, the out-of-plane experiment for the Py/MoS2 system is qualitatively very different from Py/Pt. Our results suggest that ST-FMR experiments for arbitrarily magnetized magnetic films are useful in characterizing STT generated from interface rather than bulk effects. Work at Northwestern was supported by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Science and Engineering Division under grant

  7. Additives to silane for thin film silicon photovoltaic devices

    Science.gov (United States)

    Hurley, Patrick Timothy; Ridgeway, Robert Gordon; Hutchison, Katherine Anne; Langan, John Giles

    2013-09-17

    Chemical additives are used to increase the rate of deposition for the amorphous silicon film (.alpha.Si:H) and/or the microcrystalline silicon film (.mu.CSi:H). The electrical current is improved to generate solar grade films as photoconductive films used in the manufacturing of Thin Film based Photovoltaic (TFPV) devices.

  8. Electrical resistivity of thin metal films

    CERN Document Server

    Wissmann, Peter

    2007-01-01

    The aim of the book is to give an actual survey on the resistivity of thin metal and semiconductor films interacting with gases. We discuss the influence of the substrate material and the annealing treatment of the films, presenting our experimental data as well as theoretical models to calculate the scattering cross section of the conduction electrons in the frame-work of the scattering hypothesis. Main emphasis is laid on the comparison of gold and silver films which exhibit nearly the same lattice structure but differ in their chemical activity. In conclusion, the most important quantity for the interpretation is the surface charging z while the correlation with the optical data or the frustrated IR vibrations seems the show a more material-specific character. Z can be calculated on the basis of the density functional formalism or the self-consistent field approximation using Mulliken’s population analysis.

  9. Thermal properties of methyltrimethoxysilane aerogel thin films

    Directory of Open Access Journals (Sweden)

    Leandro N. Acquaroli

    2016-10-01

    Full Text Available Aerogels are light and porous solids whose properties, largely determined by their nanostructure, are useful in a wide range of applications, e.g., thermal insulation. In this work, as-deposited and thermally treated air-filled silica aerogel thin films synthesized using the sol-gel method were studied for their thermal properties using the 3-omega technique, at ambient conditions. The thermal conductivity and diffusivity were found to increase as the porosity of the aerogel decreased. Thermally treated films show a clear reduction in thermal conductivity compared with that of as-deposited films, likely due to an increase of porosity. The smallest thermal conductivity and diffusivity found for our aerogels were 0.019 W m−1 K−1 and 9.8 × 10-9 m2 s−1. A model was used to identify the components (solid, gaseous and radiative of the total thermal conductivity of the aerogel.

  10. X-ray fluorescence analysis of Fe - Ni - Mo systems

    International Nuclear Information System (INIS)

    Belyaev, E.E.; Ershov, A.V.; Mashin, A.I.; Mashin, N.I.; Rudnevskij, N.K.

    1998-01-01

    Procedures for the X-ray fluorescence determination of the composition and thickness of Fe - Ni - Mo thin films and the concentration of elements in thick films of the Fe - Ni - Mo alloy are developed [ru

  11. Low Temperature Reactive Sputtering of Thin Aluminum Nitride Films on Metallic Nanocomposites.

    Directory of Open Access Journals (Sweden)

    Khaled Sayed Elbadawi Ramadan

    Full Text Available Piezoelectric aluminum nitride thin films were deposited on aluminum-molybdenum (AlMo metallic nanocomposites using reactive DC sputtering at room temperature. The effect of sputtering parameters on film properties was assessed. A comparative study between AlN grown on AlMo and pure aluminum showed an equivalent (002 crystallographic texture. The piezoelectric coefficients were measured to be 0.5±0.1 C m(-2 and 0.9±0.1 C m(-2, for AlN deposited on Al/0.32Mo and pure Al, respectively. Films grown onto Al/0.32Mo however featured improved surface roughness. Roughness values were measured to be 1.3nm and 5.4 nm for AlN films grown on AlMo and on Al, respectively. In turn, the dielectric constant was measured to be 8.9±0.7 for AlN deposited on Al/0.32Mo seed layer, and 8.7±0.7 for AlN deposited on aluminum; thus, equivalent within experimental error. Compatibility of this room temperature process with the lift-off patterning of the deposited AlN is also reported.

  12. Low Temperature Reactive Sputtering of Thin Aluminum Nitride Films on Metallic Nanocomposites.

    Science.gov (United States)

    Ramadan, Khaled Sayed Elbadawi; Evoy, Stephane

    2015-01-01

    Piezoelectric aluminum nitride thin films were deposited on aluminum-molybdenum (AlMo) metallic nanocomposites using reactive DC sputtering at room temperature. The effect of sputtering parameters on film properties was assessed. A comparative study between AlN grown on AlMo and pure aluminum showed an equivalent (002) crystallographic texture. The piezoelectric coefficients were measured to be 0.5±0.1 C m(-2) and 0.9±0.1 C m(-2), for AlN deposited on Al/0.32Mo and pure Al, respectively. Films grown onto Al/0.32Mo however featured improved surface roughness. Roughness values were measured to be 1.3nm and 5.4 nm for AlN films grown on AlMo and on Al, respectively. In turn, the dielectric constant was measured to be 8.9±0.7 for AlN deposited on Al/0.32Mo seed layer, and 8.7±0.7 for AlN deposited on aluminum; thus, equivalent within experimental error. Compatibility of this room temperature process with the lift-off patterning of the deposited AlN is also reported.

  13. Deposition and characterization of ZnSe nanocrystalline thin films

    Science.gov (United States)

    Temel, Sinan; Gökmen, F. Özge; Yaman, Elif; Nebi, Murat

    2018-02-01

    ZnSe nanocrystalline thin films were deposited at different deposition times by using the Chemical Bath Deposition (CBD) technique. Effects of deposition time on structural, morphological and optical properties of the obtained thin films were characterized. X-ray diffraction (XRD) analysis was used to study the structural properties of ZnSe nanocrystalline thin films. It was found that ZnSe thin films have a cubic structure with a preferentially orientation of (111). The calculated average grain size value was about 28-30 nm. The surface morphology of these films was studied by the Field Emission Scanning Electron Microscope (FESEM). The surfaces of the thin films were occurred from small stacks and nano-sized particles. The band gap values of the ZnSe nanocrystalline thin films were determined by UV-Visible absorption spectrum and the band gap values were found to be between 2.65-2.86 eV.

  14. Scanning tunneling spectroscopy of Pb thin films

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Michael

    2010-12-13

    The present thesis deals with the electronic structure, work function and single-atom contact conductance of Pb thin films, investigated with a low-temperature scanning tunneling microscope. The electronic structure of Pb(111) thin films on Ag(111) surfaces is investigated using scanning tunneling spectroscopy (STS). Quantum size effects, in particular, quantum well states (QWSs), play a crucial role in the electronic and physical properties of these films. Quantitative analysis of the spectra yields the QWS energies as a function of film thickness, the Pb bulk-band dispersion in {gamma}-L direction, scattering phase shifts at the Pb/Ag interface and vacuum barrier as well as the lifetime broadening at anti {gamma}. The work function {phi} is an important property of surfaces, which influences catalytic reactivity and charge injection at interfaces. It controls the availability of charge carriers in front of a surface. Modifying {phi} has been achieved by deposition of metals and molecules. For investigating {phi} at the atomic scale, scanning tunneling microscopy (STM) has become a widely used technique. STM measures an apparent barrier height {phi}{sub a}, which is commonly related to the sample work function {phi}{sub s} by: {phi}{sub a}=({phi}{sub s}+{phi}{sub t}- vertical stroke eV vertical stroke)/2, with {phi}{sub t} the work function of the tunneling tip, V the applied tunneling bias voltage, and -e the electron charge. Hence, the effect of the finite voltage in STM on {phi}{sub a} is assumed to be linear and the comparison of {phi}{sub a} measured at different surface sites is assumed to yield quantitative information about work function differences. Here, the dependence of {phi}{sub a} on the Pb film thickness and applied bias voltage V is investigated. {phi}{sub a} is found to vary significantly with V. This bias dependence leads to drastic changes and even inversion of contrast in spatial maps of {phi}{sub a}, which are related to the QWSs in the Pb

  15. Photoelectrochemical (PEC) studies on CdSe thin films ...

    Indian Academy of Sciences (India)

    TECS

    Abstract. Thin films of CdSe were deposited by potentiostatic mode on different substrates such as stainless steel, titanium and fluorine tin–oxide (FTO) coated glass using non-aqueous bath. The preparative parameters were optimized to get good quality CdSe thin films. These films were characterized by X-ray diffraction.

  16. Oriented growth of thin films of samarium oxide by MOCVD

    Indian Academy of Sciences (India)

    Unknown

    Infrared spectroscopic study reveals that films grown above 600°C are free of carbon. Keywords. MOCVD; thin films .... Simultaneous thermogravimetry and differential thermal analysis (TG/DTA) of the complex was carried ..... quality thin films of rare earth oxides by MOCVD, using the phenanthroline adducts of pentadionate ...

  17. Dynamics of a spreading thin film with gravitational counterflow ...

    Indian Academy of Sciences (India)

    In the present work, dynamics of a thin film spreading due to a thermocapillary stress is mod- eled within lubrication approximation. In microscale flows, the large surface to volume ratios allow interfacial stresses to exert a driving influence. This ability to drive thin film using thermo- capillary stress is used to spread film for ...

  18. Structural characterization of vacuum evaporated ZnSe thin films

    Indian Academy of Sciences (India)

    The lattice parameter, grain size, average internal stress, microstrain, dislocation density and degree of pre- ferred orientation in the film are calculated and correlated with Ts. Keywords. ZnSe thin films; X-ray diffraction; average internal stress; microstrain; dislocation density. 1. Introduction. Thin films of ZnSe has attracted ...

  19. Production of large area layered MoS2 films

    International Nuclear Information System (INIS)

    Lemon, K.S.; Singh, A.; Taheri, E.; Jakovidis, G.

    2000-01-01

    Full text: The layered structure of transition metal di-chalcogenides makes this family of compounds of interest to industry because of their potential use as lubricants, photovoltaic materials or as catalysts. An important example of these compounds is Molybdenum Disulphide (MoS 2 ), which has been shown to have remarkable lubrication properties over a range of physical conditions, including pressures from high vacuum to atmospheric, and temperatures over the 100 - 700K range. This compound grows as hexagonal platelets which are arranged either perpendicular to the substrate, or parallel to it (i.e. forming layers). These two forms are known as type I and type II morphologies respectively. Type II MoS 2 is of interest to lubrication and photovoltaic applications because of its low friction and densities of minority carrier recombination centres. The production of large area films which are predominantly type II in nature, however, has not been easy, most attempts resulting in films which are a mixture of the two types. We report, for the first time, a technique that is capable of producing type II films in areas large enough to be useful. The method is based on vapour transport, and can produce smooth polycrystalline films of the order of 10 cm 2 . This presentation will describe the method in full detail. SEM results will be presented that show the layered growth of the hexagonal platelets. Results of X-ray diffraction analysis will confirm the single phase nature of the sample

  20. Metallic Thin-Film Bonding and Alloy Generation

    Science.gov (United States)

    Fryer, Jack Merrill (Inventor); Campbell, Geoff (Inventor); Peotter, Brian S. (Inventor); Droppers, Lloyd (Inventor)

    2016-01-01

    Diffusion bonding a stack of aluminum thin films is particularly challenging due to a stable aluminum oxide coating that rapidly forms on the aluminum thin films when they are exposed to atmosphere and the relatively low meting temperature of aluminum. By plating the individual aluminum thin films with a metal that does not rapidly form a stable oxide coating, the individual aluminum thin films may be readily diffusion bonded together using heat and pressure. The resulting diffusion bonded structure can be an alloy of choice through the use of a carefully selected base and plating metals. The aluminum thin films may also be etched with distinct patterns that form a microfluidic fluid flow path through the stack of aluminum thin films when diffusion bonded together.

  1. Dissociation of dilute immiscible copper alloy thin films

    International Nuclear Information System (INIS)

    Barmak, K.; Lucadamo, G. A.; Cabral, C. Jr.; Lavoie, C.; Harper, J. M. E.

    2000-01-01

    The dissociation behavior of dilute, immiscible Cu-alloy thin films is found to fall into three broad categories that correlate most closely with the form of the Cu-rich end of the binary alloy phase diagrams. Available thermodynamic and tracer diffusion data shed further light on alloy behavior. Eight alloying elements were selected for these studies, with five elements from groups 5 and 6, two from group 8, and one from group 11 of the periodic table. They are respectively V, Nb, Ta, Cr, Mo, Fe, Ru, and Ag. The progress of precipitation in approximately 500-nm-thick alloy films, containing 2.5-3.8 at. % solute, was followed with in situ resistance and stress measurements as well as with in situ synchrotron x-ray diffraction. In addition, texture analysis and transmission electron microscopy were used to investigate the evolution of microstructure and texture of Cu(Ta) and Cu(Ag). For all eight alloys, dissociation occurred upon heating, with the rejection of solute and evolution of microstructure often occurring in multiple steps that range over several hundred degrees between approximately 100 and 900 degree sign C. However, in most cases, substantial reductions in resistivity of the films took place below 400 degree sign C, at temperatures of interest to copper metallization schemes for silicon chip technology. (c) 2000 American Institute of Physics

  2. Porous Organic Cage Thin Films and Molecular-Sieving Membranes.

    Science.gov (United States)

    Song, Qilei; Jiang, Shan; Hasell, Tom; Liu, Ming; Sun, Shijing; Cheetham, Anthony K; Sivaniah, Easan; Cooper, Andrew I

    2016-04-06

    Porous organic cage molecules are fabricated into thin films and molecular-sieving membranes. Cage molecules are solution cast on various substrates to form amorphous thin films, with the structures tuned by tailoring the cage chemistry and processing conditions. For the first time, uniform and pinhole-free microporous cage thin films are formed and demonstrated as molecular-sieving membranes for selective gas separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Solution processed pentacene thin films and their structural properties

    International Nuclear Information System (INIS)

    Tao Chunlan; Zhang Xuhui; Zhang Fujia; Liu Yiyang; Zhang Haoli

    2007-01-01

    The paper reported the solution process of pentacene thin films from organic solvent O-dichlorobenzene. The pentacene thin films obtained from different conditions were characterized by X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), and UV-vis spectroscopy. The result shows that the pentacene solution was successfully obtained at a minimum temperature of 40 deg. C. The optimum temperature of forming pentacene thin films was 100 deg. C

  4. Rhenium Alloys as Ductile Substrates for Diamond Thin-Film Electrodes.

    Science.gov (United States)

    Halpern, Jeffrey M; Martin, Heidi B

    2014-02-01

    Molybdenum-rhenium (Mo/Re) and tungsten-rhenium (W/Re) alloys were investigated as substrates for thin-film, polycrystalline boron-doped diamond electrodes. Traditional, carbide-forming metal substrates adhere strongly to diamond but lose their ductility during exposure to the high-temperature (1000°C) diamond, chemical vapor deposition environment. Boron-doped semi-metallic diamond was selectively deposited for up to 20 hours on one end of Mo/Re (47.5/52.5 wt.%) and W/Re (75/25 wt.%) alloy wires. Conformal diamond films on the alloys displayed grain sizes and Raman signatures similar to films grown on tungsten; in all cases, the morphology and Raman spectra were consistent with well-faceted, microcrystalline diamond with minimal sp 2 carbon content. Cyclic voltammograms of dopamine in phosphate-buffered saline (PBS) showed the wide window and low baseline current of high-quality diamond electrodes. In addition, the films showed consistently well-defined, dopamine electrochemical redox activity. The Mo/Re substrate regions that were uncoated but still exposed to the diamond-growth environment remained substantially more flexible than tungsten in a bend-to-fracture rotation test, bending to the test maximum of 90° and not fracturing. The W/Re substrates fractured after a 27° bend, and the tungsten fractured after a 21° bend. Brittle, transgranular cleavage fracture surfaces were observed for tungsten and W/Re. A tension-induced fracture of the Mo/Re after the prior bend test showed a dimple fracture with a visible ductile core. Overall, the Mo/Re and W/Re alloys were suitable substrates for diamond growth. The Mo/Re alloy remained significantly more ductile than traditional tungsten substrates after diamond growth, and thus may be an attractive metal substrate for more ductile, thin-film diamond electrodes.

  5. Polycrystalline-thin-film thermophotovoltaic cells

    Science.gov (United States)

    Dhere, Neelkanth G.

    1996-02-01

    Thermophotovoltaic (TPV) cells convert thermal energy to electricity. Modularity, portability, silent operation, absence of moving parts, reduced air pollution, rapid start-up, high power densities, potentially high conversion efficiencies, choice of a wide range of heat sources employing fossil fuels, biomass, and even solar radiation are key advantages of TPV cells in comparison with fuel cells, thermionic and thermoelectric convertors, and heat engines. The potential applications of TPV systems include: remote electricity supplies, transportation, co-generation, electric-grid independent appliances, and space, aerospace, and military power applications. The range of bandgaps for achieving high conversion efficiencies using low temperature (1000-2000 K) black-body or selective radiators is in the 0.5-0.75 eV range. Present high efficiency convertors are based on single crystalline materials such as In1-xGaxAs, GaSb, and Ga1-xInxSb. Several polycrystalline thin films such as Hg1-xCdxTe, Sn1-xCd2xTe2, and Pb1-xCdxTe, etc., have great potential for economic large-scale applications. A small fraction of the high concentration of charge carriers generated at high fluences effectively saturates the large density of defects in polycrystalline thin films. Photovoltaic conversion efficiencies of polycrystalline thin films and PV solar cells are comparable to single crystalline Si solar cells, e.g., 17.1% for CuIn1-xGaxSe2 and 15.8% for CdTe. The best recombination-state density Nt is in the range of 10-15-10-16 cm-3 acceptable for TPV applications. Higher efficiencies may be achieved because of the higher fluences, possibility of bandgap tailoring, and use of selective emitters such as rare earth oxides (erbia, holmia, yttria) and rare earth-yttrium aluminium garnets. As compared to higher bandgap semiconductors such as CdTe, it is easier to dope the lower bandgap semiconductors. TPV cell development can benefit from the more mature PV solar cell and opto

  6. Postdeposition Annealing Effect on Cu2ZnSnS4 Thin Films Grown at Different Substrate Temperature

    Directory of Open Access Journals (Sweden)

    Samia Ahmed Nadi

    2014-01-01

    Full Text Available Cu2ZnSnS4 (CZTS thin films were deposited on top of Molybdenum (Mo coated soda lime glass (SLG substrates using a single target rf magnetron sputtering technique. The sputtering parameters such as base pressure, working pressure, rf power, argon (Ar gas flow rate, and deposition time were kept consistent throughout the experiment. The effect of different substrate temperatures, for example, room temperature (RT, 300°C, 350°C, 370°C, 400°C, and 450°C, was analyzed by studying their structural, electrical, and optical properties. As-sputtered films were then annealed at 460°C. X-ray diffraction (XRD measurement revealed the structure to be kesterite with peak of (112 plane in both annealed and as-sputtered CZTS thin films. The crystallinity of the films improved with the increasing substrate temperature until 370°C. Secondary phases of MoS2, CuxMoSx, CuxSnSx, CuxS, and Cu6MoSnS8 (hemusite were also observed in the annealed CZTS films. Scanning electron microscopy (SEM shows crystallite size of deposited CZTS thin film to be proportionally related to deposition temperature. The highest surface roughness of 67.318 nm is observed by atomic force microscopy (AFM. The conductivity type of the films was found to be p-type by Hall effect measurement system.

  7. Review of the fundamentals of thin-film growth.

    Science.gov (United States)

    Kaiser, Norbert

    2002-06-01

    The properties of a thin film of a given material depend on the film's real structure. The real structure is defined as the link between a thin film's deposition parameters and its properties. To facilitate engineering the properties of a thin film by manipulating its real structure, thin-film formation is reviewed as a process starting with nucleation followed by coalescence and subsequent thickness growth, all stages of which can be influenced by deposition parameters. The focus in this review is on dielectric and metallic films and their optical properties. In contrast to optoelectronics all these film growth possibilities for the engineering of novel optical films with extraordinary properties are just beginning to be used.

  8. Progress on thin-film sensors for space propulsion technology

    Science.gov (United States)

    Kim, Walter S.

    1987-01-01

    The objective is to develop thin-film thermocouples for Space Shuttle Main Engine (SSME) components. Thin-film thermocouples have been developed for aircraft gas turbine engines and are in use for temperature measurement on turbine blades to 1800 F. The technology established for aircraft gas turbine engines will be adapted to the materials and environment encountered in the SSME. Specific goals are to expand the existing in-house thin-film sensor technology and to test the survivability and durability of thin-film sensors in the SSME environment.

  9. Physics of thin films advances in research and development

    CERN Document Server

    Hass, Georg; Vossen, John L

    2013-01-01

    Physics of Thin Films: Advances in Research and Development, Volume 12 reviews advances that have been made in research and development concerning the physics of thin films. This volume covers a wide range of preparative approaches, physics phenomena, and applications related to thin films. This book is comprised of four chapters and begins with a discussion on metal coatings and protective layers for front surface mirrors used at various angles of incidence from the ultraviolet to the far infrared. Thin-film materials and deposition conditions suitable for minimizing reflectance changes with

  10. Sputtering materials for VLSI and thin film devices

    CERN Document Server

    Sarkar, Jaydeep

    2010-01-01

    An important resource for students, engineers and researchers working in the area of thin film deposition using physical vapor deposition (e.g. sputtering) for semiconductor, liquid crystal displays, high density recording media and photovoltaic device (e.g. thin film solar cell) manufacturing. This book also reviews microelectronics industry topics such as history of inventions and technology trends, recent developments in sputtering technologies, manufacturing steps that require sputtering of thin films, the properties of thin films and the role of sputtering target performance on overall p

  11. Crystalline thin films: The electrochemical atomic layer deposition (ECALD) view

    CSIR Research Space (South Africa)

    Modibedi, M

    2011-09-01

    Full Text Available Electrochemical atomic layer deposition technique is selected as one of the methods to prepare thin films for various applications, including electrocatalytic materials and compound....

  12. Thin-Film Materials Synthesis and Processing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides a wide capability for deposition and processing of thin films, including sputter and ion-beam deposition, thermal evaporation, electro-deposition,...

  13. Development of CIGS2 thin film solar cells

    International Nuclear Information System (INIS)

    Dhere, Neelkanth G.; Gade, Vivek S.; Kadam, Ankur A.; Jahagirdar, Anant H.; Kulkarni, Sachin S.; Bet, Sachin M.

    2005-01-01

    Research and development of CuIn 1-x Ga x Se 2-y S y (CIGSS) thin-film solar cells on ultralightweight flexible metallic foil substrates is being carried out at FSEC PV Materials Lab for space applications. Earlier, the substrate size was limited to 3 cm x 2.5 cm. Large-area sputtering systems and scrubber for hydrogen selenide and sulfide have been designed and constructed for preparation of CIGSS thin-films on large (15 cm x 10 cm) substrates. A selenization/sulfurization furnace donated by Shell (formerly Siemens) Solar has also been refurbished and upgraded. The sputtering target assembly design was modified for proper clamping of targets and effective cooling. A new design of the magnetic assembly for large-area magnetron sputtering sources was implemented so as to achieve uniform deposition on large area. Lightweight stainless steel foil and ultralightweight titanium foil substrates were utilized to increase the specific power of solar cells. Sol-gel derived SiO 2 layers were coated on titanium foil by dip coating method. Deposition parameters for the preparation of molybdenum back contact layers were optimized so as to minimize the residual stress as well as reaction with H 2 S. Presently large (15 cm x 10 cm) CuIn 1-x Ga x S 2 (CIGS2) thin film solar cells are being prepared on Mo-coated titanium and stainless steel foil by sulfurization of CuGa/In metallic precursors in diluted Ar:H 2 S(4%). Heterojunction partner CdS layers are deposited by chemical bath deposition. The regeneration sequence of ZnO/ZnO:Al targets was optimized for obtaining consistently good-quality, transparent and conducting ZnO/ZnO:Al bilayer by RF magnetron-sputter deposition. Excellent facilities at FSEC PV Materials Lab are one of its kinds and could serve as a nucleus of a small pilot plant for CIGSS thin film solar cell fabrication

  14. Seebeck effect of some thin film carbides

    International Nuclear Information System (INIS)

    Beensh-Marchwicka, G.; Prociow, E.

    2002-01-01

    Several materials have been investigated for high-temperature thin film thermocouple applications. These include silicon carbide with boron (Si-C-B), ternary composition based on Si-C-Mn, fourfold composition based on Si-C-Zr-B and tantalum carbide (TaC). All materials were deposited on quartz or glass substrates using the pulse sputter deposition technique. Electrical conduction and thermoelectric power were measured for various compositions at 300-550 K. It has been found, that the efficiency of thermoelectric power of films containing Si-C base composition was varied from 0.0015-0.034 μW/cmK 2 . However for TaC the value about 0.093 μW/cmK 2 was obtained. (author)

  15. TEM characterization of nanodiamond thin films.

    Energy Technology Data Exchange (ETDEWEB)

    Qin, L.-C.; Zhou, D.; Krauss, A. R.; Gruen, D. M.; Chemistry

    1998-05-01

    The microstructure of thin films grown by microwave plasma-enhanced chemical vapor deposition (MPCVD) from fullerene C{sub 60} precursors has been characterized by scanning electron microscopy (SEM), selected-area electron diffraction (SAED), bright-field electron microscopy, high-resolution electron microscopy (HREM), and parallel electron energy loss spectroscopy (PEELS). The films are composed of nanosize crystallites of diamond, and no graphitic or amorphous phases were observed. The diamond crystallite size measured from lattice images shows that most grains range between 3-5 nm, reflecting a gamma distribution. SAED gave no evidence of either sp2-bonded glassy carbon or sp3-bonded diamondlike amorphous carbon. The sp2-bonded configuration found in PEELS was attributed to grain boundary carbon atoms, which constitute 5-10% of the total. Occasionally observed larger diamond grains tend to be highly faulted.

  16. Thin Film Photovoltaics: Markets and Industry

    OpenAIRE

    Jäger-Waldau, Arnulf

    2012-01-01

    Since 2000, total PV production increased almost by two orders of magnitude, with a compound annual growth rate of over 52%. The most rapid growth in annual cell and module production over the last five years could be observed in Asia, where China and Taiwan together now account for about 60% of worldwide production. Between 2005 and 2009, thin film production capacity and volume increased more than the overall industry but did not keep up in 2010 and 2011 due to the rapid price decline for s...

  17. Thin-film optical shutter. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Matlow, S.L.

    1981-02-01

    A specific embodiment of macroconjugated macromolecules, the poly (p-phenylene)'s, has been chosen as the one most likely to meet all of the requirements of the Thin Film Optical Shutter project (TFOS). The reason for this choice is included. In order to be able to make meaningful calculations of the thermodynamic and optical properties of the poly (p-phenylene)'s a new quantum mechanical method was developed - Equilibrium Bond Length (EBL) Theory. Some results of EBL Theory are included.

  18. Thin molecular films of supramolecular porphyrins

    Directory of Open Access Journals (Sweden)

    KOITI ARAKI

    2000-03-01

    Full Text Available A relevant series of symmetric supramolecular porphyrins has been obtained by attaching four [Ru II(bipy2Cl] groups to the pyridyl substituents of meso-tetra(4-pyridylporphyrin and its metallated derivatives. These compounds display a rich electrochemistry and versatile catalytic, electrocatalytic and photochemical properties, associated with the ruthenium-bipyridine and the porphyrin complexes. These properties can be transferred to the electrodes by attaching thin molecular films of the compounds, by dip-coating, electrostatic assembly or electropolymerization. In this way, the interesting properties of those supermolecules and supramolecular assemblies can be used to prepare molecular devices and sensors.

  19. Infrared control coating of thin film devices

    Energy Technology Data Exchange (ETDEWEB)

    Berland, Brian Spencer; Stowell, Jr., Michael Wayne; Hollingsworth, Russell

    2017-02-28

    Systems and methods for creating an infrared-control coated thin film device with certain visible light transmittance and infrared reflectance properties are disclosed. The device may be made using various techniques including physical vapor deposition, chemical vapor deposition, thermal evaporation, pulsed laser deposition, sputter deposition, and sol-gel processes. In particular, a pulsed energy microwave plasma enhanced chemical vapor deposition process may be used. Production of the device may occur at speeds greater than 50 Angstroms/second and temperatures lower than 200.degree. C.

  20. Atomic Structure Control of Silica Thin Films on Pt(111)

    KAUST Repository

    Crampton, Andrew S

    2015-05-27

    Metal oxide thin films grown on metal single crystals are commonly used to model heterogeneous catalyst supports. The structure and properties of thin silicon dioxide films grown on metal single crystals have only recently been thoroughly characterized and their spectral properties well established. We report the successful growth of a three- dimensional, vitreous silicon dioxide thin film on the Pt(111) surface and reproduce the closed bilayer structure previously reported. The confirmation of the three dimensional nature of the film is unequivocally shown by the infrared absorption band at 1252 cm−1. Temperature programmed desorption was used to show that this three-dimensional thin film covers the Pt(111) surface to such an extent that its application as a catalyst support for clusters/nanoparticles is possible. The growth of a three-dimensional film was seen to be directly correlated with the amount of oxygen present on the surface after the silicon evaporation process. This excess of oxygen is tentatively attributed to atomic oxygen being generated in the evaporator. The identification of atomic oxygen as a necessary building block for the formation of a three-dimensional thin film opens up new possibilities for thin film growth on metal supports, whereby simply changing the type of oxygen enables thin films with different atomic structures to be synthesized. This is a novel approach to tune the synthesis parameters of thin films to grow a specific structure and expands the options for modeling common amorphous silica supports under ultra high vacuum conditions.

  1. Rocking disc electro-deposition of copper films on Mo/MoSe{sub 2} substrates

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, Charles Y.; Frith, Paul E. [Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom); Zoppi, Guillaume; Forbes, Ian [Northumbria Photovoltaics Applications Centre, Northumbria University, NE1 8ST (United Kingdom); Rogers, Keith D. [Cranfield Health, Cranfield University, Shrivenham Campus, Swindon, SN6 8LA (United Kingdom); Lane, David W. [Department of Applied Science, Security and Resilience, Cranfield University, Shrivenham, Swindon, SN6 8LA (United Kingdom); Marken, Frank, E-mail: F.Marken@bath.ac.uk [Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY (United Kingdom)

    2011-08-31

    A novel electro-deposition method based on a rocking disc system with {pi}/3 amplitude and variable frequency is introduced. Uniform copper films were deposited from a 0.1 M CuSO{sub 4}/3.0 M NaOH/0.2 M sorbitol bath directly onto 12.1 cm{sup 2} Mo/MoSe{sub 2} substrates with X-ray diffraction showing a thickness variation of {+-}5% over this area. Investigation of the mass transport conditions suggests (i) uniform diffusion over the sample, (ii) a rate of mass transport proportional to the square root of the rocking rate, and (iii) turbulent conditions, which are able to dislodge gas bubbles during electro-deposition.

  2. High power impulse magnetron sputtering of CIGS thin films for high efficiency thin film solar cells

    Czech Academy of Sciences Publication Activity Database

    Olejníček, Jiří; Hubička, Zdeněk; Kohout, Michal; Kšírová, Petra; Kment, Štěpán; Brunclíková, Michaela; Čada, Martin; Darveau, S.A.; Exstrom, C.L.

    2014-01-01

    Roč. 1, č. 3 (2014), s. 135-137 ISSN 2336-2626 R&D Projects: GA MŠk LH12045 Institutional support: RVO:68378271 Keywords : CIGS * HiPIMS * emission spectroscopy * thin films * magnetron sputtering Subject RIV: BL - Plasma and Gas Discharge Physics http://fyzika.feld.cvut.cz/misc/ppt/articles/2014/olejnicek.pdf

  3. An investigation of material properties and tribological performance of magnetron sputtered thin film coatings

    Science.gov (United States)

    Singh, Harpal

    This dissertation is divided into two categories based upon lubrication functionality and its application. The categories are: Dry film lubrication and Fluid film lubrication with thin film coatings. Thin film coatings examined in this work were deposited using closed field unbalanced magnetron sputtering and RF-DC coupled magnetron sputtering systems. In Dry/Solid film lubrication, the mechanical, structural and tribological properties of two Molybdenum disulphide (MoS2) based coatings are examined and evaluated. Among the two coatings, one coating is doped with Ti (Ti-MoS2) and the other is a combination of metal, lubricant and oxide (Sb2O3/Au - MoS2). These coatings are known to provide low friction in vacuum environments. The goal of this work was to evaluate friction and wear performance of MoS2 doped coatings in unidirectional and reciprocating sliding contact under different environmental conditions. Sliding contact results showed friction and wear dependence on temperature and humidity. The formation and removal of transfer films and the recrystallization and reorientation of basal layers on the steel counterface was observed as the mechanism for low friction. Structural analysis revealed a relationship between the microstructural properties and tribological performance. It was also observed that the addition of dopants (Ti, Au, Sb 2O3) improved the mechanical properties as compared to pure MoS2 coatings. Further, the rolling contact performance of the coatings was measured on a five ball on rod tribometer and a Thrust bearing tribometer under vacuum and air environments. The rolling contact experiments indicated that life of the rolling components depend on the amount of material present between the contacts. Fluid film lubrication with thin film coatings investigates the possibilities to improve the performance and durability of tribological components when oils and thin films are synergistically coupled. In this work, the ability of a Diamond Like Carbon

  4. Thin films of metal-organic compounds and metal nanoparticle ...

    Indian Academy of Sciences (India)

    matrix. The methodology can be used to produce free-standing films. Optical limiting capability of the nanoparticle-embedded polymer film is demonstrated. Keywords. Polar crystal; uniaxial orientational order; thin film; second harmonic gen- eration; silver nanoparticle; polyvinyl alcohol; free-standing film; optical limiter.

  5. Methods for producing thin film charge selective transport layers

    Science.gov (United States)

    Hammond, Scott Ryan; Olson, Dana C.; van Hest, Marinus Franciscus Antonius Maria

    2018-01-02

    Methods for producing thin film charge selective transport layers are provided. In one embodiment, a method for forming a thin film charge selective transport layer comprises: providing a precursor solution comprising a metal containing reactive precursor material dissolved into a complexing solvent; depositing the precursor solution onto a surface of a substrate to form a film; and forming a charge selective transport layer on the substrate by annealing the film.

  6. Dimensional scaling of perovskite ferroelectric thin films

    Science.gov (United States)

    Keech, Ryan R.

    Dimensional size reduction has been the cornerstone of the exponential improvement in silicon based logic devices for decades. However, fundamental limits in the device physics were reached ˜2003, halting further reductions in clock speed without significant penalties in power consumption. This has motivated the research into next generation transistors and switching devices to reinstate the scaling laws for clock speed. This dissertation aims to support the scaling of devices that are based on ferroelectricity and piezoelectricity and to provide a roadmap for the corresponding materials performance. First, a scalable growth process to obtain highly {001}-oriented lead magnesium niobate - lead titanate (PMN-PT) thin films was developed, motivated by the high piezoelectric responses observed in bulk single crystals. It was found that deposition of a 2-3 nm thick PbO buffer layer on {111} Pt thin film bottom electrodes, prior to chemical solution deposition of PMN-PT reduces the driving force for Pb diffusion from the PMN-PT to the bottom electrode, and facilitates nucleation of {001}-oriented perovskite grains. Energy dispersive spectroscopy demonstrated that up to 10% of the Pb from a PMN-PT precursor solution may diffuse into the bottom electrode. PMN-PT grains with a mixed {101}/{111} orientation in a matrix of Pb-deficient pyrochlore phase were then promoted near the interface. When this is prevented, phase pure films with {001} orientation with Lotgering factors of 0.98-1.0, can be achieved. The resulting films of only 300 nm in thickness exhibit longitudinal effective d33,f coefficients of ˜90 pm/V and strain values of ˜1% prior to breakdown. 300 nm thick epitaxial and polycrystalline lead magnesium niobate - lead titanate (70PMN-30PT) blanket thin films were studied for the relative contributions to property thickness dependence from interfacial and grain boundary low permittivity layers. Epitaxial PMN-PT films were grown on SrRuO 3 /(001)SrTiO3, while

  7. Characterization of ultrasonic spray pyrolysed ruthenium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Patil, P.S.; Ennaoui, E.A.; Lokhande, C.D.; Mueller, M.; Giersig, M.; Diesner, K.; Tributsch, H. [Hahn-Meitner-Institut Berlin GmbH (Germany). Bereich Physikalische Chemie

    1997-11-21

    The ultrasonic spray pyrolysis (USP) technique was employed to deposit ruthenium oxide thin films. The films were prepared at 190 C substrate temperature and further annealed at 350 C for 30 min in air. The films were 0.22 {mu} thick and black grey in color. The structural, compositional and optical properties of ruthenium oxide thin films are reported. Contactless transient photoconductivity measurement was carried out to calculate the decay time of excess charge carriers in ruthenium oxide thin films. (orig.) 28 refs.

  8. Colored and transparent oxide thin films prepared by magnetron sputtering: the glass blower approach.

    Science.gov (United States)

    Gil-Rostra, Jorge; Chaboy, Jesús; Yubero, Francisco; Vilajoana, Antoni; González-Elipe, Agustín R

    2013-03-01

    This work describes the reactive magnetron sputtering processing at room temperature of several mixed oxide MxSiyOz thin films (M: Fe, Ni, Co, Mo, W, Cu) intended for optical, coloring, and aesthetic applications. Specific colors can be selected by adjusting the plasma gas composition and the Si-M ratio in the magnetron target. The microstructure and chemistry of the films are characterized by a large variety of techniques including X-ray photoemission spectroscopy, X-ray absorption spectroscopy (XAS), and infrared spectroscopy, while their optical properties are characterized by UV-vis transmission and reflection analysis. Particularly, XAS analysis of the M cations in the amorphous thin films has provided valuable information about their chemical state and local structure. It is concluded that the M cations are randomly distributed within the SiO2 matrix and that both the M concentration and its chemical state are the key parameters to control the final color of the films.

  9. Electrodeposited Pd-Ni-Mo film as a cathode material for hydrogen evolution reaction

    International Nuclear Information System (INIS)

    Tang, Junlei; Zhao, Xuhui; Zuo, Yu; Ju, Pengfei; Tang, Yuming

    2015-01-01

    A Pd-Ni-Mo film was prepared on stainless steel substrate as a novel electrode material for hydrogen evolution reaction catalysis. The surface micro-morphology, chemical composition and microstructure of the Pd-Ni-Mo film were characterizated with SEM, EDS, XPS and TEM. The obtained film is a multiple phase ternary alloy containing crystallines and amorphous phases. The electrochemical measurements showed that the Pd-Ni-Mo film has excellent catalytic activity for hydrogen evolution reaction with good corrosion resistance in 1 M NaOH solution. The proton discharge electrosorption is the rate determining step of hydrogen evolution reaction on Pd-Ni-Mo film surface. The better electrocatalysis performance of the Pd-Ni-Mo film is attributed to its larger real surface as well as the enhanced electrochemical activity of the film surface due to the alloying effect

  10. Glassy dynamics and heterogeneity of polymer thin films

    International Nuclear Information System (INIS)

    Kanaya, Toshiji; Inoue, Rintaro; Kawashima, Kazuko; Miyazaki, Tsukasa; Matsuba, Go; Nishida, Koji; Tsukushi, Itaru; Shibata, Kaoru; Hino, Masahiro

    2009-01-01

    We review our recent studies on glassy dynamics and glass transition of polymer thin films using neutron and X-ray reflectivity and inelastic neutron techniques. In the last decade extensive studies have been performed on polymer thin films to reveal very interesting but unusual properties such as reduction in the glass transition temperature T g with film thickness and negative thermal expansivity for thin films below about 25 nm, and often some contradictory experimental results have been reported. It is believed that a key to solve the controversial situation is to disclose heterogeneous structure or multi-layer structure in polymer thin films. In the review, therefore, we summarize our recent experimental results by neutron and X-ray reflectivity and inelastic neutron scattering, focusing on the dynamic heterogeneity in polymer thin films. (author)

  11. Stable organic thin-film transistors

    Science.gov (United States)

    Jia, Xiaojia; Fuentes-Hernandez, Canek; Wang, Cheng-Yin; Park, Youngrak; Kippelen, Bernard

    2018-01-01

    Organic thin-film transistors (OTFTs) can be fabricated at moderate temperatures and through cost-effective solution-based processes on a wide range of low-cost flexible and deformable substrates. Although the charge mobility of state-of-the-art OTFTs is superior to that of amorphous silicon and approaches that of amorphous oxide thin-film transistors (TFTs), their operational stability generally remains inferior and a point of concern for their commercial deployment. We report on an exhaustive characterization of OTFTs with an ultrathin bilayer gate dielectric comprising the amorphous fluoropolymer CYTOP and an Al2O3:HfO2 nanolaminate. Threshold voltage shifts measured at room temperature over time periods up to 5.9 × 105 s do not vary monotonically and remain below 0.2 V in microcrystalline OTFTs (μc-OTFTs) with field-effect carrier mobility values up to 1.6 cm2 V−1 s−1. Modeling of these shifts as a function of time with a double stretched-exponential (DSE) function suggests that two compensating aging mechanisms are at play and responsible for this high stability. The measured threshold voltage shifts at temperatures up to 75°C represent at least a one-order-of-magnitude improvement in the operational stability over previous reports, bringing OTFT technologies to a performance level comparable to that reported in the scientific literature for other commercial TFTs technologies. PMID:29340301

  12. Metal nanoparticles for thin film solar cells

    DEFF Research Database (Denmark)

    Gritti, Claudia

    Among the different renewable ways to produce energy, photovoltaic cells have a big potential and the research is now focusing on getting higher efficiency and at the same time saving the manufacturing costs improving the performance of thin film solar cells. The spectral distribution in the infr......Among the different renewable ways to produce energy, photovoltaic cells have a big potential and the research is now focusing on getting higher efficiency and at the same time saving the manufacturing costs improving the performance of thin film solar cells. The spectral distribution...... characterized. Spectral responses are measured and in two types of measured GaAs solar cells (with Au and Ag nanoparticles) there was no clear efficiency enhancement in the NIR spectral range. In the case of Au nanoparticles it could be explained in similar way to the absorption data: the effect being broad...... cells spectral response to longer wavelengths, through possibly cheap and simple technologies: EBL can be substituted by colloidal solutions implementation and electroless plating is not expensive and results to be effective within a broad set of parameters (size, shape, density). Another application...

  13. Polycystalline silicon thin films for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Christian Claus

    2012-01-15

    For the thin polycrystalline Si films fabricated with the aluminium-induced-layer-exchange (ALILE) process a good structural quality up to a layer-thickness value of 10 nm was determined. For 5 nm thick layers however after the layer exchange no closes poly-silicon film was present. In this case the substrate was covered with spherically arranged semiconductor material. Furthermore amorphous contributions in the layer could be determined. The electrical characterization of the samples at room temperature proved a high hole concentration in the range 10{sup 18} cm{sup -3} up to 9.10{sup 19} cm{sup -3}, which is influenced by the process temperature and the layer thickness. Hereby higher hole concentrations at higher process temperatures and thinner films were observed. Furthermore above 150-200 K a thermically activated behaviour of the electrical conductivity was observed. At lower temperatures a deviation of the measured characteristic from the exponential Arrhenius behaviour was determined. For low temperatures (below 20 K) the conductivity follows the behaviour {sigma}{proportional_to}[-(T{sub 0}/T){sup 1/4}]. The hole mobility in the layers was lowered by a passivation step, which can be explained by defect states at the grain boundaries. The for these very thin layers present situation was simulated in the framework of the model of Seto, whereby both the defect states at the grain boundaries (with an area density Q{sub t}) and the defect states at the interfaces (with an area density Q{sub it}) were regarded. By this the values Q{sub t}{approx}(3-4).10{sup 12} cm{sup -2} and Q{sub it}{approx}(2-5).10{sup 12} cm{sup -2} could be determined for these thin ALILE layers on quartz substrates. Additionally th R-ALILE process was studied, which uses the reverse precursor-layer sequence substrate/amorphous silicon/oxide/aluminium. Hereby two steps in the crystallization process of the R-ALILE process were found. First a substrate/Al-Si mixture/poly-Si layer structure

  14. Frictional and morphological properties of Au-MoS2 films sputtered from a compact target

    Science.gov (United States)

    Spalvins, T.

    1984-01-01

    AuMoS2 films 0.02 to 1.2 microns thick were sputtered from target compacted from 5 wt % Au + 95 wt % MoS2, to investigate the frictional and morphological film growth characteristics. The gold dispersion effects in MoS2 films are of interest to increase the densitification and strengthening of the film structure. Three microstructural growth stages were identified on the nano-micro-macrostructural level. During sliding both sputtered Au-MoS2 and MoS2 films have a tendency to break within the columner region. The remaining or effective film, about 0.2 microns thick, performs the lubrication. The Au-MoS2 films displayed a lower friction coefficient with a high degree of frictional stability and less wear debris generation as compared to pure MoS2 films. The more favorable frictional characteristics of the Au-MoS2 films are attributed to the effective film thickness and the high density packed columner zone which has a reduced effect on the fragmentation of the tapered crystallites during fracture.

  15. Chemical and Electronic Structure Studies of Refractory and Dielectric Thin Films.

    Science.gov (United States)

    Corneille, Jason Stephen

    This study presents the synthesis and characterization of oxide and refractory thin films under varying conditions. The deposition of the thin films is performed under vacuum conditions. The characterization of the growth, as well as the chemical and electronic properties of the thin films was accomplished using a broad array of surface analytical techniques. These model studies describe the relationship between the preparative processes and the stoichiometry, structure and electronic properties of the film products. From these efforts, the optimal deposition conditions for the production of high quality films have been established. The thin film oxides synthesized and studied here include magnesium oxide, silicon oxide and iron oxide. These oxides were synthesized on a refractory substrate using both post oxidation of thin films as well as reactive vapor deposition of the metals in the presence of an oxygen background. Comparisons and contrasts are presented for the various systems. Metallic magnesium films were grown and characterized as a preliminary study to the synthesis of magnesium oxide. Magnesium oxide (MgO(100)) was synthesized on Mo(100) by evaporating magnesium at a rate of one monolayer per minute in an oxygen background pressure of 1 times 10 ^{-6} Torr at room temperature. The resulting film was found to exhibit spectroscopic characteristics quite similar to those observed for bulk MgO. The acid/base characteristics of the films were studied using carbon monoxide, water and methanol as probe molecules. The film was found to exhibit essentially the same chemical properties as found in analogous powdered catalysts. Silicon dioxide was synthesized by evaporating silicon onto Mo(100) in an oxygen ambient. It is shown that the silicon oxide prepared at room temperature with a silicon deposition rate of {~ }{1.2}A/min and an oxygen pressure of 2 times 10^{ -8} Torr, consisted of predominantly silicon dioxide with a small fraction of suboxides. Annealing to

  16. The role of microstructural phenomena in magnetic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Laughlin, D.E.; Lambeth, D.N.

    1992-12-31

    The subject is germane to magnetic recording media. Results during the first 2 years are presented under the following headings: atomic resolution TEM of CoNiCr films; CoNiCr and CoCrTa thin films; development of texture; and CoSm/Cr thin films. The HREM results showed that defects in Co-based films may be responsible for higher coercivity. Findings are presented on the effects of Cr interlayers on the microstructure of the second Co-based film in Co/Cr/Co/Cr multilayer films. Proposed research plans are outlined.

  17. The role of microstructural phenomena in magnetic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Laughlin, D.E.; Lambeth, D.N.

    1992-01-01

    The subject is germane to magnetic recording media. Results during the first 2 years are presented under the following headings: atomic resolution TEM of CoNiCr films; CoNiCr and CoCrTa thin films; development of texture; and CoSm/Cr thin films. The HREM results showed that defects in Co-based films may be responsible for higher coercivity. Findings are presented on the effects of Cr interlayers on the microstructure of the second Co-based film in Co/Cr/Co/Cr multilayer films. Proposed research plans are outlined.

  18. Crystalline Molybdenum Oxide Thin-Films for Application as Interfacial Layers in Optoelectronic Devices

    DEFF Research Database (Denmark)

    Fernandes Cauduro, André Luis; dos Reis, Roberto; Chen, Gong

    2017-01-01

    The ability to control the interfacial properties in metal-oxide thin films through surface defect engineering is vital to fine-tune their optoelectronic properties and thus their integration in novel optoelectronic devices. This is exemplified in photovoltaic devices based on organic, inorganic...... with structural characterizations, this work addresses a novel method for tuning, and correlating, the optoelectronic properties and microstructure of device-relevant MoOx layers....

  19. Magnetism of FePt Thin Films

    Science.gov (United States)

    Alqhtany, Norah H.

    Materials with large magnetic anisotropy have received significant attention from the scientific community due to its advantages in technological applications. Equiatomic FePt has been identified as such a material which could possibly be a potential candidate for ultra- high density magnetic recording and other applications like permanent magnets. FePt thin films exhibit ordered L10 texture with high magnetocrystalline anisotropy and high saturation magnetization which seem lucrative for technological applications. This thesis presents an investigation of structural and magnetic properties of granular and epitaxial FePt films with L10 phase prepared by DC sputtering on different substrates (SrTiO3 and glass). X-ray Diffraction (XRD), Atomic Force Microscopy/Magnetic Force Microscopy (AFM/MFM) and Vibrating Sample Magnetometer (VSM) were employed in characterization process. The measurements obtained from these equipment were significant in establishing the relationship between the microstructure and the magnetic properties of these films. The symmetry and magnitude of magnetic anisotropy has also been analyzed and discussed in detail.

  20. Pressureless Bonding Using Sputtered Ag Thin Films

    Science.gov (United States)

    Oh, Chulmin; Nagao, Shijo; Suganuma, Katsuaki

    2014-12-01

    To improve the performance and reliability of power electronic devices, particularly those built around next-generation wide-bandgap semiconductors such as SiC and GaN, the bonding method used for packaging must change from soldering to solderless technology. Because traditional solders are problematic in the harsh operating conditions expected for emerging high-temperature power devices, we propose a new bonding method in this paper, namely a pressureless, low-temperature bonding process in air, using abnormal grain growth on sputtered Ag thin films to realize extremely high temperature resistance. To investigate the mechanisms of this bonding process, we characterized the microstructural changes in the Ag films over various bonding temperatures and times. We measured the bonding properties of the specimens by a die-shear strength test, as well as by x-ray diffraction measurements of the residual stress in the Ag films to show how the microstructural developments were essential to the bonding technology. Sound bonds with high die strength can be achieved only with abnormal grain growth at optimum bonding temperature and time. Pressureless bonding allows for production of reliable high-temperature power devices for a wide variety of industrial, energy, and environmental applications.

  1. Surface microtopography of thin silver films

    Science.gov (United States)

    Costa, Manuel F. M.; Almeida, Jose B.

    1991-01-01

    The authors present ne applications for the recently developed nori-contact optical inicrotopographer emphasizing the results of topographic inspections of thin silver films edges. These films were produced by sputtering of silver through different masks, using a planar magnetron source. The results show the influence ot the thickness and position of the masks on the topography of the film near its edge. Topographic information is obtained from the horizontal shift incurred by the bright spot on an horizontal surface, which is displaced vertically, when this is illuminated by an oblique collimated laser beam. The laser beam is focused onto the surface into a diffraction limited spot and is made to sweep the surface to be examined.. The horizontal position of the bright spot is continuously imaged onto a light detector array and the information about individual detectors that are activated is used to compute the corresponding horizontal shift on the reference plane. Simple trignometric calculations are used to relate the horizontal shift to the distance between the surface and a reference plane at each sampling point and thus a map of the surface topography can be built.

  2. Thinning and rupture of a thin liquid film on a heated surface

    Energy Technology Data Exchange (ETDEWEB)

    Bankoff, S.G.; Davis, S.H.

    1992-08-05

    Results on the dynamics and stability of thin films are summarized on the following topics: forced dryout, film instabilities on a horizontal plane and on inclined planes, instrumentation, coating flows, and droplet spreading. (DLC)

  3. Factors affecting surface and release properties of thin PDMS films

    DEFF Research Database (Denmark)

    Vudayagiri, Sindhu; Junker, Michael Daniel; Skov, Anne Ladegaard

    2013-01-01

    Polydimethysiloxane (PDMS) elastomers are commonly used as dielectric electroactive polymers (DEAP). DEAP films are used in making actuators, generators and sensors. In the large scale manufacture of DEAP films, release of films from the substrate (carrier web) induces some defects and pre......-strain in the films which affect the overall performance of the films. The current research is directed towards investigating factors affecting the peel force and release of thin, corrugated polydimethylsiloxane films used in DEAP films. It has been shown that doping the PDMS films with small quantities...

  4. Use of thin films in high-temperature superconducting bearings.

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J. R.; Cansiz, A.

    1999-09-30

    In a PM/HTS bearing, locating a thin-film HTS above a bulk HTS was expected to maintain the large levitation force provided by the bulk with a lower rotational drag provided by the very high current density of the film. For low drag to be achieved, the thin film must shield the bulk from inhomogeneous magnetic fields. Measurement of rotational drag of a PM/HTS bearing that used a combination of bulk and film HTS showed that the thin film is not effective in reducing the rotational drag. Subsequent experiments, in which an AC coil was placed above the thin-film HTS and the magnetic field on the other side of the film was measured, showed that the thin film provides good shielding when the coil axis is perpendicular to the film surface but poor shielding when the coil axis is parallel to the surface. This is consistent with the lack of reduction in rotational drag being due to a horizontal magnetic moment of the permanent magnet. The poor shielding with the coil axis parallel to the film surface is attributed to the aspect ratio of the film and the three-dimensional nature of the current flow in the film for this coil orientation.

  5. Structural and Optical Properties of Nanoscale Galinobisuitite Thin Films

    Directory of Open Access Journals (Sweden)

    Omar H. Abd-Elkader

    2014-01-01

    Full Text Available Galinobisuitite thin films of (Bi2S3(PbS were prepared using the chemical bath deposition technique (CBD. Thin films were prepared by a modified chemical deposition process by allowing the triethanolamine (TEA complex of Bi3+ and Pb2+ to react with S2− ions, which are released slowly by the dissociation of the thiourea (TU solution. The films are polycrystalline and the average crystallite size is 35 nm. The composition of the films was measured using the atomic absorption spectroscopy (AAS technique. The films are very adherent to the substrates. The crystal structure of Galinobisuitite thin films was calculated by using the X-ray diffraction (XRD technique. The surface morphology and roughness of the films were studied using scanning electron microscopes (SEM, transmission electron microscopes (TEM and stylus profilers respectively. The optical band gaps of the films were estimated from optical measurements.

  6. Magnetic thin films for high-density recording

    NARCIS (Netherlands)

    Lodder, J.C.

    1996-01-01

    Magnetic and magneto-optic recording technologies are continuing to evolve at a rapid pace resulting in longer playing times and more data being stored in ever decreasing volumes. Thin-film media are playing an important role in this process. Three different type of thin-film media are discussed

  7. Bonding of a niobium wire to a niobium thin film

    NARCIS (Netherlands)

    Jaszczuk, W.; Jaszczuk, W.; ter Brake, Hermanus J.M.; Flokstra, Jakob; Veldhuis, Dick; Stammis, R.; Rogalla, Horst

    1991-01-01

    A method for bonding a niobium wire to a niobium thin film is described. The bonds are to be used as superconducting connections between wire-wound gradiometers and thin-film coupling coils on DC SQUIDS. The method is characterized by two steps. Firstly, the hardness of the niobium wire is reduced

  8. Thin films of metal-organic compounds and metal nanoparticle

    Indian Academy of Sciences (India)

    Thin films of metal-organic compounds and metal nanoparticle-embedded polymers for nonlinear optical applications. S Philip Anthony Shatabdi Porel D ... Thin films based on two very different metal-organic systems are developed and some nonlinear optical applications are explored. A family of zinc complexes which ...

  9. Ferroelectricity in Sodium Nitrite Thin Films | Britwum | Journal of the ...

    African Journals Online (AJOL)

    Investigations have been conducted on the ferroelectric property of thin films of NaNO2. The thin films were prepared with the dip coating technique. The phase transition was investigated by observing the change in the dielectric constant with temperature change. The presence of ferro-electricity was investigated with a ...

  10. Electrical properties of epitaxially grown VOx thin films

    NARCIS (Netherlands)

    Rata, A.D.; Chezan, A.R; Presura, C.N.; Hibma, T

    2003-01-01

    High quality VOx thin films on MgO(100) substrates were prepared and studied from the structural and electronic point of view. Epitaxial growth was confirmed by RHEED and XRD techniques. The oxygen content of VOx thin films as a function of oxygen flux was determined using RBS. The upper and lower

  11. Stoichiometry control in oxide thin films by pulsed laser deposition

    NARCIS (Netherlands)

    Groenen, R.

    2017-01-01

    A general challenge in the synthesis of complex oxide nanostructures and thin films is the control of the stoichiometry and herewith control of thin film properties. Pulsed Laser Deposition (PLD) is widely known for its potential for growing near stoichiometric highly crystalline complex metal oxide

  12. Optimized grid design for thin film solar panels

    NARCIS (Netherlands)

    Deelen, J. van; Klerk, L.; Barink, M.

    2014-01-01

    There is a gap in efficiency between record thin film cells and mass produced thin film solar panels. In this paper we quantify the effect of monolithic integration on power output for various configurations by modeling and present metallization as a way to improve efficiency of solar panels. Grid

  13. Cadmium sulphide thin film for application in gamma radiation ...

    African Journals Online (AJOL)

    Cadmium Sulphide (CdS) thin film was prepared using pyrolytic spraying technique and then irradiated at varied gamma dosage. The CdS thin film absorption before gamma irradiation was 0.6497. Absorbed doses were computed using standard equation established for an integrating dosimeter. The plot of absorbed dose ...

  14. Thin films of metal-organic compounds and metal nanoparticle ...

    Indian Academy of Sciences (India)

    Thin films based on two very different metal-organic systems are developed and some nonlinear optical applications are explored. A family of zinc complexes which form perfectly polar assemblies in their crystalline state are found to organize as uniaxially oriented crystallites in vapor deposited thin films on glass substrate.

  15. Optical characteristics of transparent samarium oxide thin films ...

    Indian Academy of Sciences (India)

    Transparent metal oxide thin films of samarium oxide (Sm 2 O 3 ) were prepared on pre-cleaned fused optically flat quartz substrates by radio-frequency (RF) sputtering technique. The as-deposited thin films were annealed at different temperatures (873, 973 and 1073 K) for 4 h in air under normal atmospheric pressure.

  16. Piezoelectric MEMS: Ferroelectric thin films for MEMS applications

    Science.gov (United States)

    Kanno, Isaku

    2018-04-01

    In recent years, piezoelectric microelectromechanical systems (MEMS) have attracted attention as next-generation functional microdevices. Typical applications of piezoelectric MEMS are micropumps for inkjet heads or micro-gyrosensors, which are composed of piezoelectric Pb(Zr,Ti)O3 (PZT) thin films and have already been commercialized. In addition, piezoelectric vibration energy harvesters (PVEHs), which are regarded as one of the key devices for Internet of Things (IoT)-related technologies, are promising future applications of piezoelectric MEMS. Significant features of piezoelectric MEMS are their simple structure and high energy conversion efficiency between mechanical and electrical domains even on the microscale. The device performance strongly depends on the function of the piezoelectric thin films, especially on their transverse piezoelectric properties, indicating that the deposition of high-quality piezoelectric thin films is a crucial technology for piezoelectric MEMS. On the other hand, although the difficulty in measuring the precise piezoelectric coefficients of thin films is a serious obstacle in the research and development of piezoelectric thin films, a simple unimorph cantilever measurement method has been proposed to obtain precise values of the direct or converse transverse piezoelectric coefficient of thin films, and recently this method has become to be the standardized testing method. In this article, I will introduce fundamental technologies of piezoelectric thin films and related microdevices, especially focusing on the deposition of PZT thin films and evaluation methods for their transverse piezoelectric properties.

  17. Thermal properties and stabilities of polymer thin films

    International Nuclear Information System (INIS)

    Kanaya, Toshiji; Kawashima, Kazuko; Inoue, Rintaro; Miyazaki, Tsukasa

    2009-01-01

    Recent extensive studies have revealed that polymer thin films showed very interesting but unusual thermal properties and stabilities. In the article we show that X-ray reflectivity and neutron reflectivity are very powerful tools to study the anomalous properties of polymer thin films. (author)

  18. Dip-coated hydrotungstite thin films as humidity sensors

    Indian Academy of Sciences (India)

    Unknown

    Dip-coated hydrotungstite thin films as humidity sensors. G V KUNTE, UJWALA AIL, S A SHIVASHANKAR and A M UMARJI*. Materials Research Centre, Indian Institute of Science, Bangalore 560 012, India. MS received 6 December 2004; revised 28 February 2005. Abstract. Thin films of a hydrated phase of tungsten ...

  19. Thermal stability of gold-PS nanocomposites thin films

    Indian Academy of Sciences (India)

    Low-temperature transmission electron microscopy (TEM) studies were performed on polystyrene (PS, w = 234 K) – Au nanoparticle composite thin films that were annealed up to 350°C under reduced pressure conditions. The composite thin films were prepared by wet chemical approach and the samples were then ...

  20. Density functional study of ferromagnetism in alkali metal thin films

    Indian Academy of Sciences (India)

    thickness uniform jellium model (UJM), and it is argued that within LSDA or GGA, alkali metal thin films cannot be claimed to have an FM ground state. Relevance of these results to the experiments on transition metal-doped alkali metal thin films ...

  1. Magnetic damping phenomena in ferromagnetic thin-films and multilayers

    Science.gov (United States)

    Azzawi, S.; Hindmarch, A. T.; Atkinson, D.

    2017-11-01

    Damped ferromagnetic precession is an important mechanism underpinning the magnetisation processes in ferromagnetic materials. In thin-film ferromagnets and ferromagnetic/non-magnetic multilayers, the role of precession and damping can be critical for spintronic device functionality and as a consequence there has been significant research activity. This paper presents a review of damping in ferromagnetic thin-films and multilayers and collates the results of many experimental studies to present a coherent synthesis of the field. The terms that are used to define damping are discussed with the aim of providing consistent definitions for damping phenomena. A description of the theoretical basis of damping is presented from early developments to the latest discussions of damping in ferromagnetic thin-films and multilayers. An overview of the time and frequency domain methods used to study precessional magnetisation behaviour and damping in thin-films and multilayers is also presented. Finally, a review of the experimental observations of magnetic damping in ferromagnetic thin-films and multilayers is presented with the most recent explanations. This brings together the results from many studies and includes the effects of ferromagnetic film thickness, the effects of composition on damping in thin-film ferromagnetic alloys, the influence of non-magnetic dopants in ferromagnetic films and the effects of combining thin-film ferromagnets with various non-magnetic layers in multilayered configurations.

  2. Electrochemical deposition of molybdenum sulfide thin films on conductive plastic substrates as platinum-free flexible counter electrodes for dye-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Chao-Kuang; Hsieh, Chien-Kuo, E-mail: jack_hsieh@mail.mcut.edu.tw

    2015-06-01

    In this study, pulsed electrochemical deposition (pulsed ECD) was used to deposit molybdenum sulfide (MoS{sub x}) thin films on indium tin oxide/polyethylene naphthalate (ITO/PEN) substrates as flexible counter electrodes (CEs) for dye-sensitized solar cells (DSSCs). The surface morphologies and elemental distributions of the prepared MoS{sub x} thin films were examined using field-emission scanning electron microscope (FE-SEM) equipped with energy-dispersive X-ray spectroscopy. The chemical states and crystallinities of the prepared MoS{sub x} thin films were examined by X-ray photoelectron spectroscopy and X-ray diffraction, respectively. The optical transmission (T (%)) properties of the prepared MoS{sub x} samples were determined by ultraviolet–visible spectrophotometry. Cyclic voltammetry (CV) and Tafel-polarization measurements were performed to analyze the electrochemical properties and catalytic activities of the thin films for redox reactions. The FE-SEM results showed that the MoS{sub x} thin films were deposited uniformly on the ITO/PEN flexible substrates via the pulsed ECD method. The CV and Tafel-polarization curve measurements demonstrated that the deposited MoS{sub x} thin films exhibited excellent performances for the reduction of triiodide ions. The photoelectric conversion efficiency (PCE) of the DSSC produced with the pulsed ECD MoS{sub x} thin-film CE was examined by a solar simulator. In combination with a dye-sensitized TiO{sub 2} working electrode and an iodine-based electrolyte, the DSSC with the MoS{sub x} flexible CE showed a PCE of 4.39% under an illumination of AM 1.5 (100 mW cm{sup −2}). Thus, we report that the MoS{sub x} thin films are active catalysts for triiodide reduction. The MoS{sub x} thin films are prepared at room temperature and atmospheric pressure and in a simple and rapid manner. This is an important practical contribution to the production of flexible low-cost thin-film CEs based on plastic substrates. The MoS{sub x

  3. Thermally stable antireflective coatings based on nanoporous organosilicate thin films.

    Science.gov (United States)

    Kim, Suhan; Cho, Jinhan; Char, Kookheon

    2007-06-05

    Thermally stable nanoporous organosilicate thin films were realized by the microphase separation of pore-generating polymers mixed with an organosilicate matrix to be antireflective coatings (ARCs), for which a thin film with a refractive index (n) of 1.23 for zero reflection is required. The refractive index of such nanoporous organosilicate films can be tuned from 1.39 down to 1.23 by incorporating nanopores within the films. With a nanoporous single layer with n approximately 1.23, the light transmittance of the glass above 99.8% was achieved in the visible range (lambda approximately 550 nm). To overcome the limitation on the narrow wavelength for high transmittance imposed by a single antireflective nanoporous thin film, bilayer thin films with different refractive indices were prepared by placing a high refractive index layer with a refractive index of 1.45 below the nanoporous thin film. UV-vis transmittance of a glass coated with the bilayer films was compared with nanoporous single-layer films and it is demonstrated that the novel broadband antireflection coatings in a wide range of visible wavelength can be easily obtained by the organosilicate bilayer thin films described in this study. Also, ARCs developed in this study demonstrate excellent AR durability owing to the hydrophobic nature of the organosilicate matrix.

  4. Modifying thin film diamond for electronic applications

    International Nuclear Information System (INIS)

    Baral, B.

    1999-01-01

    The unique combination of properties that diamond possesses are being exploited in both electronic and mechanical applications. An important step forward in the field has been the ability to grow thin film diamond by chemical vapour deposition (CVD) methods and to control parameters such as crystal orientation, dopant level and surface roughness. An extensive understanding of the surface of any potential electronic material is vital to fully comprehend its behaviour within device structures. The surface itself ultimately controls key aspects of device performance when interfaced with other materials. This study has provided insight into important chemical reactions on polycrystalline CVD diamond surfaces, addressing how certain surface modifications will ultimately affect the properties of the material. A review of the structure, bonding, properties and potential of diamond along with an account of the current state of diamond technology and CVD diamond growth is provided. The experimental chapter reviews bulk material and surface analytical techniques employed in this work and is followed by an investigation of cleaning treatments for polycrystalline CVD diamond aimed at removing non-diamond carbon from the surface. Selective acid etch treatments are compared and contrasted for efficacy with excimer laser irradiation and hydrogen plasma etching. The adsorption/desorption kinetics of potential dopant-containing precursors on polycrystalline CVD diamond surfaces have been investigated to compare their effectiveness at introducing dopants into the diamond during the growth stage. Both boron and sulphur-containing precursor compounds have been investigated. Treating polycrystalline CVD diamond in various atmospheres / combination of atmospheres has been performed to enhance electron field emission from the films. Films which do not emit electrons under low field conditions can be modified such that they emit at fields as low as 10 V/μm. The origin of this enhancement

  5. Thin Films for Advanced Glazing Applications

    Directory of Open Access Journals (Sweden)

    Ann-Louise Anderson

    2016-09-01

    Full Text Available Functional thin films provide many opportunities for advanced glazing systems. This can be achieved by adding additional functionalities such as self-cleaning or power generation, or alternately by providing energy demand reduction through the management or modulation of solar heat gain or blackbody radiation using spectrally selective films or chromogenic materials. Self-cleaning materials have been generating increasing interest for the past two decades. They may be based on hydrophobic or hydrophilic systems and are often inspired by nature, for example hydrophobic systems based on mimicking the lotus leaf. These materials help to maintain the aesthetic properties of the building, help to maintain a comfortable working environment and in the case of photocatalytic materials, may provide external pollutant remediation. Power generation through window coatings is a relatively new idea and is based around the use of semi-transparent solar cells as windows. In this fashion, energy can be generated whilst also absorbing some solar heat. There is also the possibility, in the case of dye sensitized solar cells, to tune the coloration of the window that provides unheralded external aesthetic possibilities. Materials and coatings for energy demand reduction is highly desirable in an increasingly energy intensive world. We discuss new developments with low emissivity coatings as the need to replace scarce indium becomes more apparent. We go on to discuss thermochromic systems based on vanadium dioxide films. Such systems are dynamic in nature and present a more sophisticated and potentially more beneficial approach to reducing energy demand than static systems such as low emissivity and solar control coatings. The ability to be able to tune some of the material parameters in order to optimize the film performance for a given climate provides exciting opportunities for future technologies. In this article, we review recent progress and challenges in

  6. Thin Films of Quasicrystals: Optical, Electronic, and Mechanical Properties

    Science.gov (United States)

    Symko, Orest G.

    1998-03-01

    In order to extend some of the unusual properties of quasicrystals toward practical applications and to study fundamental aspects of these properties, we have developed a technology for the deposition of high quality thin films of quasicrystals on a variety of substrates. Mechanical support for the thin films is provided by the substrate as bulk quasicrystals are brittle. We have applied the thin films to studies of their optical, electrical, and mechanical properties as well as to coatings of biomedical devices. An important characteristic of a quasicrystal is its pseudogap in the electronic density of states; it is determined directly from optical transmission measurements. Optical and mechanical characteristics of the thin films provide strong support for the cluster nature of quasicrystals and emphasize their importance for coatings. When used in biomedical devices, thin film quasicrystalline coatings show remarkable strength, low friction, and non-stick behavior. This work was in collaboration with W. Park, E. Abdel-Rahman, and T. Klein.

  7. Nanocoatings and ultra-thin films technologies and applications

    CERN Document Server

    Tiginyanu, Ion

    2011-01-01

    Gives a comprehensive account of the developments of nanocoatings and ultra-thin films. This book covers the fundamentals, processes of deposition and characterisation of nanocoatings, as well as the applications. It is suitable for the glass and glazing, automotive, electronics, aerospace, construction and biomedical industries in particular.$bCoatings are used for a wide range of applications, from anti-fogging coatings for glass through to corrosion control in the aerospace and automotive industries. Nanocoatings and ultra-thin films provides an up-to-date review of the fundamentals, processes of deposition, characterisation and applications of nanocoatings. Part one covers technologies used in the creation and analysis of thin films, including chapters on current and advanced coating technologies in industry, nanostructured thin films from amphiphilic molecules, chemical and physical vapour deposition methods and methods for analysing nanocoatings and ultra-thin films. Part two focuses on the applications...

  8. Thermoluminescence of thin films deposited by laser ablation

    International Nuclear Information System (INIS)

    Escobar A, L.; Camps, E.; Arrieta, A.; Romero, S.; Gonzalez, P.R.; Olea M, O.; Diaz E, R.

    2003-01-01

    Materials in thin film form have received great attention in the last few years mainly because of their singular properties, which may differ significantly from their bulk attributes making them attractive for a wide variety of applications. In particular, thermoluminescence (Tl) properties of thin films have been studied recently owing to their potential applications in detection for both ionizing and non ionizing radiation. The aim of the present work is to report the synthesis and characterization of C Nx, aluminum oxide and titanium oxide thin films. Thermoluminescence response of the obtained thin films was studied after subject thin films to UV radiation (254 nm) as well as to gamma radiation (Co-60). Thermoluminescence glow curves exhibited a peak centered at 150 C for CN x whereas for titanium oxide the glow curve shows a maximum peaking at 171 C. Characterization of the physical properties of the deposited materials is presented. (Author)

  9. Infrared analysis of thin films amorphous, hydrogenated carbon on silicon

    CERN Document Server

    Jacob, W; Schwarz-Selinger, T

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, ...

  10. Thin films and coatings toughening and toughness characterization

    CERN Document Server

    Zhang, Sam

    2015-01-01

    Thin Films and Coatings: Toughening and Toughness Characterization captures the latest developments in the toughening of hard coatings and in the measurement of the toughness of thin films and coatings. Featuring chapters contributed by experts from Australia, China, Czech Republic, Poland, Singapore, Spain, and the United Kingdom, this first-of-its-kind book:Presents the current status of hard-yet-tough ceramic coatingsReviews various toughness evaluation methods for films and hard coatingsExplores the toughness and toughening mechanisms of porous thin films and laser-treated surfacesExamines

  11. Room temperature deposition of magnetite thin films on organic substrate

    International Nuclear Information System (INIS)

    Arisi, E.; Bergenti, I.; Cavallini, M.; Murgia, M.; Riminucci, A.; Ruani, G.; Dediu, V.

    2007-01-01

    We report on the growth of magnetite films directly on thin layers of organic semiconductors by means of an electron beam ablation method. The deposition was performed at room temperature in a reactive plasma atmosphere. Thin films show ferromagnetic (FM) hysteresis loops and coercive fields of hundreds of Oersted. Micro Raman analysis indicates no presence of spurious phases. The morphology of the magnetite film is strongly influenced by the morphology of the underlayer of the organic semiconductor. These results open the way for the application of magnetite thin films in the field of organic spintronics

  12. Novel photon management for thin-film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Rajesh [Univ. of Utah, Salt Lake City, UT (United States)

    2016-11-11

    The objective of this project is to enable commercially viable thin-film photovoltaics whose efficiencies are increased by over 10% using a novel optical spectral-separation technique. A thin planar diffractive optic is proposed that efficiently separates the solar spectrum and assigns these bands to optimal thin-film sub-cells. An integrated device that is comprised of the optical element, an array of sub-cells and associated packaging is proposed.

  13. Patterns and conformations in molecularly thin films

    Science.gov (United States)

    Basnet, Prem B.

    Molecularly thin films have been a subject of great interest for the last several years because of their large variety of industrial applications ranging from micro-electronics to bio-medicine. Additionally, molecularly thin films can be used as good models for biomembrane and other systems where surfaces are critical. Many different kinds of molecules can make stable films. My research has considered three such molecules: a polymerizable phospholipid, a bent-core molecules, and a polymer. One common theme of these three molecules is chirality. The phospolipid molecules studied here are strongly chiral, which can be due to intrinsically chiral centers on the molecules and also due to chiral conformations. We find that these molecules give rise to chiral patterns. Bent-core molecules are not intrinsically chiral, but individual molecules and groups of molecules can show chiral structures, which can be changed by surface interactions. One major, unconfirmed hypothesis for the polymer conformation at surface is that it forms helices, which would be chiral. Most experiments were carried out at the air/water interface, in what are called Langmuir films. Our major tools for studying these films are Brewster Angle Microscopy (BAM) coupled with the thermodynamic information that can be deduced from surface pressure isotherms. Phospholipids are one of the important constituents of liposomes -- a spherical vesicle com-posed of a bilayer membrane, typically composed of a phospholipid and cholesterol bilayer. The application of liposomes in drug delivery is well-known. Crumpling of vesicles of polymerizable phospholipids has been observed. With BAM, on Langmuir films of such phospholipids, we see novel spiral/target patterns during compression. We have found that both the patterns and the critical pressure at which they formed depend on temperature (below the transition to a i¬‘uid layer). Bent-core liquid crystals, sometimes knows as banana liquid crystals, have drawn

  14. Preparation and optical characterization of DNA-riboflavin thin films

    Science.gov (United States)

    Paulson, Bjorn; Shin, Inchul; Kong, Byungjoo; Sauer, Gregor; Dugasani, Sreekantha Reddy; Khazaeinezhad, Reza; Jung, Woohyun; Joo, Boram; Oh, Kyunghwan

    2016-09-01

    Thin films of DNA biopolymer thin film are fabricated by a drop casting process on glass and silicon substrates, as well as freestanding. The refractive index is measured by elliposmetry and in bulk DNA film the refractive index is shown to be increased in the 600 to 900 nm DNA transparency window by doping with riboflavin. Further analysis with FT-IR, Raman, and XRD are used to determine whether binding between riboflavin and DNA occurs.

  15. Pulsed laser deposition and characterisation of thin superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Morone, A. [CNR, zona industriale di Tito Scalo, Potenza (Italy). Istituto per i Materiali Speciali

    1996-09-01

    Same concepts on pulsed laser deposition of thin films will be discussed and same examples of high transition temperature (HTc) BiSrCaCuO (BISCO) and low transition temperature NbN/MgO/NbN multilayers will be presented. X-ray and others characterizations of these films will be reported and discussed. Electrical properties of superconducting thin films will be realized as a function of structural and morphological aspect.

  16. Thin film adhesion by nanoindentation-induced superlayers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gerberich, William W.; Volinsky, A.A.

    2001-06-01

    This work has analyzed the key variables of indentation tip radius, contact radius, delamination radius, residual stress and superlayer/film/interlayer properties on nanoindentation measurements of adhesion. The goal to connect practical works of adhesion for very thin films to true works of adhesion has been achieved. A review of this work titled ''Interfacial toughness measurements of thin metal films,'' which has been submitted to Acta Materialia, is included.

  17. Synthesis of MoO3 and its polyvinyl alcohol nanostructured film

    Indian Academy of Sciences (India)

    The solvent casting method is adopted for the synthesis of MoO3 dispersed polyvinyl alcohol nanostructured film (MoO3–PVA). These synthesized MoO3 and their composite samples are characterized for their structure, morphology, bonding and thermal behaviour by XRD, SEM, IR and DSC techniques, respectively.

  18. Synthesis of MoO 3 and its polyvinyl alcohol nanostructured film

    Indian Academy of Sciences (India)

    The solvent casting method is adopted for the synthesis of MoO3 dispersed polyvinyl alcohol nanostructured film (MoO3–PVA). These synthesized MoO3 and their composite samples are characterized for their structure, morphology, bonding and thermal behaviour by XRD, SEM, IR and DSC techniques, respectively.

  19. Thin films of mixed metal compounds

    Science.gov (United States)

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  20. Printed Thin Film Transistors: Research from China.

    Science.gov (United States)

    Tong, Sichao; Sun, Jia; Yang, Junliang

    2018-03-01

    Thin film transistors (TFTs) have experienced tremendous development during the past decades and show great potential applications in flat displays, sensors, radio frequency identification tags, logic circuit, and so on. The printed TFTs are the key components for rapid development and commercialization of printed electronics. The researchers in China play important roles to accelerate the development and commercialization of printed TFTs. In this review, we comprehensively summarize the research progress of printed TFTs on rigid and flexible substrates from China. The review will focus on printing techniques of TFTs, printed TFTs components including semiconductors, dielectrics and electrodes, as well as fully-printed TFTs and printed flexible TFTs. Furthermore, perspectives on the remaining challenges and future developments are proposed as well.

  1. Review of Zinc Oxide Thin Films

    Science.gov (United States)

    2014-12-23

    Chemical Properties ZnO occurs  as white powder  known  as  zinc white or  as  the mineral  zincite.  Zinc  oxide   is  an  amphoteric   oxide .  It  is...AFRL-OSR-VA-TR-2015-0044 Review of Zinc Oxide Thin Films Tom Otiti COLLEGE OF COMPUTING AND INFORMATION SCIENCE MAKERERE U Final Report 12/23/2014...COVERED (From - To)      01-07-2011 to 30-06-2014 4.  TITLE AND SUBTITLE ZINC OXIDE MATERIALS FOR PHOTOVOLTAIC APPLICATIONS 5a.  CONTRACT NUMBER 5b

  2. Amperometric noise at thin film band electrodes.

    Science.gov (United States)

    Larsen, Simon T; Heien, Michael L; Taboryski, Rafael

    2012-09-18

    Background current noise is often a significant limitation when using constant-potential amperometry for biosensor application such as amperometric recordings of transmitter release from single cells through exocytosis. In this paper, we fabricated thin-film electrodes of gold and conductive polymers and measured the current noise in physiological buffer solution for a wide range of different electrode areas. The noise measurements could be modeled by an analytical expression, representing the electrochemical cell as a resistor and capacitor in series. The studies revealed three domains; for electrodes with low capacitance, the amplifier noise dominated, for electrodes with large capacitances, the noise from the resistance of the electrochemical cell was dominant, while in the intermediate region, the current noise scaled with electrode capacitance. The experimental results and the model presented here can be used for choosing an electrode material and dimensions and when designing chip-based devices for low-noise current measurements.

  3. Optical properties of aluminum oxide thin films and colloidal nanostructures

    International Nuclear Information System (INIS)

    Koushki, E.; Mousavi, S.H.; Jafari Mohammadi, S.A.; Majles Ara, M.H.; Oliveira, P.W. de

    2015-01-01

    In this work, we prepared thin films of aluminum oxide (Al 2 O 3 ) with different thicknesses, using a wet chemical process. The Al 2 O 3 nanoparticles with an average size of 40 nm were dispersed in water and deposited on soda glass substrates. The morphology of the resulting thin films was characterized by means of scanning electron microscopy. The optical properties of the thin films were studied by measuring reflectance and transmittance. A theoretical description of the reflection and transmission mechanism of the films was developed by measuring the thickness and spectral behavior of the refractive index. Numerical evaluations were used for modeling the optical spectra of the thin films of alumina. By fitting numerical curves to the experimental data, the extinction coefficient and refractive index were obtained. The dielectric constant and optical properties of the colloidal solution of the particles were also studied. - Highlights: • Optical properties of alumina thin films and nanocolloids were investigated. • New theoretical depiction of transmission and reflection from the thin films was evaluated. • Interference in reflection from thin films was studied. • Real and imaginary parts of the dielectric constant for alumina nanoparticles were calculated. • Using a novel method, evaluation of optical dispersion and UV–visible absorption were performed.

  4. Optical properties of aluminum oxide thin films and colloidal nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Koushki, E., E-mail: ehsan.koushki@yahoo.com [Photonics Laboratory, Physics Faculty, Kharazmi University, Tehran (Iran, Islamic Republic of); Physics Department, Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); Mousavi, S.H. [INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken (Germany); Jafari Mohammadi, S.A. [INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken (Germany); Department of Chemistry, College of Science, Islamshahr Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Majles Ara, M.H. [Photonics Laboratory, Physics Faculty, Kharazmi University, Tehran (Iran, Islamic Republic of); Oliveira, P.W. de [INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken (Germany)

    2015-10-01

    In this work, we prepared thin films of aluminum oxide (Al{sub 2}O{sub 3}) with different thicknesses, using a wet chemical process. The Al{sub 2}O{sub 3} nanoparticles with an average size of 40 nm were dispersed in water and deposited on soda glass substrates. The morphology of the resulting thin films was characterized by means of scanning electron microscopy. The optical properties of the thin films were studied by measuring reflectance and transmittance. A theoretical description of the reflection and transmission mechanism of the films was developed by measuring the thickness and spectral behavior of the refractive index. Numerical evaluations were used for modeling the optical spectra of the thin films of alumina. By fitting numerical curves to the experimental data, the extinction coefficient and refractive index were obtained. The dielectric constant and optical properties of the colloidal solution of the particles were also studied. - Highlights: • Optical properties of alumina thin films and nanocolloids were investigated. • New theoretical depiction of transmission and reflection from the thin films was evaluated. • Interference in reflection from thin films was studied. • Real and imaginary parts of the dielectric constant for alumina nanoparticles were calculated. • Using a novel method, evaluation of optical dispersion and UV–visible absorption were performed.

  5. Thin Film Approaches to the SRF Cavity Problem Fabrication and Characterization of Superconducting Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Beringer, Douglas [College of William and Mary, Williamsburg, VA (United States)

    2017-08-01

    Superconducting Radio Frequency (SRF) cavities are responsible for the acceleration of charged particles to relativistic velocities in most modern linear accelerators, such as those employed at high-energy research facilities like Thomas Jefferson National Laboratory’s CEBAF and the LHC at CERN. Recognizing SRF as primarily a surface phenomenon enables the possibility of applying thin films to the interior surface of SRF cavities, opening a formidable tool chest of opportunities by combining and designing materials that offer greater performance benefit. Thus, while improvements in radio frequency cavity design and refinements in cavity processing techniques have improved accelerator performance and efficiency – 1.5 GHz bulk niobium SRF cavities have achieved accelerating gradients in excess of 35 MV/m – there exist fundamental material bounds in bulk superconductors limiting the maximally sustained accelerating field gradient (≈ 45 MV/m for Nb) where inevitable thermodynamic breakdown occurs. With state of the art Nb based cavity design fast approaching these theoretical limits, novel material innovations must be sought in order to realize next generation SRF cavities. One proposed method to improve SRF performance is to utilize thin film superconducting-insulating-superconducting (SIS) multilayer structures to effectively magnetically screen a bulk superconducting layer such that it can operate at higher field gradients before suffering critically detrimental SRF losses. This dissertation focuses on the production and characterization of thin film superconductors for such SIS layers for radio frequency applications. Correlated studies on structure, surface morphology and superconducting properties of epitaxial Nb and MgB2 thin films are presented.

  6. Glass transition and thermal expansivity of polystyrene thin films

    International Nuclear Information System (INIS)

    Inoue, R.; Kanaya, T.; Miyazaki, T.; Nishida, K.; Tsukushi, I.; Shibata, K.

    2006-01-01

    We have studied glass transition temperature and thermal expansivity of polystyrene thin films supported on silicon substrate using X-ray reflectivity and inelastic neutron scattering techniques. In annealing experiments, we have found that the reported apparent negative expansivity of polymer thin films is caused by unrelaxed structure due to insufficient annealing. Using well-annealed films, we have evaluated glass transition temperature T g and thermal expansivity as a function of film thickness. The glass transition temperature decreases with film thickness and is constant below about 10 nm, suggesting the surface glass transition temperature of 355 K, which is lower than that in bulk. We have also found that the thermal expansivity in the glassy state decreases with film thickness even after annealing. The decrease has been attributed to hardening of harmonic force constant arising from chain confinement in a thin film. This idea has been confirmed in the inelastic neutron scattering measurements

  7. Glass transition and thermal expansivity of polystyrene thin films

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, R. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan); Kanaya, T. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan)]. E-mail: kanaya@scl.kyoto-u.ac.jp; Miyazaki, T. [Nitto Denko Corporation, 1-1-2 Shimohozumi, Ibaraki, Osaka-fu 567-8680 (Japan); Nishida, K. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan); Tsukushi, I. [Chiba Institute of Technology, Narashino, Chiba-ken 275-0023 (Japan); Shibata, K. [Japan Atomic Energy Research Institute, Tokai, Ibaraki-ken 319-1195 (Japan)

    2006-12-20

    We have studied glass transition temperature and thermal expansivity of polystyrene thin films supported on silicon substrate using X-ray reflectivity and inelastic neutron scattering techniques. In annealing experiments, we have found that the reported apparent negative expansivity of polymer thin films is caused by unrelaxed structure due to insufficient annealing. Using well-annealed films, we have evaluated glass transition temperature T {sub g} and thermal expansivity as a function of film thickness. The glass transition temperature decreases with film thickness and is constant below about 10 nm, suggesting the surface glass transition temperature of 355 K, which is lower than that in bulk. We have also found that the thermal expansivity in the glassy state decreases with film thickness even after annealing. The decrease has been attributed to hardening of harmonic force constant arising from chain confinement in a thin film. This idea has been confirmed in the inelastic neutron scattering measurements.

  8. Sensing of volatile organic compounds by copper phthalocyanine thin films

    Science.gov (United States)

    Ridhi, R.; Saini, G. S. S.; Tripathi, S. K.

    2017-02-01

    Thin films of copper phthalocyanine have been deposited by thermal evaporation technique. We have subsequently exposed these films to the vapours of methanol, ethanol and propanol. Optical absorption, infrared spectra and electrical conductivities of these films before and after exposure to chemical vapours have been recorded in order to study their sensing mechanisms towards organic vapours. These films exhibit maximum sensing response to methanol while low sensitivities of the films towards ethanol and propanol have been observed. The changes in sensitivities have been correlated with presence of carbon groups in the chemical vapours. The effect of different types of electrodes on response-recovery times of the thin film with organic vapours has been studied and compared. The electrodes gap distance affects the sensitivity as well as response-recovery time values of the thin films.

  9. Thin film characterization by resonantly excited internal standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Di Fonzio, S. [SINCROTRONE TRIESTE, Trieste (Italy)

    1996-09-01

    This contribution describes how a standing wave excited in a thin film can be used for the characterization of the properties of the film. By means of grazing incidence X-ray reflectometry one can deduce the total film thickness. On the other hand in making use of a strong resonance effect in the electric field intensity distribution inside a thin film on a bulk substrate one can learn more about the internal structure of the film. The profile of the internal standing wave is proven by diffraction experiments. The most appropriate non-destructive technique for the subsequent thin film characterization is angularly dependent X-ray fluorescence analysis. The existence of the resonance makes it a powerful tool for the detection of impurities and of ultra-thin maker layers, for which the position can be determined with very high precision (about 1% of the total film thickness). This latter aspect will be discussed here on samples which had a thin Ti marker layer at different positions in a carbon film. Due to the resonance enhancement it was still possible to perform these experiments with a standard laboratory x-ray tube and with standard laboratory tool for marker or impurity detection in thin films.

  10. Dip-coated hydrotungstite thin films as humidity sensors

    Indian Academy of Sciences (India)

    Thin films of a hydrated phase of tungsten oxide, viz. hydrotungstite, have been prepared on glass substrates by dip-coating method using ammonium tungstate precursor solution. X-ray diffraction shows the films to have a strong -axis orientation. The resistance of the films is observed to be sensitive to the humidity content ...

  11. Electrical Conductivity of CUXS Thin Film Deposited by Chemical ...

    African Journals Online (AJOL)

    Thin films of CuxS have successfully been deposited on glass substrates using the Chemical Bath Deposition (CBD) technique. The films were then investigated for their electrical properties. The results showed that the electrical conductivities of the CuxS films with different molarities (n) of thiourea (Tu), determined using ...

  12. Strain-induced properties of epitaxial VOx thin films

    NARCIS (Netherlands)

    Rata, AD; Hibma, T

    We have grown VOx thin films on different substrates in order to investigate the influence of epitaxial strain on the transport properties. We found that the electric conductivity is much larger for films grown under compressive strain on SrTiO3 substrates, as compared to bulk material and VOx films

  13. Thin-film cryogenic resistors from aluminium alloys

    Science.gov (United States)

    Tadros, N. N.; Holdeman, L. B.

    The temperature dependence of the resistances of thin films sputtered from three commercially available aluminium alloys (5052, 5086, 5456) has been measured in the temperature range 1.5-4.2 K. The 5052-alloy films had a positive temperature coefficient of resistance (TCR) throughout this temperature range, whereas films of the other two alloys had a negative TCR.

  14. OPTIMISATION OF SPRAY DEPOSITED Sno2 THIN FILM FOR ...

    African Journals Online (AJOL)

    Dr Obe

    1987-09-01

    Sep 1, 1987 ... ABSTRACT. The use of conducting tin-oxide (SnO2 ) films for fabrication of solar cell is becoming increasingly important because of reasonably high efficiency and ease in fabrication. The role of the thin-oxide film is very critical for high efficiency. Resistivity, thickness and transmittance of the film should be ...

  15. Thin Film Approaches to the SRF Cavity Problem: Fabrication and Characterization of Superconducting Thin Films

    Science.gov (United States)

    Beringer, Douglas B.

    Superconducting Radio Frequency (SRF) cavities are responsible for the acceleration of charged particles to relativistic velocities in most modern linear accelerators, such as those employed at high-energy research facilities like Thomas Jefferson National Laboratory's CEBAF and the LHC at CERN. Recognizing SRF as primarily a surface phenomenon enables the possibility of applying thin films to the interior surface of SRF cavities, opening a formidable tool chest of opportunities by combining and designing materials that offer greater benefit. Thus, while improvements in radio frequency cavity design and refinements in cavity processing techniques have improved accelerator performance and efficiency - 1.5 GHz bulk niobium SRF cavities have achieved accelerating gradients in excess of 35 MV/m - there exist fundamental material bounds in bulk superconductors limiting the maximally sustained accelerating field gradient (approximately 45 MV/m for Niobium) where inevitable thermodynamic breakdown occurs. With state of the art niobium based cavity design fast approaching these theoretical limits, novel material innovations must be sought in order to realize next generation SRF cavities. One proposed method to improve SRF performance is to utilize thin film superconducting-insulating-superconducting (SIS) multilayer structures to effectively magnetically screen a bulk superconducting layer such that it can operate at higher field gradients before suffering critically detrimental SRF losses. This dissertation focuses on the production and characterization of thin film superconductors for such SIS layers for radio-frequency applications.

  16. Glancing angle deposition of sculptured thin metal films at room temperature

    Science.gov (United States)

    Liedtke, S.; Grüner, Ch; Lotnyk, A.; Rauschenbach, B.

    2017-09-01

    Metallic thin films consisting of separated nanostructures are fabricated by evaporative glancing angle deposition at room temperature. The columnar microstructure of the Ti and Cr columns is investigated by high resolution transmission electron microscopy and selective area electron diffraction. The morphology of the sculptured metallic films is studied by scanning electron microscopy. It is found that tilted Ti and Cr columns grow with a single crystalline morphology, while upright Cr columns are polycrystalline. Further, the influence of continuous substrate rotation on the shaping of Al, Ti, Cr and Mo nanostructures is studied with view to surface diffusion and the shadowing effect. It is observed that sculptured metallic thin films deposited without substrate rotation grow faster compared to those grown with continuous substrate rotation. A theoretical model is provided to describe this effect.

  17. Photoinduced conductivity in tin dioxide thin films

    International Nuclear Information System (INIS)

    Muraoka, Y.; Takubo, N.; Hiroi, Z.

    2009-01-01

    The effects of ultraviolet light irradiation on the conducting properties of SnO 2-x thin films grown epitaxially on TiO 2 or Al 2 O 3 single-crystal substrates are studied at room temperature. A large increase in conductivity by two to four orders of magnitude is observed with light irradiation in an inert atmosphere and remains after the light is removed. The high-conducting state reverts to the original low-conducting state by exposing it to oxygen gas. These reversible phenomena are ascribed to the desorption and adsorption of negatively charged oxygen species at the grain boundaries, which critically change the mobility of electron carriers already present inside grains by changing the potential barrier height at the grain boundary. The UV light irradiation provides us with an easy and useful route to achieve a high-conducting state even at low carrier density in transparent conducting oxides and also to draw an invisible conducting wire or a specific pattern on an insulating film.

  18. Electrodeposition of thin Pd-Ag films

    International Nuclear Information System (INIS)

    Hasler, P.; Allmendinger, T.

    1993-01-01

    Thin Pd-Ag layers were electroplated preferably on brass and on nickel substrates using a two-compartment cell separated by an anion exchange membrane. The weakly alkaline electrolyte contained glycine-glycinate as the major complexing agents. The plating experiments were usually carried out without stirring, at different potentials and temperatures and in the absence or in the presence of sodium benzaldehyde-2,4-disulphonate (BDS). The samples were characterized by scanning electron microscopy and light microscopy. Their compositions were determined analytically by the inductively coupled plasma technique. In addition, the film porosity was tested. Electrodeposition in almost limiting current conditions for both components and without simultaneous hydrogen evolution led to deposits with compositions being in good agreement with the molar metal ratio in the electrolyte (77:23). The best results were achieved between 0 and -50 mV with respect to a reversible hydrogen electrode at 0 C in the presence of BDS. These deposits were bright, had good adherence and exhibited no pores at a film thickness of 1.2 μm. At too negative potentials, the deposits became black and powdery. (orig.)

  19. Polymer Based Thin Film Screen Preparation Technique

    Science.gov (United States)

    Valais, I.; Michail, C.; Fountzoula, C.; Fountos, G.; Saatsakis, G.; Karabotsos, A.; Panayiotakis, G. S.; Kandarakis, I.

    2017-11-01

    Phosphor screens, mainly prepared by electrophoresis, demonstrate brightness equal to the standard sedimentation on glass or quartz substrate process and are capable of very high resolution. Nevertheless, they are very fragile, the shape of the screen is limited to the substrate shape and in order to achieve adequate surface density for application in medical imaging, a significant quantity of the phosphor will be lost. Fluorescent films prepared by the dispersion of phosphor particles into a polymer matrix could solve the above disadvantages. The aim of this study is to enhance the stability of phosphor screens via the incorporation of phosphor particles into a PMMA (PolyMethyl MethAcrylate) matrix. PMMA is widely used as a plastic optical fiber, it shows almost nearly no dispersion effects and it is transparent in the whole visible spectral range. Different concentrations of PMMA in MMA (Methyl Methacrylate) were examined and a 37.5 % w/w solution was used for the preparation of the thin polymer film, since optical quality characteristics were found to depend on PMMA in MMA concentration. Scanning Electron Microscopy (SEM) images of the polymer screens demonstrated high packing density and uniform distribution of the phosphor particles. This method could be potentially used for phosphor screen preparation of any size and shape.

  20. Electroluminescence of doped organic thin films

    Science.gov (United States)

    Tang, C. W.; VanSlyke, S. A.; Chen, C. H.

    1989-05-01

    Electroluminescent (EL) devices are constructed using multilayer organic thin films. The basic structure consists of a hole-transport layer and a luminescent layer. The hole-transport layer is an amorphous diamine film in which the only mobile carrier is the hole. The luminescent layer consists of a host material, 8-hydroxyquinoline aluminum (Alq), which predominantly transports electrons. High radiance has been achieved at an operating voltage of less than 10 V. By doping the Alq layer with highly fluorescent molecules, the EL efficiency has been improved by about a factor of 2 in comparison with the undoped cell. Representative dopants are coumarins and DCMs. The EL quantum efficiency of the doped system is about 2.5%, photon/electron. The EL colors can be readily tuned from the blue-green to orange-red by a suitable choice of dopants as well as by changing the concentration of the dopant. In the doped system the electron-hole recombination and emission zones can be confined to about 50 Å near the hole-transport interface. In the undoped Alq, the EL emission zone is considerably larger due to exciton diffusion. The multilayer doped EL structure offers a simple means for the direct determination of exciton diffusion length.

  1. Subtractive fabrication of ferroelectric thin films with precisely controlled thickness

    Science.gov (United States)

    Ievlev, Anton V.; Chyasnavichyus, Marius; Leonard, Donovan N.; Agar, Joshua C.; Velarde, Gabriel A.; Martin, Lane W.; Kalinin, Sergei V.; Maksymovych, Petro; Ovchinnikova, Olga S.

    2018-04-01

    The ability to control thin-film growth has led to advances in our understanding of fundamental physics as well as to the emergence of novel technologies. However, common thin-film growth techniques introduce a number of limitations related to the concentration of defects on film interfaces and surfaces that limit the scope of systems that can be produced and studied experimentally. Here, we developed an ion-beam based subtractive fabrication process that enables creation and modification of thin films with pre-defined thicknesses. To accomplish this we transformed a multimodal imaging platform that combines time-of-flight secondary ion mass spectrometry with atomic force microscopy to a unique fabrication tool that allows for precise sputtering of the nanometer-thin layers of material. To demonstrate fabrication of thin-films with in situ feedback and control on film thickness and functionality we systematically studied thickness dependence of ferroelectric switching of lead-zirconate-titanate, within a single epitaxial film. Our results demonstrate that through a subtractive film fabrication process we can control the piezoelectric response as a function of film thickness as well as improve on the overall piezoelectric response versus an untreated film.

  2. Layer-by-layer thinning of MoSe2 by soft and reactive plasma etching

    International Nuclear Information System (INIS)

    Sha, Yunfei; Xiao, Shaoqing; Zhang, Xiumei; Qin, Fang; Gu, Xiaofeng

    2017-01-01

    Highlights: • Soft plasma etching technique using SF 6 + N 2 as precursors for layer-by-layer thinning of MoSe 2 was adopted in this work. • Optical microscopy, Raman, photoluminescence and atomic force microscopy measurements were used to confirm the thickness change. • Layer-dependent vibrational and photoluminescence spectra of the etched MoSe 2 were also demonstrated. • Equal numbers of MoSe 2 layers can be removed uniformly without affecting the underlying SiO 2 substrate and the remaining MoSe 2 layers. - Abstract: Two-dimensional (2D) transition metal dichalcogenides (TMDs) like molybdenum diselenide (MoSe 2 ) have recently gained considerable interest since their properties are complementary to those of graphene. Unlike gapless graphene, the band structure of MoSe 2 can be changed from the indirect band gap to the direct band gap when MoSe 2 changed from bulk material to monolayer. This transition from multilayer to monolayer requires atomic-layer-precision thining of thick MoSe 2 layers without damaging the remaining layers. Here, we present atomic-layer-precision thinning of MoSe 2 nanaosheets down to monolayer by using SF 6 + N 2 plasmas, which has been demonstrated to be soft, selective and high-throughput. Optical microscopy, atomic force microscopy, Raman and photoluminescence spectra suggest that equal numbers of MoSe 2 layers can be removed uniformly regardless of their initial thickness, without affecting the underlying SiO 2 substrate and the remaining MoSe 2 layers. By adjusting the etching rates we can achieve complete MoSe 2 removal and any disired number of MoSe 2 layers including monolayer. This soft plasma etching method is highly reliable and compatible with the semiconductor manufacturing processes, thereby holding great promise for various 2D materials and TMD-based devices.

  3. Electron field emission from amorphous semiconductor thin films

    International Nuclear Information System (INIS)

    Forrest, R.D.

    2001-01-01

    The flat panel display market requires new and improved technologies in order to keep up with the requirements of modem lifestyles. Electron field emission from thin film amorphous semiconductors is potentially such a technology. For this technology to become viable, improvements in the field emitting properties of these materials must be achieved. To this end, it is important that a better understanding of the emission mechanisms responsible is attained. Amorphous carbon thin films, amorphous silicon thin films and other materials have been deposited, in-house and externally. These materials have been characterised using ellipsometry, profilometry, optical absorption, scanning electron microscopy, atomic force microscopy, electron paramagnetic resonance and Rutherford backscattering spectroscopy. An experimental system for evaluating the electron field emitting performance of thin films has been developed. In the process of developing thin film cathodes in this study, it has been possible to add a new and potentially more useful semiconductor, namely amorphous silicon, to the family of cold cathode emitters. Extensive experimental field emission data from amorphous carbon thin films, amorphous silicon thin films and other materials has been gathered. This data has been used to determine the mechanisms responsible for the observed electron emission. Preliminary computer simulations using appropriate values for the different material properties have exhibited emission mechanisms similar to those identified by experiment. (author)

  4. Plasma polymerised thin films for flexible electronic applications

    International Nuclear Information System (INIS)

    Jacob, Mohan V.; Olsen, Natalie S.; Anderson, Liam J.; Bazaka, Kateryna; Shanks, Robert A.

    2013-01-01

    The significant advancement and growth of organic and flexible electronic applications demand materials with enhanced properties. This paper reports the fabrication of a nonsynthetic polymer thin film using radio frequency plasma polymerisation of 3,7-dimethyl-1,6-octadien-3-ol. The fabricated optically transparent thin film exhibited refractive index of approximately 1.55 at 500 nm and rate of deposition was estimated to be 40 nm/min. The surface morphology and chemical properties of the thin films were also reported in this paper. The optical band gap of the material is around 2.8 eV. The force of adhesion and Young's modulus of the linalool polymer thin films were measured using force-displacement curves obtained from a scanning probe microscope. The friction coefficient of linalool polymer thin films was measured using the nanoscratch test. The calculated Young's modulus increased linearly with increase in input power while the friction coefficient decreased. - Highlights: • Fabrication of a novel polymer thin film from non-synthetic source • The surface, optical and chemical properties are reported. • The fabricated thin film is transparent and smooth. • An environmentally friendly material • Candidate for flexible electronics as dielectric layer or as an encapsulation layer

  5. Plasma polymerised thin films for flexible electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Mohan V., E-mail: mohan.jacob@jcu.edu.au [Electronic Materials Research Lab, School of Engineering and Physical Sciences, James Cook University, Townsville 4811 (Australia); Olsen, Natalie S.; Anderson, Liam J.; Bazaka, Kateryna [Electronic Materials Research Lab, School of Engineering and Physical Sciences, James Cook University, Townsville 4811 (Australia); Shanks, Robert A. [Applied Sciences, RMIT University, GPO Box 2476V, Melbourne 3001 (Australia)

    2013-11-01

    The significant advancement and growth of organic and flexible electronic applications demand materials with enhanced properties. This paper reports the fabrication of a nonsynthetic polymer thin film using radio frequency plasma polymerisation of 3,7-dimethyl-1,6-octadien-3-ol. The fabricated optically transparent thin film exhibited refractive index of approximately 1.55 at 500 nm and rate of deposition was estimated to be 40 nm/min. The surface morphology and chemical properties of the thin films were also reported in this paper. The optical band gap of the material is around 2.8 eV. The force of adhesion and Young's modulus of the linalool polymer thin films were measured using force-displacement curves obtained from a scanning probe microscope. The friction coefficient of linalool polymer thin films was measured using the nanoscratch test. The calculated Young's modulus increased linearly with increase in input power while the friction coefficient decreased. - Highlights: • Fabrication of a novel polymer thin film from non-synthetic source • The surface, optical and chemical properties are reported. • The fabricated thin film is transparent and smooth. • An environmentally friendly material • Candidate for flexible electronics as dielectric layer or as an encapsulation layer.

  6. Thin Film Evaporation of Receding Meniscus within Micro Pillar Arrays

    Science.gov (United States)

    Alhosani, Mohamed H.; Alsheghri, Ammar A.; Alghaferi, Amal; Zhang, Tiejun

    2015-03-01

    Evaporation is a key process in power generation, water desalination, and thermal management applications. It has been proved that hydrophilic micro structured surfaces can enhance the convection heat transfer by promoting high-performance thin film evaporation and enlarging the total heat transfer surface area. When depositing a water droplet on hydrophilic structured surfaces, two distinct regions can be observed, a) central region with water level higher than the micro pillar height (droplet region), b) thin film region as a result of liquid meniscus receding among micro structures. In this study, we are able to probe the physics of thin film evaporation of receding liquid meniscus among micro pillar arrays with different pillar heights, spacings and diameters. Heat transfer is systematically studied in the droplet and thin film region for each sample. Also, Young-Laplace equation and kinetic theory of mass transport are used to model the thin film evaporation around micro pillars. With the proposed model, the shape of meniscus around micro pillars and the diameter of droplet/extended thin film region can be predicted and compared with the experimental measurement. The model can also be extended to model thin film evaporation of meniscus within nano structured surfaces. Supported by cooperative agreement between Masdar Inst and MIT.

  7. Resistivity of thiol-modified gold thin films

    International Nuclear Information System (INIS)

    Correa-Puerta, Jonathan; Del Campo, Valeria; Henríquez, Ricardo; Häberle, Patricio

    2014-01-01

    In this work, we study the effect of thiol self assembled monolayers on the electrical resistivity of metallic thin films. The analysis is based on the Fuchs–Sondheimer–Lucas theory and on electrical transport measurements. We determined resistivity change due to dodecanethiol adsorption on gold thin films. For this purpose, we controlled the deposition and annealing temperatures of the films to change the surface topography and to diminish the effect of electron grain boundary scattering. Results show that the electrical response to the absorption of thiols strongly depends on the initial topography of the surface. - Highlights: • We study the effect of self assembled monolayers on the resistivity of thin films. • Fuchs–Sondheimer theory reproduces the resistivity increase due to thiol deposition. • We determined resistivity change due to dodecanethiol deposition on gold thin films. • The electrical response strongly depends on the substrate surface topography

  8. Development of Flexible Electrochromic Device with Thin-Film Configuration

    Science.gov (United States)

    Yoshimura, Hideo; Sakaguchi, Tomonori; Koshida, Nobuyoshi

    2007-04-01

    As we reported previously, the carrier accumulation mechanism is very useful for obtaining a quick-response electrochromic (EC) device with the inorganic-thin-film configuration. To confirm the availability of this concept for flexible substrates, the EC device has been fabricated on a polymeric film. The device is composed of a top semitransparent electrode, an electrolytic thin Ta2O5 film, a very thin SiO2 film, a thin amorphous WO3 film, and an indium-tin-oxide-coated poly(ethylene terephthalate) (PET) film. The experimental results show that the insertion of thin SiO2 film significantly accelerates the EC coloration as in the case of glass substrates. In accordance with cyclic voltammogram analyses, the enhanced EC kinetics is associated with an increased EC efficiency owing to the carrier accumulation effect of thin SiO2 film. The present result is potentially useful for development of flexible paper-like EC display devices and simple optical control systems.

  9. Multifunctional Parylene-C Microfibrous Thin Films

    Science.gov (United States)

    Chindam, Chandraprakash

    Towards sustainable development, multifunctional products have many advantageous over single-function products: reduction in number of parts, raw material, assembly time, and cost involved in a product's life cycle. My goal for this thesis was to demonstrate the multifunctionalities of Parylene-C microfibrous thin films. To achieve this goal, I chose Parylene C, a polymer, because the fabrication of periodic mediums of Parylene C in the form of microfibrous thin films (muFTFs) was already established. A muFTFs is a parallel arrangement of identical micrometer-sized fibers of shapes cylindrical, chevronic, or helical. Furthermore, Parylene C had three existing functions: in medical-device industries as corrosion-resistive coatings, in electronic industries as electrically insulating coatings, and in biomedical research for tissue-culture substrates. As the functionalities of a material are dependent on the microstructure and physical properties, the investigation made for this thesis was two-fold: (1) Experimentally, I determined the wetting, mechanical, and dielectric properties of columnar muFTFs and examined the microstructural and molecular differences between bulk films and muFTFs. (2) Using physical properties of bulk film, I computationally determined the elastodynamic and determined the electromagnetic filtering capabilities of Parylene-C muFTFs. Several columnar muFTFs of Parylene C were fabricated by varying the monomer deposition angle. Following are the significant experimental findings: 1. Molecular and microstructural characteristics: The dependence of the microfiber inclination angle on the monomer deposition angle was classified into four regimes of two different types. X-ray diffraction experiments indicated that the columnar muFTFs contain three crystal planes not evident in bulk Parylene-C films and that the columnar muFTFs are less crystalline than bulk films. Infrared absorbance spectra revealed that the atomic bonding is the same in all

  10. Fabrication and Film Qualification of Sr Modified Pb(Ca) TiO3 Thin Films

    International Nuclear Information System (INIS)

    Naw Hla Myat San; Khin Aye Thwe; Than Than Win; Yin Maung Maung; Ko Ko Kyaw Soe

    2011-12-01

    Strontium and calcium - modified lead titanate (Pb0.7 Ca0.15 Sr0.15 ) TiO3 (PCST)thin films were prepared by using spin coating technique. Phase transition of PCST was interpreted by means of Er-T characteristics. Process temperature dependence on micro-structure of PCST film was studied. Charge conduction mechanism of PCST thin film was also investigated for film qualification.

  11. Molecular simulation of freestanding amorphous nickel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dong, T.Q. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France); Hoang, V.V., E-mail: vvhoang2002@yahoo.com [Department of Physics, Institute of Technology, National University of Ho Chi Minh City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City (Viet Nam); Lauriat, G. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France)

    2013-10-31

    Size effects on glass formation in freestanding Ni thin films have been studied via molecular dynamics simulation with the n-body Gupta interatomic potential. Atomic mechanism of glass formation in the films is determined via analysis of the spatio-temporal arrangements of solid-like atoms occurred upon cooling from the melt. Solid-like atoms are detected via the Lindemann ratio. We find that solid-like atoms initiate and grow mainly in the interior of the film and grow outward. Their number increases with decreasing temperature and at a glass transition temperature they dominate in the system to form a relatively rigid glassy state of a thin film shape. We find the existence of a mobile surface layer in both liquid and glassy states which can play an important role in various surface properties of amorphous Ni thin films. We find that glass formation is size independent for models containing 4000 to 108,000 atoms. Moreover, structure of amorphous Ni thin films has been studied in details via coordination number, Honeycutt–Andersen analysis, and density profile which reveal that amorphous thin films exhibit two different parts: interior and surface layer. The former exhibits almost the same structure like that found for the bulk while the latter behaves a more porous structure containing a large amount of undercoordinated sites which are the origin of various surface behaviors of the amorphous Ni or Ni-based thin films found in practice. - Highlights: • Glass formation is analyzed via spatio-temporal arrangements of solid-like atoms. • Amorphous Ni thin film exhibits two different parts: surface and interior. • Mobile surface layer enhances various surface properties of the amorphous Ni thin films. • Undercoordinated sites play an important role in various surface activities.

  12. Nanoscale phenomena in ferroelectric thin films

    Science.gov (United States)

    Ganpule, Chandan S.

    Ferroelectric materials are a subject of intense research as potential candidates for applications in non-volatile ferroelectric random access memories (FeRAM), piezoelectric actuators, infrared detectors, optical switches and as high dielectric constant materials for dynamic random access memories (DRAMs). With current trends in miniaturization, it becomes important that the fundamental aspects of scaling of ferroelectric and piezoelectric properties in these devices be studied thoroughly and their impact on the device reliability assessed. In keeping with this spirit of miniaturization, the dissertation has two broad themes: (a) Scaling of ferroelectric and piezoelectric properties and (b) The key reliability issue of retention loss. The thesis begins with a look at results on scaling studies of focused-ion-beam milled submicron ferroelectric capacitors using a variety of scanning probe characterization tools. The technique of piezoresponse microscopy, which is rapidly becoming an accepted form of domain imaging in ferroelectrics, has been used in this work for another very important application: providing reliable, repeatable and quantitative numbers for the electromechanical properties of submicron structures milled in ferroelectric films. This marriage of FIB and SPM based characterization of electromechanical and electrical properties has proven unbeatable in the last few years to characterize nanostructures qualitatively and quantitatively. The second half of this dissertation focuses on polarization relaxation in FeRAMs. In an attempt to understand the nanoscale origins of back-switching of ferroelectric domains, the time dependent relaxation of remnant polarization in epitaxial lead zirconate titanate (PbZr0.2Ti0.8O 3, PZT) ferroelectric thin films (used as a model system), containing a uniform 2-dimensional grid of 90° domains (c-axis in the plane of the film) has been examined using voltage modulated scanning force microscopy. A novel approach of

  13. Stability of tetraphenyl butadiene thin films in liquid xenon

    International Nuclear Information System (INIS)

    Sanguino, P.; Balau, F.; Botelho do Rego, A.M.; Pereira, A.; Chepel, V.

    2016-01-01

    Tetraphenyl butadiene (TPB) is widely used in particle detectors as a wavelength shifter. In this work we studied the stability of TPB thin films when immersed in liquid xenon (LXe). The thin films were deposited on glass and quartz substrates by thermal evaporation. Morphological and chemical surface properties were monitored before and after immersion into LXe by scanning electron microscopy and X-ray photoelectron spectroscopy. No appreciable changes have been detected with these two methods. Grain size and surface chemical composition were found to be identical before and after submersion into LXe. However, the film thickness, measured via optical transmission in the ultraviolet–visible wavelength regions, decreased by 1.6 μg/cm 2 (24%) after immersion in LXe during 20 h. These results suggest the necessity of using a protective thin film over the Tetraphenyl butadiene when used as a wavelength shifter in LXe particle detectors. - Highlights: • Stability of tetraphenyl butadiene (TPB) thin films immersed in liquid xenon (LXe). • Thermally evaporated TPB thin films were immersed in LXe for 20 h. • Film morphology and chemical surface properties remained unchanged. • Surface density of the films decreased by 1.6 μg/cm 2 (24%) after immersion in LXe. • For using in LXe particle detectors, TPB films should be protected with a coating.

  14. Buckling of Thin Films in Nano-Scale

    Directory of Open Access Journals (Sweden)

    Li L.A.

    2010-06-01

    Full Text Available Investigation of thin film buckling is important for life prediction of MEMS device which are damaged mainly by the delamination and buckling of thin films. In this paper the mechanical and thermal properties of compressed thin film titanium films with 150 nm thickness deposited on an organic glass substrate under mechanical and thermal loads were measured and characterized. In order to simulate the thin films which subjected to compound loads and the buckle modes the external uniaxial compression and thermal loading were subjected to the specimen by the symmetric loading device and the electrical film in this experiment. The temperature of the thin film deposited on substrate was measured using thermoelectric couple. The range of temperature accords with the temperature range of the MEMS. It is found that the size and number of the delamination and buckling of the film are depended upon the pre-fixed mechanical loading and thermal temperature. The thermal transient conduction and thermal stability of the film and substrate was studied with finite element method.

  15. Buckling of Thin Films in Nano-Scale

    Science.gov (United States)

    Wang, S.; Jia, H. K.; Sun, J.; Ren, X. N.; Li, L. A.

    2010-06-01

    Investigation of thin film buckling is important for life prediction of MEMS device which are damaged mainly by the delamination and buckling of thin films. In this paper the mechanical and thermal properties of compressed thin film titanium films with 150 nm thickness deposited on an organic glass substrate under mechanical and thermal loads were measured and characterized. In order to simulate the thin films which subjected to compound loads and the buckle modes the external uniaxial compression and thermal loading were subjected to the specimen by the symmetric loading device and the electrical film in this experiment. The temperature of the thin film deposited on substrate was measured using thermoelectric couple. The range of temperature accords with the temperature range of the MEMS. It is found that the size and number of the delamination and buckling of the film are depended upon the pre-fixed mechanical loading and thermal temperature. The thermal transient conduction and thermal stability of the film and substrate was studied with finite element method.

  16. Principles of electron backscattering by solids and thin films

    International Nuclear Information System (INIS)

    Niedrig, H.

    1977-01-01

    The parameters concerning the electron backscattering from thin films and solids (atomic scattering cross-section, atomic number, single/multiple scattering, film thickness of self-supporting films and of surface films on bulk substrates, scattering angular distribution, angle of incidence, diffraction effects) are described. Their influence on some important contrast mechanisms in scanning electron microscopy (thickness contrast, Z/material contrast, tilting/topography contrast, orientation contrast) is discussed. The main backscattering electron detection systems are briefly described. (orig.) [de

  17. Modification of thin film properties by ion bombardment during deposition

    International Nuclear Information System (INIS)

    Harper, J.M.E.; Cuomo, J.J.; Gambino, R.J.; Kaufman, H.R.

    1984-01-01

    Many thin film deposition techniques involve some form of energetic particle bombardment of the growing film. The degree of bombardment greatly influences the film composition, structure and other properties. While in some techniques the degree of bombardment is secondary to the original process design, in recent years more deposition systems are being designed with the capability for controlled ion bombardment of thin films during deposition. The highest degree of control is obtained with ion beam sources which operate independently of the vapor source providing the thin film material. Other plasma techniques offer varying degrees of control of energetic particle bombardment. Deposition methods involving ion bombardment are described, and the basic processes with which film properties are modified by ion bombardment are summarized. (Auth.)

  18. The state of the art of thin-film photovoltaics

    International Nuclear Information System (INIS)

    Surek, T.

    1993-10-01

    Thin-film photovoltaic technologies, based on materials such as amorphous or polycrystalline silicon, copper indium diselenide, cadmium telluride, and gallium arsenide, offer the potential for significantly reducing the cost of electricity generated by photovoltaics. The significant progress in the technologies, from the laboratory to the marketplace, is reviewed. The common concerns and questions raised about thin films are addressed. Based on the progress to date and the potential of these technologies, along with continuing investments by the private sector to commercialize the technologies, one can conclude that thin-film PV will provide a competitive alternative for large-scale power generation in the future

  19. Rapid protein immobilization for thin film continuous flow biocatalysis.

    Science.gov (United States)

    Britton, Joshua; Raston, Colin L; Weiss, Gregory A

    2016-08-09

    A versatile enzyme immobilization strategy for thin film continuous flow processing is reported. Here, non-covalent and glutaraldehyde bioconjugation are used to immobilize enzymes on the surfaces of borosilicate reactors. This approach requires only ng of protein per reactor tube, with the stock protein solution readily recycled to sequentially coat >10 reactors. Confining reagents to thin films during immobilization reduced the amount of protein, piranha-cleaning solution, and other reagents by ∼96%. Through this technique, there was no loss of catalytic activity over 10 h processing. The results reported here combines the benefits of thin film flow processing with the mild conditions of biocatalysis.

  20. Plasma polymerized hexamethyldisiloxane thin films for corrosion protection

    Science.gov (United States)

    Saloum, S.; Alkhaled, B.; Alsadat, W.; Kakhia, M.; Shaker, S. A.

    2018-01-01

    This study focused on the corrosion protection performance of plasma polymerized HMDSO thin films in two different corrosive medias, 0.3M NaCl and 0.3M H2SO4. The pp-HMDSO thin films were deposited on steel substrates for electrochemical tests using the potentiodynamic polarization technique, they were deposited also on aluminum and silicon substrates to investigate their resistance to corrosion, through the analysis of the degradation of microhardness and morphology, respectively, after immersion of the substrates for one week in the corrosive media. The results showed promising corrosion protection properties of the pp-HMDSO thin films.

  1. Optical modeling and simulation of thin-film photovoltaic devices

    CERN Document Server

    Krc, Janez

    2013-01-01

    In wafer-based and thin-film photovoltaic (PV) devices, the management of light is a crucial aspect of optimization since trapping sunlight in active parts of PV devices is essential for efficient energy conversions. Optical modeling and simulation enable efficient analysis and optimization of the optical situation in optoelectronic and PV devices. Optical Modeling and Simulation of Thin-Film Photovoltaic Devices provides readers with a thorough guide to performing optical modeling and simulations of thin-film solar cells and PV modules. It offers insight on examples of existing optical models

  2. Organic nanostructured thin film devices and coatings for clean energy

    CERN Document Server

    Zhang, Sam

    2010-01-01

    Authored by leading experts from around the world, the three-volume Handbook of Nanostructured Thin Films and Coatings gives scientific researchers and product engineers a resource as dynamic and flexible as the field itself. The first two volumes cover the latest research and application of the mechanical and functional properties of thin films and coatings, while the third volume explores the cutting-edge organic nanostructured devices used to produce clean energy. This third volume, Organic Nanostructured Thin Film Devices and Coatings for Clean Energy, addresses various aspects of the proc

  3. Copper zinc tin sulfide-based thin film solar cells

    CERN Document Server

    Ito, Kentaro

    2014-01-01

    Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation. The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and tox

  4. Laser scribing of CIGS thin-film solar cell on flexible substrate

    Science.gov (United States)

    Hwang, David J.; Kuk, Seungkuk; Wang, Zhen; Fu, Shi; Zhang, Tao; Kim, Gayeon; Kim, Won Mok; Jeong, Jeung-hyun

    2017-01-01

    Laser scribing technology has been actively developed for thin-film solar cell fabrication taking a number of advantages over mechanical scribing. Its non-contact processing nature enables reliable and precise scribing processes. In particular, it is almost unavoidable to use laser scribing method for fabricating high-quality flexible thin-film solar cells. Despite the fundamental merits that laser scribing can offer, still a number of challenges should be addressed in order to replace the mechanical counterpart for wider range of thin-film solar cells. In this study, we explore optimal laser scribing conditions for copper-indium-gallium-selenide (CIGS) thin-film solar cells, especially based on flexible polyimide (PI) substrate in close comparison with that based on soda-lime glass substrate. Picosecond-pulsed laser of repetition rate up to 100 kHz and wavelength of 532 nm ( 12 ps temporal pulse width) was mainly tested, and scribing speed in the range of 0.01-1 m/s was examined with a few different laser focal spot diameters (27, 34, and 62 μm). Main focus of this study is in understanding distinct laser scribing mechanisms for flexible substrate configurations, thereby finding out intrinsic optimal processing parameters. One of the most critical requirements is to prevent possible damage or deformation of underlying thin-film layer(s) or PI substrate. Effect of microstructures of thin films (in particular, Mo and CIGS) on the scribing behavior was also examined. In order to further improve the performance of the scribing process and reduce the laser power budget as well, mild gas injection scheme was tested.

  5. Thin Films for X-ray Optics

    Science.gov (United States)

    Conley, Raymond

    Focusing x-rays with refraction requires an entire array of lens instead of a single element, each contributing a minute amount of focusing to the system. In contrast to their visible light counterparts, diffractive optics require a certain depth along the optical axis in order to provide sufficient phase shift. Mirrors reflect only at very shallow angles. In order to increase the angle of incidence, contribution from constructive interference within many layers needs to be collected. This requires a multilayer coating. Thin films have become a central ingredient for many x-ray optics due to the ease of which material composition and thickness can be controlled. Chapter 1 starts with a short introduction and survey of the field of x-ray optics. This begins with an explanation of reflective multilayers. Focusing optics are presented next, including mirrors, zone plates, refractive lenses, and multilayer Laue lens (MLL). The strengths and weaknesses of each "species" of optic are briefly discussed, alongside fabrication issues and the ultimate performance for each. Practical considerations on the use of thin-films for x-ray optics fabrication span a wide array of topics including material systems selection and instrumentation design. Sputter deposition is utilized exclusively for the work included herein because this method of thin-film deposition allows a wide array of deposition parameters to be controlled. This chapter also includes a short description of two deposition systems I have designed. Chapter 2 covers a small sampling of some of my work on reflective multilayers, and outlines two of the deposition systems I have designed and built at the Advanced Photon Source. A three-stripe double multilayer monochromator is presented as a case study in order to detail specifications, fabrication, and performance of this prolific breed of x-ray optics. The APS Rotary Deposition System was the first deposition system in the world designed specifically for multilayer

  6. Tools to synthesize the learning of thin films

    International Nuclear Information System (INIS)

    Rojas, Roberto; Fuster, Gonzalo; Sluesarenko, Viktor

    2011-01-01

    After a review of textbooks written for undergraduate courses in physics, we have found that discussions on thin films are mostly incomplete. They consider the reflected and not the transmitted light for two instead of the four types of thin films. In this work, we complement the discussion in elementary textbooks, by analysing the phase differences required to match the conditions for constructive and destructive interference, in the reflected and transmitted light in four types of thin films. We consider thin films with varied sequences in the refractive index, which we identify as barriers, wells and stairs (up and down). Also, we use the conservation of energy in order to understand the complementary colour fringes observed in the reflected and transmitted light through thin films. We analyse systematically the phase changes by introducing a phase table and we synthesize the results in a circular diagram matching 16 physical situations of interference and their corresponding conditions on the film thickness. The phase table and the circular diagram are a pair of tools easily assimilated by students, and useful to organize, analyse and activate the knowledge about thin films.

  7. Radiation Effects in Interfaces and Thin Films

    Science.gov (United States)

    Mairov, Alexander

    One of the key approaches to developing materials with greater radiation damage resistance is to introduce a large fraction of internal interfaces. Interfaces act as sinks for recombination of radiation-induced defects and as sites for accumulation of helium bubbles, thereby diverting them away from grain boundaries, where they can induce embrittlement. The beneficial role of interfaces in mitigating radiation damage has been demonstrated in nanoscale multilayered structures and in nanograined materials. Another more common example is oxide dispersion strengthened (ODS) steels and nanostructured ferritic alloys (NFA) where a fine distribution of particles (clusters) of varying stoichiometries (e.g., Y2Ti2O7, Y2TiO 5, Y2O3, TiO2 and Y-Ti-O non-stoichiometric oxides) not only confer high creep strength, but also high radiation damage tolerance due to the large area of metal/oxide interfaces. However, the efficacy of these interfaces to act as defect sinks depends on their compositional and physical stability under radiation. With this background, this work focused on the stability of interfaces between Ti, TiO2, and Y2O 3 thin film deposited on Fe-12%Cr substrates after irradiation with 5MeV Ni+2 ions at various temperatures. TEM and STEM-EDS methods were used to understand the compositional changes at the interfaces. Additionally, accumulation of implanted helium at epitaxial and non-epitaxial Fe/Y 2O3 interfaces was also studied. Finally, the study was extended to study irradiation effects (up to 150 dpa) in novel Al2O 3 nanoceramic films with immediate potential applications as coatings for corrosion protection in the harsh high temperature environments of Gen IV reactors. This research is expected to have implications in the development of radiation damage tolerant nanostructured alloys for nuclear reactors while also expanding the scientific knowledge-base in the area of radiation stability of interfaces in solids and protective coatings.

  8. Annealing effect on physical properties of evaporated molybdenum oxide thin films for ethanol sensing

    Energy Technology Data Exchange (ETDEWEB)

    Touihri, S., E-mail: s_touihri@yahoo.fr [Unité de Physique des Dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Arfaoui, A.; Tarchouna, Y. [Unité de Physique des Dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Labidi, A. [Laboratoire Matériaux, Molécules et Applications, IPEST, BP 51 La Marsa 2070, Tunis (Tunisia); Amlouk, M. [Unité de Physique des Dispositifs a semi-conducteurs, Faculté des sciences de Tunis, Tunis El Manar University, 2092 Tunis (Tunisia); Bernede, J.C. [LUNAM, Universite de Nantes, Moltech Anjou, CNRS, UMR 6200, FSTN, 2 Rue de la houssiniere, BP 92208, Nantes F-44322 (France)

    2017-02-01

    Highlights: • Thermally grown molybdenum oxide films are amorphous, oxygen deficient and gas sensing. • Air or vacuum annealing transforms them into a sub-stoichiometric MoO{sub 3−x} phase. • The samples annealed at 500 °C in oxygen were crystallized and identified as pure orthorhombic MoO{sub 3} phase. • The conduction process and sensing mechanism of MoO{sub 3-x} to ethanol have been studied. - Abstract: This paper deals with some physical investigations on molybdenum oxide thin films growing on glass substrates by the thermal evaporation method. These films have been subjected to an annealing process under vacuum, air and oxygen at various temperatures 673, 723 and 773 K. First, the physical properties of these layers were analyzed by means of X-ray diffraction, Raman spectroscopy, scanning electron microscopy (SEM) and optical measurements. These techniques have been used to investigate the oxygen index in MoO{sub x} properties during the heat treatment. Second, from the reflectance and transmittance optical measurements, it was found that the direct band gap energy value increased from 3.16 to 3.90 eV. Finally, the heat treatments reveal that the oxygen index varies in such molybdenum oxides showing noticeably sensitivity toward ethanol gas.

  9. Electrochromic performances of nonstoichiometric NiO thin films

    International Nuclear Information System (INIS)

    Moulki, H.; Faure, C.; Mihelčič, M.; Vuk, A. Šurca; Švegl, F.; Orel, B.; Campet, G.; Alfredsson, M.; Chadwick, A.V.; Gianolio, D.; Rougier, A.

    2014-01-01

    Electrochromic (EC) performances of Ni 3+ containing NiO thin films, called modified NiO thin films, prepared either by pulsed laser deposition or by chemical route are reported. When cycled in lithium based electrolyte, the comparison of the EC behavior of nonstoichiometric NiO thin films points out a larger optical contrast for the films synthesized by chemical route with the absence of an activation period on early electrochemical cycling due in particular to a larger porosity. Herein we demonstrate faster kinetics for modified NiO thin films cycled in lithium ion free electrolyte. Finally, X-ray absorption spectroscopy is used for a preliminary understanding of the mechanism involved in this original EC behavior linked to the film characteristics including their disorder character, the presence of Ni 3+ and their porous morphology. - Highlights: • Nonstoichiometric NiO thin films • Electrochromic performances in lithium free electrolyte • X-ray absorption spectroscopy investigation of as-deposited films and upon cycling

  10. Topotactic synthesis of strontium cobalt oxyhydride thin film with perovskite structure

    Science.gov (United States)

    Katayama, Tsukasa; Chikamatsu, Akira; Kamisaka, Hideyuki; Yokoyama, Yuichi; Hirata, Yasuyuki; Wadati, Hiroki; Fukumura, Tomoteru; Hasegawa, Tetsuya

    2015-10-01

    The substitution of hydride anions (H-) into transition metal oxides has recently become possible through topotactic reactions or high-pressure synthesis methods. However, the fabrication of oxyhydrides is still difficult because of their inherently less-stable frameworks. In this study, we successfully fabricated perovskite SrCoOxHy thin films via the topotactic hydride doping of brownmillerite SrCoO2.5 epitaxial thin films with CaH2. The perovskite-type cation framework was maintained during the topotactic treatment owing to epitaxial stabilization. Structural and chemical analyses accompanied by X-ray absorption spectroscopy measurements revealed that the doped hydride ions form a two-dimensional network of Co-H--Co bonds, in contrast to other reported perovskite oxyhydrides, SrMO3-xHx (M = Cr, Ti, V). The SrCoOxHy thin film exhibited insulating behavior and had a direct band gap of 2.1 eV. Thus, topotactic hydride doping of transition-metal-oxide thin films on suitable substrates is a promising method for the synthesis of new transition metal oxyhydrides.

  11. Topotactic synthesis of strontium cobalt oxyhydride thin film with perovskite structure

    Directory of Open Access Journals (Sweden)

    Tsukasa Katayama

    2015-10-01

    Full Text Available The substitution of hydride anions (H− into transition metal oxides has recently become possible through topotactic reactions or high-pressure synthesis methods. However, the fabrication of oxyhydrides is still difficult because of their inherently less-stable frameworks. In this study, we successfully fabricated perovskite SrCoOxHy thin films via the topotactic hydride doping of brownmillerite SrCoO2.5 epitaxial thin films with CaH2. The perovskite-type cation framework was maintained during the topotactic treatment owing to epitaxial stabilization. Structural and chemical analyses accompanied by X-ray absorption spectroscopy measurements revealed that the doped hydride ions form a two-dimensional network of Co-H−-Co bonds, in contrast to other reported perovskite oxyhydrides, SrMO3−xHx (M = Cr, Ti, V. The SrCoOxHy thin film exhibited insulating behavior and had a direct band gap of 2.1 eV. Thus, topotactic hydride doping of transition-metal-oxide thin films on suitable substrates is a promising method for the synthesis of new transition metal oxyhydrides.

  12. Topotactic synthesis of strontium cobalt oxyhydride thin film with perovskite structure

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Tsukasa [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); Chikamatsu, Akira, E-mail: chikamatsu@chem.s.u-tokyo.ac.jp; Kamisaka, Hideyuki [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); CREST, Japan Science and Technology Agency (JST), Tokyo 113-0033 (Japan); Yokoyama, Yuichi; Hirata, Yasuyuki; Wadati, Hiroki [Institute for Solid State Physics, The University of Tokyo, Chiba 277-8581 (Japan); Fukumura, Tomoteru [CREST, Japan Science and Technology Agency (JST), Tokyo 113-0033 (Japan); Department of Chemistry, Tohoku University, Miyagi 980-8578 (Japan); Hasegawa, Tetsuya [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); CREST, Japan Science and Technology Agency (JST), Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan)

    2015-10-15

    The substitution of hydride anions (H{sup −}) into transition metal oxides has recently become possible through topotactic reactions or high-pressure synthesis methods. However, the fabrication of oxyhydrides is still difficult because of their inherently less-stable frameworks. In this study, we successfully fabricated perovskite SrCoO{sub x}H{sub y} thin films via the topotactic hydride doping of brownmillerite SrCoO{sub 2.5} epitaxial thin films with CaH{sub 2}. The perovskite-type cation framework was maintained during the topotactic treatment owing to epitaxial stabilization. Structural and chemical analyses accompanied by X-ray absorption spectroscopy measurements revealed that the doped hydride ions form a two-dimensional network of Co-H{sup −}-Co bonds, in contrast to other reported perovskite oxyhydrides, SrMO{sub 3−x}H{sub x} (M = Cr, Ti, V). The SrCoO{sub x}H{sub y} thin film exhibited insulating behavior and had a direct band gap of 2.1 eV. Thus, topotactic hydride doping of transition-metal-oxide thin films on suitable substrates is a promising method for the synthesis of new transition metal oxyhydrides.

  13. Degradation process in organic thin film devices fabricated using ...

    Indian Academy of Sciences (India)

    hexylthiophene); organic semiconductors; conducting polymers; degradation. ... The stability of regioregular poly(3-hexylthiophene 2,5-diyl) (P3HT) thin films sandwiched between indium tin oxide (ITO) and aluminium (Al) electrodes have ...

  14. Modeling surface imperfections in thin films and nanostructured surfaces

    DEFF Research Database (Denmark)

    Hansen, Poul-Erik; Madsen, J. S.; Jensen, S. A.

    2017-01-01

    Accurate scatterometry and ellipsometry characterization of non-perfect thin films and nanostructured surfaces are challenging. Imperfections like surface roughness make the associated modelling and inverse problem solution difficult due to the lack of knowledge about the imperfection...

  15. Property elucidation of vacuum-evaporated zinc telluride thin film ...

    Indian Academy of Sciences (India)

    J U Ahamed

    2017-08-31

    ZnTe) thin film on glass substrate in order to investigate the ... photovoltaic solar cells, light-emitting diodes, laser diodes, microwave devices .... integrated intensity ratio of a super lattice peak to a fun- damental peak. Comparing ...

  16. Chemical solution deposition of functional oxide thin films

    CERN Document Server

    Schneller, Theodor; Kosec, Marija

    2014-01-01

    Chemical Solution Deposition (CSD) is a highly-flexible and inexpensive technique for the fabrication of functional oxide thin films. Featuring nearly 400 illustrations, this text covers all aspects of the technique.

  17. Self-organized structures in soft confined thin films

    Indian Academy of Sciences (India)

    organized creation of mesostructures in soft materials like thin films of polymeric liquids and elas- tic solids. These very small scale, highly confined systems are inherently unstable and thus self-organize into ordered structures which can be ...

  18. Broadband back grating design for thin film solar cells

    KAUST Repository

    Janjua, Bilal

    2013-01-01

    In this paper, design based on tapered circular grating structure was studied, to provide broadband enhancement in thin film amorphous silicon solar cells. In comparison to planar structure an absorption enhancement of ~ 7% was realized.

  19. Laser Induced Chemical Vapor Deposition of Thin Films

    National Research Council Canada - National Science Library

    Zahavi, Joseph

    1995-01-01

    .... It completes the information which was given in the previous two progress reports. Basically, the aim of the first year was to study the possibility of deposition of silicon nitride thin films from silane and ammonia at low temperatures...

  20. Thin carbon film serves as UV bandpass filter

    Science.gov (United States)

    1966-01-01

    Thin carbon film deposited on a 70 percent transparent screen provides a filter for narrow-band detectors in the extreme ultraviolet. The filter also suppresses scattered light and light of unwanted orders in vacuum spectrographs.

  1. Simple gun for vapor deposition of organic thin films

    International Nuclear Information System (INIS)

    Sato, N.; Seki, K.; Inokuchi, H.

    1987-01-01

    A simple evaporation gun for preparing organic thin films was fabricated using commercially available parts of an electron gun for a TV Braun tube. The device permits sample heating to be easily controlled because of the small heat capacity

  2. A thin film hydroponic system for plant studies

    Science.gov (United States)

    Hines, Robert; Prince, Ralph; Muller, Eldon; Schuerger, Andrew

    1990-01-01

    The Land Pavillion, EPCOT Center, houses a hydroponic, thin film growing system identical to that residing in NASA's Biomass Production Chamber at Kennedy Space Center. The system is targeted for plant disease and nutrition studies. The system is described.

  3. Thin films of xyloglucans for BSA adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Jo, T.A. [Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba, PR (Brazil); Laboratory of Biopolymers, Department of Chemistry, Federal University of Parana, Curitiba, PR (Brazil); Petri, D.F.S. [Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP (Brazil); Valenga, F. [Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba, PR (Brazil); Laboratory of Biopolymers, Department of Chemistry, Federal University of Parana, Curitiba, PR (Brazil); Lucyszyn, N. [Laboratory of Biopolymers, Department of Chemistry, Federal University of Parana, Curitiba, PR (Brazil); Sierakowski, M.-R. [Laboratory of Biopolymers, Department of Chemistry, Federal University of Parana, Curitiba, PR (Brazil)], E-mail: mariarita.sierakowski@ufpr.br

    2009-03-01

    In this work, XG extracted from Tamarindus indica (XGT) and Copaifera langsdorffii (XGC) seeds were deposited onto Si wafers as thin films. The characteristics of XGT and XGC adsorbed layers were compared with a commercial XG sample (TKP, Tamarind kernel powder) by ellipsometry and atomic force microscopy (AFM). Moreover, the adsorption of oxidized derivative of XGT (To60) onto amino-terminated Si wafers and the immobilization of bovine serum albumin (BSA) onto polysaccharides covered wafers, as a function of pH, were also investigated. The XG samples presented molar ratios Glc:Xyl:Gal of 2.4:2.1:1 (XGC); 2.8: 2.3: 1 (XGT) and 1.9:1.9:1 (TKP). The structure of XGT and XGC was determined by O-methy alditol acetate derivatization and showed similar features, but XGC confirmed the presence of more {alpha}-D-Xyl branches due to more {beta}-D-Gal ends. XGT deposited onto Si adsorbed as fibers and small entities uniformly distributed, as evidenced by AFM, while TPK and XGC formed larger aggregates. The thickness of To60 onto amino-terminated surface was similar to that determined for XGT onto Si wafers. A maximum in the adsorbed amount of BSA occurred close to its isoelectric point (5.5). These findings indicate that XGT and To60 are potential materials for the development of biomaterials and biotechnological devices.

  4. Degradation analysis of thin film photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Radue, C., E-mail: chantelle.radue@nmmu.ac.z [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Dyk, E.E. van [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2009-12-01

    Five thin film photovoltaic modules were deployed outdoors under open circuit conditions after a thorough indoor evaluation. Two technology types were investigated: amorphous silicon (a-Si:H) and copper indium gallium diselenide (CIGS). Two 14 W a-Si:H modules, labelled Si-1 and Si-2, were investigated. Both exhibited degradation, initially due to the well-known light-induced degradation described by Staebler and Wronski [Applied Physics Letters 31 (4) (1977) 292], and thereafter due to other degradation modes such as cell degradation. The various degradation modes contributing to the degradation of the a-Si:H modules will be discussed. The initial maximum power output (P{sub MAX}) of Si-1 was 9.92 W, with the initial light-induced degradation for Si-1 approx30% and a total degradation of approx42%. For Si-2 the initial P{sub MAX} was 7.93 W, with initial light-induced degradation of approx10% and a total degradation of approx17%. Three CIGS modules were investigated: two 20 W modules labelled CIGS-1 and CIGS-2, and a 40 W module labelled CIGS-3. CIGS-2 exhibited stable performance while CIGS-1 and CIGS-3 exhibited degradation. CIGS is known to be stable over long periods of time, and thus the possible reasons for the degradation of the two modules are discussed.

  5. Degradation analysis of thin film photovoltaic modules

    International Nuclear Information System (INIS)

    Radue, C.; Dyk, E.E. van

    2009-01-01

    Five thin film photovoltaic modules were deployed outdoors under open circuit conditions after a thorough indoor evaluation. Two technology types were investigated: amorphous silicon (a-Si:H) and copper indium gallium diselenide (CIGS). Two 14 W a-Si:H modules, labelled Si-1 and Si-2, were investigated. Both exhibited degradation, initially due to the well-known light-induced degradation described by Staebler and Wronski [Applied Physics Letters 31 (4) (1977) 292], and thereafter due to other degradation modes such as cell degradation. The various degradation modes contributing to the degradation of the a-Si:H modules will be discussed. The initial maximum power output (P MAX ) of Si-1 was 9.92 W, with the initial light-induced degradation for Si-1 ∼30% and a total degradation of ∼42%. For Si-2 the initial P MAX was 7.93 W, with initial light-induced degradation of ∼10% and a total degradation of ∼17%. Three CIGS modules were investigated: two 20 W modules labelled CIGS-1 and CIGS-2, and a 40 W module labelled CIGS-3. CIGS-2 exhibited stable performance while CIGS-1 and CIGS-3 exhibited degradation. CIGS is known to be stable over long periods of time, and thus the possible reasons for the degradation of the two modules are discussed.

  6. Thin wetting film lens-less imaging

    International Nuclear Information System (INIS)

    Allier, C.P.; Poher, V.; Coutard, J.G.; Hiernard, G.; Dinten, J.M.

    2011-01-01

    Lens-less imaging has recently attracted a lot of attention as a compact, easy-to-use method to image or detect biological objects like cells, but failed at detecting micron size objects like bacteria that often do not scatter enough light. In order to detect single bacterium, we have developed a method based on a thin wetting film that produces a micro-lens effect. Compared with previously reported results, a large improvement in signal to noise ratio is obtained due to the presence of a micro-lens on top of each bacterium. In these conditions, standard CMOS sensors are able to detect single bacterium, e.g. E. coli, Bacillus subtilis and Bacillus thuringiensis, with a large signal to noise ratio. This paper presents our sensor optimization to enhance the SNR; improve the detection of sub-micron objects; and increase the imaging FOV, from 4.3 mm 2 to 12 mm 2 to 24 mm 2 , which allows the detection of bacteria contained in 0.5 μl to 4 μl to 10 μl, respectively. (authors)

  7. Trends and new applications in thin films

    International Nuclear Information System (INIS)

    1996-01-01

    The proceedings of this symposium comprise 95 communications from which 64 were selected and fall into the scope of INIS subject categories, and 1 was selected for ETDE indexing. The selected communications deal with the techniques used for thin films preparation using chemical or physical vapor deposition techniques (plasma-arc or jet spraying, cathode sputtering, reactive DC or RF magnetron sputtering, plasma-ion deposition, ion implantation, electron or ion beam spraying, ion beam assisted plasma etching, dynamic ion mixing, distributed electron cyclotron resonance plasma sputtering, laser induced plasma sputtering etc..). The effects and interactions with the substrates (ion implantation, crystal growth, crystal-phase transformations, microstructures, penetration depth, changes in lattice parameters etc..) are analysed using various techniques such as grazing incidence X-ray diffraction, X-ray reflectometry, X-ray and angle resolved electron spectroscopy, Auger electron spectroscopy, Rutherford backscattering spectroscopy, SEM, TEM, IR absorption spectroscopy, UV or visible emission spectroscopy, conversion electron Moessbauer spectroscopy, X-ray fluorescence, mass spectroscopy, optical ellipsometry etc.. Mechanical tests such as scratch, microhardness and wear tests are also performed on the coatings to analyse their mechanical properties. (J.S.)

  8. Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Guy Beaucarne

    2007-01-01

    with plasma-enhanced chemical vapor deposition (PECVD. In spite of the fundamental limitation of this material due to its disorder and metastability, the technology is now gaining industrial momentum thanks to the entry of equipment manufacturers with experience with large-area PECVD. Microcrystalline Si (also called nanocrystalline Si is a material with crystallites in the nanometer range in an amorphous matrix, and which contains less defects than amorphous silicon. Its lower bandgap makes it particularly appropriate as active material for the bottom cell in tandem and triple junction devices. The combination of an amorphous silicon top cell and a microcrystalline bottom cell has yielded promising results, but much work is needed to implement it on large-area and to limit light-induced degradation. Finally thin-film polysilicon solar cells, with grain size in the micrometer range, has recently emerged as an alternative photovoltaic technology. The layers have a grain size ranging from 1 μm to several tens of microns, and are formed at a temperature ranging from 600 to more than 1000∘C. Solid Phase Crystallization has yielded the best results so far but there has recently been fast progress with seed layer approaches, particularly those using the aluminum-induced crystallization technique.

  9. Inverse bilayer magnetoelectric thin film sensor

    Energy Technology Data Exchange (ETDEWEB)

    Yarar, E.; Piorra, A.; Quandt, E., E-mail: eq@tf.uni-kiel.de [Chair for Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143 Kiel (Germany); Salzer, S.; Höft, M.; Knöchel, R. [Microwave Laboratory, Institute of Electrical and Information Engineering, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143 Kiel (Germany); Hrkac, V.; Kienle, L. [Chair for Synthesis and Real Structure, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143 Kiel (Germany)

    2016-07-11

    Prior investigations on magnetoelectric (ME) thin film sensors using amorphous FeCoSiB as a magnetostrictive layer and AlN as a piezoelectric layer revealed a limit of detection (LOD) in the range of a few pT/Hz{sup 1/2} in the mechanical resonance. These sensors are comprised of a Si/SiO{sub 2}/Pt/AlN/FeCoSiB layer stack, as dictated by the temperatures required for the deposition of the layers. A low temperature deposition route of very high quality AlN allows the reversal of the deposition sequence, thus allowing the amorphous FeCoSiB to be deposited on the very smooth Si substrate. As a consequence, the LOD could be enhanced by almost an order of magnitude reaching 400 fT/Hz{sup 1/2} at the mechanical resonance of the sensor. Giant ME coefficients (α{sub ME}) as high as 5 kV/cm Oe were measured. Transmission electron microscopy investigations revealed highly c-axis oriented growth of the AlN starting from the Pt-AlN interface with local epitaxy.

  10. Thin film deposition using rarefied gas jet

    Science.gov (United States)

    Pradhan, Sahadev, , Dr.

    2017-06-01

    The rarefied gas jet of aluminium is studied at Mach number Ma = (Uj /√{ kbTj / mg }) in the range .01 PVD) process for the development of the highly oriented pure metallic aluminum thin film with uniform thickness and strong adhesion on the surface of the substrate in the form of ionic plasma, so that the substrate can be protected from corrosion and oxidation and thereby enhance the lifetime and safety, and to introduce the desired surface properties for a given application. Here, H is the characteristic dimension, U_j and T_j are the jet velocity and temperature, n_d is the number density of the jet, m and d are the molecular mass and diameter, and kbis the Boltzmann constant. An important finding is that the capture width (cross-section of the gas jet deposited on the substrate) is symmetric around the centerline of the substrate, and decreases with increased Mach number due to an increase in the momentum of the gas molecules. DSMC simulation results reveals that at low Knudsen number ((Kn=0.01); shorter mean free paths), the atoms experience more collisions, which direct them toward the substrate. However, the atoms also move with lower momentum at low Mach number, which allows scattering collisions to rapidly direct the atoms to the substrate.

  11. Magnetostatic excitations in thin ferrite films

    International Nuclear Information System (INIS)

    Zil'berman, P.E.; Lugovskoi, A.V.

    1987-01-01

    The authors discuss the influence of the exchange interaction and dissipative processes in thin ferrite films on the eigenfrequency spectrum of magnetostatic standing waves and on the dispersion relation and attenuation of magnetostatic traveling waves. For the first time they obtain explicitly the dispersion relation for magnetostatic waves (MSWs) in a tangential saturating magnetic field H 0 to second order (inclusive) in the exchange interaction parameter λ. The authors obtain computer solutions for this equation in the complex frequency (ω) plane (for standing waves) or wave-number (q) plane (for traveling waves). The authors show that the dispersion relation constructed from the standing-wave spectrum is different from that of the traveling waves if λ≠0, even if dissipation is neglected. The traveling waves have auxiliary branches of the dispersion relation with weak damping near the spin-wave-resonance (SWR) frequencies. Dissipation has only a relatively weak effect on the frequency spectrum of the standing waves, shifting it upward. For the traveling waves, however, dissipation leads to qualitative changes in the structure of the dispersion relation, giving rise to new branches, forbidden bands, reentrant and anomalous-dispersion regions

  12. Properties of Spray Pyrolysied Copper Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    S. S. Roy

    2017-02-01

    Full Text Available Copper oxide (CuO thin films were deposited on well cleaned glass substrates by spray pyrolysis technique (SPT from cupric acetate (Cu(CH3COO2.H2O precursor solutions of 0.05 – 0.15 M molar concentrations (MC at a substrate temperature of 350 °C and at an air pressure of 1 bar. Effect of varying MC on the surface morphology, structural optical and electrical properties of CuO thin films were investigated. XRD patterns of the prepared films revealed the formation of CuO thin films having monoclinic structure with the main CuO (111 orientation and crystalline size ranging from 8.02 to 9.05 nm was observed. The optical transmission of the film was found to decrease with the increase of MC. The optical band gap of the thin films for 0.10 M was fond to be 1.60 eV. The room temperature electrical resistivity varies from 31 and 24 ohm.cm for the films grown with MC of 0.05 and 0.10 M respectively. The change in resistivity of the films was studied with respect to the change in temperature was shown that semiconductor nature is present. This information is expected to underlie the successful development of CuO films for solar windows and other semi-conductor applications including gas sensors.

  13. Crystalline Indium Sulphide thin film by photo accelerated deposition technique

    Science.gov (United States)

    Dhanya, A. C.; Preetha, K. C.; Deepa, K.; Remadevi, T. L.

    2015-02-01

    Indium sulfide thin films deserve special attention because of its potential application as buffer layers in CIGS based solar cells. Highly transparent indium sulfide (InS) thin films were prepared using a novel method called photo accelerated chemical deposition (PCD). Ultraviolet source of 150 W was used to irradiate the solution. Compared to all other chemical methods, PCD scores its advantage for its low cost, flexible substrate and capable of large area of deposition. Reports on deposition of high quality InS thin films at room temperature are very rare in literature. The precursor solution was initially heated to 90°C for ten minutes and then deposition was carried out at room temperature for two hours. The appearance of the film changed from lemon yellow to bright yellow as the deposition time increased. The sample was characterized for its structural and optical properties. XRD profile showed the polycrystalline behavior of the film with mixed phases having crystallite size of 17 nm. The surface morphology of the films exhibited uniformly distributed honey comb like structures. The film appeared to be smooth and the value of extinction coefficient was negligible. Optical measurements showed that the film has more than 80% transmission in the visible region. The direct band gap energy was 2.47eV. This method is highly suitable for the synthesis of crystalline and transparent indium sulfide thin films and can be used for various photo voltaic applications.

  14. Structural And Optical Properties Of VOx Thin Films

    Directory of Open Access Journals (Sweden)

    Schneider K.

    2015-06-01

    Full Text Available VOx thin films were deposited on Corning glass, fused silica and Ti foils by means of rf reactive sputtering from a metallic vanadium target. Argon-oxygen gas mixtures of different compositions controlled by the flow rates were used for sputtering. Influence of the oxygen partial pressure in the sputtering chamber on the structural and optical properties of thin films has been investigated.

  15. Health, safety and environmental issues in thin film manufacturing

    OpenAIRE

    Alsema, E.A.; Baumann, A.E.; Hill, R.; Patterson, M.H.

    1997-01-01

    An investigation is made of Health, Safety and Environmental (HSE) aspects for the manufacturing, use and decommissioning of CdTe, CIS and a-Si modules. Issues regarding energy requirements, resource availability, emissions of toxic materials, occupational health and safety and module waste treatment are reviewed. Waste streams in thin film module manufacturing are analyzed in detail and treatment methods are discussed. Finally the technological options for thin film module recycling are inve...

  16. Growth of cuprate high temperature superconductor thin films

    Directory of Open Access Journals (Sweden)

    H-U Habermeier

    2006-09-01

    Full Text Available   This paper reviews briefly the development of physical vapour deposition based HTS thin film preparation technologies to today’s state-of-the-art methods. It covers the main trends of in-situ process and growth control. The current activities to fabricate tapes for power applications as well as to tailor interfaces in cuprate are described. Some future trends in HTS thin film research, both for science as well as application driven activities are outlined.

  17. Simple flash evaporator for making thin films of compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hemanadhan, M.; Bapanayya, Ch.; Agarwal, S. C. [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India)

    2010-07-15

    A simple and compact arrangement for flash evaporation is described. It uses a cell phone vibrator for powder dispensing that can be incorporated into a vacuum deposition chamber without any major alterations. The performance of the flash evaporation system is checked by making thin films of the optical memory chalcogenide glass Ge{sub 2}Sb{sub 2}Te{sub 5} (GST). Energy dispersive x-ray analysis shows that the flash evaporation preserves the stoichiometry in thin films.

  18. Optical thin-film technology: past, present, future

    Science.gov (United States)

    Strickland, William P.

    1990-12-01

    The evolution of the vacuum coating industry is reviewed. Vacuum science progressed slowly until the late nineteenth century due to an incomplete understanding of vacuum and lack of applications. Edison's invention of the light bulb launched the vacuum industry and increased developmentof improved vacuum systems. The thin film optical coating industry arose from the needs of the German and U.S. military efforts during World War II. The author presents his experience in thin film coating from 1939 to the present.

  19. Thin film bulk acoustic wave devices : performance optimization and modeling

    OpenAIRE

    Pensala, Tuomas

    2011-01-01

    Thin film bulk acoustic wave (BAW) resonators and filters operating in the GHz range are used in mobile phones for the most demanding filtering applications and complement the surface acoustic wave (SAW) based filters. Their main advantages are small size and high performance at frequencies above 2 GHz. This work concentrates on the characterization, performance optimization, and modeling techniques of thin film BAW devices. Laser interferometric vibration measurements together with plat...

  20. The 1989 progress report: interface physics and thin films

    International Nuclear Information System (INIS)

    Equer, B.

    1989-01-01

    The 1989 progress report of the laboratory of Interface Physics and Thin Films of the Polytechnic School (France) is presented. The properties and the interfaces of thin films, which show optoelectronic activity, are studied. The materials investigated are hydrogenated amorphous silicon compounds, amorphous compounds of silicon-germanium, silicon-carbon and silicon-mitrogen. The techniques developed for manufacturing and characterizing those materials are included. The published papers, the conferences and the Laboratory staff are listed [fr

  1. Liquid phase epitaxial growth of heterostructured hierarchical MOF thin films

    KAUST Repository

    Chernikova, Valeriya

    2017-05-10

    Precise control of epitaxial growth of MOF-on-MOF thin films, for ordered hierarchical tbo-type structures is demonstrated. The heterostructured MOF thin film was fabricated by successful sequential deposition of layers from two different MOFs. The 2-periodic layers, edge-transitive 4,4-square lattices regarded as supermolecular building layers, were commendably cross-linked using a combination of inorganic/organic and organic pillars.

  2. Thermomagnetic marking of rare-earth-transition-metal thin films

    Science.gov (United States)

    Bartholomeusz, Brian Josef

    1989-01-01

    Analytical derivation of temperature profiles in laser-irradiated thin-film structures is hindered by the nature of the heat source terms and by the geometrical complexity that often exists. This study utilizes a combined Laplace-transform-Fourier-integral method to obtain approximate solutions for a number of simple cases. The results are used to study the thermomagnetic marking process in rare-earth-transition-metal (RE-TM) thin films, and the predictions are compared with experimental observations.

  3. CO2 gas sensitivity of sputtered zinc oxide thin films

    Indian Academy of Sciences (India)

    TECS

    Abstract. For the first time, sputtered zinc oxide (ZnO) thin films have been used as a CO2 gas sensor. Zinc oxide thin films have been synthesized using reactive d.c. sputtering method for gas sensor applications, in the deposition temperature range from 130–153°C at a chamber pressure of 8⋅5 mbar for 18 h. Argon and ...

  4. Multiferroicity in oxide thin films and heterostructures

    International Nuclear Information System (INIS)

    Glavic, Artur

    2012-01-01

    In this work a variety of different systems of transition metal oxides ABO 3 (perovskite materials, where B stands for a transition metal and A for a rare earth element) were produced as thin films and heterostructures and analyzed for the structural, magnetic and ferroelectric properties. For the epitaxial film preparation mostly pulse laser deposition (PLD) was applied. For one series high pressure oxide sputter deposition was used as well. The bulk multiferroics TbMnO 3 and DyMnO 3 , which develop their electric polarization due to a cycloidal magnetic order, have been prepared as single layers with thicknesses between 2 and 200 nm on YAlO 3 substrates using PLD and sputter deposition. The structural characterization of the surfaces and crystal structure where performed using X-ray reflectometry and diffraction, respectively. These yielded low surface roughness and good epitaxial growth. The magnetic behavior was macroscopically measured with SQUID magnetometry and microscopically with polarized neutron diffraction and resonant magnetic X-ray scattering. While all investigated samples showed antiferromagnetic order, comparable with the collinear magnetic phase of their bulk materials, only the sputter deposited samples exhibited the multiferroic low temperature cycloidal order. The investigation of the optical second harmonic generation in a TbMnO 3 sample could proof the presence of a ferroelectric order in the low temperature phase. The respective transition temperatures of the thin films have been very similar to those of the bulk materials. In contrast an increase in the rare earth ordering temperature has been observed, which reduces the Mn order slightly, an effect not known from bulk TbMnO 3 crystals. The coupling of the antiferromagnetic order in TbMnO 3 to ferromagnetic layers of LaCoO 3 was investigated in super-lattices containing 20 bilayers produced with PLD on the same substrates. The SQUID magnetometry yielded a strong influence of the

  5. Deposition and characterisation of epitaxial oxide thin films for SOFCs

    KAUST Repository

    Santiso, José

    2010-10-24

    This paper reviews the recent advances in the use of thin films, mostly epitaxial, for fundamental studies of materials for solid oxide fuel cell (SOFC) applications. These studies include the influence of film microstructure, crystal orientation and strain in oxide ionic conducting materials used as electrolytes, such as fluorites, and in mixed ionic and electronic conducting materials used as electrodes, typically oxides with perovskite or perovskite-related layered structures. The recent effort towards the enhancement of the electrochemical performance of SOFC materials through the deposition of artificial film heterostructures is also presented. These thin films have been engineered at a nanoscale level, such as the case of epitaxial multilayers or nanocomposite cermet materials. The recent progress in the implementation of thin films in SOFC devices is also reported. © 2010 Springer-Verlag.

  6. Silver nanowire-based transparent, flexible, and conductive thin film

    Directory of Open Access Journals (Sweden)

    Liu Cai-Hong

    2011-01-01

    Full Text Available Abstract The fabrication of transparent, conductive, and uniform silver nanowire films using the scalable rod-coating technique is described in this study. Properties of the transparent conductive thin films are investigated, as well as the approaches to improve the performance of transparent silver nanowire electrodes. It is found that silver nanowires are oxidized during the coating process. Incubation in hydrogen chloride (HCl vapor can eliminate oxidized surface, and consequently, reduce largely the resistivity of silver nanowire thin films. After HCl treatment, 175 Ω/sq and approximately 75% transmittance are achieved. The sheet resistivity drops remarkably with the rise of the film thickness or with the decrease of transparency. The thin film electrodes also demonstrated excellent flexible stability, showing < 2% resistance change after over 100 bending cycles.

  7. Metal-Doped Oxide Electrodes for Transparent Thin-Film Transistors Fabricated by Direct Co-Sputtering Method

    Science.gov (United States)

    Cheong, Woo-Seok; Shin, Jae-Heon; Byun, Chun-Won; Ryu, Minki; Hwang, Chi-Sun

    2009-04-01

    In this study, for the first time, Ag-doped SnO2 and Mo-doped ZnO films for transparent electrodes was explored by using a direct co-sputtering method in a non-oxidizing atmosphere, and successfully applied to source and drain electrodes of transparent thin-film transistors. Ag (˜4%)-doped SnO2 films has the low resistivity of 3.8 ×10-4 Ω cm, but the relatively low transmittance of ˜50%, after 300 °C for 1 h post-annealing in an O2 ambient. On the other hand, a shallow coating of Mo (2.3 nm) on Mo-doped ZnO electrode caused a hard-saturation behavior even at the low drain voltage (˜2 V), which can provide effective tools to current-driving devices, for example, active matrix-organic light emitting display (AM-OLED).

  8. Femtosecond pulsed laser deposition of cobalt ferrite thin films

    Science.gov (United States)

    Dascalu, Georgiana; Pompilian, Gloria; Chazallon, Bertrand; Caltun, Ovidiu Florin; Gurlui, Silviu; Focsa, Cristian

    2013-08-01

    The insertion of different elements in the cobalt ferrite spinel structure can drastically change the electric and magnetic characteristics of CoFe2O4 bulks and thin films. Pulsed Laser Deposition (PLD) is a widely used technique that allows the growth of thin films with complex chemical formula. We present the results obtained for stoichiometric and Gadolinium-doped cobalt ferrite thin films deposited by PLD using a femtosecond laser with 1 kHz repetition rate. The structural properties of the as obtained samples were compared with other thin films deposited by ns-PLD. The structural characteristics and chemical composition of the samples were investigated using profilometry, Raman spectroscopy, X-Ray diffraction measurements and ToF-SIMS analysis. Cobalt ferrite thin films with a single spinel structure and a preferential growth direction have been obtained. The structural analysis results indicated the presence of internal stress for all the studied samples. By fs-PLD, uniform thin films were obtained in a short deposition time.

  9. Thin films as an emerging platform for drug delivery

    Directory of Open Access Journals (Sweden)

    Sandeep Karki

    2016-10-01

    Full Text Available Pharmaceutical scientists throughout the world are trying to explore thin films as a novel drug delivery tool. Thin films have been identified as an alternative approach to conventional dosage forms. The thin films are considered to be convenient to swallow, self-administrable, and fast dissolving dosage form, all of which make it as a versatile platform for drug delivery. This delivery system has been used for both systemic and local action via several routes such as oral, buccal, sublingual, ocular, and transdermal routes. The design of efficient thin films requires a comprehensive knowledge of the pharmacological and pharmaceutical properties of drugs and polymers along with an appropriate selection of manufacturing processes. Therefore, the aim of this review is to provide an overview of the critical factors affecting the formulation of thin films, including the physico-chemical properties of polymers and drugs, anatomical and physiological constraints, as well as the characterization methods and quality specifications to circumvent the difficulties associated with formulation design. It also highlights the recent trends and perspectives to develop thin film products by various companies.

  10. Reflectometric monitoring of the dissolution process of thin polymeric films.

    Science.gov (United States)

    Laitinen, Riikka; Räty, Jukka; Korhonen, Kristiina; Ketolainen, Jarkko; Peiponen, Kai-Erik

    2017-05-15

    Pharmaceutical thin films are versatile drug-delivery platforms i.e. allowing transdermal, oral, sublingual and buccal administration. However, dissolution testing of thin films is challenging since the commonly used dissolution tests for conventional dosage forms correspond rather poorly to the physiological conditions at the site of administration. Here we introduce a traditional optical reflection method for monitoring the dissolution behavior of thin polymeric films. The substances, e.g. drug molecules, released from the film generate an increase in the refractive index in the liquid medium which can be detected by reflectance monitoring. Thin EUDRAGIT ® RL PO poly(ethyl acrylate-co-methyl methacrylate-co trimethylammonioethyl methacrylate chloride) (RLPO) films containing the model drug perphenazine (PPZ) were prepared by spraying on a glass substrate. The glass substrates were placed inside the flow cell in the reflectometer which was then filled with phosphate buffer solution. Dissolution was monitored by measuring the reflectance of the buffer liquid. The method was able to detect the distinctive dissolution characteristics of different film formulations and measured relatively small drug concentrations. In conclusion, it was demonstrated that a traditional optical reflection method can provide valuable information about the dissolution characteristics of thin polymeric films in low liquid volume surroundings. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. MoS2 solid-lubricating film fabricated by atomic layer deposition on Si substrate

    Science.gov (United States)

    Huang, Yazhou; Liu, Lei; Lv, Jun; Yang, Junjie; Sha, Jingjie; Chen, Yunfei

    2018-04-01

    How to reduce friction for improving efficiency in the usage of energy is a constant challenge. Layered material like MoS2 has long been recognized as an effective surface lubricant. Due to low interfacial shear strengths, MoS2 is endowed with nominal frictional coefficient. In this work, MoS2 solid-lubricating film was directly grown by atomic layer deposition (ALD) on Si substrate using MoCl5 and H2S. Various methods were used to observe the grown MoS2 film. Moreover, nanotribological properties of the film were observed by an atomic force microscope (AFM). Results show that MoS2 film can effectively reduce the friction force by about 30-45% under different loads, indicating the huge application value of the film as a solid lubricant. Besides the interlayer-interfaces-sliding, the smaller capillary is another reason why the grown MoS2 film has smaller friction force than that of Si.

  12. Processing-Structure Correlation in DC Sputtered Molybdenum Thin Films

    Science.gov (United States)

    Khan, Majid; Islam, Mohammad; Akram, Aftab; Manzoor, Umair

    2013-12-01

    Molybdenum thin films were sputter deposited under different conditions of DC power and chamber pressure. The structure and topography of the films were investigated using AFM, SEM and XRD techniques. Van der Pauw method and tape test were employed to determine electrical resistivity and interfacial strength to the substrate, respectively. All the films are of sub-micron thickness with maximum growth rate of 78 nm/min and crystallite size in the range of 4 to 21 nm. The films produced at high power and low pressure exhibit compressive residual strains, low electrical resistivity and poor adhesion to the glass substrate, whereas the converse is true for films produced at high pressure.

  13. The deposition of magnesium fluoride (MGF 2 ) thin films by ...

    African Journals Online (AJOL)

    The Chemical Bath Deposition (CBD) technique was successfully employed in the growth of magnesium fluoride (MgF2) thin films. The films were characterized and optimized. The characterization included: the optical and solid state properties such as the transmittance (T)/reflectance (R) absorbance (A) spectra which ...

  14. Reorientation of magnetic anisotropy in epitaxial cobalt ferrite thin films

    NARCIS (Netherlands)

    Lisfi, A.; Williams, C.M.; Nguyen, L.T.; Lodder, J.C.; Coleman, A.; Corcoran, H.; Johnson, A.; Chang, P.; Abhishek Kumar, A.K.; Kumar, A.; Morgan, W.

    2007-01-01

    Spin reorientation has been observed in CoFe2O4 thin single crystalline films epitaxially grown on (100) MgO substrate upon varying the film thickness. The critical thickness for such a spin-reorientation transition was estimated to be 300 nm. The reorientation is driven by a structural transition

  15. Thin films of metal-organic compounds and metal nanoparticle ...

    Indian Academy of Sciences (India)

    Thin films based on two very different metal-organic systems are developed and some nonlinear optical ... capability of the nanoparticle-embedded polymer film is demonstrated. Keywords. Polar crystal; uniaxial ... systems promising candidates for a wide range of electronic, magnetic and optical applications. However ...

  16. Oriented growth of thin films of samarium oxide by MOCVD

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Thin films of Sm2O3 have been grown on Si(100) and fused quartz by low-pressure chemical va- pour deposition using an adducted β-diketonate precursor. The films on quartz are cubic, with no preferred orientation at lower growth temperatures (~ 550°C), while they grow with a strong (111) orientation as the.

  17. Experimental and Theoretical Approaches to Thin Film Lubrication Problems

    NARCIS (Netherlands)

    Lee-Prudhoe, I.; Venner, C.H.; Cann, P.M.; Spikes, H.; Snidle, R.W.; Evans, H.P.

    2006-01-01

    The last fifty years have seen tremendous advances in the field of thin film lubrication. This is particularly true of steady-state Elastohydrodynamic lubrication (EHL) where the accurate measurement of film thickness combined with advanced numerical modelling methods has been very successful.

  18. Oxide ferroelectric thin films: synthesis from organometallic compounds and properties

    International Nuclear Information System (INIS)

    Vertoprakhov, Vladimir N; Nikulina, Lyubov' D; Igumenov, Igor K

    2005-01-01

    Chemical methods for the preparation of oxide ferroelectric thin films from organometallic compounds published over the last 10-15 years are considered systematically and generalised. Layers of these films are promising for the creation of non-volatile memory elements and for use in nano- and microelectronic devices.

  19. Preparation of self-supporting thin metal target films

    International Nuclear Information System (INIS)

    Wang Xiuying; Ge Suxian; Yin Jianhua; Yin Xu; Jin Genming

    1989-01-01

    The preparation method and equipment for thin metal self-supporting target without oil contamination are described. The influence of target films contaminated by oil vapor on accuracy of nuclear-physics experimental data are also discussed. The analytical results on carbon content in the prepared films of three elements show that the equipment is very effective for eliminating contamination

  20. Ultra thin films of nanocrystalline Ge studied by AFM and ...

    Indian Academy of Sciences (India)

    Initial growth stages of the ultra thin films of germanium (Ge) prepared by ion beam sputter deposition have been studied using atomic force microscope (AFM) and interference enhanced Raman scattering. The growth of the films follows Volmer-Weber growth mechanism. Analysis of the AFM images shows that Ostwald ...

  1. Optical Properties of Lead Silver Sulphide Ternary Thin Films ...

    African Journals Online (AJOL)

    Optical Properties of Lead Silver Sulphide Ternary Thin Films Deposited by Chemical Bath Method. ... The optical properties studied include reflectance, absorption coefficient, thickness, refractive index, extinction coefficient, optical conductivity and band gap energy. The films showed very high absorbance in the UV region, ...

  2. Conductance of perovskite oxide thin films and interfaces

    NARCIS (Netherlands)

    Mubeen Dildar, Ishrat

    2013-01-01

    This thesis deals with the properties of doped perovskite manganites in the form of thin films, and with interfaces between insulating perovskites. The first question we investigate has to do with the strong reduction of the metal-insulator (MI) transition temperature when the films are strained.In

  3. WO/sub 3/ thin films for practical electrochromic windows

    International Nuclear Information System (INIS)

    Goldner, R.B.; Wong, K.; Foley, G.; Norton, P.; Wamboldt, L.; Seward, G.; Haas, T.; Chapman, R.

    1986-01-01

    This paper shows that practical spectrally-selective transmittance modulation can be achieved with thin (50-100nm) WO/sub 3/ films, and therefore such films should be useful for fabricating electrochromic windows. The transmittance and reflectance modulation results are compared with theoretical predictions. The results indicate an excess intraband absorptance, which is attributed to free electron scattering arising from extended defects

  4. Magnetic hysteresis measurements of thin films under isotropic stress.

    Science.gov (United States)

    Holland, Patrick; Dubey, Archana; Geerts, Wilhelmus

    2000-10-01

    Nowadays, ferromagnetic thin films are widely applied in devices for information technology (credit cards, video recorder tapes, floppies, hard disks) and sensors (air bags, anti-breaking systems, navigation systems). Thus, with the increase in the use of magnetic media continued investigation of magnetic properties of materials is necessary to help in determining the useful properties of materials for new or improved applications. We are currently interested in studying the effect of applied external stress on Kerr hysteresis curves of thin magnetic films. The Ni and NiFe films were grown using DC magnetron sputtering with Ar as the sputter gas (pAr=4 mTorr; Tsub=55-190 C). Seed and cap layers of Ti were used on all films for adhesion and oxidation protection, respectively. A brass membrane pressure cell was designed to apply in-plane isotropic stress to thin films. In this pressure cell, gas pressure is used to deform a flexible substrate onto which a thin magnetic film has been sputtered. The curvature of the samples could be controlled by changing the gas pressure to the cell. Magneto-Optical in-plane hysteresis curves at different values of strain were measured. The results obtained show that the stress sensitivity is dependent on the film thickness. For the 500nm NiFe films, the coercivity strongly decreased as a function of the applied stress.

  5. Determination of magnetic properties of multilayer metallic thin films

    International Nuclear Information System (INIS)

    Birlikseven, C.

    2000-01-01

    In recent year, Giant Magnetoresistance Effect has been attracting an increasingly high interest. High sensitivity magnetic field detectors and high sensitivity read heads of magnetic media can be named as important applications of these films. In this work, magnetic and electrical properties of single layer and thin films were investigated. Multilayer thin films were supplied by Prof. Dr. A. Riza Koeymen from Texas University. Multilayer magnetic thin films are used especially for magnetic reading and magnetic writing. storing of large amount of information into small areas become possible with this technology. Single layer films were prepared using the electron beam evaporation technique. For the exact determination of film thicknesses, a careful calibration of the thicknesses was made. Magnetic properties of the multilayer films were studied using the magnetization, magnetoresistance measurements and ferromagnetic resonance technique. Besides, by fitting the experimental results to the theoretical models, effective magnetization and angles between the ferromagnetic layers were calculated. The correspondence between magnetization and magnetoresistance was evaluated. To see the effect of anisotropic magnetoresistance in the magnetoresistance measurements, a new experimental set-up was build and measurements were taken in this set-up. A series of soft permalloy thin films were made, and temperature dependent resistivity, magnetoresistance, anisotropic magnetoresistance and magnetization measurements were taken

  6. Unusual strain relaxation in Cu thin films on Ni(001)

    DEFF Research Database (Denmark)

    Rasmussen, F.B.; Baker, J.; Nielsen, M.

    1997-01-01

    Surface x-ray diffraction has been used to study the growth of thin Cu films on Ni(001). We give direct evidence for the formation of embedded wedges with internal {111} facets in the film, as recently suggested by Muller et al. [Phys. Rev. Lett. 76, 2358 (1996)]. The unusual strain distribution...

  7. Epitaxial oxide thin films by pulsed laser deposition: Retrospect and ...

    Indian Academy of Sciences (India)

    Epitaxial thin films of high c cuprates, metallic, ferroelectric, ferromagnetic, dielectric oxides, super conduc tor-metal-superconductor Josephson junctions and oxide superlattices have been made by PLD. In this article, an overview of preparation, characterization and properties of epitaxial oxide films and their applications ...

  8. TI--CR--AL--O thin film resistors

    Science.gov (United States)

    Jankowski, Alan F.; Schmid, Anthony P.

    2000-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  9. Thermoanalytical study of the decomposition of yttrium trifluoroacetate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Eloussifi, H. [GRMT, GRMT, Department of Physics, University of Girona, Campus Montilivi, E17071 Girona, Catalonia (Spain); Laboratoire de Chimie Inorganique, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000 Sfax (Tunisia); Farjas, J., E-mail: jordi.farjas@udg.cat [GRMT, GRMT, Department of Physics, University of Girona, Campus Montilivi, E17071 Girona, Catalonia (Spain); Roura, P. [GRMT, GRMT, Department of Physics, University of Girona, Campus Montilivi, E17071 Girona, Catalonia (Spain); Ricart, S.; Puig, T.; Obradors, X. [Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, 08193 Bellaterra, Catalonia (Spain); Dammak, M. [Laboratoire de Chimie Inorganique, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000 Sfax (Tunisia)

    2013-10-31

    We present the use of the thermal analysis techniques to study yttrium trifluoroacetate thin films decomposition. In situ analysis was done by means of thermogravimetry, differential thermal analysis, and evolved gas analysis. Solid residues at different stages and the final product have been characterized by X-ray diffraction and scanning electron microscopy. The thermal decomposition of yttrium trifluoroacetate thin films results in the formation of yttria and presents the same succession of intermediates than powder's decomposition, however, yttria and all intermediates but YF{sub 3} appear at significantly lower temperatures. We also observe a dependence on the water partial pressure that was not observed in the decomposition of yttrium trifluoroacetate powders. Finally, a dependence on the substrate chemical composition is discerned. - Highlights: • Thermal decomposition of yttrium trifluoroacetate films. • Very different behavior of films with respect to powders. • Decomposition is enhanced in films. • Application of thermal analysis to chemical solution deposition synthesis of films.

  10. Thermoanalytical study of the decomposition of yttrium trifluoroacetate thin films

    International Nuclear Information System (INIS)

    Eloussifi, H.; Farjas, J.; Roura, P.; Ricart, S.; Puig, T.; Obradors, X.; Dammak, M.

    2013-01-01

    We present the use of the thermal analysis techniques to study yttrium trifluoroacetate thin films decomposition. In situ analysis was done by means of thermogravimetry, differential thermal analysis, and evolved gas analysis. Solid residues at different stages and the final product have been characterized by X-ray diffraction and scanning electron microscopy. The thermal decomposition of yttrium trifluoroacetate thin films results in the formation of yttria and presents the same succession of intermediates than powder's decomposition, however, yttria and all intermediates but YF 3 appear at significantly lower temperatures. We also observe a dependence on the water partial pressure that was not observed in the decomposition of yttrium trifluoroacetate powders. Finally, a dependence on the substrate chemical composition is discerned. - Highlights: • Thermal decomposition of yttrium trifluoroacetate films. • Very different behavior of films with respect to powders. • Decomposition is enhanced in films. • Application of thermal analysis to chemical solution deposition synthesis of films

  11. Synthesis and Characterization of Molybdenum Back Contact Using Direct Current-Magnetron Sputtering for Thin Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Subhash M. Pandharkar

    2018-03-01

    Full Text Available In present work, we report synthesis of molybdenum (Mo thin films by direct current (DC-magnetron sputtering method. The structural, optical, morphological, and electrical properties were investigated as a function of target-to-substrate distance. From the results, it is evident that with increase in target-to-substrate distance the thickness of films decreases while its sheet resistance and electrical resistivity increases, which is confirmed by van der Pauw method. Low angle XRD analysis revealed that with increase in target-to-substrate distance preferred orientation of Mo crystallites changes from (211 to (110 and its size decreases. The field emission scanning electron microscope (FE-SEM analysis revealed a significant change in surface morphology with increase in target-to-substrate distance. UV-Visible spectroscopy analysis showed that Mo films deposited at higher target-to-substrate distance have more reflection than those deposited at lower target-to-substrate. Finally, adhesion test was performed using scotch hatch tape adhesion test which show all Mo films have excellent adhesion over the entire range of target-to-substrate distance studied. The employment of such Mo films as back contact can be useful to improve efficiency of CZTS solar cells.

  12. Conductance Thin Film Model of Flexible Organic Thin Film Device using COMSOL Multiphysics

    Science.gov (United States)

    Carradero-Santiago, Carolyn; Vedrine-Pauléus, Josee

    We developed a virtual model to analyze the electrical conductivity of multilayered thin films placed above a graphene conducting and flexible polyethylene terephthalate (PET) substrate. The organic layers of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as a hole conducting layer, poly(3-hexylthiophene-2,5-diyl) (P3HT), as a p-type, phenyl-C61-butyric acid methyl ester (PCBM) and as n-type, with aluminum as a top conductor. COMSOL Multiphysics was the software we used to develop the virtual model to analyze potential variations and conductivity through the thin-film layers. COMSOL Multiphysics software allows simulation and modeling of physical phenomena represented by differential equations such as heat transfer, fluid flow, electromagnetism, and structural mechanics. In this work, using the AC/DC, electric currents module we defined the geometry of the model and properties for each of the six layers: PET/graphene/PEDOT:PSS/P3HT/PCBM/aluminum. We analyzed the model with varying thicknesses of graphene and active layers (P3HT/PCBM). This simulation allowed us to analyze the electrical conductivity, and visualize the model with varying voltage potential, or bias across the plates, useful for applications in solar cell devices.

  13. Impact of X-ray irradiation on PMMA thin films

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Saman, E-mail: saman.khan343@gmail.com [Physics Department, University of Engineering and Technology, Lahore (Pakistan); Rafique, Muhammad Shahid [Physics Department, University of Engineering and Technology, Lahore (Pakistan); Anjum, Safia [Physics Department, Lahore College for Woman University, Lahore (Pakistan); Hayat, Asma [Physics Department, University of Engineering and Technology, Lahore (Pakistan); Iqbal, Nida [Faculty of Biomedical Engineering and Health Science, Universiti Teknologi Malaysia (UTM) (Malaysia)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer PMMA thin films were deposited at 300 Degree-Sign C and 500 Degree-Sign C using PLD technique. Black-Right-Pointing-Pointer These films were irradiated with different fluence of laser produced X-rays. Black-Right-Pointing-Pointer Irradiation affects the ordered packing as well as surface morphology of film. Black-Right-Pointing-Pointer Hardness of film decreases up to certain value of X-ray fluence. Black-Right-Pointing-Pointer Absorption in UV-visible range exhibits a non linear behavior. - Abstract: The objective of this project is to explore the effect of X-ray irradiation of thin polymeric films deposited at various substrate temperatures. pulsed laser deposition (PLD) technique is used for the deposition of PMMA thin films on glass substrate at 300 Degree-Sign C and 500 Degree-Sign C. These films have been irradiated with various X-rays fluences ranging from 2.56 to 5.76 mJ cm{sup -2}. Characterization of the films (before and after the irradiation) is done with help of X-ray Diffractrometer, Optical Microscope, Vickers hardness tester and UV-vis spectroscopy techniques. From XRD data, it is revealed that ordered packing has been improved for the films deposited at 300 Degree-Sign C. However after irradiation the films exhibited the amorphous behavior regardless of the X-ray fluence. Film deposited at 500 Degree-Sign C shows amorphous structure before and after irradiation. Hardness and particle size of thin film have also increased with the increasing substrate temperature. However, the irradiation has reverse effect i.e. the particle size as well as the hardness has reduced. Irradiation has also enhanced the absorption in the UV-visible region.

  14. Impact of X-ray irradiation on PMMA thin films

    International Nuclear Information System (INIS)

    Iqbal, Saman; Rafique, Muhammad Shahid; Anjum, Safia; Hayat, Asma; Iqbal, Nida

    2012-01-01

    Highlights: ► PMMA thin films were deposited at 300 °C and 500 °C using PLD technique. ► These films were irradiated with different fluence of laser produced X-rays. ► Irradiation affects the ordered packing as well as surface morphology of film. ► Hardness of film decreases up to certain value of X-ray fluence. ► Absorption in UV–visible range exhibits a non linear behavior. - Abstract: The objective of this project is to explore the effect of X-ray irradiation of thin polymeric films deposited at various substrate temperatures. pulsed laser deposition (PLD) technique is used for the deposition of PMMA thin films on glass substrate at 300 °C and 500 °C. These films have been irradiated with various X-rays fluences ranging from 2.56 to 5.76 mJ cm −2 . Characterization of the films (before and after the irradiation) is done with help of X-ray Diffractrometer, Optical Microscope, Vickers hardness tester and UV–vis spectroscopy techniques. From XRD data, it is revealed that ordered packing has been improved for the films deposited at 300 °C. However after irradiation the films exhibited the amorphous behavior regardless of the X-ray fluence. Film deposited at 500 °C shows amorphous structure before and after irradiation. Hardness and particle size of thin film have also increased with the increasing substrate temperature. However, the irradiation has reverse effect i.e. the particle size as well as the hardness has reduced. Irradiation has also enhanced the absorption in the UV–visible region.

  15. The effect of Argon pressure dependent V thin film on the phase transition process of (020) VO2 thin film

    Science.gov (United States)

    Meng, Yifan; Huang, Kang; Tang, Zhou; Xu, Xiaofeng; Tan, Zhiyong; Liu, Qian; Wang, Chunrui; Wu, Binhe; Wang, Chang; Cao, Juncheng

    2018-01-01

    It has been proved challenging to fabricate the single crystal orientation of VO2 thin film by a simple method. Based on chemical reaction thermodynamic and crystallization analysis theory, combined with our experimental results, we find out that when stoichiometric number of metallic V in the chemical equation is the same, the ratio of metallic V thin film surface average roughness Ra to thin film average particle diameter d decreases with the decreasing sputtering Argon pressure. Meanwhile, the oxidation reaction equilibrium constant K also decreases, which will lead to the increases of oxidation time, thereby the crystal orientation of the VO2 thin film will also become more uniform. By sputtering oxidation coupling method, metallic V thin film is deposited on c-sapphire substrate at 1 × 10-1 Pa, and then oxidized in the air with the maximum oxidation time of 65s, high oriented (020) VO2 thin film has been fabricated successfully, which exhibits ∼4.6 orders sheet resistance change across the metal-insulator transition.

  16. Nanostructured thin films for icephobic applications

    Science.gov (United States)

    Noormohammed, Saleema

    Icing on surfaces such as cables or high voltage insulators often leads to severe safety issues such as power outages in cold winter conditions. Conventional methods used to avoid such icing problems include mechanical deicing where the ice is scraped or broken and chemical deicing where deicers such as ethylene glycol are used. These methods have their own disadvantages of being destructive, expensive and time consuming. A better approach would be to prevent ice from forming in the first place by producing coating materials that are icephobic. Superhydrophobic surfaces, which demonstrate high water-repellency due to the negligible contact area of water with those surfaces, are also expected to minimize the contact area of ice. A low dielectric constant surface is also expected to reduce the adhesion of ice due to the screening of mirror charges, thereby eliminating one of the strongest interaction forces---the electrostatic forces of attraction at the ice-surface interface. In the present research work, both concepts were studied by producing superhydrophobic nanorough low-epsilon dielectric surfaces on aluminum or alumina substrates. Superhydrophobic properties were achieved on surfaces of aluminum or alumina by creating a certain nanoroughness using chemical methods followed by a low surface energy coating of rf-sputtered Teflon or fluoroalkyl-silane (FAS-17) providing a water contact angle greater than 160°. The same behavior is reported even when the nanorough substrates were coated with dielectric thin films of ZnO (lower epsilon) or TiO 2, (higher epsilon). It is found that the superhydrophobic nanorough low surface energy surfaces are also icephobic and the presence of a low dielectric constant surface coating of Teflon (lowest epsilon; epsilon = 2) allows a considerable reduction of the ice adhesion strength even on non-nanotextured surfaces where ice would stick. The superhydrophobic nanorough low-epsilon surfaces also demonstrate morphological and

  17. Optical conductivity of topological insulator thin films

    International Nuclear Information System (INIS)

    Li, L. L.; Xu, W.; Peeters, F. M.

    2015-01-01

    We present a detailed theoretical study on the optoelectronic properties of topological insulator thin film (TITFs). The k·p approach is employed to calculate the energy spectra and wave functions for both the bulk and surface states in the TITF. With these obtained results, the optical conductivities induced by different electronic transitions among the bulk and surface states are evaluated using the energy-balance equation derived from the Boltzmann equation. We find that for Bi 2 Se 3 -based TITFs, three characteristic regimes for the optical absorption can be observed. (i) In the low radiation frequency regime (photon energy ℏω<200 meV), the free-carrier absorption takes place due to intraband electronic transitions. An optical absorption window can be observed. (ii) In the intermediate radiation frequency regime (200<ℏω<300 meV), the optical absorption is induced mainly by interband electronic transitions from surface states in the valance band to surface states in the conduction band and an universal value σ 0 =e 2 /(8ℏ) for the optical conductivity can be obtained. (iii) In the high radiation frequency regime (ℏω>300 meV), the optical absorption can be achieved via interband electronic transitions from bulk and surface states in the valance band to bulk and surface states in the conduction band. A strong absorption peak can be observed. These interesting findings indicate that optical measurements can be applied to identify the energy regimes of bulk and surface states in the TITF

  18. High-throughput characterization of film thickness in thin film materials libraries by digital holographic microscopy

    Directory of Open Access Journals (Sweden)

    Yiu Wai Lai, Michael Krause, Alan Savan, Sigurd Thienhaus, Nektarios Koukourakis, Martin R Hofmann and Alfred Ludwig

    2011-01-01

    Full Text Available A high-throughput characterization technique based on digital holography for mapping film thickness in thin-film materials libraries was developed. Digital holographic microscopy is used for fully automatic measurements of the thickness of patterned films with nanometer resolution. The method has several significant advantages over conventional stylus profilometry: it is contactless and fast, substrate bending is compensated, and the experimental setup is simple. Patterned films prepared by different combinatorial thin-film approaches were characterized to investigate and demonstrate this method. The results show that this technique is valuable for the quick, reliable and high-throughput determination of the film thickness distribution in combinatorial materials research. Importantly, it can also be applied to thin films that have been structured by shadow masking.

  19. Thin film characterisation by advanced X-ray diffraction techniques

    International Nuclear Information System (INIS)

    Cappuccio, G.; Terranova, M.L.

    1996-09-01

    The Fifth School on X-ray diffraction from polycrystalline materials was devoted to thin film characterization by advanced X-ray diffraction techniques. Twenty contributions are contained in this volume; all twenty are recorded in the INIS Database. X-ray diffraction is known to be a powerful analytical tool for characterizing materials and understanding their structural features. The aim of these articles is to illustrate the fundamental contribution of modern diffraction techniques (grazing incidence, surface analysis, standing waves, etc.) to the characterization of thin and ultra-thin films, which have become important in many advanced technologies

  20. High quality antireflective ZnS thin films prepared by chemical bath deposition

    International Nuclear Information System (INIS)

    Tec-Yam, S.; Rojas, J.; Rejón, V.; Oliva, A.I.

    2012-01-01

    Zinc sulfide (ZnS) thin films for antireflective applications were deposited on glass substrates by chemical bath deposition (CBD). Chemical analysis of the soluble species permits to predict the optimal pH conditions to obtain high quality ZnS films. For the CBD, the ZnCl 2 , NH 4 NO 3 , and CS(NH 2 ) 2 were fixed components, whereas the KOH concentration was varied from 0.8 to 1.4 M. Groups of samples with deposition times from 60 to 120 min were prepared in a bath with magnetic agitation and heated at 90 °C. ZnS films obtained from optimal KOH concentrations of 0.9 M and 1.0 M exhibited high transparency, homogeneity, adherence, and crystalline. The ZnS films presented a band gap energy of 3.84 eV, an atomic Zn:S stoichiometry ratio of 49:51, a transmittance above 85% in the 300–800 nm wavelength range, and a reflectance below 25% in the UV–Vis range. X-ray diffraction analysis revealed a cubic structure in the (111) orientation for the films. The thickness of the films was tuned between 60 nm and 135 nm by controlling the deposition time and KOH concentration. The incorporation of the CBD-ZnS films into ITO/ZnS/CdS/CdTe and glass/Mo/ZnS heterostructures as antireflective layer confirms their high optical quality. -- Highlights: ► High quality ZnS thin films were prepared by chemical bath deposition (CBD). ► Better CBD-ZnS films were achieved by using 0.9 M-KOH concentration. ► Reduction in the reflectance was obtained for ZnS films used as buffer layers.

  1. Highly Mass-Sensitive Thin Film Plate Acoustic Resonators (FPAR

    Directory of Open Access Journals (Sweden)

    Ventsislav Yantchev

    2011-07-01

    Full Text Available The mass sensitivity of thin aluminum nitride (AlN film S0 Lamb wave resonators is theoretically and experimentally studied. Theoretical predictions based on modal and finite elements method analysis are experimentally verified. Here, two-port 888 MHz synchronous FPARs are micromachined and subsequently coated with hexamethyl-disiloxane(HMDSO-plasma-polymerized thin films of various thicknesses. Systematic data on frequency shift and insertion loss versus film thickness are presented. FPARs demonstrate high mass-loading sensitivity as well as good tolerance towards the HMDSO viscous losses. Initial measurements in gas phase environment are further presented.

  2. Formation of nanomagnetic thin films by dispersed fullerenes

    Science.gov (United States)

    Zheng, Lingyi A.; Lairson, Bruce M.; Barrera, Enrique V.; Shull, Robert D.

    2000-11-01

    A method of forming magnetic materials using dispersed fullerenes in ferromagnetic materials has been studied. Fullerenes (C60) have been integrated into the matrix of Co, Fe, CoFe thin films by thermal vapor codeposition. The size effects and interaction of the C60 molecules to the metallic atoms promote a self-assembly grain growth mode to produce thin films with unique evoluted microstructures characterized by nanosize columnar grains with uniformly dispersed C60 on the grain boundaries. These nanocrystalline films have displayed a series of promising magnetic properties, such as high out of plane remanence, high coercivity, fast magnetic switching, and unusual hysteresis behavior.

  3. Synthesis of thin films by the pyrosol process

    Directory of Open Access Journals (Sweden)

    Tucić Aleksandar

    2002-01-01

    Full Text Available Among many aerosol routes, the Pyrosol process, due to its simplicity, low cost and quality of obtained films, represents a promising technique for the synthesis of thin films. The pyrosol process is based on the transport and pyrolysls of an aerosol of processor solution, generated in an ultrasonic atomizer, on a heated substrate. The theoretical principles of the pyrosol process are presented in this paper, as well as the influence of some synthesis parameters on the deposition of SnO2 thin films.

  4. Infrared reflectance measurement for InN thin film characterization

    International Nuclear Information System (INIS)

    Fukui, K.; Kugumiya, Y.; Nakagawa, N.; Yamamoto, A.

    2006-01-01

    Infrared reflectance measurements of a series of InN thin films have been performed and attempt to derive carrier concentration and other physical constants for InN thin film characterization. Fitting calculations are performed by use of the dielectric function equation based on phonon-plasmon coupling model. Longitudinal and transverse optical phonon frequencies, plasma frequency and their damping parameters can be derived from fitting. From those results, electrical and phonon properties of InN and characterization of films are discussed. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  5. Morphological Study Of Palladium Thin Films Deposited By Sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Salcedo, K L; Rodriguez, C A [Grupo Plasma Laser y Aplicaciones, Ingenieria Fisica, Universidad Tecnologica de Pereira (Colombia); Perez, F A [WNANO, West Virginia University (United States); Riascos, H [Grupo Plasma Laser y Aplicaciones, Departamento de Fisica, Universidad Tecnologica de Pereira (Colombia)

    2011-01-01

    This paper presents a morphological analysis of thin films of palladium (Pd) deposited on a substrate of sapphire (Al{sub 2}O{sub 3}) at a constant pressure of 3.5 mbar at different substrate temperatures (473 K, 523 K and 573 K). The films were morphologically characterized by means of an Atomic Force Microscopy (AFM); finding a relation between the roughness and the temperature. A morphological analysis of the samples through AFM was carried out and the roughness was measured by simulating the X-ray reflectivity curve using GenX software. A direct relation between the experimental and simulation data of the Palladium thin films was found.

  6. Resistance switching induced by electric fields in manganite thin films

    International Nuclear Information System (INIS)

    Villafuerte, M; Juarez, G; Duhalde, S; Golmar, F; Degreef, C L; Heluani, S P

    2007-01-01

    In this work, we investigate the polarity-dependent Electric Pulses Induced Resistive (EPIR) switching phenomenon in thin films driven by electric pulses. Thin films of 0.5 Ca 0.5 MnO 3 (manganite) were deposited by PLD on Si substrate. The transport properties at the interface between the film and metallic electrode are characterized in order to study the resistance switching. Sample thermal treatment and electrical field history are important to be considered for get reproducible EPIR effect. Carriers trapping at the interfaces are considered as a possible explanation of our results

  7. Giant flexoelectric effect in ferroelectric epitaxial thin films.

    Science.gov (United States)

    Lee, D; Yoon, A; Jang, S Y; Yoon, J-G; Chung, J-S; Kim, M; Scott, J F; Noh, T W

    2011-07-29

    We report on nanoscale strain gradients in ferroelectric HoMnO(3) epitaxial thin films, resulting in a giant flexoelectric effect. Using grazing-incidence in-plane x-ray diffraction, we measured strain gradients in the films, which were 6 or 7 orders of magnitude larger than typical values reported for bulk oxides. The combination of transmission electron microscopy, electrical measurements, and electrostatic calculations showed that flexoelectricity provides a means of tuning the physical properties of ferroelectric epitaxial thin films, such as domain configurations and hysteresis curves. © 2011 American Physical Society

  8. Cathodoluminescence study of thin films of high Tc superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Barkay, Z.; Azoulay, J.; Lereah, Y.; Dai, U.; Hess, N.; Racah, D.; Gruenbaum, E.; Deutscher, G. (School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 69978 Ramat Aviv (Israel))

    1990-10-22

    Cathodoluminescence (CL) of thin films of high {ital T}{sub {ital c}} superconductors was studied in the scanning electron microscope. The depth and the lateral locations of the different phases can be revealed. In thin films, unlike the bulk superconductors, the CL information can be obtained either from the film itself or the substrate by varying the primary beam energy. At high beam energy, substrate defects and slight thickness variations of a single high {ital T}{sub {ital c}} phase are observed. The resolution of the CL measurements improves at low temperatures.

  9. Nanocomposite metal amorphous-carbon thin films deposited by hybrid PVD and PECVD technique.

    Science.gov (United States)

    Teixeira, V; Soares, P; Martins, A J; Carneiro, J; Cerqueira, F

    2009-07-01

    Carbon based films can combine the properties of solid lubricating graphite structure and hard diamond crystal structure, i.e., high hardness, chemical inertness, high thermal conductivity and optical transparency without the crystalline structure of diamond. Issues of fundamental importance associated with nanocarbon coatings are reducing stress, improving adhesion and compatibility with substrates. In this work new nanocomposite coatings with improved toughness based in nanocrystalline phases of metals and ceramics embedded in amorphous carbon matrix are being developed within the frame of a research project: nc-MeNxCy/a-C(Me) with Me = Mo, Si, Al, Ti, etc. Carbide forming metal/carbon (Me/C) composite films with Me = Mo, W or Ti possess appropriate properties to overcome the limitation of pure DLC films. These novel coating architectures will be adopted with the objective to decrease residual stress, improve adherence and fracture toughness, obtain low friction coefficient and high wear-resistance. Nanocomposite DLC's films were deposited by hybrid technique using a PVD-Physically Vapor Deposition (magnetron sputtering) and Plasma Enhanced Chemical Vapor Deposition (PECVD), by the use of CH4 gas. The parameters varied were: deposition time, substrate temperature (180 degrees C) and dopant (Si + Mo) of the amorphous carbon matrix. All the depositions were made on silicon wafers and steel substrates precoated with a silicon inter-layer. The characterisation of the film's physico-mechanical properties will be presented in order to understand the influence of the deposition parameters and metal content used within the a-C matrix in the thin film properties. Film microstructure and film hybridization state was characterized by Raman Spectroscopy. In order to characterize morphology SEM and AFM will be used. Film composition was measured by Energy-Dispersive X-ray analysis (EDS) and by X-ray photoelectron spectroscopy (XPS). The contact angle for the produced DLC's on

  10. Characterization of Sucrose Thin Films for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    S. L. Iconaru

    2011-01-01

    Full Text Available Sucrose is a natural osmolyte accumulated in the cells of organisms as they adapt to environmental stress. In vitro sucrose increases protein stability and forces partially unfolded structures to refold. Thin films of sucrose (C12H22O11 were deposited on thin cut glass substrates by the thermal evaporation technique (P∼10−5 torr. Characteristics of thin films were put into evidence by Fourier Transform Infrared Spectroscopy (FTIR, X-ray Photoelectron Spectroscopy (XPS, scanning electron microscopy (SEM, and differential thermal analysis and thermal gravimetric analysis (TG/DTA. The experimental results confirm a uniform deposition of an adherent layer. In this paper we present a part of the characteristics of sucrose thin films deposited on glass in medium vacuum conditions, as a part of a culture medium for osteoblast cells. Osteoblast cells were used to determine proliferation, viability, and cytotoxicity interactions with sucrose powder and sucrose thin films. The osteoblast cells have been provided from the American Type Culture Collection (ATCC Centre. The outcome of this study demonstrated the effectiveness of sucrose thin films as a possible nontoxic agent for biomedical applications.

  11. Visualizing Nanoscopic Topography and Patterns in Freely Standing Thin Films

    Science.gov (United States)

    Yilixiati, Subinuer; Zhang, Yiran; Pearsall, Collin; Sharma, Vivek

    Thin liquid films containing micelles, nanoparticles, polyelectrolyte-surfactant complexes and smectic liquid crystals undergo thinning in a discontinuous, step-wise fashion. The discontinuous jumps in thickness are often characterized by quantifying changes in the intensity of reflected monochromatic light, modulated by thin film interference from a region of interest. Stratifying thin films exhibit a mosaic pattern in reflected white light microscopy, attributed to the coexistence of domains with various thicknesses, separated by steps. Using Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols developed in the course of this study, we spatially resolve for the first time, the landscape of stratifying freestanding thin films. In particular, for thin films containing micelles of sodium dodecyl sulfate (SDS), discontinuous, thickness transitions with concentration-dependent steps of 5-25 nm are visualized and analyzed using IDIOM protocols. We distinguish nanoscopic rims, mesas and craters and show that the non-flat features are sculpted by oscillatory, periodic, supramolecular structural forces that arise in confined fluids

  12. Oxide-based thin film transistors for flexible electronics

    Science.gov (United States)

    He, Yongli; Wang, Xiangyu; Gao, Ya; Hou, Yahui; Wan, Qing

    2018-01-01

    The continuous progress in thin film materials and devices has greatly promoted the development in the field of flexible electronics. As one of the most common thin film devices, thin film transistors (TFTs) are significant building blocks for flexible platforms. Flexible oxide-based TFTs are well compatible with flexible electronic systems due to low process temperature, high carrier mobility, and good uniformity. The present article is a review of the recent progress and major trends in the field of flexible oxide-based thin film transistors. First, an introduction of flexible electronics and flexible oxide-based thin film transistors is given. Next, we introduce oxide semiconductor materials and various flexible oxide-based TFTs classified by substrate materials including polymer plastics, paper sheets, metal foils, and flexible thin glass. Afterwards, applications of flexible oxide-based TFTs including bendable sensors, memories, circuits, and displays are presented. Finally, we give conclusions and a prospect for possible development trends. Project supported in part by the National Science Foundation for Distinguished Young Scholars of China (No. 61425020), in part by the National Natural Science Foundation of China (No. 11674162).

  13. Pd thin films on flexible substrate for hydrogen sensor

    Energy Technology Data Exchange (ETDEWEB)

    Öztürk, Sadullah [Fatih Sultan Mehmet Vakıf University, Engineering Faculty, Istanbul (Turkey); Kılınç, Necmettin, E-mail: nkilinc@nigde.edu.tr [Nigde University, Mechatronics Engineering Department, 51245 Nigde (Turkey); Nigde University, Nanotechnology Application and Research Center, 51245 Nigde (Turkey)

    2016-07-25

    In this work, palladium (Pd) thin films were prepared via RF sputtering method with various thicknesses (6 nm, 20 nm and 60 nm) on both a flexible substrate and a hard substrate. Hydrogen (H{sub 2}) sensing properties of Pd films on flexible substrate have been investigated depending on temperatures (25–100 °C) and H{sub 2} concentrations (600 ppm – 10%). The effect of H{sub 2} on structural properties of the films was also studied. The films were characterized by Scanning Electron Microscopy (SEM) and X-ray diffraction. It is found that whole Pd films on hard substrate show permanent structural deformation after exposed to 10% H{sub 2} for 30 min. But, this H{sub 2} exposure does not causes any structural deformation for 6 nm Pd film on flexible substrate and 6 nm Pd film on flexible substrate shows reversible sensor response up to 10% H{sub 2} concentration without any structural deformation. On the other hand, Pd film sensors that have the thicknesses 20 nm and 60 nm on flexible substrate are irreversible for higher H{sub 2} concentration (>2%) with film deformation. The sensor response of 6 nm Pd film on flexible substrate increased with increasing H{sub 2} concentration up 4% and then saturated. The sensitivity of the film decreased with increasing operation temperature. - Highlights: • Pd thin films fabricated by RF sputtering on both flexible and hard substrates. • Structural deformation observed for films on hard substrate after exposing 10% H{sub 2}. • 6 nm Pd film on flexible substrate shows reversible sensor response up to 10% H{sub 2}. • H{sub 2} sensing properties of film on flexible substrate investigated depending on temperature and concentration. • The sensitivity of the film decreased with increasing operation temperature.

  14. Aluminosilicate glass thin films elaborated by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, Thibault [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Saitzek, Sébastien [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Méar, François O., E-mail: francois.mear@univ-lille1.fr [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Blach, Jean-François; Ferri, Anthony [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Huvé, Marielle; Montagne, Lionel [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France)

    2017-03-01

    Highlights: • Successfully deposition of a glassy thin film by PLD. • A good homogeneity and stoichiometry of the coating. • Influence of the deposition temperature on the glassy thin-film structure. - Abstract: In the present work, we report the elaboration of aluminosilicate glass thin films by Pulsed Laser Deposition at various temperatures deposition. The amorphous nature of glass thin films was highlighted by Grazing Incidence X-Ray Diffraction and no nanocristallites were observed in the glassy matrix. Chemical analysis, obtained with X-ray Photoelectron Spectroscopy and Time of Flight Secondary Ion Mass Spectroscopy, showed a good transfer and homogeneous elementary distribution with of chemical species from the target to the film a. Structural studies performed by Infrared Spectroscopy showed that the substrate temperature plays an important role on the bonding configuration of the layers. A slight shift of Si-O modes to larger wavenumber was observed with the synthesis temperature, assigned to a more strained sub-oxide network. Finally, optical properties of thins film measured by Spectroscopic Ellipsometry are similar to those of the bulk aluminosilicate glass, which indicate a good deposition of aluminosilicate bulk glass.

  15. Self-assembly of dodecaphenyl POSS thin films

    Science.gov (United States)

    Handke, Bartosz; Klita, Łukasz; Niemiec, Wiktor

    2017-12-01

    The self-assembly abilities of Dodecaphenyl Polyhedral Oligomeric Silsesquioxane thin films on Si(1 0 0) surfaces were studied. Due to their thermal properties - relatively low sublimation temperature and preservation of molecular structure - cage type silsesquioxanes are ideal material for the preparation of a thin films by Physical Vapor Deposition. The Ultra-High Vacuum environment and the deposition precision of the PVD method enable the study of early stages of thin film growth and its molecular organization. X-ray Reflectivity and Atomic Force Microscopy measurements allow to pursuit size-effects in the structure of thin films with thickness ranges from less than a single molecular layer up to several tens of layers. Thermal treatment of the thin films triggered phase change: from a poorly ordered polycrystalline film into a well-ordered multilayer structure. Self-assembly of the layers is the effect of the π-stacking of phenyl rings, which force molecules to arrange in a superlattice, forming stacks of alternating organic-inorganic layers.

  16. Structural and Electrochemical Properties of Lithium Nickel Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Gyu-bong Cho

    2014-01-01

    Full Text Available LiNiO2 thin films were fabricated by RF magnetron sputtering. The microstructure of the films was determined by X-ray diffraction and field-emission scanning electron microscopy. The electrochemical properties were investigated with a battery cycler using coin-type half-cells. The LiNiO2 thin films annealed below 500°C had the surface carbonate. The results suggest that surface carbonate interrupted the Li intercalation and deintercalation during charge/discharge. Although the annealing process enhanced the crystallization of LiNiO2, the capacity did not increase. When the annealing temperature was increased to 600°C, the FeCrNiO4 oxide phase was generated and the discharge capacity decreased due to an oxygen deficiency in the LiNiO2 thin film. The ZrO2-coated LiNiO2 thin film provided an improved discharge capacity compared to bare LiNiO2 thin film suggesting that the improved electrochemical characteristic may be attributed to the inhibition of surface carbonate by ZrO2 coating layer.

  17. Formation of ripples in atomically thin MoS₂ and local strain engineering of electrostatic properties.

    Science.gov (United States)

    Luo, Siwei; Hao, Guolin; Fan, Yinping; Kou, Liangzhi; He, Chaoyu; Qi, Xiang; Tang, Chao; Li, Jin; Huang, Kai; Zhong, Jianxin

    2015-03-13

    Ripple is a common deformation in two-dimensional materials due to localized strain, which is expected to greatly influence the physical properties. The effects of the ripple deformation in the MoS2 layer on their physics, however, are rarely addressed experimentally. We here grow atomically thin MoS2 nanostructures by employing a vapor phase deposition method without any catalyst and observed the ripples in MoS2 nanostructures. The MoS2 ripples exhibit quasi-periodical ripple structures in the MoS2 surface. The heights of the ripples vary from several angstroms to tens of nanometers and the wavelength is in the range of several hundred nanometers. The growth mechanism of rippled MoS2 nanostructures is elucidated. We have also simultaneously investigated the electrostatic properties of MoS2 ripples by using Kelvin probe force microscopy, which shows inhomogeneous surface potential and charge distributions for MoS2 ripple nanostructures with different local strains.

  18. Robust lanthanide emitters in polyelectrolyte thin films for photonic applications

    Science.gov (United States)

    Greenspon, Andrew S.; Marceaux, Brandt L.; Hu, Evelyn L.

    2018-02-01

    Trivalent lanthanides provide stable emission sources at wavelengths spanning the ultraviolet through the near infrared with uses in telecommunications, lighting, and biological sensing and imaging. We describe a method for incorporating an organometallic lanthanide complex within polyelectrolyte multilayers, producing uniform, optically active thin films on a variety of substrates. These films demonstrate excellent emission with narrow linewidths, stable over a period of months, even when bound to metal substrates. Utilizing different lanthanides such as europium and terbium, we are able to easily tune the resulting wavelength of emission of the thin film. These results demonstrate the suitability of this platform as a thin film emitter source for a variety of photonic applications such as waveguides, optical cavities, and sensors.

  19. Scanning Angle Raman spectroscopy in polymer thin film characterization

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Vy H.T. [Iowa State Univ., Ames, IA (United States)

    2015-12-19

    The focus of this thesis is the application of Raman spectroscopy for the characterization of thin polymer films. Chapter 1 provides background information and motivation, including the fundamentals of Raman spectroscopy for chemical analysis, scanning angle Raman scattering and scanning angle Raman scattering for applications in thin polymer film characterization. Chapter 2 represents a published manuscript that focuses on the application of scanning angle Raman spectroscopy for the analysis of submicron thin films with a description of methodology for measuring the film thickness and location of an interface between two polymer layers. Chapter 3 provides an outlook and future directions for the work outlined in this thesis. Appendix A, contains a published manuscript that outlines the use of Raman spectroscopy to aid in the synthesis of heterogeneous catalytic systems. Appendix B and C contain published manuscripts that set a foundation for the work presented in Chapter 2.

  20. Recent progress of optical thin films in the automobile industry.

    Science.gov (United States)

    Taga, Y

    1993-10-01

    There are increasing demands for the application of optical thin films to transparent substrates such as glass and plastics for windows in automobiles with the view of adding fascinating optical properties to them. These properties include surface hardening of plastics, infrared reflection, ultraviolet absorption, polarization and birefringence, and hydrophobicity. Recent examples of applications of sophisticated thin-film processes of plasma treatment and physical vapor deposition are reviewed. The novelty of the functions provided by physical vapor deposition films together with their durability for practical usage are emphasized as areas in which the thin-film process has a significant impact. Characterization of the modified surface and interface is also included to demonstrate recent advances in surface chemistry. Finally, future challenges for optical modification of transparent substrates in the automobile industry are also discussed.