WorldWideScience

Sample records for thin layer drying

  1. Thin layer drying kinetics of amaranth (Amaranthus cruentus) grains ...

    African Journals Online (AJOL)

    An experimental solar tent dryer under natural convection was used to study thin layer drying kinetics of amaranth (Amaranthus cruentus) grains. Drying of grains in the dryer was carried out on a drying rack having two layers; top and bottom. The ambient temperature and relative humidity ranged from 22.6–30.4oC and ...

  2. Modeling of thin layer drying of tarragon (Artemisia dracunculus L.)

    NARCIS (Netherlands)

    ArabHosseini, A.; Huisman, W.; Boxtel, van A.J.B.; Mueller, J.

    2009-01-01

    The drying behavior of tarragon leaves as well as chopped plants were evaluated at air temperatures ranging from 40 to 90 °C, at various air relative humidities and a constant air velocity of 0.6 m/s. The experimental data was fitted to a number of thin layer drying equations. The equations were

  3. Mathematical Modelling of Thin Layer Dried Cashew Kernels | Asiru ...

    African Journals Online (AJOL)

    In this paper mathematical models describing thin layer drying of cashew kernels in a batch dryer were presented. The range of drying air temperature was 70 – 110°C. The initial moisture content of the cashew kernels was 9.29% (d.b.) and the final moisture content was in the range of 3.5 to 4.6% dry-basis. Seven different ...

  4. Thin layer modelling of Gelidium sesquipedale solar drying process

    Energy Technology Data Exchange (ETDEWEB)

    Ait Mohamed, L. [Laboratoire d' Energie Solaire et des Plantes Aromatiques et Medicinales, Ecole Normale Superieure, BP 2400, Marrakech (Morocco); Faculte des Sciences Semlalia, BP 2390, Marrakech (Morocco); Ethmane Kane, C.S. [Faculte des Sciences de Tetouan, BP 2121, Tetouan (Morocco); Kouhila, M.; Jamali, A. [Laboratoire d' Energie Solaire et des Plantes Aromatiques et Medicinales, Ecole Normale Superieure, BP 2400, Marrakech (Morocco); Mahrouz, M. [Faculte des Sciences Semlalia, BP 2390, Marrakech (Morocco); Kechaou, N. [Ecole Nationale d' Ingenieurs de Sfax, BPW 3038 (Tunisia)

    2008-05-15

    The effect of air temperature and air flow rate on the drying kinetics of Gelidium sesquipedale was investigated in convective solar drying. Drying was conducted at 40, 50 and 60 C. The relative humidity was varied from 50% to 57%, and the drying air flow rate was varied from 0.0277 to 0.0833 m{sup 3}/s. The expression for the drying rate equation is determined empirically from the characteristic drying curve. Thirteen mathematical models of thin layer drying are selected in order to estimate the suitable model for describing the drying curves. The two term model gives the best prediction of the drying curves and satisfactorily describes the drying characteristics of G. sesquipedale with a correlation coefficient R of 0.9999 and chi-square ({chi}{sup 2}) of 3.381 x 10{sup -6}. (author)

  5. Mathematical Modeling of Thin Layer Microwave Drying of Taro Slices

    Science.gov (United States)

    Kumar, Vivek; Sharma, H. K.; Singh, K.

    2016-03-01

    The present study investigated the drying kinetics of taro slices precooked in different medium viz water (WC), steam (SC) and Lemon Solution (LC) and dried at different microwave power 360, 540 and 720 W. Drying curves of all precooked slices at all microwave powers showed falling rate period along with a very short accelerating period at the beginning of the drying. At all microwave powers, higher drying rate was observed for LC slices as compared to WC and SC slices. To select a suitable drying curve, seven thin-layer drying models were fitted to the experimental data. The data revealed that the Page model was most adequate in describing the microwave drying behavior of taro slices precooked in different medium. The highest effective moisture diffusivity value of 2.11 × 10-8 m2/s was obtained for LC samples while the lowest 0.83 × 10-8 m2/s was obtained for WC taro slices. The activation energy (E a ) of LC taro slices was lower than the E a of WC and SC taro slices.

  6. Mathematical modelling of the thin layer solar drying of banana, mango and cassava

    Energy Technology Data Exchange (ETDEWEB)

    Koua, Kamenan Blaise; Fassinou, Wanignon Ferdinand; Toure, Siaka [Laboratoire d' Energie Solaire, Universite de Cocody- Abidjan, 22 BP 582 Abidjan 22 (Ivory Coast); Gbaha, Prosper [Laboratoire d' Energie Nouvelle et Renouvelable, Institut National Polytechnique, Felix HOUPHOUET - BOIGNY de Yamoussoukro (Ivory Coast)

    2009-10-15

    The main objectives of this paper are firstly to investigate the behaviour of the thin layer drying of plantain banana, mango and cassava experimentally in a direct solar dryer and secondly to perform mathematical modelling by using thin layer drying models encountered in literature. The variation of the moisture content of the products studied and principal drying parameters are analysed. Seven statistical models, which are empirical or semi-empirical, are tested to validate the experimental data. A non-linear regression analysis using a statistical computer program is used to evaluate the constants of the models. The Henderson and Pabis drying model is found to be the most suitable for describing the solar drying curves of plantain banana, mango and cassava. The drying data of these products have been analysed to obtain the values of the effective diffusivity during the falling drying rate phase. (author)

  7. Thin Layer Drying Kinetics of Pineapple: Effect of Blanching ...

    African Journals Online (AJOL)

    Drying is an energy intensive unit operation and long drying periods tend to increase the energy requirements for the production of a unit dry product. In this study, the effect of blanching temperature - time combinations treatment conditions on the drying behavior of pineapple slices was investigated. Slices of pineapple ...

  8. Thin Layer Drying Kinetics of Pineapple: Effect of Blanching ...

    African Journals Online (AJOL)

    ABSTRACT: Drying is an energy intensive unit operation and long drying periods tend to increase the energy requirements for the production of a unit dry product. In this study, the effect of blanching temperature - time combinations treatment conditions on the drying behavior of pineapple slices was investigated. Slices of.

  9. Thin- layer drying of diced cassava roots | Kajuna | African Journal of ...

    African Journals Online (AJOL)

    Fresh cassava (Manihot spp) roots were obtained from a farm and used in this study. They were peeled and diced using a special dicing machine into cubes of side 0.5 cm. The cubes were dried in thin layers (one to three layers) in a drier that was specifically designed and fabricated in the Department of Agricultural ...

  10. Desorption isotherms and mathematical modeling of thin layer drying kinetics of tomato

    Science.gov (United States)

    Belghith, Amira; Azzouz, Soufien; ElCafsi, Afif

    2016-03-01

    In recent years, there is an increased demand on the international market of dried fruits and vegetables with significant added value. Due to its important production, consumption and nutrient intake, drying of tomato has become a subject of extended and varied research works. The present work is focused on the drying behavior of thin-layer tomato and its mathematical modeling in order to optimize the drying processes. The moisture desorption isotherms of raw tomato were determined at four temperature levels namely 45, 50, 60 and 65 °C using the static gravimetric method. The experimental data obtained were modeled by five equations and the (GAB) model was found to be the best-describing these isotherms. The drying kinetics were experimentally investigated at 45, 55 and 65 °C and performed at air velocities of 0.5 and 2 m/s. In order to investigate the effect of the exchange surface on drying time, samples were dried into two different shapes: tomato halves and tomato quarters. The impact of various drying parameters was also studied (temperature, air velocity and air humidity). The drying curves showed only the preheating period and the falling drying rate period. In this study, attention was paid to the modeling of experimental thin-layer drying kinetics. The experimental results were fitted with four different models.

  11. Thin layer convective solar drying and mathematical modeling of prickly pear peel (Opuntia ficus indica)

    International Nuclear Information System (INIS)

    Lahsasni, Siham; Kouhila, Mohammed; Mahrouz, Mostafa; Idlimam, Ali; Jamali, Abdelkrim

    2004-01-01

    This paper presents the thin layer convective solar drying and mathematical modeling of prickly pear peel. For these purposes, an indirect forced convection solar dryer consisting of a solar air collector, an auxiliary heater, a circulation fan and a drying cabinet is used for drying experiments. Moreover, the prickly pear peel is sufficiently dried in the ranges of 32 to 36 deg. C of ambient air temperature, 50 to 60 deg. C of drying air temperature, 23 to 34% of relative humidity, 0.0277 to 0.0833 m 3 /s of drying air flow rate and 200 to 950 W/m 2 of daily solar radiation. The experimental drying curves show only a falling drying rate period. The main factor in controlling the drying rate was found to be the drying air temperature. The drying rate equation is determined empirically from the characteristic drying curve. Also, the experimental drying curves obtained were fitted to a number of mathematical models. The Midilli-Kucuk drying model was found to satisfactorily describe the solar drying curves of prickly pear peel with a correlation coefficient (r) of 0.9998 and chi-square (χ 2 ) of 4.6572 10 -5

  12. Thin layer convective solar drying and mathematical modeling of prickly pear peel (Opuntia ficus indica)

    Energy Technology Data Exchange (ETDEWEB)

    Lahsasni, S.; Mahrouz, M. [Unite de Chimie Agroalimentaire (LCOA), Faculte des Sciences Semlalia, Marrakech (Morocco); Kouhila, M.; Idlimam, A.; Jamali, A. [Ecole Normale Superieure, Marrakech (Morocco). Lab. d' Energie Solaire et Plantes Aromatiques et Medicinales

    2004-02-01

    This paper presents the thin layer convective solar drying and mathematical modeling of prickly pear peel. For these purposes, an indirect forced convection solar dryer consisting of a solar air collector, an auxiliary heater, a circulation fan and a drying cabinet is used for drying experiments. Moreover, the prickly pear peel is sufficiently dried in the ranges of 32 to 36 {sup o} C of ambient air temperature, 50 to 60 {sup o}C of drying air temperature, 23 to 34% of relative humidity, 0.0277 to 0.0833 m{sup 3}/s of drying air flow rate and 200 to 950 W/m{sup 2} of daily solar radiation. The experimental drying curves show only a falling drying rate period. The main factor in controlling the drying rate was found to be the drying air temperature. The drying rate equation is determined empirically from the characteristic drying curve. Also, the experimental drying curves obtained were fitted to a number of mathematical models. The Midilli-Kucuk drying model was found to satisfactorily describe the solar drying curves of prickly pear peel with a correlation coefficient (r) of 0.9998 and chi-square ({chi}{sup 2}) of 4.6572 10{sup -5}. (Author)

  13. Mathematical modeling of thin-layer drying of fermented and non-fermented sugarcane bagasse

    Energy Technology Data Exchange (ETDEWEB)

    Mazutti, Marcio A.; Zabot, Giovani; Boni, Gabriela; Skovronski, Aline; de Oliveira, Debora; Di Luccio, Marco; Oliveira, J. Vladimir; Treichel, Helen [Department of Food Engineering, URI - Campus de Erechim, P.O. Box 743, CEP 99700-000, Erechim - RS (Brazil); Rodrigues, Maria Isabel; Maugeri, Francisco [Department of Food Engineering, Faculty of Food Engineering, University of Campinas - UNICAMP, P.O. Box 6121, CEP 13083-862, Campinas - SP (Brazil)

    2010-05-15

    This work reports hot-air convective drying of thin-layer fermented and non-fermented sugarcane bagasse. For this purpose, experiments were carried out in a laboratory-scale dryer assessing the effects of solid-state fermentation (SSF) on the drying kinetics of the processing material. The fermented sugarcane bagasse in SSF was obtained with the use of Kluyveromyces marxianus NRRL Y-7571. Drying experiments were carried out at 30, 35, 40 and 45 C, at volumetric air flow rates of 2 and 3 m{sup 3} h{sup -1}. The ability of ten different thin-layer mathematical models was evaluated towards representing the experimental drying profiles obtained. Results showed that the fermented sugarcane bagasse presents a distinct, faster drying, behavior from that verified for the non-fermented material at the same conditions of temperature and volumetric air flow rate. It is shown that the fermented sugarcane bagasse presented effective diffusion coefficient values of about 1.3 times higher than the non-fermented material. A satisfactory agreement between experimental data and model results of the thin-layer drying of fermented and non-fermented sugarcane bagasse was achieved at the evaluated experimental conditions. (author)

  14. Modelling and experimental validation of thin layer indirect solar drying of mango slices

    Energy Technology Data Exchange (ETDEWEB)

    Dissa, A.O.; Bathiebo, J.; Kam, S.; Koulidiati, J. [Laboratoire de Physique et de Chimie de l' Environnement (LPCE), Unite de Formation et de Recherche en Sciences Exactes et Appliquee (UFR/SEA), Universite de Ouagadougou, Avenue Charles de Gaulle, BP 7021 Kadiogo (Burkina Faso); Savadogo, P.W. [Laboratoire Sol Eau Plante, Institut de l' Environnement et de Recherches Agricoles, 01 BP 476, Ouagadougou (Burkina Faso); Desmorieux, H. [Laboratoire d' Automatisme et de Genie des Procedes (LAGEP), UCBL1-CNRS UMR 5007-CPE Lyon, Bat.308G, 43 bd du 11 Nov. 1918 Villeurbanne, Universite Claude Bernard Lyon1, Lyon (France)

    2009-04-15

    The thin layer solar drying of mango slices of 8 mm thick was simulated and experimented using a solar dryer designed and constructed in laboratory. Under meteorological conditions of harvest period of mangoes, the results showed that 3 'typical days' of drying were necessary to reach the range of preservation water contents. During these 3 days of solar drying, 50%, 40% and 5% of unbound water were eliminated, respectively, at the first, second and the third day. The final water content obtained was about 16 {+-} 1.33% d.b. (13.79% w.b.). This final water content and the corresponding water activity (0.6 {+-} 0.02) were in accordance with previous work. The drying rates with correction for shrinkage and the critical water content were experimentally determined. The critical water content was close to 70% of the initial water content and the drying rates were reduced almost at 6% of their maximum value at night. The thin layer drying model made it possible to simulate suitably the solar drying kinetics of mango slices with a correlation coefficient of r{sup 2} = 0.990. This study thus contributed to the setting of solar drying time of mango and to the establishment of solar drying rates' curves of this fruit. (author)

  15. EFFECT OF MECHANICAL CONDITIONING ON THIN-LAYER DRYING OF ENERGY SORGHUM (Sorghum bicolor (L.) Moench)

    Energy Technology Data Exchange (ETDEWEB)

    Ian J. Bonner; Kevin L. Kenney

    2012-10-01

    Cellulosic energy varieties of Sorghum bicolor (L.) Moench show promise as a bioenergy feedstock, however, high moisture content at the time of harvest results in unacceptable levels of degradation when stored in aerobic conditions. To safely store sorghum biomass for extended periods in baled format, the material must be dried to inhibit microbial growth. One possible solution is allowing the material to dry under natural in-field conditions. This study examines the differences in thin-layer drying rates of intact and conditioned sorghum under laboratory-controlled temperatures and relative humidity levels (20 degrees C and 30 degrees C from 40% to 85% relative humidity), and models experimental data using the Page’s Modified equation. The results demonstrate that conditioning drastically accelerates drying times. Relative humidity had a large impact on the time required to reach a safe storage moisture content for intact material (approximately 200 hours at 30 degrees C and 40% relative humidity and 400 hours at 30 degrees C and 70% relative humidity), but little to no impact on the thin-layer drying times of conditioned material (approximately 50 hours for all humidity levels < 70% at 30 degrees C). The drying equation parameters were influenced by temperature, relative humidity, initial moisture content, and material damage, allowing drying curves to be empirically predicted. The results of this study provide valuable information applicable to the agricultural community and to future research on drying simulation and management of energy sorghum.

  16. Thin layer drying characteristics of curry leaves (Murraya koenigii in an indirect solar dryer

    Directory of Open Access Journals (Sweden)

    Vijayan Selvaraj

    2017-01-01

    Full Text Available In this work, the thin layer drying characteristics of curry leaves (Murraya koenigii has been studied in an indirect forced convection solar dryer with constant air mass flow rate of 0.0636 kg/s. Twelve thin layer drying models were tested for its suitability to describe the drying characteristics of curry leaves. The dryer has reduced the initial moisture content of curry leaves from 67.3% (wet basis to the final moisture content of 4.75% (wet basis in 3.5 hours. The pickup efficiency of indirect solar dryer for drying curry leaves was varied between 4.9% and 23.02%. Based on the statistical parameters, the Modified Henderson and Pabis model and Wang and Singh model were selected for predicting the drying characteristics of curry leaves. The payback period for the solar dryer was evaluated as 8 months, which is found to be much lower when compared with the entire life span of 15 years. The payback evaluation confirms that the solar dryer is economically viable in rural applications.

  17. Energy and exergy analyses of thin layer drying of mulberry in a forced solar dryer

    International Nuclear Information System (INIS)

    Akbulut, Abdullah; Durmus, Aydin

    2010-01-01

    This paper is concerned with the energy and exergy analyses of the thin layer drying process of mulberry via forced solar dryer. Using the first law of thermodynamics, energy analysis was carried out to estimate the ratios of energy utilization and the amounts of energy gain from the solar air collector. However, exergy analysis was accomplished to determine exergy losses during the drying process by applying the second law of thermodynamics. The drying experiments were conducted at different five drying mass flow rate varied between 0.014 kg/s and 0.036 kg/s. The effects of inlet air velocity and drying time on both energy and exergy were studied. The main values of energy utilization ratio were found to be as 55.2%, 32.19%, 29.2%, 21.5% and 20.5% for the five different drying mass flow rate ranged between 0.014 kg/s and 0.036 kg/s. The main values of exergy loss were found to be as 10.82 W, 6.41 W, 4.92 W, 4.06 W and 2.65 W with the drying mass flow rate varied between 0.014 kg/s and 0.036 kg/s. It was concluded that both energy utilization ratio and exergy loss decreased with increasing drying mass flow rate while the exergetic efficiency increased.

  18. Mathematical modelling of thin layer drying process of long green pepper in solar dryer and under open sun

    International Nuclear Information System (INIS)

    Akpinar, E. Kavak; Bicer, Y.

    2008-01-01

    An experimental study was performed to determine the thin layer drying characteristics in a solar dryer with forced convection and under open sun with natural convection of long green pepper. An indirect forced convection solar dryer consisting of a solar air collector and drying cabinet was used in the experiments. Natural sun drying experiments were conducted for comparison at the same time. The constant rate period is absent from the drying curves. The drying process took place in the falling rate period. The drying data were fitted to 13 different mathematical models. Among the models, the logarithmic model for forced solar drying and the Midilli and Kucuk model for natural sun drying were found best to explain the thin layer drying behaviour of long green peppers. The performance of these models was investigated by comparing the coefficient of determination (R), reduced chi-square (χ 2 ) and root mean square error (RMSE) between the observed and predicted moisture ratios

  19. Thin layer drying kinetics of by-products from olive oil processing.

    Science.gov (United States)

    Montero, Irene; Miranda, Teresa; Arranz, Jose Ignacio; Rojas, Carmen Victoria

    2011-01-01

    The thin-layer behavior of by-products from olive oil production was determined in a solar dryer in passive and active operation modes for a temperature range of 20-50 °C. The increase in the air temperature reduced the drying time of olive pomace, sludge and olive mill wastewater. Moisture ratio was analyzed to obtain effective diffusivity values, varying in the oil mill by-products from 9.136 × 10(-11) to 1.406 × 10(-9) m(2)/s in forced convection (m(a) = 0.22 kg/s), and from 9.296 × 10(-11) to 6.277 × 10(-10) m(2)/s in natural convection (m(a) = 0.042 kg/s). Diffusivity values at each temperature were obtained using the Fick's diffusion model and, regardless of the convection, they increased with the air temperature. The temperature dependence on the effective diffusivity was determined by an Arrhenius type relationship. The activation energies were found to be 38.64 kJ/mol, 30.44 kJ/mol and 47.64 kJ/mol for the olive pomace, the sludge and the olive mill wastewater in active mode, respectively, and 91.35 kJ/mol, 14.04 kJ/mol and 77.15 kJ/mol in natural mode, in that order.

  20. Thin layer convective air drying of wild edible plant (Allium roseum) leaves: experimental kinetics, modeling and quality

    OpenAIRE

    Ben Haj Said, Leila; Najjaa, Hanen; Farhat, Abdelhamid; Neffati, Mohamed; Bellagha, Sihem

    2014-01-01

    The present study deals with the valorization of an edible spontaneous plant of the Tunisian arid areas: Allium roseum. This plant is traditionally used for therapeutic and culinary uses. Thin-layer drying behavior of Allium roseum leaves was investigated at 40, 50 and 60 °C drying air temperatures and 1 and l.5 m/s air velocity, in a convective dryer. The increase in air temperature significantly affected the moisture loss and reduced the drying time while air velocity was an insignificant f...

  1. Thin layer convective air drying of wild edible plant (Allium roseum) leaves: experimental kinetics, modeling and quality.

    Science.gov (United States)

    Ben Haj Said, Leila; Najjaa, Hanen; Farhat, Abdelhamid; Neffati, Mohamed; Bellagha, Sihem

    2015-06-01

    The present study deals with the valorization of an edible spontaneous plant of the Tunisian arid areas: Allium roseum. This plant is traditionally used for therapeutic and culinary uses. Thin-layer drying behavior of Allium roseum leaves was investigated at 40, 50 and 60 °C drying air temperatures and 1 and l.5 m/s air velocity, in a convective dryer. The increase in air temperature significantly affected the moisture loss and reduced the drying time while air velocity was an insignificant factor during drying of Allium roseum leaves. Five models selected from the literature were found to satisfactorily describe drying kinetics of Allium roseum leaves for all tested drying conditions. Drying data were analyzed to obtain moisture diffusivity values. During the falling rate-drying period, moisture transfer from Allium roseum leaves was described by applying the Fick's diffusion model. Moisture diffusivity varied from 2.55 × 10(-12) to 8.83 × 10(-12) m(2)/s and increased with air temperature. Activation energy during convective drying was calculated using an exponential expression based on Arrhenius equation and ranged between 46.80 and 52.68 kJ/mol. All sulfur compounds detected in the fresh leaves were detected in the dried leaves. Convective air drying preserved the sulfur compounds potential formation.

  2. A mathematical model and simulation of the drying process of thin layers of potatoes in a conveyor-belt dryer

    Directory of Open Access Journals (Sweden)

    Salemović Duško R.

    2015-01-01

    Full Text Available This paper presents a mathematical model and numerical analysis of the convective drying process of small particles of potatoes slowly moving through the flow of a drying agent - hot moist air. The drying process was analyzed in the form of a one-dimensional thin layer. The mathematical model of the drying process is a system of two ordinary nonlinear differential equations with constant coefficients and an equation with a transcendent character. The appropriate boundary conditions of the mathematical model were given. The presented model is suitable in the automated control. The presented system of differential equations was solved numerically. The analysis presented here and the obtained results could be useful in predicting the drying kinetics of potatoes and similar natural products in a conveyor-belt dryer. [Projekat Ministarstva nauke Republike, br. TR-33049, br. TR-37002 i br. TR-37008

  3. LAYER DRYING OF DICED CASSAVA ROOTS

    African Journals Online (AJOL)

    opiyo

    moisture content of the cassava cubes. Weather conditions during the experiments were also monitored. A parallel sun drying experiment was carried out to compare thin layer drying on the sun and thin layer drying in the fabricated dryer. For the fresh cassava that was used in the experiments, a duplicate sample was ...

  4. Experimental study of water desorption isotherms and thin-layer convective drying kinetics of bay laurel leaves

    Science.gov (United States)

    Ghnimi, Thouraya; Hassini, Lamine; Bagane, Mohamed

    2016-12-01

    The aim of this work is to determine the desorption isotherms and the drying kinetics of bay laurel leaves ( Laurus Nobilis L.). The desorption isotherms were performed at three temperature levels: 50, 60 and 70 °C and at water activity ranging from 0.057 to 0.88 using the statistic gravimetric method. Five sorption models were used to fit desorption experimental isotherm data. It was found that Kuhn model offers the best fitting of experimental moisture isotherms in the mentioned investigated ranges of temperature and water activity. The Net isosteric heat of water desorption was evaluated using The Clausius-Clapeyron equation and was then best correlated to equilibrium moisture content by the empirical Tsami's equation. Thin layer convective drying curves of bay laurel leaves were obtained for temperatures of 45, 50, 60 and 70 °C, relative humidity of 5, 15, 30 and 45 % and air velocities of 1, 1.5 and 2 m/s. A non linear regression procedure of Levenberg-Marquardt was used to fit drying curves with five semi empirical mathematical models available in the literature, The R2 and χ2 were used to evaluate the goodness of fit of models to data. Based on the experimental drying curves the drying characteristic curve (DCC) has been established and fitted with a third degree polynomial function. It was found that the Midilli Kucuk model was the best semi-empirical model describing thin layer drying kinetics of bay laurel leaves. The bay laurel leaves effective moisture diffusivity and activation energy were also identified.

  5. Evaluation of the mass transfer process on thin layer drying of papaya seeds from the perspective of diffusive models

    Science.gov (United States)

    Dotto, Guilherme Luiz; Meili, Lucas; Tanabe, Eduardo Hiromitsu; Chielle, Daniel Padoin; Moreira, Marcos Flávio Pinto

    2018-02-01

    The mass transfer process that occurs in the thin layer drying of papaya seeds was studied under different conditions. The external mass transfer resistance and the dependence of effective diffusivity ( D EFF ) in relation to the moisture ratio ( \\overline{MR} ) and temperature ( T) were investigated from the perspective of diffusive models. It was verified that the effective diffusivity was affected by the moisture content and temperature. A new correlation was proposed for drying of papaya seeds in order to describe these influences. Regarding the use of diffusive models, the results showed that, at conditions of low drying rates ( T ≤ 70 °C), the external mass transfer resistance, as well as the dependence of the effective diffusivity with respect to the temperature and moisture content should be considered. At high drying rates ( T > 90 °C), the dependence of the effective diffusivity with respect to the temperature and moisture content can be neglected, but the external mass transfer resistance was still considerable in the range of air velocities used in this work.

  6. Thin-layer drying characteristics of sweet potato slices and mathematical modelling

    Science.gov (United States)

    Doymaz, Ibrahim

    2011-03-01

    The effect of blanching and drying temperature (50, 60 and 70°C) on drying kinetics and rehydration ratio of sweet potatoes was investigated. It was observed that both the drying temperature and blanching affected the drying time and rehydration ratio. The logarithmic model showed the best fit to experimental drying data. The values of effective moisture diffusivity and activation energy ranged from 9.32 × 10-11 to 1.75 × 10-10 m2/s, and 22.7-23.2 kJ/mol, respectively.

  7. MODELLING OF THIN LAYER SOLAR DRYING KINETICS AND EFFECTIVE DIFFUSIVITY OF Urtica dioica LEAVES

    Directory of Open Access Journals (Sweden)

    A. LAMHARRAR

    2017-08-01

    Full Text Available Urtica dioica is an endemic plant of Morocco used for its virtues in traditional medicine. The drying kinetics of Urtica dioica leaves in a convective solar dryer was studied. The kinetics of drying is studied for three temperatures (40, 50 and 60 °C, ambient air temperature ranged from 30 to 35 °C. The experimental results are used to determine the characteristic drying curve. Nine mathematical models have been used for the description of the drying curve. The Midilli-Kuck model was found to be the most suitable for describing the drying curves of Urtica dioica leaves. The drying parameters in this model were quantified as a function of the drying air temperature. Moisture transfer from Urtica dioica leaves was described by applying the Fick’s diffusion model. Effective moisture diffusivity of the product was in the range of 9.38 – 72.92×10-11 m2/s. A value of 88,49 kJ/mol was determined as activation energy.

  8. Evaluation of Two Fitting Methods Applied for Thin-Layer Drying of Cape Gooseberry Fruits

    Directory of Open Access Journals (Sweden)

    Erkan Karacabey

    Full Text Available ABSTRACT Drying data of cape gooseberry was used to compare two fitting methods: namely 2-step and 1-step methods. Literature data was also used to confirm the results. To demonstrate the applicability of these methods, two primary models (Page, Two-term-exponential were selected. Linear equation was used as secondary model. As well-known from the previous modelling studies on drying, 2-step method required at least two regressions: One is primary model and one is secondary (if you have only one environmental condition such as temperature. On the other hand, one regression was enough for 1-step method. Although previous studies on kinetic modelling of drying of foods were based on 2-step method, this study indicated that 1-step method may also be a good alternative with some advantages such as drawing an informative figure and reducing time of calculations.

  9. Simple and Low-Cost Exposed -Layer Grain Drying Apparatus ...

    African Journals Online (AJOL)

    Thin-layer drying apparatus was developed from standard “off-the- shelf” equipment: a fan convection laboratory oven and a weighing scale. Using this apparatus the thin-layer drying data for wheat under constant conditions were obtained for a range of drying air temperature from 30°C to 150°C and the initial moisture ...

  10. Drying a liquid paint layer

    NARCIS (Netherlands)

    Susanto, H.; van de Fliert, B.W.

    2001-01-01

    Subject of this study is the free boundary problem of a liquid layer that is dried by evaporation. Using a Stefan type problem, we model the diffusion driven drying of a layer of liquid paint consisting of resin and solvent. The effect of a small perturbation of the flat boundary is considered. We

  11. Efficient Preparation of Nanocrystalline Anatase TiO2 and V/TiO2 Thin Layers Using Microwave Drying and/or Microwave Calcination Technique

    Czech Academy of Sciences Publication Activity Database

    Žabová, Hana; Sobek, Jiří; Církva, Vladimír; Šolcová, Olga; Kment, Štěpán; Hájek, Milan

    2009-01-01

    Roč. 182, č. 12 (2009), s. 3387-3392 ISSN 0022-4596 R&D Projects: GA ČR GA104/07/1212; GA ČR(CZ) GD203/08/H032 Institutional research plan: CEZ:AV0Z40720504; CEZ:AV0Z10100522 Keywords : thin layers * V-doped titanium dioxide * microwaves Subject RIV: CI - Industrial Chemistry, Chemical Engineering Impact factor: 2.340, year: 2009

  12. Energy loss in thin layers in GEANT

    International Nuclear Information System (INIS)

    Lassila-Perini, K.; Urban, L.

    1995-01-01

    A method for the simulation of the energy loss distribution in thin gaseous layers has been implemented in GEANT and tested. Comparisons are made between the new code and the standard method in GEANT. Improvements are made to the standard method to enable a fast and reliable simulation of energy losses in thin layers. (orig.)

  13. Dry release of polymer structures with anti-sticking layer

    Science.gov (United States)

    Cheng, M. C.; Gadre, A. P.; Garra, J. A.; Nijdam, A. J.; Luo, C.; Schneider, T. W.; White, R. C.; Currie, J. F.; Paranjape, M.

    2004-05-01

    A dry release method using a thin Teflon™ layer for SU-8 multilayered polymeric microstructures is presented. The low surface energy of Teflon makes the adhesion of SU-8 and substrate poor, enabling the SU-8 polymer photoresist to be removed after the devices have been fully processed. The surface energy was measured using the open-crack method, and the surface roughness and deformation of the released SU-8 were minimized in our processing. The dry release technique eliminates the diffusion limited problem in wet etching and is suitable to package complex three-dimensional polymer microfluidic devices. One such example, which provided the original impetus to formulate a dry release process, is a multilayered SU-8 structure that encapsulates small quantities of fluid. This device is being developed for a biomedical application, and will be used throughout this article as an example of a complex SU-8 structure that uses the dry release process. .

  14. Delamination of Compressed Thin Layers at Corners

    DEFF Research Database (Denmark)

    Sørensen, Kim D.; Jensen, Henrik Myhre; Clausen, Johan

    2008-01-01

    An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat...

  15. Thin layers in actinide research

    International Nuclear Information System (INIS)

    Gouder, T.

    1998-01-01

    Surface science research at the ITU is focused on the synthesis and surface spectroscopy studies of thin films of actinides and actinide compounds. The surface spectroscopies used are X-ray and ultra violet photoelectron spectroscopy (XPS and UPS, respectively), and Auger electron spectroscopy (AES). Thin films of actinide elements and compounds are prepared by sputter deposition from elemental targets. Alloy films are deposited from corresponding alloy targets and could be used, in principle, as replicates of these targets. However, there are deviations between alloy film and target composition, which depend on the deposition conditions, such as pressure and target voltage. Mastering of these effects may allow us to study stoichiometric film replicates instead of thick bulk compounds. As an example, we discuss the composition of U-Ni films prepared from a UNi 5 target. (orig.)

  16. Correlation between dried blood spot thin layer chromatography and plasma high performance liquid chromatography of leucine/isoleucine levels among Filipino patients with maple syrup urine disease (MSUD) seen at the Institute of Human Genetics, National Institutes of Health

    International Nuclear Information System (INIS)

    Yaplito-Lee, Joy; Chiong, Mary Anne D.; Rana, Michelle D.; Rama, Kahlil Izza D.; David-Padilla, Carmencita; Cavan, Barbra Charina; Cordero, Cynthia P.

    2008-01-01

    Management of patients with maple syrup urine disease (MSUD) includes a low protein diet, supplemented with special formulas and constant monitoring of branched chain amino acids (BCAA). The gold standard for monitoring BCAA is plasma amino acid analysis using high performance liquid chromatography (HPLC). In a developing country like the Philippines, however, the cost of this test is prohibitive to the majority of the patients. In our center, dried blood spot leucine/isoleucine (leu/ile) levels analysed by thin layer chromatography (TLC) is often used to diagnose and monitor these patients. This study was done to determine the correlation of leu/ile levels using the two methods (TLC and HPLC). A total of 46 MSUD patients were referred to the Biochemical Genetics Laboratory of the Institute of Human Genetics (IHG) from July 2001 to January 2004. Thirty five samples were obtained from 18 of these patients (some patients were seen at IHG more than once), and paired determinations of plasma amino acid using TLC and HPLC were made. The remaining samples were either hemolyzed or were not analyzed. The correlation coefficient [rho denoted as ρ] was estimated at a 95% confidence level using the Fisher's Z transformation. Of the 18 patients, 12 were males. The youngest was 1 day old and the oldest was 5 years old. The majority had the classical type of MSUD and dietary protein was restricted to between 0.6 gram/kg/day to 1 gram/kg/day of natural protein. Using the first pairs of observation for these 18 patients, the correlation coefficient was 0.76 (95% C1:0.462 to 0.907). This suggest a strong correlation between the two methods. It is recommended that further studies be done to determine the potential of the dried blood spot leu/ile level by TLC as an alternative method that can be used in the diagnosis and monitoring of MSUD patients especially in a developing country. (Author)

  17. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.

    2014-10-30

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  18. Thin Layer Chromatography (TLC) of Chlorophyll Pigments.

    Science.gov (United States)

    Foote, Jerry

    1984-01-01

    Background information, list of materials needed, procedures used, and discussion of typical results are provided for an experiment on the thin layer chromatography of chlorophyll pigments. The experiment works well in high school, since the chemicals used are the same as those used in paper chromatography of plant pigments. (JN)

  19. Carbon nanofiber growth on thin rhodium layers

    NARCIS (Netherlands)

    Chinthaginjala, J.K.; Unnikrishnan, S.; Smithers, Mark A.; Smithers, M.A.; Kip, Gerhardus A.M.; Lefferts, Leonardus

    2012-01-01

    A thinlayer of carbon nanofibers (CNFs) was synthesized on a thin polycrystalline rhodium (Rh) metal layer by decomposing ethylene in the presence of hydrogen. Interaction of Rh crystals with carbon results in fragmentation and formation of Rh-nanoparticles, facilitating CNF growth. CNFs are

  20. Delamination of Compressed Thin Layers at Corners

    DEFF Research Database (Denmark)

    Sørensen, Kim Dalsten; Jensen, Henrik Myhre; Clausen, Johan

    2008-01-01

    An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat...... results for the fracture mechanical properties have been obtained, and these are applied in a study of the effect of contacting crack faces. Special attention has been given to analyse conditions under which steady state propagation of buckling driven delamination takes place....

  1. Estudo das propriedades físicas e de transporte na secagem de cebola (Allium cepa L. em camada delgada Study of the physical and transport properties in the onion (Allium cepa L. drying in thin layer

    Directory of Open Access Journals (Sweden)

    Pierre Corrêa Martins

    2004-09-01

    Full Text Available Neste trabalho estudou-se a cinética de secagem da cebola em camada delgada, comparando os valores da difusividade efetiva média baseados nas espessuras inicial e média das amostras. Estes resultados foram utilizados para a estimativa da temperatura das amostras através de um modelo térmico simplificado. Foram analisadas também as propriedades físicas e de transporte das amostras em função da umidade ao longo da operação. Os ensaios de secagem foram realizados em um secador com escoamento de ar perpendicular à área de seção transversal do leito de amostras de cebola, operando com Tar=60ºC e v ar=1,5m/s. A determinação da umidade de equilíbrio foi obtida através das isotermas de dessorção e a temperatura das amostras foi determinada por meio de um termopar inserido no centro da partícula. As massas específicas das amostras aparente e absoluta foram determinadas através dos métodos indireto e destrutivo, respectivamente. Os valores da difusividade efetiva variável de umidade foram obtidos através do método das tangentes. O modelo térmico simplificado apresentou melhor ajuste com os valores da difusividade efetiva média de secagem, baseados na espessura média. Os valores das massas específicas das amostras de cebola aparente e absoluta foram ajustados em função da umidade através da equação de LOZANO, ROTSTEIN & URBICAIN [10], apresentando coeficientes de correlação maiores que 96%. A redução de espessura do material foi de 80% em relação a da amostra inicial. Os resultados da difusividade efetiva média de umidade, baseados na espessura média das amostras, foram semelhantes aos valores médios da difusividade efetiva variável de umidade para a primeira etapa de secagem.In this work it was studied the onion drying kinetics in thin layer comparing the values of the drying difusivity effective average based on the initial and average thickness of the samples. These results were fitted to a simplified

  2. Thin layer activation: measuring wear and corrosion

    International Nuclear Information System (INIS)

    Delvigne, T.; Leyman, D.; Oxorn, K.

    1995-01-01

    The technique known as thin layer activation (TLA) is explained and assessed in this article. Widely used, in for example the automotive industry, TLA allows on-line monitoring of the loss of matter from a critical surface, by wear erosion and corrosion. The technique offers extremely high sensitivity thus leading to reduced test times. On-line wear phenomena can be assessed during operation of a mechanical process, even through thick engine walls. (UK)

  3. Silver buffer layers for YBCO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, J. [Tel Aviv Univ. (Israel). Center for Technol. Education Holon

    1999-09-01

    A simple economical conventional vacuum system was used for evaporation of YBCO thin films on as-deposited unbuffered Ag layers on MgO substrates. The subsequent heat treatment was carried out in low oxygen partial pressure at a relative low temperature and short dwelling time. The films thus obtained were characterized for electrical properties using dc four probe electrical measurements and inspected for structural properties and chemical composition by scanning electron microscopy (SEM). (orig.)

  4. Drying of a tape-cast layer: Numerical investigation of influencing parameters

    DEFF Research Database (Denmark)

    Jabbaribehnam, Mirmasoud; Shojaee Nasirabadi, Parizad; Jambhekar, V. A.

    2017-01-01

    , the equivalent diameter of particles of the porous medium, dp, the porosity of the porous medium, φ the initial temperature in the free-flow region, Tff, and the initial temperature in the porous-medium region, Tpm, on the characteristic drying curves of a thin ceramic layer. We, moreover, conduct a statistical...

  5. Thermal analysis of thin layer boilover

    Energy Technology Data Exchange (ETDEWEB)

    Kozanoglu, Bulent [Universidad de las Americas, Puebla (Mexico); Mechanical Engineering Department, Cholula, Puebla (Mexico); Ferrero, Fabio; Munoz, Miguel; Arnaldos, Josep; Casal, Joaquim [Universitat Politecnica de Catalunya, Barcelona (Spain)

    2008-10-15

    A mathematical model is developed to simulate the thin layer boilover phenomenon. This model takes into account convective currents as well as conduction and radiation absorption through the fuel layer and is resolved numerically employing a scheme of Runge-Kutta, combined with the numerical method of lines. Solutions of the model showed a good agreement with the experimental data, both from this work and by other authors, demonstrating the importance of the convective currents. The model provided velocities of these currents, of the same order of magnitude as the values reported in the technical literature. Thickness of the remaining fuel and the interface temperature are correctly calculated by the model, allowing the prediction of the time required for the boilover to start. (orig.)

  6. Thin layer fibres are a knotty problem

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Concern that emergency core cooling system (ECCS) strainers can be blocked by insulation debris has been generated by an incident at the Swedish Barsebaeck-2 BWR in 1992 and two subsequent incidents at the Perry and Limerick BWR plants in the USA. Recent studies are reported which show that blockage of the small, passive suction type strainers common to these and many other BWRs can occur when only very small quantities of fibrous material present in the suppression pool combine with particulates such as corrosion products to form thin layers on the strainer surface. Layers only a few millimetres thick lead to extremely high head losses on the strainer surface and can cause cavitation in the ECCS pumps. It is concluded that the most practical reliable and cost effective solution is to replace the small strainers with larger ones. (UK)

  7. Layer-by-layer assembly of clay-filled polymer nanocomposite thin films

    Science.gov (United States)

    Jang, Woo-Sik

    2008-10-01

    A variety of functional thin films can be produced using the layer-by-layer assembly technique. In this work, assemblies of anionic clay and cationic polymer were studied with regard to film growth and gas barrier properties. A simple, yet flexible robotic dipping system, for the preparation of these thin films, was built. The robot alternately dips a substrate into aqueous mixtures with rinsing and drying in between. Thin films of sodium montmorillonite clay and cationic polymer were grown and studied on poly(ethylene terephthalate) film or a silicon wafer. After 30 clay polymer bilayers were deposited, the resulting transparent film had an oxygen transmission rate (OTR) below 0.005 cm3/m2/day/atm. This low OTR, which is unprecedented for a clay-filled polymer composite, is believed to be due to a "brick wall" nanostructure comprised of completely exfoliated clay bricks in polymeric "mortar". The growth of polymer and clay assemblies is then shown to be controlled by altering the pH of polyethylenimine (PEI). Growth, oxygen permeability, and mechanical behavior of clay-PEI assemblies were studied as a function of pH in an effort to tailor the behavior of these thin films. Thicker deposition at high pH resulted in reduced oxygen permeability and lower modulus, which highlights the tailorability of this system.

  8. Crystalline thin films: The electrochemical atomic layer deposition (ECALD) view

    CSIR Research Space (South Africa)

    Modibedi, M

    2011-09-01

    Full Text Available Electrochemical atomic layer deposition technique is selected as one of the methods to prepare thin films for various applications, including electrocatalytic materials and compound....

  9. Thin layer Characterization by ZGV Lamb modes

    Science.gov (United States)

    Cès, Maximin; Clorennec, Dominique; Royer, Daniel; Prada, Claire

    2011-01-01

    Ultrasonic non-destructive testing of plates can be performed with Lamb modes guided by the structure. Non contact generation and detection of the elastic waves can be achieved with optical means such as a pulsed laser source and an interferometer. With this setup, we propose a method using zero group velocity (ZGV) Lamb modes rather than propagating modes. These ZGV modes have noteworthy properties, in particular their group velocity vanishes, whereas their phase velocity remains finite. Thus, a significant part of the energy deposited by the pulsed laser can be trapped in the source area. For example, in a homogeneous isotropic plate and at the minimum frequency of the S1-Lamb mode a very sharp resonance can be observed, the frequency of which only depends on the plate thickness, for a given material. In fact, other ZGV modes exist and the set of ZGV resonance frequencies provide a local and absolute measurement of Poisson's ratio. These non-propagating modes can also be used to characterize multi-layered structures. Experimentally, we observed that a thin (500 nm) gold layer deposited on a thick (1.5 mm) Duralumin plate induces a sensitive down-shift of the set of ZGV resonance frequencies. This shift, which is typically 5 kHz for the S1-Lamb mode at 1.924 MHz, can be approximated by a formula providing the layer thickness. Thickness down to 100 nm can be estimated by this method. Such a sensitivity with conventional ultrasound inspection by acoustic microscopy would require an operating frequency in the GHz range.

  10. Thin layer Characterization by ZGV Lamb modes

    Energy Technology Data Exchange (ETDEWEB)

    Ces, Maximin; Clorennec, Dominique; Royer, Daniel; Prada, Claire, E-mail: maximin.ces@espci.fr [Laboratoire Ondes et Acoustique, ESPCI- Universite Paris 7- CNRS UMR 7587, 10 rue Vauquelin, 75231 Paris Cedex 05- France (France)

    2011-01-01

    Ultrasonic non-destructive testing of plates can be performed with Lamb modes guided by the structure. Non contact generation and detection of the elastic waves can be achieved with optical means such as a pulsed laser source and an interferometer. With this setup, we propose a method using zero group velocity (ZGV) Lamb modes rather than propagating modes. These ZGV modes have noteworthy properties, in particular their group velocity vanishes, whereas their phase velocity remains finite. Thus, a significant part of the energy deposited by the pulsed laser can be trapped in the source area. For example, in a homogeneous isotropic plate and at the minimum frequency of the S{sub 1}-Lamb mode a very sharp resonance can be observed, the frequency of which only depends on the plate thickness, for a given material. In fact, other ZGV modes exist and the set of ZGV resonance frequencies provide a local and absolute measurement of Poisson's ratio. These non-propagating modes can also be used to characterize multi-layered structures. Experimentally, we observed that a thin (500 nm) gold layer deposited on a thick (1.5 mm) Duralumin plate induces a sensitive down-shift of the set of ZGV resonance frequencies. This shift, which is typically 5 kHz for the S{sub 1}-Lamb mode at 1.924 MHz, can be approximated by a formula providing the layer thickness. Thickness down to 100 nm can be estimated by this method. Such a sensitivity with conventional ultrasound inspection by acoustic microscopy would require an operating frequency in the GHz range.

  11. An improved method for thin layer chromatographic analysis of saponins.

    Science.gov (United States)

    Sharma, Om P; Kumar, Neeraj; Singh, Bikram; Bhat, Tej K

    2012-05-01

    Analysis of saponins by thin layer chromatography (TLC) is reported. The solvent system was n-butanol:water:acetic acid (84:14:7). Detection of saponins on the TLC plates after development and air-drying was done by immersion in a suspension of sheep erythrocytes, followed by washing off the excess blood on the plate surface. Saponins appeared as white spots against a pink background. The protocol provided specific detection of saponins in the saponins enriched extracts from Aesculusindica (Wall. ex Camb.) Hook.f., Lonicera japonica Thunb., Silene inflata Sm., Sapindusmukorossi Gaertn., Chlorophytum borivilianum Santapau & Fernandes, Asparagusadscendens Roxb., Asparagus racemosus Willd., Agave americana L., Camellia sinensis [L.] O. Kuntze. The protocol is convenient, inexpensive, does not require any corrosive chemicals and provides specific detection of saponins. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Sensitive Thin-Layer Chromatography Detection of Boronic Acids Using Alizarin

    NARCIS (Netherlands)

    Duval, F.L.; Beek, van T.A.; Zuilhof, H.

    2012-01-01

    A new method for the selective and sensitive detection of boronic acids on thin-layer chromatography plates is described. The plate is briefly dipped in an alizarin solution, allowed to dry in ambient air, and observed under 366 nm light. Alizarin emits a bright yellow fluorescence only in the

  13. Moisture removal characteristics of thin layer rough rice under sequenced infrared radiation heating and cooling

    Science.gov (United States)

    Rice drying with infrared (IR) radiation has been investigated during recent years and showed promising potential with improved quality and energy efficiency. The objective of this study was to further investigate the moisture removal characteristics of thin layer rough rice heated by IR and cooled ...

  14. Residual stress fields in sol-gel-derived thin TiO2 layers

    NARCIS (Netherlands)

    Teeuw, D.H.J.; Haas, M. de; Hosson, J.Th.M. De

    1999-01-01

    This paper discusses the induction of residual stresses during the curing process of thin titania layers, which are derived using a sol-gel process. During this process, stresses may build up in the spinning stage, the drying stage, and the consolidation stage. The magnitude and character of these

  15. Pre-staining thin layer chromatography method for amino acid ...

    African Journals Online (AJOL)

    The modified thin layer chromatography can be used for the analysis of amino acids. When compared to the classical thin layer chromatography, the improved method was more rapid and inexpensive and the results obtained were clean and reproducible. However, it is suitable for the high throughput screening of amino ...

  16. Thin-Layer Fuel Cell for Teaching and Classroom Demonstrations

    Science.gov (United States)

    Shirkhanzadeh, M.

    2009-01-01

    A thin-layer fuel cell is described that is simple and easy to set up and is particularly useful for teaching and classroom demonstrations. The cell is both an electrolyzer and a fuel cell and operates using a thin layer of electrolyte with a thickness of approximately 127 micrometers and a volume of approximately 40 microliters. As an…

  17. Phytochemical screening and thin layer chromatographic profile of ...

    African Journals Online (AJOL)

    The present study investigates the phytochemicals and thin layer chromatographic profile of. Nauclea diderrichii (Rubiaceae) leaf extracts. Phytochemical in the hexane, ethyl acetate and methanol extracts were determined using standard chemical tests. Thin layer chromatographic techniques were carried out using various ...

  18. Thin-layer and paper chromatography

    International Nuclear Information System (INIS)

    Sherma, J.

    1986-01-01

    This selective review covers the literature of thin-layer chromatography (TLC) and paper chromatography (PC) cited in Chemical Abstracts from December 5, 1983, through November 25, 1985, and Analytical Abstracts from November 1983 to November 1985. Also researched directly were the following important journals publishing papers on TLC and PC: the Journal of Chromatography (including its bibliography issues), Journal of High Resolution Chromatography and Chromatography Communications, Journal of Chromatographic Science, Chromatographia, Analytical Chemistry, JAOAC, and the special TLC issues of the Journal of Liquid Chromatography. Many of the inherent advantages of TLC that are obvious to workers familiar with high performance, quantitative theory and practice still are not appreciated adequately by the majority of people using chromatography. These include unrestricted access to the separation process; introducing magnetic, thermal, electrical, and other physical forces to improve resolution; high sample throughput; truly multidimensional separations; and the use of controlled multiple gradients. Many advantages of TLC relative to column chromatography were discussed in the Introductions to our 1982 and 1984 reviews of TLC in this Journal. No complete commercial robotics system specifically for TLC has been developed, but all necessary modules are available for such a system. The combination of robotics, with the continued development of theory, practice, and instrumentation will lead eventually to TLC systems that are unrivaled for speed, versatility, accuracy, precision, and sensitivity. 573 references

  19. Methods for producing thin film charge selective transport layers

    Science.gov (United States)

    Hammond, Scott Ryan; Olson, Dana C.; van Hest, Marinus Franciscus Antonius Maria

    2018-01-02

    Methods for producing thin film charge selective transport layers are provided. In one embodiment, a method for forming a thin film charge selective transport layer comprises: providing a precursor solution comprising a metal containing reactive precursor material dissolved into a complexing solvent; depositing the precursor solution onto a surface of a substrate to form a film; and forming a charge selective transport layer on the substrate by annealing the film.

  20. Delamination of Compressed thin Layers at Corners

    DEFF Research Database (Denmark)

    Clausen, Johan; Jensen, Henrik Myhre; Sørensen, Kim Dalsten

    2008-01-01

    An analysis of delamination for a thin elastic film, attached to a substrate with a corner, is carried out. The film is in compression and the analysis is performed by combining results from fracture mechanics and the theory of thin shells. The results show a very strong dependency of the angle...

  1. Optical and Electrical Characteristic of Layer-by-layer Sol-gel Spin Coated Nanoparticles ZnO Thin Films

    International Nuclear Information System (INIS)

    Shafinaz Sobihana Shariffudin; Farah Farliana Samat; Sukreen Hana; Mohamad Rusop

    2011-01-01

    Transparent ZnO thin films have been deposited on glass substrate using sol-gel spin coating technique. 0.35 M sol were prepared by dissolving zinc acetate dehydrate in 2-methoxyethanol with monoethanolamine as the stabilizer. In this paper, a novel method called layer-by-layer is introduced, where the thin film is not only dried after each layer is spin-coated, but also directly annealed at 500 degree Celsius to improve the crystallinity of the films. Samples without annealing were also prepared as the control sample. ZnO thin films were characterized using field emission scanning electron microscopy, X-ray diffraction, current-voltage measurement, UV-Vis spectroscopy and photoluminescence spectroscopy. The results revealed that layer by- layer ZnO thin films have better conductivity and higher intensity peak for PL spectra at visible spectra of 580 nm. FE-SEM images shows nanoparticles almost hexagonal shaped with high crystallinity compared to control samples. (author)

  2. Loading Effects on Resolution in Thin Layer Chromatography and ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 11. Loading Effects on Resolution in Thin Layer Chromatography and Paper Chromatography. K Girigowda V H Mulimani. Classroom Volume 10 Issue 11 November 2005 pp 79-84 ...

  3. Copper diffusion in TaN-based thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Nazon, J. [Universite Montpellier II, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, 34095 Montpellier Cedex 5 (France); Fraisse, B. [Laboratoire Structure, Proprietes et Modelisation des Solides (UMR 8580), Ecole Centrale de Paris, Grande Voie des Vignes, 92295 Chatenay-Malabry Cedex (France); Sarradin, J. [Universite Montpellier II, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, 34095 Montpellier Cedex 5 (France); Fries, S.G. [SGF Scientific Consultancy, Arndt str.9, D-52064 Aachen (Germany); Tedenac, J.C. [Universite Montpellier II, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, 34095 Montpellier Cedex 5 (France); Frety, N. [Universite Montpellier II, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, 34095 Montpellier Cedex 5 (France)], E-mail: Nicole.Frety@univ-montp2.fr

    2008-07-15

    The diffusion of Cu through TaN-based thin layers into a Si substrate has been studied. The barrier efficiency of TaN/Ta/TaN multilayers of 150 nm in thickness has been investigated and is compared with that of TaN single layers. Thermal stabilities of these TaN-based thin layers against Cu diffusion were determined from in situ X-ray diffraction experiments, conducted in the temperature range of 773-973 K. The TaN/Ta/TaN barrier appeared to be more efficient in preventing Cu diffusion than the TaN single layer.

  4. Hydrogen in magnesium palladium thin layer structures

    NARCIS (Netherlands)

    Kruijtzer, G.L.

    2008-01-01

    In this thesis, the study of hydrogen storage, absorption and desorption in magnesium layers is described. The magnesium layers have a thickness of 50-500 nm and are covered by a palladium layer which acts as a hydrogen dissociation/association catalyst. The study was preformed under ultra high

  5. MultiLayer solid electrolyte for lithium thin film batteries

    Science.gov (United States)

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  6. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 Angstrom), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 Angstrom of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films

  7. Simple and Low-Cost Exposed -Layer Grain Drying Apparatus

    African Journals Online (AJOL)

    Simple and Low-Cost Exposed -Layer Grain Drying Apparatus. 'Tilahun Seyoum Workenh* and 2Patrick. M. Grace. 1Alemaya University, College of Agriculture, Department of Agricultural Engineering, ROBQX 138, Dire DaWa, Ethiopia. 2University College Dublin, Faculty of Engineering and Architecture, Department of ...

  8. ANTIREFLECTION MULTILAYER COATINGS WITH THIN METAL LAYERS

    Directory of Open Access Journals (Sweden)

    L. A. Gubanova

    2016-03-01

    Full Text Available The design of anti-reflective coatings for metal surfaces of Al, Ti, N,i Cr is proposed. The coatings have the form of alternating layers of dielectric/metal/dielectric with the number of cells up to15. The method of calculation of such coatings is proposed. We have calculated the coatings of the type [HfO2/Cr/HfO2]15, [ZrO2/Ti/Al2O3]15, [ZrO2/Cr/ZrO2]15. It is shown that the proposed interference coatings provide reduction of the residual reflectance of the metal several times (from 3.5 to 6.0 in a wide spectral range (300-1000 nm. The proposed coatings can be recommended as anti-reflective coatings for energy saving solar systems and batteries, and photovoltaic cells.

  9. Development of High Performance Thin Layer Chromatography for ...

    African Journals Online (AJOL)

    Background: The quality of antiretroviral medicines (ARVs) is vital in the management of HIV infection. Nevertheless ... and validation, a high performance thin layer chromatography (HPTLC) system with WinCATS software was used. Freshly prepared ..... into Vocational Excellence in East Africa (THRiVE)”, grant number ...

  10. Determination of ferulic acid and related compounds by thin layer ...

    African Journals Online (AJOL)

    The analysis of certain phenolic compounds from plants, and their chemical transformation with microorganisms or isolated enzymes, has application in the food and pharmaceutical industry. The rapid quantitative estimation of ferulic acid by thin layer chromatography is described by measurement of the area of the ...

  11. Comparison of two detection methods in thin layer chromatographic ...

    African Journals Online (AJOL)

    o-tolidine plus potassium iodide and photosynthesis inhibition detection methods were investigated for the analysis of three triazine herbicides (atrazine, ametryne, simazine) and two urea herbicides (diuron, metobromuron) in a coastal savanna soil using thin layer chromatography to compare the suitability of the two ...

  12. Evaluation of a thin-layer chromatographic technique for ...

    African Journals Online (AJOL)

    Methanol extracts of both fistula and bush samples were prepared and analysed by thin-layer chromatography. Chromatoplates, when visualised under ultraviolet light, revealed a number of fluorescent compounds, some of which were common in both the fistula and bush sample extracts. By comparing the presence of ...

  13. Outdoor open thin-layer microalgal photobioreactor: potential productivity

    Czech Academy of Sciences Publication Activity Database

    Doucha, Jiří; Lívanský, Karel

    2009-01-01

    Roč. 21, č. 1 (2009), s. 111-117 ISSN 0921-8971 Institutional research plan: CEZ:AV0Z50200510 Keywords : productivity * photobioreactor * thin layer Subject RIV: EE - Microbiology, Virology Impact factor: 1.018, year: 2009

  14. Thin Cell Layer technology in ornamental plant micropropagation ...

    African Journals Online (AJOL)

    Thin cell layer (TCL) technology originated almost 30 years ago with the controlled development of flowers, roots, shoots and somatic embryos on tobacco pedicel longitudinal TCLs. Since then TCLs have been successfully used in the micropropagation of many ornamental plant species whose previous in vitro ...

  15. Zooplankton Responses to Thin Layers: Integrating Behavior and Physiology

    Science.gov (United States)

    2004-09-30

    Zooplankton Responses to Thin Layers: Integrating Behavior and Physiology Stephen M. Bollens Department of Biology, and Romberg Tiburon Center...Department of Biology, and Romberg Tiburon Center for Environmental Studies,,San Francisco State University,,1600 Holloway Avenue,San Francisco,,CA,94132

  16. Thin-Layer Chromatography: The "Eyes" of the Organic Chemist

    Science.gov (United States)

    Dickson, Hamilton; Kittredge, Kevin W.; Sarquis, Arlyne

    2004-01-01

    Thin-layer chromatography (TLC) methods are successfully used in many areas of research and development such as clinical medicine, forensic chemistry, biochemistry, and pharmaceutical analysis as TLC is relatively inexpensive and has found widespread application as an easy to use, reliable, and quick analytic tool. The usefulness of TLC in organic…

  17. Somatic embryogenesis from zygotic embryos and thin cell layers ...

    African Journals Online (AJOL)

    Oil palm hybrid BRS Manicoré is important for plantations in the north of Brazil, as it is resistant to fatal yellowing and is compact. Seed germination is slow and reduced, so somatic embryogenesis is a promising alternative for its propagation. Two kinds of starting explants were used: Zygotic embryos (ZE) and thin cell layers ...

  18. Transparent conducting oxide layers for thin film silicon solar cells

    NARCIS (Netherlands)

    Rath, J.K.; Liu, Y.; de Jong, M.M.; de Wild, J.; Schuttauf, J.A.; Brinza, M.; Schropp, R.E.I.

    2009-01-01

    Texture etching of ZnO:1%Al layers using diluted HCl solution provides excellent TCOs with crater type surface features for the front contact of superstrate type of thin film silicon solar cells. The texture etched ZnO:Al definitely gives superior performance than Asahi SnO2:F TCO in case of

  19. A Thin Layer Chromotographic (TLC) detection methodology for ...

    African Journals Online (AJOL)

    This paper presents a Thin Layer Chromatographic (TLC) detection methodology for the qualitative and quantitative determination of herbicides, using some local plants/grasses as part of an on-going method development for providing alternative cost-effective analytical procedure for screening pesticide residues. Out of the ...

  20. The thin layer technique and its application to electron microscopy

    International Nuclear Information System (INIS)

    Ranc, G.

    1957-10-01

    This work deals with the technique of thin layers obtained by evaporation under vacuum, in the thickness range extending from a few monoatomic layers to several hundred angstroms. The great theoretical and practical interest of these layers has, it is well known, given rise to many investigations from Faraday onwards. Within the necessarily restricted limits of this study, we shall approach the problem more particularly from the point of view of: - their production; - their use in electron microscopy. A critical appraisal is made, in the light of present-day knowledge, based on our personal experience and on an extensive bibliography which we have collected on the subject. (author) [fr

  1. SEM and XPS study of layer-by-layer deposited polypyrrole thin films

    Science.gov (United States)

    Pigois-Landureau, E.; Nicolau, Y. F.; Delamar, M.

    1996-01-01

    Layer-by-layer deposition of thin films (a few nm) of polypyrrole was carried out on various substrates such as silver, platinum, electrochemically oxidized aluminum and pretreated glass. SEM micrographs showed that the deposited layers nucleate by an island-type mechanism on hydrated alumina and KOH-pretreated (hydrophilic) glass before forming a continuous film. However, continuous thin films are obtained on chromic acid pretreated (hydrophobic) glass and sputtered Ag or Pt on glass after only 3-4 deposition cycles. The mean deposition rate evaluated by XPS for the first deposition cycles on Ag and Pt is 3 and 4 nm/cycle, respectively, in agreement with previous gravimetric determinations on thicker films, proving the constancy of the deposition rate. The XPS study of the very thin films obtained by a few deposition cycles shows that the first polypyrrole layers are dedoped by hydroxydic (basic) substrate surfaces.

  2. SEM and XPS study of layer-by-layer deposited polypyrrole thin films

    International Nuclear Information System (INIS)

    Pigois-Landureau, E.; Nicolau, Y.F.; Delamar, M.

    1996-01-01

    Layer-by-layer deposition of thin films (a few nm) of polypyrrole was carried out on various substrates such as silver, platinum, electrochemically oxidized aluminum and pretreated glass. SEM micrographs showed that the deposited layers nucleate by an island-type mechanism on hydrated alumina and KOH-pretreated (hydrophilic) glass before forming a continuous film. However, continuous thin films are obtained on chromic acid pretreated (hydrophobic) glass and sputtered Ag or Pt on glass after only 3 endash 4 deposition cycles. The mean deposition rate evaluated by XPS for the first deposition cycles on Ag and Pt is 3 and 4 nm/cycle, respectively, in agreement with previous gravimetric determinations on thicker films, proving the constancy of the deposition rate. The XPS study of the very thin films obtained by a few deposition cycles shows that the first polypyrrole layers are dedoped by hydroxydic (basic) substrate surfaces. copyright 1996 American Institute of Physics

  3. Single layer solar drying behaviour of Citrus aurantium leaves under forced convection

    Energy Technology Data Exchange (ETDEWEB)

    Ait Mohamed, L.; Lahsasni, S. [Ecole Normale Superieure, Marrakech (Morocco). Laboratoire d' Energie Solaire et des Plantes Aromatiques et Medicinales; Unite de Chimie Agroalimentaire, Marrakech (Morocco). Faculte des Sciences Semlalia; Kouhila, M.; Jamali, A. [Ecole Normale Superieure, Marrakech (Morocco). Laboratoire d' Energie Solaire et des Plantes Aromatiques et Medicinales; Kechaou, N. [Ecole Nationale d' Ingenieurs de Sfax (Tunisia); Mahrouz, M. [Unite de Chimie Agroalimentaire, Marrakech (Morocco). Faculte des Sciences Semlalia

    2005-06-01

    Convective solar drying experiments in thin layers of Citrus aurantium leaves grown in Marrakech, morocco, were conducted. An indirect forced convection solar dryer consisting of a solar air collector, an auxiliary heater, a circulation fan and a drying cabinet is used for the experiments. The air temperature was varied from 50 to 60{sup o}C; the relative humidity from 41% to 53%; and the drying air flow rate from 0.0277 to 0.0833 m{sup 3}/s. Thirteen statistical models, which are semi-theoretical and/or empirical, were tested for fitting the experimental data. A nonlinear regression analysis using a statistical computer program was used to evaluate the constants of the models. The Midilli-Kucuk drying model was found to be the most suitable for describing the solar drying curves of Citrus aurantium leaves with a correlation coefficient (r) of 0.99998, chi-square ({chi}{sup 2}) of 4.664 x 10{sup -6} and MBE of 4.8381 x 10{sup -4}. (author)

  4. CZTS nanoparticle absorber layer for thin film solar cells

    DEFF Research Database (Denmark)

    Symonowicz, Joanna; Jensen, Kirsten M. Ørnsbjerg; Engberg, Sara Lena Josefin

    Cu2ZnSnS4 (CZTS) thin film solar cells have the potential to revolutionize the solar energy market. They are cheap, non-toxic and present an efficiency up to 9,2% [1]. However, to commercialize CZTS nanoparticle thin films, the efficiency issues must yet be resolved. There are various fabrication...... is furthermore characterized. Photoluminescence measurements indicate which absorber layer are of higher efficiency, which allows us to study why some crystalline configurations enhance the efficiency of resulting solar cells....

  5. Thin-layer chromatographic plates with monolithic layer of silica: production, physical-chemical characteristics, separation capabilities.

    Science.gov (United States)

    Frolova, Anastasiya M; Konovalova, Olga Y; Loginova, Lidia P; Bulgakova, Alena V; Boichenko, Alexander P

    2011-08-01

    The technique for production of thin-layer chromatographic plates with fixed monolithic layer of sorbent was developed on the basis of investigation of factors affecting sorption capacity, sorption kinetics and mechanical stability of monoliths. The optimal reaction mixture for sol-gel synthesis of monoliths consisted of tetraethoxysilane, buffer solution with pH 7.4, N,N-dimethylformamide, ethanol, polyethyleneglycol with molecular weight 1000 and cetylpyridinium chloride in molar ratio 1.0:4.6:1.4:7.6:0.26:8×10(-3). On the basis of analysis of sorption kinetics of malachite green on the monoliths it was concluded that mechanism of sorption includes chemisorption. The optimized conditions for fixing the monolithic layer on the carrier and its drying allow obtaining undisturbed monolithic layer, which was used for test mixtures separation. The increase of monolithic layer thickness in comparison with ultrathin-layer chromatographic plates allows detecting visually at reasonable concentrations and loaded sample volumes the spots of food and synthetic dyes. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Investigation of multi-layer thin films for energy storage.

    Energy Technology Data Exchange (ETDEWEB)

    Renk, Timothy Jerome; Monson, Todd

    2009-01-01

    We investigate here the feasibility of increasing the energy density of thin-film capacitors by construction of a multi-layer capacitor device through ablation and redeposition of the capacitor materials using a high-power pulsed ion beam. The deposition experiments were conducted on the RHEPP-1 facility at Sandia National Laboratories. The dielectric capacitor filler material was a composition of Lead-Lanthanum-Zirconium-Titanium oxide (PLZT). The energy storage can be increased by using material of intrinsically high dielectric constant, and constructing many thin layers of this material. For successful device construction, there are a number of challenging requirements including correct stoichiometric and crystallographic composition of the deposited PLZT. This report details some success in satisfying these requirements, even though the attempt at device manufacture was unsuccessful. The conclusion that 900 C temperatures are necessary to reconstitute the deposited PLZT has implications for future manufacturing capability.

  7. Simulation of radiation effects in ultra-thin insulating layers

    Directory of Open Access Journals (Sweden)

    Timotijević Ljubinko B.

    2013-01-01

    Full Text Available The Monte Carlo simulations of charged particle transport are used to investigate the effects of exposing ultra-thin layers of insulators (commonly used in integrated circuits to beams of protons, alpha particles and heavy ions. Materials considered include silicon dioxide, aluminum nitride, alumina, and polycarbonate - lexan. The parameters that have been varied in simulations include the energy of incident charged particles and insulating layer thickness. Materials are compared according to both ionizing and non-ionizing effects produced by the passage of radiation. [Projekat Ministarstva nauke Republike Srbije, br. 171007

  8. Atomic layer deposition of superparamagnetic and ferrimagnetic magnetite thin films

    International Nuclear Information System (INIS)

    Zhang, Yijun; Liu, Ming; Ren, Wei; Zhang, Yuepeng; Chen, Xing; Ye, Zuo-Guang

    2015-01-01

    One of the key challenges in realizing superparamagnetism in magnetic thin films lies in finding a low-energy growth way to create sufficiently small grains and magnetic domains which allow the magnetization to randomly and rapidly reverse. In this work, well-defined superparamagnetic and ferrimagnetic Fe 3 O 4 thin films are successfully prepared using atomic layer deposition technique by finely controlling the growth condition and post-annealing process. As-grown Fe 3 O 4 thin films exhibit a conformal surface and poly-crystalline nature with an average grain size of 7 nm, resulting in a superparamagnetic behavior with a blocking temperature of 210 K. After post-annealing in H 2 /Ar at 400 °C, the as-grown α−Fe 2 O 3 sample is reduced to Fe 3 O 4 phase, exhibiting a ferrimagnetic ordering and distinct magnetic shape anisotropy. Atomic layer deposition of magnetite thin films with well-controlled morphology and magnetic properties provides great opportunities for integrating with other order parameters to realize magnetic nano-devices with potential applications in spintronics, electronics, and bio-applications

  9. Targets with thin ferromagnetic layers for transient field experiments

    International Nuclear Information System (INIS)

    Gallant, J.L.; Dmytrenko, P.

    1982-01-01

    Multilayer targets containing a central layer sufficiently thin so that all recoil nuclei can traverse it and subsequently stop in a suitable cubic environment have been prepared. Such targets are required in experiments making use of a magnetic field acting on an ion moving through a ferromagnetic material. The preparation and annealing of the ferromagnetic foils (iron and gadolinium) and the fabrication of the multilayer targets are described. (orig.)

  10. Ultra-thin, single-layer polarization rotator

    Energy Technology Data Exchange (ETDEWEB)

    Son, T. V.; Truong, V. V., E-mail: Truong.Vo-Van@Concordia.Ca [Department of Physics, Concordia University, Montreal, Quebec, H4B 1R6 (Canada); Do, P. A.; Haché, A. [Département de Physique et d’Astronomie, Université de Moncton, Moncton, New Brunswick, E1A 3E9 (Canada)

    2016-08-15

    We demonstrate light polarization control over a broad spectral range by a uniform layer of vanadium dioxide as it undergoes a phase transition from insulator to metal. Changes in refractive indices create unequal phase shifts on s- and p-polarization components of incident light, and rotation of linear polarization shows intensity modulation by a factor of 10{sup 3} when transmitted through polarizers. This makes possible polarization rotation devices as thin as 50 nm that would be activated thermally, optically or electrically.

  11. Effect of pirfenidone delivered using layer-by-layer thin film on excisional wound healing.

    Science.gov (United States)

    Mandapalli, Praveen Kumar; Labala, Suman; Bojja, Jagadeesh; Venuganti, Venkata Vamsi Krishna

    2016-02-15

    The aim of this study was to evaluate the effect of a new anti-fibrotic agent, pirfenidone (PFD), delivered using polyelectrolyte multilayer films on excisional wound healing. Polyelectrolyte multilayer films were prepared by layer-by-layer (LbL) sequential adsorption of chitosan and sodium alginate. The UV-spectrophotometer, FTIR and differential scanning calorimeter were used to characterize the LbL thin films. The PFD was entrapped within the LbL thin films and its effect on excisional wound healing was studied in C57BL/6. The total protein, collagen content and TGF-β expression within the wound tissue were determined after application of PFD using LbL thin films, chitosan hydrogel and polyethylene glycol hydrogel. UV-spectrophotometer and FTIR studies showed a sequential adsorption of chitosan and alginate polymer layers to form LbL thin films. The thickness of LbL thin films with 15 bilayers was found to be 15 ± 2 μm. HPLC analysis showed a PFD loading efficiency of 1.0 ± 0.1mg in 1cm(2) area of LbL thin film. In vivo wound healing studies in C57BL/6 mice showed an accelerated (<9 days) wound contraction after treatment with the PFD compared with blank LbL thin film and commercial povidone-iodine gel (12 days). The collagen content within the wound tissue was significantly (p<0.05) less after treatment with PFD compared with blank film application. Western blot analysis showed gradual decrease in TGF-β expression within the wound tissue after treatment with PFD. This study for the first time demonstrated that new anti-fibrotic agent PFD loaded in LbL thin films can be utilized for excisional wound healing. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Light scattering of thin azobenzene side-chain polyester layers

    DEFF Research Database (Denmark)

    Kerekes, Á.; Lörincz, E.; Ramanujam, P.S.

    2002-01-01

    Light scattering properties of liquid crystalline and amorphous azobenzene side-chain polyester layers used for optical data storage were examined by means of transmissive scatterometry. Comparative experiments show that the amorphous polyester has significantly lower light scattering characteris...... for the domain size in thin liquid crystalline polyester layers being responsible for the dominant light scattering. The characteristic domain Sizes obtained from the Fourier transformation of polarization microscopic Pictures confirm these values.......Light scattering properties of liquid crystalline and amorphous azobenzene side-chain polyester layers used for optical data storage were examined by means of transmissive scatterometry. Comparative experiments show that the amorphous polyester has significantly lower light scattering...... characteristics than the liquid crystalline polyester. The amorphous samples have negligible polarization part orthogonal to the incident beam. the liquid crystalline samples have relative high orthogonal polarization part in light scattering, The light scattering results can be used to give a lower limit...

  13. Layer-by-layer thinning of MoSe2 by soft and reactive plasma etching

    International Nuclear Information System (INIS)

    Sha, Yunfei; Xiao, Shaoqing; Zhang, Xiumei; Qin, Fang; Gu, Xiaofeng

    2017-01-01

    Highlights: • Soft plasma etching technique using SF 6 + N 2 as precursors for layer-by-layer thinning of MoSe 2 was adopted in this work. • Optical microscopy, Raman, photoluminescence and atomic force microscopy measurements were used to confirm the thickness change. • Layer-dependent vibrational and photoluminescence spectra of the etched MoSe 2 were also demonstrated. • Equal numbers of MoSe 2 layers can be removed uniformly without affecting the underlying SiO 2 substrate and the remaining MoSe 2 layers. - Abstract: Two-dimensional (2D) transition metal dichalcogenides (TMDs) like molybdenum diselenide (MoSe 2 ) have recently gained considerable interest since their properties are complementary to those of graphene. Unlike gapless graphene, the band structure of MoSe 2 can be changed from the indirect band gap to the direct band gap when MoSe 2 changed from bulk material to monolayer. This transition from multilayer to monolayer requires atomic-layer-precision thining of thick MoSe 2 layers without damaging the remaining layers. Here, we present atomic-layer-precision thinning of MoSe 2 nanaosheets down to monolayer by using SF 6 + N 2 plasmas, which has been demonstrated to be soft, selective and high-throughput. Optical microscopy, atomic force microscopy, Raman and photoluminescence spectra suggest that equal numbers of MoSe 2 layers can be removed uniformly regardless of their initial thickness, without affecting the underlying SiO 2 substrate and the remaining MoSe 2 layers. By adjusting the etching rates we can achieve complete MoSe 2 removal and any disired number of MoSe 2 layers including monolayer. This soft plasma etching method is highly reliable and compatible with the semiconductor manufacturing processes, thereby holding great promise for various 2D materials and TMD-based devices.

  14. Irradiation of industrial enzyme preparations. II. Characterization of fungal pectinase by thin-layer isoelectric focusing and gel filtration

    Energy Technology Data Exchange (ETDEWEB)

    Delincee, H.

    1978-01-01

    Industrial dry fungal pectinase from A. niger was irradiated with doses (up to 1 Mrad) of /sup 60/Co-..gamma..rays effective in reducing microbial contamination. The pectinase was characterized by thin-layer isoelectric focusing and gel filtration in order to detect possible radiation-induced structural alterations. Thin-layer isoelectric focusing revealed at least fifteen multiple forms with pectin-depolymerizing activity, with isoelectric points in the range pH 4.5 to 7. Heterogeneity of pectinesterase was also demonstrated, the main band occurring around pH 4. By thin-layer gel filtration the molecular weight of the pectin-depolymerase was estimated as being about 36,000, and that of pectinesterase as about 33,000. Radiation-induced changes of the charge properties or molecular size of the irradiated pectinase preparation were not observed. The feasibility of using ionizing radiation for the reduction of microbial contamination of industrial enzyme preparations looks promising.

  15. Patch testing with thin-layer chromatograms of chamomile tea in patients allergic to sesquiterpene lactones.

    Science.gov (United States)

    Lundh, Kerstin; Gruvberger, Birgitta; Möller, Halvor; Persson, Lena; Hindsén, Monica; Zimerson, Erik; Svensson, Ake; Bruze, Magnus

    2007-10-01

    Patients with contact allergy to sesquiterpene lactones (SLs) are usually hypersensitive to Asteraceae plant products such as herbal teas. The objective of this study was to show sensitizers in chamomile tea by patch testing with thin-layer chromatograms. Tea made from German chamomile was separated by thin-layer chromatography. Strips of the thin-layer chromatograms were used for patch testing SL-positive patients. 15 (43%) of 35 patients tested positively to 1 or more spots on the thin-layer chromatogram, with many individual reaction patterns. Patch testing with thin-layer chromatograms of German chamomile tea showed the presence of several allergens.

  16. Measuring and modelling of diffusivities in carbohydrate-rich matrices during thin film drying

    NARCIS (Netherlands)

    Perdana, J.A.; Sman, van der R.G.M.; Fox, M.B.; Boom, R.M.; Schutyser, M.A.I.

    2014-01-01

    Knowledge about moisture diffusivity in solid matrices is a key for understanding drying behaviour of for example probiotic or enzymatic formulations. This paper presents an experimental procedure to determine moisture diffusivity on the basis of thin film drying and gravimetric analysis in a

  17. Layer-by-layer deposition of nanostructured CsPbBr3 perovskite thin films

    Science.gov (United States)

    Reshetnikova, A. A.; Matyushkin, L. B.; Andronov, A. A.; Sokolov, V. S.; Aleksandrova, O. A.; Moshnikov, V. A.

    2017-11-01

    Layer-by-layer deposition of nanostructured perovskites cesium lead halide thin films is described. The method of deposition is based on alternate immersion of the substrate in the precursor solutions or colloidal solution of nanocrystals and methyl acetate/lead nitrate solution using the device for deposition of films by SILAR and dip-coating techniques. An example of obtaining a photosensitive structure based on nanostructures of ZnO nanowires and layers of CsBbBr3 nanocrystals is also shown.

  18. NUMERICAL SIMULATION OF THIN LAYER COFFEE DRYING BY CONTROL VOLUMES

    Directory of Open Access Journals (Sweden)

    HÉCTOR J. CIRO-VELÁSQUEZ

    2010-01-01

    Full Text Available El modelo de secado en capa delgada desarrollado por Sokhansanj y Bruce (1987 fue implementado para simular el secado de un grano de café pergamino. El modelo computacional fue definido en estado transitorio y unidimensional para una esfera de radio equivalente utilizando la técnica del volumen de control. Los resultados indicaron que el valor numérico del coeficiente de transferencia de masa es muy pequeño (orden de magnitud alrededor de 10 7 m/s haciendo que la predicción del contenido de humedad sea muy sensible a este valor. Además, los resultados de la simulación mostraron que la predicción del modelo numérico fue favorablemente similar a los datos experimentales dados en la literatura.

  19. Effect of p-layer properties on nanocrystalline absorber layer and thin film silicon solar cells

    International Nuclear Information System (INIS)

    Chowdhury, Amartya; Adhikary, Koel; Mukhopadhyay, Sumita; Ray, Swati

    2008-01-01

    The influence of the p-layer on the crystallinity of the absorber layer and nanocrystalline silicon thin film solar cells has been studied. Boron doped Si : H p-layers of different crystallinities have been prepared under different power pressure conditions using the plasma enhanced chemical vapour deposition method. The crystalline volume fraction of p-layers increases with the increase in deposition power. Optical absorption of the p-layer reduces as the crystalline volume fraction increases. Structural studies at the p/i interface have been done by Raman scattering studies. The crystalline volume fraction of the i-layer increases as that of the p-layer increases, the effect being more prominent near the p/i interface. Grain sizes of the absorber layer decrease from 9.2 to 7.2 nm and the density of crystallites increases as the crystalline volume fraction of the p-layer increases and its grain size decreases. With increasing crystalline volume fraction of the p-layer solar cell efficiency increases

  20. Diblock Copolymer/Layered Silicate Nanocomposite Thin Film Stability

    Science.gov (United States)

    Limary, Ratchana; Green, Peter

    2000-03-01

    The stability of thin film symmetric diblock copolymers blended with layered silicate nanocomposites were examined using a combination of optical microscopy, atomic force microscopy (AFM), and X-ray diffraction (XRD). Two cases were examined PS-b-PMMA (polystyrene-b-polymethylacrylate) blended with montmorillonite stoichiometrically loaded with alkyl ammonium ions, OLS(S), and PS-b-PMMA blended with montmorillonite loaded with excess alkyl ammonium ions, OLS(E). XRD spectra show an increase in the gallery spacing of the OLSs, indicating that the copolymer chains have intercalated the layered silicates. AFM images reveal a distinct difference between the two nanocomposite thin films: regions in the vicinity of OLS(S) aggregates were depleted of material, while in the vicinity of OLS(E) aggregates, dewetting of the substrate occurred. We show that the stability of the copolymer/OLS nanocomposite films is determined by the enthalpic driving force associated with intercalation of the copolymer chains into the galleries of the modified OLS layers and by the substrate/organic modifier interactions.

  1. Super Gas Barrier Thin Films via Layer-by-Layer Assembly of Polyelectrolytes and Clay

    Science.gov (United States)

    Priolo, Morgan; Gamboa, Daniel; Grunlan, Jaime

    2010-03-01

    Thin composite films of branched polyethylenimine (PEI), polyacrylic acid (PAA) and sodium montmorillonite clay (MMT) platelets were prepared using layer-by-layer assembly. Film thickness, mass deposited per layer, and barrier were shown to increase exponentially with the number of deposition cycles. After 32 layers (i.e., eight PEI/PAA/PEI/MMT quadlayers) are deposited, the resulting transparent film exhibits an oxygen transmission rate below the detection limit of commercial instrumentation (clay bricks in polymeric mortar, where the enhanced spacing between MMT layers, provided by PEI and PAA, creates channels perpendicular concentration gradient that delay the permeating molecule. These films are good candidates for flexible electronics, food, and pharmaceutical packaging due to their transparency, super gas barrier (that rivals SiOx) and lack of metal.

  2. Characterization of layer-by-layer self-assembled carbon nanotube multilayer thin films

    International Nuclear Information System (INIS)

    Xue Wei; Cui Tianhong

    2007-01-01

    Single-walled carbon nanotube (SWNT) multilayer thin films are deposited on silicon substrates with layer-by-layer self-assembly. The structural, mechanical, electrical, and thermal properties of the thin films are investigated using quartz crystal microbalance (QCM), nanoindentation, and rapid thermal annealing techniques, respectively. Scanning electron microscopy inspection shows that the SWNT multilayer is formed through a dense network of nanotube bundles. Based on the QCM measurement, the volume and mass ratios of SWNTs in the multilayer are calculated as 63.2% and 75%, respectively. Nanoindentation on the SWNT thin film shows that its Young's modulus and hardness are approximately 17 and 0.6 GPa, respectively. Current-voltage (I-V) and four-point probe techniques are used to study the electrical properties of the SWNT thin film after being heated at different temperatures. The conductance of the SWNT thin film at 300 deg. C is measured as 2.29 mS, which is 50 times higher than that at room temperature (0.045 mS)

  3. Thin-Layer Solutions of the Helmholtz and Related Equations

    KAUST Repository

    Ockendon, J. R.

    2012-01-01

    This paper concerns a certain class of two-dimensional solutions to four generic partial differential equations-the Helmholtz, modified Helmholtz, and convection-diffusion equations, and the heat conduction equation in the frequency domain-and the connections between these equations for this particular class of solutions.S pecifically, we consider thin-layer solutions, valid in narrow regions across which there is rapid variation, in the singularly perturbed limit as the coefficient of the Laplacian tends to zero.F or the wellstudied Helmholtz equation, this is the high-frequency limit and the solutions in question underpin the conventional ray theory/WKB approach in that they provide descriptions valid in some of the regions where these classical techniques fail.E xamples are caustics, shadow boundaries, whispering gallery, and creeping waves and focusing and bouncing ball modes.It transpires that virtually all such thin-layer models reduce to a class of generalized parabolic wave equations, of which the heat conduction equation is a special case. Moreover, in most situations, we will find that the appropriate parabolic wave equation solutions can be derived as limits of exact solutions of the Helmholtz equation.W e also show how reasonably well-understood thin-layer phenomena associated with any one of the four generic equations may translate into less well-known effects associated with the others.In addition, our considerations also shed some light on the relationship between the methods of matched asymptotic, WKB, and multiple-scales expansions. © 2012 Society for Industrial and Applied Mathematics.

  4. Ultra-thin, single-layer polarization rotator

    Directory of Open Access Journals (Sweden)

    T. V. Son

    2016-08-01

    Full Text Available We demonstrate light polarization control over a broad spectral range by a uniform layer of vanadium dioxide as it undergoes a phase transition from insulator to metal. Changes in refractive indices create unequal phase shifts on s- and p-polarization components of incident light, and rotation of linear polarization shows intensity modulation by a factor of 103 when transmitted through polarizers. This makes possible polarization rotation devices as thin as 50 nm that would be activated thermally, optically or electrically.

  5. Thin-layer chromatography in analysis of inorganic substances

    International Nuclear Information System (INIS)

    Volynets, M.P.

    1988-01-01

    The use of thin-layer chromatography (TLC) for separation and determination of inorganic compounds is briefly considered. Universal character of the method, its simplicity, rapidness, high efficiency, clear separation and visual demonstration of results are pointed out, which permits to use TLC extensively for solving scientific and practical problems related to the determination of trace amounts of inorganic substances. TLC method permits to work with nano- and microgram amounts of substances and ensures the absolute limit of determination in the optimal conditions, which is 10 -2 -10 -7 g. Techniques of chromatographic determination of Te, rare earths, Y, Pu in various objects and their metrological characteristics are presented

  6. Tuning Thermal Transitions in Dry and Hydrated Polyelectrolyte Layer by Layer Assemblies with Ionic Strength and pH

    Science.gov (United States)

    Vidyasagar, Ajay; Lutkenhaus, Jodie

    2012-02-01

    Layer-by-layer (LbL) assemblies are of significant interest for their potential applications in diverse fields such as energy and drug delivery. However, characterizing their thermal properties has remained a challenge. Here, we present the characterization of dry and of hydrated LbL films containing strong polyelectrolytes poly(diallyldimethylammonium chloride) (PDAC) and poly(styrene sulfonate) PSS) using modulated differential scanning calorimetry (MDSC) and temperature controlled quartz crystal microbalance with dissipation (QCM-D). Our results suggest that hydrated exponentially growing (assembled from 0.25-1.25 M NaCl solutions) PDAC/PSS LbL films have glass transition temperatures (Tg's) between 48-51 ^oC, while linearly growing (assembled from 0 M NaCl) films did not. Other systems explored include poly(allylamine hydrochloride)/poly(acrylic acid)(PAH/PAA) LbL assemblies, which demonstrate linear/exponential growth depending on assembly pH conditions. These results support a standing hypothesis in that linear (or exponential) growth is observed for glassy (or rubbery) LbL films. We have also demonstrated for the first time, thermal transitions in thin PDAC/PSS LbL films using QCM-D by monitoring fluctuations in film hydration and viscoelasticity by probing the film's internal structure as a function of film depth.

  7. Collapse of molecularly thin lubricant layers between elastic substrates

    CERN Document Server

    Becker, T

    2003-01-01

    We investigated the dynamics of layering transitions and other structure formation processes in molecularly thin liquid films upon reducing the separation between two atomically smooth mica substrates. Using a newly developed surface forces apparatus with two-dimensional imaging capability, we followed the hydrodynamic processes during drainage with unprecedented precision. Depending on the substrate elasticity and the approach rate, drainage occurs either in a series of consecutive layering transitions or in a single step. In the latter case, nanoscopic amounts of liquid are trapped inside the contact area transiently. The experimental observations are explained qualitatively by combining hydrodynamic effects with elastic deformations of the substrates. Furthermore, we present evidence for anisotropy in the fluid dynamics induced by the lattice symmetry of the substrates.

  8. Influence of Magnetron Effect on Barium Hexaferrite Thin Layers

    International Nuclear Information System (INIS)

    Hassane, H.; Chatelon, J.P.; Rousseau, J.J; Siblini, A.; Kriga, A.

    2011-01-01

    In this paper, we study the effects of a magnet, located in the cathode, on barium hexaferrite thin films deposited by RF magnetron sputtering technique. During the process, these effects can modify thickness, roughness and stress of coatings. The characteristics of the deposited layers depend on the substrate position that is located opposite of magnetron cathode. In the m agnetron area , one can observe that the high stress can produce cracks or detachment of layers and the increasing of both depositing rate and surface roughness. After sputtering elaboration, barium hexaferrite films are in a compressive stress mode. But, after the post-deposition heat treatment these films are in a tensile stress mode. To improve the quality of BaM films, the subsrtate has to be set outside the magnetron area. (author)

  9. On-plate electrochemical detection for thin-layer chromatography

    International Nuclear Information System (INIS)

    Brown, G.N.; Birks, J.W.; Koval, C.A.

    1989-01-01

    Voltammetric electrochemical detection (ECD) coupled with tin-layer chromatography (TLC) was demonstrated for the quantification of trace organic compound directly on a TLC plate. The electrochemical detection solvent was a thin layer of aqueous potassium chloride. For undeveloped plates, detection limits for p-anisidine and p-phenetidine were 10 ng and 13 ng, respectively. Linearity was demonstrated over nearly 2 orders of magnitude. After development, detection limits increased by approximately a factor of ten. Advantages of this method over other quantitative TLC methods include sensitivity, speed, simplicity, and cost. In addition, this method is selective for electrochemically active compounds. Major sources of experimental error include spot size reproducibility, working electrode placement, and supporting electrolyte film thickness

  10. Femtosecond pulsed laser deposition of biological and biocompatible thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Hopp, B. [Hungarian Academy of Sciences, University of Szeged, Research Group on Laser Physics, Dom ter 9, H-6720 Szeged (Hungary)]. E-mail: bhopp@physx.u-szeged.hu; Smausz, T. [Hungarian Academy of Sciences, University of Szeged, Research Group on Laser Physics, Dom ter 9, H-6720 Szeged (Hungary); Kecskemeti, G. [Department of Optics and Quantum Electronics, University of Szeged, Dom ter 9, H-6720 Szeged (Hungary); Klini, A. [Institute of Electronic Structure and Laser (I.E.S.L.), Foundation for Research and Technology-Hellas (F.O.R.T.H.), P.O. Box 1527, GR-711 10 Heraklion, Crete (Greece); Bor, Zs. [Department of Optics and Quantum Electronics, University of Szeged, Dom ter 9, H-6720 Szeged (Hungary)

    2007-07-31

    In our study we investigate and report the femtosecond pulsed laser deposition of biological and biocompatible materials. Teflon, polyhydroxybutyrate, polyglycolic-acid, pepsin and tooth in the form of pressed pellets were used as target materials. Thin layers were deposited using pulses from a femtosecond KrF excimer laser system (FWHM = 450 fs, {lambda} = 248 nm, f = 10 Hz) at different fluences: 0.6, 0.9, 1.6, 2.2, 2.8 and 3.5 J/cm{sup 2}, respectively. Potassium bromide were used as substrates for diagnostic measurements of the films on a FTIR spectrometer. The pressure in the PLD chamber was 1 x 10{sup -3} Pa, and in the case of tooth and Teflon the substrates were heated at 250 deg. C. Under the optimized conditions the chemical structure of the deposited materials seemed to be largely preserved as evidenced by the corresponding IR spectra. The polyglycolic-acid films showed new spectral features indicating considerable morphological changes during PLD. Surface structure and thickness of the layers deposited on Si substrates were examined by an atomic force microscopy (AFM) and a surface profilometer. An empirical model has been elaborated for the description of the femtosecond PLD process. According to this the laser photons are absorbed in the surface layer of target resulting in chemical dissociation of molecules. The fast decomposition causes explosion-like gas expansion generating recoil forces which can tear off and accelerate solid particles. These grains containing target molecules without any chemical damages are ejected from the target and deposited onto the substrate forming a thin layer.

  11. Low-temperature atomic layer deposition of TiO2 thin layers for the processing of memristive devices

    International Nuclear Information System (INIS)

    Porro, Samuele; Conti, Daniele; Guastella, Salvatore; Ricciardi, Carlo; Jasmin, Alladin; Pirri, Candido F.; Bejtka, Katarzyna; Perrone, Denis; Chiolerio, Alessandro

    2016-01-01

    Atomic layer deposition (ALD) represents one of the most fundamental techniques capable of satisfying the strict technological requirements imposed by the rapidly evolving electronic components industry. The actual scaling trend is rapidly leading to the fabrication of nanoscaled devices able to overcome limits of the present microelectronic technology, of which the memristor is one of the principal candidates. Since their development in 2008, TiO 2 thin film memristors have been identified as the future technology for resistive random access memories because of their numerous advantages in producing dense, low power-consuming, three-dimensional memory stacks. The typical features of ALD, such as self-limiting and conformal deposition without line-of-sight requirements, are strong assets for fabricating these nanosized devices. This work focuses on the realization of memristors based on low-temperature ALD TiO 2 thin films. In this process, the oxide layer was directly grown on a polymeric photoresist, thus simplifying the fabrication procedure with a direct liftoff patterning instead of a complex dry etching process. The TiO 2 thin films deposited in a temperature range of 120–230 °C were characterized via Raman spectroscopy and x-ray photoelectron spectroscopy, and electrical current–voltage measurements taken in voltage sweep mode were employed to confirm the existence of resistive switching behaviors typical of memristors. These measurements showed that these low-temperature devices exhibit an ON/OFF ratio comparable to that of a high-temperature memristor, thus exhibiting similar performances with respect to memory applications

  12. Overlay of semi-dried functional layers in offset printing for rapid and high-precision fabrication of flexible TFTs

    International Nuclear Information System (INIS)

    Kusaka, Yasuyuki; Ushijima, Hirobumi; Sugihara, Kazuyoshi; Koutake, Masayoshi

    2014-01-01

    We achieved a reduction in the misregistration of overlying patterns printed on a flexible plastic film and a drastically shorter processing time with fully printed thin-film transistor (TFT) fabrication. This was achieved using a newly developed wet-on-wet (WoW) printing process wherein a subsequent layer can be printed on a previous semi-dried (not-sintered) layer. In the WoW process, as examined by rheological measurements, a semi-dried (highly solidified) state of ink was attained before transferring by utilizing the solvent uptake of a PDMS blanket in offset printing to ensure the structural integrity of the ink layer, and to reduce the inter-contamination of adjoining layers. Loss-on-drying tests and resistivity measurements indicated that molecular penetration at the boundary of adjoining layers with a length of c.a. 70 nm occurred in the WoW process; however, with thicker electrodes, we successfully fabricated a WoW-processed TFT whose performance was comparable with a TFT formed by a conventional printing process. (paper)

  13. Overlay of semi-dried functional layers in offset printing for rapid and high-precision fabrication of flexible TFTs

    Science.gov (United States)

    Kusaka, Yasuyuki; Sugihara, Kazuyoshi; Koutake, Masayoshi; Ushijima, Hirobumi

    2014-03-01

    We achieved a reduction in the misregistration of overlying patterns printed on a flexible plastic film and a drastically shorter processing time with fully printed thin-film transistor (TFT) fabrication. This was achieved using a newly developed wet-on-wet (WoW) printing process wherein a subsequent layer can be printed on a previous semi-dried (not-sintered) layer. In the WoW process, as examined by rheological measurements, a semi-dried (highly solidified) state of ink was attained before transferring by utilizing the solvent uptake of a PDMS blanket in offset printing to ensure the structural integrity of the ink layer, and to reduce the inter-contamination of adjoining layers. Loss-on-drying tests and resistivity measurements indicated that molecular penetration at the boundary of adjoining layers with a length of c.a. 70 nm occurred in the WoW process; however, with thicker electrodes, we successfully fabricated a WoW-processed TFT whose performance was comparable with a TFT formed by a conventional printing process.

  14. Seismic interpretation of subglacial till units: thin layer effects in amplitude-versus-angle (AVA) analysis.

    Science.gov (United States)

    Booth, A. D.; Clark, R. A.; Kulessa, B.; Murray, T.; Hubbard, A.

    2012-04-01

    The physical properties of subglacial material can be estimated using seismic amplitude-versus-angle (AVA) methods, although the interpretation of an AVA response is complicated in the case of a thinly-layered substrate. If the thickness of a layer is less than one-quarter of the seismic wavelength, it is considered seismically 'thin' and its upper and lower interfaces are perceived as a single horizon. Since a lodged (non-deforming) subglacial till can be overlain by a thin (metre-scale) cap of dilatant (deforming) till, serious misinterpretations can result if thin layer considerations are not honoured. We simulate seismic AVA responses for layered subglacial tills, in which dilatant layers of thickness 0.1-3.0 m (up to a quarter-wavelength of our synthetic seismic pulse) overlie a lodged half-space, and assign typical acoustic impedance and Poisson's ratios to each. Neglecting thin layer considerations, we show that the AVA response to ultra-thin (AVA response. We present a thin layer interpretation for seismic data acquired on the Russell Glacier outlet of the West Greenland Ice Sheet. By invoking a thin layer argument, we show that the substrate comprises a stratified till with upper and lower layers of high- and low-porosity, interpreted respectively as dilatant and lodged material. Ignoring the effect of thin layers may lead to a serious misinterpretation of substrate physical properties, hence we recommend that their impact is considered in any AVA analysis.

  15. Crystallinity Improvement of Zn O Thin Film on Different Buffer Layers Grown by MBE

    International Nuclear Information System (INIS)

    Shao-Ying, T.; Che-Hao, L.; Wen-Ming, Ch.; Yang, C.C.; Po-Ju, Ch.; Hsiang-Chen, W.; Ya-Ping, H.

    2012-01-01

    The material and optical properties of Zn O thin film samples grown on different buffer layers on sapphire substrates through a two-step temperature variation growth by molecular beam epitaxy were investigated. The thin buffer layer between the Zn O layer and the sapphire substrate decreased the lattice mismatch to achieve higher quality Zn O thin film growth. A Ga N buffer layer slightly increased the quality of the Zn O thin film, but the threading dislocations still stretched along the c-axis of the Ga N layer. The use of Mg O as the buffer layer decreased the surface roughness of the Zn O thin film by 58.8% due to the suppression of surface cracks through strain transfer of the sample. From deep level emission and rocking curve measurements it was found that the threading dislocations play a more important role than oxygen vacancies for high-quality Zn O thin film growth.

  16. Approximate reflection coefficients for a thin VTI layer

    KAUST Repository

    Hao, Qi

    2017-09-18

    We present an approximate method to derive simple expressions for the reflection coefficients of P- and SV-waves for a thin transversely isotropic layer with a vertical symmetry axis (VTI) embedded in a homogeneous VTI background. The layer thickness is assumed to be much smaller than the wavelengths of P- and SV-waves inside. The exact reflection and transmission coefficients are derived by the propagator matrix method. In the case of normal incidence, the exact reflection and transmission coefficients are expressed in terms of the impedances of vertically propagating P- and S-waves. For subcritical incidence, the approximate reflection coefficients are expressed in terms of the contrast in the VTI parameters between the layer and the background. Numerical examples are designed to analyze the reflection coefficients at normal and oblique incidence, and investigate the influence of transverse isotropy on the reflection coefficients. Despite giving numerical errors, the approximate formulae are sufficiently simple to qualitatively analyze the variation of the reflection coefficients with the angle of incidence.

  17. Correlations of Mean Process Parameters for Agricultural Products Drying in Thin Bed in Solar Direct Dryers

    Directory of Open Access Journals (Sweden)

    MSc. Ciro César Bergues-Ricardo

    2015-11-01

    Full Text Available A group of correlations is given between mean parameters of drying process drying velocity, energy losses, useful energy, and thermal efficiency. Those are suitable for conditions of thin bed drying, in direct solar dryers, and may help for developing of an integral approach of solar drying in those conditions. Correlations are reliable for drying processes of diverse crop products specified, suchas roots, seeds, vegetables, fruits, wood, etc, with natural or forced convection. Correlations were validated in Cuba for usual ranges of efficiency and products in solar dryers of cover, cabinet and house types, in tropical conditions. These correlations are useful for design and exploitation ofdryers and for theoretical and practical comprehension of solar drying like a system.

  18. Underpotential deposition-mediated layer-by-layer growth of thin films

    Science.gov (United States)

    Wang, Jia Xu; Adzic, Radoslav R.

    2015-05-19

    A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves the use of underpotential deposition of a first element to mediate the growth of a second material by overpotential deposition. Deposition occurs between a potential positive to the bulk deposition potential for the mediating element where a full monolayer of mediating element forms, and a potential which is less than, or only slightly greater than, the bulk deposition potential of the material to be deposited. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis. This process is especially suitable for the formation of a catalytically active layer on core-shell particles for use in energy conversion devices such as fuel cells.

  19. Atmospheric corrosion evaluation of galvanised steel by thin layer activation

    Energy Technology Data Exchange (ETDEWEB)

    Stroosnijder, M.F.; Brugnoni, C.; Laguzzi, G.; Luvidi, L.; De Cristofaro, N

    2004-09-01

    The release of certain metals, such as zinc, from outdoor constructions due to atmospheric corrosion is of some concern. For risk assessments the evaluation of the amount of released metal is of importance. Various methods can be used to study the release of metals. These include those using radiotracers, such as thin layer activation (TLA). To verify the reliability of TLA with respect to conventional techniques in the evaluation of atmospheric corrosion, galvanised steel was exposed to a mild marine environment. The amount of zinc in the corrosion products, released through artificial leaching, at different time intervals was evaluated by TLA and atomic absorption spectroscopy (AAS). A good correlation between the results was found indicating the feasibility of TLA for these release studies.

  20. Split energy cascade in turbulent thin fluid layers

    Science.gov (United States)

    Musacchio, Stefano; Boffetta, Guido

    2017-11-01

    We discuss the phenomenology of the split energy cascade in a three-dimensional thin fluid layer by means of high resolution numerical simulations of the Navier-Stokes equations. We observe the presence of both an inverse energy cascade at large scales, as predicted for two-dimensional turbulence, and a direct energy cascade at small scales, as in three-dimensional turbulence. The inverse energy cascade is associated with a direct cascade of enstrophy in the intermediate range of scales. Notably, we find that the inverse cascade of energy in this system is not a purely 2D phenomenon, as the coupling with the 3D velocity field is necessary to guarantee the constancy of fluxes.

  1. Robotic thin layer chromatography instrument for synthetic chemistry

    International Nuclear Information System (INIS)

    Corkan, L.A.; Haynes, E.; Kline, S.; Lindsey, J.S.

    1991-01-01

    We have constructed a second generation instrument for performing automated thin layer chromatography (TLC), The TLC instrument Consists of four dedicated stations for (1) plate dispensing, (2) sample application, (3) plate development, and (4) densitometry. A robot is used to move TLC plates among stations. The TLC instrument functions either as a stand-alone unit or as one analytical module in a robotic workstation for synthetic chemistry. An integrated hardware and software architecture enables automatic TLC analysis of samples produced concurrently from synthetic reactions in progress on the workstation. The combination of fixed automation and robotics gives a throughput of 12 TLC samples per hour. From these results a blueprint has emerged for an advanced automated TLC instrument with far greater throughput and analytical capabilities

  2. The thin layer activation method and its applications in industry

    International Nuclear Information System (INIS)

    1997-01-01

    The thin layer activation (TLA) method is one of the most effective and precise methods for the measurement and monitoring of corrosion (erosion) and wear in industry and is used for on-line remote measurement of wear and corrosion rate of central parts in machines or processing vessels under real operating conditions. This document is a comprehensive manual on TLA method in its applications for monitoring wear and corrosion in industry. It describes the theory and presents case studies on TLA method applications in industry. In addition, in annexes are given tables of nuclear data relating to TLA (decay characteristics, depth distribution of reaction products, activation data for charged-particle nuclear reactions), references from INIS database on TLA and a detailed production of the application of TLA for wear measurement of superhard turning tools

  3. The Acoustical Durability of Thin Noise Reducing Asphalt Layers

    Directory of Open Access Journals (Sweden)

    Cedric Vuye

    2016-05-01

    Full Text Available Within the context of the European Noise Directive, traffic noise action plans have been established. One of those actions is to deepen the knowledge about low noise roads, as they are considered the most cost-efficient measure for traffic noise abatement. Therefore, ten test sections were installed in May 2012 in Belgium, with the objective of integrating Thin noise-reducing Asphalt Layers (TAL in the Flemish road surface policy in a later stage. Eight test sections are paved with TAL with a thickness of a maximum of 30 mm and a maximum content of accessible voids of 18%. The other two sections consist of a Double-layer Porous Asphalt Concrete (DPAC and a Stone Mastic Asphalt (SMA-10 as a reference section. The acoustical quality of the asphalt surfaces has been monitored in time using Statistical Pass-By (SPB and Close-ProXimity (CPX measurements up to 34 months after construction. Texture measurements performed with a laser profilometer are linked to the noise measurement results. Very promising initial noise reductions were found, up to 6 dB(A, but higher than expected acoustic deterioration rates and the presence of raveling led to noise reductions of a max. of 1 dB(A after almost three years. It is shown that the construction process itself has a large influence on the acoustical quality over time.

  4. Transparent conductive thin-film encapsulation layers (Presentation Recording)

    Science.gov (United States)

    Behrendt, Andreas; Gahlmann, Tobias; Trost, Sara; Polywka, Andreas; Görrn, Patrick; Riedl, Thomas

    2015-10-01

    Gas diffusion barriers (GDB) are inevitable to protect sensitive organic materials or devices against ambient gases. Typically, thin-film gas diffusion barriers are insulators, e.g. Al2O3 or multilayers of Al2O3/ZrO2, etc.. A wide range of applications would require GDB which are at the same time transparent and electrically conductive. They could serve as electrode and moisture barrier simultaneously, thereby simplifying production. As of yet, work on transparent conductive GDB (TCGDBs) is very limited. TCGDBs based on ZnO prepared by atomic layer deposition (ALD) have been reported. Due to the chemical instability of ZnO, it turns out that their electrical conductivity severely deteriorates by orders of magnitude upon exposure to damp heat conditions after very short time. We will show that these issues can be overcome by the use of tin oxide (SnO2). Conductivities of up to 300 S/cm and extremely low water vapor transmission rates (WVTR) on the order of 10-6 g/(m2 day) can been achieved in SnOx layers prepared by ALD at low temperatures (solar cells and OLEDs.

  5. Analysis of Surface Waves in Saturated Layered Poroelastic Half-Spaces Using the Thin Layer Method

    Science.gov (United States)

    Chai, Huayou; Cui, Yujun; Zhang, Dianji

    2018-03-01

    There are multiple modes of surface waves in saturated layered poroelastic half-spaces. The phase velocity and the attenuation of the modes are frequency dependent. The frequency behaviour of the modes can be studied using the layer transfer, stiffness and the transmission/reflection matrix methods. However, it is very difficult to find the complex roots of the determinants because the entries of the matrices involve the complex exponential functions of the wavenumber and the thickness of layer. To overcome this difficulty, the entries in the matrix are expressed in the form of algebraic functions using the thin layer method. Thus, the eigenvalues and eigenvectors can be easily solved using the matrix decomposition techniques instead of the root-searching ones. Some of the eigenvalues correspond to the wavenumbers of the surface waves, and can be picked out based on the characteristics of the surface waves. The frequency behaviour, variations of the pore pressure and the skeleton's displacements with the depth can be then investigated from the corresponding eigenvalues and eigenvectors, respectively. The method is verified by comparing the analytical and the discrete results in the saturated poroelastic half-space with the permeable surface. The method is applied to appreciate the effects of an impermeable surface on Rayleigh waves (R-waves) and the existence of Stoneley waves in the poroelastic half-space. The frequency behaviour of Rayleigh waves in three typical layered poroelastic half-spaces is also analyzed.

  6. Modeling the influence of the seeding layer on the transition behavior of a ferroelectric thin film

    International Nuclear Information System (INIS)

    Oubelkacem, A.; Essaoudi, I.; Ainane, A.; Saber, M.; Dujardin, F.

    2011-01-01

    The transition properties of a ferroelectric thin film with seeding layers were studied using the effective field theory with a probability distribution technique that accounts for the self-spin correlation functions. The effect of interaction parameters for the seeding layer on the phase diagram was also examined. We calculated the critical temperature and the polarization of the ferroelectric thin film for different seeding layer structures. We found that the seeding layer can greatly increase the Curie temperature and the polarization.

  7. Proteins at fluid interfaces: adsorption layers and thin liquid films.

    Science.gov (United States)

    Yampolskaya, Galina; Platikanov, Dimo

    2006-12-21

    A review in which many original published results of the authors as well as many other papers are discussed. The structure and some properties of the globular proteins are shortly presented, special accent being put on the alpha-chymotrypsin (alpha-ChT), lysozyme (LZ), human serum albumin (HSA), and bovine serum albumin (BSA) which have been used in the experiments with thin liquid films. The behaviour of protein adsorption layers (PAL) is extensively discussed. The dynamics of PAL formation, including the kinetics of adsorption as well as the time evolution of the surface tension of protein aqueous solutions, are considered. A considerable place is devoted to the surface tension and adsorption isotherms of the globular protein solutions, the simulation of PAL by interacting hard spheres, the experimental surface tension isotherms of the above mentioned proteins, and the interfacial tension isotherms for the protein aqueous solution/oil interface. The rheological properties of PAL at fluid interfaces are shortly reviewed. After a brief information about the experimental methods for investigation of protein thin liquid (foam or emulsion) films, the properties of the protein black foam films are extensively discussed: the conditions for their formation, the influence of the electrolytes and pH on the film type and stability, the thermodynamic properties of the black foam films, the contact angles film/bulk and their dynamic hysteresis. The next center of attention concerns some properties of the protein emulsion films: the conditions for formation of emulsion black films, the formation and development of a dimpling in microscopic, circular films. The protein-phospholipid mixed foam films are also briefly considered.

  8. Electroresistance Effect in Gold Thin Film Induced by Ionic-Liquid-Gated Electric Double Layer

    NARCIS (Netherlands)

    Nakayama, Hiroyasu; Ye, Jianting; Ohtani, Takashi; Fujikawa, Yasunori; Ando, Kazuya; Iwasa, Yoshihiro; Saitoh, Eiji

    Electroresistance effect was detected in a metallic thin film using ionic-liquid-gated electric-double-layer transistors (EDLTs). We observed reversible modulation of the electric resistance of a Au thin film. In this system, we found that an electric double layer works as a nanogap capacitor with

  9. Using thin metal layers on composite structures for shielding the electromagnetic pulse caused by nearby lightning

    NARCIS (Netherlands)

    Blaj, M.A.; Buesink, Frederik Johannes Karel; Damstra, G.C.; Leferink, Frank Bernardus Johannes

    2011-01-01

    Electronic systems in composite structures could be vulnerable to the (dominant magnetic) field caused by a lightning strike, because only thin layers of metal can be used on composite structures. Thin layers result in a very low shielding effectiveness against magnetic fields. Many experiments

  10. UV and plasma treatment of thin silver layers and glass surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hluschi, J.H. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Helmke, A. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Roth, P. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Boewer, R. [Interpane Glasbeschichtungsgesellschaft mbH and Co KG, Sohnreystr. 21, D-37697 Lauenfoerde (Germany); Herlitze, L. [Interpane Glasbeschichtungsgesellschaft mbH and Co KG, Sohnreystr. 21, D-37697 Lauenfoerde (Germany); Vioel, W. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany)]. E-mail: vioel@hawk-hhg.de

    2006-11-10

    Thin silver layers can be modified by treatment with UV radiation or a plasma discharge. UV treatment at a wavelength of {lambda}=308 -bar nm improves the layer properties, thus leading to an enhancement of the layers IR reflectivity. For the purpose of in situ-measurement the sheet resistance is recorded during the process. Due to the Hagen-Rubens-Relation [E. Hagen, H. Rubens, Ann. Phys. 11 (1903) 873]-bar the sheet resistance is linked to the IR reflectivity of thin metal-films. A pretreatment of uncoated glass using a dielectric barrier discharge activates and cleans its surface, thus leading to an increase in adhesion of thin layers.

  11. UV and plasma treatment of thin silver layers and glass surfaces

    International Nuclear Information System (INIS)

    Hluschi, J.H.; Helmke, A.; Roth, P.; Boewer, R.; Herlitze, L.; Vioel, W.

    2006-01-01

    Thin silver layers can be modified by treatment with UV radiation or a plasma discharge. UV treatment at a wavelength of λ=308 -bar nm improves the layer properties, thus leading to an enhancement of the layers IR reflectivity. For the purpose of in situ-measurement the sheet resistance is recorded during the process. Due to the Hagen-Rubens-Relation [E. Hagen, H. Rubens, Ann. Phys. 11 (1903) 873]-bar the sheet resistance is linked to the IR reflectivity of thin metal-films. A pretreatment of uncoated glass using a dielectric barrier discharge activates and cleans its surface, thus leading to an increase in adhesion of thin layers

  12. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    International Nuclear Information System (INIS)

    thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" data-affiliation=" (Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" >Nurhandoko, Bagus Endar B.; Susilowati

    2015-01-01

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia

  13. Somatic Embryogenesis of Lilium from Microbulb Transverse Thin Cell Layers.

    Science.gov (United States)

    Marinangeli, Pablo

    2016-01-01

    A reliable somatic embryogenesis protocol is a prerequisite for application of other plant biotechniques. Several protocols were reported for genus Lilium, with variable success. Between them, transverse Thin Cell Layers (tTCL) were used efficiently to induce indirect somatic embryogenesis of Lilium. Somatic embryogenesis potential is dependent on the genotype, explant, and culture medium composition, especially as for plant growth regulators and environmental conditions. Usually, the process comprises three phases: embryogenic callus induction, embryogenic callus proliferation and somatic embryo germination. Somatic embryo germination can be achieved in light or dark. In the first case, complete plantlets are formed, with green leaves and pseudobulb in the base. In darkness, microbulbs are formed from single somatic embryos or clusters. A last phase of microbulb enlargement allows plantlets or microbulbs to increase their biomass. These enlarged microbulbs do not need special acclimatization conditions when transferred to soil and quickly produce sturdy plants. This chapter describes a protocol for somatic embryogenesis of Lilium using tTCL from microbulbs.

  14. Thin layer chromatography-ion mobility spectrometry (TLC-IMS).

    Science.gov (United States)

    Ilbeigi, Vahideh; Tabrizchi, Mahmoud

    2015-01-06

    Ion mobility spectrometry (IMS) is a fast and sensitive analytical method which operates at the atmospheric pressure. To enhance the capability of IMS for the analysis of mixtures, it is often used with preseparation techniques, such as GC or HPLC. Here, we report for the first time the coupling of the thin-layer chromatography and IMS. A variety of coupling schemes were tried that included direct electrospray from the TLC strip tip, indirect electrospray from a needle connected to the TLC strip, introducing the moving solvent into the injection port, and, the simplest way, offline introduction of scratched or cut pieces of strips into the IMS injection port. In this study a special solvent tank was designed and the TLC strip was mounted horizontally where the solvent would flow down. A very small funnel right below the TLC tip collected the solvent and transferred it to a needle via a capillary tubing. Using the TLC-ESI-IMS technique, acceptable separations were achieved for two component mixtures of morphine-papaverine and acridine-papaverine. A special injection port was designed to host the pieces cut off the TLC. The method was successfully used to identify each spot on the TLC by IMS in a few seconds.

  15. Mathematical analogies in physics. Thin-layer wave theory

    Directory of Open Access Journals (Sweden)

    José M. Carcione

    2014-03-01

    Full Text Available Field theory applies to elastodynamics, electromagnetism, quantum mechanics, gravitation and other similar fields of physics, where the basic equations describing the phenomenon are based on constitutive relations and balance equations. For instance, in elastodynamics, these are the stress-strain relations and the equations of momentum conservation (Euler-Newton law. In these cases, the same mathematical theory can be used, by establishing appropriate mathematical equivalences (or analogies between material properties and field variables. For instance, the wave equation and the related mathematical developments can be used to describe anelastic and electromagnetic wave propagation, and are extensively used in quantum mechanics. In this work, we obtain the mathematical analogy for the reflection/refraction (transmission problem of a thin layer embedded between dissimilar media, considering the presence of anisotropy and attenuation/viscosity in the viscoelastic case, conductivity in the electromagnetic case and a potential barrier in quantum physics (the tunnel effect. The analogy is mainly illustrated with geophysical examples of propagation of S (shear, P (compressional, TM (transverse-magnetic and TE (transverse-electric waves. The tunnel effect is obtained as a special case of viscoelastic waves at normal incidence.

  16. Step-frequency radar applied on thin road layers

    Science.gov (United States)

    Dérobert, X.; Fauchard, C.; Côte, Ph.; Le Brusq, E.; Guillanton, E.; Dauvignac, J. Y.; Pichot, Ch.

    2001-07-01

    In the field of road construction and maintenance, the need for information on the thickness of very thin road layers is not satisfied by means of commercial pulse GPR, due to the inability of such devices to operate over ranges of several gigahertz. As a result, research has focused on the design of a step-frequency radar technique, able to work with very high-frequency synthetic pulses. An ultrawide band antenna, belonging to the family of Vivaldi antennas, has been developed for road applications. It has been created using stripline technology and yields a band width greater than one decade. During an initial step, this antenna was tested on various bituminous concrete samples with a network analyzer. Different parameters were studied, including band width, offset between antennas, and height and shape of the frequency-dependent pulse. A second step involved GPR dynamic measurements. A customized software program enabled recording data from the network analyzer. Several radar profiles were developed from selected road construction and maintenance test sites (e.g. the Circular Pavement Fatigue Test Track, composed of a number of known structures). Results show improved resolution when compared to a commercial impulse GPR system.

  17. Application of thin layer activation method to industrial use

    International Nuclear Information System (INIS)

    Yamamoto, Masago; Hatakeyama, Noriko

    1996-01-01

    A thin layer activation method was reviewed for non-destructive, rapid, precise and real-time measurement of wear and corrosion. The review included wear measurement, the principle of the method, actual measurement, application, and laws and regulations. The method is to activate the material surface alone by accelerated ions like p, d and He ions produced by cyclotron, Van de Graaf apparatus or other accelerators and to utilize the yielded radioisotopes as a tracer, is widely used in the tribology field, and is more useful than the previous method with the reactor since it activated the whole material. Application of the method was reportedly resulted in saving the 80% cost and 90% time in the wear measurement of automobile parts such as engine and transmission. Actually, the activated material was combined into the part to be run and the radioactivity was to be measured externally or in the worn particles suitably collected. The activation thickness was generally in the range of 10-200 μm and the resultant radioactivity, 0.2-2 MBq. In most cases in Japan, the method would be under the law concerning prevention from radiation hazards due to radioisotopes, etc. (K.H.)

  18. Fibromyalgia Is Correlated with Retinal Nerve Fiber Layer Thinning.

    Science.gov (United States)

    Garcia-Martin, Elena; Garcia-Campayo, Javier; Puebla-Guedea, Marta; Ascaso, Francisco J; Roca, Miguel; Gutierrez-Ruiz, Fernando; Vilades, Elisa; Polo, Vicente; Larrosa, Jose M; Pablo, Luis E; Satue, Maria

    2016-01-01

    To investigate whether fibromyalgia induces axonal damage in the optic nerve that can be detected using optical coherence tomography (OCT), as the retinal nerve fiber layer (RNFL) is atrophied in patients with fibromyalgia compared with controls. Fibromyalgia patients (n = 116) and age-matched healthy controls (n = 144) were included in this observational and prospective cohort study. All subjects underwent visual acuity measurement and structural analysis of the RNFL using two OCT devices (Cirrus and Spectralis). Fibromyalgia patients were evaluated according to Giesecke's fibromyalgia subgroups, the Fibromyalgia Impact Questionnaire (FIQ), and the European Quality of Life-5 Dimensions (EQ5D) scale. We compared the differences between fibromyalgia patients and controls, and analyzed the correlations between OCT measurements, disease duration, fibromyalgia subgroups, severity, and quality of life. The impact on quality of life in fibromyalgia subgroups and in patients with different disease severity was also analyzed. A significant decrease in the RNFL was detected in fibromyalgia patients compared with controls using the two OCT devices: Cirrus OCT ganglion cell layer analysis registered a significant decrease in the minimum thickness of the inner plexiform layer (74.99±16.63 vs 79.36±3.38 μm, respectively; p = 0.023), nasal inferior, temporal inferior and temporal superior sectors (p = 0.040; 0.011 and 0.046 respectively). The Glaucoma application of the Spectralis OCT revealed thinning in the nasal, temporal inferior and temporal superior sectors (p = 0.009, 0.006, and 0.002 respectively) of fibromyalgia patients and the Axonal application in all sectors, except the nasal superior and temporal sectors. The odds ratio (OR) to estimate the size effect of FM in RNFL thickness was 1.39. RNFL atrophy was detected in patients with FIQ scores fibromyalgia (FIQ≥60) compared with patients with mild fibromyalgia (FIQfibromyalgia exhibited significant thinning in the

  19. Detection of Actaea racemosa Adulteration by Thin-Layer Chromatography and Combined Thin-Layer Chromatography-Bioluminescence

    Science.gov (United States)

    Verbitski, Sheryl M.; Gourdin, Gerald T.; Ikenouye, Larissa M.; McChesney, James D.; Hildreth, Jana

    2014-01-01

    Actaea racemosa L. (black cohosh; syn. Cimicifuga racemosa L. Nutt.) is a native North American perennial whose root and rhizome preparations are commercially available as phytomedicines and dietary supplements, primarily for management of menopausal symptoms. Despite its wide use, methods that accurately identify processed A. racemosa are not well established; product adulteration remains a concern. Because of its similar appearance and growing locales, A. racemosa has been unintentionally mixed with other species of the genus, such as Actaea pachypoda Ell. (white cohosh) and more commonly Actaea podocarpa DC. (yellow cohosh). The genus Actaea also has 23 temperate species with numerous common names, which can also contribute to the misidentification of plant material. Consequently, a variety of Actaea spp. are common adulterants of commercially available black cohosh preparations. Thin-layer chromatography (TLC) and combined TLC-bioluminescence (Bioluminex™) are efficient, economical, and effective techniques which provide characteristic patterns and toxicity profiles for each plant species. These data indicate that common black cohosh adulterants, such as yellow cohosh, can be differentiated from black cohosh by TLC and TLC-bioluminescence. This study also showed that unknown contaminants that were not detected using standard A. racemosa identity techniques were readily detected by TLC and TLC-bioluminescence. PMID:18476337

  20. Development of "all natural" layer-by-layer redispersible solid lipid nanoparticles by nano spray drying technology.

    Science.gov (United States)

    Wang, Taoran; Hu, Qiaobin; Zhou, Mingyong; Xia, Yan; Nieh, Mu-Ping; Luo, Yangchao

    2016-10-01

    Solid lipid nanoparticles (SLNs) have gained tremendous attraction as carriers for controlled drug delivery. Despite numerous advances in the field, one long-standing historical challenge for their practical applications remains unmet: redispersibility after drying. In this work, a novel design of SLNs using a layer-by-layer (LbL) technique was developed and the formulations were optimized by surface response methodology (Box-Behnken design). To the best of our knowledge, this is the first study reporting the fabrication of SLNs from all natural ingredients in the absence of any synthetic surfactants or coatings. The SLNs were prepared by a combined solvent-diffusion and hot homogenization method, with soy lecithin as natural emulsifier (first layer), followed by the subsequent coating with sodium caseinate (second layer) and pectin (third layer), both of which are natural food biopolymers. The adsorption of pectin coating onto caseinate was reinforced by hydrophobic and electrostatic interactions induced by a pH-driven process along with thermal treatment. The innovative nano spray drying technology was further explored to obtain ultra-fine powders of SLNs. Compared to uncoated or single-layer coated SLNs powders, which showed severe aggregation after spray drying, the well-separated particles with spherical shape and smooth surface were obtained for layer-by-layer (LbL) SLNs, which were redispersible into water without variation of dimension, shape and morphology. The SLNs were characterized by Fourier transform infrared and high-performance differential scanning calorimetry for their physical properties. The LbL-coated SLNs based on all natural ingredients have promising features for future applications as drug delivery systems, overcoming the major obstacles in conventional spray drying and redispersing SLNs-based formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Simulating ozone dry deposition at a boreal forest with a multi-layer canopy deposition model

    NARCIS (Netherlands)

    Zhou, Putian; Ganzeveld, Laurens; Rannik, Ullar; Zhou, Luxi; Gierens, Rosa; Taipale, Ditte; Mammarella, Ivan; Boy, Michael

    2017-01-01

    A multi-layer ozone (O3) dry deposition model has been implemented into SOSAA (a model to Simulate the concentrations of Organic vapours, Sulphuric Acid and Aerosols) to improve the representation of O3 concentration and flux within and above the forest canopy in the planetary boundary layer. We

  2. Superhydrophobic Thin Films Fabricated by Reactive Layer-by-Layer Assembly of Azlactone-Functionalized Polymers.

    Science.gov (United States)

    Buck, Maren E; Schwartz, Sarina C; Lynn, David M

    2010-09-11

    We report an approach to the fabrication of superhydrophobic thin films that is based on the 'reactive' layer-by-layer assembly of azlactone-containing polymer multilayers. We demonstrate that films fabricated from alternating layers of the azlactone functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) and poly(ethyleneimine) (PEI) exhibit micro- and nanoscale surface features that result in water contact angles in excess of 150º. Our results reveal that the formation of these surface features is (i) dependent upon film thickness (i.e., the number of layers of PEI and PVDMA deposited) and (ii) that it is influenced strongly by the presence (or absence) of cyclic azlactone-functionalized oligomers that can form upon storage of the 2-vinyl-4,4-dimethylazlactone (VDMA) used to synthesize PVDMA. For example, films fabricated using polymers synthesized in the presence of these oligomers exhibited rough, textured surfaces and superhydrophobic behavior (i.e., advancing contact angles in excess of 150º). In contrast, films fabricated from PVDMA polymerized in the absence of this oligomer (e.g., using freshly distilled monomer) were smooth and only moderately hydrophobic (i.e., advancing contact angles of ~75º). The addition of authentic, independently synthesized oligomer to samples of distilled VDMA at specified and controlled concentrations permitted reproducible fabrication of superhydrophobic thin films on the surfaces of a variety of different substrates. The surfaces of these films were demonstrated to be superhydrophobic immediately after fabrication, but they became hydrophilic after exposure to water for six days. Additional experiments demonstrated that it was possible to stabilize and prolong the superhydrophobic properties of these films (e.g., advancing contact angles in excess of 150° even after complete submersion in water for at least six weeks) by exploiting the reactivity of residual azlactones to functionalize the surfaces of the films

  3. The effect of Cr buffer layer thickness on voltage generation of thin-film thermoelectric modules

    International Nuclear Information System (INIS)

    Mizoshiri, Mizue; Mikami, Masashi; Ozaki, Kimihiro

    2013-01-01

    The effect of Cr buffer layer thickness on the open-circuit voltage generated by thin-film thermoelectric modules of Bi 0.5 Sb 1.5 Te 3 (p-type) and Bi 2 Te 2.7 Se 0.3 (n-type) materials was investigated. A Cr buffer layer, whose thickness generally needs to be optimized to improve adhesion depending on the substrate surface condition, such as roughness, was deposited between thermoelectric thin films and glass substrates. When the Cr buffer layer was 1 nm thick, the Seebeck coefficients and electrical conductivity of 1 µm thermoelectric thin films with the buffer layers were approximately equal to those of the thermoelectric films without the buffer layers. When the thickness of the Cr buffer layer was 1 µm, the same as the thermoelectric films, the Seebeck coefficients of the bilayer films were reduced by an electrical current flowing inside the Cr buffer layer and the generation of Cr 2 Te 3 . The open-circuit voltage of the thin-film thermoelectric modules decreased with an increase in the thickness of the Cr buffer layer, which was primarily induced by the electrical current flow. The reduction caused by the Cr 2 Te 3 generation was less than 10% of the total voltage generation of the modules without the Cr buffer layers. The voltage generation of thin-film thermoelectric modules could be controlled by the Cr buffer layer thickness. (paper)

  4. Photoluminescence-based quality control for thin film absorber layers of photovoltaic devices

    Science.gov (United States)

    Repins, Ingrid L.; Kuciauskas, Darius

    2015-07-07

    A time-resolved photoluminescence-based system providing quality control during manufacture of thin film absorber layers for photovoltaic devices. The system includes a laser generating excitation beams and an optical fiber with an end used both for directing each excitation beam onto a thin film absorber layer and for collecting photoluminescence from the absorber layer. The system includes a processor determining a quality control parameter such as minority carrier lifetime of the thin film absorber layer based on the collected photoluminescence. In some implementations, the laser is a low power, pulsed diode laser having photon energy at least great enough to excite electron hole pairs in the thin film absorber layer. The scattered light may be filterable from the collected photoluminescence, and the system may include a dichroic beam splitter and a filter that transmit the photoluminescence and remove scattered laser light prior to delivery to a photodetector and a digital oscilloscope.

  5. Cleaning of conveyor belt materials using ultrasound in a thin layer of water.

    Science.gov (United States)

    Axelsson, L; Holck, A; Rud, I; Samah, D; Tierce, P; Favre, M; Kure, C F

    2013-08-01

    Cleaning of conveyor belts in the food industry is imperative for preventing the buildup of microorganisms that can contaminate food. New technologies for decreasing water and energy consumption of cleaning systems are desired. Ultrasound can be used for cleaning a wide range of materials. Most commonly, baths containing fairly large amounts of water are used. One possibility to reduce water consumption is to use ultrasonic cavitation in a thin water film on a flat surface, like a conveyor belt. In order to test this possibility, a model system was set up, consisting of an ultrasound transducer/probe with a 70-mm-diameter flat bottom, operating at 19.8 kHz, and contaminated conveyor belt materials in the form of coupons covered with a thin layer of water or water with detergent. Ultrasound was then applied on the water surface at different power levels (from 46 to 260 W), exposure times (10 and 20 s), and distances (2 to 20 mm). The model was used to test two different belt materials with various contamination types, such as biofilms formed by bacteria in carbohydrate- or protein-fat-based soils, dried microorganisms (bacteria, yeasts, and mold spores), and allergens. Ultrasound treatment increased the reduction of bacteria and yeast by 1 to 2 log CFU under the most favorable conditions compared with water or water-detergent controls. The effect was dependent on the type of belt material, the power applied, the exposure time, and the distance between the probe and the belt coupon. Generally, dried microorganisms were more easily removed than biofilms. The effect on mold spores was variable and appeared to be species and material dependent. Spiked allergens were also efficiently removed by using ultrasound. The results in this study pave the way for new cleaning designs for flat conveyor belts, with possibilities for savings of water, detergent, and energy consumption.

  6. Study of problems raised by the production of electronic preamplifier by thin layer evaporation

    International Nuclear Information System (INIS)

    Lesaint, Jean

    1962-01-01

    This research thesis reports the study of the different methods of manufacturing electronic assemblies by deposition of various thin layers in order to reduce dimensions and weight of such assemblies. Thin layers have been prepared by vacuum evaporation. During this preparation, the author identified the problems raised by this miniaturisation technique. The most important ones have been solved and it was then possible to produce by this method charge preamplifiers aimed at the detection of nuclear particles. The author envisages the production of capacitors with such a technique based on thin layers [fr

  7. Layer thinning transition in an achiral four-ring hockey stick shaped liquid crystal

    Science.gov (United States)

    Paul, Manoj Kr.; Nath, Rahul K.; Moths, Brian; Pan, LiDong; Wang, Shun; Deb, Rajdeep; Shen, Yongqiang; Rao, Nandiraju V. S.; Huang, C. C.

    2012-12-01

    Depolarized reflected light microscopy and high resolution optical reflectivity measurements have been conducted on free-standing films of an achiral four-ring hockey stick shaped liquid crystal exhibiting SmA-B2-SmX* transition sequence. A layer thinning transition above the bulk isotropic-SmA phase transition has been observed. This behaviour was highly irreproducible, indicating an irregular layer thinning transition. From optical reflectivity data, both thickness of the free-standing films and the smectic interlayer spacing were determined. This is the first report of the layer thinning transition in a hockey stick shaped liquid crystal.

  8. Back contact buffer layer for thin-film solar cells

    Science.gov (United States)

    Compaan, Alvin D.; Plotnikov, Victor V.

    2014-09-09

    A photovoltaic cell structure is disclosed that includes a buffer/passivation layer at a CdTe/Back contact interface. The buffer/passivation layer is formed from the same material that forms the n-type semiconductor active layer. In one embodiment, the buffer layer and the n-type semiconductor active layer are formed from cadmium sulfide (CdS). A method of forming a photovoltaic cell includes the step of forming the semiconductor active layers and the buffer/passivation layer within the same deposition chamber and using the same material source.

  9. SiO2/TiO2 multi-layered thin films with self-cleaning and enhanced ...

    Indian Academy of Sciences (India)

    using a TEOS:EtOH:HCl:H2O in 1:8:3:0.5 volume ratio. The as-prepared SiO2 gel was then calcinated at 600 ... 0.25 g SiO2 powder in 50 ml ethanol:water (1:1 v/v), respec- tively, 0.05 g TiO2 powder in 50 ml ethanol. ... cleaned by ultra-sonication in alcohol and then dried using compressed air. The multi-layered thin films ...

  10. Fibromyalgia Is Correlated with Retinal Nerve Fiber Layer Thinning.

    Directory of Open Access Journals (Sweden)

    Elena Garcia-Martin

    Full Text Available To investigate whether fibromyalgia induces axonal damage in the optic nerve that can be detected using optical coherence tomography (OCT, as the retinal nerve fiber layer (RNFL is atrophied in patients with fibromyalgia compared with controls.Fibromyalgia patients (n = 116 and age-matched healthy controls (n = 144 were included in this observational and prospective cohort study. All subjects underwent visual acuity measurement and structural analysis of the RNFL using two OCT devices (Cirrus and Spectralis. Fibromyalgia patients were evaluated according to Giesecke's fibromyalgia subgroups, the Fibromyalgia Impact Questionnaire (FIQ, and the European Quality of Life-5 Dimensions (EQ5D scale. We compared the differences between fibromyalgia patients and controls, and analyzed the correlations between OCT measurements, disease duration, fibromyalgia subgroups, severity, and quality of life. The impact on quality of life in fibromyalgia subgroups and in patients with different disease severity was also analyzed.A significant decrease in the RNFL was detected in fibromyalgia patients compared with controls using the two OCT devices: Cirrus OCT ganglion cell layer analysis registered a significant decrease in the minimum thickness of the inner plexiform layer (74.99±16.63 vs 79.36±3.38 μm, respectively; p = 0.023, nasal inferior, temporal inferior and temporal superior sectors (p = 0.040; 0.011 and 0.046 respectively. The Glaucoma application of the Spectralis OCT revealed thinning in the nasal, temporal inferior and temporal superior sectors (p = 0.009, 0.006, and 0.002 respectively of fibromyalgia patients and the Axonal application in all sectors, except the nasal superior and temporal sectors. The odds ratio (OR to estimate the size effect of FM in RNFL thickness was 1.39. RNFL atrophy was detected in patients with FIQ scores <60 (patients in early disease stages compared with controls in the temporal inferior sector (78.74±17.75 vs 81.65±3

  11. A thin layer fiber-coupled luminescence dosimeter based on Al2O3:C

    DEFF Research Database (Denmark)

    Klein, F.A.; Greilich, Steffen; Andersen, Claus Erik

    2011-01-01

    In this paper we present a fiber-coupled luminescent Al2O3:C dosimeter probe with high spatial resolution (0.1 mm). It is based on thin layers of Al2O3:C crystal powder and a UV-cured acrylate monomer composition. The fabrication of the thin layers is described in detail. No influence of the intr......In this paper we present a fiber-coupled luminescent Al2O3:C dosimeter probe with high spatial resolution (0.1 mm). It is based on thin layers of Al2O3:C crystal powder and a UV-cured acrylate monomer composition. The fabrication of the thin layers is described in detail. No influence...

  12. Studies of void growth in a thin ductile layer between ceramics

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1997-01-01

    growth by a ductile mechanism along the thin layer. Plastic flow in the layer is highly constrained by the ceramics, so that a high. level of triaxial tension develops, leading in some cases to cavitation instabilities. The computations are continued to a state near the occurrence of void coalescence.......The growth of voids in a thin ductile layer between ceramics is analysed numerically, using an axisymmetric cell model to represent an array of uniformly distributed spherical voids at the central plane of the layer. The purpose is to determine the full traction-separation law relevant to crack...

  13. Thin layer model for nonlinear evolution of the Rayleigh-Taylor instability

    Science.gov (United States)

    Zhao, K. G.; Wang, L. F.; Xue, C.; Ye, W. H.; Wu, J. F.; Ding, Y. K.; Zhang, W. Y.

    2018-03-01

    On the basis of the thin layer approximation [Ott, Phys. Rev. Lett. 29, 1429 (1972)], a revised thin layer model for incompressible Rayleigh-Taylor instability has been developed to describe the deformation and nonlinear evolution of the perturbed interface. The differential equations for motion are obtained by analyzing the forces (the gravity and pressure difference) of fluid elements (i.e., Newton's second law). The positions of the perturbed interface are obtained from the numerical solution of the motion equations. For the case of vacuum on both sides of the layer, the positions of the upper and lower interfaces obtained from the revised thin layer approximation agree with that from the weakly nonlinear (WN) model of a finite-thickness fluid layer [Wang et al., Phys. Plasmas 21, 122710 (2014)]. For the case considering the fluids on both sides of the layer, the bubble-spike amplitude from the revised thin layer model agrees with that from the WN model [Wang et al., Phys. Plasmas 17, 052305 (2010)] and the expanded Layzer's theory [Goncharov, Phys. Rev. Lett. 88, 134502 (2002)] in the early nonlinear growth regime. Note that the revised thin layer model can be applied to investigate the perturbation growth at arbitrary Atwood numbers. In addition, the large deformation (the large perturbed amplitude and the arbitrary perturbed distributions) in the initial stage can also be described by the present model.

  14. Thin-layer chromatography of radioactively labelled cholesterol and precursors from biological material

    International Nuclear Information System (INIS)

    Pill, J.; Aufenanger, J.; Stegmeier, K.; Schmidt, F.H.; Mueller, D.; Boehringer Mannheim G.m.b.H.

    1987-01-01

    The investigation methods of the action of xenobiotics on sterol biosynthesis from 14 C-acetate in rat hepatocyte cultures can be developed, with regard to extraction using Extrelut and the separation of the sterol pattern by thin-layer chromatography, in such a way that they are suitable for wider application, e.g., screening. Good visualisation and recognition of changes in the sterol pattern are possible using autoradiography of the thin-layer chromatogram. (orig.)

  15. Thin boron phosphide coating as a corrosion-resistant layer

    Science.gov (United States)

    Not Available

    1982-08-25

    A surface prone to corrosion in corrosive environments is rendered anticorrosive by CVD growing a thin continuous film, e.g., having no detectable pinholes, thereon, of boron phosphide. In one embodiment, the film is semiconductive. In another aspect, the invention is an improved photoanode, and/or photoelectrochemical cell with a photoanode having a thin film of boron phosphide thereon rendering it anticorrosive, and providing it with unexpectedly improved photoresponsive properties.

  16. Crystallinity Improvement of ZnO Thin Film on Different Buffer Layers Grown by MBE

    Directory of Open Access Journals (Sweden)

    Shao-Ying Ting

    2012-01-01

    Full Text Available The material and optical properties of ZnO thin film samples grown on different buffer layers on sapphire substrates through a two-step temperature variation growth by molecular beam epitaxy were investigated. The thin buffer layer between the ZnO layer and the sapphire substrate decreased the lattice mismatch to achieve higher quality ZnO thin film growth. A GaN buffer layer slightly increased the quality of the ZnO thin film, but the threading dislocations still stretched along the c-axis of the GaN layer. The use of MgO as the buffer layer decreased the surface roughness of the ZnO thin film by 58.8% due to the suppression of surface cracks through strain transfer of the sample. From deep level emission and rocking curve measurements it was found that the threading dislocations play a more important role than oxygen vacancies for high-quality ZnO thin film growth.

  17. Phytochemical screening and thin layer chromatography of the ...

    African Journals Online (AJOL)

    Phytochemical constituents of the leaves of Khaya senegalensis (dry zone mahogany) were determined in petroleum ether, chloroform, acetone and ethanol extracts. The screening revealed the presence of flavonoids, carbohydrates, glycosides, saponins, tannins, alkaloids and anthraquinones. Saponins and cardiac ...

  18. Cross-Field Current Instabilities in Thin Ionization Layers and the Enhanced Aurora

    International Nuclear Information System (INIS)

    Johnson, Jay R.; Okuda, Hideo

    2008-01-01

    Nearly half of the time, auroral displays exhibit thin, bright layers known as 'enhanced aurora'. There is a substantial body of evidence that connects these displays with thin, dense, heavy ion layers in the E-region. Based on the spectral characteristics of the enhanced layers, it is believed that they result when wave-particle interaction heats ambient electrons to energies at or just above the 17 eV ionization energy of N2. While there are several possible instabilities that could produce suprathermal electrons in thin layers, there has been no clear theoretical investigation which examines in detail how wave instabilities in the thin ionization layers could develop and produce the suprathermal electrons. We examine instabilities which would occur in thin, dense, heavy ion layers using extensive analytical analysis combined with particle simulations. We analyze a cross field current instability that is found to be strongly unstable in the heavy ion layers. Electrostatic simulations show that substantial heating of the ambient electrons occurs with energization at or above the N2 ionization energy.

  19. Transparent thin-film transistor exploratory development via sequential layer deposition and thermal annealing

    International Nuclear Information System (INIS)

    Hong, David; Chiang, Hai Q.; Presley, Rick E.; Dehuff, Nicole L.; Bender, Jeffrey P.; Park, Cheol-Hee; Wager, John F.; Keszler, Douglas A.

    2006-01-01

    A novel deposition methodology is employed for exploratory development of a class of high-performance transparent thin-film transistor (TTFT) channel materials involving oxides composed of heavy-metal cations with (n - 1)d 10 ns 0 (n ≥ 4) electronic configurations. The method involves sequential radio-frequency sputter deposition of thin, single cation oxide layers and subsequent post-deposition annealing in order to obtain a multi-component oxide thin film. The viability of this rapid materials development methodology is demonstrated through the realization of high-performance TTFTs with channel layers composed of zinc oxide/tin oxide, and tin oxide/indium oxide

  20. Evaluation of yield and yield components of lamb’s lettuce (Valerianella locusta grown in thin layer soilless systems

    Directory of Open Access Journals (Sweden)

    DRAGAN ŽNIDARČIČ

    2016-01-01

    Full Text Available Abstract. Znidarcic D. 2016. Evaluation of yield and yield components of lamb’s lettuce (Valerianella locusta grown in thin layer soilless systems. Nusantara Bioscience 8: 89-93. Growth and development of lamb’s lettuce (Valerianella locusta L. have been studied on thin layer soilless systems in plastic greenhouse on the Laboratory field of Biotechnical Faculty, University of Ljubljana. The trial lasted from 23rd of February till 10th of March 2016. The experiment was included cultivar 'Ljubljanski'. Four different substrates have been used: expanded clay aggregate, perlite, vermiculite and peat. Seedlings were transplanted at distance of 10x10 cm. At the harvest the following parameters were measured: leaves fresh and dry yield, plant height, number of leaves per plant and the nitrate-N content in leaves. The overall effect of the type of substrate on lamb’s lettuce growth and yield in the present experiment suggests that the examined materials are suitable substrates for lamb’s lettuce soilless cultivation production. The outcomes of the research point to the fact that the lamb’s lettuce in perlite treatments brings greater fresh yields compared the other inert substrates. On the other hand peat produced higher leaf dry mass as compared to other substrates. A quantitative analysis of the nitrate-N content in leaves showed that the peat is the most effective substrate in terms of low plant nitrate concentration.

  1. Effect of operating conditions on thin layers of titanium posed on ...

    African Journals Online (AJOL)

    Effect of operating conditions on thin layers of titanium posed on steel 100C6 substrates with PVD method. ... Journal of Fundamental and Applied Sciences ... reaction between the two parts of the system which results the formation of carbides of Ti due to the diffusion of carbon from the substrate towards deposited layers.

  2. Copper(II) Schiff base complexes and their mixed thin layers with ...

    Indian Academy of Sciences (India)

    ning electron microscopy (SEM/EDS), atomic force microscopy (AFM) and fluorescence spectroscopy. For. Cu(II) layers the most intensive fluorescence bands due to intra-ligand transitions were observed between 462 and 503 nm. The fluorescence intensity of thin layers was corelated to the rotation speed. In the case of ...

  3. Thin TaC layer produced by ion mixing

    DEFF Research Database (Denmark)

    Barna, Árpád; Kotis, László; Pécz, Béla

    2012-01-01

    Ion-beam mixing in C/Ta layered systems was investigated. C 8nm/Ta 12nm and C 20nm/Ta 19nm/C 20nm layer systems were irradiated by Ga+ ions of energy in the range of 2–30keV. In case of the 8nm and 20nm thick C cover layers applying 5–8keV and 20–30keV Ga+ ion energy, respectively resulted...... in strongly asymmetric ion mixing; the carbon was readily transported to the Ta layer, while the reverse process was much weaker. Because of the asymmetrical transport the C/TaC interface remained sharp independently from the applied fluence. The carbon transported to the Ta layer formed Ta......Cx. The stoichiometry of the carbide produced varied along the depth. The TaCx layer contained implanted Ga, the concentration of which decreased with increasing depth. The thickness of the TaCx layer could be tailored by the ion fluence and energy making possible to produce coating layer of desired thickness....

  4. Deposition of metal chalcogenide thin films by successive ionic layer ...

    Indian Academy of Sciences (India)

    ) method, has emerged as one of the solution methods to deposit a variety of compound materials in thin film form. The SILAR method is inexpensive, simple and convenient for large area deposition. A variety of substrates such as insulators, ...

  5. Deposition of metal chalcogenide thin films by successive ionic layer

    Indian Academy of Sciences (India)

    ) method, has emerged as one of the solution methods to deposit a variety of compound materials in thin film form. The SILAR method is inexpensive, simple and convenient for large area deposition. A variety of substrates such as insulators, ...

  6. Microstructure and mechanical behavior of a shape memory Ni-Ti bi-layer thin film

    Energy Technology Data Exchange (ETDEWEB)

    Mohri, Maryam [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany); Nili-Ahmadabadi, Mahmoud, E-mail: nili@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, University of Tehran, Tehran (Iran, Islamic Republic of); Ivanisenko, Julia [Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany); Schwaiger, Ruth [Karlsruhe Institute of Technology, Institute for Applied Materials, 76021 Karlsruhe (Germany); Hahn, Horst; Chakravadhanula, Venkata Sai Kiran [Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany)

    2015-05-29

    Two different single-layers and a bi-layer Ni-Ti thin films with chemical compositions of Ni{sub 45}Ti{sub 50}Cu{sub 5}, Ni{sub 50.8}Ti{sub 49.2} and Ni{sub 50.8}Ti{sub 49.2}/Ni{sub 45}Ti{sub 50}Cu{sub 5} (numbers indicate at.%) determined by energy dispersive X-ray spectroscopy were deposited on Si (111) substrates using DC magnetron sputtering. The structures, surface morphology and transformation temperatures of annealed thin films at 500 °C for 15 min and 1 h were studied using grazing incidence X-ray diffraction, transmission electron microscopy (TEM), atomic force microscopy and differential scanning calorimetry (DSC), respectively. Nanoindentation was used to characterize the mechanical properties. The DSC and X-ray diffraction results indicated the austenitic structure of the Ni{sub 50.8}Ti{sub 49.2} and martensitic structure of the Ni{sub 45}Ti{sub 50}Cu{sub 5} thin films while the bi-layer was composed of austenitic and martensitic thin films. TEM study revealed that copper encourages crystallization in the bi-layer such that crystal structure containing nano-precipitates in the Ni{sub 45}Ti{sub 50}Cu{sub 5} layer was detected after 15 min annealing while the Ni{sub 50.8}Ti{sub 49.2} layer crystallized after 60 min at 500 °C. Furthermore, after annealing at 500 °C for 15 min, a precipitate free zone and thin layer amorphous were observed closely to the interface in the top layer. The bi-layer was completely crystallized at 500 °C for 1 h and the orientation of the Ni-rich precipitates indicated a stress gradient in the bi-layer. The bi-layer thin film showed different transformation temperatures and mechanical behavior from the single-layers. The developed bi-layer has different phase transformation temperatures, the higher temperatures of shape memory effect and lower temperature of pseudo-elastic behavior compared to the single-layers. Also, the bi-layer thin film exhibited a combined pseudo-elastic behavior and shape memory effect with a reduced

  7. Vibration analysis of thin-wall structures containing piezoactive layers

    International Nuclear Information System (INIS)

    Guz, I A; Kashtalyan, M; Zhuk, Y A

    2010-01-01

    A coupled dynamic problem of electro-mechanics for a layered beam is formulated based on the Kirchhoff-Love hypotheses. In the case of harmonic loading, a simplified formulation is given using the single frequency approximation and the concept of complex moduli. As an example, the problem of forced vibration of a three-layer sandwich beam (aluminium alloy core covered with piezoelectric layers) with hinged ends is solved in order to investigate the accuracy and applicability of the approximate monoharmonic approach. Different aspects of the beam response to the mechanical and electric excitation are studied.

  8. Comparison of Two Detection Methods in Thin Layer ...

    African Journals Online (AJOL)

    komla

    silver nitrate method, photosynthesis inhibition method and fungi spore inhibition method (Lowor, 2000). Of these detection methods, o-tolidine plus potassium iodide and ... The cartridge and its contents were dried for 15 min by a vacuum pump. The herbicide was then eluted with 10 μl of acetone to give the clean extracts.

  9. Evaluation of double-layer density modulated Si thin films as Li-ion battery anodes

    Science.gov (United States)

    Taha Demirkan, Muhammed; Yurukcu, Mesut; Dursun, Burcu; Demir-Cakan, Rezan; Karabacak, Tansel

    2017-10-01

    Double-layer density modulated silicon thin films which contain alternating low and high density Si film layers were fabricated by magnetron sputtering. Two different samples consisting of alternating layers of high-density/low-density and low-density/high-density Si thin film layers were investigated as anode electrodes in Li-ion batteries. Si thin film in which the terminating layer at the top is low density Si layer-quoted as low-density/high-density film (LD/HD)- exhibits better performance than Si thin film that has high density layer at the top, -quoted as high-density/low-density (HD/LD). A highly stabilized cycling performance with the specific charge capacities of 2000 mAh g‑1 at the 150th cycle at C/2 current density, and 1200 mAh g‑1 at the 240th cycle at 10 C current density were observed for the LD/HD Si anode in the presence of fluoroethylene carbonate (FEC) electrolyte additive.

  10. X-Ray Diffractometry of Thin Layers - Possibilities and Problems

    Directory of Open Access Journals (Sweden)

    Vladimir Zucha

    2005-01-01

    Full Text Available Efficieney of two deconvolution methods used in X-ray powder diffraction analysis is compared for thin films of Pd and Pt. The first method is the classical Stokes method and the second one is method of indirect deconvolution. But calculated integral breadth of Gauss and Cauchy components of Voigt function which describe the physical broadening are different. The analysis of the all found pheromones show that the method of indirect deconvolution gives more accurate results.

  11. Thin organic layers prepared by MAPLE for gas sensor application

    Czech Academy of Sciences Publication Activity Database

    Fryček, R.; Jelínek, Miroslav; Kocourek, Tomáš; Fitl, P.; Vrňata, M.; Myslík, , V.; Vrbová, M.

    2006-01-01

    Roč. 495, - (2006), s. 308-311 ISSN 0040-6090 R&D Projects: GA ČR GA104/03/0406 Grant - others:CTU projects(CZ) 6640770030 a 88/1 Institutional research plan: CEZ:AV0Z10100522 Keywords : PLD * MAPLE * sensor s * thin films Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.666, year: 2006

  12. Thin layer alanine dosimeter with optical spectrophotometric evaluation

    International Nuclear Information System (INIS)

    Zagorski, Z.P.

    2000-01-01

    Experience in the high dose dosimetry of gamma radiation, gathered in our group from the sixties till now, allows to express the opinion, that techniques applied are adequate to solve problems. It can be confirmed by the fact that 60% of laboratories participating in the international comparison during the duration of the contract obtained satisfactory results. Adaptation of these methods, in particular of the alanine-ESR dosimetry to highly inhomogeneous fields of EB gives poor results, as it has been shown on thin films of the alanine/polymer composite. However, the applications of these films give excellent results if the concentration of the radical CH 3 C·H CO 2 - is measured by diffuse reflection spectrophotometry, which tolerates poor transparency of the composite and is insensitive to the orientation of crystals of alanine in thin films, what is disqualifying the ESR measurements. The development of thin-film dosimeters for EB processing was possible due to new developments in solid state radiation chemistry. The research has revealed some unsolved questions, e.g. of the high temperature coefficient of alanine based dosimeters, of the role of the size of spurs and the necessity to adapt dosimetry to the energy spectrum of electrons, because every type of accelerators differs in that respect. (author)

  13. Thin-layer chromatography can resolve phosphotyrosine, phosphoserine, and phosphothreonine in a protein hydrolyzate

    International Nuclear Information System (INIS)

    Neufeld, E.; Goren, H.J.; Boland, D.

    1989-01-01

    A solution of propionic acid, 1 M ammonium hydroxide, and isopropyl alcohol (45/17.5/17.5, v/v) was the ascending solvent in the separation of phosphotyrosine, phosphothreonine, and phosphoserine by thin-layer chromatography. The immobile phase was cellulose. The relative migrations were 0.44, 0.38, and 0.2, respectively. A previously described thin-layer system consisting of isobutyric acid and 0.5 M ammonium hydroxide (50/30, v/v) gave very similar relative migrations. To determine the usefulness of thin-layer chromatography in phosphoamino acid analysis, the propionic acid/ammonium hydroxide/isopropyl alcohol solution was used to characterize phosphorylated residues in a plasma membrane protein which is a substrate for the insulin receptor kinase, in insulin receptor phosphorylated histone H2B, and in an in vivo phosphorylated 90000-Da protein from IM9 cells. 32 P-labeled proteins were separated by dodecyl sulfate-gel electrophoresis, digested with trypsin, and then hydrolyzed with 6 N HCl, 2 h, 110 degrees C. Following thin-layer chromatography of the hydrolyzates and autoradiography, phosphotyrosine was detected in insulin receptor substrates, and phosphoserine and phosphothreonine were found in the in vivo-phosphorylated protein. This study supports previous reports about the practicality of thin-layer chromatography in phosphoamino acid analysis and it demonstrates that a propionic acid, ammonium hydroxide, isoprophyl alcohol solution may be a useful ascending solvent mixture for this purpose

  14. Multi-layer adaptive thin shells for future space telescopes

    International Nuclear Information System (INIS)

    Bastaits, R; Preumont, A; Rodrigues, G; Jetteur, Ph; Hagedorn, P

    2012-01-01

    This paper examines the morphing capability of doubly curved elastic shells with various layers of active materials with strain actuation capability. The equivalent piezoelectric loads of an orthotropic multi-layer shell is established and it is demonstrated that a set of four active layers offer independent control of the in-plane forces and bending moments, which guarantees optimum morphing with arbitrary profile. This is illustrated by a numerical example which compares a unimorph configuration (single layer of active material) with a twin-bimorph (two pairs of symmetrical layers of active material with orthotropic properties). Numerical simulations indicate that the optical (Zernike) modes with shapes where the curvatures in orthogonal directions have opposite signs (e.g. astigmatism, trefoil, tetrafoil) are fairly easy to control with both configurations and that substantial amplitudes may be achieved. However, the optical modes with shapes where the curvatures in orthogonal directions have the same sign (e.g. defocus, coma, spherical aberration) are difficult to control with the unimorph configuration, and they lead to the appearance of slope discontinuities at the interface between the independent electrodes. As expected, a much better morphing is achieved with a twin-bimorph configuration. (paper)

  15. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure

    KAUST Repository

    Tiraferri, Alberto

    2011-02-01

    Osmotically driven membrane processes have the potential to treat impaired water sources, desalinate sea/brackish waters, and sustainably produce energy. The development of a membrane tailored for these processes is essential to advance the technology to the point that it is commercially viable. Here, a systematic investigation of the influence of thin-film composite membrane support layer structure on forward osmosis performance is conducted. The membranes consist of a selective polyamide active layer formed by interfacial polymerization on top of a polysulfone support layer fabricated by phase separation. By systematically varying the conditions used during the casting of the polysulfone layer, an array of support layers with differing structures was produced. The role that solvent quality, dope polymer concentration, fabric layer wetting, and casting blade gate height play in the support layer structure formation was investigated. Using a 1M NaCl draw solution and a deionized water feed, water fluxes ranging from 4 to 25Lm-2h-1 with consistently high salt rejection (>95.5%) were produced. The relationship between membrane structure and performance was analyzed. This study confirms the hypothesis that the optimal forward osmosis membrane consists of a mixed-structure support layer, where a thin sponge-like layer sits on top of highly porous macrovoids. Both the active layer transport properties and the support layer structural characteristics need to be optimized in order to fabricate a high performance forward osmosis membrane. © 2010 Elsevier B.V.

  16. Surface passivation investigation on ultra-thin atomic layer deposited aluminum oxide layers for their potential application to form tunnel layer passivated contacts

    Science.gov (United States)

    Xin, Zheng; Ling, Zhi Peng; Nandakumar, Naomi; Kaur, Gurleen; Ke, Cangming; Liao, Baochen; Aberle, Armin G.; Stangl, Rolf

    2017-08-01

    The surface passivation performance of atomic layer deposited ultra-thin aluminium oxide layers with different thickness in the tunnel layer regime, i.e., ranging from one atomic cycle (∼0.13 nm) to 11 atomic cycles (∼1.5 nm) on n-type silicon wafers is studied. The effect of thickness and thermal activation on passivation performance is investigated with corona-voltage metrology to measure the interface defect density D it(E) and the total interface charge Q tot. Furthermore, the bonding configuration variation of the AlO x films under various post-deposition thermal activation conditions is analyzed by Fourier transform infrared spectroscopy. Additionally, poly(3,4-ethylenedioxythiophene) poly(styrene sulfonate) is used as capping layer on ultra-thin AlO x tunneling layers to further reduce the surface recombination current density to values as low as 42 fA/cm2. This work is a useful reference for using ultra-thin ALD AlO x layers as tunnel layers in order to form hole selective passivated contacts for silicon solar cells.

  17. Barium strontium titanate (BST) thin film analysis on different layer and annealing temperature

    Science.gov (United States)

    Teh, Y. C.; Ong, N. R.; Sauli, Z.; Alcain, J. B.; Retnasamy, V.

    2017-09-01

    Barium Strontium Titanate (BST) thin film has been prepared by using sol-gel method. The samples are prepared with 2 different deposition layers (1 layer and 4 layer) and annealing temperature (600°C and 800°C) with Ba0.5Sr0.5TiO3 solution. Physical and electrical characterization of all the samples is done. The results showed that the grain size and surface roughness of the samples increased as the deposition layer and annealing temperature increased. In addition, the dielectric constant of the samples also increased as the deposition layer and annealing temperature increased. Thus, the physical and electrical characteristics of the thin films are related one to another.

  18. Crystallization study of amorphous sputtered NiTi bi-layer thin film

    Energy Technology Data Exchange (ETDEWEB)

    Mohri, Maryam, E-mail: mmohri@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany); Nili-Ahmadabadi, Mahmoud [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, University of Tehran, Tehran (Iran, Islamic Republic of); Chakravadhanula, Venkata Sai Kiran [Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany)

    2015-05-15

    The crystallization of Ni-rich/NiTiCu bi-layer thin film deposited by magnetron sputtering from two separate alloy targets was investigated. To achieve the shape memory effect, the NiTi thin films deposited at room temperature with amorphous structure were annealed at 773 K for 15, 30, and 60 min for crystallization. Characterization of the films was carried out by differential scanning calorimetry to indicate the crystallization temperature, grazing incidence X-ray diffraction to identify the phase structures, atomic force microscopy to evaluate surface morphology, scanning transmission electron microscopy to study the cross section of the thin films. The results show that the structure of the annealed thin films strongly depends on the temperature and time of the annealing. Crystalline grains nucleated first at the surface and then grew inward to form columnar grains. Furthermore, the crystallization behavior was markedly affected by composition variations. - Highlights: • A developed bi-layer Ni45TiCu5/Ni50.8Ti was deposited on Si substrate and crystallized. • During crystallization, The Ni{sub 45}TiCu{sub 5} layer is thermally less stable than the Ni-rich layer. • The activation energy is 302 and 464 kJ/mol for Cu-rich and Ni-rich layer in bi-layer, respectively.

  19. Effect of interface layer on growth behavior of atomic-layer-deposited Ir thin film as novel Cu diffusion barrier

    International Nuclear Information System (INIS)

    Choi, Bum Ho; Lee, Jong Ho; Lee, Hong Kee; Kim, Joo Hyung

    2011-01-01

    Growth and nucleation behavior of Ir films grown by atomic layer deposition (ALD) on different interfacial layers such as SiO 2 , surface-treated TaN, and 3-nm-thick TaN were investigated. To grow Ir thin film by ALD, (1,5-cyclooctadiene) (ethylcyclopentadienyl) iridium (Ir(EtCp)(COD)) and oxygen were employed as the metalorganic precursor and reactant, respectively. To obtain optimal deposition conditions, the deposition temperature was varied from 240 to 420 deg. C and the number of deposition cycles was changed from 150 to 300. The Ir film grown on the 3-nm-thick TaN surface showed the smoothest and most uniform layer for all the deposition cycles, whereas poor nucleation and three-dimensional island-type growth of the Ir layer were observed on Si, SiO 2 , and surface-treated TaN after fewer number of deposition cycles. The uniformity of the Ir film layer was maintained for all the different substrates up to 300 deposition cycles. Therefore we suggest that the growth behavior of the Ir layer on different interface layer is related to the chemical bonding pattern of the substrate film or interface layer, resulting in better understand the growth mechanism of Ir layer as a copper diffusion barrier. The ALD-grown Ir films show the preferential direction of (1 1 1) for all the reflections, which indicates the absence of IrO 2 in metallic Ir.

  20. Layer-by-layer modification of thin-film metal-semiconductor multilayers with ultrashort laser pulses

    Science.gov (United States)

    Romashevskiy, S. A.; Tsygankov, P. A.; Ashitkov, S. I.; Agranat, M. B.

    2018-05-01

    The surface modifications in a multilayer thin-film structure (50-nm alternating layers of Si and Al) induced by a single Gaussian-shaped femtosecond laser pulse (350 fs, 1028 nm) in the air are investigated by means of atomic-force microscopy (AFM), scanning electron microscopy (SEM), and optical microscopy (OM). Depending on the laser fluence, various modifications of nanometer-scale metal and semiconductor layers, including localized formation of silicon/aluminum nanofoams and layer-by-layer removal, are found. While the nanofoams with cell sizes in the range of tens to hundreds of nanometers are produced only in the two top layers, layer-by-layer removal is observed for the four top layers under single pulse irradiation. The 50-nm films of the multilayer structure are found to be separated at their interfaces, resulting in a selective removal of several top layers (up to 4) in the form of step-like (concentric) craters. The observed phenomenon is associated with a thermo-mechanical ablation mechanism that results in splitting off at film-film interface, where the adhesion force is less than the bulk strength of the used materials, revealing linear dependence of threshold fluences on the film thickness.

  1. Phytochemical analysis of ethanolic extract of Dichrostachys Cinerea W and Arn leaves by a thin layer chromatography, high performance thin layer chromatography and column chromatography

    OpenAIRE

    M Vijayalakshmi; K Periyanayagam; K Kavitha; K Akilandeshwari

    2013-01-01

    Background: The leaves of Dichrostachys cinerea are used as laxative, diuretic, painkiller. It is also used in the treatment of gonorrhoea, boils, oedema, gout, veneral diseases and nasopharyngeal affections, etc. Materials and Methods: The Phytochemical investigation of ethanolic extract of D. cinerea leaves were performed by standard chemical tests, thin layer chromatography (TLC) by using various solvent systems, and by high performance liquid chromatography (HPTLC). Two compounds were...

  2. Solution-processed In2S3 buffer layer for chalcopyrite thin film solar cells

    OpenAIRE

    Wang Lan; Lin Xianzhong; Ennaoui Ahmed; Wolf Christian; Lux-Steiner Martha Ch.; Klenk Reiner

    2016-01-01

    We report a route to deposit In2S3 thin films from air-stable, low-cost molecular precursor inks for Cd-free buffer layers in chalcopyrite-based thin film solar cells. Different precursor compositions and processing conditions were studied to define a reproducible and robust process. By adjusting the ink properties, this method can be applied in different printing and coating techniques. Here we report on two techniques, namely spin-coating ...

  3. Growth of α-sexithiophene nanostructures on C60 thin film layers

    DEFF Research Database (Denmark)

    Radziwon, Michal Jędrzej; Madsen, Morten; Balzer, Frank

    2014-01-01

    Organic molecular beam grown -sexithiophene (-6T) forms nanostructured thin films on buckminsterfullerene (C60) thin film layers. At substrate temperatures of 300K during growth a rough continuous film is observed, which develop to larger elongated islands and dendritic- as well as needle like ...... fluorescence polarimetry measurements the in-plane orientation of the crystalline sites within the needle like structures is determined. The polarimetry investigations strongly indicate that the needle like structures consist of lying molecules....

  4. Ion exchange of alkaline metals on the thin-layer zinc ferrocyanide

    International Nuclear Information System (INIS)

    Betenekov, N.D.; Buklanov, G.V.; Ipatova, E.G.; Korotkin, Yu.S.

    1991-01-01

    Basic regularities of interphase distribution in the system of thin-layer sorbent on the basis of mixed zinc ferrocyanide (FZ)-alkaline metal solution (Na, K, Rb, Cs, Fr) in the column chromatography made are studied. It is established that interphase distribution of microgram amounts of alkaline metals in the systems thin-layer FZ-NH 4 NO 3 electrolyte solutions is of ion-exchange character and subjected to of law effective mass. It is shown that FZ thin-layer material is applicable for effective chromatographic separation of alkaline metal trace amounts. An approach to the choice of a conditions of separate elution of Na, K, Rb, Cs, Fr in the column chromatography mode

  5. Sorption and movement of pesticides on thin layer plates of Brazilain soils

    International Nuclear Information System (INIS)

    Lord, K.A.; Helene, C.G.; Andrea, M.M. de; Ruegg, E.F.

    1979-01-01

    The sorption from aqueous solution, and movement in water on thin layers plates of 7 soils of 3 organochlorine, 2 organophosphorus and 1 carbamate insecticide was determined in the laboratory. Generally, all substances were sorbed most and moved least on soils richest in organic matter. However, sorption was not a function of organic matter content alone. Aldrin and DDT were most strongly sorbed and did not move from the point of application on the thin layer plates of any soil. On all 7 soils, carbaryl was the least strongly sorbed insecticide. On 5 soils, lindane, parathion and malathion were increasingly strongly sorbed, but on the other 2 soils lindane was mostly strongly sorbed. The apparent greater mobility of 14 C-labelled malathion on thin layers of soils repeatedly leached could be explained by the formation of more polar substances. (author) [pt

  6. Fabrication and superconducting properties of alternately-layered MgB2/Ni thin films with different Ni-layer spacing

    International Nuclear Information System (INIS)

    Tanaka, Akira; Doi, Toshiya; Iwasaki, Ikumi; Hakuraku, Yoshinori; Kitaguchi, Hitoshi; Takahashi, Kenichiro; Hata, Satoshi

    2009-01-01

    We will show the superconducting properties of alternately-layered MgB 2 /Ni thin films inserted as very thin (1 nm) nickel layers between MgB 2 layers a few tens of nanometers thick. The MgB 2 /Ni thin films were prepared on silicon (100) substrates by sequentially switching electron-beam evaporation and coaxial vacuum arc evaporation techniques without post-annealing. In this study, we prepared alternately layered MgB 2 /Ni thin films with varying Ni-layer spacings. The Ni layer spacings were set to 32, 23 and 16 nm, respectively. The MgB 2 /Ni thin films were neither inter-diffusion nor chemical reactions between MgB 2 and Ni. Clear enhancements of the J c were observed in the MgB 2 /Ni thin films when the magnetic fields were applied parallel to the inserted Ni layers, and the peak positions in the F p -B curves shifted to higher magnetic fields with the decrease of the Ni-layer spacing. These results clearly indicate that the Ni layers inserted in alternately-layered MgB 2 /Ni thin films work as very effective flux-pinning centers. (author)

  7. Enhanced electrical properties of oxide semiconductor thin-film transistors with high conductivity thin layer insertion for the channel region

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Cam Phu Thi; Raja, Jayapal; Kim, Sunbo; Jang, Kyungsoo; Le, Anh Huy Tuan; Lee, Youn-Jung; Yi, Junsin, E-mail: junsin@skku.edu

    2017-02-28

    Highlights: • The characteristics of thin film transistors using double active layers are examined. • Electrical characteristics have been improved for the double active layers devices. • The total trap density can be decreased by insert-ion of ultrathin ITO film. - Abstract: This study examined the performance and the stability of indium tin zinc oxide (ITZO) thin film transistors (TFTs) by inserting an ultra-thin indium tin oxide (ITO) layer at the active/insulator interface. The electrical properties of the double channel device (ITO thickness of 5 nm) were improved in comparison with the single channel ITZO or ITO devices. The TFT characteristics of the device with an ITO thickness of less than 5 nm were degraded due to the formation of an island-like morphology and the carriers scattering at the active/insulator interface. The 5 nm-thick ITO inserted ITZO TFTs (optimal condition) exhibited a superior field effect mobility (∼95 cm{sup 2}/V·s) compared with the ITZO-only TFTs (∼34 cm{sup 2}/V·s). The best characteristics of the TFT devices with double channel layer are due to the lowest surface roughness (0.14 nm) and contact angle (50.1°) that result in the highest hydrophicility, and the most effective adhesion at the surface. Furthermore, the threshold voltage shifts for the ITO/ITZO double layer device decreased to 0.80 and −2.39 V compared with 6.10 and −6.79 V (for the ITZO only device) under positive and negative bias stress, respectively. The falling rates of E{sub A} were 0.38 eV/V and 0.54 eV/V for the ITZO and ITO/ITZO bi-layer devices, respectively. The faster falling rate of the double channel devices suggests that the trap density, including interface trap and semiconductor bulk trap, can be decreased by the ion insertion of a very thin ITO film into the ITZO/SiO{sub 2} reference device. These results demonstrate that the double active layer TFT can potentially be applied to the flat panel display.

  8. Mesoscopic layered structure in conducting polymer thin film fabricated by potential-programmed electropolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Fujitsuka, Mamoru (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Nakahara, Reiko (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Iyoda, Tomokazu (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Shimidzu, Takeo (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Tomita, Shigehisa (Toray Research Center Co., Ltd., Shiga (Japan)); Hatano, Yayoi (Toray Research Center Co., Ltd., Shiga (Japan)); Soeda, Fusami (Toray Research Center Co., Ltd., Shiga (Japan)); Ishitani, Akira (Toray Research Center Co., Ltd., Shiga (Japan)); Tsuchiya, Hajime (Nitto Technical Information Center Co., Ltd., Shimohozumi Ibaraki, Osaka (Japan)); Ohtani, Akira (Central Research Lab., Nitto Denko Co., Ltd., Shimohozumi Ibaraki, Osaka (Japan))

    1992-11-01

    Mesoscopic layered structures in conducting polymer thin films are fabricated by the potential-programmed electropolymerization method. High lateral quality in the layered structure is realized by the improvement of polymerization conditions, i.e., a mixture of pyrrole and bithiophene as monomers, a silicon single-crystal wafer as a working electrode and propylene carbonate as a solvent. SIMS depth profiling of the resulting layered films indicates a significant linear correlation between the electric charge passed and the thickness of the individual layers on a 100 A scale. (orig.)

  9. Thin Film Catalyst Layers for Direct Methanol Fuel Cells

    Science.gov (United States)

    Witham, C. K.; Chun, W.; Ruiz, R.; Valdez, T. I.; Narayanan, S. R.

    2000-01-01

    One of the primary obstacles to the widespread use of the direct methanol fuel cell (DMFC) is the high cost of the catalyst. Therefore, reducing the catalyst loading well below the current level of 8-12 mg/cm 2 would be important to commercialization. The current methods for preparation of catalyst layers consisting of catalyst, ionomer and sometimes a hydrophobic additive are applied by either painting, spraying, decal transfer or screen printing processes. Sputter deposition is a coating technique widely used in manufacturing and therefore particularly attractive. In this study we have begun to explore sputtering as a method for catalyst deposition. Present experiments focus on Pt-Ru catalyst layers for the anode.

  10. Soliton-like defects in nematic liquid crystal thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Chuvyrov, A. N.; Krekhov, A. P.; Lebedev, Yu. A., E-mail: lebedev@anrb.ru; Timirov, Yu. I. [Russian Academy of Sciences, Institute of Molecule and Crystal Physics, Ufa Research Center (Russian Federation)

    2016-11-15

    The nonsingular soliton-like defects in plane nematic liquid crystal (NLC) layers and spherical NLC drops are experimentally detected and studied when the interaction of NLC molecules with a bounding surface is varied. The dynamics and the annihilation of nonsingular defects of opposite signs on a plane surface are investigated. Periodic transformations of the soliton-like defects in NLC drops in an electric field are detected. The theory of elasticity is used to show that the surface energy taken into account in the total free energy of NLC in the case of weak anchoring leads to the possibility of nonsingular solutions of a director equilibrium equation. The calculated pictures of director distribution in a plane NLC layer and in a spherical NLC drop characterized by weak surface anchoring agree well with the results of polarized light optical observations.

  11. Monolithic growth of partly cured polydimethylsiloxane thin film layers

    DEFF Research Database (Denmark)

    Yu, Liyun; Skov, Anne Ladegaard

    2014-01-01

    at different curing times. The monolithic films are investigated by rheology, scanning electron microscope, mechanical testing, dielectric relaxation spectroscopy, thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The morphology, mechanical and dielectric properties, as well...... to enable interlayer crosslinking reactions either by application of an adhesion promoter or by ensuring that there are reactive, complementary sites available on the two surfaces. Polydimethylsiloxane (PDMS) is a widely used polymer for DEAPs. In this work, two-layered PDMS films are adhered together...... as thermal stabilities of the bilayer elastomer films are observed to change with the curing time of the monolayers before lamination. The objective of this work is to create adhesion of two layers without destroying the original viscoelastic properties of the PDMS films, and hence enable, for example...

  12. Ultraviolet laser deposition of graphene thin films without catalytic layers

    KAUST Repository

    Sarath Kumar, S. R.

    2013-01-09

    In this letter, the formation of nanostructured graphene by ultraviolet laser ablation of a highly ordered pyrolytic graphite target under optimized conditions is demonstrated, without a catalytic layer, and a model for the growth process is proposed. Previously, graphene film deposition by low-energy laser (2.3 eV) was explained by photo-thermal models, which implied that graphene films cannot be deposited by laser energies higher than the C-C bond energy in highly ordered pyrolytic graphite (3.7 eV). Here, we show that nanostructured graphene films can in fact be deposited using ultraviolet laser (5 eV) directly over different substrates, without a catalytic layer. The formation of graphene is explained by bond-breaking assisted by photoelectronic excitation leading to formation of carbon clusters at the target and annealing out of defects at the substrate.

  13. High-performance thin layer chromatography to assess pharmaceutical product quality.

    Science.gov (United States)

    Kaale, Eliangiringa; Manyanga, Vicky; Makori, Narsis; Jenkins, David; Michael Hope, Samuel; Layloff, Thomas

    2014-06-01

    To assess the sustainability, robustness and economic advantages of high-performance thin layer chromatography (HPTLC) for quality control of pharmaceutical products. We compared three laboratories where three lots of cotrimoxazole tablets were assessed using different techniques for quantifying the active ingredient. The average assay relative standard deviation for the three lots was 1.2 with a range of 0.65-2.0. High-performance thin layer chromatography assessments are yielding valid results suitable for assessing product quality. The local pharmaceutical manufacturer had evolved the capacity to produce very high quality products. © 2014 John Wiley & Sons Ltd.

  14. Photocatalytic Water Treatment on TiO2 Thin Layers.

    Czech Academy of Sciences Publication Activity Database

    Šolcová, Olga; Spáčilová, L.; Maléterová, Ywetta; Morozová, Magdalena; Ezechiáš, Martin; Křesinová, Zdena

    2016-01-01

    Roč. 57, č. 25 (2016), s. 11631-11638 ISSN 1944-3994. [International Conference on Protection and Restoration of the Environment /12./. Skiathos Island, 29.06.2014-03.07.2014] R&D Projects: GA TA ČR TA01020804 Institutional support: RVO:67985858 ; RVO:61388971 Keywords : water purification * endocrine disruptor * photocatalytic * TiO2 layers Subject RIV: CI - Industrial Chemistry, Chemical Engineering; EE - Microbiology, Virology (MBU-M) Impact factor: 1.631, year: 2016

  15. Spotting 2D atomic layers on aluminum nitride thin films.

    Science.gov (United States)

    Chandrasekar, Hareesh; Bharadwaj B, Krishna; Vaidyuala, Kranthi Kumar; Suran, Swathi; Bhat, Navakanta; Varma, Manoj; Srinivasan Raghavan

    2015-10-23

    Substrates for 2D materials are important for tailoring their fundamental properties and realizing device applications. Aluminum nitride (AIN) films on silicon are promising large-area substrates for such devices in view of their high surface phonon energies and reasonably large dielectric constants. In this paper epitaxial layers of AlN on 2″ Si wafers have been investigated as a necessary first step to realize devices from exfoliated or transferred atomic layers. Significant thickness dependent contrast enhancements are both predicted and observed for monolayers of graphene and MoS2 on AlN films as compared to the conventional SiO2 films on silicon, with calculated contrast values approaching 100% for graphene on AlN as compared to 8% for SiO2 at normal incidences. Quantitative estimates of experimentally measured contrast using reflectance spectroscopy show very good agreement with calculated values. Transistors of monolayer graphene on AlN films are demonstrated, indicating the feasibility of complete device fabrication on the identified layers.

  16. Evolution of Akaganeite in Rust Layers Formed on Steel Submitted to Wet/Dry Cyclic Tests

    Directory of Open Access Journals (Sweden)

    Haigang Xiao

    2017-11-01

    Full Text Available The evolution of akaganeite in rust layers strongly impacts the atmospheric corrosion behavior of steel during long-term exposure; however, the factors affecting the evolution of akaganeite and its mechanism of formation are vague. In this work, wet-dry cyclic corrosion tests were conducted to simulate long-term exposure. Quantitative X-ray diffraction analysis was employed to analyze variations in the relative amounts of akaganeite; scanning electron microscopy and electron probe microanalysis were used to study the migration of relevant elements in the rust layer, which could help elucidate the mechanism of akaganeite evolution. The results indicate that the fraction of akaganeite tends to decrease as the corrosion process proceeded, which is a result of the decrease in the amount of soluble chloride available and the ability of the thick rust layer to block the migration of relevant ions. This work also explores the location of akaganeite formation within the rust layer.

  17. Surface analysis of topmost layer of epitaxial layered oxide thin film: Application to delafossite oxide for oxygen evolution reaction

    Science.gov (United States)

    Toyoda, Kenji; Adachi, Hideaki; Miyata, Nobuhiro; Hinogami, Reiko; Orikasa, Yuki; Uchimoto, Yoshiharu

    2018-02-01

    Delafossite oxides (ABO2) have a layered structure with alternating layers of A and B elements, the topmost layer of which appears to determine their performance, such as the oxygen evolution reaction (OER) activity. In this study, we investigated the topmost layer of single-domain (0 0 1)-oriented AgCoO2 epitaxial thin film for potential use as an OER catalyst. The thin film was confirmed to possess OER activity at a level comparable to the catalyst in powder form. Atomic scattering spectroscopy revealed the topmost layer to be composed of CoO6 octahedra. In situ X-ray absorption spectroscopy showed that the oxidation of Co at the surface did not change under different potentials, which suggests that there is no valence fluctuation of Co in the stable CoO6 octahedral structure. However, the oxidation number of Co at the surface was lower than that in the bulk. Our density functional theoretical calculations also showed the Co atoms at the surface to have a slightly higher electron occupancy than those in the bulk, and suggests that the unoccupied t2g states of Co at the surface have an influence on OER activity.

  18. Analysis of layer-by-layer thin-film oxide growth using RHEED and Atomic Force Microscopy

    Science.gov (United States)

    Adler, Eli; Sullivan, M. C.; Gutierrez-Llorente, Araceli; Joress, H.; Woll, A.; Brock, J. D.

    2015-03-01

    Reflection high energy electron diffraction (RHEED) is commonly used as an in situ analysis tool for layer-by-layer thin-film growth. Atomic force microscopy is an equally common ex situ tool for analysis of the film surface, providing visual evidence of the surface morphology. During growth, the RHEED intensity oscillates as the film surface changes in roughness. It is often assumed that the maxima of the RHEED oscillations signify a complete layer, however, the oscillations in oxide systems can be misleading. Thus, using only the RHEED maxima is insufficient. X-ray reflectivity can also be used to analyze growth, as the intensity oscillates in phase with the smoothness of the surface. Using x-ray reflectivity to determine the thin film layer deposition, we grew three films where the x-ray and RHEED oscillations were nearly exactly out of phase and halted deposition at different points in the growth. Pre-growth and post-growth AFM images emphasize the fact that the maxima in RHEED are not a justification for determining layer completion. Work conducted at the Cornell High Energy Synchrotron Source (CHESS) supported by NSF Awards DMR-1332208 and DMR-0936384 and the Cornell Center for Materials Research Shared Facilities are supported through DMR-1120296.

  19. The Amazon Boundary Layer Experiment (ABLE 2A) - Dry season 1985

    Science.gov (United States)

    Harriss, R. C.; Browell, E. V.; Hoell, J. M., Jr.; Bendura, R. J.; Beck, S. M.; Wofsy, S. C.; Mcneal, R. J.; Navarro, R. L.; Riley, J. T.; Snell, R. L.

    1988-01-01

    The Amazon Boundary Layer Experiment (ABLE 2A) used data from aircraft, ground-based, and satellite platforms to characterize the chemistry and dynamics of the lower atmosphere over the Amazon Basin during the early-to-middle dry season, July and August 1985. This paper reports the conceptual framework and experimental approach used in ABLE 2A and serves as an introduction to the detailed papers which follow in this issue. The results of ABLE 2A demonstrate that isoprene, methane, carbon dioxide, nitric oxide, dimethylsulfide, and organic aerosol emissions from soils and vegetation play a major role in determining the chemical composition of the atmospheric mixed layer over undisturbed forest and wetland environments. As the dry season progresses, emissions from both local and distant biomass burning become an important source of carbon monoxide, nitric oxide and ozone in the atmosphere over the central Amazon Basin.

  20. Dry-Transfer of Aligned Multi walled Carbon Nano tubes for Flexible Transparent Thin Films

    International Nuclear Information System (INIS)

    Cole, M.; Ying, K.; Zhang, Y.; Ferrari, A.; Hiralal, P.; Chi, L.; Milne, W.; Teo, K.

    2012-01-01

    Herein we present an inexpensive facile wet-chemistry-free approach to the transfer of chemical vapour-deposited multi walled carbon nano tubes to flexible transparent polymer substrates in a single-step process. By controlling the nano tube length, we demonstrate accurate control over the electrical conductivity and optical transparency of the transferred thin films. Uniaxial strains of up to 140% induced only minor reductions in sample conductivity, opening up a number of applications in stretchable electronics. Nano tube alignment offers enhanced functionality for applications such as polarisation selective electrodes and flexible super capacitor substrates. A capacitance of 17 F/g was determined for super capacitors fabricated from the reported dry-transferred MWCNTs with the corresponding cyclic volta grams showing a clear dependence on nano tube length.

  1. Squeezing molecularly thin alkane lubrication films: Layering transistions and wear

    DEFF Research Database (Denmark)

    Sivebæk, Ion Marius; Samoilov, V. N.; Persson, B. N. J.

    2004-01-01

    The properties of alkane lubricants confined between two approaching solids are investigated by a model that accounts for the curvature and the elastic properties of the solid surfaces. We consider linear alkane molecules of different chain lengths, C(3)H(8); C(4)H(10); C(8)H(18); C(9)H(20); C(10)H......(22); C(12)H(26), and C(14)H(30) confined between smooth gold surfaces. We observe well-defined molecular layers develop in the lubricant film when the width of the film is of the order of a few atomic diameters. An external squeezing-pressure induces discontinuous changes in the number n of lubricant...

  2. Thinning of the ozone layer: Facts and consequences

    Energy Technology Data Exchange (ETDEWEB)

    Coldiron, B.M. (Univ. of Illinois, Chicago (United States))

    1992-11-01

    The ozone layer is showing small but definite signs of depletion. Despite this, significantly increased UV radiation transmission at ground level has been found only in the Antarctic and Arctic regions. The potential for increased transmission of UV radiation will exist for the next several hundred years. Although little damage from increased UV radiation has occurred so far, the potential for long-term problems is great. The natural history of ozone and the causes and consequences of, and possible solutions to ozone depletion are examined in this article. 36 refs.

  3. Investigation of vanadium and nitride alloys thin layers deposited by PVD

    Directory of Open Access Journals (Sweden)

    Nouveau C.

    2012-06-01

    Full Text Available In this work we present the technique of magnetron vapor deposition and the effect of several deposition parameters on the structural and morphological properties of prepared thin films. It was noted that the deposition time has an effect on the crystallinity, mechanical properties such as residual stress, roughness surface and the layer composition from target products. Studies were carried out on layers of vanadium (V and the nitride vanadium (VN.

  4. Simple thin layer chromatography (TLC) methods for the separation of catechins from fresh tea leaves

    International Nuclear Information System (INIS)

    Wanyoko, J.K.; Munavu, R.M.

    1985-01-01

    Techniques for separating seven catechins on two adsorbents on thin layer chromatography(TLC) layers were investigated. One of the TLC methods used was fast and gave good resolution of the catechins. Both methods showed that the Rfs of one group of the catechins were related to their structural variations. Thus the methods could be used for the tentative identification of catechins in tea as well as in routine screening of catechins in other plants. (author)

  5. Layer-by-layer thinning of MoSe{sub 2} by soft and reactive plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Sha, Yunfei [Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122 (China); Xiao, Shaoqing, E-mail: larring0078@hotmail.com [Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122 (China); Zhang, Xiumei [Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122 (China); Qin, Fang [Analysis & Testing Center, Jiangnan University, Wuxi 214122 (China); Gu, Xiaofeng, E-mail: xfgu@jiangnan.edu.cn [Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122 (China)

    2017-07-31

    Highlights: • Soft plasma etching technique using SF{sub 6} + N{sub 2} as precursors for layer-by-layer thinning of MoSe{sub 2} was adopted in this work. • Optical microscopy, Raman, photoluminescence and atomic force microscopy measurements were used to confirm the thickness change. • Layer-dependent vibrational and photoluminescence spectra of the etched MoSe{sub 2} were also demonstrated. • Equal numbers of MoSe{sub 2} layers can be removed uniformly without affecting the underlying SiO{sub 2} substrate and the remaining MoSe{sub 2} layers. - Abstract: Two-dimensional (2D) transition metal dichalcogenides (TMDs) like molybdenum diselenide (MoSe{sub 2}) have recently gained considerable interest since their properties are complementary to those of graphene. Unlike gapless graphene, the band structure of MoSe{sub 2} can be changed from the indirect band gap to the direct band gap when MoSe{sub 2} changed from bulk material to monolayer. This transition from multilayer to monolayer requires atomic-layer-precision thining of thick MoSe{sub 2} layers without damaging the remaining layers. Here, we present atomic-layer-precision thinning of MoSe{sub 2} nanaosheets down to monolayer by using SF{sub 6} + N{sub 2} plasmas, which has been demonstrated to be soft, selective and high-throughput. Optical microscopy, atomic force microscopy, Raman and photoluminescence spectra suggest that equal numbers of MoSe{sub 2} layers can be removed uniformly regardless of their initial thickness, without affecting the underlying SiO{sub 2} substrate and the remaining MoSe{sub 2} layers. By adjusting the etching rates we can achieve complete MoSe{sub 2} removal and any disired number of MoSe{sub 2} layers including monolayer. This soft plasma etching method is highly reliable and compatible with the semiconductor manufacturing processes, thereby holding great promise for various 2D materials and TMD-based devices.

  6. Thin hydroxyapatite surface layers on titanium produced by ion implantation

    CERN Document Server

    Baumann, H; Bilger, G; Jones, D; Symietz, I

    2002-01-01

    In medicine metallic implants are widely used as hip replacement protheses or artificial teeth. The biocompatibility is in all cases the most important requirement. Hydroxyapatite (HAp) is frequently used as coating on metallic implants because of its high acceptance by the human body. In this paper a process is described by which a HAp surface layer is produced by ion implantation with a continuous transition to the bulk material. Calcium and phosphorus ions are successively implanted into titanium under different vacuum conditions by backfilling oxygen into the implantation chamber. Afterwards the implanted samples are thermally treated. The elemental composition inside the implanted region was determined by nuclear analysis methods as (alpha,alpha) backscattering and the resonant nuclear reaction sup 1 H( sup 1 sup 5 N,alpha gamma) sup 1 sup 2 C. The results of X-ray photoelectron spectroscopy indicate the formation of HAp. In addition a first biocompatibility test was performed to compare the growing of m...

  7. Analysis and Identification of Acid-Base Indicator Dyes by Thin-Layer Chromatography

    Science.gov (United States)

    Clark, Daniel D.

    2007-01-01

    Thin-layer chromatography (TLC) is a very simple and effective technique that is used by chemists by different purposes, including the monitoring of the progress of a reaction. TLC can also be easily used for the analysis and identification of various acid-base indicator dyes.

  8. Thin-Layer Chromatography/Desorption Atmospheric Pressure Photoionization Orbitrap Mass Spectrometry of Lipids

    Czech Academy of Sciences Publication Activity Database

    Rejšek, Jan; Vrkoslav, Vladimír; Vaikkinen, A.; Haapala, M.; Kauppila, T. J.; Kostiainen, R.; Cvačka, Josef

    2016-01-01

    Roč. 88, č. 24 (2016), s. 12279-12286 ISSN 0003-2700 R&D Projects: GA ČR GAP206/12/0750 Institutional support: RVO:61388963 Keywords : desorption atmospheric pressure photoionization * thin - layer chromatography * lipids Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 6.320, year: 2016

  9. Interaction between cholesterol and non-ionic surfactants studied by thin-layer chromatography

    Czech Academy of Sciences Publication Activity Database

    Forgács, E.; Cserháti, T.; Farkas, O.; Eckhardt, Adam; Mikšík, Ivan; Deyl, Zdeněk

    2004-01-01

    Roč. 27, č. 13 (2004), s. 1981-1992 ISSN 1082-6076 Grant - others:CZ-HU(CZ) Cooperation program Institutional research plan: CEZ:AV0Z5011922 Keywords : cholesterol * non-ionic surfactant * thin - layer chromatography Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.836, year: 2004

  10. Application of RF correction in thin-layer chromatography by means of two reference RF values

    NARCIS (Netherlands)

    Dhont, J.H.; Vinkenborg, C.; Compaan, H.; Ritter, F.J.; Labadie, R.P.; Verweij, A.; Zeeuw, R.A. de

    1972-01-01

    Results of the inter-laboratory experiment described in this paper show that the GALANOS AND KAPOULAS equation can be applied satisfactorily to correct RF values obtained on thin-layer chromatograms in a polar multi-component solvent. Addition of Kieselguhr to the silica gel gives RFc values

  11. Identification of common horsetail (Equisetum arvense L.; Equisetaceae) using Thin Layer Chromatography versus DNA barcoding

    DEFF Research Database (Denmark)

    Saslis Lagoudakis, Haris; Bruun-Lund, Sam; Iwanycki, Natalie Eva

    2015-01-01

    : a Thin Layer Chromatography approach (TLC-test) included in the European Pharmacopoeia and a DNA barcoding approach, used in recent years to identify material in herbal products. We test the potential of these methods for distinguishing and identifying these species using material from herbarium...

  12. Thin-Film layers with Interfaces that reduce RF Losses on High-Resistivity Silicon Substrates

    NARCIS (Netherlands)

    Evseev, S. B.; Milosavljevic, S.; Nanver, L. K.

    2017-01-01

    Radio-Frequency (RF) losses on High-Resistivity Silicon (HRS) substrates were studied for several different surface passivation layers comprising thin-films of SiC, SiN and SiO2 In many combinations, losses from conductive surface channels were reduced and increasing the number of interfaces between

  13. A Simple and Inexpensive Capillary Holder for Thin-Layer Chromatography

    Science.gov (United States)

    Pintea, Beniamin-Nicolae V.

    2011-01-01

    Thin-layer chromatography (TLC) is a widely used method of qualitative analysis in organic synthesis, as it uniquely combines low cost, rapidity, simplicity, versatility, small quantities of sample and low detection limits. The simplest and most economical method for the application of samples onto TLC plates is by hand, using glass capillaries.…

  14. Thin-layer scanner with a dot printer recorder for radiolabelled compounds

    International Nuclear Information System (INIS)

    Kralova, M.; Kysela, F.; Hradil, Z.

    1982-01-01

    A scanner combined with a matrix printer is described for automatic evaluation of thin-layer radiochromatographs of soft beta emitters such as 3 H, 14 C, and 32 P. Details of the device including block schemes and electrical schemes are given

  15. Simple Identification of the Neutral Chlorinated Auxin in Pea by Thin Layer Chromatography

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1980-01-01

    One of the neutral chlorinated auxins of immature pea seeds was readily identified by thin layer procedures simple enough to serve in student's laboratory courses. 4-Chloroindole-3-acetic acid methyl ester was extracted from 50 g of commercial, frozen peas by either water or acetone, concentrated...

  16. Power factor of very thin thermoelectric layers of different thickness prepared by laser ablation

    Czech Academy of Sciences Publication Activity Database

    Zeipl, Radek; Walachová, Jarmila; Pavelka, Martin; Jelínek, Miroslav; Studnička, Václav; Kocourek, Tomáš

    2008-01-01

    Roč. 93, č. 3 (2008), 663-667 ISSN 0947-8396 Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z20670512; CEZ:AV0Z10100522 Keywords : thermoelectric layers * thin films * PLD * power factor * BiTe Subject RIV: BH - Optics, Masers, Laser s Impact factor: 1.884, year: 2008

  17. Segmentation of thin corrugated layers in high-resolution OCT images

    NARCIS (Netherlands)

    Callewaert, T.W.J.; Dik, J.; Kalkman, J.

    2017-01-01

    In this paper we present a novel method for the segmentation of thin corrugated layers in high resolution optical coherence tomography (OCT) images. First, we make an initial segmentation, for example with graph based segmentation that, for highly corrugated interfaces, leads to many segmentation

  18. The distribution of Alexander polynomials of knots confined to a thin layer

    NARCIS (Netherlands)

    Michels, J.P.J.; Wiegel, F.W.

    1990-01-01

    Numerical hammagraphy is used to determine the statistical distribution of knots which are confined to a thin layer. The statistics used are based on more than 2*106 knots. Among various striking features is a marked regularity in the occurrence of the prime knots.

  19. Photoinduced energy and charge transfer in layered porphyrin-gold nanoparticle thin films

    NARCIS (Netherlands)

    Kotiaho, Anne; Lahtinen, Riikka; Lehtivuori, Heli; Tkachenko, Nikolai V.; Lemmetyinen, Helge

    2008-01-01

    In thin films of porphyrin (H2P) and gold nanoparticles (AuNPs), photoexcitation of porphyrins leads to energy and charge transfer to the gold nanoparticles. Alternating layers of porphyrins and octanethiol protected gold nanoparticles (dcore ∼3 nm) were deposited on solid substrates via the

  20. Phospholipids, Dietary Supplements, and Chicken Eggs: An Inquiry-Based Exercise Using Thin-Layer Chromatography

    Science.gov (United States)

    Potteiger, Sara E.; Belanger, Julie M.

    2015-01-01

    This inquiry-based experiment is designed for organic or biochemistry undergraduate students to deduce the identity of phospholipids extracted from chicken eggs and dietary supplements. This is achieved using thin-layer chromatography (TLC) data, a series of guided questions of increasing complexity, and provided relative retention factor (Rf)…

  1. Photonic effects on the fluorescence lifetimes of dyes in thin PVA layers

    NARCIS (Netherlands)

    Prangsma, Jord C.; Molenaar, Robert; Subramaniam, Vinod; Blum, Christian

    2015-01-01

    In this paper we investigate the expected change in fluorescent decay rate when a fluorophore in aqueous solution is moved to a thin spin-coated layer of poly(vinyl alcohol). We take into account the local field effect due to the change in the refractive index of the medium around the fluorophore

  2. Normal and Reversed-Phase Thin Layer Chromatography of Green Leaf Extracts

    Science.gov (United States)

    Sjursnes, Birte Johanne; Kvittingen, Lise; Schmid, Rudolf

    2015-01-01

    Introductory experiments of chromatography are often conducted by separating colored samples, such as inks, dyes, and plant extracts, using filter paper, chalk, or thin layer chromatography (TLC) plates with various solvent systems. Many simple experiments have been reported. The relationship between normal chromatography and reversed-phase…

  3. Purification of 3H-dihydroalprenolol by two dimensional thin layer chromatography

    International Nuclear Information System (INIS)

    Smisterova, J.; Soltes, L.; Kallay, Z.

    1989-01-01

    A two dimensional thin-layer chromatographic method was developed for the purification and analysis of (-)-[ 3 H]dihydroalprenolol by using an acidic mobile phase (butanol/water/acetic acid 25:10:4, v/v) in one direction and a basic eluent (chloroform/acetone/triethylamine 50:40:10, v/v) in another direction. (author)

  4. Possible artefacts in thin layer chromatography of tritium-labelled hydrocortisone

    International Nuclear Information System (INIS)

    Sofronie, E.

    1982-12-01

    Artefacts appearing in thin layer chromatography of tritium labelled hydrocortisone are reported. Evidences are presented that these artefacts cause misleading results concerning radiocheemical purity determiniation. Finally, it is reported a rapid and efficient chromatographic technique allowing the elimination of these artefacts and obtaining of an accurate value for radiochemical purity. (author)

  5. Fabrication and research of high purity germanium detectors with abrupt and thin diffusion layer

    International Nuclear Information System (INIS)

    Rodriguez Cabal, A. E.; Diaz Garcia, A.

    1997-01-01

    A different high purity germanium detector's fabrication method is described. A very thin diffusion film with an abrupt change of the type of conductivity is obtained. The fine diffusion layer thickness makes possibly their utilization in experimental systems in which all the data are elaborated directly on the computer. (author) [es

  6. OPTICAL DETERMINATION OF SMECTIC A LAYER SPACING IN FREELY SUSPENDED THIN FILMS

    Energy Technology Data Exchange (ETDEWEB)

    Rosenblatt, Charles; Amer, Nabil M.

    1979-11-01

    Optical measurements of smectic A layer spacings in freely suspended thin films of three liquid crystals are reported. Although the measured spacings are close to those reported for the bulk, some anomalous behavior is noted. In addition, we report that the smectic A phase in the film can exist at unusually high temperatures.

  7. Bearing Capacity of Footings on Thin Layer of Sand on Soft Cohesive Soil

    DEFF Research Database (Denmark)

    Philipsen, J.; Sørensen, Carsten S.

    2004-01-01

    This paper contains the results of some numerical calculations performed with the aim to determine the bearing capacities of footings placed on a thin layer of sand underlain by soft cohesive soil. During the last 30-35 years different analytical and empirical calculation methods for this situation...

  8. Studying the Dynamics of Breakdown of Thin Horizontal Liquid Layers with Local Heating

    Directory of Open Access Journals (Sweden)

    Spesivtsev Serafim

    2016-01-01

    Full Text Available Experimental study of liquid layers breakdown when heated locally from the substrate side was made. Water and ethanol were used as working liquids with a layer thickness of 300 μm. Basic steps of the breakdown process were found and mean velocities of the dry spot formation were determined; the values are 0.06 mm/sec for ethanol and 5.15 mm/sec for water. The formation of residual layer over the hot-spot before the breakdown has been found for both liquids. The creation of a droplet cluster near the heating region is observed when using water as a working fluid. It was shown that evaporation is one of the general factors influencing the process of layer breakdown and dry spot formation as well as thermocapillary effect.

  9. Magnetoelectric hexaferrite thin film growth on oxide conductive layer for applications at low voltages

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Saba, E-mail: zare.s@husky.neu.edu; Izadkhah, Hessam; Vittoria, Carmine

    2016-08-15

    Magnetoelectric (ME) M-type hexaferrite thin films were deposited on conductive oxide layer of Indium–Tin Oxide (ITO) in order to lower applied voltages to observe ME effects at room temperature. The thin film of ME hexaferrites, SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19}/ITO buffer layer, were deposited on sapphire substrate using Pulsed Laser Deposition (PLD) technique. The film exhibited ME effects as confirmed by vibrating sample magnetometer (VSM) in voltages as low as 0.5 V. Without the oxide conductive layer the required voltages to observe ME effects were typically 500 V and higher. The thin films were characterized by X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy, vibrating sample magnetometer, and ferromagnetic resonance. We measured saturation magnetization of 1064 G, and coercive field of 20 Oe for these thin films. The change rate in remanence magnetization was measured with the application of DC voltage at room temperature and it gave rise to changes in remanence in the order of 15% with the application of only 0.5 V (DC voltage). We deduced a ME coupling, α, of 5×10{sup −10} s m{sup −1} in SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19} thin films. - Highlights: • Magnetoelectric (ME) hexaferrite thin films were deposited on conductive ITO. • Much lower voltage is required in order observe ME effects, as low as 0.5V. • ME films with conductive layers appear to be very promising in future IC circuitry.

  10. Enhanced structural color generation in aluminum metamaterials coated with a thin polymer layer.

    Science.gov (United States)

    Cheng, Fei; Yang, Xiaodong; Rosenmann, Daniel; Stan, Liliana; Czaplewski, David; Gao, Jie

    2015-09-21

    A high-resolution and angle-insensitive structural color generation platform is demonstrated based on triple-layer aluminum-silica-aluminum metamaterials supporting surface plasmon resonances tunable across the entire visible spectrum. The color performances of the fabricated aluminum metamaterials can be strongly enhanced by coating a thin transparent polymer layer on top. The results show that the presence of the polymer layer induces a better impedance matching for the plasmonic resonances to the free space so that strong light absorption can be obtained, leading to the generation of pure colors in cyan, magenta, yellow and black (CMYK) with high color saturation.

  11. Thin metal layer as transparent electrode in n-i-p amorphous silicon solar cells

    Directory of Open Access Journals (Sweden)

    Theuring Martin

    2014-07-01

    Full Text Available In this paper, transparent electrodes, based on a thin silver film and a capping layer, are investigated. Low deposition temperature, flexibility and low material costs are the advantages of this type of electrode. Their applicability in structured n-i-p amorphous silicon solar cells is demonstrated in simulation and experiment. The influence of the individual layer thicknesses on the solar cell performance is discussed and approaches for further improvements are given. For the silver film/capping layer electrode, a higher solar cell efficiency could be achieved compared to a reference ZnO:Al front contact.

  12. Atomic layer deposition of copper thin film and feasibility of deposition on inner walls of waveguides

    Science.gov (United States)

    Yuqing, XIONG; Hengjiao, GAO; Ni, REN; Zhongwei, LIU

    2018-03-01

    Copper thin films were deposited by plasma-enhanced atomic layer deposition at low temperature, using copper(I)-N,N‧-di-sec-butylacetamidinate as a precursor and hydrogen as a reductive gas. The influence of temperature, plasma power, mode of plasma, and pulse time, on the deposition rate of copper thin film, the purity of the film and the step coverage were studied. The feasibility of copper film deposition on the inner wall of a carbon fibre reinforced plastic waveguide with high aspect ratio was also studied. The morphology and composition of the thin film were studied by atomic force microscopy and x-ray photoelectron spectroscopy, respectively. The square resistance of the thin film was also tested by a four-probe technique. On the basis of on-line diagnosis, a growth mechanism of copper thin film was put forward, and it was considered that surface functional group played an important role in the process of nucleation and in determining the properties of thin films. A high density of plasma and high free-radical content were helpful for the deposition of copper thin films.

  13. Preferential orientation growth of ITO thin film on quartz substrate with ZnO buffer layer by magnetron sputtering technique

    Science.gov (United States)

    Du, Wenhan; Yang, Jingjing; Xiong, Chao; Zhao, Yu; Zhu, Xifang

    2017-07-01

    In order to improve the photoelectric transformation efficiency of thin-film solar cells, one plausible method was to improve the transparent conductive oxides (TCO) material property. In-doped tin oxide (ITO) was an important TCO material which was used as a front contact layer in thin-film solar cell. Using magnetron sputtering deposition technique, we prepared preferential orientation ITO thin films on quartz substrate. XRD and SEM measurements were used to characterize the crystalline structure and morphology of ITO thin films. The key step was adding a ZnO thin film buffer layer before ITO deposition. ZnO thin film buffer layer increases the nucleation center numbers and results in the (222) preferential orientation growth of ITO thin films.

  14. Growth and optical characteristics of high-quality ZnO thin films on graphene layers

    Directory of Open Access Journals (Sweden)

    Suk In Park

    2015-01-01

    Full Text Available We report the growth of high-quality, smooth, and flat ZnO thin films on graphene layers and their photoluminescence (PL characteristics. For the growth of high-quality ZnO thin films on graphene layers, ZnO nanowalls were grown using metal-organic vapor-phase epitaxy on oxygen-plasma treated graphene layers as an intermediate layer. PL measurements were conducted at low temperatures to examine strong near-band-edge emission peaks. The full-width-at-half-maximum value of the dominant PL emission peak was as narrow as 4 meV at T = 11 K, comparable to that of the best-quality films reported previously. Furthermore, the stimulated emission of ZnO thin films on the graphene layers was observed at the low excitation energy of 180 kW/cm2 at room temperature. Their structural and optical characteristics were investigated using X-ray diffraction, transmission electron microscopy, and PL spectroscopy.

  15. On elastic waves in an thinly-layered laminated medium with stress couples under initial stress

    Directory of Open Access Journals (Sweden)

    P. Pal Roy

    1988-01-01

    Full Text Available The present work is concerned with a simple transformation rule in finding out the composite elastic coefficients of a thinly layered laminated medium whose bulk properties are strongly anisotropic with a microelastic bending rigidity. These elastic coefficients which were not known completely for a layered laminated structure, are obtained suitably in terms of initial stress components and Lame's constants λi, μi of initially isotropic solids. The explicit solutions of the dynamical equations for a prestressed thinly layered laminated medium under horizontal compression in a gravity field are derived. The results are discussed specifying the effects of hydrostatic, deviatoric and couple stresses upon the characteristic propagation velocities of shear and compression wave modes.

  16. Wear resistant PTFE thin film enabled by a polydopamine adhesive layer

    International Nuclear Information System (INIS)

    Beckford, Samuel; Zou, Min

    2014-01-01

    The influence of a polydopamine (PDA) adhesive layer on the friction and wear resistance of polytetrafluoroethylene (PTFE) thin films coated on stainless steel was investigated. The friction and wear tests were carried out using a ball on flat configuration under a normal load of 50 g, sliding speed of 2.5 mm/s, and stroke length of 15 mm. It is found that the PDA/PTFE film is able to withstand approximately 500 times more rubbing cycles than the PTFE film alone. X-ray photoelectron spectroscopy (XPS) results show that a tenacious layer of PTFE remains adhered to the PDA layer, which enables the durability of the PDA/PTFE film. Because of the relatively low thickness of the film, PDA/PTFE shows great potential for use in applications where durable, thin films are desirable

  17. Characterization and modeling tools for light management in heterogeneous thin film layers

    Science.gov (United States)

    Le Rouzo, J.; Duché, D.; Ruiz, C. M.; Thierry, F.; Carlberg, M.; Berginc, G.; Pasquinelli, M.; Simon, J.-J.; Escoubas, L.; Flory, F.

    2016-09-01

    The extraordinary progresses in the design and realization of structures in inorganic or organic thin films, whether or not including nanoparticles, make it possible to develop devices with very specific properties. Mastering the links between the macroscopic optical properties and the opto-geometrical parameters of these heterogeneous layers is thus a crucial issue. We propose to present the tools used to characterize and to model thin film layers, from an optical point of view, highlighting the interest of coupling both experimental and simulation studies for improving our knowledge on the optical response of the structure. Different examples of studies are presented on CIGS, Perovskite, P3HT:ZnO, PC70BM, organic layer containing metallic nanoparticles and colored solar cells.

  18. Specific tools for studying the optical response of heterogeneous thin film layers

    Science.gov (United States)

    Le Rouzo, Judikael; Duché, David; Ruiz, Carmen M.; Thierry, Francois; Carlberg, Miriam; Berginc, Gerard; Pasquinelli, Marcel; Simon, Jean Jacques; Escoubas, Ludovic; Flory, Francois

    2017-01-01

    The extraordinary progresses in the design and realization of structures in inorganic or organic thin films, whether or not including nanoparticles, make it possible to develop devices with very specific properties. Mastering the links between the macroscopic optical properties and the optogeometrical parameters of these heterogeneous layers is thus a crucial issue. We propose to present the tools used to characterize and to model thin film layers, from an optical point of view, highlighting the interest of coupling both experimental and simulation studies for improving our knowledge on the optical response of the structure. Different examples of studies are presented on copper indium gallium selenide, perovskite, P3HT:ZnO, PC70BM, organic layer containing metallic nanoparticles, and colored solar cells.

  19. Measuring drug saturation solubility in thin polymer films: use of a thin acceptor layer.

    Science.gov (United States)

    Kunst, Anders; Lee, Geoffrey

    2015-03-15

    The saturation solubility of scopolamine base in two pressure sensitive adhesive DURO-TAKs has been determined using the 5-layer laminate technique. The acceptor layer had a thickness of less than 25 μm to promote a rapid partitioning equilibrium. With DURO-TAK 87-2510 the saturation solubility is 5.2 ± 0.6% w/w when measured after 7 days. With DURO-TAK 87-4098 the saturation solubility is slightly higher, 7.9 ± 0.7% w/w after 7 days. These values remained constant up to approximately 30 days' experimental time. In both cases the acceptor was free of crystalline material at the end of the experiment. This strongly suggests that that equilibrium had been reached between the saturated solution in the acceptor layer and the crystalline drug still present in the donor layer. The addition of light liquid paraffin to the acceptor produced a solubilizing effect with 87-4098 but not 87-2510. We recommend some experimental conditions that we consider to be necessary to achieve a reliable and accurate result with this technique. If performed correctly, it can give a feasible result. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Atom probe tomography characterization of thin copper layers on aluminum deposited by galvanic displacement.

    Science.gov (United States)

    Zhang, Yi; Ai, Jiahe; Hillier, Andrew C; Hebert, Kurt R

    2012-01-24

    ″Ultrathin″ metallization layers on the order of nanometers in thickness are increasingly used in semiconductor interconnects and other nanostructures. Aqueous deposition methods are attractive methods to produce such layers due to their low cost, but formation of ultrathin layers has proven challenging, particularly on oxide-coated substrates. This work focused on the formation of thin copper layers on aluminum, by galvanic displacement from alkaline aqueous solutions. Analysis by atom probe tomography (APT) showed that continuous copper films of approximately 1 nm thickness were formed, apparently the first demonstration of deposition of ultrathin metal layers on oxidized substrates from aqueous solutions. The APT reconstructions indicate that deposited copper replaced a portion of the surface oxide film on aluminum. The results are consistent with mechanisms in which surface hydride species on aluminum mediate deposition, either by directly reducing cupric ions or by inducing electronic conduction in the oxide, thus enabling cupric ion reduction by Al metal.

  1. Estimation of optical constants of a bio-thin layer (onion epidermis), using SPR spectroscopy

    International Nuclear Information System (INIS)

    Rehman, Saif-ur-; Hayashi, Shinji; Sekkat, Zouheir; Mumtaz, Huma; Shaukat, S F

    2014-01-01

    We estimate the optical constants of a biological thin layer (Allium cepa) by surface plasmon resonance (SPR) spectroscopy. For this study, the fresh inner thin epidermis of an onion bulb was used and stacked directly on gold (Au) and silver (Ag) film surfaces in order to identify the shift in SPR mode of each metal film at an operating wavelength of 632.8 nm. The thickness and dielectric constants of the biological thin layer were determined by matching the experimental SPR curves to theoretical ones. The thickness and roughness of bare Au and Ag thin films were also measured by atomic force microscopy (AFM); the results of which are in good agreement with those obtained through experiment. Due to the high surface roughness of the natural onion epidermis layer, AFM could not measure the exact thickness of an onion epidermis. It is estimated that the value of the real part of the dielectric constant of an onion epidermis is between the dielectric constants of water and air. (paper)

  2. Mathematical Modeling, Computation, and Experimental Imaging of Thin-Layer Objects by Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Ivan Frollo

    2013-01-01

    Full Text Available Imaging of thin layers using magnetic resonance imaging (MRI methods belongs to the special procedures that serve for imaging of weak magnetic materials (weak ferromagnetic, diamagnetic, or paramagnetic. The objective of the paper is to present mathematical models appropriate for magnetic field calculations in the vicinity of thin organic or inorganic materials with defined magnetic susceptibility. Computation is similar to the double layer theory. Thin plane layers in their vicinity create a deformation of the neighboring magnetic field. Calculations with results in the form of analytic functions were derived for rectangular, circular, and general shaped samples. For experimental verification, an MRI 0.2 Tesla esaote Opera imager was used. For experiments, a homogeneous parallelepiped block (reference medium—a container filled with doped water—was used. The resultant images correspond to the magnetic field variations in the vicinity of the samples. For data detection, classical gradient-echo (GRE imaging methods, susceptible to magnetic field inhomogeneities, were used. Experiments proved that the proposed method was effective for thin organic and soft magnetic materials testing using magnetic resonance imaging methods.

  3. Deposition and characterization of layer-by-layer sputtered AgGaSe{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Karaagac, H. [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey); Parlak, M., E-mail: parlak@metu.edu.tr [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey)

    2011-04-15

    Sputtering technique has been used for the deposition of AgGaSe{sub 2} thin films onto soda-lime glass substrates using sequential layer-by-layer deposition of GaSe and Ag thin films. The analysis of energy dispersive analysis of X-ray (EDXA) indicated a Ga-rich composition for as-grown samples and there was a pronounce effect of post-annealing on chemical composition of AgGaSe{sub 2} thin film. X-ray diffraction (XRD) measurements revealed that Ag metallic phase exists in the amorphous AgGaSe{sub 2} structure up to annealing temperature 450 deg. C and then the structure turned to the single phase AgGaSe{sub 2} with the preferred orientation along (1 1 2) direction with the annealing temperature at 600 deg. C. The surface morphology of the samples was analyzed by scanning electron microscopy (SEM) measurements. The structural parameters related to chalcopyrite compounds have been calculated. Optical properties of AgGaSe{sub 2} thin films were studied by carrying out transmittance and reflectance measurements in the wavelength range of 325-1100 nm at room temperature. The absorption coefficient and the band gap values for as-grown and annealed samples were evaluated as 1.55 and 1.77 eV, respectively. The crystal-field and spin-orbit splitting levels were resolved. These levels (2.03 and 2.30 eV) were also detected from the photoresponse measurements almost at the same energy values. As a result of the temperature dependent resistivity and mobility measurements in the temperature range of 100-430 K, it was found that the decrease in mobility and the increase in carrier concentration following to the increasing annealing temperature attributed to the structural defects (tetragonal distortion, vacancies and interstitials).

  4. Effect of pre-drying treatments on solution-coated organic thin films for active-matrix organic light-emitting diodes

    Science.gov (United States)

    Shin, Dongkyun; Hong, Ki-Young; Park, Jongwoon

    2017-12-01

    Due to capillary rise, organic thin films fabricated by solution coating exhibit the concave thickness profile. It is found that the thickness and emission uniformities within pixels vary depending sensitively on the pre-drying treatment that has been done before hard bake. We investigate its effect on the film quality by varying the temperature, time, pressure, fluid flow-related solute concentration, and evaporation-related solvent. To this end, we carry out spin coatings of a non-aqueous poly(N-vinylcarbazole) (PVK) for a hole transporting blanket layer. With a low-boiling-point (BP) organic solvent, the pre-drying makes no significant impact on the thickness profiles. With a high-BP organic solvent, the PVK films pre-dried in a vacuum for a sufficient time exhibit very uniform light emission in the central region, but non-emission phenomenon near the perimeter of pixels. It is addressed that such a non-emission phenomenon can be suppressed to some extent by decreasing the vacuum pressure. However, the rapid evaporation by heat conduction during the pre-drying degrades the thickness uniformity due to a rapid microflow of solute from the edge to the center. No further enhancement in the thickness uniformity is obtained by varying the solute concentration and using a mixture of low- and high-BP solvents.

  5. Dry air effects on the copper oxides sensitive layers formation for ethanol vapor detection

    Energy Technology Data Exchange (ETDEWEB)

    Labidi, A., E-mail: Ahmed_laabidi@yahoo.fr [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia); Bejaoui, A.; Ouali, H. [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia); Akkari, F. Chaffar [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs, ENIT, Universite de Tunis el Manar, BP 37, Le belvedere 1002, Tunis (Tunisia); Hajjaji, A.; Gaidi, M. [Laboratoire de Photovoltaique, Centre de Recherches et de technologies de l' energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia); Kanzari, M. [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs, ENIT, Universite de Tunis el Manar, BP 37, Le belvedere 1002, Tunis (Tunisia); Bessais, B. [Laboratoire de Photovoltaique, Centre de Recherches et de technologies de l' energie, Technopole de Borj-Cedria, BP 95, 2050 Hammam-Lif (Tunisia); Maaref, M. [URPSC (UR 99/13-18) Unite de Recherche de Physique des Semiconducteurs et Capteurs, IPEST, Universite de Carthage, BP 51, La Marsa 2070, Tunis (Tunisia)

    2011-09-15

    The copper oxide films have been deposited by thermal evaporation and annealed under ambient air and dry air respectively, at different temperatures. The structural characteristics of the films were investigated by X-ray diffraction. They showed the presences of two hydroxy-carbonate minerals of copper for annealing temperatures below 250 deg. C. Above this temperature the conductivity measurements during the annealing process, show a transition phase from metallic copper to copper oxides. The copper oxides sensitivity toward ethanol were performed using conductivity measurements at the working temperature of 200 deg. C. A decrease of conductivity was observed under ethanol vapor, showing the p-type semi-conducting characters of obtained copper oxide films. It was found that the sensing properties of copper oxide toward ethanol depend mainly on the annealing conditions. The best responses were obtained with copper layers annealed under dry air.

  6. Atomic layer deposition of transparent semiconducting oxide CuCrO2 thin films

    OpenAIRE

    Tripathi, T.S.; Niemelä, Janne-Petteri; Karppinen, Maarit

    2015-01-01

    Atomic layer deposition (ALD) is a vital gas-phase technique for atomic-level thickness-controlled deposition of high-quality thin films on various substrate morphologies owing to its self-limiting gas-surface reaction mechanism. Here we report the ALD fabrication of thin films of the semiconducting CuCrO2 oxide that is a highly prospective candidate for transparent electronics applications. In our process, copper 2,2,6,6-tetramethyl-3,5-heptanedionate (Cu(thd)2) and chromium acetyl acetonate...

  7. Ionizing and Non-ionizing Radiation Effects in Thin Layer Hexagonal Boron Nitride

    Science.gov (United States)

    2015-03-01

    ray energy, x is the thickness of the h-BN or Si region, Gammaφ is the gamma flux of the cobalt 60 source, and t is the irradiation time... Boron Nitride Thin Films Grown by Atomic Layer Deposition," Thin Solid Films, no. 571, pp. 51-55, 2014. [8] H. X . Chen, X . G. Zhao, Z. J. Ma, Y. Li...Gehrke and U. Vetter, "Modeling the diode characteristics of boron nitride/silicon carbide heterojunctions," Applied Physics Letters, vol. 97, 2010

  8. Layer-by-layer assembly of thin organic films on PTFE activated by cold atmospheric plasma

    Directory of Open Access Journals (Sweden)

    Tóth András

    2014-12-01

    Full Text Available An air diffuse coplanar surface barrier discharge is used to activate the surface of polytetrafluoroethylene (PTFE samples, which are subsequently coated with polyvinylpyrrolidone (PVP and tannic acid (TAN single, bi- and multilayers, respectively, using the dip-coating method. The surfaces are characterized by X-ray Photoelectron Spectroscopy (XPS, Attenuated Total Reflection – Fourier Transform Infrared Spectroscopy (ATR-FTIR and Atomic Force Microscopy (AFM. The XPS measurements show that with plasma treatment the F/C atomic ratio in the PTFE surface decreases, due to the diminution of the concentration of CF2 moieties, and also oxygen incorporation through formation of new C–O, C=O and O=C–O bonds can be observed. In the case of coated samples, the new bonds indicated by XPS show the bonding between the organic layer and the surface, and thus the stability of layers, while the gradual decrease of the concentration of F atoms with the number of deposited layers proves the creation of PVP/TAN bi- and multi-layers. According to the ATR-FTIR spectra, in the case of PVP/TAN multilayer hydrogen bonding develops between the PVP and TAN, which assures the stability of the multilayer. The AFM lateral friction measurements show that the macromolecular layers homogeneously coat the plasma treated PTFE surface.

  9. Electron beam dosimetry for a thin-layer absorber irradiated by 300-keV electrons

    International Nuclear Information System (INIS)

    Kijima, Toshiyuki; Nakase, Yoshiaki

    1993-01-01

    Depth-dose distributions in thin-layer absorbers were measured for 300-keV electrons from a scanning-type irradiation system, the electrons having penetrated through a Ti-window and an air gap. Irradiations of stacks of cellulose triacetate(CTA) film were carried out using either a conveyor (i.e. dynamic irradiation) or fixed (i.e. static) irradiation. The sample was irradiated using various angles of incidence of electrons, in order to examine the effect of obliqueness of electron incidence at low-energy representative of routine radiation curing of thin polymeric or resin layers. Dynamic irradiation gives broader and shallower depth-dose distributions than static irradiation. Greater obliqueness of incident electrons gives results that can be explained in terms of broader and shallower depth-dose distributions. The back-scattering of incident electrons by a metal(Sn) backing material enhances the absorbed dose in a polymeric layer and changes the overall distribution. It is suggested that any theoretical estimations of the absorbed dose in thin layers irradiated in electron beam curing must be accomplished and supported by experimental data such as that provided by this investigation. (Author)

  10. Development of optimized mobile phases for protein separation by high performance thin layer chromatography.

    Science.gov (United States)

    Biller, Julia; Morschheuser, Lena; Riedner, Maria; Rohn, Sascha

    2015-10-09

    In recent years, protein chemistry tends inexorably toward the analysis of more complex proteins, proteoforms, and posttranslational protein modifications. Although mass spectrometry developed quite fast correspondingly, sample preparation and separation of these analytes is still a major issue and quite challenging. For many years, electrophoresis seemed to be the method of choice; nonetheless its variance is limited to parameters such as size and charge. When taking a look at traditional (thin-layer) chromatography, further parameters such as polarity and different mobile and stationary phases can be utilized. Further, possibilities of detection are manifold compared to electrophoresis. Similarly, two-dimensional separation can be also performed with thin-layer chromatography (TLC). As the revival of TLC developed enormously in the last decade, it seems to be also an alternative to use high performance thin-layer chromatography (HPTLC) for the separation of proteins. The aim of this study was to establish an HPTLC separation system that allows a separation of protein mixtures over a broad polarity range, or if necessary allowing to modify the separation with only few steps to improve the separation for a specific scope. Several layers and solvent systems have been evaluated to reach a fully utilized and optimized separation system. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Properties and structure of oxide layers on thin coating of titanium alloy

    Directory of Open Access Journals (Sweden)

    Jan Krčil

    2015-12-01

    Full Text Available Present work discusses issues of growth and characterization of a thin oxide layer formed on the surface of a titanium-niobium alloy. An oxide layer on the surface of titanium alloys introduces a corrosion resistance and also a bio-compatibility, which is required for a medical application. Although this oxide layer is a result of a spontaneous passivation, for the practical applications it is necessary to control the growth of oxides. In this work the oxide layer was formed on the PVD coating from Ti39Nb alloy which was sputtered on three different base materials: CP Ti grade 2, stainless steel AISI 316LVM and titanium alloy Ti–6Al–4V ELI. The oxide layer was created by a thermal oxidation at 600 °C for three different oxidation periods: 1, 4 and 8 hours. After the oxidation process the influence of oxidation characteristics and base materials on the thickness and properties of oxide layer was studied. There was observed a change of color and surface roughness. The oxide layer surface as well as the layer thickness was observed by SEM. The influence of the substrate material under the coating on the oxide layer should be more investigated in the future.

  12. Electrochemical layer by layer growth and characterization of copper sulfur thin films on Ag(1 1 1)

    International Nuclear Information System (INIS)

    Innocenti, M.; Bencistà, I.; Bellandi, S.; Bianchini, C.; Di Benedetto, F.; Lavacchi, A.; Vizza, F.; Foresti, M.L.

    2011-01-01

    Copper sulfide (CuS) thin films were grown on a single crystal Ag(1 1 1) substrate by Electrochemical Atomic Layer Deposition (ECALD) method, i.e., by alternated surface limited deposition of copper and sulfur. A detailed investigation of deposition of Cu on S allowed to find the best conditions for copper deposition. The electrochemical characterization of deposits obtained with different deposition cycles suggests a 1:1 stoichiometric ratio between Cu and S corresponding to Cu monosulfide. The compositional analysis was performed by X-rays Photoelectron Spectroscopy (XPS), and the morphological was investigated by Atomic Force Microscopy (AFM) for deposits formed with 20 ECALD cycles.

  13. Advances in analytical techniques for neutron capture therapy: thin layer chromatography matrix and track etch thin layer chromatography methods for boron-10 analysis

    International Nuclear Information System (INIS)

    Schremmer, J.M.; Noonan, D.J.

    1987-01-01

    A new track etch autoradiographic technique for quantitating boron-10 containing compounds used for neutron capture therapy is described. Instead of applying solutions of Cs2B12H11SH and its oxidation products directly to solid-state nuclear track detectors, diethylaminoethyl cellulose thin layer chromatography (TLC) plates are utilized as sample matrices. The plates are juxtaposed with Lexan polycarbonate detectors and irradiated in a beam of thermal neutrons. The detectors are then chemically etched, and the resultant tracks counted with an optoelectronic image analyzer. Sensitivity to boron-10 in solution reaches the 1 pg/microliter level, or 1 ppb. In heparinized blood samples, 100 pg boron-10/microliter are detected. This TLC matrix method has the advantage that sample plates can be reanalyzed under different reactor conditions to optimize detector response to the boron-10 carrier material. Track etch/TLC allows quantitation of the purity of boron neutron capture therapy compounds by utilizing the above method with TLC plates developed in solvent systems that resolve Cs2B12H11SH and its oxidative analogs. Detectors irradiated in juxtaposition to the thin layer chromatograms are chemically etched, and the tracks are counted in the sample lane from the origin of the plate to the solvent front. A graphic depiction of the number of tracks per field yields a quantitative analysis of compound purity

  14. The phytochemical screening and thin layer chromatography results of Jatropha gossypiifolia seeds

    Directory of Open Access Journals (Sweden)

    Anis Nurwidayati

    2013-05-01

    , the intermediary for schistosomiasis is widespread in this region. Eradication has been done by spraying chemical molluscicides. This study aimed to identify the class of chemical compounds in the methanol extract of red castor seed.Methods: The study was conducted in May 2009. Red castor seeds were collected from Palu, Central Sulawesi. Red castor seeds extraction was done by percolation method using methanol solvent. Phytochemical screening test was performed with a tube to detect the compound in red castor bean extract. Screening was followed by thin layer chromatography testing to ensure the screening results of the test tube.Results:Extracts that was produced from 500 grams of red castor dry seed powder with 2500 ml of methanol solvent was 250 ml thick reddish brown fluid. Phytochemical screening with a test tube showed positive results of alkaloid by the formation of deposits in Meyer test, Wagner test, and Dragendorff test. Screening the methanol extracts of red castor seed also showed positive results on saponins by foam test and LiebermanBurchard test. Positive results on Killiani Keller tests and Kedde test suggests that red castor bean extract contains cardenoline and bufadienol. Thin-layer chromatography analysis showed that the red castor bean extract is positive for terpenes with the formation of spots on the silica gel plate when terpenes was sprayed (cerium sulfate reagent. Conclusion: Chemical components contained in the methanol extract of red castor beans consisted of alkaloids, saponins, cardenolin, bufadienol, and terpenes. (Health Science Indones 2012;2:xx-xxKeywords: schistosomiasis, Jatropha gossypifolia, chemical compound

  15. Microhardness changes gradient of the duplex stainless steel (DSS surface layer after dry turning

    Directory of Open Access Journals (Sweden)

    G. Krolczyk

    2014-10-01

    Full Text Available The article presents the gradient of microhardness changes as a function of the distance from the material surface after turning with a wedge provided with a coating with a ceramic intermediate layer. The investigation comprised the influence of cutting speed on surface integrity microhardness in dry machining. The tested material was duplex stainless steel (DSS with two-phase, ferritic-austenitic structure. The tests have been performed under production conditions during machining of parts for electric motors and deep-well pumps.

  16. Quasi-Monoenergetic Dense and Uniform Electron Bunch Generation from Laser Driven Double-Layer Thin Films

    Science.gov (United States)

    Wang, C.; Roycroft, R.; McCary, E.; Meadows, A.; Blakeney, J.; Serratto, K.; Kuk, D.; Chester, C.; Gao, L.; Fu, H.; Yan, X. Q.; Schreiber, J.; Pomerantz, I.; Bernstein, A.; Quevedo, H.; Dyer, G.; Gaul, E.; Ditmire, T.; Gautier, D. C.; Fernandez, J.; Hegelich, B. M.

    2014-10-01

    We demonstrate that dense, uniform quasi-monoenergetic relativistic electron bunches can be generated from the interaction of a high-intensity laser pulse with a double-layer thin film target. The first layer of the target is a freestanding, nanometer-scale, diamond-like carbon production layer. The second layer is a thin plastic reflection layer which reflects the drive-laser pulse, but allows electrons to pass through. Although no electron bunch is generated from the second layer alone, by adding it behind the first layer we obtained a quasi-monoenergetic bunch along the laser axis, 35 times denser than a bunch from the single layer target. Comparing the angular distribution of the electron spectra from a double-layer target with that of a single-layer target, we observed an increase of the electron cutoff energy at larger angles, which improves the uniformity of created electron bunches.

  17. Analysis of poly-Si thin film p^+-n-n+ homojunction solar cell and heterojunction solar cell with and without a thin μc-Si layer at the interface of a-Si and poly-Si layers

    Science.gov (United States)

    Letha, A. J.; Hwang, H. L.

    2009-05-01

    In this study, new possibilities for higher efficiency poly-Si thin film solar cells are investigated using MEDICI^TM device simulator. The poly-Si p^+-n-n+ thin film solar cell with a thin a-Si p+ layer is found to have higher efficiency than the homojunction p^+-n-n+ cell. Further improvement in efficiency of the heterojunction p^+-n-n+ cell is achieved by introducing a thin μc-Si layer at the interface of a-Si emitter and poly-Si absorber layers. The μc-Si layer at the interface is found to reduce the recombination losses at the interface and improved the fill factor and efficiency of the cell. The photovoltaic parameters of the cell and the absorber layer thickness for optimum efficiency are highly influenced by grain size and passivation at the grain boundary.

  18. Colloidal silver nanoparticle gradient layer prepared by drying between two walls of different wettability

    International Nuclear Information System (INIS)

    Roth, S V; Kuhlmann, M; Walter, H; Snigirev, A; Snigireva, I; Burghammer, M; Riekel, C; Lengeler, B; Schroer, C G; Mueller-Buschbaum, P

    2009-01-01

    A one-dimensional silver (Ag) nanoparticle gradient layer is prepared from an aqueous colloidal solution upon a polystyrene (PS) coated silicon (Si) substrate. For preparation two walls of different wettability are used. The 40 nm PS-layer exhibits a locally constant film thickness due to the strong roughness correlation with the underlying Si-substrate and is less wettable as compared to the glass plate placed above. The Ag nanoparticles have a triangular prism-like shape. The structural characterization of the obtained complex gradient formed by drying is performed with microbeam grazing incidence small-angle x-ray scattering based on compound refractive lenses. Due to the adsorption from aqueous solution in the selective geometry a double gradient type structure defined by two areas with characteristic lateral lengths and a cross-over regime between both is observed.

  19. Drying principles and theory: An overview

    International Nuclear Information System (INIS)

    Ekechukwu, O.V.

    1995-10-01

    A comprehensive review of the fundamental principles and theories governing the drying process is presented. Basic definitions are given. The development of contemporary models of drying of agricultural products are traced from the earliest reported sorption and moisture equilibrium models, through the single kernel of product models to the thin layer and deep bed drying analysis. (author). 29 refs, 10 figs

  20. Excitation of Love waves in a thin film layer by a line source.

    Science.gov (United States)

    Tuan, H.-S.; Ponamgi, S. R.

    1972-01-01

    The excitation of a Love surface wave guided by a thin film layer deposited on a semiinfinite substrate is studied in this paper. Both the thin film and the substrate are considered to be elastically isotropic. Amplitudes of the surface wave in the thin film region and the substrate are found in terms of the strength of a line source vibrating in a direction transverse to the propagating wave. In addition to the surface wave, the bulk shear wave excited by the source is also studied. Analytical expressions for the bulk wave amplitude as a function of the direction of propagation, the acoustic powers transported by the surface and bulk waves, and the efficiency of surface wave excitation are obtained. A numerical example is given to show how the bulk wave radiation pattern depends upon the source frequency, the film thickness and other important parameters of the problem. The efficiency of surface wave excitation is also calculated for various parameter values.

  1. Plasma polymerized thin coating as a protective layer of carbon nanotubes grafted on carbon fibers

    International Nuclear Information System (INIS)

    Einig, A; Magga, Y; Bai, J B; Rumeau, P; Desrousseaux, S

    2013-01-01

    Nanoparticles addition is widely studied to improve properties of carbon fiber reinforced composites. Here, hybrid carbon fiber results from grafting of carbon nanotubes (CNT) by Chemical Vapor Deposition (CVD) on the carbon fiber for mechanical reinforcement and conductive properties. Both tows and woven fabrics made of the hybrid fibers are added to the matrix for composite processing. However handling hybrid fibers may induce unwilling health risk due to eventual CNT release and a protective layer is required. A thin coating layer is deposited homogeneously by low pressure plasma polymerization of an organic monomer without modifying the morphology and the organization of grafted CNTs. The polymeric layer effect on the electrical behavior of hybrid fiber is assessed by conductivity measurements. Its influence on the mechanical properties is also studied regarding the interface adhesion between fiber and matrix. The protective role of layer is demonstrated by means of friction constraints applied to the hybrid fiber.

  2. Highly (100) oriented MgO growth on thin Mg layer in MTJ structure

    Energy Technology Data Exchange (ETDEWEB)

    Jimbo, K [Department of Physical Electronics, Tokyo Institute of Technology, 2-12-1-S3-42 O-okayama, Meguro, Tokyo 152-8552 (Japan); Nakagawa, S, E-mail: jimbo.k@spin.pe.titech.ac.jp

    2011-01-01

    In order to apply Stress Assisted Magnetization Reversal (SAMR) method to perpendicular magnetoresistive random access memory (p-MRAM) with magnetic tunnel junction (MTJ) using MgO (001) oriented barrier layer, multilayer of Ta/ Terfenol-D/ Mg/ MgO and Ta/ Terfenol-D/ MgO were prepared. While the MgO layer, deposited directly on the Terfenol-D layer, did not show (100) orientatin, very thin metallic Mg layer, deposited prior to the MgO deposition, was effective to attain MgO (100) orientation. The crystalline orientation was very weak without Mg, however, the multilayer with Mg showed very strong MgO(100) peak and the MgO orientation was shifted depending on the Mg thickness.

  3. Dependence of magnetic properties on different buffer layers of Mn3.5Ga thin films

    Science.gov (United States)

    Takahashi, Y.; Sato, K.; Shima, T.; Doi, M.

    2018-05-01

    D022-Mn3.5Ga thin films were prepared on MgO (100) single crystalline substrates with different buffer layer (Cr, Fe, Cr/Pt and Cr/Au) using an ultra-high-vacuum electron beam vapor deposition system. From XRD patterns, a fundamental (004) peak has clearly observed for all samples. The relatively low saturation magnetization (Ms) of 178 emu/cm3, high magnetic anisotropy (Ku) of 9.1 Merg/cm3 and low surface roughness (Ra) of 0.30 nm were obtained by D022-Mn3.5Ga film (20 nm) on Cr/Pt buffer layer at Ts = 300 °C, Ta = 400 °C (3h). These findings suggest that MnGa film on Cr/Pt buffer layer is a promising PMA layer for future spin electronics devices.

  4. Experimental Study of the Kinetics of Drying of Thin Plane Moist Materials by the Regular-Regime Method Using Generalized Complex Variables

    Science.gov (United States)

    Ol'shanskii, A. I.; Gusarov, A. M.

    2017-05-01

    Results of experimental study of the kinetics of drying of thin materials have been presented. Fundamental experimental equations to calculate the kinetic parameters of the process of drying, i.e., the heat-flux density, the integral mean temperature, and the duration of drying, have been given.

  5. Magnetic domain observation of FeCo thin films fabricated by alternate monoatomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuki, T., E-mail: ohtsuki@spring8.or.jp; Kotsugi, M.; Ohkochi, T. [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Kojima, T.; Mizuguchi, M.; Takanashi, K. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2014-01-28

    FeCo thin films are fabricated by alternate monoatomic layer deposition method on a Cu{sub 3}Au buffer layer, which in-plane lattice constant is very close to the predicted value to obtain a large magnetic anisotropy constant. The variation of the in-plane lattice constant during the deposition process is investigated by reflection high-energy electron diffraction. The magnetic domain images are also observed by a photoelectron emission microscope in order to microscopically understand the magnetic structure. As a result, element-specific magnetic domain images show that Fe and Co magnetic moments align parallel. A series of images obtained with various azimuth reveal that the FeCo thin films show fourfold in-plane magnetic anisotropy along 〈110〉 direction, and that the magnetic domain structure is composed only of 90∘ wall.

  6. Nonlinear evolution of perturbations in a thin fluid layer during wave formation

    Science.gov (United States)

    Prokudina, L. A.

    2014-03-01

    A mathematical model is presented for the state of a free surface of a thin fluid layer (a fluid film) in heat-mass-exchange processes of condensation and evaporation. The wave motion of a fluid film is studied under inhomogeneous surface tension. Nonlinear development of perturbations belonging to a continuous band of wave numbers on the surface of a thin fluid layer is investigated within the framework of a non-linear parabolic equation. It is shown that wave packets with carrier wave lying near the harmonic of maximum increment become self-ordered; as a result, a monochromatic wave is generated on the surface of the fluid film. When a wave packet is generated in the neighborhood of the neutral stability curve, one can observe a phenomenon of directed energy transfer to the waves in the neighborhood of the harmonic of maximum increment.

  7. Propagation of a videopulse through a thin layer of two-level dipolar atoms

    International Nuclear Information System (INIS)

    Elyutin, Sergei O

    2007-01-01

    The excitation of a thin layer of two-level permanent dipole moment atoms by ultimately short (less than the field oscillation period) electromagnetic pulses (videopulse) is observed. The numerical analysis of the matter equations free of the rotating wave approximation and relaxation reveals a strong influence of the local field and the Stark effect on temporal behaviour of transmitted field. Specifically, it is demonstrated that a dense film irradiated by a videopulse emits a short response with a delay much longer even than the characteristic cooperative time of the atom ensemble. It is supposed that the local field in the thin layer of permanent dipole atoms is able to re-pump the atomic subsystem. A close analogy with nonlinear pendulum motion is discussed

  8. Metallic atomically-thin layered silicon epitaxially grown on silicene/ZrB2

    Science.gov (United States)

    Gill, Tobias G.; Fleurence, Antoine; Warner, Ben; Prüser, Henning; Friedlein, Rainer; Sadowski, Jerzy T.; Hirjibehedin, Cyrus F.; Yamada-Takamura, Yukiko

    2017-06-01

    Using low energy electron diffraction (LEED) and scanning tunnelling microscopy (STM), we observe a new two-dimensional (2D) silicon crystal that is formed by depositing additional Si atoms onto spontaneously-formed epitaxial silicene on a ZrB2 thin film. From scanning tunnelling spectroscopy (STS) studies, we find that this atomically-thin layered silicon has distinctly different electronic properties. Angle resolved photoelectron spectroscopy (ARPES) reveals that, in sharp contrast to epitaxial silicene, the layered silicon exhibits significantly enhanced density of states at the Fermi level resulting from newly formed metallic bands. The 2D growth of this material could allow for direct contacting to the silicene surface and demonstrates the dramatic changes in electronic structure that can occur by the addition of even a single monolayer amount of material in 2D systems.

  9. Thin-layer chromatography and colorimetric analysis of multi-component explosive mixtures

    Science.gov (United States)

    Pagoria, Philip F.; Mitchell, Alexander R.; Whipple, Richard E.; Carman, M. Leslie

    2014-08-26

    A thin-layer chromatography method for detection and identification of common military and peroxide explosives in samples includes the steps of provide a reverse-phase thin-layer chromatography plate; prepare the plate by marking spots on which to deposit the samples by touching the plate with a marker; spot one micro liter of a first standard onto one of the spots, spot one micro liter of a second standard onto another of the spots, and spot samples onto other of spots producing a spotted plate; add eluent to a developing chamber; add the spotted plate to the developing chamber; remove the spotted plate from the developing chamber producing a developed plate; place the developed plate in an ultraviolet light box; add a visualization agent to a dip tank; dip the developed plate in the dip tank and remove the developed plate quickly; and detect explosives by viewing said developed plate.

  10. Low Energy Scanned Electron-Beam Dose Distribution in Thin Layers

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Hjortenberg, P. E.; Pedersen, Walther Batsberg

    1975-01-01

    Thin radiochromic dye film dosimeters, calibrated by means of calorimetry, make possible the determination of absorbed-dose distributions due to low-energy scanned electron beam penetrations in moderately thin coatings and laminar media. For electrons of a few hundred keV, calibrated dosimeters...... of about 30–60 μm thickness may be used in stacks or interleaved between layers of materials of interest and supply a sufficient number of experimental data points throughout the depth of penetration of electrons to provide a depth-dose curve. Depth doses may be resolved in various polymer layers...... on different backings (wood, aluminum, and iron) for scanned electron beams (Emax = 400 keV) having a broad energy spectrum and diffuse incidence, such as those used in radiation curing of coatings, textiles, plastics, etc. Theoretical calculations of such distributions of energy depositions are relatively...

  11. Successful implementation of the stepwise layer-by-layer growth of MOF thin films on confined surfaces: Mesoporous silica foam as a first case study

    KAUST Repository

    Shekhah, Osama

    2012-01-01

    Here we report the successful growth of highly crystalline homogeneous MOF thin films of HKUST-1 and ZIF-8 on mesoporous silica foam, by employing a layer-by-layer (LBL) method. The ability to control and direct the growth of MOF thin films on confined surfaces, using the stepwise LBL method, paves the way for new prospective applications of such hybrid systems. © 2012 The Royal Society of Chemistry.

  12. Thin surface layers of SiO2 obtained from tetraethoxysilane (TEOS) in electric discharges stabilized by a dielectric barrier

    International Nuclear Information System (INIS)

    Schmidt-Szalowski, K.; Fabianowski, W.; Rzanek-Boroch, Z.; Gutkowski, R.

    1998-01-01

    The reported research was devoted to the process of thin layer deposition in a discharge at atmospheric pressure stabilized by a dielectric barrier. Thin surface layers composed mainly of silicon dioxide were produced by polycondensation of tetraethoxysilane vapor in mixtures with helium gas with a small amount of oxygen. The influence was studied of the voltage applied and of the time elapsed in the deposition process, on the thickness of the layer, as were the changes of composition of the deposited layers during and after storage. It is shown that good passivating pinhole-free silicon oxide layers can be produced in surface barrier discharges. (J.U.)

  13. Thermal diffusivity of a metallic thin layer using the time-domain thermo reflectance technique

    International Nuclear Information System (INIS)

    Battaglia, J-L; Kusiak, A; Rossignol, C; Chigarev, N

    2007-01-01

    The time domain thermo reflectance (TDTR) is widely used in the field of acoustic and thermal characterization of thin layers at the nano and micro scale. In this paper, we propose to derive a simple analytical expression of the thermal diffusivity of the layer. This relation is based on the analytical solution of one-dimensional heat transfer in the medium using integral transforms. For metals, the two-temperature model shows that the capacitance effect at the short times is essentially governed by the electronic contribution

  14. Reversed-phase thin-layer chromatography of the rare earth elements

    International Nuclear Information System (INIS)

    Kuroda, R.; Adachi, M.; Oguma, K.

    1988-01-01

    Partition chromatographic behaviour of the rare earth elements on C 18 bonded silica reversed-phase material has been investigated by thin-layer chromatography in methanol - lactate media. The rare earth lactato complexes are distributed and fractionated on bonded silica layers without ion-interaction reagents. The concentration and pH of lactate solution, methanol concentration and temperature have effects on the migration and resolution of the rare earth elements. The partition system is particularly suited to separate adjacent rare earths of middle atomic weight groups, allowing the separation of gadolinium, terbium, dysprosium, holmium, erbium and thulium to be achieved by development to 18 cm distance. (orig.)

  15. Thin layer thickness measurements by zero group velocity Lamb mode resonances

    Science.gov (United States)

    Cès, Maximin; Clorennec, Dominique; Royer, Daniel; Prada, Claire

    2011-11-01

    Local and non-contact measurements of the thickness of thin layers deposited on a thick plate have been performed by using zero group velocity (ZGV) Lamb modes. It was shown that the shift of the resonance frequency is proportional to the mass loading through a factor which depends on the mechanical properties of the layer and of the substrate. In the experiments, ZGV Lamb modes were generated by a Nd:YAG pulsed laser and the displacement normal to the plate surface was measured by an optical interferometer. Measurements performed at the same point that the generation on the non-coated face of the plate demonstrated that thin gold layers of a few hundred nanometers were detected through a 1.5-mm thick Duralumin plate. The shift of the resonance frequency (1.9 MHz) of the fundamental ZGV mode is proportional to the layer thickness: typically 10 kHz per μm. Taking into account the influence of the temperature, a 240-nm gold layer was measured with a ±4% uncertainty. This thickness has been verified on the coated face with an optical profiling system.

  16. Retention of heavy metals on layered double hydroxides thin films deposited by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Vlad, A., E-mail: angela.vlad@gmail.com [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 76900 Bucharest-Magurele (Romania); Birjega, R.; Matei, A.; Luculescu, C.; Mitu, B.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 76900 Bucharest-Magurele (Romania); Zavoianu, R.; Pavel, O.D. [University of Bucharest, Faculty of Chemistry, Department of Chemical Technology and Catalysis, 4-12 Regina Elisabeta Bd., Bucharest (Romania)

    2014-05-01

    Heavy metals are toxic and hazardous pollutants in the environment due to their nonbiodegradability and persistence, which can pose serious threats to living organisms. The ability of Mg–Al based layered double hydroxides (LDHs) thin films to retain heavy metals from aqueous solutions at different concentrations is a novel topic with prospects of attractive applications, such as detection of heavy metals. We report on the ability of a series of Mg–Al based layered double hydroxides thin films to detect Ni and Co cations in aqueous solutions. Uptake of heavy metals ions such as Ni{sup 2+}, Co{sup 2+} from aqueous solutions was studied as function of contact time at a standard metal ion concentration. The LDHs thin films were deposited using pulsed laser deposition (PLD). The different adsorption mechanisms were studied in connection with different heavy metals used as probe cations. X-ray diffraction, atomic force microscopy, scanning electron microscopy coupled with energy dispersive X-ray spectroscopy, Fourier transform infra-red spectroscopy were the techniques used for the investigation of as deposited and after heavy metals retention thin films.

  17. Studies on layer growth and interfaces on Ta-base thin layers by means of XPS

    International Nuclear Information System (INIS)

    Zier, M.

    2007-01-01

    In this thesis studies on the growth and on the formation of the interfaces of Ta and TaN layers on Si and SiO 2 were performed. In the system TaN on SiO 2 no reaction on the interface could be found. As the system with the mostly disturbed interface Ta on SiO 2 was proved. Here a reduction of the SiO 2 at simultaneous oxidation of the Ta was to be observed. Additionally tantalum silicide was formed to be considered concerning the bonding state as Ta 5 Si 3 , from which a double layer of a tantalum silicide and a tantalum suboxide resulted. A whole thickness of the double layer of above 1 nm resulted. In the system Ta on Si at the deposition of the film on the interface a tantalum silicide was formed to be characterized concerning the bonding state as TaSi 2 . The thickness of the interlayer growed thereby up to 0.8 nm in form of islands. Finally in the system TaN on Si a silicon nitride formation during the deposition was observed, which was attributed to the insertion of adsorbed nitrogen from the sputtering atmosphere by recoil implantation of the sputtered Ta atoms. The silicon nitride interlayer growed thereby up to a thickness of 0.8 nm

  18. A trial of thin layer activated weight loss coupons for corrosion monitoring in oilfield applications

    International Nuclear Information System (INIS)

    Asher, J.; Lawrence, P.F.; Sugden, S.

    1987-03-01

    A set of thin layer activated weight loss corrosion coupons was installed in the wellheads and flow lines of oil production platforms in the North Sea. The coupons were retrieved for laboratory analysis after about six months of exposure. A comparison is made between the results obtained by TLA analysis and standard weight loss measurements. Samples of scale deposits on some of the fittings used were also analysed. (author)

  19. Molecular Beam Epitaxy Growth and Characterization of Thin Layers of Semiconductor Tin

    Science.gov (United States)

    2016-09-01

    Semiconductor Tin by P Folkes, P Taylor, C Rong, B Nichols, H Hier, and M Neupane Approved for public release; distribution...Laboratory Molecular Beam Epitaxy Growth and Characterization of Thin Layers of Semiconductor Tin by P Folkes, P Taylor, C Rong, B Nichols... Semiconductor Tin 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) P Folkes, P Taylor, C Rong, B Nichols, H Hier, and M

  20. Crystalline Molybdenum Oxide Thin-Films for Application as Interfacial Layers in Optoelectronic Devices

    DEFF Research Database (Denmark)

    Fernandes Cauduro, André Luis; dos Reis, Roberto; Chen, Gong

    2017-01-01

    The ability to control the interfacial properties in metal-oxide thin films through surface defect engineering is vital to fine-tune their optoelectronic properties and thus their integration in novel optoelectronic devices. This is exemplified in photovoltaic devices based on organic, inorganic...... with structural characterizations, this work addresses a novel method for tuning, and correlating, the optoelectronic properties and microstructure of device-relevant MoOx layers....

  1. On the possibility of thin layers thickness determination with low energy proton scattering

    Science.gov (United States)

    Bulgadaryan, D.; Kurnaev, V.; Sinelnikov, D.; Efimov, N.

    2017-12-01

    The analysis of erosion and redeposition processes plays an important role in the physics of fusion devices. In this work we present the results of computer simulation of plasma-facing materials surface analysis by use of the keV-energy proton scattering spectroscopy. It is shown that this technique can be used for the non-destructive analysis of thin surface layers. Energy spectra that correspond to different scattering and target parameters are presented.

  2. Determination of Absolute Configuration of Secondary Alcohols Using Thin-Layer Chromatography

    Science.gov (United States)

    Wagner, Alexander J.; Rychnovsky, Scott D.

    2013-01-01

    A new implementation of the Competing Enantioselective Conversion (CEC) method was developed to qualitatively determine the absolute configuration of enantioenriched secondary alcohols using thin-layer chromatography. The entire process for the method requires approximately 60 min and utilizes micromole quantities of the secondary alcohol being tested. A number of synthetically relevant secondary alcohols are presented. Additionally, 1H NMR spectroscopy was conducted on all samples to provide evidence of reaction conversion that supports the qualitative method presented herein. PMID:23593963

  3. A demonstration of on-line plant corrosion monitoring using thin layer activation

    International Nuclear Information System (INIS)

    Asher, J.; Webb, J.W.; Wilkins, N.J.M.; Lawrence, P.F.; UKAEA Atomic Energy Research Establishment, Harwell. Materials Development Div.)

    1981-12-01

    The corrosion of a 1 inch water pipe in an evaporative cooling system has been monitored over three periods of plant operation using thin layer activation (TLA). The corrosion rate was followed at a sensitivity of about 1 μm and clearly reflected changes in plant operation. Examination of the test section after removal, both by autoradiography and metallography revealed the extent of corrosion and pitting over the active area. (author)

  4. Interfacial instability induced by lateral vapor pressure fluctuation in bounded thin liquid-vapor layers

    OpenAIRE

    Kanatani, Kentaro

    2008-01-01

    We study an instability of thin liquid-vapor layers bounded by rigid parallel walls from both below and above. In this system, the interfacial instability is induced by lateral vapor pressure fluctuation, which is in turn attributed to the effect of phase change: evaporation occurs at a hotter portion of the interface and condensation at a colder one. The high vapor pressure pushes the interface downward and the low one pulls it upward. A set of equations describing the temporal evolution of ...

  5. SOUND FIELD SHIELDING BY FLAT ELASTIC LAYER AND THIN UNCLOSED SPHERICAL SHELL

    Directory of Open Access Journals (Sweden)

    G. Ch. Shushkevich

    2014-01-01

    Full Text Available An analytical solution of a boundary problem describing the process of penetration of a sound field of a spherical radiator located inside a thin unclosed spherical shell through a flat elastic layer is constructed. An influence of some parameters of the problem on the value of the attenuation coeffi-cient (screening of the sound field was studied by using a numerical simulation.

  6. A thin-layer liquid culture technique for the growth of Helicobacter pylori.

    Science.gov (United States)

    Joo, Jung-Soo; Park, Kyung-Chul; Song, Jae-Young; Kim, Dong-Hyun; Lee, Kyung-Ja; Kwon, Young-Cheol; Kim, Jung-Min; Kim, Kyung-Mi; Youn, Hee-Shang; Kang, Hyung-Lyun; Baik, Seung-Chul; Lee, Woo-Kon; Cho, Myung-Je; Rhee, Kwang-Ho

    2010-08-01

    Several attempts have been successful in liquid cultivation of Helicobaccter pylori. However, there is a need to improve the growth of H. pylori in liquid media in order to get affluent growth and a simple approach for examining bacterial properties. We introduce here a thin-layer liquid culture technique for the growth of H. pylori. A thin-layer liquid culture system was established by adding liquid media to a 90-mm diameter Petri dish. Optimal conditions for bacterial growth were investigated and then viability, growth curve, and released proteins were examined. Maximal growth of H. pylori was obtained by adding 3 mL of brucella broth supplemented with 10% horse to a Petri dish. H. pylori grew in both DMEM and RPMI-1640 supplemented with 10% fetal bovine serum and 0.5% yeast extract. Serum-free RPMI-1640 supported the growth of H. pylori when supplemented with dimethyl-beta-cyclodextrin (200 microg/mL) and 1% yeast extract. Under optimal growth, H. pylori grew exponentially for 28 hours, reaching a density of 3.4 OD(600) with a generation time of 3.3 hours. After 24 hours, cultures at a cell density of 1.0 OD(600) contained 1.3 +/- 0.1 x 10(9 )CFU/mL. gamma-Glutamyl transpeptidase, nuclease, superoxide dismutase, and urease were not detected in culture supernatants at 24 hours in thin-layer liquid culture, but were present at 48 hours, whereas alcohol dehydrogenase, alkylhydroperoxide reductase, catalase, and vacuolating cytotoxin were detected at 24 hours. Thin-layer liquid culture technique is feasible, and can serve as a versatile liquid culture technique for investigating bacterial properties of H. pylori.

  7. An approach to characterize ultra-thin conducting films protected against native oxidation by an in-situ capping layer

    NARCIS (Netherlands)

    Van Hao, B.; Wiggers, Frank Bert; de Jong, Machiel Pieter; Kovalgin, Alexeij Y.

    2014-01-01

    We propose and demonstrate the application of a test structure to characterize electrical properties of ultra-thin titanium nitride films passivated by a non-conducting amorphous silicon layer. The amorphous silicon layer is used to prevent the oxidation of the conducting layer. Platinum electrodes

  8. Breakthrough to Non-Vacuum Deposition of Single-Crystal, Ultra-Thin, Homogeneous Nanoparticle Layers: A Better Alternative to Chemical Bath Deposition and Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Yu-Kuang Liao

    2017-04-01

    Full Text Available Most thin-film techniques require a multiple vacuum process, and cannot produce high-coverage continuous thin films with the thickness of a few nanometers on rough surfaces. We present a new ”paradigm shift” non-vacuum process to deposit high-quality, ultra-thin, single-crystal layers of coalesced sulfide nanoparticles (NPs with controllable thickness down to a few nanometers, based on thermal decomposition. This provides high-coverage, homogeneous thickness, and large-area deposition over a rough surface, with little material loss or liquid chemical waste, and deposition rates of 10 nm/min. This technique can potentially replace conventional thin-film deposition methods, such as atomic layer deposition (ALD and chemical bath deposition (CBD as used by the Cu(In,GaSe2 (CIGS thin-film solar cell industry for decades. We demonstrate 32% improvement of CIGS thin-film solar cell efficiency in comparison to reference devices prepared by conventional CBD deposition method by depositing the ZnS NPs buffer layer using the new process. The new ZnS NPs layer allows reduction of an intrinsic ZnO layer, which can lead to severe shunt leakage in case of a CBD buffer layer. This leads to a 65% relative efficiency increase.

  9. Breakthrough to Non-Vacuum Deposition of Single-Crystal, Ultra-Thin, Homogeneous Nanoparticle Layers: A Better Alternative to Chemical Bath Deposition and Atomic Layer Deposition.

    Science.gov (United States)

    Liao, Yu-Kuang; Liu, Yung-Tsung; Hsieh, Dan-Hua; Shen, Tien-Lin; Hsieh, Ming-Yang; Tzou, An-Jye; Chen, Shih-Chen; Tsai, Yu-Lin; Lin, Wei-Sheng; Chan, Sheng-Wen; Shen, Yen-Ping; Cheng, Shun-Jen; Chen, Chyong-Hua; Wu, Kaung-Hsiung; Chen, Hao-Ming; Kuo, Shou-Yi; Charlton, Martin D B; Hsieh, Tung-Po; Kuo, Hao-Chung

    2017-04-06

    Most thin-film techniques require a multiple vacuum process, and cannot produce high-coverage continuous thin films with the thickness of a few nanometers on rough surfaces. We present a new "paradigm shift" non-vacuum process to deposit high-quality, ultra-thin, single-crystal layers of coalesced sulfide nanoparticles (NPs) with controllable thickness down to a few nanometers, based on thermal decomposition. This provides high-coverage, homogeneous thickness, and large-area deposition over a rough surface, with little material loss or liquid chemical waste, and deposition rates of 10 nm/min. This technique can potentially replace conventional thin-film deposition methods, such as atomic layer deposition (ALD) and chemical bath deposition (CBD) as used by the Cu(In,Ga)Se₂ (CIGS) thin-film solar cell industry for decades. We demonstrate 32% improvement of CIGS thin-film solar cell efficiency in comparison to reference devices prepared by conventional CBD deposition method by depositing the ZnS NPs buffer layer using the new process. The new ZnS NPs layer allows reduction of an intrinsic ZnO layer, which can lead to severe shunt leakage in case of a CBD buffer layer. This leads to a 65% relative efficiency increase.

  10. [Progress in thin layer CT scan technology in estimating skeletal age of sternal end of clavicle].

    Science.gov (United States)

    Wang, Ya-Hui; Wei, Hua; Ying, Chong-Liang; Wan, Lei; Zhu, Guang-You

    2013-04-01

    It is practical value for determination the teenagers whether the age is full of the legal responsibility age of 18 years old or not by estimating skeletal age of sternal end of clavicle. The traditional methods mainly based on X-ray radiography. However, sternal end of clavicle and adjacent lung, bronchus, sternum, rib, transverse process of thoracic vertebra are overlapped each other. As a result of overlapping, there will be obtained false negative or positive film reading results when according to X-ray observation of epiphyseal growth of sternal end of clavicle, which directly affect the scientificalness and accuracy of estimating of skeletal age. In recent years, the scholars at home and abroad have started to use thin layer CT scan technology to estimate skeletal age of the sternal end of clavicle. With the 2D and 3D CT recombination technology, the accuracy of the film reading distinctly improves by making the shape, size and position of epiphysis displayed clearly. This article reviews the application and research progress of thin layer CT scanning technology in estimating skeletal age of sternal end of clavicle at home and abroad, analyzes the superiority and value of thin layer CT scan technology, which applied to skeletal age of sternal end of clavicle.

  11. Characterisation by optical spectroscopy of a plasma of depositions of thins layers

    International Nuclear Information System (INIS)

    Chouan, Yannick

    1984-01-01

    This research thesis reports a work which, by correlating emission and absorption spectroscopic measurements with properties of deposited thin layers, aimed at being a complement to works undertaken by a team in charge of the realisation of a flat screen. In a first part, the author reports the study of a cathodic pulverisation of a silicon target. He describes the experimental set-up, presents correlations obtained between plasma electric properties (target self-polarisation voltage), emission spectroscopic measurements (line profile and intensity) and absorption spectroscopic measurements (density of metastables), and the composition of deposited thin layers for two reactive pulverisation plasmas (Ar-H 2 and Ar-CH 4 ). The second part addresses the relationship between experimental conditions and spectroscopic characteristics (emission and absorption lines, excitation and rotation temperature) of a He-SiH 4 plasma. The author also determined the most adapted spectroscopic measurements to the 'control' of deposition, and which result in an optimisation of electronic properties and of the deposition rate for the hydrogenated amorphous silicon. The third part reports the characterisation of depositions. Electric and optic measurements are reported. Then, for both deposition techniques, the author relates the influence of experimental conditions to deposition properties and to spectroscopic diagnosis. The author finally presents static characteristics of a thin-layer-based transistor

  12. Electrical characterization of graphene oxide and organic dielectric layers based on thin film transistor

    Energy Technology Data Exchange (ETDEWEB)

    Karteri, İbrahim, E-mail: ibrahimkarteri@gmail.com [Department of Materials Science And Engineering, Kahramanmaras Sutcu Imam University, Kahramanmaraş 4610 (Turkey); Karataş, Şükrü [Department of Physics, Kahramanmaras Sutcu Imam University, Kahramanmaraş 4610 (Turkey); Yakuphanoğlu, Fahrettin [Department of Physics, Fırat University, Elazıg 2310 (Turkey)

    2014-11-01

    Highlights: • We report the synthesis of graphene oxide nanosheets and electrical characterization of graphene oxide based thin film transistor. • Graphene oxide (GO) nanosheets were prepared by using modified Hummers method. • We used insulator layers which are polymethylmethacrylate (PMMA) and polyvinyl phenol (PVP) for graphene oxide based thin flim transistor. - Abstract: We have studied the electrical characteristics of graphene oxide based thin flim transistor with the polymer insulators such as polymethyl methacrylate (PMMA) and poly-4-vinylphenol (PVP). Graphene oxide (GO) nanosheets were prepared by using modified Hummers method. The structural properties of GO nanosheets were characterized with Ultraviolet Visible (UV–vis), FT-IR spectroscopy and X-rays diffraction (XRD). Graphene oxide based thin flim transistor (GO-TFT) was prepared by a spin-coating and thermal evaporation technique. The electrical characterization of GO-TFT was analyzed by output and transfer characteristics by using Keithley-4200 semiconductor characterization system (SCS). The graphene oxide based thin flim transistor devices show p-type semiconducting behavior. The mobility, threshold voltage, sub-threshold swing value and I{sub on}/I{sub off} of GO-TFT were found to be 0.105 cm{sup 2} V{sup −1} s{sup −1}, −8.7 V, 4.03 V/decade and 10, respectively.

  13. Temporal retinal nerve fibre layer thinning in cluster headache patients detected by optical coherence tomography.

    Science.gov (United States)

    Ewering, Carina; Haşal, Nazmiye; Alten, Florian; Clemens, Christoph R; Eter, Nicole; Oberwahrenbrock, Timm; Kadas, Ella M; Zimmermann, Hanna; Brandt, Alexander U; Osada, Nani; Paul, Friedemann; Marziniak, Martin

    2015-10-01

    The exact pathophysiology of cluster headache (CH) is still not fully clarified. Various studies confirmed changes in ocular blood flow during CH attacks. Furthermore, vasoconstricting medication influences blood supply to the eye. We investigated the retina of CH patients for structural retinal alterations with optical coherence tomography (OCT), and how these changes correlate to headache characteristics, oxygen use and impaired visual function. Spectral domain OCT of 107 CH patients - 67 episodic, 35 chronic, five former chronic sufferers - were compared to OCT from 65 healthy individuals. Visual function tests with Sloan charts and a substantial ophthalmologic examination were engaged. Reduction of temporal and temporal-inferior retinal nerve fibre layer (RNFL) thickness was found in both eyes for CH patients with a predominant thinning on the headache side in the temporal-inferior area. Chronic CH patients revealed thinning of the macula compared to episodic suffers and healthy individuals. Bilateral thinning of temporal RNFL was also found in users of 100% oxygen compared to non-users and healthy controls. Visual function did not differ between patients and controls. Our OCT findings show a systemic effect causing temporal retinal thinning in both eyes of CH patients possibly due to attack-inherent or medication-induced frequent bilateral vessel diameter changes. The temporal retina with its thinly myelinated parvo-cellular axons and its more susceptible vessels for the vasoconstricting influence of oxygen inhalation seems to be predisposed for tissue damage-causing processes related to CH. © International Headache Society 2015.

  14. Tuning the Kondo effect in thin Au films by depositing a thin layer of Au on molecular spin-dopants

    Science.gov (United States)

    Ataç, D.; Gang, T.; Yilmaz, M. D.; Bose, S. K.; Lenferink, A. T. M.; Otto, C.; de Jong, M. P.; Huskens, J.; van der Wiel, W. G.

    2013-09-01

    We report on the tuning of the Kondo effect in thin Au films containing a monolayer of cobalt(II) terpyridine complexes by altering the ligand structure around the Co2+ ions by depositing a thin Au capping layer on top of the monolayer on Au by magnetron sputtering (more energetic) and e-beam evaporation (softer). We show that the Kondo effect is slightly enhanced with respect to that of the uncapped film when the cap is deposited by evaporation, and significantly enhanced when magnetron sputtering is used. The Kondo temperature (TK) increases from 3 to 4.2/6.2 K for the evaporated/sputtered caps. X-ray absorption spectroscopy and surface-enhanced Raman spectroscopy investigation showed that the organic ligands remain intact upon Au e-beam evaporation; however, sputtering inflicts significant change in the Co2+ electronic environment. The location of the monolayer—on the surface or embedded in the film—has a small effect. However, the damage of Co-N bonds induced by sputtering has a drastic effect on the increase of the impurity-electron interaction. This opens up the way for tuning of the magnetic impurity states, e.g. spin quantum number, binding energy with respect to the host Fermi energy, and overlap via the ligand structure around the ions.

  15. Phytochemical analysis of ethanolic extract of Dichrostachys Cinerea W and Arn leaves by a thin layer chromatography, high performance thin layer chromatography and column chromatography

    Directory of Open Access Journals (Sweden)

    M Vijayalakshmi

    2013-01-01

    Full Text Available Background: The leaves of Dichrostachys cinerea are used as laxative, diuretic, painkiller. It is also used in the treatment of gonorrhoea, boils, oedema, gout, veneral diseases and nasopharyngeal affections, etc. Materials and Methods: The Phytochemical investigation of ethanolic extract of D. cinerea leaves were performed by standard chemical tests, thin layer chromatography (TLC by using various solvent systems, and by high performance liquid chromatography (HPTLC. Two compounds were isolated by column chromatography and one of the compounds was identified by various spectral studies. Result : Preliminary phytochemical screening of ethanolic extract of D. cinerea leaves showed the presence of Carbohydrates, proteins, Glycosides, Saponins, Tannins, Aminoacids and Terpenoids. The TLC and HPTLC fingerprint of ethanolic extract were studied and various fractions were isolated by column chromatography and one of the fraction contain β-amyrin glucoside which was confirmed by Infra Red[IR] Spectroscopy, 1 H-Nuclear Magnetic Resonance (NMR, C- 13 NMR and Mass spectroscopic (MS studies.

  16. Drag crisis moderation by thin air layers sustained on superhydrophobic spheres falling in water

    KAUST Repository

    Jetly, Aditya

    2018-01-22

    We investigate the effect of thin air layers naturally sustained on superhydrophobic surfaces on the terminal velocity and drag force of metallic spheres free falling in water. The surface of 20 mm to 60 mm steel or tungsten-carbide spheres is rendered superhydrophobic by a simple coating process that uses commercially available hydrophobic agent. By comparing the free fall of unmodified spheres and superhydrophobic spheres in a 2.5 meters tall water tank, It is demonstrated that even a very thin air layer (~ 1 – 2 μm) that covers the freshly dipped superhydrophobic sphere, can reduce the drag force on the spheres by up to 80 %, at Reynolds numbers 105 - 3×105 , owing to an early drag crisis transition. This study complements prior investigations on the drag reduction efficiency of model gas layers sustained on heated metal spheres falling in liquid by the Leidenfrost effect. The drag reduction effects are expected to have significant implication for the development of sustainable air-layer-based energy saving technologies.

  17. Drag crisis moderation by thin air layers sustained on superhydrophobic spheres falling in water.

    Science.gov (United States)

    Jetly, Aditya; Vakarelski, Ivan U; Thoroddsen, Sigurdur T

    2018-02-28

    We investigate the effect of thin air layers naturally sustained on superhydrophobic surfaces on the terminal velocity and drag force of metallic spheres free falling in water. The surface of 20 mm to 60 mm steel or tungsten-carbide spheres is rendered superhydrophobic by a simple coating process that uses a commercially available hydrophobic agent. By comparing the free fall of unmodified spheres and superhydrophobic spheres in a 2.5 meter tall water tank, it is demonstrated that even a very thin air layer (∼1-2 μm) that covers the freshly dipped superhydrophobic sphere can reduce the drag force on the spheres by up to 80%, at Reynolds numbers from 10 5 to 3 × 10 5 , owing to an early drag crisis transition. This study complements prior investigations on the drag reduction efficiency of model gas layers sustained on heated metal spheres falling in liquid by the Leidenfrost effect. The drag reduction effects are expected to have significant implications for the development of sustainable air-layer-based energy saving technologies.

  18. Sound transmission through finite lightweight multilayered structures with thin air layers.

    Science.gov (United States)

    Dijckmans, A; Vermeir, G; Lauriks, W

    2010-12-01

    The sound transmission loss (STL) of finite lightweight multilayered structures with thin air layers is studied in this paper. Two types of models are used to describe the vibro-acoustic behavior of these structures. Standard transfer matrix method assumes infinite layers and represents the plane wave propagation in the layers. A wave based model describes the direct sound transmission through a rectangular structure placed between two reverberant rooms. Full vibro-acoustic coupling between rooms, plates, and air cavities is taken into account. Comparison with double glazing measurements shows that this effect of vibro-acoustic coupling is important in lightweight double walls. For infinite structures, structural damping has no significant influence on STL below the coincidence frequency. In this frequency region, the non-resonant transmission or so-called mass-law behavior dominates sound transmission. Modal simulations suggest a large influence of structural damping on STL. This is confirmed by experiments with double fiberboard partitions and sandwich structures. The results show that for thin air layers, the damping induced by friction and viscous effects at the air gap surfaces can largely influence and improve the sound transmission characteristics.

  19. Atomic layer deposition of absorbing thin films on nanostructured electrodes for short-wavelength infrared photosensing

    International Nuclear Information System (INIS)

    Xu, Jixian; Sutherland, Brandon R.; Hoogland, Sjoerd; Fan, Fengjia; Sargent, Edward H.; Kinge, Sachin

    2015-01-01

    Atomic layer deposition (ALD), prized for its high-quality thin-film formation in the absence of high temperature or high vacuum, has become an industry standard for the large-area deposition of a wide array of oxide materials. Recently, it has shown promise in the formation of nanocrystalline sulfide films. Here, we demonstrate the viability of ALD lead sulfide for photodetection. Leveraging the conformal capabilities of ALD, we enhance the absorption without compromising the extraction efficiency in the absorbing layer by utilizing a ZnO nanowire electrode. The nanowires are first coated with a thin shunt-preventing TiO 2 layer, followed by an infrared-active ALD PbS layer for photosensing. The ALD PbS photodetector exhibits a peak responsivity of 10 −2  A W −1 and a shot-derived specific detectivity of 3 × 10 9  Jones at 1530 nm wavelength

  20. Suitability of N2 plasma for the RIE etching of thin Ag layers

    International Nuclear Information System (INIS)

    Hrkut, P.; Matay, L.; Kostic, I.; Bencurova, A.; Konecnikova, A.; Nemec, P.; Andok, R.; Hacsik, S.

    2013-01-01

    Silver layers of 48 nm thickness were evaporated using EB PVD on Si wafers. The masking resist layers were spin-coated and patterned by the EBDW lithography on the ZBA 21 (20 keV) (Carl-Zeiss, Jena; currently Vistec, Ltd.) variable shaped e-beam pattern generator in II SAS. In order to check the etching process in N 2 , we covered a part of the samples containing Ag with a layer of various resists. The samples were dried on a hot-plate and RIE etched in SCM 600 (1 Pa; 20 sccm; 500 W). After 8 minutes the non-masked Ag layer was completely etched away, what testified suitability of N 2 as an etching gas. Also the etch time of 4 minutes showed to be sufficient for etching through the Ag layer. In order to optimize the etching process it was necessary to estimate the etch-rate (E.R.) of suitable resist layers and of the silver layer. The (authors)

  1. Determination of the particle energy in a waveguide with a thin dielectric layer

    Directory of Open Access Journals (Sweden)

    Andrey V. Tyukhtin

    2012-10-01

    Full Text Available An original method to determine the charged particle energy is developed. This method uses the dependency of waveguide mode frequency on the Lorentz factor of particles. It is central to this technique that the particle bunch generates Cherenkov radiation in a waveguide, and the mode frequencies depend essentially on the Lorentz factor. Here, we consider the case when radiation is excited in a circular waveguide with a dielectric layer. It is shown that structures with relatively thick layers are not convenient for the particle energy measurement because the dependence of the first mode frequency on the Lorentz factor is weak. In contrast, a structure with a thin layer is favorable for such a purpose because this dependency is more essential. Analytical and numerical investigations are performed. It is shown that the first mode amplitude is sufficient for measurements in the case of a pico-Coulomb bunch.

  2. High Performance Nano-Constituent Buffer Layer Thin Films to Enable Low Cost Integrated On-the-Move Communications Systems

    National Research Council Canada - National Science Library

    Cole, M. W; Nothwang, W. D; Hubbard, C; Ngo, E; Hirsch, S

    2004-01-01

    .... Utilizing a coplanar device design we successfully designed, fabricated, characterized, and optimized a high performance Ta2O5 thin film passive buffer layer on Si substrates, which will allow...

  3. Experimental study of soil-structure interaction for proving the three dimensional thin layered element method

    International Nuclear Information System (INIS)

    Kuwabara, Y.; Ogiwara, Y.; Suzuki, T.; Tsuchiya, H.; Nakayama, M.

    1981-01-01

    It is generally recognized that the earthquake response of a structure can be significantly affected by the dynamic interaction between the structure and the surrounding soil. Dynamic soil-structure interaction effects are usually analyzed by using a lumped mass model or a finite element model. In the lumped mass model, the soil is represented by springs and dashpots based on the half-space elastic theory. Each model has its advantages and limitations. The Three Dimensional Thin Layered Element Theory has been developed by Dr. Hiroshi Tajimi based on the combined results of the abovementioned lumped mass model and finite element model. The main characteristic of this theory is that, in consideration and can be applied in the analysis of many problems in soil-structure interaction, such as those involving radiation damping, embedded structures, and multi-layered soil deposits. This paper describes test results on a small scale model used to prove the validity of the computer program based on the Thin Layered Element Theory. As a numerical example, the response analysis of a PWR nuclear power plant is carried out using this program. The vibration test model is simplified and the scale is 1/750 for line. The soil layer of the model is made of congealed gelatine. The test soil layer is 80 cm long, 35 cm wide and 10 cm thick. The super structure is a one mass model made of metal sheet spring and solid mass metal. As fixed inputs, sinusoidal waves (10, 20 gal level) are used. The displacements of the top and base of the super structure, and the accelerations and the displacements of the shaking table are measured. The main parameter of the test is the shear wave velocity of the soil layer. (orig./RW)

  4. Open-Source-Based 3D Printing of Thin Silica Gel Layers in Planar Chromatography.

    Science.gov (United States)

    Fichou, Dimitri; Morlock, Gertrud E

    2017-02-07

    On the basis of open-source packages, 3D printing of thin silica gel layers is demonstrated as proof-of-principle for use in planar chromatography. A slurry doser was designed to replace the plastic extruder of an open-source Prusa i3 printer. The optimal parameters for 3D printing of layers were studied, and the planar chromatographic separations on these printed layers were successfully demonstrated with a mixture of dyes. The layer printing process was fast. For printing a 0.2 mm layer on a 10 cm × 10 cm format, it took less than 5 min. It was affordable, i.e., the running costs for producing such a plate were less than 0.25 Euro and the investment costs for the modified hardware were 630 Euro. This approach demonstrated not only the potential of the 3D printing environment in planar chromatography but also opened new avenues and new perspectives for tailor-made plates, not only with regard to layer materials and their combinations (gradient plates) but also with regard to different layer shapes and patterns. As such an example, separations on a printed plane layer were compared with those obtained from a printed channeled layer. For the latter, 40 channels were printed in parallel on a 10 cm × 10 cm format for the separation of 40 samples. For producing such a channeled plate, the running costs were below 0.04 Euro and the printing process took only 2 min. All modifications of the device and software were released open-source to encourage reuse and improvements and to stimulate the users to contribute to this technology. By this proof-of-principle, another asset was demonstrated to be integrated into the Office Chromatography concept, in which all relevant steps for online miniaturized planar chromatography are performed by a single device.

  5. Thermal resistances of crystalline and amorphous few-layer oxide thin films

    Directory of Open Access Journals (Sweden)

    Liang Chen

    2017-11-01

    Full Text Available Thermal insulation at nanoscale is of crucial importance for non-volatile memory devices such as phase change memory and memristors. We perform non-equilibrium molecular dynamics simulations to study the effects of interface materials and structures on thermal transport across the few-layer dielectric nanostructures. The thermal resistance across few-layer nanostructures and thermal boundary resistance at interfaces consisting of SiO2/HfO2, SiO2/ZrO2 or SiO2/Al2O3 are obtained for both the crystalline and amorphous structures. Based on the comparison temperature profiles and phonon density of states, we show that the thermal boundary resistances are much larger in crystalline few-layer oxides than the amorphous ones due to the mismatch of phonon density of state between distinct oxide layers. Compared with the bulk SiO2, the increase of thermal resistance across crystalline few-layer oxides results from the thermal boundary resistance while the increase of thermal resistance across amorphous few-layer oxides is attributed to the lower thermal conductivity of the amorphous thin films.

  6. Optical properties of self assembled oriented island evolution of ultra-thin gold layers

    International Nuclear Information System (INIS)

    Worsch, Christian; Kracker, Michael; Wisniewski, Wolfgang; Rüssel, Christian

    2012-01-01

    Gold layers with a thickness of only 8 to 21 nm were sputtered on soda–lime–silica glasses. Subsequent annealing at 300 and 400 °C for 1 and 24 h resulted in the formation of separated round gold particles with diameters from 8 to 200 nm. Crystal orientations were described using X-ray diffraction and electron backscatter diffraction. The gold particles are oriented with their (111) planes perpendicular to the surface. Most gold nano particles are single crystalline, some particles are twinned. Thermal annealing of sputtered gold layers resulted in purple samples with a coloration comparable to that of gold ruby glasses. The color can be controlled by the thickness of the sputtered gold layer and the annealing conditions. The simple method of gold film preparation and the annealing temperature dependent properties of the layers make them appropriate for practical applications. - Highlights: ► We produce gold nano particle layers on amorphous substrates. ► Thin sputtered gold layers were annealed at low temperatures. ► Various colors can be achieved reproducibly and UV–vis-NIR spectra are reported. ► A 111-texture of the particles is described as well as twinning. ► The process is suitable for mass production.

  7. Indium sulfide thin films as window layer in chemically deposited solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lugo-Loredo, S. [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico); Peña-Méndez, Y., E-mail: yolapm@gmail.com [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico); Calixto-Rodriguez, M. [Universidad Tecnológica Emiliano Zapata del Estado de Morelos, Av. Universidad Tecnológica No. 1, C.P. 62760 Emiliano Zapata, Morelos (Mexico); Messina-Fernández, S. [Universidad Autónoma de Nayarit, Ciudad de la Cultura “Amado Nervo” S/N, C.P. 63190 Tepic, Nayarit (Mexico); Alvarez-Gallegos, A. [Universidad Autónoma del Estado de Morelos, Centro de Investigación en Ingeniería y Ciencias Aplicadas, Av. Universidad 1001, C.P. 62209, Cuernavaca Morelos (Mexico); Vázquez-Dimas, A.; Hernández-García, T. [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico)

    2014-01-01

    Indium sulfide (In{sub 2}S{sub 3}) thin films have been synthesized by chemical bath deposition technique onto glass substrates using In(NO{sub 3}){sub 3} as indium precursor and thioacetamide as sulfur source. X-ray diffraction studies have shown that the crystalline state of the as-prepared and the annealed films is β-In{sub 2}S{sub 3}. Optical band gap values between 2.27 and 2.41 eV were obtained for these films. The In{sub 2}S{sub 3} thin films are photosensitive with an electrical conductivity value in the range of 10{sup −3}–10{sup −7} (Ω cm){sup −1}, depending on the film preparation conditions. We have demonstrated that the In{sub 2}S{sub 3} thin films obtained in this work are suitable candidates to be used as window layer in thin film solar cells. These films were integrated in SnO{sub 2}:F/In{sub 2}S{sub 3}/Sb{sub 2}S{sub 3}/PbS/C–Ag solar cell structures, which showed an open circuit voltage of 630 mV and a short circuit current density of 0.6 mA/cm{sup 2}. - Highlights: • In{sub 2}S{sub 3} thin films were deposited using the Chemical Bath Deposition technique. • A direct energy band gap between 2.41 to 2.27 eV was evaluated for the In{sub 2}S{sub 3} films. • We made chemically deposited solar cells using the In{sub 2}S{sub 3} thin films.

  8. Transient Response of Thin Wire above a Layered Half-Space Using TDIE/FDTD Hybrid Method

    Directory of Open Access Journals (Sweden)

    Bing Wei

    2012-01-01

    Full Text Available The TDIE/FDTD hybrid method is applied to calculate the transient responses of thin wire above a lossy layered half-space. The time-domain reflection of the layered half space is computed by one-dimensional modified FDTD method. Then, transient response of thin wire induced by two excitation sources (the incident wave and reflected wave is calculated by TDIE method. Finally numerical results are given to illustrate the feasibility and high efficiency of the presented scheme.

  9. Role of the SiO2 buffer layer thickness in the formation of Si/SiO2/nc-Ge/SiO2 structures by dry oxidation

    International Nuclear Information System (INIS)

    Kling, A.; Ortiz, M.I.; Prieto, A.C.; Rodriguez, A.; Rodriguez, T.; Jimenez, J.; Ballesteros, C.; Soares, J.C.

    2006-01-01

    Nanomemories, containing Ge-nanoparticles in a SiO 2 matrix, can be produced by dry thermal oxidation of a SiGe layer deposited onto a Si-wafer with a barrier SiO 2 layer on its top. Rutherford backscattering spectrometry has been used to characterize the kinetics of the oxidation process, the composition profile of the growing oxide, the Ge-segregation and its diffusion into the barrier oxide in samples with thin and thick barrier oxide layers. The Ge segregated during the oxidation of the SiGe layer diffuses into the barrier oxide. In the first case the diffusion through the thin oxide is enhanced by the proximity of the substrate that acts as a sink for the Ge, resulting in the formation of a low Ge concentration SiGe layer in the surface of the Si-wafer. In the second case, the Ge-diffusion progresses as slowly as in bulk SiO 2 . Since barrier oxide layers as thin as possible are favoured for device fabrication, the structures should be oxidized at lower temperatures and the initial SiGe layer thickness reduced to minimize the Ge-diffusion

  10. Influence of Drying Temperature on the Structural, Optical, and Electrical Properties of Layer-by-Layer ZnO Nanoparticles Seeded Catalyst

    Directory of Open Access Journals (Sweden)

    S. S. Shariffudin

    2012-01-01

    Full Text Available Layer-by-layer zinc oxide (ZnO nanoparticles have been prepared using sol-gel spin coating technique. The films were dried at different temperature from 100°C to 300°C to study its effect to the surface morphology, optical and electrical properties of the films. Film dried at 200°C shows the highest (0 0 2 peak of X-ray diffraction pattern which is due to complete decomposition of zinc acetate and complete vaporization of the stabilizer and solvent. It was found that the grain size increased with the increased of drying temperature from 100 to 200°C, but for films dried at above 200°C, the grain size decreased. Photoluminescence measurements show a sharp ultraviolet emission centred at 380 nm and a very low intensity visible emission. Blue visible emission was detected for sample dried at temperature below 200°C, while for films dried above 250°C, the visible emission is red shifted. The films were transparent in the visible range from 400 to 800 nm with average transmittance of above 85%. Linear I-V characteristics were shown confirming the ohmic behaviour of the gold contacts to the films. A minimum resistivity was given by 5.08 Ω · cm for the film dried at 300°C.

  11. Mocvd Growth of Group-III Nitrides on Silicon Carbide: From Thin Films to Atomically Thin Layers

    Science.gov (United States)

    Al Balushi, Zakaria Y.

    Group-III nitride semiconductors (AlN, GaN, InN and their alloys) are considered one of the most important class of materials for electronic and optoelectronic devices. This is not limited to the blue light-emitting diode (LED) used for efficient solid-state lighting, but other applications as well, such as solar cells, radar and a variety of high frequency power electronics, which are all prime examples of the technological importance of nitride based wide bandgap semiconductors in our daily lives. The goal of this dissertation work was to explore and establish new growth schemes to improve the structural and optical properties of thick to atomically thin films of group-III nitrides grown by metalorganic chemical vapor deposition (MOCVD) on SiC substrates for future novel devices. The first research focus of this dissertation was on the growth of indium gallium nitride (InGaN). This wide bandgap semiconductor has attracted much research attention as an active layer in LEDs and recently as an absorber material for solar cells. InGaN has superior material properties for solar cells due to its wavelength absorption tunability that nearly covers the entire solar spectrum. This can be achieved by controlling the indium content in thick grown material. Thick InGaN films are also of interest as strain reducing based layers for deep-green and red light emitters. The growth of thick films of InGaN is, however, hindered by several combined problems. This includes poor incorporation of indium in alloys, high density of structural and morphological defects, as well as challenges associated with the segregation of indium in thick films. Overcoming some of these material challenges is essential in order integrate thick InGaN films into future optoelectronics. Therefore, this dissertation research investigated the growth mechanism of InGaN layers grown in the N-polar direction by MOCVD as a route to improve the structural and optical properties of thick InGaN films. The growth

  12. Fabrication of Crack-Free Barium Titanate Thin Film with High Dielectric Constant Using Sub-Micrometric Scale Layer-by-Layer E-Jet Deposition.

    Science.gov (United States)

    Liang, Junsheng; Li, Pengfei; Wang, Dazhi; Fang, Xu; Ding, Jiahong; Wu, Junxiong; Tang, Chang

    2016-01-19

    Dense and crack-free barium titanate (BaTiO₃, BTO) thin films with a thickness of less than 4 μm were prepared by using sub-micrometric scale, layer-by-layer electrohydrodynamic jet (E-jet) deposition of the suspension ink which is composed of BTO nanopowder and BTO sol. Impacts of the jet height and line-to-line pitch of the deposition on the micro-structure of BTO thin films were investigated. Results show that crack-free BTO thin films can be prepared with 4 mm jet height and 300 μm line-to-line pitch in this work. Dielectric constant of the prepared BTO thin film was recorded as high as 2940 at 1 kHz at room temperature. Meanwhile, low dissipation factor of the BTO thin film of about 8.6% at 1 kHz was also obtained. The layer-by-layer E-jet deposition technique developed in this work has been proved to be a cost-effective, flexible and easy to control approach for the preparation of high-quality solid thin film.

  13. Fabrication of Crack-Free Barium Titanate Thin Film with High Dielectric Constant Using Sub-Micrometric Scale Layer-by-Layer E-Jet Deposition

    Directory of Open Access Journals (Sweden)

    Junsheng Liang

    2016-01-01

    Full Text Available Dense and crack-free barium titanate (BaTiO3, BTO thin films with a thickness of less than 4 μm were prepared by using sub-micrometric scale, layer-by-layer electrohydrodynamic jet (E-jet deposition of the suspension ink which is composed of BTO nanopowder and BTO sol. Impacts of the jet height and line-to-line pitch of the deposition on the micro-structure of BTO thin films were investigated. Results show that crack-free BTO thin films can be prepared with 4 mm jet height and 300 μm line-to-line pitch in this work. Dielectric constant of the prepared BTO thin film was recorded as high as 2940 at 1 kHz at room temperature. Meanwhile, low dissipation factor of the BTO thin film of about 8.6% at 1 kHz was also obtained. The layer-by-layer E-jet deposition technique developed in this work has been proved to be a cost-effective, flexible and easy to control approach for the preparation of high-quality solid thin film.

  14. Solution-processed In2S3 buffer layer for chalcopyrite thin film solar cells

    Directory of Open Access Journals (Sweden)

    Wang Lan

    2016-01-01

    Full Text Available We report a route to deposit In2S3 thin films from air-stable, low-cost molecular precursor inks for Cd-free buffer layers in chalcopyrite-based thin film solar cells. Different precursor compositions and processing conditions were studied to define a reproducible and robust process. By adjusting the ink properties, this method can be applied in different printing and coating techniques. Here we report on two techniques, namely spin-coating and inkjet printing. Active area efficiencies of 12.8% and 12.2% have been achieved for In2S3-buffered solar cells respectively, matching the performance of CdS-buffered cells prepared with the same batch of absorbers.

  15. Solution-processed In2S3 buffer layer for chalcopyrite thin film solar cells

    Science.gov (United States)

    Wang, Lan; Lin, Xianzhong; Ennaoui, Ahmed; Wolf, Christian; Lux-Steiner, Martha Ch.; Klenk, Reiner

    2016-02-01

    We report a route to deposit In2S3 thin films from air-stable, low-cost molecular precursor inks for Cd-free buffer layers in chalcopyrite-based thin film solar cells. Different precursor compositions and processing conditions were studied to define a reproducible and robust process. By adjusting the ink properties, this method can be applied in different printing and coating techniques. Here we report on two techniques, namely spin-coating and inkjet printing. Active area efficiencies of 12.8% and 12.2% have been achieved for In2S3-buffered solar cells respectively, matching the performance of CdS-buffered cells prepared with the same batch of absorbers.

  16. Penetration of Electro-Magnetic Fields through a Thin Resistive Layer

    CERN Document Server

    Vos, L; Caspers, Friedhelm; Mostacci, A; Rinolfi, Louis; Tsutsui, H; CERN. Geneva. AB Department

    2003-01-01

    In 1999 and 2000 experiments were carried out in the EPA machine to investigate the shielding properties of a ceramic vacuum chamber with a thin Titanium coating on the inside. A single electron bunch was extracted and sent consecutively through two ceramic chambers. The upstream chamber was coated, the downstream was not and served as a reference. The magnetic field was measured in the horizontal plane close to the outer ceramic wall on both chambers. Four different configurations of the upstream chamber were measured. In the first configuration no second shield was installed. Then three different shields were installed at the outside of the ceramic. The penetration of the electro-magnetic fields through the thin Titanium layer was very small in the first case (reduction of nearly 40dB) but substantial in the three other cases.

  17. Incorporation of layered double nanomaterials in thin film nanocomposite nanofiltration membrane for magnesium sulphate removal

    Directory of Open Access Journals (Sweden)

    Tajuddin Muhammad Hanis

    2018-01-01

    Full Text Available Thin film nanocomposite (TFN membrane with copper-aluminium layered double hydroxides (LDH incorporated into polyamide (PA selective layer has been prepared for magnesium sulphate salt removal. 0, 0.05, 0.1, 0.15, 0.2 wt% of LDH were dispersed in the trimesoyl chloride (TMC in n-hexane as organic solution and embedded into PA layer during interfacial polymerization with piperazine. The fabricated membranes were further characterized to evaluate its morphological structure and membrane surface hydrophilicity. The TFN membranes performance were evaluated with divalent salt magnesium sulphate (MgSO4 removal and compared with thin film composite (TFC. The morphological structures of TFN membranes were altered and the surface hydrophilicity were enhanced with addition of LDH. Incorporation of LDH has improved the permeate water flux by 82.5% compared to that of TFC membrane with satisfactory rejection of MgSO4. This study has experimentally validated the potential of LDH to improve the divalent salt separation performance for TFN membranes.

  18. Prediction of transmittance spectra for transparent composite electrodes with ultra-thin metal layers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhao; Alford, T. L., E-mail: TA@asu.edu [School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287 (United States); Khorasani, Arash Elhami [ON Semiconductor Corp., Phoenix, Arizona 85005 (United States); Theodore, N. D. [CHD-Fab, Freescale Semiconductor Inc., Tempe, Arizona 85224 (United States); Dhar, A. [Intel Corp., 2501 NW 229th Ave, Hillsboro, Oregon 97124 (United States)

    2015-11-28

    Recent interest in indium-free transparent composite-electrodes (TCEs) has motivated theoretical and experimental efforts to better understand and enhance their electrical and optical properties. Various tools have been developed to calculate the optical transmittance of multilayer thin-film structures based on the transfer-matrix method. However, the factors that affect the accuracy of these calculations have not been investigated very much. In this study, two sets of TCEs, TiO{sub 2}/Au/TiO{sub 2} and TiO{sub 2}/Ag/TiO{sub 2}, were fabricated to study the factors that affect the accuracy of transmittance predictions. We found that the predicted transmittance can deviate significantly from measured transmittance for TCEs that have ultra-thin plasmonic metal layers. The ultrathin metal layer in the TCE is typically discontinuous. When light interacts with the metallic islands in this discontinuous layer, localized surface plasmons are generated. This causes extra light absorption, which then leads to the actual transmittance being lower than the predicted transmittance.

  19. Incorporation of layered double nanomaterials in thin film nanocomposite nanofiltration membrane for magnesium sulphate removal

    Science.gov (United States)

    Hanis Tajuddin, Muhammad; Yusof, Norhaniza; Salleh, Wan Norharyati Wan; Fauzi Ismail, Ahmad; Hanis Hayati Hairom, Nur; Misdan, Nurasyikin

    2018-03-01

    Thin film nanocomposite (TFN) membrane with copper-aluminium layered double hydroxides (LDH) incorporated into polyamide (PA) selective layer has been prepared for magnesium sulphate salt removal. 0, 0.05, 0.1, 0.15, 0.2 wt% of LDH were dispersed in the trimesoyl chloride (TMC) in n-hexane as organic solution and embedded into PA layer during interfacial polymerization with piperazine. The fabricated membranes were further characterized to evaluate its morphological structure and membrane surface hydrophilicity. The TFN membranes performance were evaluated with divalent salt magnesium sulphate (MgSO4) removal and compared with thin film composite (TFC). The morphological structures of TFN membranes were altered and the surface hydrophilicity were enhanced with addition of LDH. Incorporation of LDH has improved the permeate water flux by 82.5% compared to that of TFC membrane with satisfactory rejection of MgSO4. This study has experimentally validated the potential of LDH to improve the divalent salt separation performance for TFN membranes.

  20. Mercury in a thin layer in HgMn stars: A test of a diffusion model

    International Nuclear Information System (INIS)

    Megessier, C.; Michaud, G.; Weiler, E.J.

    1980-01-01

    Lines of the first three states of ionization of mercury have been observed in μ Leporis and chi Lupi using the Copernicus satellite. Lines of Hg II and Hg III have been observed in α Andromedae. There appears to be an absorption feature at every wavelength where there is expected to be a mercury line. The presence of all three states of ionization is likely in μ Lep and chi Lup. The relative equivalent widths of the lines of the various states of ionization do not depend on the effective temperature of the stars, in contradiction to what is expected if mercury were uniformly distributed in the atmosphere. It is, however, expected if mercury has been concentrated, by diffusion, in a thin layer, where the radiative forces just equal the gravitational forces on mercury. That mercury should be so concentrated is also required by the explanation of the mercury isotope anomaly proposed by Michaud, Reeves, and Charland. The diffusion model for Ap stars predicts in its simplest form the presence of very thin layers. However, any leftover turbulence may increase the depth of these layers without eliminating the element separation

  1. Acid modified diatomaceous earth--a sorbent material for thin layer chromatography.

    Science.gov (United States)

    Ergül, Soner; Savaşci, Sahin

    2008-04-01

    Natural diatomaceous earth (DE) is modified by flux calcination and refluxing with acid. To characterize natural DE, modified DE's [flux calcinated (FC)DE and FCDE-I] and silica gel 60GF(254) (Si-60GF(254)) are analyzed microscopically, physically, and chemically by various techniques. FCDE-I and Si-60GF(254) are investigated for their usefulness in the stationary phase of thin layer chromatography (TLC) both individually and in composition. Sodium diethyldithiocarbamate (DEDTC) and ammonium pyrrolidinedithiocarbamate (PyDTC) are prepared as Co or Cu (M) complexes [M(DEDTC)(2) and M(PyDTC)(2), respectively]. These complexes and their mixtures are run on thin layers of Si-60GF(254) and FCDE-I individually, and on various FCDE-I and Si-60GF(254) mixtures. Pure toluene and various toluene-cyclohexane mixtures (3:1, 1:1, 1:2, 1:3, v/v) are used as mobile phases for the running the complexes. The best analytical separations of both M(DEDTC)(2) and M(PyDTC)(2) complexes are obtained when using pure toluene and toluene-cyclohexane (3:1, 1:1, v/v) as mobile phases on FCDE-I-Si-60GF(254) (1:3, 1:1, w/w) layers as stationary phases. This study shows that it is possible to qualitatively analyze and to satisfactorily separate a mixture Cu(2+) and Co(2+) cations on cited chromatographic systems.

  2. Detection and determination of pesticides using thin layer chromatography: part II: retention factors

    International Nuclear Information System (INIS)

    Yeboah, P.O.; Lowor, S.; Akpabli, C.K.

    2003-01-01

    Reproducible Rf and RRf values have been determined using thin layer chromatographic (TLC) systems for 33 active ingredients used as pesticides in Ghana. For TLC elution, Silica gel 60 F or Silica gel 60 layers with ethyl acetate, dichloromethane or benzene; and Aluminum oxide G layer with ethyl acetate,or dichloromenthane systems-ms were used. Pesticide residues were detected by the O-Tolidine + potassium iodide method. Silica gel 60 F layer with ethyl acetate system yielded a good spread of Rf values in the range 0.10 - 0.71, with the majority of the compounds eluting between 0.30 and 0.70. Irrespective of the solvent used, Rf values were shown to be ge-generally higher for aluminum oxide than silica gel systems. For the adsorbent-solvent systems used, the low Rf values were characterized by high coefficient of variation. While silica gel 60 F layers with ethyl acetate system is recommended for screening pesticides analysis, aluminum and other systems could be used to confirm the identity of pesticides (au)

  3. General mechanisms of thin layers in high Reynolds number turbulent flows

    Science.gov (United States)

    Hunt, Julian; Ishihara, Takashi; Morishita, Koji

    2015-11-01

    Mechanisms and computation are presented for the three types of thin, high vorticity, randomly moving shear layers at high Reynolds number. They decorrelate eddy motions on each side and, in the first two types, have an internal micro-scale, dissipative structure. Their form also depends on the mean strain/shear outside the layer, and the proximity of any resistive boundaries. The first type (T/NT) lie between regions of sheared turbulence and external non-turbulent motions. Depending on whether the inflection points of the conditional mean shear profile, , relative to the interface coordinate yi, are on the outside or inside edges of the layer, the forms of the interface are ``nibbling'' motions on the scale of the layer thickness or large ``engulfing'' motions, which affect the overall flow structure. In the second type (T/In), which occurs in the interior of turbulent flows, because the interface instabilities are suppressed, the stretching increases more than in T/NT, causing the micro-scale vorticity, velocity and dissipation to greatly exceed Kolmogorov's theory. The third type (T/W) within the buffer wall layer, by blocking outer eddies, determines the displaced form of the mean logarithmic profile, and fluctuations of wall shear stress.

  4. Comment on "Tunable Design of Structural Colors Produced by Pseudo-1D Photonic Crystals of Graphene Oxide" and Thin-Film Interference from Dried Graphene Oxide Film.

    Science.gov (United States)

    Hong, Seung-Ho; Song, Jang-Kun

    2017-04-01

    The mechanism of the iridescent color reflection from dried thin graphene oxide (GO) film on Si wafer is clarified. Dissimilarly to the photonic crystalline reflection in aqueous GO dispersion, the color reflection in dried GO film originates from the thin film interference. The peak reflection can reach 23% by optimizing the GO thickness and the substrate. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. A Method for Atomic Layer Deposition of Complex Oxide Thin Films

    Science.gov (United States)

    2012-12-01

    Ge, H. Wang, M. Wang, M. Wang, Z. Liu, N. Ming , Thin Solid Films 375 (2000) 220. [15] D. Bao, X. Yao, N. Wakiya, K. Shinozaki, N. Mizutani, Mater...2008. [3] Jonathan R. Scheffe, Andrea Francés, David M. King, Xinhua Liang , Brittany A. Branch, Andrew S. Cavanagh, Steven M. George, and Alan W...atomic-layer deposition. Journal of Crystal Growth, 254(3-4):443–448, July 2003. 71 [12] Chih-Yi Pan, Dah-Shyang Tsai , and Lu-Sheng Hong. Abnormal

  6. Investigation of ZnS thin layers by thermal evaporation method (PVD

    Directory of Open Access Journals (Sweden)

    MR Khanlary

    2011-03-01

    Full Text Available Thin layers of ZnS in two different temperature conditions of 25 or 2000C and also with different thicknesses from 100nm to 600nm were prepared by physical vapor deposition. Absorption and also transmission spectra of the films were obtained to determine absorption coefficient, extinction constant and optical band gap of the films. It was found that by decreasing the substrate temperature or decreasing the film's thickness, optical band gap of ZnS films were increased or decreased, respectively. These phenomena can be attributed to the quantum size effect.

  7. Thin-layer chromatography of several antihypertensive drugs from the group of angiotensin converting enzyme inhibitors

    Directory of Open Access Journals (Sweden)

    ZIVOSLAV LJ. TESIC

    2001-01-01

    Full Text Available A rapid and simple method for the chromatographic separation of pharmacologically active components contained in some antihypertensive drugs has been developed employing thin-layers of silica gel and polyacrylonitrile sorbent (PANS. The active compounds of Captopril – (S-1-(3-mercapto-2-methyl-1-oxopropyl-L-proline, Enalapril – (S-1-[N- [1-(ethoxycarbonyl-3-phenylpropyl]-L-alanyl]-L-proline, Lisinopril – (S -1-[N2-(carboxy-3-phenylpropyl-L-lysyl]-L-proline, Quinapril – [3S-[2[R*(R*],3R*

  8. Extraction of oxytetracycline starting from the meats of chickens and identifications by thin layer chromatography

    International Nuclear Information System (INIS)

    Elghozzi, Amira

    2007-01-01

    Use of antibiotics in the poultry also suspected as one of the cause of the emergence of resistance to antibiotics of some bacteria what causes risks on human health continuation of persistence of the residues in the foodstuffs. We were interested in detected the presence qualitatively of oxytetracyclin in samples of muscle and liver of chicken by the use of the techniques of thin layer chromatography. Although, These results are satisfactory, it is always necessary to prevent the dangers which cause the risks of the residues of oxytetracycline on health. (Author). 20 refs

  9. Analysis of Intermediates of Steroid Transformations in Resting Cells by Thin-Layer Chromatography (TLC).

    Science.gov (United States)

    Guevara, Govinda; Perera, Julián; Navarro-Llorens, Juana-María

    2017-01-01

    Thin-layer chromatography (TLC) is a useful and convenient method for the analysis of steroids due to: its simple sample preparation, low time-consuming process, high sensitivity, low equipment investment and capacity to work on many samples simultaneously. Here we describe a TLC easy protocol very useful to analyze steroid molecules derived from a biotransformation carried out in wild-type and mutant resting cells of Rhodococcus ruber strain Chol-4. Following this protocol, we were able to detect the presence or the absence of some well-known intermediates of cholesterol catabolism in Rhodococcus, namely AD, ADD, and 9OHAD.

  10. Thin-layer chromatography - liquid chromatography, an ideal supplement demonstrated by the separation of lanthanoids

    International Nuclear Information System (INIS)

    Specker, H.; Hufnagel, A.

    1984-01-01

    All lanthanoids have been separated by thin-layer chromatography (TLC) with short retention times by using a mixture of ether/tetrahydrofurane (THF)/bis-(2-ethylhexyl)-phosphate (HDEHP)/nitric acid. The eluent was empirically tested by synergistic effects. The results have been transferred to high-performance liquid chromatography /HPLC). It was possible to use the same eluent in TLC and HPLC both for the analytical separation of all lanthanoids and for the separation of fission products. The experimental experience gained in HPLC could be applied to the pre-concentration of isotopes in TLC. Both methods excellently supplemented each other in the separation of lanthanoids. (orig.) [de

  11. Influence of Direct Current Electric Field on Corrosion Behavior of Tin Under a Thin Electrolyte Layer

    Science.gov (United States)

    Huang, H. L.; Bu, F. R.; Tian, J.; Liu, D.

    2017-12-01

    The influence of a direct current electric field (DCEF) on corrosion behavior of tin under a thin electrolyte layer was investigated based on an array electrode technology by polarization, electrochemical impedance spectroscopy and surface analysis. The experimental results indicate that the corrosion rate of tin near the positive plate of DCEF increases with increased electric field intensity, which could be attributed to the acceleration of the migration of ions, the removal of corrosion products under DCEF and the damage of tin surface oxide film. Furthermore, tin at different positions in a DCEF exhibits different corrosion behavior, which could be ascribed to the difference of the local corrosion environment caused by the DCEF.

  12. Recent Developments in Single-Walled Carbon Nanotube Thin Films Fabricated by Dry Floating Catalyst Chemical Vapor Deposition.

    Science.gov (United States)

    Zhang, Qiang; Wei, Nan; Laiho, Patrik; Kauppinen, Esko I

    2017-11-27

    Transparent conducting films (TCFs) are critical components of many optoelectronic devices that pervade modern technology. Due to their excellent optoelectronic properties and flexibility, single-walled carbon nanotube (SWNT) films are regarded as an important alternative to doped metal oxides or brittle and expensive ceramic materials. Compared with liquid-phase processing, the dry floating catalyst chemical vapor deposition (FCCVD) method without dispersion of carbon nanotubes (CNTs) in solution is more direct and simpler. By overcoming the tradeoff between CNT length and solubility during film fabrication, the dry FCCVD method enables production of films that contain longer CNTs and offer excellent optoelectronic properties. This review focuses on fabrication of SWNT films using the dry FCCVD method, covering SWNT synthesis, thin-film fabrication and performance regulation, the morphology of SWNTs and bundles, transparency and conductivity characteristics, random bundle films, patterned films, individual CNT networks, and various applications, especially as TCFs in touch displays. Films based on SWNTs produced by the dry FCCVD method are already commercially available for application in touch display devices. Further research on the dry FCCVD method could advance development of not only industrial applications of CNTs but also the fundamental science of related nanostructured materials and nanodevices.

  13. Doped nanocrystalline silicon oxide for use as (intermediate) reflecting layers in thin-film silicon solar cells

    NARCIS (Netherlands)

    Babal, P.

    2014-01-01

    In summary, this thesis shows the development and nanostructure analysis of doped silicon oxide layers. These layers are applied in thin-film silicon single and double junction solar cells. Concepts of intermediate reflectors (IR), consisting of silicon and/or zinc oxide, are applied in tandem

  14. Thin-film amorphous silicon germanium solar cells with p-and n-type hydrogenated silicon oxide layers

    NARCIS (Netherlands)

    Si, F.T.; Isabella, O.; Zeman, M.

    2017-01-01

    Mixed-phase hydrogenated silicon oxide (SiOx:H) is applied to thin-film hydrogenated amorphous silicon germanium (a-SiGe:H) solar cells serving as both p-doped and n-doped layers. The bandgap of p-SiOx:H is adjusted to achieve a highly-transparent window layer while also providing a strong electric

  15. On-line monitoring of wear and/or corrosion processes by thin layer activation technique

    International Nuclear Information System (INIS)

    Alexandreanu, B.; Popa-Simil, L.; Voiculescu, D.; Racolta, P.M.

    1995-01-01

    The Thin Layer Activation (TLA) principle consists in creating a radioactive layer by ion beam irradiation of a machine part subjected to wear. The method is based on the determination of the increasing radioactivity in the lubricant due to suspended wear particles and has a sensitivity threshold of about 40 μ g / cm 2 . The most used radioactive markers are 56 Co, 57 Co, 65 Zn, 51 Cr, 48 V, 124 Sb. In this paper, we have chosen to present an on-line wear level determination experiment performed for a thermal engine. The study of possible influence of a SR3 added lubricant upon the wear level of a Dacia 1410 car engine is presented, illustrating the on-line TLA based monitoring of wear for industrial uses. The examples presented outline the advantages of this method over the conventional one, like the fast response and the high sensitivity, while no dismantling of the engine is implied. (author)

  16. Design and characterisation of a thin-layered dual-band electrochemical cell

    International Nuclear Information System (INIS)

    Paixao, Thiago R.L.C.; Matos, Renato Camargo; Bertotti, Mauro

    2003-01-01

    The development of a thin-layered dual-band electrochemical cell operating at flow conditions is described. Influence of experimental parameters related to the geometric design of the channel electrode as well as the flow rate on the collection efficiency were studied by using ferricyanide as a probe, results being in agreement with predictions from literature. Fiagram responses obtained by injecting thiosulphate+iodide solutions to the carrier electrolyte (1 M Ac - /1 M HAc) were evaluated by measuring peak current and charge values at both electrodes. Data showed the influence of the flow rate and the ratio between iodide and thiosulphate concentrations on the profile of fiagrams recorded at the first electrode and the results are discussed on the basis of both sample dispersion and thickness of the reaction layer. Analytical applications of the proposed generator-collector cell involved titrations with electrogenerated iodine, thiosulphate concentrations as low as 1 μM being measured with high precision

  17. Sputter Deposited TiOx Thin-Films as Electron Transport Layers in Organic Solar Cells

    DEFF Research Database (Denmark)

    Mirsafaei, Mina; Bomholt Jensen, Pia; Lakhotiya, Harish

    solar cells that eliminates the need for light soaking and still allows for integration on flexible plastic substrates, which is beneficial for roll-to-roll mass production of flexible organic solar cells. 1. Steim, R.; Kogler, F. R.; Brabec, C. J., Interface materials for organic solar cells. Journal......The use of interfacial layers in organic solar cells has been investigated intensively over the past years, as it has a strong impact on both the power conversion efficiency and stability of the devices. Among the systems investigated are for example alkali salts, ionic liquids, neutral polymers...... transparency and favorable energy-level alignment with many commonly used electron-acceptor materials. There are several methods available for fabricating compact TiOx thin-films for use in organic solar cells, including sol-gel solution processing, spray pyrolysis and atomic-layer deposition; however...

  18. Atomic layer deposition of Al-doped ZnO thin films

    International Nuclear Information System (INIS)

    Tynell, Tommi; Yamauchi, Hisao; Karppinen, Maarit; Okazaki, Ryuji; Terasaki, Ichiro

    2013-01-01

    Atomic layer deposition has been used to fabricate thin films of aluminum-doped ZnO by depositing interspersed layers of ZnO and Al 2 O 3 on borosilicate glass substrates. The growth characteristics of the films have been investigated through x-ray diffraction, x-ray reflection, and x-ray fluorescence measurements, and the efficacy of the Al doping has been evaluated through optical reflectivity and Seebeck coefficient measurements. The Al doping is found to affect the carrier density of ZnO up to a nominal Al dopant content of 5 at. %. At nominal Al doping levels of 10 at. % and higher, the structure of the films is found to be strongly affected by the Al 2 O 3 phase and no further carrier doping of ZnO is observed.

  19. Bidirectional reflectance study on dry, wet, and submerged particulate layers: effects of pore liquid refractive index and translucent particle concentrations.

    Science.gov (United States)

    Zhang, Hao; Voss, Kenneth J

    2006-12-01

    We performed extensive bidirectional reflectance measurements on dry, wet, and submerged particulate layers with various albedos to investigate the darkening effect caused by wetting with fluids. It was found that, in addition to the reduction of the refractive index contrast when there is a pore liquid (wetted), the concentration of translucent grains in a particulate layer and the surface roughness conditions of the individual grains make important contributions to the wetting-induced darkening effect. Reflectance measurements on glass-sediment mixtures confirmed that, as the concentration of translucent particles increases, the reflectance of the dry layers increases while that of the wetted layers decreases. Measurements indicate that neither the prediction made by the theory of Twomey et al. [Appl. Opt. 25, 431 (1986)] nor that of Lekner and Dorf [Appl. Opt. 27, 1278 (1988)] is sufficient.

  20. Low-temperature atomic layer deposition of MgO thin films on Si

    Science.gov (United States)

    Vangelista, S.; Mantovan, R.; Lamperti, A.; Tallarida, G.; Kutrzeba-Kotowska, B.; Spiga, S.; Fanciulli, M.

    2013-12-01

    Magnesium oxide (MgO) films have been grown by atomic layer deposition in the wide deposition temperature window of 80-350 °C by using bis(cyclopentadienyl)magnesium and H2O precursors. MgO thin films are deposited on both HF-last Si(1 0 0) and SiO2/Si substrates at a constant growth rate of ˜0.12 nm cycle-1. The structural, morphological and chemical properties of the synthesized MgO thin films are investigated by x-ray reflectivity, grazing incidence x-ray diffraction, time-of-flight secondary ion mass spectrometry and atomic force microscopy measurements. MgO layers are characterized by sharp interface with the substrate and limited surface roughness, besides good chemical uniformity and polycrystalline structure for thickness above 7 nm. C-V measurements performed on Al/MgO/Si MOS capacitors, with MgO in the 4.6-11 nm thickness range, allow determining a dielectric constant (κ) ˜ 11. Co layers are grown by chemical vapour deposition in direct contact with MgO without vacuum-break (base pressure 10-5-10-6 Pa). The as-grown Co/MgO stacks show sharp interfaces and no elements interdiffusion among layers. C-V and I-V measurements have been conducted on Co/MgO/Si MOS capacitors. The dielectric properties of MgO are not influenced by the further process of Co deposition.

  1. Ion beams as a means of deposition and in-situ characterization of thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Gruen, D.M.; Lin, Y.P.; Schmidt, H.; Liu, Y.L.; Barr, T.; Chang, R.P.H.

    1992-01-01

    Ion beam-surface interactions produce many effects in thin film deposition which are similar to those encountered in plasma deposition processes. However, because of the lower pressures and higher directionality associated with the ion beam process, it is easier to avoid some sources of film contamination and to provide better control of ion energies and fluxes. Additional effects occur in the ion beam process because of the relatively small degree of thermalization resulting from gas phase collisions with both the ion beam and atoms sputtered from the target. These effects may be either beneficial or detrimental to the film properties, depending on the material and deposition conditions. Ion beam deposition is particularly suited to the deposition of multi-component films and layered structures, and can in principle be extended to a complete device fabrication process. However, complex phenomena occur in the deposition of many materials of high technical interest which make it desirable to monitor the film growth at the monolayer level. It is possible to make use of ion-surface interactions to provide a full suite of surface analytical capabilities in one instrument, and this data may be obtained at ambient pressures which are far too high for conventional surface analysis techniques. Such an instrument is under development and its current performance characteristics and anticipated capabilities are described

  2. Corrosion protection of steel by thin coatings of starch-oil dry lubricants

    Science.gov (United States)

    Corrosion of materials is one of the most serious and challenging problems faced worldwide by industry. Dry lubricants reduce friction between two metal surfaces. This research investigated the inhibition of corrosive behavior a dry lubricant formulation consisting of jet-cooked corn starch and soyb...

  3. Ultra-smooth epitaxial Ge grown on Si(001) utilizing a thin C-doped Ge buffer layer

    KAUST Repository

    Mantey, J.

    2013-01-01

    Here, we present work on epitaxial Ge films grown on a thin buffer layer of C doped Ge (Ge:C). The growth rate of Ge:C is found to slow over time and is thus unsuitable for thick (>20 nm) layers. We demonstrate Ge films from 10 nm to >150 nm are possible by growing pure Ge on a thin Ge:C buffer. It is shown that this stack yields exceedingly low roughness levels (comparable to bulk Si wafers) and contains fewer defects and higher Hall mobility compared to traditional heteroepitaxial Ge. The addition of C at the interface helps reduce strain by its smaller atomic radius and its ability to pin defects within the thin buffer layer that do not thread to the top Ge layer. © 2013 AIP Publishing LLC.

  4. Detection of arecoline by simple high-performance thin-layer chromatographic method in Indian nontobacco pan masala

    Directory of Open Access Journals (Sweden)

    Anjan Adhikari

    2015-01-01

    Full Text Available Chewing the habit of blended pan masala containing areca nut with or without tobacco is a common practice in the Indian subcontinent. Arecoline, a pyridine alkaloid presence in areca nut alarmed for oral carcinogenesis and strictly prohibited in the western world. However, in India using blended pan masala is very popular among young and old individuals. In this context, we aimed to detect arecoline in Indian blended nontobacco pan masala sold in Kolkata using a simple densitometric high-performance thin-layer chromatographic (HPTLC method and for alarming their use in common people. Eleven popularly Indian blended nontobacco pan masala were collected from the territory of Kolkata and isolated arecoline, following solvent extraction method derived for pyridine alkaloid. The quantitative analysis of arecoline was measured using automated software-based HPTLC instruments and validated the method according to International Conference on Harmonization guidelines. Arecoline was detected in all 11 blended nontobacco pan masala samples in a range of minimum 130 to maximum 415 μg/g dry samples. Arecoline is hazardous carcinogenic compound, so the use of Indian blended nontobacco pan masala should be restricted. Further, the method was found suitable for routine quantitative analysis of arecoline in areca nut containing substances.

  5. High-quality crystalline yttria-stabilized-zirconia thin layer for photonic applications

    Science.gov (United States)

    Marcaud, Guillaume; Matzen, Sylvia; Alonso-Ramos, Carlos; Le Roux, Xavier; Berciano, Mathias; Maroutian, Thomas; Agnus, Guillaume; Aubert, Pascal; Largeau, Ludovic; Pillard, Valérie; Serna, Samuel; Benedikovic, Daniel; Pendenque, Christopher; Cassan, Eric; Marris-Morini, Delphine; Lecoeur, Philippe; Vivien, Laurent

    2018-03-01

    Functional oxides are considered as promising materials for photonic applications due to their extraordinary and various optical properties. Especially, yttria-stabilized zirconia (YSZ) has a high refractive index (˜2.15), leading to a good confinement of the optical mode in waveguides. Furthermore, YSZ can also be used as a buffer layer to expand toward a large family of oxides-based thin-films heterostructures. In this paper, we report a complete study of the structural properties of YSZ for the development of integrated optical devices on sapphire in telecom wavelength range. The substrate preparation and the epitaxial growth using pulsed-laser deposition technique have been studied and optimized. High-quality YSZ thin films with remarkably sharp x-ray diffraction rocking curve peaks in 10-3∘ range have then been grown on sapphire (0001). It was demonstrated that a thermal annealing of sapphire substrate before the YSZ growth allowed controlling the out-of-plane orientation of the YSZ thin film. Single-mode waveguides were finally designed, fabricated, and characterized for two different main orientations of high-quality YSZ (001) and (111). Propagation loss as low as 2 dB/cm at a wavelength of 1380 nm has been demonstrated for both orientations. These results pave the way for the development of a functional oxides-based photonics platform for numerous applications including on-chip optical communications and sensing.

  6. ZnS nanostructured thin-films deposited by successive ionic layer adsorption and reaction

    Energy Technology Data Exchange (ETDEWEB)

    Deshmukh, S. G., E-mail: deshmukhpradyumn@gmail.com; Jariwala, Akshay; Agarwal, Anubha; Patel, Chetna; Kheraj, Vipul, E-mail: vipulkheraj@gmail.com [Department of Applied Physics, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat (India); Panchal, A. K. [Department of Electrical Engineering, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat (India)

    2016-04-13

    ZnS thin films were grown on glass substrate using successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Aqueous solutions of ZnCl{sub 2} and Na{sub 2}S were used as precursors. The X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectroscopy and optical absorption measurements were applied to study the structural, surface morphology and optical properties of as-deposited ZnS thin films. The X-ray diffraction profiles revealed that ZnS thin films consist of crystalline grains with cubic phase. Spherical nano grains of random size and well covered on the glass substrate were observed from FESEM. The average grain size were found to be 77 nm, 100 nm and 124 nm for 20 cycles, 40 cycles and 60 cycles samples respectively. For 60 cycle sample, Raman spectra show two prominent peaks at 554 cm{sup −1} and 1094 cm{sup −1}. The optical band gap values were found to be 3.76 eV, 3.72 eV and 3.67 eV for 20 cycle, 40 cycle and 60 cycle samples respectively.

  7. Organo-layered double hydroxides composite thin films deposited by laser techniques

    Science.gov (United States)

    Birjega, R.; Vlad, A.; Matei, A.; Dumitru, M.; Stokker-Cheregi, F.; Dinescu, M.; Zavoianu, R.; Raditoiu, V.; Corobea, M. C.

    2016-06-01

    We used laser techniques to create hydrophobic thin films of layered double hydroxides (LDHs) and organo-modified LDHs. A LDH based on Zn-Al with Zn2+/Al3+ ratio of 2.5 was used as host material, while dodecyl sulfate (DS), which is an organic surfactant, acted as guest material. Pulsed laser deposition (PLD) and matrix assisted pulsed laser evaporation (MAPLE) were employed for the growth of the films. The organic anions were intercalated in co-precipitation step. The powders were subsequently used either as materials for MAPLE, or they were pressed and used as targets for PLD. The surface topography of the thin films was investigated by atomic force microscopy (AFM), the crystallographic structure of the powders and films was checked by X-ray diffraction. FTIR spectroscopy was used to evidence DS interlayer intercalation, both for powders and the derived films. Contact angle measurements were performed in order to establish the wettability properties of the as-prepared thin films, in view of functionalization applications as hydrophobic surfaces, owing to the effect of DS intercalation.

  8. Thin plasma-polymerized layers of hexamethyldisiloxane for humidity sensor development

    International Nuclear Information System (INIS)

    Guermat, N.; Bellel, A.; Sahli, S.; Segui, Y.; Raynaud, P.

    2009-01-01

    The response of resistive-type sensors based on thin hexamethyldisiloxane layers to relative humidity (RH) was evaluated. Humidity sensitive layers were plasma polymerized at low frequency glow discharge using a capacitively coupled parallel plate reactor. The sensor design comprises the absorbing layer deposited on clean glass substrate with comb-shape aluminum electrodes (interdigitated structure). The change in electrical impedance of the sensing film was monitored as the device was exposed to humidity. The variation of the plasma-polymerization parameters resulted in different humidity sensing properties which could be correlated to the results of Fourier transform infrared spectroscopy (FTIR). The deposited films exhibited a detectable response to RH ranging from 30 to 95% with low hysteresis, good reproducibility and stability in long-term use. Films with a greater thickness showed a significant decrease in the humidity sensing capability. FTIR analysis revealed the presence of SiH bonding groups, which are frequently linked to the film density. The increase in the plasma discharge power induced also a significant decrease in the diffusion process of water vapor inside the sensitive layer bulk.

  9. ZnO nanostructures as electron extraction layers for hybrid perovskite thin films

    Science.gov (United States)

    Nikolaidou, Katerina; Sarang, Som; Tung, Vincent; Lu, Jennifer; Ghosh, Sayantani

    Optimum interaction between light harvesting media and electron transport layers is critical for the efficient operation of photovoltaic devices. In this work, ZnO layers of different morphologies are implemented as electron extraction and transport layers for hybrid perovskite CH3NH3PbI3 thin films. These include nanowires, nanoparticles, and single crystalline film. Charge transfer at the ZnO/perovskite interface is investigated and compared through ultra-fast characterization techniques, including temperature and power dependent spectroscopy, and time-resolved photoluminescence. The nanowires cause an enhancement in perovskite emission, which may be attributed to increased scattering and grain boundary formation. However, the ZnO layers with decreasing surface roughness exhibit better electron extraction, as inferred from photoluminescence quenching, reduction in the number of bound excitons, and reduced exciton lifetime in CH3NH3PbI3 samples. This systematic study is expected to provide an understanding of the fundamental processes occurring at the ZnO-CH3NH3PbI3 interface and ultimately, provide guidelines for the ideal configuration of ZnO-based hybrid Perovskite devices. This research was supported by National Aeronautics and Space administration (NASA) Grant No: NNX15AQ01A.

  10. Influence of heat conducting substrates on explosive crystallization in thin layers

    Science.gov (United States)

    Schneider, Wilhelm

    2017-09-01

    Crystallization in a thin, initially amorphous layer is considered. The layer is in thermal contact with a substrate of very large dimensions. The energy equation of the layer contains source and sink terms. The source term is due to liberation of latent heat in the crystallization process, while the sink term is due to conduction of heat into the substrate. To determine the latter, the heat diffusion equation for the substrate is solved by applying Duhamel's integral. Thus, the energy equation of the layer becomes a heat diffusion equation with a time integral as an additional term. The latter term indicates that the heat loss due to the substrate depends on the history of the process. To complete the set of equations, the crystallization process is described by a rate equation for the degree of crystallization. The governing equations are then transformed to a moving co-ordinate system in order to analyze crystallization waves that propagate with invariant properties. Dual solutions are found by an asymptotic expansion for large activation energies of molecular diffusion. By introducing suitable variables, the results can be presented in a universal form that comprises the influence of all non-dimensional parameters that govern the process. Of particular interest for applications is the prediction of a critical heat loss parameter for the existence of crystallization waves with invariant properties.

  11. Thin plasma-polymerized layers of hexamethyldisiloxane for humidity sensor development

    Energy Technology Data Exchange (ETDEWEB)

    Guermat, N.; Bellel, A. [Universite Mentouri de Constantine, Laboratoire des Etudes de Materiaux d' Electronique pour Applications Medicales (LEMEAMED), Faculte des Sciences de l' Ingenieur, Constantine 25000 (Algeria); Sahli, S., E-mail: sahli50@hotmail.co [Universite Mentouri de Constantine, Laboratoire de Microsystemes et Instrumentation (LMI), Faculte des Science de l' Ingenieur, Constantine 25000 (Algeria); Segui, Y.; Raynaud, P. [Universites de Toulouse, Laboratoire Plasma et Conversion d' Energie (LAPLACE), CNRS, INPT, Universite Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex (France)

    2009-06-01

    The response of resistive-type sensors based on thin hexamethyldisiloxane layers to relative humidity (RH) was evaluated. Humidity sensitive layers were plasma polymerized at low frequency glow discharge using a capacitively coupled parallel plate reactor. The sensor design comprises the absorbing layer deposited on clean glass substrate with comb-shape aluminum electrodes (interdigitated structure). The change in electrical impedance of the sensing film was monitored as the device was exposed to humidity. The variation of the plasma-polymerization parameters resulted in different humidity sensing properties which could be correlated to the results of Fourier transform infrared spectroscopy (FTIR). The deposited films exhibited a detectable response to RH ranging from 30 to 95% with low hysteresis, good reproducibility and stability in long-term use. Films with a greater thickness showed a significant decrease in the humidity sensing capability. FTIR analysis revealed the presence of SiH bonding groups, which are frequently linked to the film density. The increase in the plasma discharge power induced also a significant decrease in the diffusion process of water vapor inside the sensitive layer bulk.

  12. Alternative buffer layer development in Cu(In,Ga)Se2 thin film solar cells

    Science.gov (United States)

    Xin, Peipei

    Cu(In,Ga)Se2-based thin film solar cells are considered to be one of the most promising photovoltaic technologies. Cu(In,Ga)Se2 (CIGS) solar devices have the potential advantage of low-cost, fast fabrication by using semiconductor layers of only a few micrometers thick and high efficiency photovoltaics have been reported at both the cell and the module levels. CdS via chemical bath deposition (CBD) has been the most widely used buffer option to form the critical junction in CIGS-based thin film photovoltaic devices. However, the disadvantages of CdS can’t be ignored - regulations on cadmium usage are getting stricter primarily due to its toxicity and environmental impacts, and the proper handling of the large amount of toxic chemical bath waste is a massive and expensive task. This dissertation is devoted to the development of Cd-free alternative buffer layers in CIGS-based thin film solar cells. Based on the considerations of buffer layer selection criteria and extensive literature review, Zn-compound buffer materials are chosen as the primary investigation candidates. Radio frequency magnetron sputtering is the preferred buffer deposition approach since it’s a clean and more controllable technique compared to CBD, and is readily scaled to large area manufacturing. First, a comprehensive study of the ZnSe1-xOx compound prepared by reactive sputtering was completed. As the oxygen content in the reactive sputtering gas increased, ZnSe1-xOx crystallinity and bandgap decreased. It’s observed that oxygen miscibility in ZnSe was low and a secondary phase formed when the O2 / (O2 + Ar) ratio in the sputtering gas exceeded 2%. Two approaches were proposed to optimize the band alignment between the CIGS and buffer layer. One method focused on the bandgap engineering of the absorber, the other focused on the band structure modification of the buffer. As a result, improved current of the solar cell was achieved although a carrier transport barrier at the junction

  13. Frequency characterization of thin soft magnetic material layers used in spiral inductors

    International Nuclear Information System (INIS)

    Kriga, Adoum; Allassem, Désiré; Soultan, Malloum; Chatelon, Jean-Pierre; Siblini, Ali; Allard, Bruno; Rousseau, Jean Jacques

    2012-01-01

    The paper details the characterization of thin magnetic materials layers, particularly soft materials, with respect to their behaviour in frequency (from 10 MHz to 1 GHz). The proposed method is suitable for any soft but insulating magnetic material; Yttrium Iron Garnet (YIG) is used as an example. The principle is based on a comparison between simulations for different values of the permeability and measurement values versus frequency of planar inductor structures; an experimental validation is proposed as well. Thin magnetic material is first deposited on an alumina substrate using RF sputtering technique; a planar spiral winding of copper is then deposited on the magnetic material by the same technique. The effective permeability versus frequency is obtained by comparing two samples of spiral windings with and without magnetic material. Network analyser measurements on samples of various geometrical dimensions and of different thicknesses are necessary to determine the effective magnetic permeability; we have obtained a relative effective permeability of about 30 for seven turns spiral inductor of a 17 μm YIG film. - Highlights: ► A simple and original method is presented for the characterization of soft magnetic layer. ► This is a non-destructive method based on standard equipment. ► The principle is based on a comparison between simulations and measurement. ► An experimental validation is proposed as well.

  14. A further comparison of graphene and thin metal layers for plasmonics.

    Science.gov (United States)

    He, Xiaoyong; Gao, Pingqi; Shi, Wangzhou

    2016-05-21

    Which one is much more suitable for plasmonic materials, graphene or metal? To address this problem well, the plasmonic properties of thin metal sheets at different thicknesses have been investigated and compared with a graphene layer. As demonstration examples, the propagation properties of insulator-metal-insulator and metamaterials (MMs) structures are also shown. The results manifest that the plasmonic properties of the graphene layer are comparable to that of thin metal sheets with the thickness of tens of nanometers. For the graphene MMs structure, by using the periodic stack structure in the active region, the resonant transmission strength significantly improves. At the optimum period number, 3-5 periods of graphene/SiO2, the graphene MMs structure manifests good frequency and amplitude tunable properties simultaneously, and the resonant strength is also strong with large values of the Q-factor. Therefore, graphene is a good tunable plasmonic material. The results are very helpful to develop novel graphene plasmonic devices, such as modulators, antenna and filters.

  15. Nevoid melanoma of the vagina: report of one case diagnosed on thin layer cytological preparations

    Directory of Open Access Journals (Sweden)

    Ascierto Paolo

    2007-01-01

    Full Text Available Abstract Background Primary melanoma of the vagina is an extremely rare neoplasm with approximately 250 reported cases in the world literature 1234. In its amelanotic variant this lesion may raise several differential diagnostic problems in cytological specimens 5. In this setting, the usage of thin layer cytopathological techniques (Liquid Based Preparations = LBP may enhance the diagnostic sensitivity by permitting immunocytochemical study without having to repeat the sampling procedure. The aim of this paper is to describe the cytomorphological presentation of primary vaginal melanoma on LBP since it has not previously been reported up to now, to our knowledge. Case presentation a 79-y-o female complaining of vulvar itching and yellowish vaginal discharge underwent a complete gynaecological evaluation during which a LBP cytological sample was taken from a suspicious whitish mass protruding into the vaginal lumen. A cytopathological diagnosis of amelanotic melanoma was rendered. The mass was radically excised and the patient was treated with α-Interferon. Conclusion amelanotic melanoma may be successfully diagnosed on LBP cytological preparations. Thin layer preparations may enhance the diagnostic cytomorphological clues to its diagnosis and may permit an adequate immunocytochemical characterization of the neoplasm.

  16. Selective dry etching of manganite thin films for high sensitive magnetoresistive sensors

    Energy Technology Data Exchange (ETDEWEB)

    Naoe, M. E-mail: naoe@pe.titech.ac.jp; Hamaya, K.; Fujiwara, N.; Taniyama, T.; Kitamoto, Y.; Yamazaki, Y

    2001-10-01

    Remarkable chemical enhancement in etch rate of La-manganite thin film is obtained in CO/NH{sub 3} reactive ion etching. The etch rate of 70 nm/min and the selectivity of 4.7 for LSMO thin films over Ti mask are achieved. The edge morphology of the patterned La-manganite becomes significantly smooth compared with pure Ar ion milling. A possible plasma chemistry is also proposed.

  17. Travelling-wave similarity solutions for a steadily translating slender dry patch in a thin fluid film

    KAUST Repository

    Yatim, Y. M.

    2013-01-01

    A novel family of three-dimensional travelling-wave similarity solutions describing a steadily translating slender dry patch in an infinitely wide thin fluid film on an inclined planar substrate when surface-tension effects are negligible is obtained, the flow being driven by gravity and/or a prescribed constant shear stress on the free surface of the film. For both driving mechanisms, the dry patch has a parabolic shape (which may be concave up or concave down the substrate), and the film thickness increases monotonically away from the contact lines to its uniform far-field value. The two most practically important cases of purely gravity-driven flow and of purely surface-shear-stress-driven flow are analysed separately. © 2013 AIP Publishing LLC.

  18. QCM-D Investigation of Swelling Behavior of Layer-by-Layer Thin Films upon Exposure to Monovalent Ions.

    Science.gov (United States)

    O'Neal, Joshua T; Dai, Ethan Y; Zhang, Yanpu; Clark, Kyle B; Wilcox, Kathryn G; George, Ian M; Ramasamy, Nandha E; Enriquez, Daisy; Batys, Piotr; Sammalkorpi, Maria; Lutkenhaus, Jodie L

    2018-01-23

    Polyelectrolyte multilayers and layer-by-layer assemblies are susceptible to structural changes in response to ionic environment. By altering the salt type and ionic strength, structural changes can be induced by disruption of intrinsically bound ion pairs within the multilayer network via electrostatic screening. Notably, high salt concentrations have been used for the purposes of salt-annealing and self-healing of LbL assemblies with KBr, in particular, yielding a remarkably rapid response. However, to date, the structural and swelling effects of various monovalent ion species on the behavior of LbL assemblies remain unclear, including a quantitative view of ion content in the LbL assembly and thickness changes over a wide concentration window. Here, we investigate the effects of various concentrations of KBr (0 to 1.6 M) on the swelling and de-swelling of LbL assemblies formed from poly(diallyldimethylammonium) polycation (PDADMA) and poly(styrene sulfonate) polyanion (PSS) in 0.5 M NaCl using quartz-crystal microbalance with dissipation (QCM-D) monitoring as compared to KCl, NaBr, and NaCl. The ion content after salt exchange is quantified using neutron activation analysis (NAA). Our results demonstrate that Br - ions have a much greater effect on the structure of as-prepared thin films than Cl - at ionic strengths above assembly conditions, which is possibly caused by the more chaotropic nature of Br - . It is also found that the anion in general dominates the swelling response as compared to the cation because of the excess PDADMA in the multilayer. Four response regimes are identified that delineate swelling due to electrostatic repulsion, slight contraction, swelling due to doping, and film destruction as ionic strength increases. This understanding is critical if such materials are to be used in applications requiring submersion in chemically dynamic environments such as sensors, coatings on biomedical implants, and filtration membranes.

  19. Adsorption and electronic properties of pentacene on thin dielectric decoupling layers

    Directory of Open Access Journals (Sweden)

    Sebastian Koslowski

    2017-07-01

    Full Text Available With the increasing use of thin dielectric decoupling layers to study the electronic properties of organic molecules on metal surfaces, comparative studies are needed in order to generalize findings and formulate practical rules. In this paper we study the adsorption and electronic properties of pentacene deposited onto h-BN/Rh(111 and compare them with those of pentacene deposited onto KCl on various metal surfaces. When deposited onto KCl, the HOMO and LUMO energies of the pentacene molecules scale with the work functions of the combined KCl/metal surface. The magnitude of the variation between the respective KCl/metal systems indicates the degree of interaction of the frontier orbitals with the underlying metal. The results confirm that the so-called IDIS model developed by Willenbockel et al. applies not only to molecular layers on bare metal surfaces, but also to individual molecules on thin electronically decoupling layers. Depositing pentacene onto h-BN/Rh(111 results in significantly different adsorption characteristics, due to the topographic corrugation of the surface as well as the lateral electric fields it presents. These properties are reflected in the divergence from the aforementioned trend for the orbital energies of pentacene deposited onto h-BN/Rh(111, as well as in the different adsorption geometry. Thus, the highly desirable capacity of h-BN to trap molecules comes at the price of enhanced metal–molecule interaction, which decreases the HOMO–LUMO gap of the molecules. In spite of the enhanced interaction, the molecular orbitals are evident in scanning tunnelling spectroscopy (STS and their shapes can be resolved by spectroscopic mapping.

  20. Layer-by-Layer Thin Films for Co-Delivery of TGF-β siRNA and Epidermal Growth Factor to Improve Excisional Wound Healing.

    Science.gov (United States)

    Mandapalli, Praveen Kumar; Labala, Suman; Jose, Anup; Bhatnagar, Shubhmita; Janupally, Renuka; Sriram, Dharmarajan; Venuganti, Venkata Vamsi Krishna

    2017-04-01

    The major challenge with treatment of dermal wounds is accelerating healing process, while preventing the scar formation. Herein, we have fabricated layer-by-layer (LbL) polyelectrolyte multilayer films containing epidermal growth factor (EGF) and TGF-β siRNA to improve excisional wound healing and decrease scar formation. The chitosan and sodium alginate LbL thin films showed 13.0 MPa tensile strength and 2.22 N/cm 2 skin adhesion strength. The LbL thin films were found to be cytocompatible, where A431 epidermal keratinocytes adhered to the film and showed 86.2 ± 0.8% cell growth compared with cells cultured in the absence of LbL thin film. In contrast, LbL thin film did not promote the Escherichia coli and Staphylococcus aureus bacterial colony formation. In a C57BL/6 mouse excisional wound model, application of LbL thin films containing TGF-β siRNA significantly (p < 0.05) reduced the TGF-β protein expression and collagen production. The LbL thin films containing EGF showed improved wound contraction (<9 days post excision). The co-delivery of TGF-β siRNA and EGF using LbL thin films resulted in accelerated wound healing and decreased collagen deposition. Furthermore, the LbL thin films with TGF-β siRNA and EGF combination showed greater reepithelialization. Taken together, we have successfully demonstrated the co-delivery of TGF-β siRNA and EGF peptide using LbL thin films to promote wound healing and decrease scar formation.

  1. Heat-resistant thin film photoelectric converter with diffusion blocking layer

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Jun; Yamaguchi, Minori; Tawada, Yoshihisa.

    1990-06-26

    The photoelectric converter of this invention comprises a semiconductor, an electrode, and a diffusion-blocking layer provided between the semiconductor and at least one electrode. An object of this invention is to provide a thin film photoelectric converter which has good heat resistance, in order to avoid the reduction in quality owing to the diffusion of metal or metallic compound from the electrode to the semiconductor layer, on the condition that the ohmic loss in the backing electrode and the reflection loss of light at the backing electrode are not increased. The component of the diffusion-blocking layer is selected from among such materials as metal silicides, silicide-forming metals, and metals from Groups IVA and VA of the periodic table. A preferable thickness of the diffusion-blocking layer is 5 to 500 angstroms. The semiconductor can be of the p-i-n, p-n, or Schottky type, and can be 0.02 to 100 {mu}m thick. For a semiconductor which comes into contact with the diffusion-blocking layer, n-type is preferable because it offers great improvements in the characteristics of the photoelectric converter. The electrode on the light-incident side is transparent and made of a metallic compound such as In{sub 2}O{sub 3}, SnO{sub 2}, Cd{sub x}SnO{sub y} (x=0.5 to 2, y=2 to 4) or the like. The backing electrode material is selected to have a suitable conductivity and reflectivity; such materials include Ag, Au, Al or Cu. The invention also discloses a method of preparing the thick film photoelectric converter, and examples are provided to illustrate the preparation of various embodiments of the invention. 2 figs., 1 tab.

  2. Thin Layer Activation (TLA) Technique Application for Monitoring Corrosion, Erosion and Wear on Industrial Components

    International Nuclear Information System (INIS)

    Hari Suryanto; Sunarhadijoso Soenarjo; Imam Kambali

    2003-01-01

    Thin Layer Activation (TLA) technique is one of high-precision and effective nuclear methods for measurement and monitoring corrosion, erosion and wear on industrial components. This technique was developed by using low current charged particle beam produced from a cyclotron to activate a surface layer of component. In this case only the surface layer in the μm range at the desired parts of the component are activated. The surface activation lets a very low radioactivity concerning to safety aspect but still can be detected and measured well due to specificity and sensitivity of nuclear reaction produced. Some reported experiences on TLA technique have confirmed that the technique is proper fully recommended to be applied in various industries such as automotive, petrochemical, petroleum, power plant, transportation, lubricant oil etc. The measurement and monitoring of corrosion, erosion and wear rates can be remotely and continuously performed, on-line and in-situ, giving a real-time information. By giving a real-time information, TLA technique provides a considerably better estimation of the components lifetimes for any operating condition. The measurement sensitivity of surface loss rate by using this method can reach up to 0.01 μm depends on the type of applications. The application of the TLA technique lets early observation on the damage of the system preventing any disturbance on industrial process, either in the form of accident during the process or that of unscheduled interruption. (author)

  3. Atomically thin two-dimensional materials as hole extraction layers in organolead halide perovskite photovoltaic cells

    Science.gov (United States)

    Kim, Yu Geun; Kwon, Ki Chang; Le, Quyet Van; Hong, Kootak; Jang, Ho Won; Kim, Soo Young

    2016-07-01

    Atomically thin two-dimensional materials such as MoS2, WS2, and graphene oxide (GO) are used as hole extraction layers (HEL) in organolead halide perovskites solar cells (PSCs) instead of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) HEL. MoS2 and WS2 layers with a polycrystalline structure were synthesized by a chemical deposition method using a uniformly spin-coated (NH4)MoS4 and (NH4)WS4 precursor solution. GO was synthesized by the oxidation of natural graphite powder using Hummers' method. The work functions of MoS2, WS2, and GO are measured to be 5.0, 4.95, and 5.1 eV, respectively. The X-ray diffraction spectrum indicated that the synthesized perovskite material is CH3NH3PbI3-xClx. The PSCs with the p-n junction structure were fabricated based on the CH3NH3PbI3-xClx perovskite layer. The power conversion efficiencies of the MoS2, WS2, and GO-based PSCs were 9.53%, 8.02%, and 9.62%, respectively, which are comparable to those obtained from PEDOT:PSS-based devices (9.93%). These results suggest that two-dimensional materials such as MoS2, WS2, and GO can be promising candidates for the formation of HELs in the PSCs.

  4. Laser Direct Patterning of Organic Dielectric Passivation Layer for Fabricating Amorphous Silicon Thin-Film Transistors

    Science.gov (United States)

    Chen, Chao-Nan; Su, Kuo-Hui; Chen, Yeong-Chin

    2011-06-01

    In this study, a laser direct patterning process application in benzocyclobutene (BCB) organic dielectric passivation-based amorphous silicon (a-Si) thin film transistor (TFT) device fabrication has been carried out using a KrF excimer laser. A BCB organic photoresist material of 2000 nm with a dielectric constant = 2.7 served as the dielectric passivation layer in our device. Compared with conventional processes, laser direct patterning combining BCB organic photoresist dielectric passivation could eliminate at least four process steps. The etching depth of the BCB organic material passivation layer depends on the laser energy density and number of irradiation shots. The hydrogenated a-Si TFT devices are fabricated by replacing the passivation layer and contact hole patterning process. The mobility and threshold voltage reached 0.16 cm2 V-1 s-1 and -3.5 V, respectively. For TFT device performance, laser direct patterning technology is a potential method of replacing photolithography technology in the application of BCB organic dielectric passivation-based TFT manufacture.

  5. Fluorine uptake into the human tooth from a thin layer of F-releasing material

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, H. [Department of Restorative Dentistry and Endodontology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871 (Japan)]. E-mail: yhiroko@dent.osaka-u.ac.jp; Nomachi, M. [Graduate School of Science, Osaka University, Toyonaka, Osaka, 560-0043 (Japan); Yasuda, K. [Wakasa Wan Energy Research Center, Tsuruga, Fukui, 914-0192 (Japan); Iwami, Y. [Department of Restorative Dentistry and Endodontology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Ebisu, S. [Department of Restorative Dentistry and Endodontology, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita, Osaka, 565-0871 (Japan); Komatsu, H. [Graduate School of Dental Medicine, Hokkaido University, Sapporo, Hokkaido, 060-8585 (Japan); Sakai, T. [Advanced Radiation Technology Center, JAERI, Takasaki, Gunma, 370-1292 (Japan); Kamiya, T. [Advanced Radiation Technology Center, JAERI, Takasaki, Gunma, 370-1292 (Japan)

    2007-07-15

    Using the proton induced gamma-ray emission (PIGE) method (TIARA, Japan), we have studied fluorine (F) distribution in the human tooth under various conditions. Here, we report F uptake into the human tooth from a thin layer of F-releasing low viscous resin (FLVR). Crowns of human teeth were horizontally cut and the dentin of the cut surface was first covered with four kinds of FLVR (FL-Bond, Reactmer Bond, Xeno Bond, and Protect Liner F; thickness, 50-150 {mu}m) according to the manufacturers' instructions. Non-F-releasing and F-releasing filling resins were also hardened, on the cut surfaces of crowns covered with four kinds of FLVR thin layers. The type of the non-F-releasing filling materials used was LITE FIL IIP: G1-A (FL-Bond and LITE FIL IIP), G2-A (Reactmer Bond and LITE FIL IIP), G3-A (Xeno Bond and LITE FIL IIP), and G4-A (Protect Liner F and LITE FIL IIP). The types of F-releasing filling materials used were G1-B (FL-Bond and Beautifil), G2-B (Reactmer Bond and Reactmer Paste), G3-B (Xeno Bond and Xeno CF Paste), and G4-B (Protect Liner F and Teethmate F-1). Treatment and measurements of specimens were the same as previously reported [H. Yamamoto, M. Nomahci, K. Yasuda, Y. Iwami, S. Ebisu, N. Yamamoto, T. Sakai, T. Kamiya, Nucl. Instr. and Meth. B 210 (2003) 388]. F uptake from specimens following one month of application was estimated from 2-D maps. F penetration was observed in all teeth of G1-A-G4-A groups. The maximum values of F concentration in each tooth and F penetration depth were larger for larger F concentrations in FLVR. FLVR was useful for the F uptake into the tooth, and the F distribution near the thin layer of FLVR depended on the materials used. Between G1-A and G1-B or G4-A and G4-B, the F uptake was significantly different. We were able to obtain fundamental data, which were useful for the analysis of F transportation relating to prevention of caries.

  6. Few-Layer MoS2-Organic Thin-Film Hybrid Complementary Inverter Pixel Fabricated on a Glass Substrate.

    Science.gov (United States)

    Lee, Hee Sung; Shin, Jae Min; Jeon, Pyo Jin; Lee, Junyeong; Kim, Jin Sung; Hwang, Hyun Chul; Park, Eunyoung; Yoon, Woojin; Ju, Sang-Yong; Im, Seongil

    2015-05-13

    Few-layer MoS2-organic thin-film hybrid complementary inverters demonstrate a great deal of device performance with a decent voltage gain of ≈12, a few hundred pW power consumption, and 480 Hz switching speed. As fabricated on glass, this hybrid CMOS inverter operates as a light-detecting pixel as well, using a thin MoS2 channel. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Active layer thermal monitoring of a Dry Valley of the Ellsworth Mountains, Continental Antarctica

    Science.gov (United States)

    Schaefer, Carlos Ernesto; Michel, Roberto; Souza, Karoline; Senra, Eduardo; Bremer, Ulisses

    2015-04-01

    The Ellsworth Mountains occur along the southern edge of the Ronne-Filchner Ice Shelf and are subdivided by the Minnesota Glacier into the Heritage Range to the east and the Sentinel Range to the West. The climate of the Ellsworth Mountains is strongly controlled by proximity to the Ronne-Filchner Ice Shelf and elevation. The mean annual air temperature at the 1,000 m level is estimated to be -25°C, and the average annual accumulation of water-equivalent precipitation likely ranges from 150 to 175 mm yr-1 (Weyant, 1966). The entire area is underlain by continuous permafrost of unknown thickness. Based on data collected from 22 pits, 41% of the sites contained dry permafrost below 70 cm, 27% had ice-cemented permafrost within 70 cm of the surface, 27% had bedrock within 70 cm, and 5% contained an ice-core (Bockheim, unpublished; Schaefer et al., 2015). Dry-frozen permafrost, which may be unique to Antarctica, appears to form from sublimation of moisture in ice-cemented permafrost over time. Active-layer depths in drift sheets of the Ellsworth Mountains range from 15 to 50 cm (Bockheim, unpublished); our understanding of Antarctic permafrost is poor, especially at the continent. The active layer monitoring sites were installed at Edson Hills, Ellsworth_Mountains, in the summer of 2012, and consist of thermistors (accuracy ± 0.2 °C) installed at 1 m above ground for air temperature measurements at two soil profiles on quartzite drift deposits, arranged in a vertical array (Lithic Haplorthel 886 m asl, 5 cm, 10 cm, 30 cm and Lithic Anyorthel 850 m asl, 5 cm, 10 cm, 30 cm). All probes were connected to a Campbell Scientific CR 1000 data logger recording data at hourly intervals from January 2nd 2012 until December 29th 2013. We calculated the thawing days (TD), freezing days (FD); isothermal days (ID), freeze thaw days (FTD), thawing degree days (TDD) and freezing degree days (FDD); all according to Guglielmin et al. (2008). Temperature at 5 cm reaches a maximum

  8. Metal–Organic Framework Thin Films as Platforms for Atomic Layer Deposition of Cobalt Ions To Enable Electrocatalytic Water Oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Kung, Chung-Wei; Mondloch, Joseph E.; Wang, Timothy C.; Bury, Wojciech; Hoffeditz, William; Klahr, Benjamin M.; Klet, Rachel C.; Pellin, Michael J.; Farha, Omar K.; Hupp, Joseph T.

    2015-12-30

    Thin films of the metal organic framework (MOP) NU-1000 were grown on conducting glass substrates. The films uniformly cover the conducting glass substrates and are composed of free-standing sub-micrometer rods. Subsequently, atomic layer deposition (ALD) was utilized to deposit Co2+ ions throughout the entire MOF film via self-limiting surface-mediated reaction chemistry. The Co ions bind at aqua and hydroxo sites lining the channels of NU-1000, resulting in three-dimensional arrays of separated Co ions in the MOF thin film. The Co-modified MOF thin films demonstrate promising electrocatalytic activity for water oxidation.

  9. CACAO: A project for a laboratory for the production and characterization of thin radioactive layers

    Energy Technology Data Exchange (ETDEWEB)

    Bacri, C.O., E-mail: bacri@ipno.in2p3.f [Institut de Physique Nucleaire d' Orsay, 91406 Orsay Cedex, CNRS (UMR8608-IN2P3), Universite Paris-Sud (Paris XI) (France); Petitbon, V.; Pierre, S. [Institut de Physique Nucleaire d' Orsay, 91406 Orsay Cedex, CNRS (UMR8608-IN2P3), Universite Paris-Sud (Paris XI) (France)

    2010-02-11

    CACAO, Chimie des Actinides et Cibles radioActives a Orsay (actinide chemistry and radioactive targets at Orsay), is a project under construction that consists of the installation of a hot laboratory dedicated to the production and characterization of thin radioactive layers. The project aims to be a joint CNRS-CEA national laboratory to overcome difficulties related mainly to safety issues and to the lack of knowledge and potential manpower. The first goal is to fulfill, at least, the needs of the whole French community, and to be able to coordinate the different activities related to radioactive targets. For this purpose, itis important to be complementary to already existing international installations. Inside this framework, it will of course be possible to produce and/or characterize targets for other users.

  10. Layered conductive polymer on nylon membrane templates for high performance, thin-film supercapacitor electrodes

    Science.gov (United States)

    Shi, HaoTian Harvey; Naguib, Hani E.

    2016-04-01

    Flexible Thin-film Electrochemical Capacitors (ECs) are emerging technology that plays an important role as energy supply for various electronics system for both present era and the future. Intrinsically conductive polymers (ICPs) are promising pseudo-capacitive materials as they feature both good electrical conductivity and high specific capacitance. This study focuses on the construction and characterization of ultra-high surface area porous electrodes based on coating of nano-sized conductive polymer materials on nylon membrane templates. Herein, a novel nano-engineered electrode material based on nylon membranes was presented, which allows the creation of super-capacitor devices that is capable of delivering competitive performance, while maintaining desirable mechanical characteristics. With the formation of a highly conductive network with the polyaniline nano-layer, the electrical conductivity was also increased dramatically to facilitate the charge transfer process. Cyclic voltammetry and specific capacitance results showed promising application of this type of composite materials for future smart textile applications.

  11. Towards single photon generation using NV centers in diamond coupled to thin layer optical waveguides

    International Nuclear Information System (INIS)

    Toshiyuki Tashima

    2014-01-01

    Single photon emitters like the nitrogen-vacancy (NV) center in diamond are important for quantum communication such as quantum cryptography and quantum metrology. In this context, e.g. tapered optical nano-fibers are a promising approach as they allow efficient coupling of single photons into a single spatial mode. Yet, integration of such fibers in a compact integrated quantum circuit is demanding. Here we propose a NV defect center in diamond as a single photon emitter coupled to a thin layer photonic waveguide. The benefit is to allow smaller size devices while having a similar strong evanescent field like tapered nano-optical fibers. We present numerical simulations and fabrication steps of such structures. (author)

  12. Investigation of thin ZnO layers in view of laser desorption-ionization

    Energy Technology Data Exchange (ETDEWEB)

    Grechnikov, A A; Borodkov, A S [Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 19 Kosygin Str., 119991 Moscow (Russian Federation); Georgieva, V B [Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria); Alimpiev, S S; Nikiforov, S M; Simanovsky, Ya O [General Physics Institute, Russian Academy of Sciences, 38 Vavilov Str., 119991 Moscow (Russian Federation); Dimova-Malinovska, D; Angelov, O I, E-mail: lazarova@issp.bas.b [Laboratory for Solar Energy and New Energy Sources, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria)

    2010-04-01

    Thin zinc oxide films (ZnO) were developed as a matrix-free platform for surface assisted laser desorption-ionization (SALDI) time-of-flight mass spectrometry. The ZnO films were deposited by RF magnetron sputtering of ZnO ceramic targets in Ar atmospheres on monocrystalline silicon. The generation under UV (355 nm) laser irradiation of positive ions of atenolol, reserpine and gramicidin S from the ZnO layers deposited was studied. All analytes tested were detected as protonated molecules with no or very structure-specific fragmentation. The mass spectra obtained showed low levels of chemical background noise. All ZnO films studied exhibited high stability and good reproducibility. The detection limits for test analytes are in the 10 femtomol range.

  13. Reversed-phase thin-layer chromatography behavior of aldopentose derivatives

    Directory of Open Access Journals (Sweden)

    Malbaša Radomir V.

    2012-01-01

    Full Text Available Quantitative structure-retention relationships (QSRR have been used to study the chromatographic behavior of some aldopentose. The behavior of aldopentose derivatives was investigated by means of the reversed-phase thin-layer chromatography (RP TLC on the silica gel impregnated with paraffin oil stationary phases. Binary mixtures of methanol-water, acetone-water and dioxane-water were used as mobile phases. Retention factors, RM0, corresponding to zero percent organic modifier in the aqueous mobile phase was determined. Lipophilicity C0 was calculated as the ratio of the intercept and slope values. There was satisfactory correlation between them and log P values calculated using different theoretical procedures. Some of these correlations offer very good predicting models, which are important for a better understanding of the relationships between chemical structure and retention. The study showed that the hydrophobic parameters RM0 and C0 can be used as a measures of lipophilicity of investigated compounds.

  14. DIFFERENTIATION OF Curcuma longa, Curcuma xanthorrhiza and Zingiber cassumunar BY THIN LAYER CHROMATOGRAPHY FINGERPRINT ANALYSIS

    Directory of Open Access Journals (Sweden)

    Mohamad Rafi

    2011-07-01

    Full Text Available Turmeric (Curcuma longa, java turmeric (Curcuma xanthorrhiza and cassumunar ginger (Zingiber cassumunar are widely used in traditional Indonesian medicine. These three herbs have relatively similar rhizomes colour so it is difficult to be differentiated especially if they are in powder form. A rapid and reliable method, thin layer chromatography (TLC fingerprint, has been developed in order to identify, authenticate and differentiate these three herbs through fingerprint profile of chemical compounds. TLC fingerprints of the three herbs were obtained by visualization of separate zones with visible and UV (254 and 366 nm light. The TLC fingerprint pattern is different each other and showed a specific marker zones respectively. Therefore, TLC fingerprint can be utilized for identification, authentication and differentiation method in quality control of the three herbs tested.

  15. A novel thin-layer chromatography method to screen 1,3-propanediol producers.

    Science.gov (United States)

    Anand, Pinki; Saxena, Rajendra Kumar

    2012-11-01

    To date, there is no established protocol for the screening of 1,3-propanediol producers. The proposed method has a wide applicability to harness the commercial potential of microorganisms which produce 1,3-propanediol as the end product. Glycerol fermentation broth of 50 bacteria spotted on thin-layer chromatography plates and run by appropriate solvent systems followed by colour development using vanillin reagent gave different coloured spots with most of the compounds present in the fermentation broth. The appearance of a purple-coloured spot of 1,3-propanediol with a retention factor (R(f)) of 0.62 forms the basis for the selection of 1,3-propanediol producers. Apart from being a rapid detection system the proposed method is pH independent and its authenticity was reconfirmed by HPLC.

  16. High performance thin layer chromatography fingerprint analysis of guava (Psidium guajava) leaves

    Science.gov (United States)

    Astuti, M.; Darusman, L. K.; Rafi, M.

    2017-05-01

    High-performance thin layer chromatography (HPTLC) fingerprint analysis is commonly used for quality control of medicinal plants in term of identification and authentication. In this study, we have been developed HPTLC fingerprint analysis for identification of guava (Psidium guajava) leaves raw material. A mixture of chloroform, acetone, and formic acid in the ratio 10:2:1 was used as the optimum mobile phase in HPTLC silica plate and with 13 bands were detected. As reference marker we chose gallic acid (Rf = 0.21) and catechin (Rf = 0.11). The two compound were detected as pale black bands at 366 nm after derivatization with sulfuric acid 10% v/v (in methanol) reagent. Validation of the method was met within validation criteria, so the developed method could be used for quality control of guava leaves.

  17. Ultra-thin fluoropolymer buffer layer as an anode stabilizer of organic light emitting devices

    International Nuclear Information System (INIS)

    Yang, Nam Chul; Lee, Jaeho; Song, Myung-Won; Ahn, Nari; Kim, Mu-Hyun; Lee, Songtaek; Chin, Byung Doo

    2007-01-01

    We have investigated the effect of thin fluoro-acrylic polymer as an anode stabilizer on the lifetime of an organic light emitting device (OLED). Surface chemical properties of commercial fluoropolymer, FC-722 (Fluorad(TM) of 3M), on indium-tin oxide (ITO) were characterized by x-ray photoemission spectroscopy. An OLED with 1 nm thick fluoropolymeric film showed identical brightness and efficiency behaviour and improved operational stability compared with the reference device with UV-O 3 treated ITO. The improvement in the lifetime was accompanied by the suppression of the voltage increase at the initial stage of constant-current driving, which can be attributed to the action of the FC-722 layer by smoothing the ITO surface. Fluoropolymer coating, therefore, improves the lifetime of the small molecular OLED by the simple and reliable anode-stabilizing process

  18. The effect of a thin silver layer on the critical current of epitaxial YBCO films

    International Nuclear Information System (INIS)

    Polturak, E.; Koren, G.; Cohen, D.; Cohen, D.; Snapiro, I.

    1992-01-01

    We compare measurements of the critical current density of an epitaxial YBCO film with that of an identical film overlaid by a thin silver layer. We find that the presence of the silver lowers Tc of the film by about 1.5 K, which is two orders of magnitude larger than predicted by the theory of the proximity effect for our experimental conditions. In addition, J c of the Ag/YBCO film near Tc is also significantly lower than that of the bare YBCO film. We propose two alternate interpretations of this effect, one in terms of destabilization of the flux distribution in the film and the other making use of the effect of the silver on the Bean-Livingston surface barrier for the initial penetration of flux. The latter seems the more plausible explanation of our results. (orig.)

  19. Histamine metabolism. I. Thin-layer radiochromatographic assays for histaminase and histidine decarboxylase enzyme activities.

    Science.gov (United States)

    Zeiger, R S; Yurdin, D L; Twarog, F J

    1976-06-01

    Thin-layer radiochromatographic methods for the measurement of histaminase and histidine decarboxylase activities have been developed. The assays are specific for the respective enzymes, are sensitive and reproducible, and can be performed using commercially available substrates. The histaminase assay permits determination of enzyme activity from 2.5 mul of pregnancy sera, 1-2 X 10(6) human granulocytes, and microgram quantities of partially purified human placenta histaminase with an error of less than 5 per cent. The histidine decarboxylase assay permits measurement of nanogram quantities of newly formed histamine from as few as 2 X 10(4) rat peritoneal mast cells or rat basophilic leukemia cells with an error of less than 5 per cent.

  20. Lanthanum-oxide thin films deposited by plasma-enhanced atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Eun-Joo; Ko, Myoung-Gyun; Kim, Beom-Yong; Park, Sang-Kyun; Kim, Heon-Do; Park, Jong-Wan [Hanyang University, Seoul (Korea, Republic of)

    2006-09-15

    Lanthanum oxide is suited as a gate oxide that can replace SiO{sub 2} due to its high dielectric constant with a band gap of 4.3 eV [1] and its thermal stability with silicon. In this work, La{sub 2}O{sub 3} thin films was performed on Si substrates by using plasma-enhanced atomic layer deposition with La(EtCp){sub 3} as the lanthanum precursor and O{sub 3} as the reactant gas. The fully saturated growth rate of lanthanum oxide films was 0.2 A/cycle at a plasma power of 500 W. Secondary ion mass spectrometry and Rutherford backscattering measurements detected no carbon impurity content.

  1. Thin films of In2O3 by atomic layer deposition using In(acac)3

    International Nuclear Information System (INIS)

    Nilsen, O.; Balasundaraprabhu, R.; Monakhov, E.V.; Muthukumarasamy, N.; Fjellvag, H.; Svensson, B.G.

    2009-01-01

    Thin films of indium oxide have been deposited using the atomic layer deposition (ALD) technique using In(acac) 3 (acac = acetylacetonate, pentane-2,4-dione) and either H 2 O or O 3 as precursors. Successful growth using In(acac) 3 is contradictory to what has been reported previously in the literature [J.W. Elam, A.B.F. Martinson, M.J. Pellin, J.T. Hupp, Chem. Mater. 18 (2006) 3571.]. Investigation of the dependence of temperature on the deposition shows windows where the growth rates are relatively unaffected by temperature in the ranges 165-200 o C for In(acac) 3 and H 2 O, 165-225 o C for In(acac) 3 and O 3 . The growth rates obtained are of the order 20 pm/cycle for In(acac) 3 and H 2 O, 12 pm/cycle for In(acac) 3 .

  2. Pixelated scintillator-based compact radio thin layer chromatography scanner for radiopharmaceuticals quality control

    Science.gov (United States)

    Jeon, S. J.; Kim, K. M.; Lim, I.; Song, K.; Kim, J. G.

    2017-11-01

    We evaluated a compact and cost-effective radio thin-layer chromatography (radio-TLC) scanner for the quality control (QC) of radiopharmaceuticals. We adapted a scintillation detector, which is a Gd3Al2Ga3O12 (GAGG:Ce) scintillation crystal array coupled with a photodiode array. The performance of the scintillator array-based radio-TLC was compared with that of a commercial device. We scanned 1 μCi/μL of Tc-99m and F-18 with each device. The difference between the ROI count ratios of the developed and commercial scanners was less than 1.2%. Our scanner is sensitive enough to take measurements for a radiochemical purity test.

  3. Ultra-Thin Optically Transparent Carbon Electrodes Produced from Layers of Adsorbed Proteins

    Science.gov (United States)

    Alharthi, Sarah A.; Benavidez, Tomas E.; Garcia, Carlos D.

    2013-01-01

    This work describes a simple, versatile, and inexpensive procedure to prepare optically transparent carbon electrodes, using proteins as precursors. Upon adsorption, the protein-coated substrates were pyrolyzed under reductive conditions (5% H2) to form ultra-thin, conductive electrodes. Because proteins spontaneously adsorb to interfaces forming uniform layers, the proposed method does not require a precise control of the preparation conditions, specialized instrumentation, or expensive precursors. The resulting electrodes were characterized by a combination of electrochemical, optical, and spectroscopic means. As a proof-of-concept, the optically-transparent electrodes were also used as substrate for the development of an electrochemical glucose biosensor. The proposed films represent a convenient alternative to more sophisticated, and less available, carbon-based nanomaterials. Furthermore, these films could be formed on a variety of substrates, without classical limitations of size or shape. PMID:23421732

  4. Thin layer activation : on-line monitoring of metal loss in process plant

    International Nuclear Information System (INIS)

    Boulton, L.H.; Wallace, G.

    1993-01-01

    Corrosion, erosion and wear of metals is a common cause of failure in some process plant and equipment. Monitoring of these destructive effects has been done for many years to help plant engineers minimise the damage, in order to avoid unexpected failures and unscheduled shutdowns. Traditional methods of monitoring, such as standard NDT techniques, inform the engineer of what has happened, providing data such as culmulative loss of wall thickness. The modern approach to monitoring however, is to employ a technique which gives both current loss rates as well as integrated losses. Thin Layer Activation (TLA) provides on-line monitoring of corrosion, erosion and wear of metals, to a high degree of accuracy. It also gives cumulative information which can be backed up with weight-loss results if required. Thus current rather than historical loss rates are measured before any significant loss of metal has occurred. (author). 14 refs., 2 figs

  5. Thin layer chromatographic analysis of some common over the counter (OTC cough–cold preparations

    Directory of Open Access Journals (Sweden)

    Manpreet Kaur Chahal

    2016-12-01

    Full Text Available In the present study, potential utility of thin layer chromatography to differentiate some common OTC cough–cold preparations was evaluated. Twenty solvent systems were examined from which a solvent systems A comprising methanol:ammonia in the ratio of 100:1.5 (v/v and B comprising chloroform:methanol in the ratio of 90:10 (v/v were found to be most suitable as it showed a high degree of separation of different components of these preparations. It was also found that iodine fuming technique is the best visualizing method for examining the TLC chromatograms of these drug samples prior to subsequent instrumental analysis.

  6. Building a Better Capacitor with Thin-Film Atomic Layer Deposition Processing

    Energy Technology Data Exchange (ETDEWEB)

    Pike, Christopher [North Seattle College, WA (United States)

    2015-08-28

    The goal of this research is to determine procedures for creating ultra-high capacity supercapacitors by using nanofabrication techniques and high k-value dielectrics. One way to potentially solve the problem of climate change is to switch the source of energy to a source that doesn’t release many tons of greenhouse gases, gases which cause global warming, into the Earth’s atmosphere. These trap in more heat from the Sun’s solar energy and cause global temperatures to rise. Atomic layer deposition will be used to create a uniform thin-film of dielectric to greatly enhance the abilities of our capacitors and will build them on the nanoscale.

  7. Tailoring magnetic properties of multicomponent layered structure via current annealing in FePd thin films.

    Science.gov (United States)

    Cialone, Matteo; Celegato, Federica; Coïsson, Marco; Barrera, Gabriele; Fiore, Gianluca; Shvab, Ruslan; Klement, Uta; Rizzi, Paola; Tiberto, Paola

    2017-11-30

    Multicomponent layered systems with tailored magnetic properties were fabricated via current annealing from homogeneous Fe 67 Pd 33 thin films, deposited via radio frequency sputtering on Si/SiO2 substrates from composite target. To promote spontaneous nano-structuring and phase separation, selected samples were subjected to current annealing in vacuum, with a controlled oxygen pressure, using various current densities for a fixed time and, as a consequence, different phases and microstructures were obtained. In particular, the formation of magnetite in different amount was observed beside other iron oxides and metallic phases. Microstructures and magnetic properties evolution as a function of annealing current were studied and interpreted with different techniques. Moreover, the temperature profile across the film thickness was modelled and its role in the selective oxidation of iron was analysed. Results show that is possible to topologically control the phases formation across the film thickness and simultaneously tailor the magnetic properties of the system.

  8. CACAO: A project for a laboratory for the production and characterization of thin radioactive layers

    International Nuclear Information System (INIS)

    Bacri, C.O.; Petitbon, V.; Pierre, S.

    2010-01-01

    CACAO, Chimie des Actinides et Cibles radioActives a Orsay (actinide chemistry and radioactive targets at Orsay), is a project under construction that consists of the installation of a hot laboratory dedicated to the production and characterization of thin radioactive layers. The project aims to be a joint CNRS-CEA national laboratory to overcome difficulties related mainly to safety issues and to the lack of knowledge and potential manpower. The first goal is to fulfill, at least, the needs of the whole French community, and to be able to coordinate the different activities related to radioactive targets. For this purpose, itis important to be complementary to already existing international installations. Inside this framework, it will of course be possible to produce and/or characterize targets for other users.

  9. CACAO: A project for a laboratory for the production and characterization of thin radioactive layers

    Science.gov (United States)

    Bacri, C. O.; Petitbon, V.; Pierre, S.; Cacao Group

    2010-02-01

    CACAO, Chimie des Actinides et Cibles radioActives à Orsay (actinide chemistry and radioactive targets at Orsay), is a project under construction that consists of the installation of a hot laboratory dedicated to the production and characterization of thin radioactive layers. The project aims to be a joint CNRS-CEA national laboratory to overcome difficulties related mainly to safety issues and to the lack of knowledge and potential manpower. The first goal is to fulfill, at least, the needs of the whole French community, and to be able to coordinate the different activities related to radioactive targets. For this purpose, itis important to be complementary to already existing international installations. Inside this framework, it will of course be possible to produce and/or characterize targets for other users.

  10. Retinal nerve fibre layer thinning is associated with drug resistance in epilepsy.

    Science.gov (United States)

    Balestrini, Simona; Clayton, Lisa M S; Bartmann, Ana P; Chinthapalli, Krishna; Novy, Jan; Coppola, Antonietta; Wandschneider, Britta; Stern, William M; Acheson, James; Bell, Gail S; Sander, Josemir W; Sisodiya, Sanjay M

    2016-04-01

    Retinal nerve fibre layer (RNFL) thickness is related to the axonal anterior visual pathway and is considered a marker of overall white matter 'integrity'. We hypothesised that RNFL changes would occur in people with epilepsy, independently of vigabatrin exposure, and be related to clinical characteristics of epilepsy. Three hundred people with epilepsy attending specialist clinics and 90 healthy controls were included in this cross-sectional cohort study. RNFL imaging was performed using spectral-domain optical coherence tomography (OCT). Drug resistance was defined as failure of adequate trials of two antiepileptic drugs to achieve sustained seizure freedom. The average RNFL thickness and the thickness of each of the 90° quadrants were significantly thinner in people with epilepsy than healthy controls (p<0.001, t test). In a multivariate logistic regression model, drug resistance was the only significant predictor of abnormal RNFL thinning (OR=2.09, 95% CI 1.09 to 4.01, p=0.03). Duration of epilepsy (coefficient -0.16, p=0.004) and presence of intellectual disability (coefficient -4.0, p=0.044) also showed a significant relationship with RNFL thinning in a multivariate linear regression model. Our results suggest that people with epilepsy with no previous exposure to vigabatrin have a significantly thinner RNFL than healthy participants. Drug resistance emerged as a significant independent predictor of RNFL borderline attenuation or abnormal thinning in a logistic regression model. As this is easily assessed by OCT, RNFL thickness might be used to better understand the mechanisms underlying drug resistance, and possibly severity. Longitudinal studies are needed to confirm our findings. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  11. Electronic passivation of silicon surfaces by thin films of atomic layer deposited gallium oxide

    International Nuclear Information System (INIS)

    Allen, T. G.; Cuevas, A.

    2014-01-01

    This paper proposes the application of gallium oxide (Ga 2 O 3 ) thin films to crystalline silicon solar cells. Effective passivation of n- and p-type crystalline silicon surfaces has been achieved by the application of very thin Ga 2 O 3 films prepared by atomic layer deposition using trimethylgallium (TMGa) and ozone (O 3 ) as the reactants. Surface recombination velocities as low as 6.1 cm/s have been recorded with films less than 4.5 nm thick. A range of deposition parameters has been explored, with growth rates of approximately 0.2 Å/cycle providing optimum passivation. The thermal activation energy for passivation of the Si-Ga 2 O 3 interface has been found to be approximately 0.5 eV. Depassivation of the interface was observed for prolonged annealing at increased temperatures. The activation energy for depassivation was measured to be 1.9 eV.

  12. Fabrication of Hydrogenated Amorphous Germanium Thin Layer Film and ItsCharacterization

    International Nuclear Information System (INIS)

    Agus-Santoso; Lely-Susita RM; Tjipto-Sujitno

    2000-01-01

    Fabrication of hydrogenated amorphous Germanium thin film by vacuumevaporation method and then deposition with hydrogen atom by glow dischargeplasma radio frequency has been done. This germanium amorphous (a-Ge) thinfilm involves a lot of dangling bonds in the network due to the irregularityof the atomic structures and it will decrease is conductivity. To improve theband properties of (a-Ge) thin film layer a hydrogenated plasma isintroduced. Process of introducing of the hydrogen into the a-Ge film is meanto reduce the dangling bonds so that the best electric conductivity of a Ge:Hthin film will obtained. To identify the hydrogen atom in the sample acharacterization using infrared spectrometer has been done, as well as themeasurement of conductivity of the samples. From the characterization usinginfrared spectroscopy the existence of hydrogen atom was found at absorptionpeak with wave number 1637.5 cm -1 , while the optimum conductivity of thesample 1634.86 Ω -1 cm -1 was achieved at 343 o K. (author)

  13. Silicon surface passivation using thin HfO2 films by atomic layer deposition

    International Nuclear Information System (INIS)

    Gope, Jhuma; Vandana; Batra, Neha; Panigrahi, Jagannath; Singh, Rajbir; Maurya, K.K.; Srivastava, Ritu; Singh, P.K.

    2015-01-01

    Graphical abstract: - Highlights: • HfO 2 films using thermal ALD are studied for silicon surface passivation. • As-deposited thin film (∼8 nm) shows better passivation with surface recombination velocity (SRV) <100 cm/s. • Annealing improves passivation quality with SRV ∼20 cm/s for ∼8 nm film. - Abstract: Hafnium oxide (HfO 2 ) is a potential material for equivalent oxide thickness (EOT) scaling in microelectronics; however, its surface passivation properties particularly on silicon are not well explored. This paper reports investigation on passivation properties of thermally deposited thin HfO 2 films by atomic layer deposition system (ALD) on silicon surface. As-deposited pristine film (∼8 nm) shows better passivation with <100 cm/s surface recombination velocity (SRV) vis-à-vis thicker films. Further improvement in passivation quality is achieved with annealing at 400 °C for 10 min where the SRV reduces to ∼20 cm/s. Conductance measurements show that the interface defect density (D it ) increases with film thickness whereas its value decreases after annealing. XRR data corroborate with the observations made by FTIR and SRV data.

  14. Voltammetry and coulometry of indium in two-side thin-layer system

    International Nuclear Information System (INIS)

    Eliseeva, L.V.; Kabanova, O.L.

    1980-01-01

    An electrochemical behaviour of In and possibilities for its determination have been investigated, using halide background solutions, by voltametry in the thin solution layer thin mercury film system. It has been shown that the maximum current of indium (3) is directly proportional to its concentration over a range of 1x10 -4 - 5x10 -3 M and the maximum current of indium oxidation from the amalgam over a range of 5x10 -7 - 1x10 -4 M. Examined were the effects of halide ion concentration, pH, electrode potential change rate on current maximum value, product efficiency of reducing indium (3) and oxidizing its amalgam, on maximum current potential and half-peak width. The analytical signal has been found to be directly proportional to chloride ion concentration over a range of 0.1 - 3.0 M, bromide and iodide ion concentration over a range of 0.1 - 1.0 M. This makes it possible to use the method for determination of halide ions

  15. Recent trends in electrospinning of polymer nanofibers and their applications in ultra thin layer chromatography.

    Science.gov (United States)

    Moheman, Abdul; Alam, Mohammad Sarwar; Mohammad, Ali

    2016-03-01

    Fabrication of polymer derived electrospun nanofibers by electrospinning as chromatographic sorbent bed for ultra-thin layer chromatography (UTLC) is a very demanding topic in analytical chemistry. This review presents an overview of recent development in the fabrication of polymer derived electrospun nanofibers and their applications to design UTLC plates as stationary phases for on-plate identification and separation of analytes from their mixture solutions. It has been reported that electrospun fiber based stationary phases in UTLC have enhanced separation efficiency to provide separation of analyte mixture in a shorter development time than those of traditional particle-based TLC stationary phases. In addition, electrospun UTLC is cost effective and can be modified for obtaining different surface selectivities by changing the polymer materials to electrospun devices. Electrospun UTLC plates are not available commercially till date and efforts are being rendered for their commercialization. The morphology and diameter of electrospun nanofibers are highly dependent on several parameters such as type of polymer, polymer molecular weight, solvent, viscosity, conductivity, surface tension, applied voltage, collector distance and flow rate of the polymer solution during electrospinning process. Among the aforementioned parameters, solution viscosity is an important parameter which is mainly influenced by polymer concentration. This review provides evidence for the fabrication of UTLC plates containing electrospun polymer nanofibers. Furthermore, the future prospects related to electrospinning and its application in obtaining of different types of electrospun nanofibers are discussed. The present communication is aimed to review the work which appeared during 2009-2014 on the application of polymer derived electrospun nanofibers in ultra thin layer chromatography. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The Effect of Contact Angle on Dynamics of Dry Spots Spreading in a Horizontal Layer of Liquid at Local Heating

    Directory of Open Access Journals (Sweden)

    Zaitsev D.V.

    2015-01-01

    Full Text Available The effect of equilibrium contact angle on dynamics of dry spot spreading at disruption of a horizontal water layer heated locally from the substrate was studied using the high-speed Schlieren technique. Different methods of working surface processing were applied; this allowed variations of the equilibrium contact angle from 27±6° to 74±9° without a change in thermal properties of the system. It is found out that substrate wettability significantly affects the propagation velocity of dry spot and its final size. It is also found out that the velocity of contact line propagation is higher in the areas of substrate with a higher temperature.

  17. Influence of the spacer layer on microstructure and magnetic properties of [NdFeB/(NbCu)]xn thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chiriac, H. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania); Grigoras, M. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania); Urse, M. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania)]. E-mail: urse@phys-iasi.ro

    2007-09-15

    Some results concerning the influence of the composition and thickness of NbCu spacer layer on the microstructure and magnetic properties of multilayer [NdFeB/(NbCu)]xn films, in view of their utilization for manufacturing the thin film permanent magnets are presented. A comparison between the microstructure and magnetic properties of NdFeB single layer and [NdFeB/(NbCu)]xn multilayer is also presented. The multilayer [NdFeB/(NbCu)]xn thin films with the thickness of the NdFeB layer of 180nm and the thickness of the NbCu spacer layer of 3nm, exhibit good hard magnetic characteristics such as coercive force H{sub c} of about 1510kA/m and the remanence ratio M{sub r}/M{sub s} of about 0.8.

  18. Influence of the spacer layer on microstructure and magnetic properties of [NdFeB/(NbCu)]xn thin films

    International Nuclear Information System (INIS)

    Chiriac, H.; Grigoras, M.; Urse, M.

    2007-01-01

    Some results concerning the influence of the composition and thickness of NbCu spacer layer on the microstructure and magnetic properties of multilayer [NdFeB/(NbCu)]xn films, in view of their utilization for manufacturing the thin film permanent magnets are presented. A comparison between the microstructure and magnetic properties of NdFeB single layer and [NdFeB/(NbCu)]xn multilayer is also presented. The multilayer [NdFeB/(NbCu)]xn thin films with the thickness of the NdFeB layer of 180nm and the thickness of the NbCu spacer layer of 3nm, exhibit good hard magnetic characteristics such as coercive force H c of about 1510kA/m and the remanence ratio M r /M s of about 0.8

  19. Dry Etching of Copper Phthalocyanine Thin Films: Effects on Morphology and Surface Stoichiometry

    Directory of Open Access Journals (Sweden)

    Michael J. Brett

    2012-08-01

    Full Text Available We investigate the evolution of copper phthalocyanine thin films as they are etched with argon plasma. Significant morphological changes occur as a result of the ion bombardment; a planar surface quickly becomes an array of nanopillars which are less than 20 nm in diameter. The changes in morphology are independent of plasma power, which controls the etch rate only. Analysis by X-ray photoelectron spectroscopy shows that surface concentrations of copper and oxygen increase with etch time, while carbon and nitrogen are depleted. Despite these changes in surface stoichiometry, we observe no effect on the work function. The absorbance and X-ray diffraction spectra show no changes other than the peaks diminishing with etch time. These findings have important implications for organic photovoltaic devices which seek nanopillar thin films of metal phthalocyanine materials as an optimal structure.

  20. The production of ultra-thin layers of ion-exchange resin and metallic silver by electrospraying

    International Nuclear Information System (INIS)

    Wyllie, H.A.

    1988-10-01

    Highly efficient radioactive sources for use in radioisotope metrology have been prepared on ultra-thin layers of electrosprayed ion-exchange resin. The efficiency of these sources can be reduced for the purpose of radioactivity standardisation by coating them with conducting silver layers which are also produced by electrospraying. A description is given of improvements to the electrospraying methods, together with details of the rotating, oscillating source-mount turntable

  1. DEVELOPMENT OF MATHEMATICAL MODEL OF DRYING AMARANTH SEEDS IN THE MACHINE WITH A BALANCED TWISTED – LAYER

    Directory of Open Access Journals (Sweden)

    A. V. Zhuravlev

    2015-01-01

    Full Text Available Summary. Intensification of drying is a major improvement of the drying equipment and technology. Development and implementation in the industry of high-intensity devices with active hydrodynamic regimes, provides in many cases, higher technical and economic indicators. The use of devices with twisted coolant flow to intensify the process of drying of dispersed materials is both theoretical interest and practical value. The processes of heat and mass transfer in drying machines are largely determined by the hydrodynamic conditions in its internal volume. Given the complexity of the geometry and structure of the velocity field in the balanced twisted-layer, which in general is essentially three-dimensional, it is necessary to decompose the hydrodynamic problem into two parts superposition. From the analysis of the physical picture implies that the path of the current lines of his close family helical curves. Based on the theoretical analysis of heat and mass transfer process of drying seeds of amaranth in the office with a balanced twisted-layer authors developed a mathematical model of it. The structure of the flow of the drying process in the cross-sections of the device. The model is based on the fundamental equations A.V. Lykov, describes a heat moisture transfer in capillary-porous environments in a linear thermodynamic approach, given the method of convective heat supply and the small size of dried seeds of amaranth. These equations describe the dynamic change in the fields of temperature and moisture content in a conjugated heat and mass transfer at the interface solid phase - coolant. Found macrokinetic natural process. The results will be useful for a wide range of professionals involved in drying seeds of amaranth, as well as for calculation and design of modern dryers. On the basis of experimental data and their statistical treatment has been received a mathematical model that adequately describes the process of drying seeds of

  2. Specimen charging on thin films with one conducting layer: discussion of physical principles.

    Science.gov (United States)

    Glaeser, Robert M; Downing, Kenneth H

    2004-12-01

    Although the most familiar consequences of specimen charging in transmission electron microscopy can be eliminated by evaporating a thin conducting film (such as a carbon film) onto an insulating specimen or by preparing samples directly on such a conducting film to begin with, a more subtle charging effect still remains. We argue here that specimen charging is in this case likely to produce a dipole sheet rather than a layer of positive charge at the surface of the specimen. A simple model of the factors that control the kinetics of specimen charging, and its neutralization, is discussed as a guide for experiments that attempt to minimize the amount of specimen charging. Believable estimates of the electrostatic forces and the electron optical disturbances that are likely to occur suggest that specimen bending and warping may have the biggest impact on degrading the image quality at high resolution. Electron optical effects are likely to be negligible except in the case of a specimen that is tilted to high angle. A model is proposed to explain how both the mechanical and electron-optical effects of forming a dipole layer would have much greater impact on the image resolution in a direction perpendicular to the tilt axis, a well-known effect in electron microscopy of two-dimensional crystals.

  3. Specimen charging on thin films with one conducting layer:Discussion of physical principles

    Energy Technology Data Exchange (ETDEWEB)

    Glaeser, Robert M.; Downing, Kenneth H.

    2003-04-15

    While the most familiar consequences of specimen charging in transmission electron microscopy can be eliminated by evaporating a thin conducting film (such as a carbon film) onto an insulating specimen, or by preparing samples directly on such a conducting film to begin with, a more subtle charging effect still remains. We argue here that specimen charging is in this case likely to produce a dipole sheet rather than a layer of positive charge at the surface of the specimen. A simple model of the factors that control the kinetics of specimen charging, and its neutralization, is discussed as a guide for experiments that attempt to minimize the amount of specimen charging. Believable estimates of the electrostatic forces and the electron optical disturbances that are likely to occur suggest that specimen bending and warping may have the biggest impact on degrading the image quality at high resolution. Electron optical effects are likely to be negligible except in the case of a specimen that is tilted to high angle. A model is proposed to explain how both the mechanical and electron-optical effects of forming a dipole layer would have much greater impact on the image resolution in a direction perpendicular to the tilt axis, a well-known effect in electron microscopy of two-dimensional crystals.

  4. Perpendicular Magnetic Anisotropy in Amorphous Ferromagnetic CoSiB/Pd Thin-Film Layered Structures.

    Science.gov (United States)

    Jung, Sol; Yim, Haein

    2015-10-01

    Spin transfer torque (STT) induced switching of magnetization has led to intriguing and practical possibilities for magnetic random access memory (MRAM). This form of memory, called STT-MRAM, is a strong candidate for future memory applications. This application usually requires a large perpendicular magnetic anisotropy (PMA), large coercivity, and low saturation magnetization. Therefore, we propose an amorphous ferromagnetic CoSiB alloy and investigate CoSiB/Pd multilayer thin films, which have a large PMA, large coercivity, and low saturation magnetization. In this research, we propose a remarkable layered structure that could be a candidate for future applications and try to address a few factors that might affect the variation of PMA, coercivity, and saturation magnetization in the CoSiB/Pd multilayers. We investigate the magnetic properties of the CoSiB/Pd multilayers with various thicknesses of the CoSiB layer. The coercivity was obtained with a maximum of 228 Oe and a minimum value of 91 Oe in the [CoSiB 7 Å/Pd 14 Å], and [CoSiB 9 Å/Pd 14 Å], multilayers, respectively. The PMA arises from tCoSiB = 3 Å to tCoSiB = 9 Å and disappears after tCoSiB = 9 Å.

  5. Collision-induced light scattering in a thin xenon layer between graphite slabs - MD study.

    Science.gov (United States)

    Dawid, A; Górny, K; Wojcieszyk, D; Dendzik, Z; Gburski, Z

    2014-08-14

    The collision-induced light scattering many-body correlation functions and their spectra in thin xenon layer located between two parallel graphite slabs have been investigated by molecular dynamics computer simulations. The results have been obtained at three different distances (densities) between graphite slabs. Our simulations show the increased intensity of the interaction-induced light scattering spectra at low frequencies for xenon atoms in confined space, in comparison to the bulk xenon sample. Moreover, we show substantial dependence of the interaction-induced light scattering correlation functions of xenon on the distances between graphite slabs. The dynamics of xenon atoms in a confined space was also investigated by calculating the mean square displacement functions and related diffusion coefficients. The structural property of confined xenon layer was studied by calculating the density profile, perpendicular to the graphite slabs. Building of a fluid phase of xenon in the innermost part of the slot was observed. The nonlinear dependence of xenon diffusion coefficient on the separation distance between graphite slabs has been found. Copyright © 2014. Published by Elsevier B.V.

  6. Epitaxial growth of barium titanate thin films on germanium via atomic layer deposition

    Science.gov (United States)

    Lin, Edward L.; Posadas, Agham B.; Wu, Hsin Wei; Smith, David J.; Demkov, Alexander A.; Ekerdt, John G.

    2017-10-01

    Barium titanate BaTiO3 (BTO) thin films were epitaxially grown at 225 °C on 2 × 1-reconstructed Ge(001) surfaces via atomic layer deposition (ALD). Approximately 2 nm of BTO film was grown directly on Ge(001) as an amorphous film. Electron diffraction confirmed the epitaxy of the BTO films after post-deposition annealing at 650 °C. Additional BTO layers grown on the crystalline BTO/Ge(001) film were crystalline as-deposited. X-ray diffraction indicated that the epitaxial BTO films had a c-axis out-of-plane orientation, and the abrupt BTO/Ge interface was preserved with no sign of any interfacial germanium oxide. Scanning transmission electron microscopy provided evidence of Ba atoms occupying the troughs of the dimer rows of the 2 × 1-reconstructed Ge(001) surface, as well as preservation of the 2 × 1-reconstructed Ge(001) surface. This study presents a low-temperature process to fabricate BTO/Ge heterostructures.

  7. Simulation and growing study of Cu–Al–S thin films deposited by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duclaux, L., E-mail: loraine-externe.duclaux@edf.fr [Institute of Research and Development on Photovoltaic Energy (IRDEP), EDF R& D/CNRS/ChimieParistech, UMR 7174, 6 quai Watier, 78401 Chatou (France); Donsanti, F.; Vidal, J. [Institute of Research and Development on Photovoltaic Energy (IRDEP), EDF R& D/CNRS/ChimieParistech, UMR 7174, 6 quai Watier, 78401 Chatou (France); Bouttemy, M. [Lavoisier Institute of Versailles, UMR 8180, 45 avenue des Etats-Unis, 78035 Versailles cedex (France); Schneider, N.; Naghavi, N. [Institute of Research and Development on Photovoltaic Energy (IRDEP), EDF R& D/CNRS/ChimieParistech, UMR 7174, 6 quai Watier, 78401 Chatou (France)

    2015-11-02

    In this paper, we have explored the potential of Cu–Al–S compounds as p-type transparent conducting material by means of atomistic simulation using CuAlS{sub 2} as a reference ternary compound and atomic layer deposition (ALD) growth. We have identified key intrinsic point defects acting either as shallow acceptor or deep donor which define the conductivity of CuAlS{sub 2}. Higher p-type conductivity was found to be achievable under metal-poor and chalcogen-rich growth conditions. According to this precept, ALD growth of Cu{sub x}Al{sub y}S{sub z} was attempted using Cu(acac){sub 2} and Al(CH{sub 3}){sub 3} as precursors for Cu and Al respectively and under H{sub 2}S atmosphere. While as grown thin films present low content of Al, it influences the band gap values as well as the obtained structures. - Highlights: • Ab-initio investigation of CuAlS{sub 2} • Indentification of two opposite main-contributive intrinsic defects on the conductivity: V{sub Cu} and Al{sub Cu} • Synthesis of Cu-Al-S ternary compound using atomic layer deposition • Impact of aluminum insertion on the optical and structural properties of the films.

  8. Electrochemical lithiation of thin silicon based layers potentiostatically deposited from ionic liquid

    International Nuclear Information System (INIS)

    Vlaic, Codruta Aurelia; Ivanov, Svetlozar; Peipmann, Ralf; Eisenhardt, Anja; Himmerlich, Marcel; Krischok, Stefan; Bund, Andreas

    2015-01-01

    Thin silicon layers containing about 20% carbon and 20% oxygen were deposited on copper substrates by potentiostatic electroreduction from a 1 M SiCl 4 1-butyl-1-methyl-pyrrolidinium bis (trifluoromethyl) sulfonylimide [BMP][TFSI] electrolyte. The electrodeposition process was investigated by means of voltammetric techniques, coupled with in-situ microgravimetry (quartz crystal microbalance, QCM). The electrochemical and QCM data suggest a possible contribution of a partial Si 4+ to Si 2+ reduction and/or a restructuring of the metallic substrate. Considerable impact of side reactions parallel to the deposition process was indicated by QCM measurements performed under potentiostatic and potentiodynamic conditions. The deposition of silicon-based films was confirmed by energy dispersive X-ray analysis (EDX). Analysis of the chemical composition of the deposit and its elemental distribution were achieved by depth profiling X-ray photoelectron spectroscopy (XPS). The electrodeposited silicon containing layers showed stable lithiation and delithiation with capacity values of about 1200 mAhg −1 and 80% capacity retention after 300 cycles in standard EC/DMC electrolytes. In ionic liquid (IL) the material displayed lower capacity of ca. 500 mAhg −1 , which can be attributed to the higher viscosity of this electrolyte and deposition of IL decomposition products during lithiation

  9. Organic thin film transistors using a liquid crystalline palladium phthalocyanine as active layer

    Science.gov (United States)

    Jiménez Tejada, Juan A.; Lopez-Varo, Pilar; Chaure, Nandu B.; Chambrier, Isabelle; Cammidge, Andrew N.; Cook, Michael J.; Jafari-Fini, Ali; Ray, Asim K.

    2018-03-01

    70 nm thick solution-processed films of a palladium phthalocyanine (PdPc6) derivative bearing eight hexyl (-C6H13) chains at non-peripheral positions have been employed as active layers in the fabrication of bottom-gate bottom-contact organic thin film transistors (OTFTs) deposited on highly doped p-type Si (110) substrates with SiO2 gate dielectric. The dependence of the transistor electrical performance upon the mesophase behavior of the PdPc6 films has been investigated by measuring the output and transfer characteristics of the OTFT having its active layer ex situ vacuum annealed at temperatures between 500 °C and 200 °C. A clear correlation between the annealing temperature and the threshold voltage and carrier mobility of the transistors, and the transition temperatures extracted from the differential scanning calorimetric curves for bulk materials has been established. This direct relation has been obtained by means of a compact electrical model in which the contact effects are taken into account. The precise determination of the contact-voltage drain-current curves allows for obtaining such a relation.

  10. Theoretical simulation of performances in CIGS thin-film solar cells with cadmium-free buffer layer

    Science.gov (United States)

    Luo, Kang; Sun, Yulin; Zhou, Liyu; Wang, Fang; Wu, Fang

    2017-08-01

    Copper indium gallium selenium (CIGS) thin film solar cells have become one of the hottest topics in solar energy due to their high photoelectric transformation efficiency. To real applications, CIGS thin film is covered by the buffer layer and absorption layer. Traditionally, cadmium sulfide (CdS) is inserted into the middle of the window layer (ZnO) and absorption layer (CIGS) as a buffer layer. However, the application of the GIGS/CdS thin film solar cells has been limited because of the environmental pollution resulting from the toxic cadmium atom. Although zinc sulfide (ZnS) has been proposed to be one of the candidates, the performance of such battery cells has not been investigated. Here, in this paper, we systematically study the possibility of using zinc sulfide (ZnS) as a buffer layer. By including the effects of thickness, concentration of a buffer layer, intrinsic layer and the absorbing layer, we find that photoelectric transformation efficiency of ZnO/ZnS(n)/CIGS(i)/CIGS(p) solar cell is about 17.22%, which is qualified as a commercial solar cell. Moreover, we also find that the open-circuit voltage is ∼0.60 V, the short-circuit current is ∼36.99 mA/cm2 and the filled factor is ∼77.44%. Therefore, our results suggest that zinc sulfide may be the potential candidate of CdS as a buffer layer. Project supported by the NSF of Jiangsu Province (No. BK20131420), the Postgraduate Innovation Project of Jiangsu Province (No. KYLX15_0926), and the NJFU Outstanding Young Scholars Funding.

  11. Electromagnetic shielding effectiveness of a thin silver layer deposited onto PET film via atmospheric pressure plasma reduction

    Science.gov (United States)

    Oh, Hyo-Jun; Dao, Van-Duong; Choi, Ho-Suk

    2018-03-01

    This study presents the first use of a plasma reduction reaction under atmospheric pressure to fabricate a thin silver layer on polyethylene terephthalate (PET) film without the use of toxic chemicals, high voltages, or an expensive vacuum apparatus. The developed film is applied to electromagnetic interference (EMI) shielding. After repeatedly depositing a silver layer through a plasma reduction reaction on PET, we can successfully fabricate a uniformly deposited thin silver layer. It was found that both the particle size and film thickness of thin silver layers fabricated at different AgNO3 concentrations increase with an increase in the concentration of AgNO3. However, the roughness of the thin silver layer decreases when increasing the concentration of AgNO3 from 100 to 500 mM, and the roughness increases with a further increase in the concentration of AgNO3. The EMI shielding effectiveness (SE) of the film is measured in the frequency range of 0.045 to 1 GHz. As a result of optimizing the electrical conductivity by measuring sheet resistance of the thin silver layer, the film fabricated from 500 mM AgNO3 exhibits the highest EMI SE among all fabricated films. The maximum values of the EMI SE are 60.490 dB at 0.1 GHz and 54.721 dB at 1.0 GHz with minimum sheet resistance of 0.244 Ω/□. Given that the proposed strategy is simple and effective, it is promising for fabricating various low-cost metal films with high EMI SE.

  12. Thin-layer effects in glaciological seismic amplitude-versus-angle (AVA) analysis: implications for characterising a subglacial till unit, Russell Glacier, West Greenland

    Science.gov (United States)

    Booth, A. D.; Clark, R. A.; Kulessa, B.; Murray, T.; Hubbard, A.

    2012-02-01

    Seismic amplitude-versus-angle (AVA) methods are a powerful means of interpreting the physical properties of subglacial material, although interpreting an AVA response is complicated in the case of a thinly-layered substrate. A layer thinner than one-quarter of the seismic wavelength is considered seismically "thin", and reflections from its bounding interfaces are perceived as a single event. Since a lodged (non-deforming) subglacial till can capped by a thin (metre-scale) cap of dilatant (deforming) till, serious misinterpretations can result if thin layer considerations are not honoured. AVA responses for layered subglacial tills are simulated: we model dilatant layers of thickness 0.1-3.0 m (up to a quarter-wavelength of our synthetic seismic pulse) overlying a lodged half-space, assigning typical acoustic impedance and Poisson's ratios to each. If thin layer effects are neglected, the AVA response to ultra-thin (AVA response. We apply this method to example seismic AVA data from the Russell Glacier outlet of the West Greenland Ice Sheet, in which characteristics of thin layer responses are evident. We interpret a stratified subglacial deposit, with upper and lower layers of high-porosity (0.492 ± 0.015) and low-porosity (acoustic impedance of 4.20-4.39 × 106 kg m-2 s-1) material, respectively assumed to represent dilatant and lodged tills. Thin layer considerations are strongly advised wherever seismic AVA analyses are used to quantify subglacial material properties.

  13. Effects of BaBi2Ta2O9 thin buffer layer on crystallization and electrical properties of CaBi2Ta2O9 thin films on Pt-coated silicon

    Science.gov (United States)

    Kato, Kazumi; Suzuki, Kazuyuki; Nishizawa, Kaori; Miki, Takeshi

    2001-05-01

    Non-c-axis oriented CaBi2Ta2O9 (CBT) thin films have been successfully deposited via the triple alkoxide solution method on Pt-coated Si substrates by inserting BaBi2Ta2O9 (BBT) thin buffer layers. The BBT thin buffer layer, which was prepared on Pt-coated Si, was a key material for suppression of the nonpolar c-axis orientation and promoting the ferroelectric structure perpendicular to the in-plane direction of CBT thin film. The annealing temperature and thickness of the BBT thin buffer layers affected the dielectric, ferroelectric, and fatigue properties of the stacked CBT/BBT thin films. The resultant 650 °C annealed CBT/BBT(30 nm) thin film exhibited good P-E hysteresis properties and fatigue behaviors.

  14. QCM-Arrays for Sensing Terpenes in Fresh and Dried Herbs via Bio-Mimetic MIP Layers

    Directory of Open Access Journals (Sweden)

    Naseer Iqbal

    2010-06-01

    Full Text Available A piezoelectric 10 MHz multichannel quartz crystal microbalance (MQCM, coated with six molecularly imprinted polystyrene artificial recognition membranes have been developed for selective quantification of terpenes emanated from fresh and dried Lamiaceae family species, i.e., rosemary (Rosmarinus Officinalis L., basil (Ocimum Basilicum and sage (Salvia Officinalis. Optimal e-nose parameters, such as layer heights (1–6 KHz, sensitivity

  15. Enhancement of Electrical Conductance for Pentacene Thin Film Transistor by Controlling an Initial Layer-by-Layer Growth Mode Directly on SiO2 Insulator

    Science.gov (United States)

    Qi, Qiong; Jiang, Yeping; Yu, Aifang; Qiu, Xiaohui; Jiang, Chao

    2009-04-01

    Initial nucleation and growth of pentacene films on various pre-cleaning treated SiO2 gate insulators were systematically examined by atomic force microscope. The performance of fabricated pentacene thin film transistor devices was found to be highly related to the initial film growth modes. In contrast to the film in the three-dimensional island-like growth mode on SiO2 under an organic cleaning process, a layer-by-layer initial growth mode occurred on the SiO2 insulator cleaned with ammonia solution which has shown much improved electrical properties of the thin film transistors. Field effect mobility of the thin film transistor devices could be achieved as high as 1.0 cm2 V-1 s-1 on the bared SiO2/Si substrate and the on/off ratio was over 106. The enhanced electrical conductance was further confirmed by an electrostatic force microscopic observation of quantized electrical potentials via charge-injection to the submonolayer pentacene islands with layer-by-layer growth mode.

  16. Extraction of Nutraceuticals from Spirulina (Blue-Green Alga): A Bioorganic Chemistry Practice Using Thin-layer Chromatography

    Science.gov (United States)

    Herrera Bravo de Laguna, Irma; Toledo Marante, Francisco J.; Luna-Freire, Kristerson R.; Mioso, Roberto

    2015-01-01

    Spirulina is a blue-green alga (cyanobacteria) with high nutritive value. This work provides an innovative and original approach to the consideration of a bioorganic chemistry practice, using Spirulina for the separation of phytochemicals with nutraceutical characteristics via thin-layer chromatography (TLC) plates. The aim is to bring together…

  17. DETECTION, ISOLATION, AND IDENTIFICATION OF TRUXILLINES IN ILLICIT COCAINE BY MEANS OF THIN-LAYER CHROMATOGRAPHY AND MASS-SPECTROMETRY

    NARCIS (Netherlands)

    ENSING, JG; DEZEEUW, RA

    By means of thin-layer chromatography, an unidentified alkaloidal fraction was observed in illicit cocaine. Because of its persisting presence, efforts were undertaken to isolate and identify this fraction. Various analytical techniques showed complex results, finally pointing to the possibility of

  18. The detection of some halogenated phenols and nitrophenols in thin-layer chromatography by means of bromine

    NARCIS (Netherlands)

    Tadema, G.; Batelaan, P.H.

    1968-01-01

    A method is described for the detection of halogeno- and nitro-phenols in sub-microgram quantities. Theses compounds are made visible by exposure of the developed thin layer plates to bromine vapour and subsequent spraying with an aqueous solution of potassium iodide or an ethanolic solution of

  19. Peak broadening in paper chromatography and related techniques : III. Peak broadening in thin-layer chromatography on cellulose powder

    NARCIS (Netherlands)

    Ligny, C.L. de; Remijnse, A.G.

    1968-01-01

    The mechanism of peak broadening in thin-layer chromatography on cellulose powder was investigated by comparing the peak widths obtained in chromatography with those caused only by diffusion in the cellulose powder, for a set of amino acids of widely differing RF values and six kinds of cellulose

  20. Growth and thermal oxidation of Ru and ZrO2 thin films as oxidation protective layers

    NARCIS (Netherlands)

    Coloma Ribera, R.

    2017-01-01

    This thesis focuses on the study of physical and chemical processes occurring during growth and thermal oxidation of Ru and ZrO2 thin films. Acting as oxidation resistant capping materials to prevent oxidation of layers underneath, these films have several applications, i.e., in microelectronics

  1. An Improved Method for the Extraction and Thin-Layer Chromatography of Chlorophyll A and B from Spinach

    Science.gov (United States)

    Quach, Hao T.; Steeper, Robert L.; Griffin, William G.

    2004-01-01

    A simple and fast method, which resolves chlorophyll a and b from spinach leaves on analytical plates while minimizing the appearance of chlorophyll degradation products is shown. An improved mobile phase for the Thin-layer chromatographic analysis of spinach extract that allows for the complete resolution of the common plant pigments found in…

  2. Quantitative image correction and calibration for confocal fluorescence microscopy using thin reference layers and SIPchart-based calibration procedures

    NARCIS (Netherlands)

    Zwier, J.M.; Oomen, L.; Brocks, L.; Jalink, K.; Brakenhoff, G.J.

    2008-01-01

    The fluorescence intensity image of an axially integrated through-focus series of a thin standardized uniform fluorescent layer can be used for image intensity correction and calibration in sectioning microscopy. This intensity image is in fact available from the earlier introduced Sectioned Imaging

  3. A Laboratory Experiment in Pharmaceutical Analysis: Determination of Drugs of Abuse in Human Urine by Thin-Layer Chromatography.

    Science.gov (United States)

    Bailey, Leonard C.

    1979-01-01

    An experiment is described that was developed for a course in Inorganic and Analytical Pharmaceutical Chemistry at Rutgers University to provide pharmacy students with practical experience in the thin-layer chromatography used for the analysis of urine to monitor patient compliance with drug abuse treatment programs. (JMD)

  4. Thin layer chromatography: a simple and reliable technique for the determination of pesticides residue in environmental samples

    International Nuclear Information System (INIS)

    Asi, M.R.; Hussain, A.; Iqbal, Z.; Chaudhary, J.A.

    2000-01-01

    A method for the detection of pesticides by thin-layer chromatography is described. These pesticides on chlorination and treatment with 0-toluidine, yield an intensively colored blue product. Some of the organophosphates and carbonates can be determined at low level (mu g/ g) by this method. The limit of minimum detectable quantity is 10-100 ng. (author)

  5. Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices

    NARCIS (Netherlands)

    Hoye, R.L.Z.; Muñoz-Rojas, D.; Nelson, S.F.; Illiberi, A.; Poodt, P.; Roozeboom, F.; Macmanus-Driscoll, J.L.

    2015-01-01

    Atmospheric pressure spatial atomic layer deposition (AP-SALD) has recently emerged as an appealing technique for rapidly producing high quality oxides. Here, we focus on the use of AP-SALD to deposit functional ZnO thin films, particularly on the reactors used, the film properties, and the dopants

  6. Optimization studies of HgSe thin film deposition by electrochemical atomic layer epitaxy (EC-ALE)

    CSIR Research Space (South Africa)

    Venkatasamy, V

    2006-06-01

    Full Text Available Studies of the optimization of HgSe thin film deposition using electrochemical atomic layer epitaxy (EC-ALE) are reported. Cyclic voltammetry was used to obtain approximate deposition potentials for each element. These potentials were then coupled...

  7. Dry And Ringer Solution Lubricated Tribology Of Thin Osseoconductive Metal Oxides And Diamond-Like Carbon Films

    Directory of Open Access Journals (Sweden)

    Waldhauser W.

    2015-09-01

    Full Text Available Achieving fast and strong adhesion to jawbone is essential for dental implants. Thin deposited films may improve osseointegration, but they are prone to cohesive and adhesive fracture due to high stresses while screwing the implant into the bone, leading to bared, less osteoconductive substrate surfaces and nano- and micro-particles in the bone. Aim of this work is the investigation of the cohesion and adhesion failure stresses of osteoconductive tantalum, titanium, silicon, zirconium and aluminium oxide and diamond-like carbon films. The tribological behaviour under dry and lubricated conditions (Ringer solution reveals best results for diamond-like carbon, while cohesion and adhesion of zirconium oxide films is highest.

  8. Drying of a tape-cast layer: Numerical modelling of the evaporation process in a graded/layered material

    DEFF Research Database (Denmark)

    Jabbaribehnam, Mirmasoud; Jambhekar, V. A.; Hattel, Jesper Henri

    2016-01-01

    -phase compositional porous-media flow — for the ceramic layer — and single-phase compositional laminar free flow — for the air above it. The preliminary results show the typical expected evaporation behaviour from a porous medium initially saturated with water, and water–vapour transport to the free-flow region...

  9. Evaluation of Retinal Nerve Fiber Layer Thinning in Myopic Glaucoma: Impact of Optic Disc Morphology.

    Science.gov (United States)

    Na, Kyeong Ik; Lee, Won June; Kim, Young Kook; Park, Ki Ho; Jeoung, Jin Wook

    2017-12-01

    The purpose of this study was to investigate the role of optic disc torsion on the rate of progressive retinal nerve fiber layer (RNFL) thinning in patients with myopic open-angle glaucoma. We included 102 patients with myopic open-angle glaucoma accompanied by glaucomatous damage confined to a single hemiretina who were followed up over a 5-year period. We divided the subjects into three groups according to the presence or absence of optic disc torsion and the correspondence between the direction of optic disc torsion and the location of glaucomatous damage: torsion with reverse correspondence group (eyes showing inferior optic disc torsion with glaucomatous damage in the superior quadrant or eyes showing superior torsion with damage in the inferior quadrant), no torsion group, and torsion with correspondence group (eyes showing inferior optic disc torsion with glaucomatous damage in the inferior quadrant or eyes showing superior torsion with damage in the superior quadrant). Changes in the peripapillary RNFL thickness (pRNFLT), evaluated using linear mixed model analysis, were compared among the three groups to determine the relationship between optic disc torsion and pRNFLT changes. Among the total of 102 subjects, 13 eyes (12.7%) exhibited optic disc torsion with reverse correspondence, 59 (57.8%) did not exhibit optic disc torsion, and 30 (29.4%) exhibited optic disc torsion with correspondence. pRNFL thinning in the quadrant with glaucomatous damage was significantly faster in the torsion with correspondence group (-1.66 μm/y) than those in the no torsion (-1.14 μm/y; P = 0.032) and torsion with reverse correspondence (-0.50 μm/y; P optic disc torsion-glaucomatous damage correspondence is an important prognostic factor for patients with myopic open-angle glaucoma.

  10. Effective material parameter retrieval for thin sheets: Theory and application to graphene, thin silver films, and single-layer metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Tassin, Philippe, E-mail: tassin@ameslab.gov [Ames Laboratory - U.S. DOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Koschny, Thomas, E-mail: koschny@ameslab.gov [Ames Laboratory - U.S. DOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Soukoulis, Costas M., E-mail: soukoulis@ameslab.gov [Ames Laboratory - U.S. DOE and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011 (United States); Institute of Electronic Structure and Lasers (IESL), FORTH, 71110 Heraklion, Crete (Greece)

    2012-10-15

    An important tool in the field of metamaterials is the extraction of effective material parameters from simulated or measured scattering parameters of a sample. Here we discuss a retrieval method for thin-film structures that can be approximated by a two-dimensional scattering sheet. We determine the effective sheet conductivity from the scattering parameters and we point out the importance of the magnetic sheet current to avoid an overdetermined inversion problem. Subsequently, we present two applications of the sheet retrieval method. First, we determine the effective sheet conductivity of thin silver films and we compare the resulting conductivities with the sheet conductivity of graphene. Second, we apply the method to a cut-wire metamaterial with an electric dipole resonance. The method is valid for thin-film structures such as two-dimensional metamaterials and frequency-selective surfaces and can be easily generalized for anisotropic or chiral media.

  11. Thin, Conductive Permafrost Surrounding Lake Fryxell Indicates Salts From Past Lakes, McMurdo Dry Valleys, Antarctica

    Science.gov (United States)

    Foley, N.; Tulaczyk, S. M.; Gooseff, M. N.; Myers, K. F.; Doran, P. T.; Auken, E.; Dugan, H. A.; Mikucki, J.; Virginia, R. A.

    2017-12-01

    In the McMurdo Dry Valleys (MDV), permafrost should be thick and liquid water rare. However, despite the well below zero mean annual temperature in this cryospheric desert, liquid water can be found in lakes, summer melt streams, subglacial outflow, and - recent work has shown - underneath anomalously thin permafrost. In part, this niche hydrosphere is maintained by the presence of salts, which depress the freezing point of water to perhaps as cold as -10° Celsius. We detected widespread salty water across the MDV in lakes and at depth using a helicopter-borne Time Domain Electromagnetic (TDEM) sensor. By using the presence of brines to mark the transition from frozen permafrost (near the surface) to unfrozen ground (at depth), we have created a map of permafrost thickness in Lower Taylor Valley (LTV), a large MDV with a complex history of glaciation and occupation by lakes. Our results show that permafrost is thinner ( 200m) than would be expected based on geothermal gradient measurements (up to 1000m), a result of the freezing point depression caused by salt and potentially enhanced by an unfinished transient freezing process. Near Lake Fryxell, a large, brackish lake in the center of LTV, permafrost is very thin (about 30-40m) and notably more electrically conductive than more distal permafrost. This thin ring of conductive permafrost surrounding the lake basin most likely reflects the high presence of salts in the subsurface, preventing complete freezing. These salts may be a remnant of the salty bottom waters of a historic larger lake (LGM glacially dammed Lake Washburn) or the remnant of salty basal water from a past advance of Taylor Glacier, which now sits many km up-valley but is known to contain brines which currently flow onto the surface and directly into the subsurface aquifer.

  12. On-line and precise measurement of iron wear using thin layer activation reactions by proton beam

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Nishimura, Kazuo.

    1990-01-01

    For the purpose of the on-line measurement of iron wear, thin layer activation (TLA) method or surface layer activation (SLA) method has been carried out since early 1970s. This method uses the irradiation of charged particle beam like protons from an accelerator onto a metal surface to produce a thin activated layer of several tens μm. The wear of this activated layer is measured by nondestructive on-line method with a radiation detector. There are two methods of the measurement. One is the activity loss measurement on the surface, and the other is the activity measurement of the metal debris collected in a filter. The former method is considered here. The purpose it to measure the wear of engine cam noses to help the development of good engine oil. Proton beam irradiation with a tandem van de Graaff accelerator, wear calibration using a gamma ray spectrometer, on-line wear measurement of cam noses of car engines by TLA method and so on are reported. The 7.00 MeV proton beam from a van de Graaff accelerator was used for activation, and Co-56, Co-57 and Co-58 were obtained in thin layers. (K.I.)

  13. Controlled fabrication of Si nanocrystal delta-layers in thin SiO{sub 2} layers by plasma immersion ion implantation for nonvolatile memories

    Energy Technology Data Exchange (ETDEWEB)

    Bonafos, C.; Ben-Assayag, G.; Groenen, J.; Carrada, M. [CEMES-CNRS and Université de Toulouse, 29 rue J. Marvig, 31055 Toulouse Cedex 04 (France); Spiegel, Y.; Torregrosa, F. [IBS, Rue G Imbert Prolongée, ZI Peynier-Rousset, 13790 Peynier (France); Normand, P.; Dimitrakis, P.; Kapetanakis, E. [NCSRD, Terma Patriarchou Gregoriou, 15310 Aghia Paraskevi (Greece); Sahu, B. S.; Slaoui, A. [ICube, 23 Rue du Loess, 67037 Strasbourg Cedex 2 (France)

    2013-12-16

    Plasma Immersion Ion Implantation (PIII) is a promising alternative to beam line implantation to produce a single layer of nanocrystals (NCs) in the gate insulator of metal-oxide semiconductor devices. We report herein the fabrication of two-dimensional Si-NCs arrays in thin SiO{sub 2} films using PIII and rapid thermal annealing. The effect of plasma and implantation conditions on the structural properties of the NC layers is examined by transmission electron microscopy. A fine tuning of the NCs characteristics is possible by optimizing the oxide thickness, implantation energy, and dose. Electrical characterization revealed that the PIII-produced-Si NC structures are appealing for nonvolatile memories.

  14. Controlled fabrication of Si nanocrystal delta-layers in thin SiO2 layers by plasma immersion ion implantation for nonvolatile memories

    International Nuclear Information System (INIS)

    Bonafos, C.; Ben-Assayag, G.; Groenen, J.; Carrada, M.; Spiegel, Y.; Torregrosa, F.; Normand, P.; Dimitrakis, P.; Kapetanakis, E.; Sahu, B. S.; Slaoui, A.

    2013-01-01

    Plasma Immersion Ion Implantation (PIII) is a promising alternative to beam line implantation to produce a single layer of nanocrystals (NCs) in the gate insulator of metal-oxide semiconductor devices. We report herein the fabrication of two-dimensional Si-NCs arrays in thin SiO 2 films using PIII and rapid thermal annealing. The effect of plasma and implantation conditions on the structural properties of the NC layers is examined by transmission electron microscopy. A fine tuning of the NCs characteristics is possible by optimizing the oxide thickness, implantation energy, and dose. Electrical characterization revealed that the PIII-produced-Si NC structures are appealing for nonvolatile memories

  15. Characterization and obtainment of thin films based on N,N,N-trimethyl chitosan and heparin through the technical layer-by-layer

    International Nuclear Information System (INIS)

    Martins, Alessandro F.; Follmann, Heveline D.M.; Rubira, Adley F.; Muniz, Edvani C.

    2011-01-01

    Thin films of Heparin (HP) and N,N,N-trimethyl chitosan (TMC) with a high degree of quaternization (DQ) were obtained at pH 7.4 through the layer-by-layer (LbL) technique. Polystyrene (PS) was oxidized with aqueous solution of sodium persulfate and subsequently employed as substrate. The characterization of TMC and the respective determination of DQ were performed through 1 H NMR spectroscopy. The thin films de TMC/HP were characterized by FTIR-ATR and AFM. Both techniques confirmed the adsorption of TMC and HP in surface of the PS. The increasing of the bilayers provides a decrease of the projections and/or roughness, further of minimizing the depressions at the surface of the films. Studies of thin films the base of TMC/HP prepared from the LbL technique has not been reported in the literature. It is expected that the thin films of TMC/HP present anti-adhesive and antimicrobial properties. (author)

  16. Radial junction solar cells based on heterojunction with intrinsic thin layer (HIT) structure

    Science.gov (United States)

    Shen, Haoting

    The radial junction wire array structure was previously proposed as a solar cell geometry to separate the direction of carrier collection from the direction of light absorption, thereby circumventing the need to use high quality but expensive single crystal silicon (c-Si) material that has long minority carrier diffusion lengths. The Si radial junction structure can be realized by forming radial p-n junctions on Si pillar/wire arrays that have a diameter comparable to the minority carrier diffusion length. With proper design, the Si pillar arrays are also able to enhance light trapping and thereby increase the light absorption. However, the larger junction area and surface area on the pillar arrays compared to traditional planar junction Si solar cells makes it challenging to fabricate high performance devices due an in increase in surface defects. Therefore, effective surface passivation strategies are essential for radial junction devices. Hydrogenated amorphous silicon (a-Si:H) deposited by plasma-enhanced chemical vapor deposition (PECVD) using a heterojunction with intrinsic thin layer (HIT) structure has previously been demonstrated as a very effective surface passivation layer for planar c-Si solar cells. It is therefore of interest to use a-Si:H in a HIT layer structure for radial p-n junction c-Si pillar array solar cells. This poses several challenges, however, including the need to fabricate ultra-thin a-Si:H layers conformally on high aspect ratio Si pillars, control the crystallinity at the a-Si:H/c-Si interface to yield a low interface state density and optimize the layer thicknesses, doping and contacts to yield high performance devices. This research in this thesis was aimed at developing the processing technology required to apply the HIT structure to radial junction Si pillar array solar cell devices and to evaluate the device characteristics. Initial studies focused on understanding the effects of process conditions on the growth rate and

  17. Atomically-thin molecular layers for electrode modification of organic transistors

    Science.gov (United States)

    Gim, Yuseong; Kang, Boseok; Kim, Bongsoo; Kim, Sun-Guk; Lee, Joong-Hee; Cho, Kilwon; Ku, Bon-Cheol; Cho, Jeong Ho

    2015-08-01

    Atomically-thin molecular layers of aryl-functionalized graphene oxides (GOs) were used to modify the surface characteristics of source-drain electrodes to improve the performances of organic field-effect transistor (OFET) devices. The GOs were functionalized with various aryl diazonium salts, including 4-nitroaniline, 4-fluoroaniline, or 4-methoxyaniline, to produce several types of GOs with different surface functional groups (NO2-Ph-GO, F-Ph-GO, or CH3O-Ph-GO, respectively). The deposition of aryl-functionalized GOs or their reduced derivatives onto metal electrode surfaces dramatically enhanced the electrical performances of both p-type and n-type OFETs relative to the performances of OFETs prepared without the GO modification layer. Among the functionalized rGOs, CH3O-Ph-rGO yielded the highest hole mobility of 0.55 cm2 V-1 s-1 and electron mobility of 0.17 cm2 V-1 s-1 in p-type and n-type FETs, respectively. Two governing factors: (1) the work function of the modified electrodes and (2) the crystalline microstructures of the benchmark semiconductors grown on the modified electrode surface were systematically investigated to reveal the origin of the performance improvements. Our simple, inexpensive, and scalable electrode modification technique provides a significant step toward optimizing the device performance by engineering the semiconductor-electrode interfaces in OFETs.Atomically-thin molecular layers of aryl-functionalized graphene oxides (GOs) were used to modify the surface characteristics of source-drain electrodes to improve the performances of organic field-effect transistor (OFET) devices. The GOs were functionalized with various aryl diazonium salts, including 4-nitroaniline, 4-fluoroaniline, or 4-methoxyaniline, to produce several types of GOs with different surface functional groups (NO2-Ph-GO, F-Ph-GO, or CH3O-Ph-GO, respectively). The deposition of aryl-functionalized GOs or their reduced derivatives onto metal electrode surfaces dramatically

  18. Atomic Layer Deposited Thin Films for Dielectrics, Semiconductor Passivation, and Solid Oxide Fuel Cells

    Science.gov (United States)

    Xu, Runshen

    , ultra-thin layer of encapsulating ZnS is coated on the surface of GaSb and GaSb/InAs substrates. The 2 nm-thick ZnS film is found to provide a long-term protection against reoxidation for one order and a half longer times than prior reported passivation likely due to its amorphous structure without pinholes. Finally, a combination of binary ALD processes is developed and demonstrated for the growth of yttria-stabilized zirconia films using alkylamido-cyclopentadiengyls zirconium and tris(isopropyl-cyclopentadienyl)yttrium, as zirconium and yttrium precursors, respectively, with ozone being the oxidant. The desired cubic structure of YSZ films is apparently achieved after post-deposition annealing. Further, platinum is atomic layer deposited as electrode on YSZ (8 mol% of Yttria) within the same system. In order to control the morphology of as-deposited Pt thin structure, the nucleation behavior of Pt on amorphous and cubic YSZ is investigated. Three different morphologies of Pt are observed, including nanoparticle, porous and dense films, which are found to depend on the ALD cycle number and the structure and morphology of they underlying ALD YSZ films.

  19. The development of the physical and electrical characteristics of multi-layer TiO{sub 2}-W-TiO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Cheng-Fu [National University of Kaohsiung, Department of Chemical and Materials Engineering, Kaohsiung (China); Huang, Hong-Hsin; Chen, Cheng-Yi [Cheng-Shiu University, Department of Electrical Engineering, Kaohsiung (China); Huang, Ping-Chih [Cheng-Shiu University, Department of Chemical and Materials Engineering, Kaohsiung (China); Diao, Chien-Chen [Kao Yuan University, Department of Electronic Engineering, Kaohsiung (China)

    2009-01-15

    In this study, two different thin films, TiO{sub 2} thin film and TiO{sub 2}-W-TiO{sub 2} multi-layer thin films (W, tungsten), are prepared by RF magnetron sputtering onto glass substrates. The crystal structure, morphology, and transmittance of TiO{sub 2} and TiO{sub 2}-W-TiO{sub 2} multi-layer thin films are investigated by X-ray diffraction, SEM, and UV-Vis spectrometer, respectively. The amorphous, rutile, and anatase TiO{sub 2} phases are observed in the TiO{sub 2} thin film and in the TiO{sub 2}-W-TiO{sub 2} multi-layer thin films. The deposition of tungsten as the inter-layer will have large effect on the transmittance and phase ratios of rutile and anatase phases in the TiO{sub 2}-W-TiO{sub 2} multi-layer thin films. The crystal intensities of amorphous TiO{sub 2} will decrease as the tungsten is used as the middle layer in the multi-layer structure. The band gap energy values of TiO{sub 2} thin film and TiO{sub 2}-W-TiO{sub 2} multi-layer thin films are evaluated from ({alpha}h{nu}){sup 1/2} versus energy plots, and the calculated results show that the energy gap decreases from 3.21 eV (TiO{sub 2} thin film) to 3.08{proportional_to}3.03 eV (TiO{sub 2}-W-TiO{sub 2} multi-layer thin films). (orig.)

  20. Effects of buffer layer temperature on the magnetic properties of NdFeB thin film magnets

    International Nuclear Information System (INIS)

    Kim, Y.B.; Cho, S.H.; Kim, H.T.; Ryu, K.S.; Lee, S.H.; Lee, K.H.; Kapustin, G.A.

    2004-01-01

    Effects of the buffer layer temperature (T b ) on the magnetic properties and microstructure of [Mo/NdFeB/Mo]-type thin films have been investigated. The Mo-buffer layer with low T b is composed of fine grains while that with high T b has coarse grains. The subsequent NdFeB layer also grows with fine or coarse grains following the buffer layer structure. The NdFeB layer grown on a low T b buffer shows high coercivity and strong perpendicular anisotropy. The best magnetic properties of i H c =1.01 MA/m (12.7 kOe), B r =1.31 T (13.1 kG) and BH max =329 kJ/m 3 (41.4 MGOe) were obtained from the film with T b =400 deg. C

  1. Hierarchical modeling and its numerical implementation for layered thin elastic structures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jin-Rae [Hongik University, Sejong (Korea, Republic of)

    2017-05-15

    Thin elastic structures such as beam- and plate-like structures and laminates are characterized by the small thickness, which lead to classical plate and laminate theories in which the displacement fields through the thickness are assumed linear or higher-order polynomials. These classical theories are either insufficient to represent the complex stress variation through the thickness or may encounter the accuracy-computational cost dilemma. In order to overcome the inherent problem of classical theories, the concept of hierarchical modeling has been emerged. In the hierarchical modeling, the hierarchical models with different model levels are selected and combined within a structure domain, in order to make the modeling error be distributed as uniformly as possible throughout the problem domain. The purpose of current study is to explore the potential of hierarchical modeling for the effective numerical analysis of layered structures such as laminated composite. For this goal, the hierarchical models are constructed and the hierarchical modeling is implemented by selectively adjusting the level of hierarchical models. As well, the major characteristics of hierarchical models are investigated through the numerical experiments.

  2. Wind effect on currents in a thin surface layer of coastal waters faced open-sea

    International Nuclear Information System (INIS)

    Nakano, Masanao; Isozaki, Hisaaki; Isozaki, Tokuju; Nemoto, Masashi; Hasunuma, Keiichi; Kitamura, Takashi

    2009-01-01

    Two-years of continuous observation of wind and current were carried out to investigate the relationship between them in the coastal waters off Tokai-mura, Ibaraki prefecture. Three instruments to measure the current were set in a thin surface layer of 3 m above the strong pycnocline, which is a common feature in coastal waters. Both of the power spectra of wind and currents showed very similar features, an outstanding high peak at 24-hour period and a range of high peaks longer than several-days period. The long term variation of the wind field always contained north-wind component, which contributed to forming the southward current along the shore throughout the year. A high correlation coefficient (0.64) was obtained between the wind and the current at a depth of 0.5 m on the basis of the two-year observation. Harmonic analysis revealed that an outstanding current with 24-hour period was the S 1 component (meteorological tide), and was driven by land and sea breezes. These breezes also contained solar tidal components such as K 1 , P 1 and S 2 . These wind components added their own wind driven currents on the original tidal currents. This meant that land and sea breezes generated wind driven currents with solar tidal periods which behaved like astronomical tidal currents. As result, coastal currents contained pseudo tidal currents which behaved like astronomical tidal currents. (author)

  3. Development and validation of a thin-layer chromatography method for stability studies of naproxen

    International Nuclear Information System (INIS)

    Rodriguez Hernandez, Yaslenis; Suarez Perez, Yania; Garcia Pulpeiro, Oscar; Rodriguez Borges, Tania

    2011-01-01

    The validation of an analytical method was carried out to be applied to the stability studies of the future formulations of naproxen suppositories for infant and adult use. The factors which mostly influenced in the naproxen stability were determined, the major degradation occurred in oxidizing acid medium and by action of light. The possible formation of esters between the free carboxyl group present in naproxen and the glyceryl monoestereate present in the base was identified as one of the degradation paths in the new formulation. The results were satisfactory. A thin-layer chromatography-based method was developed as well as the best chromatographic conditions were selected. GF 254 silica gel plates and ultraviolet developer at 254 nm were employed. Three solvent systems were evaluated of which A made up of glacial acetic: tetrahydrofurane:toluene (3:9:90 v/v/v)allowed adequate resolution between the analyte and the possible degradation products, with detection limit of 1 μg. The use of the suggested method was restricted to the identification of possible degradation products just for qualitative purposes and not as final test. The method proved to be sensitive and selective enough to be applied for the stated objective, according to the validation results

  4. Thin-layer chromatographic identification of Chinese propolis using chemometric fingerprinting.

    Science.gov (United States)

    Tang, Tie-xin; Guo, Wei-yan; Xu, Ye; Zhang, Si-ming; Xu, Xin-jun; Wang, Dong-mei; Zhao, Zhi-min; Zhu, Long-ping; Yang, De-po

    2014-01-01

    Poplar tree gum has a similar chemical composition and appearance to Chinese propolis (bee glue) and has been widely used as a counterfeit propolis because Chinese propolis is typically the poplar-type propolis, the chemical composition of which is determined mainly by the resin of poplar trees. The discrimination of Chinese propolis from poplar tree gum is a challenging task. To develop a rapid thin-layer chromatographic (TLC) identification method using chemometric fingerprinting to discriminate Chinese propolis from poplar tree gum. A new TLC method using a combination of ammonia and hydrogen peroxide vapours as the visualisation reagent was developed to characterise the chemical profile of Chinese propolis. Three separate people performed TLC on eight Chinese propolis samples and three poplar tree gum samples of varying origins. Five chemometric methods, including similarity analysis, hierarchical clustering, k-means clustering, neural network and support vector machine, were compared for use in classifying the samples based on their densitograms obtained from the TLC chromatograms via image analysis. Hierarchical clustering, neural network and support vector machine analyses achieved a correct classification rate of 100% in classifying the samples. A strategy for TLC identification of Chinese propolis using chemometric fingerprinting was proposed and it provided accurate sample classification. The study has shown that the TLC identification method using chemometric fingerprinting is a rapid, low-cost method for the discrimination of Chinese propolis from poplar tree gum and may be used for the quality control of Chinese propolis. Copyright © 2014 John Wiley & Sons, Ltd.

  5. Thin-film Nanofibrous Composite Membranes Containing Cellulose or Chitin Barrier Layers Fabricated by Ionic Liquids

    Energy Technology Data Exchange (ETDEWEB)

    H Ma; B Hsiao; B Chu

    2011-12-31

    The barrier layer of high-flux ultrafiltration (UF) thin-film nanofibrous composite (TFNC) membranes for purification of wastewater (e.g., bilge water) have been prepared by using cellulose, chitin, and a cellulose-chitin blend, regenerated from an ionic liquid. The structures and properties of regenerated cellulose, chitin, and a cellulose-chitin blend were analyzed with thermogravimetric analysis (TGA) and wide-angle X-ray diffraction (WAXD). The surface morphology, pore size and pore size distribution of TFNC membranes were determined by SEM images and molecular weight cut-off (MWCO) methods. An oil/water emulsion, a model of bilge water, was used as the feed solution, and the permeation flux and rejection ratio of the membranes were investigated. TFNC membranes based on the cellulose-chitin blend exhibited 10 times higher permeation flux when compared with a commercial UF membrane (PAN10, Sepro) with a similar rejection ratio after filtration over a time period of up to 100 h, implying the practical feasibility of such membranes for UF applications.

  6. Broadband photodetector based on carbon nanotube thin film/single layer graphene Schottky junction

    Science.gov (United States)

    Zhang, Teng-Fei; Li, Zhi-Peng; Wang, Jiu-Zhen; Kong, Wei-Yu; Wu, Guo-An; Zheng, Yu-Zhen; Zhao, Yuan-Wei; Yao, En-Xu; Zhuang, Nai-Xi; Luo, Lin-Bao

    2016-12-01

    In this study, we present a broadband nano-photodetector based on single-layer graphene (SLG)-carbon nanotube thin film (CNTF) Schottky junction. It was found that the as-fabricated device exhibited obvious sensitivity to a wide range of illumination, with peak sensitivity at 600 and 920 nm. In addition, the SLG-CNTF device had a fast response speed (τr = 68 μs, τf = 78 μs) and good reproducibility in a wide range of switching frequencies (50-5400 Hz). The on-off ratio, responsivity, and detectivity of the device were estimated to be 1 × 102, 209 mAW-1 and 4.87 × 1010 cm Hz1/2 W-1, respectively. What is more, other device parameters including linear performance θ and linear dynamic range (LDR) were calculated to be 0.99 and 58.8 dB, respectively, which were relatively better than other carbon nanotube based devices. The totality of the above study signifies that the present SLG-CNTF Schottky junction broadband nano-photodetector may have promising application in future nano-optoelectronic devices and systems.

  7. Development of counting system for wear measurements using Thin Layer Activation and the Wearing Apparatus

    Energy Technology Data Exchange (ETDEWEB)

    França, Michel de A.; Suita, Julio C.; Salgado, César M., E-mail: mchldante@gmail.com, E-mail: suita@ien.gov.br, E-mail: otero@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2017-07-01

    This paper focus on developing a counting system for the Wearing Apparatus, which is a device previously built to generate measurable wear on a given surface (Main Source) and to carry the fillings from it to a filter (second source). The Thin Layer Activation is a technique used to produce activity on one of the Wearing Apparatus' piece, this activity is proportional to the amount of material worn, or scrapped, from the piece's surface. Thus, by measuring the activity on those two points it is possible to measure the produced wear. The methodology used in this work is based on simulations through MCNP-X Code to nd the best specifications for shielding, solid angles, detectors dimensions and collimation for the Counting System. By simulating several scenarios, each one different from the other, and analyzing the results in the form of Counts Per Second, the ideal counting system's specifications and geometry to measure the activity in the Main Source and the Filter (second source) is chosen. After that, a set of previously activated stainless steel foils were used to reproduce the real experiments' conditions, this real experiment consists of using TLA and the Wearing Apparatus, the results demonstrate that the counting system and methodology are adequate for such experiments. (author)

  8. Corrosion monitoring on a large steel pressure vessel by thin-layer activation

    International Nuclear Information System (INIS)

    Wallace, G.; Boulton, L.H.; Hodder, D.

    1989-01-01

    Thin-layer activation (TLA) is a technique in which a surface is irradiated by a nuclear accelerator and thereby labeled with an accurate depth profile of low-level radioactivity. By monitoring this activity it is possible to calculate how much of that surface has been removed by corrosion. As the radioactivity is marked by the emission of penetrating gamma rays, it is possible to monitor this corrosion remotely through several centimeters of steel. This technique has been used to monitor erosion-corrosion occurring on the inner carbon steel wall of a continuous Kraft pulp digester at a paper mill. Representative coupons of the same steel as the digester wall were irradiated and fixed to the walls in the liquor extraction zone during a maintenance shutdown. The loss of metal over the six months was measured by external monitoring of gamma radiation through the vessel wall, and converted to a corrosion rate. Subsequent weight-loss measurements and comparison with ultrasonic thickness measurements established that the corrosion rate measured gave accurate results over a much shorter time scale. TLA thus enables current, rather than historical corrosion rates to be measured in a large steel pressure vessel

  9. Structural characterisation of sprayed TiO2 films for extremely thin absorber layer solar cells

    International Nuclear Information System (INIS)

    Rogers, K.D.; Lane, D.W.; Painter, J.D.; Chapman, A.

    2004-01-01

    We have examined in detail the structural features of TiO 2 films fabricated by spray pyrolysis. The spray solution was produced from the dissolution of Ti powder in a hydrogen peroxide and ammonium hydroxide solution. The resulting peroxo-polytitanic acid solution was diluted in water and sprayed onto heated substrates through an air-atomizing nozzle. Each sample was characterised principally by X-ray powder diffraction and scanning electron microscopy. The effect of spray solution composition and rate has been studied and a brief comparison to films produced by an alternative route ('doctor blade') provided. The films were shown to consist of almost single phase anatase and to be porous. It has been demonstrated that the growth process was uniform although the degree of preferred orientation could be controlled through the concentration of the spray solution. The lattice parameters are both shown to increase slightly with concentration and volume of solution deposited. Semi-quantitative microstructural analyses showed that the crystallites formed are consistently larger than those formed by the doctor blade process although they contain significantly more microstrain. Further, it is demonstrated that thin window layers of copper indium disulfide, also formed by spray pyrolysis, have a conformal relationship with the TiO 2

  10. Shape optimization of a sheet swimming over a thin liquid layer

    Energy Technology Data Exchange (ETDEWEB)

    Wilkening, J.; Hosoi, A.E.

    2008-12-10

    Motivated by the propulsion mechanisms adopted by gastropods, annelids and other invertebrates, we consider shape optimization of a flexible sheet that moves by propagating deformation waves along its body. The self-propelled sheet is separated from a rigid substrate by a thin layer of viscous Newtonian fluid. We use a lubrication approximation to model the dynamics and derive the relevant Euler-Lagrange equations to simultaneously optimize swimming speed, efficiency and fluid loss. We find that as the parameters controlling these quantities approach critical values, the optimal solutions become singular in a self-similar fashion and sometimes leave the realm of validity of the lubrication model. We explore these singular limits by computing higher order corrections to the zeroth order theory and find that wave profiles that develop cusp-like singularities are appropriately penalized, yielding non-singular optimal solutions. These corrections are themselves validated by comparison with finite element solutions of the full Stokes equations, and, to the extent possible, using recent rigorous a-priori error bounds.

  11. Exploring Cd-Zn-O-S alloys for improved buffer layers in thin-film photovoltaics

    Science.gov (United States)

    Varley, J. B.; Lordi, V.; He, X.; Rockett, A.

    2017-07-01

    To compete with existing and more mature solar cell technologies such as crystalline Si, thin-film photovoltaics require optimization of every aspect in the device heterostructure to reach maximum efficiencies and cost effectiveness. For absorbers like CdTe, Cu(In ,Ga )Se 2 (CIGSe), and Cu2ZnSn(S ,Se ) 4 (CZTSSe), improving the n -type buffer layer partner beyond conventional CdS is one avenue that can reduce photocurrent losses and improve overall performance. Here, we use first-principles calculations based on hybrid functionals to explore alloys spanning the Cd-, Zn-, O-, and S-containing phase space to identify compositions that may be superior to common buffers like pure CdS or Zn(O,S). We address issues highly correlated with device performance such as lattice-matching for improved buffer-absorber epitaxy and interface quality, dopability, the band gap for reduced absorption losses in the buffer, and the conduction-band offsets shown to facilitate improved charge separation from photoexcited carriers. We supplement our analysis with device-level simulations as parameterized from our calculations and real devices to assess our conclusions of low-Zn and O content buffers showing improved performance with respect to CdS buffers.

  12. Investigation of anti-wear performance of automobile lubricants using thin layer activation analysis technique

    Energy Technology Data Exchange (ETDEWEB)

    Biswal, Jayashree [Isotope and Radiation Application Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Thakre, G.D. [Tribology and Combustion Division, Indian Institute of Petroleum, Dehradun 248005, Uttarakhand (India); Pant, H.J., E-mail: hjpant@barc.gov.in [Isotope and Radiation Application Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Samantray, J.S. [Isotope and Radiation Application Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Arya, P.K. [Tribology and Combustion Division, Indian Institute of Petroleum, Dehradun 248005, Uttarakhand (India); Sharma, S.C.; Gupta, A.K. [Nuclear Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India)

    2017-05-15

    An investigation was carried out to examine the anti-wear behavior of automobile lubricants using thin layer activation analysis technique. For this study disc gears made of EN 31 steel were labeled with a small amount of radioactivity by irradiating with 13 MeV proton beam from a particle accelerator. Experiments on wear rate measurement of the gear were carried out by mounting the irradiated disc gear on a twin-disc tribometer under lubricated condition. The activity loss was monitored by using a NaI(Tl) scintillation detector integrated with a multichannel analyzer. The relative remnant activity was correlated with thickness loss by generating a calibration curve. The wear measurements were carried out for four different types of lubricants, named as, L1, L2, L3 and L4. At lower load L1 and L4 were found to exhibit better anti-wear properties than L2 and L3, whereas, L4 exhibited the best anti-wear performance behavior than other three lubricants at all the loads and speeds investigated.

  13. Thin layer chromatographic analysis of food colorants from three morphotypes of annatto (Bixa orellana L.

    Directory of Open Access Journals (Sweden)

    Hari Pada Seal

    2012-06-01

    Full Text Available This article describes a simple solvent extraction method for the extraction of colorants from the three morphotypes such as, (Morphotype-1 (M1, Morphotype-2 (M2, and Morphotype-3 (M3 of Annatto (Bixa orellana L. seeds, and their separation, vivid, and qualitative demonstration by thin-layer chromatography. Several solvent systems (hexane, chloroform, acetone, ethanol, and a mixed-solvent having composition of CHCl3/C2H5OH/CH3COOH (80:2:1 were applied for extraction of colored components. It was observed that a large portion of colorants was extracted by chloroform. Its effluent was deep brick red in color and transparent. Furthermore, various carrier solvent systems (Benzene-Ethyl acetate were used to separate the components from the extracts. Carrier solvent system with the ratio of 7:3 was found as superior solvent for chloroform extracts. Three colored-spots were observed for all morphotypes. Among them, the first one was yellow colored having very low polarity and the second and third spots were both redbrick colored having medium and higher polarity respectively. In addition, for M1 no colorless-spot was observed in low and medium polar systems, revealing that the amount of wax and gum were minimum in the extract and superior morphotype among the three.

  14. Optimation of Sputtering Process Parameters on the Deposition of Nitride Titanium Thin Layer on Aluminum Alloys

    International Nuclear Information System (INIS)

    Tjipto Sujitno; Agus Santoso; Wiryoadi; Sayono; Bambang Siswanto; Lely Susita RM

    2002-01-01

    Research on the optimization of sputtering process parameters on the deposition of nitride titanium thin layer on aluminum alloys has been carried out. The aim of this research is to get the optimum conditions of the process parameters. The parameters of the process are ratio of sputter gas (Ar) and dopant (Nitrogen) gas, time of the process (t), temperature (T), electrode distance, electrode voltage and vacuum conditions of the process. In this experiment the electrode distance and electrode voltage are constants i.e.: 4 cm, 1.5 kV and 2.0 x 10 -1 torr, respectively. To examine the results, it was characterized its hardness, wear and corrosion resistance. It's found that optimum conditions was achieved at the ratio of Ar:N 2 = 5:7, t = 3 hours, T= 100 o C and vacuum conditions 2 x 10 -2 torr. At the optimum conditions, the hardness increases from 120.33 KHN to 149.59 KHN or there is an increasing in hardness in order of 24.32 %, the wear resistance increases from 1 x 10 -4 g/minutes to 6 x 10 -5 g/minutes or there is an increasing in wear resistance in order of 40.00 %, and the corrosion resistance in diluted sea water 1000 times media increases from 6.22 mpy to 0.68 mpy or there is an increasing in corrosion resistance in order of 811.76 %. (author)

  15. Indirect fluorometric detection techniques on thin layer chromatography and effect of ultrasound on gel electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Yinfa, Ma.

    1990-12-10

    Thin-layer chromatography (TLC) is a broadly applicable separation technique. It offers many advantages over high performance liquid chromatography (HPLC), such as easily adapted for two-dimensional separation, for whole-column'' detection and for handling multiple samples, etc. However, due to its draggy development of detection techniques comparing with HPLC, TLC has not received the attention it deserves. Therefore, exploring new detection techniques is very important to the development of TLC. It is the principal of this dissertation to present a new detection method for TLC -- indirect fluorometric detection method. This detection technique is universal sensitive, nondestructive, and simple. This will be described in detail from Sections 1 through Section 5. Section 1 and 3 describe the indirect fluorometric detection of anions and nonelectrolytes in TLC. In Section 2, a detection method for cations based on fluorescence quenching of ethidium bromide is presented. In Section 4, a simple and interesting TLC experiment is designed, three different fluorescence detection principles are used for the determination of caffeine, saccharin and sodium benzoate in beverages. A laser-based indirect fluorometric detection technique in TLC is developed in Section 5. Section 6 is totally different from Sections 1 through 5. An ultrasonic effect on the separation of DNA fragments in agarose gel electrophoresis is investigated. 262 refs.

  16. Comparison of thin layer chromatographic and gas chromatographic determination of propoxur residues in a cocoa ecosystem

    International Nuclear Information System (INIS)

    Yeboah, P.O.; Lowor, S.; Akpabli, C.K.

    2005-01-01

    The fate of propoxur in a cocoa ecosystem has been studied using thin layer chromatographic (TLC) and gas chromatographic (GC) methods. Residues of propoxur as determined by both TLC and GC were not significantly different. TLC analysis of propoxur residues in soil, cocoa leaves and pods did not require any rigorous cleanup since residues measured from cleaned extracts and without cleanup were not significantly different. The residue levels of propoxur in the soil were found to decrease rapidly and, by the 21st day, none was detected in the topsoil (0-15 cm). Evidence of leaching of propoxur residues in the soil has also been demonstrated. The amount left in the top soil after the first seven days were 27%, 23% and 24% of the initial one as determined by the TLC without cleanup, TLC with cleanup and GLC, respectively. No propoxur residue was detected in topsoil 21 days after spraying. About 38% of pesticides detected on the cocoa pod on the day of treatment remained on the pod seven days after treatment. The residue detected on the leaves on the day of treatment was higher than that in or on the soil. This decreased rapidly to 1.7% in 21 days compared to 16% for the soil and 23% for the pod. (author)

  17. Dynamic Leidenfrost temperature on micro-textured surfaces: Acoustic wave absorption into thin vapor layer

    Science.gov (United States)

    Jerng, Dong Wook; Kim, Dong Eok

    2018-01-01

    The dynamic Leidenfrost phenomenon is governed by three types of pressure potentials induced via vapor hydrodynamics, liquid dynamic pressure, and the water hammer effect resulting from the generation of acoustic waves at the liquid-vapor interface. The prediction of the Leidenfrost temperature for a dynamic droplet needs quantitative evaluation and definition for each of the pressure fields. In particular, the textures on a heated surface can significantly affect the vapor hydrodynamics and the water hammer pressure. We present a quantitative model for evaluating the water hammer pressure on micro-textured surfaces taking into account the absorption of acoustic waves into the thin vapor layer. The model demonstrates that the strength of the acoustic flow into the liquid droplet, which directly contributes to the water hammer pressure, depends on the magnitude of the acoustic resistance (impedance) in the droplet and the vapor region. In consequence, the micro-textures of the surface and the increased spacing between them reduce the water hammer coefficient ( kh ) defined as the ratio of the acoustic flow into the droplet to total generated flow. Aided by numerical calculations that solve the laminar Navier-Stokes equation for the vapor flow, we also predict the dynamic Leidenfrost temperature on a micro-textured surface with reliable accuracy consistent with the experimental data.

  18. Increased serum level of homocysteine correlates with retinal nerve fiber layer thinning in diabetic retinopathy.

    Science.gov (United States)

    Srivastav, Khushboo; Saxena, Sandeep; Mahdi, Abbas A; Shukla, Rajendra K; Meyer, Carsten H; Akduman, Levent; Khanna, Vinay K

    2016-01-01

    To study the correlation between serum levels of vitamin B 12 , folic acid, and homocysteine and the severity of diabetic retinopathy and the correlation with retinal nerve fiber layer (RNFL) thinning on spectral domain optical coherence tomography (SD-OCT). In a tertiary care center-based prospective cross-sectional study, 60 consecutive cases and 20 healthy controls in the age group of 40-65 years were included. The eyes of the cases were divided into three groups according to Early Treatment Diabetic Retinopathy Study (ETDRS) classification: diabetes mellitus without retinopathy (n = 20), non-proliferative diabetic retinopathy with macular edema (n = 20), and proliferative diabetic retinopathy with macular edema (n = 20). The serum levels of vitamin B 12 and folic acid were measured using a standard protocol. The serum homocysteine assay was performed using an enzyme-linked immunosorbent assay (ELISA) kit. Average RNFL thickness was measured using SD-OCT. Statistical analysis was used to assess the correlations between the study variables. Increased severity of diabetic retinopathy was found to correlate with an increase in the serum levels of homocysteine (F = 53.79; phomocysteine (phomocysteine with a decrease in RNFL thickness and increased severity of diabetic retinopathy.

  19. HPTLC-aptastaining - Innovative protein detection system for high-performance thin-layer chromatography

    Science.gov (United States)

    Morschheuser, Lena; Wessels, Hauke; Pille, Christina; Fischer, Judith; Hünniger, Tim; Fischer, Markus; Paschke-Kratzin, Angelika; Rohn, Sascha

    2016-05-01

    Protein analysis using high-performance thin-layer chromatography (HPTLC) is not commonly used but can complement traditional electrophoretic and mass spectrometric approaches in a unique way. Due to various detection protocols and possibilities for hyphenation, HPTLC protein analysis is a promising alternative for e.g., investigating posttranslational modifications. This study exemplarily focused on the investigation of lysozyme, an enzyme which is occurring in eggs and technologically added to foods and beverages such as wine. The detection of lysozyme is mandatory, as it might trigger allergenic reactions in sensitive individuals. To underline the advantages of HPTLC in protein analysis, the development of innovative, highly specific staining protocols leads to improved sensitivity for protein detection on HPTLC plates in comparison to universal protein derivatization reagents. This study aimed at developing a detection methodology for HPTLC separated proteins using aptamers. Due to their affinity and specificity towards a wide range of targets, an aptamer based staining procedure on HPTLC (HPTLC-aptastaining) will enable manifold analytical possibilities. Besides the proof of its applicability for the very first time, (i) aptamer-based staining of proteins is applicable on different stationary phase materials and (ii) furthermore, it can be used as an approach for a semi-quantitative estimation of protein concentrations.

  20. Comparison of different thin layer detection techniques to determine the radiochemical purity of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Hammermaier, A.; Reich, E.; Boegl, W.

    1985-01-01

    Ten radiopharmaceuticals frequently used in clinical treatment were examined as to their radiochemical purity by paper and thin layer chromatography or electrophoresis, respectively. It is known that radiochemical impurities may result in an unnecessary exposure of the patients to be examined. Other than determining the radiochemical purity of several radiopharmaceuticals, a comparison of the different measuring methods of distributing activity on radiochromatograms or electropherograms is intended by this study. For this, the activity distribution in the developed radiochromatograms was assessed by four different measuring methods (TLC-linear analyzer, TLC-scanner with NaI(Tl) detector, TLC-scanner with gas flow counter and NaI(Tl) well-typ counter). As shown by the above analysis, only the TLC-linear analyzer and the NaI(Tl) well-typ counter (measurement of chromatograms or electropherograms cut into strips) are generally suitable methods for determining the radiochemical purity of radiochemicals, the TLC-scanner with gas flow counter is usable in most cases, while TLC-scanner with NaI(Tl) detector is yielding unsatisfactory results. (orig.) [de

  1. Thin-layer chromatographic (TLC) separations and bioassays of plant extracts to identify antimicrobial compounds.

    Science.gov (United States)

    Kagan, Isabelle A; Flythe, Michael D

    2014-03-27

    A common screen for plant antimicrobial compounds consists of separating plant extracts by paper or thin-layer chromatography (PC or TLC), exposing the chromatograms to microbial suspensions (e.g. fungi or bacteria in broth or agar), allowing time for the microbes to grow in a humid environment, and visualizing zones with no microbial growth. The effectiveness of this screening method, known as bioautography, depends on both the quality of the chromatographic separation and the care taken with microbial culture conditions. This paper describes standard protocols for TLC and contact bioautography with a novel application to amino acid-fermenting bacteria. The extract is separated on flexible (aluminum-backed) silica TLC plates, and bands are visualized under ultraviolet (UV) light. Zones are cut out and incubated face down onto agar inoculated with the test microorganism. Inhibitory bands are visualized by staining the agar plates with tetrazolium red. The method is applied to the separation of red clover (Trifolium pratense cv. Kenland) phenolic compounds and their screening for activity against Clostridium sticklandii, a hyper ammonia-producing bacterium (HAB) that is native to the bovine rumen. The TLC methods apply to many types of plant extracts and other bacterial species (aerobic or anaerobic), as well as fungi, can be used as test organisms if culture conditions are modified to fit the growth requirements of the species.

  2. Removal of long-lived {sup 222}Rn daughters by electropolishing thin layers of stainless steel

    Energy Technology Data Exchange (ETDEWEB)

    Schnee, R. W.; Bowles, M. A.; Bunker, R.; McCabe, K.; White, J. [Department of Physics, Syracuse University, Syracuse, NY 13244 (United States); Cushman, P.; Pepin, M. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Guiseppe, V. E. [University of South Dakota, Vermillion, South Dakota 57069 (United States)

    2013-08-08

    Long-lived alpha and beta emitters in the {sup 222}Rn decay chain on detector surfaces may be the limiting background in many experiments attempting to detect dark matter or neutrinoless double beta decay. Removal of tens of microns of material via electropolishing has been shown to be effective at removing radon daughters implanted into material surfaces. Some applications, however, require the removal of uniform and significantly smaller thicknesses. Here, we demonstrate that electropolishing < 1 μm from stainless-steel plates reduces the contamination efficiently, by a factor > 100. Examination of electropolished wires with a scanning electron microscope confirms that the thickness removed is reproducible and reasonably uniform. Together, these tests demonstrate the effectiveness of removal of radon daughters for a proposed low-radiation, multi-wire proportional chamber (the BetaCage), without compromising the screener’s energy resolution. More generally, electropolishing thin layers of stainless steel may effectively remove radon daughters without compromising precision-machined parts.

  3. Thin-layer chromatography of polyphosphoinositides from platelet extracts: interference by an unknown phospholipid

    International Nuclear Information System (INIS)

    Tysnes, O.B.; Aarbakke, G.M.; Verhoeven, A.J.; Holmsen, H.

    1985-01-01

    Different ratios of radioactive polyphosphoinositides in platelets pulse-labelled with 32p-orthophosphate have been reported by various laboratories. We studied whether these differences originate from differences in methodology. Extracts of 32p-Pi labelled human platelets were prepared at various times after gel-filtration and phosphatidylinositol (PI)-, mono (PIP)- and bisphosphate (PIP2) were separated by thin-layer chromatography using four different solvent systems. The 32p-levels in PIP and PIP2 remained constant during one hour after gel-filtration, whereas 32p-PI increased continuously and more than doubled within the first h. In two of the systems PIP co-chromatographed with a radioactive compound which separated well from PIP in the two other systems. This unknown compound was also labelled with 3H-glycerol, 3H-inositol and 3H-arachidonic acid, but it was metabolically and functionally different from the polyphosphoinositides. Both the co-chromatography of this unknown phospholipid and the increase in 32p-PI in gel-filtered platelets can explain the difference in 32p-labelling in phosphoinositides reported in the literature

  4. Sodium chloride crystallization from thin liquid sheets, thick layers, and sessile drops in microgravity

    Science.gov (United States)

    Fontana, Pietro; Pettit, Donald; Cristoforetti, Samantha

    2015-10-01

    Crystallization from aqueous sodium chloride solutions as thin liquid sheets, 0.2-0.7 mm thick, with two free surfaces supported by a wire frame, thick liquid layers, 4-6 mm thick, with two free surfaces supported by metal frame, and hemispherical sessile drops, 20-32 mm diameter, supported by a flat polycarbonate surface or an initially flat gelatin film, were carried out under microgravity on the International Space Station (ISS). Different crystal morphologies resulted based on the fluid geometry: tabular hoppers, hopper cubes, circular [111]-oriented crystals, and dendrites. The addition of polyethylene glycol (PEG-3350) inhibited the hopper growth resulting in flat-faced surfaces. In sessile drops, 1-4 mm tabular hopper crystals formed on the free surface and moved to the fixed contact line at the support (polycarbonate or gelatin) self-assembling into a shell. Ring formation created by sessile drop evaporation to dryness was observed but with crystals 100 times larger than particles in terrestrially formed coffee rings. No hopper pyramids formed. By choosing solution geometries offered by microgravity, we found it was possible to selectively grow crystals of preferred morphologies.

  5. Analysis of biodiesel conversion using thin layer chromatography and nonlinear calibration curves.

    Science.gov (United States)

    Fedosov, Sergey N; Brask, Jesper; Xu, Xuebing

    2011-05-13

    Biodiesel (BD) is a fuel produced by the (trans)esterification reaction between the components of vegetable oil (or animal fat) and an alcohol. The presence of several substrates complicates analytical separation of the mixture, yet understanding of the complex reaction kinetics requires acquisition of a large body of data. The two well-established methods of gas chromatography (GC) and HPLC are time consuming and expensive when analyzing multiple samples. Additionally, it is not always possible to record all the reactants on one elution profile. We examined applicability of thin layer chromatography (TLC) for this purpose, where the detection was based on either flame ionization detector (FID) or a modified staining procedure. The suggested staining method gave no background and appeared well suited for quantitative analysis. The relevant calibrations are presented, and the general principles of analysis of nonlinear responses are discussed. Several experimental samples were produced by enzymatic conversion of rapeseed oil to BD. One reaction step resulted in 85-95% conversion (6h). The second step (after removal of glycerol and water) increased the yield to 97-98%. All components of the mixtures were separated and quantified. Relation of the BD contents measured by TLC and GC gave the values of 1.03±0.07 (TLC-staining) and 0.95±0.04 (TLC-FID), indicating applicability of the TLC-methods. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Deposition of durable thin silver layers onto polyamides employing a heterogeneous Tollens’ reaction

    Science.gov (United States)

    Textor, Torsten; Fouda, Moustafa M. G.; Mahltig, Boris

    2010-02-01

    Tollens' reaction is a well-known reaction employed in chemical analyses to detect reducing groups—basically aldehydes. If aldehydes are available in a solution these will reduce silver(I) ions to silver(0). The present paper describes an approach to use a heterogeneous Tollens' reaction to establish thin layers of silver on polyamide surfaces. The polyamide surface is modified with aldehyde functions in a first step employing glutaraldehyde. The resulting polymer material is therefore equipped with reducing groups necessary for the reduction of silver in a next step. The polymer is subsequently treated with Tollens' reagent yielding a yellow/brownish colour typical for the surface plasmon resonance of silver. The extend of the colouring - indicating the amount of silver deposited - varies with both the concentration of the Tollens' reagent and the concentration of the glutaraldehyde solution used for the pre-treatment. The as-prepared samples not only show an excellent antimicrobial activity but also an enormous durability. Polyamide textiles that were treated with the described approach showed unchanged efficiency even after 30 laundry cycles.

  7. Controlling the Performance of P-type Cu2O/SnO Bilayer Thin-Film Transistors by Adjusting the Thickness of the Copper Oxide Layer

    KAUST Repository

    Al-Jawhari, Hala A.

    2014-11-11

    The effect of copper oxide layer thickness on the performance of Cu2O/SnO bilayer thin-film transistors was investigated. By using sputtered Cu2O films produced at an oxygen partial pressure, Opp, of 10% as the upper layer and 3% Opp SnO films as the lower layer we built a matrix of bottom-gate Cu2O/SnO bilayer thin-film transistors of different thickness. We found that the thickness of the Cu2O layer is of major importance in oxidation of the SnO layer underneath. The thicker the Cu2O layer, the more the underlying SnO layer is oxidized, and, hence, the more transistor mobility is enhanced at a specific temperature. Both device performance and the annealing temperature required could be adjusted by controlling the thickness of each layer of Cu2O/SnO bilayer thin-film transistors.

  8. Final Progress Report: FRACTURE AND SUBCRITICAL DEBONDING IN THIN LAYERED STRUCTURES: EXPERIMENTS AND MULTI-SCALE MODELING

    Energy Technology Data Exchange (ETDEWEB)

    Reinhold H. Dauskardt

    2005-08-30

    Final technical report detailing unique experimental and multi-scale computational modeling capabilities developed to study fracture and subcritical cracking in thin-film structures. Our program to date at Stanford has studied the mechanisms of fracture and fatigue crack-growth in structural ceramics at high temperature, bulk and thin-film glasses in selected moist environments where we demonstrated the presence of a true mechanical fatigue effect in some glass compositions. We also reported on the effects of complex environments and fatigue loading on subcritical cracking that effects the reliability of MEMS and other micro-devices using novel micro-machined silicon specimens and nanomaterial layers.

  9. DEVELOPMENT OF MATHEMATICAL MODEL OF DRYING AMARANTH SEEDS IN THE MACHINE WITH A BALANCED TWISTED – LAYER

    Directory of Open Access Journals (Sweden)

    A. V. Zhuravlev

    2015-01-01

    Full Text Available One way to create a new drying technology is the development and adoption by the industry of high-intensity machines with active hydrodynamic regimes, providing in many cases, higher technical and economic indicators. This principle is very successfully implemented in devices with swirling flow and particulate material. Therefore, the use of devices with twisted coolant flow to intensify the process of drying particulate materials is both theoretical interest and practical value. Amaranth seeds contain an average of 17 % protein, 8 % of oil and 4-5% fiber. Because of the significant amino acid content of lysine in the protein which amaranth twice larger than that of wheat, and three times more than corn and sorghum, and compares the number with cow's milk and soy , amaranth protein quality is considered very high . Amaranth seeds are the raw material for the production of oil containing up to 8 % of squalene. On the basis of theoretical analysis of heat and mass transfer process of drying amaranth seeds in the machine with a balanced twisted layer authors developed a mathematical model of it . The structure of the flow of the drying process in the cross sections of the machine. The model is based on the fundamental equations AV Lykov , describes a heat moisture transfer in capillaryporous environments in the linear thermodynamic approximation , given the way the convective heat supply and small size of dried amaranth seeds . The resulting equations describe the dynamic change of temperature fields and the moisture content in a conjugated heat and mass transfer at the boundary of the solid phase coolant. Found macrokinetic regularities of the process. The results of the work will be useful to a wide range of professionals involved in drying amaranth seeds, as well as for the calculation and design of modern dryers.

  10. Complex boron redistribution kinetics in strongly doped polycrystalline-silicon/nitrogen-doped-silicon thin bi-layers

    Energy Technology Data Exchange (ETDEWEB)

    Abadli, S. [Department of Electrical Engineering, University Aout 1955, Skikda, 21000 (Algeria); LEMEAMED, Department of Electronics, University Mentouri, Constantine, 25000 (Algeria); Mansour, F. [LEMEAMED, Department of Electronics, University Mentouri, Constantine, 25000 (Algeria); Pereira, E. Bedel [CNRS-LAAS, 7 avenue du colonel Roche, 31077 Toulouse (France)

    2012-10-15

    We have investigated the complex behaviour of boron (B) redistribution process via silicon thin bi-layers interface. It concerns the instantaneous kinetics of B transfer, trapping, clustering and segregation during the thermal B activation annealing. The used silicon bi-layers have been obtained by low pressure chemical vapor deposition (LPCVD) method at 480 C, by using in-situ nitrogen-doped-silicon (NiDoS) layer and strongly B doped polycrystalline-silicon (P{sup +}) layer. To avoid long-range B redistributions, thermal annealing was carried out at relatively low-temperatures (600 C and 700 C) for various times ranging between 30 min and 2 h. To investigate the experimental secondary ion mass spectroscopy (SIMS) doping profiles, a redistribution model well adapted to the particular structure of two thin layers and to the effects of strong-concentrations has been established. The good adjustment of the simulated profiles with the experimental SIMS profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the complex B redistribution profiles-shoulders. The increasing kinetics of the B peak concentration near the bi-layers interface is well reproduced by the established model. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Adjustable threshold-voltage in all-inkjet-printed organic thin film transistor using double-layer dielectric structures

    International Nuclear Information System (INIS)

    Wu, Wen-Jong; Lee, Chang-Hung; Hsu, Chun-Hao; Yang, Shih-Hsien; Lin, Chih-Ting

    2013-01-01

    An all-inkjet-printed organic thin film transistor (OTFT) with a double-layer dielectric structure is proposed and implemented in this study. By using the double-layer structure with different dielectric materials (i.e., polyvinylphenol with poly(vinylidene fluoride-co-hexafluoropropylene)), the threshold-voltage of OTFT can be adjusted. The threshold-voltage shift can be controlled by changing the composition of dielectric layers. That is, an enhancement-mode OTFT can be converted to a depletion-mode OTFT by selectively printing additional dielectric layers to form a high-k/low-k double-layer structure. The printed OTFT has a carrier mobility of 5.0 × 10 −3 cm 2 /V-s. The threshold-voltages of the OTFTs ranged between − 13 V and 10 V. This study demonstrates an additional design parameter for organic electronics manufactured using inkjet printing technology. - Highlights: • A double-layer dielectric organic thin film transistor, OTFT, is implemented. • The threshold voltage of OTFT can be configured by the double dielectric structure. • The composition of the dielectric determines the threshold voltage shift. • The characteristics of OTFTs can be adjusted by double dielectric structures

  12. Method for Aluminum Oxide Thin Films Prepared through Low Temperature Atomic Layer Deposition for Encapsulating Organic Electroluminescent Devices

    Directory of Open Access Journals (Sweden)

    Hui-Ying Li

    2015-02-01

    Full Text Available Preparation of dense alumina (Al2O3 thin film through atomic layer deposition (ALD provides a pathway to achieve the encapsulation of organic light emitting devices (OLED. Unlike traditional ALD which is usually executed at higher reaction n temperatures that may affect the performance of OLED, this application discusses the development on preparation of ALD thin film at a low temperature. One concern of ALD is the suppressing effect of ambient temperature on uniformity of thin film. To mitigate this issue, the pumping time in each reaction cycle was increased during the preparation process, which removed reaction byproducts and inhibited the formation of vacancies. As a result, the obtained thin film had both high uniformity and density properties, which provided an excellent encapsulation performance. The results from microstructure morphology analysis, water vapor transmission rate, and lifetime test showed that the difference in uniformity between thin films prepared at low temperatures, with increased pumping time, and high temperatures was small and there was no obvious influence of increased pumping time on light emitting performance. Meanwhile, the permeability for water vapor of the thin film prepared at a low temperature was found to reach as low as 1.5 × 10−4 g/(m2·day under ambient conditions of 25 °C and 60% relative humidity, indicating a potential extension in the lifetime for the OLED.

  13. Method for making photovoltaic devices using oxygenated semiconductor thin film layers

    Science.gov (United States)

    Johnson, James Neil; Albin, David Scott; Feldman-Peabody, Scott; Pavol, Mark Jeffrey; Gossman, Robert Dwayne

    2014-12-16

    A method for making a photovoltaic device is presented. The method includes steps of disposing a window layer on a substrate and disposing an absorber layer on the window layer. Disposing the window layer, the absorber layer, or both layers includes introducing a source material into a deposition zone, wherein the source material comprises oxygen and a constituent of the window layer, of the absorber layer or of both layers. The method further includes step of depositing a film that comprises the constituent and oxygen.

  14. The Radiative Effect of Thin Boundary Layer Clouds in the Arctic

    Science.gov (United States)

    Schmidt, Sebastian; Coddington, Odele

    2016-04-01

    Thin boundary layer clouds are important for the shortwave Arctic surface energy budget, and may have an influence on melt processes near the marginal ice zone - especially leading up to the sea ice minimum in September. Unfortunately, the only viable approach to date for estimating low-cloud radiative effects in the Arctic is active remote sensing because passive imagery retrievals have small skill detecting and characterizing low-level clouds. Infrared retrievals lack the necessary temperature contrast between the clouds and the underlying surface, and are often hampered by low-level inversions. Similarly, shortwave retrievals of clouds above bright surfaces lack dynamic range in reflectance to provide meaningful retrievals, and incomplete knowledge about the surface properties translates into unacceptably high uncertainties. The shortcoming of passive imagery in the Arctic constitutes a considerable obstacle for attaining spatial coverage of cloud radiative effects in the high Arctic. A possible way around this problem is to use reflectance observations in the shortwave infrared wavelength range, where snow reflects less than in the visible, thus increasing the useable dynamic range for cloud property retrievals. For example, the state-of-the-art retrieval employed by MODIS (Moderate Resolution Imaging Spectroradiometer) operates with two channels in this "sweet spot" of the shortwave wavelength range. However, information content analysis, presented in this contribution, shows that two channels in the shortwave infrared are actually insufficient to attain reliable retrievals of cloud optical thickness, thermodynamic phase, and effective radius (the key parameters for cloud radiative effects) for thin low-level clouds above snow. We will discuss how many channels in this wavelength range are optimal to provide reliable cloud retrievals, given the variability of the underlying surface albedo. Our analysis is supported by field data from two NASA experiments

  15. Nano-crystalline thin and nano-particulate thick TiO2 layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    International Nuclear Information System (INIS)

    Das, P.; Sengupta, D.; Kasinadhuni, U.; Mondal, B.; Mukherjee, K.

    2015-01-01

    Highlights: • Thin TiO 2 layer is deposited on conducting substrate using sol–gel based dip coating. • TiO 2 nano-particles are synthesized using hydrothermal route. • Thick TiO 2 particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO 2 passivation layer is introduced between the mesoporous TiO 2 nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effect of passivation layer, other two DSSCs are also developed separately using TiO 2 nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO 2 compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO 2 layer in between the mesoporous TiO 2 nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons

  16. Nano-crystalline thin and nano-particulate thick TiO{sub 2} layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Das, P.; Sengupta, D. [Centre for Advanced Materials Processing, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 West Bengal (India); CSIR-Central Mechanical Engineering Research Institute, Academy of Scientific and Innovative Research (AcSIR), Durgapur, 713209 West Bengal (India); Kasinadhuni, U. [Department of Engineering Physics, Bengal College of Engineering and Technology, Durgapur, West Bengal (India); Mondal, B. [Centre for Advanced Materials Processing, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 West Bengal (India); Mukherjee, K., E-mail: kalisadhanm@yahoo.com [Centre for Advanced Materials Processing, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 West Bengal (India)

    2015-06-15

    Highlights: • Thin TiO{sub 2} layer is deposited on conducting substrate using sol–gel based dip coating. • TiO{sub 2} nano-particles are synthesized using hydrothermal route. • Thick TiO{sub 2} particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO{sub 2} passivation layer is introduced between the mesoporous TiO{sub 2} nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effect of passivation layer, other two DSSCs are also developed separately using TiO{sub 2} nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO{sub 2} compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO{sub 2} layer in between the mesoporous TiO{sub 2} nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons.

  17. Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices

    Energy Technology Data Exchange (ETDEWEB)

    Hoye, Robert L. Z., E-mail: rlzh2@cam.ac.uk, E-mail: jld35@cam.ac.uk; MacManus-Driscoll, Judith L., E-mail: rlzh2@cam.ac.uk, E-mail: jld35@cam.ac.uk [Department of Materials Science and Metallurgy, University of Cambridge, 27 Charles Babbage Road, Cambridge CB3 0FS (United Kingdom); Muñoz-Rojas, David [LMGP, University Grenoble-Alpes, CNRS, F-3800 Grenoble (France); Nelson, Shelby F. [Kodak Research Laboratories, Eastman Kodak Company, Rochester, New York 14650 (United States); Illiberi, Andrea; Poodt, Paul [Holst Centre/TNO Thin Film Technology, Eindhoven, 5656 AE (Netherlands); Roozeboom, Fred [Holst Centre/TNO Thin Film Technology, Eindhoven, 5656 AE (Netherlands); Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, Eindhoven, 5600 MB (Netherlands)

    2015-04-01

    Atmospheric pressure spatial atomic layer deposition (AP-SALD) has recently emerged as an appealing technique for rapidly producing high quality oxides. Here, we focus on the use of AP-SALD to deposit functional ZnO thin films, particularly on the reactors used, the film properties, and the dopants that have been studied. We highlight how these films are advantageous for the performance of solar cells, organometal halide perovskite light emitting diodes, and thin-film transistors. Future AP-SALD technology will enable the commercial processing of thin films over large areas on a sheet-to-sheet and roll-to-roll basis, with new reactor designs emerging for flexible plastic and paper electronics.

  18. Research Update: Atmospheric pressure spatial atomic layer deposition of ZnO thin films: Reactors, doping, and devices

    Directory of Open Access Journals (Sweden)

    Robert L. Z. Hoye

    2015-04-01

    Full Text Available Atmospheric pressure spatial atomic layer deposition (AP-SALD has recently emerged as an appealing technique for rapidly producing high quality oxides. Here, we focus on the use of AP-SALD to deposit functional ZnO thin films, particularly on the reactors used, the film properties, and the dopants that have been studied. We highlight how these films are advantageous for the performance of solar cells, organometal halide perovskite light emitting diodes, and thin-film transistors. Future AP-SALD technology will enable the commercial processing of thin films over large areas on a sheet-to-sheet and roll-to-roll basis, with new reactor designs emerging for flexible plastic and paper electronics.

  19. Thickness-dependent electron mobility of single and few-layer MoS2 thin-film transistors

    Directory of Open Access Journals (Sweden)

    Ji Heon Kim

    2016-06-01

    Full Text Available We investigated the dependence of electron mobility on the thickness of MoS2 nanosheets by fabricating bottom-gate single and few-layer MoS2 thin-film transistors with SiO2 gate dielectrics and Au electrodes. All the fabricated MoS2 transistors showed on/off-current ratio of ∼107 and saturated output characteristics without high-k capping layers. As the MoS2 thickness increased from 1 to 6 layers, the field-effect mobility of the fabricated MoS2 transistors increased from ∼10 to ∼18 cm2V−1s−1. The increased subthreshold swing of the fabricated transistors with MoS2 thickness suggests that the increase of MoS2 mobility with thickness may be related to the dependence of the contact resistance and the dielectric constant of MoS2 layer on its thickness.

  20. Silk cocoon drying in forced convection type solar dryer

    International Nuclear Information System (INIS)

    Singh, Panna Lal

    2011-01-01

    The thin layer silk cocoon drying was studied in a forced convection type solar dryer. The drying chamber was provided with several trays on which the cocoons loaded in thin layer. The hot air generated in the solar air heater was forced into drying chamber to avoid the direct exposure of sunlight and UV radiation on cocoons. The drying air temperature varied from 50 to 75 o C. The cocoon was dried from the initial moisture content of about 60-12% (wb). The drying data was fitted to thin layer drying models. Drying behaviour of the silk cocoon was best fitted with the Wang and Singh drying model. Good agreement was obtained between predicted and experimental values. Quality of the cocoons dried in the solar dryer was at par with the cocoons dried in the conventional electrical oven dryer in term of the silk yield and strength of the silk. Saving of electrical energy was about 0.75 kWh/kg cocoons dried. Economic analysis indicated that the NPV of the solar dryer was higher and more stable (against escalation rate of electricity) as compare to the same for electrical oven dryer. Due to simplicity in design and construction and significant saving of operational electrical energy, solar cocoon dryer seems to be a viable option.

  1. Processing of CdTe thin films by the stacked elemental layer method. Compound formation and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, L.R. [Departamento de Engenharia, Macanica e de Materiais, Instituto Militar de Engenharia, Praca General Tiburcio, 80, Urca, 22290-270 RJ Rio de Janeiro (Brazil); Matson, R. [National Renewable Energy Laboratory, 1617 Cole Boulevard, 80401 Golden, CO (United States); De Avillez, R.R. [Pontificia Universidade Catolica, Rua Marques de Sao Vicente, 225, Gavea, 22543-900 RJ Rio de Janeiro (Brazil)

    2001-01-01

    Cadmium telluride (CdTe) thin films have been deposited using the stacked elemental layer (SEL) technique. This process consists of sequentially depositing tellurium and cadmium layers and then annealing the stacks in order to synthesize the compound. The films were characterized using X-ray diffraction (XRD), optical transmittance and reflectance, scanning electron microscopy (SEM) and atomic force microscopy (AFM). The evolution of the thin film reaction and compound formation were studied using X-ray data. The results show that the growth is diffusion-controlled and the activation energy is (82{+-}2) kJ/mol. The effect of the conventional post-synthesis CdCl{sub 2} heat treatment on the physical properties of the films produced is also reported.

  2. Multi-Layer Polymer Light-Emitting Diodes Prepared by Vapor Deposition Polymerization of Polyazomethine Thin Film

    Science.gov (United States)

    Itabashi, Atsushi; Fukushima, Masao; Murata, Hideyuki

    2008-02-01

    A novel poly(azomethine) (PAM) thin film deposited by vapor deposition polymerization (VDP) process was used in the emissive layer of polymer light-emitting diodes (PLEDs). 1,4-Bis(4-formylstyryl)benzene (BFSB) and 4,4''-diamino-(1,1',4',1'')-terphenyl (DAT) were co-deposited to form PAM thin films at various substrate temperatures. Fluorescent quantum yield of novel PAM synthesized by using BFSB monomer increased one order of magnitude compared with the previous report. PLEDs with the device structure of indium-tin oxide (ITO)/poly(3,4-ethylene dioxythiophene) doped with poly(styrene sulfonic acid) (PEDOT:PSS) (100 nm)/PAM (140 nm)/LiF (0.5 nm)/Al (80 nm) exhibited of electroluminescence from the PAM layer for the first time. The characteristics of PLEDs suggest the electron mobility of PAM is higher than hole mobility.

  3. Thin film complementary metal oxide semiconductor (CMOS) device using a single-step deposition of the channel layer

    KAUST Repository

    Nayak, Pradipta K.

    2014-04-14

    We report, for the first time, the use of a single step deposition of semiconductor channel layer to simultaneously achieve both n-and p-type transport in transparent oxide thin film transistors (TFTs). This effect is achieved by controlling the concentration of hydroxyl groups (OH-groups) in the underlying gate dielectrics. The semiconducting tin oxide layer was deposited at room temperature, and the maximum device fabrication temperature was 350C. Both n and p-type TFTs showed fairly comparable performance. A functional CMOS inverter was fabricated using this novel scheme, indicating the potential use of our approach for various practical applications.

  4. Stretchable Characteristics of Thin Au Film on Polydimethylsiloxane Substrate with Parylene Intermediate Layer for Stretchable Electronic Packaging

    Science.gov (United States)

    Park, Donghyun; Shin, Soo Jin; Oh, Tae Sung

    2018-01-01

    Thin Au films with thickness of 150 nm could be reversibly stretched up to 30% elongation on polydimethylsiloxane (PDMS) substrate with 150-nm-thick Parylene C deposited as intermediate layer instead of a Cr adhesion layer. Prestretching of the Parylene-deposited PDMS was effective to suppress the resistance increase of Au films during their tensile elongation. While the resistance change rate Δ R/ R 0 of the Au film at 30% elongation was 11 without prestretching of the Parylene-deposited PDMS, it was substantially suppressed to 0.4 with 30% prestretching of the Parylene-deposited PDMS.

  5. Application of Thin ZnO ALD Layers in Fiber-Optic Fabry-Pérot Sensing Interferometers

    Directory of Open Access Journals (Sweden)

    Daria Majchrowicz

    2016-03-01

    Full Text Available In this paper we investigated the response of a fiber-optic Fabry-Pérot sensing interferometer with thin ZnO layers deposited on the end faces of the optical fibers forming the cavity. Standard telecommunication single-mode optical fiber (SMF-28 segments were used with the thin ZnO layers deposited by Atomic Layer Deposition (ALD. Measurements were performed with the interferometer illuminated by two broadband sources operating at 1300 nm and 1550 nm. Reflected interference signal was acquired by an optical spectrum analyzer while the length of the air cavity was varied. Thickness of the ZnO layers used in the experiments was 50 nm, 100 nm, and 200 nm. Uncoated SMF-28 fiber was also used as a reference. Based on the results of measurements, the thickness of the ZnO layers and the length of the cavity were selected in order to achieve good visibility. Following, the interferometer was used to determine the refractive index of selected liquids.

  6. Application of the thin electrolyte layer technique to corrosion testing of dental materials

    Science.gov (United States)

    Ledvina, Martin

    Proper simulation of the oral environment for the corrosion testing of dental materials is crucial for determining corrosion rates and mechanisms correctly. In this study, the thin electrolyte layer technique (TET) was characterized and employed to investigate the importance of the chemical composition of the testing environment on the outcome of electrochemical tests. The thickness of the electrolyte layer in TET is only 0.5 mm and contains only 20 muL of electrolyte. This arrangement simulates the physical characteristics of the oral environment and facilitates testing in human saliva. Oxygen availability for reduction on the sample surface was determined, using cathodic polarization of Pt in borate buffer, to be lower in TET than in traditional (bulk electrolyte) techniques. Appreciable differences were found during polarization experiments on 316 L SS in saline and artificial saliva. Oxygen content was found to play a significant role in the corrosivity of various species contained in artificial saliva. Potentiodynamic polarization employing human saliva in TET on 316L SS proved to be very different from tests performed in artificial saliva. This was believed to be due to the presence of organic species, specifically proteins, contained in human saliva. This was further confirmed by cyclic polarization and corrosion current measurements of four commercial nickel-chromium (NiCr) alloys with varying amounts of Be. For this phase of the experiment, artificial saliva (AS), AS with 1% albumin, AS with 1% of mucin and parotid human saliva were employed as electrolytes. The results obtained in the various electrolytes depended on the composition, microstructure, stability of passive film, and the presence of casting porosity of the alloys tested. Proteins had insignificant effect on alloys with highly stable passive films, whereas, corrosion rates increased substantially in those alloys with compromised passive film formation. Proteins, especially mucin, lowered the

  7. Iridium-coated micropore x-ray optics using dry etching of a silicon wafer and atomic layer deposition.

    Science.gov (United States)

    Ogawa, Tomohiro; Ezoe, Yuichiro; Moriyama, Teppei; Mitsuishi, Ikuyuki; Kakiuchi, Takuya; Ohashi, Takaya; Mitsuda, Kazuhisa; Putkonen, Matti

    2013-08-20

    To enhance x-ray reflectivity of silicon micropore optics using dry etching of silicon (111) wafers, iridium coating is tested by use of atomic layer deposition. An iridium layer is successfully formed on sidewalls of tiny micropores with a pore width of 20 μm and depth of 300 μm. The film thickness is ∼20  nm. An enhanced x-ray reflectivity compared to that of silicon is confirmed at Ti Kα 4.51 keV, for what we believe to be the first time, with this type of optics. Some discrepancies from a theoretical reflectivity curve of iridium-coated silicon are noticed at small incident angles rms is consistent with atomic force microscope measurements of the sidewalls.

  8. Transport parameters of thin, supported cathode layers in solid oxide fuel cells (SOFCs); Transportparameter duenner, getraegerter Kathodenschichten der oxidkeramischen Brennstoffzelle

    Energy Technology Data Exchange (ETDEWEB)

    Wedershoven, Christian

    2010-12-22

    The aim of this work was to determine the transport properties of thin cathode layers, which are part of the composite layer of a fabricated anode-supported solid oxide fuel cell (SOFC). The transport properties of the anode and cathode have a significant influence on the electrochemical performance of a fuel cell stack and therefore represent an important parameter when designing fuel cell stacks. In order to determine the transport parameters of the cathode layers in a fabricated SOFC, it is necessary to permeate the thin cathode layer deposited on the gas-tight electrolyte with a defined gas transport. These thin cathode layers cannot be fabricated as mechanically stable single layers and cannot therefore be investigated in the diffusion and permeation experiments usually used to determine transport parameters. The setup of these experiments - particularly the sample holder - was therefore altered in this work. The result of this altered setup was a three-dimensional flow configuration. Compared to the conventional setup, it was no longer possible to describe the gas transport in the experiments with an analytical one-dimensional solution. A numerical solution process had to be used to evaluate the measurements. The new setup permitted a sufficiently symmetrical gas distribution and thus allowed the description of the transport to be reduced to a two-dimensional description, which significantly reduced the computational effort required to evaluate the measurements. For pressure-induced transport, a parametrized coherent expression of transport could be derived. This expression is equivalent to the analytical description of the transport in conventional measurement setups, with the exception of parameters that describe the geometry of the gas diffusion. In this case, a numerical process is not necessary for the evaluation. Using the transport parameters of mechanically stable anode substrates, which can be measured both in the old and the new setups, the old and

  9. Design of an ultra-thin absorption layer with magnetic materials based on genetic algorithm at the S band

    Science.gov (United States)

    Wang, Fang; Yang, Xiaoning; Liu, Xiaoning; Niu, Tiaoming; Wang, Jing; Mei, Zhonglei; Jian, Yabin

    2018-04-01

    In this work, we design an ultra-thin absorption coating at the S band, and the total thickness is less than 2 mm. For incident angle less than 30 degree and the whole S band, the reflection is less than -5 dB. The coating is constructed with 4/3 layers of magnetic material with different thicknesses, which are optimized by using genetic algorithm. Analytic and simulation results confirm the correctness of the design.

  10. The weight of flash chromatography: A tool to predict its mass intensity from thin-layer chromatography

    Directory of Open Access Journals (Sweden)

    Freddy Pessel

    2016-11-01

    Full Text Available Purification by flash chromatography strongly impacts the greenness of a process. Unfortunately, due to the lack of the relevant literature data, very often this impact cannot be assessed thus preventing the comparison of the environmental factors affecting the syntheses. We developed a simple mathematical approach to evaluate the minimum mass intensity of flash chromatography from the retention factor values determined by thin-layer chromatography.

  11. Paradoxical thinning of the retinal nerve fiber layer after reversal of cupping: A case report of primary infantile glaucoma

    Directory of Open Access Journals (Sweden)

    Ta Chen Chang

    2016-01-01

    Full Text Available The circumpapillary retinal nerve fiber layer (RNFL thickness was assessed by spectral domain optical coherent tomography (SD-OCT before and after surgical reduction of intraocular pressure in an eye with primary infantile glaucoma. In this case, a postoperative reduction of cupping and a subsequent increase in neuroretinal rim area is associated with a paradoxical thinning of the RNFL. This is the first-known characterization of cupping reversal using SD-OCT.

  12. Use of magnetoplumbite and spinel ferrite seed layers for the growth of oriented Y ferrite thin films

    Czech Academy of Sciences Publication Activity Database

    Uhrecký, Róbert; Buršík, Josef; Soroka, Miroslav; Kužel, R.; Prokleška, J.

    2017-01-01

    Roč. 622, JAN (2017), s. 104-110 ISSN 0040-6090 R&D Projects: GA ČR(CZ) GA14-18392S; GA MŠk(CZ) LM2015073 Institutional support: RVO:61388980 Keywords : Hexagonal ferrites * Seed layer * Thin films * Chemical solution deposition Subject RIV: CA - Inorganic Chemistry OBOR OECD: Inorganic and nuclear chemistry Impact factor: 1.879, year: 2016

  13. Multispectral surface plasmon resonance approach for ultra-thin silver layer characterization: Application to top-emitting OLED cathode

    Science.gov (United States)

    Taverne, S.; Caron, B.; Gétin, S.; Lartigue, O.; Lopez, C.; Meunier-Della-Gatta, S.; Gorge, V.; Reymermier, M.; Racine, B.; Maindron, T.; Quesnel, E.

    2018-01-01

    While dielectric/metal/dielectric (DMD) multilayer thin films have raised considerable interest as transparent and conductive electrodes in various optoelectronic devices, the knowledge of optical characteristics of thin metallic layers integrated in such structures is still rather approximate. The multispectral surface plasmon resonance characterization approach described in this work precisely aims at providing a rigorous methodology able to accurately determine the optical constants of ultra-thin metallic films. As a practical example, the refractive index and extinction dispersion curves of 8 to 25 nm-thick silver layers have been investigated. As a result, their extreme dependence on the layer thickness is highlighted, in particular in a thickness range close to the critical threshold value (˜10 nm) where the silver film becomes continuous and its electrical conductance/optical transmittance ratio particularly interesting. To check the validity of the revisited Ag layers constant dispersion curves deduced from this study, they were introduced into a commercial optical model software to simulate the behavior of various optoelectronic building blocks from the simplest ones (DMD electrodes) to much more complex structures [full organic light emitting device (OLED) stacks]. As a result, a much better prediction of the emission spectrum profile as well as the angular emission pattern of top-emitting OLEDs is obtained. On this basis, it is also shown how a redesign of the top encapsulation thin film of OLEDs is necessary to better take benefit from the advanced DMD electrode. These results should particularly interest the micro-OLED display field where bright and directive single color pixel emission is required.

  14. Extraction of nutraceuticals from Spirulina (blue-green alga): A bioorganic chemistry practice using thin-layer chromatography.

    Science.gov (United States)

    Herrera Bravo de Laguna, Irma; Toledo Marante, Francisco J; Luna-Freire, Kristerson R; Mioso, Roberto

    2015-01-01

    Spirulina is a blue-green alga (cyanobacteria) with high nutritive value. This work provides an innovative and original approach to the consideration of a bioorganic chemistry practice, using Spirulina for the separation of phytochemicals with nutraceutical characteristics via thin-layer chromatography (TLC) plates. The aim is to bring together current research, theory, and practice, and always in accordance with pedagogical ideas. © 2015 The International Union of Biochemistry and Molecular Biology.

  15. [Comparative thin-layer chromatographic studies for determining phorate and fenthion].

    Science.gov (United States)

    Ignatov, M

    1977-01-01

    Experiments were carried out to use thin-layer chromatography to determine pure substances of the organic phosphorous insecticides forat and phenothion. Three sorbents were employed to establish the most appropriate conditions for the application of a fast, readily applicably and highly sensitive method--silica gel G, DG and Kiselgur "Merk", as well as 14 mobile phases--monocompound (n-hexane, n-heptane, acetone benzol and toluol), double combinations (hexane-acetone 4:1, hexane-acetone 9:1, hexane-benzol 1:1, hexane-benzol 4:1, heptane-acetone 7:1, benzol-hexane 4:1, benzol-acetone 9:1, and petrolium ether-tetrachlormethane) and triple combinations (acetone-toluol-hexane 1:15 and 5 developers (a diazosalt, bromine vapours + diazosalt, palladium bichloride, bromphenol blue, and silver nitrate, sodium hydroxide, ammonia gas). Established was the fact that the best results are obtained with the use of silica gel G, the mobile phase heptan-acetone 7:1, and the developer of 0.2% solution of palladium bichloride in 0.5 per cent solution of hydrochloric acid. In chromatogrammes the forat compound appears as a tile red portion with a darker peripheral part and Rf = 0.61, and phenothion--in yellow, with a brownish halo and Rf = 0.41. The method is highly sensitive--for forat 0.5 microgram, and for phenothion 0.5 microgram. In determining these insecticides it is possible to use as a sorbent silica gel "Merk" 1:1 with the same degree of sensitivity, but with higher Rf values.

  16. High Performance Thin Layer Chromatography method for analysis of 3,4-methylenedioxymethamphetamine in seized tablets

    Directory of Open Access Journals (Sweden)

    Boris E. Duffau

    2015-12-01

    Full Text Available Context: Consumption of synthetic drugs had increased in recent years, used as a recreational drug by young people who presume that consumption of this drug is harmless for health; however clinical studies have shown that this stimulant and its metabolites are toxic. Due to these reasons, chemical analysis of this illicit drug is crucial from the points of view of occupational medicine, toxicology, and law enforcement with the aim of pursuit the traffic of illegal drug. Aims: Implement and fully validate a rapid and simple method for detection and quantitation of MDMA by High-Performance Thin Layer Chromatography in seized samples. Methods: With the implemented method was analyzed 12 positive samples seized by Chilean police, to found the concentration of MDMA in ecstasy tablets. Results: The method was fully validated, the linearity of the method was evaluated by the calibration curve between 51.0 – 510.0 µg/band (R2 0.9977; limit of detection was 12.1 µg per band, and limit of quantitation was 36.8 µg per band. The precision of the method (RSD was lower than 5.0%. Accuracy was evaluated by determination of the percentage of MDMA recovered by the assay (99.13%, and relative Uncertainty was 6.66%. With this method, it was analyzed real seized samples of MDMA, results showed that all samples contained MDMA and concentration was between 18.15 – 59.84 % w/w. Conclusions: The method is selective, sensitive, and specific, with possible application in forensic analysis. To the best of our knowledge, this is the first report about concentration of MDMA in ecstasy pills in Chile.

  17. Atomic-Layer-Deposition of Indium Oxide Nano-films for Thin-Film Transistors

    Science.gov (United States)

    Ma, Qian; Zheng, He-Mei; Shao, Yan; Zhu, Bao; Liu, Wen-Jun; Ding, Shi-Jin; Zhang, David Wei

    2018-01-01

    Atomic-layer-deposition (ALD) of In2O3 nano-films has been investigated using cyclopentadienyl indium (InCp) and hydrogen peroxide (H2O2) as precursors. The In2O3 films can be deposited preferentially at relatively low temperatures of 160-200 °C, exhibiting a stable growth rate of 1.4-1.5 Å/cycle. The surface roughness of the deposited film increases gradually with deposition temperature, which is attributed to the enhanced crystallization of the film at a higher deposition temperature. As the deposition temperature increases from 150 to 200 °C, the optical band gap (Eg) of the deposited film rises from 3.42 to 3.75 eV. In addition, with the increase of deposition temperature, the atomic ratio of In to O in the as-deposited film gradually shifts towards that in the stoichiometric In2O3, and the carbon content also reduces by degrees. For 200 °C deposition temperature, the deposited film exhibits an In:O ratio of 1:1.36 and no carbon incorporation. Further, high-performance In2O3 thin-film transistors with an Al2O3 gate dielectric were achieved by post-annealing in air at 300 °C for appropriate time, demonstrating a field-effect mobility of 7.8 cm2/Vṡs, a subthreshold swing of 0.32 V/dec, and an on/off current ratio of 107. This was ascribed to passivation of oxygen vacancies in the device channel.

  18. Nanosecond laser-induced nanostructuring of thin metal layers and dielectric surfaces

    Science.gov (United States)

    Lorenz, P.; Klöppel, M.; Ehrhardt, M.; Zimmer, K.; Schwaller, P.

    2015-03-01

    Nanostructuring of dielectric surfaces has a widespread field of applications. In this work the recently introduced laser method validates this novel concept for complex nanostructuring of dielectric surfaces. This concept combines the mechanism of self-assembly of metal films due to laser irradiation with the concept of laser-assisted transfer of these patterns into the underlying material. The present work focuses on pattern formation in fused silica near the border of the laser spot, where distorted nested ring-like patterns were found in contrast to concentric ring patterns at homogeneous laser irradiation. For the experiments a lateral homogeneous spot of a KrF excimer laser (λ = 248 nm) and a Gaussian beam Yb fiber laser (λ = 1064 nm) was used for irradiation of a thin chromium layer onto fused silica resulting in the formation of different ring structures into the fused silica surface. The obtained structures were analysed by AFM and SEM. It is found that the mechanism comprises laser-induced metal film melting, contraction of the molten metal, and successive transfer of the metal hole geometry to the fused silica. Simulations taking into account the heat and the Navier-Stokes equations were compared with the experimental results. A good agreement of simulation results with experimental data was found. These first results demonstrate that the variation of the laser beam profile allows the local control of the melt dynamics which causes changes of the shape and the size of the ring patterns. Hence, a light-controlled self-assembly is feasible.

  19. Immunological analysis of food proteins using high-performance thin-layer chromatography-immunostaining.

    Science.gov (United States)

    Morschheuser, Lena; Mink, Kathrin; Horst, Ramona; Kallinich, Constanze; Rohn, Sascha

    2017-12-01

    The chromatographic analysis of intact proteins is still challenging, especially when biological functions as antigenicity of proteins or peptides are in the focus. Traditional immunoassays provide information about the entirety of antigenic proteins/peptides, e.g., in ELISA assays. On the other hand, when focusing on the investigation of (cross) reactivity of antibodies, Western blot following gel-electrophoresis represents the method of choice. However, gel-electrophoresis is limited by the molecular weight and therefore, not suitable for peptides ≤3kDa or proteins ≥250kDa. Furthermore, for gaining detailed information about the protein sequence (e.g., via mass spectrometric analysis), a so called in-gel digest needs to be performed following electrophoretic separation and is therefore elaborate and accompanied by a significant loss of structural, and even more severe, conformational information. Here, protein analysis using HPTLC seems to be a promising alternative due to the high level of variability regarding the chromatographic system (multiple mobile and stationary phases, even mixed) and manifold detection as well as hyphenation possibilities. This study exemplarily focused on the immunological investigation of proteins in milk following thin-layer chromatographic separation. The detection of these antigens is mandatory, as they might trigger allergenic reactions in sensitized people. Besides the proof of its applicability on different stationary phase materials, the newly developed immunoassay can be used as an approach for semi-quantitative estimation of antigenic proteins. In addition to the analysis of intact food allergens, also analyzing peptides thereof is worth considering which can be realized using HPTLC-immunostaining as well. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Microporous Polyurethane Thin Layer as a Promising Scaffold for Tissue Engineering

    Directory of Open Access Journals (Sweden)

    Justyna Kucińska-Lipka

    2017-07-01

    Full Text Available The literature describes that the most efficient cell penetration takes place at 200–500 µm depth of the scaffold. Many different scaffold fabrication techniques were described to reach these guidelines. One such technique is solvent casting particulate leaching (SC/PL. The main advantage of this technique is its simplicity and cost efficiency, while its main disadvantage is the scaffold thickness, which is usually not less than 3000 µm. Thus, the scaffold thickness is usually far from the requirements for functional tissue reconstruction. In this paper, we report a successful fabrication of the microporous polyurethane thin layer (MPTL of 1 mm thick, which was produced using SC/PL technique combined with phase separation (PS. The obtained MPTL was highly porous (82%, had pore size in the range of 65–426 µm and scaffold average pore size was equal to 154 ± 3 µm. Thus, it can be considered a suitable scaffold for tissue engineering purpose, according to the morphology criterion. Polyurethane (PUR processing into MPTL scaffold caused significant decrease of contact angle from 78 ± 4° to 56 ± 6° and obtained MPTL had suitable hydrophilic characteristic for mammalian cells growth and tissue regeneration. Mechanical properties of MPTL were comparable to the properties of native tissues. As evidenced by biotechnological examination the MPTL were highly biocompatible with no observed apparent toxicity on mouse embryonic NIH 3T3 fibroblast cells. Performed studies indicated that obtained MPTL may be suitable scaffold candidate for soft TE purposes such as blood vessels.