WorldWideScience

Sample records for thin layer properties

  1. Effect of p-layer properties on nanocrystalline absorber layer and thin film silicon solar cells

    International Nuclear Information System (INIS)

    Chowdhury, Amartya; Adhikary, Koel; Mukhopadhyay, Sumita; Ray, Swati

    2008-01-01

    The influence of the p-layer on the crystallinity of the absorber layer and nanocrystalline silicon thin film solar cells has been studied. Boron doped Si : H p-layers of different crystallinities have been prepared under different power pressure conditions using the plasma enhanced chemical vapour deposition method. The crystalline volume fraction of p-layers increases with the increase in deposition power. Optical absorption of the p-layer reduces as the crystalline volume fraction increases. Structural studies at the p/i interface have been done by Raman scattering studies. The crystalline volume fraction of the i-layer increases as that of the p-layer increases, the effect being more prominent near the p/i interface. Grain sizes of the absorber layer decrease from 9.2 to 7.2 nm and the density of crystallites increases as the crystalline volume fraction of the p-layer increases and its grain size decreases. With increasing crystalline volume fraction of the p-layer solar cell efficiency increases

  2. Properties and structure of oxide layers on thin coating of titanium alloy

    Directory of Open Access Journals (Sweden)

    Jan Krčil

    2015-12-01

    Full Text Available Present work discusses issues of growth and characterization of a thin oxide layer formed on the surface of a titanium-niobium alloy. An oxide layer on the surface of titanium alloys introduces a corrosion resistance and also a bio-compatibility, which is required for a medical application. Although this oxide layer is a result of a spontaneous passivation, for the practical applications it is necessary to control the growth of oxides. In this work the oxide layer was formed on the PVD coating from Ti39Nb alloy which was sputtered on three different base materials: CP Ti grade 2, stainless steel AISI 316LVM and titanium alloy Ti–6Al–4V ELI. The oxide layer was created by a thermal oxidation at 600 °C for three different oxidation periods: 1, 4 and 8 hours. After the oxidation process the influence of oxidation characteristics and base materials on the thickness and properties of oxide layer was studied. There was observed a change of color and surface roughness. The oxide layer surface as well as the layer thickness was observed by SEM. The influence of the substrate material under the coating on the oxide layer should be more investigated in the future.

  3. Enhanced electrical properties of oxide semiconductor thin-film transistors with high conductivity thin layer insertion for the channel region

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Cam Phu Thi; Raja, Jayapal; Kim, Sunbo; Jang, Kyungsoo; Le, Anh Huy Tuan; Lee, Youn-Jung; Yi, Junsin, E-mail: junsin@skku.edu

    2017-02-28

    Highlights: • The characteristics of thin film transistors using double active layers are examined. • Electrical characteristics have been improved for the double active layers devices. • The total trap density can be decreased by insert-ion of ultrathin ITO film. - Abstract: This study examined the performance and the stability of indium tin zinc oxide (ITZO) thin film transistors (TFTs) by inserting an ultra-thin indium tin oxide (ITO) layer at the active/insulator interface. The electrical properties of the double channel device (ITO thickness of 5 nm) were improved in comparison with the single channel ITZO or ITO devices. The TFT characteristics of the device with an ITO thickness of less than 5 nm were degraded due to the formation of an island-like morphology and the carriers scattering at the active/insulator interface. The 5 nm-thick ITO inserted ITZO TFTs (optimal condition) exhibited a superior field effect mobility (∼95 cm{sup 2}/V·s) compared with the ITZO-only TFTs (∼34 cm{sup 2}/V·s). The best characteristics of the TFT devices with double channel layer are due to the lowest surface roughness (0.14 nm) and contact angle (50.1°) that result in the highest hydrophicility, and the most effective adhesion at the surface. Furthermore, the threshold voltage shifts for the ITO/ITZO double layer device decreased to 0.80 and −2.39 V compared with 6.10 and −6.79 V (for the ITZO only device) under positive and negative bias stress, respectively. The falling rates of E{sub A} were 0.38 eV/V and 0.54 eV/V for the ITZO and ITO/ITZO bi-layer devices, respectively. The faster falling rate of the double channel devices suggests that the trap density, including interface trap and semiconductor bulk trap, can be decreased by the ion insertion of a very thin ITO film into the ITZO/SiO{sub 2} reference device. These results demonstrate that the double active layer TFT can potentially be applied to the flat panel display.

  4. Optical properties of self assembled oriented island evolution of ultra-thin gold layers

    International Nuclear Information System (INIS)

    Worsch, Christian; Kracker, Michael; Wisniewski, Wolfgang; Rüssel, Christian

    2012-01-01

    Gold layers with a thickness of only 8 to 21 nm were sputtered on soda–lime–silica glasses. Subsequent annealing at 300 and 400 °C for 1 and 24 h resulted in the formation of separated round gold particles with diameters from 8 to 200 nm. Crystal orientations were described using X-ray diffraction and electron backscatter diffraction. The gold particles are oriented with their (111) planes perpendicular to the surface. Most gold nano particles are single crystalline, some particles are twinned. Thermal annealing of sputtered gold layers resulted in purple samples with a coloration comparable to that of gold ruby glasses. The color can be controlled by the thickness of the sputtered gold layer and the annealing conditions. The simple method of gold film preparation and the annealing temperature dependent properties of the layers make them appropriate for practical applications. - Highlights: ► We produce gold nano particle layers on amorphous substrates. ► Thin sputtered gold layers were annealed at low temperatures. ► Various colors can be achieved reproducibly and UV–vis-NIR spectra are reported. ► A 111-texture of the particles is described as well as twinning. ► The process is suitable for mass production.

  5. Fabrication and superconducting properties of alternately-layered MgB2/Ni thin films with different Ni-layer spacing

    International Nuclear Information System (INIS)

    Tanaka, Akira; Doi, Toshiya; Iwasaki, Ikumi; Hakuraku, Yoshinori; Kitaguchi, Hitoshi; Takahashi, Kenichiro; Hata, Satoshi

    2009-01-01

    We will show the superconducting properties of alternately-layered MgB 2 /Ni thin films inserted as very thin (1 nm) nickel layers between MgB 2 layers a few tens of nanometers thick. The MgB 2 /Ni thin films were prepared on silicon (100) substrates by sequentially switching electron-beam evaporation and coaxial vacuum arc evaporation techniques without post-annealing. In this study, we prepared alternately layered MgB 2 /Ni thin films with varying Ni-layer spacings. The Ni layer spacings were set to 32, 23 and 16 nm, respectively. The MgB 2 /Ni thin films were neither inter-diffusion nor chemical reactions between MgB 2 and Ni. Clear enhancements of the J c were observed in the MgB 2 /Ni thin films when the magnetic fields were applied parallel to the inserted Ni layers, and the peak positions in the F p -B curves shifted to higher magnetic fields with the decrease of the Ni-layer spacing. These results clearly indicate that the Ni layers inserted in alternately-layered MgB 2 /Ni thin films work as very effective flux-pinning centers. (author)

  6. Tailoring magnetic properties of multicomponent layered structure via current annealing in FePd thin films.

    Science.gov (United States)

    Cialone, Matteo; Celegato, Federica; Coïsson, Marco; Barrera, Gabriele; Fiore, Gianluca; Shvab, Ruslan; Klement, Uta; Rizzi, Paola; Tiberto, Paola

    2017-11-30

    Multicomponent layered systems with tailored magnetic properties were fabricated via current annealing from homogeneous Fe 67 Pd 33 thin films, deposited via radio frequency sputtering on Si/SiO2 substrates from composite target. To promote spontaneous nano-structuring and phase separation, selected samples were subjected to current annealing in vacuum, with a controlled oxygen pressure, using various current densities for a fixed time and, as a consequence, different phases and microstructures were obtained. In particular, the formation of magnetite in different amount was observed beside other iron oxides and metallic phases. Microstructures and magnetic properties evolution as a function of annealing current were studied and interpreted with different techniques. Moreover, the temperature profile across the film thickness was modelled and its role in the selective oxidation of iron was analysed. Results show that is possible to topologically control the phases formation across the film thickness and simultaneously tailor the magnetic properties of the system.

  7. Adsorption and electronic properties of pentacene on thin dielectric decoupling layers

    Directory of Open Access Journals (Sweden)

    Sebastian Koslowski

    2017-07-01

    Full Text Available With the increasing use of thin dielectric decoupling layers to study the electronic properties of organic molecules on metal surfaces, comparative studies are needed in order to generalize findings and formulate practical rules. In this paper we study the adsorption and electronic properties of pentacene deposited onto h-BN/Rh(111 and compare them with those of pentacene deposited onto KCl on various metal surfaces. When deposited onto KCl, the HOMO and LUMO energies of the pentacene molecules scale with the work functions of the combined KCl/metal surface. The magnitude of the variation between the respective KCl/metal systems indicates the degree of interaction of the frontier orbitals with the underlying metal. The results confirm that the so-called IDIS model developed by Willenbockel et al. applies not only to molecular layers on bare metal surfaces, but also to individual molecules on thin electronically decoupling layers. Depositing pentacene onto h-BN/Rh(111 results in significantly different adsorption characteristics, due to the topographic corrugation of the surface as well as the lateral electric fields it presents. These properties are reflected in the divergence from the aforementioned trend for the orbital energies of pentacene deposited onto h-BN/Rh(111, as well as in the different adsorption geometry. Thus, the highly desirable capacity of h-BN to trap molecules comes at the price of enhanced metal–molecule interaction, which decreases the HOMO–LUMO gap of the molecules. In spite of the enhanced interaction, the molecular orbitals are evident in scanning tunnelling spectroscopy (STS and their shapes can be resolved by spectroscopic mapping.

  8. Influence of the spacer layer on microstructure and magnetic properties of [NdFeB/(NbCu)]xn thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chiriac, H. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania); Grigoras, M. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania); Urse, M. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania)]. E-mail: urse@phys-iasi.ro

    2007-09-15

    Some results concerning the influence of the composition and thickness of NbCu spacer layer on the microstructure and magnetic properties of multilayer [NdFeB/(NbCu)]xn films, in view of their utilization for manufacturing the thin film permanent magnets are presented. A comparison between the microstructure and magnetic properties of NdFeB single layer and [NdFeB/(NbCu)]xn multilayer is also presented. The multilayer [NdFeB/(NbCu)]xn thin films with the thickness of the NdFeB layer of 180nm and the thickness of the NbCu spacer layer of 3nm, exhibit good hard magnetic characteristics such as coercive force H{sub c} of about 1510kA/m and the remanence ratio M{sub r}/M{sub s} of about 0.8.

  9. Influence of the spacer layer on microstructure and magnetic properties of [NdFeB/(NbCu)]xn thin films

    International Nuclear Information System (INIS)

    Chiriac, H.; Grigoras, M.; Urse, M.

    2007-01-01

    Some results concerning the influence of the composition and thickness of NbCu spacer layer on the microstructure and magnetic properties of multilayer [NdFeB/(NbCu)]xn films, in view of their utilization for manufacturing the thin film permanent magnets are presented. A comparison between the microstructure and magnetic properties of NdFeB single layer and [NdFeB/(NbCu)]xn multilayer is also presented. The multilayer [NdFeB/(NbCu)]xn thin films with the thickness of the NdFeB layer of 180nm and the thickness of the NbCu spacer layer of 3nm, exhibit good hard magnetic characteristics such as coercive force H c of about 1510kA/m and the remanence ratio M r /M s of about 0.8

  10. Effects of buffer layer temperature on the magnetic properties of NdFeB thin film magnets

    International Nuclear Information System (INIS)

    Kim, Y.B.; Cho, S.H.; Kim, H.T.; Ryu, K.S.; Lee, S.H.; Lee, K.H.; Kapustin, G.A.

    2004-01-01

    Effects of the buffer layer temperature (T b ) on the magnetic properties and microstructure of [Mo/NdFeB/Mo]-type thin films have been investigated. The Mo-buffer layer with low T b is composed of fine grains while that with high T b has coarse grains. The subsequent NdFeB layer also grows with fine or coarse grains following the buffer layer structure. The NdFeB layer grown on a low T b buffer shows high coercivity and strong perpendicular anisotropy. The best magnetic properties of i H c =1.01 MA/m (12.7 kOe), B r =1.31 T (13.1 kG) and BH max =329 kJ/m 3 (41.4 MGOe) were obtained from the film with T b =400 deg. C

  11. Dependence of magnetic properties on different buffer layers of Mn3.5Ga thin films

    Science.gov (United States)

    Takahashi, Y.; Sato, K.; Shima, T.; Doi, M.

    2018-05-01

    D022-Mn3.5Ga thin films were prepared on MgO (100) single crystalline substrates with different buffer layer (Cr, Fe, Cr/Pt and Cr/Au) using an ultra-high-vacuum electron beam vapor deposition system. From XRD patterns, a fundamental (004) peak has clearly observed for all samples. The relatively low saturation magnetization (Ms) of 178 emu/cm3, high magnetic anisotropy (Ku) of 9.1 Merg/cm3 and low surface roughness (Ra) of 0.30 nm were obtained by D022-Mn3.5Ga film (20 nm) on Cr/Pt buffer layer at Ts = 300 °C, Ta = 400 °C (3h). These findings suggest that MnGa film on Cr/Pt buffer layer is a promising PMA layer for future spin electronics devices.

  12. Processing of CdTe thin films by the stacked elemental layer method. Compound formation and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, L.R. [Departamento de Engenharia, Macanica e de Materiais, Instituto Militar de Engenharia, Praca General Tiburcio, 80, Urca, 22290-270 RJ Rio de Janeiro (Brazil); Matson, R. [National Renewable Energy Laboratory, 1617 Cole Boulevard, 80401 Golden, CO (United States); De Avillez, R.R. [Pontificia Universidade Catolica, Rua Marques de Sao Vicente, 225, Gavea, 22543-900 RJ Rio de Janeiro (Brazil)

    2001-01-01

    Cadmium telluride (CdTe) thin films have been deposited using the stacked elemental layer (SEL) technique. This process consists of sequentially depositing tellurium and cadmium layers and then annealing the stacks in order to synthesize the compound. The films were characterized using X-ray diffraction (XRD), optical transmittance and reflectance, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The evolution of the thin film reaction and compound formation were studied using X-ray data. The results show that the growth is diffusion-controlled and the activation energy is (82{+-}2) kJ/mol. The effect of the conventional post-synthesis CdCl{sub 2} heat treatment on the physical properties of the films produced is also reported.

  13. Optical properties of Al2O3 thin films grown by atomic layer deposition.

    Science.gov (United States)

    Kumar, Pradeep; Wiedmann, Monika K; Winter, Charles H; Avrutsky, Ivan

    2009-10-01

    We employed the atomic layer deposition technique to grow Al(2)O(3) films with nominal thicknesses of 400, 300, and 200 nm on silicon and soda lime glass substrates. The optical properties of the films were investigated by measuring reflection spectra in the 400-1800 nm wavelength range, followed by numerical fitting assuming the Sellmeier formula for the refractive index of Al(2)O(3). The films grown on glass substrates possess higher refractive indices as compared to the films on silicon. Optical waveguiding is demonstrated, confirming the feasibility of high-index contrast planar waveguides fabricated by atomic layer deposition.

  14. Physical property improvement of IZTO thin films using a hafnia buffer layer

    Science.gov (United States)

    Park, Jong-Chan; Kang, Seong-Jun; Choi, Byeong-Gyun; Yoon, Yung-Sup

    2018-01-01

    Hafnia (HfO2) has excellent mechanical and chemical stability, good transmittance, high dielectric constant, and radiation resistance property; thus, it can prevent impurities from permeating into the depositing films. So, we deposited hafnia films with various thicknesses in the range of 0-60 nm on polyethylene naphthalate (PEN) substrates before depositing indium-zinc-tin oxide (IZTO) thin films on them using RF magnetron sputtering, and their structural, morphological, optical, and electrical properties were evaluated. All IZTO thin films were successfully deposited without cracks or pinholes and had amorphous structures. As the thickness of the hafnia film increased to 30 nm, the overall properties improved; a surface roughness of 2.216 nm, transmittance of 82.59% at 550 nm, resistivity of 5.66 × 10-4 Ω cm, sheet resistance of 23.60 Ω/sq, and figure of merit of 6.26 × 10-3 Ω-1 were realized. These results indicate that the structure and materials studied in this research are suitable for application in flexible transparent electronic devices such as organic light emitting diodes, liquid crystal displays, touch panels, and solar cells.

  15. Effects of BaBi2Ta2O9 thin buffer layer on crystallization and electrical properties of CaBi2Ta2O9 thin films on Pt-coated silicon

    Science.gov (United States)

    Kato, Kazumi; Suzuki, Kazuyuki; Nishizawa, Kaori; Miki, Takeshi

    2001-05-01

    Non-c-axis oriented CaBi2Ta2O9 (CBT) thin films have been successfully deposited via the triple alkoxide solution method on Pt-coated Si substrates by inserting BaBi2Ta2O9 (BBT) thin buffer layers. The BBT thin buffer layer, which was prepared on Pt-coated Si, was a key material for suppression of the nonpolar c-axis orientation and promoting the ferroelectric structure perpendicular to the in-plane direction of CBT thin film. The annealing temperature and thickness of the BBT thin buffer layers affected the dielectric, ferroelectric, and fatigue properties of the stacked CBT/BBT thin films. The resultant 650 °C annealed CBT/BBT(30 nm) thin film exhibited good P-E hysteresis properties and fatigue behaviors.

  16. Atomic layer deposition of Al-incorporated Zn(O,S) thin films with tunable electrical properties

    International Nuclear Information System (INIS)

    Park, Helen Hejin; Jayaraman, Ashwin; Heasley, Rachel; Yang, Chuanxi; Hartle, Lauren; Gordon, Roy G.; Mankad, Ravin; Haight, Richard; Gunawan, Oki; Mitzi, David B.

    2014-01-01

    Zinc oxysulfide, Zn(O,S), films grown by atomic layer deposition were incorporated with aluminum to adjust the carrier concentration. The electron carrier concentration increased up to one order of magnitude from 10 19 to 10 20 cm −3 with aluminum incorporation and sulfur content in the range of 0 ≤ S/(Zn+Al) ≤ 0.16. However, the carrier concentration decreased by five orders of magnitude from 10 19 to 10 14 cm −3 for S/(Zn+Al) = 0.34 and decreased even further when S/(Zn+Al) > 0.34. Such tunable electrical properties are potentially useful for graded buffer layers in thin-film photovoltaic applications

  17. Structural and optical properties of GaAs(100) with a thin surface layer doped with chromium

    Energy Technology Data Exchange (ETDEWEB)

    Seredin, P. V., E-mail: paul@phys.vsu.ru; Fedyukin, A. V. [Voronezh State University (Russian Federation); Arsentyev, I. N.; Vavilova, L. S.; Tarasov, I. S. [Russian Academy of Sciences, Ioffe Physical–Technical Institute (Russian Federation); Prutskij, T. [Benemérita Universidad Autonoma de Puebla, Instituto de Ciencias (Mexico); Leiste, H.; Rinke, M. [Karlsruhe Nano Micro Facility (Germany)

    2016-07-15

    The aim of this study is to explore the structural and optical properties of single-crystal GaAs(100) doped with Cr atoms by burning them into the substrate at high temperatures. The diffusion of chromium into single-crystal GaAs(100) substrates brings about the formation of a thin (~20–40 μm) GaAs:Cr transition layer. In this case, chromium atoms are incorporated into the gallium-arsenide crystal lattice and occupy the regular atomic sites of the metal sublattice. As the chromium diffusion time is increased, such behavior of the dopant impurity yields changes in the energy structure of GaAs, a decrease in the absorption at free charge carriers, and a lowering of the surface recombination rate. As a result, the photoluminescence signal from the sample is significantly enhanced.

  18. The effect of buffer layer on the thermochromic properties of undoped radio frequency sputtered VO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Panagopoulou, M., E-mail: marpanag@mail.ntua.gr [School of Applied Mathematical and Physical Sciences, National Technical University of Athens, GR 157 80, Zografou Campus, Athens (Greece); Gagaoudakis, E. [Physics Department, University of Crete, 71003 Heraklion, Crete (Greece); Institute of Electronic Structure & Laser (IESL), Foundation for Research and Technology — FORTH-Hellas, P.O. Box 1385, Heraklion 70013, Crete (Greece); Aperathitis, E.; Michail, I. [Institute of Electronic Structure & Laser (IESL), Foundation for Research and Technology — FORTH-Hellas, P.O. Box 1385, Heraklion 70013, Crete (Greece); Kiriakidis, G. [Physics Department, University of Crete, 71003 Heraklion, Crete (Greece); Institute of Electronic Structure & Laser (IESL), Foundation for Research and Technology — FORTH-Hellas, P.O. Box 1385, Heraklion 70013, Crete (Greece); Tsoukalas, D.; Raptis, Y.S. [School of Applied Mathematical and Physical Sciences, National Technical University of Athens, GR 157 80, Zografou Campus, Athens (Greece)

    2015-11-02

    Thermochromic (TC) coatings can find use in a wide range of applications. Vanadium dioxide (VO{sub 2}) specifically, can be potentially used as a smart window coating, as it presents a metal-to-semiconductor transition close to the room temperature (T{sub c} = 68 °C). This results in low transmission in the infrared (thermal) part of the spectrum, while preserving its transmittance in the visible. In the present work, vanadium dioxide (VO{sub 2}) thin films with a thickness of ~ 85 nm were prepared by radio frequency sputtering, to investigate the influence of the buffer layer and deposition properties employed, on their thermochromic behavior. The substrates used were uncoated glass and pre-coated glasses with SnO{sub 2} or ZnON as buffer layer. The lowest growth temperature applied was 300 °C, yielding TC-VO{sub 2}, without the necessity of any post-growth treatment. The structure of the VO{sub 2} films was studied by X-ray diffraction and temperature-dependent micro Raman techniques, and the transition temperatures were determined through transmittance measurements. - Highlights: • RF-sputtered thermochromic VO{sub 2}, was grown at 300 °C and 400 °C. • Buffer layers of SnO{sub 2} or ZnON are used over glass. • Low Tc, without post-treatment, for both buffer-layers and T-growth • Thermochromicity of glass/VO{sub 2}, at low T-growth, is improved by ZnON buffer layer.

  19. Properties of the Surface Layer of Thin Films of Polyaniline Doped With Phosphoric Acid

    Directory of Open Access Journals (Sweden)

    Almedina Modrić-Šahbazović

    2016-08-01

    Full Text Available This study deals with estimation of the surface free energy of thin films of polyaniline doped with phosphoric acid, by measuring contact angles. Synthesis of polyaniline (PANI with phosphoric acid (PA was performed at room temperature of 20°C, and at 0°C. Thin films were obtained by means of a spin coater, applying the synthetized mixture on a glass substrate. By measuring the contact angle, first between ethylene glycol and a film and then between distilled water and a film, we thus calculated the polar, dispersion and total surface free energy. It was proved and demonstrated that the surface free energy depends on the temperature at which the solution (from which the thin films are obtained later was synthesized.

  20. Sintered porous silicon. Physical properties and applications for layer-transfer silicon thin-film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Wolf, A.K.

    2007-07-16

    This work focusses on the characterisation of sintered porous silicon and on the development of monocrystalline silicon thin-film solar cells from the Porous Silicon Process (PSI process). For the fabrication of these solar cells, a thin silicon film is epitaxially grown on a monocrystalline silicon growth substrate, that features a layer of porous silicon (PS) at the surface. Due to the thermal activation during the epitaxial growth process, the PS layer reconfigurates and mechanically weakens, which later permits the transfer of the thin-film device to a second carrier substrate. When separating the epitaxial film from the growth substrate, a residual layer of sintered porous silicon (SPS) remains attached to the rear side of the device. So far, the physical properties of this layer and its impact on the performance of PSI solar cells have been poorly investigated. This thesis aims at a comprehensive determination of the physical properties of sintered porous silicon, in particular, its thermal, optical and electrical properties. For the thermal characterisation of the fragile free standing SPS films, a contactless measurement technique based on lock-in thermography is developed and experimentally verified. This analysis identifies a third order power law dependence of the thermal conductivity of SPS on the porosity, in agreement with the predictions of the Looyenga model. Phonon scattering at the pore walls, which is known to drastically reduce the thermal conductivity of as-prepared PS, is also present in the sintered state. The obtained results reveal that, in the case of SPS, this effect is less pronounced, due to the increased structure size of the sintered material compared to the as-prepared state. The effective refractive index of SPS complies with the predictions of effective medium models, whereas Mie's theory successfully describes light scattering by the spherical pores in SPS. An analysis of the measured scattering coefficient shows that the

  1. Effect of atmospheric-pressure plasma treatment on the adhesion properties of a thin adhesive layer in a selective transfer process

    Science.gov (United States)

    Yoon, Min-Ah; Kim, Chan; Hur, Min; Kang, Woo Seok; Kim, Jaegu; Kim, Jae-Hyun; Lee, Hak-Joo; Kim, Kwang-Seop

    2018-01-01

    The adhesion between a stamp and thin film devices is crucial for their transfer on a flexible substrate. In this paper, a thin adhesive silicone layer on the stamp was treated by atmospheric pressure plasma to locally control the adhesion strength for the selective transfer. The adhesion strength of the silicone layer was significantly reduced after the plasma treatment, while its surface energy was increased. To understand the inconsistency between the adhesion strength and surface energy changes, the surface properties of the silicone layer were characterized using nanoindentation and X-ray photoelectron spectroscopy. These techniques revealed that a thin, hard, silica-like layer had formed on the surface from plasma-enhanced oxidation. This layer played an important role in decreasing the contact area and increasing the interfacial slippage, resulting in decreased adhesion. As a practical application, the transfer process was demonstrated on GaN LEDs that had been previously delaminated by a laser lift-off (LLO) process. Although the LEDs were not transferred onto the treated adhesive layer due to the reduced adhesion, the untreated adhesive layer could readily pick up the LEDs. It is expected that this simple method of controlling the adhesion of a stamp with a thin adhesive layer would enable a continuous, selective and large-scale roll-to-roll selective transfer process and thereby advance the development of flexible, stretchable and wearable electronics.

  2. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.

    2014-10-30

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  3. Preparation of thin phthalocyanine layers and their structural and absorption properties

    Czech Academy of Sciences Publication Activity Database

    Kment, Štěpán; Klusoň, Petr; Drobek, M.; Kužel, R.; Gregora, Ivan; Kohout, Michal; Hubička, Zdeněk

    2009-01-01

    Roč. 517, č. 17 (2009), s. 5274-5279 ISSN 0040-6090 R&D Projects: GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002; GA AV ČR KAN400720701; GA ČR(CZ) GD203/08/H032 Institutional research plan: CEZ:AV0Z10100522; CEZ:AV0Z40720504 Keywords : vacuum sublimation * phthalocyanine s * sensors * thin fims Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.727, year: 2009

  4. Structural properties 3,16-bis triisopropylsilylethynyl (pentacene) (TIPS-pentacene) thin films onto organic dielectric layer using slide coating method

    International Nuclear Information System (INIS)

    Rusnan, Fara Naila; Mohamad, Khairul Anuar; Seria, Dzul Fahmi Mohd Husin; Saad, Ismail; Ghosh, Bablu K.; Alias, Afishah

    2015-01-01

    3,16-bis triisopropylsilylethynyl (Pentacene) (TIPS-Pentacene) compactable interface property is important in order to have a good arrangement of molecular structure. Comparison for TIPS-Pentacene deposited between two different surface layers conducted. 0.1wt% TIPS-Pentacene diluted in chloroform were deposited onto poly(methylmeaclyrate) (PMMA) layered transparent substrates using slide coating method. X-ray diffraction (XRD) used to determine crystallinity of thin films. Series of (00l) diffraction peaks obtained with sharp first peaks (001) for TIPS-Pentacene deposited onto PMMA layer at 5.35° and separation of 16.3 Å. Morphology and surface roughness were carried out using scanning electron microscope (SEM) and surface profilemeter LS500, respectively.TIPS-Pentacene deposited onto PMMA layer formed needled-like-shape grains with 10.26 nm surface roughness. These properties were related as thin film formed and its surface roughness plays important role towards good mobility devices

  5. Structural properties 3,16-bis triisopropylsilylethynyl (pentacene) (TIPS-pentacene) thin films onto organic dielectric layer using slide coating method

    Energy Technology Data Exchange (ETDEWEB)

    Rusnan, Fara Naila; Mohamad, Khairul Anuar; Seria, Dzul Fahmi Mohd Husin; Saad, Ismail; Ghosh, Bablu K.; Alias, Afishah [Nano Engineering & Materials (NEMs) Research Group, Faculty of Engineering Universiti Malaysia Sabah, Kota Kinabalu 88400 Sabah (Malaysia)

    2015-08-28

    3,16-bis triisopropylsilylethynyl (Pentacene) (TIPS-Pentacene) compactable interface property is important in order to have a good arrangement of molecular structure. Comparison for TIPS-Pentacene deposited between two different surface layers conducted. 0.1wt% TIPS-Pentacene diluted in chloroform were deposited onto poly(methylmeaclyrate) (PMMA) layered transparent substrates using slide coating method. X-ray diffraction (XRD) used to determine crystallinity of thin films. Series of (00l) diffraction peaks obtained with sharp first peaks (001) for TIPS-Pentacene deposited onto PMMA layer at 5.35° and separation of 16.3 Å. Morphology and surface roughness were carried out using scanning electron microscope (SEM) and surface profilemeter LS500, respectively.TIPS-Pentacene deposited onto PMMA layer formed needled-like-shape grains with 10.26 nm surface roughness. These properties were related as thin film formed and its surface roughness plays important role towards good mobility devices.

  6. Properties of zirconia thin layers elaborated by high voltage anodisation in view of SOFC application

    Science.gov (United States)

    Montero, Xabier; Pauporté, Thierry; Ringuedé, Armelle; Vannier, Rose-Noelle; Cassir, Michel

    In order to adapt the anodisation technique to SOFC application, zirconium and zirconium-niobium alloys were tested in various electrolytic media and applied potentials (up to 420 V). The elaborated ZrO 2 insulating layers were characterised in situ by electrochemical impedance spectroscopy and their thicknesses were determined as ranging up to 1 μm. The effect of thermal annealing treatment of layers prepared in various experimental conditions was investigated by X-ray diffraction (XRD) and solid-state electrochemical impedance spectroscopy in a planar configuration. The effect of the growing conditions on significant parameters such as zirconia crystallite size, zirconia conductivity and activation energy were deduced up to 800 °C. The possibility of using the anodisation process for fuel cell devices is discussed. This study demonstrates that it surely requires the use of more efficient dopants, such as yttria.

  7. Silver buffer layers for YBCO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, J. [Tel Aviv Univ. (Israel). Center for Technol. Education Holon

    1999-09-01

    A simple economical conventional vacuum system was used for evaporation of YBCO thin films on as-deposited unbuffered Ag layers on MgO substrates. The subsequent heat treatment was carried out in low oxygen partial pressure at a relative low temperature and short dwelling time. The films thus obtained were characterized for electrical properties using dc four probe electrical measurements and inspected for structural properties and chemical composition by scanning electron microscopy (SEM). (orig.)

  8. Correlation of electronic and magnetic properties of thin polymer layers with cobalt nanoparticles

    DEFF Research Database (Denmark)

    Kharchenko, A.; Lukashevich, M.; Popok, Vladimir

    2013-01-01

    the electrical and magnetic properties of the metal/polymer nanocomposites which can be controlled by the implantation regimes. In particular, one can tune the magnetoresistance between negative and positive through appropriate choice of ion fluence and current density. Found non-monotonous dependence...

  9. Delamination of Compressed Thin Layers at Corners

    DEFF Research Database (Denmark)

    Sørensen, Kim Dalsten; Jensen, Henrik Myhre; Clausen, Johan

    2008-01-01

    An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat...... results for the fracture mechanical properties have been obtained, and these are applied in a study of the effect of contacting crack faces. Special attention has been given to analyse conditions under which steady state propagation of buckling driven delamination takes place....

  10. Effect of Ti seed and spacer layers on structure and magnetic properties of FeNi thin films and FeNi-based multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Svalov, A.V., E-mail: andrey.svalov@ehu.es [Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain); Department of Magnetism and Magnetic Nanomaterials, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Larrañaga, A. [SGIker, Servicios Generales de Investigación, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain); Kurlyandskaya, G.V. [Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain); Department of Magnetism and Magnetic Nanomaterials, Ural Federal University, 620002 Ekaterinburg (Russian Federation)

    2014-10-15

    Highlights: • Fe{sub 19}Ni{sub 81} films and FeNi-based multilayers were prepared by magnetron sputtering. • The samples were deposited onto glass substrates at room temperature. • Ti/FeNi films exhibit good (1 1 1) texture and crystallinity. • The thick Cu seed increases the coercive force of the magnetic layer. • The thin Ti spacer restores the magnetic softness of the Cu/Ti/FeNi multilayers. - Abstract: The microstructure and magnetic properties of sputtered permalloy films and FeNi-based multilayers prepared by magnetron sputtering have been studied. X-ray diffraction measurements indicate that Ti/FeNi films exhibit good (1 1 1) texture and crystallinity. Ti/FeNi bilayers with high crystallographic quality have relatively low resistivity. The Ti seed layer does not influence the magnetic properties of FeNi film in Ti/FeNi bilayers, but the thick Cu seed layer leads to an increase of the coercive force of the magnetic layer. For the FeNi films deposited on thick Cu seed layer, the (0 1 0) and (0 0 2) diffraction peaks of hcp nickel were clearly observed. The thin Ti spacer between Cu and FeNi layers prevents the formation of the nickel phase and restores the magnetic softness of the FeNi layer in the Cu/Ti/FeNi sample. Obtained results can be important for the development of multilayer sensitive elements for giant magnetoimpedance or magnetoresistance detectors.

  11. Effect of dopent on the structural and optical properties of ZnS thin film as a buffer layer in solar cell application

    Energy Technology Data Exchange (ETDEWEB)

    Vashistha, Indu B., E-mail: indu-139@yahoo.com; Sharma, S. K. [Department of Physics, Malaviya National Institute of Technology, Jaipur 302017 (India); Sharma, Mahesh C. [National Institute of Solar Energy, Gurgaon (India); Sharma, Ramphal [Thin Film and Nanotechnology Lab, Department of Physics Dr. Babasaheb Ambedkar Marathwada University, Aurangabad 43100 (India)

    2015-08-28

    In order to find the suitable alternative of toxic CdS buffer layer, deposition of pure ZnS and doped with Al by chemical bath deposition method have been reported. Further as grown pure and doped thin films have been annealed at 150°C. The structural and surface morphological properties have been characterized by X-Ray diffraction (XRD) and Atomic Force Microscope (AFM).The XRD analysis shows that annealed thin film has been polycrystalline in nature with sphalerite cubic crystal structure and AFM images indicate increment in grain size as well as growth of crystals after annealing. Optical measurement data give band gap of 3.5 eV which is ideal band gap for buffer layer for solar cell suggesting that the obtained ZnS buffer layer is suitable in a low-cost solar cell.

  12. Effect of depletion layer width on electrical properties of semiconductive thin film gas sensor: a numerical study based on the gradient-distributed oxygen vacancy model

    Science.gov (United States)

    Liu, Jianqiao; Lu, Yiting; Cui, Xiao; Jin, Guohua; Zhai, Zhaoxia

    2016-03-01

    The effects of depletion layer width on the semiconductor gas sensors were investigated based on the gradient-distributed oxygen vacancy model, which provided numerical descriptions for the sensor properties. The potential barrier height, sensor resistance, and response to target gases were simulated to reveal their dependences on the depletion layer width. According to the simulation, it was possible to improve the sensor response by enlarging the width of depletion layer without changing the resistance of the gas sensor under the special circumstance. The different performances between resistance and response could provide a bright expectation that the design and fabrication of gas sensing devices could be economized. The simulation results were validated by the experimental performances of SnO2 thin film gas sensors, which were prepared by the sol-gel technique. The dependences of sensor properties on depletion layer width were observed to be in agreement with the simulations.

  13. Role of Al2O3 thin layer on improving the resistive switching properties of Ta5Si3-based conductive bridge random accesses memory device

    Science.gov (United States)

    Kumar, Dayanand; Aluguri, Rakesh; Chand, Umesh; Tseng, Tseung-Yuen

    2018-04-01

    Ta5Si3-based conductive bridge random access memory (CBRAM) devices have been investigated to improve their resistive switching characteristics for their application in future nonvolatile memory technology. Changes in the switching characteristics by the addition of a thin Al2O3 layer of different thicknesses at the bottom electrode interface of a Ta5Si3-based CBRAM devices have been studied. The double-layer device with a 1 nm Al2O3 layer has shown improved resistive switching characteristics over the single layer one with a high on/off resistance ratio of 102, high endurance of more than 104 cycles, and good retention for more than 105 s at the temperature of 130 °C. The higher thermal conductivity of Al2O3 over Ta5Si3 has been attributed to the enhanced switching properties of the double-layer devices.

  14. Bulk-wave and guided-wave photoacoustic evaluation of the mechanical properties of aluminum/silicon nitride double-layer thin films.

    Science.gov (United States)

    Zhang, Feifei; Krishnaswamy, Sridhar; Lilley, Carmen M

    2006-12-01

    The development of devices made of micro- and nano-structured thin film materials has resulted in the need for advanced measurement techniques to characterize their mechanical properties. Photoacoustic techniques, which use pulsed laser irradiation to nondestructively induce very high frequency ultrasound in a test object via rapid thermal expansion, are suitable for nondestructive and non-contact evaluation of thin films. In this paper, we compare two photoacoustic techniques to characterize the mechanical parameters of edge-supported aluminum and silicon nitride double-layer thin films. The elastic properties and residual stresses in such films affect their mechanical performance. In a first set of experiments, a femtosecond transient pump-probe technique is used to investigate the Young's moduli of the aluminum and silicon nitride layers by launching ultra-high frequency bulk acoustic waves in the films. The measured transient signals are compared with simulated transient thermoelastic signals in multi-layer structures, and the elastic moduli are determined. Independent pump-probe tests on silicon substrate-supported region and unsupported region are in good agreement. In a second set of experiments, dispersion curves of the A(0) mode of the Lamb waves that propagate along the unsupported films are measured using a broadband photoacoustic guided-wave method. The residual stresses and flexural rigidities for the same set of double-layer membranes are determined from these dispersion curves. Comparisons of the results obtained by the two photoacoustic techniques are made and discussed.

  15. Adsorption properties of BSA and DsRed proteins deposited on thin SiO2 layers: optically non-absorbing versus absorbing proteins

    Science.gov (United States)

    Scarangella, A.; Soumbo, M.; Villeneuve-Faure, C.; Mlayah, A.; Bonafos, C.; Monje, M.-C.; Roques, C.; Makasheva, K.

    2018-03-01

    Protein adsorption on solid surfaces is of interest for many industrial and biomedical applications, where it represents the conditioning step for micro-organism adhesion and biofilm formation. To understand the driving forces of such an interaction we focus in this paper on the investigation of the adsorption of bovine serum albumin (BSA) (optically non-absorbing, model protein) and DsRed (optically absorbing, naturally fluorescent protein) on silica surfaces. Specifically, we propose synthesis of thin protein layers by means of dip coating of the dielectric surface in protein solutions with different concentrations (0.01-5.0 g l-1). We employed spectroscopic ellipsometry as the most suitable and non-destructive technique for evaluation of the protein layers’ thickness and optical properties (refractive index and extinction coefficient) after dehydration, using two different optical models, Cauchy for BSA and Lorentz for DsRed. We demonstrate that the thickness, the optical properties and the wettability of the thin protein layers can be finely controlled by proper tuning of the protein concentration in the solution. These results are correlated with the thin layer morphology, investigated by AFM, FTIR and PL analyses. It is shown that the proteins do not undergo denaturation after dehydration on the silica surface. The proteins arrange themselves in a lace-like network for BSA and in a rod-like structure for DsRed to form mono- and multi-layers, due to different mechanisms driving the organization stage.

  16. Antibacterial and barrier properties of oriented polymer films with ZnO thin films applied with atomic layer deposition at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Vähä-Nissi, Mika, E-mail: mika.vaha-nissi@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Pitkänen, Marja; Salo, Erkki; Kenttä, Eija [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Tanskanen, Anne, E-mail: Anne.Tanskanen@aalto.fi [Aalto University, School of Chemical Technology, Department of Chemistry, Laboratory of Inorganic Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Sajavaara, Timo, E-mail: timo.sajavaara@jyu.fi [University of Jyväskylä, Department of Physics, P.O. Box 35, FI-40014 Jyväskylä (Finland); Putkonen, Matti; Sievänen, Jenni; Sneck, Asko; Rättö, Marjaana [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland); Karppinen, Maarit, E-mail: Maarit.Karppinen@aalto.fi [Aalto University, School of Chemical Technology, Department of Chemistry, Laboratory of Inorganic Chemistry, P.O. Box 16100, FI-00076 Aalto (Finland); Harlin, Ali [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044, VTT (Finland)

    2014-07-01

    Concerns on food safety, and need for high quality and extended shelf-life of packaged foods have promoted the development of antibacterial barrier packaging materials. Few articles have been available dealing with the barrier or antimicrobial properties of zinc oxide thin films deposited at low temperature with atomic layer deposition (ALD) onto commercial polymer films typically used for packaging purposes. The purpose of this paper was to study the properties of ZnO thin films compared to those of aluminum oxide. It was also possible to deposit ZnO thin films onto oriented polylactic acid and polypropylene films at relatively low temperatures using ozone instead of water as an oxidizing precursor for diethylzinc. Replacing water with ozone changed both the structure and the chemical composition of films deposited on silicon wafers. ZnO films deposited with ozone contained large grains covered and separated probably by a more amorphous and uniform layer. These thin films were also assumed to contain zinc salts of carboxylic acids. The barrier properties of a 25 nm ZnO thin film deposited with ozone at 100 °C were quite close to those obtained earlier with ALD Al{sub 2}O{sub 3} of similar apparent thickness on similar polymer films. ZnO thin films deposited at low temperature indicated migration of antibacterial agent, while direct contact between ZnO and Al{sub 2}O{sub 3} thin films and bacteria promoted antibacterial activity. - Highlights: • Thin films were grown from diethylzinc also with ozone instead of water at 70 and 100 °C. • ZnO films deposited with diethylzinc and ozone had different structures and chemistries. • Best barrier properties obtained with zinc oxide films close to those obtained with Al{sub 2}O{sub 3} • Ozone as oxygen source provided better barrier properties at 100 °C than water. • Both aluminum and zinc oxide thin films showed antimicrobial activity against E. coli.

  17. Electrical properties of ultra-thin oxynitrided layer using N2O plasma in inductively coupled plasma chemical vapor deposition for non-volatile memory on glass

    International Nuclear Information System (INIS)

    Jung, Sungwook; Hwang, Sunghyun; Kim, Kyunghae; Dhungel, S.K.; Chung, Ho-Kyoon; Choi, Byoung-Deog; Lee, Ki-Yong; Yi, J.

    2007-01-01

    In this work, the silicon oxynitride layer was studied as a tunneling layer for non-volatile memory application by fabricating low temperature polysilicon thin film transistors on glass. Silicon wafers were oxynitrided by only nitrous oxide plasma under different radio frequency powers and plasma treatment times. Plasma oxynitridation was performed in RF plasma using inductively coupled plasma chemical vapor deposition. The X-ray energy dispersive spectroscopy was employed to analyze the atomic concentration ratio of nitrogen/oxygen in oxynitride layer. The oxynitrided layer formed under radio frequency power of 150 W and substrate temperature of 623 K was found to contain the atomic concentration ratio of nitrogen/oxygen as high as 1.57. The advantage of high nitrogen concentration in silicon oxide layer formed by using nitrous oxide plasma was investigated by capacitance-voltage measurement. The analysis of capacitance-voltage characteristics demonstrated that the ultra-thin oxynitride layers of 2 nm thickness formed by only nitrous oxide plasma have good properties as tunneling layer for non-volatile memory device

  18. The effects of ZnO buffer layers on the properties of phosphorus doped ZnO thin films grown on sapphire by pulsed laser deposition

    International Nuclear Information System (INIS)

    Kim, K-W; Lugo, F J; Lee, J H; Norton, D P

    2012-01-01

    The properties of phosphorus doped ZnO thin films grown on sapphire by pulsed laser deposition were examined, specifically focusing on the effects of undoped ZnO buffer layers. In particular, buffer layers were grown under different conditions; the transport properties of as-deposited and rapid thermal annealed ZnO:P films were then examined. As-deposited films showed n-type conductivity. After rapid thermal annealing, the film on buffer layer grown at a low temperature showed the conversion of carrier type to p-type for specific growth conditions while the films deposited on buffer layer grown at a high temperature remained n-type regardless of growth condition. The films deposited on buffer layer grown at a low temperature showed higher resistivity and more significant change of the transport properties upon rapid thermal annealing. These results suggest that more dopants are incorporated in films with higher defect density. This is consistent with high resolution x-ray diffraction results for phosphorus doped ZnO films on different buffer layers. In addition, the microstructure of phosphorus doped ZnO films is substantially affected by the buffer layer.

  19. Study of Electrical Transport Properties of Thin Films Used as HTL and as Active Layer in Organic Solar Cells, through Impedance Spectroscopy Measurements

    Directory of Open Access Journals (Sweden)

    Camilo A. Otalora

    2016-01-01

    Full Text Available Impedance spectroscopy (IS is used for studying the electrical transport properties of thin films used in organic solar cells with structure ITO/HTL/active layer/cathode, where PEDOT:PSS (poly(3,4-ethylenedioxythiophene:polystyrene sulfonic acid and CuPC (tetrasulfonated copper-phthalocyanine were investigated as HTL (hole transport layer and P3HT:PCBM (poly-3-hexylthiophene:phenyl-C61-butyric acid methyl ester blends prepared from mesitylene and chlorobenzene based solutions were studied as active layer and Ag and Al were used as cathode. The study allowed determining the influence of the type of solvent used for the preparation of the active layer as well as the speed at which the solvents are removed on the carriers mobility. The effect of exposing the layer of P3HT to the air on its mobility was also studied. It was established that samples of P3HT and P3HT:PCBM prepared using mesitylene as a solvent have mobility values significantly higher than those prepared from chlorobenzene which is the solvent most frequently used. It was also determined that the mobility of carriers in P3HT films strongly decreases when this sample is exposed to air. In addition, it was found that the electrical properties of P3HT:PCBM thin films can be improved by removing the solvent slowly which is achieved by increasing the pressure inside the system of spin-coating during the film growth.

  20. Physical/chemical properties of tin oxide thin film transistors prepared using plasma-enhanced atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Byung Kook [Thin Film Materials Research Team, Korea Research Institute of Chemical Technology, Yuseong, P. O. Box 107, Daejeon 305-600 (Korea, Republic of); Department of Material Science and Engineering, Hongik University, Seoul 121-791 (Korea, Republic of); Jung, Eunae; Kim, Seok Hwan; Moon, Dae Chul; Lee, Sun Sook; Park, Bo Keun [Thin Film Materials Research Team, Korea Research Institute of Chemical Technology, Yuseong, P. O. Box 107, Daejeon 305-600 (Korea, Republic of); Hwang, Jin Ha [Department of Material Science and Engineering, Hongik University, Seoul 121-791 (Korea, Republic of); Chung, Taek-Mo; Kim, Chang Gyoun [Thin Film Materials Research Team, Korea Research Institute of Chemical Technology, Yuseong, P. O. Box 107, Daejeon 305-600 (Korea, Republic of); An, Ki-Seok, E-mail: ksan@krict.re.kr [Thin Film Materials Research Team, Korea Research Institute of Chemical Technology, Yuseong, P. O. Box 107, Daejeon 305-600 (Korea, Republic of)

    2012-10-15

    Thin film transistors (TFTs) with tin oxide films as the channel layer were fabricated by means of plasma enhanced atomic layer deposition (PE-ALD). The as-deposited tin oxide films show n-type conductivity and a nano-crystalline structure of SnO{sub 2}. Notwithstanding the relatively low deposition temperatures of 70, 100, and 130 °C, the bottom gate tin oxide TFTs show an on/off drain current ratio of 10{sup 6} while the device mobility values were increased from 2.31 cm{sup 2}/V s to 6.24 cm{sup 2}/V s upon increasing the deposition temperature of the tin oxide films.

  1. Static and dynamic properties of Co2FeAl thin films: Effect of MgO and Ta as capping layers

    Science.gov (United States)

    Husain, Sajid; Barwal, Vineet; Kumar, Ankit; Behera, Nilamani; Akansel, Serkan; Goyat, Ekta; Svedlindh, Peter; Chaudhary, Sujeet

    2017-05-01

    The influence of MgO and Ta capping layers on the static and dynamic magnetic properties of Co2FeAl (CFA) Heusler alloy thin films has been investigated. It is observed that the CFA film deposited with MgO capping layer is preeminent compared to the uncapped or Ta capped CFA film. In particular, the magnetic inhomogeneity contribution to the ferromagnetic resonance line broadening and damping constant are found to be minimal for the MgO capped CFA thin film i.e., 0.12±0.01 Oe and 0.0074±0.00014, respectively. The saturation magnetization was found to be 960±25emu/cc.

  2. Comparison of physical and electrical properties of GZO/ZnO buffer layer and GZO as source and drain electrodes of α-IGZO thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jia-Ling; Lin, Han-Yu; Su, Bo-Yuan; Chen, Yu-Cheng [Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Chu, Sheng-Yuan, E-mail: chusy@mail.ncku.edu.tw [Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Advanced Optoelectronic Technology Center, National Cheng Kung University, Tainan 70101, Taiwan (China); Liu, Ssu-Yin [Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China); Chang, Chia-Chiang; Wu, Chin-Jyi [Industrial Technology Research Institute, Mechanical and Systems Research Laboratories, Hsinchu 310, Taiwan (China)

    2014-04-01

    Highlights: • The electrodes of bi-layer GZO/ ZnO and single-layer GZO in α-IGZO TFT were compared. • The TFT performances of two different structures were systematically investigated. • The bi-layer GZO/100-nm ZnO S/D electrodes showed the better TFT device properties. - Abstract: In this research, top-gate bottom-contact thin-film transistors (TFTs) made with amorphous indium gallium zinc oxide (α-IGZO) active layers were grown using the radio-frequency sputtering technique. Two kinds of source and drain (S/D) electrodes, namely bi-layer GZO/100-nm ZnO buffer layer/Corning 1737 and single-layer GZO/Corning 1737, used in the TFT devices and the electric characteristics of the devices were compared. To explain the differences in the TFT performances with these different S/D electrodes, X-ray reflectivity (XRR) and contact angles were measured. The α-IGZO TFT with the bi-layer GZO/100-nm ZnO buffer layer structure as S/D electrodes exhibited superior device performance compared to that of the TFT with a single-layer GZO structure, with a higher thin film density (5.94 g/cm{sup 3}), lower surface roughness (0.817 nm), and larger surface energy (62.07 mJ/m{sup 2}) and better adhesion properties of neighboring α-IGZO films. In addition, the mechanisms responsible for the GZO/100-nm ZnO buffer layer/Corning 1737 structure S/D electrodes improving the device characteristics were systematically investigated. The α-IGZO TFT saturation mobility, subthreshold voltage, on/off current ratio, and the trap density of the GZO/100-nm ZnO buffer layer/Corning 1737 S/D electrodes were 13.5 cm{sup 2} V{sup −1} S{sup −1}, 0.43 V/decade, 3.56 × 10{sup 7}, and 5.65 × 10{sup 12} eV{sup −1} cm{sup −2}, respectively, indicating the potential of this bi-layer structure to be applied to large-area flat-panel displays.

  3. Electrical, optical, and structural properties of thin films with tri-layers of AZO/ZnMgO/AZO grown by filtered vacuum arc deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gontijo, Leonardo C. [Instituto Federal do Espirito Santo, Programa de Pos-Graduacao em Engenharia Metalurgica e de Materiais, CEP 29444-030 Vitoria, ES (Brazil); Cunha, Alfredo G. [Universidade Federal do Espirito Santo, Departamento de Fisica, CEP 29075-910 Vitoria, ES (Brazil); Nascente, Pedro A.P., E-mail: nascente@ufscar.br [Universidade Federal de Sao Carlos, Departamento de Engenharia de Materiais, CEP 13565-905 Sao Carlos, SP (Brazil)

    2012-12-01

    Highlights: Black-Right-Pointing-Pointer AZO/ZnMgO/AZO tri-layered films were grown by FCAD filtered cathodic arc deposition. Black-Right-Pointing-Pointer The films were highly transparent and presented excellent electrical resistivity. Black-Right-Pointing-Pointer The films presented optical transmittance in the visible light higher than 80%. - Abstract: Transparent conductive oxides (TCO) are indispensable as front electrode for most of thin film electronic devices such as transparent electrodes for flat panel displays, photovoltaic cells, windshield defrosters, transparent thin film transistors, and low emissivity windows. Thin films of aluminum-doped zinc oxide (AZO) have shown to be one of the most promising TCOs. In this study, three layered Al-doped ZnO (AZO)/ZnMgO/AZO heterostructures were prepared by filtered cathodic arc deposition (FCAD) on glass substrates. The objective is to find a set of parameters that will allow for improved optical and electrical properties of the films such as low resistivity, high mobility, high number of charge carriers, and high transmittance. We have investigated the effect of modifications in thickness and doping of the ZnMgO inner layer on the structural, electrical, and optical characteristics of the stacked heterostructures.

  4. Energy loss in thin layers in GEANT

    International Nuclear Information System (INIS)

    Lassila-Perini, K.; Urban, L.

    1995-01-01

    A method for the simulation of the energy loss distribution in thin gaseous layers has been implemented in GEANT and tested. Comparisons are made between the new code and the standard method in GEANT. Improvements are made to the standard method to enable a fast and reliable simulation of energy losses in thin layers. (orig.)

  5. Improving the Microstructure and Electrical Properties of Aluminum Induced Polysilicon Thin Films Using Silicon Nitride Capping Layer

    Directory of Open Access Journals (Sweden)

    Min-Hang Weng

    2014-01-01

    Full Text Available We investigated the capping layer effect of SiNx (silicon nitride on the microstructure, electrical, and optical properties of poly-Si (polycrystalline silicon prepared by aluminum induced crystallization (AIC. The primary multilayer structure comprised Al (30 nm/SiNx (20 nm/a-Si (amorphous silicon layer (100 nm/ITO coated glass and was then annealed in a low annealing temperature of 350°C with different annealing times, 15, 30, 45, and 60 min. The crystallization properties were analyzed and verified by X-ray diffraction (XRD and Raman spectra. The grain growth was analyzed via optical microscope (OM and scanning electron microscopy (SEM. The improved electrical properties such as Hall mobility, resistivity, and dark conductivity were investigated by using Hall and current-voltage (I-V measurements. The results show that the amorphous silicon film has been effectively induced even at a low temperature of 350°C and a short annealing time of 15 min and indicate that the SiNx capping layer can improve the grain growth and reduce the metal content in the induced poly-Si film. It is found that the large grain size is over 20 μm and the carrier mobility values are over 80 cm2/V-s.

  6. Multiwavelength excitation Raman scattering analysis of bulk and two-dimensional MoS2: vibrational properties of atomically thin MoS2 layers

    International Nuclear Information System (INIS)

    Placidi, Marcel; Dimitrievska, Mirjana; Izquierdo-Roca, Victor; Fontané, Xavier; Espindola-Rodriguez, Moises; López-Marino, Simon; Neuschitzer, Markus; Pérez-Rodríguez, Alejandro; Castellanos-Gomez, Andres; Pérez-Tomás, Amador; Mestres, Narcis; Bermudez, Veronica; Yaremko, Anatoliy

    2015-01-01

    In order to deepen the knowledge of the vibrational properties of two-dimensional (2D) MoS 2 atomic layers, a complete and systematic Raman scattering analysis has been performed using both bulk single-crystal MoS 2 samples and atomically thin MoS 2 layers. Raman spectra have been measured under non-resonant and resonant conditions using seven different excitation wavelengths from near-infrared (NIR) to ultraviolet (UV). These measurements have allowed us to observe and identify 41 peaks, among which 22 have not been previously experimentally observed for this compound, and characterize the existence of different resonant excitation conditions for the different excitation wavelengths. This has also included the first analysis of resonant Raman spectra that are achieved using UV excitation conditions. In addition, the analysis of atomically thin MoS 2 layers has corroborated the higher potential of UV resonant Raman scattering measurements for the non-destructive assessment of 2D MoS 2 samples. Analysis of the relative integral intensity of the additional first- and second-order peaks measured under UV resonant excitation conditions is proposed for the non-destructive characterization of the thickness of the layers, complementing previous studies based on the changes of the peak frequencies. (paper)

  7. Interface Properties of Atomic-Layer-Deposited Al2O3 Thin Films on Ultraviolet/Ozone-Treated Multilayer MoS2 Crystals.

    Science.gov (United States)

    Park, Seonyoung; Kim, Seong Yeoul; Choi, Yura; Kim, Myungjun; Shin, Hyunjung; Kim, Jiyoung; Choi, Woong

    2016-05-11

    We report the interface properties of atomic-layer-deposited Al2O3 thin films on ultraviolet/ozone (UV/O3)-treated multilayer MoS2 crystals. The formation of S-O bonds on MoS2 after low-power UV/O3 treatment increased the surface energy, allowing the subsequent deposition of uniform Al2O3 thin films. The capacitance-voltage measurement of Au-Al2O3-MoS2 metal oxide semiconductor capacitors indicated n-type MoS2 with an electron density of ∼10(17) cm(-3) and a minimum interface trap density of ∼10(11) cm(-2) eV(-1). These results demonstrate the possibility of forming a high-quality Al2O3-MoS2 interface by proper UV/O3 treatment, providing important implications for their integration into field-effect transistors.

  8. Enhanced magnetic properties of chemical solution deposited BiFeO3 thin film with ZnO buffer layer

    International Nuclear Information System (INIS)

    Rajalakshmi, R.; Kambhala, Nagaiah; Angappane, S.

    2012-01-01

    Highlights: ► Enhanced magnetization of BiFeO 3 is important for strong magnetoelectric coupling. ► BiFeO 3 film with ZnO buffer layer was successfully synthesized by chemical method. ► Magnetization of BiFeO 3 has increased by more than 10 times with ZnO buffer layer. ► A mechanism for enhancement in ferromagnetism of BiFeO 3 film is proposed. - Abstract: Magnetic properties of BiFeO 3 films deposited on Si substrates with and without ZnO buffer layer have been studied in this work. We adopted the chemical solution deposition method for the deposition of BiFeO 3 as well as ZnO films. The x-ray diffraction measurements on the deposited films confirm the formation of crystalline phase of BiFeO 3 and ZnO films, while our electron microscopy measurements help to understand the morphology of few micrometers thick films. It is found that the deposited ZnO film exhibit a hexagonal particulate surface morphology, whereas BiFeO 3 film fully covers the ZnO surface. Our magnetic measurements reveal that the magnetization of BiFeO 3 has increased by more than ten times in BiFeO 3 /ZnO/Si film compared to BiFeO 3 /Si film, indicating the major role played by ZnO buffer layer in enhancing the magnetic properties of BiFeO 3 , a technologically important multiferroic material.

  9. Hydrogen–argon plasma pre-treatment for improving the anti-corrosion properties of thin Al2O3 films deposited using atomic layer deposition on steel

    International Nuclear Information System (INIS)

    Härkönen, Emma; Potts, Stephen E.; Kessels, Wilhelmus M.M.; Díaz, Belén; Seyeux, Antoine; Światowska, Jolanta; Maurice, Vincent; Marcus, Philippe; Radnóczi, György; Tóth, Lajos; Kariniemi, Maarit; Niinistö, Jaakko; Ritala, Mikko

    2013-01-01

    The effect of H 2 –Ar plasma pre-treatment prior to thermal atomic layer deposition (ALD) and plasma-enhanced atomic layer deposition (PEALD) of Al 2 O 3 films on steel for corrosion protection was investigated. Time-of-flight secondary ion mass spectrometry and transmission electron microscopy were used to observe the changes in the interface. The electrochemical properties of the samples were studied with polarization measurements, and the coating porosities were calculated from the polarization results for easier comparison of the coatings. Prior to thermal ALD the plasma pre-treatment was observed to reduce the amount of impurities at the interface and coating porosity by 1–3 orders of magnitude. The anti-corrosion properties of the PEALD coatings could also be improved by the pre-treatment. However, exposure of the pre-treatment plasma activated steel surface to oxygen plasma species in PEALD led to facile oxide layer formation in the interface. The oxide layer formed this way was thicker than the native oxide layer and appeared to be detrimental to the protective properties of the coating. The best performance for PEALD Al 2 O 3 coatings was achieved when, after the plasma pre-treatment, the surface was given time to regrow a thin protective interfacial oxide prior to exposure to the oxygen plasma. The different effects that thermal and plasma-enhanced ALD have on the substrate-coating interface were compared. The reactivity of the oxygen precursor was shown to have a significant influence on substrate surface in the early stages of film growth and thereafter also on the overall quality of the protective film. - Highlights: • Influence of H 2 –Ar plasma pre-treatment to ALD coatings on steel was studied. • The pre-treatment modified the coating–substrate interface composition and thickness. • The pre-treatment improved the barrier properties of the coatings

  10. Effect of interfacial layers on physical and electrical properties of dinaphtho[2,3-b:2‧,3‧-d]thiophene organic thin-film transistors

    Science.gov (United States)

    Shaari, Safizan; Naka, Shigeki; Okada, Hiroyuki

    2017-03-01

    We fabricated hexyl-substituted dinaphtho[2,3-b:2‧,3‧-d]thiophene (C6-DNT-V) organic thin-film transistors (OTFTs) with different interfacial layers. The interfacial layers comprised various types of polymers, polyimide, self-assembled monolayers, and high-κ materials. We investigated the effect of interfacial layers on the physical and electrical properties of C6-DNT-V OTFTs. The relationships between mobility and contact angle, threshold voltage and contact angle, on/off ratio and contact angle, mobility and X-ray diffraction intensity, and mobility and dielectric constant were investigated. We found that the contact angle strongly affected the threshold voltage, and the correlation coefficient was calculated to be 0.88. This is due to the fact that use of interfacial layers on the dielectric surface changes the contact angle and hence the surface energy. The altered surface energy will contribute to a change in the grain boundary of C6-DNT-V and affect the shift in threshold voltage. The relationships between other properties showed correlation coefficients of lower than 0.51.

  11. Hard magnetic properties of rapidly annealed NdFeB thin films on Nb and V buffer layers

    International Nuclear Information System (INIS)

    Jiang, H.; Evans, J.; O'Shea, M.J.; Du Jianhua

    2001-01-01

    NdFeB thin films of the form A (20 nm)/NdFeB(d nm)/A(20 nm), where d ranges from 54 to 540 nm and the buffer layer A is Nb or V were prepared on a Si(1 0 0) substrate by magnetron sputtering. The hard Nd 2 Fe 14 B phase is formed by a 30 s rapid anneal or a 20 min anneal. Average crystallite size ranged from 20 to 35 nm with the rapidly annealed samples having the smaller crystallite size. These samples also exhibited a larger coercivity and energy product than those treated by a 20 min vacuum anneal. A maximum coercivity of 26.3 kOe at room temperature was obtained for a Nb/NdFeB (180 nm)/Nb film after a rapid anneal at 725 deg. C. Initial magnetization curves indicate magnetization rotation rather than nucleation of reverse domains is important in the magnetization process. A Brown's equation analysis of the coercivity as a function of temperature allowed us to compare the rapidly annealed and 20 min annealed samples. This analysis suggests that rapid annealing gives higher quality crystalline grains than the 20 min annealed sample leading to the observed large coercivity in the rapidly annealed samples

  12. Properties of natural and synthetic hydroxyapatite and their surface free energy determined by the thin-layer wicking method

    Science.gov (United States)

    Szcześ, Aleksandra; Yan, Yingdi; Chibowski, Emil; Hołysz, Lucyna; Banach, Marcin

    2018-03-01

    Surface free energy is one of the parameters accompanying interfacial phenomena, occurring also in the biological systems. In this study the thin layer wicking method was used to determine surface free energy and its components for synthetic hydroxyapatite (HA) and natural one obtained from pig bones. The Raman, FTIR and X-Ray photoelectron spectroscopy, X-ray diffraction techniques and thermal analysis showed that both samples consist of carbonated hydroxyapatite without any organic components. Surface free energy and its apolar and polar components were found to be similar for both investigated samples and equalled γSTOT = 52.4 mJ/m2, γSLW = 40.2 mJ/m2 and γSAB = 12.3 mJ/m2 for the synthetic HA and γSTOT = 54.6 mJ/m2, γSLW = 40.3 mJ/m2 and γSAB = 14.3 mJ/m2 for the natural one. Both HA samples had different electron acceptor (γs+) and electron donor (γs-) parameters. The higher value of the electron acceptor was found for the natural HA whereas the electron donor one was higher for the synthetic HA.

  13. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 Angstrom), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 Angstrom of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films

  14. Thermo-Optical Properties of Thin-Film TiO2–Al2O3 Bilayers Fabricated by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Rizwan Ali

    2015-05-01

    Full Text Available We investigate the optical and thermo-optical properties of amorphous TiO\\(_2\\–Al\\(_2\\O\\(_3\\ thin-film bilayers fabricated by atomic layer deposition (ALD. Seven samples of TiO\\(_2\\–Al\\(_2\\O\\(_3\\ bilayers are fabricated by growing Al\\(_2\\O\\(_3\\ films of different thicknesses on the surface of TiO\\(_2\\ films of constant thickness (100 nm. Temperature-induced changes in the optical refractive indices of these thin-film bilayers are measured by a variable angle spectroscopic ellipsometer VASE\\textsuperscript{\\textregistered}. The optical data and the thermo-optic coefficients of the films are retrieved and calculated by applying the Cauchy model and the linear fitting regression algorithm, in order to evaluate the surface porosity model of TiO\\(_2\\ films. The effects of TiO\\(_2\\ surface defects on the films' thermo-optic properties are reduced and modified by depositing ultra-thin ALD-Al\\(_2\\O\\(_3\\ diffusion barrier layers. Increasing the ALD-Al\\(_2\\O\\(_3\\ thickness from 20 nm to 30 nm results in a sign change of the thermo-optic coefficient of the ALD-TiO\\(_2\\. The thermo-optic coefficients of the 100 nm-thick ALD-TiO\\(_2\\ film and 30 nm-thick ALD-Al\\(_2\\O\\(_3\\ film in a bilayer are (0.048 \\(\\pm\\ 0.134 \\(\\times 10 ^{-4} {^\\circ}\\mathrm {C}^{-1}\\ and (0.680 \\(\\pm\\ 0.313 \\(\\times 10^{-4} {^\\circ} \\mathrm {C}^{-1}\\, respectively, at a temperature \\(T = 62 ^\\circ \\mathrm{C}\\.

  15. Delamination of Compressed Thin Layers at Corners

    DEFF Research Database (Denmark)

    Sørensen, Kim D.; Jensen, Henrik Myhre; Clausen, Johan

    2008-01-01

    An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat...

  16. Fabrication and evaluation of thin layer PVDF composites using MWCNT reinforcement: Mechanical, electrical and enhanced electromagnetic interference shielding properties

    Directory of Open Access Journals (Sweden)

    B. V. Bhaskara Rao

    2016-06-01

    Full Text Available Radar X-band electromagnetic interference shielding (EMS is one of the prime requirements for any air vehicle coating; with limitations on the balance between strength and thickness of the EMS material. Nanocomposite of multiwalled-carbon-nanotubes (MWCNT has been homogeneously integrated (0 – 9 wt% with polymer, poly (vinylidene fluoride, PVDF to yield 300 micron film. The PVDF + 9 wt% MWCNT sample of density 1.41 g/cm3 show specific shielding effectiveness (SSE of 17.7 dB/(g/cm3 (99.6% EMS, with maintained hardness and improved conductivity. With multilayer stacking (900 microns of these films of density 1.37 g/cm3, the sample showed increase in SSE to 23.3 dB/(g/cm3 (99.93% EMS. Uniform dispersion of MWCNTs in the PVDF matrix gives rise to increased conductivity in the sample beyond 5 wt% MWCNT reinforcement. The results are correlated to the hardness, reflection loss, absorption loss, percolation threshold, permittivity and the conductivity data. An extremely thin film with maximum EMS property is hence proposed.

  17. In situ determination of the dynamic properties of thinly-layered rock to evaluate rock-structure interaction at a nuclear power plant site

    International Nuclear Information System (INIS)

    Johnson, William J.; Rizzo, Paul C.

    1988-01-01

    The presence of layers of weak sedimentary rock in a column of otherwise competent rock can significantly affect the seismic response of nuclear power plant structures due to rock-structure interaction effects. The determination of the dynamic properties of thinly-layered rock is, however, difficult. When borings are placed close enough to allow for a characterization of refracted waves, other potential problems such as the identification of clear P- and S-wave arrivals, extremely short duration of records, near-field waves, instrumental stability, and overall record resolution become magnified. Other problems such as cultural noise and signal amplitude can become critical when high resolution is required. Conventional storage oscilloscopes and seismographs are inadequate under these conditions, but modern digital recording systems with the application of stringent calibration and recording procedures can yield successful results. A case history of a high-precision cross-hole survey to a depth of 150 meters in thinly-bedded sedimentary rock at a nuclear power plant site is presented in order to illustrate the systems and procedures necessary to obtain successful results under adverse conditions. (author)

  18. Control of Microstructure and Magnetic Properties of FePt Thin Films with TiN-MgO Intermediate Layer.

    Science.gov (United States)

    Dong, Kai-Feng; Jin, Fang; Mo, Wen-Qin; Song, Jun-Lei; Cheng, Wei-Ming

    2018-04-01

    The effects of TiN-MgO intermediate layer on the microstructure and magnetic properties of FePt-SiNx-C films were investigated. With doping MgO into TiN, three components were formed, including titanium dioxide, titanium nitride and titanium oxynitride. This caused the decrease of the surface energy and the increase of the interface energy, and further induced the promotion of island growth of FePt, thus the improvement of the isolation and the decrease of FePt grains. On the other hand, the decrease of surface energy and the forming of some titanium dioxide with doping MgO would accompany the deterioration of epitaxial growth and thus the deterioration of the perpendicular magnetic anisotropy of FePt films in a certain degree. By optimizing the concentration of TiN and MgO, the FePt-SiNx-C films with small grain size of 5.86±1.03 nm and good perpendicular anisotropy would be obtained.

  19. Thin layers in actinide research

    International Nuclear Information System (INIS)

    Gouder, T.

    1998-01-01

    Surface science research at the ITU is focused on the synthesis and surface spectroscopy studies of thin films of actinides and actinide compounds. The surface spectroscopies used are X-ray and ultra violet photoelectron spectroscopy (XPS and UPS, respectively), and Auger electron spectroscopy (AES). Thin films of actinide elements and compounds are prepared by sputter deposition from elemental targets. Alloy films are deposited from corresponding alloy targets and could be used, in principle, as replicates of these targets. However, there are deviations between alloy film and target composition, which depend on the deposition conditions, such as pressure and target voltage. Mastering of these effects may allow us to study stoichiometric film replicates instead of thick bulk compounds. As an example, we discuss the composition of U-Ni films prepared from a UNi 5 target. (orig.)

  20. Control of the optical and crystalline properties of TiO2 in visible-light active TiO2/TiN bi-layer thin-film stacks

    International Nuclear Information System (INIS)

    Smith, Wilson; Fakhouri, Houssam; Pulpytel, Jerome; Arefi-Khonsari, Farzaneh

    2012-01-01

    Multi-layered thin films of TiO 2 and TiN were created by rf reactive magnetron sputtering, and their crystalline, optical, and photoelectrochemical properties were measured. The overall composition of the films (TiO 2 -to-TiN ratio) was kept constant with the height of each film. The number of layers and thickness of each layer was controlled to create bi-layer thin films that were composed of: 9 bi-layers, 18 bi-layers, 27 bi-layers, 36 bi-layers, and 45 bi-layers. XRD patterns were observed for each film after annealing to measure the grain size and composition of anatase and rutile as a function of temperature. It was found that the phase-transition temperature is able to be substantially controlled (between 550 deg. C and 850 deg. C) for the anatase to rutile transition by varying the number of layers/thickness of each layer. In addition, bi-layer stacking significantly affected the film's optical properties by lowering the bandgap into the visible-light region, and also showed up to three times the improvement in photoelectrochemical performance under uv and visible irradiation. Overall, bi-layer stacking of TiO 2 /TiN films has shown a unique and highly desirable control over several important physical characteristics that can be beneficial for many applications, such as high-temperature sensors and optoelectronic devices.

  1. Electrical Properties of Ultra-thin TiO2 Compact Layer on FTO for Perovskite Solar cells

    Science.gov (United States)

    Songtanasit, R.; Taychatanapat, T.; Chatraphorn, S.

    2017-09-01

    A TiO2 compact layer or blocking layer plays a crucial role in a hybrid organic-inorganic lead halide perovskite solar cell because it can prevent the carrier recombination at the interface of fluorine-doped tin oxide (FTO) and perovskite layers. There are several methods to fabricate this layer such as spray pyrolysis or spin-coating which is solution-based synthesis that is difficult to avoid pinholes in the surface of the blocking layer. In this work, TiO2 blocking layers are fabricated by radio-frequency (RF) magnetron sputtering using Ti metallic target with O2 partial pressure in Ar atmosphere on FTO coated glasses. The controlled parameters for the deposition of TiO2 compact layer are RF power, O2 partial pressure, and deposition time. The optimization of the TiO2 compact layers are found from the diode I-V characteristics between the TiO2/FTO interfaces. The resistance between the TiO2/FTO interfaces deviates from an ohmic contact towards a diode behavior when the thickness of TiO2 is increased. The thickness of the films is directly measured by surface profilometer. In addition, the UV-VIS-NIR spectroscopy is used to observe the optical transmission of the films.

  2. Effect of thickness on the structural and optical properties of CuO thin films grown by successive ionic layer adsorption and reaction

    Energy Technology Data Exchange (ETDEWEB)

    Akaltun, Yunus, E-mail: yakaltun@erzincan.edu.tr

    2015-11-02

    CuO thin films were synthesised on glass substrates at room temperature using successive ionic layer adsorption and reaction (SILAR) method. The effect of film thickness on characteristic parameters such as the structural, morphological and optical properties of the films was investigated. The X-ray diffraction (XRD) and scanning electron microscopy (SEM) studies showed that all of the films exhibited polycrystalline structure with monoclinic phases and covered the glass substrates well. The crystalline and morphology of the films improved with increasing film thickness. The optical band gap decreased from 2.03 to 1.79 eV depending on the film thickness. The refractive index (n), electron effective mass (m{sub e}{sup ⁎}/m{sub o}) and static and frequency dielectric constants (ε{sub o}, ε{sub ∞}) were determined using the energy band gap values. - Highlights: • CuO thin films were deposited using SILAR method. • The electron effective mass, refractive index, dielectric constant values were calculated. • Characterisation of the films has been performed using XRD, SEM, Raman and optical measurements. • The d values of the planes of with thickness show no variation.

  3. Thin layer Characterization by ZGV Lamb modes

    Science.gov (United States)

    Cès, Maximin; Clorennec, Dominique; Royer, Daniel; Prada, Claire

    2011-01-01

    Ultrasonic non-destructive testing of plates can be performed with Lamb modes guided by the structure. Non contact generation and detection of the elastic waves can be achieved with optical means such as a pulsed laser source and an interferometer. With this setup, we propose a method using zero group velocity (ZGV) Lamb modes rather than propagating modes. These ZGV modes have noteworthy properties, in particular their group velocity vanishes, whereas their phase velocity remains finite. Thus, a significant part of the energy deposited by the pulsed laser can be trapped in the source area. For example, in a homogeneous isotropic plate and at the minimum frequency of the S1-Lamb mode a very sharp resonance can be observed, the frequency of which only depends on the plate thickness, for a given material. In fact, other ZGV modes exist and the set of ZGV resonance frequencies provide a local and absolute measurement of Poisson's ratio. These non-propagating modes can also be used to characterize multi-layered structures. Experimentally, we observed that a thin (500 nm) gold layer deposited on a thick (1.5 mm) Duralumin plate induces a sensitive down-shift of the set of ZGV resonance frequencies. This shift, which is typically 5 kHz for the S1-Lamb mode at 1.924 MHz, can be approximated by a formula providing the layer thickness. Thickness down to 100 nm can be estimated by this method. Such a sensitivity with conventional ultrasound inspection by acoustic microscopy would require an operating frequency in the GHz range.

  4. Thin layer Characterization by ZGV Lamb modes

    Energy Technology Data Exchange (ETDEWEB)

    Ces, Maximin; Clorennec, Dominique; Royer, Daniel; Prada, Claire, E-mail: maximin.ces@espci.fr [Laboratoire Ondes et Acoustique, ESPCI- Universite Paris 7- CNRS UMR 7587, 10 rue Vauquelin, 75231 Paris Cedex 05- France (France)

    2011-01-01

    Ultrasonic non-destructive testing of plates can be performed with Lamb modes guided by the structure. Non contact generation and detection of the elastic waves can be achieved with optical means such as a pulsed laser source and an interferometer. With this setup, we propose a method using zero group velocity (ZGV) Lamb modes rather than propagating modes. These ZGV modes have noteworthy properties, in particular their group velocity vanishes, whereas their phase velocity remains finite. Thus, a significant part of the energy deposited by the pulsed laser can be trapped in the source area. For example, in a homogeneous isotropic plate and at the minimum frequency of the S{sub 1}-Lamb mode a very sharp resonance can be observed, the frequency of which only depends on the plate thickness, for a given material. In fact, other ZGV modes exist and the set of ZGV resonance frequencies provide a local and absolute measurement of Poisson's ratio. These non-propagating modes can also be used to characterize multi-layered structures. Experimentally, we observed that a thin (500 nm) gold layer deposited on a thick (1.5 mm) Duralumin plate induces a sensitive down-shift of the set of ZGV resonance frequencies. This shift, which is typically 5 kHz for the S{sub 1}-Lamb mode at 1.924 MHz, can be approximated by a formula providing the layer thickness. Thickness down to 100 nm can be estimated by this method. Such a sensitivity with conventional ultrasound inspection by acoustic microscopy would require an operating frequency in the GHz range.

  5. Electric-field effects on magnetic properties of molecular beam epitaxially grown thin (Ga,Mn)Sb layers

    Science.gov (United States)

    Chang, H. W.; Akita, S.; Matsukura, F.; Ohno, H.

    2014-09-01

    We report molecular beam epitaxy of a ferromagnetic semiconductor (Ga,Mn)Sb, which is a single crystal without detectable second phases. We report also the details of magnetotransport properties of (Ga,Mn)Sb and the effects of electric fields on them. The difference between the properties observed here and properties of those reported earlier for a ferromagnetic semiconductor (Ga,Mn)As, provides information critical for further understanding of fundamental and device physics of ferromagnetic semiconductors.

  6. Dielectric Properties of Thermal and Plasma-Assisted Atomic Layer Deposited Al2O3 Thin Films

    NARCIS (Netherlands)

    Jinesh, K. B.; van Hemmen, J. L.; M. C. M. van de Sanden,; Roozeboom, F.; Klootwijk, J. H.; Besling, W. F. A.; Kessels, W. M. M.

    2011-01-01

    A comparative electrical characterization study of aluminum oxide (Al2O3) deposited by thermal and plasma-assisted atomic layer depositions (ALDs) in a single reactor is presented. Capacitance and leakage current measurements show that the Al2O3 deposited by the plasma-assisted ALD shows excellent

  7. Thin Layer Chromatography (TLC) of Chlorophyll Pigments.

    Science.gov (United States)

    Foote, Jerry

    1984-01-01

    Background information, list of materials needed, procedures used, and discussion of typical results are provided for an experiment on the thin layer chromatography of chlorophyll pigments. The experiment works well in high school, since the chemicals used are the same as those used in paper chromatography of plant pigments. (JN)

  8. Carbon nanofiber growth on thin rhodium layers

    NARCIS (Netherlands)

    Chinthaginjala, J.K.; Unnikrishnan, S.; Smithers, Mark A.; Smithers, M.A.; Kip, Gerhardus A.M.; Lefferts, Leonardus

    2012-01-01

    A thinlayer of carbon nanofibers (CNFs) was synthesized on a thin polycrystalline rhodium (Rh) metal layer by decomposing ethylene in the presence of hydrogen. Interaction of Rh crystals with carbon results in fragmentation and formation of Rh-nanoparticles, facilitating CNF growth. CNFs are

  9. Orientation-dependent physical properties of layered perovskite La1.3Sr1.7Mn2O7 epitaxial thin films

    Science.gov (United States)

    Niu, Li-Wei; Guo, Bing; Chen, Chang-Le; Luo, Bing-Cheng; Dong, Xiang-Lei; Jin, Ke-Xin

    2017-04-01

    In this paper, the resistivity and magnetization of orientation-engineered layered perovskite La1.3Sr1.7Mn2O7 epitaxial thin films have been investigated. Epitaxial thin films were deposited on single-crystalline LaAlO3 (LAO) (001), (110) and (111) substrates by pulse laser deposition (PLD) technique. It is found that only the (100)-oriented thin film performs insulator behavior, whereas the (110) and (111)-oriented thin films exhibit obvious metal-insulator transition at 70 K and between 85 and 120 K, respectively. Moreover, the same spin freezing temperature and different spin-glass-like transition temperatures have been observed in various oriented films. The observed experimental results were discussed according to the electron-transport mechanism and spin dynamics.

  10. Physical Properties of the Al{sub 2}O{sub 3} Thin Films Deposited by Atomic Layer Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, J.B.; Kwon, D.R.; Lee, C.M. [Inha University, Inchon (Korea); Oh, K.Y. [Jusung Engineering Co., Ltd., Kwangju (Korea)

    2002-06-01

    Al{sub 2}O{sub 3} is a promising gate dielectric because of its high dielectric constant, high resistivity and low leakage current. Since OH{sup -} radical in Al{sub 2}O{sub 3} films deposited by ALD using TMA and H{sub 2}O degrades the good properties of Al{sub 2}O{sub 3}, TMA and O{sub 3} were used to deposite Al{sub 2}O{sub 3} films and the effects of O{sub 3} on the properties of the Al{sub 2}O{sub 3} films were investigated. The growth rate of the Al{sub 2}O{sub 3} film under the optimum condition was 0.85 A / cycle. According to the XPS analysis results of the OH{sup -} concentration in the Al{sub 2}O{sub 3} film deposited using O{sub 3} is lower than that using H{sub 2}O. RBS analysis results indicate the chemical formula of the film is Al{sub 2.2}O{sub 2.8}. The carbon concentration in the film detected by AES is under 1 at%. SEM observation confirms that the step coverage of the Al{sub 2}O{sub 3} film deposited by ALD using O{sub 3} is nearly 100%. (author). 19 refs., 10 figs., 2 tabs.

  11. Effects of Rapid Thermal Annealing on the Structural, Electrical, and Optical Properties of Zr-Doped ZnO Thin Films Grown by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Jingjin Wu

    2016-08-01

    Full Text Available The 4 at. % zirconium-doped zinc oxide (ZnO:Zr films grown by atomic layer deposition (ALD were annealed at various temperatures ranging from 350 to 950 °C. The structural, electrical, and optical properties of rapid thermal annealing (RTA treated ZnO:Zr films have been evaluated to find out the stability limit. It was found that the grain size increased at 350 °C and decreased between 350 and 850 °C, while creeping up again at 850 °C. UV–vis characterization shows that the optical band gap shifts towards larger wavelengths. The Hall measurement shows that the resistivity almost keeps constant at low annealing temperatures, and increases rapidly after treatment at 750 °C due to the effect of both the carrier concentration and the Hall mobility. The best annealing temperature is found in the range of 350–550 °C. The ZnO:Zr film-coated glass substrates show good optical and electrical performance up to 550 °C during superstrate thin film solar cell deposition.

  12. Effects of Rapid Thermal Annealing on the Structural, Electrical, and Optical Properties of Zr-Doped ZnO Thin Films Grown by Atomic Layer Deposition.

    Science.gov (United States)

    Wu, Jingjin; Zhao, Yinchao; Zhao, Ce Zhou; Yang, Li; Lu, Qifeng; Zhang, Qian; Smith, Jeremy; Zhao, Yongming

    2016-08-13

    The 4 at. % zirconium-doped zinc oxide (ZnO:Zr) films grown by atomic layer deposition (ALD) were annealed at various temperatures ranging from 350 to 950 °C. The structural, electrical, and optical properties of rapid thermal annealing (RTA) treated ZnO:Zr films have been evaluated to find out the stability limit. It was found that the grain size increased at 350 °C and decreased between 350 and 850 °C, while creeping up again at 850 °C. UV-vis characterization shows that the optical band gap shifts towards larger wavelengths. The Hall measurement shows that the resistivity almost keeps constant at low annealing temperatures, and increases rapidly after treatment at 750 °C due to the effect of both the carrier concentration and the Hall mobility. The best annealing temperature is found in the range of 350-550 °C. The ZnO:Zr film-coated glass substrates show good optical and electrical performance up to 550 °C during superstrate thin film solar cell deposition.

  13. Developments of the Physical and Electrical Properties of NiCr and NiCrSi Single-Layer and Bi-Layer Nano-Scale Thin-Film Resistors.

    Science.gov (United States)

    Cheng, Huan-Yi; Chen, Ying-Chung; Li, Chi-Lun; Li, Pei-Jou; Houng, Mau-Phon; Yang, Cheng-Fu

    2016-02-25

    In this study, commercial-grade NiCr (80 wt % Ni, 20 wt % Cr) and NiCrSi (55 wt % Ni, 40 wt % Cr, 5 wt % Si) were used as targets and the sputtering method was used to deposit NiCr and NiCrSi thin films on Al₂O₃ and Si substrates at room temperature under different deposition time. X-ray diffraction patterns showed that the NiCr and NiCrSi thin films were amorphous phase, and the field-effect scanning electronic microscope observations showed that only nano-crystalline grains were revealed on the surfaces of the NiCr and NiCrSi thin films. The log (resistivity) values of the NiCr and NiCrSi thin-film resistors decreased approximately linearly as their thicknesses increased. We found that the value of temperature coefficient of resistance (TCR value) of the NiCr thin-film resistors was positive and that of the NiCrSi thin-film resistors was negative. To investigate these thin-film resistors with a low TCR value, we designed a novel bi-layer structure to fabricate the thin-film resistors via two different stacking methods. The bi-layer structures were created by depositing NiCr for 10 min as the upper (or lower) layer and depositing NiCrSi for 10, 30, or 60 min as the lower (or upper) layer. We aim to show that the stacking method had no apparent effect on the resistivity of the NiCr-NiCrSi bi-layer thin-film resistors but had large effect on the TCR value.

  14. Influence of Al{sub 2}O{sub 3} layer insertion on the electrical properties of Ga-In-Zn-O thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Kurishima, Kazunori, E-mail: ce41034@meiji.ac.jp [Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571, Japan and Nano-Electronics Materials Unit, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Nabatame, Toshihide, E-mail: NABATAME.Toshihide@nims.go.jp [MANA Foundry and Nano-Electronics Materials Unit, International Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Shimizu, Maki; Mitoma, Nobuhiko; Kizu, Takio; Aikawa, Shinya; Tsukagoshi, Kazuhito [International Center for Materials Nanoarchitectonics (WPA-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Ohi, Akihiko [MANA Foundry, International Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Chikyow, Toyohiro [Nano-Electronics Materials Unit, International Center for Materials Nanoarchitectonics (WPA-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Ogura, Atsushi [Department of Electronics and Bioinformatics, School of Science and Technology, Meiji University, 1-1-1 Higashimita, Tama-ku, Kawasaki, Kanagawa 214-8571 (Japan)

    2015-11-15

    To investigate the influence of ionic/covalent interface of Al{sub 2}O{sub 3}/SiO{sub 2} gate insulator on the electrical properties of thin-film transistors (TFTs) with ionic Ga-In-Zn-O (GIZO) semiconducting channel layers, Al{sub 2}O{sub 3} layers of different thickness were introduced between SiO{sub 2} and GIZO using plasma-enhanced atomic layer deposition. The GIZO layers were obtained by DC magnetron sputtering using a GIZO target (Ga:In:Zn = 1:1:1 mol. %). The GIZO TFTs with an Al{sub 2}O{sub 3}/SiO{sub 2} gate insulator exhibited positive threshold voltage (V{sub th}) shift (about 1.1 V), V{sub th} hysteresis suppression (0.23 V), and electron mobility degradation (about 13%) compared with those of a GIZO TFT with SiO{sub 2} gate insulator by the influence of ionic/ionic and ionic/covalent interface at Al{sub 2}O{sub 3}/GIZO and Al{sub 2}O{sub 3}/SiO{sub 2}, respectively. To clarify the origin of the positive V{sub th} shift, the authors estimated the shifts of flatband voltage (0.4 V) due to the dipole and the fixed charge (−1.1 × 10{sup 11}/cm{sup 2}) at Al{sub 2}O{sub 3}/SiO{sub 2} interface, from capacitance–voltage data for Pt/Al{sub 2}O{sub 3}/SiO{sub 2}/p-Si capacitors. Based on these experimental data, the authors found that the positive V{sub th} shift (1.1 V) could be divided into three components: the dipole (−0.4 V) and fixed charge (0.15 V) at the SiO{sub 2}/Al{sub 2}O{sub 3} interface, and the fixed charge (1.35 V) at the Al{sub 2}O{sub 3}/GIZO interface. Finally, it is noted that heterointerface of SiO{sub 2}/Al{sub 2}O{sub 3}/GIZO stacks is important not only to recognize mechanism of V{sub th} shift but also to design future TFTs with high-k dielectrics and low operating voltage.

  15. Thin layer activation: measuring wear and corrosion

    International Nuclear Information System (INIS)

    Delvigne, T.; Leyman, D.; Oxorn, K.

    1995-01-01

    The technique known as thin layer activation (TLA) is explained and assessed in this article. Widely used, in for example the automotive industry, TLA allows on-line monitoring of the loss of matter from a critical surface, by wear erosion and corrosion. The technique offers extremely high sensitivity thus leading to reduced test times. On-line wear phenomena can be assessed during operation of a mechanical process, even through thick engine walls. (UK)

  16. Seismic interpretation of subglacial till units: thin layer effects in amplitude-versus-angle (AVA) analysis.

    Science.gov (United States)

    Booth, A. D.; Clark, R. A.; Kulessa, B.; Murray, T.; Hubbard, A.

    2012-04-01

    The physical properties of subglacial material can be estimated using seismic amplitude-versus-angle (AVA) methods, although the interpretation of an AVA response is complicated in the case of a thinly-layered substrate. If the thickness of a layer is less than one-quarter of the seismic wavelength, it is considered seismically 'thin' and its upper and lower interfaces are perceived as a single horizon. Since a lodged (non-deforming) subglacial till can be overlain by a thin (metre-scale) cap of dilatant (deforming) till, serious misinterpretations can result if thin layer considerations are not honoured. We simulate seismic AVA responses for layered subglacial tills, in which dilatant layers of thickness 0.1-3.0 m (up to a quarter-wavelength of our synthetic seismic pulse) overlie a lodged half-space, and assign typical acoustic impedance and Poisson's ratios to each. Neglecting thin layer considerations, we show that the AVA response to ultra-thin (AVA response. We present a thin layer interpretation for seismic data acquired on the Russell Glacier outlet of the West Greenland Ice Sheet. By invoking a thin layer argument, we show that the substrate comprises a stratified till with upper and lower layers of high- and low-porosity, interpreted respectively as dilatant and lodged material. Ignoring the effect of thin layers may lead to a serious misinterpretation of substrate physical properties, hence we recommend that their impact is considered in any AVA analysis.

  17. Thin metal nanostructures: synthesis, properties and applications

    OpenAIRE

    Fan, Zhanxi; Huang, Xiao; Tan, Chaoliang; Zhang, Hua

    2014-01-01

    Two-dimensional nanomaterials, especially graphene and single- or few-layer transition metal dichalcogenide nanosheets, have attracted great research interest in recent years due to their distinctive physical, chemical and electronic properties as well as their great potentials for a broad range of applications. Recently, great efforts have also been devoted to the controlled synthesis of thin nanostructures of metals, one of the most studied traditional materials, for various applications. I...

  18. Phase transition, ferroelectric, and dielectric properties of layer-structured perovskite CaBi3Ti3O12-δ thin films

    Science.gov (United States)

    Kato, Kazumi; Suzuki, Kazuyuki; Nishizawa, Kaori; Miki, Takeshi

    2001-07-01

    Thin films of a bismuth-based layer-structured perovskite compound with a number of oxygen octahedron along the c axis between Bi-O layers of three, CaBi3Ti3O12-δ, were prepared using a mixture solution of complex alkoxides. The films crystallized below 550 °C. The crystal structure and surface morphology of these films changed between 600 and 650 °C. The 650 °C-annealed thin film consisted of well-developed grains and exhibited polarization-electric hysteresis loops. The remanent polarization and coercive electric field were 8.5 μC/cm2 and 124 kV/cm, respectively, at 7 V. The dielectric constant and loss factor were about 250 and 0.048, respectively, at 100 kHz.

  19. Physical properties and interface studies of YBa2Cu3O7 thin films deposited by laser ablation on S1 (111) with buffer layer

    NARCIS (Netherlands)

    Blank, David H.A.; Aarnink, W.A.M.; Aarnink, W.A.M.; Flokstra, Jakob; Rogalla, Horst; van Silfhout, Arend

    1990-01-01

    The physical properties of laser-deposited YBaCuO on Si using a single buffer layer of ZrO2 and a double layer of NiSi2 and ZrO2 have been studied. The influence of the deposition temperature has been investigated. Interface studies were performed by RBS and SAM. SEM pictures, resistivity and

  20. Crystallinity Improvement of Zn O Thin Film on Different Buffer Layers Grown by MBE

    International Nuclear Information System (INIS)

    Shao-Ying, T.; Che-Hao, L.; Wen-Ming, Ch.; Yang, C.C.; Po-Ju, Ch.; Hsiang-Chen, W.; Ya-Ping, H.

    2012-01-01

    The material and optical properties of Zn O thin film samples grown on different buffer layers on sapphire substrates through a two-step temperature variation growth by molecular beam epitaxy were investigated. The thin buffer layer between the Zn O layer and the sapphire substrate decreased the lattice mismatch to achieve higher quality Zn O thin film growth. A Ga N buffer layer slightly increased the quality of the Zn O thin film, but the threading dislocations still stretched along the c-axis of the Ga N layer. The use of Mg O as the buffer layer decreased the surface roughness of the Zn O thin film by 58.8% due to the suppression of surface cracks through strain transfer of the sample. From deep level emission and rocking curve measurements it was found that the threading dislocations play a more important role than oxygen vacancies for high-quality Zn O thin film growth.

  1. Modeling the influence of the seeding layer on the transition behavior of a ferroelectric thin film

    International Nuclear Information System (INIS)

    Oubelkacem, A.; Essaoudi, I.; Ainane, A.; Saber, M.; Dujardin, F.

    2011-01-01

    The transition properties of a ferroelectric thin film with seeding layers were studied using the effective field theory with a probability distribution technique that accounts for the self-spin correlation functions. The effect of interaction parameters for the seeding layer on the phase diagram was also examined. We calculated the critical temperature and the polarization of the ferroelectric thin film for different seeding layer structures. We found that the seeding layer can greatly increase the Curie temperature and the polarization.

  2. Effect of Precursors on Key Opto-electrical Properties of Successive Ion Layer Adsorption and Reaction-Prepared Al:ZnO Thin Films

    Science.gov (United States)

    Kumar, K. Deva Arun; Valanarasu, S.; Ganesh, V.; Shkir, Mohd.; Kathalingam, A.; AlFaify, S.

    2018-02-01

    Aluminum-doped zinc oxide (Al:ZnO) thin films were deposited on glass substrates by successive ion layer adsorption and reaction (SILAR) method using different precursors. This inexpensive SILAR method involves dipping of substrate sequentially in zinc solution, de-ionized water and ethylene glycol in multiple cycles. Prepared films were investigated by x-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), optical absorption, photoluminescence (PL), Raman spectroscopy and electrical studies. XRD study confirmed incorporation of aluminum in ZnO lattice with a polycrystalline hexagonal wurtzite structure of the films. The crystallite size determined by the Scherrer equation showed an increase from 28 nm to 35 nm for samples S1 to S4, respectively. SEM study showed smooth morphology with homogeneous distribution of particles. From the AFM images, the surface roughness was found to change according to precursors. For the optical analysis, the zinc chloride precursor showed high optical transmittance of about 90% in the visible range with a band gap value 3.15 eV. The room-temperature PL spectra exhibited a stronger violet emission peak at 420 nm for all the prepared samples. The Raman spectra showed a peak around 435 cm-1 which could be assigned to non-polar optical phonons (E2-high) mode AZO films of a ZnO wurtzite structure. Hall effect measurements showed n-type conductivity with low resistivity ( ρ) and high carrier concentrations ( n) of 2.39 × 10-3 Ω-cm and 8.96 × 1020 cm-3, respectively, for the film deposited using zinc chloride as precursor. The above properties make the prepared AZO film to be regarded as a very promising electrode material for fabrication of optoelectronic devices.

  3. Thermal analysis of thin layer boilover

    Energy Technology Data Exchange (ETDEWEB)

    Kozanoglu, Bulent [Universidad de las Americas, Puebla (Mexico); Mechanical Engineering Department, Cholula, Puebla (Mexico); Ferrero, Fabio; Munoz, Miguel; Arnaldos, Josep; Casal, Joaquim [Universitat Politecnica de Catalunya, Barcelona (Spain)

    2008-10-15

    A mathematical model is developed to simulate the thin layer boilover phenomenon. This model takes into account convective currents as well as conduction and radiation absorption through the fuel layer and is resolved numerically employing a scheme of Runge-Kutta, combined with the numerical method of lines. Solutions of the model showed a good agreement with the experimental data, both from this work and by other authors, demonstrating the importance of the convective currents. The model provided velocities of these currents, of the same order of magnitude as the values reported in the technical literature. Thickness of the remaining fuel and the interface temperature are correctly calculated by the model, allowing the prediction of the time required for the boilover to start. (orig.)

  4. Thin layer fibres are a knotty problem

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Concern that emergency core cooling system (ECCS) strainers can be blocked by insulation debris has been generated by an incident at the Swedish Barsebaeck-2 BWR in 1992 and two subsequent incidents at the Perry and Limerick BWR plants in the USA. Recent studies are reported which show that blockage of the small, passive suction type strainers common to these and many other BWRs can occur when only very small quantities of fibrous material present in the suppression pool combine with particulates such as corrosion products to form thin layers on the strainer surface. Layers only a few millimetres thick lead to extremely high head losses on the strainer surface and can cause cavitation in the ECCS pumps. It is concluded that the most practical reliable and cost effective solution is to replace the small strainers with larger ones. (UK)

  5. Light scattering of thin azobenzene side-chain polyester layers

    DEFF Research Database (Denmark)

    Kerekes, Á.; Lörincz, E.; Ramanujam, P.S.

    2002-01-01

    Light scattering properties of liquid crystalline and amorphous azobenzene side-chain polyester layers used for optical data storage were examined by means of transmissive scatterometry. Comparative experiments show that the amorphous polyester has significantly lower light scattering characteris...... for the domain size in thin liquid crystalline polyester layers being responsible for the dominant light scattering. The characteristic domain Sizes obtained from the Fourier transformation of polarization microscopic Pictures confirm these values.......Light scattering properties of liquid crystalline and amorphous azobenzene side-chain polyester layers used for optical data storage were examined by means of transmissive scatterometry. Comparative experiments show that the amorphous polyester has significantly lower light scattering...... characteristics than the liquid crystalline polyester. The amorphous samples have negligible polarization part orthogonal to the incident beam. the liquid crystalline samples have relative high orthogonal polarization part in light scattering, The light scattering results can be used to give a lower limit...

  6. Characterization of layer-by-layer self-assembled carbon nanotube multilayer thin films

    International Nuclear Information System (INIS)

    Xue Wei; Cui Tianhong

    2007-01-01

    Single-walled carbon nanotube (SWNT) multilayer thin films are deposited on silicon substrates with layer-by-layer self-assembly. The structural, mechanical, electrical, and thermal properties of the thin films are investigated using quartz crystal microbalance (QCM), nanoindentation, and rapid thermal annealing techniques, respectively. Scanning electron microscopy inspection shows that the SWNT multilayer is formed through a dense network of nanotube bundles. Based on the QCM measurement, the volume and mass ratios of SWNTs in the multilayer are calculated as 63.2% and 75%, respectively. Nanoindentation on the SWNT thin film shows that its Young's modulus and hardness are approximately 17 and 0.6 GPa, respectively. Current-voltage (I-V) and four-point probe techniques are used to study the electrical properties of the SWNT thin film after being heated at different temperatures. The conductance of the SWNT thin film at 300 deg. C is measured as 2.29 mS, which is 50 times higher than that at room temperature (0.045 mS)

  7. Atomic layer deposition of superparamagnetic and ferrimagnetic magnetite thin films

    International Nuclear Information System (INIS)

    Zhang, Yijun; Liu, Ming; Ren, Wei; Zhang, Yuepeng; Chen, Xing; Ye, Zuo-Guang

    2015-01-01

    One of the key challenges in realizing superparamagnetism in magnetic thin films lies in finding a low-energy growth way to create sufficiently small grains and magnetic domains which allow the magnetization to randomly and rapidly reverse. In this work, well-defined superparamagnetic and ferrimagnetic Fe 3 O 4 thin films are successfully prepared using atomic layer deposition technique by finely controlling the growth condition and post-annealing process. As-grown Fe 3 O 4 thin films exhibit a conformal surface and poly-crystalline nature with an average grain size of 7 nm, resulting in a superparamagnetic behavior with a blocking temperature of 210 K. After post-annealing in H 2 /Ar at 400 °C, the as-grown α−Fe 2 O 3 sample is reduced to Fe 3 O 4 phase, exhibiting a ferrimagnetic ordering and distinct magnetic shape anisotropy. Atomic layer deposition of magnetite thin films with well-controlled morphology and magnetic properties provides great opportunities for integrating with other order parameters to realize magnetic nano-devices with potential applications in spintronics, electronics, and bio-applications

  8. Flexible thin-layer plasma inactivation of bacteria and mold survival in beef jerky packaging and its effects on the meat's physicochemical properties.

    Science.gov (United States)

    Yong, Hae In; Lee, Haelim; Park, Sanghoo; Park, Jooyoung; Choe, Wonho; Jung, Samooel; Jo, Cheorun

    2017-01-01

    The aims of the present study were to examine the use of a flexible thin-layer plasma system in inactivating bacteria and mold on beef jerky in a commercial package and to evaluate the physicochemical changes of the jerky. After plasma treatment for 10min, Escherichia coli O157:H7, Listeria monocytogenes, Salmonella Typhimurium, and Aspergillus flavus populations on the beef jerky were reduced by approximately 2 to 3Log CFU/g. No significant changes in metmyoglobin content, shear force, and myofibrillar fragmentation index were found in the plasma-treated beef jerky. On the other hand, the peroxide content and L ⁎ value were decreased whereas the a ⁎ and ΔE value were increased in the plasma-treated sample. Sensory evaluation indicated negative effects of plasma treatment on flavor, off-odor, and overall acceptability of the beef jerky. In conclusion, the flexible thin-layer plasma system could be employed as a means for decontamination of beef jerky, with slight changes to the physicochemical quality of the product. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. UV and plasma treatment of thin silver layers and glass surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hluschi, J.H. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Helmke, A. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Roth, P. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Boewer, R. [Interpane Glasbeschichtungsgesellschaft mbH and Co KG, Sohnreystr. 21, D-37697 Lauenfoerde (Germany); Herlitze, L. [Interpane Glasbeschichtungsgesellschaft mbH and Co KG, Sohnreystr. 21, D-37697 Lauenfoerde (Germany); Vioel, W. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany)]. E-mail: vioel@hawk-hhg.de

    2006-11-10

    Thin silver layers can be modified by treatment with UV radiation or a plasma discharge. UV treatment at a wavelength of {lambda}=308 -bar nm improves the layer properties, thus leading to an enhancement of the layers IR reflectivity. For the purpose of in situ-measurement the sheet resistance is recorded during the process. Due to the Hagen-Rubens-Relation [E. Hagen, H. Rubens, Ann. Phys. 11 (1903) 873]-bar the sheet resistance is linked to the IR reflectivity of thin metal-films. A pretreatment of uncoated glass using a dielectric barrier discharge activates and cleans its surface, thus leading to an increase in adhesion of thin layers.

  10. UV and plasma treatment of thin silver layers and glass surfaces

    International Nuclear Information System (INIS)

    Hluschi, J.H.; Helmke, A.; Roth, P.; Boewer, R.; Herlitze, L.; Vioel, W.

    2006-01-01

    Thin silver layers can be modified by treatment with UV radiation or a plasma discharge. UV treatment at a wavelength of λ=308 -bar nm improves the layer properties, thus leading to an enhancement of the layers IR reflectivity. For the purpose of in situ-measurement the sheet resistance is recorded during the process. Due to the Hagen-Rubens-Relation [E. Hagen, H. Rubens, Ann. Phys. 11 (1903) 873]-bar the sheet resistance is linked to the IR reflectivity of thin metal-films. A pretreatment of uncoated glass using a dielectric barrier discharge activates and cleans its surface, thus leading to an increase in adhesion of thin layers

  11. Sandwich-like layer-by-layer assembly of gold nanoparticles with tunable SERS properties

    Directory of Open Access Journals (Sweden)

    Zhicheng Liu

    2016-07-01

    Full Text Available Sandwich-like layer-by-layer thin films consisting of polyelectrolytes and gold nanoparticles were utilized to construct surface-enhanced Raman scattering (SERS substrates with tunable SERS properties. It is found that both the size of the nanoparticles in the layers and the interlayer distance significantly influence the SERS performance of the multilayered thin film. These simple, low-cost, easily processable and controllable SERS substrates have a promising future in the field of molecular sensing.

  12. Crystalline thin films: The electrochemical atomic layer deposition (ECALD) view

    CSIR Research Space (South Africa)

    Modibedi, M

    2011-09-01

    Full Text Available Electrochemical atomic layer deposition technique is selected as one of the methods to prepare thin films for various applications, including electrocatalytic materials and compound....

  13. Layer-by-layer thinning of MoSe2 by soft and reactive plasma etching

    International Nuclear Information System (INIS)

    Sha, Yunfei; Xiao, Shaoqing; Zhang, Xiumei; Qin, Fang; Gu, Xiaofeng

    2017-01-01

    Highlights: • Soft plasma etching technique using SF 6 + N 2 as precursors for layer-by-layer thinning of MoSe 2 was adopted in this work. • Optical microscopy, Raman, photoluminescence and atomic force microscopy measurements were used to confirm the thickness change. • Layer-dependent vibrational and photoluminescence spectra of the etched MoSe 2 were also demonstrated. • Equal numbers of MoSe 2 layers can be removed uniformly without affecting the underlying SiO 2 substrate and the remaining MoSe 2 layers. - Abstract: Two-dimensional (2D) transition metal dichalcogenides (TMDs) like molybdenum diselenide (MoSe 2 ) have recently gained considerable interest since their properties are complementary to those of graphene. Unlike gapless graphene, the band structure of MoSe 2 can be changed from the indirect band gap to the direct band gap when MoSe 2 changed from bulk material to monolayer. This transition from multilayer to monolayer requires atomic-layer-precision thining of thick MoSe 2 layers without damaging the remaining layers. Here, we present atomic-layer-precision thinning of MoSe 2 nanaosheets down to monolayer by using SF 6 + N 2 plasmas, which has been demonstrated to be soft, selective and high-throughput. Optical microscopy, atomic force microscopy, Raman and photoluminescence spectra suggest that equal numbers of MoSe 2 layers can be removed uniformly regardless of their initial thickness, without affecting the underlying SiO 2 substrate and the remaining MoSe 2 layers. By adjusting the etching rates we can achieve complete MoSe 2 removal and any disired number of MoSe 2 layers including monolayer. This soft plasma etching method is highly reliable and compatible with the semiconductor manufacturing processes, thereby holding great promise for various 2D materials and TMD-based devices.

  14. Effect of p-Layer and i-Layer Properties on the Electrical Behaviour of Advanced a-Si:H/a-SiGe:H Thin Film Solar Cell from Numerical Modeling Prospect

    Directory of Open Access Journals (Sweden)

    Peyman Jelodarian

    2012-01-01

    Full Text Available The effect of p-layer and i-layer characteristics such as thickness and doping concentration on the electrical behaviors of the a-Si:H/a-SiGe:H thin film heterostructure solar cells such as electric field, photogeneration rate, and recombination rate through the cell is investigated. Introducing Ge atoms to the Si lattice in Si-based solar cells is an effective approach in improving their characteristics. In particular, current density of the cell can be enhanced without deteriorating its open-circuit voltage. Optimization shows that for an appropriate Ge concentration, the efficiency of a-Si:H/a-SiGe solar cell is improved by about 6% compared with the traditional a-Si:H solar cell. This work presents a novel numerical evaluation and optimization of amorphous silicon double-junction (a-Si:H/a-SiGe:H thin film solar cells and focuses on optimization of a-SiGe:H midgap single-junction solar cell based on the optimization of the doping concentration of the p-layer, thicknesses of the p-layer and i-layer, and Ge content in the film. Maximum efficiency of 23.5%, with short-circuit current density of 267 A/m2 and open-circuit voltage of 1.13 V for double-junction solar cell has been achieved.

  15. Physical properties and interface studies of YBa sub 2 Cu sub 3 O sub 7 thin films deposited by laser ablation on Si (111) with buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Blank, D.H.A.; Aarnink, W.A.M.; Flokstra, J.; Rogalla, H.; Silfhout, A. van (Univ. of Twente, Dept. of Applied Physics, Enschede (Netherlands))

    1990-10-15

    The physical properties of laser-deposited YBaCuO on Si using a single buffer layer of ZrO{sub 2} and a double layer of NiSi{sub 2} and ZrO{sub 2} have been studied. The influence of the deposition temperature has been investigated. Interface studies were performed by RBS and SAM. SEM pictures, resistivity and critical current measurements complete this study. The granularity of the films is very important for the diffusion of the Si. (orig.).

  16. The effect of cadmium doping of Pbsub(1-x)Snsub(x)Te crystals and thin layers on the electrical properties of the system

    International Nuclear Information System (INIS)

    Silberg, E.

    1982-06-01

    In the present work the doping characteristics and electrical properties of Cd-doped bulk crystals (as-grown and annealed) and LPE layers of Pbsub(1-x)Snsub(x)Te, 0<=x<=0.25, were studied using Hall effect, resistivity and Cd-solubility measurements. The bulk crystals were doped by Cd-diffusion in a two-temperature-zone furnace and the LPE layers by adding Cd to the growth solution. Cd doping was used to produce uniform n-type LPE layers of Pbsub(1-x)Snsub(x)Te and the process proved to be a controllable and reproducible method for the production of good quality material with low electron concentration and high electron mobility. These qualities are very important in obtaining improved electrooptical devices. (H.K.)

  17. Effect of thin intermediate-layer of InAs quantum dots on the physical properties of InSb films grown on (001) GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Ju Young [Nano Photonics Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Department of Physics, Chung-Ang University, Seoul 156-756 (Korea, Republic of); Laser-IT Research Center, Korea Photonics Technology Institute, GwangJu 500-779 (Korea, Republic of); Song, Jin Dong, E-mail: jdsong@kist.re.kr [Nano Photonics Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Yang, Hae Suk, E-mail: hsyang@cau.ac.kr [Department of Physics, Chung-Ang University, Seoul 156-756 (Korea, Republic of)

    2012-08-31

    In this study the formation of a semiconducting InSb layer, preceded by the growth of an intermediate layer of InAs quantum dots, is attempted on (001) GaAs substrate. From the analysis of atomic-force-microscopy and transmission-electron-microscopy images together with Raman spectra of the InSb films, it is found that there exists a particular layer-thickness of {approx} 0.5 {mu}m above which the structural and transport qualities of the film are considerably enhanced. The resultant 2.60-{mu}m-thick InSb layer, grown at the substrate temperature of 400 Degree-Sign C and under the Sb flux of 1.5 Multiplication-Sign 10{sup -6} Torr, shows the electron mobility as high as 67,890 cm{sup 2}/Vs. - Highlights: Black-Right-Pointing-Pointer InSb films are grown on GaAs substrate by molecular beam epitaxy. Black-Right-Pointing-Pointer Intermediate layer of InAs quantum dots is inserted at GaAs/InSb interface. Black-Right-Pointing-Pointer Structural and transport properties of InSb are enhanced with InAs quantum dots. Black-Right-Pointing-Pointer Electron mobility over 50,000 cm{sup 2}/Vs is achieved within 1-{mu}m thickness of InSb.

  18. Pre-staining thin layer chromatography method for amino acid ...

    African Journals Online (AJOL)

    The modified thin layer chromatography can be used for the analysis of amino acids. When compared to the classical thin layer chromatography, the improved method was more rapid and inexpensive and the results obtained were clean and reproducible. However, it is suitable for the high throughput screening of amino ...

  19. Thin-Layer Fuel Cell for Teaching and Classroom Demonstrations

    Science.gov (United States)

    Shirkhanzadeh, M.

    2009-01-01

    A thin-layer fuel cell is described that is simple and easy to set up and is particularly useful for teaching and classroom demonstrations. The cell is both an electrolyzer and a fuel cell and operates using a thin layer of electrolyte with a thickness of approximately 127 micrometers and a volume of approximately 40 microliters. As an…

  20. Phytochemical screening and thin layer chromatographic profile of ...

    African Journals Online (AJOL)

    The present study investigates the phytochemicals and thin layer chromatographic profile of. Nauclea diderrichii (Rubiaceae) leaf extracts. Phytochemical in the hexane, ethyl acetate and methanol extracts were determined using standard chemical tests. Thin layer chromatographic techniques were carried out using various ...

  1. Luminescence properties of Er3+ doped zirconia thin films and ZrO2/Er2O3 nanolaminates grown by atomic layer deposition

    Science.gov (United States)

    Aleksanyan, Eduard; Kirm, Marco; Feldbach, Eduard; Kukli, Kaupo; Lange, Sven; Sildos, Ilmo; Tamm, Aile

    2017-12-01

    Atomic layer deposited (ALD) ZrO2 (zirconia) thin films doped with Er3+ ions by ion implantation as well as ZrO2/Er2O3 nanolaminates were investigated at wide 5-300 K temperature range using cathodoluminescence (CL) and photoluminescence (PL) spectroscopy under wide range of excitation energies 6-120 eV. In the studied ALD films main emissions due to self-trapped excitons and defect centers were revealed in UV-visible (VIS) region with the excitation bands in the host absorption. In nanolaminates luminescence processes are influenced by their structure and composition. In films with the lower Er3+ ion content, typical 4f luminescence of Er3+ ions were identified being excited through energy transfer from host to doping ions. The luminescence data shows that in contrast to a few hundred nm thick ALD films, the excitonic band near 5.3-5.4 eV are absent in the excitation spectra of nanolaminates with a typical layer thickness of 5 nm, which do not facilitate exciton formation because of limited spatial regularity.

  2. Thin-layer and paper chromatography

    International Nuclear Information System (INIS)

    Sherma, J.

    1986-01-01

    This selective review covers the literature of thin-layer chromatography (TLC) and paper chromatography (PC) cited in Chemical Abstracts from December 5, 1983, through November 25, 1985, and Analytical Abstracts from November 1983 to November 1985. Also researched directly were the following important journals publishing papers on TLC and PC: the Journal of Chromatography (including its bibliography issues), Journal of High Resolution Chromatography and Chromatography Communications, Journal of Chromatographic Science, Chromatographia, Analytical Chemistry, JAOAC, and the special TLC issues of the Journal of Liquid Chromatography. Many of the inherent advantages of TLC that are obvious to workers familiar with high performance, quantitative theory and practice still are not appreciated adequately by the majority of people using chromatography. These include unrestricted access to the separation process; introducing magnetic, thermal, electrical, and other physical forces to improve resolution; high sample throughput; truly multidimensional separations; and the use of controlled multiple gradients. Many advantages of TLC relative to column chromatography were discussed in the Introductions to our 1982 and 1984 reviews of TLC in this Journal. No complete commercial robotics system specifically for TLC has been developed, but all necessary modules are available for such a system. The combination of robotics, with the continued development of theory, practice, and instrumentation will lead eventually to TLC systems that are unrivaled for speed, versatility, accuracy, precision, and sensitivity. 573 references

  3. Effect of selenization time on the structural and morphological properties of Cu(In,Ga)Se2 thin films absorber layers using two step growth process

    Science.gov (United States)

    Korir, Peter C.; Dejene, Francis B.

    2018-04-01

    In this work two step growth process was used to prepare Cu(In, Ga)Se2 thin film for solar cell applications. The first step involves deposition of Cu-In-Ga precursor films followed by the selenization process under vacuum using elemental selenium vapor to form Cu(In,Ga)Se2 film. The growth process was done at a fixed temperature of 515 °C for 45, 60 and 90 min to control film thickness and gallium incorporation into the absorber layer film. The X-ray diffraction (XRD) pattern confirms single-phase Cu(In,Ga)Se2 film for all the three samples and no secondary phases were observed. A shift in the diffraction peaks to higher 2θ (2 theta) values is observed for the thin films compared to that of pure CuInSe2. The surface morphology of the resulting film grown for 60 min was characterized by the presence of uniform large grain size particles, which are typical for device quality material. Photoluminescence spectra show the shifting of emission peaks to higher energies for longer duration of selenization attributed to the incorporation of more gallium into the CuInSe2 crystal structure. Electron probe microanalysis (EPMA) revealed a uniform distribution of the elements through the surface of the film. The elemental ratio of Cu/(In + Ga) and Se/Cu + In + Ga strongly depends on the selenization time. The Cu/In + Ga ratio for the 60 min film is 0.88 which is in the range of the values (0.75-0.98) for best solar cell device performances.

  4. Methods for producing thin film charge selective transport layers

    Science.gov (United States)

    Hammond, Scott Ryan; Olson, Dana C.; van Hest, Marinus Franciscus Antonius Maria

    2018-01-02

    Methods for producing thin film charge selective transport layers are provided. In one embodiment, a method for forming a thin film charge selective transport layer comprises: providing a precursor solution comprising a metal containing reactive precursor material dissolved into a complexing solvent; depositing the precursor solution onto a surface of a substrate to form a film; and forming a charge selective transport layer on the substrate by annealing the film.

  5. Layer-by-layer assembly of clay-filled polymer nanocomposite thin films

    Science.gov (United States)

    Jang, Woo-Sik

    2008-10-01

    A variety of functional thin films can be produced using the layer-by-layer assembly technique. In this work, assemblies of anionic clay and cationic polymer were studied with regard to film growth and gas barrier properties. A simple, yet flexible robotic dipping system, for the preparation of these thin films, was built. The robot alternately dips a substrate into aqueous mixtures with rinsing and drying in between. Thin films of sodium montmorillonite clay and cationic polymer were grown and studied on poly(ethylene terephthalate) film or a silicon wafer. After 30 clay polymer bilayers were deposited, the resulting transparent film had an oxygen transmission rate (OTR) below 0.005 cm3/m2/day/atm. This low OTR, which is unprecedented for a clay-filled polymer composite, is believed to be due to a "brick wall" nanostructure comprised of completely exfoliated clay bricks in polymeric "mortar". The growth of polymer and clay assemblies is then shown to be controlled by altering the pH of polyethylenimine (PEI). Growth, oxygen permeability, and mechanical behavior of clay-PEI assemblies were studied as a function of pH in an effort to tailor the behavior of these thin films. Thicker deposition at high pH resulted in reduced oxygen permeability and lower modulus, which highlights the tailorability of this system.

  6. Physical properties of nanostructured (PbSx(CuS1−x composite thin films grown by successive ionic layer adsorption and reaction method

    Directory of Open Access Journals (Sweden)

    A.U. Ubale

    2016-03-01

    Full Text Available Nanostructured ternary semiconducting (PbSx(CuS1−x thin films were grown on glass substrates by successive ionic layer adsorption and reaction (SILAR technique at room temperature. The structural, morphological and optical characterizations of the films were carried out by X-ray diffraction, scanning electron microscopy and UV–Vis spectrophotometer respectively. The structural studies revealed that, (PbSx(CuS1−x films are nanocrystalline in nature and have mixed phase of cubic PbS and hexagonal CuS. The optical absorption measurements showed that band gap energy of (PbSx(CuS1−x can be engineered between 2.57 and 2.28 eV by varying compositional parameter ‘x’. The room temperature dc dark electrical resistivity of PbS film is found to be 28.85 Ωcm and it decreases when content of Cu in composite increases and becomes 0.05 Ωcm for pure CuS. The thermo-emf measurements showed that the as deposited (PbSx(CuS1−x films are of n-type. The water angle contact measurements of (PbSx(CuS1−x, revealed that, films are hydrophilic in nature and it could be advantageous in electrochemical application.

  7. Effect of TiN-ZrO{sub 2} intermediate layer on the microstructure and magnetic properties of FePt and FePt-SiO{sub 2}-C thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dong, K.F., E-mail: dongkf1981@163.com; Mo, W.Q.; Jin, F.; Song, J.L.

    2017-06-15

    Highlights: • The TiN-ZrO{sub 2} consisted of solid solution of Ti(Zr)ON segregated by amorphous ZrO{sub 2}. • With doping ZrO{sub 2} into TiN layer, grain size of FePt films significantly decreased. • By introducing TiN-ZrO{sub 2}/TiN combined layer, the magnetic properties were improved. - Abstract: The microstructures and magnetic properties of FePt based thin films grown on TiN-ZrO{sub 2} and TiN-ZrO{sub 2}/TiN intermediate layers were systematically investigated. The TiN-ZrO{sub 2} intermediate layer was granular consisting of grains of solid solution of Ti(Zr)ON segregated by amorphous ZrO{sub 2}. It was found with doping ZrO{sub 2} into TiN intermediate layer, grain size of FePt-SiO{sub 2}-C films significantly decreased. Simultaneously, the isolation was obviously improved and grain size distribution became more uniform. However, the magnetic properties of the FePt-SiO{sub 2}-C films grown on TiN-ZrO{sub 2} intermediate layers were slowly deteriorated, which was due to the disturbance of the epitaxial growth of FePt by amorphous ZrO{sub 2} in TiN-ZrO{sub 2} intermediate layer. In order to improve the TiN-ZrO{sub 2} (0 0 2) texture and the crystallinity of TiN-ZrO{sub 2}, TiN-ZrO{sub 2}/TiN combined intermediate layer was introduced. And the magnetic properties were improved, simultaneously, achieving the benefit of grain size reduction. For the FePt 4 nm-SiO{sub 2} 40 vol%-C 20 vol% film grown on TiN/TiN-ZrO{sub 2} 30 vol% combined intermediate layer, well isolated FePt (0 0 1) granular films with coercivity higher than 17.6 kOe and an average size as small as 6.5 nm were achieved.

  8. Delamination of Compressed thin Layers at Corners

    DEFF Research Database (Denmark)

    Clausen, Johan; Jensen, Henrik Myhre; Sørensen, Kim Dalsten

    2008-01-01

    An analysis of delamination for a thin elastic film, attached to a substrate with a corner, is carried out. The film is in compression and the analysis is performed by combining results from fracture mechanics and the theory of thin shells. The results show a very strong dependency of the angle...

  9. The interplay of blocking properties with charge and potential redistribution in thin carbon-doped GaN on n-doped GaN layers

    Science.gov (United States)

    Koller, Christian; Pobegen, Gregor; Ostermaier, Clemens; Huber, Martin; Pogany, Dionyz

    2017-07-01

    In carbon-doped GaN (GaN:C) buffers used in a GaN-on-Si technology, the buffer is embedded in between transition and channel layers. This makes the analysis of buffer properties difficult due to e.g., carrier injection from or potential drop at these adjacent layers. Here, we analyze capacitance- and current-voltage characteristics of 200-300 nm thick GaN:C ([C] = 1019 cm-3) layers which are embedded between a top metal electrode and bottom n-doped GaN (n-GaN). Such structures allow a better potential control in GaN:C and thus determination of the band diagram quantitatively. The accumulation of negative charge (concentration up to 6 × 1017 cm-3) with bias is observed in GaN:C at both polarities. For biases Vappl GaN:C near to its interface with n-GaN so that GaN:C exhibits no potential drop and blocks leakage current. For Vappl > +1.7 V, accumulated negative charges in GaN:C raise an energy barrier of ˜1.1 eV for electron injection from n-GaN to GaN:C. This causes a potential drop in GaN:C leading to a significant leakage current increase. The Fermi level pinning in GaN:C at a commonly referred acceptor at EV + 0.7(±0.2) eV is extracted only from electrostatic considerations. The occupancy change of carbon acceptors is attributed to trapping processes where the dislocation-related conductive paths are supposed to be involved in carrier transport from the top metal electrode to the carbon defect.

  10. Loading Effects on Resolution in Thin Layer Chromatography and ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 11. Loading Effects on Resolution in Thin Layer Chromatography and Paper Chromatography. K Girigowda V H Mulimani. Classroom Volume 10 Issue 11 November 2005 pp 79-84 ...

  11. Copper diffusion in TaN-based thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Nazon, J. [Universite Montpellier II, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, 34095 Montpellier Cedex 5 (France); Fraisse, B. [Laboratoire Structure, Proprietes et Modelisation des Solides (UMR 8580), Ecole Centrale de Paris, Grande Voie des Vignes, 92295 Chatenay-Malabry Cedex (France); Sarradin, J. [Universite Montpellier II, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, 34095 Montpellier Cedex 5 (France); Fries, S.G. [SGF Scientific Consultancy, Arndt str.9, D-52064 Aachen (Germany); Tedenac, J.C. [Universite Montpellier II, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, 34095 Montpellier Cedex 5 (France); Frety, N. [Universite Montpellier II, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, 34095 Montpellier Cedex 5 (France)], E-mail: Nicole.Frety@univ-montp2.fr

    2008-07-15

    The diffusion of Cu through TaN-based thin layers into a Si substrate has been studied. The barrier efficiency of TaN/Ta/TaN multilayers of 150 nm in thickness has been investigated and is compared with that of TaN single layers. Thermal stabilities of these TaN-based thin layers against Cu diffusion were determined from in situ X-ray diffraction experiments, conducted in the temperature range of 773-973 K. The TaN/Ta/TaN barrier appeared to be more efficient in preventing Cu diffusion than the TaN single layer.

  12. Hydrogen in magnesium palladium thin layer structures

    NARCIS (Netherlands)

    Kruijtzer, G.L.

    2008-01-01

    In this thesis, the study of hydrogen storage, absorption and desorption in magnesium layers is described. The magnesium layers have a thickness of 50-500 nm and are covered by a palladium layer which acts as a hydrogen dissociation/association catalyst. The study was preformed under ultra high

  13. Magnetic properties of layered superconductors

    International Nuclear Information System (INIS)

    Mansky, P.A.

    1993-01-01

    The organic superconductors (BEDT-TTF) 2 Cu(SNC) 2 and (TMTSF) 2 ClO 4 , with T c = 10K and 1.2K, have layered and highly anisotropic crystal structures. This thesis describes AC magnetic susceptibility measurements on these materials which illustrate the consequences of the discrete layered structure for the magnetic properties of the superconducting state. A DC magnetic field applied parallel to the layers of either material causes the rapid suppression of the AC screening response, and this indicates that the pinning restoring force for vortex motion parallel to the layers is anomalously weak in this orientation. This is believed to be due to the small size of the interlayer coherence length relative to the layer spacing. A simple estimate based on the energy and length scales relevant to Josephson coupled layers gives the correct order of magnitude for the pinning force. Pinning for vortices oriented perpendicular to the layers is larger by a factor of 500 for BEDT and 25 for TMTSF. When the DC field is applied at an angle to the layers, the initial suppression of the susceptibility is identical to that for a field parallel to the layers; when the field component normal to the layers exceeds a threshold, a sharp recovery of screening occurs. These observations indicate that the field initially enters the sample only in the direction parallel to the layers. The recovery of screening signals field penetration in the perpendicular direction at higher field strength, and is due to the onset of pinning by in-plane vortex cores. This magnetic open-quotes lock-inclose quotes effect is a qualitatively new behavior and is a direct consequence of weak interlayer coupling. The London penetration depth associated with interlayer currents is found to be on the order of hundreds of microns, comparable to that of a Josephson junction, and two to three orders of magnitude larger than for conventional superconductors

  14. Proteins at fluid interfaces: adsorption layers and thin liquid films.

    Science.gov (United States)

    Yampolskaya, Galina; Platikanov, Dimo

    2006-12-21

    A review in which many original published results of the authors as well as many other papers are discussed. The structure and some properties of the globular proteins are shortly presented, special accent being put on the alpha-chymotrypsin (alpha-ChT), lysozyme (LZ), human serum albumin (HSA), and bovine serum albumin (BSA) which have been used in the experiments with thin liquid films. The behaviour of protein adsorption layers (PAL) is extensively discussed. The dynamics of PAL formation, including the kinetics of adsorption as well as the time evolution of the surface tension of protein aqueous solutions, are considered. A considerable place is devoted to the surface tension and adsorption isotherms of the globular protein solutions, the simulation of PAL by interacting hard spheres, the experimental surface tension isotherms of the above mentioned proteins, and the interfacial tension isotherms for the protein aqueous solution/oil interface. The rheological properties of PAL at fluid interfaces are shortly reviewed. After a brief information about the experimental methods for investigation of protein thin liquid (foam or emulsion) films, the properties of the protein black foam films are extensively discussed: the conditions for their formation, the influence of the electrolytes and pH on the film type and stability, the thermodynamic properties of the black foam films, the contact angles film/bulk and their dynamic hysteresis. The next center of attention concerns some properties of the protein emulsion films: the conditions for formation of emulsion black films, the formation and development of a dimpling in microscopic, circular films. The protein-phospholipid mixed foam films are also briefly considered.

  15. MultiLayer solid electrolyte for lithium thin film batteries

    Science.gov (United States)

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  16. Investigation of vanadium and nitride alloys thin layers deposited by PVD

    Directory of Open Access Journals (Sweden)

    Nouveau C.

    2012-06-01

    Full Text Available In this work we present the technique of magnetron vapor deposition and the effect of several deposition parameters on the structural and morphological properties of prepared thin films. It was noted that the deposition time has an effect on the crystallinity, mechanical properties such as residual stress, roughness surface and the layer composition from target products. Studies were carried out on layers of vanadium (V and the nitride vanadium (VN.

  17. Thin layer drying kinetics of amaranth (Amaranthus cruentus) grains ...

    African Journals Online (AJOL)

    An experimental solar tent dryer under natural convection was used to study thin layer drying kinetics of amaranth (Amaranthus cruentus) grains. Drying of grains in the dryer was carried out on a drying rack having two layers; top and bottom. The ambient temperature and relative humidity ranged from 22.6–30.4oC and ...

  18. Crystallinity Improvement of ZnO Thin Film on Different Buffer Layers Grown by MBE

    Directory of Open Access Journals (Sweden)

    Shao-Ying Ting

    2012-01-01

    Full Text Available The material and optical properties of ZnO thin film samples grown on different buffer layers on sapphire substrates through a two-step temperature variation growth by molecular beam epitaxy were investigated. The thin buffer layer between the ZnO layer and the sapphire substrate decreased the lattice mismatch to achieve higher quality ZnO thin film growth. A GaN buffer layer slightly increased the quality of the ZnO thin film, but the threading dislocations still stretched along the c-axis of the GaN layer. The use of MgO as the buffer layer decreased the surface roughness of the ZnO thin film by 58.8% due to the suppression of surface cracks through strain transfer of the sample. From deep level emission and rocking curve measurements it was found that the threading dislocations play a more important role than oxygen vacancies for high-quality ZnO thin film growth.

  19. Nanostructured thin films and coatings functional properties

    CERN Document Server

    Zhang, Sam

    2010-01-01

    The second volume in ""The Handbook of Nanostructured Thin Films and Coatings"" set, this book focuses on functional properties, including optical, electronic, and electrical properties, as well as related devices and applications. It explores the large-scale fabrication of functional thin films with nanoarchitecture via chemical routes, the fabrication and characterization of SiC nanostructured/nanocomposite films, and low-dimensional nanocomposite fabrication and applications. The book also presents the properties of sol-gel-derived nanostructured thin films as well as silicon nanocrystals e

  20. Structural properties of In2Se3 precursor layers deposited by spray pyrolysis and physical vapor deposition for CuInSe2 thin-film solar cell applications

    International Nuclear Information System (INIS)

    Reyes-Figueroa, P.; Painchaud, T.; Lepetit, T.; Harel, S.; Arzel, L.; Yi, Junsin; Barreau, N.; Velumani, S.

    2015-01-01

    The structural properties of In 2 Se 3 precursor thin films grown by chemical spray pyrolysis (CSP) and physical vapor deposition (PVD) methods were compared. This is to investigate the feasibility to substitute PVD process of CuInSe 2 (CISe) films by CSP films as precursor layer, thus decreasing the production cost by increasing material-utilization efficiency. Both films of 1 μm thickness were deposited at the same substrate temperature of 380 °C. X-ray diffraction and Raman spectra confirm the formation of γ-In 2 Se 3 crystalline phase for both films. The PVD and CSP films exhibited (110) and (006) preferred orientations, respectively. The PVD films showed a smaller full width at half maximum value (0.09°) compared with CSP layers (0.1°). Films with the same crystalline phase but with different orientations are normally used in the preparation of high quality CISe films by 3-stage process. Scanning electron microscope cross-section images showed an important difference in grain size with well-defined larger grains of size 1–2 μm in the PVD films as compared to CSP layers (600 nm). Another important characteristic that differentiates the two precursor films is the oxygen contamination. X-ray photoelectron spectroscopy showed the presence of oxygen in CSP films. The oxygen atoms could be bonded to indium by replacing Se vacancies, which are formed during CSP deposition. Taking account of the obtained results, such CSP films can be used as precursor layer in a PVD process in order to produce CISe absorber films. - Highlights: • To find the intricacies involved in spray pyrolysis (CSP) and physical vapor (PVD) deposition. • Comparison of CSP and PVD film formations — especially in structural properties. • Feasibility to substitute CSP (cheaper) films for PVD in the manufacturing process. • Decreasing the global production cost of Cu(In,Ga)Se 2 devices in the 3-stage process

  1. Solution-processed In2S3 buffer layer for chalcopyrite thin film solar cells

    OpenAIRE

    Wang Lan; Lin Xianzhong; Ennaoui Ahmed; Wolf Christian; Lux-Steiner Martha Ch.; Klenk Reiner

    2016-01-01

    We report a route to deposit In2S3 thin films from air-stable, low-cost molecular precursor inks for Cd-free buffer layers in chalcopyrite-based thin film solar cells. Different precursor compositions and processing conditions were studied to define a reproducible and robust process. By adjusting the ink properties, this method can be applied in different printing and coating techniques. Here we report on two techniques, namely spin-coating ...

  2. Effect of postdeposition annealing on the electrical properties of β-Ga{sub 2}O{sub 3} thin films grown on p-Si by plasma-enhanced atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Altuntas, Halit, E-mail: altunhalit@gmail.com [Faculty of Science, Department of Physics, Cankiri Karatekin University, Cankiri 18100 (Turkey); Donmez, Inci; Ozgit-Akgun, Cagla; Biyikli, Necmi, E-mail: biyikli@unam.bilkent.edu.tr [National Nanotechnology Research Center (UNAM), Bilkent University, Ankara 06800, Turkey and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara 06800 (Turkey)

    2014-07-01

    Ga{sub 2}O{sub 3} dielectric thin films were deposited on (111)-oriented p-type silicon wafers by plasma-enhanced atomic layer deposition using trimethylgallium and oxygen plasma. Structural analysis of the Ga{sub 2}O{sub 3} thin films was carried out using grazing-incidence x-ray diffraction. As-deposited films were amorphous. Upon postdeposition annealing at 700, 800, and 900 °C for 30 min under N{sub 2} ambient, films crystallized into β-form monoclinic structure. Electrical properties of the β-Ga{sub 2}O{sub 3} thin films were then investigated by fabricating and characterizing Al/β-Ga{sub 2}O{sub 3}/p-Si metal–oxide-semiconductor capacitors. The effect of postdeposition annealing on the leakage current densities, leakage current conduction mechanisms, dielectric constants, flat-band voltages, reverse breakdown voltages, threshold voltages, and effective oxide charges of the capacitors were presented. The effective oxide charges (Q{sub eff}) were calculated from the capacitance–voltage (C-V) curves using the flat-band voltage shift and were found as 2.6 × 10{sup 12}, 1.9 × 10{sup 12}, and 2.5 × 10{sup 12} cm{sup −2} for samples annealed at 700, 800, and 900 °C, respectively. Effective dielectric constants of the films decreased with increasing annealing temperature. This situation was attributed to the formation of an interfacial SiO{sub 2} layer during annealing process. Leakage mechanisms in the regions where current increases gradually with voltage were well fitted by the Schottky emission model for films annealed at 700 and 900 °C, and by the Frenkel–Poole emission model for film annealed at 800 °C. Leakage current density was found to improve with annealing temperature. β-Ga{sub 2}O{sub 3} thin film annealed at 800 °C exhibited the highest reverse breakdown field value.

  3. Crystalline Molybdenum Oxide Thin-Films for Application as Interfacial Layers in Optoelectronic Devices

    DEFF Research Database (Denmark)

    Fernandes Cauduro, André Luis; dos Reis, Roberto; Chen, Gong

    2017-01-01

    The ability to control the interfacial properties in metal-oxide thin films through surface defect engineering is vital to fine-tune their optoelectronic properties and thus their integration in novel optoelectronic devices. This is exemplified in photovoltaic devices based on organic, inorganic...... with structural characterizations, this work addresses a novel method for tuning, and correlating, the optoelectronic properties and microstructure of device-relevant MoOx layers....

  4. An approach to characterize ultra-thin conducting films protected against native oxidation by an in-situ capping layer

    NARCIS (Netherlands)

    Van Hao, B.; Wiggers, Frank Bert; de Jong, Machiel Pieter; Kovalgin, Alexeij Y.

    2014-01-01

    We propose and demonstrate the application of a test structure to characterize electrical properties of ultra-thin titanium nitride films passivated by a non-conducting amorphous silicon layer. The amorphous silicon layer is used to prevent the oxidation of the conducting layer. Platinum electrodes

  5. Preferential orientation growth of ITO thin film on quartz substrate with ZnO buffer layer by magnetron sputtering technique

    Science.gov (United States)

    Du, Wenhan; Yang, Jingjing; Xiong, Chao; Zhao, Yu; Zhu, Xifang

    2017-07-01

    In order to improve the photoelectric transformation efficiency of thin-film solar cells, one plausible method was to improve the transparent conductive oxides (TCO) material property. In-doped tin oxide (ITO) was an important TCO material which was used as a front contact layer in thin-film solar cell. Using magnetron sputtering deposition technique, we prepared preferential orientation ITO thin films on quartz substrate. XRD and SEM measurements were used to characterize the crystalline structure and morphology of ITO thin films. The key step was adding a ZnO thin film buffer layer before ITO deposition. ZnO thin film buffer layer increases the nucleation center numbers and results in the (222) preferential orientation growth of ITO thin films.

  6. Structure and magnetic properties of NdFeB thin films with Cr, Mo, Nb, Ta, Ti, and V buffer layers

    International Nuclear Information System (INIS)

    Jiang, H.; O'Shea, M.J.

    2000-01-01

    Layers of NdFeB of the form A(20 nm)/NdFeB(d nm)/A(20 nm) where A represents Cr, Mo, Nb, Ta, Ti, V were prepared on a silicon substrate by magnetron sputtering. The purpose is to determine how (i) the chosen buffer layer and (ii) NdFeB layer thickness d (especially d 2 Fe 14 B with no preferred crystalline orientation. Our highest coercivities occur for buffer layer elements from row five of the periodic table, 20 kOe (1600 kA/m) in a Nb buffered sample with d of 180 nm and 17 kOe (1350 kA/m) in a Mo buffered sample with d of 180 nm. Buffer layers from row four (Ti, V, and Cr) and row six (Ta) all give lower coercivities. Our largest energy product, 10.3 MG-Oe (82 kJ/m 3 ), is obtained for the Mo buffered sample. Average Nd 2 Fe 14 B crystallite size for this sample is 27 nm. Only the Cr and Ti buffered films show a large coercivity (≥2 kOe) for d of 54 nm with the Cr films showing the highest coercivity, 2.7 kOe (215 kA/m). In films subjected to a rapid thermal anneal (anneal time 30 s) we find that both the coercivity and energy product are larger than in samples subjected to a 20 min anneal. In our Nb buffered systems we obtain coercivities as high as 26.3 kOe (2090 kA/m) after a rapid thermal anneal

  7. Determination of magnetic properties of multilayer metallic thin films

    International Nuclear Information System (INIS)

    Birlikseven, C.

    2000-01-01

    In recent year, Giant Magnetoresistance Effect has been attracting an increasingly high interest. High sensitivity magnetic field detectors and high sensitivity read heads of magnetic media can be named as important applications of these films. In this work, magnetic and electrical properties of single layer and thin films were investigated. Multilayer thin films were supplied by Prof. Dr. A. Riza Koeymen from Texas University. Multilayer magnetic thin films are used especially for magnetic reading and magnetic writing. storing of large amount of information into small areas become possible with this technology. Single layer films were prepared using the electron beam evaporation technique. For the exact determination of film thicknesses, a careful calibration of the thicknesses was made. Magnetic properties of the multilayer films were studied using the magnetization, magnetoresistance measurements and ferromagnetic resonance technique. Besides, by fitting the experimental results to the theoretical models, effective magnetization and angles between the ferromagnetic layers were calculated. The correspondence between magnetization and magnetoresistance was evaluated. To see the effect of anisotropic magnetoresistance in the magnetoresistance measurements, a new experimental set-up was build and measurements were taken in this set-up. A series of soft permalloy thin films were made, and temperature dependent resistivity, magnetoresistance, anisotropic magnetoresistance and magnetization measurements were taken

  8. Polymeric Thin Films for Organic Electronics: Properties and Adaptive Structures

    Directory of Open Access Journals (Sweden)

    Bruno Pignataro

    2013-03-01

    Full Text Available This review deals with the correlation between morphology, structure and performance of organic electronic devices including thin film transistors and solar cells. In particular, we report on solution processed devices going into the role of the 3D supramolecular organization in determining their electronic properties. A selection of case studies from recent literature are reviewed, relying on solution methods for organic thin-film deposition which allow fine control of the supramolecular aggregation of polymers confined at surfaces in nanoscopic layers. A special focus is given to issues exploiting morphological structures stemming from the intrinsic polymeric dynamic adaptation under non-equilibrium conditions.

  9. ANTIREFLECTION MULTILAYER COATINGS WITH THIN METAL LAYERS

    Directory of Open Access Journals (Sweden)

    L. A. Gubanova

    2016-03-01

    Full Text Available The design of anti-reflective coatings for metal surfaces of Al, Ti, N,i Cr is proposed. The coatings have the form of alternating layers of dielectric/metal/dielectric with the number of cells up to15. The method of calculation of such coatings is proposed. We have calculated the coatings of the type [HfO2/Cr/HfO2]15, [ZrO2/Ti/Al2O3]15, [ZrO2/Cr/ZrO2]15. It is shown that the proposed interference coatings provide reduction of the residual reflectance of the metal several times (from 3.5 to 6.0 in a wide spectral range (300-1000 nm. The proposed coatings can be recommended as anti-reflective coatings for energy saving solar systems and batteries, and photovoltaic cells.

  10. Development of High Performance Thin Layer Chromatography for ...

    African Journals Online (AJOL)

    Background: The quality of antiretroviral medicines (ARVs) is vital in the management of HIV infection. Nevertheless ... and validation, a high performance thin layer chromatography (HPTLC) system with WinCATS software was used. Freshly prepared ..... into Vocational Excellence in East Africa (THRiVE)”, grant number ...

  11. Determination of ferulic acid and related compounds by thin layer ...

    African Journals Online (AJOL)

    The analysis of certain phenolic compounds from plants, and their chemical transformation with microorganisms or isolated enzymes, has application in the food and pharmaceutical industry. The rapid quantitative estimation of ferulic acid by thin layer chromatography is described by measurement of the area of the ...

  12. Comparison of two detection methods in thin layer chromatographic ...

    African Journals Online (AJOL)

    o-tolidine plus potassium iodide and photosynthesis inhibition detection methods were investigated for the analysis of three triazine herbicides (atrazine, ametryne, simazine) and two urea herbicides (diuron, metobromuron) in a coastal savanna soil using thin layer chromatography to compare the suitability of the two ...

  13. Evaluation of a thin-layer chromatographic technique for ...

    African Journals Online (AJOL)

    Methanol extracts of both fistula and bush samples were prepared and analysed by thin-layer chromatography. Chromatoplates, when visualised under ultraviolet light, revealed a number of fluorescent compounds, some of which were common in both the fistula and bush sample extracts. By comparing the presence of ...

  14. Outdoor open thin-layer microalgal photobioreactor: potential productivity

    Czech Academy of Sciences Publication Activity Database

    Doucha, Jiří; Lívanský, Karel

    2009-01-01

    Roč. 21, č. 1 (2009), s. 111-117 ISSN 0921-8971 Institutional research plan: CEZ:AV0Z50200510 Keywords : productivity * photobioreactor * thin layer Subject RIV: EE - Microbiology, Virology Impact factor: 1.018, year: 2009

  15. Thin Cell Layer technology in ornamental plant micropropagation ...

    African Journals Online (AJOL)

    Thin cell layer (TCL) technology originated almost 30 years ago with the controlled development of flowers, roots, shoots and somatic embryos on tobacco pedicel longitudinal TCLs. Since then TCLs have been successfully used in the micropropagation of many ornamental plant species whose previous in vitro ...

  16. Zooplankton Responses to Thin Layers: Integrating Behavior and Physiology

    Science.gov (United States)

    2004-09-30

    Zooplankton Responses to Thin Layers: Integrating Behavior and Physiology Stephen M. Bollens Department of Biology, and Romberg Tiburon Center...Department of Biology, and Romberg Tiburon Center for Environmental Studies,,San Francisco State University,,1600 Holloway Avenue,San Francisco,,CA,94132

  17. Thin-Layer Chromatography: The "Eyes" of the Organic Chemist

    Science.gov (United States)

    Dickson, Hamilton; Kittredge, Kevin W.; Sarquis, Arlyne

    2004-01-01

    Thin-layer chromatography (TLC) methods are successfully used in many areas of research and development such as clinical medicine, forensic chemistry, biochemistry, and pharmaceutical analysis as TLC is relatively inexpensive and has found widespread application as an easy to use, reliable, and quick analytic tool. The usefulness of TLC in organic…

  18. Somatic embryogenesis from zygotic embryos and thin cell layers ...

    African Journals Online (AJOL)

    Oil palm hybrid BRS Manicoré is important for plantations in the north of Brazil, as it is resistant to fatal yellowing and is compact. Seed germination is slow and reduced, so somatic embryogenesis is a promising alternative for its propagation. Two kinds of starting explants were used: Zygotic embryos (ZE) and thin cell layers ...

  19. Transparent conducting oxide layers for thin film silicon solar cells

    NARCIS (Netherlands)

    Rath, J.K.; Liu, Y.; de Jong, M.M.; de Wild, J.; Schuttauf, J.A.; Brinza, M.; Schropp, R.E.I.

    2009-01-01

    Texture etching of ZnO:1%Al layers using diluted HCl solution provides excellent TCOs with crater type surface features for the front contact of superstrate type of thin film silicon solar cells. The texture etched ZnO:Al definitely gives superior performance than Asahi SnO2:F TCO in case of

  20. Modeling of thin layer drying of tarragon (Artemisia dracunculus L.)

    NARCIS (Netherlands)

    ArabHosseini, A.; Huisman, W.; Boxtel, van A.J.B.; Mueller, J.

    2009-01-01

    The drying behavior of tarragon leaves as well as chopped plants were evaluated at air temperatures ranging from 40 to 90 °C, at various air relative humidities and a constant air velocity of 0.6 m/s. The experimental data was fitted to a number of thin layer drying equations. The equations were

  1. A Thin Layer Chromotographic (TLC) detection methodology for ...

    African Journals Online (AJOL)

    This paper presents a Thin Layer Chromatographic (TLC) detection methodology for the qualitative and quantitative determination of herbicides, using some local plants/grasses as part of an on-going method development for providing alternative cost-effective analytical procedure for screening pesticide residues. Out of the ...

  2. Microstructure and mechanical behavior of a shape memory Ni-Ti bi-layer thin film

    Energy Technology Data Exchange (ETDEWEB)

    Mohri, Maryam [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany); Nili-Ahmadabadi, Mahmoud, E-mail: nili@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, University of Tehran, Tehran (Iran, Islamic Republic of); Ivanisenko, Julia [Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany); Schwaiger, Ruth [Karlsruhe Institute of Technology, Institute for Applied Materials, 76021 Karlsruhe (Germany); Hahn, Horst; Chakravadhanula, Venkata Sai Kiran [Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany)

    2015-05-29

    Two different single-layers and a bi-layer Ni-Ti thin films with chemical compositions of Ni{sub 45}Ti{sub 50}Cu{sub 5}, Ni{sub 50.8}Ti{sub 49.2} and Ni{sub 50.8}Ti{sub 49.2}/Ni{sub 45}Ti{sub 50}Cu{sub 5} (numbers indicate at.%) determined by energy dispersive X-ray spectroscopy were deposited on Si (111) substrates using DC magnetron sputtering. The structures, surface morphology and transformation temperatures of annealed thin films at 500 °C for 15 min and 1 h were studied using grazing incidence X-ray diffraction, transmission electron microscopy (TEM), atomic force microscopy and differential scanning calorimetry (DSC), respectively. Nanoindentation was used to characterize the mechanical properties. The DSC and X-ray diffraction results indicated the austenitic structure of the Ni{sub 50.8}Ti{sub 49.2} and martensitic structure of the Ni{sub 45}Ti{sub 50}Cu{sub 5} thin films while the bi-layer was composed of austenitic and martensitic thin films. TEM study revealed that copper encourages crystallization in the bi-layer such that crystal structure containing nano-precipitates in the Ni{sub 45}Ti{sub 50}Cu{sub 5} layer was detected after 15 min annealing while the Ni{sub 50.8}Ti{sub 49.2} layer crystallized after 60 min at 500 °C. Furthermore, after annealing at 500 °C for 15 min, a precipitate free zone and thin layer amorphous were observed closely to the interface in the top layer. The bi-layer was completely crystallized at 500 °C for 1 h and the orientation of the Ni-rich precipitates indicated a stress gradient in the bi-layer. The bi-layer thin film showed different transformation temperatures and mechanical behavior from the single-layers. The developed bi-layer has different phase transformation temperatures, the higher temperatures of shape memory effect and lower temperature of pseudo-elastic behavior compared to the single-layers. Also, the bi-layer thin film exhibited a combined pseudo-elastic behavior and shape memory effect with a reduced

  3. Defect spectroscopy of nanodiamond thin layers

    Czech Academy of Sciences Publication Activity Database

    Kravets, Roman; Johnston, K.; Potměšil, Jiří; Vorlíček, Vladimír; Vaněček, Milan

    2006-01-01

    Roč. 15, - (2006), s. 559-563 ISSN 0925-9635 R&D Projects: GA ČR(CZ) GA202/05/2233 Grant - others:Marie Curie Research Training Network(XE) MRTN-CT-2004-512224 Institutional research plan: CEZ:AV0Z10100521 Keywords : diamond film * nanocrystalline * defect characterization * electrical properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.935, year: 2006

  4. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure

    KAUST Repository

    Tiraferri, Alberto

    2011-02-01

    Osmotically driven membrane processes have the potential to treat impaired water sources, desalinate sea/brackish waters, and sustainably produce energy. The development of a membrane tailored for these processes is essential to advance the technology to the point that it is commercially viable. Here, a systematic investigation of the influence of thin-film composite membrane support layer structure on forward osmosis performance is conducted. The membranes consist of a selective polyamide active layer formed by interfacial polymerization on top of a polysulfone support layer fabricated by phase separation. By systematically varying the conditions used during the casting of the polysulfone layer, an array of support layers with differing structures was produced. The role that solvent quality, dope polymer concentration, fabric layer wetting, and casting blade gate height play in the support layer structure formation was investigated. Using a 1M NaCl draw solution and a deionized water feed, water fluxes ranging from 4 to 25Lm-2h-1 with consistently high salt rejection (>95.5%) were produced. The relationship between membrane structure and performance was analyzed. This study confirms the hypothesis that the optimal forward osmosis membrane consists of a mixed-structure support layer, where a thin sponge-like layer sits on top of highly porous macrovoids. Both the active layer transport properties and the support layer structural characteristics need to be optimized in order to fabricate a high performance forward osmosis membrane. © 2010 Elsevier B.V.

  5. Thin Film Composite Membranes: Mechanical and Antifouling Properties

    Directory of Open Access Journals (Sweden)

    Kassim Shaari Norin Zamiah

    2017-01-01

    Full Text Available As compared to membranes produced from pure polymer or pure inorganic materials, a hybrid membrane possesses better mechanical and thermal properties. This paper reported on the effect of incorporating silica nano-precursor (tetraethylorthosilicate as well as glycerol in the formulation of hybrid membrane on the mechanical properties and antifouling properties of the resultant thin film composite membranes. The mechanical properties were measured in terms of tensile strength, tensile strain and elastic modulus. Whereas for antifouling properties, it was evaluated through the measurements of relative flux decay (RFD and relative flux recovery (RFR, along with the permeate flux rate, percentage glycerol permeated and NaCl rejection. Results showed that the presence of silica and glycerol in hybrid membrane’s formulation had increased the tensile strength and elongation of the resultant membranes. In addition to that, the incorporation of glycerol has resulted in thin film composite with better antifouling properties as compared to the thin film composite with barrier layer from the pure polymer blend. Based on its performance, the fabricated thin film composite has a great potential to be used as a pathway for crude glycerol purification due to some advantages over the existing process that employ membrane.

  6. The thin layer technique and its application to electron microscopy

    International Nuclear Information System (INIS)

    Ranc, G.

    1957-10-01

    This work deals with the technique of thin layers obtained by evaporation under vacuum, in the thickness range extending from a few monoatomic layers to several hundred angstroms. The great theoretical and practical interest of these layers has, it is well known, given rise to many investigations from Faraday onwards. Within the necessarily restricted limits of this study, we shall approach the problem more particularly from the point of view of: - their production; - their use in electron microscopy. A critical appraisal is made, in the light of present-day knowledge, based on our personal experience and on an extensive bibliography which we have collected on the subject. (author) [fr

  7. SEM and XPS study of layer-by-layer deposited polypyrrole thin films

    Science.gov (United States)

    Pigois-Landureau, E.; Nicolau, Y. F.; Delamar, M.

    1996-01-01

    Layer-by-layer deposition of thin films (a few nm) of polypyrrole was carried out on various substrates such as silver, platinum, electrochemically oxidized aluminum and pretreated glass. SEM micrographs showed that the deposited layers nucleate by an island-type mechanism on hydrated alumina and KOH-pretreated (hydrophilic) glass before forming a continuous film. However, continuous thin films are obtained on chromic acid pretreated (hydrophobic) glass and sputtered Ag or Pt on glass after only 3-4 deposition cycles. The mean deposition rate evaluated by XPS for the first deposition cycles on Ag and Pt is 3 and 4 nm/cycle, respectively, in agreement with previous gravimetric determinations on thicker films, proving the constancy of the deposition rate. The XPS study of the very thin films obtained by a few deposition cycles shows that the first polypyrrole layers are dedoped by hydroxydic (basic) substrate surfaces.

  8. SEM and XPS study of layer-by-layer deposited polypyrrole thin films

    International Nuclear Information System (INIS)

    Pigois-Landureau, E.; Nicolau, Y.F.; Delamar, M.

    1996-01-01

    Layer-by-layer deposition of thin films (a few nm) of polypyrrole was carried out on various substrates such as silver, platinum, electrochemically oxidized aluminum and pretreated glass. SEM micrographs showed that the deposited layers nucleate by an island-type mechanism on hydrated alumina and KOH-pretreated (hydrophilic) glass before forming a continuous film. However, continuous thin films are obtained on chromic acid pretreated (hydrophobic) glass and sputtered Ag or Pt on glass after only 3 endash 4 deposition cycles. The mean deposition rate evaluated by XPS for the first deposition cycles on Ag and Pt is 3 and 4 nm/cycle, respectively, in agreement with previous gravimetric determinations on thicker films, proving the constancy of the deposition rate. The XPS study of the very thin films obtained by a few deposition cycles shows that the first polypyrrole layers are dedoped by hydroxydic (basic) substrate surfaces. copyright 1996 American Institute of Physics

  9. Thin boron phosphide coating as a corrosion-resistant layer

    Science.gov (United States)

    Not Available

    1982-08-25

    A surface prone to corrosion in corrosive environments is rendered anticorrosive by CVD growing a thin continuous film, e.g., having no detectable pinholes, thereon, of boron phosphide. In one embodiment, the film is semiconductive. In another aspect, the invention is an improved photoanode, and/or photoelectrochemical cell with a photoanode having a thin film of boron phosphide thereon rendering it anticorrosive, and providing it with unexpectedly improved photoresponsive properties.

  10. Structural, optical and mechanical properties of thin diamond and silicon carbide layers grown by low pressure microwave linear antenna plasma enhanced chemical vapour deposition

    Czech Academy of Sciences Publication Activity Database

    Taylor, Andrew; Drahokoupil, Jan; Fekete, Ladislav; Klimša, Ladislav; Kopeček, Jaromír; Purkrt, Adam; Remeš, Zdeněk; Čtvrtlík, Radim; Tomáštík, Jan; Frank, Otakar; Janíček, P.; Mistrík, J.; Mortet, Vincent

    2016-01-01

    Roč. 69, Oct (2016), s. 13-18 ISSN 0925-9635 R&D Projects: GA MŠk LO1409; GA TA ČR TA03010743; GA ČR GA13-31783S; GA MŠk(CZ) LD14011; GA MŠk LM2015088 Grant - others:FUNBIO(XE) CZ.2.16/3.1.00/21568; AV ČR(CZ) Fellowship J. E. Purkyně Institutional support: RVO:68378271 ; RVO:61388955 Keywords : diamond * silicon carbide * adherence * mechanical properties * optical properties Subject RIV: BM - Solid Matter Physics ; Magnetism; CG - Electrochemistry (UFCH-W) Impact factor: 2.561, year: 2016

  11. Mathematical analogies in physics. Thin-layer wave theory

    Directory of Open Access Journals (Sweden)

    José M. Carcione

    2014-03-01

    Full Text Available Field theory applies to elastodynamics, electromagnetism, quantum mechanics, gravitation and other similar fields of physics, where the basic equations describing the phenomenon are based on constitutive relations and balance equations. For instance, in elastodynamics, these are the stress-strain relations and the equations of momentum conservation (Euler-Newton law. In these cases, the same mathematical theory can be used, by establishing appropriate mathematical equivalences (or analogies between material properties and field variables. For instance, the wave equation and the related mathematical developments can be used to describe anelastic and electromagnetic wave propagation, and are extensively used in quantum mechanics. In this work, we obtain the mathematical analogy for the reflection/refraction (transmission problem of a thin layer embedded between dissimilar media, considering the presence of anisotropy and attenuation/viscosity in the viscoelastic case, conductivity in the electromagnetic case and a potential barrier in quantum physics (the tunnel effect. The analogy is mainly illustrated with geophysical examples of propagation of S (shear, P (compressional, TM (transverse-magnetic and TE (transverse-electric waves. The tunnel effect is obtained as a special case of viscoelastic waves at normal incidence.

  12. Nanostructured thin films and coatings mechanical properties

    CERN Document Server

    2010-01-01

    The first volume in "The Handbook of Nanostructured Thin Films and Coatings" set, this book concentrates on the mechanical properties, such as hardness, toughness, and adhesion, of thin films and coatings. It discusses processing, properties, and performance and provides a detailed analysis of theories and size effects. The book presents the fundamentals of hard and superhard nanocomposites and heterostructures, assesses fracture toughness and interfacial adhesion strength of thin films and hard nanocomposite coatings, and covers the processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. It also uses nanomechanics to optimize coatings for cutting tools and explores various other coatings, such as diamond, metal-containing amorphous carbon nanostructured, and transition metal nitride-based nanolayered multilayer coatings.

  13. Characterization and modeling tools for light management in heterogeneous thin film layers

    Science.gov (United States)

    Le Rouzo, J.; Duché, D.; Ruiz, C. M.; Thierry, F.; Carlberg, M.; Berginc, G.; Pasquinelli, M.; Simon, J.-J.; Escoubas, L.; Flory, F.

    2016-09-01

    The extraordinary progresses in the design and realization of structures in inorganic or organic thin films, whether or not including nanoparticles, make it possible to develop devices with very specific properties. Mastering the links between the macroscopic optical properties and the opto-geometrical parameters of these heterogeneous layers is thus a crucial issue. We propose to present the tools used to characterize and to model thin film layers, from an optical point of view, highlighting the interest of coupling both experimental and simulation studies for improving our knowledge on the optical response of the structure. Different examples of studies are presented on CIGS, Perovskite, P3HT:ZnO, PC70BM, organic layer containing metallic nanoparticles and colored solar cells.

  14. Specific tools for studying the optical response of heterogeneous thin film layers

    Science.gov (United States)

    Le Rouzo, Judikael; Duché, David; Ruiz, Carmen M.; Thierry, Francois; Carlberg, Miriam; Berginc, Gerard; Pasquinelli, Marcel; Simon, Jean Jacques; Escoubas, Ludovic; Flory, Francois

    2017-01-01

    The extraordinary progresses in the design and realization of structures in inorganic or organic thin films, whether or not including nanoparticles, make it possible to develop devices with very specific properties. Mastering the links between the macroscopic optical properties and the optogeometrical parameters of these heterogeneous layers is thus a crucial issue. We propose to present the tools used to characterize and to model thin film layers, from an optical point of view, highlighting the interest of coupling both experimental and simulation studies for improving our knowledge on the optical response of the structure. Different examples of studies are presented on copper indium gallium selenide, perovskite, P3HT:ZnO, PC70BM, organic layer containing metallic nanoparticles, and colored solar cells.

  15. CZTS nanoparticle absorber layer for thin film solar cells

    DEFF Research Database (Denmark)

    Symonowicz, Joanna; Jensen, Kirsten M. Ørnsbjerg; Engberg, Sara Lena Josefin

    Cu2ZnSnS4 (CZTS) thin film solar cells have the potential to revolutionize the solar energy market. They are cheap, non-toxic and present an efficiency up to 9,2% [1]. However, to commercialize CZTS nanoparticle thin films, the efficiency issues must yet be resolved. There are various fabrication...... is furthermore characterized. Photoluminescence measurements indicate which absorber layer are of higher efficiency, which allows us to study why some crystalline configurations enhance the efficiency of resulting solar cells....

  16. Plasma polymerized thin coating as a protective layer of carbon nanotubes grafted on carbon fibers

    International Nuclear Information System (INIS)

    Einig, A; Magga, Y; Bai, J B; Rumeau, P; Desrousseaux, S

    2013-01-01

    Nanoparticles addition is widely studied to improve properties of carbon fiber reinforced composites. Here, hybrid carbon fiber results from grafting of carbon nanotubes (CNT) by Chemical Vapor Deposition (CVD) on the carbon fiber for mechanical reinforcement and conductive properties. Both tows and woven fabrics made of the hybrid fibers are added to the matrix for composite processing. However handling hybrid fibers may induce unwilling health risk due to eventual CNT release and a protective layer is required. A thin coating layer is deposited homogeneously by low pressure plasma polymerization of an organic monomer without modifying the morphology and the organization of grafted CNTs. The polymeric layer effect on the electrical behavior of hybrid fiber is assessed by conductivity measurements. Its influence on the mechanical properties is also studied regarding the interface adhesion between fiber and matrix. The protective role of layer is demonstrated by means of friction constraints applied to the hybrid fiber.

  17. Physicochemical properties of silica gel coated with a thin layer of polyaniline (PANI) and its application in non-suppressed ion chromatography.

    Science.gov (United States)

    Sowa, Ireneusz; Kocjan, Ryszard; Wójciak-Kosior, Magdalena; Swieboda, Ryszard; Zajdel, Dominika; Hajnos, Mieczysław

    2013-10-15

    Physicochemical properties of a new sorbent and its potential application in non-suppressed ion chromatography (IC) have been investigated. The sorbent was obtained in a process of covering silica gel particles with a film of polyaniline (PANI). The properties of silica modified with polyaniline such as particle size, porosity, average quantity of polyaniline covering carrier and density of sorbent were determined. In our study the following methods were used: microscopic analysis, laser diffraction technique, combustion analysis, mercury porosimetry and helium pycnometry. Column with the newly obtained packing was used for the separation of inorganic anions. Optimized chromatographic system was successfully employed for analysis of iodide and bromide in selected pharmaceutical products (Bochnia salt and Iwonicz salt) applied in chronic respiratory disease. Analysis was carried out using 0.1M solution of HCl in mixture of methanol/water (50:50v/v) as a mobile phase; the flow rate was 0.3 mL min(-1), temperature was 24°C and λ=210 nm. Validation parameters such as correlation coefficient, RSD values, recovery, detection and quantification limits were found to be satisfactory. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Superhydrophobic Thin Films Fabricated by Reactive Layer-by-Layer Assembly of Azlactone-Functionalized Polymers.

    Science.gov (United States)

    Buck, Maren E; Schwartz, Sarina C; Lynn, David M

    2010-09-11

    We report an approach to the fabrication of superhydrophobic thin films that is based on the 'reactive' layer-by-layer assembly of azlactone-containing polymer multilayers. We demonstrate that films fabricated from alternating layers of the azlactone functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) and poly(ethyleneimine) (PEI) exhibit micro- and nanoscale surface features that result in water contact angles in excess of 150º. Our results reveal that the formation of these surface features is (i) dependent upon film thickness (i.e., the number of layers of PEI and PVDMA deposited) and (ii) that it is influenced strongly by the presence (or absence) of cyclic azlactone-functionalized oligomers that can form upon storage of the 2-vinyl-4,4-dimethylazlactone (VDMA) used to synthesize PVDMA. For example, films fabricated using polymers synthesized in the presence of these oligomers exhibited rough, textured surfaces and superhydrophobic behavior (i.e., advancing contact angles in excess of 150º). In contrast, films fabricated from PVDMA polymerized in the absence of this oligomer (e.g., using freshly distilled monomer) were smooth and only moderately hydrophobic (i.e., advancing contact angles of ~75º). The addition of authentic, independently synthesized oligomer to samples of distilled VDMA at specified and controlled concentrations permitted reproducible fabrication of superhydrophobic thin films on the surfaces of a variety of different substrates. The surfaces of these films were demonstrated to be superhydrophobic immediately after fabrication, but they became hydrophilic after exposure to water for six days. Additional experiments demonstrated that it was possible to stabilize and prolong the superhydrophobic properties of these films (e.g., advancing contact angles in excess of 150° even after complete submersion in water for at least six weeks) by exploiting the reactivity of residual azlactones to functionalize the surfaces of the films

  19. Effect of swift heavy ion irradiation on structural and opto-electrical properties of bi-layer CdS-Bi2S3 thin films prepared by solution growth technique at room temperature

    Science.gov (United States)

    Shaikh, Shaheed U.; Siddiqui, Farha Y.; Desale, Deepali J.; Ghule, Anil V.; Singh, Fouran; Kulriya, Pawan K.; Sharma, Ramphal

    2015-01-01

    CdS-Bi2S3 bi-layer thin films have been deposited by chemical bath deposition method on Indium Tin Oxide glass substrate at room temperature. The as-deposited thin films were annealed at 250 °C in an air atmosphere for 1 h. An air annealed thin film was irradiated using Au9+ ions with the energy of 120 MeV at fluence 5×1012 ions/cm2 using tandem pelletron accelerator. The irradiation induced modifications were studied using X-ray diffraction (XRD), Atomic Force Microscopy (AFM), Raman spectroscopy, UV spectroscopy and I-V characteristics. XRD study reveals that the as-deposited thin films were nanocrystalline in nature. The decrease in crystallite size, increase in energy band gap and resistivity were observed after irradiation. Results are explained on the basis of energy deposited by the electronic loss after irradiation. The comparative results of as-deposited, air annealed and irradiated CdS-Bi2S3 bi-layer thin films are presented.

  20. Measurements of acoustic properties for thin films

    International Nuclear Information System (INIS)

    Kushibiki, J.; Maehara, H.; Chubachi, N.

    1982-01-01

    A measurement method for determining thin-film acoustic properties, such as characteristic acoustic impedance, sound velocity, density, and stiffness constant, is developed with a simple measurement principle and high measurement accuracy. The acoustic properties are determined from a maximum reflection loss and a center frequency obtained through a frequency response of the reflection loss for an acoustic transmission line composed of a sapphire/film/water system by using the acoustic pulse mode measurement system in the UHF range. The determination of the acoustic properties is demonstrated for sputtered fused quartz film, low-expansion borosilicate glass films, and chalcogenide glass films of evaporated As 2 S 3 and As 2 Se 3 , within the measurement accuracy around 1--2%. It is also found that the acoustic properties of thin films are generally different from those of bulk materials, depending on the fabrication techniques and conditions

  1. Investigation of multi-layer thin films for energy storage.

    Energy Technology Data Exchange (ETDEWEB)

    Renk, Timothy Jerome; Monson, Todd

    2009-01-01

    We investigate here the feasibility of increasing the energy density of thin-film capacitors by construction of a multi-layer capacitor device through ablation and redeposition of the capacitor materials using a high-power pulsed ion beam. The deposition experiments were conducted on the RHEPP-1 facility at Sandia National Laboratories. The dielectric capacitor filler material was a composition of Lead-Lanthanum-Zirconium-Titanium oxide (PLZT). The energy storage can be increased by using material of intrinsically high dielectric constant, and constructing many thin layers of this material. For successful device construction, there are a number of challenging requirements including correct stoichiometric and crystallographic composition of the deposited PLZT. This report details some success in satisfying these requirements, even though the attempt at device manufacture was unsuccessful. The conclusion that 900 C temperatures are necessary to reconstitute the deposited PLZT has implications for future manufacturing capability.

  2. Simulation of radiation effects in ultra-thin insulating layers

    Directory of Open Access Journals (Sweden)

    Timotijević Ljubinko B.

    2013-01-01

    Full Text Available The Monte Carlo simulations of charged particle transport are used to investigate the effects of exposing ultra-thin layers of insulators (commonly used in integrated circuits to beams of protons, alpha particles and heavy ions. Materials considered include silicon dioxide, aluminum nitride, alumina, and polycarbonate - lexan. The parameters that have been varied in simulations include the energy of incident charged particles and insulating layer thickness. Materials are compared according to both ionizing and non-ionizing effects produced by the passage of radiation. [Projekat Ministarstva nauke Republike Srbije, br. 171007

  3. Mathematical Modelling of Thin Layer Dried Cashew Kernels | Asiru ...

    African Journals Online (AJOL)

    In this paper mathematical models describing thin layer drying of cashew kernels in a batch dryer were presented. The range of drying air temperature was 70 – 110°C. The initial moisture content of the cashew kernels was 9.29% (d.b.) and the final moisture content was in the range of 3.5 to 4.6% dry-basis. Seven different ...

  4. Targets with thin ferromagnetic layers for transient field experiments

    International Nuclear Information System (INIS)

    Gallant, J.L.; Dmytrenko, P.

    1982-01-01

    Multilayer targets containing a central layer sufficiently thin so that all recoil nuclei can traverse it and subsequently stop in a suitable cubic environment have been prepared. Such targets are required in experiments making use of a magnetic field acting on an ion moving through a ferromagnetic material. The preparation and annealing of the ferromagnetic foils (iron and gadolinium) and the fabrication of the multilayer targets are described. (orig.)

  5. Ultra-thin, single-layer polarization rotator

    Energy Technology Data Exchange (ETDEWEB)

    Son, T. V.; Truong, V. V., E-mail: Truong.Vo-Van@Concordia.Ca [Department of Physics, Concordia University, Montreal, Quebec, H4B 1R6 (Canada); Do, P. A.; Haché, A. [Département de Physique et d’Astronomie, Université de Moncton, Moncton, New Brunswick, E1A 3E9 (Canada)

    2016-08-15

    We demonstrate light polarization control over a broad spectral range by a uniform layer of vanadium dioxide as it undergoes a phase transition from insulator to metal. Changes in refractive indices create unequal phase shifts on s- and p-polarization components of incident light, and rotation of linear polarization shows intensity modulation by a factor of 10{sup 3} when transmitted through polarizers. This makes possible polarization rotation devices as thin as 50 nm that would be activated thermally, optically or electrically.

  6. Electronic properties of thermally formed thin iron oxide films

    International Nuclear Information System (INIS)

    Wielant, J.; Goossens, V.; Hausbrand, R.; Terryn, H.

    2007-01-01

    The oxide layer, present between an organic coating and the substrate, guarantees adhesion of the coating and plays a determinating role in the delamination rate of the organic coating. The purpose of this study is to compare the resistive and semiconducting properties of thermal oxides formed on steel in two different atmospheres at 250 deg. C: an oxygen rich atmosphere, air, and an oxygen deficient atmosphere, N 2 . In N 2 , a magnetite layer grows while in air a duplex oxide film forms composed by an inner magnetite layer and a thin outer hematite scale. The heat treatment for different amounts of time at high temperature was used as method to sample the thickness variation and change in electronic and semiconducting properties of the thermal oxide layers. Firstly, linear voltammetric measurements were performed to have a first insight in the electrochemical behavior of the thermal oxides in a borate buffer solution. Electrochemical impedance spectroscopy in the same buffer combined with the Mott-Schottky analysis were used to determine the semiconducting properties of the thermal oxides. By spectroscopic ellipsometry (SE) and atomic force microscopy (AFM), respectively, the thickness and roughness of the oxide layers were determined supporting the physical interpretation of the voltammetric and EIS data. These measurements clearly showed that oxide layers with different constitution, oxide resistance, flatband potential and doping concentration can be grown by changing the atmosphere

  7. Effect of pirfenidone delivered using layer-by-layer thin film on excisional wound healing.

    Science.gov (United States)

    Mandapalli, Praveen Kumar; Labala, Suman; Bojja, Jagadeesh; Venuganti, Venkata Vamsi Krishna

    2016-02-15

    The aim of this study was to evaluate the effect of a new anti-fibrotic agent, pirfenidone (PFD), delivered using polyelectrolyte multilayer films on excisional wound healing. Polyelectrolyte multilayer films were prepared by layer-by-layer (LbL) sequential adsorption of chitosan and sodium alginate. The UV-spectrophotometer, FTIR and differential scanning calorimeter were used to characterize the LbL thin films. The PFD was entrapped within the LbL thin films and its effect on excisional wound healing was studied in C57BL/6. The total protein, collagen content and TGF-β expression within the wound tissue were determined after application of PFD using LbL thin films, chitosan hydrogel and polyethylene glycol hydrogel. UV-spectrophotometer and FTIR studies showed a sequential adsorption of chitosan and alginate polymer layers to form LbL thin films. The thickness of LbL thin films with 15 bilayers was found to be 15 ± 2 μm. HPLC analysis showed a PFD loading efficiency of 1.0 ± 0.1mg in 1cm(2) area of LbL thin film. In vivo wound healing studies in C57BL/6 mice showed an accelerated (<9 days) wound contraction after treatment with the PFD compared with blank LbL thin film and commercial povidone-iodine gel (12 days). The collagen content within the wound tissue was significantly (p<0.05) less after treatment with PFD compared with blank film application. Western blot analysis showed gradual decrease in TGF-β expression within the wound tissue after treatment with PFD. This study for the first time demonstrated that new anti-fibrotic agent PFD loaded in LbL thin films can be utilized for excisional wound healing. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Characterisation by optical spectroscopy of a plasma of depositions of thins layers

    International Nuclear Information System (INIS)

    Chouan, Yannick

    1984-01-01

    This research thesis reports a work which, by correlating emission and absorption spectroscopic measurements with properties of deposited thin layers, aimed at being a complement to works undertaken by a team in charge of the realisation of a flat screen. In a first part, the author reports the study of a cathodic pulverisation of a silicon target. He describes the experimental set-up, presents correlations obtained between plasma electric properties (target self-polarisation voltage), emission spectroscopic measurements (line profile and intensity) and absorption spectroscopic measurements (density of metastables), and the composition of deposited thin layers for two reactive pulverisation plasmas (Ar-H 2 and Ar-CH 4 ). The second part addresses the relationship between experimental conditions and spectroscopic characteristics (emission and absorption lines, excitation and rotation temperature) of a He-SiH 4 plasma. The author also determined the most adapted spectroscopic measurements to the 'control' of deposition, and which result in an optimisation of electronic properties and of the deposition rate for the hydrogenated amorphous silicon. The third part reports the characterisation of depositions. Electric and optic measurements are reported. Then, for both deposition techniques, the author relates the influence of experimental conditions to deposition properties and to spectroscopic diagnosis. The author finally presents static characteristics of a thin-layer-based transistor

  9. Thermal and structural properties of spray pyrolysed CdS thin film

    Indian Academy of Sciences (India)

    Unknown

    Thermal and structural properties of CdS thin film. 235. 235 by photoacoustic technique. Polycrystalline CdTe films having 55 µm thickness were grown onto the glass slides using the close space vapour technique. The total thick- ness of two-layer system (glass and CdSe thin film) could be changed by varying the thickness ...

  10. On elastic waves in an thinly-layered laminated medium with stress couples under initial stress

    Directory of Open Access Journals (Sweden)

    P. Pal Roy

    1988-01-01

    Full Text Available The present work is concerned with a simple transformation rule in finding out the composite elastic coefficients of a thinly layered laminated medium whose bulk properties are strongly anisotropic with a microelastic bending rigidity. These elastic coefficients which were not known completely for a layered laminated structure, are obtained suitably in terms of initial stress components and Lame's constants λi, μi of initially isotropic solids. The explicit solutions of the dynamical equations for a prestressed thinly layered laminated medium under horizontal compression in a gravity field are derived. The results are discussed specifying the effects of hydrostatic, deviatoric and couple stresses upon the characteristic propagation velocities of shear and compression wave modes.

  11. Interfacial Properties of CZTS Thin Film Solar Cell

    Directory of Open Access Journals (Sweden)

    N. Muhunthan

    2014-01-01

    Full Text Available Cu-deficient CZTS (copper zinc tin sulfide thin films were grown on soda lime as well as molybdenum coated soda lime glass by reactive cosputtering. Polycrystalline CZTS film with kesterite structure was produced by annealing it at 500°C in Ar atmosphere. These films were characterized for compositional, structural, surface morphological, optical, and transport properties using energy dispersive X-ray analysis, glancing incidence X-ray diffraction, Raman spectroscopy, scanning electron microscopy, atomic force microscopy, UV-Vis spectroscopy, and Hall effect measurement. A CZTS solar cell device having conversion efficiency of ~0.11% has been made by depositing CdS, ZnO, ITO, and Al layers over the CZTS thin film deposited on Mo coated soda lime glass. The series resistance of the device was very high. The interfacial properties of device were characterized by cross-sectional SEM and cross-sectional HRTEM.

  12. Properties of thin N-type Yb0.14Co4Sb12 and P-type Ce0.09Fe0.67Co3.33Sb12 skutterudite layers prepared by laser ablation

    Czech Academy of Sciences Publication Activity Database

    Zeipl, Radek; Walachová, Jarmila; Lorinčík, J.; Leshkov, Sergey; Josieková, M.; Jelínek, M.; Kocourek, Tomáš; Jurek, Karel; Navrátil, Jiří; Beneš, L.; Plecháček, T.

    2010-01-01

    Roč. 28, č. 4 (2010), s. 523-527 ISSN 0734-2101 R&D Projects: GA ČR GAP108/10/1315; GA ČR GA203/07/0267 Institutional research plan: CEZ:AV0Z20670512; CEZ:AV0Z40500505; CEZ:AV0Z10100521 Keywords : thermoelectrics * thin layers * skutterudites Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 1.291, year: 2010

  13. Improvement on p-type CVD diamond semiconducting properties by fabricating thin heavily-boron-doped multi-layer clusters isolated each other in unintentionally boron-doped diamond layer

    Science.gov (United States)

    Maida, Osamu; Tabuchi, Tomohiro; Ito, Toshimichi

    2017-12-01

    We have developed a new fabrication process to decrease the effective activation energy of B atoms doped in diamond without a significant decrease in the carrier mobility by fabricating heavily B-doped clusters with very low mobility which are embedded in lightly-B-doped diamond layers. The resistivities of the heavily B-doped and unintentionally B-doped diamond stacked layers had almost no temperature dependence, suggesting the presence of an impurity-band conduction in these diamond layers. On the other hand, the resistivities of the samples after the embedding growth process of the stacked layers that had been appropriately divided to innumerable small clusters by means of a suitable etching process increased with decreasing the temperature from 330 to 130 K. The effective activation energies and Hall mobilities at room temperature of both samples were estimated to be 0.21 eV, 106 cm2 V-1 s-1 for micron-sized clusters and 0.23 eV, 470 cm2 V-1 s-1 for nano-sized clusters, respectively, indicating that the diamond film structure fabricated in this work is effective for the improvement of the p-type performance for the B-doped CVD diamond.

  14. Epitaxial growth and dielectric properties of Bi sub 2 VO sub 5 sub . sub 5 thin films on TiN/Si substrates with SrTiO sub 3 buffer layers

    CERN Document Server

    Lee, H Y; Choi, B C; Jeong, J H; Joseph, M; Tabata, H; Kawai, T

    2000-01-01

    Bi sub 2 VO sub 5 sub . sub 5 (BVO) thin films were epitaxially grown on SrTiO sub 3 /TiN/Si substrates by using pulsed laser ablation. A TiN thin film was prepared at 700 .deg. C as a bottom electrode. The TiN film exhibited a high alpha axis orientation and a very smooth morphology. Before the preparation of the BVO thin film, a crystallized SrTiO sub 3 thin film was deposited as a buffer layer on TiN/Si. The BVO thin film grown at a substrate temperature at 700 .deg. C and an oxygen pressure of 50 mTorr was found to be epitaxial along the c-axis. Also, BVO films were observed to have flat surfaces and the step-flow modes. The dielectric constant of the BVO film on STO/TiN/Si was constant at about 8 approx 4 in the applied frequency range between 10 sup 2 and 10 sup 6 Hz.

  15. Patch testing with thin-layer chromatograms of chamomile tea in patients allergic to sesquiterpene lactones.

    Science.gov (United States)

    Lundh, Kerstin; Gruvberger, Birgitta; Möller, Halvor; Persson, Lena; Hindsén, Monica; Zimerson, Erik; Svensson, Ake; Bruze, Magnus

    2007-10-01

    Patients with contact allergy to sesquiterpene lactones (SLs) are usually hypersensitive to Asteraceae plant products such as herbal teas. The objective of this study was to show sensitizers in chamomile tea by patch testing with thin-layer chromatograms. Tea made from German chamomile was separated by thin-layer chromatography. Strips of the thin-layer chromatograms were used for patch testing SL-positive patients. 15 (43%) of 35 patients tested positively to 1 or more spots on the thin-layer chromatogram, with many individual reaction patterns. Patch testing with thin-layer chromatograms of German chamomile tea showed the presence of several allergens.

  16. Atomic layer deposition of copper thin film and feasibility of deposition on inner walls of waveguides

    Science.gov (United States)

    Yuqing, XIONG; Hengjiao, GAO; Ni, REN; Zhongwei, LIU

    2018-03-01

    Copper thin films were deposited by plasma-enhanced atomic layer deposition at low temperature, using copper(I)-N,N‧-di-sec-butylacetamidinate as a precursor and hydrogen as a reductive gas. The influence of temperature, plasma power, mode of plasma, and pulse time, on the deposition rate of copper thin film, the purity of the film and the step coverage were studied. The feasibility of copper film deposition on the inner wall of a carbon fibre reinforced plastic waveguide with high aspect ratio was also studied. The morphology and composition of the thin film were studied by atomic force microscopy and x-ray photoelectron spectroscopy, respectively. The square resistance of the thin film was also tested by a four-probe technique. On the basis of on-line diagnosis, a growth mechanism of copper thin film was put forward, and it was considered that surface functional group played an important role in the process of nucleation and in determining the properties of thin films. A high density of plasma and high free-radical content were helpful for the deposition of copper thin films.

  17. Layer-by-layer deposition of nanostructured CsPbBr3 perovskite thin films

    Science.gov (United States)

    Reshetnikova, A. A.; Matyushkin, L. B.; Andronov, A. A.; Sokolov, V. S.; Aleksandrova, O. A.; Moshnikov, V. A.

    2017-11-01

    Layer-by-layer deposition of nanostructured perovskites cesium lead halide thin films is described. The method of deposition is based on alternate immersion of the substrate in the precursor solutions or colloidal solution of nanocrystals and methyl acetate/lead nitrate solution using the device for deposition of films by SILAR and dip-coating techniques. An example of obtaining a photosensitive structure based on nanostructures of ZnO nanowires and layers of CsBbBr3 nanocrystals is also shown.

  18. Structural and Electrochemical Properties of Lithium Nickel Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Gyu-bong Cho

    2014-01-01

    Full Text Available LiNiO2 thin films were fabricated by RF magnetron sputtering. The microstructure of the films was determined by X-ray diffraction and field-emission scanning electron microscopy. The electrochemical properties were investigated with a battery cycler using coin-type half-cells. The LiNiO2 thin films annealed below 500°C had the surface carbonate. The results suggest that surface carbonate interrupted the Li intercalation and deintercalation during charge/discharge. Although the annealing process enhanced the crystallization of LiNiO2, the capacity did not increase. When the annealing temperature was increased to 600°C, the FeCrNiO4 oxide phase was generated and the discharge capacity decreased due to an oxygen deficiency in the LiNiO2 thin film. The ZrO2-coated LiNiO2 thin film provided an improved discharge capacity compared to bare LiNiO2 thin film suggesting that the improved electrochemical characteristic may be attributed to the inhibition of surface carbonate by ZrO2 coating layer.

  19. Depth profiling of fluorine-doped diamond-like carbon (F-DLC) film: Localized fluorine in the top-most thin layer can enhance the non-thrombogenic properties of F-DLC

    Energy Technology Data Exchange (ETDEWEB)

    Hasebe, Terumitsu [Center for Science of Environment, Resources and Energy, Keio University Faculty of Science and Technology, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan); Department of Radiology, Tachikawa Hospital, 4-2-22, Nishiki-cho, Tachikawa, Tokyo 190-8531 (Japan)], E-mail: teru_hasebe@hotmail.com; Nagashima, So [Center for Science of Environment, Resources and Energy, Keio University Faculty of Science and Technology, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan); Kamijo, Aki [Department of Transfusion Medicine, the University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Yoshimura, Taichi; Ishimaru, Tetsuya; Yoshimoto, Yukihiro; Yohena, Satoshi; Kodama, Hideyuki; Hotta, Atsushi [Center for Science of Environment, Resources and Energy, Keio University Faculty of Science and Technology, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan); Takahashi, Koki [Department of Transfusion Medicine, the University of Tokyo Hospital, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655 (Japan); Suzuki, Tetsuya [Center for Science of Environment, Resources and Energy, Keio University Faculty of Science and Technology, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522 (Japan)

    2007-12-03

    Fluorine-doped diamond-like carbon (F-DLC) has recently drawn a great deal of attention as a more non-thrombogenic coating than conventional DLC for blood-contacting medical devices. We conducted quantitative depth profiling of F-DLC film by X-ray photoelectron spectroscopy (XPS) in order to elucidate the effects of fluorine and fluorine distribution in F-DLC film in connection with the prevention of surface blood adhesion. F-DLC films were prepared on silicon substrates using the radio frequency plasma enhanced chemical vapor deposition method, and the thickness of films was {approx} 50 nm. 50-nm-thick F-DLC film samples were etched at 10-nm thickness intervals using argon plasma, and each surface was examined by XPS. Thereafter, each etched film layer was incubated with platelet-rich plasma isolated from human whole blood, and the platelet-covered area per unit area was evaluated for each surface. XPS spectra showed the localization of doped fluorine in the top-most thin layer of the film. Platelet-covered areas represented progressively larger portions of the surfaces of deeper etched layers, corresponding to the decreasing fluorine content in such sample surfaces. These results indicate that the localized fluorine in the top-most thin layer is one of the key factors in the promotion of the non-thrombogenicity of F-DLC film.

  20. Diblock Copolymer/Layered Silicate Nanocomposite Thin Film Stability

    Science.gov (United States)

    Limary, Ratchana; Green, Peter

    2000-03-01

    The stability of thin film symmetric diblock copolymers blended with layered silicate nanocomposites were examined using a combination of optical microscopy, atomic force microscopy (AFM), and X-ray diffraction (XRD). Two cases were examined PS-b-PMMA (polystyrene-b-polymethylacrylate) blended with montmorillonite stoichiometrically loaded with alkyl ammonium ions, OLS(S), and PS-b-PMMA blended with montmorillonite loaded with excess alkyl ammonium ions, OLS(E). XRD spectra show an increase in the gallery spacing of the OLSs, indicating that the copolymer chains have intercalated the layered silicates. AFM images reveal a distinct difference between the two nanocomposite thin films: regions in the vicinity of OLS(S) aggregates were depleted of material, while in the vicinity of OLS(E) aggregates, dewetting of the substrate occurred. We show that the stability of the copolymer/OLS nanocomposite films is determined by the enthalpic driving force associated with intercalation of the copolymer chains into the galleries of the modified OLS layers and by the substrate/organic modifier interactions.

  1. Super Gas Barrier Thin Films via Layer-by-Layer Assembly of Polyelectrolytes and Clay

    Science.gov (United States)

    Priolo, Morgan; Gamboa, Daniel; Grunlan, Jaime

    2010-03-01

    Thin composite films of branched polyethylenimine (PEI), polyacrylic acid (PAA) and sodium montmorillonite clay (MMT) platelets were prepared using layer-by-layer assembly. Film thickness, mass deposited per layer, and barrier were shown to increase exponentially with the number of deposition cycles. After 32 layers (i.e., eight PEI/PAA/PEI/MMT quadlayers) are deposited, the resulting transparent film exhibits an oxygen transmission rate below the detection limit of commercial instrumentation (clay bricks in polymeric mortar, where the enhanced spacing between MMT layers, provided by PEI and PAA, creates channels perpendicular concentration gradient that delay the permeating molecule. These films are good candidates for flexible electronics, food, and pharmaceutical packaging due to their transparency, super gas barrier (that rivals SiOx) and lack of metal.

  2. Thin-Layer Solutions of the Helmholtz and Related Equations

    KAUST Repository

    Ockendon, J. R.

    2012-01-01

    This paper concerns a certain class of two-dimensional solutions to four generic partial differential equations-the Helmholtz, modified Helmholtz, and convection-diffusion equations, and the heat conduction equation in the frequency domain-and the connections between these equations for this particular class of solutions.S pecifically, we consider thin-layer solutions, valid in narrow regions across which there is rapid variation, in the singularly perturbed limit as the coefficient of the Laplacian tends to zero.F or the wellstudied Helmholtz equation, this is the high-frequency limit and the solutions in question underpin the conventional ray theory/WKB approach in that they provide descriptions valid in some of the regions where these classical techniques fail.E xamples are caustics, shadow boundaries, whispering gallery, and creeping waves and focusing and bouncing ball modes.It transpires that virtually all such thin-layer models reduce to a class of generalized parabolic wave equations, of which the heat conduction equation is a special case. Moreover, in most situations, we will find that the appropriate parabolic wave equation solutions can be derived as limits of exact solutions of the Helmholtz equation.W e also show how reasonably well-understood thin-layer phenomena associated with any one of the four generic equations may translate into less well-known effects associated with the others.In addition, our considerations also shed some light on the relationship between the methods of matched asymptotic, WKB, and multiple-scales expansions. © 2012 Society for Industrial and Applied Mathematics.

  3. Ultra-thin, single-layer polarization rotator

    Directory of Open Access Journals (Sweden)

    T. V. Son

    2016-08-01

    Full Text Available We demonstrate light polarization control over a broad spectral range by a uniform layer of vanadium dioxide as it undergoes a phase transition from insulator to metal. Changes in refractive indices create unequal phase shifts on s- and p-polarization components of incident light, and rotation of linear polarization shows intensity modulation by a factor of 103 when transmitted through polarizers. This makes possible polarization rotation devices as thin as 50 nm that would be activated thermally, optically or electrically.

  4. Thin-layer chromatography in analysis of inorganic substances

    International Nuclear Information System (INIS)

    Volynets, M.P.

    1988-01-01

    The use of thin-layer chromatography (TLC) for separation and determination of inorganic compounds is briefly considered. Universal character of the method, its simplicity, rapidness, high efficiency, clear separation and visual demonstration of results are pointed out, which permits to use TLC extensively for solving scientific and practical problems related to the determination of trace amounts of inorganic substances. TLC method permits to work with nano- and microgram amounts of substances and ensures the absolute limit of determination in the optimal conditions, which is 10 -2 -10 -7 g. Techniques of chromatographic determination of Te, rare earths, Y, Pu in various objects and their metrological characteristics are presented

  5. Layer-by-layer thinning of MoSe{sub 2} by soft and reactive plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Sha, Yunfei [Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122 (China); Xiao, Shaoqing, E-mail: larring0078@hotmail.com [Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122 (China); Zhang, Xiumei [Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122 (China); Qin, Fang [Analysis & Testing Center, Jiangnan University, Wuxi 214122 (China); Gu, Xiaofeng, E-mail: xfgu@jiangnan.edu.cn [Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122 (China)

    2017-07-31

    Highlights: • Soft plasma etching technique using SF{sub 6} + N{sub 2} as precursors for layer-by-layer thinning of MoSe{sub 2} was adopted in this work. • Optical microscopy, Raman, photoluminescence and atomic force microscopy measurements were used to confirm the thickness change. • Layer-dependent vibrational and photoluminescence spectra of the etched MoSe{sub 2} were also demonstrated. • Equal numbers of MoSe{sub 2} layers can be removed uniformly without affecting the underlying SiO{sub 2} substrate and the remaining MoSe{sub 2} layers. - Abstract: Two-dimensional (2D) transition metal dichalcogenides (TMDs) like molybdenum diselenide (MoSe{sub 2}) have recently gained considerable interest since their properties are complementary to those of graphene. Unlike gapless graphene, the band structure of MoSe{sub 2} can be changed from the indirect band gap to the direct band gap when MoSe{sub 2} changed from bulk material to monolayer. This transition from multilayer to monolayer requires atomic-layer-precision thining of thick MoSe{sub 2} layers without damaging the remaining layers. Here, we present atomic-layer-precision thinning of MoSe{sub 2} nanaosheets down to monolayer by using SF{sub 6} + N{sub 2} plasmas, which has been demonstrated to be soft, selective and high-throughput. Optical microscopy, atomic force microscopy, Raman and photoluminescence spectra suggest that equal numbers of MoSe{sub 2} layers can be removed uniformly regardless of their initial thickness, without affecting the underlying SiO{sub 2} substrate and the remaining MoSe{sub 2} layers. By adjusting the etching rates we can achieve complete MoSe{sub 2} removal and any disired number of MoSe{sub 2} layers including monolayer. This soft plasma etching method is highly reliable and compatible with the semiconductor manufacturing processes, thereby holding great promise for various 2D materials and TMD-based devices.

  6. Collapse of molecularly thin lubricant layers between elastic substrates

    CERN Document Server

    Becker, T

    2003-01-01

    We investigated the dynamics of layering transitions and other structure formation processes in molecularly thin liquid films upon reducing the separation between two atomically smooth mica substrates. Using a newly developed surface forces apparatus with two-dimensional imaging capability, we followed the hydrodynamic processes during drainage with unprecedented precision. Depending on the substrate elasticity and the approach rate, drainage occurs either in a series of consecutive layering transitions or in a single step. In the latter case, nanoscopic amounts of liquid are trapped inside the contact area transiently. The experimental observations are explained qualitatively by combining hydrodynamic effects with elastic deformations of the substrates. Furthermore, we present evidence for anisotropy in the fluid dynamics induced by the lattice symmetry of the substrates.

  7. Influence of Magnetron Effect on Barium Hexaferrite Thin Layers

    International Nuclear Information System (INIS)

    Hassane, H.; Chatelon, J.P.; Rousseau, J.J; Siblini, A.; Kriga, A.

    2011-01-01

    In this paper, we study the effects of a magnet, located in the cathode, on barium hexaferrite thin films deposited by RF magnetron sputtering technique. During the process, these effects can modify thickness, roughness and stress of coatings. The characteristics of the deposited layers depend on the substrate position that is located opposite of magnetron cathode. In the m agnetron area , one can observe that the high stress can produce cracks or detachment of layers and the increasing of both depositing rate and surface roughness. After sputtering elaboration, barium hexaferrite films are in a compressive stress mode. But, after the post-deposition heat treatment these films are in a tensile stress mode. To improve the quality of BaM films, the subsrtate has to be set outside the magnetron area. (author)

  8. On-plate electrochemical detection for thin-layer chromatography

    International Nuclear Information System (INIS)

    Brown, G.N.; Birks, J.W.; Koval, C.A.

    1989-01-01

    Voltammetric electrochemical detection (ECD) coupled with tin-layer chromatography (TLC) was demonstrated for the quantification of trace organic compound directly on a TLC plate. The electrochemical detection solvent was a thin layer of aqueous potassium chloride. For undeveloped plates, detection limits for p-anisidine and p-phenetidine were 10 ng and 13 ng, respectively. Linearity was demonstrated over nearly 2 orders of magnitude. After development, detection limits increased by approximately a factor of ten. Advantages of this method over other quantitative TLC methods include sensitivity, speed, simplicity, and cost. In addition, this method is selective for electrochemically active compounds. Major sources of experimental error include spot size reproducibility, working electrode placement, and supporting electrolyte film thickness

  9. Influence of an Fe cap layer on the structural and magnetic properties of Fe49Pt51/Fe bi-layers

    International Nuclear Information System (INIS)

    Chao-Yang, Duan; Bin, Ma; Zong-Zhi, Zhang; Qing-Yuan, Jin; Fu-Lin, Wei

    2009-01-01

    The influences of an Fe cap layer on the structural and magnetic properties of FePt/Fe bi-layers are investigated. Compared with single FePt alloy films, a thin Fe layer can affect the crystalline orientation and improve the chemical ordering of L1 0 FePt films. Moreover, the coercivity increases when a thin Fe layer covers the FePt layer. Beyond a critical thickness, however, the Fe cover layer quickens the magnetization reversal of Fe 49 Pt 51 /Fe bi-layers by their exchange coupling

  10. Femtosecond pulsed laser deposition of biological and biocompatible thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Hopp, B. [Hungarian Academy of Sciences, University of Szeged, Research Group on Laser Physics, Dom ter 9, H-6720 Szeged (Hungary)]. E-mail: bhopp@physx.u-szeged.hu; Smausz, T. [Hungarian Academy of Sciences, University of Szeged, Research Group on Laser Physics, Dom ter 9, H-6720 Szeged (Hungary); Kecskemeti, G. [Department of Optics and Quantum Electronics, University of Szeged, Dom ter 9, H-6720 Szeged (Hungary); Klini, A. [Institute of Electronic Structure and Laser (I.E.S.L.), Foundation for Research and Technology-Hellas (F.O.R.T.H.), P.O. Box 1527, GR-711 10 Heraklion, Crete (Greece); Bor, Zs. [Department of Optics and Quantum Electronics, University of Szeged, Dom ter 9, H-6720 Szeged (Hungary)

    2007-07-31

    In our study we investigate and report the femtosecond pulsed laser deposition of biological and biocompatible materials. Teflon, polyhydroxybutyrate, polyglycolic-acid, pepsin and tooth in the form of pressed pellets were used as target materials. Thin layers were deposited using pulses from a femtosecond KrF excimer laser system (FWHM = 450 fs, {lambda} = 248 nm, f = 10 Hz) at different fluences: 0.6, 0.9, 1.6, 2.2, 2.8 and 3.5 J/cm{sup 2}, respectively. Potassium bromide were used as substrates for diagnostic measurements of the films on a FTIR spectrometer. The pressure in the PLD chamber was 1 x 10{sup -3} Pa, and in the case of tooth and Teflon the substrates were heated at 250 deg. C. Under the optimized conditions the chemical structure of the deposited materials seemed to be largely preserved as evidenced by the corresponding IR spectra. The polyglycolic-acid films showed new spectral features indicating considerable morphological changes during PLD. Surface structure and thickness of the layers deposited on Si substrates were examined by an atomic force microscopy (AFM) and a surface profilometer. An empirical model has been elaborated for the description of the femtosecond PLD process. According to this the laser photons are absorbed in the surface layer of target resulting in chemical dissociation of molecules. The fast decomposition causes explosion-like gas expansion generating recoil forces which can tear off and accelerate solid particles. These grains containing target molecules without any chemical damages are ejected from the target and deposited onto the substrate forming a thin layer.

  11. Thin-layer effects in glaciological seismic amplitude-versus-angle (AVA) analysis: implications for characterising a subglacial till unit, Russell Glacier, West Greenland

    Science.gov (United States)

    Booth, A. D.; Clark, R. A.; Kulessa, B.; Murray, T.; Hubbard, A.

    2012-02-01

    Seismic amplitude-versus-angle (AVA) methods are a powerful means of interpreting the physical properties of subglacial material, although interpreting an AVA response is complicated in the case of a thinly-layered substrate. A layer thinner than one-quarter of the seismic wavelength is considered seismically "thin", and reflections from its bounding interfaces are perceived as a single event. Since a lodged (non-deforming) subglacial till can capped by a thin (metre-scale) cap of dilatant (deforming) till, serious misinterpretations can result if thin layer considerations are not honoured. AVA responses for layered subglacial tills are simulated: we model dilatant layers of thickness 0.1-3.0 m (up to a quarter-wavelength of our synthetic seismic pulse) overlying a lodged half-space, assigning typical acoustic impedance and Poisson's ratios to each. If thin layer effects are neglected, the AVA response to ultra-thin (AVA response. We apply this method to example seismic AVA data from the Russell Glacier outlet of the West Greenland Ice Sheet, in which characteristics of thin layer responses are evident. We interpret a stratified subglacial deposit, with upper and lower layers of high-porosity (0.492 ± 0.015) and low-porosity (acoustic impedance of 4.20-4.39 × 106 kg m-2 s-1) material, respectively assumed to represent dilatant and lodged tills. Thin layer considerations are strongly advised wherever seismic AVA analyses are used to quantify subglacial material properties.

  12. Metallic atomically-thin layered silicon epitaxially grown on silicene/ZrB2

    Science.gov (United States)

    Gill, Tobias G.; Fleurence, Antoine; Warner, Ben; Prüser, Henning; Friedlein, Rainer; Sadowski, Jerzy T.; Hirjibehedin, Cyrus F.; Yamada-Takamura, Yukiko

    2017-06-01

    Using low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM), we observe a new two-dimensional (2D) silicon crystal that is formed by depositing additional Si atoms onto spontaneously-formed epitaxial silicene on a ZrB2 thin film. From scanning tunnelling spectroscopy (STS) studies, we find that this atomically-thin layered silicon has distinctly different electronic properties. Angle resolved photoelectron spectroscopy (ARPES) reveals that, in sharp contrast to epitaxial silicene, the layered silicon exhibits significantly enhanced density of states at the Fermi level resulting from newly formed metallic bands. The 2D growth of this material could allow for direct contacting to the silicene surface and demonstrates the dramatic changes in electronic structure that can occur by the addition of even a single monolayer amount of material in 2D systems.

  13. A thin-layer liquid culture technique for the growth of Helicobacter pylori.

    Science.gov (United States)

    Joo, Jung-Soo; Park, Kyung-Chul; Song, Jae-Young; Kim, Dong-Hyun; Lee, Kyung-Ja; Kwon, Young-Cheol; Kim, Jung-Min; Kim, Kyung-Mi; Youn, Hee-Shang; Kang, Hyung-Lyun; Baik, Seung-Chul; Lee, Woo-Kon; Cho, Myung-Je; Rhee, Kwang-Ho

    2010-08-01

    Several attempts have been successful in liquid cultivation of Helicobaccter pylori. However, there is a need to improve the growth of H. pylori in liquid media in order to get affluent growth and a simple approach for examining bacterial properties. We introduce here a thin-layer liquid culture technique for the growth of H. pylori. A thin-layer liquid culture system was established by adding liquid media to a 90-mm diameter Petri dish. Optimal conditions for bacterial growth were investigated and then viability, growth curve, and released proteins were examined. Maximal growth of H. pylori was obtained by adding 3 mL of brucella broth supplemented with 10% horse to a Petri dish. H. pylori grew in both DMEM and RPMI-1640 supplemented with 10% fetal bovine serum and 0.5% yeast extract. Serum-free RPMI-1640 supported the growth of H. pylori when supplemented with dimethyl-beta-cyclodextrin (200 microg/mL) and 1% yeast extract. Under optimal growth, H. pylori grew exponentially for 28 hours, reaching a density of 3.4 OD(600) with a generation time of 3.3 hours. After 24 hours, cultures at a cell density of 1.0 OD(600) contained 1.3 +/- 0.1 x 10(9 )CFU/mL. gamma-Glutamyl transpeptidase, nuclease, superoxide dismutase, and urease were not detected in culture supernatants at 24 hours in thin-layer liquid culture, but were present at 48 hours, whereas alcohol dehydrogenase, alkylhydroperoxide reductase, catalase, and vacuolating cytotoxin were detected at 24 hours. Thin-layer liquid culture technique is feasible, and can serve as a versatile liquid culture technique for investigating bacterial properties of H. pylori.

  14. Experiments on the turbulent boundary layer on a thin cylinder rotating in an axial flow. 1st Report. Properties of mean flow and turbulence; Jikuryuchu no hosonaga kaiten entojo no ranryu kyokaiso no jikken. 1. Heikinryu to nagare no tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Yano, H. [Daido Institute of Technology, Nagoya (Japan); Yamashita, S.; Naruse, Y.; Kondo, K. [Gifu University, Gifu (Japan). Faculty of Engineering

    1996-09-25

    The mean velocity and turbulent field in a three-dimensional turbulent boundary layer on a thin cylinder rotating in a uniform stream are examined experimentally. Measurements of mean velocity and all Reynolds stresses are made by means of a single rotatable hot-wire method. Mean velocity distribution is well represented in the relative main flow direction with respect to the rotating cylinder by a logarithmic law deduced in an earlier study. Johnston`s logarithmic law for 3-D turbulent boundary layers also accurately describes the present flow. Although turbulent intensities and Reynolds stresses all increased with rotation speed of the cylinder, their distributions are well represented by non-dimensionalization using the resultant velocity of the main flow and the peripheral velocity of the cylinder. Both eddy viscosities and mixing lengths increase with the rotation speed, and there is no evidence of isotropic eddy viscosity. 21 refs., 15 figs., 1 tab.

  15. Thin layer thickness measurements by zero group velocity Lamb mode resonances

    Science.gov (United States)

    Cès, Maximin; Clorennec, Dominique; Royer, Daniel; Prada, Claire

    2011-11-01

    Local and non-contact measurements of the thickness of thin layers deposited on a thick plate have been performed by using zero group velocity (ZGV) Lamb modes. It was shown that the shift of the resonance frequency is proportional to the mass loading through a factor which depends on the mechanical properties of the layer and of the substrate. In the experiments, ZGV Lamb modes were generated by a Nd:YAG pulsed laser and the displacement normal to the plate surface was measured by an optical interferometer. Measurements performed at the same point that the generation on the non-coated face of the plate demonstrated that thin gold layers of a few hundred nanometers were detected through a 1.5-mm thick Duralumin plate. The shift of the resonance frequency (1.9 MHz) of the fundamental ZGV mode is proportional to the layer thickness: typically 10 kHz per μm. Taking into account the influence of the temperature, a 240-nm gold layer was measured with a ±4% uncertainty. This thickness has been verified on the coated face with an optical profiling system.

  16. Approximate reflection coefficients for a thin VTI layer

    KAUST Repository

    Hao, Qi

    2017-09-18

    We present an approximate method to derive simple expressions for the reflection coefficients of P- and SV-waves for a thin transversely isotropic layer with a vertical symmetry axis (VTI) embedded in a homogeneous VTI background. The layer thickness is assumed to be much smaller than the wavelengths of P- and SV-waves inside. The exact reflection and transmission coefficients are derived by the propagator matrix method. In the case of normal incidence, the exact reflection and transmission coefficients are expressed in terms of the impedances of vertically propagating P- and S-waves. For subcritical incidence, the approximate reflection coefficients are expressed in terms of the contrast in the VTI parameters between the layer and the background. Numerical examples are designed to analyze the reflection coefficients at normal and oblique incidence, and investigate the influence of transverse isotropy on the reflection coefficients. Despite giving numerical errors, the approximate formulae are sufficiently simple to qualitatively analyze the variation of the reflection coefficients with the angle of incidence.

  17. CoCrTa thin films for magnetic recording media: structure, magnetic properties and time-dependence effect

    NARCIS (Netherlands)

    Phan le kim, P.L.K.

    This thesis has been devoted to deposition process, structures, magnetic properties and time-dependence effect of CoCrTa magnetic thin films for recording media. The experimental study began from Chapter 5 by investigating properties of single layer CoCrTa thin films, produced under different

  18. Thermal properties of methyltrimethoxysilane aerogel thin films

    Directory of Open Access Journals (Sweden)

    Leandro N. Acquaroli

    2016-10-01

    Full Text Available Aerogels are light and porous solids whose properties, largely determined by their nanostructure, are useful in a wide range of applications, e.g., thermal insulation. In this work, as-deposited and thermally treated air-filled silica aerogel thin films synthesized using the sol-gel method were studied for their thermal properties using the 3-omega technique, at ambient conditions. The thermal conductivity and diffusivity were found to increase as the porosity of the aerogel decreased. Thermally treated films show a clear reduction in thermal conductivity compared with that of as-deposited films, likely due to an increase of porosity. The smallest thermal conductivity and diffusivity found for our aerogels were 0.019 W m−1 K−1 and 9.8 × 10-9 m2 s−1. A model was used to identify the components (solid, gaseous and radiative of the total thermal conductivity of the aerogel.

  19. Underpotential deposition-mediated layer-by-layer growth of thin films

    Science.gov (United States)

    Wang, Jia Xu; Adzic, Radoslav R.

    2015-05-19

    A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves the use of underpotential deposition of a first element to mediate the growth of a second material by overpotential deposition. Deposition occurs between a potential positive to the bulk deposition potential for the mediating element where a full monolayer of mediating element forms, and a potential which is less than, or only slightly greater than, the bulk deposition potential of the material to be deposited. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis. This process is especially suitable for the formation of a catalytically active layer on core-shell particles for use in energy conversion devices such as fuel cells.

  20. Deposition and characterization of layer-by-layer sputtered AgGaSe{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Karaagac, H. [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey); Parlak, M., E-mail: parlak@metu.edu.tr [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey)

    2011-04-15

    Sputtering technique has been used for the deposition of AgGaSe{sub 2} thin films onto soda-lime glass substrates using sequential layer-by-layer deposition of GaSe and Ag thin films. The analysis of energy dispersive analysis of X-ray (EDXA) indicated a Ga-rich composition for as-grown samples and there was a pronounce effect of post-annealing on chemical composition of AgGaSe{sub 2} thin film. X-ray diffraction (XRD) measurements revealed that Ag metallic phase exists in the amorphous AgGaSe{sub 2} structure up to annealing temperature 450 deg. C and then the structure turned to the single phase AgGaSe{sub 2} with the preferred orientation along (1 1 2) direction with the annealing temperature at 600 deg. C. The surface morphology of the samples was analyzed by scanning electron microscopy (SEM) measurements. The structural parameters related to chalcopyrite compounds have been calculated. Optical properties of AgGaSe{sub 2} thin films were studied by carrying out transmittance and reflectance measurements in the wavelength range of 325-1100 nm at room temperature. The absorption coefficient and the band gap values for as-grown and annealed samples were evaluated as 1.55 and 1.77 eV, respectively. The crystal-field and spin-orbit splitting levels were resolved. These levels (2.03 and 2.30 eV) were also detected from the photoresponse measurements almost at the same energy values. As a result of the temperature dependent resistivity and mobility measurements in the temperature range of 100-430 K, it was found that the decrease in mobility and the increase in carrier concentration following to the increasing annealing temperature attributed to the structural defects (tetragonal distortion, vacancies and interstitials).

  1. Thin layer modelling of Gelidium sesquipedale solar drying process

    Energy Technology Data Exchange (ETDEWEB)

    Ait Mohamed, L. [Laboratoire d' Energie Solaire et des Plantes Aromatiques et Medicinales, Ecole Normale Superieure, BP 2400, Marrakech (Morocco); Faculte des Sciences Semlalia, BP 2390, Marrakech (Morocco); Ethmane Kane, C.S. [Faculte des Sciences de Tetouan, BP 2121, Tetouan (Morocco); Kouhila, M.; Jamali, A. [Laboratoire d' Energie Solaire et des Plantes Aromatiques et Medicinales, Ecole Normale Superieure, BP 2400, Marrakech (Morocco); Mahrouz, M. [Faculte des Sciences Semlalia, BP 2390, Marrakech (Morocco); Kechaou, N. [Ecole Nationale d' Ingenieurs de Sfax, BPW 3038 (Tunisia)

    2008-05-15

    The effect of air temperature and air flow rate on the drying kinetics of Gelidium sesquipedale was investigated in convective solar drying. Drying was conducted at 40, 50 and 60 C. The relative humidity was varied from 50% to 57%, and the drying air flow rate was varied from 0.0277 to 0.0833 m{sup 3}/s. The expression for the drying rate equation is determined empirically from the characteristic drying curve. Thirteen mathematical models of thin layer drying are selected in order to estimate the suitable model for describing the drying curves. The two term model gives the best prediction of the drying curves and satisfactorily describes the drying characteristics of G. sesquipedale with a correlation coefficient R of 0.9999 and chi-square ({chi}{sup 2}) of 3.381 x 10{sup -6}. (author)

  2. An improved method for thin layer chromatographic analysis of saponins.

    Science.gov (United States)

    Sharma, Om P; Kumar, Neeraj; Singh, Bikram; Bhat, Tej K

    2012-05-01

    Analysis of saponins by thin layer chromatography (TLC) is reported. The solvent system was n-butanol:water:acetic acid (84:14:7). Detection of saponins on the TLC plates after development and air-drying was done by immersion in a suspension of sheep erythrocytes, followed by washing off the excess blood on the plate surface. Saponins appeared as white spots against a pink background. The protocol provided specific detection of saponins in the saponins enriched extracts from Aesculusindica (Wall. ex Camb.) Hook.f., Lonicera japonica Thunb., Silene inflata Sm., Sapindusmukorossi Gaertn., Chlorophytum borivilianum Santapau & Fernandes, Asparagusadscendens Roxb., Asparagus racemosus Willd., Agave americana L., Camellia sinensis [L.] O. Kuntze. The protocol is convenient, inexpensive, does not require any corrosive chemicals and provides specific detection of saponins. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Atmospheric corrosion evaluation of galvanised steel by thin layer activation

    Energy Technology Data Exchange (ETDEWEB)

    Stroosnijder, M.F.; Brugnoni, C.; Laguzzi, G.; Luvidi, L.; De Cristofaro, N

    2004-09-01

    The release of certain metals, such as zinc, from outdoor constructions due to atmospheric corrosion is of some concern. For risk assessments the evaluation of the amount of released metal is of importance. Various methods can be used to study the release of metals. These include those using radiotracers, such as thin layer activation (TLA). To verify the reliability of TLA with respect to conventional techniques in the evaluation of atmospheric corrosion, galvanised steel was exposed to a mild marine environment. The amount of zinc in the corrosion products, released through artificial leaching, at different time intervals was evaluated by TLA and atomic absorption spectroscopy (AAS). A good correlation between the results was found indicating the feasibility of TLA for these release studies.

  4. Split energy cascade in turbulent thin fluid layers

    Science.gov (United States)

    Musacchio, Stefano; Boffetta, Guido

    2017-11-01

    We discuss the phenomenology of the split energy cascade in a three-dimensional thin fluid layer by means of high resolution numerical simulations of the Navier-Stokes equations. We observe the presence of both an inverse energy cascade at large scales, as predicted for two-dimensional turbulence, and a direct energy cascade at small scales, as in three-dimensional turbulence. The inverse energy cascade is associated with a direct cascade of enstrophy in the intermediate range of scales. Notably, we find that the inverse cascade of energy in this system is not a purely 2D phenomenon, as the coupling with the 3D velocity field is necessary to guarantee the constancy of fluxes.

  5. Robotic thin layer chromatography instrument for synthetic chemistry

    International Nuclear Information System (INIS)

    Corkan, L.A.; Haynes, E.; Kline, S.; Lindsey, J.S.

    1991-01-01

    We have constructed a second generation instrument for performing automated thin layer chromatography (TLC), The TLC instrument Consists of four dedicated stations for (1) plate dispensing, (2) sample application, (3) plate development, and (4) densitometry. A robot is used to move TLC plates among stations. The TLC instrument functions either as a stand-alone unit or as one analytical module in a robotic workstation for synthetic chemistry. An integrated hardware and software architecture enables automatic TLC analysis of samples produced concurrently from synthetic reactions in progress on the workstation. The combination of fixed automation and robotics gives a throughput of 12 TLC samples per hour. From these results a blueprint has emerged for an advanced automated TLC instrument with far greater throughput and analytical capabilities

  6. The thin layer activation method and its applications in industry

    International Nuclear Information System (INIS)

    1997-01-01

    The thin layer activation (TLA) method is one of the most effective and precise methods for the measurement and monitoring of corrosion (erosion) and wear in industry and is used for on-line remote measurement of wear and corrosion rate of central parts in machines or processing vessels under real operating conditions. This document is a comprehensive manual on TLA method in its applications for monitoring wear and corrosion in industry. It describes the theory and presents case studies on TLA method applications in industry. In addition, in annexes are given tables of nuclear data relating to TLA (decay characteristics, depth distribution of reaction products, activation data for charged-particle nuclear reactions), references from INIS database on TLA and a detailed production of the application of TLA for wear measurement of superhard turning tools

  7. Electrical characterization of graphene oxide and organic dielectric layers based on thin film transistor

    Energy Technology Data Exchange (ETDEWEB)

    Karteri, İbrahim, E-mail: ibrahimkarteri@gmail.com [Department of Materials Science And Engineering, Kahramanmaras Sutcu Imam University, Kahramanmaraş 4610 (Turkey); Karataş, Şükrü [Department of Physics, Kahramanmaras Sutcu Imam University, Kahramanmaraş 4610 (Turkey); Yakuphanoğlu, Fahrettin [Department of Physics, Fırat University, Elazıg 2310 (Turkey)

    2014-11-01

    Highlights: • We report the synthesis of graphene oxide nanosheets and electrical characterization of graphene oxide based thin film transistor. • Graphene oxide (GO) nanosheets were prepared by using modified Hummers method. • We used insulator layers which are polymethylmethacrylate (PMMA) and polyvinyl phenol (PVP) for graphene oxide based thin flim transistor. - Abstract: We have studied the electrical characteristics of graphene oxide based thin flim transistor with the polymer insulators such as polymethyl methacrylate (PMMA) and poly-4-vinylphenol (PVP). Graphene oxide (GO) nanosheets were prepared by using modified Hummers method. The structural properties of GO nanosheets were characterized with Ultraviolet Visible (UV–vis), FT-IR spectroscopy and X-rays diffraction (XRD). Graphene oxide based thin flim transistor (GO-TFT) was prepared by a spin-coating and thermal evaporation technique. The electrical characterization of GO-TFT was analyzed by output and transfer characteristics by using Keithley-4200 semiconductor characterization system (SCS). The graphene oxide based thin flim transistor devices show p-type semiconducting behavior. The mobility, threshold voltage, sub-threshold swing value and I{sub on}/I{sub off} of GO-TFT were found to be 0.105 cm{sup 2} V{sup −1} s{sup −1}, −8.7 V, 4.03 V/decade and 10, respectively.

  8. Monolithic growth of partly cured polydimethylsiloxane thin film layers

    DEFF Research Database (Denmark)

    Yu, Liyun; Skov, Anne Ladegaard

    2014-01-01

    at different curing times. The monolithic films are investigated by rheology, scanning electron microscope, mechanical testing, dielectric relaxation spectroscopy, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The morphology, mechanical and dielectric properties, as well...... to enable interlayer crosslinking reactions either by application of an adhesion promoter or by ensuring that there are reactive, complementary sites available on the two surfaces. Polydimethylsiloxane (PDMS) is a widely used polymer for DEAPs. In this work, two-layered PDMS films are adhered together...... as thermal stabilities of the bilayer elastomer films are observed to change with the curing time of the monolayers before lamination. The objective of this work is to create adhesion of two layers without destroying the original viscoelastic properties of the PDMS films, and hence enable, for example...

  9. Squeezing molecularly thin alkane lubrication films: Layering transistions and wear

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, V. N.; Persson, B. N. J.

    2004-01-01

    The properties of alkane lubricants confined between two approaching solids are investigated by a model that accounts for the curvature and the elastic properties of the solid surfaces. We consider linear alkane molecules of different chain lengths, C(3)H(8); C(4)H(10); C(8)H(18); C(9)H(20); C(10)H......(22); C(12)H(26), and C(14)H(30) confined between smooth gold surfaces. We observe well-defined molecular layers develop in the lubricant film when the width of the film is of the order of a few atomic diameters. An external squeezing-pressure induces discontinuous changes in the number n of lubricant...

  10. Multi-layer adaptive thin shells for future space telescopes

    International Nuclear Information System (INIS)

    Bastaits, R; Preumont, A; Rodrigues, G; Jetteur, Ph; Hagedorn, P

    2012-01-01

    This paper examines the morphing capability of doubly curved elastic shells with various layers of active materials with strain actuation capability. The equivalent piezoelectric loads of an orthotropic multi-layer shell is established and it is demonstrated that a set of four active layers offer independent control of the in-plane forces and bending moments, which guarantees optimum morphing with arbitrary profile. This is illustrated by a numerical example which compares a unimorph configuration (single layer of active material) with a twin-bimorph (two pairs of symmetrical layers of active material with orthotropic properties). Numerical simulations indicate that the optical (Zernike) modes with shapes where the curvatures in orthogonal directions have opposite signs (e.g. astigmatism, trefoil, tetrafoil) are fairly easy to control with both configurations and that substantial amplitudes may be achieved. However, the optical modes with shapes where the curvatures in orthogonal directions have the same sign (e.g. defocus, coma, spherical aberration) are difficult to control with the unimorph configuration, and they lead to the appearance of slope discontinuities at the interface between the independent electrodes. As expected, a much better morphing is achieved with a twin-bimorph configuration. (paper)

  11. Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices

    NARCIS (Netherlands)

    Hoye, R.L.Z.; Muñoz-Rojas, D.; Nelson, S.F.; Illiberi, A.; Poodt, P.; Roozeboom, F.; Macmanus-Driscoll, J.L.

    2015-01-01

    Atmospheric pressure spatial atomic layer deposition (AP-SALD) has recently emerged as an appealing technique for rapidly producing high quality oxides. Here, we focus on the use of AP-SALD to deposit functional ZnO thin films, particularly on the reactors used, the film properties, and the dopants

  12. A further comparison of graphene and thin metal layers for plasmonics.

    Science.gov (United States)

    He, Xiaoyong; Gao, Pingqi; Shi, Wangzhou

    2016-05-21

    Which one is much more suitable for plasmonic materials, graphene or metal? To address this problem well, the plasmonic properties of thin metal sheets at different thicknesses have been investigated and compared with a graphene layer. As demonstration examples, the propagation properties of insulator-metal-insulator and metamaterials (MMs) structures are also shown. The results manifest that the plasmonic properties of the graphene layer are comparable to that of thin metal sheets with the thickness of tens of nanometers. For the graphene MMs structure, by using the periodic stack structure in the active region, the resonant transmission strength significantly improves. At the optimum period number, 3-5 periods of graphene/SiO2, the graphene MMs structure manifests good frequency and amplitude tunable properties simultaneously, and the resonant strength is also strong with large values of the Q-factor. Therefore, graphene is a good tunable plasmonic material. The results are very helpful to develop novel graphene plasmonic devices, such as modulators, antenna and filters.

  13. Basic mechanical properties of layered steels

    Directory of Open Access Journals (Sweden)

    Michal Černý

    2013-01-01

    Full Text Available This article deals with identifying attributes of layered steel materials (damask steel with the help of mechanical tests. Experimentally verify basic mechanical properties of layered steel and subsequently assessed it in comparison with the values obtained for the classic steel materials. In conclusion, there are listed the possibilities of using multilayer steel materials in technical practice, depending on the economics of production.The damask steel was prepared by forge welding from a packet consisting of 17 layers (9 layers of tool steel 19 133 (ČSN with the thickness of 6 mm and 8 layers 80NiCr11 steel in the form of saw bands with the thickness of 1.2 mm. The packet was cut into 8 parts, folded 3 times and forged together, which provided damask steel with 136 layers. The resulting steel bars were used to make semi-finished products with the approximate dimensions of the test specimens. For evaluation of mechanical properties were applied the following tests: tensile test, Charpy impact test, hardness and microhardness measurementsThe results of tests proved that the properties of damask steel are dependent not only on the direction led impact quality forge weld layers and content iof nhomogeneities in the place of discord, but also on the quenching and tempering temperature, resp. on the choice of quenching bath, which determine the final structure of steel and the resulting hardness, respectively microhardness.

  14. The Acoustical Durability of Thin Noise Reducing Asphalt Layers

    Directory of Open Access Journals (Sweden)

    Cedric Vuye

    2016-05-01

    Full Text Available Within the context of the European Noise Directive, traffic noise action plans have been established. One of those actions is to deepen the knowledge about low noise roads, as they are considered the most cost-efficient measure for traffic noise abatement. Therefore, ten test sections were installed in May 2012 in Belgium, with the objective of integrating Thin noise-reducing Asphalt Layers (TAL in the Flemish road surface policy in a later stage. Eight test sections are paved with TAL with a thickness of a maximum of 30 mm and a maximum content of accessible voids of 18%. The other two sections consist of a Double-layer Porous Asphalt Concrete (DPAC and a Stone Mastic Asphalt (SMA-10 as a reference section. The acoustical quality of the asphalt surfaces has been monitored in time using Statistical Pass-By (SPB and Close-ProXimity (CPX measurements up to 34 months after construction. Texture measurements performed with a laser profilometer are linked to the noise measurement results. Very promising initial noise reductions were found, up to 6 dB(A, but higher than expected acoustic deterioration rates and the presence of raveling led to noise reductions of a max. of 1 dB(A after almost three years. It is shown that the construction process itself has a large influence on the acoustical quality over time.

  15. Transparent conductive thin-film encapsulation layers (Presentation Recording)

    Science.gov (United States)

    Behrendt, Andreas; Gahlmann, Tobias; Trost, Sara; Polywka, Andreas; Görrn, Patrick; Riedl, Thomas

    2015-10-01

    Gas diffusion barriers (GDB) are inevitable to protect sensitive organic materials or devices against ambient gases. Typically, thin-film gas diffusion barriers are insulators, e.g. Al2O3 or multilayers of Al2O3/ZrO2, etc.. A wide range of applications would require GDB which are at the same time transparent and electrically conductive. They could serve as electrode and moisture barrier simultaneously, thereby simplifying production. As of yet, work on transparent conductive GDB (TCGDBs) is very limited. TCGDBs based on ZnO prepared by atomic layer deposition (ALD) have been reported. Due to the chemical instability of ZnO, it turns out that their electrical conductivity severely deteriorates by orders of magnitude upon exposure to damp heat conditions after very short time. We will show that these issues can be overcome by the use of tin oxide (SnO2). Conductivities of up to 300 S/cm and extremely low water vapor transmission rates (WVTR) on the order of 10-6 g/(m2 day) can been achieved in SnOx layers prepared by ALD at low temperatures (solar cells and OLEDs.

  16. Analysis of Surface Waves in Saturated Layered Poroelastic Half-Spaces Using the Thin Layer Method

    Science.gov (United States)

    Chai, Huayou; Cui, Yujun; Zhang, Dianji

    2018-03-01

    There are multiple modes of surface waves in saturated layered poroelastic half-spaces. The phase velocity and the attenuation of the modes are frequency dependent. The frequency behaviour of the modes can be studied using the layer transfer, stiffness and the transmission/reflection matrix methods. However, it is very difficult to find the complex roots of the determinants because the entries of the matrices involve the complex exponential functions of the wavenumber and the thickness of layer. To overcome this difficulty, the entries in the matrix are expressed in the form of algebraic functions using the thin layer method. Thus, the eigenvalues and eigenvectors can be easily solved using the matrix decomposition techniques instead of the root-searching ones. Some of the eigenvalues correspond to the wavenumbers of the surface waves, and can be picked out based on the characteristics of the surface waves. The frequency behaviour, variations of the pore pressure and the skeleton's displacements with the depth can be then investigated from the corresponding eigenvalues and eigenvectors, respectively. The method is verified by comparing the analytical and the discrete results in the saturated poroelastic half-space with the permeable surface. The method is applied to appreciate the effects of an impermeable surface on Rayleigh waves (R-waves) and the existence of Stoneley waves in the poroelastic half-space. The frequency behaviour of Rayleigh waves in three typical layered poroelastic half-spaces is also analyzed.

  17. Irradiation of industrial enzyme preparations. II. Characterization of fungal pectinase by thin-layer isoelectric focusing and gel filtration

    Energy Technology Data Exchange (ETDEWEB)

    Delincee, H.

    1978-01-01

    Industrial dry fungal pectinase from A. niger was irradiated with doses (up to 1 Mrad) of /sup 60/Co-..gamma..rays effective in reducing microbial contamination. The pectinase was characterized by thin-layer isoelectric focusing and gel filtration in order to detect possible radiation-induced structural alterations. Thin-layer isoelectric focusing revealed at least fifteen multiple forms with pectin-depolymerizing activity, with isoelectric points in the range pH 4.5 to 7. Heterogeneity of pectinesterase was also demonstrated, the main band occurring around pH 4. By thin-layer gel filtration the molecular weight of the pectin-depolymerase was estimated as being about 36,000, and that of pectinesterase as about 33,000. Radiation-induced changes of the charge properties or molecular size of the irradiated pectinase preparation were not observed. The feasibility of using ionizing radiation for the reduction of microbial contamination of industrial enzyme preparations looks promising.

  18. Basic mechanical properties of layered steels

    OpenAIRE

    Michal Černý; Josef Filípek; Pavel Mazal; Petr Dostál

    2013-01-01

    This article deals with identifying attributes of layered steel materials (damask steel) with the help of mechanical tests. Experimentally verify basic mechanical properties of layered steel and subsequently assessed it in comparison with the values obtained for the classic steel materials. In conclusion, there are listed the possibilities of using multilayer steel materials in technical practice, depending on the economics of production.The damask steel was prepared by forge welding from a p...

  19. Thin film assembly of nano-sized Zn(II)-8-hydroxy-5,7-dinitroquinolate by using successive ion layer adsorption and reaction (SILAR) technique: characterization and optical-electrical-photovoltaic properties.

    Science.gov (United States)

    Farag, A A M; Haggag, Sawsan M S; Mahmoud, Mohamed E

    2012-07-01

    A method is described for thin film assembly of nano-sized Zn(II)-8-hydroxy-5,7-dinitroquinolate complex, Zn[((NO(2))(2)-8HQ)(2)] by using successive ion layer adsorption and reaction (SILAR) technique. Highly homogeneous assembled nano-sized metal complex thin films with particle size distribution in the range 27-47nm was identified by using scanning electron microscopy (SEM). Zn[((NO(2))(2)-8HQ)(2)] and [(NO(2))(2)-8HQ] ligand were studied by thermal gravimetric analysis (TGA). Graphical representation of temperature dependence of the dark electrical conductivity produced two distinct linear parts for two activation energies at 0.377eV and 1.11eV. The analysis of the spectral behavior of the absorption coefficient in the intrinsic absorption region reveals a direct allowed transition with a fundamental band gap of 2.74eV. The dark current density-voltage (J-V) characteristics showed the rectification effect due to the formation of junction barrier of Zn[((NO(2))(2)-8HQ)(2)] complex film/n-Si interface. The photocurrent in the reverse direction is strongly increased by photo-illumination and the photovoltaic characteristics were also determined and evaluated. Copyright © 2012 Elsevier B.V. All rights reserved.

  20. Solution-processed In2S3 buffer layer for chalcopyrite thin film solar cells

    Directory of Open Access Journals (Sweden)

    Wang Lan

    2016-01-01

    Full Text Available We report a route to deposit In2S3 thin films from air-stable, low-cost molecular precursor inks for Cd-free buffer layers in chalcopyrite-based thin film solar cells. Different precursor compositions and processing conditions were studied to define a reproducible and robust process. By adjusting the ink properties, this method can be applied in different printing and coating techniques. Here we report on two techniques, namely spin-coating and inkjet printing. Active area efficiencies of 12.8% and 12.2% have been achieved for In2S3-buffered solar cells respectively, matching the performance of CdS-buffered cells prepared with the same batch of absorbers.

  1. Solution-processed In2S3 buffer layer for chalcopyrite thin film solar cells

    Science.gov (United States)

    Wang, Lan; Lin, Xianzhong; Ennaoui, Ahmed; Wolf, Christian; Lux-Steiner, Martha Ch.; Klenk, Reiner

    2016-02-01

    We report a route to deposit In2S3 thin films from air-stable, low-cost molecular precursor inks for Cd-free buffer layers in chalcopyrite-based thin film solar cells. Different precursor compositions and processing conditions were studied to define a reproducible and robust process. By adjusting the ink properties, this method can be applied in different printing and coating techniques. Here we report on two techniques, namely spin-coating and inkjet printing. Active area efficiencies of 12.8% and 12.2% have been achieved for In2S3-buffered solar cells respectively, matching the performance of CdS-buffered cells prepared with the same batch of absorbers.

  2. Penetration of Electro-Magnetic Fields through a Thin Resistive Layer

    CERN Document Server

    Vos, L; Caspers, Friedhelm; Mostacci, A; Rinolfi, Louis; Tsutsui, H; CERN. Geneva. AB Department

    2003-01-01

    In 1999 and 2000 experiments were carried out in the EPA machine to investigate the shielding properties of a ceramic vacuum chamber with a thin Titanium coating on the inside. A single electron bunch was extracted and sent consecutively through two ceramic chambers. The upstream chamber was coated, the downstream was not and served as a reference. The magnetic field was measured in the horizontal plane close to the outer ceramic wall on both chambers. Four different configurations of the upstream chamber were measured. In the first configuration no second shield was installed. Then three different shields were installed at the outside of the ceramic. The penetration of the electro-magnetic fields through the thin Titanium layer was very small in the first case (reduction of nearly 40dB) but substantial in the three other cases.

  3. Estudo das propriedades físicas e de transporte na secagem de cebola (Allium cepa L. em camada delgada Study of the physical and transport properties in the onion (Allium cepa L. drying in thin layer

    Directory of Open Access Journals (Sweden)

    Pierre Corrêa Martins

    2004-09-01

    Full Text Available Neste trabalho estudou-se a cinética de secagem da cebola em camada delgada, comparando os valores da difusividade efetiva média baseados nas espessuras inicial e média das amostras. Estes resultados foram utilizados para a estimativa da temperatura das amostras através de um modelo térmico simplificado. Foram analisadas também as propriedades físicas e de transporte das amostras em função da umidade ao longo da operação. Os ensaios de secagem foram realizados em um secador com escoamento de ar perpendicular à área de seção transversal do leito de amostras de cebola, operando com Tar=60ºC e v ar=1,5m/s. A determinação da umidade de equilíbrio foi obtida através das isotermas de dessorção e a temperatura das amostras foi determinada por meio de um termopar inserido no centro da partícula. As massas específicas das amostras aparente e absoluta foram determinadas através dos métodos indireto e destrutivo, respectivamente. Os valores da difusividade efetiva variável de umidade foram obtidos através do método das tangentes. O modelo térmico simplificado apresentou melhor ajuste com os valores da difusividade efetiva média de secagem, baseados na espessura média. Os valores das massas específicas das amostras de cebola aparente e absoluta foram ajustados em função da umidade através da equação de LOZANO, ROTSTEIN & URBICAIN [10], apresentando coeficientes de correlação maiores que 96%. A redução de espessura do material foi de 80% em relação a da amostra inicial. Os resultados da difusividade efetiva média de umidade, baseados na espessura média das amostras, foram semelhantes aos valores médios da difusividade efetiva variável de umidade para a primeira etapa de secagem.In this work it was studied the onion drying kinetics in thin layer comparing the values of the drying difusivity effective average based on the initial and average thickness of the samples. These results were fitted to a simplified

  4. Electroresistance Effect in Gold Thin Film Induced by Ionic-Liquid-Gated Electric Double Layer

    NARCIS (Netherlands)

    Nakayama, Hiroyasu; Ye, Jianting; Ohtani, Takashi; Fujikawa, Yasunori; Ando, Kazuya; Iwasa, Yoshihiro; Saitoh, Eiji

    Electroresistance effect was detected in a metallic thin film using ionic-liquid-gated electric-double-layer transistors (EDLTs). We observed reversible modulation of the electric resistance of a Au thin film. In this system, we found that an electric double layer works as a nanogap capacitor with

  5. Using thin metal layers on composite structures for shielding the electromagnetic pulse caused by nearby lightning

    NARCIS (Netherlands)

    Blaj, M.A.; Buesink, Frederik Johannes Karel; Damstra, G.C.; Leferink, Frank Bernardus Johannes

    2011-01-01

    Electronic systems in composite structures could be vulnerable to the (dominant magnetic) field caused by a lightning strike, because only thin layers of metal can be used on composite structures. Thin layers result in a very low shielding effectiveness against magnetic fields. Many experiments

  6. Thermal properties and stabilities of polymer thin films

    International Nuclear Information System (INIS)

    Kanaya, Toshiji; Kawashima, Kazuko; Inoue, Rintaro; Miyazaki, Tsukasa

    2009-01-01

    Recent extensive studies have revealed that polymer thin films showed very interesting but unusual thermal properties and stabilities. In the article we show that X-ray reflectivity and neutron reflectivity are very powerful tools to study the anomalous properties of polymer thin films. (author)

  7. Spotting 2D atomic layers on aluminum nitride thin films.

    Science.gov (United States)

    Chandrasekar, Hareesh; Bharadwaj B, Krishna; Vaidyuala, Kranthi Kumar; Suran, Swathi; Bhat, Navakanta; Varma, Manoj; Srinivasan Raghavan

    2015-10-23

    Substrates for 2D materials are important for tailoring their fundamental properties and realizing device applications. Aluminum nitride (AIN) films on silicon are promising large-area substrates for such devices in view of their high surface phonon energies and reasonably large dielectric constants. In this paper epitaxial layers of AlN on 2″ Si wafers have been investigated as a necessary first step to realize devices from exfoliated or transferred atomic layers. Significant thickness dependent contrast enhancements are both predicted and observed for monolayers of graphene and MoS2 on AlN films as compared to the conventional SiO2 films on silicon, with calculated contrast values approaching 100% for graphene on AlN as compared to 8% for SiO2 at normal incidences. Quantitative estimates of experimentally measured contrast using reflectance spectroscopy show very good agreement with calculated values. Transistors of monolayer graphene on AlN films are demonstrated, indicating the feasibility of complete device fabrication on the identified layers.

  8. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    International Nuclear Information System (INIS)

    thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" data-affiliation=" (Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" >Nurhandoko, Bagus Endar B.; Susilowati

    2015-01-01

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia

  9. Somatic Embryogenesis of Lilium from Microbulb Transverse Thin Cell Layers.

    Science.gov (United States)

    Marinangeli, Pablo

    2016-01-01

    A reliable somatic embryogenesis protocol is a prerequisite for application of other plant biotechniques. Several protocols were reported for genus Lilium, with variable success. Between them, transverse Thin Cell Layers (tTCL) were used efficiently to induce indirect somatic embryogenesis of Lilium. Somatic embryogenesis potential is dependent on the genotype, explant, and culture medium composition, especially as for plant growth regulators and environmental conditions. Usually, the process comprises three phases: embryogenic callus induction, embryogenic callus proliferation and somatic embryo germination. Somatic embryo germination can be achieved in light or dark. In the first case, complete plantlets are formed, with green leaves and pseudobulb in the base. In darkness, microbulbs are formed from single somatic embryos or clusters. A last phase of microbulb enlargement allows plantlets or microbulbs to increase their biomass. These enlarged microbulbs do not need special acclimatization conditions when transferred to soil and quickly produce sturdy plants. This chapter describes a protocol for somatic embryogenesis of Lilium using tTCL from microbulbs.

  10. Thin layer chromatography-ion mobility spectrometry (TLC-IMS).

    Science.gov (United States)

    Ilbeigi, Vahideh; Tabrizchi, Mahmoud

    2015-01-06

    Ion mobility spectrometry (IMS) is a fast and sensitive analytical method which operates at the atmospheric pressure. To enhance the capability of IMS for the analysis of mixtures, it is often used with preseparation techniques, such as GC or HPLC. Here, we report for the first time the coupling of the thin-layer chromatography and IMS. A variety of coupling schemes were tried that included direct electrospray from the TLC strip tip, indirect electrospray from a needle connected to the TLC strip, introducing the moving solvent into the injection port, and, the simplest way, offline introduction of scratched or cut pieces of strips into the IMS injection port. In this study a special solvent tank was designed and the TLC strip was mounted horizontally where the solvent would flow down. A very small funnel right below the TLC tip collected the solvent and transferred it to a needle via a capillary tubing. Using the TLC-ESI-IMS technique, acceptable separations were achieved for two component mixtures of morphine-papaverine and acridine-papaverine. A special injection port was designed to host the pieces cut off the TLC. The method was successfully used to identify each spot on the TLC by IMS in a few seconds.

  11. Mathematical Modeling of Thin Layer Microwave Drying of Taro Slices

    Science.gov (United States)

    Kumar, Vivek; Sharma, H. K.; Singh, K.

    2016-03-01

    The present study investigated the drying kinetics of taro slices precooked in different medium viz water (WC), steam (SC) and Lemon Solution (LC) and dried at different microwave power 360, 540 and 720 W. Drying curves of all precooked slices at all microwave powers showed falling rate period along with a very short accelerating period at the beginning of the drying. At all microwave powers, higher drying rate was observed for LC slices as compared to WC and SC slices. To select a suitable drying curve, seven thin-layer drying models were fitted to the experimental data. The data revealed that the Page model was most adequate in describing the microwave drying behavior of taro slices precooked in different medium. The highest effective moisture diffusivity value of 2.11 × 10-8 m2/s was obtained for LC samples while the lowest 0.83 × 10-8 m2/s was obtained for WC taro slices. The activation energy (E a ) of LC taro slices was lower than the E a of WC and SC taro slices.

  12. Step-frequency radar applied on thin road layers

    Science.gov (United States)

    Dérobert, X.; Fauchard, C.; Côte, Ph.; Le Brusq, E.; Guillanton, E.; Dauvignac, J. Y.; Pichot, Ch.

    2001-07-01

    In the field of road construction and maintenance, the need for information on the thickness of very thin road layers is not satisfied by means of commercial pulse GPR, due to the inability of such devices to operate over ranges of several gigahertz. As a result, research has focused on the design of a step-frequency radar technique, able to work with very high-frequency synthetic pulses. An ultrawide band antenna, belonging to the family of Vivaldi antennas, has been developed for road applications. It has been created using stripline technology and yields a band width greater than one decade. During an initial step, this antenna was tested on various bituminous concrete samples with a network analyzer. Different parameters were studied, including band width, offset between antennas, and height and shape of the frequency-dependent pulse. A second step involved GPR dynamic measurements. A customized software program enabled recording data from the network analyzer. Several radar profiles were developed from selected road construction and maintenance test sites (e.g. the Circular Pavement Fatigue Test Track, composed of a number of known structures). Results show improved resolution when compared to a commercial impulse GPR system.

  13. Application of thin layer activation method to industrial use

    International Nuclear Information System (INIS)

    Yamamoto, Masago; Hatakeyama, Noriko

    1996-01-01

    A thin layer activation method was reviewed for non-destructive, rapid, precise and real-time measurement of wear and corrosion. The review included wear measurement, the principle of the method, actual measurement, application, and laws and regulations. The method is to activate the material surface alone by accelerated ions like p, d and He ions produced by cyclotron, Van de Graaf apparatus or other accelerators and to utilize the yielded radioisotopes as a tracer, is widely used in the tribology field, and is more useful than the previous method with the reactor since it activated the whole material. Application of the method was reportedly resulted in saving the 80% cost and 90% time in the wear measurement of automobile parts such as engine and transmission. Actually, the activated material was combined into the part to be run and the radioactivity was to be measured externally or in the worn particles suitably collected. The activation thickness was generally in the range of 10-200 μm and the resultant radioactivity, 0.2-2 MBq. In most cases in Japan, the method would be under the law concerning prevention from radiation hazards due to radioisotopes, etc. (K.H.)

  14. Prediction of transmittance spectra for transparent composite electrodes with ultra-thin metal layers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhao; Alford, T. L., E-mail: TA@asu.edu [School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287 (United States); Khorasani, Arash Elhami [ON Semiconductor Corp., Phoenix, Arizona 85005 (United States); Theodore, N. D. [CHD-Fab, Freescale Semiconductor Inc., Tempe, Arizona 85224 (United States); Dhar, A. [Intel Corp., 2501 NW 229th Ave, Hillsboro, Oregon 97124 (United States)

    2015-11-28

    Recent interest in indium-free transparent composite-electrodes (TCEs) has motivated theoretical and experimental efforts to better understand and enhance their electrical and optical properties. Various tools have been developed to calculate the optical transmittance of multilayer thin-film structures based on the transfer-matrix method. However, the factors that affect the accuracy of these calculations have not been investigated very much. In this study, two sets of TCEs, TiO{sub 2}/Au/TiO{sub 2} and TiO{sub 2}/Ag/TiO{sub 2}, were fabricated to study the factors that affect the accuracy of transmittance predictions. We found that the predicted transmittance can deviate significantly from measured transmittance for TCEs that have ultra-thin plasmonic metal layers. The ultrathin metal layer in the TCE is typically discontinuous. When light interacts with the metallic islands in this discontinuous layer, localized surface plasmons are generated. This causes extra light absorption, which then leads to the actual transmittance being lower than the predicted transmittance.

  15. Spectral properties of porphyrins in the systems with layered silicates

    International Nuclear Information System (INIS)

    Ceklovsky, A.

    2009-03-01

    This work is focused on investigation of hybrid materials based on layered silicates, representing host inorganic component, and porphyrin dyes as organic guest. Aqueous colloidal dispersions, as well as thin solid films of layered silicate/porphyrin systems were studied. Modification of photophysical properties, such as absorption and fluorescence of molecules, adsorbed or incorporated in layered silicate hosts, were studied mainly to spread the knowledge about the environments suitable for incorporating aromatic compounds, providing photoactive properties of potential technological interest. TMPyP cations interact with the surfaces of layered silicates via electrostatic interactions. The extent of dye adsorption on colloidal particles of the silicates is influenced by the CEC values and swelling ability of silicates. Interaction of porphyrins with layered silicate hosts leads to significant changes of dye spectral properties. One of the key parameters that has a crucial impact on this interaction is the layer charge of silicate template. Other factors influence the resulting spectral properties of hybrid systems, such as the method of hybrid material preparation, the material's type (colloid, film), and the modification of the silicate host. Molecular orientation studies using linearly-polarized spectroscopies in VIS and IR regions revealed that TMPyP molecules were oriented in almost parallel fashion with respect to the silicate surface plane. Slightly higher values of the orientation angle of TMPyP transition moment were observed for the TMPyP/FHT system. Thus, flattening of the guest TMPyP molecules is the next important factor (mainly in the systems with lower layer charge), influencing its spectral properties upon the interaction with layered silicates. Fluorescence was effectively quenched in the systems based on solid films prepared from the high concentration of the dye (10-3 mol.dm-3). The quenching is most probably related to the structure of the

  16. High-quality crystalline yttria-stabilized-zirconia thin layer for photonic applications

    Science.gov (United States)

    Marcaud, Guillaume; Matzen, Sylvia; Alonso-Ramos, Carlos; Le Roux, Xavier; Berciano, Mathias; Maroutian, Thomas; Agnus, Guillaume; Aubert, Pascal; Largeau, Ludovic; Pillard, Valérie; Serna, Samuel; Benedikovic, Daniel; Pendenque, Christopher; Cassan, Eric; Marris-Morini, Delphine; Lecoeur, Philippe; Vivien, Laurent

    2018-03-01

    Functional oxides are considered as promising materials for photonic applications due to their extraordinary and various optical properties. Especially, yttria-stabilized zirconia (YSZ) has a high refractive index (˜2.15), leading to a good confinement of the optical mode in waveguides. Furthermore, YSZ can also be used as a buffer layer to expand toward a large family of oxides-based thin-films heterostructures. In this paper, we report a complete study of the structural properties of YSZ for the development of integrated optical devices on sapphire in telecom wavelength range. The substrate preparation and the epitaxial growth using pulsed-laser deposition technique have been studied and optimized. High-quality YSZ thin films with remarkably sharp x-ray diffraction rocking curve peaks in 10-3∘ range have then been grown on sapphire (0001). It was demonstrated that a thermal annealing of sapphire substrate before the YSZ growth allowed controlling the out-of-plane orientation of the YSZ thin film. Single-mode waveguides were finally designed, fabricated, and characterized for two different main orientations of high-quality YSZ (001) and (111). Propagation loss as low as 2 dB/cm at a wavelength of 1380 nm has been demonstrated for both orientations. These results pave the way for the development of a functional oxides-based photonics platform for numerous applications including on-chip optical communications and sensing.

  17. Influence of heat conducting substrates on explosive crystallization in thin layers

    Science.gov (United States)

    Schneider, Wilhelm

    2017-09-01

    Crystallization in a thin, initially amorphous layer is considered. The layer is in thermal contact with a substrate of very large dimensions. The energy equation of the layer contains source and sink terms. The source term is due to liberation of latent heat in the crystallization process, while the sink term is due to conduction of heat into the substrate. To determine the latter, the heat diffusion equation for the substrate is solved by applying Duhamel's integral. Thus, the energy equation of the layer becomes a heat diffusion equation with a time integral as an additional term. The latter term indicates that the heat loss due to the substrate depends on the history of the process. To complete the set of equations, the crystallization process is described by a rate equation for the degree of crystallization. The governing equations are then transformed to a moving co-ordinate system in order to analyze crystallization waves that propagate with invariant properties. Dual solutions are found by an asymptotic expansion for large activation energies of molecular diffusion. By introducing suitable variables, the results can be presented in a universal form that comprises the influence of all non-dimensional parameters that govern the process. Of particular interest for applications is the prediction of a critical heat loss parameter for the existence of crystallization waves with invariant properties.

  18. Fibromyalgia Is Correlated with Retinal Nerve Fiber Layer Thinning.

    Science.gov (United States)

    Garcia-Martin, Elena; Garcia-Campayo, Javier; Puebla-Guedea, Marta; Ascaso, Francisco J; Roca, Miguel; Gutierrez-Ruiz, Fernando; Vilades, Elisa; Polo, Vicente; Larrosa, Jose M; Pablo, Luis E; Satue, Maria

    2016-01-01

    To investigate whether fibromyalgia induces axonal damage in the optic nerve that can be detected using optical coherence tomography (OCT), as the retinal nerve fiber layer (RNFL) is atrophied in patients with fibromyalgia compared with controls. Fibromyalgia patients (n = 116) and age-matched healthy controls (n = 144) were included in this observational and prospective cohort study. All subjects underwent visual acuity measurement and structural analysis of the RNFL using two OCT devices (Cirrus and Spectralis). Fibromyalgia patients were evaluated according to Giesecke's fibromyalgia subgroups, the Fibromyalgia Impact Questionnaire (FIQ), and the European Quality of Life-5 Dimensions (EQ5D) scale. We compared the differences between fibromyalgia patients and controls, and analyzed the correlations between OCT measurements, disease duration, fibromyalgia subgroups, severity, and quality of life. The impact on quality of life in fibromyalgia subgroups and in patients with different disease severity was also analyzed. A significant decrease in the RNFL was detected in fibromyalgia patients compared with controls using the two OCT devices: Cirrus OCT ganglion cell layer analysis registered a significant decrease in the minimum thickness of the inner plexiform layer (74.99±16.63 vs 79.36±3.38 μm, respectively; p = 0.023), nasal inferior, temporal inferior and temporal superior sectors (p = 0.040; 0.011 and 0.046 respectively). The Glaucoma application of the Spectralis OCT revealed thinning in the nasal, temporal inferior and temporal superior sectors (p = 0.009, 0.006, and 0.002 respectively) of fibromyalgia patients and the Axonal application in all sectors, except the nasal superior and temporal sectors. The odds ratio (OR) to estimate the size effect of FM in RNFL thickness was 1.39. RNFL atrophy was detected in patients with FIQ scores fibromyalgia (FIQ≥60) compared with patients with mild fibromyalgia (FIQfibromyalgia exhibited significant thinning in the

  19. Low-temperature atomic layer deposition of MgO thin films on Si

    Science.gov (United States)

    Vangelista, S.; Mantovan, R.; Lamperti, A.; Tallarida, G.; Kutrzeba-Kotowska, B.; Spiga, S.; Fanciulli, M.

    2013-12-01

    Magnesium oxide (MgO) films have been grown by atomic layer deposition in the wide deposition temperature window of 80-350 °C by using bis(cyclopentadienyl)magnesium and H2O precursors. MgO thin films are deposited on both HF-last Si(1 0 0) and SiO2/Si substrates at a constant growth rate of ˜0.12 nm cycle-1. The structural, morphological and chemical properties of the synthesized MgO thin films are investigated by x-ray reflectivity, grazing incidence x-ray diffraction, time-of-flight secondary ion mass spectrometry and atomic force microscopy measurements. MgO layers are characterized by sharp interface with the substrate and limited surface roughness, besides good chemical uniformity and polycrystalline structure for thickness above 7 nm. C-V measurements performed on Al/MgO/Si MOS capacitors, with MgO in the 4.6-11 nm thickness range, allow determining a dielectric constant (κ) ˜ 11. Co layers are grown by chemical vapour deposition in direct contact with MgO without vacuum-break (base pressure 10-5-10-6 Pa). The as-grown Co/MgO stacks show sharp interfaces and no elements interdiffusion among layers. C-V and I-V measurements have been conducted on Co/MgO/Si MOS capacitors. The dielectric properties of MgO are not influenced by the further process of Co deposition.

  20. Detection of Actaea racemosa Adulteration by Thin-Layer Chromatography and Combined Thin-Layer Chromatography-Bioluminescence

    Science.gov (United States)

    Verbitski, Sheryl M.; Gourdin, Gerald T.; Ikenouye, Larissa M.; McChesney, James D.; Hildreth, Jana

    2014-01-01

    Actaea racemosa L. (black cohosh; syn. Cimicifuga racemosa L. Nutt.) is a native North American perennial whose root and rhizome preparations are commercially available as phytomedicines and dietary supplements, primarily for management of menopausal symptoms. Despite its wide use, methods that accurately identify processed A. racemosa are not well established; product adulteration remains a concern. Because of its similar appearance and growing locales, A. racemosa has been unintentionally mixed with other species of the genus, such as Actaea pachypoda Ell. (white cohosh) and more commonly Actaea podocarpa DC. (yellow cohosh). The genus Actaea also has 23 temperate species with numerous common names, which can also contribute to the misidentification of plant material. Consequently, a variety of Actaea spp. are common adulterants of commercially available black cohosh preparations. Thin-layer chromatography (TLC) and combined TLC-bioluminescence (Bioluminex™) are efficient, economical, and effective techniques which provide characteristic patterns and toxicity profiles for each plant species. These data indicate that common black cohosh adulterants, such as yellow cohosh, can be differentiated from black cohosh by TLC and TLC-bioluminescence. This study also showed that unknown contaminants that were not detected using standard A. racemosa identity techniques were readily detected by TLC and TLC-bioluminescence. PMID:18476337

  1. The effect of Cr buffer layer thickness on voltage generation of thin-film thermoelectric modules

    International Nuclear Information System (INIS)

    Mizoshiri, Mizue; Mikami, Masashi; Ozaki, Kimihiro

    2013-01-01

    The effect of Cr buffer layer thickness on the open-circuit voltage generated by thin-film thermoelectric modules of Bi 0.5 Sb 1.5 Te 3 (p-type) and Bi 2 Te 2.7 Se 0.3 (n-type) materials was investigated. A Cr buffer layer, whose thickness generally needs to be optimized to improve adhesion depending on the substrate surface condition, such as roughness, was deposited between thermoelectric thin films and glass substrates. When the Cr buffer layer was 1 nm thick, the Seebeck coefficients and electrical conductivity of 1 µm thermoelectric thin films with the buffer layers were approximately equal to those of the thermoelectric films without the buffer layers. When the thickness of the Cr buffer layer was 1 µm, the same as the thermoelectric films, the Seebeck coefficients of the bilayer films were reduced by an electrical current flowing inside the Cr buffer layer and the generation of Cr 2 Te 3 . The open-circuit voltage of the thin-film thermoelectric modules decreased with an increase in the thickness of the Cr buffer layer, which was primarily induced by the electrical current flow. The reduction caused by the Cr 2 Te 3 generation was less than 10% of the total voltage generation of the modules without the Cr buffer layers. The voltage generation of thin-film thermoelectric modules could be controlled by the Cr buffer layer thickness. (paper)

  2. Photoluminescence-based quality control for thin film absorber layers of photovoltaic devices

    Science.gov (United States)

    Repins, Ingrid L.; Kuciauskas, Darius

    2015-07-07

    A time-resolved photoluminescence-based system providing quality control during manufacture of thin film absorber layers for photovoltaic devices. The system includes a laser generating excitation beams and an optical fiber with an end used both for directing each excitation beam onto a thin film absorber layer and for collecting photoluminescence from the absorber layer. The system includes a processor determining a quality control parameter such as minority carrier lifetime of the thin film absorber layer based on the collected photoluminescence. In some implementations, the laser is a low power, pulsed diode laser having photon energy at least great enough to excite electron hole pairs in the thin film absorber layer. The scattered light may be filterable from the collected photoluminescence, and the system may include a dichroic beam splitter and a filter that transmit the photoluminescence and remove scattered laser light prior to delivery to a photodetector and a digital oscilloscope.

  3. Study of problems raised by the production of electronic preamplifier by thin layer evaporation

    International Nuclear Information System (INIS)

    Lesaint, Jean

    1962-01-01

    This research thesis reports the study of the different methods of manufacturing electronic assemblies by deposition of various thin layers in order to reduce dimensions and weight of such assemblies. Thin layers have been prepared by vacuum evaporation. During this preparation, the author identified the problems raised by this miniaturisation technique. The most important ones have been solved and it was then possible to produce by this method charge preamplifiers aimed at the detection of nuclear particles. The author envisages the production of capacitors with such a technique based on thin layers [fr

  4. Layer thinning transition in an achiral four-ring hockey stick shaped liquid crystal

    Science.gov (United States)

    Paul, Manoj Kr.; Nath, Rahul K.; Moths, Brian; Pan, LiDong; Wang, Shun; Deb, Rajdeep; Shen, Yongqiang; Rao, Nandiraju V. S.; Huang, C. C.

    2012-12-01

    Depolarized reflected light microscopy and high resolution optical reflectivity measurements have been conducted on free-standing films of an achiral four-ring hockey stick shaped liquid crystal exhibiting SmA-B2-SmX* transition sequence. A layer thinning transition above the bulk isotropic-SmA phase transition has been observed. This behaviour was highly irreproducible, indicating an irregular layer thinning transition. From optical reflectivity data, both thickness of the free-standing films and the smectic interlayer spacing were determined. This is the first report of the layer thinning transition in a hockey stick shaped liquid crystal.

  5. Growth, Properties and Applications of Mo Ox Thin-Films Deposited by Reactive Sputtering

    DEFF Research Database (Denmark)

    Fernandes Cauduro, André Luis

    Transition metal-oxide (TMOs) thin-films are commonly used in optoelectronic devices such as in photovoltaics and light emitting diodes, using both organic, inorganic and hybrid technologies. In such devices, TMOs typically act as an interfacial layer, where its functionality is to facilitate hole...... properties of metal-oxide thin films through surface defect engineering is vital to fine-tune their optoelectronic properties, and thus also their integration in novel optoelectronic devices. In this work, MoOx thin-films with various different phases and compositions were prepared by direct-current reactive...... and electrical properties of the films. Atomic Force Microscopy (AFM) and Transmission Electron Microscopy (TEM) were applied to assess the surface morphology and crystallography of the films. In this thesis, changes in the electronic properties of the surface upon crystallization of the films were furthermore...

  6. Back contact buffer layer for thin-film solar cells

    Science.gov (United States)

    Compaan, Alvin D.; Plotnikov, Victor V.

    2014-09-09

    A photovoltaic cell structure is disclosed that includes a buffer/passivation layer at a CdTe/Back contact interface. The buffer/passivation layer is formed from the same material that forms the n-type semiconductor active layer. In one embodiment, the buffer layer and the n-type semiconductor active layer are formed from cadmium sulfide (CdS). A method of forming a photovoltaic cell includes the step of forming the semiconductor active layers and the buffer/passivation layer within the same deposition chamber and using the same material source.

  7. Structural and magneto-dielectric property of (1-x)SBT-xLSMO nanocomposite thin films

    International Nuclear Information System (INIS)

    Maity, Sarmistha; Bhattacharya, D.; Dhar, A.; Ray, S.K.

    2009-01-01

    Full text: In recent years, interest in multiferroic materials has been increasing due to their potential applications. As single-phase multiferroic materials have very low room temperature magnetoelectric coefficient, recent studies have been concentrated on the possibility of attaining a coupling between the two order parameters by designing composites with magnetostrictive and piezoelectric phases via stress mediation. Composite thin films with homogenous matrix, composition spread with terminal layers being ferromagnetic and ferroelectric, layer-by-layer growth, superlattices, as well as epitaxial growth of ferromagnetic and ferroelectric layers on suitable substrates are been currently considered. In the present work, a nanostructured composite thin film of strontium bismuth tantalate (SBT) (ferroelectric layer) and lanthanum strontium manganese oxide (LSMO) (ferromagnetic layer) were fabricated using pulsed laser deposition. Phase separated multiferroic thin films with thickness varying from 50nm to 150nm were deposited from composite target (1-x)SBT-xLSMO with x=0.2, 0.5, 0.8. Grazing angle X-ray diffraction study combined with photo electron spectroscopy with depth profiling was carried out to study the phase separation. Interface quality of the thin film on silicon substrate was studied by Rutherford backscattering spectroscopy. Influence of film thickness and composition (x) on the electrical property of film was examined using impedance spectroscopy. The composite films exhibited ferroelectric as well as ferromagnetic characteristics at room temperature. A small kink in the dielectric spectra near the Neel temperature of LSMO confirmed the magneto-electric effect in the nanocomposite films

  8. Mocvd Growth of Group-III Nitrides on Silicon Carbide: From Thin Films to Atomically Thin Layers

    Science.gov (United States)

    Al Balushi, Zakaria Y.

    Group-III nitride semiconductors (AlN, GaN, InN and their alloys) are considered one of the most important class of materials for electronic and optoelectronic devices. This is not limited to the blue light-emitting diode (LED) used for efficient solid-state lighting, but other applications as well, such as solar cells, radar and a variety of high frequency power electronics, which are all prime examples of the technological importance of nitride based wide bandgap semiconductors in our daily lives. The goal of this dissertation work was to explore and establish new growth schemes to improve the structural and optical properties of thick to atomically thin films of group-III nitrides grown by metalorganic chemical vapor deposition (MOCVD) on SiC substrates for future novel devices. The first research focus of this dissertation was on the growth of indium gallium nitride (InGaN). This wide bandgap semiconductor has attracted much research attention as an active layer in LEDs and recently as an absorber material for solar cells. InGaN has superior material properties for solar cells due to its wavelength absorption tunability that nearly covers the entire solar spectrum. This can be achieved by controlling the indium content in thick grown material. Thick InGaN films are also of interest as strain reducing based layers for deep-green and red light emitters. The growth of thick films of InGaN is, however, hindered by several combined problems. This includes poor incorporation of indium in alloys, high density of structural and morphological defects, as well as challenges associated with the segregation of indium in thick films. Overcoming some of these material challenges is essential in order integrate thick InGaN films into future optoelectronics. Therefore, this dissertation research investigated the growth mechanism of InGaN layers grown in the N-polar direction by MOCVD as a route to improve the structural and optical properties of thick InGaN films. The growth

  9. Controlled fabrication of Si nanocrystal delta-layers in thin SiO{sub 2} layers by plasma immersion ion implantation for nonvolatile memories

    Energy Technology Data Exchange (ETDEWEB)

    Bonafos, C.; Ben-Assayag, G.; Groenen, J.; Carrada, M. [CEMES-CNRS and Université de Toulouse, 29 rue J. Marvig, 31055 Toulouse Cedex 04 (France); Spiegel, Y.; Torregrosa, F. [IBS, Rue G Imbert Prolongée, ZI Peynier-Rousset, 13790 Peynier (France); Normand, P.; Dimitrakis, P.; Kapetanakis, E. [NCSRD, Terma Patriarchou Gregoriou, 15310 Aghia Paraskevi (Greece); Sahu, B. S.; Slaoui, A. [ICube, 23 Rue du Loess, 67037 Strasbourg Cedex 2 (France)

    2013-12-16

    Plasma Immersion Ion Implantation (PIII) is a promising alternative to beam line implantation to produce a single layer of nanocrystals (NCs) in the gate insulator of metal-oxide semiconductor devices. We report herein the fabrication of two-dimensional Si-NCs arrays in thin SiO{sub 2} films using PIII and rapid thermal annealing. The effect of plasma and implantation conditions on the structural properties of the NC layers is examined by transmission electron microscopy. A fine tuning of the NCs characteristics is possible by optimizing the oxide thickness, implantation energy, and dose. Electrical characterization revealed that the PIII-produced-Si NC structures are appealing for nonvolatile memories.

  10. Controlled fabrication of Si nanocrystal delta-layers in thin SiO2 layers by plasma immersion ion implantation for nonvolatile memories

    International Nuclear Information System (INIS)

    Bonafos, C.; Ben-Assayag, G.; Groenen, J.; Carrada, M.; Spiegel, Y.; Torregrosa, F.; Normand, P.; Dimitrakis, P.; Kapetanakis, E.; Sahu, B. S.; Slaoui, A.

    2013-01-01

    Plasma Immersion Ion Implantation (PIII) is a promising alternative to beam line implantation to produce a single layer of nanocrystals (NCs) in the gate insulator of metal-oxide semiconductor devices. We report herein the fabrication of two-dimensional Si-NCs arrays in thin SiO 2 films using PIII and rapid thermal annealing. The effect of plasma and implantation conditions on the structural properties of the NC layers is examined by transmission electron microscopy. A fine tuning of the NCs characteristics is possible by optimizing the oxide thickness, implantation energy, and dose. Electrical characterization revealed that the PIII-produced-Si NC structures are appealing for nonvolatile memories

  11. Thin Films of Quasicrystals: Optical, Electronic, and Mechanical Properties

    Science.gov (United States)

    Symko, Orest G.

    1998-03-01

    In order to extend some of the unusual properties of quasicrystals toward practical applications and to study fundamental aspects of these properties, we have developed a technology for the deposition of high quality thin films of quasicrystals on a variety of substrates. Mechanical support for the thin films is provided by the substrate as bulk quasicrystals are brittle. We have applied the thin films to studies of their optical, electrical, and mechanical properties as well as to coatings of biomedical devices. An important characteristic of a quasicrystal is its pseudogap in the electronic density of states; it is determined directly from optical transmission measurements. Optical and mechanical characteristics of the thin films provide strong support for the cluster nature of quasicrystals and emphasize their importance for coatings. When used in biomedical devices, thin film quasicrystalline coatings show remarkable strength, low friction, and non-stick behavior. This work was in collaboration with W. Park, E. Abdel-Rahman, and T. Klein.

  12. ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, S. G., E-mail: deshmukhpradyumn@gmail.com; Jariwala, Akshay; Agarwal, Anubha; Patel, Chetna; Kheraj, Vipul, E-mail: vipulkheraj@gmail.com [Department of Applied Physics, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat (India); Panchal, A. K. [Department of Electrical Engineering, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat (India)

    2016-04-13

    ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl{sub 2} and Na{sub 2}S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grain size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm{sup −1} and 1094 cm{sup −1}. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.

  13. Organo-layered double hydroxides composite thin films deposited by laser techniques

    Science.gov (United States)

    Birjega, R.; Vlad, A.; Matei, A.; Dumitru, M.; Stokker-Cheregi, F.; Dinescu, M.; Zavoianu, R.; Raditoiu, V.; Corobea, M. C.

    2016-06-01

    We used laser techniques to create hydrophobic thin films of layered double hydroxides (LDHs) and organo-modified LDHs. A LDH based on Zn-Al with Zn2+/Al3+ ratio of 2.5 was used as host material, while dodecyl sulfate (DS), which is an organic surfactant, acted as guest material. Pulsed laser deposition (PLD) and matrix assisted pulsed laser evaporation (MAPLE) were employed for the growth of the films. The organic anions were intercalated in co-precipitation step. The powders were subsequently used either as materials for MAPLE, or they were pressed and used as targets for PLD. The surface topography of the thin films was investigated by atomic force microscopy (AFM), the crystallographic structure of the powders and films was checked by X-ray diffraction. FTIR spectroscopy was used to evidence DS interlayer intercalation, both for powders and the derived films. Contact angle measurements were performed in order to establish the wettability properties of the as-prepared thin films, in view of functionalization applications as hydrophobic surfaces, owing to the effect of DS intercalation.

  14. Thin plasma-polymerized layers of hexamethyldisiloxane for humidity sensor development

    International Nuclear Information System (INIS)

    Guermat, N.; Bellel, A.; Sahli, S.; Segui, Y.; Raynaud, P.

    2009-01-01

    The response of resistive-type sensors based on thin hexamethyldisiloxane layers to relative humidity (RH) was evaluated. Humidity sensitive layers were plasma polymerized at low frequency glow discharge using a capacitively coupled parallel plate reactor. The sensor design comprises the absorbing layer deposited on clean glass substrate with comb-shape aluminum electrodes (interdigitated structure). The change in electrical impedance of the sensing film was monitored as the device was exposed to humidity. The variation of the plasma-polymerization parameters resulted in different humidity sensing properties which could be correlated to the results of Fourier transform infrared spectroscopy (FTIR). The deposited films exhibited a detectable response to RH ranging from 30 to 95% with low hysteresis, good reproducibility and stability in long-term use. Films with a greater thickness showed a significant decrease in the humidity sensing capability. FTIR analysis revealed the presence of SiH bonding groups, which are frequently linked to the film density. The increase in the plasma discharge power induced also a significant decrease in the diffusion process of water vapor inside the sensitive layer bulk.

  15. Thin plasma-polymerized layers of hexamethyldisiloxane for humidity sensor development

    Energy Technology Data Exchange (ETDEWEB)

    Guermat, N.; Bellel, A. [Universite Mentouri de Constantine, Laboratoire des Etudes de Materiaux d' Electronique pour Applications Medicales (LEMEAMED), Faculte des Sciences de l' Ingenieur, Constantine 25000 (Algeria); Sahli, S., E-mail: sahli50@hotmail.co [Universite Mentouri de Constantine, Laboratoire de Microsystemes et Instrumentation (LMI), Faculte des Science de l' Ingenieur, Constantine 25000 (Algeria); Segui, Y.; Raynaud, P. [Universites de Toulouse, Laboratoire Plasma et Conversion d' Energie (LAPLACE), CNRS, INPT, Universite Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex (France)

    2009-06-01

    The response of resistive-type sensors based on thin hexamethyldisiloxane layers to relative humidity (RH) was evaluated. Humidity sensitive layers were plasma polymerized at low frequency glow discharge using a capacitively coupled parallel plate reactor. The sensor design comprises the absorbing layer deposited on clean glass substrate with comb-shape aluminum electrodes (interdigitated structure). The change in electrical impedance of the sensing film was monitored as the device was exposed to humidity. The variation of the plasma-polymerization parameters resulted in different humidity sensing properties which could be correlated to the results of Fourier transform infrared spectroscopy (FTIR). The deposited films exhibited a detectable response to RH ranging from 30 to 95% with low hysteresis, good reproducibility and stability in long-term use. Films with a greater thickness showed a significant decrease in the humidity sensing capability. FTIR analysis revealed the presence of SiH bonding groups, which are frequently linked to the film density. The increase in the plasma discharge power induced also a significant decrease in the diffusion process of water vapor inside the sensitive layer bulk.

  16. Wood properties of immature ponderosa pine after thinning

    Science.gov (United States)

    Donald C. Markstrom; Harry E. Troxell; C. E. Boldt

    1983-01-01

    Trees from growing stock levels of 20, 60, and 100 in sapling and pole stands were sampled at three vertical positions -zero, 25, and 50 percent of total height above the 1-foot stump. Wood grown during the 10-year period after initial thinning was compared for growth and wood properties. Wide differences in radial growth, induced by thinning treatments, were not...

  17. Fibromyalgia Is Correlated with Retinal Nerve Fiber Layer Thinning.

    Directory of Open Access Journals (Sweden)

    Elena Garcia-Martin

    Full Text Available To investigate whether fibromyalgia induces axonal damage in the optic nerve that can be detected using optical coherence tomography (OCT, as the retinal nerve fiber layer (RNFL is atrophied in patients with fibromyalgia compared with controls.Fibromyalgia patients (n = 116 and age-matched healthy controls (n = 144 were included in this observational and prospective cohort study. All subjects underwent visual acuity measurement and structural analysis of the RNFL using two OCT devices (Cirrus and Spectralis. Fibromyalgia patients were evaluated according to Giesecke's fibromyalgia subgroups, the Fibromyalgia Impact Questionnaire (FIQ, and the European Quality of Life-5 Dimensions (EQ5D scale. We compared the differences between fibromyalgia patients and controls, and analyzed the correlations between OCT measurements, disease duration, fibromyalgia subgroups, severity, and quality of life. The impact on quality of life in fibromyalgia subgroups and in patients with different disease severity was also analyzed.A significant decrease in the RNFL was detected in fibromyalgia patients compared with controls using the two OCT devices: Cirrus OCT ganglion cell layer analysis registered a significant decrease in the minimum thickness of the inner plexiform layer (74.99±16.63 vs 79.36±3.38 μm, respectively; p = 0.023, nasal inferior, temporal inferior and temporal superior sectors (p = 0.040; 0.011 and 0.046 respectively. The Glaucoma application of the Spectralis OCT revealed thinning in the nasal, temporal inferior and temporal superior sectors (p = 0.009, 0.006, and 0.002 respectively of fibromyalgia patients and the Axonal application in all sectors, except the nasal superior and temporal sectors. The odds ratio (OR to estimate the size effect of FM in RNFL thickness was 1.39. RNFL atrophy was detected in patients with FIQ scores <60 (patients in early disease stages compared with controls in the temporal inferior sector (78.74±17.75 vs 81.65±3

  18. Effect of moisture and chitosan layered silicate on morphology and properties of chitosan/layered silicates films

    International Nuclear Information System (INIS)

    Silva, J.R.M.B. da; Santos, B.F.F. dos; Leite, I.F.

    2014-01-01

    Thin chitosan films have been for some time an object of practical assessments. However, to obtain biopolymers capable of competing with common polymers a significant improvement in their properties is required. Currently, the technology of obtaining polymer/layered silicates nanocomposites has proven to be a good alternative. This work aims to evaluate the effect of chitosan content (CS) and layered silicates (AN) on the morphology and properties of chitosan/ layered silicate films. CS/AN bionanocomposites were prepared by the intercalation by solution in the proportion 1:1 and 5:1. Then were characterized by infrared spectroscopy (FTIR), diffraction (XRD) and X-ray thermogravimetry (TG). It is expected from the acquisition of films, based on different levels of chitosan and layered silicates, choose the best composition to serve as a matrix for packaging drugs and thus be used for future research. (author)

  19. A thin layer fiber-coupled luminescence dosimeter based on Al2O3:C

    DEFF Research Database (Denmark)

    Klein, F.A.; Greilich, Steffen; Andersen, Claus Erik

    2011-01-01

    In this paper we present a fiber-coupled luminescent Al2O3:C dosimeter probe with high spatial resolution (0.1 mm). It is based on thin layers of Al2O3:C crystal powder and a UV-cured acrylate monomer composition. The fabrication of the thin layers is described in detail. No influence of the intr......In this paper we present a fiber-coupled luminescent Al2O3:C dosimeter probe with high spatial resolution (0.1 mm). It is based on thin layers of Al2O3:C crystal powder and a UV-cured acrylate monomer composition. The fabrication of the thin layers is described in detail. No influence...

  20. Studies of void growth in a thin ductile layer between ceramics

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1997-01-01

    growth by a ductile mechanism along the thin layer. Plastic flow in the layer is highly constrained by the ceramics, so that a high. level of triaxial tension develops, leading in some cases to cavitation instabilities. The computations are continued to a state near the occurrence of void coalescence.......The growth of voids in a thin ductile layer between ceramics is analysed numerically, using an axisymmetric cell model to represent an array of uniformly distributed spherical voids at the central plane of the layer. The purpose is to determine the full traction-separation law relevant to crack...

  1. Thin layer model for nonlinear evolution of the Rayleigh-Taylor instability

    Science.gov (United States)

    Zhao, K. G.; Wang, L. F.; Xue, C.; Ye, W. H.; Wu, J. F.; Ding, Y. K.; Zhang, W. Y.

    2018-03-01

    On the basis of the thin layer approximation [Ott, Phys. Rev. Lett. 29, 1429 (1972)], a revised thin layer model for incompressible Rayleigh-Taylor instability has been developed to describe the deformation and nonlinear evolution of the perturbed interface. The differential equations for motion are obtained by analyzing the forces (the gravity and pressure difference) of fluid elements (i.e., Newton's second law). The positions of the perturbed interface are obtained from the numerical solution of the motion equations. For the case of vacuum on both sides of the layer, the positions of the upper and lower interfaces obtained from the revised thin layer approximation agree with that from the weakly nonlinear (WN) model of a finite-thickness fluid layer [Wang et al., Phys. Plasmas 21, 122710 (2014)]. For the case considering the fluids on both sides of the layer, the bubble-spike amplitude from the revised thin layer model agrees with that from the WN model [Wang et al., Phys. Plasmas 17, 052305 (2010)] and the expanded Layzer's theory [Goncharov, Phys. Rev. Lett. 88, 134502 (2002)] in the early nonlinear growth regime. Note that the revised thin layer model can be applied to investigate the perturbation growth at arbitrary Atwood numbers. In addition, the large deformation (the large perturbed amplitude and the arbitrary perturbed distributions) in the initial stage can also be described by the present model.

  2. Enhancement of Electrical Conductance for Pentacene Thin Film Transistor by Controlling an Initial Layer-by-Layer Growth Mode Directly on SiO2 Insulator

    Science.gov (United States)

    Qi, Qiong; Jiang, Yeping; Yu, Aifang; Qiu, Xiaohui; Jiang, Chao

    2009-04-01

    Initial nucleation and growth of pentacene films on various pre-cleaning treated SiO2 gate insulators were systematically examined by atomic force microscope. The performance of fabricated pentacene thin film transistor devices was found to be highly related to the initial film growth modes. In contrast to the film in the three-dimensional island-like growth mode on SiO2 under an organic cleaning process, a layer-by-layer initial growth mode occurred on the SiO2 insulator cleaned with ammonia solution which has shown much improved electrical properties of the thin film transistors. Field effect mobility of the thin film transistor devices could be achieved as high as 1.0 cm2 V-1 s-1 on the bared SiO2/Si substrate and the on/off ratio was over 106. The enhanced electrical conductance was further confirmed by an electrostatic force microscopic observation of quantized electrical potentials via charge-injection to the submonolayer pentacene islands with layer-by-layer growth mode.

  3. Thin-layer chromatography of radioactively labelled cholesterol and precursors from biological material

    International Nuclear Information System (INIS)

    Pill, J.; Aufenanger, J.; Stegmeier, K.; Schmidt, F.H.; Mueller, D.; Boehringer Mannheim G.m.b.H.

    1987-01-01

    The investigation methods of the action of xenobiotics on sterol biosynthesis from 14 C-acetate in rat hepatocyte cultures can be developed, with regard to extraction using Extrelut and the separation of the sterol pattern by thin-layer chromatography, in such a way that they are suitable for wider application, e.g., screening. Good visualisation and recognition of changes in the sterol pattern are possible using autoradiography of the thin-layer chromatogram. (orig.)

  4. Interfacial structure of multi-layered thin-films produced by pulsed laser deposition for use in small-scale ceramic capacitors

    International Nuclear Information System (INIS)

    Araki, Takao; Hino, Takanori; Ohara, Masahiro

    2014-01-01

    The aim of this study was to develop thin film capacitors with superior properties that could provide an alternative to materials currently used in conventional multi-layer ceramic capacitors fabricated by sintering. To this end, an artificial dielectric super lattice technique, incorporating pulsed laser deposition, was applied to improving the dielectric properties of thin film capacitors. This method permits the A-site atoms of a perovskite ABO 3 structure to be selected layer by layer at a nanoscopic scale; consequently, multi-layer BaTiO 3 - SrTiO 3 thin films were produced on Pt(111)/Ti/SiO 2 /Si(100) and SrTiO 3 (111) substrates. Hetero-epitaxial grain growth was observed between BaTiO 3 and SrTiO 3 , with the lattice mismatch between them introducing a compressive residual strain at the interface. The dielectric properties of these multi-layer thin-film capacitors were found to be superior to those of conventional solid-solution thin films once the thickness of the layers and the ratio of the two oxides were optimized

  5. Optical properties and band structure of atomically thin MoS2

    Science.gov (United States)

    Shan, Jie; Mak, Kin Fai; Lee, Changgu; Hone, James; Heinz, Tony

    2010-03-01

    Atomically thin layers of materials can be expected to exhibit distinct electronic structure and novel properties compared to their bulk counterparts. Layered compounds, for which stable atomically thin samples can be produced, are ideal candidates for such studies. Graphene, a monolayer slice of the graphite crystal, is an illustrative example of both the stability and of the interest and importance of such materials. Here we report a study of thin layers of MoS2, a hexagonal layered bulk semiconductor with an indirect band gap of 1.3 eV. MoS2 samples with layer thickness N down to a monolayer were obtained by mechanical exfoliation. We observed an enhancement of the luminescence quantum yield by more than a factor of 100 in monolayer MoS2 compared to the bulk material. The combination of absorption, photoluminescence, and photoconductivity measurements indicates that a transition to a direct-gap material occurs in the limit of the single MoS2 layer. This result is supported by an earlier first-principles calculation [J. Phys. Chem. C 2007, 111, 16192]. Further, by varying the thickness of the samples, we were able to probe the evolution of the electronic structure for N = 1 -- 6 layers.

  6. Silicon surface passivation using thin HfO2 films by atomic layer deposition

    International Nuclear Information System (INIS)

    Gope, Jhuma; Vandana; Batra, Neha; Panigrahi, Jagannath; Singh, Rajbir; Maurya, K.K.; Srivastava, Ritu; Singh, P.K.

    2015-01-01

    Graphical abstract: - Highlights: • HfO 2 films using thermal ALD are studied for silicon surface passivation. • As-deposited thin film (∼8 nm) shows better passivation with surface recombination velocity (SRV) <100 cm/s. • Annealing improves passivation quality with SRV ∼20 cm/s for ∼8 nm film. - Abstract: Hafnium oxide (HfO 2 ) is a potential material for equivalent oxide thickness (EOT) scaling in microelectronics; however, its surface passivation properties particularly on silicon are not well explored. This paper reports investigation on passivation properties of thermally deposited thin HfO 2 films by atomic layer deposition system (ALD) on silicon surface. As-deposited pristine film (∼8 nm) shows better passivation with <100 cm/s surface recombination velocity (SRV) vis-à-vis thicker films. Further improvement in passivation quality is achieved with annealing at 400 °C for 10 min where the SRV reduces to ∼20 cm/s. Conductance measurements show that the interface defect density (D it ) increases with film thickness whereas its value decreases after annealing. XRR data corroborate with the observations made by FTIR and SRV data.

  7. Physical Properties Investigation of Reduced Graphene Oxide Thin Films Prepared by Material Inkjet Printing

    Directory of Open Access Journals (Sweden)

    Veronika Schmiedova

    2017-01-01

    Full Text Available The article is focused on the study of the optical properties of inkjet-printed graphene oxide (GO layers by spectroscopic ellipsometry. Due to its unique optical and electrical properties, GO can be used as, for example, a transparent and flexible electrode material in organic and printed electronics. Spectroscopic ellipsometry was used to characterize the optical response of the GO layer and its reduced form (rGO, obtainable, for example, by reduction of prepared layers by either annealing, UV radiation, or chemical reduction in the visible range. The thicknesses of the layers were determined by a mechanical profilometer and used as an input parameter for optical modeling. Ellipsometric spectra were analyzed according to the dispersion model and the influence of the reduction of GO on optical constants is discussed. Thus, detailed analysis of the ellipsometric data provides a unique tool for qualitative and also quantitative description of the optical properties of GO thin films for electronic applications.

  8. Optical and Electrical Characteristic of Layer-by-layer Sol-gel Spin Coated Nanoparticles ZnO Thin Films

    International Nuclear Information System (INIS)

    Shafinaz Sobihana Shariffudin; Farah Farliana Samat; Sukreen Hana; Mohamad Rusop

    2011-01-01

    Transparent ZnO thin films have been deposited on glass substrate using sol-gel spin coating technique. 0.35 M sol were prepared by dissolving zinc acetate dehydrate in 2-methoxyethanol with monoethanolamine as the stabilizer. In this paper, a novel method called layer-by-layer is introduced, where the thin film is not only dried after each layer is spin-coated, but also directly annealed at 500 degree Celsius to improve the crystallinity of the films. Samples without annealing were also prepared as the control sample. ZnO thin films were characterized using field emission scanning electron microscopy, X-ray diffraction, current-voltage measurement, UV-Vis spectroscopy and photoluminescence spectroscopy. The results revealed that layer by- layer ZnO thin films have better conductivity and higher intensity peak for PL spectra at visible spectra of 580 nm. FE-SEM images shows nanoparticles almost hexagonal shaped with high crystallinity compared to control samples. (author)

  9. Cross-Field Current Instabilities in Thin Ionization Layers and the Enhanced Aurora

    International Nuclear Information System (INIS)

    Johnson, Jay R.; Okuda, Hideo

    2008-01-01

    Nearly half of the time, auroral displays exhibit thin, bright layers known as 'enhanced aurora'. There is a substantial body of evidence that connects these displays with thin, dense, heavy ion layers in the E-region. Based on the spectral characteristics of the enhanced layers, it is believed that they result when wave-particle interaction heats ambient electrons to energies at or just above the 17 eV ionization energy of N2. While there are several possible instabilities that could produce suprathermal electrons in thin layers, there has been no clear theoretical investigation which examines in detail how wave instabilities in the thin ionization layers could develop and produce the suprathermal electrons. We examine instabilities which would occur in thin, dense, heavy ion layers using extensive analytical analysis combined with particle simulations. We analyze a cross field current instability that is found to be strongly unstable in the heavy ion layers. Electrostatic simulations show that substantial heating of the ambient electrons occurs with energization at or above the N2 ionization energy.

  10. Ultra-thin fluoropolymer buffer layer as an anode stabilizer of organic light emitting devices

    International Nuclear Information System (INIS)

    Yang, Nam Chul; Lee, Jaeho; Song, Myung-Won; Ahn, Nari; Kim, Mu-Hyun; Lee, Songtaek; Chin, Byung Doo

    2007-01-01

    We have investigated the effect of thin fluoro-acrylic polymer as an anode stabilizer on the lifetime of an organic light emitting device (OLED). Surface chemical properties of commercial fluoropolymer, FC-722 (Fluorad(TM) of 3M), on indium-tin oxide (ITO) were characterized by x-ray photoemission spectroscopy. An OLED with 1 nm thick fluoropolymeric film showed identical brightness and efficiency behaviour and improved operational stability compared with the reference device with UV-O 3 treated ITO. The improvement in the lifetime was accompanied by the suppression of the voltage increase at the initial stage of constant-current driving, which can be attributed to the action of the FC-722 layer by smoothing the ITO surface. Fluoropolymer coating, therefore, improves the lifetime of the small molecular OLED by the simple and reliable anode-stabilizing process

  11. Research Update: Reactively sputtered nanometer-thin ZrN film as a diffusion barrier between Al and boron layers for radiation detector applications

    Directory of Open Access Journals (Sweden)

    Negin Golshani

    2014-10-01

    Full Text Available In this paper, optimization of the process flow for PureB detectors is investigated. Diffusion barrier layers between a boron layer and the aluminum interconnect can be used to enhance the performance and visual appearance of radiation detectors. Few nanometers-thin Zirconium Nitride (ZrN layer deposited by reactive sputtering in a mixture of Ar/N2, is identified as a reliable diffusion barrier with better fabrication process compatibility than others. The barrier properties of this layer have been tested for different boron layers deposited at low and high temperatures with extensive optical microscopy analyses, electron beam induced current, SEM, and electrical measurements. This study demonstrated that spiking behavior of pure Al on Si can be prevented by the thin ZrN layer thus improving the performance of the radiation detectors fabricated using boron layer.

  12. Transparent thin-film transistor exploratory development via sequential layer deposition and thermal annealing

    International Nuclear Information System (INIS)

    Hong, David; Chiang, Hai Q.; Presley, Rick E.; Dehuff, Nicole L.; Bender, Jeffrey P.; Park, Cheol-Hee; Wager, John F.; Keszler, Douglas A.

    2006-01-01

    A novel deposition methodology is employed for exploratory development of a class of high-performance transparent thin-film transistor (TTFT) channel materials involving oxides composed of heavy-metal cations with (n - 1)d 10 ns 0 (n ≥ 4) electronic configurations. The method involves sequential radio-frequency sputter deposition of thin, single cation oxide layers and subsequent post-deposition annealing in order to obtain a multi-component oxide thin film. The viability of this rapid materials development methodology is demonstrated through the realization of high-performance TTFTs with channel layers composed of zinc oxide/tin oxide, and tin oxide/indium oxide

  13. Alternative buffer layer development in Cu(In,Ga)Se2 thin film solar cells

    Science.gov (United States)

    Xin, Peipei

    Cu(In,Ga)Se2-based thin film solar cells are considered to be one of the most promising photovoltaic technologies. Cu(In,Ga)Se2 (CIGS) solar devices have the potential advantage of low-cost, fast fabrication by using semiconductor layers of only a few micrometers thick and high efficiency photovoltaics have been reported at both the cell and the module levels. CdS via chemical bath deposition (CBD) has been the most widely used buffer option to form the critical junction in CIGS-based thin film photovoltaic devices. However, the disadvantages of CdS can’t be ignored - regulations on cadmium usage are getting stricter primarily due to its toxicity and environmental impacts, and the proper handling of the large amount of toxic chemical bath waste is a massive and expensive task. This dissertation is devoted to the development of Cd-free alternative buffer layers in CIGS-based thin film solar cells. Based on the considerations of buffer layer selection criteria and extensive literature review, Zn-compound buffer materials are chosen as the primary investigation candidates. Radio frequency magnetron sputtering is the preferred buffer deposition approach since it’s a clean and more controllable technique compared to CBD, and is readily scaled to large area manufacturing. First, a comprehensive study of the ZnSe1-xOx compound prepared by reactive sputtering was completed. As the oxygen content in the reactive sputtering gas increased, ZnSe1-xOx crystallinity and bandgap decreased. It’s observed that oxygen miscibility in ZnSe was low and a secondary phase formed when the O2 / (O2 + Ar) ratio in the sputtering gas exceeded 2%. Two approaches were proposed to optimize the band alignment between the CIGS and buffer layer. One method focused on the bandgap engineering of the absorber, the other focused on the band structure modification of the buffer. As a result, improved current of the solar cell was achieved although a carrier transport barrier at the junction

  14. Transport parameters of thin, supported cathode layers in solid oxide fuel cells (SOFCs); Transportparameter duenner, getraegerter Kathodenschichten der oxidkeramischen Brennstoffzelle

    Energy Technology Data Exchange (ETDEWEB)

    Wedershoven, Christian

    2010-12-22

    The aim of this work was to determine the transport properties of thin cathode layers, which are part of the composite layer of a fabricated anode-supported solid oxide fuel cell (SOFC). The transport properties of the anode and cathode have a significant influence on the electrochemical performance of a fuel cell stack and therefore represent an important parameter when designing fuel cell stacks. In order to determine the transport parameters of the cathode layers in a fabricated SOFC, it is necessary to permeate the thin cathode layer deposited on the gas-tight electrolyte with a defined gas transport. These thin cathode layers cannot be fabricated as mechanically stable single layers and cannot therefore be investigated in the diffusion and permeation experiments usually used to determine transport parameters. The setup of these experiments - particularly the sample holder - was therefore altered in this work. The result of this altered setup was a three-dimensional flow configuration. Compared to the conventional setup, it was no longer possible to describe the gas transport in the experiments with an analytical one-dimensional solution. A numerical solution process had to be used to evaluate the measurements. The new setup permitted a sufficiently symmetrical gas distribution and thus allowed the description of the transport to be reduced to a two-dimensional description, which significantly reduced the computational effort required to evaluate the measurements. For pressure-induced transport, a parametrized coherent expression of transport could be derived. This expression is equivalent to the analytical description of the transport in conventional measurement setups, with the exception of parameters that describe the geometry of the gas diffusion. In this case, a numerical process is not necessary for the evaluation. Using the transport parameters of mechanically stable anode substrates, which can be measured both in the old and the new setups, the old and

  15. Ion beams as a means of deposition and in-situ characterization of thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Gruen, D.M.; Lin, Y.P.; Schmidt, H.; Liu, Y.L.; Barr, T.; Chang, R.P.H.

    1992-01-01

    Ion beam-surface interactions produce many effects in thin film deposition which are similar to those encountered in plasma deposition processes. However, because of the lower pressures and higher directionality associated with the ion beam process, it is easier to avoid some sources of film contamination and to provide better control of ion energies and fluxes. Additional effects occur in the ion beam process because of the relatively small degree of thermalization resulting from gas phase collisions with both the ion beam and atoms sputtered from the target. These effects may be either beneficial or detrimental to the film properties, depending on the material and deposition conditions. Ion beam deposition is particularly suited to the deposition of multi-component films and layered structures, and can in principle be extended to a complete device fabrication process. However, complex phenomena occur in the deposition of many materials of high technical interest which make it desirable to monitor the film growth at the monolayer level. It is possible to make use of ion-surface interactions to provide a full suite of surface analytical capabilities in one instrument, and this data may be obtained at ambient pressures which are far too high for conventional surface analysis techniques. Such an instrument is under development and its current performance characteristics and anticipated capabilities are described

  16. Fabrication of Au/graphene oxide/Ag sandwich structure thin film and its tunable energetics and tailorable optical properties

    Directory of Open Access Journals (Sweden)

    Ruijin Hong

    2017-01-01

    Full Text Available Au/graphene oxide/Ag sandwich structure thin film was fabricated. The effects of graphene oxide (GO and bimetal on the structure and optical properties of metal silver films were investigated by X-ray diffraction (XRD, optical absorption, and Raman intensity measurements, respectively. Compared to silver thin film, Au/graphene oxide/Ag sandwich structure composite thin films were observed with wider optical absorption peak and enhanced absorption intensity. The Raman signal for Rhodamine B molecules based on the Au/graphene oxide/Ag sandwich nanostructure substrate were obviously enhanced due to the bimetal layer and GO layer with tunable absorption intensity and fluorescence quenching effects.

  17. Optical properties of aluminum oxide thin films and colloidal nanostructures

    International Nuclear Information System (INIS)

    Koushki, E.; Mousavi, S.H.; Jafari Mohammadi, S.A.; Majles Ara, M.H.; Oliveira, P.W. de

    2015-01-01

    In this work, we prepared thin films of aluminum oxide (Al 2 O 3 ) with different thicknesses, using a wet chemical process. The Al 2 O 3 nanoparticles with an average size of 40 nm were dispersed in water and deposited on soda glass substrates. The morphology of the resulting thin films was characterized by means of scanning electron microscopy. The optical properties of the thin films were studied by measuring reflectance and transmittance. A theoretical description of the reflection and transmission mechanism of the films was developed by measuring the thickness and spectral behavior of the refractive index. Numerical evaluations were used for modeling the optical spectra of the thin films of alumina. By fitting numerical curves to the experimental data, the extinction coefficient and refractive index were obtained. The dielectric constant and optical properties of the colloidal solution of the particles were also studied. - Highlights: • Optical properties of alumina thin films and nanocolloids were investigated. • New theoretical depiction of transmission and reflection from the thin films was evaluated. • Interference in reflection from thin films was studied. • Real and imaginary parts of the dielectric constant for alumina nanoparticles were calculated. • Using a novel method, evaluation of optical dispersion and UV–visible absorption were performed.

  18. Optical properties of aluminum oxide thin films and colloidal nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Koushki, E., E-mail: ehsan.koushki@yahoo.com [Photonics Laboratory, Physics Faculty, Kharazmi University, Tehran (Iran, Islamic Republic of); Physics Department, Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); Mousavi, S.H. [INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken (Germany); Jafari Mohammadi, S.A. [INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken (Germany); Department of Chemistry, College of Science, Islamshahr Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Majles Ara, M.H. [Photonics Laboratory, Physics Faculty, Kharazmi University, Tehran (Iran, Islamic Republic of); Oliveira, P.W. de [INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken (Germany)

    2015-10-01

    In this work, we prepared thin films of aluminum oxide (Al{sub 2}O{sub 3}) with different thicknesses, using a wet chemical process. The Al{sub 2}O{sub 3} nanoparticles with an average size of 40 nm were dispersed in water and deposited on soda glass substrates. The morphology of the resulting thin films was characterized by means of scanning electron microscopy. The optical properties of the thin films were studied by measuring reflectance and transmittance. A theoretical description of the reflection and transmission mechanism of the films was developed by measuring the thickness and spectral behavior of the refractive index. Numerical evaluations were used for modeling the optical spectra of the thin films of alumina. By fitting numerical curves to the experimental data, the extinction coefficient and refractive index were obtained. The dielectric constant and optical properties of the colloidal solution of the particles were also studied. - Highlights: • Optical properties of alumina thin films and nanocolloids were investigated. • New theoretical depiction of transmission and reflection from the thin films was evaluated. • Interference in reflection from thin films was studied. • Real and imaginary parts of the dielectric constant for alumina nanoparticles were calculated. • Using a novel method, evaluation of optical dispersion and UV–visible absorption were performed.

  19. Tuning of electronic properties of fullerene-oligothiophene layers

    Energy Technology Data Exchange (ETDEWEB)

    Lewandowska, Kornelia [Institute of Molecular Physics, Polish Academy of Sciences, ul. Smoluchowskiego 17, 60-179 Poznań (Poland); Pilarczyk, Kacper, E-mail: kacper.pilarczyk@fis.agh.edu.pl, E-mail: szacilow@agh.edu.pl [Faculty of Physics and Applied Computer Science, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków (Poland); Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków (Poland); Podborska, Agnieszka [Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków (Poland); Kim, Tae-Dong; Lee, Kwang-Sup [Department of Advanced Materials, Hannam University, 305-811 Daejeon (Korea, Republic of); Szaciłowski, Konrad, E-mail: kacper.pilarczyk@fis.agh.edu.pl, E-mail: szacilow@agh.edu.pl [Academic Centre for Materials and Nanotechnology, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków (Poland); Faculty of Non-Ferrous Metals, AGH University of Science and Technology, al. A. Mickiewicza 30, 30-059 Kraków (Poland)

    2015-01-26

    Electronic properties of fullerene derivatives containing oligothiophene pendant chain (1–3 thiophene moieties) were investigated using the Kelvin probe technique and quantum chemistry methods. For electrochemical examination of these systems, Langmuir–Blodgett (LB) layers were prepared by the deposition on a gold substrate. The analysis of the experimental data shows that the value of the work function depends strongly on the length of oligothiophene chain. Similar dependence was also found for the surface photovoltage measurements conducted for the layers consisting of multiple LB films of the examined compounds deposited on gold surfaces. The assumption has been made that these changes are associated with the influence of oligothiophene chain on the electrostatic potential distribution near the surface of the sample. The hypothesis was confirmed by the results of DFT calculations, which revealed that the value of Fermi level energy shifts in the opposite direction to the determined work function. The key highlights of this study are as follows: electronic structure tuning by oligothiophene side chain; DFT calculation on fullerene-thiophene system; work function measurements of thin molecular layers.

  20. Thin- layer drying of diced cassava roots | Kajuna | African Journal of ...

    African Journals Online (AJOL)

    Fresh cassava (Manihot spp) roots were obtained from a farm and used in this study. They were peeled and diced using a special dicing machine into cubes of side 0.5 cm. The cubes were dried in thin layers (one to three layers) in a drier that was specifically designed and fabricated in the Department of Agricultural ...

  1. Effect of operating conditions on thin layers of titanium posed on ...

    African Journals Online (AJOL)

    Effect of operating conditions on thin layers of titanium posed on steel 100C6 substrates with PVD method. ... Journal of Fundamental and Applied Sciences ... reaction between the two parts of the system which results the formation of carbides of Ti due to the diffusion of carbon from the substrate towards deposited layers.

  2. Copper(II) Schiff base complexes and their mixed thin layers with ...

    Indian Academy of Sciences (India)

    ning electron microscopy (SEM/EDS), atomic force microscopy (AFM) and fluorescence spectroscopy. For. Cu(II) layers the most intensive fluorescence bands due to intra-ligand transitions were observed between 462 and 503 nm. The fluorescence intensity of thin layers was corelated to the rotation speed. In the case of ...

  3. Thin TaC layer produced by ion mixing

    DEFF Research Database (Denmark)

    Barna, Árpád; Kotis, László; Pécz, Béla

    2012-01-01

    Ion-beam mixing in C/Ta layered systems was investigated. C 8nm/Ta 12nm and C 20nm/Ta 19nm/C 20nm layer systems were irradiated by Ga+ ions of energy in the range of 2–30keV. In case of the 8nm and 20nm thick C cover layers applying 5–8keV and 20–30keV Ga+ ion energy, respectively resulted...... in strongly asymmetric ion mixing; the carbon was readily transported to the Ta layer, while the reverse process was much weaker. Because of the asymmetrical transport the C/TaC interface remained sharp independently from the applied fluence. The carbon transported to the Ta layer formed Ta......Cx. The stoichiometry of the carbide produced varied along the depth. The TaCx layer contained implanted Ga, the concentration of which decreased with increasing depth. The thickness of the TaCx layer could be tailored by the ion fluence and energy making possible to produce coating layer of desired thickness....

  4. Characterization and obtainment of thin films based on N,N,N-trimethyl chitosan and heparin through the technical layer-by-layer

    International Nuclear Information System (INIS)

    Martins, Alessandro F.; Follmann, Heveline D.M.; Rubira, Adley F.; Muniz, Edvani C.

    2011-01-01

    Thin films of Heparin (HP) and N,N,N-trimethyl chitosan (TMC) with a high degree of quaternization (DQ) were obtained at pH 7.4 through the layer-by-layer (LbL) technique. Polystyrene (PS) was oxidized with aqueous solution of sodium persulfate and subsequently employed as substrate. The characterization of TMC and the respective determination of DQ were performed through 1 H NMR spectroscopy. The thin films de TMC/HP were characterized by FTIR-ATR and AFM. Both techniques confirmed the adsorption of TMC and HP in surface of the PS. The increasing of the bilayers provides a decrease of the projections and/or roughness, further of minimizing the depressions at the surface of the films. Studies of thin films the base of TMC/HP prepared from the LbL technique has not been reported in the literature. It is expected that the thin films of TMC/HP present anti-adhesive and antimicrobial properties. (author)

  5. Oxide ferroelectric thin films: synthesis from organometallic compounds and properties

    International Nuclear Information System (INIS)

    Vertoprakhov, Vladimir N; Nikulina, Lyubov' D; Igumenov, Igor K

    2005-01-01

    Chemical methods for the preparation of oxide ferroelectric thin films from organometallic compounds published over the last 10-15 years are considered systematically and generalised. Layers of these films are promising for the creation of non-volatile memory elements and for use in nano- and microelectronic devices.

  6. Deposition of metal chalcogenide thin films by successive ionic layer ...

    Indian Academy of Sciences (India)

    ) method, has emerged as one of the solution methods to deposit a variety of compound materials in thin film form. The SILAR method is inexpensive, simple and convenient for large area deposition. A variety of substrates such as insulators, ...

  7. Deposition of metal chalcogenide thin films by successive ionic layer

    Indian Academy of Sciences (India)

    ) method, has emerged as one of the solution methods to deposit a variety of compound materials in thin film form. The SILAR method is inexpensive, simple and convenient for large area deposition. A variety of substrates such as insulators, ...

  8. Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices

    Energy Technology Data Exchange (ETDEWEB)

    Hoye, Robert L. Z., E-mail: rlzh2@cam.ac.uk, E-mail: jld35@cam.ac.uk; MacManus-Driscoll, Judith L., E-mail: rlzh2@cam.ac.uk, E-mail: jld35@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Muñoz-Rojas, David [LMGP, University Grenoble-Alpes, CNRS, F-3800 Grenoble (France); Nelson, Shelby F. [Kodak Research Laboratories, Eastman Kodak Company, Rochester, New York 14650 (United States); Illiberi, Andrea; Poodt, Paul [Holst Centre/TNO Thin Film Technology, Eindhoven, 5656 AE (Netherlands); Roozeboom, Fred [Holst Centre/TNO Thin Film Technology, Eindhoven, 5656 AE (Netherlands); Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB (Netherlands)

    2015-04-01

    Atmospheric pressure spatial atomic layer deposition (AP-SALD) has recently emerged as an appealing technique for rapidly producing high quality oxides. Here, we focus on the use of AP-SALD to deposit functional ZnO thin films, particularly on the reactors used, the film properties, and the dopants that have been studied. We highlight how these films are advantageous for the performance of solar cells, organometal halide perovskite light emitting diodes, and thin-film transistors. Future AP-SALD technology will enable the commercial processing of thin films over large areas on a sheet-to-sheet and roll-to-roll basis, with new reactor designs emerging for flexible plastic and paper electronics.

  9. Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices

    Directory of Open Access Journals (Sweden)

    Robert L. Z. Hoye

    2015-04-01

    Full Text Available Atmospheric pressure spatial atomic layer deposition (AP-SALD has recently emerged as an appealing technique for rapidly producing high quality oxides. Here, we focus on the use of AP-SALD to deposit functional ZnO thin films, particularly on the reactors used, the film properties, and the dopants that have been studied. We highlight how these films are advantageous for the performance of solar cells, organometal halide perovskite light emitting diodes, and thin-film transistors. Future AP-SALD technology will enable the commercial processing of thin films over large areas on a sheet-to-sheet and roll-to-roll basis, with new reactor designs emerging for flexible plastic and paper electronics.

  10. Fast light-induced reversible wettability of a zinc oxide nanorod array coated with a thin gold layer

    Science.gov (United States)

    Wei, Yuefan; Du, Hejun; Kong, Junhua; Tran, Van-Thai; Koh, Jia Kai; Zhao, Chenyang; He, Chaobin

    2017-11-01

    Zinc oxide (ZnO) has gained much attention recently due to its excellent physical and chemical properties, and has been extensively studied in energy harvesting applications such as photovoltaic and piezoelectric devices. In recent years, its reversible wettability has also attracted increasing interest. The wettability of ZnO nanostructures with various morphologies has been studied. However, to the best of our knowledge, there is still a lack of investigations on further modifications on ZnO to provide more benefits than pristine ZnO. Comprehensive studies on the reversible wettability are still needed. In this study, a ZnO nanorod array was prepared via a hydrothermal process and subsequently coated with thin gold layers with varied thickness. The morphologies and structures, optical properties and wettability were investigated. It is revealed that the ZnO-Au system possesses recoverable wettability upon switching between visible-ultraviolet light and a dark environment, which is verified by the contact angle change. The introduction of the thin gold layer to the ZnO nanorod array effectively increases the recovery rate of the wettability. The improvements are attributed to the hierarchical structures, which are formed by depositing thin gold layers onto the ZnO nanorod array, the visible light sensitivity due to the plasmonic effect of the deposited gold, as well as the fast charge-induced surface status change upon light illumination or dark storage. The improvement is beneficial to applications in environmental purification, energy harvesting, micro-lenses, and smart devices.

  11. Method for Aluminum Oxide Thin Films Prepared through Low Temperature Atomic Layer Deposition for Encapsulating Organic Electroluminescent Devices

    Directory of Open Access Journals (Sweden)

    Hui-Ying Li

    2015-02-01

    Full Text Available Preparation of dense alumina (Al2O3 thin film through atomic layer deposition (ALD provides a pathway to achieve the encapsulation of organic light emitting devices (OLED. Unlike traditional ALD which is usually executed at higher reaction n temperatures that may affect the performance of OLED, this application discusses the development on preparation of ALD thin film at a low temperature. One concern of ALD is the suppressing effect of ambient temperature on uniformity of thin film. To mitigate this issue, the pumping time in each reaction cycle was increased during the preparation process, which removed reaction byproducts and inhibited the formation of vacancies. As a result, the obtained thin film had both high uniformity and density properties, which provided an excellent encapsulation performance. The results from microstructure morphology analysis, water vapor transmission rate, and lifetime test showed that the difference in uniformity between thin films prepared at low temperatures, with increased pumping time, and high temperatures was small and there was no obvious influence of increased pumping time on light emitting performance. Meanwhile, the permeability for water vapor of the thin film prepared at a low temperature was found to reach as low as 1.5 × 10−4 g/(m2·day under ambient conditions of 25 °C and 60% relative humidity, indicating a potential extension in the lifetime for the OLED.

  12. Vibration analysis of thin-wall structures containing piezoactive layers

    International Nuclear Information System (INIS)

    Guz, I A; Kashtalyan, M; Zhuk, Y A

    2010-01-01

    A coupled dynamic problem of electro-mechanics for a layered beam is formulated based on the Kirchhoff-Love hypotheses. In the case of harmonic loading, a simplified formulation is given using the single frequency approximation and the concept of complex moduli. As an example, the problem of forced vibration of a three-layer sandwich beam (aluminium alloy core covered with piezoelectric layers) with hinged ends is solved in order to investigate the accuracy and applicability of the approximate monoharmonic approach. Different aspects of the beam response to the mechanical and electric excitation are studied.

  13. Modeling of magnetic properties of iron thin films deposited by RF magnetron sputtering using Preisach model

    Directory of Open Access Journals (Sweden)

    Bendjerad Adel

    2016-01-01

    Full Text Available Iron thin films were deposited on glass substrates using RF magnetron sputtering and their optimal deposition conditions were determined. The structure properties were analyzed using x-ray diffraction (XRD and their magnetic hysteresis loops were obtained by Vibrating Sample Magnetometer (VSM at room temperature. In this situation, the magnetic field is either parallel or perpendicular to the substrate plane. The main contribution of this work is to characterize the thin layers and present a mathematical model that can get best fit of the characteristics B(H. By using Preisach model, good agreement was obtained between theoretical and experimental results in both cases.

  14. Optical Properties of Lead Silver Sulphide Ternary Thin Films ...

    African Journals Online (AJOL)

    Optical Properties of Lead Silver Sulphide Ternary Thin Films Deposited by Chemical Bath Method. ... The optical properties studied include reflectance, absorption coefficient, thickness, refractive index, extinction coefficient, optical conductivity and band gap energy. The films showed very high absorbance in the UV region, ...

  15. Fabrication of Hydrogenated Amorphous Germanium Thin Layer Film and ItsCharacterization

    International Nuclear Information System (INIS)

    Agus-Santoso; Lely-Susita RM; Tjipto-Sujitno

    2000-01-01

    Fabrication of hydrogenated amorphous Germanium thin film by vacuumevaporation method and then deposition with hydrogen atom by glow dischargeplasma radio frequency has been done. This germanium amorphous (a-Ge) thinfilm involves a lot of dangling bonds in the network due to the irregularityof the atomic structures and it will decrease is conductivity. To improve theband properties of (a-Ge) thin film layer a hydrogenated plasma isintroduced. Process of introducing of the hydrogen into the a-Ge film is meanto reduce the dangling bonds so that the best electric conductivity of a Ge:Hthin film will obtained. To identify the hydrogen atom in the sample acharacterization using infrared spectrometer has been done, as well as themeasurement of conductivity of the samples. From the characterization usinginfrared spectroscopy the existence of hydrogen atom was found at absorptionpeak with wave number 1637.5 cm -1 , while the optimum conductivity of thesample 1634.86 Ω -1 cm -1 was achieved at 343 o K. (author)

  16. Evaluation of double-layer density modulated Si thin films as Li-ion battery anodes

    Science.gov (United States)

    Taha Demirkan, Muhammed; Yurukcu, Mesut; Dursun, Burcu; Demir-Cakan, Rezan; Karabacak, Tansel

    2017-10-01

    Double-layer density modulated silicon thin films which contain alternating low and high density Si film layers were fabricated by magnetron sputtering. Two different samples consisting of alternating layers of high-density/low-density and low-density/high-density Si thin film layers were investigated as anode electrodes in Li-ion batteries. Si thin film in which the terminating layer at the top is low density Si layer-quoted as low-density/high-density film (LD/HD)- exhibits better performance than Si thin film that has high density layer at the top, -quoted as high-density/low-density (HD/LD). A highly stabilized cycling performance with the specific charge capacities of 2000 mAh g‑1 at the 150th cycle at C/2 current density, and 1200 mAh g‑1 at the 240th cycle at 10 C current density were observed for the LD/HD Si anode in the presence of fluoroethylene carbonate (FEC) electrolyte additive.

  17. Structural And Optical Properties Of VOx Thin Films

    Directory of Open Access Journals (Sweden)

    Schneider K.

    2015-06-01

    Full Text Available VOx thin films were deposited on Corning glass, fused silica and Ti foils by means of rf reactive sputtering from a metallic vanadium target. Argon-oxygen gas mixtures of different compositions controlled by the flow rates were used for sputtering. Influence of the oxygen partial pressure in the sputtering chamber on the structural and optical properties of thin films has been investigated.

  18. Optoelectronic properties of doped hydrothermal ZnO thin films

    KAUST Repository

    Mughal, Asad J.

    2017-03-10

    Group III impurity doped ZnO thin films were deposited on MgAl2O3 substrates using a simple low temperature two-step deposition method involving atomic layer deposition and hydrothermal epitaxy. Films with varying concentrations of either Al, Ga, or In were evaluated for their optoelectronic properties. Inductively coupled plasma atomic emission spectroscopy was used to determine the concentration of dopants within the ZnO films. While Al and Ga-doped films showed linear incorporation rates with the addition of precursors salts in the hydrothermal growth solution, In-doped films were shown to saturate at relatively low concentrations. It was found that Ga-doped films showed the best performance in terms of electrical resistivity and optical absorbance when compared to those doped with In or Al, with a resistivity as low as 1.9 mΩ cm and an optical absorption coefficient of 441 cm−1 at 450 nm.

  19. X-Ray Diffractometry of Thin Layers - Possibilities and Problems

    Directory of Open Access Journals (Sweden)

    Vladimir Zucha

    2005-01-01

    Full Text Available Efficieney of two deconvolution methods used in X-ray powder diffraction analysis is compared for thin films of Pd and Pt. The first method is the classical Stokes method and the second one is method of indirect deconvolution. But calculated integral breadth of Gauss and Cauchy components of Voigt function which describe the physical broadening are different. The analysis of the all found pheromones show that the method of indirect deconvolution gives more accurate results.

  20. Thin organic layers prepared by MAPLE for gas sensor application

    Czech Academy of Sciences Publication Activity Database

    Fryček, R.; Jelínek, Miroslav; Kocourek, Tomáš; Fitl, P.; Vrňata, M.; Myslík, , V.; Vrbová, M.

    2006-01-01

    Roč. 495, - (2006), s. 308-311 ISSN 0040-6090 R&D Projects: GA ČR GA104/03/0406 Grant - others:CTU projects(CZ) 6640770030 a 88/1 Institutional research plan: CEZ:AV0Z10100522 Keywords : PLD * MAPLE * sensor s * thin films Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.666, year: 2006

  1. Thin layer alanine dosimeter with optical spectrophotometric evaluation

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    2000-01-01

    Experience in the high dose dosimetry of gamma radiation, gathered in our group from the sixties till now, allows to express the opinion, that techniques applied are adequate to solve problems. It can be confirmed by the fact that 60% of laboratories participating in the international comparison during the duration of the contract obtained satisfactory results. Adaptation of these methods, in particular of the alanine-ESR dosimetry to highly inhomogeneous fields of EB gives poor results, as it has been shown on thin films of the alanine/polymer composite. However, the applications of these films give excellent results if the concentration of the radical CH 3 C·H CO 2 - is measured by diffuse reflection spectrophotometry, which tolerates poor transparency of the composite and is insensitive to the orientation of crystals of alanine in thin films, what is disqualifying the ESR measurements. The development of thin-film dosimeters for EB processing was possible due to new developments in solid state radiation chemistry. The research has revealed some unsolved questions, e.g. of the high temperature coefficient of alanine based dosimeters, of the role of the size of spurs and the necessity to adapt dosimetry to the energy spectrum of electrons, because every type of accelerators differs in that respect. (author)

  2. Magnetic and Electric Properties of , ( Layered Perovskites

    Directory of Open Access Journals (Sweden)

    A. I. Ali

    2013-01-01

    Full Text Available The electric and magnetic properties of layered perovskites have been investigated systematically over the doping range . It was found that both Sr1.5Y0.5CoO4 and Sr1.4Y0.6CoO4 undergo ferromagnetic (FM transition around 145 K and 120 K, respectively. On the other hand, Sr1.3Y0.7CoO4 and Sr1.2Y0.8CoO4 compounds showed paramagnetic behavior over a wide range of temperatures. In addition, spin-glass transition ( was observed at 10 K for Sr1.3Y0.7CoO4. All investigated samples are semiconducting-like within the temperature range of 10–300 K. The temperature dependence of the electrical resistivity, , was described by two-dimensional variable range hopping (2D-VRH model at 50 K < ≤ 300 K. Comparison with other layered perovskites was discussed in this work.

  3. Optical switching property of a light-induced pinhole in antimony thin film

    Science.gov (United States)

    Fukaya, Toshio; Tominaga, Junji; Nakano, Takashi; Atoda, Nobufumi

    1999-11-01

    Optical near-field recording, called a super-resolution near-field structure, records and retrieves small marks beyond the diffraction limit. A thin layer of an antimony (Sb) film, added to the usual phase-change optical disk, is the key material of this technique. Nonlinear optical properties of an Sb film, especially optical switching, were studied in the stationary state using a nanosecond pulse laser. Clear switching was observed under microscopic measurement.

  4. Thin-layer chromatography can resolve phosphotyrosine, phosphoserine, and phosphothreonine in a protein hydrolyzate

    International Nuclear Information System (INIS)

    Neufeld, E.; Goren, H.J.; Boland, D.

    1989-01-01

    A solution of propionic acid, 1 M ammonium hydroxide, and isopropyl alcohol (45/17.5/17.5, v/v) was the ascending solvent in the separation of phosphotyrosine, phosphothreonine, and phosphoserine by thin-layer chromatography. The immobile phase was cellulose. The relative migrations were 0.44, 0.38, and 0.2, respectively. A previously described thin-layer system consisting of isobutyric acid and 0.5 M ammonium hydroxide (50/30, v/v) gave very similar relative migrations. To determine the usefulness of thin-layer chromatography in phosphoamino acid analysis, the propionic acid/ammonium hydroxide/isopropyl alcohol solution was used to characterize phosphorylated residues in a plasma membrane protein which is a substrate for the insulin receptor kinase, in insulin receptor phosphorylated histone H2B, and in an in vivo phosphorylated 90000-Da protein from IM9 cells. 32 P-labeled proteins were separated by dodecyl sulfate-gel electrophoresis, digested with trypsin, and then hydrolyzed with 6 N HCl, 2 h, 110 degrees C. Following thin-layer chromatography of the hydrolyzates and autoradiography, phosphotyrosine was detected in insulin receptor substrates, and phosphoserine and phosphothreonine were found in the in vivo-phosphorylated protein. This study supports previous reports about the practicality of thin-layer chromatography in phosphoamino acid analysis and it demonstrates that a propionic acid, ammonium hydroxide, isoprophyl alcohol solution may be a useful ascending solvent mixture for this purpose

  5. “Lidar Investigations of Aerosol, Cloud, and Boundary Layer Properties Over the ARM ACRF Sites”

    Energy Technology Data Exchange (ETDEWEB)

    Ferrare, Richard [NASA Langley Research Center, Hampton, VA (United States); Turner, David [National Oceanic and Atmospheric Administration (NOAA) National Severe Storms Lab., Norman, OK (United States)

    2015-01-13

    Project goals; Characterize the aerosol and ice vertical distributions over the ARM NSA site, and in particular to discriminate between elevated aerosol layers and ice clouds in optically thin scattering layers; Characterize the water vapor and aerosol vertical distributions over the ARM Darwin site, how these distributions vary seasonally, and quantify the amount of water vapor and aerosol that is above the boundary layer; Use the high temporal resolution Raman lidar data to examine how aerosol properties vary near clouds; Use the high temporal resolution Raman lidar and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds; and Use the high temporal Raman lidar data to continue to characterize the turbulence within the convective boundary layer and how the turbulence statistics (e.g., variance, skewness) is correlated with larger scale variables predicted by models.

  6. Surface passivation investigation on ultra-thin atomic layer deposited aluminum oxide layers for their potential application to form tunnel layer passivated contacts

    Science.gov (United States)

    Xin, Zheng; Ling, Zhi Peng; Nandakumar, Naomi; Kaur, Gurleen; Ke, Cangming; Liao, Baochen; Aberle, Armin G.; Stangl, Rolf

    2017-08-01

    The surface passivation performance of atomic layer deposited ultra-thin aluminium oxide layers with different thickness in the tunnel layer regime, i.e., ranging from one atomic cycle (∼0.13 nm) to 11 atomic cycles (∼1.5 nm) on n-type silicon wafers is studied. The effect of thickness and thermal activation on passivation performance is investigated with corona-voltage metrology to measure the interface defect density D it(E) and the total interface charge Q tot. Furthermore, the bonding configuration variation of the AlO x films under various post-deposition thermal activation conditions is analyzed by Fourier transform infrared spectroscopy. Additionally, poly(3,4-ethylenedioxythiophene) poly(styrene sulfonate) is used as capping layer on ultra-thin AlO x tunneling layers to further reduce the surface recombination current density to values as low as 42 fA/cm2. This work is a useful reference for using ultra-thin ALD AlO x layers as tunnel layers in order to form hole selective passivated contacts for silicon solar cells.

  7. Barium strontium titanate (BST) thin film analysis on different layer and annealing temperature

    Science.gov (United States)

    Teh, Y. C.; Ong, N. R.; Sauli, Z.; Alcain, J. B.; Retnasamy, V.

    2017-09-01

    Barium Strontium Titanate (BST) thin film has been prepared by using sol-gel method. The samples are prepared with 2 different deposition layers (1 layer and 4 layer) and annealing temperature (600°C and 800°C) with Ba0.5Sr0.5TiO3 solution. Physical and electrical characterization of all the samples is done. The results showed that the grain size and surface roughness of the samples increased as the deposition layer and annealing temperature increased. In addition, the dielectric constant of the samples also increased as the deposition layer and annealing temperature increased. Thus, the physical and electrical characteristics of the thin films are related one to another.

  8. Crystallization study of amorphous sputtered NiTi bi-layer thin film

    Energy Technology Data Exchange (ETDEWEB)

    Mohri, Maryam, E-mail: mmohri@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany); Nili-Ahmadabadi, Mahmoud [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, University of Tehran, Tehran (Iran, Islamic Republic of); Chakravadhanula, Venkata Sai Kiran [Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany)

    2015-05-15

    The crystallization of Ni-rich/NiTiCu bi-layer thin film deposited by magnetron sputtering from two separate alloy targets was investigated. To achieve the shape memory effect, the NiTi thin films deposited at room temperature with amorphous structure were annealed at 773 K for 15, 30, and 60 min for crystallization. Characterization of the films was carried out by differential scanning calorimetry to indicate the crystallization temperature, grazing incidence X-ray diffraction to identify the phase structures, atomic force microscopy to evaluate surface morphology, scanning transmission electron microscopy to study the cross section of the thin films. The results show that the structure of the annealed thin films strongly depends on the temperature and time of the annealing. Crystalline grains nucleated first at the surface and then grew inward to form columnar grains. Furthermore, the crystallization behavior was markedly affected by composition variations. - Highlights: • A developed bi-layer Ni45TiCu5/Ni50.8Ti was deposited on Si substrate and crystallized. • During crystallization, The Ni{sub 45}TiCu{sub 5} layer is thermally less stable than the Ni-rich layer. • The activation energy is 302 and 464 kJ/mol for Cu-rich and Ni-rich layer in bi-layer, respectively.

  9. High conductivity and transparent aluminum-based multi-layer source/drain electrodes for thin film transistors

    Science.gov (United States)

    Yao, Rihui; Zhang, Hongke; Fang, Zhiqiang; Ning, Honglong; Zheng, Zeke; Li, Xiaoqing; Zhang, Xiaochen; Cai, Wei; Lu, Xubing; Peng, Junbiao

    2018-02-01

    In this study, high conductivity and transparent multi-layer (AZO/Al/AZO-/Al/AZO) source/drain (S/D) electrodes for thin film transistors were fabricated via conventional physical vapor deposition approaches, without toxic elements or further thermal annealing process. The 68 nm-thick multi-layer films with excellent optical properties (transparency: 82.64%), good electrical properties (resistivity: 6.64  ×  10-5 Ω m, work function: 3.95 eV), and superior surface roughness (R q   =  0.757 nm with scanning area of 5  ×  5 µm2) were fabricated as the S/D electrodes. Significantly, comprehensive performances of AZO films are enhanced by the insertion of ultra-thin Al layers. The optimal transparent TFT with this multi-layer S/D electrodes exhibited a decent electrical performance with a saturation mobility (µ sat) of 3.2 cm2 V-1 s-1, an I on/I off ratio of 1.59  ×  106, a subthreshold swing of 1.05 V/decade. The contact resistance of AZO/Al/AZO/Al/AZO multi-layer electrodes is as low as 0.29 MΩ. Moreover, the average visible light transmittance of the unpatterned multi-layers constituting a whole transparent TFT could reach 72.5%. The high conductivity and transparent multi-layer S/D electrodes for transparent TFTs possessed great potential for the applications of the green and transparent displays industry.

  10. Perpendicular Magnetic Anisotropy in Amorphous Ferromagnetic CoSiB/Pd Thin-Film Layered Structures.

    Science.gov (United States)

    Jung, Sol; Yim, Haein

    2015-10-01

    Spin transfer torque (STT) induced switching of magnetization has led to intriguing and practical possibilities for magnetic random access memory (MRAM). This form of memory, called STT-MRAM, is a strong candidate for future memory applications. This application usually requires a large perpendicular magnetic anisotropy (PMA), large coercivity, and low saturation magnetization. Therefore, we propose an amorphous ferromagnetic CoSiB alloy and investigate CoSiB/Pd multilayer thin films, which have a large PMA, large coercivity, and low saturation magnetization. In this research, we propose a remarkable layered structure that could be a candidate for future applications and try to address a few factors that might affect the variation of PMA, coercivity, and saturation magnetization in the CoSiB/Pd multilayers. We investigate the magnetic properties of the CoSiB/Pd multilayers with various thicknesses of the CoSiB layer. The coercivity was obtained with a maximum of 228 Oe and a minimum value of 91 Oe in the [CoSiB 7 Å/Pd 14 Å], and [CoSiB 9 Å/Pd 14 Å], multilayers, respectively. The PMA arises from tCoSiB = 3 Å to tCoSiB = 9 Å and disappears after tCoSiB = 9 Å.

  11. Collision-induced light scattering in a thin xenon layer between graphite slabs - MD study.

    Science.gov (United States)

    Dawid, A; Górny, K; Wojcieszyk, D; Dendzik, Z; Gburski, Z

    2014-08-14

    The collision-induced light scattering many-body correlation functions and their spectra in thin xenon layer located between two parallel graphite slabs have been investigated by molecular dynamics computer simulations. The results have been obtained at three different distances (densities) between graphite slabs. Our simulations show the increased intensity of the interaction-induced light scattering spectra at low frequencies for xenon atoms in confined space, in comparison to the bulk xenon sample. Moreover, we show substantial dependence of the interaction-induced light scattering correlation functions of xenon on the distances between graphite slabs. The dynamics of xenon atoms in a confined space was also investigated by calculating the mean square displacement functions and related diffusion coefficients. The structural property of confined xenon layer was studied by calculating the density profile, perpendicular to the graphite slabs. Building of a fluid phase of xenon in the innermost part of the slot was observed. The nonlinear dependence of xenon diffusion coefficient on the separation distance between graphite slabs has been found. Copyright © 2014. Published by Elsevier B.V.

  12. Simulation and growing study of Cu–Al–S thin films deposited by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duclaux, L., E-mail: loraine-externe.duclaux@edf.fr [Institute of Research and Development on Photovoltaic Energy (IRDEP), EDF R& D/CNRS/ChimieParistech, UMR 7174, 6 quai Watier, 78401 Chatou (France); Donsanti, F.; Vidal, J. [Institute of Research and Development on Photovoltaic Energy (IRDEP), EDF R& D/CNRS/ChimieParistech, UMR 7174, 6 quai Watier, 78401 Chatou (France); Bouttemy, M. [Lavoisier Institute of Versailles, UMR 8180, 45 avenue des Etats-Unis, 78035 Versailles cedex (France); Schneider, N.; Naghavi, N. [Institute of Research and Development on Photovoltaic Energy (IRDEP), EDF R& D/CNRS/ChimieParistech, UMR 7174, 6 quai Watier, 78401 Chatou (France)

    2015-11-02

    In this paper, we have explored the potential of Cu–Al–S compounds as p-type transparent conducting material by means of atomistic simulation using CuAlS{sub 2} as a reference ternary compound and atomic layer deposition (ALD) growth. We have identified key intrinsic point defects acting either as shallow acceptor or deep donor which define the conductivity of CuAlS{sub 2}. Higher p-type conductivity was found to be achievable under metal-poor and chalcogen-rich growth conditions. According to this precept, ALD growth of Cu{sub x}Al{sub y}S{sub z} was attempted using Cu(acac){sub 2} and Al(CH{sub 3}){sub 3} as precursors for Cu and Al respectively and under H{sub 2}S atmosphere. While as grown thin films present low content of Al, it influences the band gap values as well as the obtained structures. - Highlights: • Ab-initio investigation of CuAlS{sub 2} • Indentification of two opposite main-contributive intrinsic defects on the conductivity: V{sub Cu} and Al{sub Cu} • Synthesis of Cu-Al-S ternary compound using atomic layer deposition • Impact of aluminum insertion on the optical and structural properties of the films.

  13. Effect of interface layer on growth behavior of atomic-layer-deposited Ir thin film as novel Cu diffusion barrier

    International Nuclear Information System (INIS)

    Choi, Bum Ho; Lee, Jong Ho; Lee, Hong Kee; Kim, Joo Hyung

    2011-01-01

    Growth and nucleation behavior of Ir films grown by atomic layer deposition (ALD) on different interfacial layers such as SiO 2 , surface-treated TaN, and 3-nm-thick TaN were investigated. To grow Ir thin film by ALD, (1,5-cyclooctadiene) (ethylcyclopentadienyl) iridium (Ir(EtCp)(COD)) and oxygen were employed as the metalorganic precursor and reactant, respectively. To obtain optimal deposition conditions, the deposition temperature was varied from 240 to 420 deg. C and the number of deposition cycles was changed from 150 to 300. The Ir film grown on the 3-nm-thick TaN surface showed the smoothest and most uniform layer for all the deposition cycles, whereas poor nucleation and three-dimensional island-type growth of the Ir layer were observed on Si, SiO 2 , and surface-treated TaN after fewer number of deposition cycles. The uniformity of the Ir film layer was maintained for all the different substrates up to 300 deposition cycles. Therefore we suggest that the growth behavior of the Ir layer on different interface layer is related to the chemical bonding pattern of the substrate film or interface layer, resulting in better understand the growth mechanism of Ir layer as a copper diffusion barrier. The ALD-grown Ir films show the preferential direction of (1 1 1) for all the reflections, which indicates the absence of IrO 2 in metallic Ir.

  14. Layer-by-layer modification of thin-film metal-semiconductor multilayers with ultrashort laser pulses

    Science.gov (United States)

    Romashevskiy, S. A.; Tsygankov, P. A.; Ashitkov, S. I.; Agranat, M. B.

    2018-05-01

    The surface modifications in a multilayer thin-film structure (50-nm alternating layers of Si and Al) induced by a single Gaussian-shaped femtosecond laser pulse (350 fs, 1028 nm) in the air are investigated by means of atomic-force microscopy (AFM), scanning electron microscopy (SEM), and optical microscopy (OM). Depending on the laser fluence, various modifications of nanometer-scale metal and semiconductor layers, including localized formation of silicon/aluminum nanofoams and layer-by-layer removal, are found. While the nanofoams with cell sizes in the range of tens to hundreds of nanometers are produced only in the two top layers, layer-by-layer removal is observed for the four top layers under single pulse irradiation. The 50-nm films of the multilayer structure are found to be separated at their interfaces, resulting in a selective removal of several top layers (up to 4) in the form of step-like (concentric) craters. The observed phenomenon is associated with a thermo-mechanical ablation mechanism that results in splitting off at film-film interface, where the adhesion force is less than the bulk strength of the used materials, revealing linear dependence of threshold fluences on the film thickness.

  15. Phytochemical analysis of ethanolic extract of Dichrostachys Cinerea W and Arn leaves by a thin layer chromatography, high performance thin layer chromatography and column chromatography

    OpenAIRE

    M Vijayalakshmi; K Periyanayagam; K Kavitha; K Akilandeshwari

    2013-01-01

    Background: The leaves of Dichrostachys cinerea are used as laxative, diuretic, painkiller. It is also used in the treatment of gonorrhoea, boils, oedema, gout, veneral diseases and nasopharyngeal affections, etc. Materials and Methods: The Phytochemical investigation of ethanolic extract of D. cinerea leaves were performed by standard chemical tests, thin layer chromatography (TLC) by using various solvent systems, and by high performance liquid chromatography (HPTLC). Two compounds were...

  16. Growth of α-sexithiophene nanostructures on C60 thin film layers

    DEFF Research Database (Denmark)

    Radziwon, Michal Jędrzej; Madsen, Morten; Balzer, Frank

    2014-01-01

    Organic molecular beam grown -sexithiophene (-6T) forms nanostructured thin films on buckminsterfullerene (C60) thin film layers. At substrate temperatures of 300K during growth a rough continuous film is observed, which develop to larger elongated islands and dendritic- as well as needle like ...... fluorescence polarimetry measurements the in-plane orientation of the crystalline sites within the needle like structures is determined. The polarimetry investigations strongly indicate that the needle like structures consist of lying molecules....

  17. Friction and wear life properties of polyimide thin films

    Science.gov (United States)

    Fusaro, R. L.

    1972-01-01

    A transition in the friction coefficient and wear life properties of Pyralin polyimide (PI) thin films was found to exist at a temperature between 25 deg and 100 deg C. Above this transition, PI thin films gave long wear lives and low friction coefficients. The presence of H2O in air improved the friction and wear life properties at 25 deg C; but at 100 deg C, H2O had a detrimental effect. At 100 deg C and above, a dry argon atmosphere gave lower friction coefficients and longer wear lives than did a dry air atmosphere.

  18. Ion exchange of alkaline metals on the thin-layer zinc ferrocyanide

    International Nuclear Information System (INIS)

    Betenekov, N.D.; Buklanov, G.V.; Ipatova, E.G.; Korotkin, Yu.S.

    1991-01-01

    Basic regularities of interphase distribution in the system of thin-layer sorbent on the basis of mixed zinc ferrocyanide (FZ)-alkaline metal solution (Na, K, Rb, Cs, Fr) in the column chromatography made are studied. It is established that interphase distribution of microgram amounts of alkaline metals in the systems thin-layer FZ-NH 4 NO 3 electrolyte solutions is of ion-exchange character and subjected to of law effective mass. It is shown that FZ thin-layer material is applicable for effective chromatographic separation of alkaline metal trace amounts. An approach to the choice of a conditions of separate elution of Na, K, Rb, Cs, Fr in the column chromatography mode

  19. Sorption and movement of pesticides on thin layer plates of Brazilain soils

    International Nuclear Information System (INIS)

    Lord, K.A.; Helene, C.G.; Andrea, M.M. de; Ruegg, E.F.

    1979-01-01

    The sorption from aqueous solution, and movement in water on thin layers plates of 7 soils of 3 organochlorine, 2 organophosphorus and 1 carbamate insecticide was determined in the laboratory. Generally, all substances were sorbed most and moved least on soils richest in organic matter. However, sorption was not a function of organic matter content alone. Aldrin and DDT were most strongly sorbed and did not move from the point of application on the thin layer plates of any soil. On all 7 soils, carbaryl was the least strongly sorbed insecticide. On 5 soils, lindane, parathion and malathion were increasingly strongly sorbed, but on the other 2 soils lindane was mostly strongly sorbed. The apparent greater mobility of 14 C-labelled malathion on thin layers of soils repeatedly leached could be explained by the formation of more polar substances. (author) [pt

  20. Effect of Cu buffer layer on magnetic anisotropy of cobalt thin films deposited on MgO(001 substrate

    Directory of Open Access Journals (Sweden)

    Syed Sheraz Ahmad

    2016-11-01

    Full Text Available Cobalt thin films with 5 nm thickness were prepared on single-crystal MgO (001 substrates with different thickness Cu buffer (0 nm, 5 nm, 10 nm, 20 nm. The structure, magnetic properties and transport behaviors were investigated by employing low-energy-electron-diffraction (LEED, magneto-optical Kerr effect (MOKE and anisotropic magnetoresistance (AMR. By comparing the magnetic properties of the sample as-deposited (without Cu buffer layer one with those having the buffer Cu, we found that the magnetic anisotropy was extremely affected by the Cu buffer layer. The magnetic anisotropy of the as-deposited, without buffer layer, sample shows the uniaxial magnetic anisotropy (UMA. We found that the symmetry of the magnetic anisotropy is changed from UMA to four-fold when the thickness of the Cu buffer layer reaches to 20 nm. Meanwhile, the coercivity increased from 49 Oe (without buffer layer to 300 Oe (with 20 nm Cu buffer, in the easy axis direction, as the thickness of the buffer layer increases. Moreover, the magnitudes of various magnetic anisotropy constants were determined from torque curves on the basis of AMR results. These results support the phenomenon shown in the MOKE.

  1. Mesoscopic layered structure in conducting polymer thin film fabricated by potential-programmed electropolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Fujitsuka, Mamoru (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Nakahara, Reiko (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Iyoda, Tomokazu (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Shimidzu, Takeo (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Tomita, Shigehisa (Toray Research Center Co., Ltd., Shiga (Japan)); Hatano, Yayoi (Toray Research Center Co., Ltd., Shiga (Japan)); Soeda, Fusami (Toray Research Center Co., Ltd., Shiga (Japan)); Ishitani, Akira (Toray Research Center Co., Ltd., Shiga (Japan)); Tsuchiya, Hajime (Nitto Technical Information Center Co., Ltd., Shimohozumi Ibaraki, Osaka (Japan)); Ohtani, Akira (Central Research Lab., Nitto Denko Co., Ltd., Shimohozumi Ibaraki, Osaka (Japan))

    1992-11-01

    Mesoscopic layered structures in conducting polymer thin films are fabricated by the potential-programmed electropolymerization method. High lateral quality in the layered structure is realized by the improvement of polymerization conditions, i.e., a mixture of pyrrole and bithiophene as monomers, a silicon single-crystal wafer as a working electrode and propylene carbonate as a solvent. SIMS depth profiling of the resulting layered films indicates a significant linear correlation between the electric charge passed and the thickness of the individual layers on a 100 A scale. (orig.)

  2. Magnetic hybride layers. Magnetic properties of locally exchange-coupled NiFe/IrMn layers; Magnetische Hybridschichten. Magnetische Eigenschaften lokal austauschgekoppelter NiFe/IrMn-Schichten

    Energy Technology Data Exchange (ETDEWEB)

    Hamann, Christine

    2010-10-06

    By the lateral modification of the magnetic properties of exchange-coupled NiFe/IrMn layers soft-magnetic layers were produced, which show both new static and dynamic properties. As lateral structuration methods hereby the localoxidation as well as ion implantation were applied. By means of thes procedures it has been succeeded to mould specific magnetic domain configurations with strp structure into the layers. In dependence of the structure orientation as well as strip period the remagnetization behavior as well as the magnetic-resonance frequency and damping of the layers could directly be modified. The new dynamical properties are hereby discussed in the framework of the coupling via dynamical charges and the direct affection of the effective field of the artificially inserted domain state. The presented results prove by this the large potential of the lateral magneto-structuration for the tuning of specifical static as well as dynamic properties of magnetically thin layers.

  3. Thin Film Catalyst Layers for Direct Methanol Fuel Cells

    Science.gov (United States)

    Witham, C. K.; Chun, W.; Ruiz, R.; Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    One of the primary obstacles to the widespread use of the direct methanol fuel cell (DMFC) is the high cost of the catalyst. Therefore, reducing the catalyst loading well below the current level of 8-12 mg/cm 2 would be important to commercialization. The current methods for preparation of catalyst layers consisting of catalyst, ionomer and sometimes a hydrophobic additive are applied by either painting, spraying, decal transfer or screen printing processes. Sputter deposition is a coating technique widely used in manufacturing and therefore particularly attractive. In this study we have begun to explore sputtering as a method for catalyst deposition. Present experiments focus on Pt-Ru catalyst layers for the anode.

  4. Soliton-like defects in nematic liquid crystal thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Chuvyrov, A. N.; Krekhov, A. P.; Lebedev, Yu. A., E-mail: lebedev@anrb.ru; Timirov, Yu. I. [Russian Academy of Sciences, Institute of Molecule and Crystal Physics, Ufa Research Center (Russian Federation)

    2016-11-15

    The nonsingular soliton-like defects in plane nematic liquid crystal (NLC) layers and spherical NLC drops are experimentally detected and studied when the interaction of NLC molecules with a bounding surface is varied. The dynamics and the annihilation of nonsingular defects of opposite signs on a plane surface are investigated. Periodic transformations of the soliton-like defects in NLC drops in an electric field are detected. The theory of elasticity is used to show that the surface energy taken into account in the total free energy of NLC in the case of weak anchoring leads to the possibility of nonsingular solutions of a director equilibrium equation. The calculated pictures of director distribution in a plane NLC layer and in a spherical NLC drop characterized by weak surface anchoring agree well with the results of polarized light optical observations.

  5. Ultraviolet laser deposition of graphene thin films without catalytic layers

    KAUST Repository

    Sarath Kumar, S. R.

    2013-01-09

    In this letter, the formation of nanostructured graphene by ultraviolet laser ablation of a highly ordered pyrolytic graphite target under optimized conditions is demonstrated, without a catalytic layer, and a model for the growth process is proposed. Previously, graphene film deposition by low-energy laser (2.3 eV) was explained by photo-thermal models, which implied that graphene films cannot be deposited by laser energies higher than the C-C bond energy in highly ordered pyrolytic graphite (3.7 eV). Here, we show that nanostructured graphene films can in fact be deposited using ultraviolet laser (5 eV) directly over different substrates, without a catalytic layer. The formation of graphene is explained by bond-breaking assisted by photoelectronic excitation leading to formation of carbon clusters at the target and annealing out of defects at the substrate.

  6. High-performance thin layer chromatography to assess pharmaceutical product quality.

    Science.gov (United States)

    Kaale, Eliangiringa; Manyanga, Vicky; Makori, Narsis; Jenkins, David; Michael Hope, Samuel; Layloff, Thomas

    2014-06-01

    To assess the sustainability, robustness and economic advantages of high-performance thin layer chromatography (HPTLC) for quality control of pharmaceutical products. We compared three laboratories where three lots of cotrimoxazole tablets were assessed using different techniques for quantifying the active ingredient. The average assay relative standard deviation for the three lots was 1.2 with a range of 0.65-2.0. High-performance thin layer chromatography assessments are yielding valid results suitable for assessing product quality. The local pharmaceutical manufacturer had evolved the capacity to produce very high quality products. © 2014 John Wiley & Sons Ltd.

  7. Photocatalytic Water Treatment on TiO2 Thin Layers.

    Czech Academy of Sciences Publication Activity Database

    Šolcová, Olga; Spáčilová, L.; Maléterová, Ywetta; Morozová, Magdalena; Ezechiáš, Martin; Křesinová, Zdena

    2016-01-01

    Roč. 57, č. 25 (2016), s. 11631-11638 ISSN 1944-3994. [International Conference on Protection and Restoration of the Environment /12./. Skiathos Island, 29.06.2014-03.07.2014] R&D Projects: GA TA ČR TA01020804 Institutional support: RVO:67985858 ; RVO:61388971 Keywords : water purification * endocrine disruptor * photocatalytic * TiO2 layers Subject RIV: CI - Industrial Chemistry, Chemical Engineering; EE - Microbiology, Virology (MBU-M) Impact factor: 1.631, year: 2016

  8. Opto-electronic properties of SnO2 layers obtained by SPD and ECD techniques

    International Nuclear Information System (INIS)

    Enesca, Alexandru; Bogatu, Cristina; Voinea, Mihaela; Duta, Anca

    2010-01-01

    The paper presents a comparative approach concerning the properties of SnO 2 thin layers obtained via spray pyrolysis deposition (SPD) and electro-chemical deposition (ECD). The influences of crystalline structure (X-ray diffraction), morphology (atomic force microscopy, contact angle) on the electric (electrical conductivity) properties of the layers were studied. The SPD samples present a porous morphology with high surface energy compared with ECD samples characterized by a dense morphology. The photocatalytic efficiency of the samples was tested in the photodegradation of methylene blue and the higher values (57%) correspond to SPD samples.

  9. Ferroelectric properties of lead-free polycrystalline CaBi2Nb2O9 thin films on glass substrates

    Science.gov (United States)

    Ahn, Yoonho; Jang, Joonkyung; Son, Jong Yeog

    2016-03-01

    CaBi2Nb2O9 (CBNO) thin film, a lead-free ferroelectric material, was prepared on a Pt/Ta/glass substrate via pulsed laser deposition. The Ta film was deposited on the glass substrate for a buffer layer. A (115) preferred orientation of the polycrystalline CBNO thin film was verified via X-ray diffraction measurements. The CBNO thin film on a glass substrate exhibited good ferroelectric properties with a remnant polarization of 4.8 μC/cm2 (2Pr ˜9.6 μC/cm2), although it had lower polarization than the epitaxially c-oriented CBNO thin film reported previously. A mosaic-like ferroelectric domain structure was observed via piezoresponse force microscopy. Significantly, the polycrystalline CBNO thin film showed much faster switching behavior within about 100 ns than that of the epitaxially c-oriented CBNO thin film.

  10. Structure and magnetoresistive properties in La{endash}manganite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gommert, E. [Siemens AG, Corporate Technology, Erlangen, Germany and Universitaet Augsburg, Memminger Str. 6, D-86135 Augsburg (Germany); Cerva, H.; Rucki, A. [Siemens AG, Corporate Technology, Muenchen (Germany); Helmolt, R.v.; Wecker, J.; Kuhrt, C. [Siemens AG, Corporate Technology, Erlangen (Germany); Samwer, K. [Universitaet Augsburg, Memminger Str., D-86135 Augsburg (Germany)

    1997-04-01

    This study investigates the structure of perovskite thin films and its influence on their colossal magnetoresistance (CMR) properties. Epitaxial thin films of perovskite manganites La{sub 1{minus}x}B{sub x}MnO{sub 3{minus}{delta}} (B=Ca,Sr) were prepared on SrTiO{sub 3} (100) substrates using on- and off-axis pulsed laser deposition (PLD) techniques. X-ray diffraction, resistance and magnetoresistance measurements, as well as high-resolution transmission electron microscopy (HRTEM) investigations were carried out. HRTEM observations reveal epitaxial growth for the first few layers of all prepared samples. Thicker on-axis prepared films grow with a large number of defects, whereas off-axis prepared samples grow in a columnar structure. Since the magnetic properties in systems with double-exchange interaction are very sensitive to the local structure it has great influence on the electronic properties. {copyright} {ital 1997 American Institute of Physics.}

  11. Magnetic properties of Ising thin films with cubic lattices

    Science.gov (United States)

    Laosiritaworn, Y.; Poulter, J.; Staunton, J. B.

    2004-09-01

    We have used Monte Carlo simulations and mean-field analysis to observe the magnetic behavior of Ising thin films with cubic lattice structures as a function of temperature and thickness, especially in the critical region. Magnetization and magnetic susceptibility, including layer variation, are investigated. We find that the magnetic behavior changes from two-dimensional to three-dimensional character with increasing film thickness. Both the crossover of the critical temperature from a two-dimensional to a bulk value and the shift exponent are observed. Nevertheless, with support from a scaling function, the simulations show that the effective critical exponents for films with large enough layer extents only vary a little from their two-dimensional values. This, in particular, provides an indication of two-dimensional universality in the thin films.

  12. Final Report: Rational Design of Wide Band Gap Buffer Layers for High-Efficiency Thin-Film Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Lordi, Vincenzo [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-09-30

    The main objective of this project is to enable rational design of wide band gap buffer layer materials for CIGS thin-film PV by building understanding of the correlation of atomic-scale defects in the buffer layer and at the buffer/absorber interface with device electrical properties. Optimized wide band gap buffers are needed to reduce efficiency loss from parasitic absorption in the buffer. The approach uses first-principles materials simulations coupled with nanoscale analytical electron microscopy as well as device electrical characterization. Materials and devices are produced by an industrial partner in a manufacturing line to maximize relevance, with the goal of enabling R&D of new buffer layer compositions or deposition processes to push device efficiencies above 21%. Cadmium sulfide (CdS) is the reference material for analysis, as the prototypical high-performing buffer material.

  13. Surface analysis of topmost layer of epitaxial layered oxide thin film: Application to delafossite oxide for oxygen evolution reaction

    Science.gov (United States)

    Toyoda, Kenji; Adachi, Hideaki; Miyata, Nobuhiro; Hinogami, Reiko; Orikasa, Yuki; Uchimoto, Yoshiharu

    2018-02-01

    Delafossite oxides (ABO2) have a layered structure with alternating layers of A and B elements, the topmost layer of which appears to determine their performance, such as the oxygen evolution reaction (OER) activity. In this study, we investigated the topmost layer of single-domain (0 0 1)-oriented AgCoO2 epitaxial thin film for potential use as an OER catalyst. The thin film was confirmed to possess OER activity at a level comparable to the catalyst in powder form. Atomic scattering spectroscopy revealed the topmost layer to be composed of CoO6 octahedra. In situ X-ray absorption spectroscopy showed that the oxidation of Co at the surface did not change under different potentials, which suggests that there is no valence fluctuation of Co in the stable CoO6 octahedral structure. However, the oxidation number of Co at the surface was lower than that in the bulk. Our density functional theoretical calculations also showed the Co atoms at the surface to have a slightly higher electron occupancy than those in the bulk, and suggests that the unoccupied t2g states of Co at the surface have an influence on OER activity.

  14. Analysis of layer-by-layer thin-film oxide growth using RHEED and Atomic Force Microscopy

    Science.gov (United States)

    Adler, Eli; Sullivan, M. C.; Gutierrez-Llorente, Araceli; Joress, H.; Woll, A.; Brock, J. D.

    2015-03-01

    Reflection high energy electron diffraction (RHEED) is commonly used as an in situ analysis tool for layer-by-layer thin-film growth. Atomic force microscopy is an equally common ex situ tool for analysis of the film surface, providing visual evidence of the surface morphology. During growth, the RHEED intensity oscillates as the film surface changes in roughness. It is often assumed that the maxima of the RHEED oscillations signify a complete layer, however, the oscillations in oxide systems can be misleading. Thus, using only the RHEED maxima is insufficient. X-ray reflectivity can also be used to analyze growth, as the intensity oscillates in phase with the smoothness of the surface. Using x-ray reflectivity to determine the thin film layer deposition, we grew three films where the x-ray and RHEED oscillations were nearly exactly out of phase and halted deposition at different points in the growth. Pre-growth and post-growth AFM images emphasize the fact that the maxima in RHEED are not a justification for determining layer completion. Work conducted at the Cornell High Energy Synchrotron Source (CHESS) supported by NSF Awards DMR-1332208 and DMR-0936384 and the Cornell Center for Materials Research Shared Facilities are supported through DMR-1120296.

  15. Modification of thin film properties by ion bombardment during deposition

    International Nuclear Information System (INIS)

    Harper, J.M.E.; Cuomo, J.J.; Gambino, R.J.; Kaufman, H.R.

    1984-01-01

    Many thin film deposition techniques involve some form of energetic particle bombardment of the growing film. The degree of bombardment greatly influences the film composition, structure and other properties. While in some techniques the degree of bombardment is secondary to the original process design, in recent years more deposition systems are being designed with the capability for controlled ion bombardment of thin films during deposition. The highest degree of control is obtained with ion beam sources which operate independently of the vapor source providing the thin film material. Other plasma techniques offer varying degrees of control of energetic particle bombardment. Deposition methods involving ion bombardment are described, and the basic processes with which film properties are modified by ion bombardment are summarized. (Auth.)

  16. Effect of atomic layer deposited Al2O3:ZnO alloys on thin-film silicon photovoltaic devices

    Science.gov (United States)

    Abdul Hadi, Sabina; Dushaq, Ghada; Nayfeh, Ammar

    2017-12-01

    In this work, we present the effects of the Al2O3:ZnO ratio on the optical and electrical properties of aluminum doped ZnO (AZO) layers deposited by atomic layer deposition, along with AZO application as the anti-reflective coating (ARC) layer and in heterojunction configurations. Here, we report complex refractive indices for AZO layers with different numbers of aluminum atomic cycles (ZnO:Al2O3 = 1:0, 39:1, 19:1, and 9:1) and we confirm their validity by fitting models to experimental data. Furthermore, the most conductive layer (ZnO:Al2O3 = 19:1, conductivity ˜4.6 mΩ cm) is used to fabricate AZO/n+/p-Si thin film solar cells and AZO/p-Si heterojunction devices. The impact of the AZO layer on the photovoltaic properties of these devices is studied by different characterization techniques, resulting in the extraction of recombination and energy band parameters related to the AZO layer. Our results confirm that AZO 19:1 can be used as a low cost and effective conductive ARC layer for solar cells. However, AZO/p-Si heterojunctions suffer from an insufficient depletion region width (˜100 nm) and recombination at the interface states, with an estimated potential barrier of ˜0.6-0.62 eV. The work function of AZO (ZnO:Al2O3 = 19:1) is estimated to be in the range between 4.36 and 4.57 eV. These material properties limit the use of AZO as an emitter in Si solar cells. However, the results imply that AZO based heterojunctions could have applications as low-cost photodetectors or photodiodes, operating under relatively low reverse bias.

  17. Controlling the scattering properties of thin, particle-doped coatings

    Science.gov (United States)

    Rogers, William; Corbett, Madeleine; Manoharan, Vinothan

    2013-03-01

    Coatings and thin films of small particles suspended in a matrix possess optical properties that are important in several industries from cosmetics and paints to polymer composites. Many of the most interesting applications require coatings that produce several bulk effects simultaneously, but it is often difficult to rationally formulate materials with these desired optical properties. Here, we focus on the specific challenge of designing a thin colloidal film that maximizes both diffuse and total hemispherical transmission. We demonstrate that these bulk optical properties follow a simple scaling with two microscopic length scales: the scattering and transport mean free paths. Using these length scales and Mie scattering calculations, we generate basic design rules that relate scattering at the single particle level to the film's bulk optical properties. These ideas will be useful in the rational design of future optically active coatings.

  18. Multiple-layered effective medium approximation approach to modeling environmental effects on alumina passivated highly porous silicon nanostructured thin films measured by in-situ Mueller matrix ellipsometry

    Science.gov (United States)

    Mock, Alyssa; Carlson, Timothy; VanDerslice, Jeremy; Mohrmann, Joel; Woollam, John A.; Schubert, Eva; Schubert, Mathias

    2017-11-01

    Optical changes in alumina passivated highly porous silicon slanted columnar thin films during controlled exposure to toluene vapor are reported. Electron-beam evaporation glancing angle deposition and subsequent atomic layer deposition are utilized to deposit alumina passivated nanostructured porous silicon thin films. In-situ Mueller matrix generalized spectroscopic ellipsometry in an environmental cell is then used to determine changes in optical properties of the nanostructured thin films by inspection of individual Mueller matrix elements, each of which exhibit sensitivity to adsorption. The use of a multiple-layered effective medium approximation model allows for accurate description of the inhomogeneous nature of toluene adsorption onto alumina passivated highly porous silicon slanted columnar thin films.

  19. Thinning of the ozone layer: Facts and consequences

    Energy Technology Data Exchange (ETDEWEB)

    Coldiron, B.M. (Univ. of Illinois, Chicago (United States))

    1992-11-01

    The ozone layer is showing small but definite signs of depletion. Despite this, significantly increased UV radiation transmission at ground level has been found only in the Antarctic and Arctic regions. The potential for increased transmission of UV radiation will exist for the next several hundred years. Although little damage from increased UV radiation has occurred so far, the potential for long-term problems is great. The natural history of ozone and the causes and consequences of, and possible solutions to ozone depletion are examined in this article. 36 refs.

  20. Evaluation of the physico-chemical properties of acid thinned ...

    African Journals Online (AJOL)

    The effect of acid hydrolysis on the physico-chemical properties of cassava starch was investigated. The acid hydrolysed (acid thinned) starches were prepared from cassava starch with 0.1M solution of hydrochloric acid. The acid hydrolysis of starch samples were carried out at 60°C in a thermostatically controlled water ...

  1. Electrical properties of silver selenide thin films prepared by reactive ...

    Indian Academy of Sciences (India)

    The electrical properties of silver selenide thin films prepared by reactive evaporation have been studied. Samples show a polymorphic phase transition at a temperature of 403 ± 2 K. Hall effect study shows that it has a mobility of 2000 cm2V–1s–1 and carrier concentration of 1018 cm–3 at room temperature. The carriers ...

  2. Mechanical properties of very thin cover slip glass disk

    Indian Academy of Sciences (India)

    Unknown

    Mechanical properties of very thin cover slip glass disk. A SEAL, A K DALUI, M BANERJEE, A K MUKHOPADHYAY* and K K PHANI. Central Glass and Ceramic Research Institute, Kolkata 700 032, India. Abstract. The biaxial flexural strength, Young's modulus, Vicker's microhardness and fracture toughness data for very ...

  3. Functional Properties of Polydomain Ferroelectric Oxide Thin Films

    NARCIS (Netherlands)

    Houwman, Evert Pieter; Vergeer, Kurt; Koster, Gertjan; Rijnders, Augustinus J.H.M.; Nishikawa, H.; Iwata, N.; Endo, T.; Takamura, Y.; Lee, G-H.; Mele, P.

    2017-01-01

    The properties of a ferroelectric, (001)-oriented, thin film clamped to a substrate are investigated analytically and numerically. The emphasis is on the tetragonal, polydomain, ferroelectric phase, using a three domain structure, as is observed experimentally, instead of the two-domain structure

  4. Microstructure and mechanical properties of fine-grained thin ...

    Indian Academy of Sciences (India)

    29

    Microstructure and mechanical properties of fine-grained thin- walled AZ91 tubes processed by a novel combined SPD process. H. Abdolvanda, G. Farajia,*, J. Shahbazi Karamib, M. Baniasadia. aSchool of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, 11155-4563,. Iran. bFaculty of ...

  5. Electrochemical properties of dip-coated vanadium pentaoxide thin ...

    Indian Academy of Sciences (India)

    studied in 1 M NaNO3 electrolyte using cyclic voltammetery, electrochemical impedance spectroscopy and galvano- ... Chemical synthesis; annealing; thin films; electrochemical properties; energy storage. 1. Introduction. Supercapacitors or ... electrochemical characterizations of the prepared samples are investigated in 1 ...

  6. Strain-induced properties of epitaxial VOx thin films

    NARCIS (Netherlands)

    Rata, AD; Hibma, T

    We have grown VOx thin films on different substrates in order to investigate the influence of epitaxial strain on the transport properties. We found that the electric conductivity is much larger for films grown under compressive strain on SrTiO3 substrates, as compared to bulk material and VOx films

  7. Simple thin layer chromatography (TLC) methods for the separation of catechins from fresh tea leaves

    International Nuclear Information System (INIS)

    Wanyoko, J.K.; Munavu, R.M.

    1985-01-01

    Techniques for separating seven catechins on two adsorbents on thin layer chromatography(TLC) layers were investigated. One of the TLC methods used was fast and gave good resolution of the catechins. Both methods showed that the Rfs of one group of the catechins were related to their structural variations. Thus the methods could be used for the tentative identification of catechins in tea as well as in routine screening of catechins in other plants. (author)

  8. Modification of thin film properties by ion bombardment during deposition

    International Nuclear Information System (INIS)

    Harper, J.M.E.; Cuomo, J.J.; Gambino, R.J.; Kaufman, H.R.

    1984-01-01

    Deposition methods involving ion bombardment are described, and the basic processes with which film properties are modified by ion bombardment are summarized. Examples of thin film property modification by ion bombardment during deposition, including effects which are primarily compositional as well as those which are primarily structural are presented. The examples demonstrate the usefulness of ion beam techniques in identifying and controlling the fundamental deposition parameters. 68 refs.; 15 figs.; 1 table

  9. Crystallinity and superconductivity of as-grown MgB2 thin films with AlN buffer layers

    International Nuclear Information System (INIS)

    Tsujimoto, K.; Shimakage, H.; Wang, Z.; Kaya, N.

    2005-01-01

    The effects of aluminum nitride (AlN) buffer layers on the superconducting properties of MgB 2 thin film were investigated. The AlN buffer layers and as-grown MgB 2 thin films were deposited in situ using the multiple-target sputtering system. The best depositing condition for the AlN/MgB 2 bi-layer occurred when the AlN was deposited on c-cut sapphire substrates at 290 deg. C. The crystallinity of the AlN/MgB 2 bi-layer was studied using the XRD φ-scan and it showed that AlN and MgB 2 had the same in-plane alignment rotated at an angle of 30 deg. as compared to c-cut sapphire. The critical temperature of the MgB 2 film was 29.8 K and the resistivity was 50.0 μΩ cm at 40 K

  10. Fabrication and properties of SmFe2-PZT magnetoelectric thin films

    KAUST Repository

    Giouroudi, Ioanna

    2013-05-17

    Magnetoelectric (ME) thin film composites are attracting a continually increasing interest due to their unique features and potential applications in multifunctional microdevices and integrated units such as sensors, actuators and energy harvesting modules. By combining piezoelectric and highly magnetostrictive thin films, the potentialities of these materials increase. In this paper we report the fabrication of SmFe2 and PZT thin films and the investigation of their properties. First of all, a ~ 400 nm thin SmFe film was deposited on top of Si/SiO2 substrate by magnetron sputter deposition. Afterwards, a 140 nm Pt bottom electrode was sputtered on top of the SmFe film forming a bottom electrode. Spin coating was employed for the deposition of the 150 nm thin PZT layer. A PZT solution with 10 %Pb excess was utilized for this fabrication step. Finally, circular Pt top electrodes were sputtered as top electrodes. This paper focuses on the microstructure of the individual films characterized by X-Ray diffractometer (XRD) and scanning electron microscopy (SEM). A piezoelectric evaluation system, aixPES, with TF2000E analyzer component was used for the electric hysteresis measurements of PZT thin films and a vibrating sample magnetometer (VSM) was employed for the magnetic characterization of the SmFe. The developed thin films and the fabricated double layer SmFe-PZT exhibit both good ferromagnetic and piezoelectric responses which predict a promising ME composite structure. The quantitative chemical composition of the samples was confirmed by energy dispersive spectroscopy (EDX). © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  11. Thin hydroxyapatite surface layers on titanium produced by ion implantation

    CERN Document Server

    Baumann, H; Bilger, G; Jones, D; Symietz, I

    2002-01-01

    In medicine metallic implants are widely used as hip replacement protheses or artificial teeth. The biocompatibility is in all cases the most important requirement. Hydroxyapatite (HAp) is frequently used as coating on metallic implants because of its high acceptance by the human body. In this paper a process is described by which a HAp surface layer is produced by ion implantation with a continuous transition to the bulk material. Calcium and phosphorus ions are successively implanted into titanium under different vacuum conditions by backfilling oxygen into the implantation chamber. Afterwards the implanted samples are thermally treated. The elemental composition inside the implanted region was determined by nuclear analysis methods as (alpha,alpha) backscattering and the resonant nuclear reaction sup 1 H( sup 1 sup 5 N,alpha gamma) sup 1 sup 2 C. The results of X-ray photoelectron spectroscopy indicate the formation of HAp. In addition a first biocompatibility test was performed to compare the growing of m...

  12. Nanosized Thin SnO2 Layers Doped with Te and TeO2 as Room Temperature Humidity Sensors

    Directory of Open Access Journals (Sweden)

    Biliana Georgieva

    2014-05-01

    Full Text Available In this paper the humidity sensing properties of layers prepared by a new method for obtaining doped tin oxide are studied. Different techniques—SEM, EDS in SEM, TEM, SAED, AES and electrical measurements—are used for detailed characterization of the thin layers. The as-deposited layers are amorphous with great specific area and low density. They are built up of a fine grained matrix, consisting of Sn- and Te-oxides, and a nanosized dispersed phase of Te, Sn and/or SnTe. The chemical composition of both the matrix and the nanosized particles depends on the ratio RSn/Te and the evaporation conditions. It is shown that as-deposited layers with RSn/Te ranging from 0.4 to 0.9 exhibit excellent characteristics as humidity sensors operating at room temperature—very high sensitivity, good selectivity, fast response and short recovery period. Ageing tests have shown that the layers possess good long-term stability. Results obtained regarding the type of the water adsorption on the layers’ surface help better understand the relation between preparation conditions, structure, composition and humidity sensing properties.

  13. Analysis and Identification of Acid-Base Indicator Dyes by Thin-Layer Chromatography

    Science.gov (United States)

    Clark, Daniel D.

    2007-01-01

    Thin-layer chromatography (TLC) is a very simple and effective technique that is used by chemists by different purposes, including the monitoring of the progress of a reaction. TLC can also be easily used for the analysis and identification of various acid-base indicator dyes.

  14. Thin-Layer Chromatography/Desorption Atmospheric Pressure Photoionization Orbitrap Mass Spectrometry of Lipids

    Czech Academy of Sciences Publication Activity Database

    Rejšek, Jan; Vrkoslav, Vladimír; Vaikkinen, A.; Haapala, M.; Kauppila, T. J.; Kostiainen, R.; Cvačka, Josef

    2016-01-01

    Roč. 88, č. 24 (2016), s. 12279-12286 ISSN 0003-2700 R&D Projects: GA ČR GAP206/12/0750 Institutional support: RVO:61388963 Keywords : desorption atmospheric pressure photoionization * thin - layer chromatography * lipids Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 6.320, year: 2016

  15. Interaction between cholesterol and non-ionic surfactants studied by thin-layer chromatography

    Czech Academy of Sciences Publication Activity Database

    Forgács, E.; Cserháti, T.; Farkas, O.; Eckhardt, Adam; Mikšík, Ivan; Deyl, Zdeněk

    2004-01-01

    Roč. 27, č. 13 (2004), s. 1981-1992 ISSN 1082-6076 Grant - others:CZ-HU(CZ) Cooperation program Institutional research plan: CEZ:AV0Z5011922 Keywords : cholesterol * non-ionic surfactant * thin - layer chromatography Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.836, year: 2004

  16. Sensitive Thin-Layer Chromatography Detection of Boronic Acids Using Alizarin

    NARCIS (Netherlands)

    Duval, F.L.; Beek, van T.A.; Zuilhof, H.

    2012-01-01

    A new method for the selective and sensitive detection of boronic acids on thin-layer chromatography plates is described. The plate is briefly dipped in an alizarin solution, allowed to dry in ambient air, and observed under 366 nm light. Alizarin emits a bright yellow fluorescence only in the

  17. Application of RF correction in thin-layer chromatography by means of two reference RF values

    NARCIS (Netherlands)

    Dhont, J.H.; Vinkenborg, C.; Compaan, H.; Ritter, F.J.; Labadie, R.P.; Verweij, A.; Zeeuw, R.A. de

    1972-01-01

    Results of the inter-laboratory experiment described in this paper show that the GALANOS AND KAPOULAS equation can be applied satisfactorily to correct RF values obtained on thin-layer chromatograms in a polar multi-component solvent. Addition of Kieselguhr to the silica gel gives RFc values

  18. Identification of common horsetail (Equisetum arvense L.; Equisetaceae) using Thin Layer Chromatography versus DNA barcoding

    DEFF Research Database (Denmark)

    Saslis Lagoudakis, Haris; Bruun-Lund, Sam; Iwanycki, Natalie Eva

    2015-01-01

    : a Thin Layer Chromatography approach (TLC-test) included in the European Pharmacopoeia and a DNA barcoding approach, used in recent years to identify material in herbal products. We test the potential of these methods for distinguishing and identifying these species using material from herbarium...

  19. Moisture removal characteristics of thin layer rough rice under sequenced infrared radiation heating and cooling

    Science.gov (United States)

    Rice drying with infrared (IR) radiation has been investigated during recent years and showed promising potential with improved quality and energy efficiency. The objective of this study was to further investigate the moisture removal characteristics of thin layer rough rice heated by IR and cooled ...

  20. Thin-Film layers with Interfaces that reduce RF Losses on High-Resistivity Silicon Substrates

    NARCIS (Netherlands)

    Evseev, S. B.; Milosavljevic, S.; Nanver, L. K.

    2017-01-01

    Radio-Frequency (RF) losses on High-Resistivity Silicon (HRS) substrates were studied for several different surface passivation layers comprising thin-films of SiC, SiN and SiO2 In many combinations, losses from conductive surface channels were reduced and increasing the number of interfaces between

  1. A Simple and Inexpensive Capillary Holder for Thin-Layer Chromatography

    Science.gov (United States)

    Pintea, Beniamin-Nicolae V.

    2011-01-01

    Thin-layer chromatography (TLC) is a widely used method of qualitative analysis in organic synthesis, as it uniquely combines low cost, rapidity, simplicity, versatility, small quantities of sample and low detection limits. The simplest and most economical method for the application of samples onto TLC plates is by hand, using glass capillaries.…

  2. Thin-layer scanner with a dot printer recorder for radiolabelled compounds

    International Nuclear Information System (INIS)

    Kralova, M.; Kysela, F.; Hradil, Z.

    1982-01-01

    A scanner combined with a matrix printer is described for automatic evaluation of thin-layer radiochromatographs of soft beta emitters such as 3 H, 14 C, and 32 P. Details of the device including block schemes and electrical schemes are given

  3. Simple Identification of the Neutral Chlorinated Auxin in Pea by Thin Layer Chromatography

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1980-01-01

    One of the neutral chlorinated auxins of immature pea seeds was readily identified by thin layer procedures simple enough to serve in student's laboratory courses. 4-Chloroindole-3-acetic acid methyl ester was extracted from 50 g of commercial, frozen peas by either water or acetone, concentrated...

  4. Power factor of very thin thermoelectric layers of different thickness prepared by laser ablation

    Czech Academy of Sciences Publication Activity Database

    Zeipl, Radek; Walachová, Jarmila; Pavelka, Martin; Jelínek, Miroslav; Studnička, Václav; Kocourek, Tomáš

    2008-01-01

    Roč. 93, č. 3 (2008), 663-667 ISSN 0947-8396 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z20670512; CEZ:AV0Z10100522 Keywords : thermoelectric layers * thin films * PLD * power factor * BiTe Subject RIV: BH - Optics, Masers, Laser s Impact factor: 1.884, year: 2008

  5. Segmentation of thin corrugated layers in high-resolution OCT images

    NARCIS (Netherlands)

    Callewaert, T.W.J.; Dik, J.; Kalkman, J.

    2017-01-01

    In this paper we present a novel method for the segmentation of thin corrugated layers in high resolution optical coherence tomography (OCT) images. First, we make an initial segmentation, for example with graph based segmentation that, for highly corrugated interfaces, leads to many segmentation

  6. The distribution of Alexander polynomials of knots confined to a thin layer

    NARCIS (Netherlands)

    Michels, J.P.J.; Wiegel, F.W.

    1990-01-01

    Numerical hammagraphy is used to determine the statistical distribution of knots which are confined to a thin layer. The statistics used are based on more than 2*106 knots. Among various striking features is a marked regularity in the occurrence of the prime knots.

  7. Residual stress fields in sol-gel-derived thin TiO2 layers

    NARCIS (Netherlands)

    Teeuw, D.H.J.; Haas, M. de; Hosson, J.Th.M. De

    1999-01-01

    This paper discusses the induction of residual stresses during the curing process of thin titania layers, which are derived using a sol-gel process. During this process, stresses may build up in the spinning stage, the drying stage, and the consolidation stage. The magnitude and character of these

  8. Photoinduced energy and charge transfer in layered porphyrin-gold nanoparticle thin films

    NARCIS (Netherlands)

    Kotiaho, Anne; Lahtinen, Riikka; Lehtivuori, Heli; Tkachenko, Nikolai V.; Lemmetyinen, Helge

    2008-01-01

    In thin films of porphyrin (H2P) and gold nanoparticles (AuNPs), photoexcitation of porphyrins leads to energy and charge transfer to the gold nanoparticles. Alternating layers of porphyrins and octanethiol protected gold nanoparticles (dcore ∼3 nm) were deposited on solid substrates via the

  9. Phospholipids, Dietary Supplements, and Chicken Eggs: An Inquiry-Based Exercise Using Thin-Layer Chromatography

    Science.gov (United States)

    Potteiger, Sara E.; Belanger, Julie M.

    2015-01-01

    This inquiry-based experiment is designed for organic or biochemistry undergraduate students to deduce the identity of phospholipids extracted from chicken eggs and dietary supplements. This is achieved using thin-layer chromatography (TLC) data, a series of guided questions of increasing complexity, and provided relative retention factor (Rf)…

  10. Photonic effects on the fluorescence lifetimes of dyes in thin PVA layers

    NARCIS (Netherlands)

    Prangsma, Jord C.; Molenaar, Robert; Subramaniam, Vinod; Blum, Christian

    2015-01-01

    In this paper we investigate the expected change in fluorescent decay rate when a fluorophore in aqueous solution is moved to a thin spin-coated layer of poly(vinyl alcohol). We take into account the local field effect due to the change in the refractive index of the medium around the fluorophore

  11. Normal and Reversed-Phase Thin Layer Chromatography of Green Leaf Extracts

    Science.gov (United States)

    Sjursnes, Birte Johanne; Kvittingen, Lise; Schmid, Rudolf

    2015-01-01

    Introductory experiments of chromatography are often conducted by separating colored samples, such as inks, dyes, and plant extracts, using filter paper, chalk, or thin layer chromatography (TLC) plates with various solvent systems. Many simple experiments have been reported. The relationship between normal chromatography and reversed-phase…

  12. Purification of 3H-dihydroalprenolol by two dimensional thin layer chromatography

    International Nuclear Information System (INIS)

    Smisterova, J.; Soltes, L.; Kallay, Z.

    1989-01-01

    A two dimensional thin-layer chromatographic method was developed for the purification and analysis of (-)-[ 3 H]dihydroalprenolol by using an acidic mobile phase (butanol/water/acetic acid 25:10:4, v/v) in one direction and a basic eluent (chloroform/acetone/triethylamine 50:40:10, v/v) in another direction. (author)

  13. Possible artefacts in thin layer chromatography of tritium-labelled hydrocortisone

    International Nuclear Information System (INIS)

    Sofronie, E.

    1982-12-01

    Artefacts appearing in thin layer chromatography of tritium labelled hydrocortisone are reported. Evidences are presented that these artefacts cause misleading results concerning radiocheemical purity determiniation. Finally, it is reported a rapid and efficient chromatographic technique allowing the elimination of these artefacts and obtaining of an accurate value for radiochemical purity. (author)

  14. Fabrication and research of high purity germanium detectors with abrupt and thin diffusion layer

    International Nuclear Information System (INIS)

    Rodriguez Cabal, A. E.; Diaz Garcia, A.

    1997-01-01

    A different high purity germanium detector's fabrication method is described. A very thin diffusion film with an abrupt change of the type of conductivity is obtained. The fine diffusion layer thickness makes possibly their utilization in experimental systems in which all the data are elaborated directly on the computer. (author) [es

  15. OPTICAL DETERMINATION OF SMECTIC A LAYER SPACING IN FREELY SUSPENDED THIN FILMS

    Energy Technology Data Exchange (ETDEWEB)

    Rosenblatt, Charles; Amer, Nabil M.

    1979-11-01

    Optical measurements of smectic A layer spacings in freely suspended thin films of three liquid crystals are reported. Although the measured spacings are close to those reported for the bulk, some anomalous behavior is noted. In addition, we report that the smectic A phase in the film can exist at unusually high temperatures.

  16. Bearing Capacity of Footings on Thin Layer of Sand on Soft Cohesive Soil

    DEFF Research Database (Denmark)

    Philipsen, J.; Sørensen, Carsten S.

    2004-01-01

    This paper contains the results of some numerical calculations performed with the aim to determine the bearing capacities of footings placed on a thin layer of sand underlain by soft cohesive soil. During the last 30-35 years different analytical and empirical calculation methods for this situation...

  17. Properties of electropolymerised polypyrrole thin film on silver

    Science.gov (United States)

    Jamadade, Shivaji A.; Puri, Vijaya

    2009-07-01

    This paper reports the properties of electropolymerised polypyrrole thin film on silver. The transmission, reflection, conductivity and dielectric behavior of polypyrrole coated silver has been studied in the 8-12 GHz frequency range of the electromagnetic spectrum. The polypyrrole thin film makes silver a better conductor for microwaves. The microwave conductivity is larger than the DC conductivity by many orders of magnitude. The real and imaginary part of dielectric constant increases in magnitude with increasing doping level and also it decreases in magnitude with increasing frequency.

  18. Magnetoelectric hexaferrite thin film growth on oxide conductive layer for applications at low voltages

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Saba, E-mail: zare.s@husky.neu.edu; Izadkhah, Hessam; Vittoria, Carmine

    2016-08-15

    Magnetoelectric (ME) M-type hexaferrite thin films were deposited on conductive oxide layer of Indium–Tin Oxide (ITO) in order to lower applied voltages to observe ME effects at room temperature. The thin film of ME hexaferrites, SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19}/ITO buffer layer, were deposited on sapphire substrate using Pulsed Laser Deposition (PLD) technique. The film exhibited ME effects as confirmed by vibrating sample magnetometer (VSM) in voltages as low as 0.5 V. Without the oxide conductive layer the required voltages to observe ME effects were typically 500 V and higher. The thin films were characterized by X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy, vibrating sample magnetometer, and ferromagnetic resonance. We measured saturation magnetization of 1064 G, and coercive field of 20 Oe for these thin films. The change rate in remanence magnetization was measured with the application of DC voltage at room temperature and it gave rise to changes in remanence in the order of 15% with the application of only 0.5 V (DC voltage). We deduced a ME coupling, α, of 5×10{sup −10} s m{sup −1} in SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19} thin films. - Highlights: • Magnetoelectric (ME) hexaferrite thin films were deposited on conductive ITO. • Much lower voltage is required in order observe ME effects, as low as 0.5V. • ME films with conductive layers appear to be very promising in future IC circuitry.

  19. Intrinsic and extrinsic magnetic properties of the naturally layered manganites

    International Nuclear Information System (INIS)

    Berger, A.; Mitchell, J. F.; Miller, D. J.; Jiang, J. S.; Bader, S. D.

    1999-01-01

    Structural and magnetic properties of the two-layered Ruddlesden-Popper phase SrO(La 1-x Sr x MnO 3 ) 2 with x = 0.3--0.5 are highlighted. Intrinsic properties of these naturally layered manganites include a colossal magnetoresistance, a composition-dependent magnetic anisotropy, and almost no remanence. Above the Curie temperature there is a non-vanishing extrinsic magnetization attributed to intergrowths (stacking faults in the layered structure). These lattice imperfections consist of additional or missing manganite layers, as observed in transmission electron microscopy. Their role in influencing the properties of the host material is highlighted

  20. Enhanced structural color generation in aluminum metamaterials coated with a thin polymer layer.

    Science.gov (United States)

    Cheng, Fei; Yang, Xiaodong; Rosenmann, Daniel; Stan, Liliana; Czaplewski, David; Gao, Jie

    2015-09-21

    A high-resolution and angle-insensitive structural color generation platform is demonstrated based on triple-layer aluminum-silica-aluminum metamaterials supporting surface plasmon resonances tunable across the entire visible spectrum. The color performances of the fabricated aluminum metamaterials can be strongly enhanced by coating a thin transparent polymer layer on top. The results show that the presence of the polymer layer induces a better impedance matching for the plasmonic resonances to the free space so that strong light absorption can be obtained, leading to the generation of pure colors in cyan, magenta, yellow and black (CMYK) with high color saturation.

  1. Thin metal layer as transparent electrode in n-i-p amorphous silicon solar cells

    Directory of Open Access Journals (Sweden)

    Theuring Martin

    2014-07-01

    Full Text Available In this paper, transparent electrodes, based on a thin silver film and a capping layer, are investigated. Low deposition temperature, flexibility and low material costs are the advantages of this type of electrode. Their applicability in structured n-i-p amorphous silicon solar cells is demonstrated in simulation and experiment. The influence of the individual layer thicknesses on the solar cell performance is discussed and approaches for further improvements are given. For the silver film/capping layer electrode, a higher solar cell efficiency could be achieved compared to a reference ZnO:Al front contact.

  2. Thin-layer chromatographic plates with monolithic layer of silica: production, physical-chemical characteristics, separation capabilities.

    Science.gov (United States)

    Frolova, Anastasiya M; Konovalova, Olga Y; Loginova, Lidia P; Bulgakova, Alena V; Boichenko, Alexander P

    2011-08-01

    The technique for production of thin-layer chromatographic plates with fixed monolithic layer of sorbent was developed on the basis of investigation of factors affecting sorption capacity, sorption kinetics and mechanical stability of monoliths. The optimal reaction mixture for sol-gel synthesis of monoliths consisted of tetraethoxysilane, buffer solution with pH 7.4, N,N-dimethylformamide, ethanol, polyethyleneglycol with molecular weight 1000 and cetylpyridinium chloride in molar ratio 1.0:4.6:1.4:7.6:0.26:8×10(-3). On the basis of analysis of sorption kinetics of malachite green on the monoliths it was concluded that mechanism of sorption includes chemisorption. The optimized conditions for fixing the monolithic layer on the carrier and its drying allow obtaining undisturbed monolithic layer, which was used for test mixtures separation. The increase of monolithic layer thickness in comparison with ultrathin-layer chromatographic plates allows detecting visually at reasonable concentrations and loaded sample volumes the spots of food and synthetic dyes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A new concept in polymeric thin-film composite nanofiltration membranes with antibacterial properties.

    Science.gov (United States)

    Mollahosseini, Arash; Rahimpour, Ahmad

    2013-01-01

    A new, thin film, biofouling resistant, nanofiltration (NF) membrane was fabricated with two key characteristics, viz. a low rate of silver (Ag) release and long-lasting antibacterial properties. In the new approach, nanoparticles were embedded completely in a polymeric thin-film layer. A comparison was made between the new thin-film composite (TFC), NF membrane and thin-film nanocomposite (TFN), and antibacterial NF membranes. Both types of NF membrane were fabricated by interfacial polymerization on a polysulphone sublayer using m-phenylenediamine and trimesoyl chloride as an amine monomer and an acid chloride monomer, respectively. Energy dispersive X-ray (EDX) microanalysis demonstrated the presence of Ag nanoparticles. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) were used to study the cross-sectional and surface morphological properties of the NF membranes. Permeability and salt rejection were tested using a dead-end filtration cell. Ag leaching from the membranes was measured using inductively coupled mass spectrometry (ICP-MS). Morphological studies showed that the TFC NF membranes had better thin-film formation (a more compact structure and a smoother surface) than TFN NF membranes. Performance experiments on TFC NF membranes revealed that permeability was good, without sacrificing salt rejection. The antibacterial properties of the fabricated membranes were tested using the disk diffusion method and viable plate counts. The antibiofouling properties of the membranes were examined by measuring the quantity of bacterial cells released from the biofilm formed (as a function of the amount of biofilm present). A more sensitive surface was observed compared to that of a typical antibacterial NF membrane. The Ag leaching rates were low, which will likely result in long-lasting antibacterial and biofouling resistant properties.

  4. Thin Film Solar Cells and their Optical Properties

    Directory of Open Access Journals (Sweden)

    Stanislav Jurecka

    2006-01-01

    Full Text Available In this work we report on the optical parameters of the semiconductor thin film for solar cell applications determination. The method is based on the dynamical modeling of the spectral reflectance function combined with the stochastic optimization of the initial reflectance model estimation. The spectral dependency of the thin film optical parameters computations is based on the optical transitions modeling. The combination of the dynamical modeling and the stochastic optimization of the initial theoretical model estimation enable comfortable analysis of the spectral dependencies of the optical parameters and incorporation of the microstructure effects on the solar cell properties. The results of the optical parameters ofthe i-a-Si thin film determination are presented.

  5. Growth and optical characteristics of high-quality ZnO thin films on graphene layers

    Directory of Open Access Journals (Sweden)

    Suk In Park

    2015-01-01

    Full Text Available We report the growth of high-quality, smooth, and flat ZnO thin films on graphene layers and their photoluminescence (PL characteristics. For the growth of high-quality ZnO thin films on graphene layers, ZnO nanowalls were grown using metal-organic vapor-phase epitaxy on oxygen-plasma treated graphene layers as an intermediate layer. PL measurements were conducted at low temperatures to examine strong near-band-edge emission peaks. The full-width-at-half-maximum value of the dominant PL emission peak was as narrow as 4 meV at T = 11 K, comparable to that of the best-quality films reported previously. Furthermore, the stimulated emission of ZnO thin films on the graphene layers was observed at the low excitation energy of 180 kW/cm2 at room temperature. Their structural and optical characteristics were investigated using X-ray diffraction, transmission electron microscopy, and PL spectroscopy.

  6. Properties of Exchange Coupled All-garnet Magneto-Optic Thin Film Multilayer Structures

    Directory of Open Access Journals (Sweden)

    Mohammad Nur-E-Alam

    2015-04-01

    Full Text Available The effects of exchange coupling on magnetic switching properties of all-garnet multilayer thin film structures are investigated. All-garnet structures are fabricated by sandwiching a magneto-soft material of composition type Bi1.8Lu1.2Fe3.6Al1.4O12 or Bi3Fe5O12:Dy2O3 in between two magneto-hard garnet material layers of composition type Bi2Dy1Fe4Ga1O12 or Bi2Dy1Fe4Ga1O12:Bi2O3. The fabricated RF magnetron sputtered exchange-coupled all-garnet multilayers demonstrate a very attractive combination of magnetic properties, and are of interest for emerging applications in optical sensors and isolators, ultrafast nanophotonics and magneto-plasmonics. An unconventional type of magnetic hysteresis behavior not observed previously in magnetic garnet thin films is reported and discussed.

  7. Wear resistant PTFE thin film enabled by a polydopamine adhesive layer

    International Nuclear Information System (INIS)

    Beckford, Samuel; Zou, Min

    2014-01-01

    The influence of a polydopamine (PDA) adhesive layer on the friction and wear resistance of polytetrafluoroethylene (PTFE) thin films coated on stainless steel was investigated. The friction and wear tests were carried out using a ball on flat configuration under a normal load of 50 g, sliding speed of 2.5 mm/s, and stroke length of 15 mm. It is found that the PDA/PTFE film is able to withstand approximately 500 times more rubbing cycles than the PTFE film alone. X-ray photoelectron spectroscopy (XPS) results show that a tenacious layer of PTFE remains adhered to the PDA layer, which enables the durability of the PDA/PTFE film. Because of the relatively low thickness of the film, PDA/PTFE shows great potential for use in applications where durable, thin films are desirable

  8. Measuring drug saturation solubility in thin polymer films: use of a thin acceptor layer.

    Science.gov (United States)

    Kunst, Anders; Lee, Geoffrey

    2015-03-15

    The saturation solubility of scopolamine base in two pressure sensitive adhesive DURO-TAKs has been determined using the 5-layer laminate technique. The acceptor layer had a thickness of less than 25 μm to promote a rapid partitioning equilibrium. With DURO-TAK 87-2510 the saturation solubility is 5.2 ± 0.6% w/w when measured after 7 days. With DURO-TAK 87-4098 the saturation solubility is slightly higher, 7.9 ± 0.7% w/w after 7 days. These values remained constant up to approximately 30 days' experimental time. In both cases the acceptor was free of crystalline material at the end of the experiment. This strongly suggests that that equilibrium had been reached between the saturated solution in the acceptor layer and the crystalline drug still present in the donor layer. The addition of light liquid paraffin to the acceptor produced a solubilizing effect with 87-4098 but not 87-2510. We recommend some experimental conditions that we consider to be necessary to achieve a reliable and accurate result with this technique. If performed correctly, it can give a feasible result. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Thin-film Nanofibrous Composite Membranes Containing Cellulose or Chitin Barrier Layers Fabricated by Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    H Ma; B Hsiao; B Chu

    2011-12-31

    The barrier layer of high-flux ultrafiltration (UF) thin-film nanofibrous composite (TFNC) membranes for purification of wastewater (e.g., bilge water) have been prepared by using cellulose, chitin, and a cellulose-chitin blend, regenerated from an ionic liquid. The structures and properties of regenerated cellulose, chitin, and a cellulose-chitin blend were analyzed with thermogravimetric analysis (TGA) and wide-angle X-ray diffraction (WAXD). The surface morphology, pore size and pore size distribution of TFNC membranes were determined by SEM images and molecular weight cut-off (MWCO) methods. An oil/water emulsion, a model of bilge water, was used as the feed solution, and the permeation flux and rejection ratio of the membranes were investigated. TFNC membranes based on the cellulose-chitin blend exhibited 10 times higher permeation flux when compared with a commercial UF membrane (PAN10, Sepro) with a similar rejection ratio after filtration over a time period of up to 100 h, implying the practical feasibility of such membranes for UF applications.

  10. Investigation of anti-wear performance of automobile lubricants using thin layer activation analysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Biswal, Jayashree [Isotope and Radiation Application Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Thakre, G.D. [Tribology and Combustion Division, Indian Institute of Petroleum, Dehradun 248005, Uttarakhand (India); Pant, H.J., E-mail: hjpant@barc.gov.in [Isotope and Radiation Application Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Samantray, J.S. [Isotope and Radiation Application Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Arya, P.K. [Tribology and Combustion Division, Indian Institute of Petroleum, Dehradun 248005, Uttarakhand (India); Sharma, S.C.; Gupta, A.K. [Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2017-05-15

    An investigation was carried out to examine the anti-wear behavior of automobile lubricants using thin layer activation analysis technique. For this study disc gears made of EN 31 steel were labeled with a small amount of radioactivity by irradiating with 13 MeV proton beam from a particle accelerator. Experiments on wear rate measurement of the gear were carried out by mounting the irradiated disc gear on a twin-disc tribometer under lubricated condition. The activity loss was monitored by using a NaI(Tl) scintillation detector integrated with a multichannel analyzer. The relative remnant activity was correlated with thickness loss by generating a calibration curve. The wear measurements were carried out for four different types of lubricants, named as, L1, L2, L3 and L4. At lower load L1 and L4 were found to exhibit better anti-wear properties than L2 and L3, whereas, L4 exhibited the best anti-wear performance behavior than other three lubricants at all the loads and speeds investigated.

  11. Nonlinear optical properties of ultrathin metal layers

    DEFF Research Database (Denmark)

    Lysenko, Oleg

    2016-01-01

    has the dominant contribution to the effective third-order nonlinear susceptibility of the longrange surface plasmon polariton mode in the strip plasmonic waveguides. The spectral broadening of the plasmonic mode in the waveguides is determined by the real part of the third-order nonlinear...... susceptibility of the gold layer, and the nonlinear power transmission of the plasmonic mode is determined by the imaginary part of the third-order nonlinear susceptibility of the gold layer. The experimental values of the third-order nonlinear susceptibility of gold for ultrathin layers are presented. The pulse...

  12. Atom probe tomography characterization of thin copper layers on aluminum deposited by galvanic displacement.

    Science.gov (United States)

    Zhang, Yi; Ai, Jiahe; Hillier, Andrew C; Hebert, Kurt R

    2012-01-24

    ″Ultrathin″ metallization layers on the order of nanometers in thickness are increasingly used in semiconductor interconnects and other nanostructures. Aqueous deposition methods are attractive methods to produce such layers due to their low cost, but formation of ultrathin layers has proven challenging, particularly on oxide-coated substrates. This work focused on the formation of thin copper layers on aluminum, by galvanic displacement from alkaline aqueous solutions. Analysis by atom probe tomography (APT) showed that continuous copper films of approximately 1 nm thickness were formed, apparently the first demonstration of deposition of ultrathin metal layers on oxidized substrates from aqueous solutions. The APT reconstructions indicate that deposited copper replaced a portion of the surface oxide film on aluminum. The results are consistent with mechanisms in which surface hydride species on aluminum mediate deposition, either by directly reducing cupric ions or by inducing electronic conduction in the oxide, thus enabling cupric ion reduction by Al metal.

  13. Estimation of optical constants of a bio-thin layer (onion epidermis), using SPR spectroscopy

    International Nuclear Information System (INIS)

    Rehman, Saif-ur-; Hayashi, Shinji; Sekkat, Zouheir; Mumtaz, Huma; Shaukat, S F

    2014-01-01

    We estimate the optical constants of a biological thin layer (Allium cepa) by surface plasmon resonance (SPR) spectroscopy. For this study, the fresh inner thin epidermis of an onion bulb was used and stacked directly on gold (Au) and silver (Ag) film surfaces in order to identify the shift in SPR mode of each metal film at an operating wavelength of 632.8 nm. The thickness and dielectric constants of the biological thin layer were determined by matching the experimental SPR curves to theoretical ones. The thickness and roughness of bare Au and Ag thin films were also measured by atomic force microscopy (AFM); the results of which are in good agreement with those obtained through experiment. Due to the high surface roughness of the natural onion epidermis layer, AFM could not measure the exact thickness of an onion epidermis. It is estimated that the value of the real part of the dielectric constant of an onion epidermis is between the dielectric constants of water and air. (paper)

  14. Mathematical Modeling, Computation, and Experimental Imaging of Thin-Layer Objects by Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Ivan Frollo

    2013-01-01

    Full Text Available Imaging of thin layers using magnetic resonance imaging (MRI methods belongs to the special procedures that serve for imaging of weak magnetic materials (weak ferromagnetic, diamagnetic, or paramagnetic. The objective of the paper is to present mathematical models appropriate for magnetic field calculations in the vicinity of thin organic or inorganic materials with defined magnetic susceptibility. Computation is similar to the double layer theory. Thin plane layers in their vicinity create a deformation of the neighboring magnetic field. Calculations with results in the form of analytic functions were derived for rectangular, circular, and general shaped samples. For experimental verification, an MRI 0.2 Tesla esaote Opera imager was used. For experiments, a homogeneous parallelepiped block (reference medium—a container filled with doped water—was used. The resultant images correspond to the magnetic field variations in the vicinity of the samples. For data detection, classical gradient-echo (GRE imaging methods, susceptible to magnetic field inhomogeneities, were used. Experiments proved that the proposed method was effective for thin organic and soft magnetic materials testing using magnetic resonance imaging methods.

  15. Spatially resolved photoconductive properties of profiled polycrystalline silicon thin films

    Science.gov (United States)

    Savenije, Tom J.; van Veenendaal, Patrick A. T. T.; de Haas, Matthijs P.; Warman, John M.; Schropp, Ruud E. I.

    2002-05-01

    To study the mobility and lifetime of charge carriers in thin film polycrystalline silicon deposited by hot-wire chemical vapor deposition, time-resolved microwave conductivity measurements have been performed. Using this technique the change in conductivity in the polycrystalline silicon films after pulsed excitation can be monitored on a nanosecond time scale, without the use of electrodes. Due to the different penetration depths of the laser wavelengths used (320, 500, and 690 nm) combined with illumination from different sides, the photoconductivity in different regions within the sample can be measured. Four different samples of polycrystalline silicon deposited on Corning glass have been studied: Poly1 (highly defective), Poly2 (device quality) and profiled layers of Poly1 and Poly2. For front or back illumination, the conductivity transients for the Poly1 film are very similar and show that lifetimes of the charge carriers generated are less than 1 ns. For the Poly2 film the mobility in the interfacial substrate region (μ=0.17 cm2/V s) is more than 1 order of magnitude lower than in the top region (μ=3.8 cm2/V s). The formation of a thin Poly1 film on the surface of the Corning substrate, acting as a seed layer for the Poly2 layer, followed by the deposition of the Poly2 layer, results in only a relatively small increase in the mobility in the region close to the substrate as compared to the bare Poly2 layer, while the mobility in the top region remains approximately constant.

  16. In-situ laser processing and microstructural characteristics of YBa2Cu3O7-δ thin films on Si with TiN buffer layer

    International Nuclear Information System (INIS)

    Tiwari, P.; Zheleva, T.; Narayan, J.

    1993-01-01

    The authors have prepared high-quality superconducting YBa 2 Cu 3 O 7 -δ (YBCO) thin films on Si(100) with TiN as a buffer layer using in-situ multitarget deposition system. Both TiN and YBCO thin films were deposited sequentially by KrF excimer laser ( | = 248 nm ) at substrate temperature of 650 C . Thin films were characterized using X-ray diffraction (XRD), four-point-probe ac resistivity, scanning electron microscopy (S E M), transmission electron microscopy (TEM), and Rutherford backscattering (RBS). The TiN buffer layer was epitaxial and the epitaxial relationship was found to be cube on cube with TiN parallel Si. YBCO thin films on Si with TiN buffer layer showed the transition temperature of 90-92K with T co (zero resistance temperature) of 84K. The authors have found that the quality of the buffer layer is very important in determining the superconducting transition temperature of the thin film. The effects of processing parameters and the correlation of microstructural features with superconducting properties are discussed in detail

  17. Transparent conductive ZnO layers on polymer substrates: Thin film deposition and application in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Dosmailov, M. [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Leonat, L.N. [Linz Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University Linz, A-4040 Linz (Austria); Patek, J. [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Roth, D.; Bauer, P. [Institute of Experimental Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Scharber, M.C.; Sariciftci, N.S. [Linz Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University Linz, A-4040 Linz (Austria); Pedarnig, J.D., E-mail: johannes.pedarnig@jku.at [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria)

    2015-09-30

    Aluminum doped ZnO (AZO) and pure ZnO thin films are grown on polymer substrates by pulsed-laser deposition and the optical, electrical, and structural film properties are investigated. Laser fluence, substrate temperature, and oxygen pressure are varied to obtain transparent, conductive, and stoichiometric AZO layers on polyethylene terephthalate (PET) that are free of cracks. At low fluence (1 J/cm{sup 2}) and low pressure (10{sup −3} mbar), AZO/PET samples of high optical transmission in the visible range, low electrical sheet resistance, and high figure of merit (FOM) are produced. AZO films on fluorinated ethylene propylene have low FOM. The AZO films on PET substrates are used as electron transport layer in inverted organic solar cell devices employing P3HT:PCBM as photovoltaic polymer-fullerene bulk heterojunction. - Highlights: • Aluminum doped and pure ZnO thin films are grown on polyethylene terephthalate. • Growth parameters laser fluence, temperature, and gas pressure are optimized. • AZO films on PET have high optical transmission and electrical conductance (FOM). • Organic solar cells on PET using AZO as electron transport layer are made. • Power conversion efficiency of these OSC devices is measured.

  18. Optical, wetting and electrical properties of functionalized fulleropyrrolidine thin films

    Science.gov (United States)

    Abdulrazack, Parveen; Venkatesan, Sughanya; Chellasamy, Manoharan; Samuthira, Nagarajan

    2017-12-01

    Fulleropyrrolidine derivatives acts as an electron acceptor in the fabrication of solar cells and other optoelectronic devices. In this investigation thin film of functionalized fulleropyrrolidines were fabricated and studied their photo-physical properties. Surface morphology of the thin films was investigated through AFM and FE-SEM. The results suggested that large dependence on structure vs molecular packing. The long alkyl chain substituted C60 were assembled in the form of nanorods. C60- C60 intermolecular distance were measured, the films were with good absorption and exhibits n-type semiconducting behavior. The films were having high contact angle and can be effectively used for fabricating semiconducting devices with self- cleaning property.

  19. Atomic layer deposition of transparent semiconducting oxide CuCrO2 thin films

    OpenAIRE

    Tripathi, T.S.; Niemelä, Janne-Petteri; Karppinen, Maarit

    2015-01-01

    Atomic layer deposition (ALD) is a vital gas-phase technique for atomic-level thickness-controlled deposition of high-quality thin films on various substrate morphologies owing to its self-limiting gas-surface reaction mechanism. Here we report the ALD fabrication of thin films of the semiconducting CuCrO2 oxide that is a highly prospective candidate for transparent electronics applications. In our process, copper 2,2,6,6-tetramethyl-3,5-heptanedionate (Cu(thd)2) and chromium acetyl acetonate...

  20. Ionizing and Non-ionizing Radiation Effects in Thin Layer Hexagonal Boron Nitride

    Science.gov (United States)

    2015-03-01

    ray energy, x is the thickness of the h-BN or Si region, Gammaφ is the gamma flux of the cobalt 60 source, and t is the irradiation time... Boron Nitride Thin Films Grown by Atomic Layer Deposition," Thin Solid Films, no. 571, pp. 51-55, 2014. [8] H. X . Chen, X . G. Zhao, Z. J. Ma, Y. Li...Gehrke and U. Vetter, "Modeling the diode characteristics of boron nitride/silicon carbide heterojunctions," Applied Physics Letters, vol. 97, 2010

  1. Layer-by-layer assembly of thin organic films on PTFE activated by cold atmospheric plasma

    Directory of Open Access Journals (Sweden)

    Tóth András

    2014-12-01

    Full Text Available An air diffuse coplanar surface barrier discharge is used to activate the surface of polytetrafluoroethylene (PTFE samples, which are subsequently coated with polyvinylpyrrolidone (PVP and tannic acid (TAN single, bi- and multilayers, respectively, using the dip-coating method. The surfaces are characterized by X-ray Photoelectron Spectroscopy (XPS, Attenuated Total Reflection – Fourier Transform Infrared Spectroscopy (ATR-FTIR and Atomic Force Microscopy (AFM. The XPS measurements show that with plasma treatment the F/C atomic ratio in the PTFE surface decreases, due to the diminution of the concentration of CF2 moieties, and also oxygen incorporation through formation of new C–O, C=O and O=C–O bonds can be observed. In the case of coated samples, the new bonds indicated by XPS show the bonding between the organic layer and the surface, and thus the stability of layers, while the gradual decrease of the concentration of F atoms with the number of deposited layers proves the creation of PVP/TAN bi- and multi-layers. According to the ATR-FTIR spectra, in the case of PVP/TAN multilayer hydrogen bonding develops between the PVP and TAN, which assures the stability of the multilayer. The AFM lateral friction measurements show that the macromolecular layers homogeneously coat the plasma treated PTFE surface.

  2. The Effect of High Temperature Annealing on the Grain Characteristics of a Thin Chemical Vapor Deposition Silicon Carbide Layer.

    Energy Technology Data Exchange (ETDEWEB)

    Isabella J van Rooyen; Philippus M van Rooyen; Mary Lou Dunzik-Gougar

    2013-08-01

    The unique combination of thermo-mechanical and physiochemical properties of silicon carbide (SiC) provides interest and opportunity for its use in nuclear applications. One of the applications of SiC is as a very thin layer in the TRi-ISOtropic (TRISO) coated fuel particles for high temperature gas reactors (HTGRs). This SiC layer, produced by chemical vapor deposition (CVD), is designed to withstand the pressures of fission and transmutation product gases in a high temperature, radiation environment. Various researchers have demonstrated that macroscopic properties can be affected by changes in the distribution of grain boundary plane orientations and misorientations [1 - 3]. Additionally, various researchers have attributed the release behavior of Ag through the SiC layer as a grain boundary diffusion phenomenon [4 - 6]; further highlighting the importance of understanding the actual grain characteristics of the SiC layer. Both historic HTGR fission product release studies and recent experiments at Idaho National Laboratory (INL) [7] have shown that the release of Ag-110m is strongly temperature dependent. Although the maximum normal operating fuel temperature of a HTGR design is in the range of 1000-1250°C, the temperature may reach 1600°C under postulated accident conditions. The aim of this specific study is therefore to determine the magnitude of temperature dependence on SiC grain characteristics, expanding upon initial studies by Van Rooyen et al, [8; 9].

  3. Enhancement of the Optoelectronic Properties of PEDOT: PSS-PbS Nanoparticles Composite Thin Films Through Nanoparticles' Capping Ligand Exchange

    Science.gov (United States)

    García-Gutiérrez, Diana F.; Hernández-Casillas, Laura P.; Sepúlveda-Guzmán, Selene; Vazquez-Rodriguez, Sofia; García-Gutiérrez, Domingo I.

    2018-02-01

    The influence of the capping ligand on nanoparticles' optical and electronic properties is a topic of great interest currently being investigated by several research groups in different countries. In the present study, PbS nanoparticles originally synthesized with oleic acid, myristic acid and hexanoic acid underwent a ligand exchange process to replace the original carboxylic acid for uc(l)-cysteine as the capping layer, and were thoroughly characterized by means of transmission electron microscopy and its related techniques, such as energy dispersive x-ray spectroscopy and scanning-transmission electron microscopy, and Fourier transform infrared, Raman and x-ray photoelectron spectroscopy. Afterwards, these PbS nanoparticles were dispersed into a poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) matrix to fabricate a composite thin film which displayed the optical absorption properties of the PbS nanoparticles and the electrical transport properties of the PEDOT:PSS matrix, in order to evaluate the impact of the nanoparticles' capping ligand on the optoelectronic properties of the fabricated composite thin films. Composite thin films with PbS nanoparticles showing uc(l)-cysteine as the capping layer displayed clear photoresponse and a threefold increment in their conductivities compared to pristine PEDOT:PSS. The properties of PEDOT:PSS, known as a hole transport layer in most organic photovoltaic devices, were enhanced by adding PbS nanoparticles with different capping ligands, producing a promising composite material for optoelectronic applications by proper selection of the nanoparticles' capping layer.

  4. Viscoelastic properties and efficient acoustic damping in confined polymer nano-layers at GHz frequencies

    Science.gov (United States)

    Hettich, Mike; Jacob, Karl; Ristow, Oliver; Schubert, Martin; Bruchhausen, Axel; Gusev, Vitalyi; Dekorsy, Thomas

    2016-09-01

    We investigate the viscoelastic properties of confined molecular nano-layers by time resolved optical pump-probe measurements. Access to the elastic properties is provided by the damping time of acoustic eigenmodes of thin metal films deposited on the molecular nano-layers which show a strong dependence on the molecular layer thickness and on the acoustic eigen-mode frequencies. An analytical model including the viscoelastic properties of the molecular layer allows us to obtain the longitudinal sound velocity as well as the acoustic absorption coefficient of the layer. Our experiments and theoretical analysis indicate for the first time that the molecular nano-layers are much more viscous than elastic in the investigated frequency range from 50 to 120 GHz and thus show pronounced acoustic absorption. The longitudinal acoustic wavenumber has nearly equal real and imaginary parts, both increasing proportional to the square root of the frequency. Thus, both acoustic velocity and acoustic absorption are proportional to the square root of frequency and the propagation of compressional/dilatational acoustic waves in the investigated nano-layers is of the diffusional type, similar to the propagation of shear waves in viscous liquids and thermal waves in solids.

  5. Electron beam dosimetry for a thin-layer absorber irradiated by 300-keV electrons

    International Nuclear Information System (INIS)

    Kijima, Toshiyuki; Nakase, Yoshiaki

    1993-01-01

    Depth-dose distributions in thin-layer absorbers were measured for 300-keV electrons from a scanning-type irradiation system, the electrons having penetrated through a Ti-window and an air gap. Irradiations of stacks of cellulose triacetate(CTA) film were carried out using either a conveyor (i.e. dynamic irradiation) or fixed (i.e. static) irradiation. The sample was irradiated using various angles of incidence of electrons, in order to examine the effect of obliqueness of electron incidence at low-energy representative of routine radiation curing of thin polymeric or resin layers. Dynamic irradiation gives broader and shallower depth-dose distributions than static irradiation. Greater obliqueness of incident electrons gives results that can be explained in terms of broader and shallower depth-dose distributions. The back-scattering of incident electrons by a metal(Sn) backing material enhances the absorbed dose in a polymeric layer and changes the overall distribution. It is suggested that any theoretical estimations of the absorbed dose in thin layers irradiated in electron beam curing must be accomplished and supported by experimental data such as that provided by this investigation. (Author)

  6. Development of optimized mobile phases for protein separation by high performance thin layer chromatography.

    Science.gov (United States)

    Biller, Julia; Morschheuser, Lena; Riedner, Maria; Rohn, Sascha

    2015-10-09

    In recent years, protein chemistry tends inexorably toward the analysis of more complex proteins, proteoforms, and posttranslational protein modifications. Although mass spectrometry developed quite fast correspondingly, sample preparation and separation of these analytes is still a major issue and quite challenging. For many years, electrophoresis seemed to be the method of choice; nonetheless its variance is limited to parameters such as size and charge. When taking a look at traditional (thin-layer) chromatography, further parameters such as polarity and different mobile and stationary phases can be utilized. Further, possibilities of detection are manifold compared to electrophoresis. Similarly, two-dimensional separation can be also performed with thin-layer chromatography (TLC). As the revival of TLC developed enormously in the last decade, it seems to be also an alternative to use high performance thin-layer chromatography (HPTLC) for the separation of proteins. The aim of this study was to establish an HPTLC separation system that allows a separation of protein mixtures over a broad polarity range, or if necessary allowing to modify the separation with only few steps to improve the separation for a specific scope. Several layers and solvent systems have been evaluated to reach a fully utilized and optimized separation system. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. EFFECT OF OPERATING CONDITIONS ON THIN LAYERS OF TITANIUM POSED ON STEEL 100C6 SUBSTRATES WITH PVD METHOD

    Directory of Open Access Journals (Sweden)

    R. Gheriani

    2015-08-01

    Full Text Available We proposed to prepare hard coatings based on titanium carbides by deposition of thin layers of pure Ti by sputtering method on steel substrates 100C6 of 1 %mass carbon. The samples were annealed under vacuum in the temperature range of 400 ° C to 1000 ° C, in order to activate the reaction between the two parts of the system which results the formation of carbides of Ti due to the diffusion of carbon from the substrate towards deposited  layers. We therefore note an improvement in mechanical properties such as hardness. To demonstrate the effect of deposition parameters, we have prepared two series, the first one with a high pressure of argon and remarkable energy of extracted atoms, and in the case of the second one the pressure and kinetic energy are relatively less important. The samples of series 2 show features more important: a compact structure and good mechanical properties. The reaction between thin films and substrates is studied by x-ray diffraction (XRD, scanning electron microscopy (SEM. The measurements of microhardness were performed with the Vickers method.

  8. 7-Octenyltrichrolosilane/trimethyaluminum hybrid dielectrics fabricated by molecular-atomic layer deposition on ZnO thin film transistors

    Science.gov (United States)

    Huang, Jie; Lee, Mingun; Lucero, Antonio T.; Cheng, Lanxia; Ha, Min-Woo; Kim, Jiyoung

    2016-06-01

    We demonstrate the fabrication of 7-octenytrichlorosilane (7-OTS)/trimethylaluminum (TMA) organic-inorganic hybrid films using molecular-atomic layer deposition (MALD). The properties of 7-OTS/TMA hybrid films are extensively investigated using transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), atomic force microscopy (AFM), and electrical measurements. Our results suggest that uniform and smooth amorphous hybrid thin films with excellent insulating properties are obtained using the MALD process. Films have a relatively high dielectric constant of approximately 5.0 and low leakage current density. We fabricate zinc oxide (ZnO) based thin film transistors (TFTs) using 7-OTS/TMA hybrid material as a back gate dielectric with the top ZnO channel layer deposited in-situ via MALD. The ZnO TFTs exhibit a field effect mobility of approximately 0.43 cm2 V-1 s-1, a threshold voltage of approximately 1 V, and an on/off ratio of approximately 103 under low voltage operation (from -3 to 9 V). This work demonstrates an organic-inorganic hybrid gate dielectric material potentially useful in flexible electronics application.

  9. Preparation and properties of thin films treatise on materials science and technology

    CERN Document Server

    Tu, K N

    1982-01-01

    Treatise on Materials Science and Technology, Volume 24: Preparation and Properties of Thin Films covers the progress made in the preparation of thin films and the corresponding study of their properties. The book discusses the preparation and property correlations in thin film; the variation of microstructure of thin films; and the molecular beam epitaxy of superlattices in thin film. The text also describes the epitaxial growth of silicon structures (thermal-, laser-, and electron-beam-induced); the characterization of grain boundaries in bicrystalline thin films; and the mechanical properti

  10. The Radiative Effect of Thin Boundary Layer Clouds in the Arctic

    Science.gov (United States)

    Schmidt, Sebastian; Coddington, Odele

    2016-04-01

    Thin boundary layer clouds are important for the shortwave Arctic surface energy budget, and may have an influence on melt processes near the marginal ice zone - especially leading up to the sea ice minimum in September. Unfortunately, the only viable approach to date for estimating low-cloud radiative effects in the Arctic is active remote sensing because passive imagery retrievals have small skill detecting and characterizing low-level clouds. Infrared retrievals lack the necessary temperature contrast between the clouds and the underlying surface, and are often hampered by low-level inversions. Similarly, shortwave retrievals of clouds above bright surfaces lack dynamic range in reflectance to provide meaningful retrievals, and incomplete knowledge about the surface properties translates into unacceptably high uncertainties. The shortcoming of passive imagery in the Arctic constitutes a considerable obstacle for attaining spatial coverage of cloud radiative effects in the high Arctic. A possible way around this problem is to use reflectance observations in the shortwave infrared wavelength range, where snow reflects less than in the visible, thus increasing the useable dynamic range for cloud property retrievals. For example, the state-of-the-art retrieval employed by MODIS (Moderate Resolution Imaging Spectroradiometer) operates with two channels in this "sweet spot" of the shortwave wavelength range. However, information content analysis, presented in this contribution, shows that two channels in the shortwave infrared are actually insufficient to attain reliable retrievals of cloud optical thickness, thermodynamic phase, and effective radius (the key parameters for cloud radiative effects) for thin low-level clouds above snow. We will discuss how many channels in this wavelength range are optimal to provide reliable cloud retrievals, given the variability of the underlying surface albedo. Our analysis is supported by field data from two NASA experiments

  11. Properties of MoO3 thin film polymorphs

    International Nuclear Information System (INIS)

    McCarron, E.M.; Carcia, P.F.

    1987-01-01

    Thin film polymorphs of molybdenum trioxide have been synthesized by RF sputtering. Films deposited on thermally floating substrates are polycrystalline and exhibit preferred orientation. Depending upon the oxygen partial pressure maintained during sputtering, the films can be made to crystallize in either the thermodynamically stable orthorhombic α MoO 3 form (unique 2D-layered structure) or the metastable monoclinic β MoO 3 phase (3D ReO 3 -related structure). Metastable β films can be converted thermally to the α phase and the transformation appears topotactic. Films deposited on the cooled substrates are amorphous. A correlation between the particular phase formed and adatom mobility is noted

  12. Electrochemical layer by layer growth and characterization of copper sulfur thin films on Ag(1 1 1)

    International Nuclear Information System (INIS)

    Innocenti, M.; Bencistà, I.; Bellandi, S.; Bianchini, C.; Di Benedetto, F.; Lavacchi, A.; Vizza, F.; Foresti, M.L.

    2011-01-01

    Copper sulfide (CuS) thin films were grown on a single crystal Ag(1 1 1) substrate by Electrochemical Atomic Layer Deposition (ECALD) method, i.e., by alternated surface limited deposition of copper and sulfur. A detailed investigation of deposition of Cu on S allowed to find the best conditions for copper deposition. The electrochemical characterization of deposits obtained with different deposition cycles suggests a 1:1 stoichiometric ratio between Cu and S corresponding to Cu monosulfide. The compositional analysis was performed by X-rays Photoelectron Spectroscopy (XPS), and the morphological was investigated by Atomic Force Microscopy (AFM) for deposits formed with 20 ECALD cycles.

  13. Advances in analytical techniques for neutron capture therapy: thin layer chromatography matrix and track etch thin layer chromatography methods for boron-10 analysis

    International Nuclear Information System (INIS)

    Schremmer, J.M.; Noonan, D.J.

    1987-01-01

    A new track etch autoradiographic technique for quantitating boron-10 containing compounds used for neutron capture therapy is described. Instead of applying solutions of Cs2B12H11SH and its oxidation products directly to solid-state nuclear track detectors, diethylaminoethyl cellulose thin layer chromatography (TLC) plates are utilized as sample matrices. The plates are juxtaposed with Lexan polycarbonate detectors and irradiated in a beam of thermal neutrons. The detectors are then chemically etched, and the resultant tracks counted with an optoelectronic image analyzer. Sensitivity to boron-10 in solution reaches the 1 pg/microliter level, or 1 ppb. In heparinized blood samples, 100 pg boron-10/microliter are detected. This TLC matrix method has the advantage that sample plates can be reanalyzed under different reactor conditions to optimize detector response to the boron-10 carrier material. Track etch/TLC allows quantitation of the purity of boron neutron capture therapy compounds by utilizing the above method with TLC plates developed in solvent systems that resolve Cs2B12H11SH and its oxidative analogs. Detectors irradiated in juxtaposition to the thin layer chromatograms are chemically etched, and the tracks are counted in the sample lane from the origin of the plate to the solvent front. A graphic depiction of the number of tracks per field yields a quantitative analysis of compound purity

  14. Investigation of the magnetic properties of electrodeposited NiFe thin films

    International Nuclear Information System (INIS)

    Bakkaloglu, O. F.; Bedir, M.; Oeztas, M.; Karahan, I. H.

    2002-01-01

    Most magnetic devices used today are based on the magnetic thin film. Rapid and extensive developments in magnetic sensor / actuator and magnetic recording technology place a growing demand on the use of different thin film fabrication techniques for magnetic materials. The electroplating technique is especially interesting due to its low cost, high throughput and high quality of the deposits which are extensively used in the magnetic recording industry to deposit relatively thick permalloy layers. Much recent attention has focused on the electrodeposited NiFe thin films, which exhibit giant magneto resistive behaviour as well as anisotropic magnetoresistance properties. n this study, NiFe thin films were developed by using electrodeposition technique and their crystallinity structures were investigated by using x-ray diffractometer measurements. The magneto resistive properties of the samples were investigated by Wan der Pauw method with a home made electromagnet under the different magnetic fields. The magnetoresistance measurements of the samples were carried out in two configurations; current parallel ( longitudinal ) and perpendicular ( transverse ) to the magnetic field. In the longitudinal configuration giant magnetoresistance was observed while anisotropic magnetoresistance was detected in the other configuration

  15. Microporous Polyurethane Thin Layer as a Promising Scaffold for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Justyna Kucińska-Lipka

    2017-07-01

    Full Text Available The literature describes that the most efficient cell penetration takes place at 200–500 µm depth of the scaffold. Many different scaffold fabrication techniques were described to reach these guidelines. One such technique is solvent casting particulate leaching (SC/PL. The main advantage of this technique is its simplicity and cost efficiency, while its main disadvantage is the scaffold thickness, which is usually not less than 3000 µm. Thus, the scaffold thickness is usually far from the requirements for functional tissue reconstruction. In this paper, we report a successful fabrication of the microporous polyurethane thin layer (MPTL of 1 mm thick, which was produced using SC/PL technique combined with phase separation (PS. The obtained MPTL was highly porous (82%, had pore size in the range of 65–426 µm and scaffold average pore size was equal to 154 ± 3 µm. Thus, it can be considered a suitable scaffold for tissue engineering purpose, according to the morphology criterion. Polyurethane (PUR processing into MPTL scaffold caused significant decrease of contact angle from 78 ± 4° to 56 ± 6° and obtained MPTL had suitable hydrophilic characteristic for mammalian cells growth and tissue regeneration. Mechanical properties of MPTL were comparable to the properties of native tissues. As evidenced by biotechnological examination the MPTL were highly biocompatible with no observed apparent toxicity on mouse embryonic NIH 3T3 fibroblast cells. Performed studies indicated that obtained MPTL may be suitable scaffold candidate for soft TE purposes such as blood vessels.

  16. Wide-gap layered oxychalcogenide semiconductors: Materials, electronic structures and optoelectronic properties

    International Nuclear Information System (INIS)

    Ueda, Kazushige; Hiramatsu, Hidenori; Hirano, Masahiro; Kamiya, Toshio; Hosono, Hideo

    2006-01-01

    Applying the concept of materials design for transparent conductive oxides to layered oxychalcogenides, several p-type and n-type layered oxychalcogenides were proposed as wide-gap semiconductors and their basic optical and electrical properties were examined. The layered oxychalcogenides are composed of ionic oxide layers and covalent chalcogenide layers, which bring wide-gap and conductive properties to these materials, respectively. The electronic structures of the materials were examined by normal/inverse photoemission spectroscopy and energy band calculations. The results of the examinations suggested that these materials possess unique features more than simple wide-gap semiconductors. Namely, the layered oxychalcogenides are considered to be extremely thin quantum wells composed of the oxide and chalcogenide layers or 2D chalcogenide crystals/molecules embedded in an oxide matrix. Observation of step-like absorption edges, large band gap energy and large exciton binding energy demonstrated these features originating from 2D density of states and quantum size effects in these layered materials

  17. Damping Oriented Design of Thin-Walled Mechanical Components by Means of Multi-Layer Coating Technology

    Directory of Open Access Journals (Sweden)

    Giuseppe Catania

    2018-02-01

    Full Text Available The damping behaviour of multi-layer composite mechanical components, shown by recent research and application papers, is analyzed. A local dissipation mechanism, acting at the interface between any two different layers of the composite component, is taken into account, and a beam model, to be used for validating the known experimental results, is proposed. Multi-layer prismatic beams, consisting of a metal substrate and of some thin coated layers exhibiting variable stiffness and adherence properties, are considered in order to make it possible to study and validate this assumption. A dynamical model, based on a simple beam geometry but taking into account the previously introduced local dissipation mechanism and distributed visco-elastic constraints, is proposed. Some different application examples of specific multi-layer beams are considered, and some numerical examples concerning the beam free and forced response are described. The influence of the multilayer system parameters on the damping behaviour of the free and forced response of the composite beam is investigated by means of the definition of some damping estimators. Some effective multi-coating configurations, giving a relevant increase of the damping estimators of the coated structure with respect to the same uncoated structure, are obtained from the model simulation, and the results are critically discussed.

  18. Quasi-Monoenergetic Dense and Uniform Electron Bunch Generation from Laser Driven Double-Layer Thin Films

    Science.gov (United States)

    Wang, C.; Roycroft, R.; McCary, E.; Meadows, A.; Blakeney, J.; Serratto, K.; Kuk, D.; Chester, C.; Gao, L.; Fu, H.; Yan, X. Q.; Schreiber, J.; Pomerantz, I.; Bernstein, A.; Quevedo, H.; Dyer, G.; Gaul, E.; Ditmire, T.; Gautier, D. C.; Fernandez, J.; Hegelich, B. M.

    2014-10-01

    We demonstrate that dense, uniform quasi-monoenergetic relativistic electron bunches can be generated from the interaction of a high-intensity laser pulse with a double-layer thin film target. The first layer of the target is a freestanding, nanometer-scale, diamond-like carbon production layer. The second layer is a thin plastic reflection layer which reflects the drive-laser pulse, but allows electrons to pass through. Although no electron bunch is generated from the second layer alone, by adding it behind the first layer we obtained a quasi-monoenergetic bunch along the laser axis, 35 times denser than a bunch from the single layer target. Comparing the angular distribution of the electron spectra from a double-layer target with that of a single-layer target, we observed an increase of the electron cutoff energy at larger angles, which improves the uniformity of created electron bunches.

  19. Analysis of poly-Si thin film p^+-n-n+ homojunction solar cell and heterojunction solar cell with and without a thin μc-Si layer at the interface of a-Si and poly-Si layers

    Science.gov (United States)

    Letha, A. J.; Hwang, H. L.

    2009-05-01

    In this study, new possibilities for higher efficiency poly-Si thin film solar cells are investigated using MEDICI^TM device simulator. The poly-Si p^+-n-n+ thin film solar cell with a thin a-Si p+ layer is found to have higher efficiency than the homojunction p^+-n-n+ cell. Further improvement in efficiency of the heterojunction p^+-n-n+ cell is achieved by introducing a thin μc-Si layer at the interface of a-Si emitter and poly-Si absorber layers. The μc-Si layer at the interface is found to reduce the recombination losses at the interface and improved the fill factor and efficiency of the cell. The photovoltaic parameters of the cell and the absorber layer thickness for optimum efficiency are highly influenced by grain size and passivation at the grain boundary.

  20. Controllable growth of stable germanium dioxide ultra-thin layer by means of capacitively driven radio frequency discharge

    Energy Technology Data Exchange (ETDEWEB)

    Svarnas, P., E-mail: svarnas@ece.upatras.gr [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion 26 504, Patras (Greece); Botzakaki, M.A. [Department of Physics, University of Patras, Rion 26 504 (Greece); Skoulatakis, G.; Kennou, S.; Ladas, S. [Surface Science Laboratory, Department of Chemical Engineering, University of Patras, Rion 26 504 (Greece); Tsamis, C. [NCSR “Demokritos”, Institute of Advanced Materials, Physicochemical Processes, Nanotechnology & Microsystems, Aghia Paraskevi 15 310, Athens (Greece); Georga, S.N.; Krontiras, C.A. [Department of Physics, University of Patras, Rion 26 504 (Greece)

    2016-01-29

    It is well recognized that native oxide of germanium is hygroscopic and water soluble, while germanium dioxide is thermally unstable and it is converted to volatile germanium oxide at approximately 400 °C. Different techniques, implementing quite complicated plasma setups, gas mixtures and substrate heating, have been used in order to grow a stable germanium oxide. In the present work a traditional “RF diode” is used for germanium oxidation by cold plasma. Following growth, X-ray photoelectron spectroscopy demonstrates that traditional capacitively driven radio frequency discharges, using molecular oxygen as sole feedstock gas, provide the possibility of germanium dioxide layer growth in a fully reproducible and controllable manner. Post treatment ex-situ analyses on day-scale periods disclose the stability of germanium oxide at room ambient conditions, offering thus the ability to grow (ex-situ) ultra-thin high-k dielectrics on top of germanium oxide layers. Atomic force microscopy excludes any morphological modification in respect to the bare germanium surface. These results suggest a simple method for a controllable and stable germanium oxide growth, and contribute to the challenge to switch to high-k dielectrics as gate insulators for high-performance metal-oxide-semiconductor field-effect transistors and to exploit in large scale the superior properties of germanium as an alternative channel material in future technology nodes. - Highlights: • Simple one-frequency reactive ion etcher develops GeO{sub 2} thin layers controllably. • The layers remain chemically stable at ambient conditions over day-scale periods. • The layers are unaffected by the ex-situ deposition of high-k dielectrics onto them. • GeO{sub 2} oxidation and high-k deposition don't affect the Ge morphology significantly. • These conditions contribute to improved Ge-based MOS structure fabrication.

  1. On the structural and optical properties of sputtered hydrogenated amorphous silicon thin films

    International Nuclear Information System (INIS)

    Barhdadi, A.; Chafik El ldrissi, M.

    2002-08-01

    The present work is essentially focused on the study of optical and structural properties of hydrogenated amorphous silicon thin films (a-Si:H) prepared by radio-frequency cathodic sputtering. We examine separately the influence of hydrogen partial pressure during film deposition, and the effect of post-deposition thermal annealings on the main optical characteristics of the layers such as refraction index, optical gap and Urbach energy. Using the grazing X-rays reflectometry technique, thin film structural properties are examined immediately after films deposition as well as after surface oxidation or annealing. We show that low hydrogen pressures allow a saturation of dangling bonds in the layers, while high doses lead to the creation of new defects. We show also that thermal annealing under moderate temperatures improves the structural quality of the deposited layers. For the films examined just after deposition, the role of hydrogen appears in the increase of their density. For those analysed after a short stay in the ambient, hydrogen plays a protective role against the oxidation of their surfaces. This role disappears for a long time stay in the ambient. (author)

  2. Barrier properties of plastic films coated with an Al{sub 2}O{sub 3} layer by roll-to-toll atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Hirvikorpi, Terhi, E-mail: Terhi.Hirvikorpi@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland); Laine, Risto, E-mail: Risto.Laine@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland); Vähä-Nissi, Mika, E-mail: Mika.Vaha-Nissi@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Kilpi, Väinö, E-mail: Vaino.Kilpi@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland); Salo, Erkki, E-mail: Erkki.Salo@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Li, Wei-Min, E-mail: Wei-Min.Li@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland); Lindfors, Sven, E-mail: Sven.Lindfors@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland); Vartiainen, Jari, E-mail: Jari.Vartiainen@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Kenttä, Eija, E-mail: Eija.Kentta@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Nikkola, Juha, E-mail: Juha.Nikkola@vtt.fi [VTT Technical Research Centre of Finland, P.O. Box 1300, FI-33101 Tampere (Finland); Harlin, Ali, E-mail: Ali.Harlin@vtt.fi [VTT Technical Research Centre of Finland, Biologinkuja 7, Espoo, P.O. Box 1000, FI-02044 VTT (Finland); Kostamo, Juhana, E-mail: Juhana.Kostamo@picosun.com [Picosun Oy, Tietotie 3, FI-02150 Espoo (Finland)

    2014-01-01

    Thin (30–40 nm) and highly uniform Al{sub 2}O{sub 3} coatings have been deposited at relatively low temperature of 100 °C onto various polymeric materials employing the atomic layer deposition (ALD) technique, both batch and roll-to-roll (R2R) mode. The applications for ALD have long been limited those feasible for batch processing. The work demonstrates that R2R ALD can deposit thin films with properties that are comparable to the film properties fabricated by in batch. This accelerates considerably the commercialization of many products, such as flexible, printed electronics, organic light-emitting diode lighting, third generation thin film photovoltaic devices, high energy density thin film batteries, smart textiles, organic sensors, organic/recyclable packaging materials, and flexible displays, to name a few. - Highlights: • Thin and uniform Al{sub 2}O{sub 3} coatings have been deposited onto polymers materials. • Batch and roll-to-roll (R2R) atomic layer deposition (ALD) have been employed. • Deposition with either process improved the barrier properties. • Sensitivity of coated films to defects affects barrier obtained with R2R ALD.

  3. Structural and magnetic properties of the layered

    Indian Academy of Sciences (India)

    The brownmillerite-type layered compound Ca2.375La0.125Sr0.5GaMn2O8 has been synthesized. The crystal and magnetic structures have been refined by the Rietveld analysis of the neutron powder diffraction patterns at 300 and 20 K. This compound crystallizes in the orthorhombic symmetry under the space group ...

  4. Excitation of Love waves in a thin film layer by a line source.

    Science.gov (United States)

    Tuan, H.-S.; Ponamgi, S. R.

    1972-01-01

    The excitation of a Love surface wave guided by a thin film layer deposited on a semiinfinite substrate is studied in this paper. Both the thin film and the substrate are considered to be elastically isotropic. Amplitudes of the surface wave in the thin film region and the substrate are found in terms of the strength of a line source vibrating in a direction transverse to the propagating wave. In addition to the surface wave, the bulk shear wave excited by the source is also studied. Analytical expressions for the bulk wave amplitude as a function of the direction of propagation, the acoustic powers transported by the surface and bulk waves, and the efficiency of surface wave excitation are obtained. A numerical example is given to show how the bulk wave radiation pattern depends upon the source frequency, the film thickness and other important parameters of the problem. The efficiency of surface wave excitation is also calculated for various parameter values.

  5. Properties of Spray Pyrolysied Copper Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    S. S. Roy

    2017-02-01

    Full Text Available Copper oxide (CuO thin films were deposited on well cleaned glass substrates by spray pyrolysis technique (SPT from cupric acetate (Cu(CH3COO2.H2O precursor solutions of 0.05 – 0.15 M molar concentrations (MC at a substrate temperature of 350 °C and at an air pressure of 1 bar. Effect of varying MC on the surface morphology, structural optical and electrical properties of CuO thin films were investigated. XRD patterns of the prepared films revealed the formation of CuO thin films having monoclinic structure with the main CuO (111 orientation and crystalline size ranging from 8.02 to 9.05 nm was observed. The optical transmission of the film was found to decrease with the increase of MC. The optical band gap of the thin films for 0.10 M was fond to be 1.60 eV. The room temperature electrical resistivity varies from 31 and 24 ohm.cm for the films grown with MC of 0.05 and 0.10 M respectively. The change in resistivity of the films was studied with respect to the change in temperature was shown that semiconductor nature is present. This information is expected to underlie the successful development of CuO films for solar windows and other semi-conductor applications including gas sensors.

  6. Highly (100) oriented MgO growth on thin Mg layer in MTJ structure

    Energy Technology Data Exchange (ETDEWEB)

    Jimbo, K [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1-S3-42 O-okayama, Meguro, Tokyo 152-8552 (Japan); Nakagawa, S, E-mail: jimbo.k@spin.pe.titech.ac.jp

    2011-01-01

    In order to apply Stress Assisted Magnetization Reversal (SAMR) method to perpendicular magnetoresistive random access memory (p-MRAM) with magnetic tunnel junction (MTJ) using MgO (001) oriented barrier layer, multilayer of Ta/ Terfenol-D/ Mg/ MgO and Ta/ Terfenol-D/ MgO were prepared. While the MgO layer, deposited directly on the Terfenol-D layer, did not show (100) orientatin, very thin metallic Mg layer, deposited prior to the MgO deposition, was effective to attain MgO (100) orientation. The crystalline orientation was very weak without Mg, however, the multilayer with Mg showed very strong MgO(100) peak and the MgO orientation was shifted depending on the Mg thickness.

  7. Magnetic domain observation of FeCo thin films fabricated by alternate monoatomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuki, T., E-mail: ohtsuki@spring8.or.jp; Kotsugi, M.; Ohkochi, T. [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Kojima, T.; Mizuguchi, M.; Takanashi, K. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2014-01-28

    FeCo thin films are fabricated by alternate monoatomic layer deposition method on a Cu{sub 3}Au buffer layer, which in-plane lattice constant is very close to the predicted value to obtain a large magnetic anisotropy constant. The variation of the in-plane lattice constant during the deposition process is investigated by reflection high-energy electron diffraction. The magnetic domain images are also observed by a photoelectron emission microscope in order to microscopically understand the magnetic structure. As a result, element-specific magnetic domain images show that Fe and Co magnetic moments align parallel. A series of images obtained with various azimuth reveal that the FeCo thin films show fourfold in-plane magnetic anisotropy along 〈110〉 direction, and that the magnetic domain structure is composed only of 90∘ wall.

  8. Mathematical modelling of the thin layer solar drying of banana, mango and cassava

    Energy Technology Data Exchange (ETDEWEB)

    Koua, Kamenan Blaise; Fassinou, Wanignon Ferdinand; Toure, Siaka [Laboratoire d' Energie Solaire, Universite de Cocody- Abidjan, 22 BP 582 Abidjan 22 (Ivory Coast); Gbaha, Prosper [Laboratoire d' Energie Nouvelle et Renouvelable, Institut National Polytechnique, Felix HOUPHOUET - BOIGNY de Yamoussoukro (Ivory Coast)

    2009-10-15

    The main objectives of this paper are firstly to investigate the behaviour of the thin layer drying of plantain banana, mango and cassava experimentally in a direct solar dryer and secondly to perform mathematical modelling by using thin layer drying models encountered in literature. The variation of the moisture content of the products studied and principal drying parameters are analysed. Seven statistical models, which are empirical or semi-empirical, are tested to validate the experimental data. A non-linear regression analysis using a statistical computer program is used to evaluate the constants of the models. The Henderson and Pabis drying model is found to be the most suitable for describing the solar drying curves of plantain banana, mango and cassava. The drying data of these products have been analysed to obtain the values of the effective diffusivity during the falling drying rate phase. (author)

  9. Nonlinear evolution of perturbations in a thin fluid layer during wave formation

    Science.gov (United States)

    Prokudina, L. A.

    2014-03-01

    A mathematical model is presented for the state of a free surface of a thin fluid layer (a fluid film) in heat-mass-exchange processes of condensation and evaporation. The wave motion of a fluid film is studied under inhomogeneous surface tension. Nonlinear development of perturbations belonging to a continuous band of wave numbers on the surface of a thin fluid layer is investigated within the framework of a non-linear parabolic equation. It is shown that wave packets with carrier wave lying near the harmonic of maximum increment become self-ordered; as a result, a monochromatic wave is generated on the surface of the fluid film. When a wave packet is generated in the neighborhood of the neutral stability curve, one can observe a phenomenon of directed energy transfer to the waves in the neighborhood of the harmonic of maximum increment.

  10. Propagation of a videopulse through a thin layer of two-level dipolar atoms

    International Nuclear Information System (INIS)

    Elyutin, Sergei O

    2007-01-01

    The excitation of a thin layer of two-level permanent dipole moment atoms by ultimately short (less than the field oscillation period) electromagnetic pulses (videopulse) is observed. The numerical analysis of the matter equations free of the rotating wave approximation and relaxation reveals a strong influence of the local field and the Stark effect on temporal behaviour of transmitted field. Specifically, it is demonstrated that a dense film irradiated by a videopulse emits a short response with a delay much longer even than the characteristic cooperative time of the atom ensemble. It is supposed that the local field in the thin layer of permanent dipole atoms is able to re-pump the atomic subsystem. A close analogy with nonlinear pendulum motion is discussed

  11. Thin-layer chromatography and colorimetric analysis of multi-component explosive mixtures

    Science.gov (United States)

    Pagoria, Philip F.; Mitchell, Alexander R.; Whipple, Richard E.; Carman, M. Leslie

    2014-08-26

    A thin-layer chromatography method for detection and identification of common military and peroxide explosives in samples includes the steps of provide a reverse-phase thin-layer chromatography plate; prepare the plate by marking spots on which to deposit the samples by touching the plate with a marker; spot one micro liter of a first standard onto one of the spots, spot one micro liter of a second standard onto another of the spots, and spot samples onto other of spots producing a spotted plate; add eluent to a developing chamber; add the spotted plate to the developing chamber; remove the spotted plate from the developing chamber producing a developed plate; place the developed plate in an ultraviolet light box; add a visualization agent to a dip tank; dip the developed plate in the dip tank and remove the developed plate quickly; and detect explosives by viewing said developed plate.

  12. Low Energy Scanned Electron-Beam Dose Distribution in Thin Layers

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Hjortenberg, P. E.; Pedersen, Walther Batsberg

    1975-01-01

    Thin radiochromic dye film dosimeters, calibrated by means of calorimetry, make possible the determination of absorbed-dose distributions due to low-energy scanned electron beam penetrations in moderately thin coatings and laminar media. For electrons of a few hundred keV, calibrated dosimeters...... of about 30–60 μm thickness may be used in stacks or interleaved between layers of materials of interest and supply a sufficient number of experimental data points throughout the depth of penetration of electrons to provide a depth-dose curve. Depth doses may be resolved in various polymer layers...... on different backings (wood, aluminum, and iron) for scanned electron beams (Emax = 400 keV) having a broad energy spectrum and diffuse incidence, such as those used in radiation curing of coatings, textiles, plastics, etc. Theoretical calculations of such distributions of energy depositions are relatively...

  13. Successful implementation of the stepwise layer-by-layer growth of MOF thin films on confined surfaces: Mesoporous silica foam as a first case study

    KAUST Repository

    Shekhah, Osama

    2012-01-01

    Here we report the successful growth of highly crystalline homogeneous MOF thin films of HKUST-1 and ZIF-8 on mesoporous silica foam, by employing a layer-by-layer (LBL) method. The ability to control and direct the growth of MOF thin films on confined surfaces, using the stepwise LBL method, paves the way for new prospective applications of such hybrid systems. © 2012 The Royal Society of Chemistry.

  14. Thin surface layers of SiO2 obtained from tetraethoxysilane (TEOS) in electric discharges stabilized by a dielectric barrier

    International Nuclear Information System (INIS)

    Schmidt-Szalowski, K.; Fabianowski, W.; Rzanek-Boroch, Z.; Gutkowski, R.

    1998-01-01

    The reported research was devoted to the process of thin layer deposition in a discharge at atmospheric pressure stabilized by a dielectric barrier. Thin surface layers composed mainly of silicon dioxide were produced by polycondensation of tetraethoxysilane vapor in mixtures with helium gas with a small amount of oxygen. The influence was studied of the voltage applied and of the time elapsed in the deposition process, on the thickness of the layer, as were the changes of composition of the deposited layers during and after storage. It is shown that good passivating pinhole-free silicon oxide layers can be produced in surface barrier discharges. (J.U.)

  15. Structural and optical properties of electrodeposited molybdenum oxide thin films

    International Nuclear Information System (INIS)

    Patil, R.S.; Uplane, M.D.; Patil, P.S.

    2006-01-01

    Electrosynthesis of Mo(IV) oxide thin films on F-doped SnO 2 conducting glass (10-20/Ω/□) substrates were carried from aqueous alkaline solution of ammonium molybdate at room temperature. The physical characterization of as-deposited films carried by thermogravimetric/differential thermogravimetric analysis (TGA/DTA), infrared spectroscopy and X-ray diffraction (XRD) showed the formation of hydrous and amorphous MoO 2 . Scanning electron microscopy (SEM) revealed a smooth but cracked surface with multi-layered growth. Annealing of these films in dry argon at 450 deg. C for 1 h resulted into polycrystalline MoO 2 with crystallites aligned perpendicular to the substrate. Optical absorption study indicated a direct band gap of 2.83 eV. The band gap variation consistent with Moss rule and band gap narrowing upon crystallization was observed. Structure tailoring of as-deposited thin films by thermal oxidation in ambient air to obtain electrochromic Mo(VI) oxide thin films was exploited for the first time by this novel route. The results of this study will be reported elsewhere

  16. Thermal diffusivity of a metallic thin layer using the time-domain thermo reflectance technique

    International Nuclear Information System (INIS)

    Battaglia, J-L; Kusiak, A; Rossignol, C; Chigarev, N

    2007-01-01

    The time domain thermo reflectance (TDTR) is widely used in the field of acoustic and thermal characterization of thin layers at the nano and micro scale. In this paper, we propose to derive a simple analytical expression of the thermal diffusivity of the layer. This relation is based on the analytical solution of one-dimensional heat transfer in the medium using integral transforms. For metals, the two-temperature model shows that the capacitance effect at the short times is essentially governed by the electronic contribution

  17. Reversed-phase thin-layer chromatography of the rare earth elements

    International Nuclear Information System (INIS)

    Kuroda, R.; Adachi, M.; Oguma, K.

    1988-01-01

    Partition chromatographic behaviour of the rare earth elements on C 18 bonded silica reversed-phase material has been investigated by thin-layer chromatography in methanol - lactate media. The rare earth lactato complexes are distributed and fractionated on bonded silica layers without ion-interaction reagents. The concentration and pH of lactate solution, methanol concentration and temperature have effects on the migration and resolution of the rare earth elements. The partition system is particularly suited to separate adjacent rare earths of middle atomic weight groups, allowing the separation of gadolinium, terbium, dysprosium, holmium, erbium and thulium to be achieved by development to 18 cm distance. (orig.)

  18. Retention of heavy metals on layered double hydroxides thin films deposited by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Vlad, A., E-mail: angela.vlad@gmail.com [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 76900 Bucharest-Magurele (Romania); Birjega, R.; Matei, A.; Luculescu, C.; Mitu, B.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 76900 Bucharest-Magurele (Romania); Zavoianu, R.; Pavel, O.D. [University of Bucharest, Faculty of Chemistry, Department of Chemical Technology and Catalysis, 4-12 Regina Elisabeta Bd., Bucharest (Romania)

    2014-05-01

    Heavy metals are toxic and hazardous pollutants in the environment due to their nonbiodegradability and persistence, which can pose serious threats to living organisms. The ability of Mg–Al based layered double hydroxides (LDHs) thin films to retain heavy metals from aqueous solutions at different concentrations is a novel topic with prospects of attractive applications, such as detection of heavy metals. We report on the ability of a series of Mg–Al based layered double hydroxides thin films to detect Ni and Co cations in aqueous solutions. Uptake of heavy metals ions such as Ni{sup 2+}, Co{sup 2+} from aqueous solutions was studied as function of contact time at a standard metal ion concentration. The LDHs thin films were deposited using pulsed laser deposition (PLD). The different adsorption mechanisms were studied in connection with different heavy metals used as probe cations. X-ray diffraction, atomic force microscopy, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, Fourier transform infra-red spectroscopy were the techniques used for the investigation of as deposited and after heavy metals retention thin films.

  19. Studies on layer growth and interfaces on Ta-base thin layers by means of XPS

    International Nuclear Information System (INIS)

    Zier, M.

    2007-01-01

    In this thesis studies on the growth and on the formation of the interfaces of Ta and TaN layers on Si and SiO 2 were performed. In the system TaN on SiO 2 no reaction on the interface could be found. As the system with the mostly disturbed interface Ta on SiO 2 was proved. Here a reduction of the SiO 2 at simultaneous oxidation of the Ta was to be observed. Additionally tantalum silicide was formed to be considered concerning the bonding state as Ta 5 Si 3 , from which a double layer of a tantalum silicide and a tantalum suboxide resulted. A whole thickness of the double layer of above 1 nm resulted. In the system Ta on Si at the deposition of the film on the interface a tantalum silicide was formed to be characterized concerning the bonding state as TaSi 2 . The thickness of the interlayer growed thereby up to 0.8 nm in form of islands. Finally in the system TaN on Si a silicon nitride formation during the deposition was observed, which was attributed to the insertion of adsorbed nitrogen from the sputtering atmosphere by recoil implantation of the sputtered Ta atoms. The silicon nitride interlayer growed thereby up to a thickness of 0.8 nm

  20. A trial of thin layer activated weight loss coupons for corrosion monitoring in oilfield applications

    International Nuclear Information System (INIS)

    Asher, J.; Lawrence, P.F.; Sugden, S.

    1987-03-01

    A set of thin layer activated weight loss corrosion coupons was installed in the wellheads and flow lines of oil production platforms in the North Sea. The coupons were retrieved for laboratory analysis after about six months of exposure. A comparison is made between the results obtained by TLA analysis and standard weight loss measurements. Samples of scale deposits on some of the fittings used were also analysed. (author)

  1. Molecular Beam Epitaxy Growth and Characterization of Thin Layers of Semiconductor Tin

    Science.gov (United States)

    2016-09-01

    Semiconductor Tin by P Folkes, P Taylor, C Rong, B Nichols, H Hier, and M Neupane Approved for public release; distribution...Laboratory Molecular Beam Epitaxy Growth and Characterization of Thin Layers of Semiconductor Tin by P Folkes, P Taylor, C Rong, B Nichols... Semiconductor Tin 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) P Folkes, P Taylor, C Rong, B Nichols, H Hier, and M

  2. On the possibility of thin layers thickness determination with low energy proton scattering

    Science.gov (United States)

    Bulgadaryan, D.; Kurnaev, V.; Sinelnikov, D.; Efimov, N.

    2017-12-01

    The analysis of erosion and redeposition processes plays an important role in the physics of fusion devices. In this work we present the results of computer simulation of plasma-facing materials surface analysis by use of the keV-energy proton scattering spectroscopy. It is shown that this technique can be used for the non-destructive analysis of thin surface layers. Energy spectra that correspond to different scattering and target parameters are presented.

  3. Determination of Absolute Configuration of Secondary Alcohols Using Thin-Layer Chromatography

    Science.gov (United States)

    Wagner, Alexander J.; Rychnovsky, Scott D.

    2013-01-01

    A new implementation of the Competing Enantioselective Conversion (CEC) method was developed to qualitatively determine the absolute configuration of enantioenriched secondary alcohols using thin-layer chromatography. The entire process for the method requires approximately 60 min and utilizes micromole quantities of the secondary alcohol being tested. A number of synthetically relevant secondary alcohols are presented. Additionally, 1H NMR spectroscopy was conducted on all samples to provide evidence of reaction conversion that supports the qualitative method presented herein. PMID:23593963

  4. A demonstration of on-line plant corrosion monitoring using thin layer activation

    International Nuclear Information System (INIS)

    Asher, J.; Webb, J.W.; Wilkins, N.J.M.; Lawrence, P.F.; UKAEA Atomic Energy Research Establishment, Harwell. Materials Development Div.)

    1981-12-01

    The corrosion of a 1 inch water pipe in an evaporative cooling system has been monitored over three periods of plant operation using thin layer activation (TLA). The corrosion rate was followed at a sensitivity of about 1 μm and clearly reflected changes in plant operation. Examination of the test section after removal, both by autoradiography and metallography revealed the extent of corrosion and pitting over the active area. (author)

  5. Interfacial instability induced by lateral vapor pressure fluctuation in bounded thin liquid-vapor layers

    OpenAIRE

    Kanatani, Kentaro

    2008-01-01

    We study an instability of thin liquid-vapor layers bounded by rigid parallel walls from both below and above. In this system, the interfacial instability is induced by lateral vapor pressure fluctuation, which is in turn attributed to the effect of phase change: evaporation occurs at a hotter portion of the interface and condensation at a colder one. The high vapor pressure pushes the interface downward and the low one pulls it upward. A set of equations describing the temporal evolution of ...

  6. SOUND FIELD SHIELDING BY FLAT ELASTIC LAYER AND THIN UNCLOSED SPHERICAL SHELL

    Directory of Open Access Journals (Sweden)

    G. Ch. Shushkevich

    2014-01-01

    Full Text Available An analytical solution of a boundary problem describing the process of penetration of a sound field of a spherical radiator located inside a thin unclosed spherical shell through a flat elastic layer is constructed. An influence of some parameters of the problem on the value of the attenuation coeffi-cient (screening of the sound field was studied by using a numerical simulation.

  7. Electron beam induced coloration and luminescence in layered structure of WO3 thin films grown by pulsed dc magnetron sputtering

    International Nuclear Information System (INIS)

    Karuppasamy, A.; Subrahmanyam, A.

    2007-01-01

    Tungsten oxide thin films have been deposited by pulsed dc magnetron sputtering of tungsten in argon and oxygen atmosphere. The as-deposited WO 3 film is amorphous, highly transparent, and shows a layered structure along the edges. In addition, the optical properties of the as-deposited film show a steplike behavior of extinction coefficient. However, the electron beam irradiation (3.0 keV) of the as-deposited films results in crystallization, coloration (deep blue), and luminescence (intense red emission). The above changes in physical properties are attributed to the extraction of oxygen atoms from the sample and the structural modifications induced by electron bombardment. The present method of coloration and luminescence has a potential for fabricating high-density optical data storage device

  8. Characterizing the hydraulic properties of a paper coating layer using FIB-SEM tomography and 3D pore-scale modeling

    NARCIS (Netherlands)

    Aslannejad, H.|info:eu-repo/dai/nl/407629629; Hassanizadeh, S.M.|info:eu-repo/dai/nl/074974424; Raoof, A.|info:eu-repo/dai/nl/304842338; de Winter, D.A.M.|info:eu-repo/dai/nl/304838616; Tomozeu, N.; van Genuchten, M.T.|info:eu-repo/dai/nl/31481518X

    2017-01-01

    Paper used in the printing industry generally contains a relatively thin porous coating covering a thicker fibrous base layer. The three-dimensional pore structure of coatings has a major effect on fluid flow patterns inside the paper medium. Understanding and quantifying the flow properties of thin

  9. Breakthrough to Non-Vacuum Deposition of Single-Crystal, Ultra-Thin, Homogeneous Nanoparticle Layers: A Better Alternative to Chemical Bath Deposition and Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Yu-Kuang Liao

    2017-04-01

    Full Text Available Most thin-film techniques require a multiple vacuum process, and cannot produce high-coverage continuous thin films with the thickness of a few nanometers on rough surfaces. We present a new ”paradigm shift” non-vacuum process to deposit high-quality, ultra-thin, single-crystal layers of coalesced sulfide nanoparticles (NPs with controllable thickness down to a few nanometers, based on thermal decomposition. This provides high-coverage, homogeneous thickness, and large-area deposition over a rough surface, with little material loss or liquid chemical waste, and deposition rates of 10 nm/min. This technique can potentially replace conventional thin-film deposition methods, such as atomic layer deposition (ALD and chemical bath deposition (CBD as used by the Cu(In,GaSe2 (CIGS thin-film solar cell industry for decades. We demonstrate 32% improvement of CIGS thin-film solar cell efficiency in comparison to reference devices prepared by conventional CBD deposition method by depositing the ZnS NPs buffer layer using the new process. The new ZnS NPs layer allows reduction of an intrinsic ZnO layer, which can lead to severe shunt leakage in case of a CBD buffer layer. This leads to a 65% relative efficiency increase.

  10. Breakthrough to Non-Vacuum Deposition of Single-Crystal, Ultra-Thin, Homogeneous Nanoparticle Layers: A Better Alternative to Chemical Bath Deposition and Atomic Layer Deposition.

    Science.gov (United States)

    Liao, Yu-Kuang; Liu, Yung-Tsung; Hsieh, Dan-Hua; Shen, Tien-Lin; Hsieh, Ming-Yang; Tzou, An-Jye; Chen, Shih-Chen; Tsai, Yu-Lin; Lin, Wei-Sheng; Chan, Sheng-Wen; Shen, Yen-Ping; Cheng, Shun-Jen; Chen, Chyong-Hua; Wu, Kaung-Hsiung; Chen, Hao-Ming; Kuo, Shou-Yi; Charlton, Martin D B; Hsieh, Tung-Po; Kuo, Hao-Chung

    2017-04-06

    Most thin-film techniques require a multiple vacuum process, and cannot produce high-coverage continuous thin films with the thickness of a few nanometers on rough surfaces. We present a new "paradigm shift" non-vacuum process to deposit high-quality, ultra-thin, single-crystal layers of coalesced sulfide nanoparticles (NPs) with controllable thickness down to a few nanometers, based on thermal decomposition. This provides high-coverage, homogeneous thickness, and large-area deposition over a rough surface, with little material loss or liquid chemical waste, and deposition rates of 10 nm/min. This technique can potentially replace conventional thin-film deposition methods, such as atomic layer deposition (ALD) and chemical bath deposition (CBD) as used by the Cu(In,Ga)Se₂ (CIGS) thin-film solar cell industry for decades. We demonstrate 32% improvement of CIGS thin-film solar cell efficiency in comparison to reference devices prepared by conventional CBD deposition method by depositing the ZnS NPs buffer layer using the new process. The new ZnS NPs layer allows reduction of an intrinsic ZnO layer, which can lead to severe shunt leakage in case of a CBD buffer layer. This leads to a 65% relative efficiency increase.

  11. Structure and properties of phosphorus-carbide thin solid films

    International Nuclear Information System (INIS)

    Furlan, A.; Gueorguiev, G.K.; Czigány, Zs.; Darakchieva, V.; Braun, S.; Correia, M.R.; Högberg, H.; Hultman, L.

    2013-01-01

    Phosphorus-carbide (CP x ) thin solid films have been deposited by unbalanced reactive magnetron sputtering from a compound C-P target and investigated by transmission electron microscopy, X-ray photoelectron spectroscopy, scanning electron microscopy, elastic recoil detection analysis, Raman scattering spectroscopy, nanoindentation, and four-point electrical probe techniques. CP x films with x = 0.1 deposited at 300 °C exhibit a structure with elements of short-range ordering in the form of curved and inter-locked fullerene-like fragments. The films have a hardness of 34.4 GPa, elastic recovery of 72% and surface roughness of 0.5 nm. Higher deposition temperatures yield CP x films with an increasingly amorphous structure, and reduced hardness. - Highlights: • Phosphorus-carbide (CP x ) thin solid films have been deposited by magnetron sputtering. • Structural and chemical bonding properties were investigated. • CP x thin solid films show high mechanical resiliency. • Low temperature favors fullerene-like structural properties

  12. Charge Transfer Properties Through Graphene Layers in Gas Detectors

    CERN Document Server

    Thuiner, P.; Jackman, R.B.; Müller, H.; Nguyen, T.T.; Oliveri, E.; Pfeiffer, D.; Resnati, F.; Ropelewski, L.; Smith, J.A.; van Stenis, M.; Veenhof, R.

    2016-01-01

    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical, electrical and optical properties. For the first time graphene layers suspended on copper meshes were installed into a gas detector equipped with a gaseous electron multiplier. Measurements of low energy electron and ion transfer through graphene were conducted. In this paper we describe the sample preparation for suspended graphene layers, the testing procedures and we discuss the preliminary results followed by a prospect of further applications.

  13. Low-temperature atomic layer deposition of TiO2 thin layers for the processing of memristive devices

    International Nuclear Information System (INIS)

    Porro, Samuele; Conti, Daniele; Guastella, Salvatore; Ricciardi, Carlo; Jasmin, Alladin; Pirri, Candido F.; Bejtka, Katarzyna; Perrone, Denis; Chiolerio, Alessandro

    2016-01-01

    Atomic layer deposition (ALD) represents one of the most fundamental techniques capable of satisfying the strict technological requirements imposed by the rapidly evolving electronic components industry. The actual scaling trend is rapidly leading to the fabrication of nanoscaled devices able to overcome limits of the present microelectronic technology, of which the memristor is one of the principal candidates. Since their development in 2008, TiO 2 thin film memristors have been identified as the future technology for resistive random access memories because of their numerous advantages in producing dense, low power-consuming, three-dimensional memory stacks. The typical features of ALD, such as self-limiting and conformal deposition without line-of-sight requirements, are strong assets for fabricating these nanosized devices. This work focuses on the realization of memristors based on low-temperature ALD TiO 2 thin films. In this process, the oxide layer was directly grown on a polymeric photoresist, thus simplifying the fabrication procedure with a direct liftoff patterning instead of a complex dry etching process. The TiO 2 thin films deposited in a temperature range of 120–230 °C were characterized via Raman spectroscopy and x-ray photoelectron spectroscopy, and electrical current–voltage measurements taken in voltage sweep mode were employed to confirm the existence of resistive switching behaviors typical of memristors. These measurements showed that these low-temperature devices exhibit an ON/OFF ratio comparable to that of a high-temperature memristor, thus exhibiting similar performances with respect to memory applications

  14. [Progress in thin layer CT scan technology in estimating skeletal age of sternal end of clavicle].

    Science.gov (United States)

    Wang, Ya-Hui; Wei, Hua; Ying, Chong-Liang; Wan, Lei; Zhu, Guang-You

    2013-04-01

    It is practical value for determination the teenagers whether the age is full of the legal responsibility age of 18 years old or not by estimating skeletal age of sternal end of clavicle. The traditional methods mainly based on X-ray radiography. However, sternal end of clavicle and adjacent lung, bronchus, sternum, rib, transverse process of thoracic vertebra are overlapped each other. As a result of overlapping, there will be obtained false negative or positive film reading results when according to X-ray observation of epiphyseal growth of sternal end of clavicle, which directly affect the scientificalness and accuracy of estimating of skeletal age. In recent years, the scholars at home and abroad have started to use thin layer CT scan technology to estimate skeletal age of the sternal end of clavicle. With the 2D and 3D CT recombination technology, the accuracy of the film reading distinctly improves by making the shape, size and position of epiphysis displayed clearly. This article reviews the application and research progress of thin layer CT scanning technology in estimating skeletal age of sternal end of clavicle at home and abroad, analyzes the superiority and value of thin layer CT scan technology, which applied to skeletal age of sternal end of clavicle.

  15. Mathematical modeling of thin-layer drying of fermented and non-fermented sugarcane bagasse

    Energy Technology Data Exchange (ETDEWEB)

    Mazutti, Marcio A.; Zabot, Giovani; Boni, Gabriela; Skovronski, Aline; de Oliveira, Debora; Di Luccio, Marco; Oliveira, J. Vladimir; Treichel, Helen [Department of Food Engineering, URI - Campus de Erechim, P.O. Box 743, CEP 99700-000, Erechim - RS (Brazil); Rodrigues, Maria Isabel; Maugeri, Francisco [Department of Food Engineering, Faculty of Food Engineering, University of Campinas - UNICAMP, P.O. Box 6121, CEP 13083-862, Campinas - SP (Brazil)

    2010-05-15

    This work reports hot-air convective drying of thin-layer fermented and non-fermented sugarcane bagasse. For this purpose, experiments were carried out in a laboratory-scale dryer assessing the effects of solid-state fermentation (SSF) on the drying kinetics of the processing material. The fermented sugarcane bagasse in SSF was obtained with the use of Kluyveromyces marxianus NRRL Y-7571. Drying experiments were carried out at 30, 35, 40 and 45 C, at volumetric air flow rates of 2 and 3 m{sup 3} h{sup -1}. The ability of ten different thin-layer mathematical models was evaluated towards representing the experimental drying profiles obtained. Results showed that the fermented sugarcane bagasse presents a distinct, faster drying, behavior from that verified for the non-fermented material at the same conditions of temperature and volumetric air flow rate. It is shown that the fermented sugarcane bagasse presented effective diffusion coefficient values of about 1.3 times higher than the non-fermented material. A satisfactory agreement between experimental data and model results of the thin-layer drying of fermented and non-fermented sugarcane bagasse was achieved at the evaluated experimental conditions. (author)

  16. Structure and physical properties of layered ferrofluids

    Directory of Open Access Journals (Sweden)

    M. Ghominezhad

    2003-06-01

    Full Text Available We have successfully synthesised and studied the bilayer ferrofluids with sodium oleate C18H33O2-Na+ as the first layer and sodium dodecyle sulfate C12H25Na+SO-4 (SDS as the second layer surfactants. The solid phase of the ferromagnetic colloidal system was formed based on quick chemical growth. The adsorption of oleate molecule on the surface of the solid solution has been investigated by IR spectroscopy. The XRD analysis of the oxides and titration by KMnO4 show that the closest stoichiometry of Fe3O4 is achieved by the increase of Fe3+/Fe2+ molar ratio up to 2/3 with extra acidifying for prevention of uncontrolled Fe2+ excitation. The X-ray diffraction and magnetic measurements by VSM were employed for determining the particle magnetic and crystal sizes. The particle size was determined to be 9-13 nm. The magnetisation measurement of the ferrofluid indicate a saturation magnetisation of about 1.5 emu/g and reduced initial susceptibility of 6 10-3 Oe-1, which are the proper values for a superparamagnet. However, the saturation magnetisation shows a local maxima at SDS concentration about 0.07M, which is different from the behaviour presented by the mono-layer ferrofuids.

  17. Cleanups In My Community (CIMC) - Brownfields Properties, National Layer

    Data.gov (United States)

    U.S. Environmental Protection Agency — This data layer provides access to Brownfields Properties as part of the CIMC web service, although the data are generally more broadly applicable. Brownfields are...

  18. Photoluminescence properties of ZnO thin films grown by using the hydrothermal technique

    International Nuclear Information System (INIS)

    Sahoo, Trilochan; Jang, Leewoon; Jeon, Juwon; Kim, Myoung; Kim, Jinsoo; Lee, Inhwan; Kwak, Joonseop; Lee, Jaejin

    2010-01-01

    The photoluminescence properties of zinc-oxide thin films grown by using the hydrothermal technique have been investigated. Zinc-oxide thin films with a wurtzite symmetry and c-axis orientation were grown in aqueous solution at 90 .deg. C on sapphire substrates with a p-GaN buffer layer by using the hydrothermal technique. The low-temperature photoluminescence analysis revealed a sharp bound-exciton-related luminescence peak at 3.366 eV with a very narrow peak width. The temperature-dependent variations of the emission energy and of the integrated intensity were studied. The activation energy of the bound exciton complex was calculated to be 7.35 ± 0.5 meV from the temperature dependent quenching of the integral intensities.

  19. Thin film limit correction method to the surface defective layer in low absorption spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Remeš, Zdeněk; Holovský, Jakub; Purkrt, Adam; Stuchlík, Jiří

    2015-01-01

    Roč. 7, č. 4 (2015), s. 343-346 ISSN 2164-6627 R&D Projects: GA ČR(CZ) GA14-05053S; GA MŠk(CZ) LD14011 Institutional support: RVO:68378271 Keywords : thin films * optical properties * hydrogenated amorphous silicon * photothermal deflection spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism

  20. Effects of Na incorporation and plasma treatment on Bi{sub 2}S{sub 3} ultra-thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Garcia, H., E-mail: hamog@ier.unam.mx [Laboratorio de Espectroscopía, Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62210 Cuernavaca, Morelos (Mexico); Messina, S. [Universidad Autónoma de Nayarit, Ciudad de la Cultura “Amado Nervo” S/N, C.P. 63155 Tepic, Nayarit (Mexico); Calixto-Rodriguez, M. [Universidad Tecnológica Emiliano Zapata del Estado de Morelos, Av. Universidad Tecnológica No. 1, C.P. 62760 Emiliano Zapata, Morelos (Mexico); Martínez, H. [Laboratorio de Espectroscopía, Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apartado Postal 48-3, 62210 Cuernavaca, Morelos (Mexico)

    2016-04-01

    As-deposited bismuth sulfide thin films prepared by means of a chemical bath deposition were treated with argon AC plasma. In this paper, we present the results on the physical modifications which were observed when a pre-treatment, containing a solution of 1 M sodium hydroxide, was applied to the glass substrates before depositing the bismuth sulfide. The bismuth sulfide thin films were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, scanning electron microscopy, atomic force microscopy, UV–VIS, and electrical measurements. The XRD analysis demonstrated an enhancement in the crystalline properties, as well as an increment in the crystal size. The energy band gap value was calculated as 1.60 eV. Changes in photoconductivity (σ{sub p}) values were also observed due to the pre-treatment in NaOH. A value of σ{sub p} = 6.2 × 10{sup −6} (Ω cm){sup −1} was found for samples grown on substrates without pre-treatment, and a value of σ{sub p} = 0.28 (Ω cm){sup −1} for samples grown on substrates with pre-treatment. Such σ{sub p} values are optimal for the improvement of solar cells based on Bi{sub 2}S{sub 3} thin films as absorber material. - Highlights: • We report our findings about Na incorporation and plasma treatment on Bi{sub 2}S{sub 3} thin layers. • The Na pre-treatment improves the structural and electrical properties of Bi{sub 2}S{sub 3} films. • The E{sub g} value was 1.60 eV for films with pre-treatment with NaOH and treatment in Ar plasma.

  1. Temporal retinal nerve fibre layer thinning in cluster headache patients detected by optical coherence tomography.

    Science.gov (United States)

    Ewering, Carina; Haşal, Nazmiye; Alten, Florian; Clemens, Christoph R; Eter, Nicole; Oberwahrenbrock, Timm; Kadas, Ella M; Zimmermann, Hanna; Brandt, Alexander U; Osada, Nani; Paul, Friedemann; Marziniak, Martin

    2015-10-01

    The exact pathophysiology of cluster headache (CH) is still not fully clarified. Various studies confirmed changes in ocular blood flow during CH attacks. Furthermore, vasoconstricting medication influences blood supply to the eye. We investigated the retina of CH patients for structural retinal alterations with optical coherence tomography (OCT), and how these changes correlate to headache characteristics, oxygen use and impaired visual function. Spectral domain OCT of 107 CH patients - 67 episodic, 35 chronic, five former chronic sufferers - were compared to OCT from 65 healthy individuals. Visual function tests with Sloan charts and a substantial ophthalmologic examination were engaged. Reduction of temporal and temporal-inferior retinal nerve fibre layer (RNFL) thickness was found in both eyes for CH patients with a predominant thinning on the headache side in the temporal-inferior area. Chronic CH patients revealed thinning of the macula compared to episodic suffers and healthy individuals. Bilateral thinning of temporal RNFL was also found in users of 100% oxygen compared to non-users and healthy controls. Visual function did not differ between patients and controls. Our OCT findings show a systemic effect causing temporal retinal thinning in both eyes of CH patients possibly due to attack-inherent or medication-induced frequent bilateral vessel diameter changes. The temporal retina with its thinly myelinated parvo-cellular axons and its more susceptible vessels for the vasoconstricting influence of oxygen inhalation seems to be predisposed for tissue damage-causing processes related to CH. © International Headache Society 2015.

  2. Morphological and optical properties of silicon thin films by PLD

    International Nuclear Information System (INIS)

    Ayouchi, R.; Schwarz, R.; Melo, L.V.; Ramalho, R.; Alves, E.; Marques, C.P.; Santos, L.; Almeida, R.; Conde, O.

    2009-01-01

    Silicon thin films have been prepared on sapphire substrates by pulsed laser deposition (PLD) technique. The films were deposited in vacuum from a silicon target at a base pressure of 10 -6 mbar in the temperature range from 400 to 800 deg. C. A Q-switched Nd:YAG laser (1064 nm, 5 ns duration, 10 Hz) at a constant energy density of 2 J x cm -2 has been used. The influence of the substrate temperature on the structural, morphological and optical properties of the Si thin films was investigated. Spectral ellipsometry and atomic force microscopy (AFM) were used to study the thickness and the surface roughness of the deposited films. Surface roughness values measured by AFM and ellipsometry show the same tendency of increasing roughness with increased deposition temperature

  3. Structure and properties of layer-by-layer self-assembled chitosan/lignosulfonate multilayer film

    International Nuclear Information System (INIS)

    Luo Hui; Shen Qing; Ye Fan; Cheng Yifei; Mezgebe, Mebrahtu; Qin Ruijuan

    2012-01-01

    The formation of polycation chitosan, CS, with polyanion lignosulfonate, LGS, multilayer films based on layer-by-layer self-assembly method was investigated by several techniques. UV absorption spectra showed that the growth of both CS and LGS layers followed the exponential model. The film surface wettability was found alternated depending on the surface properties of these two materials because the contact angle is smaller for the CS layer and greater for the LGS layer while the surface free energy is known greater for the former and smaller for the latter. AFM images indicated that the surface roughness of these layers was in nanosize and was increased with the layer number due to the aggregation. The field emission scanning electron microscope photograph showed that the average thickness of each layer was about 5–6 nm. - Highlights: ► The chitosan/lignosulfonate (CS/LGS) multilayer films were self-assembled following the exponential model. ► The film surface wettability was alternated depending on the surface properties of CS and LGS. ► The surface roughness of these layers was in nanosize and increased with the layer number due to the aggregation.

  4. Tuning of undoped ZnO thin film via plasma enhanced atomic layer deposition and its application for an inverted polymer solar cell

    Directory of Open Access Journals (Sweden)

    Mi-jin Jin

    2013-10-01

    Full Text Available We studied the tuning of structural and optical properties of ZnO thin film and its correlation to the efficiency of inverted solar cell using plasma-enhanced atomic layer deposition (PEALD. The sequential injection of DEZn and O2 plasma was employed for the plasma-enhanced atomic layer deposition of ZnO thin film. As the growth temperature of ZnO film was increased from 100 °C to 300 °C, the crystallinity of ZnO film was improved from amorphous to highly ordered (002 direction ploy-crystal due to self crystallization. Increasing oxygen plasma time in PEALD process also introduces growing of hexagonal wurtzite phase of ZnO nanocrystal. Excess of oxygen plasma time induces enhanced deep level emission band (500 ∼ 700 nm in photoluminescence due to Zn vacancies and other defects. The evolution of structural and optical properties of PEALD ZnO films also involves in change of electrical conductivity by 3 orders of magnitude. The highly tunable PEALD ZnO thin films were employed as the electron conductive layers in inverted polymer solar cells. Our study indicates that both structural and optical properties rather than electrical conductivities of ZnO films play more important role for the effective charge collection in photovoltaic device operation. The ability to tune the materials properties of undoped ZnO films via PEALD should extend their functionality over the wide range of advanced electronic applications.

  5. Thinning increases understory diversity and biomass, and improves soil properties without decreasing growth of Chinese fir in southern China.

    Science.gov (United States)

    Zhou, Lili; Cai, Liping; He, Zongming; Wang, Rongwei; Wu, Pengfei; Ma, Xiangqing

    2016-12-01

    Sustainable forestry requires adopting more ecosystem-informed perspectives. Tree thinning improves forest productivity by encouraging the development of the understory, which in turn improves species diversity and nutrient cycling, thereby altering the ecophysiological environment of the stand. This study aimed to quantify tree growth, understory vegetation, and soil quality of 9- and 16-year-old Chinese fir (Cunninghamia lanceolata (Lamb.) Hook.) plantations in South China, 1-7 years after pre-commercial thinning. The quadratic mean diameter (QMD) and individual tree volume were greatly increased and compensated for the reduced stand yield in thinned stands. In 2011, the stand volume in unthinned and thinned stands were 276.33 and 226.46 and 251.30 and 243.64 m 3  ha -1 , respectively, for young and middle stage. Therefore, we predicted that over time, the stand volume in thinned stands should exceed that in unthinned stands. The composition, diversity, and biomass of understory vegetation of the plantation monocultures significantly increased after thinning. The effects of thinning management on understory development were dynamic and apparent within 1-2 years post-thinning. Some light-demanding plant species such as Styrax faberi, Callicarpa formosana, Lophatherum gracile, and Gahnia tristis emerged in the shrub and herb layer and became dominant with the larger gaps in the canopy in thinned stands. The trigger effects of thinning management on understory and tree growth were more pronounced in the young stage. The beneficial effects on soil physical and chemical properties were measurable at later stages (7 years after thinning). The strong positive relationship between understory biomass and volume increment (at the tree and stand levels) indicated that understory improvement after thinning did not restrict productivity within Chinese fir stands but rather, benefited soil water content and nutrient status and promoted tree growth.

  6. UV light induced insulator-metal transition in ultra-thin ZnO/TiOx stacked layer grown by atomic layer deposition

    Science.gov (United States)

    Saha, D.; Misra, P.; Joshi, M. P.; Kukreja, L. M.

    2016-08-01

    In the present study, atomic layer deposition has been used to grow a series of Ti incorporated ZnO thin films by vertically stacking different numbers (n = 1-7) of ZnO/TiOx layers on (0001) sapphire substrates. The effects of defect states mediated chemisorption of O2 and/OH groups on the electrical properties of these films have been investigated by illuminating the samples under UV light inside a high vacuum optical cryostat. The ultra-thin film having one stacked layer (n = 1) did not show any change in its electrical resistance upon UV light exposure. On the contrary, marginal drop in the electrical resistivity was measured for the samples with n ≥ 3. Most surprisingly, the sample with n = 2 (thickness ˜ 12 nm) showed an insulator to metal transition upon UV light exposure. The temperature dependent electrical resistivity measurement on the as grown film (n = 2) showed insulating behaviour, i.e., diverging resistivity on extrapolation to T→ 0 K. However, upon UV light exposure, it transformed to a metallic state, i.e., finite resistivity at T → 0 K. Such an insulator-metal transition plausibly arises due to the de-trapping of conduction electrons from the surface defect sites which resulted in an upward shift of the Fermi level above the mobility edge. The low-temperature electron transport properties on the insulating film (n = 2) were investigated by a combined study of zero field electrical resistivity ρ(T) and magnetoresistance (MR) measurements. The observed negative MR was found to be in good agreement with the magnetic field induced suppression of quantum interference between forward-going paths of tunnelling electrons. Both ρ(T) and MR measurements provided strong evidence for the Efros-Shklovskii type variable range hopping conduction in the low-temperature (≤40 K) regime. Such studies on electron transport in ultra-thin n-type doped ZnO films are crucial to achieve optimum functionality with long term reliability of ZnO based transparent

  7. Tuning the Kondo effect in thin Au films by depositing a thin layer of Au on molecular spin-dopants

    Science.gov (United States)

    Ataç, D.; Gang, T.; Yilmaz, M. D.; Bose, S. K.; Lenferink, A. T. M.; Otto, C.; de Jong, M. P.; Huskens, J.; van der Wiel, W. G.

    2013-09-01

    We report on the tuning of the Kondo effect in thin Au films containing a monolayer of cobalt(II) terpyridine complexes by altering the ligand structure around the Co2+ ions by depositing a thin Au capping layer on top of the monolayer on Au by magnetron sputtering (more energetic) and e-beam evaporation (softer). We show that the Kondo effect is slightly enhanced with respect to that of the uncapped film when the cap is deposited by evaporation, and significantly enhanced when magnetron sputtering is used. The Kondo temperature (TK) increases from 3 to 4.2/6.2 K for the evaporated/sputtered caps. X-ray absorption spectroscopy and surface-enhanced Raman spectroscopy investigation showed that the organic ligands remain intact upon Au e-beam evaporation; however, sputtering inflicts significant change in the Co2+ electronic environment. The location of the monolayer—on the surface or embedded in the film—has a small effect. However, the damage of Co-N bonds induced by sputtering has a drastic effect on the increase of the impurity-electron interaction. This opens up the way for tuning of the magnetic impurity states, e.g. spin quantum number, binding energy with respect to the host Fermi energy, and overlap via the ligand structure around the ions.

  8. A novel self-cleaning and anti-reflective multi-layer for thin-film solar PV module

    Energy Technology Data Exchange (ETDEWEB)

    Wong, K.L.; Shiue, J.D. [Kun-Shan Univ., Yung-Kung City, Taiwan (China). Clean Energy Center; Li, M.; Huang, M.C. [NanoWinTechnology Co., Ltd., Taiwan (China); Fu, Y.S.; Wei, S.S. [National Univ. of Tainan, Tainan, Taiwan (China)

    2007-07-01

    Titanium dioxide (TiO{sub 2}) acts as a photocatalyst, and can accelerate the decomposition of organic particulates and airborne pollutants that gather on solar arrays. In this study, a TiO{sub 2} film was coated on the outside surface of sodium glass in order to increase the self-cleaning ability of solar cells. DC magnetic sputtering was used to coat multi-layer thin films of silicon nitrides in order to increase their antireflective capabilities. The TiO{sub 2} thin film was fabricated using the sol-gel method. Optical properties of the microstructure and composition of the films were characterized using UV-V spectroscopy. Results showed that the best anti-reflection spectrum of the TiO{sub 2} was between 700 and 800 nm. Average transmission rates were 3.54 per cent higher than those observed in slide glass samples. It was concluded that overlapped titanium dioxide/silicon nitride thin films can achieve a very good anti-reflective effect as well as self-cleaning ability in the range of 400-800 nm. 9 refs., 4 figs.

  9. ZnO and ZnSe thin films grown by Atomic Layer Epitaxy in a gas flow system

    Science.gov (United States)

    Godlewski, Marek; Guziewicz, Elzbieta; Kopalko, Krzysztof; Lusalowska, Elzbieta

    2003-03-01

    In the presentation we will briefly review our recent works on thin films of ZnO and ZnSe for possible applications in opto-electronics. Thin films of ZnO were grown by four different methods on either semiconductor substrates or on a glass plates. The latter system was successfully used as a substrate for deposition of amorphous GaN epilayers, using low temperature plasma-assisted MOCVD technique. Properties of ALE-grown ZnO films and of GaN epilayers grown on ZnO buffer layer will be shortly analyzed. Thin films of ZnSe were grown using synthesis from Zn and Se. These films show bright white color light emission. Temperature of the emission and brightness can be optimized by either modifications in a growth procedure or variations in excitation conditions. Nature of white emission and optimization procedures will be described. This work was partly supported by grant no. PBZ-KBN-044/P03/2001 of KBN. The ALE reactor was bought using SEZAM grant of Foundation for Polish Science.

  10. Phytochemical analysis of ethanolic extract of Dichrostachys Cinerea W and Arn leaves by a thin layer chromatography, high performance thin layer chromatography and column chromatography

    Directory of Open Access Journals (Sweden)

    M Vijayalakshmi

    2013-01-01

    Full Text Available Background: The leaves of Dichrostachys cinerea are used as laxative, diuretic, painkiller. It is also used in the treatment of gonorrhoea, boils, oedema, gout, veneral diseases and nasopharyngeal affections, etc. Materials and Methods: The Phytochemical investigation of ethanolic extract of D. cinerea leaves were performed by standard chemical tests, thin layer chromatography (TLC by using various solvent systems, and by high performance liquid chromatography (HPTLC. Two compounds were isolated by column chromatography and one of the compounds was identified by various spectral studies. Result : Preliminary phytochemical screening of ethanolic extract of D. cinerea leaves showed the presence of Carbohydrates, proteins, Glycosides, Saponins, Tannins, Aminoacids and Terpenoids. The TLC and HPTLC fingerprint of ethanolic extract were studied and various fractions were isolated by column chromatography and one of the fraction contain β-amyrin glucoside which was confirmed by Infra Red[IR] Spectroscopy, 1 H-Nuclear Magnetic Resonance (NMR, C- 13 NMR and Mass spectroscopic (MS studies.

  11. Electronic Properties and Device Applications of van-der-Waals Thin Films

    Science.gov (United States)

    Renteria, Jacqueline de Dios

    Successful exfoliation of graphene and discoveries of its unique electrical and thermal properties have motivated searches for other quasi two-dimensional (2D) materials with interesting properties. The layered van der Waals materials can be cleaved mechanically or exfoliated chemically by breaking the relatively weak bonding between the layers. In this dissertation research I addressed a special group of inorganic van der Waals materials -- layered transition metal dichalcogenides (MX2, where M=Mo, W, Nb, Ta or Ti and X=S, Se or Te). The focus of the investigation was electronic properties of thin films of TaSe2 and MoS2 and their device applications. In the first part of the dissertation, I describe the fabrication and performance of all-metallic three-terminal devices with the TaSe2 thin-film conducting channel. The layers of 2H-TaSe2 were exfoliated mechanically from single crystals grown by the chemical vapor transport method. It was established that devices with nanometer-scale thickness channels exhibited strongly non-linear current-voltage characteristics, unusual optical response, and electrical gating at room temperature. It was found that the drain-source current in thin-film 2H-TaSe2--Ti/Au devices reproducibly shows an abrupt transition from a highly resistive to a conductive state, with the threshold tunable via the gate voltage. Such current-voltage characteristics can be used, in principle, for implementing radiation-hard all-metallic logic circuits. In the second part of the dissertation, I describe the fabrication, electrical testing and measurements of the low-frequency 1/f noise in three-terminal devices with the MoS2 thin-film channel (f is the frequency). Analysis of the experimental data allowed us to distinguish channel and contact noise contributions for both as fabricated and aged devices. The noise characteristics of MoS 2--Ti/Au devices are in agreement with the McWhorter model description. The latter is contrary to what is observed in

  12. Improved conductivity of infinite-layer LaNiO2 thin films by metal organic decomposition

    International Nuclear Information System (INIS)

    Ikeda, Ai; Manabe, Takaaki; Naito, Michio

    2013-01-01

    Highlights: •LaNiO 2 films were synthesized by metal organic decomposition and topotactic reduction. •Room-temperature resistivity as low as 0.6 mΩ cm was achieved for infinite-layer LaNiO 2 . •Lattice matched substrates are important in obtaining high conductivity. -- Abstract: Infinite-layer LaNiO 2 thin films were synthesized by metal organic decomposition and subsequent topotactic reduction in hydrogen, and their transport properties were investigated. LaNiO 2 is isostructural to SrCuO 2 , the parent compound of high-T c Sr 0.9 La 0.1 CuO 2 with T c = 44 K, and has 3d 9 configuration, which is very rare in oxides but common to high-T c copper oxides. The bulk synthesis of LaNiO 2 is not easy, but we demonstrate in this article that the thin-film synthesis of LaNiO 2 is rather easy, thanks to a large-surface-to-volume ratio, which makes oxygen diffusion prompt. Our refined synthesis conditions produced highly conducting films of LaNiO 2 . The resistivity of the best film is as low as 640 μΩ cm at 295 K and decreases with temperature down to 230 K but it shows a gradual upturn at lower temperatures

  13. Water sorption, viscoelastic, and optical properties of thin NafionRTM films

    Science.gov (United States)

    Petrina, Stephanie Ann

    The hydrogen fuel cell industry continues to make strides in terms of improving device efficiency and performance, yet ion transport within the catalyst layer is not well understood. Thin ionomer films coating the catalytic particles are responsible for proton transport throughout the catalytic layer, yet the basic physical properties of these thin films, which interact with the catalyst surface, are widely unknown. Fundamentally, the material properties of thin polymer films are known to deviate from thick, free-standing membranes composed of the same material based on their interfacial interactions. The work in this dissertation seeks to uncover the properties of thin NafionRTM films to begin to understand their role in catalyst layer performance. By identifying the influence of processing conditions, polymer--substrate interaction, and thickness on water uptake characteristics of thin Nafion RTM films, the proton and oxygen transport parameters that are most relevant to performance in the catalyst layer can be understood. Since the hydration of NafionRTM is relevant for its proton conduction and performance in a fuel cell, water sorption of substrate--supported NafionRTM thin films was characterized via the change in sample mass and thickness as the relative humidity (RH) of the sample environment was varied. Monolithic thin NafionRTM films were characterized for a variety of sample preparation conditions and substrates to identify how processing conditions and other sample parameters may affect water uptake. Spin cast NafionRTM films exhibited low density and refractive index for very thin films due to the higher relative void fraction induced by rapid film formation. The density of hydrated films was observed to decrease beyond the volume additivity limit as RH increased, and the relationship between density and refractive index was confirmed with the Lorentz-Lorenz relationship. The complex refractive indices (N = n + ik) of substrate--supported Nafion RTM

  14. Drag crisis moderation by thin air layers sustained on superhydrophobic spheres falling in water

    KAUST Repository

    Jetly, Aditya

    2018-01-22

    We investigate the effect of thin air layers naturally sustained on superhydrophobic surfaces on the terminal velocity and drag force of metallic spheres free falling in water. The surface of 20 mm to 60 mm steel or tungsten-carbide spheres is rendered superhydrophobic by a simple coating process that uses commercially available hydrophobic agent. By comparing the free fall of unmodified spheres and superhydrophobic spheres in a 2.5 meters tall water tank, It is demonstrated that even a very thin air layer (~ 1 – 2 μm) that covers the freshly dipped superhydrophobic sphere, can reduce the drag force on the spheres by up to 80 %, at Reynolds numbers 105 - 3×105 , owing to an early drag crisis transition. This study complements prior investigations on the drag reduction efficiency of model gas layers sustained on heated metal spheres falling in liquid by the Leidenfrost effect. The drag reduction effects are expected to have significant implication for the development of sustainable air-layer-based energy saving technologies.

  15. Drag crisis moderation by thin air layers sustained on superhydrophobic spheres falling in water.

    Science.gov (United States)

    Jetly, Aditya; Vakarelski, Ivan U; Thoroddsen, Sigurdur T

    2018-02-28

    We investigate the effect of thin air layers naturally sustained on superhydrophobic surfaces on the terminal velocity and drag force of metallic spheres free falling in water. The surface of 20 mm to 60 mm steel or tungsten-carbide spheres is rendered superhydrophobic by a simple coating process that uses a commercially available hydrophobic agent. By comparing the free fall of unmodified spheres and superhydrophobic spheres in a 2.5 meter tall water tank, it is demonstrated that even a very thin air layer (∼1-2 μm) that covers the freshly dipped superhydrophobic sphere can reduce the drag force on the spheres by up to 80%, at Reynolds numbers from 10 5 to 3 × 10 5 , owing to an early drag crisis transition. This study complements prior investigations on the drag reduction efficiency of model gas layers sustained on heated metal spheres falling in liquid by the Leidenfrost effect. The drag reduction effects are expected to have significant implications for the development of sustainable air-layer-based energy saving technologies.

  16. Sound transmission through finite lightweight multilayered structures with thin air layers.

    Science.gov (United States)

    Dijckmans, A; Vermeir, G; Lauriks, W

    2010-12-01

    The sound transmission loss (STL) of finite lightweight multilayered structures with thin air layers is studied in this paper. Two types of models are used to describe the vibro-acoustic behavior of these structures. Standard transfer matrix method assumes infinite layers and represents the plane wave propagation in the layers. A wave based model describes the direct sound transmission through a rectangular structure placed between two reverberant rooms. Full vibro-acoustic coupling between rooms, plates, and air cavities is taken into account. Comparison with double glazing measurements shows that this effect of vibro-acoustic coupling is important in lightweight double walls. For infinite structures, structural damping has no significant influence on STL below the coincidence frequency. In this frequency region, the non-resonant transmission or so-called mass-law behavior dominates sound transmission. Modal simulations suggest a large influence of structural damping on STL. This is confirmed by experiments with double fiberboard partitions and sandwich structures. The results show that for thin air layers, the damping induced by friction and viscous effects at the air gap surfaces can largely influence and improve the sound transmission characteristics.

  17. Atomic layer deposition of absorbing thin films on nanostructured electrodes for short-wavelength infrared photosensing

    International Nuclear Information System (INIS)

    Xu, Jixian; Sutherland, Brandon R.; Hoogland, Sjoerd; Fan, Fengjia; Sargent, Edward H.; Kinge, Sachin

    2015-01-01

    Atomic layer deposition (ALD), prized for its high-quality thin-film formation in the absence of high temperature or high vacuum, has become an industry standard for the large-area deposition of a wide array of oxide materials. Recently, it has shown promise in the formation of nanocrystalline sulfide films. Here, we demonstrate the viability of ALD lead sulfide for photodetection. Leveraging the conformal capabilities of ALD, we enhance the absorption without compromising the extraction efficiency in the absorbing layer by utilizing a ZnO nanowire electrode. The nanowires are first coated with a thin shunt-preventing TiO 2 layer, followed by an infrared-active ALD PbS layer for photosensing. The ALD PbS photodetector exhibits a peak responsivity of 10 −2  A W −1 and a shot-derived specific detectivity of 3 × 10 9  Jones at 1530 nm wavelength

  18. Layer-by-layer thin film of reduced graphene oxide and gold nanoparticles as an effective sample plate in laser-induced desorption/ionization mass spectrometry.

    Science.gov (United States)

    Kuo, Tsung-Rong; Wang, Di-Yan; Chiu, Yu-Chen; Yeh, Yun-Chieh; Chen, Wei-Ting; Chen, Ching-Hui; Chen, Chun-Wei; Chang, Huan-Cheng; Hu, Cho-Chun; Chen, Chia-Chun

    2014-01-27

    This work demonstrated a simple platform for rapid and effective surface-assisted laser desorption/ionization time-of-flight mass spectrometry (SALDI-TOF MS) measurements based on the layer structure of reduced graphene oxide (rGO) and gold nanoparticles. A multi-layer thin film was fabricated by alternate layer-by-layer depositions of rGO and gold nanoparticles (LBL rGO/AuNP). The flat and clean two-dimensional film was served as the sample plate and also functioned as the matrix in SALDI-TOF MS. By simply one-step deposition of analytes onto the LBL rGO/AuNP sample plate, the MS measurements of various homogeneous samples were ready to execute. The optimization of MS signal was reached by the variation of the layer numbers of rGO and gold nanoparticles. Also, the small molecules including amino acids, carbohydrates and peptides were successfully analyzed in SALDI-TOF MS using the LBL rGO/AuNP sample plate. The results showed that the signal intensity, S N(-1) ratio and reproducibility of SALDI-TOF spectra have been significantly improved in comparison to the uses of gold nanoparticles or α-cyano-4-hydroxy-cinnamic acid (CHCA) as the assisted matrixes. Taking the advantages of the unique properties of rGO and gold nanoparticles, the ready-to-use MS sample plate, which could absorb and dissipate laser energy to analytes quite efficiently and homogeneously, has shown great commercial potentials for MS applications. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Electric Field Structures in Thin Films: Formation and Properties

    DEFF Research Database (Denmark)

    Cassidy, Andrew; Plekan, Oksana; Balog, Richard

    2014-01-01

    by combining layers of different spontelectric materials. This is demonstrated using the spontelectric materials nitrous oxide, toluene, isoprene, isopentane, and CF2Cl2. These yield a variety of tailored electric field structures, with individual layers harboring fields between 107 and 108 V/m. Fields may......A newly discovered class of molecular materials, so-called “spontelectrics”, display spontaneous electric fields. Here we show that the novel properties of spontelectrics can be used to create composite spontelectrics, illustrating how electric fields in solid films may be structured on the nanoscale...

  20. High magnetic field properties of Fe-pnictide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kurth, Fritz

    2015-11-20

    The recent discovery of high-temperature superconductivity in Fe-based materials triggered worldwide efforts to investigate their fundamental properties. Despite a lot of similarities to cuprates and MgB{sub 2}, important differences like near isotropic behaviour in contrast to cuprates and the peculiar pairing symmetry of the order parameter (OP) have been reported. The OP symmetry of Fe-based superconductors (FBS) was theoretically predicted to be of so-called s± state prior to various experimental works. Still, most of the experimental results favour the s± scenario; however, definitive evidence has not yet been reported. Although no clear understanding of the superconducting mechanisms yet exists, potential applications such as high-field magnets and Josephson devices have been explored. Indeed, a lot of reports about FBS tapes, wires, and even SQUIDs have been published to this date. In this thesis, the feasibility of high-field magnet applications of FBS is addressed by studying their transport properties, involving doped BaFe{sub 2}As{sub 2} (Ba-122) and LnFeAs(O,F) [Ln=Sm and Nd]. Particularly, it is important to study physical properties in a sample form (i.e. thin films) that is close to the conditions found in applications. However, the realisation of epitaxial FBS thin films is not an easy undertaking. Recent success in growing epitaxial FBS thin films opens a new avenue to delve into transport critical current measurements. The information obtained through this research will be useful for exploring high-field magnet applications. This thesis consists of 7 chapters: Chapter 1 describes the motivation of this study, the basic background of superconductivity, and a brief summary of the thin film growth of FBS. Chapter 2 describes experimental methods employed in this study. Chapter 3 reports on the fabrication of Co-doped Ba-122 thin films on various substrates. Particular emphasis lies on the discovery of fluoride substrates to be beneficial for

  1. Mechanical and transport properties of layer-by-layer electrospun composite proton exchange membranes for fuel cell applications.

    Science.gov (United States)

    Mannarino, Matthew M; Liu, David S; Hammond, Paula T; Rutledge, Gregory C

    2013-08-28

    Composite membranes composed of highly conductive and selective layer-by-layer (LbL) films and electrospun fiber mats were fabricated and characterized for mechanical strength and electrochemical selectivity. The LbL component consists of a proton-conducting, methanol-blocking poly(diallyl dimethyl ammonium chloride)/sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (PDAC/sPPO) thin film. The electrospun fiber component consists of poly(trimethyl hexamethylene terephthalamide) (PA 6(3)T) fibers in a nonwoven mat of 60-90% porosity. The bare mats were annealed to improve their mechanical properties, which improvements are shown to be retained in the composite membranes. Spray LbL assembly was used as a means for the rapid formation of proton-conducting films that fill the void space throughout the porous electrospun matrix and create a fuel-blocking layer. Coated mats as thin as 15 μm were fabricated, and viable composite membranes with methanol permeabilities 20 times lower than Nafion and through-plane proton selectivity five and a half times greater than Nafion are demonstrated. The mechanical properties of the spray coated electrospun mats are shown to be superior to the LbL-only system and possess intrinsically greater dimensional stability and lower mechanical hysteresis than Nafion under hydrated conditions. The composite proton exchange membranes fabricated here were tested in an operational direct methanol fuel cell. The results show the potential for higher open circuit voltages (OCV) and comparable cell resistances when compared to fuel cells based on Nafion.

  2. Thin films of tetrafluorosubstituted cobalt phthalocyanine: Structure and sensor properties

    Energy Technology Data Exchange (ETDEWEB)

    Klyamer, Darya D.; Sukhikh, Aleksandr S. [Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentiev Pr. 3, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova Str. 2 (Russian Federation); Krasnov, Pavel O. [Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentiev Pr. 3, Novosibirsk 630090 (Russian Federation); Gromilov, Sergey A. [Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentiev Pr. 3, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova Str. 2 (Russian Federation); Morozova, Natalya B. [Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentiev Pr. 3, Novosibirsk 630090 (Russian Federation); Basova, Tamara V., E-mail: basova@niic.nsc.ru [Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentiev Pr. 3, Novosibirsk 630090 (Russian Federation); Novosibirsk State University, Pirogova Str. 2 (Russian Federation)

    2016-05-30

    Highlights: • Thin films of tetrafluorosubstituted cobalt phthalocyanine were studied. • The effect of fluorine substituents to the films structure and properties was verified. • The sensor response of tetrafluorosubstituted phthalocyanine toward NH{sub 3} was studied. • The structure of analyte/phthalocyanine complex was analysed using DFT calculations. - Abstract: In this work, thin films of tetrafluorosubstituted cobalt phthalocyanine (CoPcF{sub 4}) were prepared by organic molecular beam deposition and their structure was studied using UV–vis, polarization dependent Raman spectroscopy, XRD and atomic force microscopy. Quantum chemical calculations (DFT) have been employed in order to determine the detailed assignment of the bands in the CoPcF{sub 4} IR and Raman spectra. The electrical sensor response of CoPcF{sub 4} films to ammonia vapours was investigated and compared with that of unsubstituted cobalt phthalocyanine films. In order to explain the difference in sensitivity of the unsubstituted and fluorinated phthalocyanines to ammonia, the nature and properties of chemical binding between CoPc derivatives and NH{sub 3} were described by quantum-chemical calculations utilizing DFT method. The effect of post-deposition annealing on surface morphology and gas sensing properties of CoPcF{sub 4} films was also studied.

  3. Roughness, optical, and wetting properties of nanostructured thin films

    Science.gov (United States)

    Schröder, Sven; Coriand, Luisa; Duparré, Angela

    2013-09-01

    Roughness structures are essential for a variety of functional surfaces, for example surfaces with extreme wetting behavior like superhydrophobicity or superhydrophilicity. On the other hand, roughness also gives rise to light scattering, and thus limits the usability of such surfaces for optical applications. Our approach is based on using small-scale intrinsic roughness components of thin film coatings to achieve the desired functional properties while keeping the light scattering at acceptable levels. A comprehensive measurement and analysis methodology for effectively predicting, defining and controlling the structural and wetting properties of stochastically rough superhydrophobic surfaces is presented. Power Spectral Density (PSD) functions determined from atomic force microscopy data are used for thorough roughness analysis as well as to predict the wetting and light scattering properties. Dynamic contact angle analysis is performed by measuring advancing, receding, roll-off, and bounce-off angles. Examples of natural and technical superhydrophobic surfaces like the Lotus leaf and thin film coatings with stochastic nanoroughness are given. These surfaces reveal high advancing contact angles, low contact angle hysteresis, low roll-off angles, and, consequently, the effect of self-cleaning.

  4. Fundamental Investigations Regarding Barrier Properties of Grafted PVOH Layers

    Directory of Open Access Journals (Sweden)

    Markus Schmid

    2012-01-01

    Full Text Available The current work focuses on fundamental investigations regarding the barrier properties of grafted PVOH layers produced by the Transfer Method. The layers (or papers used for the different experiments were produced and grafted during the course of this work. Papers with different types of PVOH (different Mowiol types were produced by coating. Experiments using different parameters (temperature, reaction duration, and concentration were performed using the Transfer Method. Contact angle measurements and Cobb60 measurements were carried out on the grafted and untreated PVOH layers. Furthermore, the water vapour transmission rate of the PVOH layers was determined. The results of this work showed that the method of chromatogeny or chromatogenic chemistry improves the water vapour barrier properties of grafted PVOH layers enormously.

  5. Materials science in microelectronics II the effects of structure on properties in thin films

    CERN Document Server

    Machlin, Eugene

    2005-01-01

    The subject matter of thin-films - which play a key role in microelectronics - divides naturally into two headings: the processing / structure relationship, and the structure / properties relationship. Part II of 'Materials Science in Microelectronics' focuses on the latter of these relationships, examining the effect of structure on the following: Electrical properties Magnetic properties Optical properties Mechanical properties Mass transport properties Interface and junction properties Defects and properties Captures the importance of thin films to microelectronic development Examines the cause / effect relationship of structure on thin film properties.

  6. Multiferroic properties of a YCrO3/BiFeO3 bilayered thin film prepared by a sol-gel method

    Science.gov (United States)

    Kuang, Daihong; Yang, Fangyuan; Jing, Weiwen; Yang, Zhanjin

    2018-02-01

    YCrO3 (YCO), BiFeO3 (BFO), and YCrO3/BiFeO3 (YCO-BFO) thin films were prepared on quartz substrates using spin coating by a sol-gel method. X-ray diffraction demonstrated that YCO and BFO thin films had a perovskite orthorhombic, and rhombohedral structure, respectively. The stronger and sharper diffraction intensity of YCO-BFO bilayered thin film indicated that the bottom YCO layer was able to promote the grain growth of BFO film, which was further verified by scanning electron microscope. The ferroelectric test demonstrated that the leakage current density of YCO-BFO bilayered film was reduced by one order of magnitude compared to that of BFO film, which had a better ferroelectric property. Optical absorption spectra indicated that the band gap of YCO-BFO thin film was lower than that of BFO film, suggesting their potential application as UV and blue-green-driven photocatalysts. The magnetic test verified that the ferromagnetic property of YCO-BFO film was obviously enhanced compared to those of BFO and YCO thin films. The results revealed that YCO layer played an important role for improving multiferroic properties of BFO thin film. The mechanisms of the effects of bottom YCO layer on optical and multiferroic properties of BFO thin film in the YCO-BFO bilayered film were discussed in detail.

  7. Determination of the particle energy in a waveguide with a thin dielectric layer

    Directory of Open Access Journals (Sweden)

    Andrey V. Tyukhtin

    2012-10-01

    Full Text Available An original method to determine the charged particle energy is developed. This method uses the dependency of waveguide mode frequency on the Lorentz factor of particles. It is central to this technique that the particle bunch generates Cherenkov radiation in a waveguide, and the mode frequencies depend essentially on the Lorentz factor. Here, we consider the case when radiation is excited in a circular waveguide with a dielectric layer. It is shown that structures with relatively thick layers are not convenient for the particle energy measurement because the dependence of the first mode frequency on the Lorentz factor is weak. In contrast, a structure with a thin layer is favorable for such a purpose because this dependency is more essential. Analytical and numerical investigations are performed. It is shown that the first mode amplitude is sufficient for measurements in the case of a pico-Coulomb bunch.

  8. Characterizing the hydraulic properties of a paper coating layer using FIB-SEM tomography and 3D pore-scale modeling

    OpenAIRE

    Aslannejad, H.; Hassanizadeh, S.M.; Raoof, A.; de Winter, D.A.M.; Tomozeu, N.; van Genuchten, M.T.

    2017-01-01

    Paper used in the printing industry generally contains a relatively thin porous coating covering a thicker fibrous base layer. The three-dimensional pore structure of coatings has a major effect on fluid flow patterns inside the paper medium. Understanding and quantifying the flow properties of thin coating layers is hence crucial. Pore spaces within the coating have an average size of about 180 nm. We used scanning electron microscopy combined with focused ion beam (FIB-SEM) to visualize the...

  9. Reversible Surface Properties of Polybenzoxazine/Silica Nanocomposites Thin Films

    Directory of Open Access Journals (Sweden)

    Wei-Chen Su

    2013-01-01

    Full Text Available We report the reversible surface properties (hydrophilicity, hydrophobicity of a polybenzoxazine (PBZ thin film through simple application of alternating UV illumination and thermal treatment. The fraction of intermolecularly hydrogen bonded O–H⋯O=C units in the PBZ film increased after UV exposure, inducing a hydrophilic surface; the surface recovered its hydrophobicity after heating, due to greater O–H⋯N intramolecular hydrogen bonding. Taking advantage of these phenomena, we prepared a PBZ/silica nanocomposite coating through two simple steps; this material exhibited reversible transitions from superhydrophobicity to superhydrophilicity upon sequential UV irradiation and thermal treatment.

  10. A comparative study of physico-chemical properties of CBD and SILAR grown ZnO thin films

    International Nuclear Information System (INIS)

    Jambure, S.B.; Patil, S.J.; Deshpande, A.R.; Lokhande, C.D.

    2014-01-01

    Graphical abstract: Schematic model indicating ZnO nanorods by CBD (Z 1 ) and nanograins by SILAR (Z 2 ). - Highlights: • Simple methods for the synthesis of ZnO thin films. • Comparative study of physico-chemical properties of ZnO thin films prepared by CBD and SILAR methods. • CBD outperforms SILAR method. - Abstract: In the present work, nanocrystalline zinc oxide (ZnO) thin films have been successfully deposited onto glass substrates by simple and economical chemical bath deposition (CBD) and successive ionic layer adsorption reaction (SILAR) methods. These films were further characterized for their structural, optical, surface morphological and wettability properties. The X-ray diffraction (XRD) patterns for both CBD and SILAR deposited ZnO thin films reveal the highly crystalline hexagonal wurtzite structure. From optical studies, band gaps obtained are 2.9 and 3.0 eV for CBD and SILAR deposited thin films, respectively. The scanning electron microscope (SEM) patterns show growth of well defined randomly oriented nanorods and nanograins on the CBD and SILAR deposited samples, respectively. The resistivity of CBD deposited films (10 2 Ω cm) is lower than that of SILAR deposited films (10 5 Ω cm). Surface wettability studies show hydrophobic nature for both films. From the above results it can be concluded that CBD grown ZnO thin films show better properties as compared to SILAR method

  11. High Performance Nano-Constituent Buffer Layer Thin Films to Enable Low Cost Integrated On-the-Move Communications Systems

    National Research Council Canada - National Science Library

    Cole, M. W; Nothwang, W. D; Hubbard, C; Ngo, E; Hirsch, S

    2004-01-01

    .... Utilizing a coplanar device design we successfully designed, fabricated, characterized, and optimized a high performance Ta2O5 thin film passive buffer layer on Si substrates, which will allow...

  12. Structural, Optical and Electrical Properties of ITO Thin Films

    Science.gov (United States)

    Sofi, A. H.; Shah, M. A.; Asokan, K.

    2018-02-01

    Transparent and conductive thin films of indium tin oxide were fabricated on glass substrates by the thermal evaporation technique. Tin doped indium ingots with low tin content were evaporated in vacuum (1.33 × 10-7 kpa) followed by an oxidation for 15 min in the atmosphere in the temperature range of 600-700°C. The structure and phase purity, surface morphology, optical and electrical properties of thin films were studied by x-ray diffractometry and Raman spectroscopy, scanning electron microcopy and atomic force microscopy, UV-visible spectrometry and Hall measurements in the van der Pauw configuration. The x-ray diffraction study showed the formation of the cubical phase of polycrystalline thin films. The morphological analysis showed the formation of ginger like structures and the energy dispersive x-ray spectrum confirmed the presence of indium (In), tin (Sn) and oxygen (O) elements. Hall measurements confirmed n-type conductivity of films with low electrical resistivity ( ρ) ˜ 10-3 Ω cm and high carrier concentration ( n) ˜ 1020 cm-3. For prevalent scattering mechanisms in the films, experimental data was analyzed by calculating a mean free path ( L) using a highly degenerate electron gas model. Furthermore, to investigate the performance of the deposited films as a transparent conductive material, the optical figure of merit was obtained for all the samples.

  13. Vibroacoustic properties of thin micro-perforated panel absorbers.

    Science.gov (United States)

    Bravo, Teresa; Maury, Cédric; Pinhède, Cédric

    2012-08-01

    This paper presents theoretical and experimental results on the influence of panel vibrations on the sound absorption properties of thin micro-perforated panel absorbers (MPPA). Measurements show that the absorption performance of thin MPPAs generates extra absorption peaks or dips that cannot be understood assuming a rigid MPPA. A theoretical model is established that accounts for structural-acoustic interaction between the micro-perforated panel and the backing cavity, assuming uniform conservative boundary conditions for the panel and separable coordinates for the cavity cross-section. This model is verified experimentally against impedance tube measurements and laser vibrometric scans of the cavity-backed panel response. It is shown analytically and experimentally that the air-frame relative velocity is a key factor that alters the input acoustic impedance of thin MPPAs. Coupled mode analysis reveals that the two first resonances of an elastic MPPA are either panel-cavity, hole-cavity, or panel-controlled resonances, depending on whether the effective air mass of the perforations is greater or lower than the first panel modal mass. A critical value of the perforation ratio is found through which the MPPA resonances experience a frequency "jump" and that determines two absorption mechanisms operating out of the transitional region.

  14. Experimental study of soil-structure interaction for proving the three dimensional thin layered element method

    International Nuclear Information System (INIS)

    Kuwabara, Y.; Ogiwara, Y.; Suzuki, T.; Tsuchiya, H.; Nakayama, M.

    1981-01-01

    It is generally recognized that the earthquake response of a structure can be significantly affected by the dynamic interaction between the structure and the surrounding soil. Dynamic soil-structure interaction effects are usually analyzed by using a lumped mass model or a finite element model. In the lumped mass model, the soil is represented by springs and dashpots based on the half-space elastic theory. Each model has its advantages and limitations. The Three Dimensional Thin Layered Element Theory has been developed by Dr. Hiroshi Tajimi based on the combined results of the abovementioned lumped mass model and finite element model. The main characteristic of this theory is that, in consideration and can be applied in the analysis of many problems in soil-structure interaction, such as those involving radiation damping, embedded structures, and multi-layered soil deposits. This paper describes test results on a small scale model used to prove the validity of the computer program based on the Thin Layered Element Theory. As a numerical example, the response analysis of a PWR nuclear power plant is carried out using this program. The vibration test model is simplified and the scale is 1/750 for line. The soil layer of the model is made of congealed gelatine. The test soil layer is 80 cm long, 35 cm wide and 10 cm thick. The super structure is a one mass model made of metal sheet spring and solid mass metal. As fixed inputs, sinusoidal waves (10, 20 gal level) are used. The displacements of the top and base of the super structure, and the accelerations and the displacements of the shaking table are measured. The main parameter of the test is the shear wave velocity of the soil layer. (orig./RW)

  15. Research on the electronic and optical properties of polymer and other organic molecular thin films

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-02-01

    The main goal of the work is to find materials and methods of optimization of organic layered electroluminescent cells and to study such properties of polymers and other organic materials that can be used in various opto-electronic devices. The summary of results obtained during the first year of work is presented. They are: (1) the possibility to produce electroluminescent cells using a vacuum deposition photoresist technology for commercial photoresists has been demonstrated; (2) the idea to replace the polyaryl polymers by other polymers with weaker hole conductivity for optimization of electroluminescent cells with ITO-Al electrodes has been suggested. The goal is to obtain amorphous processable thin films of radiative recombination layers in electroluminescent devices; (3) procedures of preparation of high-quality vacuum-deposited poly (p-phenylene) (PPP) films on various substrates have been developed; (4) it was found for the first time that the fluorescence intensity of PPP films depends on the degree of polymerization; (5) the role of interfaces between organic compounds, on one side, and metals or semiconductors, on the other side, has been studied and quenching of the fluorescence caused by semiconductor layer in thin sandwiches has been observed; (6) studies of the dynamics of photoexcitations revealed the exciton self-trapping in quasi-one-dimensional aggregates; and (7) conditions for preparation of highly crystalline fullerene C{sub 60} films by vacuum deposition have been found. Composites of C{sub 60} with conjugated polymers have been prepared.

  16. Open-Source-Based 3D Printing of Thin Silica Gel Layers in Planar Chromatography.

    Science.gov (United States)

    Fichou, Dimitri; Morlock, Gertrud E

    2017-02-07

    On the basis of open-source packages, 3D printing of thin silica gel layers is demonstrated as proof-of-principle for use in planar chromatography. A slurry doser was designed to replace the plastic extruder of an open-source Prusa i3 printer. The optimal parameters for 3D printing of layers were studied, and the planar chromatographic separations on these printed layers were successfully demonstrated with a mixture of dyes. The layer printing process was fast. For printing a 0.2 mm layer on a 10 cm × 10 cm format, it took less than 5 min. It was affordable, i.e., the running costs for producing such a plate were less than 0.25 Euro and the investment costs for the modified hardware were 630 Euro. This approach demonstrated not only the potential of the 3D printing environment in planar chromatography but also opened new avenues and new perspectives for tailor-made plates, not only with regard to layer materials and their combinations (gradient plates) but also with regard to different layer shapes and patterns. As such an example, separations on a printed plane layer were compared with those obtained from a printed channeled layer. For the latter, 40 channels were printed in parallel on a 10 cm × 10 cm format for the separation of 40 samples. For producing such a channeled plate, the running costs were below 0.04 Euro and the printing process took only 2 min. All modifications of the device and software were released open-source to encourage reuse and improvements and to stimulate the users to contribute to this technology. By this proof-of-principle, another asset was demonstrated to be integrated into the Office Chromatography concept, in which all relevant steps for online miniaturized planar chromatography are performed by a single device.

  17. Thermal resistances of crystalline and amorphous few-layer oxide thin films

    Directory of Open Access Journals (Sweden)

    Liang Chen

    2017-11-01

    Full Text Available Thermal insulation at nanoscale is of crucial importance for non-volatile memory devices such as phase change memory and memristors. We perform non-equilibrium molecular dynamics simulations to study the effects of interface materials and structures on thermal transport across the few-layer dielectric nanostructures. The thermal resistance across few-layer nanostructures and thermal boundary resistance at interfaces consisting of SiO2/HfO2, SiO2/ZrO2 or SiO2/Al2O3 are obtained for both the crystalline and amorphous structures. Based on the comparison temperature profiles and phonon density of states, we show that the thermal boundary resistances are much larger in crystalline few-layer oxides than the amorphous ones due to the mismatch of phonon density of state between distinct oxide layers. Compared with the bulk SiO2, the increase of thermal resistance across crystalline few-layer oxides results from the thermal boundary resistance while the increase of thermal resistance across amorphous few-layer oxides is attributed to the lower thermal conductivity of the amorphous thin films.

  18. Influence of thermal annealing on microstructural, morphological, optical properties and surface electronic structure of copper oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Akgul, Funda Aksoy, E-mail: fundaaksoy01@gmail.com [Department of Physics, Nigde University, 51240 Nigde (Turkey); Center for Solar Energy Research and Applications, Middle East Technical University, 06800 Ankara (Turkey); Akgul, Guvenc, E-mail: guvencakgul@gmail.com [Bor Vocational School, Nigde University, 51700 Nigde (Turkey); Center for Solar Energy Research and Applications, Middle East Technical University, 06800 Ankara (Turkey); Yildirim, Nurcan [Department of Physics Engineering, Ankara University, 06100 Ankara (Turkey); Department of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara (Turkey); Unalan, Husnu Emrah [Department of Metallurgical and Materials Engineering, Middle East Technical University, 06800 Ankara (Turkey); Center for Solar Energy Research and Applications, Middle East Technical University, 06800 Ankara (Turkey); Turan, Rasit [Department of Physics, Middle East Technical University, 06800 Ankara (Turkey); Center for Solar Energy Research and Applications, Middle East Technical University, 06800 Ankara (Turkey)

    2014-10-15

    In this study, effect of the post-deposition thermal annealing on copper oxide thin films has been systemically investigated. The copper oxide thin films were chemically deposited on glass substrates by spin-coating. Samples were annealed in air at atmospheric pressure and at different temperatures ranging from 200 to 600°C. The microstructural, morphological, optical properties and surface electronic structure of the thin films have been studied by diagnostic techniques such as X-ray diffraction (XRD), Raman spectroscopy, ultraviolet–visible (UV–VIS) absorption spectroscopy, field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The thickness of the films was about 520 nm. Crystallinity and grain size was found to improve with annealing temperature. The optical bandgap of the samples was found to be in between 1.93 and 2.08 eV. Cupric oxide (CuO), cuprous oxide (Cu{sub 2}O) and copper hydroxide (Cu(OH){sub 2}) phases were observed on the surface of as-deposited and 600 °C annealed thin films and relative concentrations of these three phases were found to depend on annealing temperature. A complete characterization reported herein allowed us to better understand the surface properties of copper oxide thin films which could then be used as active layers in optoelectronic devices such as solar cells and photodetectors. - Highlights: • Effect of post-deposition annealing on copper oxide thin films was investigated. • Structural, optical, and electronic properties of the thin films were determined. • Oxidation states of copper oxide thin films were confirmed by XPS analysis. • Mixed phases of CuO and Cu{sub 2}O were found to coexist in copper oxide thin films.

  19. Indium sulfide thin films as window layer in chemically deposited solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lugo-Loredo, S. [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico); Peña-Méndez, Y., E-mail: yolapm@gmail.com [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico); Calixto-Rodriguez, M. [Universidad Tecnológica Emiliano Zapata del Estado de Morelos, Av. Universidad Tecnológica No. 1, C.P. 62760 Emiliano Zapata, Morelos (Mexico); Messina-Fernández, S. [Universidad Autónoma de Nayarit, Ciudad de la Cultura “Amado Nervo” S/N, C.P. 63190 Tepic, Nayarit (Mexico); Alvarez-Gallegos, A. [Universidad Autónoma del Estado de Morelos, Centro de Investigación en Ingeniería y Ciencias Aplicadas, Av. Universidad 1001, C.P. 62209, Cuernavaca Morelos (Mexico); Vázquez-Dimas, A.; Hernández-García, T. [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico)

    2014-01-01

    Indium sulfide (In{sub 2}S{sub 3}) thin films have been synthesized by chemical bath deposition technique onto glass substrates using In(NO{sub 3}){sub 3} as indium precursor and thioacetamide as sulfur source. X-ray diffraction studies have shown that the crystalline state of the as-prepared and the annealed films is β-In{sub 2}S{sub 3}. Optical band gap values between 2.27 and 2.41 eV were obtained for these films. The In{sub 2}S{sub 3} thin films are photosensitive with an electrical conductivity value in the range of 10{sup −3}–10{sup −7} (Ω cm){sup −1}, depending on the film preparation conditions. We have demonstrated that the In{sub 2}S{sub 3} thin films obtained in this work are suitable candidates to be used as window layer in thin film solar cells. These films were integrated in SnO{sub 2}:F/In{sub 2}S{sub 3}/Sb{sub 2}S{sub 3}/PbS/C–Ag solar cell structures, which showed an open circuit voltage of 630 mV and a short circuit current density of 0.6 mA/cm{sup 2}. - Highlights: • In{sub 2}S{sub 3} thin films were deposited using the Chemical Bath Deposition technique. • A direct energy band gap between 2.41 to 2.27 eV was evaluated for the In{sub 2}S{sub 3} films. • We made chemically deposited solar cells using the In{sub 2}S{sub 3} thin films.

  20. Influence of wall permeability on turbulent boundary-layer properties

    Science.gov (United States)

    Wilkinson, S. P.

    1983-01-01

    Experimental boundary-layer studies of a series of low pressure drop, permeable surfaces have been conducted to characterize their surface interaction with a turbulent boundary layer. The models were flat and tested at nominally zero pressure gradient in low speed air. The surfaces were thin metal sheets with discrete perforations. Direct drag balance measurements of skin friction indicate that the general effect of surface permeability is to increase drag above that of a smooth plate reference level. Heuristic arguments are presented to show that this type of behavior is to be expected. Other boundary-layer data are also presented including mean velocity profiles and conditionally sampled streamwise velocity fluctuations (hot wire) for selected models.