WorldWideScience

Sample records for thin gas layer

  1. Physicochemical, thin layer and gas-liquid chromatographic ...

    African Journals Online (AJOL)

    DELL

    2012-05-22

    May 22, 2012 ... PEG (3 m × 3 mm I. D.) was used for gas chromatography. Physicochemical analysis ... subjected to thin layer chromatography on plates (20 × 20 cm) having 0.25 mm thick silica gel ..... Headspace solid- phase microextraction ...

  2. Correlation between active layer thickness and ambient gas stability in IGZO thin-film transistors

    International Nuclear Information System (INIS)

    Gao, Xu; Mao, Bao-Hua; Wang, Sui-Dong; Lin, Meng-Fang; Shimizu, Maki; Mitoma, Nobuhiko; Kizu, Takio; Ou-Yang, Wei; Tsukagoshi, Kazuhito; Nabatame, Toshihide; Liu, Zhi

    2017-01-01

    Decreasing the active layer thickness has been recently reported as an alternative way to achieve fully depleted oxide thin-film transistors for the realization of low-voltage operations. However, the correlation between the active layer thickness and device resistivity to environmental changes is still unclear, which is important for the optimized design of oxide thin-film transistors. In this work, the ambient gas stability of IGZO thin-film transistors is found to be strongly correlated to the IGZO thickness. The TFT with the thinnest IGZO layer shows the highest intrinsic electron mobility in a vacuum, which is greatly reduced after exposure to O 2 /air. The device with a thick IGZO layer shows similar electron mobility in O 2 /air, whereas the mobility variation measured in the vacuum is absent. The thickness dependent ambient gas stability is attributed to a high-mobility region in the IGZO surface vicinity with less sputtering-induced damage, which will become electron depleted in O 2 /air due to the electron transfer to adsorbed gas molecules. The O 2 adsorption and deduced IGZO surface band bending is demonstrated by the ambient-pressure x-ray photoemission spectroscopy results. (paper)

  3. Recent Advances in Gas Barrier Thin Films via Layer-by-Layer Assembly of Polymers and Platelets.

    Science.gov (United States)

    Priolo, Morgan A; Holder, Kevin M; Guin, Tyler; Grunlan, Jaime C

    2015-05-01

    Layer-by-layer (LbL) assembly has emerged as the leading non-vacuum technology for the fabrication of transparent, super gas barrier films. The super gas barrier performance of LbL deposited films has been demonstrated in numerous studies, with a variety of polyelectrolytes, to rival that of metal and metal oxide-based barrier films. This Feature Article is a mini-review of LbL-based multilayer thin films with a 'nanobrick wall' microstructure comprising polymeric mortar and nano-platelet bricks that impart high gas barrier to otherwise permeable polymer substrates. These transparent, water-based thin films exhibit oxygen transmission rates below 5 × 10(-3) cm(3) m(-2) day(-1) atm(-1) and lower permeability than any other barrier material reported. In an effort to put this technology in the proper context, incumbent technologies such as metallized plastics, metal oxides, and flake-filled polymers are briefly reviewed. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Thin layer joining by gas adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Taga, Yasunori, E-mail: y-taga@isc.chubu.ac.jp; Fukumura, Toshio

    2014-10-01

    Highlights: • We report thin layer molecular joining between glass and COP by gas adsorption. Thickness of joining layer is 1–2 nm and joining process was carried out at low temperature at about 100 °C. • Adhesion strength measured by 180 degree peel test revealed to be 1–10 N/25 mm and the joined stack showed high durability for practical use. - Abstract: Attempt has been made to join borosilicate glass and cycloolefin (COP) polymer film by using gas adsorption method. After corona plasma treat, COP was exposed to (3-glycidoxypropyl) trimethoxysilane (GPS) and glass to (3-aminopropyl) triethoxysilane (APS) both in air atmosphere, resulting in co-adsorption of water vapor in the atmosphere and organosilane gases. Surface characterization of plasma treated and gas adsorbed surfaces was carried out by X-ray photoelectron spectroscopy (XPS) using Mg Kα X-ray source. Joining was carried out by a roll laminator after contact of both surfaces at room temperature, followed by annealing at 130 °C for 10 min. Adhesion strength was evaluated by 180 degree peel test based on ASTM D-903 and durability was examined under the conditions of 60 °C and 95% RH. It was found that after plasma treatment, complex functional groups such as C-H, C-O, C=O, O-C=O and CO{sub 3} were found on COP and O-H on glass. Thickness of GPS gas adsorption layer on COP was evaluated by the XPS to be at least 1.1 nm by taking inelastic mean free path of Si{sub 2p} photoelectron into consideration. Joining force was found to be more than 5 N/25 mm corresponding to almost equal to COP bulk tensile strength. In addition, durability of this adhesion strength remained unchanged over 2000 h even after exposure to the durability test conditions of 60 °C and 95% RH. The results can be explained in terms of formation of H-H hydrogen bonding and Si-O covalent bonding via silanols will be made at the interface as a result of lamination and annealing processes. In conclusion, ultrathin joining method

  5. Thinning of Inner Retinal Layers after Vitrectomy with Silicone Oil versus Gas Endotamponade in Eyes with Macula-Off Retinal Detachment.

    Science.gov (United States)

    Purtskhvanidze, Konstantine; Hillenkamp, Jost; Tode, Jan; Junge, Olaf; Hedderich, Jürgen; Roider, Johann; Treumer, Felix

    2017-01-01

    To evaluate retinal layer thickness with optical coherence tomography (OCT) in eyes with macula-off retinal detachment after silicone oil (SiO) or gas endotamponade. Cross-sectional study of 40 eyes with macula-off rhegmatogenous retinal detachment that underwent vitrectomy. 20 eyes received SiO tamponade and 20 matched eyes received gas. 33 healthy fellow eyes served as controls. Macular spectral domain OCT was performed with automated layer detection in the 5 inner subfields of the Early Treatment Diabetic Retinopathy Study (ETDRS) map. Comparing the SiO group with the gas group, the ganglion cell layer showed a significant thinning in all fields of the inner ring of the ETDRS map, the inner plexiform layer in the nasal, superior and temporal quadrants, and the outer plexiform layer in the nasal quadrant. Inner retinal layers in the fovea/parafovea were significantly thinner in the SiO group. Prospective studies are warranted to further elucidate possible retinal adverse effects of SiO tamponade. © 2017 S. Karger AG, Basel.

  6. Facing-target sputtering deposition of ZnO films with Pt ultra-thin layers for gas-phase photocatalytic application

    International Nuclear Information System (INIS)

    Zhang Zhonghai; Hossain, Md. Faruk.; Arakawa, Takuya; Takahashi, Takakazu

    2010-01-01

    In this paper, various zinc oxide (ZnO) films are deposited by a versatile and effective dc-reactive facing-target sputtering method. The ratios of Ar to O 2 in the mixture gas are varied from 8:2 to 6:4 at a fixed sputtering pressure of 1.0 Pa. X-ray diffraction, spectrophotometer and scanning electron microscope are used to study the crystal structure, optical property and surface morphology of the as-deposited films. The Pt ultra-thin layer, ∼2 nm thick, is deposited on the surface of ZnO film by dc diode sputtering with a mesh mask controlling the coated area. The photocatalytic activity of ZnO films and Pt-ZnO films is evaluated by decomposition of methanol under UV-vis light irradiation. The variation of photocatalytic activity depends on the ratios of Ar to O 2 , which is mainly attributed to the different grain size and carrier mobility. Though the pure ZnO film normally shows a low gas-phase photocatalytic activity, its activity is significantly enhanced by depositing Pt ultra-thin layer.

  7. Optical and morphological characterization of bispyrazole thin films for gas sensing applications

    Directory of Open Access Journals (Sweden)

    Rachid Touzani

    2014-11-01

    Full Text Available The optical gas recognition capabilities of thin film layer of 4-[bis[(3,5-dimethyl-1H-pyrazol-1-ylmethyl]-amino]phenol deposed on quartz substrates were studied. The dynamic gas responses to the following analytes have been investigated as air pollutants (SO2, NO2, CO, CH4 and NH3. The spin-coated bispyrazole layer appears to have reversible response towards SO2 and a very low and irreversible response to NO2. The selectivity of the thin film based on bispyrazole layer with respect to other analytes was also examined and the present data show that the thin sensing layer in the presence of CO, CH4 and NH3 in low concentration does not influence its optical properties.

  8. Photo-EMF sensitivity of porous silicon thin layer-crystalline silicon heterojunction to ammonia adsorption.

    Science.gov (United States)

    Vashpanov, Yuriy; Jung, Jae Il; Kwack, Kae Dal

    2011-01-01

    A new method of using photo-electromotive force in detecting gas and controlling sensitivity is proposed. Photo-electromotive force on the heterojunction between porous silicon thin layer and crystalline silicon wafer depends on the concentration of ammonia in the measurement chamber. A porous silicon thin layer was formed by electrochemical etching on p-type silicon wafer. A gas and light transparent electrical contact was manufactured to this porous layer. Photo-EMF sensitivity corresponding to ammonia concentration in the range from 10 ppm to 1,000 ppm can be maximized by controlling the intensity of illumination light.

  9. Multi-layer thin-film electrolytes for metal supported solid oxide fuel cells

    Science.gov (United States)

    Haydn, Markus; Ortner, Kai; Franco, Thomas; Uhlenbruck, Sven; Menzler, Norbert H.; Stöver, Detlev; Bräuer, Günter; Venskutonis, Andreas; Sigl, Lorenz S.; Buchkremer, Hans-Peter; Vaßen, Robert

    2014-06-01

    A key to the development of metal-supported solid oxide fuel cells (MSCs) is the manufacturing of gas-tight thin-film electrolytes, which separate the cathode from the anode. This paper focuses the electrolyte manufacturing on the basis of 8YSZ (8 mol.-% Y2O3 stabilized ZrO2). The electrolyte layers are applied by a physical vapor deposition (PVD) gas flow sputtering (GFS) process. The gas-tightness of the electrolyte is significantly improved when sequential oxidic and metallic thin-film multi-layers are deposited, which interrupt the columnar grain structure of single-layer electrolytes. Such electrolytes with two or eight oxide/metal layers and a total thickness of about 4 μm obtain leakage rates of less than 3 × 10-4 hPa dm3 s-1 cm-2 (Δp: 100 hPa) at room temperature and therefore fulfill the gas tightness requirements. They are also highly tolerant with respect to surface flaws and particulate impurities which can be present on the graded anode underground. MSC cell tests with double-layer and multilayer electrolytes feature high power densities more than 1.4 W cm-2 at 850 °C and underline the high potential of MSC cells.

  10. Process for forming epitaxial perovskite thin film layers using halide precursors

    Science.gov (United States)

    Clem, Paul G.; Rodriguez, Mark A.; Voigt, James A.; Ashley, Carol S.

    2001-01-01

    A process for forming an epitaxial perovskite-phase thin film on a substrate. This thin film can act as a buffer layer between a Ni substrate and a YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor layer. The process utilizes alkali or alkaline metal acetates dissolved in halogenated organic acid along with titanium isopropoxide to dip or spin-coat the substrate which is then heated to about 700.degree. C. in an inert gas atmosphere to form the epitaxial film on the substrate. The YBCO superconductor can then be deposited on the layer formed by this invention.

  11. Morphology and gas sensing properties of as-deposited and thermally treated doped thin SnO{sub x} layers

    Energy Technology Data Exchange (ETDEWEB)

    Georgieva, B; Pirov, J; Podolesheva, I [Acad. J. Malinowski Central Laboratory of Photoprocesses, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.109, 1113 Sofia (Bulgaria); Nihtianova, D, E-mail: biliana@clf.bas.b [Central Laboratory of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl.107, 1113 Sofia (Bulgaria)

    2010-04-01

    Thin layers intended for gas sensors are prepared by vacuum co-evaporation of TeO{sub 2} and Sn. The as-deposited layers consist of a nanosized oxide matrix and finely dispersed dopants (Te, Sn, TeO{sub 2} or SnTe, depending on the atomic ratio R{sub Sn/Te}). In order to improve the characteristics of the layers they are additionally doped with platinum. The gas sensing properties are strongly dependent on the atomic ratio R{sub Sn/Te}, as well as on the structure, composition and surface morphology. The as-deposited layers with R{sub Sn/Te} 0.8 are highly sensitive humidity sensors working at room temperature. Thermally treated Pt-doped layers with R{sub Sn/Te} 2.3 are promising as ethanol sensors. With the aim of obtaining more detailed knowledge about the surface morphology, structure and composition of layers sensitive to different environments, various techniques -TEM, SAED, SEM, EDS in SEM and white light interferometry (WLI), are applied. It is shown that all layers with 1.0 > R{sub Sn/Te} > 2, as-deposited and thermally treated, exhibit a columnar structure and a very smooth surface along with the nanograined matrix. The thermal treatment causes changes in the structure and composition of the layers. The ethanol-sensitive layers consist of nanosized polycrystalline phases of SnO{sub 2}, Sn{sub 2}O{sub 3}, Sn{sub 3}O{sub 4} and TeO{sub 2}. This knowledge could help us understand better the behaviour and govern the characteristics of layers obtained by co-evaporation of Sn and TeO{sub 2}.

  12. Thin pentacene layer under pressure

    International Nuclear Information System (INIS)

    Srnanek, R.; Jakabovic, J.; Kovac, J.; Donoval, D.; Dobrocka, E.

    2011-01-01

    Organic semiconductors have got a lot of interest during the last years, due to their usability for organic thin film transistor. Pentacene, C 22 H 14 , is one of leading candidates for this purpose. While we obtain the published data about pressure-induced phase transition only on single crystal of pentacene we present pressure-induced phase transition in pentacene thin layers for the first time. Changes in the pentacene structure, caused by the pressure, were detected by micro-Raman spectroscopy. Applying the defined pressure to the pentacene layer it can be transformed from thin phase to bulk phase. Micro-Raman spectroscopy was found as useful method for detection of changes and phases identification in the pentacene layer induced by mechanical pressure. Such a pressure-induced transformation of pentacene thin layers was observed and identified for the first time. (authors)

  13. High-permeance crosslinked PTMSP thin-film composite membranes as supports for CO2 selective layer formation

    Directory of Open Access Journals (Sweden)

    Stepan D. Bazhenov

    2016-10-01

    Full Text Available In the development of the composite gas separation membranes for post-combustion CO2 capture, little attention is focused on the optimization of the membrane supports, which satisfy the conditions of this technology. The primary requirements to the membrane supports are concerned with their high CO2 permeance. In this work, the membrane supports with desired characteristics were developed as high-permeance gas separation thin film composite (TFC membranes with the thin defect-free layer from the crosslinked highly permeable polymer, poly[1-(trimethylsilyl-1-propyne] (PTMSP. This layer is insoluble in chloroform and can be used as a gutter layer for the further deposition of the СО2-selective materials from the organic solvents. Crosslinking of PTMSP was performed using polyethyleneimine (PEI and poly (ethyleneglycol diglycidyl ether (PEGDGE as crosslinking agents. Optimal concentrations of PEI in PTMSP and PEGDGE in methanol were selected in order to diminish the undesirable effect on the final membrane gas transport characteristics. The conditions of the kiss-coating technique for the deposition of the thin defect-free PTMSP-based layer, namely, composition of the casting solution and the speed of movement of the porous commercial microfiltration-grade support, were optimized. The procedure of post-treatment with alcohols and alcohol solutions was shown to be crucial for the improvement of gas permeance of the membranes with the crosslinked PTMSP layer having thickness ranging within 1–2.5 μm. The claimed membranes showed the following characteristics: CO2 permeance is equal to 50–54 m3(STP/(m2 h bar (18,500–20,000 GPU, ideal CO2/N2 selectivity is 3.6–3.7, and their selective layers are insoluble in chloroform. Thus, the developed high-permeance TFC membranes are considered as a promising supports for further modification by enhanced CO2 selective layer formation. Keywords: Thin-film composite membrane

  14. Deposition of very thin uniform indium sulfide layers over metallic nano-rods by the Spray-Ion Layer Gas Reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Genduso, G. [Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università di Palermo, Viale delle Scienze, 90100 Palermo (Italy); Institut for Heterogeneous Material Systems, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Inguanta, R.; Sunseri, C.; Piazza, S. [Dipartimento di Ingegneria Chimica, Gestionale, Informatica, Meccanica, Università di Palermo, Viale delle Scienze, 90100 Palermo (Italy); Kelch, C.; Sáez-Araoz, R. [Institut for Heterogeneous Material Systems, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); Zykov, A. [Institut for Heterogeneous Material Systems, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); present address: Institut für Physik, Humboldt-Universität zu Berlin, Newtonstr. 15,12489 Berlin (Germany); Fischer, Ch.-H., E-mail: fischer@helmholtz-berlin.de [Institut for Heterogeneous Material Systems, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner-Platz 1, D-14109 Berlin (Germany); second affiliation: Free University Berlin, Chemistry Institute, Takustr. 3, D-14195 Berlin (Germany)

    2013-12-02

    Very thin and uniform layers of indium sulfide were deposited on nickel nano-rods using the sequential and cyclical Spray-ILGAR® (Ion Layer Gas Reaction) technique. Substrates were fabricated by electrodeposition of Ni within the pores of polycarbonate membranes and subsequent chemical dissolution of the template. With respect to the depositions on flat substrates, experimental conditions were modified and optimized for the present geometry. Our results show that nano-rods up to a length of 10 μm were covered uniformly along their full length and with an almost constant film growth rate, thus allowing a good control of the coating thickness; the effect of the deposition temperature was also investigated. However, for high numbers of process steps, i.e. thickness, the films became uneven and crusty, especially at higher temperature, mainly owing to the simultaneous side reaction of the metallic Ni forming nickel sulfide at the surface of the rods. However, such a problem occurs only in the case of reactive nano-rod materials, such as less noble metals. It could be strongly reduced by doubling the spray step duration and thereby sealing the metallic surface before the process step of the sulfurization. Thus, quite smooth, about 100 nm thick coatings could be obtained. - Highlights: • Ni nano-rod substrates were grown within polycarbonate membranes. • We can coat nano-rods uniformly by the Ion Layer Gas Reaction method. • As a model we deposited up to about 100 nm In{sub 2}S{sub 3} on Ni nanorods (250 nm × 10 μm). • Element mapping at insulated rods showed homogenous coating over the full length. • Parameter optimization reduced effectively the Ni sulfide formation.

  15. Characterization and gas-sensing behavior of an iron oxide thin film prepared by atomic layer deposition

    International Nuclear Information System (INIS)

    Aronniemi, Mikko; Saino, J.; Lahtinen, J.

    2008-01-01

    In this work we investigate an iron oxide thin film grown with atomic layer deposition for a gas sensor application. The objective is to characterize the structural, chemical, and electrical properties of the film, and to demonstrate its gas-sensitivity. The obtained scanning electron microscopy and atomic force microscopy results indicate that the film has a granular structure and that it has grown mainly on the glass substrate leaving the platinum electrodes uncovered. X-ray diffraction results show that iron oxide is in the α-Fe 2 O 3 (hematite) phase. X-ray photoelectron spectra recorded at elevated temperature imply that the surface iron is mainly in the Fe 3+ state and that oxygen has two chemical states: one corresponding to the lattice oxygen and the other to adsorbed oxygen species. Electric conductivity has an activation energy of 0.3-0.5 eV and almost Ohmic current-voltage dependency. When exposed to O 2 and CO, a typical n-type response is observed

  16. Effect of a hard coat layer on buckle delamination of thin ITO layers on a compliant elasto-plastic substrate: an experimental–numerical approach

    NARCIS (Netherlands)

    Sluis, van der O.; Abdallah, Amir; Bouten, P.C.P.; Timmermans, P.H.M.; Toonder, den J.M.J.; With, de G.

    2011-01-01

    Layer buckling and delamination is a common interfacial failure phenomenon in thin film multi-layer structures that are used in flexible display applications. Typically, the substrate is coated on both sides with a hybrid coating, calleda hard coat (HC), which acts as a gas barrier and also

  17. Corrosion of pure magnesium under thin electrolyte layers

    International Nuclear Information System (INIS)

    Zhang Tao; Chen Chongmu; Shao Yawei; Meng Guozhe; Wang Fuhui; Li Xiaogang; Dong Chaofang

    2008-01-01

    The corrosion behavior of pure magnesium was investigated by means of cathodic polarization curve, electrochemical impedance spectroscopy (EIS) and electrochemical noise (EN) under aerated and deaerated thin electrolyte layers (TEL) with various thicknesses. Based on shot noise theory and stochastic theory, the EN results were quantitatively analyzed by using the Weibull and Gumbel distribution function, respectively. The results show that the cathodic process of pure magnesium under thin electrolyte layer was dominated by hydrogen reduction. With the decreasing of thin electrolyte layer thickness, cathodic process was retarded slightly while the anodic process was inhibited significantly, which indicated that both the cathodic and anodic process were inhibited in the presence of oxygen. The absence of oxygen decreased the corrosion resistance of pure magnesium in case of thin electrolyte layer. The corrosion was more localized under thin electrolyte layer than that in bulk solution. The results also demonstrate that there exist two kinds of effects for thin electrolyte layer on the corrosion behavior of pure magnesium: (1) the rate of pit initiation was evidently retarded compared to that in bulk solution; (2) the probability of pit growth oppositely increased. The corrosion model of pure magnesium under thin electrolyte layer was suggested in the paper

  18. Nanomechanical Behavior of High Gas Barrier Multilayer Thin Films.

    Science.gov (United States)

    Humood, Mohammad; Chowdhury, Shahla; Song, Yixuan; Tzeng, Ping; Grunlan, Jaime C; Polycarpou, Andreas A

    2016-05-04

    Nanoindentation and nanoscratch experiments were performed on thin multilayer films manufactured using the layer-by-layer (LbL) assembly technique. These films are known to exhibit high gas barrier, but little is known about their durability, which is an important feature for various packaging applications (e.g., food and electronics). Films were prepared from bilayer and quadlayer sequences, with varying thickness and composition. In an effort to evaluate multilayer thin film surface and mechanical properties, and their resistance to failure and wear, a comprehensive range of experiments were conducted: low and high load indentation, low and high load scratch. Some of the thin films were found to have exceptional mechanical behavior and exhibit excellent scratch resistance. Specifically, nanobrick wall structures, comprising montmorillonite (MMT) clay and polyethylenimine (PEI) bilayers, are the most durable coatings. PEI/MMT films exhibit high hardness, large elastic modulus, high elastic recovery, low friction, low scratch depth, and a smooth surface. When combined with the low oxygen permeability and high optical transmission of these thin films, these excellent mechanical properties make them good candidates for hard coating surface-sensitive substrates, where polymers are required to sustain long-term surface aesthetics and quality.

  19. High-quality AlGaN/GaN grown on sapphire by gas-source molecular beam epitaxy using a thin low-temperature AlN layer

    Energy Technology Data Exchange (ETDEWEB)

    Jurkovic, M.J.; Li, L.K.; Turk, B.; Wang, W.I.; Syed, S.; Simonian, D.; Stormer, H.L.

    2000-07-01

    Growth of high-quality AlGaN/GaN heterostructures on sapphire by ammonia gas-source molecular beam epitaxy is reported. Incorporation of a thin AlN layer grown at low temperature within the GaN buffer is shown to result in enhanced electrical and structural characteristics for subsequently grown heterostructures. AlGaN/GaN structures exhibiting reduced background doping and enhanced Hall mobilities (2100, 10310 and 12200 cm{sup 2}/Vs with carrier sheet densities of 6.1 x 10{sup 12} cm{sup {minus}2}, and 5.8 x 10{sup 12} cm{sup {minus}2} at 300 K, 77 K, and 0.3 K, respectively) correlate with dislocation filtering in the thin AlN layer. Magnetotransport measurements at 0.3 K reveal well-resolved Shubnikov-de Haas oscillations starting at 3 T.

  20. Gas Permeability Evolution Mechanism and Comprehensive Gas Drainage Technology for Thin Coal Seam Mining

    Directory of Open Access Journals (Sweden)

    Fangtian Wang

    2017-09-01

    Full Text Available A thin coal seam mined as a protective coal seam above a gas outburst coal seam plays a central role in decreasing the degree of stress placed on a protected seam, thus increasing gas permeability levels and desorption capacities to dramatically eliminate gas outburst risk for the protected seam. However, when multiple layers of coal seams are present, stress-relieved gas from adjacent coal seams can cause a gas explosion. Thus, the post-drainage of gas from fractured and de-stressed strata should be applied. Comprehensive studies of gas permeability evolution mechanisms and gas seepage rules of protected seams close to protective seams that occur during protective seam mining must be carried out. Based on the case of the LongWall (LW 23209 working face in the Hancheng coal mine, Shaanxi Province, this paper presents a seepage model developed through the FLAC3D software program (version 5.0, Itasca Consulting Group, Inc., Minneapolis, MI, USA from which gas flow characteristics can be reflected by changes in rock mass permeability. A method involving theoretical analysis and numerical simulation was used to analyze stress relief and gas permeability evolution mechanisms present during broken rock mass compaction in a goaf. This process occurs over a reasonable amount of extraction time and in appropriate locations for comprehensive gas extraction technologies. In using this comprehensive gas drainage technological tool, the safe and efficient co-extraction of thin coal seams and gas resources can be realized, thus creating a favorable environment for the safe mining of coal and gas outburst seams.

  1. The Effect of Film Thickness on the Gas Sensing Properties of Ultra-Thin TiO₂ Films Deposited by Atomic Layer Deposition.

    Science.gov (United States)

    Wilson, Rachel L; Simion, Cristian Eugen; Blackman, Christopher S; Carmalt, Claire J; Stanoiu, Adelina; Di Maggio, Francesco; Covington, James A

    2018-03-01

    Analyte sensitivity for gas sensors based on semiconducting metal oxides should be highly dependent on the film thickness, particularly when that thickness is on the order of the Debye length. This thickness dependence has previously been demonstrated for SnO₂ and inferred for TiO₂. In this paper, TiO₂ thin films have been prepared by Atomic Layer Deposition (ALD) using titanium isopropoxide and water as precursors. The deposition process was performed on standard alumina gas sensor platforms and microscope slides (for analysis purposes), at a temperature of 200 °C. The TiO₂ films were exposed to different concentrations of CO, CH₄, NO₂, NH₃ and SO₂ to evaluate their gas sensitivities. These experiments showed that the TiO₂ film thickness played a dominant role within the conduction mechanism and the pattern of response for the electrical resistance towards CH₄ and NH₃ exposure indicated typical n -type semiconducting behavior. The effect of relative humidity on the gas sensitivity has also been demonstrated.

  2. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 Angstrom), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 Angstrom of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films

  3. Delamination of Compressed Thin Layers at Corners

    DEFF Research Database (Denmark)

    Sørensen, Kim D.; Jensen, Henrik Myhre; Clausen, Johan

    2008-01-01

    An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat s...... layers, Fracture mechanics, Crack closure, Steady state crack propagation.......An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat...... results for the fracture mechanical properties have been obtained, and these are applied in a study of the effect of contacting crack faces. Special attention has been given to analyse conditions under which steady state propagation of buckling driven delamination takes place. Keywords: Delamination, Thin...

  4. Layer-by-layer assembly of thin film oxygen barrier

    International Nuclear Information System (INIS)

    Jang, Woo-Sik; Rawson, Ian; Grunlan, Jaime C.

    2008-01-01

    Thin films of sodium montmorillonite clay and cationic polyacrylamide were grown on a polyethylene terephthalate film using layer-by-layer assembly. After 30 clay-polymer layers are deposited, with a thickness of 571 nm, the resulting transparent film has an oxygen transmission rate (OTR) below the detection limit of commercial instrumentation ( 2 /day/atm). This low OTR, which is unprecedented for a clay-filled polymer composite, is believed to be due to a brick wall nanostructure comprised of completely exfoliated clay in polymeric mortar. With an optical transparency greater than 90% and potential for microwaveability, this thin composite is a good candidate for foil replacement in food packaging and may also be useful for flexible electronics packaging

  5. QCM gas sensor characterization of ALD-grown very thin TiO2 films

    Science.gov (United States)

    Boyadjiev, S.; Georgieva, V.; Vergov, L.; Szilágyi, I. M.

    2018-03-01

    The paper presents a technology for preparation and characterization of titanium dioxide (TiO2) thin films suitable for gas sensor applications. Applying atomic layer deposition (ALD), very thin TiO2 films were deposited on quartz resonators, and their gas sensing properties were studied using the quartz crystal microbalance (QCM) method. The TiO2 thin films were grown using Ti(iOPr)4 and water as precursors. The surface of the films was observed by scanning electron microscopy (SEM), coupled with energy dispersive X-ray analysis (EDX) used for a composition study. The research was focused on the gas-sensing properties of the films. Films of 10-nm thickness were deposited on quartz resonators with Au electrodes and the QCMs were used to build highly sensitive gas sensors, which were tested for detecting NO2. Although very thin, these ALD-grown TiO2 films were sensitive to NO2 already at room temperature and could register as low concentrations as 50 ppm, while the sorption was fully reversible, and the sensors could be fully recovered. With the technology presented, the manufacturing of gas sensors is simple, fast and cost-effective, and suitable for energy-effective portable equipment for real-time environmental monitoring of NO2.

  6. Preparation and characterization of ALD deposited ZnO thin films studied for gas sensors

    Energy Technology Data Exchange (ETDEWEB)

    Boyadjiev, S.I., E-mail: boiajiev@gmail.com [MTA-BME Technical Analytical Chemistry Research Group, Szent Gellért tér 4, Budapest, H-1111 (Hungary); Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria); Georgieva, V. [Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria); Yordanov, R. [Department of Microelectronics, Technical University of Sofia, 8 Kliment Ohridski Blvd., 1756 Sofia (Bulgaria); Raicheva, Z. [Georgi Nadjakov Institute of Solid State Physics, Bulgarian Academy of Sciences, 72 Tzarigradsko Chaussee Blvd., 1784 Sofia (Bulgaria); Szilágyi, I.M. [MTA-BME Technical Analytical Chemistry Research Group, Szent Gellért tér 4, Budapest, H-1111 (Hungary); Budapest University of Technology and Economics, Department of Inorganic and Analytical Chemistry, Szent Gellért tér 4, Budapest, H-1111 (Hungary)

    2016-11-30

    Highlights: • For the first time the gas sensing towards NO{sub 2} of very thin ALD ZnO films is studied. • The very thin ALD ZnO films showed excellent sensitivity to NO{sub 2} at room temperature. • These very thin film ZnO-based QCM sensors very well register even low concentrations. • The sensors have fully reversible sorption and are able to be recovered in short time. • Described fast and cost-effective ALD deposition of ZnO thin films for QCM gas sensor. - Abstract: Applying atomic layer deposition (ALD), very thin zinc oxide (ZnO) films were deposited on quartz resonators, and their gas sensing properties were studied using the quartz crystal microbalance (QCM) method. The gas sensing of the ZnO films to NO{sub 2} was tested in the concentration interval between 10 and 5000 ppm. On the basis of registered frequency change of the QCM, for each concentration the sorbed mass was calculated. Further characterization of the films was carried out by various techniques, i.e. by SEM-EDS, XRD, ellipsometry, and FTIR spectroscopy. Although being very thin, the films were gas sensitive to NO{sub 2} already at room temperature and could register very well as low concentrations as 100 ppm, while the sorption was fully reversible. Our results for very thin ALD ZnO films show that the described fast, simple and cost-effective technology could be implemented for producing gas sensors working at room temperature and being capable to detect in real time low concentrations of NO{sub 2}.

  7. Thin layer activation

    International Nuclear Information System (INIS)

    Schweickert, H.; Fehsenfeld, P.

    1995-01-01

    The reliability of industrial equip ment is substantially influenced by wear and corrosion; monitoring can prevent accidents and avoid down-time. One powerful tool is thin layer activation analysis (TLA) using accelerator systems. The information is used to improve mechanical design and material usage; the technology is used by many large companies, particularly in the automotive industry, e.g. Daimler Benz. A critical area of a machine component receives a thin layer of radioactivity by irradiation with charged particles from an accelerator - usually a cyclotron. The radioactivity can be made homogeneous by suitable selection of particle, beam energy and angle of incidence. Layer thickness can be varied from 20 microns to around 1 mm with different depth distributions; the position and size of the wear zone can be set to within 0.1 mm. The machine is then reassembled and operated so that wear can be measured. An example is a combustion engine comprising piston ring, cylinder wall, cooling water jacket and housing wall, where wear measurements on the cylinder wall are required in a critical zone around the dead-point of the piston ring. Proton beam bombardment creates a radioactive layer whose thickness is known accurately, and characteristic gamma radiation from this radioactive zone penetrates through the engine and is detected externally. Measurements can be made either of the activity removed from the surface, or of the (reduced) residual activity; wear measurement of the order of 10 -9 metres is possible

  8. Hydrogen Gas Sensing Characteristics of Nanostructured NiO Thin Films Synthesized by SILAR Method

    Science.gov (United States)

    Karaduman, Irmak; Çorlu, Tugba; Yıldırım, M. Ali; Ateş, Aytunç; Acar, Selim

    2017-07-01

    Nanostructured NiO thin films have been synthesized by a facile, low-cost successive ionic layer adsorption and reaction (SILAR) method, and the effects of the film thickness on their hydrogen gas sensing properties investigated. The samples were characterized by scanning electron microscopy (SEM), x-ray diffraction (XRD) analysis, and energy-dispersive x-ray analysis. The XRD results revealed that the crystallinity improved with increasing thickness, exhibiting polycrystalline structure. SEM studies showed that all the films covered the glass substrate well. According to optical absorption measurements, the optical bandgap decreased with increasing film thickness. The gas sensing properties of the nanostructured NiO thin films were studied as a function of operating temperature and gas concentration. The samples showed good sensing performance of H2 gas with high response. The maximum response was 75% at operating temperature of 200°C for hydrogen gas concentration of 40 ppm. These results demonstrate that nanostructured NiO thin films synthesized by the SILAR method have potential for application in hydrogen detection.

  9. Microstrip gas chamber on thin-film Pestov glass and micro gap chamber

    International Nuclear Information System (INIS)

    Gong, W.G.; Harris, J.W.; Wieman, H.

    1994-07-01

    The authors report developments of the Microstrip Gas Chamber on thin-film Pestov glass and the Micro Gap Chamber. By coating a thin-layer of low-resistive, electronically-conductive glass on various substrates (including quartz and ceramics), they built MSGCs of high gain stability and low leakage current. They were tested in Ar-CH 4 (10%) and He-C 2 H 6 (50%) gas mixtures. Energy resolutions of 17-20% were measured for 6keV x-rays. This design can make the choice of substrate less important, save the cost of ion-implantation, and use less glass material. Micro Gap Chamber was successfully tested in He-C 2 H 6 (50%) and Ar-C 2 H 6 (50%) gas mixtures. Energy resolutions of about 20% were obtained. Both detectors are expected to have high rate capability

  10. Optical properties of palladium nanoparticles under exposure of hydrogen and inert gas prepared by dewetting synthesis of thin-sputtered layers

    Energy Technology Data Exchange (ETDEWEB)

    Kracker, Michael, E-mail: Michael.Kracker@uni-jena.de; Worsch, Christian; Ruessel, Christian [Otto-Schott-Institut, Jena University (Germany)

    2013-04-15

    Thin layers of palladium with a thickness of 5 nm were sputtered on fused silica substrates. Subsequently, the coated glasses were annealed at a temperature of 900 Degree-Sign C for 1 h. This resulted in the formation of small and well-separated palladium nanoparticles with diameters in the range from 20 to 200 nm on the glass surface. The existence of a palladium oxide layer can be detected using optical absorption spectroscopy. Purging with hydrogen leads to an irreversible change in the optical spectra due to the reduction of PdO to metallic palladium. Changing the gas atmosphere from hydrogen to argon leads to significant reversible changes in the optical properties of the particle layer. Based on Mie theory and the respective dielectric functions, the spectra were calculated using the real particle size distribution, weighted dispersions relation to adapt the geometrical conditions and complex dielectric functions of palladium and palladium hydride. A good agreement with measured spectra was found and the dependency of the surrounding media can be explained.Graphical Abstract.

  11. Thin-film transistors with a channel composed of semiconducting metal oxide nanoparticles deposited from the gas phase

    International Nuclear Information System (INIS)

    Busch, C.; Schierning, G.; Theissmann, R.; Nedic, A.; Kruis, F. E.; Schmechel, R.

    2012-01-01

    The fabrication of semiconducting functional layers using low-temperature processes is of high interest for flexible printable electronics applications. Here, the one-step deposition of semiconducting nanoparticles from the gas phase for an active layer within a thin-film transistor is described. Layers of semiconducting nanoparticles with a particle size between 10 and 25 nm were prepared by the use of a simple aerosol deposition system, excluding potentially unwanted technological procedures like substrate heating or the use of solvents. The nanoparticles were deposited directly onto standard thin-film transistor test devices, using thermally grown silicon oxide as gate dielectric. Proof-of-principle experiments were done deploying two different wide-band gap semiconducting oxides, tin oxide, SnO x , and indium oxide, In 2 O 3 . The tin oxide spots prepared from the gas phase were too conducting to be used as channel material in thin-film transistors, most probably due to a high concentration of oxygen defects. Using indium oxide nanoparticles, thin-film transistor devices with significant field effect were obtained. Even though the electron mobility of the investigated devices was only in the range of 10 −6 cm 2V−1s−1 , the operability of this method for the fabrication of transistors was demonstrated. With respect to the possibilities to control the particle size and layer morphology in situ during deposition, improvements are expected.

  12. SEM and XPS study of layer-by-layer deposited polypyrrole thin films

    Science.gov (United States)

    Pigois-Landureau, E.; Nicolau, Y. F.; Delamar, M.

    1996-01-01

    Layer-by-layer deposition of thin films (a few nm) of polypyrrole was carried out on various substrates such as silver, platinum, electrochemically oxidized aluminum and pretreated glass. SEM micrographs showed that the deposited layers nucleate by an island-type mechanism on hydrated alumina and KOH-pretreated (hydrophilic) glass before forming a continuous film. However, continuous thin films are obtained on chromic acid pretreated (hydrophobic) glass and sputtered Ag or Pt on glass after only 3-4 deposition cycles. The mean deposition rate evaluated by XPS for the first deposition cycles on Ag and Pt is 3 and 4 nm/cycle, respectively, in agreement with previous gravimetric determinations on thicker films, proving the constancy of the deposition rate. The XPS study of the very thin films obtained by a few deposition cycles shows that the first polypyrrole layers are dedoped by hydroxydic (basic) substrate surfaces.

  13. The Effect of Film Thickness on the Gas Sensing Properties of Ultra-Thin TiO2 Films Deposited by Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Rachel L. Wilson

    2018-03-01

    Full Text Available Analyte sensitivity for gas sensors based on semiconducting metal oxides should be highly dependent on the film thickness, particularly when that thickness is on the order of the Debye length. This thickness dependence has previously been demonstrated for SnO2 and inferred for TiO2. In this paper, TiO2 thin films have been prepared by Atomic Layer Deposition (ALD using titanium isopropoxide and water as precursors. The deposition process was performed on standard alumina gas sensor platforms and microscope slides (for analysis purposes, at a temperature of 200 °C. The TiO2 films were exposed to different concentrations of CO, CH4, NO2, NH3 and SO2 to evaluate their gas sensitivities. These experiments showed that the TiO2 film thickness played a dominant role within the conduction mechanism and the pattern of response for the electrical resistance towards CH4 and NH3 exposure indicated typical n-type semiconducting behavior. The effect of relative humidity on the gas sensitivity has also been demonstrated.

  14. Characterization of Nanocrystalline SiGe Thin Film Solar Cell with Double Graded-Dead Absorption Layer

    Directory of Open Access Journals (Sweden)

    Chao-Chun Wang

    2012-01-01

    Full Text Available The nanocrystalline silicon-germanium (nc-SiGe thin films were deposited by high-frequency (27.12 MHz plasma-enhanced chemical vapor deposition (HF-PECVD. The films were used in a silicon-based thin film solar cell with graded-dead absorption layer. The characterization of the nc-SiGe films are analyzed by scanning electron microscopy, UV-visible spectroscopy, and Fourier transform infrared absorption spectroscopy. The band gap of SiGe alloy can be adjusted between 0.8 and 1.7 eV by varying the gas ratio. For thin film solar cell application, using double graded-dead i-SiGe layers mainly leads to an increase in short-circuit current and therefore cell conversion efficiency. An initial conversion efficiency of 5.06% and the stabilized efficiency of 4.63% for an nc-SiGe solar cell were achieved.

  15. Layer-by-Layer Assembly of a pH-Responsive and Electrochromic Thin Film

    Science.gov (United States)

    Schmidt, Daniel J.; Pridgen, Eric M.; Hammond, Paula T.; Love, J. Christopher

    2010-01-01

    This article summarizes an experiment on thin-film fabrication with layer-by-layer assembly that is appropriate for undergraduate laboratory courses. The purpose of this experiment is to teach students about self-assembly in the context of thin films and to expose students to the concepts of functional polymeric coatings. Students dip coat…

  16. SEM and XPS study of layer-by-layer deposited polypyrrole thin films

    International Nuclear Information System (INIS)

    Pigois-Landureau, E.; Nicolau, Y.F.; Delamar, M.

    1996-01-01

    Layer-by-layer deposition of thin films (a few nm) of polypyrrole was carried out on various substrates such as silver, platinum, electrochemically oxidized aluminum and pretreated glass. SEM micrographs showed that the deposited layers nucleate by an island-type mechanism on hydrated alumina and KOH-pretreated (hydrophilic) glass before forming a continuous film. However, continuous thin films are obtained on chromic acid pretreated (hydrophobic) glass and sputtered Ag or Pt on glass after only 3 endash 4 deposition cycles. The mean deposition rate evaluated by XPS for the first deposition cycles on Ag and Pt is 3 and 4 nm/cycle, respectively, in agreement with previous gravimetric determinations on thicker films, proving the constancy of the deposition rate. The XPS study of the very thin films obtained by a few deposition cycles shows that the first polypyrrole layers are dedoped by hydroxydic (basic) substrate surfaces. copyright 1996 American Institute of Physics

  17. MultiLayer solid electrolyte for lithium thin film batteries

    Science.gov (United States)

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  18. Copper diffusion in TaN-based thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Nazon, J. [Universite Montpellier II, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, 34095 Montpellier Cedex 5 (France); Fraisse, B. [Laboratoire Structure, Proprietes et Modelisation des Solides (UMR 8580), Ecole Centrale de Paris, Grande Voie des Vignes, 92295 Chatenay-Malabry Cedex (France); Sarradin, J. [Universite Montpellier II, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, 34095 Montpellier Cedex 5 (France); Fries, S.G. [SGF Scientific Consultancy, Arndt str.9, D-52064 Aachen (Germany); Tedenac, J.C. [Universite Montpellier II, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, 34095 Montpellier Cedex 5 (France); Frety, N. [Universite Montpellier II, Institut Charles Gerhardt, UMR 5253 CNRS-UM2-ENSCM-UM1, cc 1504, 34095 Montpellier Cedex 5 (France)], E-mail: Nicole.Frety@univ-montp2.fr

    2008-07-15

    The diffusion of Cu through TaN-based thin layers into a Si substrate has been studied. The barrier efficiency of TaN/Ta/TaN multilayers of 150 nm in thickness has been investigated and is compared with that of TaN single layers. Thermal stabilities of these TaN-based thin layers against Cu diffusion were determined from in situ X-ray diffraction experiments, conducted in the temperature range of 773-973 K. The TaN/Ta/TaN barrier appeared to be more efficient in preventing Cu diffusion than the TaN single layer.

  19. Drag crisis moderation by thin air layers sustained on superhydrophobic spheres falling in water

    KAUST Repository

    Jetly, Aditya

    2018-01-22

    We investigate the effect of thin air layers naturally sustained on superhydrophobic surfaces on the terminal velocity and drag force of metallic spheres free falling in water. The surface of 20 mm to 60 mm steel or tungsten-carbide spheres is rendered superhydrophobic by a simple coating process that uses commercially available hydrophobic agent. By comparing the free fall of unmodified spheres and superhydrophobic spheres in a 2.5 meters tall water tank, It is demonstrated that even a very thin air layer (~ 1 – 2 μm) that covers the freshly dipped superhydrophobic sphere, can reduce the drag force on the spheres by up to 80 %, at Reynolds numbers 105 - 3×105 , owing to an early drag crisis transition. This study complements prior investigations on the drag reduction efficiency of model gas layers sustained on heated metal spheres falling in liquid by the Leidenfrost effect. The drag reduction effects are expected to have significant implication for the development of sustainable air-layer-based energy saving technologies.

  20. Methods for producing thin film charge selective transport layers

    Science.gov (United States)

    Hammond, Scott Ryan; Olson, Dana C.; van Hest, Marinus Franciscus Antonius Maria

    2018-01-02

    Methods for producing thin film charge selective transport layers are provided. In one embodiment, a method for forming a thin film charge selective transport layer comprises: providing a precursor solution comprising a metal containing reactive precursor material dissolved into a complexing solvent; depositing the precursor solution onto a surface of a substrate to form a film; and forming a charge selective transport layer on the substrate by annealing the film.

  1. Nanocrystalline SnO2:F Thin Films for Liquid Petroleum Gas Sensors

    Directory of Open Access Journals (Sweden)

    Sutichai Chaisitsak

    2011-07-01

    Full Text Available This paper reports the improvement in the sensing performance of nanocrystalline SnO2-based liquid petroleum gas (LPG sensors by doping with fluorine (F. Un-doped and F-doped tin oxide films were prepared on glass substrates by the dip-coating technique using a layer-by-layer deposition cycle (alternating between dip-coating a thin layer followed by a drying in air after each new layer. The results showed that this technique is superior to the conventional technique for both improving the film thickness uniformity and film transparency. The effect of F concentration on the structural, surface morphological and LPG sensing properties of the SnO2 films was investigated. Atomic Force Microscopy (AFM and X-ray diffraction pattern measurements showed that the obtained thin films are nanocrystalline SnO2 with nanoscale-textured surfaces. Gas sensing characteristics (sensor response and response/recovery time of the SnO2:F sensors based on a planar interdigital structure were investigated at different operating temperatures and at different LPG concentrations. The addition of fluorine to SnO2 was found to be advantageous for efficient detection of LPG gases, e.g., F-doped sensors are more stable at a low operating temperature (300 °C with higher sensor response and faster response/recovery time, compared to un-doped sensor materials. The sensors based on SnO2:F films could detect LPG even at a low level of 25% LEL, showing the possibility of using this transparent material for LPG leak detection.

  2. Delamination of Compressed Thin Layers at Corners

    DEFF Research Database (Denmark)

    Sørensen, Kim D.; Jensen, Henrik Myhre; Clausen, Johan

    2008-01-01

    An analysis of delamination for a thin elastic layer under compression, attached to a substrate at a corner is carried out. The analysis is performed by combining results from interface fracture mechanics and the theory of thin shells. In contrast with earlier results for delamination on a flat...

  3. Influence of Gas Adsorption and Gold Nanoparticles on the Electrical Properties of CVD-Grown MoS2 Thin Films.

    Science.gov (United States)

    Cho, Yunae; Sohn, Ahrum; Kim, Sujung; Hahm, Myung Gwan; Kim, Dong-Ho; Cho, Byungjin; Kim, Dong-Wook

    2016-08-24

    Molybdenum disulfide (MoS2) has increasingly attracted attention from researchers and is now one of the most intensively explored atomic-layered two-dimensional semiconductors. Control of the carrier concentration and doping type of MoS2 is crucial for its application in electronic and optoelectronic devices. Because the MoS2 layers are atomically thin, their transport characteristics may be very sensitive to ambient gas adsorption and the resulting charge transfer. We investigated the influence of the ambient gas (N2, H2/N2, and O2) choice on the resistance (R) and surface work function (WF) of trilayer MoS2 thin films grown via chemical vapor deposition. We also studied the electrical properties of gold (Au)-nanoparticle (NP)-coated MoS2 thin films; their R value was found to be 2 orders of magnitude smaller than that for bare samples. While the WF largely varied for each gas, R was almost invariant for both the bare and Au-NP-coated samples regardless of which gas was used. Temperature-dependent transport suggests that variable range hopping is the dominant mechanism for electrical conduction for bare and Au-NP-coated MoS2 thin films. The charges transferred from the gas adsorbates might be insufficient to induce measurable R change and/or be trapped in the defect states. The smaller WF and larger localization length of the Au-NP-coated sample, compared with the bare sample, suggest that more carriers and less defects enhanced conduction in MoS2.

  4. Transport parameters of thin, supported cathode layers in solid oxide fuel cells (SOFCs); Transportparameter duenner, getraegerter Kathodenschichten der oxidkeramischen Brennstoffzelle

    Energy Technology Data Exchange (ETDEWEB)

    Wedershoven, Christian

    2010-12-22

    The aim of this work was to determine the transport properties of thin cathode layers, which are part of the composite layer of a fabricated anode-supported solid oxide fuel cell (SOFC). The transport properties of the anode and cathode have a significant influence on the electrochemical performance of a fuel cell stack and therefore represent an important parameter when designing fuel cell stacks. In order to determine the transport parameters of the cathode layers in a fabricated SOFC, it is necessary to permeate the thin cathode layer deposited on the gas-tight electrolyte with a defined gas transport. These thin cathode layers cannot be fabricated as mechanically stable single layers and cannot therefore be investigated in the diffusion and permeation experiments usually used to determine transport parameters. The setup of these experiments - particularly the sample holder - was therefore altered in this work. The result of this altered setup was a three-dimensional flow configuration. Compared to the conventional setup, it was no longer possible to describe the gas transport in the experiments with an analytical one-dimensional solution. A numerical solution process had to be used to evaluate the measurements. The new setup permitted a sufficiently symmetrical gas distribution and thus allowed the description of the transport to be reduced to a two-dimensional description, which significantly reduced the computational effort required to evaluate the measurements. For pressure-induced transport, a parametrized coherent expression of transport could be derived. This expression is equivalent to the analytical description of the transport in conventional measurement setups, with the exception of parameters that describe the geometry of the gas diffusion. In this case, a numerical process is not necessary for the evaluation. Using the transport parameters of mechanically stable anode substrates, which can be measured both in the old and the new setups, the old and

  5. Multifunctional Organic-Semiconductor Interfacial Layers for Solution-Processed Oxide-Semiconductor Thin-Film Transistor.

    Science.gov (United States)

    Kwon, Guhyun; Kim, Keetae; Choi, Byung Doo; Roh, Jeongkyun; Lee, Changhee; Noh, Yong-Young; Seo, SungYong; Kim, Myung-Gil; Kim, Choongik

    2017-06-01

    The stabilization and control of the electrical properties in solution-processed amorphous-oxide semiconductors (AOSs) is crucial for the realization of cost-effective, high-performance, large-area electronics. In particular, impurity diffusion, electrical instability, and the lack of a general substitutional doping strategy for the active layer hinder the industrial implementation of copper electrodes and the fine tuning of the electrical parameters of AOS-based thin-film transistors (TFTs). In this study, the authors employ a multifunctional organic-semiconductor (OSC) interlayer as a solution-processed thin-film passivation layer and a charge-transfer dopant. As an electrically active impurity blocking layer, the OSC interlayer enhances the electrical stability of AOS TFTs by suppressing the adsorption of environmental gas species and copper-ion diffusion. Moreover, charge transfer between the organic interlayer and the AOS allows the fine tuning of the electrical properties and the passivation of the electrical defects in the AOS TFTs. The development of a multifunctional solution-processed organic interlayer enables the production of low-cost, high-performance oxide semiconductor-based circuits. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Sensors of the gas CO in thin film of SnO2:Cu

    International Nuclear Information System (INIS)

    Tirado G, S.; Sanchez Z, F. E.

    2011-10-01

    Thin films of SnO 2 :Cu with different thickness, were deposited on soda-lime glass substrates and prepared by the Sol-gel process and repeated immersion. The sensor properties of these films to the gas CO for the range of 0-200 ppm in the gas concentration and operating to temperatures of 23, 100, 200, and 300 C were studied. Prepared films of pure SnO 2 were modified superficially with 1, 3, 5 and 10 layers of the catalyst Cu (SnO 2 :Cu) with the purpose of studying the effect on the sensor capacity of the gas CO by part of the films SnO 2 :Cu. Using the changes in the electric properties of the films with the incorporation of the different copper layers and experimental conditions, the sensor modifications of the gas CO were evaluated. To complete this study, was realized a characterization of the superficial morphology of the films by scanning electron microscopy and atomic force microscopy, equally was studied their structure and their electric and optical properties. (Author)

  7. Thin layer model for nonlinear evolution of the Rayleigh-Taylor instability

    Science.gov (United States)

    Zhao, K. G.; Wang, L. F.; Xue, C.; Ye, W. H.; Wu, J. F.; Ding, Y. K.; Zhang, W. Y.

    2018-03-01

    On the basis of the thin layer approximation [Ott, Phys. Rev. Lett. 29, 1429 (1972)], a revised thin layer model for incompressible Rayleigh-Taylor instability has been developed to describe the deformation and nonlinear evolution of the perturbed interface. The differential equations for motion are obtained by analyzing the forces (the gravity and pressure difference) of fluid elements (i.e., Newton's second law). The positions of the perturbed interface are obtained from the numerical solution of the motion equations. For the case of vacuum on both sides of the layer, the positions of the upper and lower interfaces obtained from the revised thin layer approximation agree with that from the weakly nonlinear (WN) model of a finite-thickness fluid layer [Wang et al., Phys. Plasmas 21, 122710 (2014)]. For the case considering the fluids on both sides of the layer, the bubble-spike amplitude from the revised thin layer model agrees with that from the WN model [Wang et al., Phys. Plasmas 17, 052305 (2010)] and the expanded Layzer's theory [Goncharov, Phys. Rev. Lett. 88, 134502 (2002)] in the early nonlinear growth regime. Note that the revised thin layer model can be applied to investigate the perturbation growth at arbitrary Atwood numbers. In addition, the large deformation (the large perturbed amplitude and the arbitrary perturbed distributions) in the initial stage can also be described by the present model.

  8. Chemically synthesized PbS Nano particulate thin films for a rapid NO2 gas sensor

    Directory of Open Access Journals (Sweden)

    Burungale Vishal V.

    2016-03-01

    Full Text Available Rapid NO2 gas sensor has been developed based on PbS nanoparticulate thin films synthesized by Successive Ionic Layer Adsorption and Reaction (SILAR method at different precursor concentrations. The structural and morphological properties were investigated by means of X-ray diffraction and field emission scanning electron microscope. NO2 gas sensing properties of PbS thin films deposited at different concentrations were tested. PbS film with 0.25 M precursor concentration showed the highest sensitivity. In order to optimize the operating temperature, the sensitivity of the sensor to 50 ppm NO2 gas was measured at different operating temperatures, from 50 to 200 °C. The gas sensitivity increased with an increase in operating temperature and achieved the maximum value at 150 °C, followed by a decrease in sensitivity with further increase of the operating temperature. The sensitivity was about 35 % for 50 ppm NO2 at 150 °C with rapid response time of 6 s. T90 and T10 recovery time was 97 s at this gas concentration.

  9. Combined thin layer chromatography and gas chromatography with mass spectrometric analysis of lipid classes and fatty acids in malnourished polar bears (Ursus maritimus) which swam to Iceland.

    Science.gov (United States)

    Eibler, Dorothee; Krüger, Sabine; Skírnisson, Karl; Vetter, Walter

    2017-03-01

    Between 2008 and 2011, four polar bears (Ursus maritimus) from the Greenland population swam and/or drifted on ice to Iceland where they arrived in very poor body condition. Body fat resources in these animals were only between 0% and 10% of the body weight (usually 25%). Here we studied the lipid composition in different tissues (adipose tissue if available, liver, kidney and muscle). Lipid classes were determined by thin layer chromatography (TLC) and on-column gas chromatography with mass spectrometry (GC/MS). The fatty acid pattern of total lipids and free fatty acids was analyzed by GC/MS in selected ion monitoring (SIM) mode. Additionally, cholesteryl esters and native fatty acid methyl esters, initially detected as zones in thin layer chromatograms, were enriched by solid phase extraction and quantified by GC/MS. The ratio of free fatty acids to native fatty acid methyl esters could be correlated with the remained body lipids in the polar bears and thus may also serve as a marker for other starving animals or even for humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Cross-Field Current Instabilities in Thin Ionization Layers and the Enhanced Aurora

    International Nuclear Information System (INIS)

    Johnson, Jay R.; Okuda, Hideo

    2008-01-01

    Nearly half of the time, auroral displays exhibit thin, bright layers known as 'enhanced aurora'. There is a substantial body of evidence that connects these displays with thin, dense, heavy ion layers in the E-region. Based on the spectral characteristics of the enhanced layers, it is believed that they result when wave-particle interaction heats ambient electrons to energies at or just above the 17 eV ionization energy of N2. While there are several possible instabilities that could produce suprathermal electrons in thin layers, there has been no clear theoretical investigation which examines in detail how wave instabilities in the thin ionization layers could develop and produce the suprathermal electrons. We examine instabilities which would occur in thin, dense, heavy ion layers using extensive analytical analysis combined with particle simulations. We analyze a cross field current instability that is found to be strongly unstable in the heavy ion layers. Electrostatic simulations show that substantial heating of the ambient electrons occurs with energization at or above the N2 ionization energy.

  11. Ion beam analysis of aluminium in thin layers

    International Nuclear Information System (INIS)

    Healy, M.J.F.; Pidduck, A.J.; Dollinger, G.; Gorgens, L.; Bergmaier, A.

    2002-01-01

    This work quantifies aluminium in thin surface and near surface layers. In one example, the layer overlies a thin gallium nitride layer on an aluminium oxide substrate and in a second example the aluminium exists just below the surface of an indium arsenide substrate. The technique of non-Rutherford elastic backscattering of protons was used for the samples where aluminum in the layer of interest needed to be resolved from aluminium in the sapphire substrate and the results were corroborated at the Technische Universitaet Muenchen using heavy ion elastic recoil detection analysis. In the second example, where it was unnecessary to isolate the signal of aluminium in the layer of interest (as the substrate contained no aluminium), then the 27 Al(d,p 01 ) 28 Al nuclear reaction was used. The elastic proton scattering cross section of aluminum was found to vary very rapidly over the energy range of interest

  12. Application of thin-layer chromatography in radiochemistry

    International Nuclear Information System (INIS)

    Maki, Yasuyuki; Murakami, Yukio.

    1976-01-01

    In relation to the experimental procedures of thin-layer chromatography (TLC) in radiochemistry, the authors explained the preparation and development of radioactive test solutions, the methods of detection by autoradiography of isolated spots and by the calculation of measuring apparatus, and the identification of isolated spots. Next they outlined the carrier-free isolation and purification of nuclides, the quantification in combination with γ-ray spectrum, confirmation of the purity of RI-labeled medical supplies, their application to RI generator, thin-layer electrophoresis, in which electrophoresis and TLC were combined, and the application of this electrophoresis to isolation in recoil chemistry and to analysis and identification in carrier-free chemistry. (Kanao, K.)

  13. Optical characterizations of silver nanoprisms embedded in polymer thin film layers

    Science.gov (United States)

    Carlberg, Miriam; Pourcin, Florent; Margeat, Olivier; Le Rouzo, Judikael; Berginc, Gerard; Sauvage, Rose-Marie; Ackermann, Jorg; Escoubas, Ludovic

    2017-10-01

    The precise control of light-matter interaction has a wide range of applications and is currently driven by the use of nanoparticles (NPs) by the recent advances in nanotechnology. Taking advantage of the material, size, shape, and surrounding media dependence of the optical properties of plasmonic NPs, thin film layers with tunable optical properties are achieved. The NPs are synthesized by wet chemistry and embedded in a polyvinylpyrrolidone (PVP) polymer thin film layer. Spectrophotometer and spectroscopic ellipsometry measurements are coupled to finite-difference time domain numerical modeling to optically characterize the heterogeneous thin film layers. Silver nanoprisms of 10 to 50 nm edge size exhibit high absorption through the visible wavelength range. A simple optical model composed of a Cauchy law and a Lorentz law, accounting for the optical properties of the nonabsorbing polymer and the absorbing property of the nanoprisms, fits the spectroscopic ellipsometry measurements. Knowing the complex optical indices of heterogeneous thin film layers let us design layers of any optical properties.

  14. UV and plasma treatment of thin silver layers and glass surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Hluschi, J.H. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Helmke, A. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Roth, P. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany); Boewer, R. [Interpane Glasbeschichtungsgesellschaft mbH and Co KG, Sohnreystr. 21, D-37697 Lauenfoerde (Germany); Herlitze, L. [Interpane Glasbeschichtungsgesellschaft mbH and Co KG, Sohnreystr. 21, D-37697 Lauenfoerde (Germany); Vioel, W. [University of Applied Sciences and Arts, Von-Ossietzky-Str. 99, D-37085 Goettingen (Germany)]. E-mail: vioel@hawk-hhg.de

    2006-11-10

    Thin silver layers can be modified by treatment with UV radiation or a plasma discharge. UV treatment at a wavelength of {lambda}=308 -bar nm improves the layer properties, thus leading to an enhancement of the layers IR reflectivity. For the purpose of in situ-measurement the sheet resistance is recorded during the process. Due to the Hagen-Rubens-Relation [E. Hagen, H. Rubens, Ann. Phys. 11 (1903) 873]-bar the sheet resistance is linked to the IR reflectivity of thin metal-films. A pretreatment of uncoated glass using a dielectric barrier discharge activates and cleans its surface, thus leading to an increase in adhesion of thin layers.

  15. UV and plasma treatment of thin silver layers and glass surfaces

    International Nuclear Information System (INIS)

    Hluschi, J.H.; Helmke, A.; Roth, P.; Boewer, R.; Herlitze, L.; Vioel, W.

    2006-01-01

    Thin silver layers can be modified by treatment with UV radiation or a plasma discharge. UV treatment at a wavelength of λ=308 -bar nm improves the layer properties, thus leading to an enhancement of the layers IR reflectivity. For the purpose of in situ-measurement the sheet resistance is recorded during the process. Due to the Hagen-Rubens-Relation [E. Hagen, H. Rubens, Ann. Phys. 11 (1903) 873]-bar the sheet resistance is linked to the IR reflectivity of thin metal-films. A pretreatment of uncoated glass using a dielectric barrier discharge activates and cleans its surface, thus leading to an increase in adhesion of thin layers

  16. Approximate reflection coefficients for a thin VTI layer

    KAUST Repository

    Hao, Qi; Stovas, Alexey

    2017-01-01

    We present an approximate method to derive simple expressions for the reflection coefficients of P- and SV-waves for a thin transversely isotropic layer with a vertical symmetry axis (VTI) embedded in a homogeneous VTI background. The layer

  17. Fabrication of ATO/Graphene Multi-layered Transparent Conducting Thin Films

    Science.gov (United States)

    Li, Na; Chen, Fei; Shen, Qiang; Wang, Chuanbin; Zhang, Lianmeng

    2013-03-01

    A novel transparent conducting oxide based on the ATO/graphene multi-layered thin films has been developed to satisfy the application of transparent conductive electrode in solar cells. The ATO thin films are prepared by pulsed laser deposition method with high quality, namely the sheet resistance of 49.5 Ω/sq and average transmittance of 81.9 %. The prepared graphene sheet is well reduced and shows atomically thin, spotty distributed appearance on the top of the ATO thin films. The XRD and optical micrographs are used to confirm the successfully preparation of the ATO/graphene multi-layered thin films. The Hall measurements and UV-Vis spectrophotometer are conducted to evaluate the sheet resistance and optical transmittance of the innovative structure. It is found that graphene can improve the electrical properties of the ATO thin films with little influence on the optical transmittance.

  18. Fabrication of ATO/Graphene Multi-layered Transparent Conducting Thin Films

    International Nuclear Information System (INIS)

    Li Na; Chen Fei; Shen Qiang; Wang Chuanbin; Zhang Lianmeng

    2013-01-01

    A novel transparent conducting oxide based on the ATO/graphene multi-layered thin films has been developed to satisfy the application of transparent conductive electrode in solar cells. The ATO thin films are prepared by pulsed laser deposition method with high quality, namely the sheet resistance of 49.5 Ω/sq and average transmittance of 81.9 %. The prepared graphene sheet is well reduced and shows atomically thin, spotty distributed appearance on the top of the ATO thin films. The XRD and optical micrographs are used to confirm the successfully preparation of the ATO/graphene multi-layered thin films. The Hall measurements and UV-Vis spectrophotometer are conducted to evaluate the sheet resistance and optical transmittance of the innovative structure. It is found that graphene can improve the electrical properties of the ATO thin films with little influence on the optical transmittance.

  19. A general analytical equation for phase diagrams of an N-layer ferroelectric thin film with two surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Lu, Z X; Teng, B H; Rong, Y H; Lu, X H; Yang, X [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)], E-mail: phytbh@163.com

    2010-03-15

    Within the framework of effective-field theory with correlations, the phase diagrams of an N-layer ferroelectric thin film with two surface layers are studied by the differential operator technique based on the spin-1/2 transverse Ising model. A general analytical equation for the phase diagram of a ferroelectric thin film with arbitrary layer number as well as exchange interactions and transverse fields is derived, and then the effects of exchange interactions and transverse fields on phase diagrams are discussed for an arbitrary layer number N. Meanwhile, the crossover features, from the ferroelectric-dominant phase diagram (FPD) to the paraelectric-dominant phase diagram (PPD), for various parameters of an N-layer ferroelectric thin film with two surface layers are investigated. As a result, an N-independent common intersection point equation is obtained, and the three-dimensional curved surfaces for the crossover values are constructed. In comparison with the usual mean-field approximation, the differential operator technique with correlations reduces to some extent the ferroelectric features of a ferroelectric thin film.

  20. All-gas-phase synthesis of UiO-66 through modulated atomic layer deposition

    Science.gov (United States)

    Lausund, Kristian Blindheim; Nilsen, Ola

    2016-11-01

    Thin films of stable metal-organic frameworks (MOFs) such as UiO-66 have enormous application potential, for instance in microelectronics. However, all-gas-phase deposition techniques are currently not available for such MOFs. We here report on thin-film deposition of the thermally and chemically stable UiO-66 in an all-gas-phase process by the aid of atomic layer deposition (ALD). Sequential reactions of ZrCl4 and 1,4-benzenedicarboxylic acid produce amorphous organic-inorganic hybrid films that are subsequently crystallized to the UiO-66 structure by treatment in acetic acid vapour. We also introduce a new approach to control the stoichiometry between metal clusters and organic linkers by modulation of the ALD growth with additional acetic acid pulses. An all-gas-phase synthesis technique for UiO-66 could enable implementations in microelectronics that are not compatible with solvothermal synthesis. Since this technique is ALD-based, it could also give enhanced thickness control and the possibility to coat irregular substrates with high aspect ratios.

  1. Thin-layer voltammetry of soluble species on screen-printed electrodes: proof of concept.

    Science.gov (United States)

    Botasini, S; Martí, A C; Méndez, E

    2016-10-17

    Thin-layer diffusion conditions were accomplished on screen-printed electrodes by placing a controlled-weight onto the cast solution and allowing for its natural spreading. The restricted diffusive conditions were assessed by cyclic voltammetry at low voltage scan rates and electrochemical impedance spectroscopy. The relationship between the weight exerted over the drop and the thin-layer thickness achieved was determined, in such a way that the simple experimental set-up designed for this work could be developed into a commercial device with variable control of the thin-layer conditions. The experimental results obtained resemble those reported for the voltammetric features of electroactive soluble species employing electrodes modified with carbon nanotubes or graphene layers, suggesting that the attainment of the benefits reported for these nanomaterials could be done simply by forcing the solution to spread over the screen-printed electrodic system to form a thin layer solution. The advantages of thin-layer voltammetry in the kinetic characterization of quasi-reversible and irreversible processes are highlighted.

  2. Studies of oxide-based thin-layered heterostructures by X-ray scattering methods

    Energy Technology Data Exchange (ETDEWEB)

    Durand, O. [Thales Research and Technology France, Route Departementale 128, F-91767 Palaiseau Cedex (France)]. E-mail: olivier.durand@thalesgroup.com; Rogers, D. [Nanovation SARL, 103 bis rue de Versailles 91400 Orsay (France); Universite de Technologie de Troyes, 10-12 rue Marie Curie, 10010 (France); Teherani, F. Hosseini [Nanovation SARL, 103 bis rue de Versailles 91400 Orsay (France); Andrieux, M. [LEMHE, ICMMOCNRS-UMR 8182, Universite d' Orsay, Batiment 410, 91410 Orsay (France); Modreanu, M. [Tyndall National Institute, Lee Maltings, Prospect Row, Cork (Ireland)

    2007-06-04

    Some X-ray scattering methods (X-ray reflectometry and Diffractometry) dedicated to the study of thin-layered heterostructures are presented with a particular focus, for practical purposes, on the description of fast, accurate and robust techniques. The use of X-ray scattering metrology as a routinely working non-destructive testing method, particularly by using procedures simplifying the data-evaluation, is emphasized. The model-independent Fourier-inversion method applied to a reflectivity curve allows a fast determination of the individual layer thicknesses. We demonstrate the capability of this method by reporting X-ray reflectometry study on multilayered oxide structures, even when the number of the layers constitutive of the stack is not known a-priori. Fast Fourier transform-based procedure has also been employed successfully on high resolution X-ray diffraction profiles. A study of the reliability of the integral-breadth methods in diffraction line-broadening analysis applied to thin layers, in order to determine coherent domain sizes, is also reported. Examples from studies of oxides-based thin-layers heterostructures will illustrate these methods. In particular, X-ray scattering studies performed on high-k HfO{sub 2} and SrZrO{sub 3} thin-layers, a (GaAs/AlOx) waveguide, and a ZnO thin-layer are reported.

  3. Atomic layer deposition of copper thin film and feasibility of deposition on inner walls of waveguides

    Science.gov (United States)

    Yuqing, XIONG; Hengjiao, GAO; Ni, REN; Zhongwei, LIU

    2018-03-01

    Copper thin films were deposited by plasma-enhanced atomic layer deposition at low temperature, using copper(I)-N,N‧-di-sec-butylacetamidinate as a precursor and hydrogen as a reductive gas. The influence of temperature, plasma power, mode of plasma, and pulse time, on the deposition rate of copper thin film, the purity of the film and the step coverage were studied. The feasibility of copper film deposition on the inner wall of a carbon fibre reinforced plastic waveguide with high aspect ratio was also studied. The morphology and composition of the thin film were studied by atomic force microscopy and x-ray photoelectron spectroscopy, respectively. The square resistance of the thin film was also tested by a four-probe technique. On the basis of on-line diagnosis, a growth mechanism of copper thin film was put forward, and it was considered that surface functional group played an important role in the process of nucleation and in determining the properties of thin films. A high density of plasma and high free-radical content were helpful for the deposition of copper thin films.

  4. Crystallinity Improvement of Zn O Thin Film on Different Buffer Layers Grown by MBE

    International Nuclear Information System (INIS)

    Shao-Ying, T.; Che-Hao, L.; Wen-Ming, Ch.; Yang, C.C.; Po-Ju, Ch.; Hsiang-Chen, W.; Ya-Ping, H.

    2012-01-01

    The material and optical properties of Zn O thin film samples grown on different buffer layers on sapphire substrates through a two-step temperature variation growth by molecular beam epitaxy were investigated. The thin buffer layer between the Zn O layer and the sapphire substrate decreased the lattice mismatch to achieve higher quality Zn O thin film growth. A Ga N buffer layer slightly increased the quality of the Zn O thin film, but the threading dislocations still stretched along the c-axis of the Ga N layer. The use of Mg O as the buffer layer decreased the surface roughness of the Zn O thin film by 58.8% due to the suppression of surface cracks through strain transfer of the sample. From deep level emission and rocking curve measurements it was found that the threading dislocations play a more important role than oxygen vacancies for high-quality Zn O thin film growth.

  5. Crystallinity Improvement of ZnO Thin Film on Different Buffer Layers Grown by MBE

    Directory of Open Access Journals (Sweden)

    Shao-Ying Ting

    2012-01-01

    Full Text Available The material and optical properties of ZnO thin film samples grown on different buffer layers on sapphire substrates through a two-step temperature variation growth by molecular beam epitaxy were investigated. The thin buffer layer between the ZnO layer and the sapphire substrate decreased the lattice mismatch to achieve higher quality ZnO thin film growth. A GaN buffer layer slightly increased the quality of the ZnO thin film, but the threading dislocations still stretched along the c-axis of the GaN layer. The use of MgO as the buffer layer decreased the surface roughness of the ZnO thin film by 58.8% due to the suppression of surface cracks through strain transfer of the sample. From deep level emission and rocking curve measurements it was found that the threading dislocations play a more important role than oxygen vacancies for high-quality ZnO thin film growth.

  6. Microstructure and mechanical behavior of a shape memory Ni-Ti bi-layer thin film

    Energy Technology Data Exchange (ETDEWEB)

    Mohri, Maryam [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany); Nili-Ahmadabadi, Mahmoud, E-mail: nili@ut.ac.ir [School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, Tehran (Iran, Islamic Republic of); Center of Excellence for High Performance Materials, University of Tehran, Tehran (Iran, Islamic Republic of); Ivanisenko, Julia [Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany); Schwaiger, Ruth [Karlsruhe Institute of Technology, Institute for Applied Materials, 76021 Karlsruhe (Germany); Hahn, Horst; Chakravadhanula, Venkata Sai Kiran [Karlsruhe Institute of Technology, Institute of Nanotechnology, 76021 Karlsruhe (Germany)

    2015-05-29

    Two different single-layers and a bi-layer Ni-Ti thin films with chemical compositions of Ni{sub 45}Ti{sub 50}Cu{sub 5}, Ni{sub 50.8}Ti{sub 49.2} and Ni{sub 50.8}Ti{sub 49.2}/Ni{sub 45}Ti{sub 50}Cu{sub 5} (numbers indicate at.%) determined by energy dispersive X-ray spectroscopy were deposited on Si (111) substrates using DC magnetron sputtering. The structures, surface morphology and transformation temperatures of annealed thin films at 500 °C for 15 min and 1 h were studied using grazing incidence X-ray diffraction, transmission electron microscopy (TEM), atomic force microscopy and differential scanning calorimetry (DSC), respectively. Nanoindentation was used to characterize the mechanical properties. The DSC and X-ray diffraction results indicated the austenitic structure of the Ni{sub 50.8}Ti{sub 49.2} and martensitic structure of the Ni{sub 45}Ti{sub 50}Cu{sub 5} thin films while the bi-layer was composed of austenitic and martensitic thin films. TEM study revealed that copper encourages crystallization in the bi-layer such that crystal structure containing nano-precipitates in the Ni{sub 45}Ti{sub 50}Cu{sub 5} layer was detected after 15 min annealing while the Ni{sub 50.8}Ti{sub 49.2} layer crystallized after 60 min at 500 °C. Furthermore, after annealing at 500 °C for 15 min, a precipitate free zone and thin layer amorphous were observed closely to the interface in the top layer. The bi-layer was completely crystallized at 500 °C for 1 h and the orientation of the Ni-rich precipitates indicated a stress gradient in the bi-layer. The bi-layer thin film showed different transformation temperatures and mechanical behavior from the single-layers. The developed bi-layer has different phase transformation temperatures, the higher temperatures of shape memory effect and lower temperature of pseudo-elastic behavior compared to the single-layers. Also, the bi-layer thin film exhibited a combined pseudo-elastic behavior and shape memory effect with a reduced

  7. Thin layer activation techniques in research and industry

    International Nuclear Information System (INIS)

    Conlon, T.W.

    1993-01-01

    The following key application of thin layer activation technique (TLA) are discussed: ion-erosion in fusion tokamaks, bio-engineering technology, automobile industry. Future developments of the techniques, such as fission fragment TLA, multi-layer TLA and recoil implantation are discussed as well. 7 refs, 6 figs, 1 tab

  8. Microcrystalline silicon carbide alloys prepared with HWCVD as highly transparent and conductive window layers for thin film solar cells

    International Nuclear Information System (INIS)

    Finger, F.; Astakhov, O.; Bronger, T.; Carius, R.; Chen, T.; Dasgupta, A.; Gordijn, A.; Houben, L.; Huang, Y.; Klein, S.; Luysberg, M.; Wang, H.; Xiao, L.

    2009-01-01

    Crystalline silicon carbide alloys have a very high potential as transparent conductive window layers in thin-film solar cells provided they can be prepared in thin-film form and at compatible deposition temperatures. The low-temperature deposition of such material in microcrystalline form (μc-Si:C:H) was realized by use of monomethylsilane precursor gas diluted in hydrogen with the Hot-Wire Chemical Vapor Deposition process. A wide range of deposition parameters has been investigated and the structural, electronic and optical properties of the μc-SiC:H thin films have been studied. The material, which is strongly n-type from unintentional doping, has been used as window layer in n-side illuminated microcrystalline silicon solar cells. High short-circuit current densities are obtained due to the high transparency of the material resulting in a maximum solar cell conversion efficiency of 9.2%.

  9. Photoluminescence-based quality control for thin film absorber layers of photovoltaic devices

    Science.gov (United States)

    Repins, Ingrid L.; Kuciauskas, Darius

    2015-07-07

    A time-resolved photoluminescence-based system providing quality control during manufacture of thin film absorber layers for photovoltaic devices. The system includes a laser generating excitation beams and an optical fiber with an end used both for directing each excitation beam onto a thin film absorber layer and for collecting photoluminescence from the absorber layer. The system includes a processor determining a quality control parameter such as minority carrier lifetime of the thin film absorber layer based on the collected photoluminescence. In some implementations, the laser is a low power, pulsed diode laser having photon energy at least great enough to excite electron hole pairs in the thin film absorber layer. The scattered light may be filterable from the collected photoluminescence, and the system may include a dichroic beam splitter and a filter that transmit the photoluminescence and remove scattered laser light prior to delivery to a photodetector and a digital oscilloscope.

  10. Mathematical modeling of thin layer drying of pistachio by using solar energy

    Energy Technology Data Exchange (ETDEWEB)

    Midilli, A [University of Nigde (Turkey). Dept. of Mechanical Engineering; Kucuk, H [Karadeniz Technical Univ., Trabzon (Turkey). Dept. of Mechanical Engineering

    2003-05-01

    This paper presents a mathematical modeling of thin layer forced and natural solar drying of shelled and unshelled pistachio samples. In order to estimate and select the suitable form of solar drying curves, eight different mathematical models, which are semi-theoretical and/or empirical, were applied to the experimental data and compared according to their coefficients of determination (r,{chi}{sup 2}), which were predicted by non-linear regression analysis using the Statistical Computer Program. It was deduced that the logarithmic model could sufficiently describe thin layer forced solar drying of shelled and unshelled pistachio, while the two term model could define thin layer natural solar drying of these products in evaluation by considering the coefficients of determination, r{sub sfsd}=0.9983, {chi}{sup 2}{sub sfsd}=2.697x10{sup -5}; r{sub ufsd}=0.9990, {chi}{sup 2}{sub ufsd}=1.639x10{sup -5} for thin layer forced solar drying and r{sub snsd}=0.9990, {chi}{sup 2}{sub snsd}=3.212x10{sup -6}; r{sub unsd}=0.9970, {chi}{sup 2}{sub unsd}=4.590x10{sup -5} for thin layer natural solar drying. (Author)

  11. Controlling effective aspect ratio and packing of clay with pH for improved gas barrier in nanobrick wall thin films.

    Science.gov (United States)

    Hagen, David A; Saucier, Lauren; Grunlan, Jaime C

    2014-12-24

    Polymer-clay thin films constructed via layer-by-layer (LbL) assembly, with a nanobrick wall structure (i.e., clay nanoplatelets as bricks surrounded by a polyelectrolyte mortar), are known to exhibit a high oxygen barrier. Further barrier improvement can be achieved by lowering the pH of the clay suspension in the polyethylenimine (PEI) and montmorillonite (MMT) system. In this case, the charge of the deposited PEI layer is increased in the clay suspension environment, which causes more clay to be deposited. At pH 4, MMT platelets deposit with near perfect ordering, observed with transmission electron microscopy, enabling a 5× improvement in the gas barrier for a 10 PEI/MMT bilayer thin film (85 nm) relative to the same film made with pH 10 MMT. This improved gas barrier approaches that achieved with much higher aspect ratio vermiculite clay. In essence, lower pH is generating a higher effective aspect ratio for MMT due to greater induced surface charge in the PEI layers, which causes heavier clay deposition. These flexible, transparent nanocoatings have a wide range of possible applications, from food and electronics packaging to pressurized bladders.

  12. THIN FILM-BASED SENSOR FOR MOTOR VEHICLE EXHAUST GAS, NH3, AND CO DETECTION

    Directory of Open Access Journals (Sweden)

    S. Sujarwata

    2016-10-01

    Full Text Available A copper phthalocyanine (CuPc thin film based gas sensor with FET structure and channel length 100 μm has been prepared by VE method and lithography technique to detect NH3, motor cycle exhaust gases and CO. CuPc material layer was deposited on SiO2 by the vacuum evaporator (VE method at room temperature and pressure of 8 x10-4 Pa. The stages of manufacturing gas sensor were Si/SiO2 substrate blenching with ethanol in an ultrasonic cleaner, source, and drain electrodes deposition on the substrate by using a vacuum evaporator, thin film deposition between the source/drain and gate deposition. The sensor response times to NH3, motorcycle exhaust gases and CO were 75 s, 135 s, and 150, respectively. The recovery times were 90 s, 150 s and 225, respectively. It is concluded that the CuPc thin film-based gas sensor with FET structure is the best sensor to detect the NH3 gas.Sensor gas berbasis film tipis copper phthalocyanine (CuPc berstruktur FET dengan panjang channel 100 μm telah dibuatdengan metode VE dan teknik lithography untuk mendeteksi NH3 gas buang kendaraan bermotor dan CO. Lapisan bahan CuPc dideposisikan pada permukaan silikon dioksida (SiO2 dengan metode vacuum evaporator (VE pada temperatur ruang dengan tekanan 8 x10-4 Pa. Tahapan pembuatan sensor gas adalah pencucian substrat Si/SiO2 dengan etanol dalam ultrasonic cleaner, deposisi elektroda source dan drain di atas substrat dengan metode vacuum evaporator, deposisi film tipis diantara source/drain dan deposisi gate. Waktu tanggap sensor terhadap NH3, gas buang kendaraan bermotor dan CO berturut-turut adalah 75 s, 135 s,dan 150 s. Waktu pemulihan berturut-turut adalah 90 s, 150 s,dan 225 s. Disimpulkan bahwa sensor gas berstruktur FET berbasis film tipis CuPc merupakan sensor paling baik untuk mendeteksi adanya gas NH3.

  13. Critical Transitions in Thin Layer Turbulence

    Science.gov (United States)

    Benavides, Santiago; Alexakis, Alexandros

    2017-11-01

    We investigate a model of thin layer turbulence that follows the evolution of the two-dimensional motions u2 D (x , y) along the horizontal directions (x , y) coupled to a single Fourier mode along the vertical direction (z) of the form uq (x , y , z) = [vx (x , y) sin (qz) ,vy (x , y) sin (qz) ,vz (x , y) cos (qz) ] , reducing thus the system to two coupled, two-dimensional equations. Its reduced dimensionality allows a thorough investigation of the transition from a forward to an inverse cascade of energy as the thickness of the layer H = π / q is varied.Starting from a thick layer and reducing its thickness it is shown that two critical heights are met (i) one for which the forward unidirectional cascade (similar to three-dimensional turbulence) transitions to a bidirectional cascade transferring energy to both small and large scales and (ii) one for which the bidirectional cascade transitions to a unidirectional inverse cascade when the layer becomes very thin (similar to two-dimensional turbulence). The two critical heights are shown to have different properties close to criticality that we are able to analyze with numerical simulations for a wide range of Reynolds numbers and aspect ratios. This work was Granted access to the HPC resources of MesoPSL financed by the Region Ile de France and the project Equip@Meso (reference ANR-10-EQPX-29-01).

  14. Ultra-thin Metal and Dielectric Layers for Nanophotonic Applications

    DEFF Research Database (Denmark)

    Shkondin, Evgeniy; Leandro, Lorenzo; Malureanu, Radu

    2015-01-01

    In our talk we first give an overview of the various thin films used in the field of nanophotonics. Then we describe our own activity in fabrication and characterization of ultra-thin films of high quality. We particularly focus on uniform gold layers having thicknesses down to 6 nm fabricated by......-beam deposition on dielectric substrates and Al-oxides/Ti-oxides multilayers prepared by atomic layer deposition in high aspect ratio trenches. In the latter case we show more than 1:20 aspect ratio structures can be achieved....

  15. Ion exchange of alkaline metals on the thin-layer zinc ferrocyanide

    International Nuclear Information System (INIS)

    Betenekov, N.D.; Buklanov, G.V.; Ipatova, E.G.; Korotkin, Yu.S.

    1991-01-01

    Basic regularities of interphase distribution in the system of thin-layer sorbent on the basis of mixed zinc ferrocyanide (FZ)-alkaline metal solution (Na, K, Rb, Cs, Fr) in the column chromatography made are studied. It is established that interphase distribution of microgram amounts of alkaline metals in the systems thin-layer FZ-NH 4 NO 3 electrolyte solutions is of ion-exchange character and subjected to of law effective mass. It is shown that FZ thin-layer material is applicable for effective chromatographic separation of alkaline metal trace amounts. An approach to the choice of a conditions of separate elution of Na, K, Rb, Cs, Fr in the column chromatography mode

  16. Highly Sensitive Bulk Silicon Chemical Sensors with Sub-5 nm Thin Charge Inversion Layers.

    Science.gov (United States)

    Fahad, Hossain M; Gupta, Niharika; Han, Rui; Desai, Sujay B; Javey, Ali

    2018-03-27

    There is an increasing demand for mass-producible, low-power gas sensors in a wide variety of industrial and consumer applications. Here, we report chemical-sensitive field-effect-transistors (CS-FETs) based on bulk silicon wafers, wherein an electrostatically confined sub-5 nm thin charge inversion layer is modulated by chemical exposure to achieve a high-sensitivity gas-sensing platform. Using hydrogen sensing as a "litmus" test, we demonstrate large sensor responses (>1000%) to 0.5% H 2 gas, with fast response (<60 s) and recovery times (<120 s) at room temperature and low power (<50 μW). On the basis of these performance metrics as well as standardized benchmarking, we show that bulk silicon CS-FETs offer similar or better sensing performance compared to emerging nanostructures semiconductors while providing a highly scalable and manufacturable platform.

  17. Preparation and characterization of indium tin oxide thin films for their application as gas sensors

    International Nuclear Information System (INIS)

    Vaishnav, V.S.; Patel, P.D.; Patel, N.G.

    2005-01-01

    The structural and electrical properties of indium tin oxide (In 2 O 3 /SnO 2 ) thin films grown using direct evaporation technique on various substrates at different temperatures were studied. The effect of annealing, of films with different weight percent concentration of SnO 2 in In 2 O 3 and of different thickness on the structural and electrical properties were studied and optimized for use as gas sensor. The stability of the films against time and temperature variations was studied. The effect of the catalytic layers on the sensor microstructure and its performance towards the gas sensing application was observed

  18. Characterization of the porosity of silicon nitride thin layers by Electrochemical Impedance Spectroscopy

    International Nuclear Information System (INIS)

    Barrès, T.; Tribollet, B.; Stephan, O.; Montigaud, H.; Boinet, M.; Cohin, Y.

    2017-01-01

    Silicon nitride thin films are widely used as diffusion barriers within stacks in the glass industry but turn out to be porous at the nanometric scale. EIS measurements were conducted on SiNx thin layers deposited on a gold layer. An electrochemical model was established to fit the EIS measurements making use of data from other complementary techniques. In particular, Transmission Electron Microscopy was performed on these thin layers to determine the diameter and the qualitative morphology of the pores. A quantitative determination of the through-porosity of the layer was deduced from the EIS model and was in good agreement with TEM measurements. Moreover, combining EIS with local observations enabled inhomogeneities in the layer to be probed by highlighting a specific region in the layer.

  19. Studies of void growth in a thin ductile layer between ceramics

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    1997-01-01

    The growth of voids in a thin ductile layer between ceramics is analysed numerically, using an axisymmetric cell model to represent an array of uniformly distributed spherical voids at the central plane of the layer. The purpose is to determine the full traction-separation law relevant to crack...... growth by a ductile mechanism along the thin layer. Plastic flow in the layer is highly constrained by the ceramics, so that a high. level of triaxial tension develops, leading in some cases to cavitation instabilities. The computations are continued to a state near the occurrence of void coalescence....

  20. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.; Hoogland, Sjoerd; Adachi, Michael M.; Kanjanaboos, Pongsakorn; Wong, Chris T. O.; McDowell, Jeffrey J.; Xu, Jixian; Voznyy, Oleksandr; Ning, Zhijun; Houtepen, Arjan J.; Sargent, Edward H.

    2014-01-01

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  1. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.

    2014-10-30

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  2. Polymer thin film as coating layer to prevent corrosion of metal/metal oxide film

    Science.gov (United States)

    Sarkar, Suman; Kundu, Sarathi

    2018-04-01

    Thin film of polymer is used as coating layer and the corrosion of metal/metal oxide layer is studied with the variation of the thickness of the coating layer. The thin layer of polystyrene is fabricated using spin coating method on copper oxide (CuO) film which is deposited on glass substrate using DC magnetron sputtering technique. Thickness of the polystyrene and the CuO layers are determined using X-ray reflectivity (XRR) technique. CuO thin films coated with the polystyrene layer are exposed to acetic acid (2.5 v/v% aqueous CH3COOH solution) environments and are subsequently analyzed using UV-Vis spectroscopy and atomic force microscopy (AFM). Surface morphology of the film before and after interaction with the acidic environment is determined using AFM. Results obtained from the XRR and UV-Vis spectroscopy confirm that the thin film of polystyrene acts as an anticorrosion coating layer and the strength of the coating depends upon the polymer layer thickness at a constant acid concentration.

  3. Inverted fractal analysis of TiO{sub x} thin layers grown by inverse pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Égerházi, L., E-mail: egerhazi.laszlo@gmail.com [University of Szeged, Faculty of Medicine, Department of Medical Physics and Informatics, Korányi fasor 9., H-6720 Szeged (Hungary); Smausz, T. [University of Szeged, Faculty of Science, Department of Optics and Quantum Electronics, Dóm tér 9., H-6720 Szeged (Hungary); Bari, F. [University of Szeged, Faculty of Medicine, Department of Medical Physics and Informatics, Korányi fasor 9., H-6720 Szeged (Hungary)

    2013-08-01

    Inverted fractal analysis (IFA), a method developed for fractal analysis of scanning electron microscopy images of cauliflower-like thin films is presented through the example of layers grown by inverse pulsed laser deposition (IPLD). IFA uses the integrated fractal analysis module (FracLac) of the image processing software ImageJ, and an objective thresholding routine that preserves the characteristic features of the images, independently of their brightness and contrast. IFA revealed f{sub D} = 1.83 ± 0.01 for TiO{sub x} layers grown at 5–50 Pa background pressures. For a series of images, this result was verified by evaluating the scaling of the number of still resolved features on the film, counted manually. The value of f{sub D} not only confirms the fractal structure of TiO{sub x} IPLD thin films, but also suggests that the aggregation of plasma species in the gas atmosphere may have only limited contribution to the deposition.

  4. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Nurhandoko, Bagus Endar B., E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com [Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4" t" hfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia); Susilowati, E-mail: bagusnur@bdg.centrin.net.id, E-mail: bagusnur@rock-fluid.com [Rock Fluid Imaging Lab., Bandung (Indonesia)

    2015-04-16

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia.

  5. Amplitude various angles (AVA) phenomena in thin layer reservoir: Case study of various reservoirs

    International Nuclear Information System (INIS)

    thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" data-affiliation=" (Wave Inversion and Subsurface Fluid Imaging Research Laboratory (WISFIR), Basic Science Center A 4thfloor, Physics Dept., FMIPA, Institut Teknologi Bandung (Indonesia); Rock Fluid Imaging Lab., Bandung (Indonesia))" >Nurhandoko, Bagus Endar B.; Susilowati

    2015-01-01

    Amplitude various offset is widely used in petroleum exploration as well as in petroleum development field. Generally, phenomenon of amplitude in various angles assumes reservoir’s layer is quite thick. It also means that the wave is assumed as a very high frequency. But, in natural condition, the seismic wave is band limited and has quite low frequency. Therefore, topic about amplitude various angles in thin layer reservoir as well as low frequency assumption is important to be considered. Thin layer reservoir means the thickness of reservoir is about or less than quarter of wavelength. In this paper, I studied about the reflection phenomena in elastic wave which considering interference from thin layer reservoir and transmission wave. I applied Zoeppritz equation for modeling reflected wave of top reservoir, reflected wave of bottom reservoir, and also transmission elastic wave of reservoir. Results show that the phenomena of AVA in thin layer reservoir are frequency dependent. Thin layer reservoir causes interference between reflected wave of top reservoir and reflected wave of bottom reservoir. These phenomena are frequently neglected, however, in real practices. Even though, the impact of inattention in interference phenomena caused by thin layer in AVA may cause inaccurate reservoir characterization. The relation between classes of AVA reservoir and reservoir’s character are different when effect of ones in thin reservoir and ones in thick reservoir are compared. In this paper, I present some AVA phenomena including its cross plot in various thin reservoir types based on some rock physics data of Indonesia

  6. Improved ITO thin films for photovoltaic applications with a thin ZnO layer by sputtering

    International Nuclear Information System (INIS)

    Herrero, J.; Guillen, C.

    2004-01-01

    The improvement of the optical and electrical characteristics of indium tin oxide (ITO) layers is pursued to achieve a higher efficiency in its application as frontal electrical contacts in thin film photovoltaic devices. In order to take advantage of the polycrystalline structure of ZnO films as growth support, the properties of ITO layers prepared at room temperature by sputtering onto bare and ZnO-coated substrates have been analyzed using X-ray diffraction, optical and electrical measurements. It has been found that by inserting a thin ZnO layer, the ITO film resistivity can be reduced as compared to that of a single ITO film with similar optical transmittance. The electrical quality improvement is related to ITO grain growth enhancement onto the polycrystalline ZnO underlayer

  7. Layer-by-layer deposition of nanostructured CsPbBr3 perovskite thin films

    Science.gov (United States)

    Reshetnikova, A. A.; Matyushkin, L. B.; Andronov, A. A.; Sokolov, V. S.; Aleksandrova, O. A.; Moshnikov, V. A.

    2017-11-01

    Layer-by-layer deposition of nanostructured perovskites cesium lead halide thin films is described. The method of deposition is based on alternate immersion of the substrate in the precursor solutions or colloidal solution of nanocrystals and methyl acetate/lead nitrate solution using the device for deposition of films by SILAR and dip-coating techniques. An example of obtaining a photosensitive structure based on nanostructures of ZnO nanowires and layers of CsBbBr3 nanocrystals is also shown.

  8. Diblock Copolymer/Layered Silicate Nanocomposite Thin Film Stability

    Science.gov (United States)

    Limary, Ratchana; Green, Peter

    2000-03-01

    The stability of thin film symmetric diblock copolymers blended with layered silicate nanocomposites were examined using a combination of optical microscopy, atomic force microscopy (AFM), and X-ray diffraction (XRD). Two cases were examined PS-b-PMMA (polystyrene-b-polymethylacrylate) blended with montmorillonite stoichiometrically loaded with alkyl ammonium ions, OLS(S), and PS-b-PMMA blended with montmorillonite loaded with excess alkyl ammonium ions, OLS(E). XRD spectra show an increase in the gallery spacing of the OLSs, indicating that the copolymer chains have intercalated the layered silicates. AFM images reveal a distinct difference between the two nanocomposite thin films: regions in the vicinity of OLS(S) aggregates were depleted of material, while in the vicinity of OLS(E) aggregates, dewetting of the substrate occurred. We show that the stability of the copolymer/OLS nanocomposite films is determined by the enthalpic driving force associated with intercalation of the copolymer chains into the galleries of the modified OLS layers and by the substrate/organic modifier interactions.

  9. Controllable growth of stable germanium dioxide ultra-thin layer by means of capacitively driven radio frequency discharge

    Energy Technology Data Exchange (ETDEWEB)

    Svarnas, P., E-mail: svarnas@ece.upatras.gr [High Voltage Laboratory, Department of Electrical and Computer Engineering, University of Patras, Rion 26 504, Patras (Greece); Botzakaki, M.A. [Department of Physics, University of Patras, Rion 26 504 (Greece); Skoulatakis, G.; Kennou, S.; Ladas, S. [Surface Science Laboratory, Department of Chemical Engineering, University of Patras, Rion 26 504 (Greece); Tsamis, C. [NCSR “Demokritos”, Institute of Advanced Materials, Physicochemical Processes, Nanotechnology & Microsystems, Aghia Paraskevi 15 310, Athens (Greece); Georga, S.N.; Krontiras, C.A. [Department of Physics, University of Patras, Rion 26 504 (Greece)

    2016-01-29

    It is well recognized that native oxide of germanium is hygroscopic and water soluble, while germanium dioxide is thermally unstable and it is converted to volatile germanium oxide at approximately 400 °C. Different techniques, implementing quite complicated plasma setups, gas mixtures and substrate heating, have been used in order to grow a stable germanium oxide. In the present work a traditional “RF diode” is used for germanium oxidation by cold plasma. Following growth, X-ray photoelectron spectroscopy demonstrates that traditional capacitively driven radio frequency discharges, using molecular oxygen as sole feedstock gas, provide the possibility of germanium dioxide layer growth in a fully reproducible and controllable manner. Post treatment ex-situ analyses on day-scale periods disclose the stability of germanium oxide at room ambient conditions, offering thus the ability to grow (ex-situ) ultra-thin high-k dielectrics on top of germanium oxide layers. Atomic force microscopy excludes any morphological modification in respect to the bare germanium surface. These results suggest a simple method for a controllable and stable germanium oxide growth, and contribute to the challenge to switch to high-k dielectrics as gate insulators for high-performance metal-oxide-semiconductor field-effect transistors and to exploit in large scale the superior properties of germanium as an alternative channel material in future technology nodes. - Highlights: • Simple one-frequency reactive ion etcher develops GeO{sub 2} thin layers controllably. • The layers remain chemically stable at ambient conditions over day-scale periods. • The layers are unaffected by the ex-situ deposition of high-k dielectrics onto them. • GeO{sub 2} oxidation and high-k deposition don't affect the Ge morphology significantly. • These conditions contribute to improved Ge-based MOS structure fabrication.

  10. Thin-layer electrochemistry of ferrocenylbenzene derivatives: Intramolecular electronic communication

    International Nuclear Information System (INIS)

    Wang, Michael C.P.; Li Yunchao; Merbouh, Nabyl; Yu, Hua-Zhong

    2008-01-01

    Three arylferrocene derivatives, ferrocenylbenzene (MFcB), 1,3-diferrocenylbenzene (DFcB), and 1,3,5-triferrocenylbenzene (TFcB), were prepared and their redox properties systematically explored by thin-layer cyclic voltammetry (CV) and differential-pulse voltammetry (DPV). In contrast to conventional CV measurements that produced only a single pair of redox waves for all three compounds, the thin-layer technique discriminated between the multistep electron-transfer processes of DFcB and TFcB. In particular, two and three pairs of symmetric peaks were observed, respectively, when CV curves were recorded at a graphite electrode coated with a DFcB-containing and a TFcB-containing thin film of nitrobenzene and immersed in aqueous sodium perchlorate solution. These results demonstrate that the ferrocenyl moieties attached to the meta-positions of a benzene ring communicate electronically with each other, as a result of their distinct face-to-face orientations

  11. Enhanced electrical properties of dual-layer channel ZnO thin film transistors prepared by atomic layer deposition

    Science.gov (United States)

    Li, Huijin; Han, Dedong; Dong, Junchen; Yu, Wen; Liang, Yi; Luo, Zhen; Zhang, Shengdong; Zhang, Xing; Wang, Yi

    2018-05-01

    The thin film transistors (TFTs) with a dual-layer channel structure combing ZnO thin layer grown at 200 °C and ZnO film grown at 120 °C by atomic layer deposition are fabricated. The dual-layer channel TFT exhibits a low leakage current of 2.8 × 10-13 A, Ion/Ioff ratio of 3.4 × 109, saturation mobility μsat of 12 cm2 V-1 s-1, subthreshold swing (SS) of 0.25 V/decade. The SS value decreases to 0.18 V/decade after the annealing treatment in O2 due to the reduction of the trap states at the channel/dielectric interface and in the bulk channel layer. The enhanced performance obtained from the dual-layer channel TFTs is due to the ability of maintaining high mobility and suppressing the increase in the off-current at the same time.

  12. Outdoor open thin-layer microalgal photobioreactor: potential productivity

    Czech Academy of Sciences Publication Activity Database

    Doucha, Jiří; Lívanský, Karel

    2009-01-01

    Roč. 21, č. 1 (2009), s. 111-117 ISSN 0921-8971 Institutional research plan: CEZ:AV0Z50200510 Keywords : productivity * photobioreactor * thin layer Subject RIV: EE - Microbiology, Virology Impact factor: 1.018, year: 2009

  13. Paraffin wax passivation layer improvements in electrical characteristics of bottom gate amorphous indium–gallium–zinc oxide thin-film transistors

    International Nuclear Information System (INIS)

    Chang, Geng-Wei; Chang, Ting-Chang; Syu, Yong-En; Tsai, Tsung-Ming; Chang, Kuan-Chang; Tu, Chun-Hao; Jian, Fu-Yen; Hung, Ya-Chi; Tai, Ya-Hsiang

    2011-01-01

    In this research, paraffin wax is employed as the passivation layer of the bottom gate amorphous indium–gallium–zinc oxide thin-film transistors (a-IGZO TFTs), and it is formed by sol–gel process in the atmosphere. The high yield and low cost passivation layer of sol–gel process technology has attracted much attention for current flat-panel-display manufacturing. Comparing with passivation-free a-IGZO TFTs, passivated devices exhibit a superior stability against positive gate bias stress in different ambient gas, demonstrating that paraffin wax shows gas-resisting characteristics for a-IGZO TFTs application. Furthermore, light-induced stretch-out phenomenon for paraffin wax passivated device is suppressed. This superior stability of the passivated device was attributed to the reduced total density of states (DOS) including the interfacial and semiconductor bulk trap densities.

  14. Fabrication of Crack-Free Barium Titanate Thin Film with High Dielectric Constant Using Sub-Micrometric Scale Layer-by-Layer E-Jet Deposition

    Directory of Open Access Journals (Sweden)

    Junsheng Liang

    2016-01-01

    Full Text Available Dense and crack-free barium titanate (BaTiO3, BTO thin films with a thickness of less than 4 μm were prepared by using sub-micrometric scale, layer-by-layer electrohydrodynamic jet (E-jet deposition of the suspension ink which is composed of BTO nanopowder and BTO sol. Impacts of the jet height and line-to-line pitch of the deposition on the micro-structure of BTO thin films were investigated. Results show that crack-free BTO thin films can be prepared with 4 mm jet height and 300 μm line-to-line pitch in this work. Dielectric constant of the prepared BTO thin film was recorded as high as 2940 at 1 kHz at room temperature. Meanwhile, low dissipation factor of the BTO thin film of about 8.6% at 1 kHz was also obtained. The layer-by-layer E-jet deposition technique developed in this work has been proved to be a cost-effective, flexible and easy to control approach for the preparation of high-quality solid thin film.

  15. Transparent conductive ZnO layers on polymer substrates: Thin film deposition and application in organic solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Dosmailov, M. [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Leonat, L.N. [Linz Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University Linz, A-4040 Linz (Austria); Patek, J. [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Roth, D.; Bauer, P. [Institute of Experimental Physics, Johannes Kepler University Linz, A-4040 Linz (Austria); Scharber, M.C.; Sariciftci, N.S. [Linz Institute for Organic Solar Cells (LIOS)/Institute of Physical Chemistry, Johannes Kepler University Linz, A-4040 Linz (Austria); Pedarnig, J.D., E-mail: johannes.pedarnig@jku.at [Institute of Applied Physics, Johannes Kepler University Linz, A-4040 Linz (Austria)

    2015-09-30

    Aluminum doped ZnO (AZO) and pure ZnO thin films are grown on polymer substrates by pulsed-laser deposition and the optical, electrical, and structural film properties are investigated. Laser fluence, substrate temperature, and oxygen pressure are varied to obtain transparent, conductive, and stoichiometric AZO layers on polyethylene terephthalate (PET) that are free of cracks. At low fluence (1 J/cm{sup 2}) and low pressure (10{sup −3} mbar), AZO/PET samples of high optical transmission in the visible range, low electrical sheet resistance, and high figure of merit (FOM) are produced. AZO films on fluorinated ethylene propylene have low FOM. The AZO films on PET substrates are used as electron transport layer in inverted organic solar cell devices employing P3HT:PCBM as photovoltaic polymer-fullerene bulk heterojunction. - Highlights: • Aluminum doped and pure ZnO thin films are grown on polyethylene terephthalate. • Growth parameters laser fluence, temperature, and gas pressure are optimized. • AZO films on PET have high optical transmission and electrical conductance (FOM). • Organic solar cells on PET using AZO as electron transport layer are made. • Power conversion efficiency of these OSC devices is measured.

  16. Layer-by-layer thinning of MoSe_2 by soft and reactive plasma etching

    International Nuclear Information System (INIS)

    Sha, Yunfei; Xiao, Shaoqing; Zhang, Xiumei; Qin, Fang; Gu, Xiaofeng

    2017-01-01

    Highlights: • Soft plasma etching technique using SF_6 + N_2 as precursors for layer-by-layer thinning of MoSe_2 was adopted in this work. • Optical microscopy, Raman, photoluminescence and atomic force microscopy measurements were used to confirm the thickness change. • Layer-dependent vibrational and photoluminescence spectra of the etched MoSe_2 were also demonstrated. • Equal numbers of MoSe_2 layers can be removed uniformly without affecting the underlying SiO_2 substrate and the remaining MoSe_2 layers. - Abstract: Two-dimensional (2D) transition metal dichalcogenides (TMDs) like molybdenum diselenide (MoSe_2) have recently gained considerable interest since their properties are complementary to those of graphene. Unlike gapless graphene, the band structure of MoSe_2 can be changed from the indirect band gap to the direct band gap when MoSe_2 changed from bulk material to monolayer. This transition from multilayer to monolayer requires atomic-layer-precision thining of thick MoSe_2 layers without damaging the remaining layers. Here, we present atomic-layer-precision thinning of MoSe_2 nanaosheets down to monolayer by using SF_6 + N_2 plasmas, which has been demonstrated to be soft, selective and high-throughput. Optical microscopy, atomic force microscopy, Raman and photoluminescence spectra suggest that equal numbers of MoSe_2 layers can be removed uniformly regardless of their initial thickness, without affecting the underlying SiO_2 substrate and the remaining MoSe_2 layers. By adjusting the etching rates we can achieve complete MoSe_2 removal and any disired number of MoSe_2 layers including monolayer. This soft plasma etching method is highly reliable and compatible with the semiconductor manufacturing processes, thereby holding great promise for various 2D materials and TMD-based devices.

  17. Thin hybrid pixel assembly fabrication development with backside compensation layer

    Energy Technology Data Exchange (ETDEWEB)

    Bates, R., E-mail: richard.bates@glasgow.ac.uk [Experimental Particle Physics Group, SUPA School of Physics and Astronomy, The University of Glasgow, Glasgow G12 8QQ (United Kingdom); Buttar, C.; McMullen, T.; Cunningham, L.; Ashby, J.; Doherty, F. [Experimental Particle Physics Group, SUPA School of Physics and Astronomy, The University of Glasgow, Glasgow G12 8QQ (United Kingdom); Pares, G.; Vignoud, L.; Kholti, B. [CEA Leti, MINATEC, 17 rue des Martyrs, F38054, Grenoble (France); Vahanen, S. [Advacam Oy, Tietotie 3, 02150 Espoo (Finland)

    2017-02-11

    The ATLAS and CMS experiments will both replace their entire tracking systems for operation at the HL-LHC in 2026. This will include a significantly larger pixel systems, for example, for ATLAS approximately 15 m{sup 2}. To keep the tracker material budget low it is crucial to minimize the mass of the pixel modules via thinning both the sensor and readout chip to about 150 μm each. The bump yield of thin module assemblies using solder based bump bonding can be problematic due to wafer bowing during solder reflow at high temperature. A new bump-bonding process using backside compensation on the readout chip to address the issue of low yield will be presented. The objective is to compensate dynamically the stress of the front side stack by adding a compensating layer to the backside of the wafer. A SiN and Al:Si stack has been chosen for the backside layer. The bow reducing effect of applying a backside compensation layer will be demonstrated using the FE-I4 wafer. The world's first results from assemblies produced from readout wafers thinned to 100 μm with a stress compensation layer are presented with bond yields close to 100% measured using the FE-I4 readout chip.

  18. Thin-layer chromatography can resolve phosphotyrosine, phosphoserine, and phosphothreonine in a protein hydrolyzate

    International Nuclear Information System (INIS)

    Neufeld, E.; Goren, H.J.; Boland, D.

    1989-01-01

    A solution of propionic acid, 1 M ammonium hydroxide, and isopropyl alcohol (45/17.5/17.5, v/v) was the ascending solvent in the separation of phosphotyrosine, phosphothreonine, and phosphoserine by thin-layer chromatography. The immobile phase was cellulose. The relative migrations were 0.44, 0.38, and 0.2, respectively. A previously described thin-layer system consisting of isobutyric acid and 0.5 M ammonium hydroxide (50/30, v/v) gave very similar relative migrations. To determine the usefulness of thin-layer chromatography in phosphoamino acid analysis, the propionic acid/ammonium hydroxide/isopropyl alcohol solution was used to characterize phosphorylated residues in a plasma membrane protein which is a substrate for the insulin receptor kinase, in insulin receptor phosphorylated histone H2B, and in an in vivo phosphorylated 90000-Da protein from IM9 cells. 32 P-labeled proteins were separated by dodecyl sulfate-gel electrophoresis, digested with trypsin, and then hydrolyzed with 6 N HCl, 2 h, 110 degrees C. Following thin-layer chromatography of the hydrolyzates and autoradiography, phosphotyrosine was detected in insulin receptor substrates, and phosphoserine and phosphothreonine were found in the in vivo-phosphorylated protein. This study supports previous reports about the practicality of thin-layer chromatography in phosphoamino acid analysis and it demonstrates that a propionic acid, ammonium hydroxide, isoprophyl alcohol solution may be a useful ascending solvent mixture for this purpose

  19. (AJST) THIN- LAYER DRYING OF DICED CASSAVA ROOTS

    African Journals Online (AJOL)

    opiyo

    effect of drying temperature on thin-layer drying was high, followed by initial moisture .... The moisture content was converted to moisture ratio (MR) using the non-exponential part .... The Potential of Cassava As a Cash. Crop For Small Holder ...

  20. Thin layer activation and ultra thin layer activation: two complementary techniques for wear and corrosion studies in various fields

    International Nuclear Information System (INIS)

    Sauvage, T.; Vincent, L.; Blondiaux, G.

    2002-01-01

    Thin layer activation (TLA) is widely used since more than 25 years to study surface wear or corrosion. This well known technique uses most of the time charged particles activation, which gives sensitivity in the range of the micrometer, except when the fluid mode of detection is utilized. In this case application of the method is limited to phenomena where we have transport of radioactive fragments to detection point. The main disadvantage of this procedure is the error due to trapping phenomena between the wear or corrosion point and detection setup. So the ultra thin layer activation (UTLA) has been developed to get nanometric sensitivity without using any fluid for radioactivity transportation, which is the main source of error of the TLA technique. In this paper we shall briefly describe the TLA technique and the most important fields of application. Then we shall emphasise on UTLA with a presentation of the principle of the method and actual running of application. The main problem concerning UTLA is calibration which requires the use of thin films (usually 10 to 100 nanometers) deposited on substrate. This process is time consuming and we shall demonstrate how running software developed in the lab can solve it. We shall finish the presentation by giving some potential application of the technique in various fields. (authors)

  1. Effect of Tin Electrode (Sn, Electrode Distance and Thin Layer Size of Zinc Phthalocyanine (ZnPc to Resistance Changes With Ozone Exposure

    Directory of Open Access Journals (Sweden)

    Agustina Mogi

    2018-01-01

    Full Text Available This study was aimed to determine the effect of tin electrode distances and the thickness of a thin layer of ZnPc (Zinc phtyalocyanine toward changes in resistance with ozone exposure. Tin deposition on the glass surface was conducted using spraying method. The reaction between ozone and ZnPc produces electrical properties that can be read through the resistance value of the multimeter. Based on this study, it was investigated that the smaller a distance between the electrode and the thicker deposition of ZnPc lead to the less resistance. This showed that a thin layer of the conductivity increases along with the longer exposure to ozone gas. The movement of electrons with the hole was free.

  2. The effect of Cr buffer layer thickness on voltage generation of thin-film thermoelectric modules

    International Nuclear Information System (INIS)

    Mizoshiri, Mizue; Mikami, Masashi; Ozaki, Kimihiro

    2013-01-01

    The effect of Cr buffer layer thickness on the open-circuit voltage generated by thin-film thermoelectric modules of Bi 0.5 Sb 1.5 Te 3 (p-type) and Bi 2 Te 2.7 Se 0.3 (n-type) materials was investigated. A Cr buffer layer, whose thickness generally needs to be optimized to improve adhesion depending on the substrate surface condition, such as roughness, was deposited between thermoelectric thin films and glass substrates. When the Cr buffer layer was 1 nm thick, the Seebeck coefficients and electrical conductivity of 1 µm thermoelectric thin films with the buffer layers were approximately equal to those of the thermoelectric films without the buffer layers. When the thickness of the Cr buffer layer was 1 µm, the same as the thermoelectric films, the Seebeck coefficients of the bilayer films were reduced by an electrical current flowing inside the Cr buffer layer and the generation of Cr 2 Te 3 . The open-circuit voltage of the thin-film thermoelectric modules decreased with an increase in the thickness of the Cr buffer layer, which was primarily induced by the electrical current flow. The reduction caused by the Cr 2 Te 3 generation was less than 10% of the total voltage generation of the modules without the Cr buffer layers. The voltage generation of thin-film thermoelectric modules could be controlled by the Cr buffer layer thickness. (paper)

  3. Gas permeability through thin-foil x-ray filters

    Science.gov (United States)

    Tveekrem, June L.; Keski-Kuha, Ritva A.; Webb, Andrew T.

    1997-10-01

    We have measured the permeation rates of helium and water through thin-foil UV-blocking filters used in the ASTRO-E/x- ray spectrometer (XRS) instrument. In the XRS program, there is a concern that outgassed contaminants such as water could permeate through the outermost filter which will be at room temperature and freeze on the inner filters which will be at cryogenic temperatures. The filters tested consisted of approximately 1000 angstroms Al on approximately 1000 angstroms of either Lexan or polyimide. Measurements were made using a vacuum apparatus consisting essentially of two small chambers separated by the filter under test. A helium leak detector was used to measure helium permeation rates, and a residual gas analyzer (RGA) was used to detect water. Results discussed include permeation rate as a function of pressure difference across a filter, the ratio of helium permeation rate over water permeation rate, and the effect of the aluminum layer thickness on permeation.

  4. Atomic layer deposition of superparamagnetic and ferrimagnetic magnetite thin films

    International Nuclear Information System (INIS)

    Zhang, Yijun; Liu, Ming; Ren, Wei; Zhang, Yuepeng; Chen, Xing; Ye, Zuo-Guang

    2015-01-01

    One of the key challenges in realizing superparamagnetism in magnetic thin films lies in finding a low-energy growth way to create sufficiently small grains and magnetic domains which allow the magnetization to randomly and rapidly reverse. In this work, well-defined superparamagnetic and ferrimagnetic Fe 3 O 4 thin films are successfully prepared using atomic layer deposition technique by finely controlling the growth condition and post-annealing process. As-grown Fe 3 O 4 thin films exhibit a conformal surface and poly-crystalline nature with an average grain size of 7 nm, resulting in a superparamagnetic behavior with a blocking temperature of 210 K. After post-annealing in H 2 /Ar at 400 °C, the as-grown α−Fe 2 O 3 sample is reduced to Fe 3 O 4 phase, exhibiting a ferrimagnetic ordering and distinct magnetic shape anisotropy. Atomic layer deposition of magnetite thin films with well-controlled morphology and magnetic properties provides great opportunities for integrating with other order parameters to realize magnetic nano-devices with potential applications in spintronics, electronics, and bio-applications

  5. A simplified computing method of pile group to seismic loads using thin layer element

    International Nuclear Information System (INIS)

    Masao, T.; Hama, I.

    1995-01-01

    In the calculation of pile group, it is said that the results of response by thin layer method give the correct solution with the isotropic and homogeneous soil material in each layer, on the other hand this procedure spends huge computing time. Dynamic stiffness matrix of thin layer method is obtained from inversion of flexibility matrix between pile-i and pile-j. This flexibility matrix is full matrix and its size increase in proportion to the number of piles and thin layers. The greater part of run time is taken into the inversion of flexibility matrix against point loading. We propose the method of decreasing the run time for computing by reducing to banded matrix of flexibility matrix. (author)

  6. Thin film electronic devices with conductive and transparent gas and moisture permeation barriers

    Science.gov (United States)

    Simpson, Lin Jay

    2013-12-17

    A thin film stack (100, 200) is provided for use in electronic devices such as photovoltaic devices. The stack (100, 200) may be integrated with a substrate (110) such as a light transmitting/transmissive layer. A electrical conductor layer (120, 220) is formed on a surface of the substrate (110) or device layer such as a transparent conducting (TC) material layer (120,220) with pin holes or defects (224) caused by manufacturing. The stack (100) includes a thin film (130, 230) of metal that acts as a barrier for environmental contaminants (226, 228). The metal thin film (130,230) is deposited on the conductor layer (120, 220) and formed from a self-healing metal such as a metal that forms self-terminating oxides. A permeation plug or block (236) is formed in or adjacent to the thin film (130, 230) of metal at or proximate to the pin holes (224) to block further permeation of contaminants through the pin holes (224).

  7. Underpotential deposition-mediated layer-by-layer growth of thin films

    Science.gov (United States)

    Wang, Jia Xu; Adzic, Radoslav R.

    2015-05-19

    A method of depositing contiguous, conformal submonolayer-to-multilayer thin films with atomic-level control is described. The process involves the use of underpotential deposition of a first element to mediate the growth of a second material by overpotential deposition. Deposition occurs between a potential positive to the bulk deposition potential for the mediating element where a full monolayer of mediating element forms, and a potential which is less than, or only slightly greater than, the bulk deposition potential of the material to be deposited. By cycling the applied voltage between the bulk deposition potential for the mediating element and the material to be deposited, repeated desorption/adsorption of the mediating element during each potential cycle can be used to precisely control film growth on a layer-by-layer basis. This process is especially suitable for the formation of a catalytically active layer on core-shell particles for use in energy conversion devices such as fuel cells.

  8. Sensors of the gas CO in thin film of SnO{sub 2}:Cu; Sensores del gas CO en pelicula delgada de SnO{sub 2}:Cu

    Energy Technology Data Exchange (ETDEWEB)

    Tirado G, S.; Sanchez Z, F. E., E-mail: tirado@esfm.ipn.mx [IPN, Escuela Superior de Fisica y Matematicas, Unidad Profesional Adolfo Lopez Mateos, San Pedro Zacatenco, 07738 Mexico D. F. (Mexico)

    2011-10-15

    Thin films of SnO{sub 2}:Cu with different thickness, were deposited on soda-lime glass substrates and prepared by the Sol-gel process and repeated immersion. The sensor properties of these films to the gas CO for the range of 0-200 ppm in the gas concentration and operating to temperatures of 23, 100, 200, and 300 C were studied. Prepared films of pure SnO{sub 2} were modified superficially with 1, 3, 5 and 10 layers of the catalyst Cu (SnO{sub 2}:Cu) with the purpose of studying the effect on the sensor capacity of the gas CO by part of the films SnO{sub 2}:Cu. Using the changes in the electric properties of the films with the incorporation of the different copper layers and experimental conditions, the sensor modifications of the gas CO were evaluated. To complete this study, was realized a characterization of the superficial morphology of the films by scanning electron microscopy and atomic force microscopy, equally was studied their structure and their electric and optical properties. (Author)

  9. Mathematical modelling of thin layer drying of pear

    Directory of Open Access Journals (Sweden)

    Lutovska Monika

    2016-01-01

    Full Text Available In this study, a thin - layer drying of pear slices as a function of drying conditions were examined. The experimental data set of thin - layer drying kinetics at five drying air temperatures 30, 40, 50, 60 and 70°C, and three drying air velocities 1, 1.5 and 2 m s-1 were obtained on the experimental setup, designed to imitate industrial convective dryer. Five well known thin - layer drying models from scientific literature were used to approximate the experimental data in terms of moisture ratio. In order to find which model gives the best results, numerical experiments were made. For each model and data set, the statistical performance index, (φ, and chi-squared, (χ2, value were calculated and models were ranked afterwards. The performed statistical analysis shows that the model of Midilli gives the best statistical results. Because the effect of drying air temperature and drying air velocity on the empirical parameters was not included in the base Midilli model, in this study the generalized form of this model was developed. With this model, the drying kinetic data of pear slices can be approximated with high accuracy. The effective moisture diffusivity was determined by using Fick’s second laws. The obtained values of the effective moisture diffusivity, (Deff, during drying ranged between 6.49 x 10-9 and 3.29 x 10-8 m2 s-1, while the values of activation energy (E0 varied between 28.15 to 30.51 kJ mol-1.

  10. Structural properties of ultraviolet cured polysilazane gas barrier layers on polymer substrates

    International Nuclear Information System (INIS)

    Morlier, Arnaud; Cros, Stéphane; Garandet, Jean-Paul; Alberola, Nicole

    2014-01-01

    Perhydropolysilazane (PHPS) conversion to silica through high energy ultraviolet irradiation has been studied. Precursor conversion speed and structural properties of the UV cured PHPS have been investigated and showed that this conversion method is fast but that complete conversion into silica is not achieved in an oxygen depleted atmosphere for layer thicknesses higher than 30 nm, resulting in a composite structure with concentration gradients. We further show that Fourier transform infrared spectroscopy data allow investigating the local structure and composition over the depth of the obtained layers. Gas permeability of the thin UV cured PHPS layers deposited on polymers has been studied. We used a high sensitivity permeation measurement technique to determine water vapor and oxygen permeabilities of the barrier layers and show the correlation between helium, oxygen and water permeability of these materials. Oxygen and water vapor transmission rates of respectively 0.06 cm 3 /m 2 /day/bar and 0.2 g/m 2 /day have been obtained with layers deposited on a polymer substrate. - Highlights: • Perhydropolysilazane has been converted into dense layers by vacuum UV irradiation. • Cured perhydropolysilazane layers have an inhomogeneous structure. • The cured material consists in 3 spontaneously formed layers. • Oxygen and water transmission rates of 0.06 cm 3 /m 2 /day/bar and 0.02 g/m 2 /day are reached

  11. Application of thin-layer Navier-Stokes equations near maximum lift

    Science.gov (United States)

    Anderson, W. K.; Thomas, J. L.; Rumsey, C. L.

    1984-01-01

    The flowfield about a NACA 0012 airfoil at a Mach number of 0.3 and Reynolds number of 1 million is computed through an angle of attack range, up to 18 deg, corresponding to conditions up to and beyond the maximum lift coefficient. Results obtained using the compressible thin-layer Navier-Stokes equations are presented as well as results from the compressible Euler equations with and without a viscous coupling procedure. The applicability of each code is assessed and many thin-layer Navier-Stokes benchmark solutions are obtained which can be used for comparison with other codes intended for use at high angles of attack. Reasonable agreement of the Navier-Stokes code with experiment and the viscous-inviscid interaction code is obtained at moderate angles of attack. An unsteady solution is obtained with the thin-layer Navier-Stokes code at the highest angle of attack considered. The maximum lift coefficient is overpredicted, however, in comparison to experimental data, which is attributed to the presence of a laminar separation bubble near the leading edge not modeled in the computations. Two comparisons with experimental data are also presented at a higher Mach number.

  12. Effects of thin heavily Mg-doped GaN capping layer on ohmic contact formation of p-type GaN

    International Nuclear Information System (INIS)

    Wu, L L; Zhao, D G; Jiang, D S; Chen, P; Le, L C; Li, L; Liu, Z S; Zhang, S M; Zhu, J J; Wang, H; Zhang, B S; Yang, H

    2013-01-01

    The growth condition of thin heavily Mg-doped GaN capping layer and its effect on ohmic contact formation of p-type GaN were investigated. It is confirmed that the excessive Mg doping can effectively enhance the Ni/Au contact to p-GaN after annealing at 550 °C. When the flow rate ratio between Mg and Ga gas sources is 6.4% and the layer width is 25 nm, the capping layer grown at 850 °C exhibits the best ohmic contact properties with respect to the specific contact resistivity (ρ c ). This temperature is much lower than the conventional growth temperature of Mg-doped GaN, suggesting that the deep-level-defect induced band may play an important role in the conduction of capping layer. (paper)

  13. Breakthrough to Non-Vacuum Deposition of Single-Crystal, Ultra-Thin, Homogeneous Nanoparticle Layers: A Better Alternative to Chemical Bath Deposition and Atomic Layer Deposition

    Directory of Open Access Journals (Sweden)

    Yu-Kuang Liao

    2017-04-01

    Full Text Available Most thin-film techniques require a multiple vacuum process, and cannot produce high-coverage continuous thin films with the thickness of a few nanometers on rough surfaces. We present a new ”paradigm shift” non-vacuum process to deposit high-quality, ultra-thin, single-crystal layers of coalesced sulfide nanoparticles (NPs with controllable thickness down to a few nanometers, based on thermal decomposition. This provides high-coverage, homogeneous thickness, and large-area deposition over a rough surface, with little material loss or liquid chemical waste, and deposition rates of 10 nm/min. This technique can potentially replace conventional thin-film deposition methods, such as atomic layer deposition (ALD and chemical bath deposition (CBD as used by the Cu(In,GaSe2 (CIGS thin-film solar cell industry for decades. We demonstrate 32% improvement of CIGS thin-film solar cell efficiency in comparison to reference devices prepared by conventional CBD deposition method by depositing the ZnS NPs buffer layer using the new process. The new ZnS NPs layer allows reduction of an intrinsic ZnO layer, which can lead to severe shunt leakage in case of a CBD buffer layer. This leads to a 65% relative efficiency increase.

  14. Highway pavement performance test for colored thin anti-skidding layers

    Science.gov (United States)

    Gao, Wei; Cui, Wei; Xu, Ming

    2018-03-01

    Based on the actual service condition of highway pavement colored thin anti-skidding layers, with materials of color quartz sand and two-component acrylic resin as basis, we designed such tests as the bond strength, shearing strength, tear strength, fatigue performance and aggregate polished value, and included the freeze-thaw cycle and de-icing salt and other factors in the experiment, connecting with the climate characteristics of circumpolar latitude and low altitude in Heilongjiang province. Through the pavement performance test, it is confirmed that the colored thin anti-skidding layers can adapt to cold and humid climate conditions, and its physical mechanical properties are good.

  15. Sorption and movement of pesticides on thin layer plates of Brazilain soils

    International Nuclear Information System (INIS)

    Lord, K.A.; Helene, C.G.; Andrea, M.M. de; Ruegg, E.F.

    1979-01-01

    The sorption from aqueous solution, and movement in water on thin layers plates of 7 soils of 3 organochlorine, 2 organophosphorus and 1 carbamate insecticide was determined in the laboratory. Generally, all substances were sorbed most and moved least on soils richest in organic matter. However, sorption was not a function of organic matter content alone. Aldrin and DDT were most strongly sorbed and did not move from the point of application on the thin layer plates of any soil. On all 7 soils, carbaryl was the least strongly sorbed insecticide. On 5 soils, lindane, parathion and malathion were increasingly strongly sorbed, but on the other 2 soils lindane was mostly strongly sorbed. The apparent greater mobility of 14 C-labelled malathion on thin layers of soils repeatedly leached could be explained by the formation of more polar substances. (author) [pt

  16. Thin-layer chromatography of radioactively labelled cholesterol and precursors from biological material

    International Nuclear Information System (INIS)

    Pill, J.; Aufenanger, J.; Stegmeier, K.; Schmidt, F.H.; Mueller, D.; Boehringer Mannheim G.m.b.H.

    1987-01-01

    The investigation methods of the action of xenobiotics on sterol biosynthesis from 14 C-acetate in rat hepatocyte cultures can be developed, with regard to extraction using Extrelut and the separation of the sterol pattern by thin-layer chromatography, in such a way that they are suitable for wider application, e.g., screening. Good visualisation and recognition of changes in the sterol pattern are possible using autoradiography of the thin-layer chromatogram. (orig.)

  17. Transparent nanocellulosic multilayer thin films on polylactic acid with tunable gas barrier properties.

    Science.gov (United States)

    Aulin, Christian; Karabulut, Erdem; Tran, Amy; Wågberg, Lars; Lindström, Tom

    2013-08-14

    The layer-by-layer (LbL) deposition method was used for the build-up of alternating layers of nanofibrillated cellulose (NFC) or carboxymethyl cellulose (CMC) with a branched, cationic polyelectrolyte, polyethyleneimine (PEI) on flexible poly (lactic acid) (PLA) substrates. With this procedure, optically transparent nanocellulosic films with tunable gas barrier properties were formed. 50 layer pairs of PEI/NFC and PEI/CMC deposited on PLA have oxygen permeabilities of 0.34 and 0.71 cm(3)·μm/m(2)·day·kPa at 23 °C and 50% relative humidity, respectively, which is in the same range as polyvinyl alcohol and ethylene vinyl alcohol. The oxygen permeability of these multilayer nanocomposites outperforms those of pure NFC films prepared by solvent-casting. The nanocellulosic LbL assemblies on PLA substrates was in detailed characterized using a quartz crystal microbalance with dissipation (QCM-D). Atomic force microscopy (AFM) reveals large structural differences between the PEI/NFC and the PEI/CMC assemblies, with the PEI/NFC assembly showing a highly entangled network of nanofibrils, whereas the PEI/CMC surfaces lacked structural features. Scanning electron microscopy images showed a nearly perfect uniformity of the nanocellulosic coatings on PLA, and light transmittance results revealed remarkable transparency of the LbL-coated PLA films. The present work demonstrates the first ever LbL films based on high aspect ratio, water-dispersible nanofibrillated cellulose, and water-soluble carboxymethyl cellulose polymers that can be used as multifunctional films and coatings with tailorable properties, such as gas barriers and transparency. Owing to its flexibility, transparency and high-performance gas barrier properties, these thin film assemblies are promising candidates for several large-scale applications, including flexible electronics and renewable packaging.

  18. Optically thin core accretion: how planets get their gas in nearly gas-free discs

    Science.gov (United States)

    Lee, Eve J.; Chiang, Eugene; Ferguson, Jason W.

    2018-05-01

    Models of core accretion assume that in the radiative zones of accreting gas envelopes, radiation diffuses. But super-Earths/sub-Neptunes (1-4 R⊕, 2-20 M⊕) point to formation conditions that are optically thin: their modest gas masses are accreted from short-lived and gas-poor nebulae reminiscent of the transparent cavities of transitional discs. Planetary atmospheres born in such environments can be optically thin to both incident starlight and internally generated thermal radiation. We construct time-dependent models of such atmospheres, showing that super-Earths/sub-Neptunes can accrete their ˜1 per cent-by-mass gas envelopes, and super-puffs/sub-Saturns their ˜20 per cent-by-mass envelopes, over a wide range of nebular depletion histories requiring no fine tuning. Although nascent atmospheres can exhibit stratospheric temperature inversions affected by atomic Fe and various oxides that absorb strongly at visible wavelengths, the rate of gas accretion remains controlled by the radiative-convective boundary (rcb) at much greater pressures. For dusty envelopes, the temperature at the rcb Trcb ≃ 2500 K is still set by H2 dissociation; for dust-depleted envelopes, Trcb tracks the temperature of the visible or thermal photosphere, whichever is deeper, out to at least ˜5 au. The rate of envelope growth remains largely unchanged between the old radiative diffusion models and the new optically thin models, reinforcing how robustly super-Earths form as part of the endgame chapter in disc evolution.

  19. Electroresistance Effect in Gold Thin Film Induced by Ionic-Liquid-Gated Electric Double Layer

    NARCIS (Netherlands)

    Nakayama, Hiroyasu; Ye, Jianting; Ohtani, Takashi; Fujikawa, Yasunori; Ando, Kazuya; Iwasa, Yoshihiro; Saitoh, Eiji

    Electroresistance effect was detected in a metallic thin film using ionic-liquid-gated electric-double-layer transistors (EDLTs). We observed reversible modulation of the electric resistance of a Au thin film. In this system, we found that an electric double layer works as a nanogap capacitor with

  20. Nonequilibrium temperatures and second-sound propagation along nanowires and thin layers

    International Nuclear Information System (INIS)

    Jou, D.; Cimmelli, V.A.; Sellitto, A.

    2009-01-01

    It is shown that the dispersion relation of heat waves along nanowires or thin layers could allow to compare two different definitions of nonequilibrium temperature, since thermal waves are predicted to propagate with different phase speed depending on the definition of nonequilibrium temperature being used. The difference is small, but it could be in principle measurable in nanosystems, as for instance nanowires and thin layers, in a given frequency range. Such an experiment could provide a deeper view on the problem of the definition of temperature in nonequilibrium situations.

  1. Low-Cost, Fiber-Optic Hydrogen Gas Detector Using Guided-Wave, Surface-Plasmon Resonance in Chemochromic Thin Films

    International Nuclear Information System (INIS)

    Tracy, C.E.; Benson, D.K.; Haberman, D.P.; Hishmeh, G.A.; Ciszek, P.A.

    1998-01-01

    Low-cost, hydrogen-gas-leak detectors are needed for many hydrogen applications, such as hydrogen-fueled vehicles where several detectors may be required in different locations on each vehicle. A fiber-optic leak detector could be inherently safer than conventional detectors, because it would remove all detector electronics from the vicinity of potential leaks. It would also provide freedom from electromagnetic interference, a serious problem in fuel-cell-powered electric vehicles. This paper describes the design of a fiber-optic, surface-plasmon-resonance hydrogen detector, and efforts to make it more sensitive, selective, and durable. Chemochromic materials, such as tungsten oxide and certain Lanthanide hydrides, can reversibly react with hydrogen in air while exhibiting significant changes in their optical properties. Thin films of these materials applied to a sensor at the end of an optical fiber have been used to detect low concentrations of hydrogen gas in air. The coatings include a thin silver layer in which the surface plasmon is generated, a thin film of the chemochromic material, and a catalytic layer of palladium that facilitates the reaction with hydrogen. The film thickness is chosen to produce a guided-surface plasmon wave along the interface between the silver and the chemochromic material. A dichroic beam-splitter separates the reflected spectrum into a portion near the resonance and a portion away from the resonance, and directs these two portions to two separate photodiodes. The electronic ratio of these two signals cancels most of the fiber transmission noise and provides a stable hydrogen signal

  2. Evaluation of a thin-layer chromatographic technique for ...

    African Journals Online (AJOL)

    Methanol extracts of both fistula and bush samples were prepared and analysed by thin-layer chromatography. Chromatoplates, when visualised under ultraviolet light, revealed a number of fluorescent compounds, some of which were common in both the fistula and bush sample extracts. By comparing the presence of ...

  3. Thin Cell Layer technology in ornamental plant micropropagation ...

    African Journals Online (AJOL)

    Thin cell layer (TCL) technology originated almost 30 years ago with the controlled development of flowers, roots, shoots and somatic embryos on tobacco pedicel longitudinal TCLs. Since then TCLs have been successfully used in the micropropagation of many ornamental plant species whose previous in vitro ...

  4. Copper Benzenetricarboxylate Metal-Organic Framework Nucleation Mechanisms on Metal Oxide Powders and Thin Films formed by Atomic Layer Deposition.

    Science.gov (United States)

    Lemaire, Paul C; Zhao, Junjie; Williams, Philip S; Walls, Howard J; Shepherd, Sarah D; Losego, Mark D; Peterson, Gregory W; Parsons, Gregory N

    2016-04-13

    Chemically functional microporous metal-organic framework (MOF) crystals are attractive for filtration and gas storage applications, and recent results show that they can be immobilized on high surface area substrates, such as fiber mats. However, fundamental knowledge is still lacking regarding initial key reaction steps in thin film MOF nucleation and growth. We find that thin inorganic nucleation layers formed by atomic layer deposition (ALD) can promote solvothermal growth of copper benzenetricarboxylate MOF (Cu-BTC) on various substrate surfaces. The nature of the ALD material affects the MOF nucleation time, crystal size and morphology, and the resulting MOF surface area per unit mass. To understand MOF nucleation mechanisms, we investigate detailed Cu-BTC MOF nucleation behavior on metal oxide powders and Al2O3, ZnO, and TiO2 layers formed by ALD on polypropylene substrates. Studying both combined and sequential MOF reactant exposure conditions, we find that during solvothermal synthesis ALD metal oxides can react with the MOF metal precursor to form double hydroxy salts that can further convert to Cu-BTC MOF. The acidic organic linker can also etch or react with the surface to form MOF from an oxide metal source, which can also function as a nucleation agent for Cu-BTC in the mixed solvothermal solution. We discuss the implications of these results for better controlled thin film MOF nucleation and growth.

  5. Effect of etching stop layer on characteristics of amorphous IGZO thin film transistor fabricated at low temperature

    Directory of Open Access Journals (Sweden)

    Xifeng Li

    2013-03-01

    Full Text Available Transparent bottom-gate amorphous Indium-Gallium-Zinc Oxide (a-IGZO thin-film transistors (TFTs had been successfully fabricated at relative low temperature. The influence of reaction gas ratio of N2O and SiH4 during the growth of etching stop layer (SiOx on the characteristics of a-IGZO TFTs was investigated. The transfer characteristics of the TFTs were changed markedly because active layer of a-IGZO films was modified by plasma in the growth process of SiOx. By optimizing the deposition parameters of etching stop layer process, a-IGZO TFTs were manufactured and exhibited good performance with a field-effect mobility of 8.5 cm2V-1s-1, a threshold voltage of 1.3 V, and good stability under gate bias stress of 20 V for 10000 s.

  6. Search for Rayleigh-Taylor instability in laser irradiated layered thin foil targets

    International Nuclear Information System (INIS)

    Kilkenny, J.D.; Hares, J.D.; Rumsby, P.T.

    1980-01-01

    An experiment to measure the Rayleigh-Taylor instability at the vacuum-ablation surface of laser irradiated layered targets by time resolved x-ray spectroscopy is described. The time taken to burn through a layer of material is measured to be the same for massive targets as for thin foil accelerating targets. It is inferred that the thin foil targets might be Rayleigh-Taylor stable despite the values of γtauapproximately equal to15 calculated from classical theory. (author)

  7. Linearized thin-wing theory of gas-centrifuge scoops

    International Nuclear Information System (INIS)

    Sakurai, T.

    1981-01-01

    A steady hypersonic rotating flow of a perfect gas past a system of thin stationary scoops in a gas centrifuge of annulus type is studied. The gas is assumed inviscid; its ratio of specific heats is assumed to be approximately 1. The scoops are set at zero angle of attack and are periodic with respect to the azimuthal variable. The flow is assumed to be a three-dimensional small perturbation on a basic state of rigid-body rotation. New scaling laws are proposed as appropriate to realistic operating conditions of gas centrifuges. Basic equations, boundary conditions and shock conditions are linearized for a weakly hypersonic flow by an analytical procedure similar to that used in the thin-wing approximation in high speed aerodynamics. The solution of the basic equations is obtained by the eigenfunction expansion method. The solution provides a simple addition theorem for the scoop drag which makes the resultant drag of a system of several scoops equal to the product of the number of scoops and the drag of a standard system with a single scoop. The solution makes it clear that despite the above addition theorem, the scoops interact in their effects on the flow. (author)

  8. Ultra-thin, single-layer polarization rotator

    Directory of Open Access Journals (Sweden)

    T. V. Son

    2016-08-01

    Full Text Available We demonstrate light polarization control over a broad spectral range by a uniform layer of vanadium dioxide as it undergoes a phase transition from insulator to metal. Changes in refractive indices create unequal phase shifts on s- and p-polarization components of incident light, and rotation of linear polarization shows intensity modulation by a factor of 103 when transmitted through polarizers. This makes possible polarization rotation devices as thin as 50 nm that would be activated thermally, optically or electrically.

  9. Thin Layer Drying Kinetics of Pineapple: Effect of Blanching ...

    African Journals Online (AJOL)

    Four thin-layer drying models were fitted to the experimental drying data. The .... MATLAB software package (version 6.5). The correlation ... to evaluate the goodness of fit of the simulation ... during the oven-drying process of pineapple slices.

  10. Formaldehyde gas sensor based on TiO2 thin membrane integrated with nano silicon structure

    Science.gov (United States)

    Zheng, Xuan; Ming, An-jie; Ye, Li; Chen, Feng-hua; Sun, Xi-long; Liu, Wei-bing; Li, Chao-bo; Ou, Wen; Wang, Wei-bing; Chen, Da-peng

    2016-07-01

    An innovative formaldehyde gas sensor based on thin membrane type metal oxide of TiO2 layer was designed and fabricated. This sensor under ultraviolet (UV) light emitting diode (LED) illumination exhibits a higher response to formaldehyde than that without UV illumination at low temperature. The sensitivities of the sensor under steady working condition were calculated for different gas concentrations. The sensitivity to formaldehyde of 7.14 mg/m3 is about 15.91 under UV illumination with response time of 580 s and recovery time of 500 s. The device was fabricated through micro-electro-mechanical system (MEMS) processing technology. First, plasma immersion ion implantation (PIII) was adopted to form black polysilicon, then a nanoscale TiO2 membrane with thickness of 53 nm was deposited by DC reactive magnetron sputtering to obtain the sensing layer. By such fabrication approaches, the nanoscale polysilicon presents continuous rough surface with thickness of 50 nm, which could improve the porosity of the sensing membrane. The fabrication process can be mass-produced for the MEMS process compatibility.

  11. Transparent thin-film transistor exploratory development via sequential layer deposition and thermal annealing

    International Nuclear Information System (INIS)

    Hong, David; Chiang, Hai Q.; Presley, Rick E.; Dehuff, Nicole L.; Bender, Jeffrey P.; Park, Cheol-Hee; Wager, John F.; Keszler, Douglas A.

    2006-01-01

    A novel deposition methodology is employed for exploratory development of a class of high-performance transparent thin-film transistor (TTFT) channel materials involving oxides composed of heavy-metal cations with (n - 1)d 10 ns 0 (n ≥ 4) electronic configurations. The method involves sequential radio-frequency sputter deposition of thin, single cation oxide layers and subsequent post-deposition annealing in order to obtain a multi-component oxide thin film. The viability of this rapid materials development methodology is demonstrated through the realization of high-performance TTFTs with channel layers composed of zinc oxide/tin oxide, and tin oxide/indium oxide

  12. A thin-shock-layer solution for nonequilibrium, inviscid hypersonic flows in earth, Martian, and Venusian atmospheres

    Science.gov (United States)

    Grose, W. L.

    1971-01-01

    An approximate inverse solution is presented for the nonequilibrium flow in the inviscid shock layer about a vehicle in hypersonic flight. The method is based upon a thin-shock-layer approximation and has the advantage of being applicable to both subsonic and supersonic regions of the shock layer. The relative simplicity of the method makes it ideally suited for programming on a digital computer with a significant reduction in storage capacity and computing time required by other more exact methods. Comparison of nonequilibrium solutions for an air mixture obtained by the present method is made with solutions obtained by two other methods. Additional cases are presented for entry of spherical nose cones into representative Venusian and Martian atmospheres. A digital computer program written in FORTRAN language is presented that permits an arbitrary gas mixture to be employed in the solution. The effects of vibration, dissociation, recombination, electronic excitation, and ionization are included in the program.

  13. Loading Effects on Resolution in Thin Layer Chromatography and ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 10; Issue 11. Loading Effects on Resolution in Thin Layer Chromatography and Paper Chromatography. K Girigowda V H Mulimani. Classroom Volume 10 Issue 11 November 2005 pp 79-84 ...

  14. Wear resistant PTFE thin film enabled by a polydopamine adhesive layer

    International Nuclear Information System (INIS)

    Beckford, Samuel; Zou, Min

    2014-01-01

    The influence of a polydopamine (PDA) adhesive layer on the friction and wear resistance of polytetrafluoroethylene (PTFE) thin films coated on stainless steel was investigated. The friction and wear tests were carried out using a ball on flat configuration under a normal load of 50 g, sliding speed of 2.5 mm/s, and stroke length of 15 mm. It is found that the PDA/PTFE film is able to withstand approximately 500 times more rubbing cycles than the PTFE film alone. X-ray photoelectron spectroscopy (XPS) results show that a tenacious layer of PTFE remains adhered to the PDA layer, which enables the durability of the PDA/PTFE film. Because of the relatively low thickness of the film, PDA/PTFE shows great potential for use in applications where durable, thin films are desirable

  15. Ultrafast atomic layer-by-layer oxygen vacancy-exchange diffusion in double-perovskite LnBaCo2O5.5+δ thin films.

    Science.gov (United States)

    Bao, Shanyong; Ma, Chunrui; Chen, Garry; Xu, Xing; Enriquez, Erik; Chen, Chonglin; Zhang, Yamei; Bettis, Jerry L; Whangbo, Myung-Hwan; Dong, Chuang; Zhang, Qingyu

    2014-04-22

    Surface exchange and oxygen vacancy diffusion dynamics were studied in double-perovskites LnBaCo2O5.5+δ (LnBCO) single-crystalline thin films (Ln = Er, Pr; -0.5 atoms in the LnBCO thin films is taking the layer by layer oxygen-vacancy-exchange mechanism. The first principles density functional theory calculations indicate that hydrogen atoms are present in LnBCO as bound to oxygen forming O-H bonds. This unprecedented oscillation phenomenon provides the first direct experimental evidence of the layer by layer oxygen vacancy exchange diffusion mechanism.

  16. Perpendicular magnetic tunnel junction with thin CoFeB/Ta/Co/Pd/Co reference layer

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Huadong, E-mail: huadong@avalanche-technology.com; Malmhall, Roger; Wang, Zihui; Yen, Bing K; Zhang, Jing; Wang, Xiaobin; Zhou, Yuchen; Hao, Xiaojie; Jung, Dongha; Satoh, Kimihiro; Huai, Yiming [Avalanche Technology, 46600 Landing Parkway, Fremont, California 94538 (United States)

    2014-11-10

    Integration of high density spin transfer torque magnetoresistance random access memory requires a thin stack (less than 15 nm) of perpendicular magnetic tunnel junction (p-MTJ). We propose an innovative approach to solve this challenging problem by reducing the thickness and/or moment of the reference layer. A thin reference layer structure of CoFeB/Ta/Co/Pd/Co has 60% magnetic moment of the conventional thick structure including [Co/Pd] multilayers. We demonstrate that the perpendicular magnetization of the CoFeB/Ta/Co/Pd/Co structure can be realized by anti-ferromagnetically coupling to a pinned layer with strong perpendicular anisotropy via Ruderman-Kittel-Kasuya-Yosida exchange interaction. The pMTJ with thin CoFeB/Ta/Co/Pd/Co reference layer has a comparable TMR ratio (near 80%) as that with thick reference layer after annealing at 280 °C. The pMTJ with thin reference layer has a total thickness less than 15 nm, thereby significantly increasing the etching margin required for integration of high density pMTJ array on wafers with form factor of 300 mm and beyond.

  17. Physical characterization of Cu{sub 2}ZnGeSe{sub 4} thin films from annealing of Cu-Zn-Ge precursor layers

    Energy Technology Data Exchange (ETDEWEB)

    Buffière, M., E-mail: buffiere@imec.be [Imec—Partner in Solliance, Leuven (Belgium); Department of Electrical Engineering (ESAT), KU Leuven, Heverlee (Belgium); ElAnzeery, H. [Imec—Partner in Solliance, Leuven (Belgium); KACST-Intel Consortium Center of Excellence in Nano-manufacturing Applications (CENA), Riyadh (Saudi Arabia); Microelectronics System Design department, Nile University, Cairo (Egypt); Oueslati, S.; Ben Messaoud, K. [Imec—Partner in Solliance, Leuven (Belgium); KACST-Intel Consortium Center of Excellence in Nano-manufacturing Applications (CENA), Riyadh (Saudi Arabia); Department of Physics, Faculty of Sciences of Tunis, El Manar (Tunisia); Brammertz, G.; Meuris, M. [Imec Division IMOMEC — Partner in Solliance, Diepenbeek (Belgium); Institute for Material Research (IMO) Hasselt University, Diepenbeek (Belgium); Poortmans, J. [Imec—Partner in Solliance, Leuven (Belgium); Department of Electrical Engineering (ESAT), KU Leuven, Heverlee (Belgium)

    2015-05-01

    Cu{sub 2}ZnGeSe{sub 4} (CZGeSe) can be considered as a potential alternative for wide band gap thin film devices. In this work, CZGeSe thin films were deposited on Mo-coated soda lime glass substrates by sequential deposition of sputtered Cu, Zn and e-beam evaporated Ge layers from elemental targets followed by annealing at high temperature using H{sub 2}Se gas. We report on the effect of the precursor stack order and composition and the impact of the annealing temperature on the physical properties of CZGeSe thin films. The optimal layer morphology was obtained when using a Mo/Cu/Zn/Ge precursor stack annealed at 460 °C. We have observed that the formation of secondary phases such as ZnSe can be prevented by tuning the initial composition of the stack, the stack order and the annealing conditions. This synthesis process allows synthesizing CZGeSe absorber with an optical band gap of 1.5 eV. - Highlights: • Cu{sub 2}ZnGeSe{sub 4} (CZGeSe) thin films were deposited using a two-step process. • CZGeSe dense layers were obtained using a Mo/Cu/Zn/Ge precursor annealed at 460 °C. • Formation of ZnSe can be avoided by tuning the composition and order of the initial stack. • P-type CZGeSe absorber with an optical band gap of 1.5 eV was obtained.

  18. Use of a wedge cuvette in thin layer photometry and its application to oximetry

    NARCIS (Netherlands)

    Spaan, J. A.; Garred, L. J.; van de Borne, P.

    1977-01-01

    A wedge cuvette was constructed by fixing 2 glass plates at a known angle with a spacer at one end. This resulted in a thin layer with thickness varying from 0 to 250 micrometer. By measuring the intensity of a beam of light through the thin layer as a function of distance along the wedge (and thus

  19. A simple model for quantifying the degree of layer-by-layer growth in low energy ion deposition of thin films

    International Nuclear Information System (INIS)

    Huhtamaeki, T.; Jahma, M.O.; Koponen, I.T.

    2007-01-01

    Layer-by-layer growth of thin films can be promoted by using low energy ion deposition (LEID) techniques. The basic process affecting the growth are often quite diverse, but often the ion impact induced inter layer mass transfer processes due to adatom insertion to lower step edges or pile-ups to step edges above dominate. In this paper we propose a simple phenomenological model which describes the growth of thin films in LEID under these conditions. The model makes possible to distinguish the dominant growth, the detection of the transition from the 3D growth to 2D growth, and it can be used to quantify the degree of layer-by-layer growth. The model contains only two parameters, which can be phenomenologically related to the properties of the bombarding ion beam

  20. Accretion disc boundary layers - geometrically and optically thin case

    International Nuclear Information System (INIS)

    Regev, Oded; Hougerat, A.A.

    1988-01-01

    The method of matched asymptotic expansions is applied to an optically and geometrically thin boundary layer between an accretion disc and the accreting star. Analytical solutions are presented for a particular viscosity prescription in the boundary layer. For a typical example we find that the disc closely resembles standard steady-disc theory. It is identical to it everywhere save a narrow boundary layer, where the temperature increases rapidly inward (by an order of magnitude), the angular velocity achieves maximum and decreases to its surface value and other variables also undergo rapid changes. This and previous work can now be used to calculate the emission from accretion discs including the boundary layers for a wide range of parameters. (author)

  1. Preparation of Ferroelectric Thin Films of Bismuth Layer Structured Compounds

    Science.gov (United States)

    Watanabe, Hitoshi; Mihara, Takashi; Yoshimori, Hiroyuki; Araujo, Carlos

    1995-09-01

    Ferroelectric thin films of bismuth layer structured compounds, SrBi2Ta2O9, SrBi2Nb2O9, SrBi4Ti4O15 and their solid solutions, were formed onto a sputtered platinum layer on a silicon substrate using spin-on technique and metal-organic decomposition (MOD) method. X-ray diffraction (XRD) analysis and some electrical measurements were performed on the prepared thin films. XRD results of SrBi2(Ta1- x, Nb x)2O9 films (0≤x≤1) showed that niobium ions substitute for tantalum ions in an arbitrary ratio without any change of the layer structure and lattice constants. Furthermore, XRD results of SrBi2 xTa2O9 films (0≤x≤1.5) indicated that the formation of the bismuth layer structure does not always require an accurate bismuth content. The layer structure was formed above 50% of the stoichiometric bismuth content in the general formula. SrBi2(Ta1- x, Nb x)2O9 films with various Ta/Nb ratios have large enough remanent polarization for nonvolatile memory application and have shown high fatigue resistance against 1011 cycles of full switching of the remanent polarization. Mixture films of the three compounds were also investigated.

  2. Doping Nitrogen in InGaZnO Thin Film Transistor with Double Layer Channel Structure.

    Science.gov (United States)

    Chang, Sheng-Po; Shan, Deng

    2018-04-01

    This paper presents the electrical characteristics of doping nitrogen in an amorphous InGaZnO thin film transistor. The IGZO:N film, which acted as a channel layer, was deposited using RF sputtering with a nitrogen and argon gas mixture at room temperature. The optimized parameters of the IGZO:N/IGZO TFT are as follows: threshold voltage is 0.5 V, field effect mobility is 14.34 cm2V-1S-1. The on/off current ratio is 106 and subthreshold swing is 1.48 V/decade. The positive gate bias stress stability of InGaZnO doping with nitrogen shows improvement compared to doping with oxygen.

  3. Enhancement of Gas Barrier Properties of CFRP Laminates Fabricated Using Thin-Ply Prepregs

    Science.gov (United States)

    横関, 智弘; 高木, 智宏; 吉村, 彰記; Ogasawara, Toshio; 荻原, 慎二

    Composite laminates manufactured using thin-ply prepregs are expected to have superior resistance properties against microcracking compared to those using standard prepregs. In this study, comparative investigations are presented on the microcrack accumulation and gas leakage characteristics of CFRP laminates fabricated using standard and thin-ply prepregs, consisting of high-performance carbon fiber and toughened epoxy, as a fundamental research on the cryogenic composite tanks for future space vehicles. It was shown that laminates using thin-ply prepregs exhibited much higher strain at microcrack initiation compared to those using standard prepregs at room and cryogenic temperatures. In addition, helium gas leak tests using CFRP laminated tubular specimens subjected to quasi-static tension loadings were performed. It was demonstrated that CFRP laminates using thin-ply prepregs have higher gas barrier properties than those using standard prepregs.

  4. Layer-by-layer thinning of MoSe{sub 2} by soft and reactive plasma etching

    Energy Technology Data Exchange (ETDEWEB)

    Sha, Yunfei [Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122 (China); Xiao, Shaoqing, E-mail: larring0078@hotmail.com [Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122 (China); Zhang, Xiumei [Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122 (China); Qin, Fang [Analysis & Testing Center, Jiangnan University, Wuxi 214122 (China); Gu, Xiaofeng, E-mail: xfgu@jiangnan.edu.cn [Engineering Research Center of IoT Technology Applications (Ministry of Education), Department of Electronic Engineering, Jiangnan University, Wuxi 214122 (China)

    2017-07-31

    Highlights: • Soft plasma etching technique using SF{sub 6} + N{sub 2} as precursors for layer-by-layer thinning of MoSe{sub 2} was adopted in this work. • Optical microscopy, Raman, photoluminescence and atomic force microscopy measurements were used to confirm the thickness change. • Layer-dependent vibrational and photoluminescence spectra of the etched MoSe{sub 2} were also demonstrated. • Equal numbers of MoSe{sub 2} layers can be removed uniformly without affecting the underlying SiO{sub 2} substrate and the remaining MoSe{sub 2} layers. - Abstract: Two-dimensional (2D) transition metal dichalcogenides (TMDs) like molybdenum diselenide (MoSe{sub 2}) have recently gained considerable interest since their properties are complementary to those of graphene. Unlike gapless graphene, the band structure of MoSe{sub 2} can be changed from the indirect band gap to the direct band gap when MoSe{sub 2} changed from bulk material to monolayer. This transition from multilayer to monolayer requires atomic-layer-precision thining of thick MoSe{sub 2} layers without damaging the remaining layers. Here, we present atomic-layer-precision thinning of MoSe{sub 2} nanaosheets down to monolayer by using SF{sub 6} + N{sub 2} plasmas, which has been demonstrated to be soft, selective and high-throughput. Optical microscopy, atomic force microscopy, Raman and photoluminescence spectra suggest that equal numbers of MoSe{sub 2} layers can be removed uniformly regardless of their initial thickness, without affecting the underlying SiO{sub 2} substrate and the remaining MoSe{sub 2} layers. By adjusting the etching rates we can achieve complete MoSe{sub 2} removal and any disired number of MoSe{sub 2} layers including monolayer. This soft plasma etching method is highly reliable and compatible with the semiconductor manufacturing processes, thereby holding great promise for various 2D materials and TMD-based devices.

  5. Effect of p-layer properties on nanocrystalline absorber layer and thin film silicon solar cells

    International Nuclear Information System (INIS)

    Chowdhury, Amartya; Adhikary, Koel; Mukhopadhyay, Sumita; Ray, Swati

    2008-01-01

    The influence of the p-layer on the crystallinity of the absorber layer and nanocrystalline silicon thin film solar cells has been studied. Boron doped Si : H p-layers of different crystallinities have been prepared under different power pressure conditions using the plasma enhanced chemical vapour deposition method. The crystalline volume fraction of p-layers increases with the increase in deposition power. Optical absorption of the p-layer reduces as the crystalline volume fraction increases. Structural studies at the p/i interface have been done by Raman scattering studies. The crystalline volume fraction of the i-layer increases as that of the p-layer increases, the effect being more prominent near the p/i interface. Grain sizes of the absorber layer decrease from 9.2 to 7.2 nm and the density of crystallites increases as the crystalline volume fraction of the p-layer increases and its grain size decreases. With increasing crystalline volume fraction of the p-layer solar cell efficiency increases

  6. Method for the manufacture of a thin-layer battery stack on a three-dimensional substrate

    NARCIS (Netherlands)

    2008-01-01

    The invention relates to a method for the manufacture of a thin-layer battery stack on a three-dimensional substrate. The invention further relates to a thin-layer battery stack on a three-dimensional substrate obtainable by such a method. Moreover, the invention relates to a device comprising such

  7. Photo-Induced Room-Temperature Gas Sensing with a-IGZO Based Thin-Film Transistors Fabricated on Flexible Plastic Foil.

    Science.gov (United States)

    Knobelspies, Stefan; Bierer, Benedikt; Daus, Alwin; Takabayashi, Alain; Salvatore, Giovanni Antonio; Cantarella, Giuseppe; Ortiz Perez, Alvaro; Wöllenstein, Jürgen; Palzer, Stefan; Tröster, Gerhard

    2018-01-26

    We present a gas sensitive thin-film transistor (TFT) based on an amorphous Indium-Gallium-Zinc-Oxide (a-IGZO) semiconductor as the sensing layer, which is fabricated on a free-standing flexible polyimide foil. The photo-induced sensor response to NO₂ gas at room temperature and the cross-sensitivity to humidity are investigated. We combine the advantages of a transistor based sensor with flexible electronics technology to demonstrate the first flexible a-IGZO based gas sensitive TFT. Since flexible plastic substrates prohibit the use of high operating temperatures, the charge generation is promoted with the help of UV-light absorption, which ultimately triggers the reversible chemical reaction with the trace gas. Furthermore, the device fabrication process flow can be directly implemented in standard TFT technology, allowing for the parallel integration of the sensor and analog or logical circuits.

  8. Photo-Induced Room-Temperature Gas Sensing with a-IGZO Based Thin-Film Transistors Fabricated on Flexible Plastic Foil

    Directory of Open Access Journals (Sweden)

    Stefan Knobelspies

    2018-01-01

    Full Text Available We present a gas sensitive thin-film transistor (TFT based on an amorphous Indium–Gallium–Zinc–Oxide (a-IGZO semiconductor as the sensing layer, which is fabricated on a free-standing flexible polyimide foil. The photo-induced sensor response to NO2 gas at room temperature and the cross-sensitivity to humidity are investigated. We combine the advantages of a transistor based sensor with flexible electronics technology to demonstrate the first flexible a-IGZO based gas sensitive TFT. Since flexible plastic substrates prohibit the use of high operating temperatures, the charge generation is promoted with the help of UV-light absorption, which ultimately triggers the reversible chemical reaction with the trace gas. Furthermore, the device fabrication process flow can be directly implemented in standard TFT technology, allowing for the parallel integration of the sensor and analog or logical circuits.

  9. Thin-Layer Solutions of the Helmholtz and Related Equations

    KAUST Repository

    Ockendon, J. R.

    2012-01-01

    This paper concerns a certain class of two-dimensional solutions to four generic partial differential equations-the Helmholtz, modified Helmholtz, and convection-diffusion equations, and the heat conduction equation in the frequency domain-and the connections between these equations for this particular class of solutions.S pecifically, we consider thin-layer solutions, valid in narrow regions across which there is rapid variation, in the singularly perturbed limit as the coefficient of the Laplacian tends to zero.F or the wellstudied Helmholtz equation, this is the high-frequency limit and the solutions in question underpin the conventional ray theory/WKB approach in that they provide descriptions valid in some of the regions where these classical techniques fail.E xamples are caustics, shadow boundaries, whispering gallery, and creeping waves and focusing and bouncing ball modes.It transpires that virtually all such thin-layer models reduce to a class of generalized parabolic wave equations, of which the heat conduction equation is a special case. Moreover, in most situations, we will find that the appropriate parabolic wave equation solutions can be derived as limits of exact solutions of the Helmholtz equation.W e also show how reasonably well-understood thin-layer phenomena associated with any one of the four generic equations may translate into less well-known effects associated with the others.In addition, our considerations also shed some light on the relationship between the methods of matched asymptotic, WKB, and multiple-scales expansions. © 2012 Society for Industrial and Applied Mathematics.

  10. GOSSIP: A vertex detector combining a thin gas layer as signal generator with a CMOS readout pixel array

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, M. [CERN/MediPix Consortium, Geneva (Switzerland); Heijne, E.H.M. [CERN/MediPix Consortium, Geneva (Switzerland); Llopart, X. [CERN/MediPix Consortium, Geneva (Switzerland); Colas, P. [DAPNIA, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Giganon, A. [DAPNIA, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Giomataris, Y. [DAPNIA, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Chefdeville, M. [NIKHEF, Amsterdam (Netherlands); Colijn, A.P. [NIKHEF, Amsterdam (Netherlands); Fornaini, A. [NIKHEF, Amsterdam (Netherlands); Graaf, H. van der [NIKHEF, Amsterdam (Netherlands)]. E-mail: vdgraaf@nikhef.nl; Kluit, P. [NIKHEF, Amsterdam (Netherlands); Timmermans, J. [NIKHEF, Amsterdam (Netherlands); Visschers, J.L. [NIKHEF, Amsterdam (Netherlands); Schmitz, J. [University of Twente/MESA (Netherlands)

    2006-05-01

    A small TPC has been read out by means of a Medipix2 chip as direct anode. A Micromegas foil was placed 50{mu}m above the chip, and electron multiplication occurred in the gap. With a He/isobutane 80/20 mixture, gas multiplication factors up to tens of thousands were achieved, resulting in an efficiency for detecting single electrons of better than 90%. With this new readout technology for gas-filled detectors we recorded many image frames containing 2D images with tracks from cosmic muons. Along these tracks, electron clusters were observed, as well as {delta}-rays. With a gas layer thickness of only 1mm, the device could be applied as vertex detector, outperforming all Si-based detectors.

  11. GOSSIP: A vertex detector combining a thin gas layer as signal generator with a CMOS readout pixel array

    International Nuclear Information System (INIS)

    Campbell, M.; Heijne, E.H.M.; Llopart, X.; Colas, P.; Giganon, A.; Giomataris, Y.; Chefdeville, M.; Colijn, A.P.; Fornaini, A.; Graaf, H. van der; Kluit, P.; Timmermans, J.; Visschers, J.L.; Schmitz, J.

    2006-01-01

    A small TPC has been read out by means of a Medipix2 chip as direct anode. A Micromegas foil was placed 50μm above the chip, and electron multiplication occurred in the gap. With a He/isobutane 80/20 mixture, gas multiplication factors up to tens of thousands were achieved, resulting in an efficiency for detecting single electrons of better than 90%. With this new readout technology for gas-filled detectors we recorded many image frames containing 2D images with tracks from cosmic muons. Along these tracks, electron clusters were observed, as well as δ-rays. With a gas layer thickness of only 1mm, the device could be applied as vertex detector, outperforming all Si-based detectors

  12. GOSSIP: A vertex detector combining a thin gas layer as signal generator with a CMOS readout pixel array

    Science.gov (United States)

    Campbell, M.; Heijne, E. H. M.; Llopart, X.; Colas, P.; Giganon, A.; Giomataris, Y.; Chefdeville, M.; Colijn, A. P.; Fornaini, A.; van der Graaf, H.; Kluit, P.; Timmermans, J.; Visschers, J. L.; Schmitz, J.

    2006-05-01

    A small TPC has been read out by means of a Medipix2 chip as direct anode. A Micromegas foil was placed 50 μm above the chip, and electron multiplication occurred in the gap. With a He/isobutane 80/20 mixture, gas multiplication factors up to tens of thousands were achieved, resulting in an efficiency for detecting single electrons of better than 90%. With this new readout technology for gas-filled detectors we recorded many image frames containing 2D images with tracks from cosmic muons. Along these tracks, electron clusters were observed, as well as δ-rays. With a gas layer thickness of only 1 mm, the device could be applied as vertex detector, outperforming all Si-based detectors.

  13. Comparison of two detection methods in thin layer chromatographic ...

    African Journals Online (AJOL)

    o-tolidine plus potassium iodide and photosynthesis inhibition detection methods were investigated for the analysis of three triazine herbicides (atrazine, ametryne, simazine) and two urea herbicides (diuron, metobromuron) in a coastal savanna soil using thin layer chromatography to compare the suitability of the two ...

  14. Pre-staining thin layer chromatography method for amino acid ...

    African Journals Online (AJOL)

    Jane

    2010-12-13

    Dec 13, 2010 ... inexpensive and the results obtained were clean and reproducible. However, it is suitable for the high throughput screening of amino acid-producing strains. Key words: Thin layer chromatography, pre-staining, amino acid detection. INTRODUCTION. Several analytical techniques have been often used for.

  15. Thin layer activation: measuring wear and corrosion

    International Nuclear Information System (INIS)

    Delvigne, T.; Leyman, D.; Oxorn, K.

    1995-01-01

    The technique known as thin layer activation (TLA) is explained and assessed in this article. Widely used, in for example the automotive industry, TLA allows on-line monitoring of the loss of matter from a critical surface, by wear erosion and corrosion. The technique offers extremely high sensitivity thus leading to reduced test times. On-line wear phenomena can be assessed during operation of a mechanical process, even through thick engine walls. (UK)

  16. Temperature dependence of gas sensing behaviour of TiO2 doped PANI composite thin films

    Science.gov (United States)

    Srivastava, Subodh; Sharma, S. S.; Sharma, Preetam; Sharma, Vinay; Rajura, Rajveer Singh; Singh, M.; Vijay, Y. K.

    2014-04-01

    In the present work we have reported the effect of temperature on the gas sensing properties of TiO2 doped PANI composite thin film based chemiresistor type gas sensors for hydrogen gas sensing application. PANI and TiO2 doped PANI composite were synthesized by in situ chemical oxidative polymerization of aniline at low temperature. The electrical properties of these composite thin films were characterized by I-V measurements as function of temperature. The I-V measurement revealed that conductivity of composite thin films increased as the temperature increased. The changes in resistance of the composite thin film sensor were utilized for detection of hydrogen gas. It was observed that at room temperature TiO2 doped PANI composite sensor shows higher response value and showed unstable behavior as the temperature increased. The surface morphology of these composite thin films has also been characterized by scanning electron microscopy (SEM) measurement.

  17. Optical and structural properties of protein/gold hybrid bio-nanofilms prepared by layer-by-layer method.

    Science.gov (United States)

    Pál, Edit; Hornok, Viktória; Sebok, Dániel; Majzik, Andrea; Dékány, Imre

    2010-08-01

    Lysozyme/gold thin layers were prepared by layer-by-layer (LbL) self-assembly method. The build-up of the films was followed by UV-vis-absorbance spectra, quartz crystal microbalance (QCM) and surface plasmon resonance (SPR) techniques. The structural property of films was examined by X-ray diffraction (XRD) measurements, while their morphology was studied by scanning electron microscopy (SEM) and atomic force microscopy (AFM). It was found that gold nanoparticles (NPs) had cubic crystalline structure, the primary particles form aggregates in the thin layer due to the presence of lysozyme molecules. The UV-vis measurements prove change in particle size while the colour of the film changes from wine-red to blue. The layer thickness of films was determined using the above methods and the loose, porous structure of the films explains the difference in the results. The vapour adsorption property of hybrid layers was also studied by QCM using different saturated vapours and ammonia gas. The lysozyme/Au films were most sensitive for ammonia gas among the tested gases/vapours due to the strongest interaction between the functional groups of the protein. Copyright 2010 Elsevier B.V. All rights reserved.

  18. Double-layer indium doped zinc oxide for silicon thin-film solar cell prepared by ultrasonic spray pyrolysis

    International Nuclear Information System (INIS)

    Jiao Bao-Chen; Zhang Xiao-Dan; Wei Chang-Chun; Sun Jian; Ni Jian; Zhao Ying

    2011-01-01

    Indium doped zinc oxide (ZnO:In) thin films were prepared by ultrasonic spray pyrolysis on corning eagle 2000 glass substrate. 1 and 2 at.% indium doped single-layer ZnO:In thin films with different amounts of acetic acid added in the initial solution were fabricated. The 1 at.% indium doped single-layers have triangle grains. The 2 at.% indium doped single-layer with 0.18 acetic acid adding has the resistivity of 6.82×10 −3 Ω·cm and particle grains. The double-layers structure is designed to fabricate the ZnO:In thin film with low resistivity (2.58×10 −3 Ω·cm) and good surface morphology. It is found that the surface morphology of the double-layer ZnO:In film strongly depends on the substrate-layer, and the second-layer plays a large part in the resistivity of the double-layer ZnO:In thin film. Both total and direct transmittances of the double-layer ZnO:In film are above 80% in the visible light region. Single junction a-Si:H solar cell based on the double-layer ZnO:In as front electrode is also investigated. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  19. Layered double hydroxides/polymer thin films grown by matrix assisted pulsed laser evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Birjega, R.; Matei, A.; Mitu, B.; Ionita, M.D.; Filipescu, M.; Stokker-Cheregi, F.; Luculescu, C.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest–Magurele (Romania); Zavoianu, R.; Pavel, O.D. [University of Bucharest, Faculty of Chemistry, Department of Chemical Technology and Catalysis, 4-12 Regina Elisabeta Bd., Bucharest (Romania); Corobea, M.C. [National R. and S. Institute for Chemistry and Petrochemistry, ICECHIM, 202 Splaiul Independentei Str., CP-35-274, 060021, Bucharest (Romania)

    2013-09-30

    Due to their highly tunable properties, layered double hydroxides (LDHs) are an emerging class of the favorably layered crystals used for the preparation of multifunctional polymer/layered crystal nanocomposites. In contrast to cationic clay materials with negatively charge layers, LDHs are the only host lattices with positively charged layers (brucite-like), with interlayer exchangeable anions and intercalated water. In this work, the deposition of thin films of Mg and Al based LDH/polymers nanocomposites by laser techniques is reported. Matrix assisted pulsed laser evaporation was the method used for thin films deposition. The Mg–Al LDHs capability to act as a host for polymers and to produce hybrid LDH/polymer films has been investigated. Polyethylene glycol with different molecular mass compositions and ethylene glycol were used as polymers. The structure and surface morphology of the deposited LDH/polymers films were examined by X-ray diffraction, Fourier transform infra-red spectroscopy, atomic force microscopy and scanning electron microscopy. - Highlights: • Hybrid composites deposited by matrix assisted pulsed laser evaporation (MAPLE). • Mg–Al layered double hydroxides (LDH) and polyethylene glycol (PEG) are used. • Mixtures of PEG1450 and LDH were deposited by MAPLE. • Deposited thin films preserve the properties of the starting material. • The film wettability can be controlled by the amount of PEG.

  20. Magnetic properties of amorphous Tb-Fe thin films with an artificially layered structure

    International Nuclear Information System (INIS)

    Sato, N.

    1986-01-01

    An alternating terbium-iron (Tb-Fe) multilayer structure artificially made in amorphous Tb-Fe thin films gives rise to excellent magnetic properties of large perpendicular uniaxial anisotropy, large saturation magnetization, and large coercivity over a wide range of Tb composition in the films. The films are superior to amorphous Tb-Fe alloy thin films, especially when they are piled up with a monatomic layer of Tb and several atomic layers of Fe in an alternating fashion. Small-angle x-ray diffraction analysis confirmed the layering of monatomic layers of Tb and Fe, where the periodicity of the layers was found to be about 5.9 A. Direct evidence for an artificially layered structure was obtained by transmission electron microscopic and Auger electron spectroscopic observations. Together with magnetic measurements of hysteresis loops and torque curves, it has been concluded that the most important origin of the large magnetic uniaxial anisotropy can be attributed to the Tb-Fe pairs aligned perpendicular to the films

  1. Layer-by-layer modification of thin-film metal-semiconductor multilayers with ultrashort laser pulses

    Science.gov (United States)

    Romashevskiy, S. A.; Tsygankov, P. A.; Ashitkov, S. I.; Agranat, M. B.

    2018-05-01

    The surface modifications in a multilayer thin-film structure (50-nm alternating layers of Si and Al) induced by a single Gaussian-shaped femtosecond laser pulse (350 fs, 1028 nm) in the air are investigated by means of atomic-force microscopy (AFM), scanning electron microscopy (SEM), and optical microscopy (OM). Depending on the laser fluence, various modifications of nanometer-scale metal and semiconductor layers, including localized formation of silicon/aluminum nanofoams and layer-by-layer removal, are found. While the nanofoams with cell sizes in the range of tens to hundreds of nanometers are produced only in the two top layers, layer-by-layer removal is observed for the four top layers under single pulse irradiation. The 50-nm films of the multilayer structure are found to be separated at their interfaces, resulting in a selective removal of several top layers (up to 4) in the form of step-like (concentric) craters. The observed phenomenon is associated with a thermo-mechanical ablation mechanism that results in splitting off at film-film interface, where the adhesion force is less than the bulk strength of the used materials, revealing linear dependence of threshold fluences on the film thickness.

  2. Formation of hydrated layers in PMMA thin films in aqueous solution

    Energy Technology Data Exchange (ETDEWEB)

    Akers, Peter W. [School of Chemical Sciences, University of Auckland, Auckland (New Zealand); Nelson, Andrew R.J. [The Bragg Institute, Australian Nuclear Science and Technology Organisation, Menai, NSW (Australia); Williams, David E. [School of Chemical Sciences, University of Auckland, Auckland (New Zealand); MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington (New Zealand); McGillivray, Duncan J., E-mail: d.mcgillivray@auckland.ac.nz [School of Chemical Sciences, University of Auckland, Auckland (New Zealand); MacDiarmid Institute of Advanced Materials and Nanotechnology, Wellington (New Zealand)

    2015-10-30

    Graphical abstract: - Highlights: • Homogeneous thin PMMA films prepared on Si/SiOx substrates and measured in air and water. • Reproducible formation of highly hydrated layer containing 50% water at the PMMA/SiOx interface. • When heated the films swell at 50 °C without loss of material. • Upon re-cooling to 25 °C the surface roughens and material is lost. - Abstract: Neutron reflectometry (NR) measurements have been made on thin (70–150 Å) poly(methylmethacrylate) (PMMA) films on Si/SiOx substrates in aqueous conditions, and compared with parameters measured using ellipsometry and X-Ray reflectometry (XRR) on dry films. All techniques show that the thin films prepared using spin-coating techniques were uniform and had low roughness at both the silicon and subphase interfaces, and similar surface energetics to thicker PMMA films. In aqueous solution, NR measurements at 25 °C showed that PMMA forms a partially hydrated layer at the SiOx interface 10 Å under the film, while the bulk film remains intact and contains around 4% water. Both the PMMA film layer and the sublayer showed minimal swelling over a period of 24 h. At 50 °C, PMMA films in aqueous solution roughen and swell, without loss of PMMA material at the surface. After cooling back to 25 °C, swelling and roughening increases further, with loss of material from the PMMA layer.

  3. Formation of hydrated layers in PMMA thin films in aqueous solution

    International Nuclear Information System (INIS)

    Akers, Peter W.; Nelson, Andrew R.J.; Williams, David E.; McGillivray, Duncan J.

    2015-01-01

    Graphical abstract: - Highlights: • Homogeneous thin PMMA films prepared on Si/SiOx substrates and measured in air and water. • Reproducible formation of highly hydrated layer containing 50% water at the PMMA/SiOx interface. • When heated the films swell at 50 °C without loss of material. • Upon re-cooling to 25 °C the surface roughens and material is lost. - Abstract: Neutron reflectometry (NR) measurements have been made on thin (70–150 Å) poly(methylmethacrylate) (PMMA) films on Si/SiOx substrates in aqueous conditions, and compared with parameters measured using ellipsometry and X-Ray reflectometry (XRR) on dry films. All techniques show that the thin films prepared using spin-coating techniques were uniform and had low roughness at both the silicon and subphase interfaces, and similar surface energetics to thicker PMMA films. In aqueous solution, NR measurements at 25 °C showed that PMMA forms a partially hydrated layer at the SiOx interface 10 Å under the film, while the bulk film remains intact and contains around 4% water. Both the PMMA film layer and the sublayer showed minimal swelling over a period of 24 h. At 50 °C, PMMA films in aqueous solution roughen and swell, without loss of PMMA material at the surface. After cooling back to 25 °C, swelling and roughening increases further, with loss of material from the PMMA layer.

  4. Note: Automatic layer-by-layer spraying system for functional thin film coatings

    Science.gov (United States)

    Seo, Seongmin; Lee, Sangmin; Park, Yong Tae

    2016-03-01

    In this study, we have constructed an automatic spray machine for producing polyelectrolyte multilayer films containing various functional materials on wide substrates via the layer-by-layer (LbL) assembly technique. The proposed machine exhibits advantages in terms of automation, process speed, and versatility. Furthermore, it has several features that allow a fully automated spraying operation, such as various two-dimensional spraying paths, control of the flow rate and operating speed, air-assist fan-shaped twin-fluid nozzles, and an optical display. The robot uniformly sprays aqueous mixtures containing complementary (e.g., oppositely charged, capable of hydrogen bonding, or capable of covalent bonding) species onto a large-area substrate. Between each deposition of opposite species, samples are spray-rinsed with deionized water and blow-dried with air. The spraying, rinsing, and drying areas and times are adjustable by a computer program. Twenty-bilayer flame-retardant thin films were prepared in order to compare the performance of the spray-assisted LbL assembly with a sample produced by conventional dipping. The spray-coated film exhibited a reduction of afterglow time in vertical flame tests, indicating that the spray-LbL technique is a simple method to produce functional thin film coatings.

  5. Using thin metal layers on composite structures for shielding the electromagnetic pulse caused by nearby lightning

    NARCIS (Netherlands)

    Blaj, M.A.; Buesink, Frederik Johannes Karel; Damstra, G.C.; Leferink, Frank Bernardus Johannes

    2011-01-01

    Electronic systems in composite structures could be vulnerable to the (dominant magnetic) field caused by a lightning strike, because only thin layers of metal can be used on composite structures. Thin layers result in a very low shielding effectiveness against magnetic fields. Many experiments

  6. Novel top-contact monolayer pentacene-based thin-film transistor for ammonia gas detection.

    Science.gov (United States)

    Mirza, Misbah; Wang, Jiawei; Li, Dexing; Arabi, S Atika; Jiang, Chao

    2014-04-23

    We report on the fabrication of an organic field-effect transistor (OFET) of a monolayer pentacene thin film with top-contact electrodes for the aim of ammonia (NH3) gas detection by monitoring changes in its drain current. A top-contact configuration, in which source and drain electrodes on a flexible stamp [poly(dimethylsiloxane)] were directly contacted with the monolayer pentacene film, was applied to maintain pentacene arrangement ordering and enhance the monolayer OFET detection performance. After exposure to NH3 gas, the carrier mobility at the monolayer OFET channel decreased down to one-third of its original value, leading to a several orders of magnitude decrease in the drain current, which tremendously enhanced the gas detection sensitivity. This sensitivity enhancement to a limit of the 10 ppm level was attributed to an increase of charge trapping in the carrier channel, and the amount of trapped states was experimentally evaluated by the threshold voltage shift induced by the absorbed NH3 molecular analyte. In contrast, a conventional device with a 50-nm-thick pentacene layer displayed much higher mobility but lower response to NH3 gas, arising from the impediment of analyte penetrating into the conductive channel, owing to the thick pentacene film.

  7. Voltammetric Thin-Layer Ionophore-Based Films: Part 2. Semi-Empirical Treatment.

    Science.gov (United States)

    Yuan, Dajing; Cuartero, Maria; Crespo, Gaston A; Bakker, Eric

    2017-01-03

    This work reports on a semiempirical treatment that allows one to rationalize and predict experimental conditions for thin-layer ionophore-based films with cation-exchange capacity read out with cyclic voltammetry. The transition between diffusional mass transport and thin-layer regime is described with a parameter (α), which depends on membrane composition, diffusion coefficient, scan rate, and electrode rotating speed. Once the thin-layer regime is fulfilled (α = 1), the membrane behaves in some analogy to a potentiometric sensor with a second discrimination variable (the applied potential) that allows one to operate such electrodes in a multianalyte detection mode owing to the variable applied ion-transfer potentials. The limit of detection of this regime is defined with a second parameter (β = 2) and is chosen in analogy to the definition of the detection limit for potentiometric sensors provided by the IUPAC. The analytical equations were validated through the simulation of the respective cyclic voltammograms under the same experimental conditions. While simulations of high complexity and better accuracy satisfactorily reproduced the experimental voltammograms during the forward and backward potential sweeps (companion paper 1), the semiempirical treatment here, while less accurate, is of low complexity and allows one to quite easily predict relevant experimental conditions for this emergent methodology.

  8. Photo-EMF Sensitivity of Porous Silicon Thin Layer–Crystalline Silicon Heterojunction to Ammonia Adsorption

    Directory of Open Access Journals (Sweden)

    Kae Dal Kwack

    2011-01-01

    Full Text Available A new method of using photo-electromotive force in detecting gas and controlling sensitivity is proposed. Photo-electromotive force on the heterojunction between porous silicon thin layer and crystalline silicon wafer depends on the concentration of ammonia in the measurement chamber. A porous silicon thin layer was formed by electrochemical etching on p-type silicon wafer. A gas and light transparent electrical contact was manufactured to this porous layer. Photo-EMF sensitivity corresponding to ammonia concentration in the range from 10 ppm to 1,000 ppm can be maximized by controlling the intensity of illumination light.

  9. Photo-EMF Sensitivity of Porous Silicon Thin Layer–Crystalline Silicon Heterojunction to Ammonia Adsorption

    Science.gov (United States)

    Vashpanov, Yuriy; Jung, Jae Il; Kwack, Kae Dal

    2011-01-01

    A new method of using photo-electromotive force in detecting gas and controlling sensitivity is proposed. Photo-electromotive force on the heterojunction between porous silicon thin layer and crystalline silicon wafer depends on the concentration of ammonia in the measurement chamber. A porous silicon thin layer was formed by electrochemical etching on p-type silicon wafer. A gas and light transparent electrical contact was manufactured to this porous layer. Photo-EMF sensitivity corresponding to ammonia concentration in the range from 10 ppm to 1,000 ppm can be maximized by controlling the intensity of illumination light. PMID:22319353

  10. ZnO:Al Thin Film Gas Sensor for Detection of Ethanol Vapor

    Directory of Open Access Journals (Sweden)

    Min Hsiung Hon

    2006-10-01

    Full Text Available The ZnO:Al thin films were prepared by RF magnetron sputtering on Si substrateusing Pt as interdigitated electrodes. The structure was characterized by XRD and SEManalyses, and the ethanol vapor gas sensing as well as electrical properties have beeninvestigated and discussed. The gas sensing results show that the sensitivity for detecting400 ppm ethanol vapor was ~20 at an operating temperature of 250°C. The high sensitivity,fast recovery, and reliability suggest that ZnO:Al thin film prepared by RF magnetronsputtering can be used for ethanol vapor gas sensing.

  11. Layered Cu-based electrode for high-dielectric constant oxide thin film-based devices

    International Nuclear Information System (INIS)

    Fan, W.; Saha, S.; Carlisle, J.A.; Auciello, O.; Chang, R.P.H.; Ramesh, R.

    2003-01-01

    Ti-Al/Cu/Ta multilayered electrodes were fabricated on SiO 2 /Si substrates by ion beam sputtering deposition, to overcome the problems of Cu diffusion and oxidation encountered during the high dielectric constant (κ) materials integration. The Cu and Ta layers remained intact through the annealing in oxygen environment up to 600 deg. C. The thin oxide layer, formed on the Ti-Al surface, effectively prevented the oxygen penetration toward underneath layers. Complex oxide (Ba x Sr 1-x )TiO 3 (BST) thin films were grown on the layered Ti-Al/Cu/Ta electrodes using rf magnetron sputtering. The deposited BST films exhibited relatively high permittivity (150), low dielectric loss (0.007) at zero bias, and low leakage current -8 A/cm 2 at 100 kV/cm

  12. Multi-layered zinc oxide-graphene composite thin films for selective nitrogen dioxide sensing

    Science.gov (United States)

    Ghosh, A.; Bhowmick, T.; Majumder, S. B.

    2018-02-01

    In the present work, selective nitrogen dioxide (NO2) sensing characteristics of multi-layered graphene-zinc oxide (G-ZnO) thin films have been demonstrated at 150 °C. The response% of 5 ppm NO2 was measured to be 894% with response and recovery times estimated to be 150 s and 315 s, respectively. In these composite films, the interaction between graphene and zinc oxide is established through X-ray photoelectron spectroscopy in conjunction with the analyses of photoluminescence spectra. Superior NO2 sensing of these films is due to simultaneous chemiadsorption of molecular oxygen and NO2 gases onto graphene and ZnO surfaces, resulting in an appreciable increase in the depletion layer width and thereby the sensor resistance. The sensor responses for other reducing gases (viz., CO, H2, and i-C4H10) are postulated to be due to their catalytic oxidation on the sensor surface, resulting in a decrease in the sensor resistance upon gas exposure. At lower operating temperature, due to the molecular nature of the chemiadsorbed oxygen, poor catalytic oxidation leads to a far lower sensor response for reducing gases as compared to NO2. For mixed NO2 and reducing gas sensing, we have reported that fast Fourier transformation of the resistance transients of all these gases in conjunction with principal component analyses forms a reasonably distinct cluster and, therefore, could easily be differentiated.

  13. Layer-controllable graphene by plasma thinning and post-annealing

    Science.gov (United States)

    Zhang, Lufang; Feng, Shaopeng; Xiao, Shaoqing; Shen, Gang; Zhang, Xiumei; Nan, Haiyan; Gu, Xiaofeng; Ostrikov, Kostya (Ken)

    2018-05-01

    The electronic structure of graphene depends crucially on its layer number and therefore engineering the number of graphene's atomic stacking layers is of great importance for the preparation of graphene-based devices. In this paper, we demonstrated a relatively less invasive, high-throughput and uniform large-area plasma thinning of graphene based on direct bombardment effect of fast-moving ionic hydrogen or argon species. Any desired number of graphene layers including trilayer, bilayer and monolayer can be obtained. Structural changes of graphene layers are studied by optical microscopy, Raman spectroscopy and atomic force microscopy. Post annealing is adopted to self-heal the lattice defects induced by the ion bombardment effect. This plasma etching technique is efficient and compatible with semiconductor manufacturing processes, and may find important applications for graphene-based device fabrication.

  14. Enhanced electrical properties of oxide semiconductor thin-film transistors with high conductivity thin layer insertion for the channel region

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Cam Phu Thi; Raja, Jayapal; Kim, Sunbo; Jang, Kyungsoo; Le, Anh Huy Tuan; Lee, Youn-Jung; Yi, Junsin, E-mail: junsin@skku.edu

    2017-02-28

    Highlights: • The characteristics of thin film transistors using double active layers are examined. • Electrical characteristics have been improved for the double active layers devices. • The total trap density can be decreased by insert-ion of ultrathin ITO film. - Abstract: This study examined the performance and the stability of indium tin zinc oxide (ITZO) thin film transistors (TFTs) by inserting an ultra-thin indium tin oxide (ITO) layer at the active/insulator interface. The electrical properties of the double channel device (ITO thickness of 5 nm) were improved in comparison with the single channel ITZO or ITO devices. The TFT characteristics of the device with an ITO thickness of less than 5 nm were degraded due to the formation of an island-like morphology and the carriers scattering at the active/insulator interface. The 5 nm-thick ITO inserted ITZO TFTs (optimal condition) exhibited a superior field effect mobility (∼95 cm{sup 2}/V·s) compared with the ITZO-only TFTs (∼34 cm{sup 2}/V·s). The best characteristics of the TFT devices with double channel layer are due to the lowest surface roughness (0.14 nm) and contact angle (50.1°) that result in the highest hydrophicility, and the most effective adhesion at the surface. Furthermore, the threshold voltage shifts for the ITO/ITZO double layer device decreased to 0.80 and −2.39 V compared with 6.10 and −6.79 V (for the ITZO only device) under positive and negative bias stress, respectively. The falling rates of E{sub A} were 0.38 eV/V and 0.54 eV/V for the ITZO and ITO/ITZO bi-layer devices, respectively. The faster falling rate of the double channel devices suggests that the trap density, including interface trap and semiconductor bulk trap, can be decreased by the ion insertion of a very thin ITO film into the ITZO/SiO{sub 2} reference device. These results demonstrate that the double active layer TFT can potentially be applied to the flat panel display.

  15. Modeling the influence of the seeding layer on the transition behavior of a ferroelectric thin film

    International Nuclear Information System (INIS)

    Oubelkacem, A.; Essaoudi, I.; Ainane, A.; Saber, M.; Dujardin, F.

    2011-01-01

    The transition properties of a ferroelectric thin film with seeding layers were studied using the effective field theory with a probability distribution technique that accounts for the self-spin correlation functions. The effect of interaction parameters for the seeding layer on the phase diagram was also examined. We calculated the critical temperature and the polarization of the ferroelectric thin film for different seeding layer structures. We found that the seeding layer can greatly increase the Curie temperature and the polarization.

  16. Thin film photovoltaic devices with a minimally conductive buffer layer

    Science.gov (United States)

    Barnes, Teresa M.; Burst, James

    2016-11-15

    A thin film photovoltaic device (100) with a tunable, minimally conductive buffer (128) layer is provided. The photovoltaic device (100) may include a back contact (150), a transparent front contact stack (120), and an absorber (140) positioned between the front contact stack (120) and the back contact (150). The front contact stack (120) may include a low resistivity transparent conductive oxide (TCO) layer (124) and a buffer layer (128) that is proximate to the absorber layer (140). The photovoltaic device (100) may also include a window layer (130) between the buffer layer (128) and the absorber (140). In some cases, the buffer layer (128) is minimally conductive, with its resistivity being tunable, and the buffer layer (128) may be formed as an alloy from a host oxide and a high-permittivity oxide. The high-permittivity oxide may further be chosen to have a bandgap greater than the host oxide.

  17. Improved integration of ultra-thin high-k dielectrics in few-layer MoS2 FET by remote forming gas plasma pretreatment

    Science.gov (United States)

    Wang, Xiao; Zhang, Tian-Bao; Yang, Wen; Zhu, Hao; Chen, Lin; Sun, Qing-Qing; Zhang, David Wei

    2017-01-01

    The effective and high-quality integration of high-k dielectrics on two-dimensional (2D) crystals is essential to the device structure engineering and performance improvement of field-effect transistor (FET) based on the 2D semiconductors. We report a 2D MoS2 transistor with ultra-thin Al2O3 top-gate dielectric (6.1 nm) and extremely low leakage current. Remote forming gas plasma pretreatment was carried out prior to the atomic layer deposition, providing nucleation sites with the physically adsorbed ions on the MoS2 surface. The top gate MoS2 FET exhibited excellent electrical performance, including high on/off current ratio over 109, subthreshold swing of 85 mV/decade and field-effect mobility of 45.03 cm2/V s. Top gate leakage current less than 0.08 pA/μm2 at 4 MV/cm has been obtained, which is the smallest compared with the reported top-gated MoS2 transistors. Such an optimized integration of high-k dielectric in 2D semiconductor FET with enhanced performance is very attractive, and it paves the way towards the realization of more advanced 2D nanoelectronic devices and integrated circuits.

  18. Low Energy Scanned Electron-Beam Dose Distribution in Thin Layers

    DEFF Research Database (Denmark)

    McLaughlin, W. L.; Hjortenberg, P. E.; Pedersen, Walther Batsberg

    1975-01-01

    Thin radiochromic dye film dosimeters, calibrated by means of calorimetry, make possible the determination of absorbed-dose distributions due to low-energy scanned electron beam penetrations in moderately thin coatings and laminar media. For electrons of a few hundred keV, calibrated dosimeters...... of about 30–60 μm thickness may be used in stacks or interleaved between layers of materials of interest and supply a sufficient number of experimental data points throughout the depth of penetration of electrons to provide a depth-dose curve. Depth doses may be resolved in various polymer layers...... on different backings (wood, aluminum, and iron) for scanned electron beams (Emax = 400 keV) having a broad energy spectrum and diffuse incidence, such as those used in radiation curing of coatings, textiles, plastics, etc. Theoretical calculations of such distributions of energy depositions are relatively...

  19. Estimation of optical constants of a bio-thin layer (onion epidermis), using SPR spectroscopy

    International Nuclear Information System (INIS)

    Rehman, Saif-ur-; Hayashi, Shinji; Sekkat, Zouheir; Mumtaz, Huma; Shaukat, S F

    2014-01-01

    We estimate the optical constants of a biological thin layer (Allium cepa) by surface plasmon resonance (SPR) spectroscopy. For this study, the fresh inner thin epidermis of an onion bulb was used and stacked directly on gold (Au) and silver (Ag) film surfaces in order to identify the shift in SPR mode of each metal film at an operating wavelength of 632.8 nm. The thickness and dielectric constants of the biological thin layer were determined by matching the experimental SPR curves to theoretical ones. The thickness and roughness of bare Au and Ag thin films were also measured by atomic force microscopy (AFM); the results of which are in good agreement with those obtained through experiment. Due to the high surface roughness of the natural onion epidermis layer, AFM could not measure the exact thickness of an onion epidermis. It is estimated that the value of the real part of the dielectric constant of an onion epidermis is between the dielectric constants of water and air. (paper)

  20. Sputter Deposited TiOx Thin-Films as Electron Transport Layers in Organic Solar Cells

    DEFF Research Database (Denmark)

    Mirsafaei, Mina; Bomholt Jensen, Pia; Lakhotiya, Harish

    transparency and favorable energy-level alignment with many commonly used electron-acceptor materials. There are several methods available for fabricating compact TiOx thin-films for use in organic solar cells, including sol-gel solution processing, spray pyrolysis and atomic-layer deposition; however...... of around 7%, by incorporating sputter deposited TiOx thin-films as electron-transport and exciton-blocking layers. In the work, we report on the effect of different TiOx deposition temperatures and thicknesses on the organic-solar-cell device performance. Besides optical characterization, AFM and XRD...... analyses are performed to characterize the morphology and crystal structure of the films, and external quantum efficiency measurements are employed to shed further light on the device performance. Our study presents a novel method for implementation of TiOx thin-films as electron-transport layer in organic...

  1. Characterization of Mycobacterium paratuberculosis by gas-liquid and thin-layer chromatography and rapid demonstration of mycobactin dependence using radiometric methods

    International Nuclear Information System (INIS)

    Damato, J.J.; Knisley, C.; Collins, M.T.

    1987-01-01

    Thirty-six Mycobacterium paratuberculosis isolates of bovine, caprine, and ovine origins were evaluated by using gas-liquid chromatography (GLC), thin-layer chromatography (TLC), and BACTEC 7H12 Middlebrook TB medium in an effort to more rapidly differentiate this group of organisms from other mycobacteria. Bacterial suspensions (0.1 ml) were inoculated by syringe into 7H12 broth containing 2 micrograms of mycobactin P per ml and control broth without mycobactin P. Cultures were incubated at 37 0 C and read daily with a BACTEC Model 301. After 8 days of incubation, the growth index readings for the test broths containing mycobactin P were twice those of the control broths without mycobactin P. Sixty-five isolates of mycobacteria other than M. paratuberculosis were also examined. No difference was noted between the growth index readings of control and mycobactin-containing broths. Except for Mycobacterium avium-Mycobacterium intracellulare, TLC studies differentiated M. paratuberculosis from the other mycobacterial species tested. The GLC data reveal that all M. paratuberculosis isolates had a distinctive peak (14A) which was not found among M. avium-M. intracellulare complex organisms. These data indicate that 7H12 radiometric broth was able to rapidly demonstrate the mycobactin dependence of M. paratuberculosis and GLC and TLC procedures were capable of rapidly differentiating this organism from the other mycobacteria studied

  2. Modified Back Contact Interface of CZTSe Thin Film Solar Cells: Elimination of Double Layer Distribution in Absorber Layer.

    Science.gov (United States)

    Zhang, Zhaojing; Yao, Liyong; Zhang, Yi; Ao, Jianping; Bi, Jinlian; Gao, Shoushuai; Gao, Qing; Jeng, Ming-Jer; Sun, Guozhong; Zhou, Zhiqiang; He, Qing; Sun, Yun

    2018-02-01

    Double layer distribution exists in Cu 2 SnZnSe 4 (CZTSe) thin films prepared by selenizing the metallic precursors, which will degrade the back contact of Mo substrate to absorber layer and thus suppressing the performance of solar cell. In this work, the double-layer distribution of CZTSe film is eliminated entirely and the formation of MoSe 2 interfacial layer is inhibited successfully. CZTSe film is prepared by selenizing the precursor deposited by electrodeposition method under Se and SnSe x mixed atmosphere. It is found that the insufficient reaction between ZnSe and Cu-Sn-Se phases in the bottom of the film is the reason why the double layer distribution of CZTSe film is formed. By increasing Sn content in the metallic precursor, thus making up the loss of Sn because of the decomposition of CZTSe and facilitate the diffusion of liquid Cu 2 Se, the double layer distribution is eliminated entirely. The crystallization of the formed thin film is dense and the grains go through the entire film without voids. And there is no obvious MoSe 2 layer formed between CZTSe and Mo. As a consequence, the series resistance of the solar cell reduces significantly to 0.14 Ω cm 2 and a CZTSe solar cell with efficiency of 7.2% is fabricated.

  3. A thin-layer liquid culture technique for the growth of Helicobacter pylori.

    Science.gov (United States)

    Joo, Jung-Soo; Park, Kyung-Chul; Song, Jae-Young; Kim, Dong-Hyun; Lee, Kyung-Ja; Kwon, Young-Cheol; Kim, Jung-Min; Kim, Kyung-Mi; Youn, Hee-Shang; Kang, Hyung-Lyun; Baik, Seung-Chul; Lee, Woo-Kon; Cho, Myung-Je; Rhee, Kwang-Ho

    2010-08-01

    Several attempts have been successful in liquid cultivation of Helicobaccter pylori. However, there is a need to improve the growth of H. pylori in liquid media in order to get affluent growth and a simple approach for examining bacterial properties. We introduce here a thin-layer liquid culture technique for the growth of H. pylori. A thin-layer liquid culture system was established by adding liquid media to a 90-mm diameter Petri dish. Optimal conditions for bacterial growth were investigated and then viability, growth curve, and released proteins were examined. Maximal growth of H. pylori was obtained by adding 3 mL of brucella broth supplemented with 10% horse to a Petri dish. H. pylori grew in both DMEM and RPMI-1640 supplemented with 10% fetal bovine serum and 0.5% yeast extract. Serum-free RPMI-1640 supported the growth of H. pylori when supplemented with dimethyl-beta-cyclodextrin (200 microg/mL) and 1% yeast extract. Under optimal growth, H. pylori grew exponentially for 28 hours, reaching a density of 3.4 OD(600) with a generation time of 3.3 hours. After 24 hours, cultures at a cell density of 1.0 OD(600) contained 1.3 +/- 0.1 x 10(9 )CFU/mL. gamma-Glutamyl transpeptidase, nuclease, superoxide dismutase, and urease were not detected in culture supernatants at 24 hours in thin-layer liquid culture, but were present at 48 hours, whereas alcohol dehydrogenase, alkylhydroperoxide reductase, catalase, and vacuolating cytotoxin were detected at 24 hours. Thin-layer liquid culture technique is feasible, and can serve as a versatile liquid culture technique for investigating bacterial properties of H. pylori.

  4. Thin film platinum–palladium thermocouples for gas turbine engine applications

    Energy Technology Data Exchange (ETDEWEB)

    Tougas, Ian M.; Gregory, Otto J., E-mail: gregory@egr.uri.edu

    2013-07-31

    Thin film platinum:palladium thermocouples were fabricated on alumina and mullite surfaces using radio frequency sputtering and characterized after high temperature exposure to oxidizing environments. The thermoelectric output, hysteresis, and drift of these sensors were measured at temperatures up to 1100 °C. Auger electron spectroscopy was used to follow the extent of oxidation in each thermocouple leg and interdiffusion at the metallurgical junction. Minimal oxidation of the platinum and palladium thermoelements was observed after high temperature exposure, but considerable dewetting and faceting of the films were observed in scanning electron microscopy. An Arrhenius temperature dependence on the drift rate was observed and later attributed to microstructural changes during thermal cycling. The thin film thermocouples, however, did exhibit excellent stability at 1000 °C with drift rates comparable to commercial type-K wire thermocouples. Based on these results, platinum:palladium thin film thermocouples have considerable potential for use in the hot sections of gas turbine engines. - Highlights: • Stable thin film platinum:palladium thermocouples for gas turbine engines • Little oxidation but significant microstructural changes from thermal cycling • Minimal hysteresis during repeated thermal cycling • Drift comparable to commercial wire thermocouples.

  5. Comparison of different thin layer detection techniques to determine the radiochemical purity of radiopharmaceuticals

    International Nuclear Information System (INIS)

    Hammermaier, A.; Reich, E.; Boegl, W.

    1985-01-01

    Ten radiopharmaceuticals frequently used in clinical treatment were examined as to their radiochemical purity by paper and thin layer chromatography or electrophoresis, respectively. It is known that radiochemical impurities may result in an unnecessary exposure of the patients to be examined. Other than determining the radiochemical purity of several radiopharmaceuticals, a comparison of the different measuring methods of distributing activity on radiochromatograms or electropherograms is intended by this study. For this, the activity distribution in the developed radiochromatograms was assessed by four different measuring methods (TLC-linear analyzer, TLC-scanner with NaI(Tl) detector, TLC-scanner with gas flow counter and NaI(Tl) well-typ counter). As shown by the above analysis, only the TLC-linear analyzer and the NaI(Tl) well-typ counter (measurement of chromatograms or electropherograms cut into strips) are generally suitable methods for determining the radiochemical purity of radiochemicals, the TLC-scanner with gas flow counter is usable in most cases, while TLC-scanner with NaI(Tl) detector is yielding unsatisfactory results. (orig.) [de

  6. Ultra-smooth epitaxial Ge grown on Si(001) utilizing a thin C-doped Ge buffer layer

    KAUST Repository

    Mantey, J.

    2013-01-01

    Here, we present work on epitaxial Ge films grown on a thin buffer layer of C doped Ge (Ge:C). The growth rate of Ge:C is found to slow over time and is thus unsuitable for thick (>20 nm) layers. We demonstrate Ge films from 10 nm to >150 nm are possible by growing pure Ge on a thin Ge:C buffer. It is shown that this stack yields exceedingly low roughness levels (comparable to bulk Si wafers) and contains fewer defects and higher Hall mobility compared to traditional heteroepitaxial Ge. The addition of C at the interface helps reduce strain by its smaller atomic radius and its ability to pin defects within the thin buffer layer that do not thread to the top Ge layer. © 2013 AIP Publishing LLC.

  7. Spherical thin-shell wormholes and modified Chaplygin gas

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Azam, M., E-mail: msharif.math@pu.edu.pk, E-mail: azammath@gmail.com [Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590 (Pakistan)

    2013-05-01

    The purpose of this paper is to construct spherical thin-shell wormhole solutions through cut and paste technique and investigate the stability of these solutions in the vicinity of modified Chaplygin gas. The Darmois-Israel formalism is used to formulate the stresses of the surface concentrating the exotic matter. We explore the stability of the wormhole solutions by using the standard potential method. We conclude that there exist more stable as well as unstable solutions than the previous study with generalized Chaplygin gas [19].

  8. Thin-film antifuses for pellistor type gas sensors

    NARCIS (Netherlands)

    Kovalgin, Alexeij Y.; Holleman, J.; van den Berg, Albert; Wallinga, Hans

    2001-01-01

    This work extends our previously reported idea of using the nano-scale conductive link (antifuse) as a combined heating /detecting element in a Pellistor-type gas sensor. Our new thin-film antifuse is designed in such a way that the oxide, for minimising the bulk influence on surface temperature,

  9. Hypersonic aerodynamics on thin bodies with interaction and upstream influence

    OpenAIRE

    Smith, F. T.; Khorrami, A. F.

    1994-01-01

    In the fundamental configuration studied here, a steady hypersonic free stream flows over a thin sharp aligned airfoil or flat plate with a leading-edge shock wave, and the flow field in the shock layer (containing a viscous and an inviscid layer) is steady laminar and two-dimensional, for a perfect gas without real and high-temperature gas effects. The viscous and inviscid layers are analysed and computed simultaneously in the region from the leading edge to the trailing edge, including the ...

  10. Evidence for moving of threading dislocations during the VPE growth in GaN thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Kuwano, Noriyuki [Art, Science and Technology Center for Cooperative Research, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Department of Applied Science for Electronics and Materials, Kyushu University, Kasuga, Fukuoka 816-8580 (Japan); Miyake, Hideto; Hiramatsu, Kazumasa [Department of Electrical and Electronic Engineering, Mie University, Tsu, Mie 514-8507 (Japan); Amano, Hiroshi [Graduate School of Engineering, Akasaki Research Center, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603 (Japan); Akasaki, Isamu [Faculty of Science and Technology, Meijo University, 1-501 Shiogamaguchi, Tempaku, Nagoya 468-8502 (Japan)

    2011-05-15

    Cross-sectional transmission electron microscope (TEM) observation was performed in detail to analyze the morphology of threading dislocations (TDs) in GaN thin layers with various thicknesses. The GaN layers were overgrown on an Al{sub 0.28}Ga{sub 0.72}N layer by the metal-organic vapor-phase epitaxy (MOVPE) method. In a GaN layer about 50 nm in thickness, TDs running up in the AlGaN layer pass into the GaN layer and most of them reach the top surface without bending. In thicker GaN layers, on the other hand, many of TDs form a hairpin-configuration on or above the interface of GaN and AlGaN to be annihilated. This difference in morphology of TDs indicates that the TDs have moved down inside the GaN layer. Since the formation of hairpins is attributed to a stress-relief, there should be an extra half-plane between the paired TDs. Therefore, the movement of TDs should be of ''climb motion''. Another example of possible TD movement inside a GaN layer is also described. It is emphasized that the possibility of TD-movements inside the thin film crystal during the growth should be taken into account in analysis of thin-layer growth through the behavior of TDs (copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. A thin layer fiber-coupled luminescence dosimeter based on Al2O3:C

    DEFF Research Database (Denmark)

    Klein, F.A.; Greilich, Steffen; Andersen, Claus Erik

    2011-01-01

    In this paper we present a fiber-coupled luminescent Al2O3:C dosimeter probe with high spatial resolution (0.1 mm). It is based on thin layers of Al2O3:C crystal powder and a UV-cured acrylate monomer composition. The fabrication of the thin layers is described in detail. No influence of the intr......In this paper we present a fiber-coupled luminescent Al2O3:C dosimeter probe with high spatial resolution (0.1 mm). It is based on thin layers of Al2O3:C crystal powder and a UV-cured acrylate monomer composition. The fabrication of the thin layers is described in detail. No influence...... of the introduced polymer host matrix on the dosimetric properties was observed. Depth-dose measurements with the new detectors in a 142.66 MeV proton and 270.55 MeV/u carbon ion beam are presented as example applications. We used an RL protocol with saturated crystals allowing for time-effective measurements...... without sensitivity corrections. For protons, a relative luminescence efficiency hHCP of 0.715 0.014 was found in the Bragg peak. For carbon ions, a value of 0.498 0.001 was found in the entrance channel, 0.205 0.015 in the Bragg peak, and a mean of 0.413 0.050 in the tail region. The mean range...

  12. Thin and thick layers of resin-based sealer cement bonded to root dentine compared: Adhesive behaviour.

    Science.gov (United States)

    Pane, Epita S; Palamara, Joseph E A; Messer, Harold H

    2015-12-01

    This study aims to evaluate tensile and shear bond strengths of one epoxy (AH) and two methacrylate resin-based sealers (EZ and RS) in thin and thick layers bonded to root dentine. An alignment device was prepared for accurate positioning of 20 root dentine cylinders in a predefined gap of 0.1 or 1 mm. Sealer was placed in the interface. Bond strength tests were conducted. Mode of failures and representative surfaces were evaluated. Data were analysed using anova and post-hoc tests, with P thick layer of sealer produced higher bond strength, except for the shear bond strength of EZ. Significant differences between thin and thick layers were found only in tensile bond strengths of AH and RS. Mixed type of failure was constantly found with all sealers. Bond strengths of thick layers of resin-based sealers to root dentine tended to be higher than with thin layers. © 2015 Australian Society of Endodontology.

  13. Thin layer fibres are a knotty problem

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    Concern that emergency core cooling system (ECCS) strainers can be blocked by insulation debris has been generated by an incident at the Swedish Barsebaeck-2 BWR in 1992 and two subsequent incidents at the Perry and Limerick BWR plants in the USA. Recent studies are reported which show that blockage of the small, passive suction type strainers common to these and many other BWRs can occur when only very small quantities of fibrous material present in the suppression pool combine with particulates such as corrosion products to form thin layers on the strainer surface. Layers only a few millimetres thick lead to extremely high head losses on the strainer surface and can cause cavitation in the ECCS pumps. It is concluded that the most practical reliable and cost effective solution is to replace the small strainers with larger ones. (UK)

  14. Investigation of thin polymer layers for biosensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Saftics, András; Agócs, Emil [Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences–H-1121 Budapest (Hungary); Fodor, Bálint [Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences–H-1121 Budapest (Hungary); Doctoral School of Physics, Faculty of Science, University of Pécs, 7624 Pécs, Ifjúság útja 6 (Hungary); Patkó, Dániel; Petrik, Péter [Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences–H-1121 Budapest (Hungary); Doctoral School of Molecular- and Nanotechnologies, Faculty of Information Technology, University of Pannonia, H-8200 Egyetem u.10, Veszprém (Hungary); Kolari, Kai; Aalto, Timo [VTT Technical Research Centre of Finland, PL 1000, Tietotie 3, 02044 Espoo (Finland); Fürjes, Péter [Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences–H-1121 Budapest (Hungary); Horvath, Robert [Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences–H-1121 Budapest (Hungary); Doctoral School of Molecular- and Nanotechnologies, Faculty of Information Technology, University of Pannonia, H-8200 Egyetem u.10, Veszprém (Hungary); Kurunczi, Sándor, E-mail: kurunczi.sandor@ttk.mta.hu [Institute for Technical Physics and Materials Science, Research Centre for Natural Sciences–H-1121 Budapest (Hungary); Doctoral School of Molecular- and Nanotechnologies, Faculty of Information Technology, University of Pannonia, H-8200 Egyetem u.10, Veszprém (Hungary)

    2013-09-15

    Novel biosensors made of polymers may offer advantages over conventional technology such as possibility of mass production and tunability of the material properties. With the ongoing work on the polymer photonic chip fabrication in our project, simple model samples were tested parallel for future immobilization and accessing conditions for applications in typical aqueous buffers. The model samples consist of a thin, high refractive index polyimide film on top of TEOS on Si wafer. These model samples were measured by in situ spectroscopic ellipsometry using different aqueous buffers. The experiments revealed a high drift in aqueous solutions; the drift in the ellipsometric parameters (delta, psi) can be evaluated and presented as changes in thickness and refractive index of the polyimide layer. The first molecular layer of immobilization is based on polyethyleneimine (PEI). The signal for the PEI adsorption was detected on a stable baseline, only after a long conditioning. The stability of polyimide films in aqueous buffer solutions should be improved toward the real biosensor application. Preliminary results are shown on the possibilities to protect the polyimide. Optical Waveguide Lightmode Spectroscopy (OWLS) has been used to demonstrate the shielding effect of the thin TiO{sub 2} adlayer in biosensor applications.

  15. Interfacial passivation of CdS layer to CdSe quantum dots-sensitized electrodeposited ZnO nanowire thin films

    International Nuclear Information System (INIS)

    Zhang, Jingbo; Sun, Chuanzhen; Bai, Shouli; Luo, Ruixian; Chen, Aifan; Sun, Lina; Lin, Yuan

    2013-01-01

    ZnO porous thin films with nanowire structure were deposited by the one-step electrochemical deposition method. And a CdS layer was coated on the as-deposited ZnO nanowire thin films by successive ionic layer adsorption and reaction (SILAR) method to passivate surface states. Then the films were further sensitized by CdSe quantum dots (QDs) to serve as a photoanode for fabricating quantum dots-sensitized solar cells (QDSSCs). The effect of the CdS interfacial passivation layer on the performance of the QDSSCs was systematically investigated by varying the SILAR cycle number and heating the passivation layer. The amorphous CdS layer with an optimized thickness can effectively suppress the recombination of the injected electrons with holes on QDs and the redox electrolyte. The newly formed CdS layer on the surface of the ZnO nanowire thin film obviously prolongs the electron lifetime in the passivated ZnO nanoporous thin film because of the lower surface trap density in the ZnO nanowires after CdS deposition, which is favorable to the higher short-circuit photocurrent density (J sc ). For the CdSe QDs-sensitized ZnO nanoporous thin film with the interfacial passivation layer, the J sc and conversion efficiency can reach a maximum of 8.36 mA cm −2 and 2.36%, respectively. The conversion efficiency was improved by 83.47% compared with that of the cell based on the CdSe QDs-sensitized ZnO nanoporous thin film without CdS interfacial passivation (0.39%)

  16. The thin layer technique and its application to electron microscopy

    International Nuclear Information System (INIS)

    Ranc, G.

    1957-10-01

    This work deals with the technique of thin layers obtained by evaporation under vacuum, in the thickness range extending from a few monoatomic layers to several hundred angstroms. The great theoretical and practical interest of these layers has, it is well known, given rise to many investigations from Faraday onwards. Within the necessarily restricted limits of this study, we shall approach the problem more particularly from the point of view of: - their production; - their use in electron microscopy. A critical appraisal is made, in the light of present-day knowledge, based on our personal experience and on an extensive bibliography which we have collected on the subject. (author) [fr

  17. Stability analysis of thin-shell wormholes from charged black string

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Azam, M., E-mail: msharif.math@pu.edu.pk, E-mail: azammath@gmail.com [Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590 (Pakistan)

    2013-04-01

    In this paper, we construct thin-shell wormholes from charged black string through cut and paste procedure and investigate its stability. We assume modified generalized Chaplygin gas as a dark energy fluid (exotic matter) present in the thin layer of matter-shell. The stability of these constructed thin-shell wormholes is investigated in the scenario of linear perturbations. We conclude that static stable as well as unstable configurations are possible for cylindrical thin-shell wormholes.

  18. Growth of α-sexithiophene nanostructures on C60 thin film layers

    DEFF Research Database (Denmark)

    Radziwon, Michal Jędrzej; Madsen, Morten; Balzer, Frank

    2014-01-01

    Organic molecular beam grown -sexithiophene (-6T) forms nanostructured thin films on buckminsterfullerene (C60) thin film layers. At substrate temperatures of 300K during growth a rough continuous film is observed, which develop to larger elongated islands and dendritic- as well as needle like ...... fluorescence polarimetry measurements the in-plane orientation of the crystalline sites within the needle like structures is determined. The polarimetry investigations strongly indicate that the needle like structures consist of lying molecules....

  19. Electronic and optical device applications of hollow cathode plasma assisted atomic layer deposition based GaN thin films

    International Nuclear Information System (INIS)

    Bolat, Sami; Tekcan, Burak; Ozgit-Akgun, Cagla; Biyikli, Necmi; Okyay, Ali Kemal

    2015-01-01

    Electronic and optoelectronic devices, namely, thin film transistors (TFTs) and metal–semiconductor–metal (MSM) photodetectors, based on GaN films grown by hollow cathode plasma-assisted atomic layer deposition (PA-ALD) are demonstrated. Resistivity of GaN thin films and metal-GaN contact resistance are investigated as a function of annealing temperature. Effect of the plasma gas and postmetallization annealing on the performances of the TFTs as well as the effect of the annealing on the performance of MSM photodetectors are studied. Dark current to voltage and responsivity behavior of MSM devices are investigated as well. TFTs with the N 2 /H 2 PA-ALD based GaN channels are observed to have improved stability and transfer characteristics with respect to NH 3 PA-ALD based transistors. Dark current of the MSM photodetectors is suppressed strongly after high-temperature annealing in N 2 :H 2 ambient

  20. Determination of ferulic acid and related compounds by thin layer ...

    African Journals Online (AJOL)

    The analysis of certain phenolic compounds from plants, and their chemical transformation with microorganisms or isolated enzymes, has application in the food and pharmaceutical industry. The rapid quantitative estimation of ferulic acid by thin layer chromatography is described by measurement of the area of the ...

  1. High-performance a-IGZO thin-film transistor with conductive indium-tin-oxide buried layer

    Science.gov (United States)

    Ahn, Min-Ju; Cho, Won-Ju

    2017-10-01

    In this study, we fabricated top-contact top-gate (TCTG) structure of amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs) with a thin buried conductive indium-tin oxide (ITO) layer. The electrical performance of a-IGZO TFTs was improved by inserting an ITO buried layer under the IGZO channel. Also, the effect of the buried layer's length on the electrical characteristics of a-IGZO TFTs was investigated. The electrical performance of the transistors improved with increasing the buried layer's length: a large on/off current ratio of 1.1×107, a high field-effect mobility of 35.6 cm2/Vs, a small subthreshold slope of 116.1 mV/dec, and a low interface trap density of 4.2×1011 cm-2eV-1 were obtained. The buried layer a-IGZO TFTs exhibited enhanced transistor performance and excellent stability against the gate bias stress.

  2. Characterization and obtainment of thin films based on N,N,N-trimethyl chitosan and heparin through the technical layer-by-layer

    International Nuclear Information System (INIS)

    Martins, Alessandro F.; Follmann, Heveline D.M.; Rubira, Adley F.; Muniz, Edvani C.

    2011-01-01

    Thin films of Heparin (HP) and N,N,N-trimethyl chitosan (TMC) with a high degree of quaternization (DQ) were obtained at pH 7.4 through the layer-by-layer (LbL) technique. Polystyrene (PS) was oxidized with aqueous solution of sodium persulfate and subsequently employed as substrate. The characterization of TMC and the respective determination of DQ were performed through 1 H NMR spectroscopy. The thin films de TMC/HP were characterized by FTIR-ATR and AFM. Both techniques confirmed the adsorption of TMC and HP in surface of the PS. The increasing of the bilayers provides a decrease of the projections and/or roughness, further of minimizing the depressions at the surface of the films. Studies of thin films the base of TMC/HP prepared from the LbL technique has not been reported in the literature. It is expected that the thin films of TMC/HP present anti-adhesive and antimicrobial properties. (author)

  3. Stepwise crystallization and the layered distribution in crystallization kinetics of ultra-thin poly(ethylene terephthalate) film

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Biao, E-mail: chemizuo@zstu.edu.cn, E-mail: wxinping@yahoo.com; Xu, Jianquan; Sun, Shuzheng; Liu, Yue; Yang, Juping; Zhang, Li; Wang, Xinping, E-mail: chemizuo@zstu.edu.cn, E-mail: wxinping@yahoo.com [Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of the Education Ministry, Zhejiang Sci-Tech University, Hangzhou 310018 (China)

    2016-06-21

    Crystallization is an important property of polymeric materials. In conventional viewpoint, the transformation of disordered chains into crystals is usually a spatially homogeneous process (i.e., it occurs simultaneously throughout the sample), that is, the crystallization rate at each local position within the sample is almost the same. Here, we show that crystallization of ultra-thin poly(ethylene terephthalate) (PET) films can occur in the heterogeneous way, exhibiting a stepwise crystallization process. We found that the layered distribution of glass transition dynamics of thin film modifies the corresponding crystallization behavior, giving rise to the layered distribution of the crystallization kinetics of PET films, with an 11-nm-thick surface layer having faster crystallization rate and the underlying layer showing bulk-like behavior. The layered distribution in crystallization kinetics results in a particular stepwise crystallization behavior during heating the sample, with the two cold-crystallization temperatures separated by up to 20 K. Meanwhile, interfacial interaction is crucial for the occurrence of the heterogeneous crystallization, as the thin film crystallizes simultaneously if the interfacial interaction is relatively strong. We anticipate that this mechanism of stepwise crystallization of thin polymeric films will allow new insight into the chain organization in confined environments and permit independent manipulation of localized properties of nanomaterials.

  4. Characterisation by optical spectroscopy of a plasma of depositions of thins layers

    International Nuclear Information System (INIS)

    Chouan, Yannick

    1984-01-01

    This research thesis reports a work which, by correlating emission and absorption spectroscopic measurements with properties of deposited thin layers, aimed at being a complement to works undertaken by a team in charge of the realisation of a flat screen. In a first part, the author reports the study of a cathodic pulverisation of a silicon target. He describes the experimental set-up, presents correlations obtained between plasma electric properties (target self-polarisation voltage), emission spectroscopic measurements (line profile and intensity) and absorption spectroscopic measurements (density of metastables), and the composition of deposited thin layers for two reactive pulverisation plasmas (Ar-H_2 and Ar-CH_4). The second part addresses the relationship between experimental conditions and spectroscopic characteristics (emission and absorption lines, excitation and rotation temperature) of a He-SiH_4 plasma. The author also determined the most adapted spectroscopic measurements to the 'control' of deposition, and which result in an optimisation of electronic properties and of the deposition rate for the hydrogenated amorphous silicon. The third part reports the characterisation of depositions. Electric and optic measurements are reported. Then, for both deposition techniques, the author relates the influence of experimental conditions to deposition properties and to spectroscopic diagnosis. The author finally presents static characteristics of a thin-layer-based transistor

  5. Epitaxially influenced boundary layer model for size effect in thin metallic films

    International Nuclear Information System (INIS)

    Bazant, Zdenek P.; Guo Zaoyang; Espinosa, Horacio D.; Zhu Yong; Peng Bei

    2005-01-01

    It is shown that the size effect recently observed by Espinosa et al., [J. Mech. Phys. Solids51, 47 (2003)] in pure tension tests on free thin metallic films can be explained by the existence of a boundary layer of fixed thickness, located at the surface of the film that was attached onto the substrate during deposition. The boundary layer is influenced by the epitaxial effects of crystal growth on the dislocation density and texture (manifested by prevalent crystal plane orientations). This influence is assumed to cause significantly elevated yield strength. Furthermore, the observed gradual postpeak softening, along with its size independence, which is observed in short film strips subjected to pure tension, is explained by slip localization, originating at notch-like defects, and by damage, which can propagate in a stable manner when the film strip under pure tension is sufficiently thin and short. For general applications, the present epitaxially influenced boundary layer model may be combined with the classical strain-gradient plasticity proposed by Gao et al., [J. Mech. Phys. Solids 47, 1239 (1999)], and it is shown that this combination is necessary to fit the test data on both pure tension and bending of thin films by one and the same theory. To deal with films having different crystal grain sizes, the Hall-Petch relation for the yield strength dependence on the grain size needs to be incorporated into the combined theory. For very thin films, in which a flattened grain fills the whole film thickness, the Hall-Petch relation needs a cutoff, and the asymptotic increase of yield strength with diminishing film thickness is then described by the extension of Nix's model of misfit dislocations by Zhang and Zhou [J. Adv. Mater. 38, 51 (2002)]. The final result is a proposal of a general theory for strength, size effect, hardening, and softening of thin metallic films

  6. Epitaxially influenced boundary layer model for size effect in thin metallic films

    Science.gov (United States)

    Bažant, Zdeněk P.; Guo, Zaoyang; Espinosa, Horacio D.; Zhu, Yong; Peng, Bei

    2005-04-01

    It is shown that the size effect recently observed by Espinosa et al., [J. Mech. Phys. Solids51, 47 (2003)] in pure tension tests on free thin metallic films can be explained by the existence of a boundary layer of fixed thickness, located at the surface of the film that was attached onto the substrate during deposition. The boundary layer is influenced by the epitaxial effects of crystal growth on the dislocation density and texture (manifested by prevalent crystal plane orientations). This influence is assumed to cause significantly elevated yield strength. Furthermore, the observed gradual postpeak softening, along with its size independence, which is observed in short film strips subjected to pure tension, is explained by slip localization, originating at notch-like defects, and by damage, which can propagate in a stable manner when the film strip under pure tension is sufficiently thin and short. For general applications, the present epitaxially influenced boundary layer model may be combined with the classical strain-gradient plasticity proposed by Gao et al., [J. Mech. Phys. Solids 47, 1239 (1999)], and it is shown that this combination is necessary to fit the test data on both pure tension and bending of thin films by one and the same theory. To deal with films having different crystal grain sizes, the Hall-Petch relation for the yield strength dependence on the grain size needs to be incorporated into the combined theory. For very thin films, in which a flattened grain fills the whole film thickness, the Hall-Petch relation needs a cutoff, and the asymptotic increase of yield strength with diminishing film thickness is then described by the extension of Nix's model of misfit dislocations by Zhang and Zhou [J. Adv. Mater. 38, 51 (2002)]. The final result is a proposal of a general theory for strength, size effect, hardening, and softening of thin metallic films.

  7. Double layer films based on TiO{sub 2} and NiO{sub x} for gas detection

    Energy Technology Data Exchange (ETDEWEB)

    Kosc, I., E-mail: ivan.kosc@stuba.sk [Institute of Electronics and Photonics, Slovak University of Technology, Bratislava (Slovakia); Hotovy, I. [Institute of Electronics and Photonics, Slovak University of Technology, Bratislava (Slovakia); Roch, T.; Plecenik, T.; Gregor, M. [Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava (Slovakia); Predanocy, M. [Institute of Electronics and Photonics, Slovak University of Technology, Bratislava (Slovakia); Cehlarova, M.; Kus, P.; Plecenik, A. [Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava (Slovakia)

    2014-09-01

    Highlights: • Double layer films based on TiO{sub 2} and NiO{sub x} for gas detection were studied. • Structural, compositional and morphological properties were investigated. • XPS spectra of TiO{sub 2} and NiO{sub x} were identified. • P- and n-type of response to hydrogen were presented. • Inversion of conductivity response type was confirmed. - Abstract: Double layer films based on TiO{sub 2} and NiO{sub x} for gas detection were studied. Two layouts with opposite position of functional films were deposited via DC magnetron sputtering method and annealed at 600 °C. The compositional, structural, morphological, electrical and gas sensing parameters were investigated. The depth profiles and the chemical state of the thin films elements were explored by X-ray photoelectron spectroscopy (XPS). Differences between the surface and subsurface NiO{sub x} were confirmed. In this way the formation of surface oxides and subsurface metallic Ni were observed. The structural changes and polycrystalline character were noticed by X-ray diffraction (XRD). The atomic force microscopy (AFM) revealed nanocrystalline character of the examined surfaces (both layouts). Different position of TiO{sub 2} and NiO{sub x} functional films brought difference in the type of response to reducing gas. Moreover, inversion of response type due to different H{sub 2} concentrations was confirmed.

  8. Electron beam dosimetry for a thin-layer absorber irradiated by 300-keV electrons

    International Nuclear Information System (INIS)

    Kijima, Toshiyuki; Nakase, Yoshiaki

    1993-01-01

    Depth-dose distributions in thin-layer absorbers were measured for 300-keV electrons from a scanning-type irradiation system, the electrons having penetrated through a Ti-window and an air gap. Irradiations of stacks of cellulose triacetate(CTA) film were carried out using either a conveyor (i.e. dynamic irradiation) or fixed (i.e. static) irradiation. The sample was irradiated using various angles of incidence of electrons, in order to examine the effect of obliqueness of electron incidence at low-energy representative of routine radiation curing of thin polymeric or resin layers. Dynamic irradiation gives broader and shallower depth-dose distributions than static irradiation. Greater obliqueness of incident electrons gives results that can be explained in terms of broader and shallower depth-dose distributions. The back-scattering of incident electrons by a metal(Sn) backing material enhances the absorbed dose in a polymeric layer and changes the overall distribution. It is suggested that any theoretical estimations of the absorbed dose in thin layers irradiated in electron beam curing must be accomplished and supported by experimental data such as that provided by this investigation. (Author)

  9. Novel thin/tunable gas diffusion electrodes with ultra-low catalyst loading for hydrogen evolution reactions in proton exchange membrane electrolyzer cells

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Zhenye; Yang, Gaoqiang; Mo, Jingke; Li, Yifan; Yu, Shule; Cullen, David A.; Retterer, Scott T.; Toops, Todd J.; Bender, Guido; Pivovar, Bryan S.; Green, Johney B.; Zhang, Feng-Yuan

    2018-05-01

    Proton exchange membrane electrolyzer cells (PEMECs) have received great attention for hydrogen/oxygen production due to their high efficiencies even at low-temperature operation. Because of the high cost of noble platinum-group metal (PGM) catalysts (Ir, Ru, Pt, etc.) that are widely used in water splitting, a PEMEC with low catalyst loadings and high catalyst utilizations is strongly desired for its wide commercialization. In this study, the ultrafast and multiscale hydrogen evolution reaction (HER) phenomena in an operating PEMEC is in-situ observed for the first time. The visualization results reveal that the HER and hydrogen bubble nucleation mainly occur on catalyst layers at the rim of the pores of the thin/tunable liquid/gas diffusion layers (TT-LGDLs). This indicates that the catalyst material of the conventional catalyst-coated membrane (CCM) that is located in the middle area of the LGDL pore is underutilized/inactive. Based on this discovery, a novel thin and tunable gas diffusion electrode (GDE) with a Pt catalyst thickness of 15 nm and a total thickness of about 25 um has been proposed and developed by taking advantage of advanced micro/nano manufacturing. The novel thin GDEs are comprehensively characterized both ex-situ and in-situ, and exhibit excellent PEMEC performance. More importantly, they achieve catalyst mass activity of up to 58 times higher than conventional CCM at 1.6 V under the operating conditions of 80 degrees C and 1 atm. This study demonstrates a promising concept for PEMEC electrode development, and provides a direction of future catalyst designs and fabrications for electrochemical devices.

  10. Enhanced stability of thin film transistors with double-stacked amorphous IWO/IWO:N channel layer

    Science.gov (United States)

    Lin, Dong; Pi, Shubin; Yang, Jianwen; Tiwari, Nidhi; Ren, Jinhua; Zhang, Qun; Liu, Po-Tsun; Shieh, Han-Ping

    2018-06-01

    In this work, bottom-gate top-contact thin film transistors with double-stacked amorphous IWO/IWO:N channel layer were fabricated. Herein, amorphous IWO and N-doped IWO were deposited as front and back channel layers, respectively, by radio-frequency magnetron sputtering. The electrical characteristics of the bi-layer-channel thin film transistors (TFTs) were examined and compared with those of single-layer-channel (i.e., amorphous IWO or IWO:N) TFTs. It was demonstrated to exhibit a high mobility of 27.2 cm2 V‑1 s‑1 and an on/off current ratio of 107. Compared to the single peers, bi-layer a-IWO/IWO:N TFTs showed smaller hysteresis and higher stability under negative bias stress and negative bias temperature stress. The enhanced performance could be attributed to its unique double-stacked channel configuration, which successfully combined the merits of the TFTs with IWO and IWO:N channels. The underlying IWO thin film provided percolation paths for electron transport, meanwhile, the top IWO:N layer reduced the bulk trap densities. In addition, the IWO channel/gate insulator interface had reduced defects, and IWO:N back channel surface was insensitive to the ambient atmosphere. Overall, the proposed bi-layer a-IWO/IWO:N TFTs show potential for practical applications due to its possibly long-term serviceability.

  11. Approximate reflection coefficients for a thin VTI layer

    KAUST Repository

    Hao, Qi

    2017-09-18

    We present an approximate method to derive simple expressions for the reflection coefficients of P- and SV-waves for a thin transversely isotropic layer with a vertical symmetry axis (VTI) embedded in a homogeneous VTI background. The layer thickness is assumed to be much smaller than the wavelengths of P- and SV-waves inside. The exact reflection and transmission coefficients are derived by the propagator matrix method. In the case of normal incidence, the exact reflection and transmission coefficients are expressed in terms of the impedances of vertically propagating P- and S-waves. For subcritical incidence, the approximate reflection coefficients are expressed in terms of the contrast in the VTI parameters between the layer and the background. Numerical examples are designed to analyze the reflection coefficients at normal and oblique incidence, and investigate the influence of transverse isotropy on the reflection coefficients. Despite giving numerical errors, the approximate formulae are sufficiently simple to qualitatively analyze the variation of the reflection coefficients with the angle of incidence.

  12. Thin-gap gas chambers for hadronic calorimetry

    Energy Technology Data Exchange (ETDEWEB)

    Mikenberg, G

    1988-03-01

    A new type of thin multiwire gas detector operating in a high gain mode has been developed. Its characteristics have been optimized for calorimetric use. The setup for mass production, quality control and calibration for the OPAL Pole Tip Calorimeter Chambers is presented as an application of such a device. Other possible applications as an electromagnetic presampler as well as its use in a high resolution calorimeter are also discussed.

  13. Sensitive Thin-Layer Chromatography Detection of Boronic Acids Using Alizarin

    NARCIS (Netherlands)

    Duval, F.L.; Beek, van T.A.; Zuilhof, H.

    2012-01-01

    A new method for the selective and sensitive detection of boronic acids on thin-layer chromatography plates is described. The plate is briefly dipped in an alizarin solution, allowed to dry in ambient air, and observed under 366 nm light. Alizarin emits a bright yellow fluorescence only in the

  14. Gas-temperature control in VHF- PECVD process for high-rate (>5 nm/s) growth of microcrystalline silicon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sobajima, Yasushi; Higuchi, Takuya; Chantana, Jakapan; Toyama, Toshihiko; Sada, Chitose; Matsuda, Akihisa; Okamoto, Hiroaki [Graduate School of Engineering Science, Osaka University, Toyonaka City (Japan)

    2010-04-15

    Surface-heating phenomenon by the radiation from high density plasma during growth of microcrystalline silicon ({mu}c-Si:H) thin films at high rate (> 5 nm/sec) is one of the crucial issues to be solved for obtaining high quality intrinsic-layer material for solar cells. We have utilized an optical emission spectroscopy (OES) in the plasma to observe the time evolution of gas temperature during film growth as well as the film-growth rate under {mu}c-Si:H deposition conditions at high rate. Gas temperature has been successfully controlled by changing total flow rate of monosilane (SiH{sub 4})/hydrogen (H{sub 2}) gas mixture, leading to a drastic improvement of optoelectronic properties in the resulting {mu}c-Si:H. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Zinc-oxide nanorod / copper-oxide thin-film heterojunction for a nitrogen-monoxide gas sensor

    International Nuclear Information System (INIS)

    Yoo, Hwansu; Kim, Hyojin; Kim, Dojin

    2014-01-01

    A novel p - n oxide heterojunction structure was fabricated by employing n-type zinc-oxide (ZnO) nanorods grown on an indium-tin-oxide-coated glass substrate by using the hydrothermal method and a p-type copper-oxide (CuO) thin film deposited onto the ZnO nanorod array by using the sputtering method. The crystallinities and microstructures of the heterojunction materials were examined by using X-ray diffraction and scanning electron microscopy. The observed current - voltage characteristics of the p - n oxide heterojunction showed a nonlinear diode-like rectifying behavior. The effects of an oxidizing or electron acceptor gas, such as nitrogen monoxide (NO), on the ZnO nanorod/CuO thin-film heterojunction were investigated to determine the potential applications of the fabricated material for use in gas sensors. The forward current of the p - n heterojunction was remarkably reduced when NO gas was introduced into dry air at temperatures from 100 to 250 .deg. C. The NO gas response of the oxide heterojunction reached a maximum value at an operating temperature of 180 .deg. C and linearly increased as the NO gas concentration was increased from 5 to 30 ppm. The sensitivity value was observed to be as high as 170% at 180 .deg. C when biased at 2 V in the presence of 20-ppm NO. The ZnO nanorod/CuO thin-film heterojunction also exhibited a stable and repeatable response to NO gas. The experimental results suggest that the ZnO nanorod/CuO thin-film heterojunction structure may be a novel candidate for gas sensors.

  16. Zinc-oxide nanorod / copper-oxide thin-film heterojunction for a nitrogen-monoxide gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Hwansu; Kim, Hyojin; Kim, Dojin [Chungnam National University, Daejeon (Korea, Republic of)

    2014-11-15

    A novel p - n oxide heterojunction structure was fabricated by employing n-type zinc-oxide (ZnO) nanorods grown on an indium-tin-oxide-coated glass substrate by using the hydrothermal method and a p-type copper-oxide (CuO) thin film deposited onto the ZnO nanorod array by using the sputtering method. The crystallinities and microstructures of the heterojunction materials were examined by using X-ray diffraction and scanning electron microscopy. The observed current - voltage characteristics of the p - n oxide heterojunction showed a nonlinear diode-like rectifying behavior. The effects of an oxidizing or electron acceptor gas, such as nitrogen monoxide (NO), on the ZnO nanorod/CuO thin-film heterojunction were investigated to determine the potential applications of the fabricated material for use in gas sensors. The forward current of the p - n heterojunction was remarkably reduced when NO gas was introduced into dry air at temperatures from 100 to 250 .deg. C. The NO gas response of the oxide heterojunction reached a maximum value at an operating temperature of 180 .deg. C and linearly increased as the NO gas concentration was increased from 5 to 30 ppm. The sensitivity value was observed to be as high as 170% at 180 .deg. C when biased at 2 V in the presence of 20-ppm NO. The ZnO nanorod/CuO thin-film heterojunction also exhibited a stable and repeatable response to NO gas. The experimental results suggest that the ZnO nanorod/CuO thin-film heterojunction structure may be a novel candidate for gas sensors.

  17. Chemical bath deposition of thin semiconductor films for use as buffer layers in CuInS2 thin film solar cells

    International Nuclear Information System (INIS)

    Kaufmann, C.A.

    2002-01-01

    A CulnS 2 thin film solar cell is a multilayered semiconductor device. The solar cells discussed have a layer sequence Mo/CulnS 2 /buffer/i-ZnO/ZnO:Ga, where a heterojunction establishes between the p-type absorber and the n-type front contact. Conventionally the buffer consists of CdS, deposited by chemical bath deposition (CBD). Apart from providing process oriented benefits the buffer layer functions as a tool for engineering the energy band line-up at the heterojunction interface. Motivated through environmental concern and EU legislation it is felt necessary to substitute this potentially toxic layer by an alternative, Cd-free component. This thesis investigates the suitability of various Zn- and In-compounds, in particular In(OH,O) x S y , as alternative buffer layer materials using CBD. Initial experiments were carried out depositing Zn-based compounds from aqueous solutions. Characterization of the layers, the solution and the processed solar cells was performed. This thesis focuses on the investigation of the CBD process chemistry for the deposition of In-compound thin films. A careful study of the morphology and composition of the deposited thin films was conducted using electron microscopy (SEM, HREM), elastic recoil detection analysis, X-ray photoelectron spectroscopy and optical transmission spectroscopy. This allowed conclusions concerning the nucleation and film growth mechanism from the chemical bath. Connections between bath chemistry, different growth phases, layer morphology and solar cell performance were sought and an improved deposition process was developed. As a result, Cd-free CulnS 2 thin film solar cells with efficiencies of up to 10.6%) (total area) could be produced. Overall the substitution of CdS is shown to be possible by different alternative compounds, such as Zn(OH,O) x S y or In(OH,O) x S y . In the case of In(OH,O) x S y , an understanding of the CBD process and the effect of different growth phases on the resulting solar cell

  18. Investigation of vanadium and nitride alloys thin layers deposited by PVD

    Directory of Open Access Journals (Sweden)

    Nouveau C.

    2012-06-01

    Full Text Available In this work we present the technique of magnetron vapor deposition and the effect of several deposition parameters on the structural and morphological properties of prepared thin films. It was noted that the deposition time has an effect on the crystallinity, mechanical properties such as residual stress, roughness surface and the layer composition from target products. Studies were carried out on layers of vanadium (V and the nitride vanadium (VN.

  19. Electroresistance effect in gold thin film induced by ionic-liquid-gated electric double layer

    International Nuclear Information System (INIS)

    Nakayama, Hiroyasu; Ohtani, Takashi; Fujikawa, Yasunori; Ando, Kazuya; Saitoh, Eiji; Ye, Jianting; Iwasa, Yoshihiro

    2012-01-01

    Electroresistance effect was detected in a metallic thin film using ionic-liquid-gated electric-double-layer transistors (EDLTs). We observed reversible modulation of the electric resistance of a Au thin film. In this system, we found that an electric double layer works as a nanogap capacitor with 27 (-25) MV cm -1 of electric field by applying only 1.7 V of positive (negative) gate voltage. The experimental results indicate that the ionic-liquid-gated EDLT technique can be used for controlling the surface electronic states on metallic systems. (author)

  20. Successful implementation of the stepwise layer-by-layer growth of MOF thin films on confined surfaces: Mesoporous silica foam as a first case study

    KAUST Repository

    Shekhah, Osama; Fu, Lei; Sougrat, Rachid; Belmabkhout, Youssef; Cairns, Amy; Giannelis, Emmanuel P.; Eddaoudi, Mohamed

    2012-01-01

    Here we report the successful growth of highly crystalline homogeneous MOF thin films of HKUST-1 and ZIF-8 on mesoporous silica foam, by employing a layer-by-layer (LBL) method. The ability to control and direct the growth of MOF thin films on confined surfaces, using the stepwise LBL method, paves the way for new prospective applications of such hybrid systems. © 2012 The Royal Society of Chemistry.

  1. Possible artefacts in thin layer chromatography of tritium-labelled hydrocortisone

    International Nuclear Information System (INIS)

    Sofronie, E.

    1982-12-01

    Artefacts appearing in thin layer chromatography of tritium labelled hydrocortisone are reported. Evidences are presented that these artefacts cause misleading results concerning radiocheemical purity determiniation. Finally, it is reported a rapid and efficient chromatographic technique allowing the elimination of these artefacts and obtaining of an accurate value for radiochemical purity. (author)

  2. Preparation of Cu{sub 2}ZnSnS{sub 4} thin films by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction method

    Energy Technology Data Exchange (ETDEWEB)

    Su Zhenghua; Yan Chang; Sun Kaiwen; Han Zili [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Liu Fangyang, E-mail: liufangyang@csu.edu.cn [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Liu Jin [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Lai Yanqing, E-mail: laiyanqingcsu@163.com [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China); Li Jie; Liu Yexiang [School of Metallurgical Science and Engineering, Central South University, Changsha 410083 (China)

    2012-07-15

    Earth-abundant Cu{sub 2}ZnSnS{sub 4} is a promising alternative photovoltaic material which has been examined as absorber layer of thin film solar cells. In this study, Cu{sub 2}ZnSnS{sub 4} (CZTS) thin films have been successfully fabricated by sulfurizing stacked precursor thin films via successive ionic layer adsorption and reaction (SILAR) method. The prepared CZTS thin films have been characterized by X-ray diffraction, energy dispersive spectrometer, Raman spectroscopy, UV-vis spectroscopy, Hall effect measurements and photoelectrochemical tests. Results reveal that the thin films have kesterite structured Cu{sub 2}ZnSnS{sub 4} and the p-type conductivity with a carrier concentration in the order of 10{sup 18} cm{sup -3} and an optical band gap of 1.5 eV, which are suitable for applications in thin film solar cells.

  3. Effects of surface modification on the critical behaviour in multiple-surface-layer ferroelectric thin films

    International Nuclear Information System (INIS)

    Lu, Z X

    2013-01-01

    Using the usual mean-field theory approximation, the critical behaviour (i.e. the Curie temperature T c and the critical surface transverse field Ω sc ) in a multiple-surface-layer ferroelectric thin film is studied on the basis of the spin- 1/2 transverse Ising model. The dependence of the Curie temperature T c on the surface transverse field Ω s and the surface layer number N s are discussed in detail. Meanwhile the dependence of the critical surface transverse field Ω sc on the surface layer number N s is also examined. The numerical results indicate that the critical behaviour of ferroelectric thin films is obviously affected by modifications of the surface transverse field Ω s and surface layer number N s .

  4. Effect of the thin Ga2O3 layer in n+-ZnO/n-Ga2O3/p-Cu2O heterojunction solar cells

    International Nuclear Information System (INIS)

    Minami, Tadatsugu; Nishi, Yuki; Miyata, Toshihiro

    2013-01-01

    The influence of inserting a Ga 2 O 3 thin film as an n-type semiconductor layer on the obtainable photovoltaic properties in Cu 2 O-based heterojunction solar cells was investigated with a transparent conductive Al-doped ZnO (AZO) thin film/n-Ga 2 O 3 thin film/p-Cu 2 O sheet structure. It was found that this Ga 2 O 3 thin film can greatly improve the performance of Cu 2 O-based heterojunction solar cells fabricated using polycrystalline Cu 2 O sheets that had been prepared by a thermal oxidization of copper sheets. The obtained photovoltaic properties in the AZO/Ga 2 O 3 /Cu 2 O heterojunction solar cells were strongly dependent on the deposition conditions of the Ga 2 O 3 films. The external quantum efficiency obtained in AZO/Ga 2 O 3 /Cu 2 O heterojunction solar cells was found to be greater at wavelengths below approximately 500 nm than that obtained in AZO/Cu 2 O heterojunction solar cells (i.e., prepared without a Ga 2 O 3 layer) at equivalent wavelengths. This improvement of photovoltaic properties is mainly attributed to a decrease in the level of defects at the interface between the Ga 2 O 3 thin film and the Cu 2 O sheet. Conversion efficiencies over 5% were obtained in AZO/Ga 2 O 3 /Cu 2 O heterojunction solar cells fabricated using an n-Ga 2 O 3 thin-film layer prepared with a thickness of 40–80 nm at an O 2 gas pressure of approximately 1.7 Pa by a pulsed laser deposition. - Highlights: • We demonstrate high-efficiency Cu 2 O-based p-n heterojunction solar cells. • A non-doped Ga 2 O 3 thin film was used as an n-type semiconductor layer. • The Ga 2 O 3 thin film was prepared at a low temperature by a low damage deposition. • p-type Cu 2 O sheets prepared by thermal oxidization of copper sheets were used. • Conversion efficiencies over 5% were obtained in AZO/n-Ga 2 O 3 /p-Cu 2 O solar cells

  5. Transient Response of Thin Wire above a Layered Half-Space Using TDIE/FDTD Hybrid Method

    Directory of Open Access Journals (Sweden)

    Bing Wei

    2012-01-01

    Full Text Available The TDIE/FDTD hybrid method is applied to calculate the transient responses of thin wire above a lossy layered half-space. The time-domain reflection of the layered half space is computed by one-dimensional modified FDTD method. Then, transient response of thin wire induced by two excitation sources (the incident wave and reflected wave is calculated by TDIE method. Finally numerical results are given to illustrate the feasibility and high efficiency of the presented scheme.

  6. Thin-layer scanner with a dot printer recorder for radiolabelled compounds

    International Nuclear Information System (INIS)

    Kralova, M.; Kysela, F.; Hradil, Z.

    1982-01-01

    A scanner combined with a matrix printer is described for automatic evaluation of thin-layer radiochromatographs of soft beta emitters such as 3 H, 14 C, and 32 P. Details of the device including block schemes and electrical schemes are given

  7. Bias of shear wave elasticity measurements in thin layer samples and a simple correction strategy.

    Science.gov (United States)

    Mo, Jianqiang; Xu, Hao; Qiang, Bo; Giambini, Hugo; Kinnick, Randall; An, Kai-Nan; Chen, Shigao; Luo, Zongping

    2016-01-01

    Shear wave elastography (SWE) is an emerging technique for measuring biological tissue stiffness. However, the application of SWE in thin layer tissues is limited by bias due to the influence of geometry on measured shear wave speed. In this study, we investigated the bias of Young's modulus measured by SWE in thin layer gelatin-agar phantoms, and compared the result with finite element method and Lamb wave model simulation. The result indicated that the Young's modulus measured by SWE decreased continuously when the sample thickness decreased, and this effect was more significant for smaller thickness. We proposed a new empirical formula which can conveniently correct the bias without the need of using complicated mathematical modeling. In summary, we confirmed the nonlinear relation between thickness and Young's modulus measured by SWE in thin layer samples, and offered a simple and practical correction strategy which is convenient for clinicians to use.

  8. Nano-crystalline thin and nano-particulate thick TiO2 layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    International Nuclear Information System (INIS)

    Das, P.; Sengupta, D.; Kasinadhuni, U.; Mondal, B.; Mukherjee, K.

    2015-01-01

    Highlights: • Thin TiO 2 layer is deposited on conducting substrate using sol–gel based dip coating. • TiO 2 nano-particles are synthesized using hydrothermal route. • Thick TiO 2 particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO 2 passivation layer is introduced between the mesoporous TiO 2 nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effect of passivation layer, other two DSSCs are also developed separately using TiO 2 nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO 2 compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO 2 layer in between the mesoporous TiO 2 nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons

  9. Vanadium oxide thin films deposited on silicon dioxide buffer layers by magnetron sputtering

    International Nuclear Information System (INIS)

    Chen Sihai; Ma Hong; Wang Shuangbao; Shen Nan; Xiao Jing; Zhou Hao; Zhao Xiaomei; Li Yi; Yi Xinjian

    2006-01-01

    Thin films made by vanadium oxide have been obtained by direct current magnetron sputtering method on SiO 2 buffer layers. A detailed electrical and structural characterization has been performed on the deposited films by four-point probe method and scanning electron microscopy (SEM). At room temperature, the four-point probe measurement result presents the resistance of the film to be 25 kU/sheet. The temperature coefficient of resistance is - 2.0%/K. SEM image indicates that the vanadium oxide exhibits a submicrostructure with lamella size ranging from 60 nm to 300 nm. A 32 x 32-element test microbolometer was fabricated based on the deposited thin film. The infrared response testing showed that the response was 200 mV. The obtained results allow us to conclude that the vanadium oxide thin films on SiO 2 buffer layers is suitable for uncooled focal plane arrays applications

  10. Resistivity scaling due to electron surface scattering in thin metal layers

    Science.gov (United States)

    Zhou, Tianji; Gall, Daniel

    2018-04-01

    The effect of electron surface scattering on the thickness-dependent electrical resistivity ρ of thin metal layers is investigated using nonequilibrium Green's function density functional transport simulations. Cu(001) thin films with thickness d =1 -2 nm are used as a model system, employing a random one-monolayer-high surface roughness and frozen phonons to cause surface and bulk scattering, respectively. The zero-temperature resistivity increases from 9.7 ±1.0 μ Ω cm at d =1.99 nm to 18.7 ±2.6 μ Ω cm at d =0.9 0 nm, contradicting the asymptotic T =0 prediction from the classical Fuchs-Sondheimer model. At T =9 00 K, ρ =5.8 ±0.1 μ Ω cm for bulk Cu and ρ =13.4 ±1.1 and 22.5 ±2.4 μ Ω cm for layers with d =1.99 and 0.90 nm, respectively, indicating an approximately additive phonon contribution which, however, is smaller than for bulk Cu or atomically smooth layers. The overall data indicate that the resistivity contribution from surface scattering is temperature-independent and proportional to 1 /d , suggesting that it can be described using a surface-scattering mean-free path λs for 2D transport which is channel-independent and proportional to d . Data fitting indicates λs=4 ×d for the particular simulated Cu(001) surfaces with a one-monolayer-high surface roughness. The 1 /d dependence deviates considerably from previous 1 /d2 predictions from quantum models, indicating that the small-roughness approximation in these models is not applicable to very thin (<2 nm) layers, where the surface roughness is a considerable fraction of d .

  11. Electromagnetic shielding effectiveness of a thin silver layer deposited onto PET film via atmospheric pressure plasma reduction

    Science.gov (United States)

    Oh, Hyo-Jun; Dao, Van-Duong; Choi, Ho-Suk

    2018-03-01

    This study presents the first use of a plasma reduction reaction under atmospheric pressure to fabricate a thin silver layer on polyethylene terephthalate (PET) film without the use of toxic chemicals, high voltages, or an expensive vacuum apparatus. The developed film is applied to electromagnetic interference (EMI) shielding. After repeatedly depositing a silver layer through a plasma reduction reaction on PET, we can successfully fabricate a uniformly deposited thin silver layer. It was found that both the particle size and film thickness of thin silver layers fabricated at different AgNO3 concentrations increase with an increase in the concentration of AgNO3. However, the roughness of the thin silver layer decreases when increasing the concentration of AgNO3 from 100 to 500 mM, and the roughness increases with a further increase in the concentration of AgNO3. The EMI shielding effectiveness (SE) of the film is measured in the frequency range of 0.045 to 1 GHz. As a result of optimizing the electrical conductivity by measuring sheet resistance of the thin silver layer, the film fabricated from 500 mM AgNO3 exhibits the highest EMI SE among all fabricated films. The maximum values of the EMI SE are 60.490 dB at 0.1 GHz and 54.721 dB at 1.0 GHz with minimum sheet resistance of 0.244 Ω/□. Given that the proposed strategy is simple and effective, it is promising for fabricating various low-cost metal films with high EMI SE.

  12. Solid-Gas Coupling Model for Coal-Rock Mass Deformation and Pressure Relief Gas Flow in Protection Layer Mining

    OpenAIRE

    Zhu, Zhuohui; Feng, Tao; Yuan, Zhigang; Xie, Donghai; Chen, Wei

    2018-01-01

    The solid-gas coupling model for mining coal-rock mass deformation and pressure relief gas flow in protection layer mining is the key to determine deformation of coal-rock mass and migration law of pressure relief gas of protection layer mining in outburst coal seams. Based on the physical coupling process between coal-rock mass deformation and pressure-relief gas migration, the coupling variable of mining coal-rock mass, a part of governing equations of gas seepage field and deformation fiel...

  13. Liquid and Gas Permeation Studies on the Structure and Properties of Polyamide Thin-Film Composite Membranes

    KAUST Repository

    Duan, Jintang

    2014-11-01

    This research was undertaken to improve the understanding of structure-property-performance relationships in crosslinked polyamide (PA) thin-film composite (TFC) membranes as characterized by liquid and gas permeation studies. The ultrathin PA selective layer formed by interfacial polymerization between meta-phenylene diamine and trimesoyl chloride was confirmed to contain dense polymer matrix regions and defective regions in both dry and hydrated states. The first part of this research studied the effect of non-selective convection through defective regions on water flux and solute flux in pressure-assisted forward osmosis (PAFO). Through systematic comparison with cellulose triacetate (CTA) and PEBAX-coated PA-TFC membranes, the existence of defects in pristine, hydrated PA-TFC membranes was verified, and their effects were quantified by experimental and modeling methods. In the membrane orientation of selective layer facing the draw solution, water flux increases of up to 10-fold were observed to result from application of low hydraulic pressure (1.25 bar). Convective water flux through the defects was low (< 1% of total water flux for PA-TFC membranes) and of little consequence in practical FO or reverse osmosis (RO) applications. However, it effectively mitigated the concentration polarization in PAFO and therefore greatly increased the diffusive flux through the dense regions. The second part of this research characterized the structures of the PA material and the PA selective layer by gas adsorption and gas permeation measurements. Gas adsorption isotherms (N2 at 77K, CO2 at 273K) confirmed the microporous nature of PA in comparison with dense CTA and polysulfone materials. Gas permeation through the commercial PA-TFC membranes tested occurred primarily in the defective regions, resulting in Knudsen gas selectivity for various gas pairs. Applying a Nafion coating layer effectively plugged the defects and allowed gas permeation through the dense PA regions

  14. Investigation of gamma-ray sensitivity of neutron detectors based on thin converter films

    Energy Technology Data Exchange (ETDEWEB)

    Khaplanov, A; Hall-Wilton, R [European Spallation Source, P.O Box 176, SE-22100 Lund (Sweden); Piscitelli, F; Buffet, J-C; Clergeau, J-F; Correa, J; Esch, P van; Ferraton, M; Guerard, B [Institute Laue Langevin, Rue Jules Horowitz, FR-38042 Grenoble (France)

    2013-10-15

    Currently, many detector technologies for thermal neutron detection are in development in order to lower the demand for the rare {sup 3}He gas. Gas detectors with solid thin film neutron converters readout by gas proportional counter method have been proposed as an appropriate choice for applications where large area coverage is necessary. In this paper, we investigate the probability for {gamma}-rays to generate a false count in a neutron measurement. Simulated results are compared to measurement with {sup 10}B thin film prototypes and a {sup 3}He detector. It is demonstrated that equal {gamma}-ray rejection to that of {sup 3}He tubes is achieved with the new technology. The arguments and results presented here are also applicable to gas detectors with converters other than solid {sup 10}B layers, such as {sup 6}Li layers and {sup 10}BF{sub 3} gas.

  15. Transparent conducting oxide layers for thin film silicon solar cells

    NARCIS (Netherlands)

    Rath, J.K.; Liu, Y.; de Jong, M.M.; de Wild, J.; Schuttauf, J.A.; Brinza, M.; Schropp, R.E.I.

    2009-01-01

    Texture etching of ZnO:1%Al layers using diluted HCl solution provides excellent TCOs with crater type surface features for the front contact of superstrate type of thin film silicon solar cells. The texture etched ZnO:Al definitely gives superior performance than Asahi SnO2:F TCO in case of

  16. Low-Dimensional Nanomaterials as Active Layer Components in Thin-Film Photovoltaics

    Science.gov (United States)

    Shastry, Tejas Attreya

    Thin-film photovoltaics offer the promise of cost-effective and scalable solar energy conversion, particularly for applications of semi-transparent solar cells where the poor absorption of commercially-available silicon is inadequate. Applications ranging from roof coatings that capture solar energy to semi-transparent windows that harvest the immense amount of incident sunlight on buildings could be realized with efficient and stable thin-film solar cells. However, the lifetime and efficiency of thin-film solar cells continue to trail their inorganic silicon counterparts. Low-dimensional nanomaterials, such as carbon nanotubes and two-dimensional metal dichalcogenides, have recently been explored as materials in thin-film solar cells due to their exceptional optoelectronic properties, solution-processability, and chemical inertness. Thus far, issues with the processing of these materials has held back their implementation in efficient photovoltaics. This dissertation reports processing advances that enable demonstrations of low-dimensional nanomaterials in thin-film solar cells. These low-dimensional photovoltaics show enhanced photovoltaic efficiency and environmental stability in comparison to previous devices, with a focus on semiconducting single-walled carbon nanotubes as an active layer component. The introduction summarizes recent advances in the processing of carbon nanotubes and their implementation through the thin-film photovoltaic architecture, as well as the use of two-dimensional metal dichalcogenides in photovoltaic applications and potential future directions for all-nanomaterial solar cells. The following chapter reports a study of the interaction between carbon nanotubes and surfactants that enables them to be sorted by electronic type via density gradient ultracentrifugation. These insights are utilized to construct of a broad distribution of carbon nanotubes that absorb throughout the solar spectrum. This polychiral distribution is then shown

  17. CO2 gas sensitivity of sputtered zinc oxide thin films

    Indian Academy of Sciences (India)

    TECS

    Gas sensitivity; ZnO; sputtering; XRD patterns; structure; thin films. 1. Introduction. Because zinc ... voltage and absorption properties of those fabricated films have been ... tations are useful in many physical applications. The in- plane (Hegde ...

  18. Copper(II) Schiff base complexes and their mixed thin layers with ...

    Indian Academy of Sciences (India)

    Thin layer; ZnO nanoparticles; copper complexes; AFM; SEM; fluorescence. 1. Introduction ... ZnO nanopowders29,30 and ZnO nanoparticles doped by different metal ...... Roy S, Choubey S, Bhar K, Khan S, Mitra P and Ghosh. B K 2013 J. Mol ...

  19. Wet chemical preparation of YVO{sub 4}:Eu thin films as red-emitting phosphor layers for fully transparent flat dielectric discharge lamp

    Energy Technology Data Exchange (ETDEWEB)

    Klausch, A. [Institute for Inorganic Chemistry, Dresden University of Technology, Mommsenstr. 6, 01069 Dresden (Germany); Althues, H. [Fraunhofer Institute for Material and Beam Technology Winterbergstr. 28, 01309 Dresden (Germany); Freudenberg, T. [Leibniz Institute for Solid State and Materials Research, Helmholtzstrasse 20, 01069 Dresden (Germany); Kaskel, S., E-mail: Stefan.Kaskel@chemie.tu-dresden.de [Institute for Inorganic Chemistry, Dresden University of Technology, Mommsenstr. 6, 01069 Dresden (Germany)

    2012-04-30

    Highly transparent YVO{sub 4}:Eu thin films were deposited via dip coating of liquid nanoparticle dispersions on glass substrates. Annealing of the nanoparticle layers resulted in restructuring of the material into oriented crystalline films. The crystallinity was confirmed using powder X-ray diffraction. Film thickness was adjusted to 467 nm by multiple deposition. The resulting coatings show > 99% absorbance for wavelength below 300 nm and > 90% transmission in the visible spectral range. Under UV-light excitation a bright red photoluminescence with a quantum efficiency of 20% is observed. A planar, transparent dielectric barrier discharge lamp was constructed using YVO{sub 4}:Eu coated glasses and transparent electrodes made from antimony-doped tin dioxide thin films. - Highlights: Black-Right-Pointing-Pointer Preparation of highly transparent Eu{sup 3+} doped YVO{sub 4} phosphor thin films. Black-Right-Pointing-Pointer Improved crystallinity and optical properties through heat treatment. Black-Right-Pointing-Pointer Red emitting films on glass substrates were combined with antimony tin oxide thin films. Black-Right-Pointing-Pointer Fully transparent, planar gas discharge lamp as prototype for a light emitting window.

  20. Organo-layered double hydroxides composite thin films deposited by laser techniques

    Energy Technology Data Exchange (ETDEWEB)

    Birjega, R. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest-Magurele (Romania); Vlad, A., E-mail: angela.vlad@gmail.com [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest-Magurele (Romania); Matei, A.; Dumitru, M.; Stokker-Cheregi, F.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., 77125 Bucharest-Magurele (Romania); Zavoianu, R. [University of Bucharest, Faculty of Chemistry, Department of Chemical Technology and Catalysis, 4-12 Regina Elisabeta Bd., Bucharest 030018 (Romania); Raditoiu, V.; Corobea, M.C. [National R.& D. Institute for Chemistry and Petrochemistry, ICECHIM, 202 Splaiul Independentei Str., CP-35-274, 060021 Bucharest (Romania)

    2016-06-30

    Highlights: • PLD and MAPLE was successfully used to produce organo-layered double hydroxides. • The organic anions (dodecyl sulfate-DS) were intercalated in co-precipitation step. • Zn2.5Al-LDH (Zn/Al = 2.5) and Zn2.5Al-DS thin films obtained in this work could be suitable for further applications as hydrophobic surfaces. - Abstract: We used laser techniques to create hydrophobic thin films of layered double hydroxides (LDHs) and organo-modified LDHs. A LDH based on Zn-Al with Zn{sup 2+}/Al{sup 3+} ratio of 2.5 was used as host material, while dodecyl sulfate (DS), which is an organic surfactant, acted as guest material. Pulsed laser deposition (PLD) and matrix assisted pulsed laser evaporation (MAPLE) were employed for the growth of the films. The organic anions were intercalated in co-precipitation step. The powders were subsequently used either as materials for MAPLE, or they were pressed and used as targets for PLD. The surface topography of the thin films was investigated by atomic force microscopy (AFM), the crystallographic structure of the powders and films was checked by X-ray diffraction. FTIR spectroscopy was used to evidence DS interlayer intercalation, both for powders and the derived films. Contact angle measurements were performed in order to establish the wettability properties of the as-prepared thin films, in view of functionalization applications as hydrophobic surfaces, owing to the effect of DS intercalation.

  1. Nanocrystalline Pd:NiFe2O4 thin films: A selective ethanol gas sensor

    International Nuclear Information System (INIS)

    Rao, Pratibha; Godbole, R.V.; Bhagwat, Sunita

    2016-01-01

    In this work, Pd:NiFe 2 O 4 thin films were investigated for the detection of reducing gases. These films were fabricated using spray pyrolysis technique and characterized using X-ray diffraction (XRD) to confirm the crystal structure. The surface morphology was studied using scanning electron microscopy (SEM). Magnetization measurements were carried out using SQUID VSM, which shows ferrimagnetic behavior of the samples. These thin film sensors were tested against methanol, ethanol, hydrogen sulfide and liquid petroleum gas, where they were found to be more selective to ethanol. The fabricated thin film sensors exhibited linear response signal for all the gases with concentrations up to 5 w/o Pd. Reduction in optimum operating temperature and enhancement in response was also observed. Pd:NiFe 2 O 4 thin films exhibited faster response and recovery characteristic. These sensors have potential for industrial applications because of their long-term stability, low power requirement and low production cost. - Highlights: • Ethanol gas sensors based on Pd:NiFe 2 O 4 nanoparticle thin film were fabricated. • Pd incorporation in NiFe 2 O 4 matrix inhibits grain growth. • The sensors were more selective to ethanol gas. • Sensors exhibited fast response and recovery when doped with palladium. • Pd:NiFe 2 O 4 thin film sensor displays excellent long–term stability.

  2. Thin-layer chromatography and colorimetric analysis of multi-component explosive mixtures

    Science.gov (United States)

    Pagoria, Philip F.; Mitchell, Alexander R.; Whipple, Richard E.; Carman, M. Leslie

    2014-08-26

    A thin-layer chromatography method for detection and identification of common military and peroxide explosives in samples includes the steps of provide a reverse-phase thin-layer chromatography plate; prepare the plate by marking spots on which to deposit the samples by touching the plate with a marker; spot one micro liter of a first standard onto one of the spots, spot one micro liter of a second standard onto another of the spots, and spot samples onto other of spots producing a spotted plate; add eluent to a developing chamber; add the spotted plate to the developing chamber; remove the spotted plate from the developing chamber producing a developed plate; place the developed plate in an ultraviolet light box; add a visualization agent to a dip tank; dip the developed plate in the dip tank and remove the developed plate quickly; and detect explosives by viewing said developed plate.

  3. Determination of the thickness of chemically removed thin layers on GaAs VPE structures

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, K.; Nemeth-Sallay, M.; Nemcsics, A. (Research Inst. for Technical Physics, Hungarian Academy of Sciences, Budapest (Hungary))

    1991-01-01

    Thinning of epitaxial GaAs layers was studied during the surface etching, with a special attention to submicron epitaxial structures, like MESFET or varactor-type structures. Each chemical treatment influences the crystal surface during the device preparation processes, though the possible thinning of the active layer is small. Therefore a method allowing determination of thicknesses as small as at about 20 nm of the layer removed by chemical etching from GaAs VPE structures was applied. Using special multilayered structures and a continuous electrochemical carrier concentration depth profiling, the influence of the layer thickness inhomogeneity and of some measurement errors can be minimized. Some frequently used etchants and the influence of different - so called - non-etching processes were compared in different combinations. It was shown that besides the direct etching a change of the surface conditions occurs, which influences the etch rate in the succeeding etching procedure. (orig.).

  4. Tin oxide transparent thin-film transistors

    International Nuclear Information System (INIS)

    Presley, R E; Munsee, C L; Park, C-H; Hong, D; Wager, J F; Keszler, D A

    2004-01-01

    A SnO 2 transparent thin-film transistor (TTFT) is demonstrated. The SnO 2 channel layer is deposited by RF magnetron sputtering and then rapid thermal annealed in O 2 at 600 deg. C. The TTFT is highly transparent, and enhancement-mode behaviour is achieved by employing a very thin channel layer (10-20 nm). Maximum field-effect mobilities of 0.8 cm 2 V -1 s -1 and 2.0 cm 2 V -1 s -1 are obtained for enhancement- and depletion-mode devices, respectively. The transparent nature and the large drain current on-to-off ratio of 10 5 associated with the enhancement-mode behaviour of these devices may prove useful for novel gas-sensor applications

  5. Generalized radiative transfer theory for scattering by particles in an absorbing gas: Addressing both spatial and spectral integration in multi-angle remote sensing of optically thin aerosol layers

    Science.gov (United States)

    Davis, Anthony B.; Xu, Feng; Diner, David J.

    2018-01-01

    We demonstrate the computational advantage gained by introducing non-exponential transmission laws into radiative transfer theory for two specific situations. One is the problem of spatial integration over a large domain where the scattering particles cluster randomly in a medium uniformly filled with an absorbing gas, and only a probabilistic description of the variability is available. The increasingly important application here is passive atmospheric profiling using oxygen absorption in the visible/near-IR spectrum. The other scenario is spectral integration over a region where the absorption cross-section of a spatially uniform gas varies rapidly and widely and, moreover, there are scattering particles embedded in the gas that are distributed uniformly, or not. This comes up in many applications, O2 A-band profiling being just one instance. We bring a common framework to solve these problems both efficiently and accurately that is grounded in the recently developed theory of Generalized Radiative Transfer (GRT). In GRT, the classic exponential law of transmission is replaced by one with a slower power-law decay that accounts for the unresolved spectral or spatial variability. Analytical results are derived in the single-scattering limit that applies to optically thin aerosol layers. In spectral integration, a modest gain in accuracy is obtained. As for spatial integration of near-monochromatic radiance, we find that, although both continuum and in-band radiances are affected by moderate levels of sub-pixel variability, only extreme variability will affect in-band/continuum ratios.

  6. Modeling of thin layer drying of tarragon (Artemisia dracunculus L.)

    NARCIS (Netherlands)

    ArabHosseini, A.; Huisman, W.; Boxtel, van A.J.B.; Mueller, J.

    2009-01-01

    The drying behavior of tarragon leaves as well as chopped plants were evaluated at air temperatures ranging from 40 to 90 °C, at various air relative humidities and a constant air velocity of 0.6 m/s. The experimental data was fitted to a number of thin layer drying equations. The equations were

  7. Automatic identification of single- and/or few-layer thin-film material

    DEFF Research Database (Denmark)

    2014-01-01

    One or more digital representations of single- (101) and/or few-layer (102) thin- film material are automatically identified robustly and reliably in a digital image (100), the digital image (100) having a predetermined number of colour components, by - determining (304) a background colour...... component of the digital image (100) for each colour component, and - determining or estimating (306) a colour component of thin-film material to be identified in the digital image (100) for each colour component by obtaining a pre-determined contrast value (C R; C G; C B) for each colour component...

  8. Effect of native oxide layers on copper thin-film tensile properties: A reactive molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Skarlinski, Michael D., E-mail: michael.skarlinski@rochester.edu [Materials Science Program, University of Rochester, Rochester, New York 14627 (United States); Quesnel, David J. [Materials Science Program, University of Rochester, Rochester, New York 14627 (United States); Department of Mechanical Engineering, University of Rochester, Rochester, New York 14627 (United States)

    2015-12-21

    Metal-oxide layers are likely to be present on metallic nano-structures due to either environmental exposure during use, or high temperature processing techniques such as annealing. It is well known that nano-structured metals have vastly different mechanical properties from bulk metals; however, difficulties in modeling the transition between metallic and ionic bonding have prevented the computational investigation of the effects of oxide surface layers. Newly developed charge-optimized many body [Liang et al., Mater. Sci. Eng., R 74, 255 (2013)] potentials are used to perform fully reactive molecular dynamics simulations which elucidate the effects that metal-oxide layers have on the mechanical properties of a copper thin-film. Simulated tensile tests are performed on thin-films while using different strain-rates, temperatures, and oxide thicknesses to evaluate changes in yield stress, modulus, and failure mechanisms. Findings indicate that copper-thin film mechanical properties are strongly affected by native oxide layers. The formed oxide layers have an amorphous structure with lower Cu-O bond-densities than bulk CuO, and a mixture of Cu{sub 2}O and CuO charge character. It is found that oxidation will cause modifications to the strain response of the elastic modulii, producing a stiffened modulii at low temperatures (<75 K) and low strain values (<5%), and a softened modulii at higher temperatures. While under strain, structural reorganization within the oxide layers facilitates brittle yielding through nucleation of defects across the oxide/metal interface. The oxide-free copper thin-film yielding mechanism is found to be a tensile-axis reorientation and grain creation. The oxide layers change the observed yielding mechanism, allowing for the inner copper thin-film to sustain an FCC-to-BCC transition during yielding. The mechanical properties are fit to a thermodynamic model based on classical nucleation theory. The fit implies that the oxidation of the

  9. Mesoscopic layered structure in conducting polymer thin film fabricated by potential-programmed electropolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Fujitsuka, Mamoru (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Nakahara, Reiko (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Iyoda, Tomokazu (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Shimidzu, Takeo (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Tomita, Shigehisa (Toray Research Center Co., Ltd., Shiga (Japan)); Hatano, Yayoi (Toray Research Center Co., Ltd., Shiga (Japan)); Soeda, Fusami (Toray Research Center Co., Ltd., Shiga (Japan)); Ishitani, Akira (Toray Research Center Co., Ltd., Shiga (Japan)); Tsuchiya, Hajime (Nitto Technical Information Center Co., Ltd., Shimohozumi Ibaraki, Osaka (Japan)); Ohtani, Akira (Central Research Lab., Nitto Denko Co., Ltd., Shimohozumi Ibaraki, Osaka (Japan))

    1992-11-01

    Mesoscopic layered structures in conducting polymer thin films are fabricated by the potential-programmed electropolymerization method. High lateral quality in the layered structure is realized by the improvement of polymerization conditions, i.e., a mixture of pyrrole and bithiophene as monomers, a silicon single-crystal wafer as a working electrode and propylene carbonate as a solvent. SIMS depth profiling of the resulting layered films indicates a significant linear correlation between the electric charge passed and the thickness of the individual layers on a 100 A scale. (orig.)

  10. Atomic Layer Control of Thin Film Growth Using Binary Reaction Sequence Chemistry

    National Research Council Canada - National Science Library

    George, Steven

    1997-01-01

    Our research is focusing on the atomic layer control of thin film growth. Our goal is to deposit films with precise control of thickness and conformality on both flat and high aspect ratio structures...

  11. Thin polyaniline and polyaniline/carbon nanocomposite films for gas sensing

    Czech Academy of Sciences Publication Activity Database

    Lobotka, P.; Kunzo, P.; Kováčová, E.; Vávra, I.; Križanová, O.; Smatko, V.; Stejskal, Jaroslav; Konyushenko, Elena; Omastová, M.; Špitálský, Z.; Mičušík, M.; Krupa, I.

    2011-01-01

    Roč. 519, č. 12 (2011), s. 4123-4127 ISSN 0040-6090 Institutional research plan: CEZ:AV0Z40500505 Keywords : gas sensor * polyaniline thin film * nanocomposite Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.890, year: 2011

  12. Continuum-Scale Modeling of Liquid Redistribution in a Stack of Thin Hydrophilic Fibrous Layers

    NARCIS (Netherlands)

    Tavangarrad, A.H.; Mohebbi, Behzad; Hassanizadeh, S.M.|info:eu-repo/dai/nl/074974424; Rosati, Rodrigo; Claussen, Jan; Blümich, Bernhard

    Macroscale three-dimensional modeling of fluid flow in a thin porous layer under unsaturated conditions is a challenging task. One major issue is that such layers do not satisfy the representative elementary volume length-scale requirement. Recently, a new approach, called reduced continua model

  13. PPY-PVA Blend Thin Films as a Ammines Gas Sensor

    Directory of Open Access Journals (Sweden)

    D. B. DUPARE

    2009-06-01

    Full Text Available Synthesis of polypyrrole–polyvinyl alcohol blend thin by in situ chemical oxidative polymerization, on glass substrate for development of Ammonia and Trimethyl ammine hazardous gas sensor. The all experimental process carried out at room temperature (304 k. These polymer materials were characterized by Chemical analyses, spectral studies (UV-visible and IR and conductivity measurement by four –probe technique. The surface morphology as seen in the SEM image was observed to be granular, tubular, uniformly covering the entire substrate surface having porous in nature. The current–voltage characterization show that these thin films have conducting in nature having ohmic behaviors. The sensor was used for different concentration (ppm of TMA and Ammonia gas investigation at room temperature (304 k. This study found to possess improved electrical, mechanical and environmental stability PPY-PVA films.

  14. Indium Tin Oxide thin film gas sensors for detection of ethanol vapours

    International Nuclear Information System (INIS)

    Vaishnav, V.S.; Patel, P.D.; Patel, N.G.

    2005-01-01

    Indium Tin Oxide (ITO: In 2 O 3 + 17% SnO 2 ) thin films grown on alumina substrate at 648 K temperatures using direct evaporation method with two gold pads deposited on the top for electrical contacts were exposed to ethanol vapours (200-2500 ppm). The operating temperature of the sensor was optimized. The sensitivity variation of films having different thickness was studied. The sensitivity of the films deposited on Si substrates was studied. The response of the film with MgO catalytic layer on sensitivity and selectivity was observed. A novel approach of depositing thin stimulating layer of various metals/oxides below the ITO film was tried and tested

  15. Light scattering of thin azobenzene side-chain polyester layers

    DEFF Research Database (Denmark)

    Kerekes, Á.; Lörincz, E.; Ramanujam, P.S.

    2002-01-01

    Light scattering properties of liquid crystalline and amorphous azobenzene side-chain polyester layers used for optical data storage were examined by means of transmissive scatterometry. Comparative experiments show that the amorphous polyester has significantly lower light scattering...... characteristics than the liquid crystalline polyester. The amorphous samples have negligible polarization part orthogonal to the incident beam. the liquid crystalline samples have relative high orthogonal polarization part in light scattering, The light scattering results can be used to give a lower limit...... for the domain size in thin liquid crystalline polyester layers being responsible for the dominant light scattering. The characteristic domain Sizes obtained from the Fourier transformation of polarization microscopic Pictures confirm these values....

  16. Targets with thin ferromagnetic layers for transient field experiments

    International Nuclear Information System (INIS)

    Gallant, J.L.; Dmytrenko, P.

    1982-01-01

    Multilayer targets containing a central layer sufficiently thin so that all recoil nuclei can traverse it and subsequently stop in a suitable cubic environment have been prepared. Such targets are required in experiments making use of a magnetic field acting on an ion moving through a ferromagnetic material. The preparation and annealing of the ferromagnetic foils (iron and gadolinium) and the fabrication of the multilayer targets are described. (orig.)

  17. Crystalline Molybdenum Oxide Thin-Films for Application as Interfacial Layers in Optoelectronic Devices

    DEFF Research Database (Denmark)

    Fernandes Cauduro, André Luis; dos Reis, Roberto; Chen, Gong

    2017-01-01

    The ability to control the interfacial properties in metal-oxide thin films through surface defect engineering is vital to fine-tune their optoelectronic properties and thus their integration in novel optoelectronic devices. This is exemplified in photovoltaic devices based on organic, inorganic...... or hybrid technologies, where precise control of the charge transport properties through the interfacial layer is highly important for improving device performance. In this work, we study the effects of in situ annealing in nearly stoichiometric MoOx (x ∼ 3.0) thin-films deposited by reactive sputtering. We...... with structural characterizations, this work addresses a novel method for tuning, and correlating, the optoelectronic properties and microstructure of device-relevant MoOx layers....

  18. Reissner-Nordstroem thin-shell wormholes with generalized cosmic Chaplygin gas

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M. [University of the Punjab, Department of Mathematics, Lahore (Pakistan); Azam, M. [University of the Punjab, Department of Mathematics, Lahore (Pakistan); University of Education, Division of Science and Technology, Lahore (Pakistan)

    2013-09-15

    Following Visser's approach (Visser in Phys. Rev. D 39:3182, 1989; Nucl. Phys. B 328:203, 1989; Lorentzian wormholes. AIP Press, New York, 1996) of cut and paste, we construct Reissner-Nordstroem thin-shell wormholes by taking the generalized cosmic Chaplygin gas for the exotic matter located at the wormhole throat. The Darmois-Israel conditions are used to determine the dynamical quantities of the system. The viability of the thin-shell wormholes is explored with respect to radial perturbations preserving the spherical symmetry. We find stable as well as unstable Reissner-Nordstroem thin-shell wormhole solutions depending upon the model parameters. Finally, we compare our results with both generalized and modified Chaplygin gases. (orig.)

  19. Reactive pulsed laser deposition with gas jet

    International Nuclear Information System (INIS)

    Rakowski, R.; Bartnik, A.; Fiedorowicz, H.; Jarocki, R.; Kostecki, J.; Szczurek, M.

    2001-01-01

    Different metal (Sn, Al, steel, Cu, W) thin films were synthesized by reactive pulsed laser deposition on steel, copper and glass wafers. In our work pulsed Nd:glass (10 J, 800μs) laser system was used. Jet of gas was created by electromagnetic valve perpendicularly to the laser beam. Nitrogen, oxygen and argon were used. We used several to tens laser shots to obtain visible with the naked eye layers. Thin layers were observed under an optical microscope. (author)

  20. Low temperature plasma-enhanced atomic layer deposition of thin vanadium nitride layers for copper diffusion barriers

    Energy Technology Data Exchange (ETDEWEB)

    Rampelberg, Geert; Devloo-Casier, Kilian; Deduytsche, Davy; Detavernier, Christophe [Department of Solid State Sciences, Ghent University, Krijgslaan 281/S1, B-9000 Ghent (Belgium); Schaekers, Marc [IMEC, Kapeldreef 75, B-3001 Leuven (Belgium); Blasco, Nicolas [Air Liquide Electronics US, L.P., 46401 Landing Parkway, Fremont, California 94538 (United States)

    2013-03-18

    Thin vanadium nitride (VN) layers were grown by atomic layer deposition using tetrakis(ethylmethylamino)vanadium and NH{sub 3} plasma at deposition temperatures between 70 Degree-Sign C and 150 Degree-Sign C on silicon substrates and polymer foil. X-ray photoelectron spectroscopy revealed a composition close to stoichiometric VN, while x-ray diffraction showed the {delta}-VN crystal structure. The resistivity was as low as 200 {mu}{Omega} cm for the as deposited films and further reduced to 143 {mu}{Omega} cm and 93 {mu}{Omega} cm by annealing in N{sub 2} and H{sub 2}/He/N{sub 2}, respectively. A 5 nm VN layer proved to be effective as a diffusion barrier for copper up to a temperature of 720 Degree-Sign C.

  1. On-line and precise measurement of iron wear using thin layer activation reactions by proton beam

    International Nuclear Information System (INIS)

    Kosako, Toshiso; Nishimura, Kazuo.

    1990-01-01

    For the purpose of the on-line measurement of iron wear, thin layer activation (TLA) method or surface layer activation (SLA) method has been carried out since early 1970s. This method uses the irradiation of charged particle beam like protons from an accelerator onto a metal surface to produce a thin activated layer of several tens μm. The wear of this activated layer is measured by nondestructive on-line method with a radiation detector. There are two methods of the measurement. One is the activity loss measurement on the surface, and the other is the activity measurement of the metal debris collected in a filter. The former method is considered here. The purpose it to measure the wear of engine cam noses to help the development of good engine oil. Proton beam irradiation with a tandem van de Graaff accelerator, wear calibration using a gamma ray spectrometer, on-line wear measurement of cam noses of car engines by TLA method and so on are reported. The 7.00 MeV proton beam from a van de Graaff accelerator was used for activation, and Co-56, Co-57 and Co-58 were obtained in thin layers. (K.I.)

  2. Low-temperature fabrication of an HfO2 passivation layer for amorphous indium-gallium-zinc oxide thin film transistors using a solution process.

    Science.gov (United States)

    Hong, Seonghwan; Park, Sung Pyo; Kim, Yeong-Gyu; Kang, Byung Ha; Na, Jae Won; Kim, Hyun Jae

    2017-11-24

    We report low-temperature solution processing of hafnium oxide (HfO 2 ) passivation layers for amorphous indium-gallium-zinc oxide (a-IGZO) thin-film transistors (TFTs). At 150 °C, the hafnium chloride (HfCl 4 ) precursor readily hydrolyzed in deionized (DI) water and transformed into an HfO 2 film. The fabricated HfO 2 passivation layer prevented any interaction between the back surface of an a-IGZO TFT and ambient gas. Moreover, diffused Hf 4+ in the back-channel layer of the a-IGZO TFT reduced the oxygen vacancy, which is the origin of the electrical instability in a-IGZO TFTs. Consequently, the a-IGZO TFT with the HfO 2 passivation layer exhibited improved stability, showing a decrease in the threshold voltage shift from 4.83 to 1.68 V under a positive bias stress test conducted over 10,000 s.

  3. Enhancement of absorption in vertically-oriented graphene sheets growing on a thin copper layer

    Energy Technology Data Exchange (ETDEWEB)

    Rozouvan, Tamara; Poperenko, Leonid [Taras Shevchenko National University of Kyiv, Department of Physics 4, Prospect Glushkova, Kyiv, 03187 (Ukraine); Kravets, Vasyl, E-mail: vasyl_kravets@yahoo.com [School of Physics and Astronomy, University of Manchester, Manchester, M13 9PL (United Kingdom); Shaykevich, Igor [Taras Shevchenko National University of Kyiv, Department of Physics 4, Prospect Glushkova, Kyiv, 03187 (Ukraine)

    2017-02-28

    Highlights: • The optical properties and surface structure of graphene films. • Chemical vapour deposition method. • Scanning tunneling microscopy revealed vertical crystal lattice structure of graphene layer. • We report a significant enhancement of the absorption band in the vertically-oriented graphene sheets. - Abstract: The optical properties and surface structure of graphene films grown on thin copper Cu (1 μm) layer using chemical vapour deposition method were investigated via spectroscopic ellipsometry and nanoscopic measurements. Angle variable ellipsometry measurements were performed to analyze the features of dispersion of the complex refractive index and optical conductivity. It was observed significant enhancement of the absorption band in the vertically-oriented graphene sheets layer with respect to the bulk graphite due to interaction between excited localized surface plasmon at surface of thin Cu layer and graphene’s electrons. Scanning tunneling microscopy measurements with atomic spatial resolution revealed vertical crystal lattice structure of the deposited graphene layer. The obtained results provide direct evidence of the strong influence of the growing condition and morphology of nanostructure on electronic and optical behaviours of graphene film.

  4. Gas flow and dust acceleration in a cometary Knudsen layer

    CERN Document Server

    Skorov, Yu V

    1999-01-01

    An analytical model of the innermost gas-dust coma region is proposed. The kinetic Knudsen layer adjacent to the surface of the cometary nucleus, where the initially non-equilibrium velocity distribution function of gas molecules $9 relaxes to Maxwell equilibrium distribution function and, as a result, the macro-characteristics of gas and dust flows vary several-fold, is considered. The gas phase model is based on the equations for mass, momentum and energy flux $9 conservation, and is a natural development of the Anisimov (1968) and Cercignani (1981) approaches. The analytical relations between the characteristics of the gas flow on the boundaries of the non- equilibrium layer and the $9 characteristics of the returning gas flow adsorbed by the surface are determined. These values form a consistent basis both for hydrodynamic models of the inner coma and for jet force models. Three particular models are presented: $9 (1) sublimation of a polyatomic one-component gas; (2) sublimation of a two-component polyat...

  5. On elastic waves in an thinly-layered laminated medium with stress couples under initial stress

    Directory of Open Access Journals (Sweden)

    P. Pal Roy

    1988-01-01

    Full Text Available The present work is concerned with a simple transformation rule in finding out the composite elastic coefficients of a thinly layered laminated medium whose bulk properties are strongly anisotropic with a microelastic bending rigidity. These elastic coefficients which were not known completely for a layered laminated structure, are obtained suitably in terms of initial stress components and Lame's constants λi, μi of initially isotropic solids. The explicit solutions of the dynamical equations for a prestressed thinly layered laminated medium under horizontal compression in a gravity field are derived. The results are discussed specifying the effects of hydrostatic, deviatoric and couple stresses upon the characteristic propagation velocities of shear and compression wave modes.

  6. Normal and Reversed-Phase Thin Layer Chromatography of Green Leaf Extracts

    Science.gov (United States)

    Sjursnes, Birte Johanne; Kvittingen, Lise; Schmid, Rudolf

    2015-01-01

    Introductory experiments of chromatography are often conducted by separating colored samples, such as inks, dyes, and plant extracts, using filter paper, chalk, or thin layer chromatography (TLC) plates with various solvent systems. Many simple experiments have been reported. The relationship between normal chromatography and reversed-phase…

  7. Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers

    NARCIS (Netherlands)

    Fatima, T.; Ijioma, E.R.; Ogawa, T.; Muntean, A.

    2014-01-01

    We study the homogenization of a reaction-diffusion-convection system posed in an e-periodic d-thin layer made of a two-component (solid-air) composite material. The microscopic system includes heat flow, diffusion and convection coupled with a nonlinear surface chemical reaction. We treat two

  8. LPG ammonia and nitrogen dioxide gas sensing properties of nanostructured polypyrrole thin film

    Science.gov (United States)

    Bagul, Sagar B.; Upadhye, Deepak S.; Sharma, Ramphal

    2016-05-01

    Nanostructured Polypyrrole thin film was synthesized by easy and economic chemical oxidative polymerization technique on glass at room temperature. The prepared thin film of Polypyrrole was characterized by optical absorbance study by UV-visible spectroscopy and electrical study by I-V measurement system. The optical absorbance spectrum of Polypyrrole shows two fundamental peaks in region of 420 and 890 nm, which confirms the formation of Polypyrrole on glass substrate. The I-V graph of nanostructured Polypyrrole represents the Ohmic nature. Furthermore, the thin film of Polypyrrole was investigated by Scanning electron microscopy for surface morphology study. The SEM micrograph represents spherical nanostructured morphology of Polypyrrole on glass substrate. In order to investigate gas sensing properties, 100 ppm of LPG, Ammonia and Nitrogen Dioxide were injected in the gas chamber and magnitude of resistance has been recorded as a function of time in second. It was observed that nanostructured Polypyrrole thin film shows good sensing behavior at room temperature.

  9. LPG ammonia and nitrogen dioxide gas sensing properties of nanostructured polypyrrole thin film

    Energy Technology Data Exchange (ETDEWEB)

    Bagul, Sagar B., E-mail: nano.sbbagul@gmail.com; Upadhye, Deepak S.; Sharma, Ramphal, E-mail: rps.phy@gmail.com [Thin Film and Nanotechnology Laboratory, Department of Nanotechnology, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (India)

    2016-05-06

    Nanostructured Polypyrrole thin film was synthesized by easy and economic chemical oxidative polymerization technique on glass at room temperature. The prepared thin film of Polypyrrole was characterized by optical absorbance study by UV-visible spectroscopy and electrical study by I-V measurement system. The optical absorbance spectrum of Polypyrrole shows two fundamental peaks in region of 420 and 890 nm, which confirms the formation of Polypyrrole on glass substrate. The I-V graph of nanostructured Polypyrrole represents the Ohmic nature. Furthermore, the thin film of Polypyrrole was investigated by Scanning electron microscopy for surface morphology study. The SEM micrograph represents spherical nanostructured morphology of Polypyrrole on glass substrate. In order to investigate gas sensing properties, 100 ppm of LPG, Ammonia and Nitrogen Dioxide were injected in the gas chamber and magnitude of resistance has been recorded as a function of time in second. It was observed that nanostructured Polypyrrole thin film shows good sensing behavior at room temperature.

  10. Natively textured surface hydrogenated gallium-doped zinc oxide transparent conductive thin films with buffer layers for solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xin-liang, E-mail: cxlruzhou@163.com; Wang, Fei; Geng, Xin-hua; Huang, Qian; Zhao, Ying; Zhang, Xiao-dan

    2013-09-02

    Natively textured surface hydrogenated gallium-doped zinc oxide (HGZO) thin films have been deposited via magnetron sputtering on glass substrates. These natively textured HGZO thin films exhibit rough pyramid-like textured surface, high optical transmittances in the visible and near infrared region and excellent electrical properties. The experiment results indicate that tungsten-doped indium oxide (In{sub 2}O{sub 3}:W, IWO) buffer layers can effectively improve the surface roughness and enhance the light scattering ability of HGZO thin films. The root-mean-square roughness of HGZO, IWO (10 nm)/HGZO and IWO (30 nm)/HGZO thin films are 28, 44 and 47 nm, respectively. The haze values at the wavelength of 550 nm increase from 7.0% of HGZO thin film without buffer layer to 18.37% of IWO (10 nm)/HGZO thin film. The optimized IWO (10 nm)/HGZO exhibits a high optical transmittance of 82.18% in the visible and near infrared region (λ ∼ 400–1100 nm) and excellent electrical properties with a relatively low sheet resistance of 3.6 Ω/□ and the resistivity of 6.21 × 10{sup −4} Ωcm. - Highlights: • Textured hydrogenated gallium-doped zinc oxide (HGZO) films were developed. • Tungsten-doped indium oxide (IWO) buffer layers were applied for the HGZO films. • Light-scattering ability of the HGZO films can be improved through buffer layers. • Low sheet resistance and high haze were obtained for the IWO(10 nm)/HGZO film. • The IWO/HGZO films are promising transparent conductive layers for solar cells.

  11. Measurement of the oxygen binding properties of haemocyanin with the aid of a thin-layer optical cell

    Directory of Open Access Journals (Sweden)

    W. J. van Aardt

    1992-07-01

    Full Text Available The merits of the thin-layer method of Dolman and Gill to study the oxygen binding of haemocyanin were experimentally tested with haemocyanin obtained from arthropods and molluscs. The results show that, spectrophotometrically, oxyhaemocyanin from both arthropods and molluscs has a prominent absorption peak between 335 and 345 nm. Haemocyanin is more stable in the thin- layer preparation when compared with haemoglobin. At 35 °C a decrease in the initial absorbance value of less than 2% was found after three hours. For haemoglobin the initial value decreases nearly 10% during the same period. For a high-affinity haemocyanin such as Marisa cornuarietis (P⁵⁰ = 1,07 mmHg the thin-layer method of Dolman and Gill (1978 shows better PO₂ resolution than other methods. The reason for this is that the dilution valve, which is absent in other thin-layer methods, intrinsically measures the resultant PO₂ values at very low tensions more accurately. In this study a step-by-step explanation of the technique is given. The calculations have been explained using real figures and examples. It is hoped that this detailed description will make this technique more readily available for use by respiratory physiologists.

  12. Temperature dependence of magnetically dead layers in ferromagnetic thin-films

    Directory of Open Access Journals (Sweden)

    M. Tokaç

    2017-11-01

    Full Text Available Polarized neutron reflectometry has been used to study interface magnetism and magnetic dead layers in model amorphous CoFeB:Ta alloy thin-film multilayers with Curie temperatures tuned to be below room-temperature. This allows temperature dependent variations in the effective magnetic thickness of the film to be determined at temperatures that are a significant fraction of the Curie temperature, which cannot be achieved in the material systems used for spintronic devices. In addition to variation in the effective magnetic thickness due to compositional grading at the interface with the tantalum capping layer, the key finding is that at the interface between ferromagnetic film and GaAs(001 substrate local interfacial alloying creates an additional magnetic dead-layer. The thickness of this magnetic dead-layer is temperature dependent, which may have significant implications for elevated-temperature operation of hybrid ferromagnetic metal-semiconductor spintronic devices.

  13. Application of Thin ZnO ALD Layers in Fiber-Optic Fabry-Pérot Sensing Interferometers

    Directory of Open Access Journals (Sweden)

    Daria Majchrowicz

    2016-03-01

    Full Text Available In this paper we investigated the response of a fiber-optic Fabry-Pérot sensing interferometer with thin ZnO layers deposited on the end faces of the optical fibers forming the cavity. Standard telecommunication single-mode optical fiber (SMF-28 segments were used with the thin ZnO layers deposited by Atomic Layer Deposition (ALD. Measurements were performed with the interferometer illuminated by two broadband sources operating at 1300 nm and 1550 nm. Reflected interference signal was acquired by an optical spectrum analyzer while the length of the air cavity was varied. Thickness of the ZnO layers used in the experiments was 50 nm, 100 nm, and 200 nm. Uncoated SMF-28 fiber was also used as a reference. Based on the results of measurements, the thickness of the ZnO layers and the length of the cavity were selected in order to achieve good visibility. Following, the interferometer was used to determine the refractive index of selected liquids.

  14. Visible light dynamical diffraction in a 1-D photonic crystal-based interferometer with an extremely thin spacer layer

    International Nuclear Information System (INIS)

    Prudnikov, I.R.

    2016-01-01

    Properties of light diffraction in a Fabry–Pérot-like interferometer composed of two 1-D photonic crystals and a nanometer-thick spacer layer are analytically investigated. It is shown that the resonant enhancement of light wave intensity in such a layer is possible because of light dynamical diffraction from the photonic crystals of the interferometer. Numerical simulations of (i) light reflectivity and transmittance curves of the interferometer having an ultra-thin spacer layer (its thickness changes from less than 1 nm to about 10 nm) and (ii) the resonant distribution of the light wave intensity in the vicinity of the layer are performed. Based on the numerical simulations, potentialities for the determination of the structural parameters (e.g., thicknesses and refraction indexes) of ultra-thin spacer films are discussed. A difference is found to appear in resonant intensity enhancements inside the ultra-thin spacer layers between s- and p-polarized light waves.

  15. Prediction of transmittance spectra for transparent composite electrodes with ultra-thin metal layers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Zhao; Alford, T. L., E-mail: TA@asu.edu [School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287 (United States); Khorasani, Arash Elhami [ON Semiconductor Corp., Phoenix, Arizona 85005 (United States); Theodore, N. D. [CHD-Fab, Freescale Semiconductor Inc., Tempe, Arizona 85224 (United States); Dhar, A. [Intel Corp., 2501 NW 229th Ave, Hillsboro, Oregon 97124 (United States)

    2015-11-28

    Recent interest in indium-free transparent composite-electrodes (TCEs) has motivated theoretical and experimental efforts to better understand and enhance their electrical and optical properties. Various tools have been developed to calculate the optical transmittance of multilayer thin-film structures based on the transfer-matrix method. However, the factors that affect the accuracy of these calculations have not been investigated very much. In this study, two sets of TCEs, TiO{sub 2}/Au/TiO{sub 2} and TiO{sub 2}/Ag/TiO{sub 2}, were fabricated to study the factors that affect the accuracy of transmittance predictions. We found that the predicted transmittance can deviate significantly from measured transmittance for TCEs that have ultra-thin plasmonic metal layers. The ultrathin metal layer in the TCE is typically discontinuous. When light interacts with the metallic islands in this discontinuous layer, localized surface plasmons are generated. This causes extra light absorption, which then leads to the actual transmittance being lower than the predicted transmittance.

  16. Low-power micro gas sensors for applications in energy engineering and environmental engineering - LEGUAN. Project: Layer analysis. Final report; Low-Power-Mikrogassensoren in energietechnische und umweltrelevante Anwendungen - LEGUAN. Teilvorhaben: Schichtanalytik. Schlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Fricke, P.

    2001-10-15

    Development and realization of techniques for the investigation of the properties of thin metal oxide layers for gas sensors. Following analytical techniques were optimized: Auger electron spectroscopy (AES), Electron probe micro analysis (EPMA), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), X-ray diffraction (XRD). In order to investigate thin layers with the thickness of some nm, advanced sample preparation techniques were improved and tested. The analytical techniques were suited to the very small layer thickness. The investigations take place with the collaboration of HL-Planartechnik, Siemens, Technical University Berlin, University of the Bundeswehr and UST. Investigations of indium oxide, nickel oxide, molybdenum oxide, iron oxide, cobalt oxide, titanium oxide, gallium oxide, gold-silicon oxide, silicon oxide, indium oxide with tantalum intermediate layers and various layer combinations were carried out. Substrates of silicon and aluminum oxide were used. Texture, grain size and composition of layers with the thickness of some nm were investigated. With the collaboration of the partners the combination of the electrical and physical layer properties of the layers was observed. (orig.)

  17. Nano-crystalline thin and nano-particulate thick TiO{sub 2} layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Das, P.; Sengupta, D. [Centre for Advanced Materials Processing, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 West Bengal (India); CSIR-Central Mechanical Engineering Research Institute, Academy of Scientific and Innovative Research (AcSIR), Durgapur, 713209 West Bengal (India); Kasinadhuni, U. [Department of Engineering Physics, Bengal College of Engineering and Technology, Durgapur, West Bengal (India); Mondal, B. [Centre for Advanced Materials Processing, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 West Bengal (India); Mukherjee, K., E-mail: kalisadhanm@yahoo.com [Centre for Advanced Materials Processing, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 West Bengal (India)

    2015-06-15

    Highlights: • Thin TiO{sub 2} layer is deposited on conducting substrate using sol–gel based dip coating. • TiO{sub 2} nano-particles are synthesized using hydrothermal route. • Thick TiO{sub 2} particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO{sub 2} passivation layer is introduced between the mesoporous TiO{sub 2} nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effect of passivation layer, other two DSSCs are also developed separately using TiO{sub 2} nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO{sub 2} compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO{sub 2} layer in between the mesoporous TiO{sub 2} nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons.

  18. Superhydrophobic Thin Films Fabricated by Reactive Layer-by-Layer Assembly of Azlactone-Functionalized Polymers.

    Science.gov (United States)

    Buck, Maren E; Schwartz, Sarina C; Lynn, David M

    2010-09-11

    We report an approach to the fabrication of superhydrophobic thin films that is based on the 'reactive' layer-by-layer assembly of azlactone-containing polymer multilayers. We demonstrate that films fabricated from alternating layers of the azlactone functionalized polymer poly(2-vinyl-4,4-dimethylazlactone) (PVDMA) and poly(ethyleneimine) (PEI) exhibit micro- and nanoscale surface features that result in water contact angles in excess of 150º. Our results reveal that the formation of these surface features is (i) dependent upon film thickness (i.e., the number of layers of PEI and PVDMA deposited) and (ii) that it is influenced strongly by the presence (or absence) of cyclic azlactone-functionalized oligomers that can form upon storage of the 2-vinyl-4,4-dimethylazlactone (VDMA) used to synthesize PVDMA. For example, films fabricated using polymers synthesized in the presence of these oligomers exhibited rough, textured surfaces and superhydrophobic behavior (i.e., advancing contact angles in excess of 150º). In contrast, films fabricated from PVDMA polymerized in the absence of this oligomer (e.g., using freshly distilled monomer) were smooth and only moderately hydrophobic (i.e., advancing contact angles of ~75º). The addition of authentic, independently synthesized oligomer to samples of distilled VDMA at specified and controlled concentrations permitted reproducible fabrication of superhydrophobic thin films on the surfaces of a variety of different substrates. The surfaces of these films were demonstrated to be superhydrophobic immediately after fabrication, but they became hydrophilic after exposure to water for six days. Additional experiments demonstrated that it was possible to stabilize and prolong the superhydrophobic properties of these films (e.g., advancing contact angles in excess of 150° even after complete submersion in water for at least six weeks) by exploiting the reactivity of residual azlactones to functionalize the surfaces of the films

  19. Numerical simulations of rarefied gas flows in thin film processes

    NARCIS (Netherlands)

    Dorsman, R.

    2007-01-01

    Many processes exist in which a thin film is deposited from the gas phase, e.g. Chemical Vapor Deposition (CVD). These processes are operated at ever decreasing reactor operating pressures and with ever decreasing wafer feature dimensions, reaching into the rarefied flow regime. As numerical

  20. Thin-shell wormholes in Born–Infeld electrodynamics with modified Chaplygin gas

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M., E-mail: msharif.math@pu.edu.pk [Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590 (Pakistan); Azam, M., E-mail: azam.math@ue.edu.pk [Department of Mathematics, University of the Punjab, Quaid-e-Azam Campus, Lahore-54590 (Pakistan); Division of Science and Technology, University of Education, Township Campus, Lahore-54590 (Pakistan)

    2014-07-25

    In this paper, we construct spherically symmetric thin-shell wormholes in the scenario of Born–Infeld electrodynamics theory. We take the modified Chaplygin gas for the description of exotic matter around the wormhole throat. The stability of static wormhole solutions with different values of charge and Born–Infeld parameter is investigated. We compare our results with those obtained for generalized Chaplygin gas [36] and conclude that stable static wormhole solutions also exist even for large value of Born–Infeld parameter. - Highlights: • Constructed thin-shell wormholes in Born–Infeld electrodynamics for modified Chaplygin. • Studied its stability with different values of charge and Born–Infeld parameter. • New stable solutions are found even for large value of Born–Infeld parameter. • Selection of EoS significantly changes the presence and stability of static solutions.

  1. Magnetic properties of Cobalt thin films deposited on soft organic layers

    Energy Technology Data Exchange (ETDEWEB)

    Bergenti, I. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy)]. E-mail: i.bergenti@bo.ismn.cnr.it; Riminucci, A. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy); Arisi, E. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy); Murgia, M. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy); Cavallini, M. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy); Solzi, M. [Dipartimento di Fisica dell' Universita di Parma and CNISM, Parco Area delle Scienze 7/A, Parma 43100 (Italy); Casoli, F. [IMEM-CNR Parco Area delle Scienze 37/A, Parma 43100 (Italy); Dediu, V. [ISMN-CNR via P. Gobetti 101, Bologna 40129 (Italy)

    2007-09-15

    Magnetic and morphological properties of Cobalt thin films grown by RF sputtering on organic Alq3 layers were investigated by magneto-optical Kerr effect (MOKE) technique and atomic force microscopy (AFM). The AFM images indicate a template growth of Co layers on top of Alq3, the magnetic film 'decorates' the surface of organic material. This peculiar morphology induces a strong uniaxial magnetic anisotropy in the Co films, as detected by MOKE measurements. Results are important for the operation of a new class of devices-vertical organic spin valves.

  2. Reversed-phase thin-layer chromatography of the rare earth elements

    International Nuclear Information System (INIS)

    Kuroda, R.; Adachi, M.; Oguma, K.

    1988-01-01

    Partition chromatographic behaviour of the rare earth elements on C 18 bonded silica reversed-phase material has been investigated by thin-layer chromatography in methanol - lactate media. The rare earth lactato complexes are distributed and fractionated on bonded silica layers without ion-interaction reagents. The concentration and pH of lactate solution, methanol concentration and temperature have effects on the migration and resolution of the rare earth elements. The partition system is particularly suited to separate adjacent rare earths of middle atomic weight groups, allowing the separation of gadolinium, terbium, dysprosium, holmium, erbium and thulium to be achieved by development to 18 cm distance. (orig.)

  3. Two-phase gas bubble-liquid boundary layer flow along vertical and inclined surfaces

    International Nuclear Information System (INIS)

    Cheung, F.B.; Epstein, M.

    1985-01-01

    The behavior of a two-phase gas bubble liquid boundary layer along vertical and inclined porous surfaces with uniform gas injection is investigated experimentally and analytically. Using argon gas and water as the working fluids, a photographical study of the two-phase boundary layer flow has been performed for various angles of inclination ranging from 45 0 to 135 0 and gas injection rates ranging from 0.01 to 0.1 m/s. An integral method has been employed to solve the system of equations governing the two-phase motion. The effects of the gas injection rate and the angle of inclination on the growth of the boundary layer have been determined

  4. Atomic layer deposition of absorbing thin films on nanostructured electrodes for short-wavelength infrared photosensing

    International Nuclear Information System (INIS)

    Xu, Jixian; Sutherland, Brandon R.; Hoogland, Sjoerd; Fan, Fengjia; Sargent, Edward H.; Kinge, Sachin

    2015-01-01

    Atomic layer deposition (ALD), prized for its high-quality thin-film formation in the absence of high temperature or high vacuum, has become an industry standard for the large-area deposition of a wide array of oxide materials. Recently, it has shown promise in the formation of nanocrystalline sulfide films. Here, we demonstrate the viability of ALD lead sulfide for photodetection. Leveraging the conformal capabilities of ALD, we enhance the absorption without compromising the extraction efficiency in the absorbing layer by utilizing a ZnO nanowire electrode. The nanowires are first coated with a thin shunt-preventing TiO 2 layer, followed by an infrared-active ALD PbS layer for photosensing. The ALD PbS photodetector exhibits a peak responsivity of 10 −2  A W −1 and a shot-derived specific detectivity of 3 × 10 9  Jones at 1530 nm wavelength

  5. Titanium dioxide thin films by atomic layer deposition: a review

    Science.gov (United States)

    Niemelä, Janne-Petteri; Marin, Giovanni; Karppinen, Maarit

    2017-09-01

    Within its rich phase diagram titanium dioxide is a truly multifunctional material with a property palette that has been shown to span from dielectric to transparent-conducting characteristics, in addition to the well-known catalytic properties. At the same time down-scaling of microelectronic devices has led to an explosive growth in research on atomic layer deposition (ALD) of a wide variety of frontier thin-film materials, among which TiO2 is one of the most popular ones. In this topical review we summarize the advances in research of ALD of titanium dioxide starting from the chemistries of the over 50 different deposition routes developed for TiO2 and the resultant structural characteristics of the films. We then continue with the doped ALD-TiO2 thin films from the perspective of dielectric, transparent-conductor and photocatalytic applications. Moreover, in order to cover the latest trends in the research field, both the variously constructed TiO2 nanostructures enabled by ALD and the Ti-based hybrid inorganic-organic films grown by the emerging ALD/MLD (combined atomic/molecular layer deposition) technique are discussed.

  6. Two-phase gas bubble-liquid boundary layer flow along vertical and inclined surfaces

    International Nuclear Information System (INIS)

    Cheung, F.B.; Epstein, M.

    1985-01-01

    The behavior of a two-phase gas bubble-liquid boundary layer along vertical and inclined porous surfaces with uniform gas injection is investigated experimentally and analytically. Using argon gas and water as the working fluids, a photographical study of the two-phase boundary layer flow has been performed for various angles of inclination ranging from 45 0 to 135 0 and gas injection rates ranging from 0.01 to 0.1 m/s. An integral method has been employed to solve the system of equations governing the two-phase motion. The effects of the gas injection rate and the angle of inclination on the growth of the boundary layer have been determined. The predicted boundary layer thickness is found to be in good agreement with the experimental results. The calculated axial liquid velocity and the void fraction in the two-phase region are also presented along with the observed flow behavior

  7. Performance of a Polymer Flood with Shear-Thinning Fluid in Heterogeneous Layered Systems with Crossflow

    Directory of Open Access Journals (Sweden)

    Kun Sang Lee

    2011-08-01

    Full Text Available Assessment of the potential of a polymer flood for mobility control requires an accurate model on the viscosities of displacement fluids involved in the process. Because most polymers used in EOR exhibit shear-thinning behavior, the effective viscosity of a polymer solution is a highly nonlinear function of shear rate. A reservoir simulator including the model for the shear-rate dependence of viscosity was used to investigate shear-thinning effects of polymer solution on the performance of the layered reservoir in a five-spot pattern operating under polymer flood followed by waterflood. The model can be used as a quantitative tool to evaluate the comparative studies of different polymer flooding scenarios with respect to shear-rate dependence of fluids’ viscosities. Results of cumulative oil recovery and water-oil ratio are presented for parameters of shear-rate dependencies, permeability heterogeneity, and crossflow. The results of this work have proven the importance of taking non-Newtonian behavior of polymer solution into account for the successful evaluation of polymer flood processes. Horizontal and vertical permeabilities of each layer are shown to impact the predicted performance substantially. In reservoirs with a severe permeability contrast between horizontal layers, decrease in oil recovery and sudden increase in WOR are obtained by the low sweep efficiency and early water breakthrough through highly permeable layer, especially for shear-thinning fluids. An increase in the degree of crossflow resulting from sufficient vertical permeability is responsible for the enhanced sweep of the low permeability layers, which results in increased oil recovery. It was observed that a thinning fluid coefficient would increase injectivity significantly from simulations with various injection rates. A thorough understanding of polymer rheology in the reservoir and accurate numerical modeling are of fundamental importance for the exact estimation

  8. [Thin layer agar represents a cost-effective alternative for the rapid diagnosis of multi-drug resistant tuberculosis].

    Science.gov (United States)

    Hernández-Sarmiento, José M; Martínez-Negrete, Milton A; Castrillón-Velilla, Diana M; Mejía-Espinosa, Sergio A; Mejía-Mesa, Gloria I; Zapata-Fernández, Elsa M; Rojas-Jiménez, Sara; Marín-Castro, Andrés E; Robledo-Restrepo, Jaime A

    2014-01-01

    Using cost-benefit analysis for comparing the thin-layer agar culture method to the standard multiple proportion method used in diagnosing multidrug-resistant tuberculosis (MDR TB). A cost-benefit evaluation of two diagnostic tests was made at the Corporación para Investigaciones Biológicas (CIB) in Medellín, Colombia. 100 patients were evaluated; 10.8% rifampicin resistance and 14.3% isoniazid resistance were found. A computer-based decision tree model was used for cost-effectiveness analysis (Treeage Pro); the thin-layer agar culture method was most cost-effective, having 100% sensitivity, specificity and predictive values for detecting rifampicin and isoniazid resistance. The multiple proportion method value was calculated as being US$ 71 having an average 49 day report time compared to US$ 18 and 14 days for the thin-layer agar culture method. New technologies have been developed for diagnosing tuberculosis which are apparently faster and more effective; their operating characteristics must be evaluated as must their effectiveness in terms of cost-benefit. The present study established that using thin-layer agar culture was cheaper, equally effective and could provide results more quickly than the traditional method. This implies that a patient could receive MDR TB treatment more quickly.

  9. Temperature-dependent evolution of chemisorbed digermane in Ge thin film growth

    International Nuclear Information System (INIS)

    Eres, D.; Sharp, J.W.

    1992-01-01

    The formation and evolution of chemisorbed digermane layers in context with germanium thin film growth was investigated by time- resolved surface reflectometry. Modulation of the source gas supply made possible the separation and independent study of the temperature dependence of the adsorption and desorption processes. The regeneration of active sites by molecular hydrogen desorption was identified as the rate-limiting step at low substrate temperatures. A dynamic method of thin film growth was demonstrated by repetitively replenishing the active film growth sites regenerated between two successive source gas pulses. The film growth rate was shown to be related to the substrate temperature and the delay time between successive source gas pulses

  10. Purification of 3H-dihydroalprenolol by two dimensional thin layer chromatography

    International Nuclear Information System (INIS)

    Smisterova, J.; Soltes, L.; Kallay, Z.

    1989-01-01

    A two dimensional thin-layer chromatographic method was developed for the purification and analysis of (-)-[ 3 H]dihydroalprenolol by using an acidic mobile phase (butanol/water/acetic acid 25:10:4, v/v) in one direction and a basic eluent (chloroform/acetone/triethylamine 50:40:10, v/v) in another direction. (author)

  11. Effect of multi-layered bottom electrodes on the orientation of strontium-doped lead zirconate titanate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bhaskaran, M. [Microelectronics and Materials Technology Centre, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001 (Australia)], E-mail: madhu.bhaskaran@gmail.com; Sriram, S. [Microelectronics and Materials Technology Centre, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001 (Australia); Mitchell, D.R.G.; Short, K.T. [Institute of Materials Engineering, Australian Nuclear Science and Technology Organisation (ANSTO), PMB 1, Menai, New South Wales 2234 (Australia); Holland, A.S. [Microelectronics and Materials Technology Centre, School of Electrical and Computer Engineering, RMIT University, GPO Box 2476V, Melbourne, Victoria 3001 (Australia)

    2008-09-30

    This article discusses the results from X-ray diffraction (XRD) analysis of piezoelectric strontium-doped lead zirconate titanate (PSZT) thin films deposited on multi-layer coatings on silicon. The films were deposited by RF magnetron sputtering on a metal coated substrate. The aim was to exploit the pronounced piezoelectric effect that is theoretically expected normal to the substrate. This work highlighted the influence that the bottom electrode architecture exerts on the final crystalline orientation of the deposited thin films. A number of bottom electrode architectures were used, with the uppermost metal layer on which PSZT was deposited being gold or platinum. The XRD analysis revealed that the unit cell of the PSZT thin films deposited on gold and on platinum were deformed, relative to expected unit cell dimensions. Experimental results have been used to estimate the unit cell parameters. The XRD results were then indexed based on these unit cell parameters. The choice and the thickness of the intermediate adhesion layers influenced the relative intensity, and in some cases, the presence of perovskite peaks. In some cases, undesirable reactions between the bottom electrode layers were observed, and layer architectures to overcome these reactions are also discussed.

  12. Thin-layer effects in glaciological seismic amplitude-versus-angle (AVA analysis: implications for characterising a subglacial till unit, Russell Glacier, West Greenland

    Directory of Open Access Journals (Sweden)

    A. D. Booth

    2012-08-01

    Full Text Available Seismic amplitude-versus-angle (AVA methods are a powerful means of quantifying the physical properties of subglacial material, but serious interpretative errors can arise when AVA is measured over a thinly-layered substrate. A substrate layer with a thickness less than 1/4 of the seismic wavelength, λ, is considered "thin", and reflections from its bounding interfaces superpose and appear in seismic data as a single reflection event. AVA interpretation of subglacial till can be vulnerable to such thin-layer effects, since a lodged (non-deforming till can be overlain by a thin (metre-scale cap of dilatant (deforming till. We assess the potential for misinterpretation by simulating seismic data for a stratified subglacial till unit, with an upper dilatant layer between 0.1–5.0 m thick (λ / 120 to > λ / 4, with λ = 12 m. For dilatant layers less than λ / 6 thick, conventional AVA analysis yields acoustic impedance and Poisson's ratio that indicate contradictory water saturation. A thin-layer interpretation strategy is proposed, that accurately characterises the model properties of the till unit. The method is applied to example seismic AVA data from Russell Glacier, West Greenland, in which characteristics of thin-layer responses are evident. A subglacial till deposit is interpreted, having lodged till (acoustic impedance = 4.26±0.59 × 106 kg m−2 s−1 underlying a water-saturated dilatant till layer (thickness < 2 m, Poisson's ratio ~ 0.5. Since thin-layer considerations offer a greater degree of complexity in an AVA interpretation, and potentially avoid misinterpretations, they are a valuable aspect of quantitative seismic analysis, particularly for characterising till units.

  13. Pulsed Laser Deposition of Tungsten Thin Films on Graphite

    International Nuclear Information System (INIS)

    Kassem, W.; Tabbal, M.; Roumie, M.

    2011-01-01

    Thin coatings of Tungsten were deposited on substrates fabricated by pre-depositing graphite thin layers on Si(100) wafers. We ablate pure W target using a 20 ns KrF excimer laser (248 nm) in an Ar ambient. The effect of background gas pressure, substrate temperature, and laser fluence, on the properties of the deposited W layers is studied using several techniques including X-Ray Diffraction, Atomic Force Microscopy, surface profilometry, and Rutherford Back-Scattering spectrometry. Our results indicate that the deposited layers consist of the well-crystallized body-centered-cubic α-W phase with bulk-like properties, particularly for films deposited at a substrate temperature of 450 0 C, laser fluence greater than 400mJ, and pressure of about 10mTorr. (author)

  14. Use of the water-soluble fluor sodium salicylate for fluorographic detection of tritium in thin-layer chromatograms and nitrocellulose blots

    International Nuclear Information System (INIS)

    Lucher, L.A.; Lego, T.

    1989-01-01

    We have determined that sodium salicylate, a water-soluble fluor which we use routinely for fluorography with polyacrylamide gels, is also useful for fluorography with thin-layer media. Detection of 3 H-labeled material applied to thin-layer chromatography plates, or nitrocellulose membranes, can be enhanced up to 150-fold after treatment with an aqueous solution of 2 M sodium salicylate, while detection of 35 S-labeled material is enhanced only about 2-fold. We demonstrate the utility of sodium salicylate fluorography in detecting 3H-labeled palmitic acid following thin-layer chromatography and 3 H-labeled proteins following blotting to nitrocellulose

  15. Foliar trichomes, boundary layers, and gas exchange in 12 species of epiphytic Tillandsia (Bromeliaceae).

    Science.gov (United States)

    Benz, Brett W; Martin, Craig E

    2006-04-01

    We examined the relationships between H2O and CO2 gas exchange parameters and leaf trichome cover in 12 species of Tillandsia that exhibit a wide range in trichome size and trichome cover. Previous investigations have hypothesized that trichomes function to enhance boundary layers around Tillandsioid leaves thereby buffering the evaporative demand of the atmosphere and retarding transpirational water loss. Data presented herein suggest that trichome-enhanced boundary layers have negligible effects on Tillandsia gas exchange, as indicated by the lack of statistically significant relationships in regression analyses of gas exchange parameters and trichome cover. We calculated trichome and leaf boundary layer components, and their associated effects on H2O and CO2 gas exchange. The results further indicate trichome-enhanced boundary layers do not significantly reduce transpirational water loss. We conclude that although the trichomes undoubtedly increase the thickness of the boundary layer, the increase due to Tillandsioid trichomes is inconsequential in terms of whole leaf boundary layers, and any associated reduction in transpirational water loss is also negligible within the whole plant gas exchange pathway.

  16. Characterizing the structural degradation in a PEMFC cathode catalyst layer : carbon corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Young, A.; Stumper, J. [Ballard Power Systems, Burnaby, BC (Canada); Gyenge, E. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering

    2009-07-01

    The structural degradation resulting from carbon corrosion of a cathode catalyst layer in a polymer electrolyte membrane fuel cell (PEMFC) was investigated in this study. In order to oxidize the catalyst carbon support, the PEMFC catalyst layer was subjected to a 30 hour accelerated stress test that cycled the cathode potential from 0.1 to 1.5 VRHE at 30 and 150 second intervals. The rate and amount of carbon loss was determined by measuring the carbon dioxide in the exhaust gas. The structural degradation of the catalyst layer was characterized and correlated to the PEMFC performance using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and polarization analyses. This analysis revealed a clear thinning of the cathode catalyst layer and gas diffusion layer carbon sub-layer, and a reduction in the effective platinum surface area due to the carbon support oxidation. The thinned cathode catalyst layer changed the water management, and increased the voltage loss associated with the oxygen mass transport and catalyst layer ohmic resistance. In order to further develop and verify this methodology for other degradation mechanisms, emphasis was placed on EIS measurements.

  17. Influence of Magnetron Effect on Barium Hexaferrite Thin Layers

    International Nuclear Information System (INIS)

    Hassane, H.; Chatelon, J.P.; Rousseau, J.J; Siblini, A.; Kriga, A.

    2011-01-01

    In this paper, we study the effects of a magnet, located in the cathode, on barium hexaferrite thin films deposited by RF magnetron sputtering technique. During the process, these effects can modify thickness, roughness and stress of coatings. The characteristics of the deposited layers depend on the substrate position that is located opposite of magnetron cathode. In the m agnetron area , one can observe that the high stress can produce cracks or detachment of layers and the increasing of both depositing rate and surface roughness. After sputtering elaboration, barium hexaferrite films are in a compressive stress mode. But, after the post-deposition heat treatment these films are in a tensile stress mode. To improve the quality of BaM films, the subsrtate has to be set outside the magnetron area. (author)

  18. Effect of atmospheric-pressure plasma treatment on the adhesion properties of a thin adhesive layer in a selective transfer process

    Science.gov (United States)

    Yoon, Min-Ah; Kim, Chan; Hur, Min; Kang, Woo Seok; Kim, Jaegu; Kim, Jae-Hyun; Lee, Hak-Joo; Kim, Kwang-Seop

    2018-01-01

    The adhesion between a stamp and thin film devices is crucial for their transfer on a flexible substrate. In this paper, a thin adhesive silicone layer on the stamp was treated by atmospheric pressure plasma to locally control the adhesion strength for the selective transfer. The adhesion strength of the silicone layer was significantly reduced after the plasma treatment, while its surface energy was increased. To understand the inconsistency between the adhesion strength and surface energy changes, the surface properties of the silicone layer were characterized using nanoindentation and X-ray photoelectron spectroscopy. These techniques revealed that a thin, hard, silica-like layer had formed on the surface from plasma-enhanced oxidation. This layer played an important role in decreasing the contact area and increasing the interfacial slippage, resulting in decreased adhesion. As a practical application, the transfer process was demonstrated on GaN LEDs that had been previously delaminated by a laser lift-off (LLO) process. Although the LEDs were not transferred onto the treated adhesive layer due to the reduced adhesion, the untreated adhesive layer could readily pick up the LEDs. It is expected that this simple method of controlling the adhesion of a stamp with a thin adhesive layer would enable a continuous, selective and large-scale roll-to-roll selective transfer process and thereby advance the development of flexible, stretchable and wearable electronics.

  19. Selectivity of the gas sensor based on the 50%In2O3-50%Ga2O3 thin film in dynamic mode of operation

    Science.gov (United States)

    Demin, I. E.; Kozlov, A. G.

    2018-01-01

    The article considers the gas sensor with the sensitive layer based on the 50%In2O3 -50%Ga2O3 thin film. The temperature and concentration dependencies of gas-induced resistance response of this sensor and the dynamical dependencies of its resistance response on the test gases in air are investigated. The test gases were ethanol, acetone, ammonia and liquefied petroleum gas. The information parameters of the sensor in the dynamical mode of operation were considered to improve its selectivity. The presented results show that the selectivity of the sensor in this mode may be improved by using the following information parameters: gas-induced resistance response in steady state, activation energy of the response and pre-exponential factor of the temperature dependence of the response time constant.

  20. Analysis of influence of buffer layers on microwave propagation through high-temperature superconducting thin films

    International Nuclear Information System (INIS)

    Ceremuga, J.; Barton, M.; Miranda, F.

    1994-01-01

    Methods of analysis of microwave propagation through superconducting thin films with buffer layers on dielectric substrates have been discussed. Expressions describing the transmission coefficient S 21 through the structure and the complex conductivity sigma of a superconductor in an analytical form have been derived. The derived equations are valid for microwave propagation in waveguides as well as in free space with relevant definition of impedances. Using the obtained solutions, the influences of buffer layers' parameters (thickness, relative permittivity and loss tangent) on the transmission coefficient has been investigated using MATLAB. Simulations have been performed for 10 GHz transmission through YBa 2 Cu 3 O 7 films on sapphire with SrTiO 3 and CeO 2 buffer layers and on silicon with CaF 2 and YSZ buffer layers. To illustrate the simulations, measurements of the transmission through YBCO film on sapphire with SrTiO 3 buffer layer have been performed. It has been shown that even lossy buffer layers have very little impact (smaller than 1% in magnitude and 0.3% in phase) on the transmission coefficient through superconducting thin films, providing their thickness is below 10 mu m. (author)

  1. Feasibility study of using thin aluminum nitride film as a buffer layer for dual metal gate process

    International Nuclear Information System (INIS)

    Park, Chang Seo; Cho, Byung Jin; Balasubramanian, N.; Kwong, Dim-Lee

    2004-01-01

    We evaluated the feasibility of using an ultra thin aluminum nitride (AlN) buffer layer for dual metal gates CMOS process. Since the buffer layer should not affect the thickness of gate dielectric, it should be removed or consumed during subsequent process. In this work, it was shown that a thin AlN dielectric layer would be reacted with initial gate metals and would be consumed during subsequent annealing, resulting in no increase of equivalent oxide thickness (EOT). The reaction of AlN layer with tantalum (Ta) and hafnium (Hf) during subsequent annealing, which was confirmed with X-ray photoelectron spectroscopy (XPS) analysis, shifted the flat-band voltage of AlN buffered MOS capacitors. No contribution to equivalent oxide thickness (EOT) was also an indication showing the full consumption of AIN, which was confirmed with TEM analysis. The work functions of gate metals were modulated through the reaction, suggesting that the consumption of AlN resulted in new thin metal alloys. Finally, it was found that the barrier heights of the new alloys were consistent with their work functions

  2. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure

    KAUST Repository

    Tiraferri, Alberto

    2011-02-01

    Osmotically driven membrane processes have the potential to treat impaired water sources, desalinate sea/brackish waters, and sustainably produce energy. The development of a membrane tailored for these processes is essential to advance the technology to the point that it is commercially viable. Here, a systematic investigation of the influence of thin-film composite membrane support layer structure on forward osmosis performance is conducted. The membranes consist of a selective polyamide active layer formed by interfacial polymerization on top of a polysulfone support layer fabricated by phase separation. By systematically varying the conditions used during the casting of the polysulfone layer, an array of support layers with differing structures was produced. The role that solvent quality, dope polymer concentration, fabric layer wetting, and casting blade gate height play in the support layer structure formation was investigated. Using a 1M NaCl draw solution and a deionized water feed, water fluxes ranging from 4 to 25Lm-2h-1 with consistently high salt rejection (>95.5%) were produced. The relationship between membrane structure and performance was analyzed. This study confirms the hypothesis that the optimal forward osmosis membrane consists of a mixed-structure support layer, where a thin sponge-like layer sits on top of highly porous macrovoids. Both the active layer transport properties and the support layer structural characteristics need to be optimized in order to fabricate a high performance forward osmosis membrane. © 2010 Elsevier B.V.

  3. Enhancing the performance of organic thin-film transistors using an organic-doped inorganic buffer layer

    Energy Technology Data Exchange (ETDEWEB)

    Su, Shui-Hsiang, E-mail: shsu@isu.edu.tw; Wu, Chung-Ming; Kung, Shu-Yi; Yokoyama, Meiso

    2013-06-01

    Organic thin-film transistors (OTFTs) with various buffer layers between the active layer and source/drain electrodes were investigated. The structure was polyethylene terephthalate/indium-tin oxide/poly(methyl methacrylate) (PMMA)/pentacene/buffer layer/Au (source/drain). V{sub 2}O{sub 5}, 4,4′,4″-tris{N,(3-methylpheny)-N-phenylamino}-triphenylamine (m-MTDATA) and m-MTDATA-doped V{sub 2}O{sub 5} films were utilized as buffer layers. The electrical performances of OTFTs in terms of drain current, threshold voltage, mobility and on/off current ratio have been determined. As a result, the saturation current of − 40 μA is achieved in OTFTs with a 10% m-MTDATA-doped V{sub 2}O{sub 5} buffer layer at a V{sub GS} of − 60 V. The on/off current ratio reaches 2 × 10{sup 5}, which is approximately double of the device without a buffer layer. The energy band diagrams of the electrode/buffer layer/pentacene were measured using ultra-violet photoelectron spectroscopy. The improvement in electrical characteristics of the OTFTs is attributable to the weakening of the interface dipole and the lowering of the barrier to enhance holes transportation from the source electrode to the active layer. - Highlights: • A buffer layer enhances the performance of organic thin-film transistors (OTFTs). • The buffer layer consists of organic-doped inorganic material. • Interface dipole is weakened at the active layer/electrodes interface of OTFTs.

  4. Atomic layer deposition of absorbing thin films on nanostructured electrodes for short-wavelength infrared photosensing

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Jixian; Sutherland, Brandon R.; Hoogland, Sjoerd; Fan, Fengjia; Sargent, Edward H., E-mail: ted.sargent@utoronto.ca [Department of Electrical and Computer Engineering, University of Toronto, 10 King' s College Road, Toronto, Ontario M5S 3G4 (Canada); Kinge, Sachin [Advanced Technology, Materials and Research, Research and Development, Hoge Wei 33- Toyota Technical Centre, B-1930 Zaventem (Belgium)

    2015-10-12

    Atomic layer deposition (ALD), prized for its high-quality thin-film formation in the absence of high temperature or high vacuum, has become an industry standard for the large-area deposition of a wide array of oxide materials. Recently, it has shown promise in the formation of nanocrystalline sulfide films. Here, we demonstrate the viability of ALD lead sulfide for photodetection. Leveraging the conformal capabilities of ALD, we enhance the absorption without compromising the extraction efficiency in the absorbing layer by utilizing a ZnO nanowire electrode. The nanowires are first coated with a thin shunt-preventing TiO{sub 2} layer, followed by an infrared-active ALD PbS layer for photosensing. The ALD PbS photodetector exhibits a peak responsivity of 10{sup −2} A W{sup −1} and a shot-derived specific detectivity of 3 × 10{sup 9} Jones at 1530 nm wavelength.

  5. Thin Layer Chromatography-Bioautography and Gas Chromatography-Mass Spectrometry of Antimicrobial Leaf Extracts from Philippine Piper betle L. against Multidrug-Resistant Bacteria

    Directory of Open Access Journals (Sweden)

    Demetrio L. Valle

    2016-01-01

    Full Text Available This study isolated and identified the antimicrobial compounds of Philippine Piper betle L. leaf ethanol extracts by thin layer chromatography- (TLC- bioautography and gas chromatography-mass spectrometry (GC-MS. Initially, TLC separation of the leaf ethanol extracts provided a maximum of eight compounds with Rf values of 0.92, 0.86, 0.76, 0.53, 0.40, 0.25, 0.13, and 0.013, best visualized when inspected under UV 366 nm. Agar-overlay bioautography of the isolated compounds demonstrated two spots with Rf values of 0.86 and 0.13 showing inhibitory activities against two Gram-positive multidrug-resistant (MDR bacteria, namely, methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. The compound with an Rf value of 0.86 also possessed inhibitory activity against Gram-negative MDR bacteria, namely, carbapenem-resistant Enterobacteriaceae-Klebsiella pneumoniae and metallo-β-lactamase-producing Acinetobacter baumannii. GC-MS was performed to identify the semivolatile and volatile compounds present in the leaf ethanol extracts. Six compounds were identified, four of which are new compounds that have not been mentioned in the medical literature. The chemical compounds isolated include ethyl diazoacetate, tris(trifluoromethylphosphine, heptafluorobutyrate, 3-fluoro-2-propynenitrite, 4-(2-propenylphenol, and eugenol. The results of this study could lead to the development of novel therapeutic agents capable of dealing with specific diseases that either have weakened reaction or are currently not responsive to existing drugs.

  6. Thin Layer Chromatography-Bioautography and Gas Chromatography-Mass Spectrometry of Antimicrobial Leaf Extracts from Philippine Piper betle L. against Multidrug-Resistant Bacteria.

    Science.gov (United States)

    Valle, Demetrio L; Puzon, Juliana Janet M; Cabrera, Esperanza C; Rivera, Windell L

    2016-01-01

    This study isolated and identified the antimicrobial compounds of Philippine Piper betle L. leaf ethanol extracts by thin layer chromatography- (TLC-) bioautography and gas chromatography-mass spectrometry (GC-MS). Initially, TLC separation of the leaf ethanol extracts provided a maximum of eight compounds with R f values of 0.92, 0.86, 0.76, 0.53, 0.40, 0.25, 0.13, and 0.013, best visualized when inspected under UV 366 nm. Agar-overlay bioautography of the isolated compounds demonstrated two spots with R f values of 0.86 and 0.13 showing inhibitory activities against two Gram-positive multidrug-resistant (MDR) bacteria, namely, methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococcus. The compound with an R f value of 0.86 also possessed inhibitory activity against Gram-negative MDR bacteria, namely, carbapenem-resistant Enterobacteriaceae-Klebsiella pneumoniae and metallo-β-lactamase-producing Acinetobacter baumannii. GC-MS was performed to identify the semivolatile and volatile compounds present in the leaf ethanol extracts. Six compounds were identified, four of which are new compounds that have not been mentioned in the medical literature. The chemical compounds isolated include ethyl diazoacetate, tris(trifluoromethyl)phosphine, heptafluorobutyrate, 3-fluoro-2-propynenitrite, 4-(2-propenyl)phenol, and eugenol. The results of this study could lead to the development of novel therapeutic agents capable of dealing with specific diseases that either have weakened reaction or are currently not responsive to existing drugs.

  7. Ni-YSZ cermet substrate supported thin SDC and YSZ+SDC bi-layer SOFCs

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.; Robertson, M.; Deces-Petit, C.; Xie, Y.; Hui, R.; Yick, S.; Styles, E.; Roller, J.; Kesler, O.; Qu, W.; Jankovic, J.; Tang, Z.; Perednis, D.; Maric, R.; Ghosh, D. [National Research Council of Canada, Vancouver, BC (Canada). Inst. for Fuel Cell Innovation

    2005-07-01

    One of the disadvantages of a ceria-based electrolyte is that it becomes a mixed conductor at anode conditions, which causes cell voltage loss and fuel efficiency loss due to internal shorting. Chemical and mechanical stability is another concern for long-term service. To lower manufacturing costs, efforts have been made to bring proven semiconductor manufacturing technology to Solid Oxide Fuel Cells (SOFCs). This study employed Tape casting of cermet substrates, Screen-printing of functional layers and Co-firing of cell components (TSC) to fabricate nickel (Ni)-cermet supported cells with mainly ceria-based thin electrolytes. Ni-Yttria-Stabilized Zirconia (YSZ) cermet supported cell with Samaria Doped Ceria (SDC) single layer electrolytes and YSZ+SDC bi-layer electrolytes were successfully developed for low-temperature performance characterization. The elemental distribution at the cell interface was mapped and the electrochemical performance of the cells was recorded. Many high-Zr-content micro-islands were found on the thin SDC surface. The influence of co-firing temperature and thin-film preparation methods on the Zr-islands' appearance was also investigated. Using in-situ sintered cathodes, high performance of the SDC cells was obtained. It was concluded that the bi-layer cells did show higher Open Circuit Voltage (OCV) values, with 1180 mW/cm{sup 2} at 650 degrees C, as well as good performance at 700-800 degrees C, with near OCV value. However, their performance was much lower than those of the SDC cells at low operating temperature. Zr-micro-islands formation on the SDC electrolyte was observed and investigated. 6 refs., 5 tabs., 7 figs.

  8. Acetylene Gas-Sensing Properties of Layer-by-Layer Self-Assembled Ag-Decorated Tin Dioxide/Graphene Nanocomposite Film

    OpenAIRE

    Jiang, Chuanxing; Zhang, Dongzhi; Yin, Nailiang; Yao, Yao; Shaymurat, Talgar; Zhou, Xiaoyan

    2017-01-01

    This paper demonstrates an acetylene gas sensor based on an Ag-decorated tin dioxide/reduced graphene oxide (Ag–SnO2/rGO) nanocomposite film, prepared by layer-by-layer (LbL) self-assembly technology. The as-prepared Ag–SnO2/rGO nanocomposite was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectrum. The acetylene sensing properties were investigated using different working temperatures and gas concentrations. A...

  9. Mixing process of a binary gas in a density stratified layer

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Tetsuaki [Japan Atomic Energy Research Inst., Oarai, Ibaraki (Japan). Oarai Research Establishment

    1997-09-01

    This study is to investigate the effect of natural convection on the mixing process by molecular diffusion in a vertical stratified layer of a binary fluid. There are many experimental and analytical studies on natural convection in the vertical fluid layer. However, there are few studies on natural convection with molecular diffusion in the vertical stratified layer of a binary gas. Experimental study has been performed on the combined phenomena of molecular diffusion and natural convection in a binary gas system to investigate the mixing process of the binary gas in a vertical slot consisting of one side heated and the other side cooled. The range of Rayleigh number based on the slot width was about 0 < Ra{sub d} < 7.5 x 10{sup 4}. The density change of the gas mixture and the temperature distribution in the slot was obtained and the mixing process when the heavier gas ingress into the vertical slot filled with the lighter gas from the bottom side of the slot was discussed. The experimental results showed that the mixing process due to molecular diffusion was affected significantly by the natural convection induced by the slightly temperature difference between both vertical walls even if a density difference by the binary gas is larger than that by the temperature difference. (author). 81 refs.

  10. Rosenzweig instability in a thin layer of a magnetic fluid

    Science.gov (United States)

    Korovin, V. M.

    2013-12-01

    A simple mathematical model of the initial stage of nonlinear evolution of the Rosenzweig instability in a thin layer of a nonlinearly magnetized viscous ferrofluid coating a horizontal nonmagnetizable plate is constructed on the basis of the system of equations and boundary conditions of ferrofluid dynamics. A dispersion relation is derived and analyzed using the linearized equations of this model. The critical magnetization of the initial layer with a flat free surface, the threshold wavenumber, and the characteristic time of evolution of the most rapidly growing mode are determined. The equation for the neutral stability curve, which is applicable for any physically admissible law of magnetization of a ferrofluid, is derived analytically.

  11. Convection flow study within a horizontal fluid layer under the action of gas flow

    Directory of Open Access Journals (Sweden)

    Kreta Aleksei

    2016-01-01

    Full Text Available Experimental investigation of convective processes within horizontal evaporating liquid layer under shear–stress of gas flow is presented. It is found the structures of the convection, which move in opposite direction relative to each other. First convective structure moves in reverse direction with the flow of gas, and the second convective structure moves towards the gas flow. Convection flow within the liquid layer is registered with help of PIV technique. Average evaporation flow rate of Ethanol liquid layer under Air gas flow is measured. Influence of the gas velocity, at a constant temperature of 20 °C, on the evaporation flow rate has been studied.

  12. Interaction between cholesterol and non-ionic surfactants studied by thin-layer chromatography

    Czech Academy of Sciences Publication Activity Database

    Forgács, E.; Cserháti, T.; Farkas, O.; Eckhardt, Adam; Mikšík, Ivan; Deyl, Zdeněk

    2004-01-01

    Roč. 27, č. 13 (2004), s. 1981-1992 ISSN 1082-6076 Grant - others:CZ-HU(CZ) Cooperation program Institutional research plan: CEZ:AV0Z5011922 Keywords : cholesterol * non-ionic surfactant * thin - layer chromatography Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 0.836, year: 2004

  13. Thin-Layer Chromatography/Desorption Atmospheric Pressure Photoionization Orbitrap Mass Spectrometry of Lipids

    Czech Academy of Sciences Publication Activity Database

    Rejšek, Jan; Vrkoslav, Vladimír; Vaikkinen, A.; Haapala, M.; Kauppila, T. J.; Kostiainen, R.; Cvačka, Josef

    2016-01-01

    Roč. 88, č. 24 (2016), s. 12279-12286 ISSN 0003-2700 R&D Projects: GA ČR GAP206/12/0750 Institutional support: RVO:61388963 Keywords : desorption atmospheric pressure photoionization * thin-layer chromatography * lipids Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 6.320, year: 2016

  14. Effect of Annealing on Tungsten Oxide Thin Films for Acetone Gas ...

    Indian Academy of Sciences (India)

    11

    Abstract: The gas sensing properties and topology of tungsten oxide thin films ..... Figure 3: Atomic force microscopy images of sensing film for (a) as-deposited (a) .... the surface, it forms compounds with the oxygen ions species present on the ...

  15. Layer-by-layer assembled biopolymer microcapsule with separate layer cavities generated by gas-liquid microfluidic approach.

    Science.gov (United States)

    Wang, Yifeng; Zhou, Jing; Guo, Xuecheng; Hu, Qian; Qin, Chaoran; Liu, Hui; Dong, Meng; Chen, Yanjun

    2017-12-01

    In this work, a layer-by-layer (LbL) assembled biopolymer microcapsule with separate layer cavities is generated by a novel and convenient gas-liquid microfluidic approach. This approach exhibits combined advantages of microfluidic approach and LbL assembly method, and it can straightforwardly build LbL-assembled capsules in mild aqueous environments at room temperature. In particular, using this approach we can build the polyelectrolyte multilayer capsule with favorable cavities in each layer, and without the need for organic solvent, emulsifying agent, or sacrificial template. Various components (e.g., drugs, proteins, fluorescent dyes, and nanoparticles) can be respectively encapsulated in the separate layer cavities of the LbL-assembled capsules. Moreover, the encapsulated capsules present the ability as colorimetric sensors, and they also exhibit the interesting release behavior. Therefore, the LbL-assembled biopolymer capsule is a promising candidate for biomedical applications in targeted delivery, controlled release, and bio-detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Deposition of yttrium oxysulfide thin films by atomic layer epitaxy

    International Nuclear Information System (INIS)

    Kukli, K.; University of Tartu, Tartu,; Johansson, L-S.; Nykaenen, E.; Peussa, M.; Ninistoe, L.

    1998-01-01

    Full text: Yttrium oxysulfide is a highly interesting material for optoelectronic applications. It is industrially exploited in the form of doped powder in catholuminescent phosphors, e.g. Y 2 O 2 S: Eu 3+ for colour TV. Attempts to grow thin films of Y 2 O 2 S have not been frequent and only partially successful due to the difficulties in obtaining crystalline films at a reasonable temperature. Furthermore, sputtering easily leads to a sulphur deficiency. Evaporation of the elements from a multi-source offers a better control of the stoichiometry resulting in hexagonal (0002) oriented films at 580 deg C. In this paper we present the first successful thin film growth experiments using a chemical process with molecular precursors. Atomic layer epitaxy (ALE) allows the use of a relatively low deposition temperature and thus compatibility with other technologies. Already at 425 deg C the reaction between H 2 S and Y(thd) 3 (thd = 2,2,6,6 - tetramethyl-heptane-3,5- dione) yields a crystalline Y 2 O 2 S thin film which was characterized by XRD, XRF and XPS

  17. Properties of nanostructured undoped ZrO{sub 2} thin film electrolytes by plasma enhanced atomic layer deposition for thin film solid oxide fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Gu Young; Noh, Seungtak; Lee, Yoon Ho; Cha, Suk Won, E-mail: ybkim@hanyang.ac.kr, E-mail: swcha@snu.ac.kr [Department of Mechanical and Aerospace Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Ji, Sanghoon [Graduate School of Convergence Science and Technology, Seoul National University, Iui-dong, Yeongtong-gu, Suwon 443-270 (Korea, Republic of); Hong, Soon Wook; Koo, Bongjun; Kim, Young-Beom, E-mail: ybkim@hanyang.ac.kr, E-mail: swcha@snu.ac.kr [Department of Mechanical Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 133-791 (Korea, Republic of); An, Jihwan [Manufacturing Systems and Design Engineering Programme, Seoul National University of Science and Technology, 232 Gongneung-ro, Nowon-gu, Seoul 139-743 (Korea, Republic of)

    2016-01-15

    Nanostructured ZrO{sub 2} thin films were prepared by thermal atomic layer deposition (ALD) and by plasma-enhanced atomic layer deposition (PEALD). The effects of the deposition conditions of temperature, reactant, plasma power, and duration upon the physical and chemical properties of ZrO{sub 2} films were investigated. The ZrO{sub 2} films by PEALD were polycrystalline and had low contamination, rough surfaces, and relatively large grains. Increasing the plasma power and duration led to a clear polycrystalline structure with relatively large grains due to the additional energy imparted by the plasma. After characterization, the films were incorporated as electrolytes in thin film solid oxide fuel cells, and the performance was measured at 500 °C. Despite similar structure and cathode morphology of the cells studied, the thin film solid oxide fuel cell with the ZrO{sub 2} thin film electrolyte by the thermal ALD at 250 °C exhibited the highest power density (38 mW/cm{sup 2}) because of the lowest average grain size at cathode/electrolyte interface.

  18. Study of wear in piston ring of the vehicle engine using thin layer activation technique

    International Nuclear Information System (INIS)

    Khan, I.H.; Farooq, M.; Ghiyas-ud-Din; Gul, S.; Qureshi, R.M.; Jin Joon Ha; Wallace, G.

    2004-01-01

    Thin Layer Activation (TLA) technique was used to investigate piston ring wear of a six cylinders vehicle engine at various engine speeds and load conditions. The activated ring was installed in cylinder no.5 of the engine at middle position (compression ring). Monitoring was carried out on-line (extremely on the engine block) using 'Thin Layer Difference Method'. The calibration curve of the activity profile was prepared with the help of activation parameters determined at the time of ring activation in particle accelerator. The results show that the piston ring wear varies from 0.309 micron/hour to 0.404 micron/hour at given engine speed and load conditions. (author)

  19. Thin plasma-polymerized layers of hexamethyldisiloxane for humidity sensor development

    International Nuclear Information System (INIS)

    Guermat, N.; Bellel, A.; Sahli, S.; Segui, Y.; Raynaud, P.

    2009-01-01

    The response of resistive-type sensors based on thin hexamethyldisiloxane layers to relative humidity (RH) was evaluated. Humidity sensitive layers were plasma polymerized at low frequency glow discharge using a capacitively coupled parallel plate reactor. The sensor design comprises the absorbing layer deposited on clean glass substrate with comb-shape aluminum electrodes (interdigitated structure). The change in electrical impedance of the sensing film was monitored as the device was exposed to humidity. The variation of the plasma-polymerization parameters resulted in different humidity sensing properties which could be correlated to the results of Fourier transform infrared spectroscopy (FTIR). The deposited films exhibited a detectable response to RH ranging from 30 to 95% with low hysteresis, good reproducibility and stability in long-term use. Films with a greater thickness showed a significant decrease in the humidity sensing capability. FTIR analysis revealed the presence of SiH bonding groups, which are frequently linked to the film density. The increase in the plasma discharge power induced also a significant decrease in the diffusion process of water vapor inside the sensitive layer bulk.

  20. Phytochemical analysis of ethanolic extract of Dichrostachys Cinerea W and Arn leaves by a thin layer chromatography, high performance thin layer chromatography and column chromatography

    OpenAIRE

    M Vijayalakshmi; K Periyanayagam; K Kavitha; K Akilandeshwari

    2013-01-01

    Background: The leaves of Dichrostachys cinerea are used as laxative, diuretic, painkiller. It is also used in the treatment of gonorrhoea, boils, oedema, gout, veneral diseases and nasopharyngeal affections, etc. Materials and Methods: The Phytochemical investigation of ethanolic extract of D. cinerea leaves were performed by standard chemical tests, thin layer chromatography (TLC) by using various solvent systems, and by high performance liquid chromatography (HPTLC). Two compounds were...

  1. Synthesis of ZnO thin film by sol-gel spin coating technique for H2S gas sensing application

    Science.gov (United States)

    Nimbalkar, Amol R.; Patil, Maruti G.

    2017-12-01

    In this present work, zinc oxide (ZnO) thin film synthesized by a simple sol-gel spin coating technique. The structural, morphology, compositional, microstructural, optical, electrical and gas sensing properties of the film were studied by using XRD, FESEM, EDS, XPS, HRTEM, Raman, FTIR and UV-vis techniques. The ZnO thin film shows hexagonal wurtzite structure with a porous structured morphology. Gas sensing performance of synthesized ZnO thin film was tested initially for H2S gas at different operating temperatures as well as concentrations. The maximum gas response is achieved towards H2S gas at 300 °C operating temperature, at 100 ppm gas concentration as compared to other gases like CH3OH, Cl2, NH3, LPG, CH3COCH3, and C2H5OH with a good stability.

  2. Significant questions in thin liquid film heat transfer

    International Nuclear Information System (INIS)

    Bankoff, S.G.

    1994-01-01

    Thin liquid films appear in many contexts, such as the cooling of gas turbine blade tips, rocket engines, microelectronics arrays, and hot fuel element surfaces in hypothetical nuclear reactor accidents. Apart from these direct cooling applications of thin liquid layers, thin films form a crucial element in determining the allowable heat flux limits in boiling. This is because the last stages of dryout almost invariably involve the rupture of a residual liquid film, either as a microlayer underneath the bubbles, or a thin annular layer in a high-quality burnout scenario. The destabilization of these thin films under the combined actions of shear stress, evaporation, and thermocapillary effects is quite complex. The later stages of actual rupture to form dry regions, which then expand, resulting in possible overheating, are even more complex and less well understood. However, significant progress has been made in understanding the behavior of these thin films, which are subject to competing instabilities prior to actual rupture. This will be reviewed briefly. Recent work on the advance, or recession, of contact lines will also be described briefly, and significant questions that still remain to be answered will be discussed. 68 refs., 7 figs

  3. A Simple Thin Layer Chromatography Method for Separation of Selected Natural Steroid Hormones

    International Nuclear Information System (INIS)

    Nowakowska, J.; Rudnicka-Litka, K.; Ciura, K.; Pikul, P.; Piotrowicz, J.

    2015-01-01

    Chromatographic properties of seven steroids: estrogens (β-estradiol and estrone), androgens (testosterone, methyltestosterone, trans-androsterone), progesterone and cholesterol have been studied by planar chromatography with usage of High Performance Thin Layer Chromatography (HPTLC) and Thin Layer Chromatography (TLC) plates. Normal, reversed and cyano-bonded silica stationary phases were tested with five binary mobile phases (acetonitrile-water, acetonitrile-DMSO, acetonitrile-methanol, acetone-petroleum ether, acetone-water) in which the concentration of organic modifier varied from 0 to 100 % (v/v). This study reports the optimization of steroid hormones separation. Principal Component Analysis (PCA) based on calculated molecular descriptors quantitatively differentiating solutes was performed in order to investigate the similarity and dissimilarity between tested compounds. The separation abilities of mobile and stationary phases were compared based on separation factor α. Chromatographic retention data and possible retention mechanisms also were discussed. (author)

  4. Fatigue-resistant epitaxial Pb(Zr,Ti)O3 capacitors on Pt electrode with ultra-thin SrTiO3 template layers

    International Nuclear Information System (INIS)

    Takahara, Seiichi; Morimoto, Akiharu; Kawae, Takeshi; Kumeda, Minoru; Yamada, Satoru; Ohtsubo, Shigeru; Yonezawa, Yasuto

    2008-01-01

    Lead zirconate-titanate Pb(Zr,Ti)O 3 (PZT) capacitors with Pt bottom electrodes were prepared on MgO substrates by pulsed laser deposition (PLD) technique employing SrTiO 3 (STO) template layer. Perovskite PZT thin films are prepared via stoichiometric target using the ultra-thin STO template layers while it is quite difficult to obtain the perovskite PZT on Pt electrode via stoichiometric target in PLD process. The PZT capacitor prepared with the STO template layer showed good hysteresis and leakage current characteristics, and it showed an excellent fatigue resistance. The ultra-thin STO template layers were characterized by angle-resolved X-ray photoelectron spectroscopy measurement. The effect of the STO template layer is discussed based on the viewpoint of the perovskite nucleation and diffusion of Pb and O atoms

  5. Suppression of photo-bias induced instability for amorphous indium tungsten oxide thin film transistors with bi-layer structure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Po-Tsun, E-mail: ptliu@mail.nctu.edu.tw; Chang, Chih-Hsiang; Chang, Chih-Jui [Department of Photonics and Institute of Electro-Optical Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China)

    2016-06-27

    This study investigates the instability induced by bias temperature illumination stress (NBTIS) for an amorphous indium-tungsten-oxide thin film transistor (a-IWO TFT) with SiO{sub 2} backchannel passivation layer (BPL). It is found that this electrical degradation phenomenon can be attributed to the generation of defect states during the BPL process, which deteriorates the photo-bias stability of a-IWO TFTs. A method proposed by adding an oxygen-rich a-IWO thin film upon the a-IWO active channel layer could effectively suppress the plasma damage to channel layer during BPL deposition process. The bi-layer a-IWO TFT structure with an oxygen-rich back channel exhibits superior electrical reliability of device under NBTIS.

  6. Nanoparticle Thin Films for Gas Sensors Prepared by Matrix Assisted Pulsed Laser Evaporation

    Directory of Open Access Journals (Sweden)

    Roberto Rella

    2009-04-01

    Full Text Available The matrix assisted pulsed laser evaporation (MAPLE technique has been used for the deposition of metal dioxide (TiO2, SnO2 nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al2O3 substrates. A rather uniform distribution of TiO2 nanoparticles with an average size of about 10 nm and of SnO2 nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit towards ethanol and acetone are presented.

  7. Nanoparticle thin films for gas sensors prepared by matrix assisted pulsed laser evaporation.

    Science.gov (United States)

    Caricato, Anna Paola; Luches, Armando; Rella, Roberto

    2009-01-01

    The matrix assisted pulsed laser evaporation (MAPLE) technique has been used for the deposition of metal dioxide (TiO(2), SnO(2)) nanoparticle thin films for gas sensor applications. For this purpose, colloidal metal dioxide nanoparticles were diluted in volatile solvents, the solution was frozen at the liquid nitrogen temperature and irradiated with a pulsed excimer laser. The dioxide nanoparticles were deposited on Si and Al(2)O(3) substrates. A rather uniform distribution of TiO(2) nanoparticles with an average size of about 10 nm and of SnO(2) nanoparticles with an average size of about 3 nm was obtained, as demonstrated by high resolution scanning electron microscopy (SEM-FEG) inspections. Gas-sensing devices based on the resistive transduction mechanism were fabricated by depositing the nanoparticle thin films onto suitable rough alumina substrates equipped with interdigitated electrical contacts and heating elements. Electrical characterization measurements were carried out in controlled environment. The results of the gas-sensing tests towards low concentrations of ethanol and acetone vapors are reported. Typical gas sensor parameters (gas responses, response/recovery time, sensitivity, and low detection limit) towards ethanol and acetone are presented.

  8. Crystallinity and superconductivity of as-grown MgB2 thin films with AlN buffer layers

    International Nuclear Information System (INIS)

    Tsujimoto, K.; Shimakage, H.; Wang, Z.; Kaya, N.

    2005-01-01

    The effects of aluminum nitride (AlN) buffer layers on the superconducting properties of MgB 2 thin film were investigated. The AlN buffer layers and as-grown MgB 2 thin films were deposited in situ using the multiple-target sputtering system. The best depositing condition for the AlN/MgB 2 bi-layer occurred when the AlN was deposited on c-cut sapphire substrates at 290 deg. C. The crystallinity of the AlN/MgB 2 bi-layer was studied using the XRD φ-scan and it showed that AlN and MgB 2 had the same in-plane alignment rotated at an angle of 30 deg. as compared to c-cut sapphire. The critical temperature of the MgB 2 film was 29.8 K and the resistivity was 50.0 μΩ cm at 40 K

  9. Metallic and Ceramic Thin Film Thermocouples for Gas Turbine Engines

    Directory of Open Access Journals (Sweden)

    Otto J. Gregory

    2013-11-01

    Full Text Available Temperatures of hot section components in today’s gas turbine engines reach as high as 1,500 °C, making in situ monitoring of the severe temperature gradients within the engine rather difficult. Therefore, there is a need to develop instrumentation (i.e., thermocouples and strain gauges for these turbine engines that can survive these harsh environments. Refractory metal and ceramic thin film thermocouples are well suited for this task since they have excellent chemical and electrical stability at high temperatures in oxidizing atmospheres, they are compatible with thermal barrier coatings commonly employed in today’s engines, they have greater sensitivity than conventional wire thermocouples, and they are non-invasive to combustion aerodynamics in the engine. Thin film thermocouples based on platinum:palladium and indium oxynitride:indium tin oxynitride as well as their oxide counterparts have been developed for this purpose and have proven to be more stable than conventional type-S and type-K thin film thermocouples. The metallic and ceramic thin film thermocouples described within this paper exhibited remarkable stability and drift rates similar to bulk (wire thermocouples.

  10. Growth of light-emitting SiGe heterostructures on strained silicon-on-insulator substrates with a thin oxide layer

    Energy Technology Data Exchange (ETDEWEB)

    Baidakova, N. A., E-mail: banatale@ipmras.ru [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Bobrov, A. I. [University of Nizhny Novgorod (Russian Federation); Drozdov, M. N.; Novikov, A. V. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation); Pavlov, D. A. [University of Nizhny Novgorod (Russian Federation); Shaleev, M. V.; Yunin, P. A.; Yurasov, D. V.; Krasilnik, Z. F. [Russian Academy of Sciences, Institute for Physics of Microstructures (Russian Federation)

    2015-08-15

    The possibility of using substrates based on “strained silicon on insulator” structures with a thin (25 nm) buried oxide layer for the growth of light-emitting SiGe structures is studied. It is shown that, in contrast to “strained silicon on insulator” substrates with a thick (hundreds of nanometers) oxide layer, the temperature stability of substrates with a thin oxide is much lower. Methods for the chemical and thermal cleaning of the surface of such substrates, which make it possible to both retain the elastic stresses in the thin Si layer on the oxide and provide cleaning of the surface from contaminating impurities, are perfecte. It is demonstrated that it is possible to use the method of molecular-beam epitaxy to grow light-emitting SiGe structures of high crystalline quality on such substrates.

  11. Characterization and Gas Sensing Properties of Copper-doped Tin Oxide Thin Films Deposited by Ultrasonic Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    Zhaoxia ZHAI

    2016-05-01

    Full Text Available Tin oxide-based thin films are deposited by ultrasonic spray pyrolysis technology, in which Cu addition is introduced to enhance the gas sensing performance by H2S detection. The thin films are porous and comprise nano-sized crystallites. One of the Cu-containing thin film sensors demonstrates a fast and significant response to H2S gas. The values of power law exponent n are calculated to discuss the sensitivity of the sensors, which is significantly promoted by Cu additive. The sensitivity of Cu-doped SnO2 gas sensors is determined by two mechanisms. One is the normal gas sensing mechanism of SnO2 grains, and the other is the promoted mechanism caused by the transformation between CuO and CuS in the H2S detection. DOI: http://dx.doi.org/10.5755/j01.ms.22.2.12917

  12. Deposition of thin layer (monoatomic layer) of barium on gold single crystal surfaces and studies of its oxidation employing X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    Ahmad, H.; Ahmad, R.; Khalid, M.; Alvi, R.A.

    2007-01-01

    Due to the high reactivity of barium with oxygen, some oxygen diffuse into the bulk to form bulk oxide and it is very difficult to differentiate the oxide over layer and the bulk oxide. To study the oxidation of barium surface layer, a thin layer (monolayer) of barium is developed over gold single crystal surface. Gold is selected as support because it is one of the least reactive metal in transition metal group and have very low probability of reaction with oxygen at room temperature (300K). Nitrous oxide (N/sub 2/O) was used as oxidant. Thin layer of barium was deposited on Au(100) surface. The barium coverage on gold surface was calculated that varied from 0.4 to 1.4 monolayer (ML). Photoelectron spectra for O(ls), N(ls), Ba (3d), and Au (4f) have been recorded on X-ray photoelectron spectrometer at different binding energy region specific for each element. The decomposition of nitrous oxide has been observed in all cases. It has found that nitrogen is evolved in the gaseous state and oxygen is adsorbed/chemisorbed on barium over layer. (author)

  13. Selectively gas-permeable composite membrane and process for production thereof

    International Nuclear Information System (INIS)

    Okita, K.; Asako, S.

    1984-01-01

    A selectively gas-permeable composite membrane and a process for producing said composite membrane are described. The composite membrane comprises a polymeric material support and a thin membrane deposited on the support, said thin membrane being obtained by glow discharge plasma polymerization of an organosilane compound containing at least one double bond or triple bond. Alternatively, the composite membrane comprises a polymeric material support having an average pore diameter of at least 0.1 micron, a hardened or cross-linked polyorganosiloxane layer on the support, and a thin membrane on the polyorganosiloxane layer, said thin membrane being obtained by plasma polymerization due to glow discharge of an organosilane compound containing at least one double bond or triple bond

  14. Low-temperature atomic layer deposition of MgO thin films on Si

    International Nuclear Information System (INIS)

    Vangelista, S; Mantovan, R; Lamperti, A; Tallarida, G; Kutrzeba-Kotowska, B; Spiga, S; Fanciulli, M

    2013-01-01

    Magnesium oxide (MgO) films have been grown by atomic layer deposition in the wide deposition temperature window of 80–350 °C by using bis(cyclopentadienyl)magnesium and H 2 O precursors. MgO thin films are deposited on both HF-last Si(1 0 0) and SiO 2 /Si substrates at a constant growth rate of ∼0.12 nm cycle −1 . The structural, morphological and chemical properties of the synthesized MgO thin films are investigated by x-ray reflectivity, grazing incidence x-ray diffraction, time-of-flight secondary ion mass spectrometry and atomic force microscopy measurements. MgO layers are characterized by sharp interface with the substrate and limited surface roughness, besides good chemical uniformity and polycrystalline structure for thickness above 7 nm. C–V measurements performed on Al/MgO/Si MOS capacitors, with MgO in the 4.6–11 nm thickness range, allow determining a dielectric constant (κ) ∼ 11. Co layers are grown by chemical vapour deposition in direct contact with MgO without vacuum-break (base pressure 10 −5 –10 −6  Pa). The as-grown Co/MgO stacks show sharp interfaces and no elements interdiffusion among layers. C–V and I–V measurements have been conducted on Co/MgO/Si MOS capacitors. The dielectric properties of MgO are not influenced by the further process of Co deposition. (paper)

  15. Bibliography of paper and thin-layer chromatography 1970-1973 and survey of applications

    International Nuclear Information System (INIS)

    Macek, K.; Hais, I.M.; Kopecky, J.; Schwarz, V.; Gasparic, J.; Churacek, J.

    1976-01-01

    The present volume covers developments in both paper and thin-layer chromatography from 1970 to the middle of 1973 and is a continuation of the previous four volumes, published in 1960, 1962, 1968 and 1972. An author index is given

  16. Charge Transfer Properties Through Graphene Layers in Gas Detectors

    CERN Document Server

    Thuiner, P.; Jackman, R.B.; Müller, H.; Nguyen, T.T.; Oliveri, E.; Pfeiffer, D.; Resnati, F.; Ropelewski, L.; Smith, J.A.; van Stenis, M.; Veenhof, R.

    2016-01-01

    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical, electrical and optical properties. For the first time graphene layers suspended on copper meshes were installed into a gas detector equipped with a gaseous electron multiplier. Measurements of low energy electron and ion transfer through graphene were conducted. In this paper we describe the sample preparation for suspended graphene layers, the testing procedures and we discuss the preliminary results followed by a prospect of further applications.

  17. Modification of thin-layer systems by swift heavy ions

    International Nuclear Information System (INIS)

    Bolse, W.; Schattat, B.; Feyh, A.

    2003-01-01

    The electronic energy loss of swift heavy ions (MeV/amu) within a solid results in a highly excited cylindrical zone of some nm in diameter, within which all atoms may be in motion for some tens of ps (transient local melting). After cooling down, a defect-rich or even amorphous latent track is left in many cases, especially in insulating materials. The resulting property alterations (density, micro-structure, morphology, phase composition, etc.) have been investigated for many bulk materials, while only very few experiments have been carried out with thin-film systems. In the present paper, a summary will be given of our studies on the transport of matter in thin-film packages induced by irradiation with high-energy ions. These is, on the one hand, atomic mixing at the interfaces, which is especially pronounced in ceramic systems and which seems to occur by interdiffusion in the molten ion track. On the other hand, we have discovered a self-organisation phenomenon in swift-heavy-ion-irradiated NiO layers, which at low fluences first showed periodic cracking perpendicular to the projected beam direction. After application of high fluences, the NiO layer was reorganised in 100-nm-thick and 1-μm-high NiO lamellae of the same separation distance (1-3 μm) and orientation as found for the cracks. Both effects can be attributed to transient melting of the material surrounding the ion trajectory. (orig.)

  18. Feasibility of X-ray analysis of multi-layer thin films at a single beam voltage

    International Nuclear Information System (INIS)

    Statham, P J

    2010-01-01

    Multi-layer analysis using electron beam excitation and X-ray spectrometry is a powerful tool for characterising layers down to 1 nm thickness and with typically 1 μm lateral resolution but does not always work. Most published applications have used WDS with many measurements at different beam voltages and considerable experience has been needed to choose lines and voltages particularly for complex multi-layer problems. A new objective mathematical approach is described which demonstrates whether X-ray analysis can obtain reliable results for an arbitrary multi-layer problem. A new algorithm embodied in 'ThinFilmID' software produces a single plot that shows feasibility of achieving results with a single EDS spectrum and suggests the optimal beam voltage. Synthesis of EDS spectra allows the precision in results to be estimated and acquisition conditions modified before wasting valuable instrument time. Thus, practicality of multi-layer thin film analysis at a single beam voltage can now be established without the extensive experimentation that was previously required by a microanalysis expert. Examples are shown where the algorithm discovers viable single-voltage conditions for applications that experts previously thought could only be addressed using measurements at more than one beam voltage.

  19. Complex boron redistribution kinetics in strongly doped polycrystalline-silicon/nitrogen-doped-silicon thin bi-layers

    Energy Technology Data Exchange (ETDEWEB)

    Abadli, S. [Department of Electrical Engineering, University Aout 1955, Skikda, 21000 (Algeria); LEMEAMED, Department of Electronics, University Mentouri, Constantine, 25000 (Algeria); Mansour, F. [LEMEAMED, Department of Electronics, University Mentouri, Constantine, 25000 (Algeria); Pereira, E. Bedel [CNRS-LAAS, 7 avenue du colonel Roche, 31077 Toulouse (France)

    2012-10-15

    We have investigated the complex behaviour of boron (B) redistribution process via silicon thin bi-layers interface. It concerns the instantaneous kinetics of B transfer, trapping, clustering and segregation during the thermal B activation annealing. The used silicon bi-layers have been obtained by low pressure chemical vapor deposition (LPCVD) method at 480 C, by using in-situ nitrogen-doped-silicon (NiDoS) layer and strongly B doped polycrystalline-silicon (P{sup +}) layer. To avoid long-range B redistributions, thermal annealing was carried out at relatively low-temperatures (600 C and 700 C) for various times ranging between 30 min and 2 h. To investigate the experimental secondary ion mass spectroscopy (SIMS) doping profiles, a redistribution model well adapted to the particular structure of two thin layers and to the effects of strong-concentrations has been established. The good adjustment of the simulated profiles with the experimental SIMS profiles allowed a fundamental understanding about the instantaneous physical phenomena giving and disturbing the complex B redistribution profiles-shoulders. The increasing kinetics of the B peak concentration near the bi-layers interface is well reproduced by the established model. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  20. Redox process at solid-liquid interfaces: studies with thin layers of green rusts electrodeposited on inert substrates

    International Nuclear Information System (INIS)

    Peulon, S.; Taghdai, Y.; Mercier, F.; Barre, N.; Legrand, L.; Chauss, A.

    2005-01-01

    Full text of publication follows: The redox reactions which can occur between radioelements and natural phases in the environment are taken still little into account although their importance is established on natural sites; the consequences are significant since they can modify radically the behaviour of the species by increasing or decreasing their migration. The iron compounds are very implicated in these redox processes because iron is one of the most abundant element on earth; moreover, it is also present in the containers used for the storage of the nuclear waste. We exhibited in previous works that electrochemistry is a convenient way to generate the main iron oxidation compounds as thin layers on different inert substrates. The electrochemical behaviour of these deposits that are adherent, homogeneous and well crystallized [1-3], was investigated with the principle advantage that iron metal and its reactivity is eliminate. Moreover, they could be analysed directly by techniques like IRRAS, XRD, SEM, EDS and XPS without any preparation. In the present study, we develop an original way to investigate redox processes at solid-liquid interfaces based on the utilisation of these thin layers; the samples are more commonly powders and/or pieces of corroded steel in the literature. Results obtained with two different systems, chromate and uranyl ions, in interaction with thin layers of sulfated green rusts are presented. Green rusts is chosen because it is a mixed Fe(II-III) compound which could be formed in anoxic conditions like in the case of the storage of the nuclear waste. After various contact times with the solutions containing the reactive species, the thin layers are characterised by different ex-situ methods. The results show clearly the oxidation of the green rust into a Fe(III) compound and the formation of a new solid phase on the electrode due to the reduction and the precipitation of the reactive species present initially in solution. Because thin

  1. Solution-processed In2S3 buffer layer for chalcopyrite thin film solar cells

    OpenAIRE

    Wang Lan; Lin Xianzhong; Ennaoui Ahmed; Wolf Christian; Lux-Steiner Martha Ch.; Klenk Reiner

    2016-01-01

    We report a route to deposit In2S3 thin films from air-stable, low-cost molecular precursor inks for Cd-free buffer layers in chalcopyrite-based thin film solar cells. Different precursor compositions and processing conditions were studied to define a reproducible and robust process. By adjusting the ink properties, this method can be applied in different printing and coating techniques. Here we report on two techniques, namely spin-coating ...

  2. A reversed-phase compatible thin-layer chromatography autography for the detection of acetylcholinesterase inhibitors.

    Science.gov (United States)

    Ramallo, I Ayelen; García, Paula; Furlan, Ricardo L E

    2015-11-01

    A dual readout autographic assay to detect acetylcholinesterase inhibitors present in complex matrices adsorbed on reversed-phase or normal-phase thin-layer chromatography plates is described. Enzyme gel entrapment with an amphiphilic copolymer was used for assay development. The effects of substrate and enzyme concentrations, pH, incubation time, and incubation temperature on the sensitivity and the detection limit of the assay were evaluated. Experimental design and response surface methodology were used to optimize conditions with a minimum number of experiments. The assay allowed the detection of 0.01% w/w of physostigmine in both a spiked Sonchus oleraceus L. extract chromatographed on normal phase and a spiked Pimenta racemosa (Mill.) J.W. Moore leaf essential oil chromatographed on reversed phase. Finally, the reversed-phase thin-layer chromatography assay was applied to reveal the presence of an inhibitor in the Cymbopogon citratus (DC.) Stapf essential oil. The developed assay is able to detect acetylcholinesterase inhibitors present in complex matrixes that were chromatographed in normal phase or reversed-phase thin-layer chromatography. The detection limit for physostigmine on both normal and reversed phase was of 1×10(-4) μg. The results can be read by a change in color and/or a change in fluorescence. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Electronic structure evolution in doping of fullerene (C{sub 60}) by ultra-thin layer molybdenum trioxide

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Chenggong; Wang, Congcong; Kauppi, John [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Liu, Xiaoliang [Institute for Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), Central South University, Changsha, Hunan 410083 (China); Gao, Yongli, E-mail: ygao@pas.rochester.edu [Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (United States); Institute for Super-microstructure and Ultrafast Process in Advanced Materials (ISUPAM), Central South University, Changsha, Hunan 410083 (China)

    2015-08-28

    Ultra-thin layer molybdenum oxide doping of fullerene has been investigated using ultraviolet photoemission spectroscopy (UPS) and X-ray photoemission spectroscopy (XPS). The highest occupied molecular orbital (HOMO) can be observed directly with UPS. It is observed that the Fermi level position in fullerene is modified by ultra-thin-layer molybdenum oxide doping, and the HOMO onset is shifted to less than 1.3 eV below the Fermi level. The XPS results indicate that charge transfer was observed from the C{sub 60} to MoO{sub x} and Mo{sup 6+} oxides is the basis as hole dopants.

  4. Thin-layer boilover in diesel-oil fires: Determining the increase of thermal hazards and safety distances

    International Nuclear Information System (INIS)

    Ferrero, Fabio; Munoz, Miguel; Arnaldos, Josep

    2007-01-01

    A study of the effects of thin-layer boilover on large hydrocarbon fires was carried out. In the experiments, diesel-oil was burned in pools with diameters ranging from 1.5 to 6 m. Previous models used to predict emissive power during the stationary state were analysed and successively modified in order to accurately predict thermal hazard during the water ebullition phase. It was discovered that the increase in emissive power during thin-layer boilover is greater when the pool diameter is smaller. Furthermore, the required increases in safety distances in the case of accidents involving this dangerous phenomenon are provided

  5. Optical Thin Films for Gas Sensing in Advanced Coal Fired Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Ohodnicki, Paul; Brown, Thomas; Baltrus John; Chorpening, Benjamin

    2012-08-09

    Even for existing coal based plants, the opportunity for sensors and controls to improve efficiency is great. A wide range of gas species are of interest for relevant applications. Functional sensor layers for embedded sensing must be compatible with extreme conditions (temperature, pressure, corrosive). Au incorporated metal oxides have been looked at by a number of other authors previously for gas sensing, but have often focused on temperatures below 500{degree}C. Au nanoparticle incorporated metal oxide thin films have shown enhanced gas sensing response. In prior work, we have demonstrated that material systems such as Au nanoparticle incorporated TiO{sub 2} films exhibit a potentially useful optical response to changing gas atmospheres at temperatures up to ~800-850{degree}C. Current work is focused on sputter-deposited Au/TiO{sub 2} films. Au and Ti are multi-layered sputter deposited, followed by a 950{degree}C oxidation step. Increasing Au layer thickness yields larger particles. Interband electronic transitions significantly modify the optical constants of Au as compared to the damped free electron theory. A high temperature oxidation (20%O{sub 2}/N{sub 2}) treatment was performed at 700{degree}C followed by a reduction (4%H{sub 2}/N{sub 2}) treatment to illustrate the shift in both absorption and scattering with exposure to reducing gases. Shift of localized surface plasmon resonance (LSPR) absorption peak in changing gas atmospheres is well documented, but shift in the peak associated with diffuse scattering is a new observation. Increasing Au layer-thickness results in an increase in LSPR absorption and a shift to longer wavelengths. Diffuse scattering associated with the LSPR resonance of Au shows a similar trend with increasing Au thickness. To model the temperature dependence of LSPR, the modification to the plasmon frequency, the damping frequency, and the dielectric constant of the oxide matrix must be accounted for. Thermal expansion of Au causes

  6. White emission from organic light-emitting diodes with a super-thin BCP layer

    International Nuclear Information System (INIS)

    Hao Jingang; Deng Zhenbo; Yang Shengyi

    2007-01-01

    We report a method to achieve white emission from organic light-emitting diodes (OLEDs) in which a super-thin (3 nm) hole blocking layer, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), was inserted between electron-transport layer 8-hydroxyquinoline aluminum (Alq 3 ) and 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran (DCJTB) doped poly-vinlycarbazole (PVK) layer. The BCP layer can not only confine exciton in the emitting layer but also control energy transfer proportion from PVK to Alq 3 and then from Alq 3 to DCJTB through BCP layer. In this way, pure white emission with CIE coordinate of (0.32, 0.32) was obtained and it was voltage independent. The brightness reached 270 cd/m 2 at 18 V with an efficiency of 0.166 cd/A

  7. Structural, optical and NO{sub 2} gas sensing properties of ZnMgO thin films prepared by the sol gel method

    Energy Technology Data Exchange (ETDEWEB)

    Chebil, W., E-mail: chbil.widad@live.fr [Unité de Service Commun de Recherche « High resolution X-ray diffractometer », Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l’Environnement, 5019, Monastir (Tunisia); Laboratoire Physico-chimie des Matériaux, Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l' environnement, 5019 Monastir (Tunisia); Boukadhaba, M.A. [Unité de Service Commun de Recherche « High resolution X-ray diffractometer », Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l’Environnement, 5019, Monastir (Tunisia); Laboratoire Physico-chimie des Matériaux, Département de Physique, Université de Monastir, Faculté des Sciences de Monastir, Avenue de l' environnement, 5019 Monastir (Tunisia); Madhi, I. [Laboratoire de Photovoltaïque, Centre de Recherche et des Technologies de l’Energie, Technopole de Borj-Cédria, BP 95, 2050, Hammam-Lif (Tunisia); and others

    2017-01-15

    In this present work, ZnO and ZnMgO thin films prepared by a sol-gel process were deposited on glass substrates via spin coating technique. The structural, morphological and optical properties of the obtained films were investigated. X-ray diffraction study revealed that all layers exhibit a hexagonal wurtzite structure without any secondary phase segregation. The atomic force microscopy (AFM) depicts that the grains size of ours samples decreases as magnesium content increases. The absorption spectra obtained on ZnMgO thin films show a band gap tuning from 3.19 to 3.36 eV, which is also consistent with blue shifting of near-band edge PL emission, measured at low temperature. The incorporated amount of magnesium was calculated and confirmed by EDX. The gas sensing performances were tested in air containing NO{sub 2} for different operating temperatures. The experimental result exhibited that ZnMgO sensors shows a faster response and recovery time than the ZnO thin films. The resistivity and the sensor response as function of Mg content were also investigated.

  8. Low-temperature atomic layer deposition of TiO2 thin layers for the processing of memristive devices

    International Nuclear Information System (INIS)

    Porro, Samuele; Conti, Daniele; Guastella, Salvatore; Ricciardi, Carlo; Jasmin, Alladin; Pirri, Candido F.; Bejtka, Katarzyna; Perrone, Denis; Chiolerio, Alessandro

    2016-01-01

    Atomic layer deposition (ALD) represents one of the most fundamental techniques capable of satisfying the strict technological requirements imposed by the rapidly evolving electronic components industry. The actual scaling trend is rapidly leading to the fabrication of nanoscaled devices able to overcome limits of the present microelectronic technology, of which the memristor is one of the principal candidates. Since their development in 2008, TiO 2 thin film memristors have been identified as the future technology for resistive random access memories because of their numerous advantages in producing dense, low power-consuming, three-dimensional memory stacks. The typical features of ALD, such as self-limiting and conformal deposition without line-of-sight requirements, are strong assets for fabricating these nanosized devices. This work focuses on the realization of memristors based on low-temperature ALD TiO 2 thin films. In this process, the oxide layer was directly grown on a polymeric photoresist, thus simplifying the fabrication procedure with a direct liftoff patterning instead of a complex dry etching process. The TiO 2 thin films deposited in a temperature range of 120–230 °C were characterized via Raman spectroscopy and x-ray photoelectron spectroscopy, and electrical current–voltage measurements taken in voltage sweep mode were employed to confirm the existence of resistive switching behaviors typical of memristors. These measurements showed that these low-temperature devices exhibit an ON/OFF ratio comparable to that of a high-temperature memristor, thus exhibiting similar performances with respect to memory applications

  9. Investigation of Processes and Factors Regulating the Generation, Maintenance and Breakdown of Bioluminescent Thin Layers

    National Research Council Canada - National Science Library

    Widder, Edith

    2001-01-01

    .... Katz's submersible holographic camera mounted on the upper work platform. Thin layers were located using real-time sensor feedback from intensified video recordings of stimulated bioluminescence...

  10. Synthesis and characterization of Zn(O,OH)S and AgInS2 layers to be used in thin film solar cells

    Science.gov (United States)

    Vallejo, W.; Arredondo, C. A.; Gordillo, G.

    2010-11-01

    In this paper AgInS2 and Zn(O,OH)S thin films were synthesized and characterized. AgInS2 layers were grown by co-evaporation from metal precursors in a two-step process, and, Zn(O,OH)S thin films were deposited from chemical bath containing thiourea, zinc acetate, sodium citrate and ammonia. X-ray diffraction measurements indicated that AgInS2 thin films grown with chalcopyrite structure, and the as-grown Zn(O,OH)S thin films were polycrystalline. It was also found that the AgInS2 films presented p-type conductivity, a high absorption coefficient (greater than 104 cm-1) and energy band-gap Eg of about 1.95 eV, Zn(O,OH),S thin films presented Eg of about 3.89 eV. Morphological analysis showed that under this synthesis conditions Zn(O,OH),S thin films coated uniformly the absorber layer. Additionally, the Zn(O,OH)S kinetic growth on AgInS2 layer was studied also. Finally, the results suggest that these layers possibly could be used in one-junction solar cells and/or as top cell in a tandem solar cell.

  11. Mathematical modelling of the thin layer solar drying of banana, mango and cassava

    Energy Technology Data Exchange (ETDEWEB)

    Koua, Kamenan Blaise; Fassinou, Wanignon Ferdinand; Toure, Siaka [Laboratoire d' Energie Solaire, Universite de Cocody- Abidjan, 22 BP 582 Abidjan 22 (Ivory Coast); Gbaha, Prosper [Laboratoire d' Energie Nouvelle et Renouvelable, Institut National Polytechnique, Felix HOUPHOUET - BOIGNY de Yamoussoukro (Ivory Coast)

    2009-10-15

    The main objectives of this paper are firstly to investigate the behaviour of the thin layer drying of plantain banana, mango and cassava experimentally in a direct solar dryer and secondly to perform mathematical modelling by using thin layer drying models encountered in literature. The variation of the moisture content of the products studied and principal drying parameters are analysed. Seven statistical models, which are empirical or semi-empirical, are tested to validate the experimental data. A non-linear regression analysis using a statistical computer program is used to evaluate the constants of the models. The Henderson and Pabis drying model is found to be the most suitable for describing the solar drying curves of plantain banana, mango and cassava. The drying data of these products have been analysed to obtain the values of the effective diffusivity during the falling drying rate phase. (author)

  12. Impact of ultra-thin Al2O3-y layers on TiO2-x ReRAM switching characteristics

    Science.gov (United States)

    Trapatseli, Maria; Cortese, Simone; Serb, Alexander; Khiat, Ali; Prodromakis, Themistoklis

    2017-05-01

    Transition metal-oxide resistive random access memory devices have demonstrated excellent performance in switching speed, versatility of switching and low-power operation. However, this technology still faces challenges like poor cycling endurance, degradation due to high electroforming (EF) switching voltages and low yields. Approaches such as engineering of the active layer by doping or addition of thin oxide buffer layers have been often adopted to tackle these problems. Here, we have followed a strategy that combines the two; we have used ultra-thin Al2O3-y buffer layers incorporated between TiO2-x thin films taking into account both 3+/4+ oxidation states of Al/Ti cations. Our devices were tested by DC and pulsed voltage sweeping and in both cases demonstrated improved switching voltages. We believe that the Al2O3-y layers act as reservoirs of oxygen vacancies which are injected during EF, facilitate a filamentary switching mechanism and provide enhanced filament stability, as shown by the cycling endurance measurements.

  13. Adjustable threshold-voltage in all-inkjet-printed organic thin film transistor using double-layer dielectric structures

    International Nuclear Information System (INIS)

    Wu, Wen-Jong; Lee, Chang-Hung; Hsu, Chun-Hao; Yang, Shih-Hsien; Lin, Chih-Ting

    2013-01-01

    An all-inkjet-printed organic thin film transistor (OTFT) with a double-layer dielectric structure is proposed and implemented in this study. By using the double-layer structure with different dielectric materials (i.e., polyvinylphenol with poly(vinylidene fluoride-co-hexafluoropropylene)), the threshold-voltage of OTFT can be adjusted. The threshold-voltage shift can be controlled by changing the composition of dielectric layers. That is, an enhancement-mode OTFT can be converted to a depletion-mode OTFT by selectively printing additional dielectric layers to form a high-k/low-k double-layer structure. The printed OTFT has a carrier mobility of 5.0 × 10 −3 cm 2 /V-s. The threshold-voltages of the OTFTs ranged between − 13 V and 10 V. This study demonstrates an additional design parameter for organic electronics manufactured using inkjet printing technology. - Highlights: • A double-layer dielectric organic thin film transistor, OTFT, is implemented. • The threshold voltage of OTFT can be configured by the double dielectric structure. • The composition of the dielectric determines the threshold voltage shift. • The characteristics of OTFTs can be adjusted by double dielectric structures

  14. High-Sensitive Two-Layer Photoresistors Based on p-Cd x Hg1-x Te with a Converted Near-Surface Layer

    Science.gov (United States)

    Ismailov, N. D.; Talipov, N. Kh.; Voitsekhovskii, A. V.

    2018-04-01

    The results of an experimental study of photoelectric characteristics of two-layer photoresistors based on p-Cd x Hg1-x Te (x = 0.24-0.28) with a thin near-surface layer of n-type obtained by treatment in atmospheric gas plasma are presented. It is shown that the presence of a potential barrier between the p- and n-regions causes high photosensitivity and speed of operation of such photoresistors at T = 77 K

  15. High-Sensitive Two-Layer Photoresistors Based on p-Cd x Hg1- x Te with a Converted Near-Surface Layer

    Science.gov (United States)

    Ismailov, N. D.; Talipov, N. Kh.; Voitsekhovskii, A. V.

    2018-04-01

    The results of an experimental study of photoelectric characteristics of two-layer photoresistors based on p-Cd x Hg1- x Te (x = 0.24-0.28) with a thin near-surface layer of n-type obtained by treatment in atmospheric gas plasma are presented. It is shown that the presence of a potential barrier between the p- and n-regions causes high photosensitivity and speed of operation of such photoresistors at T = 77 K

  16. Solution processed metal oxide thin film hole transport layers for high performance organic solar cells

    Science.gov (United States)

    Steirer, K. Xerxes; Berry, Joseph J.; Chesin, Jordan P.; Lloyd, Matthew T.; Widjonarko, Nicodemus Edwin; Miedaner, Alexander; Curtis, Calvin J.; Ginley, David S.; Olson, Dana C.

    2017-01-10

    A method for the application of solution processed metal oxide hole transport layers in organic photovoltaic devices and related organic electronics devices is disclosed. The metal oxide may be derived from a metal-organic precursor enabling solution processing of an amorphous, p-type metal oxide. An organic photovoltaic device having solution processed, metal oxide, thin-film hole transport layer.

  17. Auger electron spectroscopy study on interaction between aluminum thin layers and uranium substrate

    International Nuclear Information System (INIS)

    Zhou Wei; Liu Kezhao; Yang Jiangrong; Xiao Hong; Jiang Chunli; Lu Lei

    2005-01-01

    Aluminum thin layers on uranium were prepared by sputter deposition at room temperature in ultra high vacuum analysis chamber. Interaction between U and Al, and growth mode were investigated by Auger electron spectroscopy (AES) and electron energy loss spectroscopy (EELS). It is shown that Al thin film growth follows the volmer-weber (VW) mode. At room temperature, Al and U interact with each other, resulting in interdiffusion action and formation of U-Al alloys at U/Al interface. Annealing promotes interaction and interdiffusion between U and Al, and UAl x maybe formed at interface. (authors)

  18. Interaction between depolarization effects, interface layer, and fatigue behavior in PZT thin film capacitors

    Science.gov (United States)

    Böttger, U.; Waser, R.

    2017-07-01

    The existence of non-ferroelectric regions in ferroelectric thin films evokes depolarization effects leading to a tilt of the P(E) hysteresis loop. The analysis of measured hysteresis of lead zirconate titanate (PZT) thin films is used to determine a depolarization factor which contains quantitative information about interfacial layers as well as ferroelectrically passive zones in the bulk. The derived interfacial capacitance is smaller than that estimated from conventional extrapolation techniques. In addition, the concept of depolarization is used for the investigation of fatigue behavior of PZT thin films indicating that the mechanism of seed inhibition, which is responsible for the effect, occurs in the entire film.

  19. Nanocrystalline Pd:NiFe{sub 2}O{sub 4} thin films: A selective ethanol gas sensor

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Pratibha; Godbole, R.V.; Bhagwat, Sunita, E-mail: smb.agc@gmail.com

    2016-10-15

    In this work, Pd:NiFe{sub 2}O{sub 4} thin films were investigated for the detection of reducing gases. These films were fabricated using spray pyrolysis technique and characterized using X-ray diffraction (XRD) to confirm the crystal structure. The surface morphology was studied using scanning electron microscopy (SEM). Magnetization measurements were carried out using SQUID VSM, which shows ferrimagnetic behavior of the samples. These thin film sensors were tested against methanol, ethanol, hydrogen sulfide and liquid petroleum gas, where they were found to be more selective to ethanol. The fabricated thin film sensors exhibited linear response signal for all the gases with concentrations up to 5 w/o Pd. Reduction in optimum operating temperature and enhancement in response was also observed. Pd:NiFe{sub 2}O{sub 4} thin films exhibited faster response and recovery characteristic. These sensors have potential for industrial applications because of their long-term stability, low power requirement and low production cost. - Highlights: • Ethanol gas sensors based on Pd:NiFe{sub 2}O{sub 4} nanoparticle thin film were fabricated. • Pd incorporation in NiFe{sub 2}O{sub 4} matrix inhibits grain growth. • The sensors were more selective to ethanol gas. • Sensors exhibited fast response and recovery when doped with palladium. • Pd:NiFe{sub 2}O{sub 4} thin film sensor displays excellent long–term stability.

  20. Pulsed EM Field Response of a Thin, High-Contrast, Finely Layered Structure With Dielectric and Conductive Properties

    NARCIS (Netherlands)

    De Hoop, A.T.; Jiang, L.

    2009-01-01

    The response of a thin, high-contrast, finely layered structure with dielectric and conductive properties to an incident, pulsed, electromagnetic field is investigated theoretically. The fine layering causes the standard spatial discretization techniques to solve Maxwell's equations numerically to

  1. Characteristics of gravure printed InGaZnO thin films as an active channel layer in thin film transistors

    International Nuclear Information System (INIS)

    Choi, Yuri; Kim, Gun Hee; Jeong, Woong Hee; Kim, Hyun Jae; Chin, Byung Doo; Yu, Jae-Woong

    2010-01-01

    Characteristics of oxide semiconductor thin film transistor prepared by gravure printing technique were studied. This device had inverted staggered structure of glass substrate/MoW/SiNx/ printed active layer. The active layer was printed with precursor of indium gallium zinc oxide solution and then annealed at 550 o C for 2 h. Influences of printing parameters (i.e. speed and force) were studied. As the gravure printing force was increased, the thickness of printed film was decreased and the refractive index of printed active layer was increased. The best printed result in our study was obtained with printing speed of 0.4 m/s, printing force of 400 N and the thickness of printed active layer was 45 nm. According to AFM image, surface of printed active layer was quite smooth and the root-mean square roughness was approximately 0.5 nm. Gravure printed active layer had a field-effect mobility of 0.81 cm 2 /Vs and an on-off current ratio was 1.36 x 10 6 .

  2. A chip-type thin-layer electrochemical cell coupled with capillary electrophoresis for online separation of electrode reaction products

    Energy Technology Data Exchange (ETDEWEB)

    He, Jian-Bo, E-mail: jbhe@hfut.edu.cn; Cui, Ting; Zhang, Wen-Wen; Deng, Ning

    2013-07-05

    Graphical abstract: -- Highlights: •A new coupling of thin-layer electrolysis with capillary electrophoresis (CE). •Rapid electrolysis, direct sampling followed by online CE separation. •At least 13 products of quercetin oxidation were separated. •Thermodynamic and kinetic parameters were determined from CE peak areas. -- Abstract: A coupling technique of thin-layer electrolysis with high-performance capillary electrophoresis/UV–vis technique(EC/HPCE/UV–vis) is developed for online separation and determination of electrode reaction products. A chip-type thin-layer electrolytic (CTE) cell was designed and fabricated, which contains a capillary channel and a background electrolyte reservoir, allowing rapid electrolysis, direct sampling and online electrophoretic separation. This chip-type setup was characterized based on an electrophoresis expression of Nernst equation that was applied to the redox equilibrium of o-tolidine at different potentials. The utility of the method was demonstrated by separating and determining the electro-oxidation products of quercetin in different pH media. Two main products were always found in the studied time, potential and pH ranges. The variety of products increased not only with increasing potential but also with increasing pH value, and in total, at least 13 products were observed in the electropherograms. This work illustrates a novel example of capillary electrophoresis used online with thin-layer electrolysis to separate and detect electrode reaction products.

  3. A chip-type thin-layer electrochemical cell coupled with capillary electrophoresis for online separation of electrode reaction products

    International Nuclear Information System (INIS)

    He, Jian-Bo; Cui, Ting; Zhang, Wen-Wen; Deng, Ning

    2013-01-01

    Graphical abstract: -- Highlights: •A new coupling of thin-layer electrolysis with capillary electrophoresis (CE). •Rapid electrolysis, direct sampling followed by online CE separation. •At least 13 products of quercetin oxidation were separated. •Thermodynamic and kinetic parameters were determined from CE peak areas. -- Abstract: A coupling technique of thin-layer electrolysis with high-performance capillary electrophoresis/UV–vis technique(EC/HPCE/UV–vis) is developed for online separation and determination of electrode reaction products. A chip-type thin-layer electrolytic (CTE) cell was designed and fabricated, which contains a capillary channel and a background electrolyte reservoir, allowing rapid electrolysis, direct sampling and online electrophoretic separation. This chip-type setup was characterized based on an electrophoresis expression of Nernst equation that was applied to the redox equilibrium of o-tolidine at different potentials. The utility of the method was demonstrated by separating and determining the electro-oxidation products of quercetin in different pH media. Two main products were always found in the studied time, potential and pH ranges. The variety of products increased not only with increasing potential but also with increasing pH value, and in total, at least 13 products were observed in the electropherograms. This work illustrates a novel example of capillary electrophoresis used online with thin-layer electrolysis to separate and detect electrode reaction products

  4. White emission from organic light-emitting diodes with a super-thin BCP layer

    Energy Technology Data Exchange (ETDEWEB)

    Hao Jingang [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China); Deng Zhenbo [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China)]. E-mail: zbdeng@center.njtu.edu.cn; Yang Shengyi [Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University, Beijing 100044 (China)

    2007-01-15

    We report a method to achieve white emission from organic light-emitting diodes (OLEDs) in which a super-thin (3 nm) hole blocking layer, 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (BCP), was inserted between electron-transport layer 8-hydroxyquinoline aluminum (Alq{sub 3}) and 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl) -4H-pyran (DCJTB) doped poly-vinlycarbazole (PVK) layer. The BCP layer can not only confine exciton in the emitting layer but also control energy transfer proportion from PVK to Alq{sub 3} and then from Alq{sub 3} to DCJTB through BCP layer. In this way, pure white emission with CIE coordinate of (0.32, 0.32) was obtained and it was voltage independent. The brightness reached 270 cd/m{sup 2} at 18 V with an efficiency of 0.166 cd/A.

  5. Characterization and obtainment of thin films based on N,N,N-trimethyl chitosan and heparin through the technical layer-by-layer; Caracterizacao e obtencao de filmes finos de N,N,N-trimetil quitosana e heparina atraves da tecnica layer-by-layer

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Thin films of Heparin (HP) and N,N,N-trimethyl chitosan (TMC) with a high degree of quaternization (DQ) were obtained at pH 7.4 through the layer-by-layer (LbL) technique. Polystyrene (PS) was oxidized with aqueous solution of sodium persulfate and subsequently employed as substrate. The characterization of TMC and the respective determination of DQ were performed through {sup 1}H NMR spectroscopy. The thin films de TMC/HP were characterized by FTIR-ATR and AFM. Both techniques confirmed the adsorption of TMC and HP in surface of the PS. The increasing of the bilayers provides a decrease of the projections and/or roughness, further of minimizing the depressions at the surface of the films. Studies of thin films the base of TMC/HP prepared from the LbL technique has not been reported in the literature. It is expected that the thin films of TMC/HP present anti-adhesive and antimicrobial properties. (author)

  6. Preconcentration in gas or liquid phases using adsorbent thin films

    Directory of Open Access Journals (Sweden)

    Antonio Pereira Nascimento Filho

    2006-03-01

    Full Text Available The possibility of preconcentration on microchannels for organic compounds in gas or liquid phases was evaluated. Microstructures with different geometries were mechanically machined using poly(methyl methacrylate - PMMA as substrates and some cavities were covered with cellulose. The surfaces of the microchannels were modified by plasma deposition of hydrophilic or hydrophobic films using 2-propanol and hexamethyldisilazane (HMDS, respectively. Double layers of HMDS + 2-propanol were also used. Adsorption characterization was made by Quartz Crystal Measurements (QCM technique using reactants in a large polarity range that showed the adsorption ability of the structures depends more on the films used than on the capillary phenomena. Cellulose modified by double layer film showed a high retention capacity for all gaseous compounds tested. However, structures without plasma deposition showed low retention capacity. Microchannels modified with double layers or 2-propanol plasma films showed higher retention than non-modified ones on gas or liquid phase.

  7. Inverted organic solar cells with solvothermal synthesized vanadium-doped TiO2 thin films as efficient electron transport layer

    Institute of Scientific and Technical Information of China (English)

    Mehdi Ahmadi; Sajjad Rashidi Dafeh; Samaneh Ghazanfarpour; Mohammad Khanzadeh

    2017-01-01

    We investigated the effects of using different thicknesses of pure and vanadium-doped thin films of TiO2 as the electron transport layer in the inverted configuration of organic photovoltaic cells based on poly (3-hexylthiophene) P3HT:[6-6] phenyl-(6) butyric acid methyl ester (PCBM).1% vanadium-doped TiO2 nanoparticles were synthesized via the solvothermal method.Crystalline structure,morphology,and optical properties of pure and vanadium-doped TiO2 thin films were studied by different techniques such as x-ray diffraction,scanning electron microscopy,transmittance electron microscopy,and UV-visible transmission spectrum.The doctor blade method which is compatible with roll-2-roll printing was used for deposition of pure and vanadium-doped TiO2 thin films with thicknesses of 30 nm and 60 nm.The final results revealed that the best thickness of TiO2 thin films for our fabricated cells was 30 nm.The cell with vanadium-doped TiO2 thin film showed slightly higher power conversion efficiency and great Jsc of 10.7 mA/cm2 compared with its pure counterpart.In the cells using 60 nm pure and vanadium-doped TiO2 layers,the cell using the doped layer showed much higher efficiency.It is remarkable that the extemal quantum efficiency of vanadium-doped TiO2 thin film was better in all wavelengths.

  8. Incorporation of layered double nanomaterials in thin film nanocomposite nanofiltration membrane for magnesium sulphate removal

    Science.gov (United States)

    Hanis Tajuddin, Muhammad; Yusof, Norhaniza; Salleh, Wan Norharyati Wan; Fauzi Ismail, Ahmad; Hanis Hayati Hairom, Nur; Misdan, Nurasyikin

    2018-03-01

    Thin film nanocomposite (TFN) membrane with copper-aluminium layered double hydroxides (LDH) incorporated into polyamide (PA) selective layer has been prepared for magnesium sulphate salt removal. 0, 0.05, 0.1, 0.15, 0.2 wt% of LDH were dispersed in the trimesoyl chloride (TMC) in n-hexane as organic solution and embedded into PA layer during interfacial polymerization with piperazine. The fabricated membranes were further characterized to evaluate its morphological structure and membrane surface hydrophilicity. The TFN membranes performance were evaluated with divalent salt magnesium sulphate (MgSO4) removal and compared with thin film composite (TFC). The morphological structures of TFN membranes were altered and the surface hydrophilicity were enhanced with addition of LDH. Incorporation of LDH has improved the permeate water flux by 82.5% compared to that of TFC membrane with satisfactory rejection of MgSO4. This study has experimentally validated the potential of LDH to improve the divalent salt separation performance for TFN membranes.

  9. Incorporation of layered double nanomaterials in thin film nanocomposite nanofiltration membrane for magnesium sulphate removal

    Directory of Open Access Journals (Sweden)

    Tajuddin Muhammad Hanis

    2018-01-01

    Full Text Available Thin film nanocomposite (TFN membrane with copper-aluminium layered double hydroxides (LDH incorporated into polyamide (PA selective layer has been prepared for magnesium sulphate salt removal. 0, 0.05, 0.1, 0.15, 0.2 wt% of LDH were dispersed in the trimesoyl chloride (TMC in n-hexane as organic solution and embedded into PA layer during interfacial polymerization with piperazine. The fabricated membranes were further characterized to evaluate its morphological structure and membrane surface hydrophilicity. The TFN membranes performance were evaluated with divalent salt magnesium sulphate (MgSO4 removal and compared with thin film composite (TFC. The morphological structures of TFN membranes were altered and the surface hydrophilicity were enhanced with addition of LDH. Incorporation of LDH has improved the permeate water flux by 82.5% compared to that of TFC membrane with satisfactory rejection of MgSO4. This study has experimentally validated the potential of LDH to improve the divalent salt separation performance for TFN membranes.

  10. Atomic layer deposition of Al-doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tynell, Tommi; Yamauchi, Hisao; Karppinen, Maarit; Okazaki, Ryuji; Terasaki, Ichiro [Department of Chemistry, Aalto University, FI-00076 Aalto (Finland); Department of Physics, Nagoya University, Nagoya 464-8602 (Japan)

    2013-01-15

    Atomic layer deposition has been used to fabricate thin films of aluminum-doped ZnO by depositing interspersed layers of ZnO and Al{sub 2}O{sub 3} on borosilicate glass substrates. The growth characteristics of the films have been investigated through x-ray diffraction, x-ray reflection, and x-ray fluorescence measurements, and the efficacy of the Al doping has been evaluated through optical reflectivity and Seebeck coefficient measurements. The Al doping is found to affect the carrier density of ZnO up to a nominal Al dopant content of 5 at. %. At nominal Al doping levels of 10 at. % and higher, the structure of the films is found to be strongly affected by the Al{sub 2}O{sub 3} phase and no further carrier doping of ZnO is observed.

  11. Ultra-smooth epitaxial Ge grown on Si(001) utilizing a thin C-doped Ge buffer layer

    KAUST Repository

    Mantey, J.; Hsu, W.; James, J.; Onyegam, E. U.; Guchhait, S.; Banerjee, S. K.

    2013-01-01

    Here, we present work on epitaxial Ge films grown on a thin buffer layer of C doped Ge (Ge:C). The growth rate of Ge:C is found to slow over time and is thus unsuitable for thick (>20 nm) layers. We demonstrate Ge films from 10 nm to >150 nm

  12. Fabrication of amorphous IGZO thin film transistor using self-aligned imprint lithography with a sacrificial layer

    Science.gov (United States)

    Kim, Sung Jin; Kim, Hyung Tae; Choi, Jong Hoon; Chung, Ho Kyoon; Cho, Sung Min

    2018-04-01

    An amorphous indium-gallium-zinc-oxide (a-IGZO) thin film transistor (TFT) was fabricated by a self-aligned imprint lithography (SAIL) method with a sacrificial photoresist layer. The SAIL is a top-down method to fabricate a TFT using a three-dimensional multilayer etch mask having all pattern information for the TFT. The sacrificial layer was applied in the SAIL process for the purpose of removing the resin residues that were inevitably left when the etch mask was thinned by plasma etching. This work demonstrated that the a-IGZO TFT could be fabricated by the SAIL process with the sacrificial layer. Specifically, the simple fabrication process utilized in this study can be utilized for the TFT with a plasma-sensitive semiconductor such as the a-IGZO and further extended for the roll-to-roll TFT fabrication.

  13. Swift heavy ion irradiated SnO_2 thin film sensor for efficient detection of SO_2 gas

    International Nuclear Information System (INIS)

    Tyagi, Punit; Sharma, Savita; Tomar, Monika; Singh, Fouran; Gupta, Vinay

    2016-01-01

    Highlights: • Response of Ni"7"+ ion irradiated (100 MeV) SnO_2 film have been performed. • Effect of irradiation on the structural and optical properties of SnO_2 film is studied. • A decrease in operating temperature and increased response is seen after irradiation. - Abstract: Gas sensing response studies of the Ni"7"+ ion irradiated (100 MeV) and non-irradiated SnO_2 thin film sensor prepared under same conditions have been performed towards SO_2 gas (500 ppm). The effect of irradiation on the structural, surface morphological, optical and gas sensing properties of SnO_2 thin film based sensor have been studied. A significant decrease in operating temperature (from 220 °C to 60 °C) and increased sensing response (from 1.3 to 5.0) is observed for the sample after irradiation. The enhanced sensing response obtained for the irradiated SnO_2 thin film based sensor is attributed to the desired modification in the surface morphology and material properties of SnO_2 thin film by Ni"7"+ ions.

  14. Electrochemical studies of iron/carbonates system applied to the formation of thin layers of siderite on inert substrates

    International Nuclear Information System (INIS)

    Ithurbide, A.; Peulon, S.; Mandin, Ph.; Beaucaire, C.; Chausse, A.

    2007-01-01

    In order to understand the complex mechanisms of the reactions occurring, a methodology is developed. It is based on the use of compounds electrodeposited under the form of thin layers and which are used then as electrodes to study their interactions with the toxic species. It is in this framework that is studied the electrodeposition of siderite on inert substrates. At first, have been studied iron electrochemical systems in carbonated solutions. These studies have been carried out with classical electrochemical methods (cyclic voltametry, amperometry) coupled to in-situ measurements: quartz microbalance, pH. Different compounds have been obtained under the form of homogeneous and adherent thin layers. The analyses of these depositions, by different ex-situ characterizations (XRD, IR, SEM, EDS..) have revealed particularly the presence of siderite. Then, the influence of several experimental parameters (substrate, potential, medium composition, temperature) on the characteristics of siderite thin layers has been studied. From these experimental results, models have been proposed. (O.M.)

  15. High conductivity and transparent aluminum-based multi-layer source/drain electrodes for thin film transistors

    Science.gov (United States)

    Yao, Rihui; Zhang, Hongke; Fang, Zhiqiang; Ning, Honglong; Zheng, Zeke; Li, Xiaoqing; Zhang, Xiaochen; Cai, Wei; Lu, Xubing; Peng, Junbiao

    2018-02-01

    In this study, high conductivity and transparent multi-layer (AZO/Al/AZO-/Al/AZO) source/drain (S/D) electrodes for thin film transistors were fabricated via conventional physical vapor deposition approaches, without toxic elements or further thermal annealing process. The 68 nm-thick multi-layer films with excellent optical properties (transparency: 82.64%), good electrical properties (resistivity: 6.64  ×  10-5 Ω m, work function: 3.95 eV), and superior surface roughness (R q   =  0.757 nm with scanning area of 5  ×  5 µm2) were fabricated as the S/D electrodes. Significantly, comprehensive performances of AZO films are enhanced by the insertion of ultra-thin Al layers. The optimal transparent TFT with this multi-layer S/D electrodes exhibited a decent electrical performance with a saturation mobility (µ sat) of 3.2 cm2 V-1 s-1, an I on/I off ratio of 1.59  ×  106, a subthreshold swing of 1.05 V/decade. The contact resistance of AZO/Al/AZO/Al/AZO multi-layer electrodes is as low as 0.29 MΩ. Moreover, the average visible light transmittance of the unpatterned multi-layers constituting a whole transparent TFT could reach 72.5%. The high conductivity and transparent multi-layer S/D electrodes for transparent TFTs possessed great potential for the applications of the green and transparent displays industry.

  16. Some studies on successive ionic layer adsorption and reaction (SILAR) grown indium sulphide thin films

    International Nuclear Information System (INIS)

    Pathan, H.M.; Lokhande, C.D.; Kulkarni, S.S.; Amalnerkar, D.P.; Seth, T.; Han, Sung-Hwan

    2005-01-01

    Indium sulphide (In 2 S 3 ) thin films were grown on amorphous glass substrate by the successive ionic layer adsorption and reaction (SILAR) method. X-ray diffraction, optical absorption, scanning electron microscopy (SEM) and Rutherford back scattering (RBS) were applied to study the structural, optical, surface morphological and compositional properties of the indium sulphide thin films. Utilization of triethanolamine and hydrazine hydrate complexed indium sulphate and sodium sulphide as precursors resulted in nanocrystalline In 2 S 3 thin film. The optical band gap was found to be 2.7 eV. The film appeared to be smooth and homogeneous from SEM study

  17. Use of low volatility mobile phases in electroosmotic thin-layer chromatography.

    Science.gov (United States)

    Berezkin, V G; Balushkin, A O; Tyaglov, B V; Litvin, E F

    2005-08-19

    A variant of electroosmotic thin-layer chromatography is suggested with the use of low volatility compounds as mobile phases aimed at drastically decreasing the evaporation of the mobile phase and improving the reproducibility of the method. The linear movement velocity of zones of separated compounds is experimentally shown to increase 2-12-fold in electroosmotic chromatography (compared to similar values in traditional TLC). The separation efficiency is also considerably increased.

  18. Magnetic domain observation of FeCo thin films fabricated by alternate monoatomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuki, T., E-mail: ohtsuki@spring8.or.jp; Kotsugi, M.; Ohkochi, T. [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Kojima, T.; Mizuguchi, M.; Takanashi, K. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2014-01-28

    FeCo thin films are fabricated by alternate monoatomic layer deposition method on a Cu{sub 3}Au buffer layer, which in-plane lattice constant is very close to the predicted value to obtain a large magnetic anisotropy constant. The variation of the in-plane lattice constant during the deposition process is investigated by reflection high-energy electron diffraction. The magnetic domain images are also observed by a photoelectron emission microscope in order to microscopically understand the magnetic structure. As a result, element-specific magnetic domain images show that Fe and Co magnetic moments align parallel. A series of images obtained with various azimuth reveal that the FeCo thin films show fourfold in-plane magnetic anisotropy along 〈110〉 direction, and that the magnetic domain structure is composed only of 90∘ wall.

  19. Convection Study by PIV Method Within Horizontal Liquid Layer Evaporating Into Inert Gas Flow

    Directory of Open Access Journals (Sweden)

    Kreta Aleksei

    2016-01-01

    Full Text Available The paper is devoted to the experimental study of convection in a horizontal evaporating liquid layer (ethanol of limited size under the action of gas flow (air. The two-dimensional velocity field in the liquid layer is obtained using the PIV method. The existence of a vortex convective flow within a liquid layer directed towards the gas flow has been revealed.

  20. Photocatalytical Decomposition of Contaminants on Thin Film Gas Sensors

    International Nuclear Information System (INIS)

    Radecka, M.; Lyson, B.; Lubecka, M.; Czapla, A.; Zakrzewska, K.

    2010-01-01

    Gas sensing materials have been prepared in a form of TiO 2 -SnO 2 thin films by rf reactive sputtering from Ti:SnO 2 and Sn:TiO 2 targets. Material studies have been performed by scanning electron microscopy, atomic force microscopy, X-ray diffraction at grazing incidence, Moessbauer spectroscopy, X-ray photoelectron spectroscopy and optical spectrophotometry. Dynamic gas sensing responses have been recorded as reproducible changes in the electrical resistance upon introduction of hydrogen at a partial pressure of 100-6000 ppm over a wide temperature range 473-873 K. Contamination experiments have been carried out with the motor oil (40 vol.% solution in CCl 4 ) in order to study the effect of UV light illumination on the gas sensor response. Optical spectroscopy has been applied to monitor the photodecomposition of the test compound, bromothymol blue. The Electronic Nose, ALPHA MOS FOX 4000 has been used in order to differentiate between different groups of motor oil vapors. (author)

  1. Multispectral surface plasmon resonance approach for ultra-thin silver layer characterization: Application to top-emitting OLED cathode

    Science.gov (United States)

    Taverne, S.; Caron, B.; Gétin, S.; Lartigue, O.; Lopez, C.; Meunier-Della-Gatta, S.; Gorge, V.; Reymermier, M.; Racine, B.; Maindron, T.; Quesnel, E.

    2018-01-01

    While dielectric/metal/dielectric (DMD) multilayer thin films have raised considerable interest as transparent and conductive electrodes in various optoelectronic devices, the knowledge of optical characteristics of thin metallic layers integrated in such structures is still rather approximate. The multispectral surface plasmon resonance characterization approach described in this work precisely aims at providing a rigorous methodology able to accurately determine the optical constants of ultra-thin metallic films. As a practical example, the refractive index and extinction dispersion curves of 8 to 25 nm-thick silver layers have been investigated. As a result, their extreme dependence on the layer thickness is highlighted, in particular in a thickness range close to the critical threshold value (˜10 nm) where the silver film becomes continuous and its electrical conductance/optical transmittance ratio particularly interesting. To check the validity of the revisited Ag layers constant dispersion curves deduced from this study, they were introduced into a commercial optical model software to simulate the behavior of various optoelectronic building blocks from the simplest ones (DMD electrodes) to much more complex structures [full organic light emitting device (OLED) stacks]. As a result, a much better prediction of the emission spectrum profile as well as the angular emission pattern of top-emitting OLEDs is obtained. On this basis, it is also shown how a redesign of the top encapsulation thin film of OLEDs is necessary to better take benefit from the advanced DMD electrode. These results should particularly interest the micro-OLED display field where bright and directive single color pixel emission is required.

  2. Relationship of Estimated SHIV Acquisition Time Points During the Menstrual Cycle and Thinning of Vaginal Epithelial Layers in Pigtail Macaques.

    Science.gov (United States)

    Kersh, Ellen N; Ritter, Jana; Butler, Katherine; Ostergaard, Sharon Dietz; Hanson, Debra; Ellis, Shanon; Zaki, Sherif; McNicholl, Janet M

    2015-12-01

    HIV acquisition in the female genital tract remains incompletely understood. Quantitative data on biological HIV risk factors, the influence of reproductive hormones, and infection risk are lacking. We evaluated vaginal epithelial thickness during the menstrual cycle in pigtail macaques (Macaca nemestrina). This model previously revealed increased susceptibility to vaginal infection during and after progesterone-dominated periods in the menstrual cycle. Nucleated and nonnucleated (superficial) epithelial layers were quantitated throughout the menstrual cycle of 16 macaques. We examined the relationship with previously estimated vaginal SHIVSF162P3 acquisition time points in the cycle of 43 different animals repeatedly exposed to low virus doses. In the luteal phase (days 17 to cycle end), the mean vaginal epithelium thinned to 66% of mean follicular thickness (days 1-16; P = 0.007, Mann-Whitney test). Analyzing 4-day segments, the epithelium was thickest on days 9 to 12 and thinned to 31% thereof on days 29 to 32, with reductions of nucleated and nonnucleated layers to 36% and 15% of their previous thickness, respectively. The proportion of animals with estimated SHIV acquisition in each cycle segment correlated with nonnucleated layer thinning (Pearson r = 0.7, P layer thinning (Pearson r = 0.6, P = 0.15). These data provide a detailed picture of dynamic cycle-related changes in the vaginal epithelium of pigtail macaques. Substantial thinning occurred in the superficial, nonnucleated layer, which maintains the vaginal microbiome. The findings support vaginal tissue architecture as susceptibility factor for infection and contribute to our understanding of innate resistance to SHIV infection.

  3. On a boundary layer problem related to the gas flow in shales

    KAUST Repository

    Barenblatt, G. I.

    2013-01-16

    The development of gas deposits in shales has become a significant energy resource. Despite the already active exploitation of such deposits, a mathematical model for gas flow in shales does not exist. Such a model is crucial for optimizing the technology of gas recovery. In the present article, a boundary layer problem is formulated and investigated with respect to gas recovery from porous low-permeability inclusions in shales, which are the basic source of gas. Milton Van Dyke was a great master in the field of boundary layer problems. Dedicating this work to his memory, we want to express our belief that Van Dyke\\'s profound ideas and fundamental book Perturbation Methods in Fluid Mechanics (Parabolic Press, 1975) will live on-also in fields very far from the subjects for which they were originally invented. © 2013 US Government.

  4. Adsorption and electronic properties of pentacene on thin dielectric decoupling layers.

    Science.gov (United States)

    Koslowski, Sebastian; Rosenblatt, Daniel; Kabakchiev, Alexander; Kuhnke, Klaus; Kern, Klaus; Schlickum, Uta

    2017-01-01

    With the increasing use of thin dielectric decoupling layers to study the electronic properties of organic molecules on metal surfaces, comparative studies are needed in order to generalize findings and formulate practical rules. In this paper we study the adsorption and electronic properties of pentacene deposited onto h-BN/Rh(111) and compare them with those of pentacene deposited onto KCl on various metal surfaces. When deposited onto KCl, the HOMO and LUMO energies of the pentacene molecules scale with the work functions of the combined KCl/metal surface. The magnitude of the variation between the respective KCl/metal systems indicates the degree of interaction of the frontier orbitals with the underlying metal. The results confirm that the so-called IDIS model developed by Willenbockel et al. applies not only to molecular layers on bare metal surfaces, but also to individual molecules on thin electronically decoupling layers. Depositing pentacene onto h-BN/Rh(111) results in significantly different adsorption characteristics, due to the topographic corrugation of the surface as well as the lateral electric fields it presents. These properties are reflected in the divergence from the aforementioned trend for the orbital energies of pentacene deposited onto h-BN/Rh(111), as well as in the different adsorption geometry. Thus, the highly desirable capacity of h-BN to trap molecules comes at the price of enhanced metal-molecule interaction, which decreases the HOMO-LUMO gap of the molecules. In spite of the enhanced interaction, the molecular orbitals are evident in scanning tunnelling spectroscopy (STS) and their shapes can be resolved by spectroscopic mapping.

  5. Formation of a highly doped ultra-thin amorphous carbon layer by ion bombardment of graphene

    Science.gov (United States)

    Piotr Michałowski, Paweł; Pasternak, Iwona; Ciepielewski, Paweł; Guinea, Francisco; Strupiński, Włodek

    2018-07-01

    Ion bombardment of graphene leads to the formation of defects which may be used to tune properties of the graphene based devices. In this work, however, we present that the presence of the graphene layer on a surface of a sample has a significant impact on the ion bombardment process: broken sp2 bonds react with the incoming ions and trap them close to the surface of the sample, preventing a standard ion implantation. For an ion bombardment with a low impact energy and significant dose (in the range of 1014 atoms cm‑2) an amorphization of the graphene layer is observed but at the same time, most of the incoming ions do not penetrate the sample but stop at the surface, thus forming a highly doped ultra-thin amorphous carbon layer. The effect may be used to create thin layers containing desired atoms if no other technique is available. This approach is particularly useful for secondary ion mass spectrometry where a high concentration of Cs at the surface of a sample significantly enhances the negative ionization probability, allowing it to reach better detection limits.

  6. Thin Solid Oxide Cell

    DEFF Research Database (Denmark)

    2010-01-01

    The present invention relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material, at least one metal and a catalyst...... material, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same. The present invention also relates to a thin and in principle unsupported solid oxide cell, comprising at least a porous anode layer, an electrolyte layer and a porous...... cathode layer, wherein the anode layer and the cathode layer comprise an electrolyte material and a catalyst material, wherein the electrolyte material is doper zirconia, and wherein the overall thickness of the thin reversible cell is about 150 [mu]m or less, and to a method for producing same...

  7. Preparation of thin layer materials with macroporous microstructure for SOFC applications

    International Nuclear Information System (INIS)

    Marrero-Lopez, D.; Ruiz-Morales, J.C.; Pena-Martinez, J.; Canales-Vazquez, J.; Nunez, P.

    2008-01-01

    A facile and versatile method using polymethyl methacrylate (PMMA) microspheres as pore formers has been developed to prepare thin layer oxide materials with controlled macroporous microstructure. Several mixed oxides with fluorite and perovskite-type structures, i.e. doped zirconia, ceria, ferrites, manganites, and NiO-YSZ composites have been prepared and characterised by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption and mercury porosimetry. The synthesised materials are nanocrystalline and present a homogeneous pore distribution and relatively high specific surface area, which makes them interesting for SOFC and catalysis applications in the intermediate temperature range. - Graphical abstract: Thin films materials of mixed oxides with potential application in SOFC devices have been prepared with macroporous microstructure using PMMA microspheres as pore formers. Display Omitted

  8. Performance improvement of organic thin film transistors by using active layer with sandwich structure

    Science.gov (United States)

    Ni, Yao; Zhou, Jianlin; Kuang, Peng; Lin, Hui; Gan, Ping; Hu, Shengdong; Lin, Zhi

    2017-08-01

    We report organic thin film transistors (OTFTs) with pentacene/fluorinated copper phthalo-cyanine (F16CuPc)/pentacene (PFP) sandwich configuration as active layers. The sandwich devices not only show hole mobility enhancement but also present a well control about threshold voltage and off-state current. By investigating various characteristics, including current-voltage hysteresis, organic film morphology, capacitance-voltage curve and resistance variation of active layers carefully, it has been found the performance improvement is mainly attributed to the low carrier traps and the higher conductivity of the sandwich active layer due to the additional induced carriers in F16CuPc/pentacene. Therefore, using proper multiple active layer is an effective way to gain high performance OTFTs.

  9. Dilaton thin-shell wormholes supported by a generalized Chaplygin gas

    International Nuclear Information System (INIS)

    Bejarano, Cecilia; Eiroa, Ernesto F.

    2011-01-01

    In this article, we construct spherical thin-shell wormholes with charge in dilaton gravity. The exotic matter required for the construction is provided by a generalized Chaplygin gas. We study the stability under perturbations preserving the symmetry. We find that the increase of the coupling between the dilaton and the electromagnetic fields reduces the range of the parameters for which stable configurations are possible.

  10. Controlling the Performance of P-type Cu2O/SnO Bilayer Thin-Film Transistors by Adjusting the Thickness of the Copper Oxide Layer

    KAUST Repository

    Al-Jawhari, Hala A.

    2014-11-11

    The effect of copper oxide layer thickness on the performance of Cu2O/SnO bilayer thin-film transistors was investigated. By using sputtered Cu2O films produced at an oxygen partial pressure, Opp, of 10% as the upper layer and 3% Opp SnO films as the lower layer we built a matrix of bottom-gate Cu2O/SnO bilayer thin-film transistors of different thickness. We found that the thickness of the Cu2O layer is of major importance in oxidation of the SnO layer underneath. The thicker the Cu2O layer, the more the underlying SnO layer is oxidized, and, hence, the more transistor mobility is enhanced at a specific temperature. Both device performance and the annealing temperature required could be adjusted by controlling the thickness of each layer of Cu2O/SnO bilayer thin-film transistors.

  11. Growth and characterization of ternary Ni, Mg–Al and Ni–Al layered double hydroxides thin films deposited by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Birjega, R. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele, 76900 Bucharest (Romania); Vlad, A., E-mail: angela.vlad@gmail.com [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele, 76900 Bucharest (Romania); Matei, A.; Ion, V.; Luculescu, C.; Dinescu, M. [National Institute for Lasers, Plasma and Radiation Physics, 409 Atomistilor Str., Magurele, 76900 Bucharest (Romania); Zavoianu, R. [University of Bucharest, Faculty of Chemistry, Department of Chemical Technology and Catalysis, 4-12 Regina Elisabeta Bd., Bucharest (Romania)

    2016-09-01

    Layered double hydroxides (LDHs) are a class of layered materials consisting of positively charged brucite-like layers and exchangeable interlayer anions. Layered double hydroxides containing a transition metal which undergoes a reversible redox reaction in the useful potential range have been proposed as electrode coating materials due to their properties of charge transport and redox catalysts in basic solutions. Ni–Al,(Ni,Mg)–Al and, as reference, non-electronically conductive Mg–Al double hydroxides thin films were obtained via pulsed laser deposition technique. The thin films were deposited on different substrates (Si, glass) by using a Nd:YAG laser (1064 nm) working at a repetition rate of 10 Hz. X-ray diffraction, Atomic Force Microscopy, Energy Dispersive X-ray spectroscopy, Fourier Transform Infra-Red Spectroscopy, Secondary Ions Mass Spectrometry, Impedance Analyzer and ellipsometry were the techniques used for the as deposited thin films investigation. The optical properties of Ni based LDH thin films and the effect of the Ni amount on the structural, morphological and optical response are evidenced. The optical band gap values, covering a domain between 3.84 eV and 4.38 eV, respond to the Ni overall concentration: the higher Ni amount the lower the band gap value. - Highlights: • Ternary Ni, Mg–Al and Ni–Al layered double hydroxides thin films were deposited. • The effect of the nickel is evidenced. • The possibility to tailor the materials accompanied by an optical response is shown.

  12. Ultra-thin silicon oxide layers on crystalline silicon wafers: Comparison of advanced oxidation techniques with respect to chemically abrupt SiO{sub 2}/Si interfaces with low defect densities

    Energy Technology Data Exchange (ETDEWEB)

    Stegemann, Bert, E-mail: bert.stegemann@htw-berlin.de [HTW Berlin - University of Applied Sciences, 12459 Berlin (Germany); Gad, Karim M. [University of Freiburg, Department of Microsystems Engineering - IMTEK, 79110 Freiburg (Germany); Balamou, Patrice [HTW Berlin - University of Applied Sciences, 12459 Berlin (Germany); Helmholtz Center Berlin for Materials and Energy (HZB), 12489 Berlin (Germany); Sixtensson, Daniel [Helmholtz Center Berlin for Materials and Energy (HZB), 12489 Berlin (Germany); Vössing, Daniel; Kasemann, Martin [University of Freiburg, Department of Microsystems Engineering - IMTEK, 79110 Freiburg (Germany); Angermann, Heike [Helmholtz Center Berlin for Materials and Energy (HZB), 12489 Berlin (Germany)

    2017-02-15

    Highlights: • Fabrication of ultrathin SiO{sub 2} tunnel layers on c-Si. • Correlation of electronic and chemical SiO{sub 2}/Si interface properties revealed by XPS/SPV. • Chemically abrupt SiO{sub 2}/Si interfaces generate less interface defect states considerable. - Abstract: Six advanced oxidation techniques were analyzed, evaluated and compared with respect to the preparation of high-quality ultra-thin oxide layers on crystalline silicon. The resulting electronic and chemical SiO{sub 2}/Si interface properties were determined by a combined x-ray photoemission (XPS) and surface photovoltage (SPV) investigation. Depending on the oxidation technique, chemically abrupt SiO{sub 2}/Si interfaces with low densities of interface states were fabricated on c-Si either at low temperatures, at short times, or in wet-chemical environment, resulting in each case in excellent interface passivation. Moreover, the beneficial effect of a subsequent forming gas annealing (FGA) step for the passivation of the SiO{sub 2}/Si interface of ultra-thin oxide layers has been proven. Chemically abrupt SiO{sub 2}/Si interfaces have been shown to generate less interface defect states.

  13. Thin layer settling - a promising method for purifying industrial waste waters

    Energy Technology Data Exchange (ETDEWEB)

    Perevalov, V G; Kolokhmatova, N M; Malkina, I I; Smyslov, A I

    1979-01-01

    Proposed for removing oil and suspended substances from waste waters is a thin layer, tubular settler, whose elements are made from polyethylene pipes. The operational effectiveness of the settler on the average is 90-95%, the duration of the purification is 10-11 min, which is 1/12 of that in the most common and contemporary oil traps. The volume of the settler structure with this productivity may be reduced by 12 times.

  14. Thin film deposition using rarefied gas jet

    Science.gov (United States)

    Pradhan, Sahadev, , Dr.

    2017-06-01

    The rarefied gas jet of aluminium is studied at Mach number Ma = (Uj /√{ kbTj / mg }) in the range .01 PVD) process for the development of the highly oriented pure metallic aluminum thin film with uniform thickness and strong adhesion on the surface of the substrate in the form of ionic plasma, so that the substrate can be protected from corrosion and oxidation and thereby enhance the lifetime and safety, and to introduce the desired surface properties for a given application. Here, H is the characteristic dimension, U_j and T_j are the jet velocity and temperature, n_d is the number density of the jet, m and d are the molecular mass and diameter, and kbis the Boltzmann constant. An important finding is that the capture width (cross-section of the gas jet deposited on the substrate) is symmetric around the centerline of the substrate, and decreases with increased Mach number due to an increase in the momentum of the gas molecules. DSMC simulation results reveals that at low Knudsen number ((Kn=0.01); shorter mean free paths), the atoms experience more collisions, which direct them toward the substrate. However, the atoms also move with lower momentum at low Mach number, which allows scattering collisions to rapidly direct the atoms to the substrate.

  15. An RBS study of thin PLD and MOCVD strontium copper oxide layers

    Energy Technology Data Exchange (ETDEWEB)

    Kantor, Z. [Institute of Physics, University of Pannonia, H-8200 Veszprem (Hungary); Papadopoulou, E.L.; Aperathitis, E. [Inst. Electronic Struture and Laser, Foundation for Research and Technology - Hellas, P.O. Box 1527, Heraklion 71110 (Greece); Deschanvres, J.-L. [LMPG INP Grenoble-Minatec, BP 257, 38016 Grenoble Cedex 1 (France); Somogyi, K. [MicroVacuum Ltd., Kerekgyarto u.: 10, H-1147 Budapest (Hungary)], E-mail: karoly.somogyi@microvacuum.com; Szendro, I. [MicroVacuum Ltd., Kerekgyarto u.: 10, H-1147 Budapest (Hungary)

    2008-09-30

    Strontium copper oxide (SCO) has been studied as p-type transparent (VIS) conductive oxide material. Also theoretical studies suggested p-type conductivity of the SrCu{sub 2}O{sub 2} composition. SCO thin layers, with thicknesses of 30-2000 nm, were deposited on glass and silicon substrates both by pulsed laser deposition (PLD) and by MOCVD method. The as-grown layers showed high electrical resistance. Due to an annealing process, the resistivity significantly decreased and the layers showed p-type conductivity. Optical transparency measured on samples grown on glass substrates was found about or above 80%, including also thickness dependence. RBS measurements were applied for the determination of the chemical composition profile of the layers. A comparison revealed some specific differences between as-grown and annealed PLD samples. Due to the annealing, the ratio of oxide phases was changed and a vertical inhomogeneity in chemical composition was observed. Our measurements revealed also the influence of the deposition technique and of the substrate.

  16. Modeling growth kinetics of thin films made by atomic layer deposition in lateral high-aspect-ratio structures

    Science.gov (United States)

    Ylilammi, Markku; Ylivaara, Oili M. E.; Puurunen, Riikka L.

    2018-05-01

    The conformality of thin films grown by atomic layer deposition (ALD) is studied using all-silicon test structures with long narrow lateral channels. A diffusion model, developed in this work, is used for studying the propagation of ALD growth in narrow channels. The diffusion model takes into account the gas transportation at low pressures, the dynamic Langmuir adsorption model for the film growth and the effect of channel narrowing due to film growth. The film growth is calculated by solving the diffusion equation with surface reactions. An efficient analytic approximate solution of the diffusion equation is developed for fitting the model to the measured thickness profile. The fitting gives the equilibrium constant of adsorption and the sticking coefficient. This model and Gordon's plug flow model are compared. The simulations predict the experimental measurement results quite well for Al2O3 and TiO2 ALD processes.

  17. Fabrication of highly sensitive and selective H{sub 2} gas sensor based on SnO{sub 2} thin film sensitized with microsized Pd islands

    Energy Technology Data Exchange (ETDEWEB)

    Van Toan, Nguyen; Viet Chien, Nguyen; Van Duy, Nguyen [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No. 1, Dai Co Viet Road, Hanoi (Viet Nam); Si Hong, Hoang [School of Electrical Engineering (SEE), Hanoi University of Science and Technology (HUST), Hanoi (Viet Nam); Nguyen, Hugo [Division of Microsystems Technology, Department of Engineering Sciences, Uppsala University, 75237 Uppsala (Sweden); Duc Hoa, Nguyen [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No. 1, Dai Co Viet Road, Hanoi (Viet Nam); Van Hieu, Nguyen, E-mail: hieu@itims.edu.vn [International Training Institute for Materials Science (ITIMS), Hanoi University of Science and Technology (HUST), No. 1, Dai Co Viet Road, Hanoi (Viet Nam)

    2016-01-15

    Highlights: • H{sub 2} gas sensors based on SnO{sub 2} thin film sensitized with Pd islands were fabricated. • The sensors could monitor hazardous H{sub 2}n gas at low concentrations of 25–250 ppm. • H{sub 2} response of Pd/SnO{sub 2} is higher than that of Pt/SnO{sub 2} and Au/SnO{sub 2} sensors. • Enhancement of sensor performance was discussed based on spillover and diffusion mechanisms. - Abstract: Ultrasensitive and selective hydrogen gas sensor is vital component in safe use of hydrogen that requires a detection and alarm of leakage. Herein, we fabricated a H{sub 2} sensing devices by adopting a simple design of planar-type structure sensor in which the heater, electrode, and sensing layer were patterned on the front side of a silicon wafer. The SnO{sub 2} thin film-based sensors that were sensitized with microsized Pd islands were fabricated at a wafer-scale by using a sputtering system combined with micro-electronic techniques. The thicknesses of SnO{sub 2} thin film and microsized Pd islands were optimized to maximize the sensing performance of the devices. The optimized sensor could be used for monitoring hydrogen gas at low concentrations of 25–250 ppm, with a linear dependence to H{sub 2} concentration and a fast response and recovery time. The sensor also showed excellent selectivity for monitoring H{sub 2} among other gases, such as CO, NH{sub 3}, and LPG, and satisfactory characteristics for ensuring safety in handling hydrogen. The hydrogen sensing characteristics of the sensors sensitized with Pt and Au islands were also studied to clarify the sensing mechanisms.

  18. Use of two-phase aqueous systems based on water-soluble polymers in thin-layer and extraction chromatography for recovery and separtion of actinides

    International Nuclear Information System (INIS)

    Molochnikova, N.P.; Shkinev, V.M.; Myasoedov, B.F.

    1995-01-01

    The feasibility has been demonstrated of using two-phase aqueous systems based on water-soluble polymers, polyethylene glycol and dextran sulfate, in thin-layer and extraction chromatography for recovery and separation of actinides. A convenient method has been proposed for continuous recovery of 239 Np from 243 Am, originating from differences in sorption of tri- and pentavalent actinides from sulfate solutions containing potassium phosphotungstate by silica gel impregnated with polyethylene glycol. New plates for thin-layer chromatography using water-soluble polymers have been developed. These plates were used to study behavior of americium in various oxidation states in thin sorbent layers

  19. TiO2 nanofiber solid-state dye sensitized solar cells with thin TiO2 hole blocking layer prepared by atomic layer deposition

    International Nuclear Information System (INIS)

    Li, Jinwei; Chen, Xi; Xu, Weihe; Nam, Chang-Yong; Shi, Yong

    2013-01-01

    We incorporated a thin but structurally dense TiO 2 layer prepared by atomic layer deposition (ALD) as an efficient hole blocking layer in the TiO 2 nanofiber based solid-state dye sensitized solar cell (ss-DSSC). The nanofiber ss-DSSCs having ALD TiO 2 layers displayed increased open circuit voltage, short circuit current density, and power conversion efficiency compared to control devices with blocking layers prepared by spin-coating liquid TiO 2 precursor. We attribute the improved photovoltaic device performance to the structural integrity of ALD-coated TiO 2 layer and consequently enhanced hole blocking effect that results in reduced dark leakage current and increased charge carrier lifetime. - Highlights: • TiO 2 blocking locking layer prepared by atomic layer deposition (ALD) method. • ALD-coated TiO 2 layer enhanced hole blocking effect. • ALD blocking layer improved the voltage, current and efficiency. • ALD blocking layer reduced dark leakage current and increased electron lifetime

  20. Robotic thin layer chromatography instrument for synthetic chemistry

    International Nuclear Information System (INIS)

    Corkan, L.A.; Haynes, E.; Kline, S.; Lindsey, J.S.

    1991-01-01

    We have constructed a second generation instrument for performing automated thin layer chromatography (TLC), The TLC instrument Consists of four dedicated stations for (1) plate dispensing, (2) sample application, (3) plate development, and (4) densitometry. A robot is used to move TLC plates among stations. The TLC instrument functions either as a stand-alone unit or as one analytical module in a robotic workstation for synthetic chemistry. An integrated hardware and software architecture enables automatic TLC analysis of samples produced concurrently from synthetic reactions in progress on the workstation. The combination of fixed automation and robotics gives a throughput of 12 TLC samples per hour. From these results a blueprint has emerged for an advanced automated TLC instrument with far greater throughput and analytical capabilities

  1. Thin film heat flux sensor for Space Shuttle Main Engine turbine environment

    Science.gov (United States)

    Will, Herbert

    1991-01-01

    The Space Shuttle Main Engine (SSME) turbine environment stresses engine components to their design limits and beyond. The extremely high temperatures and rapid temperature cycling can easily cause parts to fail if they are not properly designed. Thin film heat flux sensors can provide heat loading information with almost no disturbance of gas flows or of the blade. These sensors can provide steady state and transient heat flux information. A thin film heat flux sensor is described which makes it easier to measure small temperature differences across very thin insulating layers.

  2. Bearing Capacity of Footings on Thin Layer of Sand on Soft Cohesive Soil

    DEFF Research Database (Denmark)

    Philipsen, J.; Sørensen, Carsten S.

    2004-01-01

    This paper contains the results of some numerical calculations performed with the aim to determine the bearing capacities of footings placed on a thin layer of sand underlain by soft cohesive soil. During the last 30-35 years different analytical and empirical calculation methods for this situation...... prepared model tests made in laboratories....

  3. High performance thin layer chromatography profile of Cassytha filiformis

    Institute of Scientific and Technical Information of China (English)

    Mythili Sathiavelu; Sathiavelu Arunachalam

    2012-01-01

    Objective: To study the phenols, flavonoids, saponin profile of the medicinal plant Cassytha filiformis (C. filiformis) using high performance thin layer chromatography (HPTLC). Methods:The extracts were tested to determine the presence of various phytochmeicals like alkaloids, phenolic compounds, flavonoids, carbohydrates, glycosides, saponins, terpenoids, tannins, fixed oils, fats and protein and aminoacids (Harborne and Harborne, 1998). HPTLC studies were carried out by Harborne and Wagner et al method. Different compositions of the mobile phase for HPTLC analysis were tested in order to obtain high resolution and reproducible peaks. Results: The results of the preliminary phytochemical studies confirm the presence of phenols, alkaloids, carbohydrates, saponins, flavanoids, terpenoids and tannins in the methanolic extracts of C. filiformis. The methanolic extracts of C. filiformis displayed the presence of 13 types of phenolic substances with 13 different Rf values ranging from 0.01 to 0.96. The results illustrated the presence of 9 different types of flavonoides with 9 different Rf values ranging from 0.01 to 0.97. The results of HPTLC analysis of saponins demonstrated the presence of 11 different types of saponins with 11 different Rf values ranging from 0.04 to 0.92. Conclusions: In the present study we observed the phenols, flavonoids, saponin profile of the medicinal plant C. filiformis using high performance thin layer chromatography (HPTLC). Hence it was concluded that the phenolic compounds present in the methonolic extract could be responsible for antioxidant activities. Plant derived antioxidants, especially phenols and flavonoids, have been described to have various properties like anticancer, antiaging and prevention of cardiovascular diseases. Furthur, separation and characterization of the bioactive compound from the plant is to be evaluated and reported in near future.

  4. Silver nanoparticle formation in thin oxide layer on silicon by silver-negative-ion implantation for Coulomb blockade at room temperature

    International Nuclear Information System (INIS)

    Tsuji, Hiroshi; Arai, Nobutoshi; Matsumoto, Takuya; Ueno, Kazuya; Gotoh, Yasuhito; Adachi, Kouichiro; Kotaki, Hiroshi; Ishikawa, Junzo

    2004-01-01

    Formation of silver nanoparticles formed by silver negative-ion implantation in a thin SiO 2 layer and its I-V characteristics were investigated for development single electron devices. In order to obtain effective Coulomb blockade phenomenon at room temperature, the isolated metal nanoparticles should be in very small size and be formed in a thin insulator layer such as gate oxide on the silicon substrate. Therefore, conditions of a fine particles size, high particle density and narrow distribution should be controlled at their formation without any electrical breakdown of the thin insulator layer. We have used a negative-ion implantation technique with an advantage of 'charge-up free' for insulators, with which no breakdown of thin oxide layer on Si was obtained. In the I-V characteristics with Au electrode, the current steps were observed with a voltage interval of about 0.12 V. From the step voltage the corresponded capacitance was calculated to be 0.7 aF. In one nanoparticle system, this value of capacitance could be given by a nanoparticle of about 3 nm in diameter. This consideration is consistent to the measured particle size in the cross-sectional TEM observation. Therefore, the observed I-V characteristics with steps are considered to be Coulomb staircase by the Ag nanoparticles

  5. The production of ultra-thin layers of ion-exchange resin and metallic silver by electrospraying

    International Nuclear Information System (INIS)

    Wyllie, H.A.

    1988-10-01

    Highly efficient radioactive sources for use in radioisotope metrology have been prepared on ultra-thin layers of electrosprayed ion-exchange resin. The efficiency of these sources can be reduced for the purpose of radioactivity standardisation by coating them with conducting silver layers which are also produced by electrospraying. A description is given of improvements to the electrospraying methods, together with details of the rotating, oscillating source-mount turntable

  6. Bubble-induced mixing of two horizontal liquid layers with non-uniform gas injection at the bottom

    International Nuclear Information System (INIS)

    Cheung, F.B.; Pedersen, D.R.; Leinweber, G.

    1986-01-01

    During a postulated severe core meltdown accident in an LMFBR, a large amount of sodium coolant may spill into the reactor concrete cavity. A layer of liquid products may form as a result of the sodium-concrete reactions. The liquid product layer, which is highly viscous and much heavier than sodium, separates the concrete from the sodium pool. In general, the downward transport of sodium through the liquid product layer to the unreacted concrete surface, which controls the rate of chemical erosion of the concrete, depends strongly on the agitation induced by gas evolution from the heated concrete. In this study, experiments were conducted to explore the effect of non-uniform gas injection on mixing of two horizontal mutually soluble liquid layers. The liquid in the lower layer was chosen to be more viscous and heavier than the liquid in the upper layer. To simulate the reactor accident situation, gas was injected at the bottom of the liquid-liquid system through a circular hole that covered only the center portion of the bottom surface of the lower liquid layer. The bubble-induced mixing motions were observed and the rate of mixing was measured for different hole sizes and various gas flow rates. The results of this study clearly show that the rate of gas injection is not the only parameter controlling the mixing of the liquid-liquid system. The effect of non-uniform gas injection is important at high gas flow rates. Within the present experimental conditions, the reduction in the overall mixing rate can be as large as a factor of three

  7. Determination of the Mass Absorption Coefficient in Two-Layer Ti/V and V/Ti Thin Film Systems by the X-Ray Fluorescence Method

    Science.gov (United States)

    Mashin, N. I.; Chernyaeva, E. A.; Tumanova, A. N.; Gafarova, L. M.

    2016-03-01

    A new XRF procedure for the determination of the mass absorption coefficient in thin film Ti/V and V/Ti two-layer systems has been proposed. The procedure uses easy-to-make thin-film layers of sputtered titanium and vanadium on a polymer film substrate. Correction coefficients have been calculated that take into account attenuation of primary radiation of the X-ray tube, as well as attenuation of the spectral line of the bottom layer element in the top layer.

  8. Granular and layered ferroelectric–ferromagnetic thin-film nanocomposites as promising materials with high magnetotransmission effect

    Energy Technology Data Exchange (ETDEWEB)

    Akbashev, A.R. [Department of Materials Science, Moscow State University, 119992 Moscow (Russian Federation); Telegin, A.V., E-mail: telegin@imp.uran.ru [M.N. Miheev Institute of Metal Physics of Ural Branch of RAS, 620990 Ekaterinburg (Russian Federation); Kaul, A.R. [Department of Chemistry, Moscow State University, 119992 Moscow (Russian Federation); Sukhorukov, Yu.P. [M.N. Miheev Institute of Metal Physics of Ural Branch of RAS, 620990 Ekaterinburg (Russian Federation)

    2015-06-15

    Epitaxial thin films of granular and layered nanocomposites consisting of ferromagnetic perovskite Pr{sub 1–x}Sr{sub x}MnO{sub 3} and ferroelectric hexagonal LuMnO{sub 3} were grown on ZrO{sub 2}(Y{sub 2}O{sub 3}) substrates using metal-organic chemical vapor deposition (MOCVD). A self-organized growth of the granular composite took place in situ as a result of phase separation of the Pr–Sr–Lu–Mn–O system into the perovskite and hexagonal phases. Optical transmission measurements revealed a large negative magnetotransmission effect in the layered nanocomposite over a wide spectral and temperature range. The granular nanocomposite unexpectedly showed an even larger, but positive, magnetotransmission effect at room temperature. - Highlights: • Thin-film ferromagnetic–ferroelectric nanocomposites have been prepared by MOCVD. • Giant change of optical transparency of nanocomposites in magnetic field was detected. • Positive magnetotransmission in the granular nanocomposite was discovered in the IR. • Negative magnetotransmission in the layered nanocomposite was revealed in the IR. • Ferroelectric–ferromangetic nanocomposite is a promising material for optoelectronics.

  9. Granular and layered ferroelectric–ferromagnetic thin-film nanocomposites as promising materials with high magnetotransmission effect

    International Nuclear Information System (INIS)

    Akbashev, A.R.; Telegin, A.V.; Kaul, A.R.; Sukhorukov, Yu.P.

    2015-01-01

    Epitaxial thin films of granular and layered nanocomposites consisting of ferromagnetic perovskite Pr 1–x Sr x MnO 3 and ferroelectric hexagonal LuMnO 3 were grown on ZrO 2 (Y 2 O 3 ) substrates using metal-organic chemical vapor deposition (MOCVD). A self-organized growth of the granular composite took place in situ as a result of phase separation of the Pr–Sr–Lu–Mn–O system into the perovskite and hexagonal phases. Optical transmission measurements revealed a large negative magnetotransmission effect in the layered nanocomposite over a wide spectral and temperature range. The granular nanocomposite unexpectedly showed an even larger, but positive, magnetotransmission effect at room temperature. - Highlights: • Thin-film ferromagnetic–ferroelectric nanocomposites have been prepared by MOCVD. • Giant change of optical transparency of nanocomposites in magnetic field was detected. • Positive magnetotransmission in the granular nanocomposite was discovered in the IR. • Negative magnetotransmission in the layered nanocomposite was revealed in the IR. • Ferroelectric–ferromangetic nanocomposite is a promising material for optoelectronics

  10. Preparation and recording characteristics of granular-type perpendicular magnetic recording media with thin intermediate layer

    International Nuclear Information System (INIS)

    Shintaku, K.; Kiya, T.

    2008-01-01

    Granular-type media with thin Ru intermediate layer were prepared on a highly oriented high-B s FeCo soft underlayer (SUL). A CoPt-TiO 2 recording layer on a Ru intermediate layer of only 2 nm had high-crystal orientation, high H c of 6.5 kOe, and a high squareness ratio (SQ) of 0.99. The magnetic property of the SUL was also good. The recording performance was measured for the media with different Ru intermediate thicknesses by using a single-pole-type (SPT) head. The media had large reproduced output even for the Ru intermediate layer thickness of 2 nm

  11. Preparation and recording characteristics of granular-type perpendicular magnetic recording media with thin intermediate layer

    Energy Technology Data Exchange (ETDEWEB)

    Shintaku, K. [Akita Research Institute of Advanced Technology, Akita Prefectural R and D Center, 4-21 Sanuki, Araya, Akita 010-1623 (Japan)], E-mail: shintaku@ait.pref.akita.jp; Kiya, T. [Akita Research Institute of Advanced Technology, Akita Prefectural R and D Center, 4-21 Sanuki, Araya, Akita 010-1623 (Japan)

    2008-11-15

    Granular-type media with thin Ru intermediate layer were prepared on a highly oriented high-B{sub s} FeCo soft underlayer (SUL). A CoPt-TiO{sub 2} recording layer on a Ru intermediate layer of only 2 nm had high-crystal orientation, high H{sub c} of 6.5 kOe, and a high squareness ratio (SQ) of 0.99. The magnetic property of the SUL was also good. The recording performance was measured for the media with different Ru intermediate thicknesses by using a single-pole-type (SPT) head. The media had large reproduced output even for the Ru intermediate layer thickness of 2 nm.

  12. Thin-film encapsulation of organic electronic devices based on vacuum evaporated lithium fluoride as protective buffer layer

    Science.gov (United States)

    Peng, Yingquan; Ding, Sihan; Wen, Zhanwei; Xu, Sunan; Lv, Wenli; Xu, Ziqiang; Yang, Yuhuan; Wang, Ying; Wei, Yi; Tang, Ying

    2017-03-01

    Encapsulation is indispensable for organic thin-film electronic devices to ensure reliable operation and long-term stability. For thin-film encapsulating organic electronic devices, insulating polymers and inorganic metal oxides thin films are widely used. However, spin-coating of insulating polymers directly on organic electronic devices may destroy or introduce unwanted impurities in the underlying organic active layers. And also, sputtering of inorganic metal oxides may damage the underlying organic semiconductors. Here, we demonstrated that by utilizing vacuum evaporated lithium fluoride (LiF) as protective buffer layer, spin-coated insulating polymer polyvinyl alcohol (PVA), and sputtered inorganic material Er2O3, can be successfully applied for thin film encapsulation of copper phthalocyanine (CuPc)-based organic diodes. By encapsulating with LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films, the device lifetime improvements of 10 and 15 times can be achieved. These methods should be applicable for thin-film encapsulation of all kinds of organic electronic devices. Moisture-induced hole trapping, and Al top electrode oxidation are suggest to be the origins of current decay for the LiF/PVA/LiF trilayer and LiF/Er2O3 bilayer films encapsulated devices, respectively.

  13. Influence of the spacer layer on microstructure and magnetic properties of [NdFeB/(NbCu)]xn thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chiriac, H. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania); Grigoras, M. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania); Urse, M. [National Institute of R and D for Technical Physics, 47 Mangeron Blvd., 700050 Iasi (Romania)]. E-mail: urse@phys-iasi.ro

    2007-09-15

    Some results concerning the influence of the composition and thickness of NbCu spacer layer on the microstructure and magnetic properties of multilayer [NdFeB/(NbCu)]xn films, in view of their utilization for manufacturing the thin film permanent magnets are presented. A comparison between the microstructure and magnetic properties of NdFeB single layer and [NdFeB/(NbCu)]xn multilayer is also presented. The multilayer [NdFeB/(NbCu)]xn thin films with the thickness of the NdFeB layer of 180nm and the thickness of the NbCu spacer layer of 3nm, exhibit good hard magnetic characteristics such as coercive force H{sub c} of about 1510kA/m and the remanence ratio M{sub r}/M{sub s} of about 0.8.

  14. Influence of the spacer layer on microstructure and magnetic properties of [NdFeB/(NbCu)]xn thin films

    International Nuclear Information System (INIS)

    Chiriac, H.; Grigoras, M.; Urse, M.

    2007-01-01

    Some results concerning the influence of the composition and thickness of NbCu spacer layer on the microstructure and magnetic properties of multilayer [NdFeB/(NbCu)]xn films, in view of their utilization for manufacturing the thin film permanent magnets are presented. A comparison between the microstructure and magnetic properties of NdFeB single layer and [NdFeB/(NbCu)]xn multilayer is also presented. The multilayer [NdFeB/(NbCu)]xn thin films with the thickness of the NdFeB layer of 180nm and the thickness of the NbCu spacer layer of 3nm, exhibit good hard magnetic characteristics such as coercive force H c of about 1510kA/m and the remanence ratio M r /M s of about 0.8

  15. Ceramic Composite Thin Films

    Science.gov (United States)

    Ruoff, Rodney S. (Inventor); Stankovich, Sasha (Inventor); Dikin, Dmitriy A. (Inventor); Nguyen, SonBinh T. (Inventor)

    2013-01-01

    A ceramic composite thin film or layer includes individual graphene oxide and/or electrically conductive graphene sheets dispersed in a ceramic (e.g. silica) matrix. The thin film or layer can be electrically conductive film or layer depending the amount of graphene sheets present. The composite films or layers are transparent, chemically inert and compatible with both glass and hydrophilic SiOx/silicon substrates. The composite film or layer can be produced by making a suspension of graphene oxide sheet fragments, introducing a silica-precursor or silica to the suspension to form a sol, depositing the sol on a substrate as thin film or layer, at least partially reducing the graphene oxide sheets to conductive graphene sheets, and thermally consolidating the thin film or layer to form a silica matrix in which the graphene oxide and/or graphene sheets are dispersed.

  16. SOUND FIELD SHIELDING BY FLAT ELASTIC LAYER AND THIN UNCLOSED SPHERICAL SHELL

    Directory of Open Access Journals (Sweden)

    G. Ch. Shushkevich

    2014-01-01

    Full Text Available An analytical solution of a boundary problem describing the process of penetration of a sound field of a spherical radiator located inside a thin unclosed spherical shell through a flat elastic layer is constructed. An influence of some parameters of the problem on the value of the attenuation coeffi-cient (screening of the sound field was studied by using a numerical simulation.

  17. Atomically layer-by-layer diffusion of oxygen/hydrogen in highly epitaxial PrBaCo{sub 2}O{sub 5.5+δ} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bao, Shanyong; Xu, Xing; Enriquez, Erik; Mace, Brennan E.; Chen, Garry; Kelliher, Sean P.; Chen, Chonglin, E-mail: cl.chen@utsa.edu [Department of Physics and Astronomy, University of Texas, San Antonio, Texas 78249 (United States); Zhang, Yamei [Department of Physics, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212003 (China); Whangbo, Myung-Hwan [North Carolina State University, Raleigh, North Carolina 27695-8204 (United States); Dong, Chuang; Zhang, Qinyu [Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Ministry of Education, Dalian University of Technology, Dalian 116024 (China)

    2015-12-14

    Single-crystalline epitaxial thin films of PrBaCo{sub 2}O{sub 5.5+δ} (PrBCO) were prepared, and their resistance R(t) under a switching flow of oxidizing and reducing gases were measured as a function of the gas flow time t in the temperature range of 200–800 °C. During the oxidation cycle under O{sub 2}, the PrBCO films exhibit fast oscillations in their dR(t)/dt vs. t plots, which reflect the oxidation processes, Co{sup 2+}/Co{sup 3+} → Co{sup 3+} and Co{sup 3+} → Co{sup 3+}/Co{sup 4+}, that the Co atoms of PrBCO undergo. Each oscillation consists of two peaks, with larger and smaller peaks representing the oxygen/hydrogen diffusion through the (BaO)(CoO{sub 2})(PrO)(CoO{sub 2}) layers of PrBCO via the oxygen-vacancy-exchange mechanism. This finding paves a significant avenue for cathode materials operating in low-temperature solid-oxide-fuel-cell devices and for chemical sensors with wide range of operating temperature.

  18. Optical properties and defect levels in a surface layer found on CuInSe{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Abulfotuh, F.; Wangensteen, T.; Ahrenkiel, R.; Kazmerski, L.L. [National Renewable Energy Lab., Golden, CO (United States)

    1996-05-01

    In this paper the authors have used photoluminescence (PL) and wavelength scanning ellipsometry (WSE) to clarify the relationship among the electro-optical properties of copper indium diselenide (CIS) thin films, the type and origin of dominant defect states, and device performance. The PL study has revealed several shallow acceptor and donor levels dominating the semiconductor. PL emission from points at different depths from the surface of the CIS sample has been obtained by changing the angle of incidence of the excitation laser beam. The resulting data were used to determine the dominant defect states as a function of composition gradient at the surface of the chalcopyrite compound. The significance of this type of measurement is that it allowed the detection of a very thin layer with a larger bandgap (1.15-1.26 eV) than the CIS present on the surface of the CIS thin films. The presence of this layer has been correlated by several groups to improvement of the CIS cell performance. An important need that results from detecting this layer on the surface of the CIS semiconductor is the determination of its thickness and optical constants (n, k) as a function of wavelength. The thickness of this surface layer is about 500 {Angstrom}.

  19. Adsorption and electronic properties of pentacene on thin dielectric decoupling layers

    Directory of Open Access Journals (Sweden)

    Sebastian Koslowski

    2017-07-01

    Full Text Available With the increasing use of thin dielectric decoupling layers to study the electronic properties of organic molecules on metal surfaces, comparative studies are needed in order to generalize findings and formulate practical rules. In this paper we study the adsorption and electronic properties of pentacene deposited onto h-BN/Rh(111 and compare them with those of pentacene deposited onto KCl on various metal surfaces. When deposited onto KCl, the HOMO and LUMO energies of the pentacene molecules scale with the work functions of the combined KCl/metal surface. The magnitude of the variation between the respective KCl/metal systems indicates the degree of interaction of the frontier orbitals with the underlying metal. The results confirm that the so-called IDIS model developed by Willenbockel et al. applies not only to molecular layers on bare metal surfaces, but also to individual molecules on thin electronically decoupling layers. Depositing pentacene onto h-BN/Rh(111 results in significantly different adsorption characteristics, due to the topographic corrugation of the surface as well as the lateral electric fields it presents. These properties are reflected in the divergence from the aforementioned trend for the orbital energies of pentacene deposited onto h-BN/Rh(111, as well as in the different adsorption geometry. Thus, the highly desirable capacity of h-BN to trap molecules comes at the price of enhanced metal–molecule interaction, which decreases the HOMO–LUMO gap of the molecules. In spite of the enhanced interaction, the molecular orbitals are evident in scanning tunnelling spectroscopy (STS and their shapes can be resolved by spectroscopic mapping.

  20. Ferrite thin films: Synthesis, characterization and gas sensing properties towards LPG

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Pratibha; Godbole, R.V. [Department of Physics, Abasaheb Garware College, Karve Road, Pune 411 004 (India); Phase, D.M. [UGC-DAE CSR Centre, Indore (India); Chikate, R.C. [Department of Chemistry, Abasaheb Garware College, Karve Road, Pune 411 004 (India); Bhagwat, Sunita, E-mail: smb.agc@gmail.com [Department of Physics, Abasaheb Garware College, Karve Road, Pune 411 004 (India)

    2015-01-15

    Nanocrystalline (Co, Cu, Ni, Zn) ferrite thin films have been deposited onto the Si (100) and alumina substrates by spray pyrolysis deposition technique. Respective metal chlorides and iron chloride were used as precursors. The structural properties of (Co, Cu, Ni, Zn) ferrite thin films were investigated by X-ray diffraction (XRD) technique which confirms polycrystalline nature and single phase spinel structure. The surface morphology was studied using scanning electron microscopy (SEM) which reveals spherical morphology for these films except NiFe{sub 2}O{sub 4} films that exhibit petal like structure. The optical transmittance and reflectance measurements were recorded using a double beam spectrophotometer. The optical studies reveal that the transition is direct band gap energy. The VSM analyzes reveal the predominant ferrimagnetic nature for CuFe{sub 2}O{sub 4} films. The gas sensing properties towards Liquid Petroleum Gas (LPG) revealed that ZnFe{sub 2}O{sub 4} films are sensitive at lower temperature while NiFe{sub 2}O{sub 4} films show steep rise at higher temperature. - Highlights: • (Co, Cu, Ni, Zn) ferrite thin films are synthesized by simple spray pyrolysis technique. • Homogenization of substituent within ferrite structure. • CuFe{sub 2}O{sub 4} film exhibits predominantly ferrimagnetic nature. • LPG sensing at lower temperature for ZnFe{sub 2}O{sub 4} film. • High sensitivity for NiFe{sub 2}O{sub 4} film at higher temperature due to defects created in the structure.

  1. Approximate transient and long time limit solutions for the band broadening induced by the thin sidewall-layer in liquid chromatography columns.

    Science.gov (United States)

    Broeckhoven, Ken; Desmet, Gert

    2007-11-16

    Using a combination of both analytical and numerical techniques, approximate analytical expressions have been established for the transient and long time limit band broadening, originating from the presence of a thin disturbed sidewall layer in liquid chromatography columns, including packed, monolithic as well as microfabricated columns. The established expressions can be used to compare the importance of a thin disturbed sidewall layer with that of other radial heterogeneity effects (such as transcolumn packing density variations due to the relief of packing stresses). The expressions are independent of the actual velocity profile inside the layer as long as the disturbed sidewall layer occupies less than 2.5% of the column width.

  2. [Analysis of pigments from Rhodotorula glutinis by Raman spectroscopy and thin layer chromatography].

    Science.gov (United States)

    Yuan, Yu-feng; Tao, Zhan-hua; Wang, Xue; Li, Yong-qing; Liu, Jun-xian

    2012-03-01

    The pigments from Rhodotorula glutinis were separated by using thin layer chromatography, and the result showed that Rhodotorula glutinis cells could synthesize at least three kinds of pigments, which were beta-carotene, torulene, and torularhodin. The Raman spectra based on the three pigments were acquired, and original spectra were preprocessed by background elimination, baseline correction, and three-point-smoothing, then the averaged spectra from different pigments were investigated, and the result indicated that Raman shift which represents C-C bond was different, and the wave number of beta-carotene demonstrated the largest deviation, finally torulene and torularhodin in Rhodotorula glutinis had more content than beta-carotene. Quantitative analysis of Raman peak height ratio revealed that peak height ratio of pigments showed little difference, which could be used as parameters for further research on living cells, providing reference content of pigments. The above results suggest that Raman spectroscopy combined with thin layer chromatography can be applied to analyze pigments from Rhodotorula glutinis, provides abundant information about pigments, and serves as an effective method to study pigments.

  3. Controlling compositional homogeneity and crystalline orientation in Bi0.8Sb0.2 thermoelectric thin films

    Science.gov (United States)

    Rochford, C.; Medlin, D. L.; Erickson, K. J.; Siegal, M. P.

    2015-12-01

    Compositional-homogeneity and crystalline-orientation are necessary attributes to achieve high thermoelectric performance in Bi1-xSbx thin films. Following deposition in vacuum, and upon air exposure, we find that 50%-95% of the Sb in 100-nm thick films segregates to form a nanocrystalline Sb2O3 surface layer, leaving the film bulk as Bi-metal. However, we demonstrate that a thin SiN capping layer deposited prior to air exposure prevents Sb-segregation, preserving a uniform film composition. Furthermore, the capping layer enables annealing in forming gas to improve crystalline orientations along the preferred trigonal axis, beneficially reducing electrical resistivity.

  4. Controlling compositional homogeneity and crystalline orientation in Bi0.8Sb0.2 thermoelectric thin films

    Directory of Open Access Journals (Sweden)

    C. Rochford

    2015-12-01

    Full Text Available Compositional-homogeneity and crystalline-orientation are necessary attributes to achieve high thermoelectric performance in Bi1−xSbx thin films. Following deposition in vacuum, and upon air exposure, we find that 50%–95% of the Sb in 100-nm thick films segregates to form a nanocrystalline Sb2O3 surface layer, leaving the film bulk as Bi-metal. However, we demonstrate that a thin SiN capping layer deposited prior to air exposure prevents Sb-segregation, preserving a uniform film composition. Furthermore, the capping layer enables annealing in forming gas to improve crystalline orientations along the preferred trigonal axis, beneficially reducing electrical resistivity.

  5. Effect of Mg doping in ZnO buffer layer on ZnO thin film devices for electronic applications

    Science.gov (United States)

    Giri, Pushpa; Chakrabarti, P.

    2016-05-01

    Zinc Oxide (ZnO) thin films have been grown on p-silicon (Si) substrate using magnesium doped ZnO (Mg: ZnO) buffer layer by radio-frequency (RF) sputtering method. In this paper, we have optimized the concentration of Mg (0-5 atomic percent (at. %)) ZnO buffer layer to examine its effect on ZnO thin film based devices for electronic and optoelectronic applications. The crystalline nature, morphology and topography of the surface of the thin film have been characterized. The optical as well as electrical properties of the active ZnO film can be tailored by varying the concentration of Mg in the buffer layer. The crystallite size in the active ZnO thin film was found to increase with the Mg concentration in the buffer layer in the range of 0-3 at. % and subsequently decrease with increasing Mg atom concentration in the ZnO. The same was verified by the surface morphology and topography studies carried out with scanning electron microscope (SEM) and atomic electron microscopy (AFM) respectively. The reflectance in the visible region was measured to be less than 80% and found to decrease with increase in Mg concentration from 0 to 3 at. % in the buffer region. The optical bandgap was initially found to increase from 3.02 eV to 3.74 eV by increasing the Mg content from 0 to 3 at. % but subsequently decreases and drops down to 3.43 eV for a concentration of 5 at. %. The study of an Au:Pd/ZnO Schottky diode reveals that for optimum doping of the buffer layer the device exhibits superior rectifying behavior. The barrier height, ideality factor, rectification ratio, reverse saturation current and series resistance of the Schottky diode were extracted from the measured current voltage (I-V) characteristics.

  6. Synthesis of layered birnessite-type manganese oxide thin films on plastic substrates by chemical bath deposition for flexible transparent supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Hu Yu; Zhu Hongwei; Wang Jun [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Chen Zhenxing, E-mail: chenzx65@mail.sysu.edu.cn [School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2011-10-20

    Highlights: > Layered birnessite-type MnO{sub 2} thin films are fabricated on ITO/PET substrates through a facile chemical bath deposition at room temperature. > The transmittance of the MnO{sub 2} thin films at 550 nm is up to 77.4%. > MnO{sub 2} thin films exhibit a special capacitance of 229.2 F g{sup -1} and 9.2 mF cm{sup -2}. > MnO{sub 2} thin films show a capacitance retention ratio of 83% after 1000 CV cycles. > MnO{sub 2} thin film electrodes show great mechanical flexibility and electrochemical stability even after 200 tensile and compressive bending cycles. - Abstract: Layered birnessite-type manganese oxide thin films are successfully fabricated on indium tin oxide coated polyethylene terephthalate substrates for flexible transparent supercapacitors by a facile, effective and inexpensive chemical bath deposition technology from an alkaline KMnO{sub 4} aqueous solution at room temperature. The effects of deposition conditions, including KMnO{sub 4} concentration, initial molar ratio of NH{sub 3}.H{sub 2}O and KMnO{sub 4}, bath temperature, and reaction time, on the electrochemical properties of MnO{sub 2} thin films are investigated. Layered birnessite-type MnO{sub 2} thin films deposited under optimum conditions display three-dimensional porous morphology, high hydrophilicity, and a transmittance of 77.4% at 550 nm. A special capacitance of 229.2 F g{sup -1} and a capacitance retention ratio of 83% are obtained from the films after 1000 cycles at 10 mV s{sup -1} in 1 M Na{sub 2}SO{sub 4}. Compressive and tensile bending tests show that as-prepared MnO{sub 2} thin film electrodes possess excellent mechanical flexibility and electrochemical stability.

  7. Assessment of doses caused by electrons in thin layers of tissue-equivalent materials, using MCNP.

    Science.gov (United States)

    Heide, Bernd

    2013-10-01

    Absorbed doses caused by electron irradiation were calculated with Monte Carlo N-Particle transport code (MCNP) for thin layers of tissue-equivalent materials. The layers were so thin that the calculation of energy deposition was on the border of the scope of MCNP. Therefore, in this article application of three different methods of calculation of energy deposition is discussed. This was done by means of two scenarios: in the first one, electrons were emitted from the centre of a sphere of water and also recorded in that sphere; and in the second, an irradiation with the PTB Secondary Standard BSS2 was modelled, where electrons were emitted from an (90)Sr/(90)Y area source and recorded inside a cuboid phantom made of tissue-equivalent material. The speed and accuracy of the different methods were of interest. While a significant difference in accuracy was visible for one method in the first scenario, the difference in accuracy of the three methods was insignificant for the second one. Considerable differences in speed were found for both scenarios. In order to demonstrate the need for calculating the dose in thin small zones, a third scenario was constructed and simulated as well. The third scenario was nearly equal to the second one, but a pike of lead was assumed to be inside the phantom in addition. A dose enhancement (caused by the pike of lead) of ∼113 % was recorded for a thin hollow cylinder at a depth of 0.007 cm, which the basal-skin layer is referred to in particular. Dose enhancements between 68 and 88 % were found for a slab with a radius of 0.09 cm for all depths. All dose enhancements were hardly noticeable for a slab with a cross-sectional area of 1 cm(2), which is usually applied to operational radiation protection.

  8. Multi-layered satisficing decision making in oil and gas production platforms

    DEFF Research Database (Denmark)

    Lindegaard Mikkelsen, Lars; Demazeau, Yves; Jørgensen, B. N.

    2013-01-01

    From a control perspective, offshore oil and gas production is very challenging due to the many and potentially conflicting production objectives that arise from the intrinsic complexity of the oil and gas domain. In this paper, we show how a multi-layered multi-agent system can be used to implem...

  9. In-situ laser processing and microstructural characteristics of YBa2Cu3O7-δ thin films on Si with TiN buffer layer

    International Nuclear Information System (INIS)

    Tiwari, P.; Zheleva, T.; Narayan, J.

    1993-01-01

    The authors have prepared high-quality superconducting YBa 2 Cu 3 O 7 -δ (YBCO) thin films on Si(100) with TiN as a buffer layer using in-situ multitarget deposition system. Both TiN and YBCO thin films were deposited sequentially by KrF excimer laser ( | = 248 nm ) at substrate temperature of 650 C . Thin films were characterized using X-ray diffraction (XRD), four-point-probe ac resistivity, scanning electron microscopy (S E M), transmission electron microscopy (TEM), and Rutherford backscattering (RBS). The TiN buffer layer was epitaxial and the epitaxial relationship was found to be cube on cube with TiN parallel Si. YBCO thin films on Si with TiN buffer layer showed the transition temperature of 90-92K with T co (zero resistance temperature) of 84K. The authors have found that the quality of the buffer layer is very important in determining the superconducting transition temperature of the thin film. The effects of processing parameters and the correlation of microstructural features with superconducting properties are discussed in detail

  10. Thin-Film layers with Interfaces that reduce RF Losses on High-Resistivity Silicon Substrates

    NARCIS (Netherlands)

    Evseev, S. B.; Milosavljevic, S.; Nanver, L. K.

    2017-01-01

    Radio-Frequency (RF) losses on High-Resistivity Silicon (HRS) substrates were studied for several different surface passivation layers comprising thin-films of SiC, SiN and SiO2 In many combinations, losses from conductive surface channels were reduced and increasing the number of interfaces between

  11. Indium sulfide thin films as window layer in chemically deposited solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Lugo-Loredo, S. [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico); Peña-Méndez, Y., E-mail: yolapm@gmail.com [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico); Calixto-Rodriguez, M. [Universidad Tecnológica Emiliano Zapata del Estado de Morelos, Av. Universidad Tecnológica No. 1, C.P. 62760 Emiliano Zapata, Morelos (Mexico); Messina-Fernández, S. [Universidad Autónoma de Nayarit, Ciudad de la Cultura “Amado Nervo” S/N, C.P. 63190 Tepic, Nayarit (Mexico); Alvarez-Gallegos, A. [Universidad Autónoma del Estado de Morelos, Centro de Investigación en Ingeniería y Ciencias Aplicadas, Av. Universidad 1001, C.P. 62209, Cuernavaca Morelos (Mexico); Vázquez-Dimas, A.; Hernández-García, T. [Universidad Autónoma de Nuevo León, UANL, Fac. de Ciencias Químicas, Av. Universidad S/N Ciudad Universitaria San Nicolás de Los Garza Nuevo León, C.P. 66451 (Mexico)

    2014-01-01

    Indium sulfide (In{sub 2}S{sub 3}) thin films have been synthesized by chemical bath deposition technique onto glass substrates using In(NO{sub 3}){sub 3} as indium precursor and thioacetamide as sulfur source. X-ray diffraction studies have shown that the crystalline state of the as-prepared and the annealed films is β-In{sub 2}S{sub 3}. Optical band gap values between 2.27 and 2.41 eV were obtained for these films. The In{sub 2}S{sub 3} thin films are photosensitive with an electrical conductivity value in the range of 10{sup −3}–10{sup −7} (Ω cm){sup −1}, depending on the film preparation conditions. We have demonstrated that the In{sub 2}S{sub 3} thin films obtained in this work are suitable candidates to be used as window layer in thin film solar cells. These films were integrated in SnO{sub 2}:F/In{sub 2}S{sub 3}/Sb{sub 2}S{sub 3}/PbS/C–Ag solar cell structures, which showed an open circuit voltage of 630 mV and a short circuit current density of 0.6 mA/cm{sup 2}. - Highlights: • In{sub 2}S{sub 3} thin films were deposited using the Chemical Bath Deposition technique. • A direct energy band gap between 2.41 to 2.27 eV was evaluated for the In{sub 2}S{sub 3} films. • We made chemically deposited solar cells using the In{sub 2}S{sub 3} thin films.

  12. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure

    KAUST Repository

    Tiraferri, Alberto; Yip, Ngai Yin; Phillip, William A.; Schiffman, Jessica D.; Elimelech, Menachem

    2011-01-01

    the technology to the point that it is commercially viable. Here, a systematic investigation of the influence of thin-film composite membrane support layer structure on forward osmosis performance is conducted. The membranes consist of a selective polyamide

  13. Preparation of nanostructured PbS thin films as sensing element for NO{sub 2} gas

    Energy Technology Data Exchange (ETDEWEB)

    Kaci, S., E-mail: k_samira05@yahoo.fr [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE) Division Couches Minces et Interfaces, 02 Bd Frantz Fanon, B.P. 140, 7 Merveilles, 16038 Algiers (Algeria); Keffous, A.; Hakoum, S. [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE) Division Couches Minces et Interfaces, 02 Bd Frantz Fanon, B.P. 140, 7 Merveilles, 16038 Algiers (Algeria); Trari, M. [Université des Sciences et Technologies Houari Boumediene (USTHB), Laboratoire de Stockage et de Valorisation des Eneriges Renouvelables, Faculté de Chimie, BP 32, EL Alia, 16111 Bab Ezzouar, Algiers (Algeria); Mansri, O.; Menari, H. [Centre de Recherche en Technologie des Semi-conducteurs pour l’Energétique (CRTSE) Division Couches Minces et Interfaces, 02 Bd Frantz Fanon, B.P. 140, 7 Merveilles, 16038 Algiers (Algeria)

    2014-06-01

    In this work, we demonstrate that semiconducting films of A{sub IV}B{sub VI} compounds, in particular, of nanostructured lead sulfide (PbS) which prepared by chemical bath deposition (CBD), can be used as a sensing element for nitrogen dioxide (NO{sub 2}) gas. The CBD method is versatile, simple in implementation and gives homogeneous semiconductor structures. We have prepared PbS nanocrystalline thin film at different reaction baths and temperatures. In the course of deposition, variable amounts of additives, such as organic substances among them, were introduced into the baths. The energy dispersive analysis (EDX) confirms the chemical composition of PbS films. A current–voltage (I–V) characterization of Pd/nc-PbS/a-SiC:H pSi(100)/Al Schottky diode structures were studied in the presence of NO{sub 2} gas. The gas sensing behavior showed that the synthesized PbS nanocrystalline thin films were influenced by NO{sub 2} gas at room temperature. The results can be used for developing an experimental sensing element based on chemically deposited nanostructured PbS films which can be applicable in gas sensors.

  14. Electroluminescence of organic light-emitting diodes with an ultra-thin layer of dopant

    Energy Technology Data Exchange (ETDEWEB)

    Li Weizhi [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Yu Junsheng [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)], E-mail: jsyu@uestc.edu.cn; Wang, Tao [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China); Jiang, Yadong [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)], E-mail: jiangyd@uestc.edu.cn; Wei, Bangxiong [State Key Lab of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2008-03-15

    Conventional fluorescent dyes, i.e., 4-(dicyanomethylene)-2-t-butyl-6(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB), 5,12-dihydro-5,12-dimethylquino [2,3-b]acridine-7,14-dione (DMQA) and 5,6,11,12-tetraphenylnaphthacene (Rubrene), were used to investigate the performance of organic light-emitting diodes (OLEDs) based on indium tin oxide (ITO)/N,N'-bis-(1-naphthyl)-N,N'-diphenyl-1,1'-biphenyl-4,4'-diamine (NPB)/tris-(8-hydroxyquinolate)-aluminum (Alq{sub 3})/MgAg. The dyes were either inserted into devices as an ultra-thin film at the NPB/Alq{sub 3} interface by sequential evaporation, or doped into the Alq{sub 3} emission layer by co-evaporation with the doping ratio about 2%. Electroluminescence (EL) spectra of devices indicated that concentration quenching effect (CQE) of the dye-dopant was slightly bigger in the former than in the latter, while the degrees of CQE for three dopants are in the order of DMQA > DCJTB > Rubrene suggested by the difference in EL spectra and performances of devices. In addition, EL process of device with an ultra-thin layer of dopant is dominated by direct carrier trapping (DCT) process due to almost no holes recombine with electrons in Alq{sub 3}-host layer.

  15. Preparation of thin layers of BiSrCaCuO by method MOCVD

    International Nuclear Information System (INIS)

    Beran, P.; Stejskal, J.; Strejc, A.; Nevriva, M.; Sedmibudsky, D.; Leitner, J.

    1999-01-01

    Preparation of superconducting material on the basis mixed oxides of BiSrCaCuO by chemical vapour deposition (CVD) method is described. Surface morphology and concentration profiles of elements were analyzed by scanning electron microscope and microprobe. Phase of layers was analysed by X-ray diffraction (radiation of Cu kα ). Samples of thin layers were characterized by magnetic susceptibility in temperature interval 10 to 150 K. Obtained results confirm formation of superconducting phases Bi 2 Sr 2 Ca 1 Cu 2 O x and Bi 2 Sr 2 Xa 2 Cu 3 O x

  16. Thin film photovoltaic panel and method

    Science.gov (United States)

    Ackerman, Bruce; Albright, Scot P.; Jordan, John F.

    1991-06-11

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  17. The interaction between the gas sensing and surface morphology properties of LB thin films of porphyrins in terms of the adsorption kinetics

    International Nuclear Information System (INIS)

    Capan, İ.; Erdoğan, M.; Stanciu, G.A.; Stanciu, S.G.; Hristu, R.; Göktepe, M.

    2012-01-01

    In this work we investigate the adsorption characteristics due to exposure to benzene, toluene and chloroform vapor of 2,3,7,8,12,13,17,18-Octaethyl-21H,23H-porphine metal free thin films fabricated by using the Langmuir–Blodgett (LB) thin film technique and its derivatives containing iron chloride, cobalt and magnesium. By using the surface pressure–surface area (Π–A) isotherm graphs the optimum conditions for the thin film deposition and mean molecular area values of each porphyrin have been determined. Quartz Crystal Microbalance (QCM) system was employed to investigate the gas sensing performances of thin films during the exposure to Volatile Organic Compounds (VOCs). The surface properties have been investigated by using Atomic Force Microscopy (AFM) and analyzed together with the QCM results to understand the adsorption kinetics of the gas sensing mechanism. The rate constants, k a for each thin film interacting with the saturated concentration of vapors have been calculated. The gas sensing interaction has been considered in terms of rate constants in each case. The highest value for k a has been observed for benzene exposure. -- Highlights: ► We model an adsorption behavior for gas sensing porphyrin LB thin films. ► Adsorption coefficients are consistent with the gas experiments. ► The higher rate constant values point out the faster response.

  18. Optimization studies of HgSe thin film deposition by electrochemical atomic layer epitaxy (EC-ALE)

    CSIR Research Space (South Africa)

    Venkatasamy, V

    2006-06-01

    Full Text Available Studies of the optimization of HgSe thin film deposition using electrochemical atomic layer epitaxy (EC-ALE) are reported. Cyclic voltammetry was used to obtain approximate deposition potentials for each element. These potentials were then coupled...

  19. Electrochemical synthesis, structure and phase composition of nano structured amorphous thin layers of NiW and Ni-Mo

    International Nuclear Information System (INIS)

    Vitina, I.; Lubane, M.; Belmane, V.; Rubene, V.; Krumina, A.

    2006-01-01

    Full text: Nano structured Ni-W thin layers containing W 6-37 wt.% were electrodeposited on a copper substratum. The W content in the layer changes, and it is determined by the electrolyte pH in the range 8.0-9.6 and the cathode current density in the range 1.0-10.0 A/dm 2 . The atomic composition and thermal stability of structure of the electrodeposited thin layers depend for the most part on the conditions of the electrodeposition and less on the W content in the layer. Cracking of the Ni-W layers electrodeposited at the electrolyte pH 8.5 and containing 34-37 wt.% W and 8.5 wt.% W was observed. The cracking increases at heating at 400 deg C for 50 h. On the contrary, no cracking of the Ni-W layer electrodeposited at the electrolyte pH 9.0 and containing 25 wt.% W was observed. The atomic composition of the layer remains practically unchanged at heating at 400 deg C for 50 h. The layer binds oxygen up to 7 wt.%. According to X-ray diffraction, in spite of the W content 35-37 wt.% in the layer, nano structured layers rather than amorphous layers were obtained which at heating at 400 deg C depending on the W content crystallises as Ni or intermetallic compounds Ni x W y if the W content is approx. 25 wt.%. Amorphous Ni-Mo alloys containing 35-52 wt.% Mo was electrodeposited on copper substratum at the cathode current densities of 0.5-1.5 A/dm2 and the electrolyte pH 6.8-8.6. Formation of thin layer (∼1-2μm) of X-ray amorphous Ni-Mo alloy, the Mo content, the characteristics of structure depend on the electrodeposition process, the electrolyte pH, and the cathode current density. The Ni-Mo layer deposited at the electrolyte pH above 8.6 and below average 6.8 had a nanocrystalline structure rather than characteristics of amorphous structure. Ni- W and Ni-Mo alloys were electrodeposited from citrate electrolyte not containing ammonium ions

  20. Investigation of Thin Layered Cobalt Oxide Nano-Islands on Gold

    Science.gov (United States)

    Bajdich, Michal; Walton, Alex S.; Fester, Jakob; Arman, Mohammad A.; Osiecki, Jacek; Knudsen, Jan; Vojvodic, Aleksandra; Lauritsen, Jeppe V.

    2015-03-01

    Layered cobalt oxides have been shown to be highly active catalysts for the oxygen evolution reaction (OER), but the synergistic effect of contact with gold is yet to be fully understood. The synthesis of three distinct types of thin-layered cobalt oxide nano-islands supported on a single crystal gold (111) substrate is confirmed by combination of STM and XAS methods. In this work, we present DFT+U theoretical investigation of above nano-islands using several previously known structural models. Our calculations confirm stability of two low-oxygen pressure phases: (a) rock-salt Co-O bilayer and (b) wurtzite Co-O quadlayer and single high-oxygen pressure phase: (c) O-Co-O trilayer. The optimized geometries agree with STM structures and calculated oxidation states confirm the conversion from Co2+ to Co3+ found experimentally in XAS. The O-Co-O trilayer islands have the structure of a single layer of CoOOH proposed to be the true active phase for OER catalyst. For that reason, the effect of water on the Pourbaix stabilities of basal planes and edge sites is fully investigated. Lastly, we also present the corresponding OER theoretical overpotentials.

  1. The Effect of High Temperature Annealing on the Grain Characteristics of a Thin Chemical Vapor Deposition Silicon Carbide Layer.

    Energy Technology Data Exchange (ETDEWEB)

    Isabella J van Rooyen; Philippus M van Rooyen; Mary Lou Dunzik-Gougar

    2013-08-01

    The unique combination of thermo-mechanical and physiochemical properties of silicon carbide (SiC) provides interest and opportunity for its use in nuclear applications. One of the applications of SiC is as a very thin layer in the TRi-ISOtropic (TRISO) coated fuel particles for high temperature gas reactors (HTGRs). This SiC layer, produced by chemical vapor deposition (CVD), is designed to withstand the pressures of fission and transmutation product gases in a high temperature, radiation environment. Various researchers have demonstrated that macroscopic properties can be affected by changes in the distribution of grain boundary plane orientations and misorientations [1 - 3]. Additionally, various researchers have attributed the release behavior of Ag through the SiC layer as a grain boundary diffusion phenomenon [4 - 6]; further highlighting the importance of understanding the actual grain characteristics of the SiC layer. Both historic HTGR fission product release studies and recent experiments at Idaho National Laboratory (INL) [7] have shown that the release of Ag-110m is strongly temperature dependent. Although the maximum normal operating fuel temperature of a HTGR design is in the range of 1000-1250°C, the temperature may reach 1600°C under postulated accident conditions. The aim of this specific study is therefore to determine the magnitude of temperature dependence on SiC grain characteristics, expanding upon initial studies by Van Rooyen et al, [8; 9].

  2. Influences of Indium Tin Oxide Layer on the Properties of RF Magnetron-Sputtered (BaSr)TiO3 Thin Films on Indium Tin Oxide-Coated Glass Substrate

    Science.gov (United States)

    Kim, Tae Song; Oh, Myung Hwan; Kim, Chong Hee

    1993-06-01

    Nearly stoichiometric ((Ba+Sr)/Ti=1.08-1.09) and optically transparent (BaSr)TiO3 thin films were deposited on an indium tin oxide (ITO)-coated glass substrate by means of rf magnetron sputtering for their application to the insulating layer of an electroluminescent flat panel display. The influence of the ITO layer on the properties of (BaSr)TiO3 thin films deposited on the ITO-coated substrate was investigated. The ITO layer did not affect the crystallographic orientation of (BaSr)TiO3 thin film, but enhanced the grain growth. Another effect of the ITO layer on (BaSr)TiO3 thin films was the interdiffusion phenomenon, which was studied by means of secondary ion mass spectrometry (SIMS). As the substrate temperature increased, interdiffusion intensified at the interface not only between the grown film and ITO layer but also between the ITO layer and base glass substrate. The refractive index (nf) of (BaSr)TiO3 thin film deposited on a bare glass substrate was 2.138-2.286, as a function of substrate temperature.

  3. Thermal diffusivity of a metallic thin layer using the time-domain thermo reflectance technique

    International Nuclear Information System (INIS)

    Battaglia, J-L; Kusiak, A; Rossignol, C; Chigarev, N

    2007-01-01

    The time domain thermo reflectance (TDTR) is widely used in the field of acoustic and thermal characterization of thin layers at the nano and micro scale. In this paper, we propose to derive a simple analytical expression of the thermal diffusivity of the layer. This relation is based on the analytical solution of one-dimensional heat transfer in the medium using integral transforms. For metals, the two-temperature model shows that the capacitance effect at the short times is essentially governed by the electronic contribution

  4. Fundamental Mechanisms of Roughening and Smoothing During Thin Film Deposition

    Energy Technology Data Exchange (ETDEWEB)

    Headrick, Randall [Univ. of Vermont, Burlington, VT (United States)

    2016-03-18

    In this research program, we have explored the fundamental limits for thin film deposition in both crystalline and amorphous (i.e. non-crystalline) materials systems. For vacuum-based physical deposition processes such as sputter deposition, the background gas pressure of the inert gas (usually argon) used as the process gas has been found to be a key variable. Both a roughness transition and stress transition as a function of pressure have been linked to a common mechanism involving collisions of energetic particles from the deposition source with the process inert gas. As energetic particles collide with gas molecules in the deposition process they lose their energy rapidly if the pressure (and background gas density) is above a critical value. Both roughness and stress limit important properties of thin films for applications. In the area of epitaxial growth we have also discovered a related effect; there is a critical pressure below which highly crystalline layers grow in a layer-by-layer mode. This effect is also though to be due to energetic particle thermalization and scattering. Several other important effects such as the observation of coalescence dominated growth has been observed. This mode can be likened to the behavior of two-dimensional water droplets on the hood of a car during a rain storm; as the droplets grow and touch each other they tend to coalesce rapidly into new larger circular puddles, and this process proceeds exponentially as larger puddles overtake smaller ones and also merge with other large puddles. This discovery will enable more accurate simulations and modeling of epitaxial growth processes. We have also observed that epitaxial films undergo a roughening transition as a function of thickness, which is attributed to strain induced by the crystalline lattice mismatch with the substrate crystal. In addition, we have studied another physical deposition process called pulsed laser deposition. It differs from sputter deposition due to the

  5. Phospholipids, Dietary Supplements, and Chicken Eggs: An Inquiry-Based Exercise Using Thin-Layer Chromatography

    Science.gov (United States)

    Potteiger, Sara E.; Belanger, Julie M.

    2015-01-01

    This inquiry-based experiment is designed for organic or biochemistry undergraduate students to deduce the identity of phospholipids extracted from chicken eggs and dietary supplements. This is achieved using thin-layer chromatography (TLC) data, a series of guided questions of increasing complexity, and provided relative retention factor (Rf)…

  6. Efficient white organic light-emitting devices using a thin 4,4'-bis(2,2'-diphenylvinyl)-1,1'-diphenyl layer

    International Nuclear Information System (INIS)

    Wang Jun; Yu Junsheng; Li Lu; Tang Xiaoqing; Jiang Yadong

    2008-01-01

    White organic light-emitting devices (OLEDs) were fabricated using phosphorescent material bis[2-(4-tert-butylphenyl)benzothiazolato-N,C 2' ]iridium (acetylacetonate) [(t-bt) 2 Ir(acac)] doped in 4,4'-bis(carbazol-9-yl) biphenyl (CBP) matrix as a yellow light-emitting layer and a thin layer 4,4'-bis(2,2'-diphenylvinyl)-1,1'-diphenyl (DPVBi) as the blue light-emitting layer. The light colour of the OLEDs can be adjusted by changing doped concentration and the thickness of the DPVBi thin layer. The maximum luminance and power efficiency of 5% doped device reached 15 460 cd m -2 and 8.1 lm W -1 , respectively. The 3% doped device showed the CIE coordinates of (0.344, 0.322) at 8 V and a maximum power efficiency of 5.7 lm W -1 at 4.5 V

  7. The gas electron multiplier (GEM)

    CERN Document Server

    Bouclier, Roger; Dominik, Wojciech; Hoch, M; Labbé, J C; Million, Gilbert; Ropelewski, Leszek; Sauli, Fabio; Sharma, A

    1996-01-01

    We describe operating priciples and results obtained with a new detector component: the Gas Electrons Multiplier (GEM). Consisting of a thin composite sheet with two metal layers separated by a thin insulator, and pierced by a regular matrix of open channels, the GEM electrode, inserted on the path of electrons in a gas detector, allows to transfer the charge with an amplification factor approaching ten. Uniform response and high rate capability are demonstrated. Coupled to another device, multiwire or micro-strip chamber, the GEM electrode permit to obtain higher gains or less critical operation; separation of the sensitive (conversion) volume and the detection volume has other advantages, as a built-in delay (useful for triggering purposes) and the possibility of applying high fields on the photo-cathode of ring imaging detectors to improve efficiency. Multiple GEM grids in the same gas volume allow to obtain large amplification factors in a succession of steps, leading to the realization of an effective ga...

  8. A demonstration of on-line plant corrosion monitoring using thin layer activation

    International Nuclear Information System (INIS)

    Asher, J.; Webb, J.W.; Wilkins, N.J.M.; Lawrence, P.F.; UKAEA Atomic Energy Research Establishment, Harwell. Materials Development Div.)

    1981-12-01

    The corrosion of a 1 inch water pipe in an evaporative cooling system has been monitored over three periods of plant operation using thin layer activation (TLA). The corrosion rate was followed at a sensitivity of about 1 μm and clearly reflected changes in plant operation. Examination of the test section after removal, both by autoradiography and metallography revealed the extent of corrosion and pitting over the active area. (author)

  9. Phonon and electron temperature and non-Fourier heat transport in thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Carlomagno, I.; Cimmelli, V.A. [Department of Mathematics, Computer Science and Economics, University of Basilicata, Campus Macchia Romana, Viale dell' Ateneo Lucano 10, 85100 Potenza (Italy); Sellitto, A. [Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (Italy)

    2017-04-15

    We present a thermodynamic model of heat conductor which allows for different temperatures of phonons and electrons. This model is applied to calculate the steady-state radial temperature profile in a circular thin layer. The compatibility of the obtained temperature profiles with the second law of thermodynamics is investigated in view of the requirement of positive entropy production and of a nonlocal constitutive equation for the entropy flux.

  10. Synthesis and Characterization of a Novel Ammonia Gas Sensor Based on PANI-PVA Blend Thin Films

    Directory of Open Access Journals (Sweden)

    D. B. DUPARE

    2008-06-01

    Full Text Available The polyaniline - polyvinyl alcohol blend films were synthesized by oxidative polymerization using chemical synthesis route. The polyaniline films were synthesized using optimized concentration of monomer aniline, hydrochloric acid as a dopant using ammonium peroxy-disulphate as a oxidant and insulating addative matrix polyvinyl alcohol on glass substrate for development of ammonia sensor. The formation of PANI- PVA blend films show good uniform surface morphology at 10ºc temperature, maintained at constant temperature bath. The synthesized PANI-PVA blend thin films were characterized by analyzing UV-Visible and FTIR spectra. The SEM study ensures that the thin films are uniform and porous in nature. The I-V characterization shows ohmic behaviour and also determines conductivity of the films. The response time of PANI-PVA blend thin films show that excellent behavior for 50-800 ppm and higher range of ammonia gas. This study reveals that PANI-PVA blend thin films provide a polymer matrix with very good mechanical strength, environmental stability, uniformity in surface, porous morphology and high conductivity, which are suitable for ammonia gas sensing.

  11. Synthesis of c-axis oriented AlN thin films on different substrates: A review

    International Nuclear Information System (INIS)

    Iriarte, G.F.; Rodriguez, J.G.; Calle, F.

    2010-01-01

    Highly c-axis oriented AlN thin films have been deposited by reactive sputtering on different substrates. The crystallographic properties of layered film structures consisting of a piezoelectric layer, aluminum nitride (AlN), synthesized on a variety of substrates, have been examined. Aluminum nitride thin films have been deposited by reactive pulsed-DC magnetron sputtering using an aluminum target in an Ar/N 2 gas mixture. The influence of the most critical deposition parameters on the AlN thin film crystallography has been investigated by means of X-ray diffraction (XRD) analysis of the rocking curve Full-Width at Half Maximum (FWHM) of the AlN-(0 0 0 2) peak. The relationship between the substrate, the synthesis parameters and the crystallographic orientation of the AlN thin films is discussed. A guide is provided showing how to optimize these conditions to obtain highly c-axis oriented AlN thin films on substrates of different nature.

  12. Stability of low-carrier-density topological-insulator Bi2Se3 thin films and effect of capping layers

    International Nuclear Information System (INIS)

    Salehi, Maryam; Brahlek, Matthew; Koirala, Nikesh; Moon, Jisoo; Oh, Seongshik; Wu, Liang; Armitage, N. P.

    2015-01-01

    Although over the past number of years there have been many advances in the materials aspects of topological insulators (TIs), one of the ongoing challenges with these materials is the protection of them against aging. In particular, the recent development of low-carrier-density bulk-insulating Bi 2 Se 3 thin films and their sensitivity to air demands reliable capping layers to stabilize their electronic properties. Here, we study the stability of the low-carrier-density Bi 2 Se 3 thin films in air with and without various capping layers using DC and THz probes. Without any capping layers, the carrier density increases by ∼150% over a week and by ∼280% over 9 months. In situ-deposited Se and ex situ-deposited poly(methyl methacrylate) suppress the aging effect to ∼27% and ∼88%, respectively, over 9 months. The combination of effective capping layers and low-carrier-density TI films will open up new opportunities in topological insulators

  13. Bi-epitaxial YBa2Cu3Ox Thin Films on Tilted-axes NdGaO3 Substrates with CeO2 Seeding Layer

    International Nuclear Information System (INIS)

    Mozhaev, P B; Mozhaeva, J E; Jacobsen, C S; Hansen, J Bindslev; Bdikin, I K; Luzanov, V A; Kotelyanskii, I M; Zybtsev, S G

    2006-01-01

    Bi-epitaxial YBa 2 Cu 3 O x (YBCO) thin films with out-of-plane tilt angle in the range 18 - 27 0 were manufactured using pulsed laser deposition on NdGaO 3 tilted-axes substrates with CeO 2 seeding layers. The YBCO thin film orientation over the seeding layer depended on deposition conditions. Removal of the seeding layer from part of the substrate surface by ionbeam etching resulted in formation of a bi-epitaxial thin film with different c-axis orientation of two parts of the film. The bi-epitaxial film orientation and structure were studied using X-ray diffraction techniques, and surface morphology was observed with atomic force microscope (AFM). Photolithography and ion-beam etching techniques were used for patterning bi-epitaxial thin films. Electrical characterization of the obtained structures was performed

  14. Atmosphere influence on in situ ion beam analysis of thin film growth

    International Nuclear Information System (INIS)

    Lin, Yuping; Krauss, A.R.; Gruen, D.M.; Chang, R.P.H.; Auciello, O.H.; Schultz, J.A.

    1994-01-01

    In situ, nondestructive surface characterization of thin-film growth processes in an environment of chemically active gas at pressures of several mTorr is required both for the understanding of growth processes in multicomponent films and layered heterostructures and for the improvement of process reproducibility and device reliability. The authors have developed a differentially pumped pulsed ion beam surface analysis system that includes ion scattering spectroscopy (ISS) and direct recoil spectroscopy (DRS), coupled to an automated ion beam sputter-deposition system (IBSD), to study film growth processes in an environment of chemically active gas, such as required for the growth of oxide, nitride, or diamond thin films. The influence of gas-phase scattering and gas-surface interactions on the ISS and DRS signal intensity and peak shape have been studied. From the intensity variation as a function of ambient gas pressure, the authors have calculated the mean free path and the scattering cross-section for a given combination of primary ion species and ambient gas. Depending on the system geometry and the combination of primary beam and background, it is shown that surface-specific data can be obtained during thin-film growth at pressures ranging from a few mtorr to approximately 1 Torr. Detailed information such as surface composition, structure, and film growth mechanism may be obtained in real-time, making ion beam analysis an ideal nondestructive, in situ probe of thin-film growth processes

  15. Epitaxial integration of CoFe2O4 thin films on Si (001) surfaces using TiN buffer layers

    Science.gov (United States)

    Prieto, Pilar; Marco, José F.; Prieto, José E.; Ruiz-Gomez, Sandra; Perez, Lucas; del Real, Rafael P.; Vázquez, Manuel; de la Figuera, Juan

    2018-04-01

    Epitaxial cobalt ferrite thin films with strong in-plane magnetic anisotropy have been grown on Si (001) substrates using a TiN buffer layer. The epitaxial films have been grown by ion beam sputtering using either metallic, CoFe2, or ceramic, CoFe2O4, targets. X-ray diffraction (XRD) and Rutherford spectrometry (RBS) in random and channeling configuration have been used to determine the epitaxial relationship CoFe2O4 [100]/TiN [100]/Si [100]. Mössbauer spectroscopy, in combination with XRD and RBS, has been used to determine the composition and structure of the cobalt ferrite thin films. The TiN buffer layer induces a compressive strain in the cobalt ferrite thin films giving rise to an in-plane magnetic anisotropy. The degree of in-plane anisotropy depends on the lattice mismatch between CoFe2O4 and TiN, which is larger for CoFe2O4 thin films grown on the reactive sputtering process with ceramic targets.

  16. Effect of substrate mis-orientation on GaN thin films grown by MOCVD under different carrier gas condition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seong-Woo; Suzuki, Toshimasa [Nippon Institute of Technology, 4-1 Gakuendai, Miyashiro, Saitama, 345-8501 (Japan); Aida, Hideo [NAMIKI Precision Jewel Co. Ltd., 3-8-22 Shinden, Adachi-ku, Tokyo, 123-8511 (Japan)

    2005-05-01

    We have studied the effect of a slight mis-orientation angle on surface and crystal quality of GaN thin films grown under different carrier gas conditions. Two types of carrier gas conditions were applied to the growth. One was pure H{sub 2} and the other was mixed N{sub 2}/H{sub 2}. As the result, we found dependence of surface and crystal quality of GaN thin films on the substrate mis-orientation angle, and they indicated almost the same tendency under both growth conditions. Therefore, it was confirmed that mis-orientation angle of sapphire substrate was one of the most critical factors for GaN thin films. Then, the effect of the additional N{sub 2} into the conventional H{sub 2} carrier gas was studied, and we found that the conversion of carrier gas from the conventional H{sub 2} to N{sub 2}/H{sub 2} mixture was effective against degradation of GaN crystallinity at any mis-orientation angle. Considering that the crystal quality of GaN thin films became insensitive to mis-orientation angle as the condition became more suitable for GaN growth, the optimal substrate mis-orientation angle was consequently decided to be approximately 0.15 from the morphological aspect. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  17. Low-temperature ({<=}200 Degree-Sign C) plasma enhanced atomic layer deposition of dense titanium nitride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Samal, Nigamananda; Du Hui; Luberoff, Russell; Chetry, Krishna; Bubber, Randhir; Hayes, Alan; Devasahayam, Adrian [Veeco Instruments, 1 Terminal Drive, Plainview, New York 11803 (United States)

    2013-01-15

    Titanium nitride (TiN) has been widely used in the semiconductor industry for its diffusion barrier and seed layer properties. However, it has seen limited adoption in other industries in which low temperature (<200 Degree-Sign C) deposition is a requirement. Examples of applications which require low temperature deposition are seed layers for magnetic materials in the data storage (DS) industry and seed and diffusion barrier layers for through-silicon-vias (TSV) in the MEMS industry. This paper describes a low temperature TiN process with appropriate electrical, chemical, and structural properties based on plasma enhanced atomic layer deposition method that is suitable for the DS and MEMS industries. It uses tetrakis-(dimethylamino)-titanium as an organometallic precursor and hydrogen (H{sub 2}) as co-reactant. This process was developed in a Veeco NEXUS Trade-Mark-Sign chemical vapor deposition tool. The tool uses a substrate rf-biased configuration with a grounded gas shower head. In this paper, the complimentary and self-limiting character of this process is demonstrated. The effects of key processing parameters including temperature, pulse time, and plasma power are investigated in terms of growth rate, stress, crystal morphology, chemical, electrical, and optical properties. Stoichiometric thin films with growth rates of 0.4-0.5 A/cycle were achieved. Low electrical resistivity (<300 {mu}{Omega} cm), high mass density (>4 g/cm{sup 3}), low stress (<250 MPa), and >85% step coverage for aspect ratio of 10:1 were realized. Wet chemical etch data show robust chemical stability of the film. The properties of the film have been optimized to satisfy industrial viability as a Ruthenium (Ru) preseed liner in potential data storage and TSV applications.

  18. Ion beams as a means of deposition and in-situ characterization of thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Gruen, D.M.; Lin, Y.P.; Schmidt, H.; Liu, Y.L.; Barr, T.; Chang, R.P.H.

    1992-01-01

    Ion beam-surface interactions produce many effects in thin film deposition which are similar to those encountered in plasma deposition processes. However, because of the lower pressures and higher directionality associated with the ion beam process, it is easier to avoid some sources of film contamination and to provide better control of ion energies and fluxes. Additional effects occur in the ion beam process because of the relatively small degree of thermalization resulting from gas phase collisions with both the ion beam and atoms sputtered from the target. These effects may be either beneficial or detrimental to the film properties, depending on the material and deposition conditions. Ion beam deposition is particularly suited to the deposition of multi-component films and layered structures, and can in principle be extended to a complete device fabrication process. However, complex phenomena occur in the deposition of many materials of high technical interest which make it desirable to monitor the film growth at the monolayer level. It is possible to make use of ion-surface interactions to provide a full suite of surface analytical capabilities in one instrument, and this data may be obtained at ambient pressures which are far too high for conventional surface analysis techniques. Such an instrument is under development and its current performance characteristics and anticipated capabilities are described

  19. Forming method of a functional layer-built film by micro-wave plasma CVD

    Energy Technology Data Exchange (ETDEWEB)

    Saito, Keishi

    1988-11-18

    In forming an amorphous semi-conductor material film, the micro-wave plasma CVD cannot be generally used because of such demerits as film-separation, low yield, columnar structure in the film, and problems in the optical and electrical properties. In this invention, a specific substrate is placed in a layer-built film forming unit which is capable of maintaining vacuum; raw material gas for the film formation is introduced; plasma is generated by a micro-wave energy to decompose the raw material gas, thus forming the layer-built film on the substarte. Then a film is made by adding a specific amount of calcoganide-containing gas to the raw material gas. By this, the utilization efficiency of the raw material gas gets roughly 100% and both the adhesion to the substrate and the structural flexibility of the layer-built film increase, enhancing the yield of forming various functional elements (sensor, solar cell, thin transistor film, etc.), and thus greatly reducing the production cost. 6 figs., 7 tabs.

  20. In-situ determination of the effective absorbance of thin μc-Si:H layers growing on rough ZnO:Al

    Directory of Open Access Journals (Sweden)

    Meier Matthias

    2013-10-01

    Full Text Available In this study optical transmission measurements were performed in-situ during the growth of microcrystalline silicon (μc-Si:H layers by plasma enhanced chemical vapor deposition (PECVD. The stable plasma emission was used as light source. The effective absorption coefficient of the thin μc-Si:H layers which were deposited on rough transparent conductive oxide (TCO surfaces was calculated from the transient transmission signal. It was observed that by increasing the surface roughness of the TCO, the effective absorption coefficient increases which can be correlated to the increased light scattering effect and thus the enhanced light paths inside the silicon. A correlation between the in-situ determined effective absorbance of the μc-Si:H absorber layer and the short-circuit current density of μc-Si:H thin-film silicon solar cells was found. Hence, an attractive technique is demonstrated to study, on the one hand, the absorbance and the light trapping in thin films depending on the roughness of the substrate and, on the other hand, to estimate the short-circuit current density of thin-film solar cells in-situ, which makes the method interesting as a process control tool.

  1. Spontaneous layering of porous silicon layers formed at high current densities

    Energy Technology Data Exchange (ETDEWEB)

    Parkhutik, Vitali; Curiel-Esparza, Jorge; Millan, Mari-Carmen [R and D Center MTM, Technical University of Valencia, Valencia (Spain); Albella, Jose [Institute of Materials Science (ICMM CSIC) Madrid (Spain)

    2005-06-01

    We report here a curious effect of spontaneous fracturing of the silicon layers formed in galvanostatic conditions at medium and high current densities. Instead of formation of homogeneous p-Si layer as at low currents, a stack of thin layers is formed. Each layer is nearly separated from others and possesses rather flat interfaces. The effects is observed using p{sup +}-Si wafers for the p-Si formation and starts being noticeable at above 100 mA/cm{sup 2}. We interpret these results in terms of the porous silicon growth model where generation of dynamic mechanical stress during the p-Si growth causes sharp changes in Si dissolution mechanism from anisotropic etching of individual needle-like pores in silicon to their branching and isotropic etching. At this moment p-Si layer loses its adhesion to the surface of Si wafer and another p-Si layer starts growing. One of the mechanisms triggering on the separation of p-Si layers from one another is a fluctuation of local anodic current in the pore bottoms associated with gas bubble evolution during the p-Si formation. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Thin-layer chromatographic technique for rapid detection of bacterial phospholipases.

    Science.gov (United States)

    Legakis, N J; Papavassiliou, J

    1975-11-01

    Silica gel thin-layer chromatography was employed to detect lecithinase activity induced from bacterial resting cell preparations induced from bacterial resting cell preparations incubated at 37 C for 4 h in the presence of purified egg yolk lecithin. Bacillus subtilis, Bacillus cereus, Serratia marcescens, and Pseudomonas aeruginosa hydrolyzed lecithin with the formation of free fatty acids as the sole lipid-soluble product. In none of the Escherichia coli and Citrobacter freundii strains tested could lecithinase activity be detected. Four among eight strains of Enterobacter aerogenes and one among 12 strains of Proteus tested produced negligible amounts of free fatty acid.

  3. Fabrication and research of high purity germanium detectors with abrupt and thin diffusion layer

    International Nuclear Information System (INIS)

    Rodriguez Cabal, A. E.; Diaz Garcia, A.

    1997-01-01

    A different high purity germanium detector's fabrication method is described. A very thin diffusion film with an abrupt change of the type of conductivity is obtained. The fine diffusion layer thickness makes possibly their utilization in experimental systems in which all the data are elaborated directly on the computer. (author) [es

  4. Thin-layer and paper chromatography

    International Nuclear Information System (INIS)

    Sherma, J.

    1986-01-01

    This selective review covers the literature of thin-layer chromatography (TLC) and paper chromatography (PC) cited in Chemical Abstracts from December 5, 1983, through November 25, 1985, and Analytical Abstracts from November 1983 to November 1985. Also researched directly were the following important journals publishing papers on TLC and PC: the Journal of Chromatography (including its bibliography issues), Journal of High Resolution Chromatography and Chromatography Communications, Journal of Chromatographic Science, Chromatographia, Analytical Chemistry, JAOAC, and the special TLC issues of the Journal of Liquid Chromatography. Many of the inherent advantages of TLC that are obvious to workers familiar with high performance, quantitative theory and practice still are not appreciated adequately by the majority of people using chromatography. These include unrestricted access to the separation process; introducing magnetic, thermal, electrical, and other physical forces to improve resolution; high sample throughput; truly multidimensional separations; and the use of controlled multiple gradients. Many advantages of TLC relative to column chromatography were discussed in the Introductions to our 1982 and 1984 reviews of TLC in this Journal. No complete commercial robotics system specifically for TLC has been developed, but all necessary modules are available for such a system. The combination of robotics, with the continued development of theory, practice, and instrumentation will lead eventually to TLC systems that are unrivaled for speed, versatility, accuracy, precision, and sensitivity. 573 references

  5. Epitaxial growth and characterization of CoO/Fe(001) thin film layered structures

    International Nuclear Information System (INIS)

    Brambilla, A.; Sessi, P.; Cantoni, M.; Duo, L.; Finazzi, M.; Ciccacci, F.

    2008-01-01

    By means of X-ray photoemission spectroscopy and low energy electron diffraction, we show that it is possible to grow good quality thin epitaxial CoO films on Fe(001) substrates, through deposition in oxygen atmosphere. In particular, the composition and the structure of CoO(001)/Fe(001) bilayer systems and Fe(001)/CoO(001)/Fe(001) trilayer systems have been investigated by monitoring the evolution of the chemical interactions at the interfaces as a function of CoO thickness and growth temperature. We observe the presence of Fe oxides at the CoO/Fe interface and of a thin layer of metallic cobalt at the upper Fe/CoO interface of trilayer systems

  6. Interpretation of transport measurements in ZnO-thin films

    Energy Technology Data Exchange (ETDEWEB)

    Petukhov, Vladimir; Stoemenos, John; Rothman, Johan; Bakin, Andrey; Waag, Andreas [Technical University of Braunschweig, Institute of High Frequency Technology, Braunschweig (Germany)

    2011-01-15

    In order to interpret results of temperature dependent Hall measurements in heteroepitaxial ZnO-thin films, we adopted a multilayer conductivity model considering carrier-transport through the interfacial layer with degenerate electron gas as well as the upper part of ZnO layers with lower conductivity. This model was applied to the temperature dependence of the carrier concentration and mobility measured by Hall effect in a ZnO-layer grown on c-sapphire with conventional high-temperature MgO and low-temperature ZnO buffer. We also compared our results with the results of maximum entropy mobility-spectrum analysis (MEMSA). The formation of the highly conductive interfacial layer was explained by analysis of transmission electron microscopy (TEM) images taken from similar layers. (orig.)

  7. Interpretation of transport measurements in ZnO-thin films

    Science.gov (United States)

    Petukhov, Vladimir; Stoemenos, John; Rothman, Johan; Bakin, Andrey; Waag, Andreas

    2011-01-01

    In order to interpret results of temperature dependent Hall measurements in heteroepitaxial ZnO-thin films, we adopted a multilayer conductivity model considering carrier-transport through the interfacial layer with degenerate electron gas as well as the upper part of ZnO layers with lower conductivity. This model was applied to the temperature dependence of the carrier concentration and mobility measured by Hall effect in a ZnO-layer grown on c-sapphire with conventional high-temperature MgO and low-temperature ZnO buffer. We also compared our results with the results of maximum entropy mobility-spectrum analysis (MEMSA). The formation of the highly conductive interfacial layer was explained by analysis of transmission electron microscopy (TEM) images taken from similar layers.

  8. Oxidation effects on the electric resistance of In and Al in thin layers

    International Nuclear Information System (INIS)

    Moncada, G.; Araya, J.; Clark, N.

    1981-01-01

    Measurements of electric resistance (R) in function of the time in evaporated samples of thin layers of In and Al trivalent elements in both vacuum and atmospheric pressure are reported. Measurements in samples at ambient and cooled with nitrogen temperatures taken place. The changes observed in R is attributed partly to changes in the sample surface produced by the oxidation. (L.C.) [pt

  9. Feasibility study of the in-situ combustion in shallow, thin, and multi-layered heavy oil reservoir

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, L. [Society of Petroleum Engineers, Kuala Lumpur (Malaysia)]|[Daqing Petroleum Inst., Beijing (China); Yu, D. [Daqing Petroleum Inst., Beijing (China); Gong, Y. [China National Petroleum Corp., Beijing (China). Liaohe Oilfield; Wang, P.; Zhang, L. [China National Petroleum Corp., Beijing (China). Huabei Oilfield; Liu, C. [China National Petroleum Corp., Beijing (China). JiLin Oilfield

    2008-10-15

    In situ combustion is a process where oxygen is injected into oil reservoirs in order to oxidize the heavier components of crude oil. The oil is driven towards the production wells by the combustion gases and steam generated by the combustion processes. This paper investigated dry and wet forward in situ combustion processes designed for an oil reservoir with thin sand layers. Laboratory and numerical simulations were conducted to demonstrate the feasibility of the processes in a shallow, thin, heterogenous heavy oil reservoir in China. Combustion tube experiments were conducted in order to determine fuel consumption rates. A numerical geological model was constructed to represent the reservoir conditions. Gas, water, oil and solid phases were modelled. Four processes were considered: cracking; pyrolysis of heavy fractions; the combustion of light and heavy fractions; and the combustion of coke. Oil recovery rates were calculated for a period of 10 years. Reactor experiments were conducted to investigate igniting temperatures and air injection rates using an apparatus comprised of an electric heater, oil sand pack tube and a computerized control system. Experiments were performed at different temperature and injection rates. The experiments demonstrated that ignition times and air volumes decreased when air temperature was increased. Results of the study showed that a 20 per cent increase in oil recovery using the in situ combustion processes. It was concluded that adequate air injection rates are needed to ensure effective combustion front movement. 4 refs., 6 tabs., 4 figs.

  10. Thin-layer chromatography of ternary complexes of group-IIIA metals with 2-thenoyltrifluoroacetone and 2,2'-bipyridyl on cellulose layer

    Energy Technology Data Exchange (ETDEWEB)

    Chao, H E; Saitoh, K; Suzuki, N [Tohoku Univ., Sendai (Japan). Faculty of Science

    1980-11-11

    Normal phase thin-layer chromatographic behaviour of several ternary complexes of group-IIIA metals with 2-thenoyltrifluoroacetone (TTA) and 2,2'bipyridyl (bpy) has been investigated on cellulose layer. The ternary complexes of lanthanide metals show higher mutual separability than the complexes with TTA alone. Mutual separation of TTA complexes with La(III), Ce(III), Eu(III) or Y(III), Sc(III), Th(IV), and U(VI) has been successfully achieved by two-dimensional TLC, primarily with carbon tetrachloride-benzene (75:25) containing 0.02M TTA, and secondary with carbon tetrachloride-hexane (35:65) containing both 0.02M TTA and 0.02M bpy.

  11. Mercury in a thin layer in HgMn stars: A test of a diffusion model

    International Nuclear Information System (INIS)

    Megessier, C.; Michaud, G.; Weiler, E.J.

    1980-01-01

    Lines of the first three states of ionization of mercury have been observed in μ Leporis and chi Lupi using the Copernicus satellite. Lines of Hg II and Hg III have been observed in α Andromedae. There appears to be an absorption feature at every wavelength where there is expected to be a mercury line. The presence of all three states of ionization is likely in μ Lep and chi Lup. The relative equivalent widths of the lines of the various states of ionization do not depend on the effective temperature of the stars, in contradiction to what is expected if mercury were uniformly distributed in the atmosphere. It is, however, expected if mercury has been concentrated, by diffusion, in a thin layer, where the radiative forces just equal the gravitational forces on mercury. That mercury should be so concentrated is also required by the explanation of the mercury isotope anomaly proposed by Michaud, Reeves, and Charland. The diffusion model for Ap stars predicts in its simplest form the presence of very thin layers. However, any leftover turbulence may increase the depth of these layers without eliminating the element separation

  12. Layer-by-layer assembled polyaniline nanofiber/multiwall carbon nanotube thin film electrodes for high-power and high-energy storage applications.

    Science.gov (United States)

    Hyder, Md Nasim; Lee, Seung Woo; Cebeci, Fevzi Ç; Schmidt, Daniel J; Shao-Horn, Yang; Hammond, Paula T

    2011-11-22

    Thin film electrodes of polyaniline (PANi) nanofibers and functionalized multiwall carbon nanotubes (MWNTs) are created by layer-by-layer (LbL) assembly for microbatteries or -electrochemical capacitors. Highly stable cationic PANi nanofibers, synthesized from the rapid aqueous phase polymerization of aniline, are assembled with carboxylic acid functionalized MWNT into LbL films. The pH-dependent surface charge of PANi nanofibers and MWNTs allows the system to behave like weak polyelectrolytes with controllable LbL film thickness and morphology by varying the number of bilayers. The LbL-PANi/MWNT films consist of a nanoscale interpenetrating network structure with well developed nanopores that yield excellent electrochemical performance for energy storage applications. These LbL-PANi/MWNT films in lithium cell can store high volumetric capacitance (~238 ± 32 F/cm(3)) and high volumetric capacity (~210 mAh/cm(3)). In addition, rate-dependent galvanostatic tests show LbL-PANi/MWNT films can deliver both high power and high energy density (~220 Wh/L(electrode) at ~100 kW/L(electrode)) and could be promising positive electrode materials for thin film microbatteries or electrochemical capacitors. © 2011 American Chemical Society

  13. Magnetic hysteresis measurements of thin films under isotropic stress.

    Science.gov (United States)

    Holland, Patrick; Dubey, Archana; Geerts, Wilhelmus

    2000-10-01

    Nowadays, ferromagnetic thin films are widely applied in devices for information technology (credit cards, video recorder tapes, floppies, hard disks) and sensors (air bags, anti-breaking systems, navigation systems). Thus, with the increase in the use of magnetic media continued investigation of magnetic properties of materials is necessary to help in determining the useful properties of materials for new or improved applications. We are currently interested in studying the effect of applied external stress on Kerr hysteresis curves of thin magnetic films. The Ni and NiFe films were grown using DC magnetron sputtering with Ar as the sputter gas (pAr=4 mTorr; Tsub=55-190 C). Seed and cap layers of Ti were used on all films for adhesion and oxidation protection, respectively. A brass membrane pressure cell was designed to apply in-plane isotropic stress to thin films. In this pressure cell, gas pressure is used to deform a flexible substrate onto which a thin magnetic film has been sputtered. The curvature of the samples could be controlled by changing the gas pressure to the cell. Magneto-Optical in-plane hysteresis curves at different values of strain were measured. The results obtained show that the stress sensitivity is dependent on the film thickness. For the 500nm NiFe films, the coercivity strongly decreased as a function of the applied stress.

  14. Structural properties 3,16-bis triisopropylsilylethynyl (pentacene) (TIPS-pentacene) thin films onto organic dielectric layer using slide coating method

    Energy Technology Data Exchange (ETDEWEB)

    Rusnan, Fara Naila; Mohamad, Khairul Anuar; Seria, Dzul Fahmi Mohd Husin; Saad, Ismail; Ghosh, Bablu K.; Alias, Afishah [Nano Engineering & Materials (NEMs) Research Group, Faculty of Engineering Universiti Malaysia Sabah, Kota Kinabalu 88400 Sabah (Malaysia)

    2015-08-28

    3,16-bis triisopropylsilylethynyl (Pentacene) (TIPS-Pentacene) compactable interface property is important in order to have a good arrangement of molecular structure. Comparison for TIPS-Pentacene deposited between two different surface layers conducted. 0.1wt% TIPS-Pentacene diluted in chloroform were deposited onto poly(methylmeaclyrate) (PMMA) layered transparent substrates using slide coating method. X-ray diffraction (XRD) used to determine crystallinity of thin films. Series of (00l) diffraction peaks obtained with sharp first peaks (001) for TIPS-Pentacene deposited onto PMMA layer at 5.35° and separation of 16.3 Å. Morphology and surface roughness were carried out using scanning electron microscope (SEM) and surface profilemeter LS500, respectively.TIPS-Pentacene deposited onto PMMA layer formed needled-like-shape grains with 10.26 nm surface roughness. These properties were related as thin film formed and its surface roughness plays important role towards good mobility devices.

  15. Quartz Crystal Microbalance Coated with Sol-gel-derived Thin Films as Gas Sensor for NO Detection

    Directory of Open Access Journals (Sweden)

    S. J. O’Shea

    2003-10-01

    Full Text Available This paper presents the possibilities and properties of Indium tin oxide (ITO-covered quartz crystal as a NOx toxic gas-sensor. The starting sol-gel solution was prepared by mixing indium chloride dissolved in acetylacetone and tin chloride dissolved in ethanol (0-20% by weight. The ITO thin films were deposited on the gold electrodes of quartz crystal by spin-coating technique and subsequently followed a standard photolithography to pattern the derived films to ensure all sensors with the same sensing areas. All heat treatment processes were controlled below 500°C in order to avoid the piezoelectric characteristics degradation of quartz crystal (Quartz will lose its piezoelectricity at ~573°C due to the phase change from α to β. The electrical and structural properties of ITO thin films were characterized with Hall analysis system, TG/DTA, XRD, XPS, SEM and etc. The gas sensor had featured with ITO thin films of ~100nm as the receptor to sense the toxic gas NO and quartz crystal with frequency of 10MHz as the transducer to transfer the surface reactions (mass loading, etc into the frequency shift. A homemade setup had been employed to measure the sensor response under the static mode. The experimental results had indicated that the ITO-coated QCM had a good sensitivity for NO gas, ~12Hz/100ppm within 5mins. These results prove that the ITO-covered quartz crystals are usable as a gas sensor and as an analytical device.

  16. Using physical and numerical models to study possibilities of storing natural gas in horizontal layers

    Energy Technology Data Exchange (ETDEWEB)

    Boucher, M; Marrast, j

    1969-11-01

    The absence of suitable structures in some regions has led Gaz de France to investigate the storage of natural gas in horizontal layers. Research aimed at completing work done in this field by Soviet researchers has been carried out at the Institut Francais du Petrole using physical and numerical models together with computing. This research included an examination of storage stability, of how the effective volume of gas evolved during different cycles, of how the gas bubble migrates under the effect of a slight dip, and of the influence of instabilities. The possibility of storing gas in horizontal or sub-horizontal layers was thus justified from a theoretical viewpoint. When the time comes to make a decision concerning the creation of such a storage area, it is the economic factor that will be preponderant. The effective volume of recoverable gas has turned out to depend to a large extent on the thickness of the layer. (12 refs.)

  17. Operation of microstrip gas chambers manufactured on glass coated with high resistivity diamond-like layers

    CERN Document Server

    Boimska, B; Dominik, Wojciech; Hoch, M; Million, Gilbert; Ropelewski, Leszek; Sauli, Fabio; Sharma, A

    1997-01-01

    We describe recent observations and measurements realized with micro-strip gas chambers (MSGCs) manufactured on boro-silicate glass coated with a thin layer of diamond-like carbon (DLC) having a surface resistivity around 4.10$^{16}\\Omega/\\Box$. The role of the back-pla electrode configuration and potential in the detector performance has been studied. Even for this very high resistivity of the coatings, MSGCs operate differently from those manufactured on bare boro-silicate glass; the charge gain increases with the radiation flux for counting rates above 103 Hz/mm2, reaching a value 60% higher for 105 Hz/mm2. This behavior does not depend on the presence and potential of the back plane electrode; however, both maximum gain and rate capability are influenced by the drift field. From this study, compared with measurements realized previously with other detectors, we deduce that for stable high rate operation of MSGCs the resistivity of the coating should not exceed ~10$^{15}\\Omega/\\Box$.

  18. Bubble-induced mixing of two horizontal liquid layers with non-uniform gas injection at the bottom

    International Nuclear Information System (INIS)

    Cheung, F.B.; Leinweber, G.; Pedersen, D.R.

    1984-01-01

    During a postulated severe core meltdown accident in an LMFBR, a large amount of sodium coolant may spill into the reactor concrete cavity. A layer of liquid products may form as a result of the sodium-concrete reactions. The liquid product layer, which is highly viscous and much heavier than sodium, separates the concrete from the sodium pool. In general, the downward transport of sodium through the liquid product layer to the unreacted concrete surface, which controls the rate of chemical erosion of the concrete, depends strongly on the agitation induced by gas evolution from the heated concrete. In this study, experiments were conducted to explore the effect of non-uniform gas injection on mixing of two horizontal mutually soluble liquid layers. The liquid in the lower layer was chosen to be more viscous and heavier than the liquid in the upper layer. To simulate the reactor accident situation, gas was injected at the bottom of the liquid-liquid system through a circular hole that covered only the center portion of the bottom surface of the lower liquid layer. The bubble-induced mixing motions were observed and the rate of mixing was measured for different hole sizes and for various gas flow rates

  19. Uniform GaN thin films grown on (100) silicon by remote plasma atomic layer deposition

    International Nuclear Information System (INIS)

    Shih, Huan-Yu; Chen, Miin-Jang; Lin, Ming-Chih; Chen, Liang-Yih

    2015-01-01

    The growth of uniform gallium nitride (GaN) thin films was reported on (100) Si substrate by remote plasma atomic layer deposition (RP-ALD) using triethylgallium (TEG) and NH 3 as the precursors. The self-limiting growth of GaN was manifested by the saturation of the deposition rate with the doses of TEG and NH 3 . The increase in the growth temperature leads to the rise of nitrogen content and improved crystallinity of GaN thin films, from amorphous at a low deposition temperature of 200 °C to polycrystalline hexagonal structures at a high growth temperature of 500 °C. No melting-back etching was observed at the GaN/Si interface. The excellent uniformity and almost atomic flat surface of the GaN thin films also infer the surface control mode of the GaN thin films grown by the RP-ALD technique. The GaN thin films grown by RP-ALD will be further applied in the light-emitting diodes and high electron mobility transistors on (100) Si substrate. (paper)

  20. Titanium dioxide-based carbon monoxide gas sensors: Effects of crystallinity and chemistry on sensitivity

    Science.gov (United States)

    Seeley, Zachary Mark

    Among metal-oxide gas sensors which change electrical resistive properties upon exposure to target gasses, titanium dioxide (TiO2) has received attention for its sensitivity and stability during high temperature (>500°C) operation. However, due to the sensing mechanism sensitivity, selectivity, and stability remain as critical deficiencies to be resolved before these sensors reach commercial use. In this study, TiO2 thick films of approximately 30mum and thin films of approximately 1mum thick were fabricated to assess the influence of their material properties on gas sensing mechanism. Increased calcination temperature of TiO2 thick films led to grain growth, reduction in specific surface area, and particle-particle necking. These properties are known to degrade sensitivity; however the measured carbon monoxide (CO) gas response improved with increasing calcination temperature up to 800°C. It was concluded that the sensing improvement was due to increased crystallinity within the films. Sensing properties of TiO2 thin films of were also dependent on crystallization, however; due to the smaller volume of material, they reached optimized crystallization at lower temperatures of 650°C, compared to 800°C for thick films. Incorporation of tungsten (W) and nickel (Ni) ions into the films created donor and acceptor defect sites, respectively, within the electronic band gap of TiO2. The additional n-type defects in W-doped TiO 2 improved n-type CO response, while p-type defects in Ni-doped TiO 2 converted the gas response to p-type. Chemistry of thin films had a more significant impact on the electrical properties and gas response than did microstructure or crystallinity. Doped films could be calcined at higher temperatures and yet remain highly sensitive to CO. Thin films with p-n bi-layer structure were fabricated to determine the influence of a p-n junction on gas sensing properties. No effect of the junction was observed and the sensing response neared the average

  1. Dual layer hollow fiber sorbents for trace H2S removal from gas streams

    KAUST Repository

    Bhandari, Dhaval A.; Bessho, Naoki; Koros, William J.

    2013-01-01

    Hollow fiber sorbents are pseudo monolithic materials with potential use in various adsorption based applications. Dual layer hollow fiber sorbents have the potential to allow thermal regeneration without direct contact of the regeneration fluid with the sorbent particles. This paper considers the application of dual layer hollow fiber sorbents for a case involving trace amounts of H2S removal from a simulated gas stream and offers a comparison with single layer hollow fiber sorbents. The effect of spin dope composition and core layer zeolite loading on the gas flux, H2S transient sorption capacity and pore structure are also studied. This work can be used as a guide to develop and optimize dual layer hollow fiber sorbent properties beyond the specific example considered here. © 2013 Elsevier Ltd.

  2. Dual layer hollow fiber sorbents for trace H2S removal from gas streams

    KAUST Repository

    Bhandari, Dhaval A.

    2013-05-01

    Hollow fiber sorbents are pseudo monolithic materials with potential use in various adsorption based applications. Dual layer hollow fiber sorbents have the potential to allow thermal regeneration without direct contact of the regeneration fluid with the sorbent particles. This paper considers the application of dual layer hollow fiber sorbents for a case involving trace amounts of H2S removal from a simulated gas stream and offers a comparison with single layer hollow fiber sorbents. The effect of spin dope composition and core layer zeolite loading on the gas flux, H2S transient sorption capacity and pore structure are also studied. This work can be used as a guide to develop and optimize dual layer hollow fiber sorbent properties beyond the specific example considered here. © 2013 Elsevier Ltd.

  3. Cooling of a microchannel with thin evaporating liquid film sheared by dry gas flow

    Science.gov (United States)

    Kabova, Yu O.; Kuznetsov, V. V.

    2017-11-01

    A joint motion of thin liquid film and dry gas in a microchannel is investigated numerically at different values of initial concentration of the liquid vapor in the gas phase, taking into account the evaporation process. Major factors affecting the temperature distribution in the liquid and the gas phases are as follows: transfer of heat by liquid and gas flows, heat loses due to evaporation, diffusion heat exchange. Comparisons of the numerical results for the case of the dry gas and for the case of equilibrium concentration of vapor in the gas have been carried out. It is shown that use of dry gas enhances the heat dissipation from the heater. It is found out that not only intense evaporation occurs near the heating areas, but also in both cases vapor condensation takes place below the heater in streamwise direction.

  4. Pore pressure propagation in a permeable thin-layer coal seam based on a dual porosity model: A case of risk prediction of water inrush in coalmines

    Science.gov (United States)

    Zhu, B.; Gao, F.; Yang, J. W.; Zhou, G. Q.

    2016-08-01

    Thin-layer coal seams, a type of filling coal rock body, are considered aquifer systems made up of dual porosity medium with immediate floor. A numerical simulation for the pore pressure propagation along a thin-layer coal seam was carried out for the case of the Zhaogezhuang coalmine in China. By valuing the permeability (Kf ) of the thin-layer coal seam, pore pressure variation with time was simulated and compared to the analytical solutions of a dual porosity model (DPM). The main conclusions were drawn as follow: (1) Seepage in the thin-layer coal seam was predominant in the whole process, and the distance of seepage was lengthened and the pore pressure decreased with increased Kf , (2) A series of simulated hydraulic graphs demonstrated that the pore pressure characteristics of peak-occurring and time-lag effects agreed with the analytical solutions of DPM; (3) By adjusting the parameters of DPM, two results of analytical solutions and numerical solutions fit well, particularly in the thin-layer coal seam, (4) The power law relationship between the peak-values and lag time of pore pressure were derived statistically under consideration of the Kf parameter in the range of 10-8 to 10-10 m2/pa-s orders, and it was reasonable that the Kf of the thin-layer coal seam was in the range of 10-8 m2/pa-s orders. The results were significantly helpful in decision-making for mining water prevention and prediction in practice.

  5. Development of microstrip gas chambers on substrata with electronic conductivity

    International Nuclear Information System (INIS)

    Bouclier, R.; Garabatos, C.; Manzin, G.; Sauli, F.; Shekhtman, L.; Temmel, T.; Della Mea, G.; Maggioni, G.; Rigato, V.; Logachenko, I.

    1994-01-01

    This paper describes several recent developments on Microstrip Gas Chambers (MSGCs). The authors have studied the operating behavior of the detectors in different gas mixtures; maximum stable gains have been achieved in mixtures of argon and dimethyl-ether (DME) in almost equal proportions. Using detectors manufactured on semi-conducting glass substrates, capable of withstanding very high rates (above 10 6 mm -2 s -1 ), they have demonstrated extended lifetime without gain modifications up to a collected charge of 130 mC cm -1 in clean laboratory operating conditions. They have also verified that relaxing the requirements on cleanness conditions, either in the gas mixing system or in the detector construction, may result in fast aging of the devices under irradiation. As an alternative to the semi-conducting glass, they have developed a novel technique to coat regular glass with a thin lead silicate layer having electron conductivity; a new development consisting in coating already manufactured MSGCs with the thin semi-conducting layer is also described. The preliminary results show an excellent rate capability of this kind of devices, intrinsically simpler to manufacture

  6. Band gap determination of thin praseodymium oxide layers on aluminium oxynitride films

    Energy Technology Data Exchange (ETDEWEB)

    Bergholz, Matthias; Schmeisser, Dieter [Brandenburgische Technische Universitaet, Cottbus (Germany). Angewandte Physik - Sensorik

    2008-07-01

    High-k dielectrics are important as never before in semiconductor industry. We investigate Pr{sub 2}O{sub 3} as one representative of this group on silicon and silicon-aluminium oxynitride substrates. In earlier work we observed the positive influence of this AlO{sub x}N{sub y} intermediate layer on the electrical properties of the Pr{sub 2}O{sub 3} layer. Now we present in-situ EELS, XPS and UPS measurements of gradually grown thin Pr{sub 2}O{sub 3} on AlO{sub x}N{sub y}. From these measurements we determine the band structure and find a very fast change of the band gap for the first few A, coupled with n-type behaviour for the Pr{sub 2}O{sub 3} film. These results are compared with RIXS measurements of a 5 nm Pr{sub 2}O{sub 3} on a 1 nm thick AlO{sub x}N{sub y} layer.

  7. Fabrication of Hydrogenated Amorphous Germanium Thin Layer Film and ItsCharacterization

    International Nuclear Information System (INIS)

    Agus-Santoso; Lely-Susita RM; Tjipto-Sujitno

    2000-01-01

    Fabrication of hydrogenated amorphous Germanium thin film by vacuumevaporation method and then deposition with hydrogen atom by glow dischargeplasma radio frequency has been done. This germanium amorphous (a-Ge) thinfilm involves a lot of dangling bonds in the network due to the irregularityof the atomic structures and it will decrease is conductivity. To improve theband properties of (a-Ge) thin film layer a hydrogenated plasma isintroduced. Process of introducing of the hydrogen into the a-Ge film is meanto reduce the dangling bonds so that the best electric conductivity of a Ge:Hthin film will obtained. To identify the hydrogen atom in the sample acharacterization using infrared spectrometer has been done, as well as themeasurement of conductivity of the samples. From the characterization usinginfrared spectroscopy the existence of hydrogen atom was found at absorptionpeak with wave number 1637.5 cm -1 , while the optimum conductivity of thesample 1634.86 Ω -1 cm -1 was achieved at 343 o K. (author)

  8. Voltammetry and coulometry of indium in two-side thin-layer system

    International Nuclear Information System (INIS)

    Eliseeva, L.V.; Kabanova, O.L.

    1980-01-01

    An electrochemical behaviour of In and possibilities for its determination have been investigated, using halide background solutions, by voltametry in the thin solution layer thin mercury film system. It has been shown that the maximum current of indium (3) is directly proportional to its concentration over a range of 1x10 -4 - 5x10 -3 M and the maximum current of indium oxidation from the amalgam over a range of 5x10 -7 - 1x10 -4 M. Examined were the effects of halide ion concentration, pH, electrode potential change rate on current maximum value, product efficiency of reducing indium (3) and oxidizing its amalgam, on maximum current potential and half-peak width. The analytical signal has been found to be directly proportional to chloride ion concentration over a range of 0.1 - 3.0 M, bromide and iodide ion concentration over a range of 0.1 - 1.0 M. This makes it possible to use the method for determination of halide ions

  9. Photodiode Based on CdO Thin Films as Electron Transport Layer

    Science.gov (United States)

    Soylu, M.; Kader, H. S.

    2016-11-01

    Cadmium oxide (CdO) thin films were synthesized by the sol-gel method. The films were analyzed by means of XRD, AFM, and UV/Vis spectrophotometry. X-ray diffraction patterns confirm that the films are formed from CdO with cubic crystal structure and consist of nano-particles. The energy gap of the prepared film was found to be 2.29 eV. The current-voltage ( I- V) characteristics of the CdO/ p-Si heterojunction were examined in the dark and under different illumination intensities. The heterojunction showed high rectifying behavior and a strong photoresponse. Main electrical parameters of the photodiode such as series and shunt resistances ( R s and R sh), saturation current I 0, and photocurrent I ph, were extracted considering a single diode equivalent circuit of a photovoltaic cell. Results indicate that the application of CdO thin films as an electron transport layer on p-Si acts as a photodetector in the field of the UV/visible.

  10. Conduction mechanisms in thin atomic layer deposited Al2O3 layers

    International Nuclear Information System (INIS)

    Spahr, Holger; Montzka, Sebastian; Reinker, Johannes; Hirschberg, Felix; Kowalsky, Wolfgang; Johannes, Hans-Hermann

    2013-01-01

    Thin Al 2 O 3 layers of 2–135 nm thickness deposited by thermal atomic layer deposition at 80 °C were characterized regarding the current limiting mechanisms by increasing voltage ramp stress. By analyzing the j(U)-characteristics regarding ohmic injection, space charge limited current (SCLC), Schottky-emission, Fowler-Nordheim-tunneling, and Poole-Frenkel-emission, the limiting mechanisms were identified. This was performed by rearranging and plotting the data in a linear scale, such as Schottky-plot, Poole-Frenkel-plot, and Fowler-Nordheim-plot. Linear regression then was applied to the data to extract the values of relative permittivity from Schottky-plot slope and Poole-Frenkel-plot slope. From Fowler-Nordheim-plot slope, the Fowler-Nordheim-energy-barrier was extracted. Example measurements in addition to a statistical overview of the results of all investigated samples are provided. Linear regression was applied to the region of the data that matches the realistic values most. It is concluded that ohmic injection and therefore SCLC only occurs at thicknesses below 12 nm and that the Poole-Frenkel-effect is no significant current limiting process. The extracted Fowler-Nordheim-barriers vary in the range of up to approximately 4 eV but do not show a specific trend. It is discussed whether the negative slope in the Fowler-Nordheim-plot could in some cases be a misinterpreted trap filled limit in the case of space charge limited current

  11. Demonstrating multi-layered MAS in control of offshore oil and gas production

    DEFF Research Database (Denmark)

    Lindegaard Mikkelsen, Lars; Næumann, J. R.; Demazeau, Y.

    2013-01-01

    From a control perspective, offshore oil and gas production is very challenging due to the many and potentially conflicting production objectives that arise from the intrinsic complexity of the oil and gas domain. In this paper, we demonstrate how a multi-layered multi-agent system can be used in...

  12. Comparison of various methods of measuring thin oxide layers formed on molybdenum and titanium

    International Nuclear Information System (INIS)

    Lepage, F.; Bardolle, J.; Boulben, J.M.

    1975-01-01

    The problem of the growth of thin layers is very interesting from both the fundamental and technological viewpoints. This work deals with oxide films produced on two metals, molybdenum and titanium. The thicknesses obtained by various methods (microgravimetry, nuclear reactions and spectrophotometry) are compared and the advantages and disadvantages of each method are shown [fr

  13. Solution-processed In2S3 buffer layer for chalcopyrite thin film solar cells

    Science.gov (United States)

    Wang, Lan; Lin, Xianzhong; Ennaoui, Ahmed; Wolf, Christian; Lux-Steiner, Martha Ch.; Klenk, Reiner

    2016-02-01

    We report a route to deposit In2S3 thin films from air-stable, low-cost molecular precursor inks for Cd-free buffer layers in chalcopyrite-based thin film solar cells. Different precursor compositions and processing conditions were studied to define a reproducible and robust process. By adjusting the ink properties, this method can be applied in different printing and coating techniques. Here we report on two techniques, namely spin-coating and inkjet printing. Active area efficiencies of 12.8% and 12.2% have been achieved for In2S3-buffered solar cells respectively, matching the performance of CdS-buffered cells prepared with the same batch of absorbers.

  14. Thin layer drying characteristics of curry leaves (Murraya koenigii in an indirect solar dryer

    Directory of Open Access Journals (Sweden)

    Vijayan Selvaraj

    2017-01-01

    Full Text Available In this work, the thin layer drying characteristics of curry leaves (Murraya koenigii has been studied in an indirect forced convection solar dryer with constant air mass flow rate of 0.0636 kg/s. Twelve thin layer drying models were tested for its suitability to describe the drying characteristics of curry leaves. The dryer has reduced the initial moisture content of curry leaves from 67.3% (wet basis to the final moisture content of 4.75% (wet basis in 3.5 hours. The pickup efficiency of indirect solar dryer for drying curry leaves was varied between 4.9% and 23.02%. Based on the statistical parameters, the Modified Henderson and Pabis model and Wang and Singh model were selected for predicting the drying characteristics of curry leaves. The payback period for the solar dryer was evaluated as 8 months, which is found to be much lower when compared with the entire life span of 15 years. The payback evaluation confirms that the solar dryer is economically viable in rural applications.

  15. Transient gas flow through layered porous media

    International Nuclear Information System (INIS)

    Morrison, F.A. Jr.

    1975-01-01

    Low Reynolds number isothermal flow of an ideal gas through layered porous material was investigated analytically. Relations governing the transient flow in one dimension are obtained. An implicit, iterative, unconditionally stable finite difference scheme is developed for calculation of such flows. A computer code, SIROCCO, employing this technique has been written and implemented on the LLL computer system. A listing of the code is included. This code may be effectively applied to the evaluation of stemming plans for underground nuclear experiments. (U.S.)

  16. Granular nanocrystalline zirconia electrolyte layers deposited on porous SOFC cathode substrates

    International Nuclear Information System (INIS)

    Seydel, Johannes; Becker, Michael; Ivers-Tiffee, Ellen; Hahn, Horst

    2009-01-01

    Thin granular yttria-stabilized zirconia (YSZ) electrolyte layers were prepared by chemical vapor synthesis and deposition (CVD/CVS) on a porous substoichiometric lanthanum-strontium-manganite (ULSM) solid oxide fuel cell cathode substrate. The substrate porosity was optimized with a screen printed fine porous buffer layer. Structural analysis by scanning electron microscopy showed a homogeneous, granular nanocrystalline layer with a microstructure that was controlled via reactor settings. The CVD/CVS gas-phase process enabled the deposition of crack-free granular YSZ films on porous ULSM substrates. The electrolyte layers characterized with impedance spectroscopy exhibited enhanced grain boundary conductivity.

  17. Application of RF correction in thin-layer chromatography by means of two reference RF values

    NARCIS (Netherlands)

    Dhont, J.H.; Vinkenborg, C.; Compaan, H.; Ritter, F.J.; Labadie, R.P.; Verweij, A.; Zeeuw, R.A. de

    1972-01-01

    Results of the inter-laboratory experiment described in this paper show that the GALANOS AND KAPOULAS equation can be applied satisfactorily to correct RF values obtained on thin-layer chromatograms in a polar multi-component solvent. Addition of Kieselguhr to the silica gel gives RFc values

  18. Field emission mechanism from a single-layer ultra-thin semiconductor film cathode

    International Nuclear Information System (INIS)

    Duan Zhiqiang; Wang Ruzhi; Yuan Ruiyang; Yang Wei; Wang Bo; Yan Hui

    2007-01-01

    Field emission (FE) from a single-layer ultra-thin semiconductor film cathode (SUSC) on a metal substrate has been investigated theoretically. The self-consistent quantum FE model is developed by synthetically considering the energy band bending and electron scattering. As a typical example, we calculate the FE properties of ultra-thin AlN film with an adjustable film thickness from 1 to 10 nm. The calculated results show that the FE characteristic is evidently modulated by varying the film thickness, and there is an optimum thickness of about 3 nm. Furthermore, a four-step FE mechanism is suggested such that the distinct FE current of a SUSC is rooted in the thickness sensitivity of its quantum structure, and the optimum FE properties of the SUSC should be attributed to the change in the effective potential combined with the attenuation of electron scattering

  19. Influence of thin porous Al2O3 layer on aluminum cathode to the Hα line shape in glow discharge

    International Nuclear Information System (INIS)

    Steflekova, V.; Sisovic, N. M.; Konjevic, N.

    2009-01-01

    The results of the Balmer alfa line shape study in a plane cathode-hollow anode Grimm discharge with aluminum (Al) cathode covered with thin layer of porous Al 2 O 3 are presented. The comparison with same line profile recorded with pure Al cathode shows lack of excessive Doppler broadened line wings, which are always detected in glow discharge with metal cathode. The effect is explained by the lack of strong electric field in the cathode sheath region, which is missing in the presence of thin oxide layer in, so called, spray discharge.

  20. High-Performance Thin-Layer Chromatographic Quantification of Rosmarinic Acid and Rutin in Abnormal Savda Munziq

    Directory of Open Access Journals (Sweden)

    S. G. Tian

    2013-01-01

    Full Text Available A high-performance thin-layer chromatographic (HPTLC method has been established for simultaneous analysis of rosmarinic acid and rutin in Abnormal Savda Munziq (ASMq. A methanol extract of ASMq was used for quantification. The compounds were separated on silica gel H thin layer plate with ethyl acetate-formic acid-acetic acid-water 15 : 1 : 1 : 1.5 (v/v as a developer, trichloroethanol as the color reagent. The plates were scanned at 365 nm. The linear calibration data of rosmarinic acid and rutin were in the range of 0.0508 to 0.2540 μg (r=0.9964, 0.2707 to 1.35354 μg (r=0.9981, respectively. The recovery rate of rosmarinic acid was 99.17% (RSD = 2.92% and rutin was 95.24% (RSD = 2.38%. The method enables rapid screening, precise, selective, and sensitive quantification for pharmaceutical analysis.