WorldWideScience

Sample records for thin film polycrystalline

  1. Polycrystalline thin films : A review

    Energy Technology Data Exchange (ETDEWEB)

    Valvoda, V. [Charles Univ., Prague (Czech Republic). Faculty of Mathematics and Physics

    1996-09-01

    Polycrystalline thin films can be described in terms of grain morphology and in terms of their packing by the Thornton`s zone model as a function of temperature of deposition and as a function of energy of deposited atoms. Grain size and preferred grain orientation (texture) can be determined by X-ray diffraction (XRD) methods. A review of XRD analytical methods of texture analysis is given with main attention paid to simple empirical functions used for texture description and for structure analysis by joint texture refinement. To illustrate the methods of detailed structure analysis of thin polycrystalline films, examples of multilayers are used with the aim to show experiments and data evaluation to determine layer thickness, periodicity, interface roughness, lattice spacing, strain and the size of diffraction coherent volumes. The methods of low angle and high angle XRD are described and discussed with respect to their complementary information content.

  2. Polycrystalline-thin-film thermophotovoltaic cells

    Science.gov (United States)

    Dhere, Neelkanth G.

    1996-02-01

    Thermophotovoltaic (TPV) cells convert thermal energy to electricity. Modularity, portability, silent operation, absence of moving parts, reduced air pollution, rapid start-up, high power densities, potentially high conversion efficiencies, choice of a wide range of heat sources employing fossil fuels, biomass, and even solar radiation are key advantages of TPV cells in comparison with fuel cells, thermionic and thermoelectric convertors, and heat engines. The potential applications of TPV systems include: remote electricity supplies, transportation, co-generation, electric-grid independent appliances, and space, aerospace, and military power applications. The range of bandgaps for achieving high conversion efficiencies using low temperature (1000-2000 K) black-body or selective radiators is in the 0.5-0.75 eV range. Present high efficiency convertors are based on single crystalline materials such as In1-xGaxAs, GaSb, and Ga1-xInxSb. Several polycrystalline thin films such as Hg1-xCdxTe, Sn1-xCd2xTe2, and Pb1-xCdxTe, etc., have great potential for economic large-scale applications. A small fraction of the high concentration of charge carriers generated at high fluences effectively saturates the large density of defects in polycrystalline thin films. Photovoltaic conversion efficiencies of polycrystalline thin films and PV solar cells are comparable to single crystalline Si solar cells, e.g., 17.1% for CuIn1-xGaxSe2 and 15.8% for CdTe. The best recombination-state density Nt is in the range of 10-15-10-16 cm-3 acceptable for TPV applications. Higher efficiencies may be achieved because of the higher fluences, possibility of bandgap tailoring, and use of selective emitters such as rare earth oxides (erbia, holmia, yttria) and rare earth-yttrium aluminium garnets. As compared to higher bandgap semiconductors such as CdTe, it is easier to dope the lower bandgap semiconductors. TPV cell development can benefit from the more mature PV solar cell and opto

  3. Laser scribing of polycrystalline thin films

    Science.gov (United States)

    Compaan, A. D.; Matulionis, I.; Nakade, S.

    2000-07-01

    We have investigated the use of several different types of lasers for scribing of the polycrystalline materials used for thin-film solar cells: CdTe, CuInGaSe 2 (CIGS), ZnO, SnO 2, Mo, Al, and Au. The lasers included four different neodymium-yttrium-aluminum garnet (Nd:YAG) (both 1064 and 532 nm wavelengths), a Cu vapor (511/578 nm), an XeCl excimer (308 nm), and a KrF excimer (248 nm). Pulse durations ranged from ˜0.1 to ˜250 ns. We found that the fundamental and frequency-doubled wavelengths of the Nd:YAG systems work well for almost all of the above materials except for the transparent conductor ZnO. The diode-laser-pumped Nd:YAG was particularly convenient to use. For ZnO the uv wavelengths of the two excimer lasers produced good results. Pulse duration was found generally not to be critical except for the case of CIGS on Mo where longer pulse durations (≥250 ns) are advantageous. The frequently observed problem of ridge formation along the edges of scribe lines in the semiconductor films can be eliminated by control of intensity gradients at the film through adjustment of the focus conditions.

  4. Low resistance polycrystalline diamond thin films deposited by hot ...

    Indian Academy of Sciences (India)

    Administrator

    Low resistance polycrystalline diamond thin films deposited by hot filament chemical vapour deposition. MAHTAB ULLAH, EJAZ AHMED, ABDELBARY ELHISSI† and WAQAR ..... Support Initiative Program (IRSIP). References. Abbas T, Ullah M, Rana A M and Arif Khalil R M 2007 Mater. Sci. Poland 25 1161. Bataineh M ...

  5. Spray Pyrolyzed Polycrystalline Tin Oxide Thin Film as Hydrogen Sensor

    OpenAIRE

    Ganesh E. Patil; D. D. Kajale; D. N. Chavan; N. K. Pawar; V. B. Gaikwad; G. H. Jain

    2010-01-01

    Polycrystalline tin oxide (SnO2) thin film was prepared by using simple and inexpensive spray pyrolysis technique (SPT). The film was characterized for their phase and morphology by X-ray diffraction (XRD) and scanning electron microscopy (SEM), respectively. The crystallite size calculated from the XRD pattern is 84 nm. Conductance responses of the polycrystalline SnO2 were measured towards gases like hydrogen (H2), liquefied petroleum gas (LPG), ethanol vapors (C2H5OH), NH3, CO, CO2, Cl2 an...

  6. Flexible polycrystalline thin-film photovoltaics for space applications

    Science.gov (United States)

    Armstrong, J. H.; Lanning, B. R.; Misra, M. S.; Kapur, V. K.; Basol, B. M.

    1993-01-01

    Polycrystalline thin-film photovoltaics (PV), such as CIS and CdTe, have received considerable attention recently with respect to space power applications. Their combination of stability, efficiency, and economy from large-scale monolithic-integration of modules can have significant impact on cost and weight of PV arrays for spacecraft and planetary experiments. An added advantage, due to their minimal thickness (approximately 6 microns sans substrate), is the ability to manufacture lightweight, flexible devices (approximately 2000 W/kg) using large-volume manufacturing techniques. The photovoltaic effort at Martin Marietta and ISET is discussed, including large-area, large-volume thin-film deposition techniques such as electrodeposition and rotating cylindrical magnetron sputtering. Progress in the development of flexible polycrystalline thin-film PV is presented, including evaluation of flexible CIS cells. In addition, progress on flexible CdTe cells is presented. Finally, examples of lightweight, flexible arrays and their potential cost and weight impact is discussed.

  7. Polycrystalline thin-film technology: Recent progress in photovoltaics

    Science.gov (United States)

    Mitchell, R. L.; Zweibel, K.; Ullal, H. S.

    1991-12-01

    Polycrystalline thin films have made significant technical progress in the past year. Three of these materials that have been studied extensively for photovoltaic (PV) power applications are copper indium diselenide (CuInSe2), cadmium telluride (CdTe), and thin film polycrystalline silicon (x-Si) deposited on ceramic substrates. The first of these materials, polycrystalline thin film CuInSe2, has made some rapid advances in terms of high efficiency and long term reliability. For CuInSe2 power modules, a world record has been reported on a 0.4 sq m module with an aperture-area efficiency of 10.4 pct. and a power output of 40.4 W. Additionally, outdoor reliability testing of CuInSe2 modules, under both loaded and open-circuit conditions, has resulted in only minor changes in module performance after more than 1000 days of continuous exposure to natural sunlight. CdTe module research has also resulted in several recent improvements. Module performance has been increased with device areas reaching nearly 900 sq cm. Deposition has been demonstrated by several different techniques, including electrodeposition, spraying, and screen printing. Outdoor reliability testing of CdTe modules was also carried out under both loaded and open-circuit conditions, with more than 600 days of continuous exposure to natural sunlight. These tests were also encouraging and indicated that the modules were stable within measurement error. The highest reported aperture-area module efficiency for CdTe modules is 10 pct.; the semiconductor material was deposited by electrodeposition. A thin-film CdTe photovoltaic system with a power output of 54 W has been deployed in Saudi Arabia for water pumping. The Module Development Initiative has made significant progress in support of the Polycrystalline Thin-Film Program in the past year, and results are presented in this paper.

  8. Hydrogenation of polycrystalline silicon thin films

    Czech Academy of Sciences Publication Activity Database

    Honda, Shinya; Mates, Tomáš; Knížek, Karel; Ledinský, Martin; Fejfar, Antonín; Kočka, Jan; Yamazaki, T.; Uraoka, Y.; Fuyuki, T.

    2006-01-01

    Roč. 501, - (2006), s. 144-148 ISSN 0040-6090 R&D Projects: GA MŠk ME 537; GA MŽP(CZ) SM/300/1/03; GA AV ČR(CZ) IAA1010316; GA AV ČR(CZ) IAA1010413; GA ČR(CZ) GA202/03/0789 Institutional research plan: CEZ:AV0Z1010914 Keywords : polycrystalline silicon * atmospheric pressure chemical vapour deposition * hydrogen passivation * photoluminescence * Raman spectroscopy * Si-H 2 bonding * hydrogen molecules Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.666, year: 2006

  9. Advances in polycrystalline thin-film photovoltaics for space applications

    Science.gov (United States)

    Lanning, Bruce R.; Armstrong, Joseph H.; Misra, Mohan S.

    1994-09-01

    Polycrystalline, thin-film photovoltaics represent one of the few (if not the only) renewable power sources which has the potential to satisfy the demanding technical requirements for future space applications. The demand in space is for deployable, flexible arrays with high power-to-weight ratios and long-term stability (15-20 years). In addition, there is also the demand that these arrays be produced by scalable, low-cost, high yield, processes. An approach to significantly reduce costs and increase reliability is to interconnect individual cells series via monolithic integration. Both CIS and CdTe semiconductor films are optimum absorber materials for thin-film n-p heterojunction solar cells, having band gaps between 0.9-1.5 ev and demonstrated small area efficiencies, with cadmium sulfide window layers, above 16.5 percent. Both CIS and CdTe polycrystalline thin-film cells have been produced on a laboratory scale by a variety of physical and chemical deposition methods, including evaporation, sputtering, and electrodeposition. Translating laboratory processes which yield these high efficiency, small area cells into the design of a manufacturing process capable of producing 1-sq ft modules, however, requires a quantitative understanding of each individual step in the process and its (each step) effect on overall module performance. With a proper quantification and understanding of material transport and reactivity for each individual step, manufacturing process can be designed that is not 'reactor-specific' and can be controlled intelligently with the design parameters of the process. The objective of this paper is to present an overview of the current efforts at MMC to develop large-scale manufacturing processes for both CIS and CdTe thin-film polycrystalline modules. CIS cells/modules are fabricated in a 'substrate configuration' by physical vapor deposition techniques and CdTe cells/modules are fabricated in a 'superstrate configuration' by wet chemical

  10. Advances in polycrystalline thin-film photovoltaics for space applications

    Science.gov (United States)

    Lanning, Bruce R.; Armstrong, Joseph H.; Misra, Mohan S.

    1994-01-01

    Polycrystalline, thin-film photovoltaics represent one of the few (if not the only) renewable power sources which has the potential to satisfy the demanding technical requirements for future space applications. The demand in space is for deployable, flexible arrays with high power-to-weight ratios and long-term stability (15-20 years). In addition, there is also the demand that these arrays be produced by scalable, low-cost, high yield, processes. An approach to significantly reduce costs and increase reliability is to interconnect individual cells series via monolithic integration. Both CIS and CdTe semiconductor films are optimum absorber materials for thin-film n-p heterojunction solar cells, having band gaps between 0.9-1.5 ev and demonstrated small area efficiencies, with cadmium sulfide window layers, above 16.5 percent. Both CIS and CdTe polycrystalline thin-film cells have been produced on a laboratory scale by a variety of physical and chemical deposition methods, including evaporation, sputtering, and electrodeposition. Translating laboratory processes which yield these high efficiency, small area cells into the design of a manufacturing process capable of producing 1-sq ft modules, however, requires a quantitative understanding of each individual step in the process and its (each step) effect on overall module performance. With a proper quantification and understanding of material transport and reactivity for each individual step, manufacturing process can be designed that is not 'reactor-specific' and can be controlled intelligently with the design parameters of the process. The objective of this paper is to present an overview of the current efforts at MMC to develop large-scale manufacturing processes for both CIS and CdTe thin-film polycrystalline modules. CIS cells/modules are fabricated in a 'substrate configuration' by physical vapor deposition techniques and CdTe cells/modules are fabricated in a 'superstrate configuration' by wet chemical

  11. Polycrystalline Thin Film Photovoltaics: Research, Development, and Technologies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ullal, H. S.; Zweibel, K.; von Roedern, B.

    2002-05-01

    II-VI binary thin-film solar cells based on cadmium telluride (CdTe) and I-III-VI ternary thin-film solar cells based on copper indium diselenide (CIS) and related materials have been the subject of intense research and development in the past few years. Substantial progress has been made thus far in the area of materials research, device fabrication, and technology development, and numerous applications based on CdTe and CIS have been deployed worldwide. World record efficiency of 16.5% has been achieved by NREL scientists for a thin-film CdTe solar cell using a modified device structure. Also, NREL scientists achieved world-record efficiency of 21.1% for a thin-film CIGS solar cell under a 14X concentration and AM1.5 global spectrum. When measured under a AM1.5 direct spectrum, the efficiency increases to 21.5%. Pathways for achieving 25% efficiency for tandem polycrystalline thin-film solar cells are elucidated. R&D issues relating to CdTe and CIS are reported in this paper, such as contact stability and accelerated life testing in CdTe, and effects of moisture ingress in thin-film CIS devices. Substantial technology development is currently under way, with various groups reporting power module efficiencies in the range of 7.0% to 12.1% and power output of 40.0 to 92.5 W. A number of lessons learned during the scale-up activities of the technology development for fabrication of thin-film power modules are discussed. The major global players actively involved in the technology development and commercialization efforts using both rigid and flexible power modules are highlighted.

  12. Spatially resolved photoconductive properties of profiled polycrystalline silicon thin films

    Science.gov (United States)

    Savenije, Tom J.; van Veenendaal, Patrick A. T. T.; de Haas, Matthijs P.; Warman, John M.; Schropp, Ruud E. I.

    2002-05-01

    To study the mobility and lifetime of charge carriers in thin film polycrystalline silicon deposited by hot-wire chemical vapor deposition, time-resolved microwave conductivity measurements have been performed. Using this technique the change in conductivity in the polycrystalline silicon films after pulsed excitation can be monitored on a nanosecond time scale, without the use of electrodes. Due to the different penetration depths of the laser wavelengths used (320, 500, and 690 nm) combined with illumination from different sides, the photoconductivity in different regions within the sample can be measured. Four different samples of polycrystalline silicon deposited on Corning glass have been studied: Poly1 (highly defective), Poly2 (device quality) and profiled layers of Poly1 and Poly2. For front or back illumination, the conductivity transients for the Poly1 film are very similar and show that lifetimes of the charge carriers generated are less than 1 ns. For the Poly2 film the mobility in the interfacial substrate region (μ=0.17 cm2/V s) is more than 1 order of magnitude lower than in the top region (μ=3.8 cm2/V s). The formation of a thin Poly1 film on the surface of the Corning substrate, acting as a seed layer for the Poly2 layer, followed by the deposition of the Poly2 layer, results in only a relatively small increase in the mobility in the region close to the substrate as compared to the bare Poly2 layer, while the mobility in the top region remains approximately constant.

  13. Status of High Performance PV: Polycrystalline Thin-Film Tandems

    Energy Technology Data Exchange (ETDEWEB)

    Symko-Davies, M.

    2005-02-01

    The High-Performance Photovoltaic (HiPerf PV) Project was initiated by the U.S. Department of Energy to substantially increase the viability of photovoltaics (PV) for cost-competitive applications so that PV can contribute significantly to our energy supply and our environment. The HiPerf PV Project aims at exploring the ultimate performance limits of existing PV technologies, approximately doubling their sunlight-to-electricity conversion efficiencies during its course. This work includes bringing thin-film cells and modules toward 25% and 20% efficiencies, respectively, and developing multijunction concentrator cells and modules able to convert more than one-third of the sun's energy to electricity (i.e., 33% efficiency). This paper will address recent accomplishments of the NREL in-house research effort involving polycrystalline thin-film tandems, as well as the research efforts under way in the subcontracted area.

  14. Spray Pyrolyzed Polycrystalline Tin Oxide Thin Film as Hydrogen Sensor

    Directory of Open Access Journals (Sweden)

    Ganesh E. Patil

    2010-09-01

    Full Text Available Polycrystalline tin oxide (SnO2 thin film was prepared by using simple and inexpensive spray pyrolysis technique (SPT. The film was characterized for their phase and morphology by X-ray diffraction (XRD and scanning electron microscopy (SEM, respectively. The crystallite size calculated from the XRD pattern is 84 nm. Conductance responses of the polycrystalline SnO2 were measured towards gases like hydrogen (H2, liquefied petroleum gas (LPG, ethanol vapors (C2H5OH, NH3, CO, CO2, Cl2 and O2. The gas sensing characteristics were obtained by measuring the sensor response as a function of various controlling factors like operating temperature, operating voltages (1 V, 5 V, 10 V 15 V, 20 V and 25 V and concentration of gases. The sensor response measurement showed that the SnO2 has maximum response to hydrogen. Furthermore; the SnO2 based sensor exhibited fast response and good recovery towards hydrogen at temperature 150 oC. The result of response towards H2 reveals that SnO2 thin film prepared by SPT would be a suitable material for the fabrication of the hydrogen sensor.

  15. Resistive switching in polycrystalline YMnO3 thin films

    Directory of Open Access Journals (Sweden)

    A. Bogusz

    2014-10-01

    Full Text Available We report a unipolar, nonvolatile resistive switching in polycrystalline YMnO3 thin films grown by pulsed laser deposition and sandwiched between Au top and Ti/Pt bottom electrodes. The ratio of the resistance in the OFF and ON state is larger than 103. The observed phenomena can be attributed to the formation and rupture of conductive filaments within the multiferroic YMnO3 film. The generation of conductive paths under applied electric field is discussed in terms of the presence of grain boundaries and charged domain walls inherently formed in hexagonal YMnO3. Our findings suggest that engineering of the ferroelectric domains might be a promising route for designing and fabrication of novel resistive switching devices.

  16. Cu doped AlSb polycrystalline thin films

    International Nuclear Information System (INIS)

    Wu Lili; Jin Shuo; Zeng Guanggen; Zhang Jingquan; Li Wei; Feng Lianghuan; Li Bing; Wang Wenwu

    2013-01-01

    Cu-doped AlSb polycrystalline films were grown on quartz glass by magnetron co-sputtering. The structural, morphological and electrical properties of the films were studied. The incorporation of copper atoms can result in the increase of lattice constants, and annealing is helpful to eliminate this deformation. Cu-doped AlSb films exhibit weak n-type conductivity. The results show that the doping effect has a close relationship with the annealing process, meaning that the position of Cu atom in AlSb polycrystalline films might influence the doping effect. (semiconductor materials)

  17. Charge carrier transport in polycrystalline organic thin film based field effect transistors

    Science.gov (United States)

    Rani, Varsha; Sharma, Akanksha; Ghosh, Subhasis

    2016-05-01

    The charge carrier transport mechanism in polycrystalline thin film based organic field effect transistors (OFETs) has been explained using two competing models, multiple trapping and releases (MTR) model and percolation model. It has been shown that MTR model is most suitable for explaining charge carrier transport in grainy polycrystalline organic thin films. The energetic distribution of traps determined independently using Mayer-Neldel rule (MNR) is in excellent agreement with the values obtained by MTR model for copper phthalocyanine and pentacene based OFETs.

  18. Hydrogen passivation of polycrystalline Si thin film solar cells

    International Nuclear Information System (INIS)

    Gorka, Benjamin

    2010-01-01

    Hydrogen passivation is a key process step in the fabrication of polycrystalline Si (poly-Si) thin film solar cells. In this work a parallel plate rf plasma setup was used for the hydrogen passivation treatment. The main topics that have been investigated are (i) the role of plasma parameters (like hydrogen pressure, electrode gap and plasma power), (ii) the dynamics of the hydrogen treatment and (iii) passivation of poly-Si with different material properties. Passivation was characterized by measuring the open-circuit voltage V OC of poly-Si reference samples. Optimum passivation conditions were found by measurements of the breakdown voltage V brk of the plasma for different pressures p and electrode gaps d. For each pressure, the best passivation was achieved at a gap d that corresponded to the minimum in V brk . Plasma simulations were carried out, which indicate that best V OC corresponds to a minimum in ion energy. V OC was not improved by a larger H flux. Investigations of the passivation dynamic showed that a plasma treatment in the lower temperature range (≤400 C) is slow and takes several hours for the V OC to saturate. Fast passivation can be successfully achieved at elevated temperatures around 500 C to 600 C with a plateau time of 10 min. It was found that prolonged hydrogenation leads to a loss in V OC , which is less pronounced within the observed optimum temperature range (500 C-600 C). Electron beam evaporation has been investigated as an alternative method to fabricate poly-Si absorbers. The material properties have been tuned by alteration of substrate temperature T dep =200-700 C and were characterized by Raman, ESR and V OC measurements. Largest grains were obtained after solid phase crystallization (SPC) of a-Si, deposited in the temperature range of 300 C. The defect concentration of Si dangling bonds was lowered by passivation by about one order of magnitude. The lowest dangling bond concentration of 2.5.10 16 cm -3 after passivation was

  19. Hydrogen passivation of polycrystalline Si thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorka, Benjamin

    2010-12-15

    Hydrogen passivation is a key process step in the fabrication of polycrystalline Si (poly-Si) thin film solar cells. In this work a parallel plate rf plasma setup was used for the hydrogen passivation treatment. The main topics that have been investigated are (i) the role of plasma parameters (like hydrogen pressure, electrode gap and plasma power), (ii) the dynamics of the hydrogen treatment and (iii) passivation of poly-Si with different material properties. Passivation was characterized by measuring the open-circuit voltage V{sub OC} of poly-Si reference samples. Optimum passivation conditions were found by measurements of the breakdown voltage V{sub brk} of the plasma for different pressures p and electrode gaps d. For each pressure, the best passivation was achieved at a gap d that corresponded to the minimum in V{sub brk}. Plasma simulations were carried out, which indicate that best V{sub OC} corresponds to a minimum in ion energy. V{sub OC} was not improved by a larger H flux. Investigations of the passivation dynamic showed that a plasma treatment in the lower temperature range ({<=}400 C) is slow and takes several hours for the V{sub OC} to saturate. Fast passivation can be successfully achieved at elevated temperatures around 500 C to 600 C with a plateau time of 10 min. It was found that prolonged hydrogenation leads to a loss in V{sub OC}, which is less pronounced within the observed optimum temperature range (500 C-600 C). Electron beam evaporation has been investigated as an alternative method to fabricate poly-Si absorbers. The material properties have been tuned by alteration of substrate temperature T{sub dep}=200-700 C and were characterized by Raman, ESR and V{sub OC} measurements. Largest grains were obtained after solid phase crystallization (SPC) of a-Si, deposited in the temperature range of 300 C. The defect concentration of Si dangling bonds was lowered by passivation by about one order of magnitude. The lowest dangling bond concentration

  20. Thin film polycrystalline silicon photoelectric converter and fabricating method; Hakumaku takkesho shirikon koden henkan sochi oyobi sono seizo hoho

    Energy Technology Data Exchange (ETDEWEB)

    Yamamoto, K. [Kobe (Japan); Suzuki, T. [Kobe (Japan); Yoshimi, M. [Kobe (Japan)

    1995-04-07

    This invention relates to a fabricating method for a thin film polycrystalline silicon photoelectric converter which has a large area and can be produced at low cost. Successive formation of mono-conductive polycrystalline silicon thin film and reverse conducting polycrystalline silicon thin film on a translucent substrate requires no vapor phase epitaxial growth, and the film formation temperature for silicon thin film can be lowered. Orientation of the monocrystalline silicon thin film to any of the surface bearings of (100), (111), and (110) results in the function of determining the orientation of the reverse conducting polycrystalline silicon thin film formed thereon. This orientation is effective to obtain excellent characteristics, and results in effective surface orientation of the entire power generating area. In addition, the supporting substrate and the surface protective film of the solar cell can be combined by orienting the translucent substrate side to the light incident side. 2 figs., 1 tab.

  1. Tailoring of in-plane magnetic anisotropy in polycrystalline cobalt thin films by external stress

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dileep, E-mail: dkumar@csr.res.in [UGC-DAE Consortium for Scientic Research, Khandwa Road, Indore 452001 (India); Singh, Sadhana [UGC-DAE Consortium for Scientic Research, Khandwa Road, Indore 452001 (India); Vishawakarma, Pramod [School of Nanotechnology, RGPV, Bhopal 462036 (India); Dev, Arun Singh; Reddy, V.R. [UGC-DAE Consortium for Scientic Research, Khandwa Road, Indore 452001 (India); Gupta, Ajay [Amity Center for Spintronic Materials, Amity University, Sector 125, Noida 201303 (India)

    2016-11-15

    Polycrystalline Co films of nominal thickness ~180 Å were deposited on intentionally curved Si substrates. Tensile and compressive stresses of 100 MPa and 150 MPa were induced in the films by relieving the curvature. It has been found that, within the elastic limit, presence of stress leads to an in-plane magnetic anisotropy in the film and its strength increases with increasing stress. Easy axis of magnetization in the films is found to be parallel/ transverse to the compressive /tensile stresses respectively. The origin of magnetic anisotropy in the stressed films is understood in terms of magneto- elastic coupling, where the stress try to align the magnetic moments in order to minimize the magneto-elastic as well as anisotropy energy. Tensile stress is also found to be responsible for the surface smoothening of the films, which is attributed to the movement of the atoms associated with the applied stress. The present work provides a possible way to tailor the magnetic anisotropy and its direction in polycrystalline and amorphous films using external stress. - Highlights: • Tensile and compressive stresses were induced in Co films by removing the bending force from the substrates after film deposition. • Controlled external mechanical stress is found to be responsible for magnetic anisotropies in amorphous and polycrystalline thin films, where crystalline anisotropy is absent. • Tensile stress leads to surface smoothening of the polycrystalline Co films.

  2. Tailoring of in-plane magnetic anisotropy in polycrystalline cobalt thin films by external stress

    International Nuclear Information System (INIS)

    Kumar, Dileep; Singh, Sadhana; Vishawakarma, Pramod; Dev, Arun Singh; Reddy, V.R.; Gupta, Ajay

    2016-01-01

    Polycrystalline Co films of nominal thickness ~180 Å were deposited on intentionally curved Si substrates. Tensile and compressive stresses of 100 MPa and 150 MPa were induced in the films by relieving the curvature. It has been found that, within the elastic limit, presence of stress leads to an in-plane magnetic anisotropy in the film and its strength increases with increasing stress. Easy axis of magnetization in the films is found to be parallel/ transverse to the compressive /tensile stresses respectively. The origin of magnetic anisotropy in the stressed films is understood in terms of magneto- elastic coupling, where the stress try to align the magnetic moments in order to minimize the magneto-elastic as well as anisotropy energy. Tensile stress is also found to be responsible for the surface smoothening of the films, which is attributed to the movement of the atoms associated with the applied stress. The present work provides a possible way to tailor the magnetic anisotropy and its direction in polycrystalline and amorphous films using external stress. - Highlights: • Tensile and compressive stresses were induced in Co films by removing the bending force from the substrates after film deposition. • Controlled external mechanical stress is found to be responsible for magnetic anisotropies in amorphous and polycrystalline thin films, where crystalline anisotropy is absent. • Tensile stress leads to surface smoothening of the polycrystalline Co films.

  3. Laser scribing integration of polycrystalline thin film solar cells

    Science.gov (United States)

    Sozzi, Michele; Manilia, Filomena; Antezza, Roberto; Catellani, Cristina; Candiani, Alessandro; Coscelli, Enrico; Cucinotta, Annamaria; Selleri, Stefano; Menossi, Daniele; Bosio, Alessio

    2013-03-01

    The growing demand for high productivity in the thin-film photovoltaic module industry, together with the request for more and more efficient devices, needs high-performance laser-scribing. The results of scribing tests on CdTe and CIGS solar cells samples are here presented. A comparison between the scribes obtained with ns regime fiber lasers, and a ps regime diode pumped solid state laser will be also reported.

  4. Carrier transport in polycrystalline silicon thin films solar cells grown on a highly textured structure

    Czech Academy of Sciences Publication Activity Database

    Honda, Shinya; Takakura, H.; Hamakawa, Y.; Muhida, R.; Kawamura, T.; Harano, T.; Toyama, T.; Okamoto, H.

    2004-01-01

    Roč. 43, 9A (2004), s. 5955-5959 ISSN 0021-4922 Institutional research plan: CEZ:AV0Z1010914 Keywords : polycrystalline silicon thin film * solar cells * substrate texture Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.142, year: 2004

  5. Solution-Based Fabrication of Polycrystalline Si Thin-Film Transistors from Recycled Polysilanes

    NARCIS (Netherlands)

    Sberna, P.M.; Trifunovic, M.; Ishihara, R.

    2017-01-01

    Currently, research has been focusing on printing and laser crystallization of cyclosilanes, bringing to life polycrystalline silicon (poly-Si) thin-film transistors (TFTs) with outstanding properties. However, the synthesis of these Sibased inks is generally complex and expensive. Here, we prove

  6. Faraday effect of polycrystalline bismuth iron garnet thin film prepared by mist chemical vapor deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Situ; Kamakura, Ryosuke; Murai, Shunsuke; Fujita, Koji; Tanaka, Katsuhisa, E-mail: tanaka@dipole7.kuic.kyoto-u.ac.jp

    2017-01-15

    We have synthesized polycrystalline thin film composed of a single phase of metastable bismuth iron garnet, Bi{sub 3}Fe{sub 5}O{sub 12}, on a fused silica substrate, one of the most widely utilized substrates in the solid-state electronics, by using mist chemical vapor deposition (mist CVD) method. The phase purity and stoichiometry are confirmed by X-ray diffraction and Rutherford backscattering spectrometry. The resultant thin film shows a small surface roughness of 3.251 nm. The saturation magnetization at room temperature is 1200 G, and the Faraday rotation angle at 633 nm reaches −5.2 deg/μm. Both the magnetization and the Faraday rotation angles are somewhat higher than those of polycrystalline BIG thin films prepared by other methods. - Highlights: • Thin film of polycrystalline Bi{sub 3}Fe{sub 5}O{sub 12} was prepared by the mist CVD method. • Optimized conditions were found for the synthesis of single phase of Bi{sub 3}Fe{sub 5}O{sub 12}. • The Faraday rotation angle at 633 nm is –5.2 deg/μm at room temperature. • The Faraday rotation is interpreted by the electronic transitions of Fe{sup 3+} ions.

  7. Effect of hydrogen passivation on polycrystalline silicon thin films

    Czech Academy of Sciences Publication Activity Database

    Honda, Shinya; Mates, Tomáš; Ledinský, Martin; Oswald, Jiří; Fejfar, Antonín; Kočka, Jan; Yamazaki, T.; Uraoka, Y.; Fuyuki, T.

    2005-01-01

    Roč. 487, - (2005), s. 152-156 ISSN 0040-6090 R&D Projects: GA AV ČR(CZ) IAA1010316; GA AV ČR(CZ) IAA1010413; GA ČR(CZ) GD202/05/H003 Institutional research plan: CEZ:AV0Z10100521 Keywords : hydrogen passivation * polycrystalline silicon * photoluminescence * Raman spectroscopy * Si-H 2 * hydrogen molecules Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.569, year: 2005

  8. Ferroelectric properties of lead-free polycrystalline CaBi2Nb2O9 thin films on glass substrates

    Science.gov (United States)

    Ahn, Yoonho; Jang, Joonkyung; Son, Jong Yeog

    2016-03-01

    CaBi2Nb2O9 (CBNO) thin film, a lead-free ferroelectric material, was prepared on a Pt/Ta/glass substrate via pulsed laser deposition. The Ta film was deposited on the glass substrate for a buffer layer. A (115) preferred orientation of the polycrystalline CBNO thin film was verified via X-ray diffraction measurements. The CBNO thin film on a glass substrate exhibited good ferroelectric properties with a remnant polarization of 4.8 μC/cm2 (2Pr ˜9.6 μC/cm2), although it had lower polarization than the epitaxially c-oriented CBNO thin film reported previously. A mosaic-like ferroelectric domain structure was observed via piezoresponse force microscopy. Significantly, the polycrystalline CBNO thin film showed much faster switching behavior within about 100 ns than that of the epitaxially c-oriented CBNO thin film.

  9. ANNEALING OF POLYCRYSTALLINE THIN FILM SILICON SOLAR CELLS IN WATER VAPOUR AT SUB-ATMOSPHERIC PRESSURES

    Directory of Open Access Journals (Sweden)

    Peter Pikna

    2014-10-01

    Full Text Available Thin film polycrystalline silicon (poly-Si solar cells were annealed in water vapour at pressures below atmospheric pressure. PN junction of the sample was contacted by measuring probes directly in the pressure chamber filled with steam during passivation. Suns-VOC method and a Lock-in detector were used to monitor an effect of water vapour to VOC of the solar cell during whole passivation process (in-situ. Tested temperature of the sample (55°C – 110°C was constant during the procedure. Open-circuit voltage of a solar cell at these temperatures is lower than at room temperature. Nevertheless, voltage response of the solar cell to the light flash used during Suns-VOC measurements was good observable. Temperature dependences for multicrystalline wafer-based and polycrystalline thin film solar cells were measured and compared. While no significant improvement of thin film poly-Si solar cell parameters by annealing in water vapour at under-atmospheric pressures was observed up to now, in-situ observation proved required sensitivity to changing VOC at elevated temperatures during the process.

  10. Effect of Gaussian doping profile on the performance of a thin film polycrystalline solar cell

    Directory of Open Access Journals (Sweden)

    Ouali A.

    2012-06-01

    Full Text Available A two-dimensional (2D analytical model based on the Green’s function method is applied to an n+-p thin film polycrystalline solar cell that allows us to calculate the conversion efficiency. This model considers the effective Gaussian doping profile in the p region in order to improve cell efficiency. The dependence of mobility and lifetime on grain doping is also investigated. This model is implemented through a simulation program in order to optimize conversion efficiency while varying thickness and doping profile in the base region of the cell. Compared with n+-p standard structure, our proposed structure shows a 43% improvement in conversion efficiency for a polycrystalline solar cell.

  11. Low temperature magnetron sputter deposition of polycrystalline silicon thin films using high flux ion bombardment

    International Nuclear Information System (INIS)

    Gerbi, Jennifer E.; Abelson, John R.

    2007-01-01

    We demonstrate that the microstructure of polycrystalline silicon thin films depends strongly on the flux of low energy ions that bombard the growth surface during magnetron sputter deposition. The deposition system is equipped with external electromagnetic coils which, through the unbalanced magnetron effect, provide direct control of the ion flux independent of the ion energy. We report the influence of low energy ( + on the low temperature ( + ions to silicon neutrals (J + /J 0 ) during growth by an order of magnitude (from 3 to 30) enables the direct nucleation of polycrystalline Si on glass and SiO 2 coated Si at temperatures below 400 degree sign C. We discuss possible mechanisms for this enhancement of crystalline microstructure, including the roles of enhanced adatom mobility and the formation of shallow, mobile defects

  12. Appropriate materials and preparation techniques for polycrystalline-thin-film thermophotovoltaic cells

    Science.gov (United States)

    Dhere, Neelkanth G.

    1997-03-01

    Polycrystalline-thin-film thermophotovoltaic (TPV) cells have excellent potential for reducing the cost of TPV generators so as to address the hitherto inaccessible and highly competitive markets such as self-powered gas-fired residential warm air furnaces and energy-efficient electric cars, etc. Recent progress in polycrystalline-thin-film solar cells have made it possible to satisfy the diffusion length and intrinsic junction rectification criteria for TPV cells operating at high fluences. Continuous ranges of direct bandgaps of the ternary and pseudoternary compounds such as Hg1-xCdxTe, Pb1-xCdxTe, Hg1-xZnxTe, and Pb1-xZnxS cover the region of interest of 0.50-0.75 eV for efficient TPV conversion. Other ternary and pseudoternary compounds which show direct bandgaps in most of or all of the 0.50-0.75 eV range are Pb1-xZnxTe, Sn1-xCd2xTe2, Pb1-xCdxSe, Pb1-xZnxSe, and Pb1-xCdxS. Hg1-xCdxTe (with x~0.21) has been studied extensively for infrared detectors. PbTe and Pb1-xSnxTe have also been studied for infrared detectors. Not much work has been carried out on Hg1-xZnxTe thin films. Hg1-xCdxTe and Pb1-xCdxTe alloys cover a wide range of cut-off wavelengths from the far infrared to the near visible. Acceptors and donors are introduced in these materials by excess non-metal (Te) and excess metal (Hg and Pb) respectively. Extrinsic acceptor impurities are Cu, Au, and As while and In and Al are donor impurities. Hg1-xCdxTe thin films have been deposited by isothermal vapor-phase epitaxy (VPE), liquid phase epitaxy (LPE), hot-wall metalorganic chemical vapor deposition (MOCVD), electrodeposition, sputtering, molecular beam epitaxy (MBE), laser-assisted evaporation, and vacuum evaporation with or without hot-wall enclosure. The challenge in the preparation of Hg1-xCdxTe is to provide excess mercury incidence rate, to optimize the deposition parameters for enhanced mercury incorporation, and to achieve the requisite stoichiometry, grain size, and doping. MBE and MOCVD

  13. Effect of Grain Boundaries on the Performance of Thin-Film-Based Polycrystalline Silicon Solar Cells: A Numerical Modeling

    Science.gov (United States)

    Chhetri, Nikita; Chatterjee, Somenath

    2018-01-01

    Solar cells/photovoltaic, a renewable energy source, is appraised to be the most effective alternative to the conventional electrical energy generator. A cost-effective alternative of crystalline wafer-based solar cell is thin-film polycrystalline-based solar cell. This paper reports the numerical analysis of dependency of the solar cell parameters (i.e., efficiency, fill factor, open-circuit voltage and short-circuit current density) on grain size for thin-film-based polycrystalline silicon (Si) solar cells. A minority carrier lifetime model is proposed to do a correlation between the grains, grain boundaries and lifetime for thin-film-based polycrystalline Si solar cells in MATLAB environment. As observed, the increment in the grain size diameter results in increase in minority carrier lifetime in polycrystalline Si thin film. A non-equivalent series resistance double-diode model is used to find the dark as well as light (AM1.5) current-voltage (I-V) characteristics for thin-film-based polycrystalline Si solar cells. To optimize the effectiveness of the proposed model, a successive approximation method is used and the corresponding fitting parameters are obtained. The model is validated with the experimentally obtained results reported elsewhere. The experimentally reported solar cell parameters can be found using the proposed model described here.

  14. Suppressing light reflection from polycrystalline silicon thin films through surface texturing and silver nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Akhter, Perveen [Department of Physics, University at Albany-SUNY, Albany, New York 12222 (United States); Huang, Mengbing, E-mail: mhuang@albany.edu; Kadakia, Nirag; Spratt, William; Malladi, Girish; Bakhru, Hassarum [SUNY College of Nanoscale Science and Engineering, Albany, New York 12203 (United States)

    2014-09-21

    This work demonstrates a novel method combining ion implantation and silver nanostructures for suppressing light reflection from polycrystalline silicon thin films. Samples were implanted with 20-keV hydrogen ions to a dose of 10¹⁷/cm², and some of them received an additional argon ion implant to a dose of 5×10¹⁵ /cm² at an energy between 30 and 300 keV. Compared to the case with a single H implant, the processing involved both H and Ar implants and post-implantation annealing has created a much higher degree of surface texturing, leading to a more dramatic reduction of light reflection from polycrystalline Si films over a broadband range between 300 and 1200 nm, e.g., optical reflection from the air/Si interface in the AM1.5 sunlight condition decreasing from ~30% with an untextured surface to below 5% for a highly textured surface after post-implantation annealing at 1000°C. Formation of Ag nanostructures on these ion beam processed surfaces further reduces light reflection, and surface texturing is expected to have the benefit of diminishing light absorption losses within large-size (>100 nm) Ag nanoparticles, yielding an increased light trapping efficiency within Si as opposed to the case with Ag nanostructures on a smooth surface. A discussion of the effects of surface textures and Ag nanoparticles on light trapping within Si thin films is also presented with the aid of computer simulations.

  15. Pulse duration and wavelength effects in laser scribing of thin-film polycrystalline PV materials

    Science.gov (United States)

    Compaan, A. D.; Matulionis, I.; Nakade, S.; Jayamaha, U.

    1997-02-01

    This project is focussed on a study of wavelength-dependent effects and pulse-duration effects on laser scribing of polycrystalline thin-film PV materials. The materials studied here are CdTe, CI(G)S, SnO2, ZnO, molybdenum and gold. This paper provides a summary of thresholds and optimum scribing energy densities for two types of Nd:YAG lasers, a 308 nm excimer laser, and a copper vapor laser. A comparison is presented of glass-side vs. film-side scribing. Discussion is also given of scribing of multilayer films such as ZnO/CIS/moly and gold/CdTe/SnO2.

  16. High-temperature laser annealing for thin film polycrystalline silicon solar cell on glass substrate

    Science.gov (United States)

    Chowdhury, A.; Schneider, J.; Dore, J.; Mermet, F.; Slaoui, A.

    2012-06-01

    Thin film polycrystalline silicon films grown on glass substrate were irradiated with an infrared continuous wave laser for defects annealing and/or dopants activation. The samples were uniformly scanned using an attachment with the laser system. Substrate temperature, scan speed and laser power were varied to find suitable laser annealing conditions. The Raman spectroscopy and Suns- V oc analysis were carried out to qualify the films quality after laser annealing. A maximum enhancement of the open circuit voltage V oc of about 100 mV is obtained after laser annealing of as-grown polysilicon structures. A strong correlation was found between the full width half maximum of the Si crystalline peak and V oc. It is interpreted as due to defects annealing as well as to dopants activation in the absorbing silicon layer. The maximum V oc reached is 485 mV after laser treatment and plasma hydrogenation, thanks to defects passivation.

  17. Low temperature processing of a large grain polycrystalline silicon thin film on soda-lime glass

    International Nuclear Information System (INIS)

    Wang, Kai; Wong, Kin Hung

    2011-01-01

    We have demonstrated that a polycrystalline silicon thin film can be fabricated in situ on soda-lime glass at 450 °C by an Al-induced crystallization method using electron beam evaporation. The catalytic Al is found to diffuse to the top of the crystallized Si layer and can be easily etched away by a mixture of acids. This low temperature Si crystallization process is well explained by thermodynamic consideration. Subsequent annealing at the same temperature (450 °C) for 6 h improves the crystallinity of the film and enlarges the average grain size to over 5 µm. There are no observable impurity phases. The poly-Si thin films are (1 1 1) oriented and all the grains are well aligned. A defect-free and excellent crystalline structure has been revealed by transmission electron microscopy. The measured resistivity, carrier concentration and charge mobility of these as-prepared poly-Si thin films indicate that our present low temperature processing technique has great advantage and prospect for the photonics industry

  18. Low temperature processing of a large grain polycrystalline silicon thin film on soda-lime glass

    Science.gov (United States)

    Wang, Kai; Wong, Kin Hung

    2011-09-01

    We have demonstrated that a polycrystalline silicon thin film can be fabricated in situ on soda-lime glass at 450 °C by an Al-induced crystallization method using electron beam evaporation. The catalytic Al is found to diffuse to the top of the crystallized Si layer and can be easily etched away by a mixture of acids. This low temperature Si crystallization process is well explained by thermodynamic consideration. Subsequent annealing at the same temperature (450 °C) for 6 h improves the crystallinity of the film and enlarges the average grain size to over 5 µm. There are no observable impurity phases. The poly-Si thin films are (1 1 1) oriented and all the grains are well aligned. A defect-free and excellent crystalline structure has been revealed by transmission electron microscopy. The measured resistivity, carrier concentration and charge mobility of these as-prepared poly-Si thin films indicate that our present low temperature processing technique has great advantage and prospect for the photonics industry.

  19. Influence of metal induced crystallization parameters on the performance of polycrystalline silicon thin film transistors

    International Nuclear Information System (INIS)

    Pereira, L.; Barquinha, P.; Fortunato, E.; Martins, R.

    2005-01-01

    In this work, metal induced crystallization using nickel was employed to obtain polycrystalline silicon by crystallization of amorphous films for thin film transistor applications. The devices were produced through only one lithographic process with a bottom gate configuration using a new gate dielectric consisting of a multi-layer of aluminum oxide/titanium oxide produced by atomic layer deposition. The best results were obtained for TFTs with the active layer of poly-Si crystallized for 20 h at 500 deg. C using a nickel layer of 0.5 nm where the effective mobility is 45.5 cm 2 V -1 s -1 . The threshold voltage, the on/off current ratio and the sub-threshold voltage are, respectively, 11.9 V, 5.55x10 4 and 2.49 V/dec

  20. Formation of (100)-oriented large polycrystalline silicon thin films with multiline beam continuous-wave laser lateral crystallization

    Science.gov (United States)

    Thuy Nguyen, Thi; Hiraiwa, Mitsuhisa; Koganezawa, Tomoyuki; Yasuno, Satoshi; Kuroki, Shin-Ichiro

    2018-03-01

    Low-temperature crystallization to (100)-oriented polycrystalline silicon (poly-Si) thin films is a key requirement for high-performance low-temperature poly-Si thin-film transistors (LTPS-TFTs). Biaxially (100)-oriented poly-Si thin films were formed by multiline beam continuous-wave laser lateral crystallization in single scans. By overlapping scanning, the (100) preferential orientation was stable and (100) silicon crystals were developed over a large area. The crystallinities of the poly-Si films were precisely characterized, especially by two-dimensional X-ray diffraction. It was found that the poly-Si thin films predominantly had (100)-surface-oriented crystals. The crystallinity of the laser-crystallized poly-Si films was dependent on the scanning speed and overlapping condition. The (100) poly-Si films were formed at scanning speeds below the threshold for lateral-crystallized silicon.

  1. Suppressing light reflection from polycrystalline silicon thin films through surface texturing and silver nanostructures

    International Nuclear Information System (INIS)

    Akhter, Perveen; Huang, Mengbing; Kadakia, Nirag; Spratt, William; Malladi, Girish; Bakhru, Hassarum

    2014-01-01

    This work demonstrates a novel method combining ion implantation and silver nanostructures for suppressing light reflection from polycrystalline silicon thin films. Samples were implanted with 20-keV hydrogen ions to a dose of 10 17 /cm 2 , and some of them received an additional argon ion implant to a dose of 5 × 10 15 /cm 2 at an energy between 30 and 300 keV. Compared to the case with a single H implant, the processing involved both H and Ar implants and post-implantation annealing has created a much higher degree of surface texturing, leading to a more dramatic reduction of light reflection from polycrystalline Si films over a broadband range between 300 and 1200 nm, e.g., optical reflection from the air/Si interface in the AM1.5 sunlight condition decreasing from ∼30% with an untextured surface to below 5% for a highly textured surface after post-implantation annealing at 1000 °C. Formation of Ag nanostructures on these ion beam processed surfaces further reduces light reflection, and surface texturing is expected to have the benefit of diminishing light absorption losses within large-size (>100 nm) Ag nanoparticles, yielding an increased light trapping efficiency within Si as opposed to the case with Ag nanostructures on a smooth surface. A discussion of the effects of surface textures and Ag nanoparticles on light trapping within Si thin films is also presented with the aid of computer simulations.

  2. Fatigue characteristics of polycrystalline silicon thin-film membrane and its dependence on humidity

    International Nuclear Information System (INIS)

    Tanemura, Tomoki; Yamashita, Shuichi; Wado, Hiroyuki; Takeuchi, Yukihiro; Tsuchiya, Toshiyuki; Tabata, Osamu

    2013-01-01

    This paper describes fatigue characteristics of a polycrystalline silicon thin-film membrane under different humidity evaluated by out-of-plane resonant vibration. The membrane, without the surface of sidewalls by patterning of photolithography and etching process, was applied to evaluate fatigue characteristics precisely against the changes in the surrounding humidity owing to narrower deviation in the fatigue lifetime. The membrane has 16 mm square-shaped multilayered films consisting of a 250 or 500 nm thick polysilicon film on silicon dioxide and silicon nitride underlying layers. A circular weight of 12 mm in diameter was placed at the center of the membrane to control the resonant frequency. Stress on the polysilicon film was generated by deforming the membrane oscillating the weight in the out-of-plane direction. The polysilicon film was fractured by fatigue damage accumulation under cyclic stress. The lifetime of the polysilicon membrane extended with lower relative humidity, especially at 5%RH. The results of the fatigue tests were well formulated with Weibull's statistics and Paris’ law. The dependence of fatigue characteristics on humidity has been quantitatively revealed for the first time. The crack growth rate indicated by the fatigue index decreased with the reduction in humidity, whereas the deviation of strength represented by the Weibull modulus was nearly constant against humidity. (paper)

  3. Compositional analysis of polycrystalline hafnium oxide thin films by heavy-ion elastic recoil detection analysis

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, F.L. [Departamento de Electronica y Tecnologia de Computadoras, Universidad Politecnica de Cartagena, Campus Universitario Muralla del Mar, E-30202 Cartagena (Spain)]. E-mail: Felix.Martinez@upct.es; Toledano, M. [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28025 Madrid (Spain); San Andres, E. [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28025 Madrid (Spain); Martil, I. [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28025 Madrid (Spain); Gonzalez-Diaz, G. [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28025 Madrid (Spain); Bohne, W. [Hahn-Meitner-Institut Berlin, Abteilung SF-4, D-14109 Berlin (Germany); Roehrich, J. [Hahn-Meitner-Institut Berlin, Abteilung SF-4, D-14109 Berlin (Germany); Strub, E. [Hahn-Meitner-Institut Berlin, Abteilung SF-4, D-14109 Berlin (Germany)

    2006-10-25

    The composition of polycrystalline hafnium oxide thin films has been measured by heavy-ion elastic recoil detection analysis (HI-ERDA). The films were deposited by high-pressure reactive sputtering (HPRS) on silicon wafers using an oxygen plasma at pressures between 0.8 and 1.6 mbar and during deposition times between 0.5 and 3.0 h. Hydrogen was found to be the main impurity and its concentration increased with deposition pressure. The composition was always slightly oxygen-rich, which is attributed to the oxygen plasma. Additionally, an interfacial silicon oxide thin layer was detected and taken into account. The thickness of the hafnium oxide film was found to increase linearly with deposition time and to decrease exponentially with deposition pressure, whereas the thickness of the silicon oxide interfacial layer has a minimum as a function of pressure at around 1.2 mbar and increases slightly as a function of time. The measurements confirmed that this interfacial layer is formed mainly during the early stages of the deposition process.

  4. Designing novel thin film polycrystalline solar cells for high efficiency: sandwich CIGS and heterojunction perovskite

    Science.gov (United States)

    Wang, Tianyue; Chen, Jiewei; Wu, Gaoxiang; Song, Dandan; Li, Meicheng

    2017-01-01

    Heterojunction and sandwich architectures are two new-type structures with great potential for solar cells. Specifically, the heterojunction structure possesses the advantages of efficient charge separation but suffers from band offset and large interface recombination; the sandwich configuration is favorable for transferring carriers but requires complex fabrication process. Here, we have designed two thin-film polycrystalline solar cells with novel structures: sandwich CIGS and heterojunction perovskite, referring to the advantages of the architectures of sandwich perovskite (standard) and heterojunction CIGS (standard) solar cells, respectively. A reliable simulation software wxAMPS is used to investigate their inherent characteristics with variation of the thickness and doping density of absorber layer. The results reveal that sandwich CIGS solar cell is able to exhibit an optimized efficiency of 20.7%, which is much higher than the standard heterojunction CIGS structure (18.48%). The heterojunction perovskite solar cell can be more efficient employing thick and doped perovskite films (16.9%) than these typically utilizing thin and weak-doping/intrinsic perovskite films (9.6%). This concept of structure modulation proves to be useful and can be applicable for other solar cells. Project supported by the National High-Tech R&D Program of China (No. 2015AA034601), the National Natural Science Foundation of China (Nos. 91333122, 61204064, 51202067, 51372082, 51402106, 11504107), the Ph.D. Programs Foundation of Ministry of Education of China (Nos. 20120036120006, 20130036110012), the Par-Eu Scholars Program, and the Fundamental Research Funds for the Central Universities.

  5. Recovery Act : Near-Single-Crystalline Photovoltaic Thin Films on Polycrystalline, Flexible Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Venkat Selvamanickam; Alex Freundlich

    2010-11-29

    III-V photovoltaics have exhibited efficiencies above 40%, but have found only a limited use because of the high cost of single crystal substrates. At the other end of the spectrum, polycrystalline and amorphous thin film solar cells offer the advantage of low-cost fabrication, but have not yielded high efficiencies. Our program is based on single-crystalline-like thin film photovoltaics on polycrystalline substrates using biaxially-textured templates made by Ion Beam-Assisted Deposition (IBAD). MgO templates made by IBAD on flexible metal substrate have been successfully used for epitaxial growth of germanium films. In spite of a 4.5% lattice mismatch, heteroepitaxial growth of Ge was achieved on CeO2 that was grown on IBAD MgO template. Room temperature optical bandgap of the Ge films was identified at 0.67 eV indicating minimal residual strain. Refraction index and extinction coefficient values of the Ge films were found to match well with that measured from a reference Ge single crystal. GaAs has been successfully grown epitaxially on Ge on metal substrate by molecular beam epitaxy. RHEED patterns indicate self annihilation of antiphase boundaries and the growth of a single domain GaAs. The GaAs is found to exhibit strong photoluminescence signal and, an existence of a relatively narrow (FWHM~20 meV) band-edge excitons measured in this film indicates a good optoelectronic quality of deposited GaAs. While excellent epitaxial growth has been achieved in GaAs on flexible metal substrates, the defect density of the films as measured by High Resolution X-ray Diffraction and etch pit experiments showed a high value of 5 * 10^8 per cm^2. Cross sectional transmission electron microscopy of the multilayer architecture showed concentration of threading dislocations near the germanium-ceria interface. The defect density was found decrease as the Ge films were made thicker. The defects appear to originate from the MgO layer presumably because of large lattice mismatches

  6. Substrate bias effect on crystallinity of polycrystalline silicon thin films prepared by pulsed ion-beam evaporation method

    International Nuclear Information System (INIS)

    Ali, Fazlat; Gunji, Michiharu; Yang, Sung-Chae; Suzuki, Tsuneo; Suematsu, Hisayuki; Jiang, Weihua; Yatsui, Kiyoshi

    2002-01-01

    The deposition of polycrystalline silicon thin films has been tried by a pulsed ion-beam evaporation method, where high crystallinity and deposition rate have been achieved without heating the substrate. The crystallinity and the deposition rate were improved by applying bias voltage to the substrate, where instantaneous substrate heating might have occurred by ion-bombardment. (author)

  7. Process for fabricating polycrystalline semiconductor thin-film solar cells, and cells produced thereby

    Science.gov (United States)

    Wu, Xuanzhi; Sheldon, Peter

    2000-01-01

    A novel, simplified method for fabricating a thin-film semiconductor heterojunction photovoltaic device includes initial steps of depositing a layer of cadmium stannate and a layer of zinc stannate on a transparent substrate, both by radio frequency sputtering at ambient temperature, followed by the depositing of dissimilar layers of semiconductors such as cadmium sulfide and cadmium telluride, and heat treatment to convert the cadmium stannate to a substantially single-phase material of a spinel crystal structure. Preferably, the cadmium sulfide layer is also deposited by radio frequency sputtering at ambient temperature, and the cadmium telluride layer is deposited by close space sublimation at an elevated temperature effective to convert the amorphous cadmium stannate to the polycrystalline cadmium stannate with single-phase spinel structure.

  8. Structural and optical properties of (Ag,Cu)(In,Ga)Se2 polycrystalline thin film alloys

    International Nuclear Information System (INIS)

    Boyle, J. H.; Shafarman, W. N.; Birkmire, R. W.; McCandless, B. E.

    2014-01-01

    The structural and optical properties of pentenary alloy (Ag,Cu)(In,Ga)Se 2 polycrystalline thin films were characterized over the entire compositional range at a fixed (Cu + Ag)/(In + Ga) ratio. Films deposited at 550 °C on bare and molybdenum coated soda-lime glass by elemental co-evaporation in a single-stage process with constant incident fluxes exhibit single phase chalcopyrite structure, corresponding to 122 spacegroup (I-42d) over the entire compositional space. Unit cell refinement of the diffraction patterns show that increasing Ag substitution for Cu, the refined a o lattice constant, (Ag,Cu)-Se bond length, and anion displacement increase in accordance with the theoretical model proposed by Jaffe, Wei, and Zunger. However, the refined c o lattice constant and (In,Ga)-Se bond length deviated from theoretical expectations for films with mid-range Ag and Ga compositions and are attributed to influences from crystallographic bond chain ordering or cation electronegativity. The optical band gap, derived from transmission and reflection measurements, widened with increasing Ag and Ga content, due to influences from anion displacement and cation electronegativity, as expected from theoretical considerations for pseudo-binary chalcopyrite compounds.

  9. Polycrystalline silicon thin-film solar cells with plasmonic-enhanced light-trapping.

    Science.gov (United States)

    Varlamov, Sergey; Rao, Jing; Soderstrom, Thomas

    2012-07-02

    One of major approaches to cheaper solar cells is reducing the amount of semiconductor material used for their fabrication and making cells thinner. To compensate for lower light absorption such physically thin devices have to incorporate light-trapping which increases their optical thickness. Light scattering by textured surfaces is a common technique but it cannot be universally applied to all solar cell technologies. Some cells, for example those made of evaporated silicon, are planar as produced and they require an alternative light-trapping means suitable for planar devices. Metal nanoparticles formed on planar silicon cell surface and capable of light scattering due to surface plasmon resonance is an effective approach. The paper presents a fabrication procedure of evaporated polycrystalline silicon solar cells with plasmonic light-trapping and demonstrates how the cell quantum efficiency improves due to presence of metal nanoparticles. To fabricate the cells a film consisting of alternative boron and phosphorous doped silicon layers is deposited on glass substrate by electron beam evaporation. An Initially amorphous film is crystallised and electronic defects are mitigated by annealing and hydrogen passivation. Metal grid contacts are applied to the layers of opposite polarity to extract electricity generated by the cell. Typically, such a ~2 μm thick cell has a short-circuit current density (Jsc) of 14-16 mA/cm(2), which can be increased up to 17-18 mA/cm(2) (~25% higher) after application of a simple diffuse back reflector made of a white paint. To implement plasmonic light-trapping a silver nanoparticle array is formed on the metallised cell silicon surface. A precursor silver film is deposited on the cell by thermal evaporation and annealed at 23°C to form silver nanoparticles. Nanoparticle size and coverage, which affect plasmonic light-scattering, can be tuned for enhanced cell performance by varying the precursor film thickness and its annealing

  10. Properties of laser-crystallized polycrystalline SiGe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Weizman, Moshe

    2008-06-06

    In this thesis, structural, electrical, and optical properties of laser-crystallized polycrystalline Si{sub 1-x}Ge{sub x} thin films with 0thin films with 0.3film, which is directly coupled to a periodic compositional variation. - Amorphous SiGe samples that are exposed to a single laser pulse exhibit a ripple structure that evolves into a hillock structure when the samples are irradiated with additional laser pulses. - It is maintained that the main mechanism behind the structure formation is an instability of the propagating solid-liquid interface during solidification. - The study of defects with electron spin resonance showed that laser-crystallized poly-Si{sub 1-x}Ge{sub x} thin films with 0films was lower and amounted to N{sub s}=7 x 10{sup 17} cm{sup -3}. - Germanium-rich laser-crystallized poly-SiGe thin films exhibited mostly a broad atypical electric dipole spin resonance (EDSR) signal that was accompanied by a nearly temperature-independent electrical conductivity in the range 20-100 K. - Most likely, the origin of the grain boundary conductance is due to dangling-bond defects and not impurities. Metallic-like conductance occurs when the dangling-bond defect density is above a critical value of about N{sub C} {approx} 10{sup 18} cm{sup -3}. - Laser crystallized poly-Si{sub 1-x}Ge{sub x} thin films with x{>=}0.5 exhibit optical absorption behavior that is characteristic for disordered SiGe, implying that the absorption occurs primarily at the grain boundaries. A sub-band-gap absorption peak was found for

  11. Nanosecond Time-Resolved Microscopic Gate-Modulation Imaging of Polycrystalline Organic Thin-Film Transistors

    Science.gov (United States)

    Matsuoka, Satoshi; Tsutsumi, Jun'ya; Matsui, Hiroyuki; Kamata, Toshihide; Hasegawa, Tatsuo

    2018-02-01

    We develop a time-resolved microscopic gate-modulation (μ GM ) imaging technique to investigate the temporal evolution of the channel current and accumulated charges in polycrystalline pentacene thin-film transistors (TFTs). A time resolution of as high as 50 ns is achieved by using a fast image-intensifier system that could amplify a series of instantaneous optical microscopic images acquired at various time intervals after the stepped gate bias is switched on. The differential images obtained by subtracting the gate-off image allows us to acquire a series of temporal μ GM images that clearly show the gradual propagation of both channel charges and leaked gate fields within the polycrystalline channel layers. The frontal positions for the propagations of both channel charges and leaked gate fields coincide at all the time intervals, demonstrating that the layered gate dielectric capacitors are successively transversely charged up along the direction of current propagation. The initial μ GM images also indicate that the electric field effect is originally concentrated around a limited area with a width of a few micrometers bordering the channel-electrode interface, and that the field intensity reaches a maximum after 200 ns and then decays. The time required for charge propagation over the whole channel region with a length of 100 μ m is estimated at about 900 ns, which is consistent with the measured field-effect mobility and the temporal-response model for organic TFTs. The effect of grain boundaries can be also visualized by comparison of the μ GM images for the transient and the steady states, which confirms that the potential barriers at the grain boundaries cause the transient shift in the accumulated charges or the transient accumulation of additional charges around the grain boundaries.

  12. Mechanical properties of free-standing polycrystalline metallic thin films and multilayers

    Science.gov (United States)

    Huang, Haibo

    1998-11-01

    A laser-diffraction tensile tester and a balance-beam creep apparatus were improved and applied to the study of free standing polycrystalline thin films with a strong $ texture. Studied are electron beam deposited Ag, Cu, Al films, and Ag/Cu multilayers consisting of alternating Ag and Cu layers with 1:1 thickness ratio. All films have a total thickness around 3 mum. In tensile testing, a thin polymeric two-dimensional diffraction grid was deposited on the film surface by microlithographic techniques. Local strains were measured from the relative displacements of two diffracted laser spots. This allows determination of Young's modulus, Poisson's ratio and, since large strains can be measured, the yield stress, ultimate tensile strength and fracture strain. The average values of the Young moduli and Poisson ratios, determined from hundreds of measurements, are 63 GPa and 0.42 for Ag, 102 GPa and 0.37 for Cu, 57 GPa and 0.41 for Al, and 87.5 GPa and 0.38 for Ag/Cu multilayers. In all cases, the Young moduli are about 20% lower than the values calculated from the literature data and are independent of the bilayer repeat length, λ , in the Ag/Cu multilayers. No "supermodulus" effect was observed at small values of λ . An anelastic model was proposed to explain the low Young moduli, the hysteresis loops on the stress-strain curves, and a 4.3 pm 0.2 GPa/decade strain rate dependence of the Young modulus in Al. The ductility of the Ag/Cu multilayers decreases when λ is reduced. For λ 80 nm, the yield stress increases linearly with λsp{{-}alpha} where alpha = 0.244. The results are compared to the predictions of Hall-Petch-type models. In creep testing, steady-state creep rates were measured on Cu films as a function of stress and temperature. In the high temperature-low stress region (100-650spcircC, 5-90 MPa), the creep rate is described by dot\\varepsilon =A{\\cdot}sigmasp{n} exp\\{{-}Q/kT\\}. A core-diffusion controlled dislocation climb model was proposed to

  13. Thin film polycrystalline Si solar cells studied in transient regime by optical pump-terahertz probe spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Pikna, Peter; Skoromets, Volodymyr; Becker, C.; Fejfar, Antonín; Kužel, Petr

    2015-01-01

    Roč. 107, č. 23 (2015), "233901-1"-"233901-5" ISSN 0003-6951 R&D Projects: GA ČR GA13-12386S Grant - others:AVČR(CZ) M100101216 Institutional support: RVO:68378271 Keywords : thin film polycrystalline silicon * terahertz spectroscopy * passivation * Suns-Voc method * defects Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.142, year: 2015

  14. On the effects of hydrogenation of thin film polycrystalline silicon: A key factor to improve heterojunction solar cells

    Czech Academy of Sciences Publication Activity Database

    Qiu, Y.; Kunz, O.; Fejfar, Antonín; Ledinský, Martin; Teik Chan, B.; Gordon, I.; Van Gestel, D.; Venkatachalm, S.; Egan, R.

    2014-01-01

    Roč. 122, MAR (2014), s. 31-39 ISSN 0927-0248 R&D Projects: GA MŠk 7E10061; GA MŠk(CZ) LM2011026 EU Projects: European Commission(XE) 240826 - PolySiMode Institutional support: RVO:68378271 Keywords : silicon * thin films * polycrystalline * hydrogenation * Raman spectroscopy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 5.337, year: 2014 http://www.sciencedirect.com/science/article/pii/S0927024813006016

  15. Improved ferroelectric property and domain structure of highly a-oriented polycrystalline CaBi2Nb2O9 thin film

    Science.gov (United States)

    Ahn, Yoonho; Son, Jong Yeog

    2015-12-01

    A Lead-free ferroelectric CaBi2Nb2O9 (CBNO) thin film was deposited on Si substrate by pulsed laser deposition. TiO2 buffer layer was employed and Pt electrode was used for nano-scale capacitor. The x-ray diffraction reveals that the CBNO thin film has highly a-oriented polycrystalline structure. The highly a-oriented polycrystalline CBNO thin film significantly exhibit the enhanced ferroelectric property with a remnant polarization of 10 μC/cm2 compared to other values reported previously. In particular, the highly a-oriented polycrystalline CBNO thin film show faster ferroelectric switching characteristics than the epitaxially c-oriented CBNO thin film.

  16. Photoluminescence of epitactical and polycrystalline CuInS2 layers for thin-film solar cells

    International Nuclear Information System (INIS)

    Eberhardt, J.

    2007-01-01

    The present thesis deals with one- and polycrystalline CuInS 2 absorber layers for thin-film solar cells and especially with their optical and structural characterization. By means of detailed temperature- and power-dependent photoluminescence measurements in epitactical and polycrystalline absorber layers different radiative transitions could be analyzed and identified. The spectra were dominated by broad luminescence bands of deep perturbing levels. The implantation of hydrogen at low energies led to a passivation of these perturbing levels. On the base of the optical studies on epitactical and polycrystalline absorber layers a new improved defect model for CuInS 2 could be developed. The model contains two donor and two acceptor levels with following ionization energies: D-1=46 meV, D-2=87 meV, A-1=70 meV, and A-2=119 meV

  17. Effect of Gallium Doping on the Characteristic Properties of Polycrystalline Cadmium Telluride Thin Film

    Science.gov (United States)

    Ojo, A. A.; Dharmadasa, I. M.

    2017-08-01

    Ga-doped CdTe polycrystalline thin films were successfully electrodeposited on glass/fluorine doped tin oxide substrates from aqueous electrolytes containing cadmium nitrate (Cd(NO3)2·4H2O) and tellurium oxide (TeO2). The effects of different Ga-doping concentrations on the CdTe:Ga coupled with different post-growth treatments were studied by analysing the structural, optical, morphological and electronic properties of the deposited layers using x-ray diffraction (XRD), ultraviolet-visible spectrophotometry, scanning electron microscopy, photoelectrochemical cell measurement and direct-current conductivity test respectively. XRD results show diminishing (111)C CdTe peak above 20 ppm Ga-doping and the appearance of (301)M GaTe diffraction above 50 ppm Ga-doping indicating the formation of two phases; CdTe and GaTe. Although, reductions in the absorption edge slopes were observed above 20 ppm Ga-doping for the as-deposited CdTe:Ga layer, no obvious influence on the energy gap of CdTe films with Ga-doping were detected. Morphologically, reductions in grain size were observed at 50 ppm Ga-doping and above with high pinhole density within the layer. For the as-deposited CdTe:Ga layers, conduction type change from n- to p- were observed at 50 ppm, while the n-type conductivity were retained after post-growth treatment. Highest conductivity was observed at 20 ppm Ga-doping of CdTe. These results are systematically reported in this paper.

  18. Annealing of polycrystalline thin film silicon solar cells in water vapour at sub-atmospheric pressures

    Czech Academy of Sciences Publication Activity Database

    Pikna, Peter; Píč, Vlastimil; Benda, V.; Fejfar, Antonín

    2014-01-01

    Roč. 54, č. 5 (2014), s. 341-347 ISSN 1210-2709 R&D Projects: GA MŠk 7E10061 EU Projects: European Commission(XE) 240826 - PolySiMode Grant - others:AVČR(CZ) M100101216 Institutional support: RVO:68378271 Keywords : passivation * water vapour * thin film solar cell * polycrystalline silicon (poly-Si) * multicrys- talline silicon (m-Si) * Suns-VOC Subject RIV: JE - Non-nuclear Energetics, Energy Consumption ; Use

  19. 13.9%-efficient CdTe polycrystalline thin-film solar cells with an infrared transmission of {approx} 50%

    Energy Technology Data Exchange (ETDEWEB)

    Wu, X.; Zhou, J.; Duda, A.; Keane, J.C.; Gessert, T.A.; Yan, Y.; Noufi, R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2005-07-01

    To fabricate a high-efficiency polycrystalline thin-film tandem cell, the most critical work is to make a high-efficiency top cell ( > 15%) with high bandgap (E{sub g} = 1.5-1.8 eV) and high transmission (T > 70%) in the near-infrared (NIR) wavelength region. The CdTe cell is one of the candidates for the top cell, because CdTe state-of-the-art single-junction devices with efficiencies of more than 16% are available, although its bandgap (1.48 eV) is slightly lower for a top cell in a current-matched dual-junction device. In this paper, we focus on the development of a: (1) thin, low-bandgap Cu{sub x}Te transparent back-contact; and (2) modified CdTe device structure, including three novel materials: cadmium stannate transparent conducting oxide (TCO), ZnSnO{sub x} buffer layer, and nanocrystalline CdS:O window layer developed at NREL, as well as the high-quality CdTe film, to improve transmission in the NIR region while maintaining high device efficiency. We have achieved an NREL-confirmed 13.9%-efficient CdTe transparent solar cell with an infrared transmission of {approx}50% and a CdTe/CIS polycrystalline mechanically stacked thin-film tandem cell with an NREL-confirmed efficiency of 15.3%. (Author)

  20. Effect of nickel silicide gettering on metal-induced crystallized polycrystalline-silicon thin-film transistors

    Science.gov (United States)

    Kim, Hyung Yoon; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Lee, Yong Hee; Joo, Seung Ki

    2017-06-01

    Low-temperature polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) fabricated via metal-induced crystallization (MIC) are attractive candidates for use in active-matrix flat-panel displays. However, these exhibit a large leakage current due to the nickel silicide being trapped at the grain boundaries of the poly-Si. We reduced the leakage current of the MIC poly-Si TFTs by developing a gettering method to remove the Ni impurities using a Si getter layer and natively-formed SiO2 as the etch stop interlayer. The Ni trap state density (Nt) in the MIC poly-Si film decreased after the Ni silicide gettering, and as a result, the leakage current of the MIC poly-Si TFTs decreased. Furthermore, the leakage current of MIC poly-Si TFTs gradually decreased with additional gettering. To explain the gettering effect on MIC poly-Si TFTs, we suggest an appropriate model. He received the B.S. degree in School of Advanced Materials Engineering from Kookmin University, Seoul, South Korea in 2012, and the M.S. degree in Department of Materials Science and Engineering from Seoul National University, Seoul, South Korea in 2014. He is currently pursuing the Ph.D. degree with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and top-gate polycrystalline-silicon thin-film transistors. He received the M.S. degree in innovation technology from Ecol Polytechnique, Palaiseau, France in 2013. He is currently pursuing the Ph.D. degree with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and bottom-gate polycrystalline-silicon thin-film transistors. He is currently pursuing the integrated M.S and Ph.D course with the Department of Materials Science and Engineering, Seoul National University, Seoul. He is involved in semiconductor device fabrication technology and copper

  1. The electrical, optical properties of AlSb polycrystalline thin films deposited by magnetron co-sputtering without annealing

    International Nuclear Information System (INIS)

    Huang Zheng; Wu Li-Li; Li Bing; Hao Xia; He Jian-Xiong; Feng Liang-Huan; Li Wei; Zhang Jing-Quan; Cai Yap-Ping

    2010-01-01

    In order to fabricate AlSb polycrystalline thin films without post annealing, this paper studies a technology of magnetron co-sputtering onto intentionally heated substrate. It compares the structural characteristics and electrical properties of AlSb films which are deposited at different substrate temperatures. It finds that the films prepared at a substrate temperature of 450 °C exhibit an enhanced grain growth with an average grain size of 21 nm and the lattice constant is 0.61562 nm that goes well with unstained lattice constant (0.61355 nm). The ln(σ dark ) ∼ 1/T curves show that the conductivity activation energy is about 0.38 eV when the film is deposited at 450 °C without an annealing. The transmittance and reflectance spectra show that the film deposited at 450 °C has an optical band gap of 1.6 eV. These results indicate that we have prepared AlSb polycrystalline films which do not need a post annealing. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Optical and electrical properties of polycrystalline and amorphous Al-Ti thin films

    DEFF Research Database (Denmark)

    Canulescu, Stela; Borca, C. N.; Rechendorff, Kristian

    2016-01-01

    The structural, optical, and transport properties of sputter-deposited Al-Ti thin films have been investigated as a function of Ti alloying with a concentration ranging from 2% to 46%. The optical reflectivity of Al-Ti films at visible and near-infrared wavelengths decreases with increasing Ti co...... root of the electrical resistivity...

  3. Nanomechanical study of amorphous and polycrystalline ALD HfO2 thin films

    Science.gov (United States)

    K. Tapily; J.E. Jakes; D. Gu; H. Baumgart; A.A. Elmustafa

    2011-01-01

    Thin films of hafnium oxide (HfO2) were deposited by atomic layer deposition (ALD). The structural properties of the deposited films were characterised by transmission electron microscopy (TEM) and X-ray diffraction (XRD). We investigated the effect of phase transformations induced by thermal treatments on the mechanical properties of ALD HfO

  4. Thin polycrystalline diamond films protecting zirconium alloys surfaces: from technology to layer analysis and application in nuclear facilities

    Czech Academy of Sciences Publication Activity Database

    Ashcheulov, Petr; Škoda, R.; Škarohlíd, J.; Taylor, Andrew; Fekete, Ladislav; Fendrych, František; Vega, R.; Shao, L.; Kalvoda, L.; Vratislav, S.; Cháb, Vladimír; Horáková, K.; Kůsová, Kateřina; Klimša, Ladislav; Kopeček, Jaromír; Sajdl, P.; Macák, J.; Johnson, S.; Kratochvílová, Irena

    2015-01-01

    Roč. 359, Dec (2015), s. 621-628 ISSN 0169-4332 R&D Projects: GA ČR(CZ) GA15-05095S; GA TA ČR TA04020156; GA MŠk LO1409; GA MŠk(CZ) LM2011029 Grant - others:SAFMAT(XE) CZ.2.16/3.1.00/22132 Institutional support: RVO:68378271 Keywords : metal coatings * thin polycrystalline diamond film * impedance spectroscopy * Raman spectroscopy * XPS Subject RIV: JI - Composite Materials Impact factor: 3.150, year: 2015

  5. Investigation on electrically-driven semiconductor-metal transition of polycrystalline VO2 thin films on two kinds of substrates

    Directory of Open Access Journals (Sweden)

    Deen Gu

    2018-01-01

    Full Text Available Electrical driving is one of frequently-used stimuli for the semiconductor-metal transition (SMT of VO2. But the driving mechanism is still under debate. We investigated the DC electrically-driven SMT features of polycrystalline VO2 thin films deposited on two kinds of substrates (quartz and silicon with obviously-different thermal conductivity and the influence of cooling by a thermo electric cooler (TEC on the SMT of VO2. Interestingly, the SMT doesn’t happen at a high voltage at very start, but at a relatively low one. Moreover, the SMT of VO2 thin films on silicon substrate is completely restrained by cooling through a TEC although the electric field strength across VO2 reaches 1.1×107 V/m. Our findings reveal that the Joule-heating effect plays an important role in the DC electrically-driven SMT of VO2.

  6. Carrier Transport, Recombination, and the Effects of Grain Boundaries in Polycrystalline Cadmium Telluride Thin Films for Photovoltaics

    Science.gov (United States)

    Tuteja, Mohit

    Cadmium Telluride (CdTe), a chalcogenide semiconductor, is currently used as the absorber layer in one of the highest efficiency thin film solar cell technologies. Current efficiency records are over 22%. In 2011, CdTe solar cells accounted for 8% of all solar cells installed. This is because, in part, CdTe has a low degradation rate, high optical absorption coefficient, and high tolerance to intrinsic defects. Solar cells based on polycrystalline CdTe exhibit a higher short-circuit current, fill factor, and power conversion efficiency than their single crystal counterparts. This is despite the fact that polycrystalline CdTe devices exhibit lower open-circuit voltages. This is contrary to the observation for silicon and III-V semiconductors, where material defects cause a dramatic drop in device performance. For example, grain boundaries in covalently-bonded semiconductors (a) act as carrier recombination centers, and (b) lead to localized energy states, causing carrier trapping. Despite significant research to date, the mechanism responsible for the superior current collection properties of polycrystalline CdTe solar cells has not been conclusively answered. This dissertation focuses on the macro-scale electronic band structure, and micro scale electronic properties of grains and grain boundaries in device-grade CdTe thin films to answer this open question. My research utilized a variety of experimental techniques. Samples were obtained from leading groups fabricating the material and devices. A CdCl 2 anneal is commonly performed as part of this fabrication and its effects were also investigated. Photoluminescence (PL) spectroscopy was employed to study the band structure and defect states in CdTe polycrystals. Cadmium vacancy- and chlorine-related states lead to carrier recombination, as in CdTe films grown by other methods. Comparing polycrystalline and single crystal CdTe, showed that the key to explaining the improved performance of polycrystalline CdTe does

  7. Structural and optical analysis of 60Co gamma-irradiated thin films of polycrystalline Ga10Se85Sn5

    Science.gov (United States)

    Ahmad, Shabir; Asokan, K.; Shahid Khan, Mohd.; Zulfequar, M.

    2015-12-01

    The present study focuses on the effects of gamma irradiation on structural and optical properties of polycrystalline Ga10Se85Sn5 thin films with a thickness of ∼300 nm deposited by the thermal evaporation technique on cleaned glass substrates. X-ray diffraction patterns of the investigated thin films show that crystallite growth occurs in the orthorhombic phase structure. The surface study carried out by using the scanning electron microscope (SEM) confirms that the grain size increases with gamma irradiation. The optical parameters were estimated from optical transmission spectra data measured from a UV-vis-spectrophotometer in the wavelength range of 200-1100 nm. The refractive index dispersion data of the investigated thin films follow the single oscillator model. The estimated values of static refractive index n0, oscillator strength Ed, zero frequency dielectric constant ε0, optical conductivity σoptical and the dissipation factor increases after irradiation, while the single oscillator energy Eo decreases after irradiation. It was found that the value of the optical band gap of the investigated thin films decreases and the corresponding absorption coefficient increases continuously with an increase in the dose of gamma irradiation. This post irradiation changes in the values of optical band gap and absorption coefficient were interpreted in terms of the bond distribution model.

  8. Thin-Film Solar Cells Based on the Polycrystalline Compound Semiconductors CIS and CdTe

    OpenAIRE

    Powalla, Michael; Bonnet, Dieter

    2007-01-01

    Thin-film photovoltaic modules based on Cu-In-Ga-Se-S (CIS) and CdTe are already being produced with high-quality and solar conversion efficiencies of around 10%, with values up to 14% expected in the near future. The integrated interconnection of single cells into large-area modules of 0.6×1.2m2 enables low-cost mass production, so that thin-film modules will soon be able to compete with conventional silicon-wafer-based modules...

  9. Nonvolatile Polycrystalline-Silicon Thin-Film-Transistor Silicon-Oxide-Nitride-Oxide-Silicon Memory with Periodical Finlike Channels Fabricated Using Nanoimprint Technology

    Science.gov (United States)

    Chen, Henry J. H.; Huang, Chien-Jen

    2013-02-01

    This work addresses the characteristics of a nonvolatile polycrystalline-silicon thin-film-transistor silicon-oxide-nitride-oxide-silicon (SONOS) memory with periodical finlike channels fabricated using nanoimprint lithography. The polycrystalline silicon periodical finlike channels were fabricated using ultraviolet (UV) nano-imprint lithography and studied by transmission electron microscopy (TEM). The memories with periodical finlike channels have lower operation voltage, higher programming speed, larger memory window, and better endurance and data retention than those with a single channel. The proposed approach can be utilized to fabricate a high-performance thin-film-transistor memory at a low cost.

  10. Progress Toward a Stabilization and Preconditioning Protocol for Polycrystalline Thin-Film Photovoltaic Modules

    Energy Technology Data Exchange (ETDEWEB)

    del Cueto, J. A.; Deline, C. A.; Rummel, S. R.; Anderberg, A.

    2010-08-01

    Cadmium telluride (CdTe) and copper indium gallium diselenide (CIGS) thin-film photovoltaic (PV) modules can exhibit substantial variation in measured performance depending on prior exposure history. This study examines the metastable performance changes in these PV modules with the goal of establishing standard preconditioning or stabilization exposure procedures to mitigate measured variations prior to current-voltage (IV) measurements.

  11. Photovoltaic material and device measurements workshop: focus on polycrystalline thin film cells

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-01-01

    The general purpose of the workshop was to accelerate the development of thin film solar cells by improving the versatility and reliability of material and device measurement techniques. Papers were presented under the following sessions: structural/chemical session; optical/electro-optical session; charge transport session; and poster session. Each paper was processed for EDB.

  12. Electronic grain boundary properties in polycrystalline Cu(In,Ga)Se{sub 2} semiconductors for thin film solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Baier, Robert

    2012-06-25

    Solar cells based on polycrystalline Cu(In,Ga)Se{sub 2} (CIGSe) thin film absorbers reach the highest energy conversion efficiency among all thin film solar cells. The record efficiency is at least partly attributed to benign electronic properties of grain boundaries (GBs) in the CIGSe layers. However, despite a high amount of research on this phenomenon the underlying physics is not sufficiently understood. This thesis presents an elaborate study on the electronic properties of GBs in CIGSe thin films. Kelvin probe force microscopy (KPFM) was employed to investigate the electronic properties of GBs in dependence of the Ga-content. Five CIGSe thin lms with various Ga-contents were grown by means of similar three stage co-evaporation processes. Both as grown as well as chemically treated (KCN etched) thin films were analyzed. The chemical treatment was employed to remove surface oxides. No difference in electronic GB properties was found with or without the chemical treatment. Therefore, we conclude that a moderate surface oxidation does not alter the electronic properties of GBs. In general, one can observe significant variations of electronic potential barriers at GBs. Under consideration of the averaging effect of the work function signal of nanoscale potential distributions in KPFM measurements which was quantified in the course of this thesis both positive and negative potential barriers in a range between ∼-350 mV and ∼+450 mV were detected. Additionally, variations in the defect densities at GBs between ∼3.1 x 10{sup 11} cm{sup -2} and ∼2.1 x 10{sup 12} cm{sup -2} were found. However, no correlation between the electronic properties of GBs and the Ga-content of CIGSe thin films was discovered. Consequently, one cannot explain the drop in device efficiency observed for CIGSe thin film solar cells with a high Ga-content by a change of the electronic properties of GBs. Combined KPFM and electron backscatter diffraction measurements were employed for the

  13. Electronic grain boundary properties in polycrystalline Cu(In,Ga)Se2 semiconductors for thin film solar cells

    International Nuclear Information System (INIS)

    Baier, Robert

    2012-01-01

    Solar cells based on polycrystalline Cu(In,Ga)Se 2 (CIGSe) thin film absorbers reach the highest energy conversion efficiency among all thin film solar cells. The record efficiency is at least partly attributed to benign electronic properties of grain boundaries (GBs) in the CIGSe layers. However, despite a high amount of research on this phenomenon the underlying physics is not sufficiently understood. This thesis presents an elaborate study on the electronic properties of GBs in CIGSe thin films. Kelvin probe force microscopy (KPFM) was employed to investigate the electronic properties of GBs in dependence of the Ga-content. Five CIGSe thin lms with various Ga-contents were grown by means of similar three stage co-evaporation processes. Both as grown as well as chemically treated (KCN etched) thin films were analyzed. The chemical treatment was employed to remove surface oxides. No difference in electronic GB properties was found with or without the chemical treatment. Therefore, we conclude that a moderate surface oxidation does not alter the electronic properties of GBs. In general, one can observe significant variations of electronic potential barriers at GBs. Under consideration of the averaging effect of the work function signal of nanoscale potential distributions in KPFM measurements which was quantified in the course of this thesis both positive and negative potential barriers in a range between ∼-350 mV and ∼+450 mV were detected. Additionally, variations in the defect densities at GBs between ∼3.1 x 10 11 cm -2 and ∼2.1 x 10 12 cm -2 were found. However, no correlation between the electronic properties of GBs and the Ga-content of CIGSe thin films was discovered. Consequently, one cannot explain the drop in device efficiency observed for CIGSe thin film solar cells with a high Ga-content by a change of the electronic properties of GBs. Combined KPFM and electron backscatter diffraction measurements were employed for the first time on CIGSe thin

  14. Polycrystalline CdTe thin film mini-modules monolithically integrated by fiber laser

    Energy Technology Data Exchange (ETDEWEB)

    Bosio, A., E-mail: alessio.bosio@unipr.it [Department of Physics and Earth Sciences, University of Parma, via G.P. Usberti 7/A, 43124 Parma (Italy); Sozzi, M. [Department of Information Engineering, University of Parma, via G.P. Usberti 181/A, 43124 Parma (Italy); Menossi, D. [Department of Physics and Earth Sciences, University of Parma, via G.P. Usberti 7/A, 43124 Parma (Italy); Selleri, S.; Cucinotta, A. [Department of Information Engineering, University of Parma, via G.P. Usberti 181/A, 43124 Parma (Italy); Romeo, N. [Department of Physics and Earth Sciences, University of Parma, via G.P. Usberti 7/A, 43124 Parma (Italy)

    2014-07-01

    The CdTe thin film technology for photovoltaics (PV) is attractive because of its potential low cost and good performance. In thin film technology the efficiency of large area cells can be maintained if small segments are interconnected in series to reduce the photocurrent and resistance losses. In respect to this, the scribing process is critical for the performance of the device. Today, fiber lasers represent the most advanced and cheap technology that can be used in PV industry to carry out the cuts, needed for the monolithic integration, at different deposition stages. We will present our results on the scribing of CdTe thin film solar cells by means of fiber lasers, with pulse duration of a few nanoseconds and solid state lasers in the picosecond regime. The quality of the scribing was evaluated by optical and scanning electron microscopy. Finally, mini-modules with a total area of 10 × 10 cm{sup 2} were fabricated, in which the cells were interconnected in series by means of a scribing system, equipped with a fiber laser with the same characteristics of the system mounted on production lines. The mini-modules were characterized by photovoltaic and electrical measurements. - Highlights: • Study of laser scribing of CdTe-based mini-modules • Comparison between different lasers working in nanosecond and picosecond regimes • The laser scribing process was transferred to industrial production.

  15. Stoichiometry-, phase- and orientation-controlled growth of polycrystalline pyrite (FeS 2) thin films by MOCVD

    Science.gov (United States)

    Höpfner, C.; Ellmer, K.; Ennaoui, A.; Pettenkofer, C.; Fiechter, S.; Tributsch, H.

    1995-06-01

    The growth process of polycrystalline pyrite thin films employing low pressure metalorganic chemical vapor deposition (LP-MOCVD) in a vertical cold wall reactor has been investigated. Iron pentacarbonyl (IPC) and t-butyldisulfide (TBDS) were utilized as precursors. Study of the growth rate as a function of temperature reveals a kinetically controlled growth process with an activation energy of 73 kJ / mol over the temperature range from 250 to 400°C. From 500 to 630°C, the growth rate is mainly mass transport limited. Decomposition of the films into pyrrhotite (Fe 1 - xS) occurs at higher growth temperatures. The {S}/{Fe} ratio in the films has been controlled from 1.23 up to 2.03 by changing the TBDS partial pressure. With increasing deposition temperature, the crystallites in the films show the tendency to grow [100]-oriented on amorphous substrates at a growth rate of 2.5 Å / s. The grains show a preferential orientation in the [111] direction upon lowering the growth rate down to 0.3 Å / s. Temperatures above 550°C are beneficial in enhancing the grain size in the columnar structured films up to 1.0 μm.

  16. Stoichiometry-, phase- and orientation-controlled growth of polycrystalline pyrite (FeS{sub 2}) thin films by MOCVD

    Energy Technology Data Exchange (ETDEWEB)

    Hoepfner, C.; Ellmer, K.; Ennaoui, A.; Pettenkofer, C.; Fiechter, S.; Tributsch, H. [Hahn-Meitner-Institut Berlin, Abteilung Solare Energetik, Berlin (Germany)

    1995-06-01

    The growth process of polycrystalline pyrite thin films employing low pressure metalorganic chemical vapor deposition (LP-MOCVD) in a vertical cold wall reactor has been investigated. Iron pentacarbonyl (IPC) and t-butyldisulfide (TBDS) were utilized as precursors. Study of the growth rate as a function of temperature reveals a kinetically controlled growth process with an activation energy of 73 kJ/mol over the temperature range from 250 to 400C. From 500 to 630C, the growth rate is mainly mass transport limited. Decomposition of the films into pyrrhotite (Fe{sub 1-x}S) occurs at higher growth temperatures. The S/Fe ratio in the films has been controlled from 1.23 up to 2.03 by changing the TBDS partial pressure. With increasing deposition temperature, the crystallites in the films show the tendency to grow [100]-oriented on amorphous substrates at a growth rate of 2.5 A/s. The grains show a preferential orientation in the [111] direction upon lowering the growth rate down to 0.3 A/s. Temperatures above 550C are beneficial in enhancing the grain size in the columnar structured films up to 1.0 {mu}m

  17. Ferroelectric properties of lead-free polycrystalline CaBi{sub 2}Nb{sub 2}O{sub 9} thin films on glass substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Yoonho, E-mail: yahn@khu.ac.kr; Son, Jong Yeog, E-mail: jyson@khu.ac.kr [Department of Applied Physics and Institute of Natural Sciences, Kyung Hee University, Yongin 446-701 (Korea, Republic of); Jang, Joonkyung [Department of Nanoenergy Engineering, Pusan National University, Busan 609-735 (Korea, Republic of)

    2016-03-15

    CaBi{sub 2}Nb{sub 2}O{sub 9} (CBNO) thin film, a lead-free ferroelectric material, was prepared on a Pt/Ta/glass substrate via pulsed laser deposition. The Ta film was deposited on the glass substrate for a buffer layer. A (115) preferred orientation of the polycrystalline CBNO thin film was verified via X-ray diffraction measurements. The CBNO thin film on a glass substrate exhibited good ferroelectric properties with a remnant polarization of 4.8 μC/cm{sup 2} (2P{sub r} ∼9.6 μC/cm{sup 2}), although it had lower polarization than the epitaxially c-oriented CBNO thin film reported previously. A mosaic-like ferroelectric domain structure was observed via piezoresponse force microscopy. Significantly, the polycrystalline CBNO thin film showed much faster switching behavior within about 100 ns than that of the epitaxially c-oriented CBNO thin film.

  18. Thin-Film Solar Cells Based on the Polycrystalline Compound Semiconductors CIS and CdTe

    Directory of Open Access Journals (Sweden)

    Michael Powalla

    2007-01-01

    14% expected in the near future. The integrated interconnection of single cells into large-area modules of 0.6×1.2m2 enables low-cost mass production, so that thin-film modules will soon be able to compete with conventional silicon-wafer-based modules. This contribution provides an overview of the basic technologies for CdTe and CIS modules, the research and development (R&D issues, production technology and capacities, the module performance in long-term outdoor testing, and their use in installations.

  19. Passivation effect of water vapour on thin film polycrystalline Si solar cells

    Czech Academy of Sciences Publication Activity Database

    Pikna, Peter; Müller, Martin; Becker, C.; Fejfar, Antonín

    2016-01-01

    Roč. 213, č. 7 (2016), s. 1969-1975 ISSN 1862-6300 R&D Projects: GA MŠk LM2015087; GA ČR GA13-12386S Grant - others:AV ČR(CZ) DAAD-16-27 Program:Bilaterální spolupráce Institutional support: RVO:68378271 Keywords : passivation, * plasma hydrogenation * silicon * solar cells * thin films * water vapour Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.775, year: 2016

  20. Local excitation and local collection of photocurrent in thin-film polycrystalline photovoltaic devices

    Science.gov (United States)

    Zhitenev, Nikolai; Yoon, Heayoung; Leite, Marina; Lee, Youngmin; Ko, Sarah; Zhao, Yue; Gianfrancesco, Anthony; Haney, Paul; Talin, Alec

    2013-03-01

    The power conversion efficiency of commercial solar modules based on thin-film chalcogenide materials is well below the theoretical limits. To understand the underlying physical mechanisms limiting the efficiency, we investigate local photovoltaic properties isolating the difference between the grain bulk (0.5-2 mkm in size) and the grain boundary in CdTe absorber. Local current-voltage measurements are performed using nano-contacts in conjunction with local electron-hole pairs generation comparing multiple injection techniques. First, the carriers are excited using variable energy electron beam enabling measurements with a spatial resolution down to 20 nm. Second, we have developed a novel approach for high-resolution and high-throughput photocurrent imaging downconverting electron beam into a near-field optical source using a thin film (<50 nm) of phosphors. The electron beam is fully absorbed in the phosphors layer, and the cathodoluminescence is used as a local photon source. Third, we generate carriers using a near-filed optical microscope varying the excitation wavelength. The results show that, in a well-optimized material, a large fraction of grain boundaries displays higher photocurrent as compared to grain bulk effectively serving as a three-dimensional distributed photocurrent collector.

  1. Study of Nitrogen Effect on the Boron Diffusion during Heat Treatment in Polycrystalline Silicon/Nitrogen-Doped Silicon Thin Films

    Science.gov (United States)

    Saci, Lynda; Mahamdi, Ramdane; Mansour, Farida; Boucher, Jonathan; Collet, Maéva; Bedel Pereira, Eléna; Temple-Boyer, Pierre

    2011-05-01

    The present paper studies the boron (B) diffusion in nitrogen (N) doped amorphous silicon (a-Si) layer in original bi-layer B-doped polycrystalline silicon (poly-Si)/in-situ N-doped Si layers (NIDOS) thin films deposited by low pressure chemical vapor deposition (LPCVD) technique. The B diffusion in the NIDOS layer was investigated by secondary ion mass spectrometry (SIMS) and Fourier transform infrared spectroscopy (FTIR) analysis. A new extended diffusion model is proposed to fit the SIMS profile of the bi-layer films. This model introduces new terms which take into account the effect of N concentration on the complex diffusion phenomena of B atoms in bi-layer films. SIMS results show that B diffusion does not exceed one third of NIDOS layer thickness after annealing. The reduction of the B diffusion in the NIDOS layer is due to the formation of complex B-N as shown by infrared absorption measurements. Electrical measurements using four-probe and Hall effect techniques show the good conductivity of the B-doped poly-Si layer after annealing treatment.

  2. Optoelectronic study and annealing stability of room temperature pulsed laser ablated ZnSe polycrystalline thin films

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Taj Muhammad, E-mail: tajakashne@gmail.com; Zakria, M.; Ahmad, Mushtaq; Shakoor, Rana I.

    2014-03-15

    In principal, we described stability of the room temperature ZnSe thin films with thermal annealing deposited onto glass by pulsed laser deposition technique using third harmonic 355 nm of Nd: YAG laser beam. Optoelectronic analysis and stability with thermal annealing was described in terms of structural and optical properties. These properties were investigated via X-ray diffraction, atomic force microscope, scanning electron microscope, Raman, Fourier transform infrared and photoluminescence spectroscopies. From the strong reflection corresponding to the (1 1 1) plane (2θ=27.48°) and the longitudinal optical “LO” phonon modes at 250 cm{sup −1} and 500 cm{sup −1} in the X-ray diffraction and Raman spectra, a polycrystalline zincblende structure of the film was established. At 300 and 350 °C annealing temperatures, the film crystallites were preferentially oriented with the (1 1 1) plane parallel to the substrate and became amorphous at 400 °C. Atomic force microscopic images showed that the morphologies of ZnSe films became smooth with root mean squared roughness 9.86 nm after annealing at 300 and 350 °C while a rougher surface was observed for the amorphous film at 400 °C. Fourier transform infrared study illustrated the chemical nature and Zn–Se bonding in the deposited films. For the as-deposited and annealed samples at 300 and 350 °C, scanning electron micrographs revealed mono-dispersed indistinguishable ZnSe grains and smooth morphological structure which changed to a cracking and bumpy surface after annealing at 400 °C. The physical phenomenon of annealing induced morphological changes could be explained in terms of “structure zone model”. Excitonic emission at 456 nm was observed for both as-deposited and annealed film at 350 °C. The transmission spectrum shows oscillatory behavior because of the thin film interference and exhibited a high degree of transparency down to a wavelength ∼500 nm in the IR region. Energy band-gap was

  3. Lasers and beam delivery options for polycrystalline thin-film scribing

    Science.gov (United States)

    Compaan, A. D.; Matulionis, I.; Nakade, S.

    1999-03-01

    We have investigated the use of several different types of lasers for scribing of the thin film materials: CdTe, CuInGaSe2, ZnO, SnO2, Mo, Al, and Au. The lasers included several types of Nd: YAG (1064 and 532 nm wavelengths), Cu vapor (511/578 nm), XeCl excimer (308 nm), and KrF excimer (248 nm). Pulse durations ranged from ˜0.1 nsec to ˜250 ns. We found that the Nd: YAG systems work well for almost all of the above materials except for the transparent conductor ZnO, for which the two excimer lasers showed good performance. Pulse duration was found generally not to be critical except for the case of CIGS on Mo where longer pulse durations appear advantageous.

  4. Effects of reductive annealing on insulating polycrystalline thin films of Nb-doped anatase TiO2: recovery of high conductivity

    International Nuclear Information System (INIS)

    Nakao, Shoichiro; Hirose, Yasushi; Hasegawa, Tetsuya

    2016-01-01

    We studied the effects of reductive annealing on insulating polycrystalline thin films of anatase Nb-doped TiO 2 (TNO). The insulating TNO films were intentionally fabricated by annealing conductive TNO films in oxygen ambient at 400 °C. Reduced free carrier absorption in the insulating TNO films indicated carrier compensation due to excess oxygen. With H 2 -annealing, both carrier density and Hall mobility recovered to the level of conducting TNO, demonstrating that the excess oxygen can be efficiently removed by the annealing process without introducing additional scattering centers. (paper)

  5. Structural, electrical, and optical properties of polycrystalline NbO{sub 2} thin films grown on glass substrates by solid phase crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Shoichiro [Kanagawa Academy of Science and Technology (KAST), Kawasaki (Japan); Kamisaka, Hideyuki [Department of Chemistry, The University of Tokyo (Japan); Hirose, Yasushi; Hasegawa, Tetsuya [Kanagawa Academy of Science and Technology (KAST), Kawasaki (Japan); Department of Chemistry, The University of Tokyo (Japan)

    2017-03-15

    We investigated the structural, electrical, and optical properties of polycrystalline NbO{sub 2} thin films on glass substrates. The NbO{sub 2} films were crystallized from amorphous precursor films grown by pulsed laser deposition at various oxygen partial pressures (P{sub O2}). The electrical and optical properties of the precursor films systematically changed with P{sub O2}, demonstrating that the oxygen content of the precursor films can be finely controlled with P{sub O2}. The precursors were crystallized into polycrystalline NbO{sub 2} films by annealing under vacuum at 600 C. The NbO{sub 2} films possessed extremely flat surfaces with branching patterns. Even optimized films showed a low resistivity (ρ) of 2 x 10{sup 2} Ω cm, which is much lower than the bulk value of 1 x 10{sup 4} Ω cm, probably because of the inferior crystallinity of the films compared with that of a bulk NbO{sub 2} crystal. Both oxygen-rich and -poor NbO{sub 2} films showed lower ρ than that of the stoichiometric film. The NbO{sub 2} film with the highest ρ showed an indirect bandgap of 0.7 eV. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Spectroscopic ellipsometry for analysis of polycrystalline thin-film photovoltaic devices and prediction of external quantum efficiency

    Science.gov (United States)

    Ibdah, Abdel-Rahman; Koirala, Prakash; Aryal, Puruswottam; Pradhan, Puja; Marsillac, Sylvain; Rockett, Angus A.; Podraza, Nikolas J.; Collins, Robert W.

    2017-11-01

    Complete polycrystalline thin-film photovoltaic (PV) devices employing CuIn1-xGaxSe2/CdS and CdS/CdTe heterojunctions have been studied by ex situ spectroscopic ellipsometry (SE). In this study, layer thicknesses have been extracted along with photon energy independent parameters such as compositions that describe the dielectric function spectra ε(E) of the individual layers. For accurate ex situ SE analysis of these PV devices, a database of ε(E) spectra is required for all thin film component materials used in each of the two absorber technologies. When possible, database measurements are performed by applying SE in situ immediately after deposition of the thin film materials and after cooling to room temperature in order to avoid oxidation and surface contamination. Determination of ε(E) from the resulting in situ SE data requires structural information that can be obtained from analysis of SE data acquired in real time during the deposition process. From the results of ex situ analysis of the complete CuIn1-xGaxSe2 (CIGS) and CdTe PV devices, the deduced layer thicknesses in combination with the parameters describing ε(E) can be employed in further studies that simulate the external quantum efficiency (EQE) spectra of the devices. These simulations have been performed here by assuming that all electron-hole pairs generated within the active layers, i.e. layers incorporating a dominant absorber component (either CIGS or CdTe), are separated and collected. The active layers may include not only the bulk absorber but also window and back contact interface layers, and individual current contributions from these layers have been determined in the simulations. In addition, the ex situ SE analysis results enable calculation of the absorbance spectra for the inactive layers and the overall reflectance spectra, which lead to quantification of all optical losses in terms of a current density deficit. Mapping SE can be performed given the high speed of multichannel

  7. Effect of yttrium-doping on the microstructures and semiconductor-metal phase transition characteristics of polycrystalline VO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Deen, E-mail: gudeen@163.com; Sun, Zhanhong; Zhou, Xin; Guo, Rui; Wang, Tao; Jiang, Yadong

    2015-12-30

    Highlights: • Modulating the microstructures and phase transition characteristics of VO{sub 2} thin films by Y-doping. • Y-doping greatly reduces the grain size of polycrystalline VO{sub 2} thin films. • Y{sup 3+} ions hardly influence the chemical states of V and O elements in the Y-doped VO{sub 2} films. • Y-doped VO{sub 2} films have a notably narrower ΔT (4.6 °C) than undoped VO{sub 2} films (10.7 °C). - Abstract: We investigate the effect of yttrium-doping on the microstructures and semiconductor-metal phase transition characteristics of polycrystalline VO{sub 2} thin films prepared by reactively co-sputtering process. XPS analyses indicate the existence of Y{sup 3+} in the Y-doped VO{sub 2} films, but Y-doping hardly influences the chemical states of V and O elements. X-ray diffraction patterns and Raman spectra reveal that both undoped and Y-doped VO{sub 2} thin films have a polycrystalline structure of monoclinic VO{sub 2}. The introduction of Y greatly reduces the grain size of VO{sub 2} thin films as evidenced by scanning electron microscopy analyses. The relationship between the hysteresis width and doping level is not monotonic although the grain size is monotonically reduced with increasing the doping level. Y-doped VO{sub 2} films with optimal doping level (1.82 at%) have a notably narrower hysteresis width (4.6 °C) than undoped VO{sub 2} films (10.7 °C). This is ascribed to increased heterogeneous nucleation centers due to Y in the VO{sub 2} lattice. With the further increase of doping level, the size effect gradually plays a prominent role in SMPT, and the hysteresis width of Y-doped VO{sub 2} films increases instead. The SMPT temperature of Y-doped VO{sub 2} films obviously decreases compared with undoped VO{sub 2} films due to reduced grain size and deformation of local structure around Y atom.

  8. Analysis of defects in low-temperature polycrystalline silicon thin films related to surface-enhanced Raman scattering

    Science.gov (United States)

    Kitahara, Kuninori; Yeh, Wenchang; Hara, Akito

    2018-01-01

    The analysis of Raman scattering (RS) spectroscopy is presented for low-temperature polycrystalline silicon (poly-Si) thin films on glass substrates fabricated by excimer laser crystallization. In this material, RS is enhanced by specific protrusions at the grain boundary (GB). As a result, the Si lattice mode predominantly reflects the characteristics of GB and its neighborhood. A combination of low-damage hydrogenation and RS analysis enables the detection of lattice defects as Si-hydrogen (H) local vibration modes (LVMs). The characteristics of LVMs peculiar to this material are examined by chemical etching and postannealing. One of the dominant LVMs centered at ˜2000 cm-1 is assigned to H-terminated dangling bonds in the amorphous structures at GB, which is also enhanced by protrusions. The other dominant band centered at ˜2100 cm-1 is attributed to the strained Si-Si lattice near the Si/underlayer interface in grains that is broken and stabilized by extrinsic H atoms.

  9. Rapid Thermal Annealing and Hydrogen Passivation of Polycrystalline Silicon Thin-Film Solar Cells on Low-Temperature Glass

    Directory of Open Access Journals (Sweden)

    Mason L. Terry

    2007-01-01

    Full Text Available The changes in open-circuit voltage (Voc, short-circuit current density (Jsc, and internal quantum efficiency (IQE of aLuminum induced crystallization, ion-assisted deposition (ALICIA polycrystalline silicon thin-film solar cells on low-temperature glass substrates due to rapid thermal anneal (RTA treatment and subsequent remote microwave hydrogen plasma passivation (hydrogenation are examined. Voc improvements from 130 mV to 430 mV, Jsc improvements from 1.2 mA/cm2 to 11.3 mA/cm2, and peak IQE improvements from 16% to > 70% are achieved. A 1-second RTA plateau at 1000°C followed by hydrogenation increases the Jsc by a factor of 5.5. Secondary ion mass spectroscopy measurements are used to determine the concentration profiles of dopants, impurities, and hydrogen. Computer modeling based on simulations of the measured IQE data reveals that the minority carrier lifetime in the absorber region increases by 3 orders of magnitude to about 1 nanosecond (corresponding to a diffusion length of at least 1 μm due to RTA and subsequent hydrogenation. The evaluation of the changes in the quantum efficiency and Voc due to RTA and hydrogenation with computer modeling significantly improves the understanding of the limiting factors to cell performance.

  10. Size effects of polycrystalline lanthanum modified Bi4Ti3O12 thin films

    International Nuclear Information System (INIS)

    Simoes, A.Z.; Riccardi, C.S.; Cavalcante, L.S.; Gonzalez, A.H.M.; Longo, E.; Varela, J.A.

    2008-01-01

    The film thickness dependence on the ferroelectric properties of lanthanum modified bismuth titanate Bi 3.25 La 0.75 Ti 3 O 12 was investigated. Films with thicknesses ranging from 230 to 404 nm were grown on platinum-coated silicon substrates by the polymeric precursor method. The internal strain is strongly influenced by the film thickness. The morphology of the film changes as the number of layers increases indicating a thickness dependent grain size. The leakage current, remanent polarization and drive voltage were also affected by the film thickness

  11. Phosphorous doped p-type MoS2 polycrystalline thin films via direct sulfurization of Mo film

    Directory of Open Access Journals (Sweden)

    Tomohiro Momose

    2018-02-01

    Full Text Available We report on the successful synthesis of a p-type, substitutional doping at S-site, MoS2 thin film using Phosphorous (P as the dopant. MoS2 thin films were directly sulfurized for molybdenum films by chemical vapor deposition technique. Undoped MoS2 film showed n-type behavior and P doped samples showed p-type behavior by Hall-effect measurements in a van der Pauw (vdP configuration of 10×10 mm2 area samples and showed ohmic behavior between the silver paste contacts. The donor and the acceptor concentration were detected to be ∼2.6×1015 cm-3 and ∼1.0×1019 cm-3, respectively. Hall-effect mobility was 61.7 cm2V-1s-1 for undoped and varied in the range of 15.5 ∼ 0.5 cm2V-1s-1 with P supply rate. However, the performance of field-effect transistors (FETs declined by double Schottky barrier contacts where the region between Ni electrodes on the source/drain contact and the MoS2 back-gate cannot be depleted and behaves as a 3D material when used in transistor geometry, resulting in poor on/off ratio. Nevertheless, the FETs exhibit hole transport and the field-effect mobility showed values as high as the Hall-effect mobility, 76 cm2V-1s-1 in undoped MoS2 with p-type behavior and 43 cm2V-1s-1 for MoS2:P. Our findings provide important insights into the doping constraints for transition metal dichalcogenides.

  12. Research and development of photovoltaic power system. Research on low temperature deposition of polycrystalline thin films; Taiyoko hatsuden system no kenkyu kaihatsu. Teion seimaku gijutsu no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sato, K. [Tokyo Univ. of Agriculture and Technology, Tokyo (Japan). Faculty of Technology

    1994-12-01

    This paper reports the result obtained during fiscal 1994 on research on a technology of low temperature deposition of polycrystalline thin films for solar cells. This research used ITO coated glass substrates, on which CdS was accumulated to a thickness of about 100 nm by using the CBD process, and over this deposition a CuInSe2 film was formed at 300{degree}C by using the ion cluster beam (ICB) process. The manufactured solar cells with a glass/ITO/CdS/CuInSe2/Au structure had an efficiency of 2%. In manufacturing a CuGaSe2 thin film by using the ICB process, effects of acceleration voltage relative to cluster beams and ionization current were investigated. It was found that the film morphology, the result of analysis by using X-ray diffraction, and the electric conductivity are sensitive to the ionization current. From these findings, an optimum film forming condition was derived. A CuGaSe2 thin film was manufactured by using the ICB process over a Cds thin film deposited by using the CDB process. Both of the surface morphology and X-ray diffraction patterns of the film did not show a large change, indicating a possibility of manufacturing cells with a reverse structure. Effects of heat treatment on CuInSe2 monocrystals were evaluated by using ESR and FTIR. 6 figs., 1 tab.

  13. Influence of Nb content on the structural and optical properties of anatase TiO{sub 2} polycrystalline thin film by e-beam technique

    Energy Technology Data Exchange (ETDEWEB)

    Shah, A., E-mail: attaullah77@yahoo.com; Mahmood, Arshad; Aziz, Uzma; Rashid, Rashad; Raza, Qaiser; Ali, Zahid

    2016-09-01

    In this paper, we report the structural and optical properties of Nb-doped TiO{sub 2} thin films deposited by e-beam evaporation technique. After post annealing in air at 500 °C for 1 h, the samples were characterized by various techniques such as X-ray diffraction (XRD), Raman spectroscopy, UV–Vis spectrophotometry and spectroscopic Ellipsometer. Both XRD and Raman analyses indicate that the films were crystallized into the polycrystalline anatase TiO{sub 2} structure. However it was observed that the crystallinity of the films decreases with the addition of Nb atoms and tends to become amorphous at 20% Nb content in TiO{sub 2} film. Moreover, no new phases such as Nb{sub 2}O{sub 5}, NbO{sub 2} or Nb metal were observed. The band gap energy was found to decrease with the increasing of Nb concentration which was verified by ellipsometric study. Ellipsomtric measurements also indicate that refractive index (n) of the films decreases while extinction coefficient (k) increases with the increasing of Nb content. All these analyses elucidate that the incorporation of Nb atom into TiO{sub 2} may tune the structural and optical properties of TiO{sub 2} thin films. - Highlights: • The addition of Nb into TiO{sub 2} film has strongly influenced its physical properties. • Anatase polycrystalline Nb:TiO{sub 2} films were grown up to 15% Nb content. • The film becomes an amorphous at 20% Nb doping. • Band gap energy of TiO{sub 2} film was decreased with increasing of Nb content in the film. • The Optical constants (n, k) of Nb:TiO{sub 2} film were varied as a function of Nb content.

  14. Photocatalytic Activity and Stability of Porous Polycrystalline ZnO Thin-Films Grown via a Two-Step Thermal Oxidation Process

    Directory of Open Access Journals (Sweden)

    James C. Moore

    2014-08-01

    Full Text Available The photocatalytic activity and stability of thin, polycrystalline ZnO films was studied. The oxidative degradation of organic compounds at the ZnO surface results from the ultraviolet (UV photo-induced creation of highly oxidizing holes and reducing electrons, which combine with surface water to form hydroxyl radicals and reactive oxygen species. Therefore, the efficiency of the electron-hole pair formation is of critical importance for self-cleaning and antimicrobial applications with these metal-oxide catalyst systems. In this study, ZnO thin films were fabricated on sapphire substrates via direct current sputter deposition of Zn-metal films followed by thermal oxidation at several annealing temperatures (300–1200 °C. Due to the ease with which they can be recovered, stabilized films are preferable to nanoparticles or colloidal suspensions for some applications. Characterization of the resulting ZnO thin films through atomic force microscopy and photoluminescence indicated that decreasing annealing temperature leads to smaller crystal grain size and increased UV excitonic emission. The photocatalytic activities were characterized by UV-visible absorption measurements of Rhodamine B dye concentrations. The films oxidized at lower annealing temperatures exhibited higher photocatalytic activity, which is attributed to the increased optical quality. Photocatalytic activity was also found to depend on film thickness, with lower activity observed for thinner films. Decreasing activity with use was found to be the result of decreasing film thickness due to surface etching.

  15. Analysis of mechanical properties of N2in situ doped polycrystalline 3C-SiC thin films by chemical vapor deposition using single-precursor hexamethyildisilane

    International Nuclear Information System (INIS)

    Kim, Kang-San; Han, Ki-Bong; Chung, Gwiy-Sang

    2010-01-01

    This paper describes the mechanical properties of poly (polycrystalline) 3C-SiC thin films with N 2 in situ doping. In this work, in situ doped poly 3C-SiC film was deposited by using the atmospheric pressure chemical vapor deposition (APCVD) method at 1200 deg. C using single-precursor hexamethyildisilane: Si 2 (CH 3 ) 6 (HMDS) as Si and C precursors, and 0∼100 sccm N 2 as the dopant source gas. The mechanical properties of doped poly 3C-SiC thin films were measured by nano-indentation. Young's modulus and hardness were measured to be 285 and 35 GPa at 0 sccm N 2 , respectively. Young's modulus and hardness decreased with increasing N 2 flow rate. Surface morphology was evaluated by atomic force microscopy (AFM) according to N 2 flow rate.

  16. Effect of thermal annealing on properties of polycrystalline ZnO thin films

    Science.gov (United States)

    Gritsenko, L. V.; Abdullin, Kh. A.; Gabdullin, M. T.; Kalkozova, Zh. K.; Kumekov, S. E.; Mukash, Zh. O.; Sazonov, A. Yu.; Terukov, E. I.

    2017-01-01

    Electrical properties (density, carriers mobility, resistivity), optical absorption and photoluminescence spectra of ZnO, grown by MOCVD and hydrothermal methods, have been investigated depending on the annealing and treatment modes in a hydrogen plasma. It has been shown that the electrical and photoluminescent (PL) properties of ZnO are strongly dependent on gas atmosphere during annealing. The annealing in oxygen atmosphere causes a sharp drop of carrier mobility and films conductivity due to the absorption of oxygen on grain boundaries. The process of ZnO electrical properties recovery by the thermal annealing in inert atmosphere (nitrogen), in oil (2×10-2 mbar) and oil-free (1×10-5 mbar) vacuum has been investigated. The hydrogen plasma treatment influence on the intensity of near-band-gap emission (NBE) has been studied. The effect of annealing and subsequent plasma treatment on PL intensity depends on the gas atmosphere of preliminary thermal annealing.

  17. Polycrystalline thin-film cadmium telluride solar cells fabricated by electrodeposition. Annual technical report

    Energy Technology Data Exchange (ETDEWEB)

    Trefny, J.U.; Mao, D. [Colorado School of Mines, Golden, CO (United States). Dept. of Physics

    1998-01-01

    During the past year, Colorado School of Mines (CSM) researchers performed systematic studies of the growth and properties of electrodeposition CdS and back-contact formation using Cu-doped ZnTe, with an emphasis on low Cu concentrations. CSM also started to explore the stability of its ZnTe-Cu contacted CdTe solar cells. Researchers investigated the electrodeposition of CdS and its application in fabricating CdTe/CdS solar cells. The experimental conditions they explored in this study were pH from 2.0 to 3.0; temperatures of 80 and 90 C; CdCl{sub 2} concentration of 0.2 M; deposition potential from {minus}550 to {minus}600 mV vs. Ag/AgCl electrode; [Na{sub 2}S{sub 2}O{sub 4}] concentration between 0.005 and 0.05 M. The deposition rate increases with increase of the thiosulfate concentration and decrease of solution pH. Researchers also extended their previous research of ZnTe:Cu films by investigating films doped with low Cu concentrations (< 5 at. %). The low Cu concentration enabled them to increase the ZnTe:Cu post-annealing temperature without causing excessive Cu diffusion into CdTe or formation of secondary phases. The effects of Cu doping concentration and post-deposition annealing temperature on the structural, compositional, and electrical properties of ZnTe were studied systematically using X-ray diffraction, atomic force microscopy, electron microprobe, Hall effect, and conductivity measurements.

  18. Low-field tunnel-type magnetoresistance properties of polycrystalline and epitaxial La sub 0 sub . sub 6 sub 7 Sr sub 0 sub . sub 3 sub 3 MnO sub 3 thin films

    CERN Document Server

    Shim, I B; Choi, S Y

    2000-01-01

    The low-field tunnel-type magnetoresistance (TMB) properties of sol-gel derived polycrystalline and epitaxial La sub 0 sub . sub 6 sub 7 Sr sub 0 sub . sub 3 sub 3 MnO sub 3 (LSMO) thin films were investigated. The polycrystalline thin films were fabricated on Si (100) with a thermally oxidized SiO sub 2 layer while the epitaxial thin films were grown on LaAlO sub 3 (001) single-crystal substrates. The epitaxial thin films displayed both typical intrinsic colossal magnetoresistance (CMR) and abnormal extrinsic tunnel-type magnetoresistance behaviors. Tunnel-type MR ratio as high as 0.4% were observed in the polycrystalline thin films at a field of 120 Oe at room temperature (300 K) whereas the ratios were less than 0.1% for the epitaxial films in the same field range. The low-field tunnel-type MR of polycrystalline LSMO/SiO sub 2 ?Si (100) thin films originated from the behaviors of the grain-boundary properties.

  19. Improvement in pH Sensitivity of Low-Temperature Polycrystalline-Silicon Thin-Film Transistor Sensors Using H2 Sintering

    Directory of Open Access Journals (Sweden)

    Li-Chen Yen

    2014-02-01

    Full Text Available In this article, we report an improvement in the pH sensitivity of low-temperature polycrystalline-silicon (poly-Si thin-film transistor (TFT sensors using an H2 sintering process. The low-temperature polycrystalline-silicon (LTPS TFT sensor with H2 sintering exhibited a high sensitivity than that without H2 sintering. This result may be due to the resulting increase in the number of Si–OH2+ and Si–O− bonds due to the incorporation of H in the gate oxide to reduce the dangling silicon bonds and hence create the surface active sites and the resulting increase in the number of chemical reactions at these surface active sites. Moreover, the LTPS TFT sensor device not only offers low cost and a simple fabrication processes, but the technique also can be extended to integrate the sensor into other systems.

  20. Atomic-resolution characterization of the effects of CdCl2 treatment on poly-crystalline CdTe thin films

    Science.gov (United States)

    Paulauskas, T.; Buurma, C.; Colegrove, E.; Guo, Z.; Sivananthan, S.; Chan, M. K. Y.; Klie, R. F.

    2014-08-01

    Poly-crystalline CdTe thin films on glass are used in commercial solar-cell superstrate devices. It is well known that post-deposition annealing of the CdTe thin films in a CdCl2 environment significantly increases the device performance, but a fundamental understanding of the effects of such annealing has not been achieved. In this Letter, we report a change in the stoichiometry across twin boundaries in CdTe and propose that native point defects alone cannot account for this variation. Upon annealing in CdCl2, we find that the stoichiometry is restored. Our experimental measurements using atomic-resolution high-angle annular dark field imaging, electron energy-loss spectroscopy, and energy dispersive X-ray spectroscopy in a scanning transmission electron microscope are supported by first-principles density functional theory calculations.

  1. Comparison of efficiency degradation in polycrystalline-Si and CdTe thin-film PV modules via accelerated lifecycle testing

    Science.gov (United States)

    Lai, T.; Potter, B. G.; Simmons-Potter, K.

    2017-08-01

    Thin-film solar cells normally have the shortest energy payback time due to their simpler mass-production process compared to polycrystalline-Si photovoltaic (PV) modules, despite the fact that crystalline-Si-based technology typically has a longer total lifetime and a higher initial power conversion efficiency. For both types of modules, significant aging occurs during the first two years of usage with slower long-term aging over the module lifetime. The PV lifetime and the return-on-investment for local PV system installations rely on long-term device performance. Understanding the efficiency degradation behavior under a given set of environmental conditions is, therefore, a primary goal for experimental research and economic analysis. In the present work, in-situ measurements of key electrical characteristics (J, V, Pmax, etc.) in polycrystalline-Si and CdTe thin-film PV modules have been analyzed. The modules were subjected to identical environmental conditions, representative of southern Arizona, in a full-scale, industrial-standard, environmental degradation chamber, equipped with a single-sun irradiance source, temperature, and humidity controls, and operating an accelerated lifecycle test (ALT) sequence. Initial results highlight differences in module performance with environmental conditions, including temperature de-rating effects, for the two technologies. Notably, the thin-film CdTe PV module was shown to be approximately 15% less sensitive to ambient temperature variation. After exposure to a seven-month equivalent compressed night-day weather cycling regimen the efficiency degradation rates of both PV technology types were obtained and will be discussed.

  2. Theoretical investigation of the noise performance of active pixel imaging arrays based on polycrystalline silicon thin film transistors.

    Science.gov (United States)

    Koniczek, Martin; Antonuk, Larry E; El-Mohri, Youcef; Liang, Albert K; Zhao, Qihua

    2017-07-01

    Active matrix flat-panel imagers, which typically incorporate a pixelated array with one a-Si:H thin-film transistor (TFT) per pixel, have become ubiquitous by virtue of many advantages, including large monolithic construction, radiation tolerance, and high DQE. However, at low exposures such as those encountered in fluoroscopy, digital breast tomosynthesis and breast computed tomography, DQE is degraded due to the modest average signal generated per interacting x-ray relative to electronic additive noise levels of ~1000 e, or greater. A promising strategy for overcoming this limitation is to introduce an amplifier into each pixel, referred to as the active pixel (AP) concept. Such circuits provide in-pixel amplification prior to readout as well as facilitate correlated multiple sampling, enhancing signal-to-noise and restoring DQE at low exposures. In this study, a methodology for theoretically investigating the signal and noise performance of imaging array designs is introduced and applied to the case of AP circuits based on low-temperature polycrystalline silicon (poly-Si), a semiconductor suited to manufacture of large area, radiation tolerant arrays. Computer simulations employing an analog circuit simulator and performed in the temporal domain were used to investigate signal characteristics and major sources of electronic additive noise for various pixel amplifier designs. The noise sources include photodiode shot noise and resistor thermal noise, as well as TFT thermal and flicker noise. TFT signal behavior and flicker noise were parameterized from fits to measurements performed on individual poly-Si test TFTs. The performance of three single-stage and three two-stage pixel amplifier designs were investigated under conditions relevant to fluoroscopy. The study assumes a 20 × 20 cm 2 , 150 μm pitch array operated at 30 fps and coupled to a CsI:Tl x-ray converter. Noise simulations were performed as a function of operating conditions, including

  3. Structural and electrical properties of c-axis epitaxial and polycrystalline Sr sub 3 Bi sub 4 Ti sub 6 O sub 2 sub 1 thin films

    CERN Document Server

    Zhang, S T; Sun, H P; Pan Xiao Qing; Tan, W S; Liu, Z G; Ming, N B

    2003-01-01

    c-axis epitaxial and polycrystalline Sr sub 3 Bi sub 4 Ti sub 6 O sub 2 sub 1 (SBTi) thin films were fabricated on (001)SrTiO sub 3 (STO) single-crystal substrates and Pt/Ti sub 2 /SiO sub 2 /Si substrates respectively, by pulsed laser deposition (PLD). Structures of the films were systematically characterized by x-ray diffraction (XRD), including theta-2 theta-scans, rocking curve scans and phi-scans, atomic force microscopy and transmission electron microscopy (TEM). The epitaxial orientation relation of the SBTi films on STO is established by selected-area electron diffraction and XRD phi-scans to be (001)SBTi || (001)STO, [11-bar 0]SBTi || [010]STO. Cross-sectional high-resolution TEM studies on the epitaxial SBTi film revealed that SBTi is a single-phase material. A special kind of irrational atomic shift along the [001] direction was observed and is discussed in detail. By using an evanescent microwave probe (EMP), the room-temperature dielectric constant of the epitaxial SBTi film was measured to be 21...

  4. Si/Fe flux ratio influence on growth and physical properties of polycrystalline β-FeSi2 thin films on Si(100) surface

    Science.gov (United States)

    Tarasov, I. A.; Visotin, M. A.; Aleksandrovsky, A. S.; Kosyrev, N. N.; Yakovlev, I. A.; Molokeev, M. S.; Lukyanenko, A. V.; Krylov, A. S.; Fedorov, A. S.; Varnakov, S. N.; Ovchinnikov, S. G.

    2017-10-01

    This work investigates the Si/Fe flux ratio (2 and 0.34) influence on the growth of β-FeSi2 polycrystalline thin films on Si(100) substrate at 630 °C. Lattice deformations for the films obtained are confirmed by X-ray diffraction analysis (XRD). The volume unit cell deviation from that of β-FeSi2 single crystal are 1.99% and 1.1% for Si/Fe =2 and Si/Fe =0.34, respectively. Absorption measurements show that the indirect transition ( 0.704 eV) of the Si/Fe =0.34 sample changes to the direct transition with a bandgap value of 0.816 eV for the sample prepared at Si/Fe =2. The absorption spectrum of the Si/Fe =0.34 sample exhibits an additional peak located below the bandgap energy value with the absorption maximum of 0.36 eV. Surface magneto-optic Kerr effect (SMOKE) measurements detect the ferromagnetic behavior of the β-FeSi2 polycrystalline films grown at Si/Fe =0.34 at T=10 K, but no ferromagnetism was observed in the samples grown at Si/Fe =2. Theoretical calculations refute that the cell deformation can cause the emergence of magnetization and argue that the origin of the ferromagnetism, as well as the lower absorption peak, is β-FeSi2 stoichiometry deviations. Raman spectroscopy measurements evidence that the film obtained at Si/Fe flux ratio equal to 0.34 has the better crystallinity than the Si/Fe =2 sample.

  5. Field-tuned superconductor–insulator transitions and Hall resistance in thin polycrystalline MoN films

    Science.gov (United States)

    Makise, Kazumasa; Ichikawa, Fusao; Asano, Takayuki; Shinozaki, Bunju

    2018-02-01

    We report on the superconductor–insulator transitions (SITs) of disordered molybdenum nitride (MoN) thin films on (1 0 0) MgO substrates as a function of the film thickness and magnetic fields. The T c of the superconducting MoN films, which exhibit a sharp superconducting transition, monotonically decreases as the normal state R sq increases with a decreasing film thickness. For several films with different thicknesses, we estimate the critical field H c and the product zν  ≃  0.6 of the dynamical exponent z and the correlation length exponent ν using a finite scaling analysis. The value of this product can be explained by the (2  +  1) XY model. We found that the Hall resistance ΔR xy (H) is maximized when the magnetic field satisfies H HP(T) \\propto |1  ‑  T/T C0| in the superconducting state and also in the normal states owning to the superconducting fluctuation corresponding to the ghost critical magnetic field. We measured the Hall conductivity δσ xy (H)  =  σ xy (H)  ‑  σ xyn and fit the Gaussian approximation theory for δσ xy (H) to the experimental data. Agreement between the data and the theory beyond H c suggests the survival of the Cooper pair in the insulating region of the SIT.

  6. Leakage current suppression with a combination of planarized gate and overlap/off-set structure in metal-induced laterally crystallized polycrystalline-silicon thin-film transistors

    Science.gov (United States)

    Chae, Hee Jae; Seok, Ki Hwan; Lee, Sol Kyu; Joo, Seung Ki

    2018-04-01

    A novel inverted staggered metal-induced laterally crystallized (MILC) polycrystalline-silicon (poly-Si) thin-film transistors (TFTs) with a combination of a planarized gate and an overlap/off-set at the source-gate/drain-gate structure were fabricated and characterized. While the MILC process is advantageous for fabricating inverted staggered poly-Si TFTs, MILC TFTs reveal higher leakage current than TFTs crystallized by other processes due to their high trap density of Ni contamination. Due to this drawback, the planarized gate and overlap/off-set structure were applied to inverted staggered MILC TFTs. The proposed device shows drastic suppression of leakage current and pinning phenomenon by reducing the lateral electric field and the space-charge limited current from the gate to the drain.

  7. Ferroelectric phase transition in polycrystalline KTaO.sub.3./sub. thin film revealed by terahertz spectroscopy

    Czech Academy of Sciences Publication Activity Database

    Skoromets, Volodymyr; Glinšek, S.; Bovtun, Viktor; Kempa, Martin; Petzelt, Jan; Kamba, Stanislav; Malič, B.; Kosec, M.; Kužel, Petr

    2011-01-01

    Roč. 99, č. 5 (2011), 052908/1-052908/3 ISSN 0003-6951 R&D Projects: GA ČR GD202/09/H041; GA AV ČR(CZ) IAA100100907 Grant - others:GAUK(CZ) SVV-2011-263303 Institutional research plan: CEZ:AV0Z10100520 Keywords : thin film * terahertz spectroscopy * ferroelectric phase transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.844, year: 2011 http://link.aip.org/link/?APL/99/052908

  8. Sub-kT/q Subthreshold-Slope Using Negative Capacitance in Low-Temperature Polycrystalline-Silicon Thin-Film Transistor.

    Science.gov (United States)

    Park, Jae Hyo; Jang, Gil Su; Kim, Hyung Yoon; Seok, Ki Hwan; Chae, Hee Jae; Lee, Sol Kyu; Joo, Seung Ki

    2016-04-21

    Realizing a low-temperature polycrystalline-silicon (LTPS) thin-film transistor (TFT) with sub-kT/q subthreshold slope (SS) is significantly important to the development of next generation active-matrix organic-light emitting diode displays. This is the first time a sub-kT/q SS (31.44 mV/dec) incorporated with a LTPS-TFT with polycrystalline-Pb(Zr,Ti)O3 (PZT)/ZrTiO4 (ZTO) gate dielectrics has been demonstrated. The sub-kT/q SS was observed in the weak inversion region at -0.5 V showing ultra-low operating voltage with the highest mobility (250.5 cm(2)/Vsec) reported so far. In addition, the reliability of DC negative bias stress, hot carrier stress and self-heating stress in LTPS-TFT with negative capacitance was investigated for the first time. It was found that the self-heating stress showed accelerated SS degradation due to the PZT Curie temperature.

  9. A Monte Carlo simulation study of boron profiles as-implanted into LPCVD NiDoS polycrystalline thin films

    Science.gov (United States)

    Boukezzata, M.; Ait-Kaki, A.; Temple-Boyer, P.; Scheid, E.

    2003-03-01

    This work presents a Monte Carlo simulation study of boron profiles obtained from as-implanted ions into thin films nitrogen doped silicon (NiDoS) thin films. These films are performed by LPCVD technique from Si2H6 and NH3 gas sources, four values deliberately chosen, of the ratio NH3/Si2H6 to obtain samples, differently in situ nitrogen-doped. Taking into account the effect of the codoping case, and the structure specificity of these films, an accurate Monte Carlo model based on binary collisions in a multi-atomic target was performed. Nitrogen atoms present in the target is shown to affect the boron profiles and confirms clearly a reduction penetration effect which becomes more significant at high nitrogen concentrations. Whereas, the fine-grained polysilicon structure, and thus the presence of grains (G) and grain boundaries (GB), is known to enhance the opposite phenomenon by assuming an effective role played by GB's in the scattering calculation process of the incident ions. This role is represented by the change in direction of the incident ion after interaction with GB without corresponding loss in its energy. The results obtained show an enhancement of the stopping parameter when nitrogen concentration increases, while the GB interaction remains very important. This behavior is due to a great number of GB's interactions with boron atoms which gave low deflection angles. So that, the average positions described by the sequences of trajectories took place farther than what expected with channeling effect in crystal silicon materials.

  10. Improved growth of solution-deposited thin films on polycrystalline Cu(In,Ga)Se{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Witte, Wolfram; Hariskos, Dimitrios [Zentrum fuer Sonnenenergie- und Wasserstoff-Forschung Baden-Wuerttemberg (ZSW), 70565, Stuttgart (Germany); Abou-Ras, Daniel [Helmholtz-Zentrum Berlin fuer Materialien und Energie, 14109, Berlin (Germany)

    2016-04-15

    CdS and Zn(O,S) grown by chemical bath deposition (CBD) are well established buffer materials for Cu(In,Ga)Se{sub 2} (CIGS) solar cells. As recently reported, a non-contiguous coverage of CBD buffers on CIGS grains with {112} surfaces can be detected, which was explained in terms of low surface energies of the {112} facets, leading to deteriorated wetting of the chemical solution on the CIGS surface. In the present contribution, we report on the effect of air annealing of CIGS thin films prior to the CBD of CdS and Zn(O,S) layers. In contrast to the growth on the as-grown CIGS layers, these buffer lay- ers grow densely on the annealed CIGS layer, even on grains with {112} surfaces. We explain the different growth behavior by increased surface energies of CIGS grains due to the annealing step, i.e., due to oxidation of the CIGS surface. Reference solar cells were processed and completed by i-ZnO/ZnO:Al layers for CdS and by (Zn,Mg)O/ZnO:Al for Zn(O,S) buffers. For solar cells with both, CdS and Zn(O,S) buffers, air-annealed CIGS films with improved buffer coverage resulted in higher power-conversion efficiencies, as compared with the devices containing as-grown CIGS layers. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Raman scattering crystalline assessment of polycrystalline Cu2ZnSnS4 thin films for sustainable photovoltaic technologies: Phonon confinement model

    International Nuclear Information System (INIS)

    Dimitrievska, M.; Fairbrother, A.; 2UB, Departament d’Electrònica, Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona (Spain))" data-affiliation=" (Catalonia Institute for Energy Research (IREC), C. Jardins de les Dones de Negre 1, 08930 Sant Adrià del Besos, Barcelona (Spain); IN2UB, Departament d’Electrònica, Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona (Spain))" >Pérez-Rodríguez, A.; Saucedo, E.; Izquierdo-Roca, V.

    2014-01-01

    Graphical abstract: Display Omitted - Abstract: Phonon confinement effects in the Raman scattering spectra from polycrystalline Cu 2 ZnSnS 4 thin films synthesized with different crystalline qualities – including photovoltaic grade layers – are investigated in terms of a phonon confinement model. Interpretation of the experimentally obtained spectra required the development of a modified model that includes additional features such as lattice strain. The model has been systematically applied for the simultaneous fitting of the two main A symmetry Raman peaks in the experimental spectra. The experimental data show that the line shape of the Raman peaks is determined mainly by phonon confinement effects, while their frequency is also sensitive to the presence of strain in the lattice. Simultaneous modeling of the A dominant peaks allows a quantitative estimation of the frequency strain shift that has been correlated with the strain measured by X-ray diffraction. Estimation of the correlation length also provides a quantitative indicator of the crystalline quality of the films that is found to correlate with the grain size assessed by scanning electron microscopy. Based on this model, a general and simple methodology for the assessment of the crystalline quality of Cu 2 ZnSnS 4 samples independently of the experimental measurement conditions is proposed through the use of an asymmetry parameter

  12. Ion-assisted laser deposition of intermediate layers for YBa2Cu3O7-δ thin film growth on polycrystalline and amorphous substrates

    Energy Technology Data Exchange (ETDEWEB)

    Reade, Ronald P. [Univ. of California, Berkeley, CA (United States)

    1993-11-01

    The growth of YBa2Cu3O7-δ (YBCO) high-temperature superconductor thin films has largely been limited to deposition on single-crystal substrates to date. In order to expand the range of potential applications, growth on polycrystalline and amorphous substrates is desirable. In particular, the deposition of YBCO thin films with high critical current densities on polycrystalline metal alloys would allow the manufacture of superconducting tapes. However, it is shown that it is not possible to grow YBCO thin films directly on this type of substrate due to chemical and structural incompatibility. This work investigates the use of a yttria-stabilized zirconia (YSZ) intermediate layer to address this problem. An ion-assisted pulsed-laser deposition process is developed to provide control of orientation during the growth of the YSZ layers. The important properties of YBCO and YSZ are summarized and the status of research on thin film growth of these materials is reviewed. An overview of the pulsed-laser deposition (PLD) technique is presented. The use of ion-assisted deposition techniques to control thin film properties is discussed.

  13. Quantitative evaluation of sputtering induced surface roughness and its influence on AES depth profiles of polycrystalline Ni/Cu multilayer thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yan, X.L.; Coetsee, E. [Department of Physics, University of the Free State, P O Box 339, Bloemfontein, ZA9300 (South Africa); Wang, J.Y., E-mail: wangjy@stu.edu.cn [Department of Physics, Shantou University, 243 Daxue Road, Shantou, 515063, Guangdong (China); Swart, H.C., E-mail: swartHC@ufs.ac.za [Department of Physics, University of the Free State, P O Box 339, Bloemfontein, ZA9300 (South Africa); Terblans, J.J., E-mail: terblansjj@ufs.ac.za [Department of Physics, University of the Free State, P O Box 339, Bloemfontein, ZA9300 (South Africa)

    2017-07-31

    Highlights: • Linear Least Square (LLS) method used to separate Ni and Cu Auger spectra. • The depth-dependent ion sputtering induced roughness was quantitatively evaluated. • The depth resolution better when profiling with dual-ion beam vs. a single-ion beam. • AES depth profiling with a lower ion energy results in a better depth resolution. - Abstract: The polycrystalline Ni/Cu multilayer thin films consisting of 8 alternating layers of Ni and Cu were deposited on a SiO{sub 2} substrate by means of electron beam evaporation in a high vacuum. Concentration-depth profiles of the as-deposited multilayered Ni/Cu thin films were determined with Auger electron spectroscopy (AES) in combination with Ar{sup +} ion sputtering, under various bombardment conditions with the samples been stationary as well as rotating in some cases. The Mixing-Roughness-Information depth (MRI) model used for the fittings of the concentration-depth profiles accounts for the interface broadening of the experimental depth profiling. The interface broadening incorporates the effects of atomic mixing, surface roughness and information depth of the Auger electrons. The roughness values extracted from the MRI model fitting of the depth profiling data agrees well with those measured by atomic force microscopy (AFM). The ion sputtering induced surface roughness during the depth profiling was accordingly quantitatively evaluated from the fitted MRI parameters with sample rotation and stationary conditions. The depth resolutions of the AES depth profiles were derived directly from the values determined by the fitting parameters in the MRI model.

  14. A MONTÉ CARLO MODEL FOR SIMULATING THE NITROGEN DIFFUSION EFFECT INTO B-LPCVD-NIDOS POLYCRYSTALLINE THIN FILMS

    OpenAIRE

    S ALLAG; S MERABET; M BOUKEZZATA

    2012-01-01

    The principal objective of our current work, is to study the influence of different treatment from surface which makes it possible to improve the properties of materials by technique of beam of ions (diffusion – implantation), on the distribution of the particles in a semiconductor the prone polycrystalline Silicon of our study, largely used in micro-electronics.  The interest of this study is related to the ceaseless requirements in industry for increasingly reduced, powerful materials and w...

  15. Thin Film

    African Journals Online (AJOL)

    a

    organic substances. KEY WORDS: Photoelectrocatalysis, Titanium dioxide, Cuprous oxide, Composite thin film, Photo electrode. INTRODUCTION ... reddish p-type semiconductor with a direct band gap of 2.0-2.2 eV [18, 19]. ... Photoelectrocatalytic removal of color from water using TiO2 and TiO2/Cu2O electrodes. Bull.

  16. Atomic-resolution study of dislocation structures and interfaces in poly-crystalline thin film CdTe using aberration-corrected STEM

    Science.gov (United States)

    Paulauskas, Tadas; Colegrove, Eric; Buurma, Chris; Kim, Moon; Klie, Robert

    2014-03-01

    Commercial success of CdTe-based thin film photovoltaic devices stems from its nearly ideal direct band gap which very effectively couples to Sun's light spectrum as well as ease of manufacturing and low cost of these modules. However, to further improve the conversion efficiency beyond 20 percent, it is important to minimize the harmful effects of grain boundaries and lattice defects in CdTe. Direct atomic-scale characterization is needed in order identify the carrier recombination centers. Likewise, it is necessary to confirm that passivants in CdTe, such as Cl, are able to diffuse and bind to the target defects. In this study, we characterize dislocation structures and grain boundaries in poly-crystalline CdTe using aberration-corrected cold-field emission scanning transmission electron microscopy (STEM). The chemical composition of Shockley partial, Frank and Lomer-Cottrell dislocations is examined via atomic column-resolved X-ray energy dispersive (XEDS) and electron energy-loss spectroscopies (EELS). Segregation of Cl towards dislocation cores and grain boundaries is shown in CdCl2 treated samples. We also investigate interfaces in ultra-high-vacuum bonded CdTe bi-crystals with pre-defined misorientation angles which are intended to mimic grain boundaries. Funded by: DOE EERE Sunshot Award EE0005956.

  17. Photoluminescence of epitactical and polycrystalline CuInS{sub 2} layers for thin-film solar cells; Photolumineszenz epitaktischer und polykristalliner CuInS{sub 2}-Schichten fuer Duennschichtsolarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Eberhardt, J.

    2007-12-18

    The present thesis deals with one- and polycrystalline CuInS{sub 2} absorber layers for thin-film solar cells and especially with their optical and structural characterization. By means of detailed temperature- and power-dependent photoluminescence measurements in epitactical and polycrystalline absorber layers different radiative transitions could be analyzed and identified. The spectra were dominated by broad luminescence bands of deep perturbing levels. The implantation of hydrogen at low energies led to a passivation of these perturbing levels. On the base of the optical studies on epitactical and polycrystalline absorber layers a new improved defect model for CuInS{sub 2} could be developed. The model contains two donor and two acceptor levels with following ionization energies: D-1=46 meV, D-2=87 meV, A-1=70 meV, and A-2=119 meV.

  18. A MONTÉ CARLO MODEL FOR SIMULATING THE NITROGEN DIFFUSION EFFECT INTO B-LPCVD-NIDOS POLYCRYSTALLINE THIN FILMS

    Directory of Open Access Journals (Sweden)

    S ALLAG

    2012-06-01

    Full Text Available The principal objective of our current work, is to study the influence of different treatment from surface which makes it possible to improve the properties of materials by technique of beam of ions (diffusion – implantation, on the distribution of the particles in a semiconductor the prone polycrystalline Silicon of our study, largely used in micro-electronics.  The interest of this study is related to the ceaseless requirements in industry for increasingly reduced, powerful materials and with the weakest possible cost price.       We thus have, makes a nitriding in gas phase during the phase of deposit LPCVD of polycrystalline Silicon, then one made an ionic implantation with the Bore ions.  The results obtained, starting from a simulation based on the Monte Carlo method, although they are carried out with amounts much lower than the really introduced amounts, being given the limitation of the machine used, satisfied the predictions established at the beginning and encourage us to continue this study from the point of view of the use of this material in particular in varied fields.

  19. Photovoltaic mechanisms in polycrystalline thin film silicon solar cells. Final report, 30 June 1979-29 June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Sopori, B.L.

    1980-11-01

    The objectives of this program were: (1) to develop appropriate measurement techniques to facilitate a quantitative study of the electrical activity of structural defects and at a grain boundary (G.B.) in terms of generation-recombination, barrier height, and G.B. conductivity; (2) to characterize G.B.s in terms of physical properties such as angle of misfit and local stress, and to correlate them with the electrical activity; (3) to determine the influence of solar cell processing on the electrical behavior of structural defects and G.B.s; and (4) to evaluate polycrystalline solar cell performance based on the above study, and to compare it with the experimentally measured performance. Progress is reported in detail. (WHK)

  20. thin films

    Indian Academy of Sciences (India)

    The anionic precursor was 1% H2O2 solution. Both the cationic and anionic precursors were kept at room temperature (∼300 K). One SILAR cycle consists of two steps: (i) adsorption of Sn4+ ions on the substrate surface for 20 s and (ii) reaction with H2O2 solution for 40 s to form stable SnO2:H2O thin film on the substrate.

  1. High-performance flexible thin-film transistors fabricated using print-transferrable polycrystalline silicon membranes on a plastic substrate

    International Nuclear Information System (INIS)

    Qin, Guoxuan; Yuan, Hao-Chih; Ma, Zhenqiang; Yang, Hongjun; Zhou, Weidong

    2011-01-01

    Inexpensive polycrystalline Si (poly-Si) with large grain size is highly desirable for flexible electronics applications. However, it is very challenging to directly deposit high-quality poly-Si on plastic substrates due to processing constrictions, such as temperature tolerance and residual stress. In this paper, we present our study on poly-Si membranes that are stress free and most importantly, are transferrable to any substrate including a low-temperature polyethylene terephthalate (PET) substrate. We formed poly-Si-on-insulator by first depositing small-grain size poly-Si on an oxidized Si wafer. We then performed high-temperature annealing for recrystallization to obtain larger grain size. After selective doping on the poly-Si-on-insulator, buried oxide was etched away. By properly patterning the poly-Si layer, residual stress in the released poly-Si membranes was completely relaxed. The flat membrane topology allows the membranes to be print transferred to any substrates. High-performance TFTs were demonstrated on the transferred poly-Si membranes on a PET substrate

  2. Superconducting YBa 2Cu 3O 7-δ -Ag Thin Films (TC( 0) = 90 K) by Pulsed Laser Deposition on Polycrystalline Ba 2NdNbO 6; A Novel Substrate for YBa 2Cu 3O 7-δ Films

    Science.gov (United States)

    Kurian, Jose; John, Asha; Sajith, Poo; Koshy, Jacob; Pai, Subash; Pinto, Richard

    1998-10-01

    The development and characterisation of \\ba, a novel ceramicsubstrate material for \\yb superconductor, are reported. \\ba hasa complex cubic perovskite structure [\\bb] with lattice constanta = 8.573Å. The dielectric properties of \\ba are in a rangesuitable for its use as a substrate for microwave applications.\\ba was found to have a thermal expansion coefficient of8.6× 10-6{ }\\circC-1 and a thermal conductivityof 87 W·m-1·K-1. Superconducting \\yb-Ag thin filmshave been grown in situ on polycrystalline \\ba by pulsedlaser ablation technique and the optimum conditions have beenestablished. The films exhibited (00l) orientation of anorthorhombic \\yb phase and gave a zero resistivitysuperconducting transition [TC(0)] at 90 K with atransition width of ˜1.5 K and JC ˜3×105 A/cm2 at 77 K.

  3. Thin film polycrystalline silicon solar cells. Quarterly technical progress report No. 3, 1 April 1980-30 June 1980

    Energy Technology Data Exchange (ETDEWEB)

    Sarma, K. R.; Rice, M. J.; Legge, R.; Ellis, R. J.

    1980-06-01

    During this third quarter of the program, the high pressure plasma (hpp) deposition process has been thoroughly evaluated using SiHCl/sub 3/ and SiCl/sub 4/ silicon source gases, by the gas chromatographic analysis of the effluent gases from the reactor. Both the deposition efficiency and reactor throughput rate were found to be consistently higher for hpp mode of operation compared to conventional CVD mode. The figure of merit for various chlorosilanes as a silicon source gas for hpp deposition is discussed. A new continuous silicon film deposition scheme is developed, and system design is initiated. This new system employs gas interlocks and eliminates the need for gas curtains which have been found to be problematic. Solar cells (2 cm x 2 cm area) with AM1 efficiencies of up to 12% were fabricated on RTR grain enhanced hpp deposited films. The parameters of a 12% cell under simulated AM1 illumination were: V/sub OC/ = 0.582 volts, J/sub SC/ = 28.3 mA/cm/sup 2/ and F.F. = 73.0%.

  4. Anomalous Hall effect in polycrystalline Ni films

    KAUST Repository

    Guo, Zaibing

    2012-02-01

    We systematically studied the anomalous Hall effect in a series of polycrystalline Ni films with thickness ranging from 4 to 200 nm. It is found that both the longitudinal and anomalous Hall resistivity increased greatly as film thickness decreased. This enhancement should be related to the surface scattering. In the ultrathin films (46 nm thick), weak localization corrections to anomalous Hall conductivity were studied. The granular model, taking into account the dominated intergranular tunneling, has been employed to explain this phenomenon, which can explain the weak dependence of anomalous Hall resistivity on longitudinal resistivity as well. © 2011 Elsevier Ltd. All rights reserved.

  5. Laser processing for thin-film photovoltaics

    Science.gov (United States)

    Compaan, Alvin D.

    1995-04-01

    Over the past decade major advances have occurred in the field of thin- film photovoltaics (PV) with many of them a direct consequence of the application of laser processing. Improved cell efficiencies have been achieved in crystalline and polycrystalline Si, in hydrogenated amorphous silicon, and in two polycrystalline thin-film materials. The use of lasers in photovoltaics includes laser hole drilling for emitter wrap-through, laser trenching for buried bus lines, and laser texturing of crystalline and polycrystalline Si cells. In thin-film devices, laser scribing is gaining increased importance for module interconnects. Pulsed laser recrystallization of boron-doped hydrogenated amorphous silicon is used to form highly conductive p-layers in p-i-n amorphous silicon cells and in thin-film transistors. Optical beam melting appears to be an attractive method for forming metal semiconductor alloys for contact formation. Finally, pulsed lasers are used for deposition of the entire semiconductor absorber layer in two types of polycrystalline thin-film cells-those based on copper indium diselenide and those based on cadmium telluride. In our lab we have prepared and studied heavily doped polycrystalline silicon thin films and also have used laser physical vapor deposition (LPVD) to prepare 'all-LPVD' CdS/CdTe solar cells on glass with efficiencies tested at NREL at 10.5%. LPVD is highly flexible and ideally suited for prototyping PV cells using ternary or quaternary alloys and for exploring new dopant combinations.

  6. IMPEDANCE SPECTROSCOPY OF POLYCRYSTALLINE TIN DIOXIDE FILMS

    Directory of Open Access Journals (Sweden)

    D. V. Adamchuck

    2016-01-01

    Full Text Available The aim of this work is the analysis of the influence of annealing in an inert atmosphere on the electrical properties and structure of non-stoichiometric tin dioxide films by means of impedance spectroscopy method. Non-stoichiometric tin dioxide films were fabricated by two-step oxidation of metallic tin deposited on the polycrystalline Al2O3 substrates by DC magnetron sputtering. In order to modify the structure and stoichiometric composition, the films were subjected to the high temperature annealing in argon atmosphere in temperature range 300–800 °С. AC-conductivity measurements of the films in the frequency range 20 Hz – 2 MHz were carried out. Variation in the frequency dependencies of the real and imaginary parts of the impedance of tin dioxide films was found to occur as a result of high-temperature annealing. Equivalent circuits for describing the properties of films with various structure and stoichiometric composition were proposed. Possibility of conductivity variation of the polycrystalline tin dioxide films as a result of аnnealing in an inert atmosphere was demonstrated by utilizing impedance spectroscopy. Annealing induces the recrystallization of the films, changing in their stoichiometry as well as increase of the sizes of SnO2 crystallites. Variation of electrical conductivity and structure of tin dioxide films as a result of annealing in inert atmosphere was confirmed by X-ray diffraction analysis. Analysis of the impedance diagrams of tin dioxide films was found to be a powerful tool to study their electrical properties. 

  7. Photoluminescence of polycrystalline CuIn 0.5 Ga 0.5 Te 2 thin films grown by flash evaporation

    KAUST Repository

    Yandjah, L.

    2018-04-03

    Polycrystalline CuIn0.5Ga0.5Te2 films were deposited by flash evaporation from ingot prepared by reacting, in stoichiometric proportions, high purity Cu, In, Ga and Te elements in vacuum sealed quartz . The as-obtained films were characterized by X – ray diffraction (XRD), transmission electron microscopy (TEM) combined with energy dispersive spectroscopy (EDS). XRD and TEM results showed that the layer has a chalcopyrite-type structure, predominantly oriented along (112) planes, with lattice parameters a = 0.61 nm and c = 1.22 nm. The optical properties in the near - infrared and visible range 600 - 2400 nm have been studied. The analysis of absorption coefficient yielded an energy gap value of 1.27 eV. Photoluminescence analysis of as-grown sample shows two main emission peaks located at 0.87 and 1.19 eV at 4 K.

  8. Thin Films

    Directory of Open Access Journals (Sweden)

    M. Benmouss

    2003-01-01

    the optical absorption are consistent with the film color changes. Finally, the optical and electrochromic properties of the films prepared by this method are compared with those of our sputtered films already studied and with other works.

  9. Achievement report for fiscal 1997 on development of technologies for practical photovoltaic system under New Sunshine Program. Manufacture of thin-film solar cell / low-cost and large-area module / next-generation thin-film solar cell (Manufacture of thin-film polycrystalline solar module); 1997 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Usumaku taiyo denchi no seizo gijutsu kaihatsu, tei cost daimenseki module seizo gijutsu kaihatsu, jisedai usumaku taiyo denchi no seizo gijutsu kaihatsu (usumaku takessho taiyo denchi module no seizo gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-03-01

    Fiscal 1997 is the first year of another 4-year-long research and development phase. In addition to researches for improving on thin-film polycrystalline Si cell efficiency that have been under way, new efforts are started, which include the development of practicality-conscious thin film producing technologies aiming at higher throughput and yield and the development of modularization process technologies which are necessary for putting thin-film cells to practical use. Concerning the formation of a power generation layer on a polycrystalline Si thin film formed by the ZMR (zone-melting recrystallization) process, studies are conducted for improvement on its throughput and yield using a new CVD (chemical vapor deposition) unit. A method of modularization is evaluated, which involves a laminate of a thin-film cell attached to a resin-coated, reinforced glass substrate and an EVA (ethylene vinyl acetate) back film. A remarkable achievement is earned toward the practicalization of technologies of thin film formation enhanced in quality and throughput and technologies of thin film modularization. (NEDO)

  10. Polycrystalline Ba0.6Sr0.4TiO3 thin films on r-plane sapphire: Effect of film thickness on strain and dielectric properties

    Science.gov (United States)

    Fardin, E. A.; Holland, A. S.; Ghorbani, K.; Akdogan, E. K.; Simon, W. K.; Safari, A.; Wang, J. Y.

    2006-10-01

    Polycrystalline Ba0.6Sr0.4TiO3 (BST) films grown on r-plane sapphire exhibit strong variation of in-plane strain over the thickness range of 25-400nm. At a critical thickness of ˜200nm, the films are strain relieved; in thinner films, the strain is tensile, while compressive strain was observed in the 400nm film. Microwave properties of the films were measured from 1to20GHz by the interdigital capacitor method. A capacitance tunability of 64% was observed in the 200nm film, while thinner films showed improved Q factor. These results demonstrate the possibility of incorporating frequency agile BST-based devices into the silicon on sapphire process.

  11. Modelling heat conduction in polycrystalline hexagonal boron-nitride films.

    Science.gov (United States)

    Mortazavi, Bohayra; Pereira, Luiz Felipe C; Jiang, Jin-Wu; Rabczuk, Timon

    2015-08-19

    We conducted extensive molecular dynamics simulations to investigate the thermal conductivity of polycrystalline hexagonal boron-nitride (h-BN) films. To this aim, we constructed large atomistic models of polycrystalline h-BN sheets with random and uniform grain configuration. By performing equilibrium molecular dynamics (EMD) simulations, we investigated the influence of the average grain size on the thermal conductivity of polycrystalline h-BN films at various temperatures. Using the EMD results, we constructed finite element models of polycrystalline h-BN sheets to probe the thermal conductivity of samples with larger grain sizes. Our multiscale investigations not only provide a general viewpoint regarding the heat conduction in h-BN films but also propose that polycrystalline h-BN sheets present high thermal conductivity comparable to monocrystalline sheets.

  12. Thin film processes II

    CERN Document Server

    Kern, Werner

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques.Key Features* Provides an all-new sequel to the 1978 classic, Thin Film Processes* Introduces new topics, and sever

  13. Oriented thin films of Na0.6CoO2 and Ca3Co4O9 deposited by spin-coating method on polycrystalline substrate

    Czech Academy of Sciences Publication Activity Database

    Buršík, Josef; Soroka, Miroslav; Knížek, Karel; Hirschner, Jan; Levinský, Petr; Hejtmánek, Jiří

    2016-01-01

    Roč. 603, MAR (2016), s. 400-403 ISSN 0040-6090 R&D Projects: GA ČR(CZ) GA14-18392S; GA ČR(CZ) GA13-03708S Institutional support: RVO:61388980 ; RVO:68378271 Keywords : Cobaltates * Thermoelectrics * NaxCoO2 * Ca3Co4O9 * Thin films * ZrO2 Subject RIV: CA - Inorganic Chemistry; BM - Solid Matter Physics ; Magnetism (FZU-D) Impact factor: 1.879, year: 2016

  14. X-ray diffraction and Moessbauer studies of structural changes and L10 ordering kinetics during annealing of polycrystalline Fe51Pt49 thin films

    International Nuclear Information System (INIS)

    Spada, F.E.; Parker, F.T.; Platt, C.L.; Howard, J.K.

    2003-01-01

    Room-temperature x-ray diffraction and Moessbauer effect techniques have been used to characterize the structural features and local atomic environments of sputtered Fe 51 Pt 49 thin films following various isothermal treatments. Both techniques show that no significant changes occur in the chemically ordered L1 0 tetragonal phase after it has formed. In contrast, changes in the disordered face-centered-cubic (fcc) phase are observed prior to the transformation into the ordered tetragonal phase. Moessbauer measurements indicate the development of increasing short-range order in the disordered fcc phase with increasing annealing temperature. Asymmetries in the fcc x-ray diffraction profiles also suggest the presence of lattice distortions caused by atomic size differences commonly found in the quenched disordered fcc phase of materials that form ordered structures. Quasi-real-time kinetic measurements of the disorder→order transformation in sputtered Fe 51 Pt 49 thin films within the temperature range 300 deg. C≤T≤400 deg. C have also been conducted using high-temperature x-ray diffraction techniques. Significant differences are observed between the kinetic parameters determined in this study and those of previous reports. It is proposed that these differences arise from the lower temperature range investigated in the present work, where the gradual changes occurring in the fcc phase can influence the rate of the ordering transformation. Furthermore, because the initial state of disorder in Fe ∼50 Pt ∼50 films can be influenced by the deposition conditions, variability in the low-temperature ordering kinetics should be expected among Fe ∼50 Pt ∼50 films prepared under different conditions

  15. Research on fabrication technology for thin film solar cells for practical use. Technological development for qualitative improvement (development of fabrication technology of thin film polycrystalline Si solar cell); Usumaku taiyo denchi seizo gijutsu no jitsuyoka kenkyu. Kohinshitsuka gijutsu (usumaku takessho silicon kei taiyo denchi seizo no gijutsu kaihatsu)

    Energy Technology Data Exchange (ETDEWEB)

    Tatsuta, M. [New Energy and Industrial Technology Development Organization, Tokyo (Japan)

    1994-12-01

    This paper reports the study results on the fabrication technology of thin film polycrystalline Si solar cells in fiscal 1994. (1) On the fabrication technology of high-quality Si thin films, the new equipment was studied which allows uniform stable melting recrystallization over a large area. The new equipment adopted a heating method based on RTP system, and is now under adjustment. (2) On the fabrication technology of light/carrier confinement structure, degradation of hydrogen-treated thin film Si solar cells by light irradiation was examined. As a result, since any characteristic degradation was not found even by long time light irradiation, the high quality of the cells was confirmed regardless of hydrogen-treatment. Fabrication of stable reproducible fine texture structure became possible by using fabrication technology of light confinement structure by texture treatment of cell surfaces. (3) On low-cost process technology, design by VEST process, estimation of cell characteristics by simulation, and characteristics of prototype cells were reported. 33 figs., 1 tab.

  16. Thin Film Processes

    CERN Document Server

    Vossen, John L.

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques. Key Features * Provides an all-new sequel to the 1978 classic, Thin Film Processes * Introduces new topics, and several key topics presented in the original volume are updated * Emphasizes practical applications of major thin film deposition and etching processes * Helps readers find the appropriate technology for a particular application

  17. Optical constant of thin gold films

    DEFF Research Database (Denmark)

    Yakubovsky, D. I.; Fedyanin, D. Yu; Arsenin, A. V.

    2017-01-01

    The performance of metal-based devices is limited by ohmic losses in the metal, which are determined by electron scattering. The structural properties of gold thin films also play an important role in the film quality, which may affect its' optical properties and the overall capability of the dev......The performance of metal-based devices is limited by ohmic losses in the metal, which are determined by electron scattering. The structural properties of gold thin films also play an important role in the film quality, which may affect its' optical properties and the overall capability...... and spectroscopic ellipsometry, the structural morphology and optical properties of polycrystalline gold thin films (fabricated by e-beam deposition at a low sputtering rate smooth gold) in the thickness range of 20 - 200 nm. By extracting the real and imaginary dielectric function and the Drude parameter...... predicts optical losses based on structure of the gold films....

  18. Optical thin film devices

    Science.gov (United States)

    Mao, Shuzheng

    1991-11-01

    Thin film devices are applied to almost all modern scientific instruments, and these devices, especially optical thin film devices, play an essential role in the performances of the instruments, therefore, they are attracting more and more attention. Now there are numerous kinds of thin film devices and their applications are very diversified. The 300-page book, 'Thin Film Device and Applications,' by Prof. K. L. Chopra gives some general ideas, and my paper also outlines the designs, fabrication, and applications of some optical thin film devices made in my laboratory. Optical thin film devices have been greatly developed in the recent decades. Prof. A. Thelan has given a number of papers on the theory and techniques, Prof. H. A. Macleod's book, 'Thin Film Optical Filters,' has concisely concluded the important concepts of optical thin film devices, and Prof. J. A. Dobrowobski has proposed many successful designs for optical thin film devices. Recently, fully-automatic plants make it easier to produce thin film devices with various spectrum requirements, and some companies, such as Balzers, Leybold AG, Satis Vacuum AG, etc., have manufactured such kinds of coating plants for research or mass-production, and the successful example is the production of multilayer antireflection coatings with high stability and reproducibility. Therefore, it could be said that the design of optical thin film devices and coating plants is quite mature. However, we cannot expect that every problem has been solved, the R&D work still continues, the competition still continues, and new design concepts, new techniques, and new film materials are continually developed. Meanwhile, the high-price of fully-automatic coating plants makes unpopular, and automatic design of coating stacks is only the technique for optimizing the manual design according to the physical concepts and experience, in addition, not only the optical system, but also working environment should be taken into account when

  19. Research on polycrystalline thin-film submodules based on CuInSe{sub 2} materials. Final technical report, 14 December 1995--31 December 1996

    Energy Technology Data Exchange (ETDEWEB)

    Arya, R; Fogleboch, J; Kessler, J; Russell, L; Skibo, S; Wiedeman, S [Solarex Corp., Newtown, PA (United States)

    1997-04-01

    This report describes the progress made at Solarex for both device and module efficiencies from the inception of the CIS research program to the present. A rapid improvement in efficiency is apparent, culminating in the fabrication of a 15.5%-efficient device (total area) and a 13%-efficient submodule (aperture area). The device represents the highest efficiency device measured by NREL for any industrial source at that time. The module represented a new world record for any thin-film module at the time of its measurement. The factors leading to these results included improvements in absorber layer quality, transparent contacts, scribing and module formation processes. Other elements critical to the commercialization of CIS-based photovoltaics were also successfully attacked, including reduction of absorber deposition times into the range of 10 to 20 minutes and the successful scale-up of the absorber deposition process to greater than 500 cm{sup 2}. Other requisite processes saw continued development, such as a rapid, low-cost method for transparent window deposition. Subsequent to the demonstration of 13% module efficiency, scribing techniques were further improved that resulted in a reduction in shunt losses and higher module fill factor. This improvement, and the concomitant gain in fill factor, would yield efficiencies approaching 14% on modules having a short-circuit and open-circuit voltage comparable to the record module.

  20. Thin films on cantilevers

    NARCIS (Netherlands)

    Nazeer, H.

    2012-01-01

    The main goal of the work compiled in this thesis is to investigate thin films for integration in micro electromechanical systems (MEMS). The miniaturization of MEMS actuators and sensors without compromising their performance requires thin films of different active materials with specific

  1. Thin Film & Deposition Systems (Windows)

    Data.gov (United States)

    Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

  2. Carbon thin film thermometry

    Science.gov (United States)

    Collier, R. S.; Sparks, L. L.; Strobridge, T. R.

    1973-01-01

    The work concerning carbon thin film thermometry is reported. Optimum film deposition parameters were sought on an empirical basis for maximum stability of the films. One hundred films were fabricated for use at the Marshall Space Flight Center; 10 of these films were given a precise quasi-continuous calibration of temperature vs. resistance with 22 intervals between 5 and 80 K using primary platinum and germanium thermometers. Sensitivity curves were established and the remaining 90 films were given a three point calibration and fitted to the established sensitivity curves. Hydrogen gas-liquid discrimination set points are given for each film.

  3. Large grain gallium arsenide thin films

    Science.gov (United States)

    Chu, S. S.; Chu, T. L.; Firouzi, H.; Han, Y. X.; Chen, W. J.; Wang, Q. H.

    Polycrystalline gallium arsenide films deposited on tungsten/graphite substrates have been used for the fabrication of thin film solar cells. Gallium arsenide films deposited on foreign substrates of 10 microns or less thickness exhibit, in most cases, pronounced shunting effects due to grain boundaries. MOS solar cells of 9 sq cm area with an AM1 efficiency of 8.5 percent and p(+)/n/n(+) homojunction solar cells of 1 sq cm area with an AM1 efficiency of 8.8 percent have been prepared. However, in order to further improve the conversion efficiency before the development of effective passivation techniques, gallium arsenide films with large and uniform grain structure are necessary. The large grain gallium arsenide films have been prepared by using (1) the arsine treatment of a thin layer of molten gallium on the substrate surface and (2) the recrystallized germanium films on tungsten/graphite as substrates.

  4. The future of rare earth thin films

    International Nuclear Information System (INIS)

    Gasgnier, M.

    1986-01-01

    This paper presents some recent applications in the rare earth field and also may be, some of the future new developments of laboratory works. The field of investigations will concern only materials which contain at least one rare earth element (lanthanide series, from La to Lu, Sc and Y). After a rapid survey of the experimental procedures relative to the preparation and to the analytical characterization of thin films, technological applications in various fields of research are briefly reviewed: for polycrystalline metals (superconductors, neutron absorption, photovoltaic effect...), alloys (hydrogen storage, superconductors) and compounds (target for intense neutron sources, radiology...) and for amorphous magnetic thin films. 81 refs [fr

  5. Thin film hydrogen sensor

    Science.gov (United States)

    Cheng, Yang-Tse; Poli, Andrea A.; Meltser, Mark Alexander

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  6. Thin film device applications

    CERN Document Server

    Kaur, Inderjeet

    1983-01-01

    Two-dimensional materials created ab initio by the process of condensation of atoms, molecules, or ions, called thin films, have unique properties significantly different from the corresponding bulk materials as a result of their physical dimensions, geometry, nonequilibrium microstructure, and metallurgy. Further, these characteristic features of thin films can be drasti­ cally modified and tailored to obtain the desired and required physical characteristics. These features form the basis of development of a host of extraordinary active and passive thin film device applications in the last two decades. On the one extreme, these applications are in the submicron dimensions in such areas as very large scale integration (VLSI), Josephson junction quantum interference devices, magnetic bubbles, and integrated optics. On the other extreme, large-area thin films are being used as selective coatings for solar thermal conversion, solar cells for photovoltaic conver­ sion, and protection and passivating layers. Ind...

  7. Pyroelectric coupling in thin film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Karpov, Victor G.; Shvydka, Diana [Department of Physics and Astronomy, University of Toledo, OH (United States)

    2007-07-15

    We propose a theory of thin film photovoltaics in which one of the polycrystalline films is made of a pyroelectric material grains such as CdS. That film is shown to generate strong polarization improving the device open circuit voltage. Implications and supporting facts for the major photovoltaic types based on CdTe and CuIn(Ga)Se{sub 2} absorber layers are discussed. Band diagram of a pyroelectric (CdS) based PV junction. Arrows represent the charge carrier photo-generation. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Intrinsic Compressive Stress in Polycrystalline Films is Localized at Edges of the Grain Boundaries

    Science.gov (United States)

    Vasco, Enrique; Polop, Celia

    2017-12-01

    The intrinsic compression that arises in polycrystalline thin films under high atomic mobility conditions has been attributed to the insertion or trapping of adatoms inside grain boundaries. This compression is a consequence of the stress field resulting from imperfections in the solid and causes the thermomechanical fatigue that is estimated to be responsible for 90% of mechanical failures in current devices. We directly measure the local distribution of residual intrinsic stress in polycrystalline thin films on nanometer scales, using a pioneering method based on atomic force microscopy. Our results demonstrate that, at odds with expectations, compression is not generated inside grain boundaries but at the edges of gaps where the boundaries intercept the surface. We describe a model wherein this compressive stress is caused by Mullins-type surface diffusion towards the boundaries, generating a kinetic surface profile different from the mechanical equilibrium profile by the Laplace-Young equation. Where the curvatures of both profiles differ, an intrinsic stress is generated in the form of Laplace pressure. The Srolovitz-type surface diffusion that results from the stress counters the Mullins-type diffusion and stabilizes the kinetic surface profile, giving rise to a steady compression regime. The proposed mechanism of competition between surface diffusions would explain the flux and time dependency of compressive stress in polycrystalline thin films.

  9. Multifunctional thin film surface

    Energy Technology Data Exchange (ETDEWEB)

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  10. Process for Polycrystalline film silicon growth

    Science.gov (United States)

    Wang, Tihu; Ciszek, Theodore F.

    2001-01-01

    A process for depositing polycrystalline silicon on substrates, including foreign substrates, occurs in a chamber at about atmospheric pressure, wherein a temperature gradient is formed, and both the atmospheric pressure and the temperature gradient are maintained throughout the process. Formation of a vapor barrier within the chamber that precludes exit of the constituent chemicals, which include silicon, iodine, silicon diiodide, and silicon tetraiodide. The deposition occurs beneath the vapor barrier. One embodiment of the process also includes the use of a blanketing gas that precludes the entrance of oxygen or other impurities. The process is capable of repetition without the need to reset the deposition zone conditions.

  11. High-Efficiency Polycrystalline CdTe Thin-Film Solar Cells with an Oxygenated Amorphous CdS (a-CdS:O) Window Layer: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Wu, X.; Dhere, R. G.; Yan, Y.; Romero, M. J.; Zhang, Y.; Zhou, J.; DeHart, C.; Duda, A.; Perkins, C.; To, B.

    2002-05-01

    In the conventional CdS/CdTe device structure, the poly-CdS window layer has a bandgap of {approx}2.4 eV, which causes absorption in the short-wavelength region. Higher short-circuit current densities (Jsc) can be achieved by reducing the CdS thickness, but this can adversely impact device open-circuit voltage (Voc) and fill factor (FF). Also, poly-CdS film has about 10% lattice mismatch related to the CdTe film, which limits the improvement of device Voc and FF. In this paper, we report a novel window material: oxygenated amorphous CdS film (a-CdS:O) prepared at room temperature by rf sputtering. The a-CdS:O film has a higher optical bandgap (2.5-3.1 eV) than the poly-CdS film and an amorphous structure. The preliminary device results have demonstrated that Jsc of the CdTe device can be greatly improved while maintaining higher Voc and FF. We have fabricated a CdTe cell demonstrating an NREL-confirmed Jsc of 25.85 mA/cm2 and a total-area efficiency of 15.4%.

  12. Crystal structure analysis in solution-processed uniaxially oriented polycrystalline thin film of non-peripheral octahexyl phthalocyanine by grazing incidence wide-angle x-ray scattering techniques

    Science.gov (United States)

    Ohmori, Masashi; Uno, Takashi; Nakatani, Mitsuhiro; Nakano, Chika; Fujii, Akihiko; Ozaki, Masanori

    2016-10-01

    Uniaxially oriented thin films of metal-free non-peripherally octahexyl-substituted phthalocyanine (C6PcH2), which exhibits high carrier mobility, have been fabricated by the bar-coating technique, which is a simple solution process. The molecular orientation and molecular steps in the thin film were observed by the polarized spectroscopy and the atomic force microscopy, respectively. The three-dimensional molecular packing structure in the thin film was investigated by the grazing incidence wide-angle X-ray scattering technique with an in-plane sample rotation. The crystal orientation was clarified, and the three-dimensional molecular packing structure of the thin film was found to match the single crystal structure. Moreover, the X-ray diffraction patterns of the oriented thin films were simulated by using the lattice parameters of C6PcH2 single crystal to reproduce the observed X-ray diffraction patterns.

  13. Ultrathin polycrystalline 6,13-Bis(triisopropylsilylethynyl)-pentacene films

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Min-Cherl; Zhang, Dongrong; Nikiforov, Gueorgui O.; Lee, Michael V.; Qi, Yabing, E-mail: Yabing.Qi@oist.jp [Energy Materials and Surface Sciences Unit (EMSS), Okinawa Institute of Science and Technology Graduate University (OIST), 1919-1 Tancha, Onna-son, Okinawa 904-0495 (Japan); Joo Shin, Tae; Ahn, Docheon; Lee, Han-Koo; Baik, Jaeyoon; Shin, Hyun-Joon [Pohang Accelerator Laboratory, POSTECH, Pohang 790-784 (Korea, Republic of)

    2015-03-15

    Ultrathin (<6 nm) polycrystalline films of 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS-P) are deposited with a two-step spin-coating process. The influence of spin-coating conditions on morphology of the resulting film was examined by atomic force microscopy. Film thickness and RMS surface roughness were in the range of 4.0–6.1 and 0.6–1.1 nm, respectively, except for small holes. Polycrystalline structure was confirmed by grazing incidence x-ray diffraction measurements. Near-edge x-ray absorption fine structure measurements suggested that the plane through aromatic rings of TIPS-P molecules was perpendicular to the substrate surface.

  14. Synchrotron X-ray Microdiffraction Analysis of Proton Irradiated Polycrystalline Diamond Films

    Science.gov (United States)

    Newton, R. I.; Davidson, J. L.; Ice, G. E.; Liu, W.

    2004-01-01

    X-ray microdiffraction is a non-destructive technique that allows for depth-resolved, strain measurements with sub-micron spatial resolution. These capabilities make this technique promising for understanding the mechanical properties of MicroElectroMechanical Systems (MEMS). This investigation examined the local strain induced by irradiating a polycrystalline diamond thin film with a dose of 2x10(exp 17) H(+)per square centimeter protons. Preliminary results indicate that a measurable strain, on the order of 10(exp -3), was introduced into the film near the End of Range (EOR) region of the protons.

  15. TEM and SEM studies of microstructural transformations of thin iron films during annealing

    NARCIS (Netherlands)

    Lisowski, W.F.; Keim, Enrico G.; Smithers, Mark A.; Smithers, M.A.

    2002-01-01

    High-temperature induced transformations of the bulk structure as well as the surface and bulk morphology of thin polycrystalline iron films have been investigated using a combination of scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The polycrystalline Fe films were

  16. Superconducting parameters of polycrystalline niobium films

    International Nuclear Information System (INIS)

    Kandyba, P.E.; Kolesnikov, D.P.; Tkachev, V.A.

    1978-01-01

    The niobium semi-crystalline films, having a thickness of 200-5,050 A have been studied. The films have been produced by the electron-beam evaporation in the oilless vacuum and by the ionic plasma spraying with diode and triode methods. Determined have been the coherence length, the magnetic field penetration depth and the Ginsburg-andau parameter. An attempt is made to determine the electron states density of the Fermi surface

  17. Thin films and nanomaterials

    International Nuclear Information System (INIS)

    Jayakumar, S.; Kannan, M.D.; Prasanna, S.

    2012-01-01

    The objective of this book is to disseminate the most recent research in Thin Films, Nanomaterials, Corrosion and Metallurgy presented at the International Conference on Advanced Materials (ICAM 2011) held in PSG College of Technology, Coimbatore, India during 12-16 December 2011. The book is a compilation of 113 chapters written by active researchers providing information and critical insights into the recent advancements that have taken place. Important new applications are possible today in the fields of microelectronics, opto-electronics, metallurgy and energy by the application of thin films on solid surfaces. Recent progress in high vacuum technology and new materials has a remarkable effect in thin film quality and cost. This has led to the development of new single or multi-layered thin film devices with diverse applications in a multitude of production areas, such as optics, thermal barrier coatings and wear protections, enhancing service life of tools and to protect materials against thermal and atmospheric influence. On the other hand, thin film process techniques and research are strongly related to the basic research activities in nano technology, an increasingly important field with countless opportunities for applications due to the emergence of new properties at the nanoscale level. Materials and structures that are designed and fabricated at the nano scale level, offer the potential to produce new devices and processes that may enhance efficiencies and reduce costs in many areas, as photovoltaic systems, hydrogen storage, fuel cells and solar thermal systems. In the book, the contributed papers are classified under two sections i) thin films and ii) nanomaterials. The thin film section includes single or multi layer conducting, insulating or semiconducting films synthesized by a wide variety of physical or chemical techniques and characterized or analyzed for different applications. The nanomaterials section deals with novel or exciting materials

  18. Optical thin film deposition

    International Nuclear Information System (INIS)

    Macleod, H.A.

    1979-01-01

    The potential usefulness in the production of optical thin-film coatings of some of the processes for thin film deposition which can be classified under the heading of ion-assisted techniques is examined. Thermal evaporation is the process which is virtually universally used for this purpose and which has been developed to a stage where performance is in almost all respects high. Areas where further improvements would be of value, and the possibility that ion-assisted deposition might lead to such improvements, are discussed. (author)

  19. Thin Film Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K.

    1998-11-19

    The motivation to develop thin film technologies dates back to the inception of photovoltaics. It is an idea based on achieving truly low-cost photovoltaics appropriate for mass production and energy significant markets. The key to the idea is the use of pennies worth of active materials. Since sunlight carries relatively little energy in comparison with combustion-based energy sources, photovoltaic (PV) modules must be cheap to produce energy that can be competitive. Thin films are presumed to be the answer to that low-cost requirement. But how cheap do they have to be? The following is an oversimplified analysis that allows some insight into this question.

  20. Epitaxial thin films

    Science.gov (United States)

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  1. Polycrystalline Thin-Film Cadmium Telluride Solar Cells Fabricated by Electrodeposition; Final Technical Report, 20 March 1995-15 June 1998

    Energy Technology Data Exchange (ETDEWEB)

    Trefny, J. U.; Mao, D.; Kaydanov, V.; Ohno, T. R.; Williamson, D. L.; Collins, R.; Furtak, T. E.

    1999-01-27

    This report summarizes work performed by the Colorado School of Mines Department of Physics under this subcontract. Based on the studies conducted, researchers increased the efficiency of the cells with electrodeposited CdTe and CBD CdS by 3% on average ({approx}30 relative %). The improvement came from 1. Optimization of CdS initial thickness taking into account CdS consumption of CdTe during the CdTe/CdS post-deposition treatment; optimization of CdS post-deposition treatment with CdCl2 aimed at prevention of Te diffusion into CdS and improvement of the CdS film morphology and electronic properties. That led to a considerable increase in short circuit current, by 13% on average. 2. Optimization of CdTe thickness and post-deposition treatment which led to a significant increase in Voc, by {approx}70 mV. The highest Voc obtained exceeded 800 mV. 3. Development of a ZnTe:Cu/Metal back contact processing procedure that included selection of optimal Cu content, deposition regime and post-deposition treatment conditions. As a result, back contact resistance as low as 0.1W-cm2 was obtained. The cell stability was measured on exposure to accelerated stress conditions. Preliminary studies of some new approaches to improvement of CdS/CdTe structure were conducted.

  2. Thin film metal-oxides

    CERN Document Server

    Ramanathan, Shriram

    2009-01-01

    Presents an account of the fundamental structure-property relations in oxide thin films. This title discusses the functional properties of thin film oxides in the context of applications in the electronics and renewable energy technologies.

  3. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  4. Protein thin film machines.

    Science.gov (United States)

    Federici, Stefania; Oliviero, Giulio; Hamad-Schifferli, Kimberly; Bergese, Paolo

    2010-12-01

    We report the first example of microcantilever beams that are reversibly driven by protein thin film machines fueled by cycling the salt concentration of the surrounding solution. We also show that upon the same salinity stimulus the drive can be completely reversed in its direction by introducing a surface coating ligand. Experimental results are throughout discussed within a general yet simple thermodynamic model.

  5. Photoluminescence of nanocrystalline ZnS thin film grown by sol-gel method.

    Science.gov (United States)

    Anila, E I; Safeera, T A; Reshmi, R

    2015-03-01

    Nano and polycrystalline ZnS thin films play a crucial role in photovoltaic technology and optoelectronic devices. In this work, we report the photoluminescence (PL) characterization of nanocrystalline ZnS thin films synthesized by dip coating method. The PL spectra exhibit broad nature with multiple emission peaks which are due to the different defect levels in the prepared film.

  6. Thermal and structural properties of spray pyrolysed CdS thin film

    Indian Academy of Sciences (India)

    Unknown

    Thermal and structural properties of CdS thin film. 235. 235 by photoacoustic technique. Polycrystalline CdTe films having 55 µm thickness were grown onto the glass slides using the close space vapour technique. The total thick- ness of two-layer system (glass and CdSe thin film) could be changed by varying the thickness ...

  7. Characterization of CdSe polycrystalline films by photoluminescence spectroscopy

    International Nuclear Information System (INIS)

    Brasil, M.J.S.P.

    1985-01-01

    The characterization of CdSe polycristalline films were done by photoluminescence spectroscopy, X-ray diffraction analysis, diagrams IxV, and efficiency of solar energy conversion for cells done by these films. The experimental data shown strong temperature dependence of annealing, and the optimum temperature around 650 0 C was determined. The films did not present photoluminescence before heat treatment, but the annealed sample spectrum showed fine structures in the excitonic region, crystal phase transformation, enhancement of grain size, and better efficiency of the cell. Measurements of photoluminescence between 2 and 300 K, showed two bands of infrared emission, width and intense enough. The shape, at half-width, and the integrated intensity of one these bands were described by a configuration coordinate model for deep centers. Based on obtained results, some hypothesis about the origin of these bands and its correlation with efficiency of cells done with CdSe polycrystalline films, are proposed. (M.C.K.) [pt

  8. The state of the art of thin-film photovoltaics

    International Nuclear Information System (INIS)

    Surek, T.

    1993-10-01

    Thin-film photovoltaic technologies, based on materials such as amorphous or polycrystalline silicon, copper indium diselenide, cadmium telluride, and gallium arsenide, offer the potential for significantly reducing the cost of electricity generated by photovoltaics. The significant progress in the technologies, from the laboratory to the marketplace, is reviewed. The common concerns and questions raised about thin films are addressed. Based on the progress to date and the potential of these technologies, along with continuing investments by the private sector to commercialize the technologies, one can conclude that thin-film PV will provide a competitive alternative for large-scale power generation in the future

  9. Thin-film polycrystalline silicon solar cells

    Science.gov (United States)

    Funghnan, B. W.; Blanc, J.; Phillips, W.; Redfield, D.

    1980-08-01

    Thirty-four new solar cells were fabricated on Wacker Sislo substrates and the AM-1 parameters were measured. A detailed comparison was made between the measurement of minority carrier diffusion length by the OE method and the penetrating light laser scan grain boundary photoresponse linewidth method. The laser scan method has more experimental uncertainty and agrees within 10 to 50% with the QE method. It allows determination of L over a large area. Atomic hydrogen passivation studies continued on Wacker material by three techniques. A method of determining surface recombination velocity, s, from laser scan data was developed. No change in s in completed solar cells after H-plasma treatment was observed within experimental error. H-passivation of bare silicon cars as measured by the new laser scan photoconductivity technique showed very large effects.

  10. Thin film superconductor magnetic bearings

    Science.gov (United States)

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  11. Modifying thin film diamond for electronic applications

    International Nuclear Information System (INIS)

    Baral, B.

    1999-01-01

    The unique combination of properties that diamond possesses are being exploited in both electronic and mechanical applications. An important step forward in the field has been the ability to grow thin film diamond by chemical vapour deposition (CVD) methods and to control parameters such as crystal orientation, dopant level and surface roughness. An extensive understanding of the surface of any potential electronic material is vital to fully comprehend its behaviour within device structures. The surface itself ultimately controls key aspects of device performance when interfaced with other materials. This study has provided insight into important chemical reactions on polycrystalline CVD diamond surfaces, addressing how certain surface modifications will ultimately affect the properties of the material. A review of the structure, bonding, properties and potential of diamond along with an account of the current state of diamond technology and CVD diamond growth is provided. The experimental chapter reviews bulk material and surface analytical techniques employed in this work and is followed by an investigation of cleaning treatments for polycrystalline CVD diamond aimed at removing non-diamond carbon from the surface. Selective acid etch treatments are compared and contrasted for efficacy with excimer laser irradiation and hydrogen plasma etching. The adsorption/desorption kinetics of potential dopant-containing precursors on polycrystalline CVD diamond surfaces have been investigated to compare their effectiveness at introducing dopants into the diamond during the growth stage. Both boron and sulphur-containing precursor compounds have been investigated. Treating polycrystalline CVD diamond in various atmospheres / combination of atmospheres has been performed to enhance electron field emission from the films. Films which do not emit electrons under low field conditions can be modified such that they emit at fields as low as 10 V/μm. The origin of this enhancement

  12. Structural and Optical Properties of Nanoscale Galinobisuitite Thin Films

    Directory of Open Access Journals (Sweden)

    Omar H. Abd-Elkader

    2014-01-01

    Full Text Available Galinobisuitite thin films of (Bi2S3(PbS were prepared using the chemical bath deposition technique (CBD. Thin films were prepared by a modified chemical deposition process by allowing the triethanolamine (TEA complex of Bi3+ and Pb2+ to react with S2− ions, which are released slowly by the dissociation of the thiourea (TU solution. The films are polycrystalline and the average crystallite size is 35 nm. The composition of the films was measured using the atomic absorption spectroscopy (AAS technique. The films are very adherent to the substrates. The crystal structure of Galinobisuitite thin films was calculated by using the X-ray diffraction (XRD technique. The surface morphology and roughness of the films were studied using scanning electron microscopes (SEM, transmission electron microscopes (TEM and stylus profilers respectively. The optical band gaps of the films were estimated from optical measurements.

  13. Some spectral response characteristics of ZnTe thin films

    Indian Academy of Sciences (India)

    Unknown

    used in optoelectronic detection of THz radiation (Winnewis- ser et al 1997). Photoluminescence study on ZnTe was also carried out in recent years (Nishio et al 1999). The ZnTe thin films grown at room temperature and high temperature substrates are found to be polycrystalline in nature (Kalita et al 1999). By investigating ...

  14. Exciton Recombination in Formamidinium Lead Triiodide : Nanocrystals versus Thin Films

    NARCIS (Netherlands)

    Fang, Hong-Hua; Protesescu, Loredana; Balazs, Daniel M.; Adjokatse, Sampson; Kovalenko, Maksym V.; Loi, Maria Antonietta

    2017-01-01

    The optical properties of the newly developed near-infrared emitting formamidinium lead triiodide (FAPbI(3)) nanocrystals (NCs) and their polycrystalline thin film counterpart are comparatively investigated by means of steady-state and time-resolved photoluminescence. The excitonic emission is

  15. Electron scattering characteristics of polycrystalline metal transition films by in-situ electrical resistance measurements

    Energy Technology Data Exchange (ETDEWEB)

    Trindade, I.G. [Faculdade de Ciencias da Universidade do Porto, Physics Department, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); IFIMUP and IN, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)], E-mail: i_trindade@msn.com; Leitao, D. [IFIMUP and IN, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); Fermento, R. [Instituto de Microelectronica de Madrid, Isaac Newton 8, 28760 Tres Cantos, Madrid (Spain); Pogorelev, Y.; Sousa, J.B. [Faculdade de Ciencias da Universidade do Porto, Physics Department, Rua do Campo Alegre 687, 4169-007 Porto (Portugal); IFIMUP and IN, Rua do Campo Alegre 687, 4169-007 Porto (Portugal)

    2009-08-15

    In-situ electrical resistance measurements were performed to obtain the scattering characteristics of very thin polycrystalline metal transition magnetic alloys grown by ion beam deposition (IBD) on specific underlayers. The experimental curves show size effects at small film thicknesses and important differences between Co{sub 85}Fe{sub 15} and Ni{sub 81}Fe{sub 19} thin layers grown on identical underlayers of Ta70 A/Ru13 A. The largest difference was observed in Ni{sub 81}Fe{sub 19} films grown on underlayers of amorphous Ta70 A. The experimental curves of electrical resistivity/conductivity variation with layer thickness were well fit within the Mayadas and Shatzkes (M-S) model, assuming specific formulations for grain growth with layer thickness.

  16. Functional organic thin films

    OpenAIRE

    Scharnberg, Michael

    2007-01-01

    Organic thin films are used in many technological and engineering applications nowadays. They find use as coatings, sensors, detectors, as matrix materials in nanocomposites, as self-assembled monolayers for surface functionalization, as low-k dielectrics in integrated circuits and in advanced organic electronic applications like organic light emitting diodes, organic field effect transistors and organic photovoltaics (esp. organic solar cells) and many other applications. OLED displays are n...

  17. Thin film processes

    CERN Document Server

    Vossen, John L

    1978-01-01

    Remarkable advances have been made in recent years in the science and technology of thin film processes for deposition and etching. It is the purpose of this book to bring together tutorial reviews of selected filmdeposition and etching processes from a process viewpoint. Emphasis is placed on the practical use of the processes to provide working guidelines for their implementation, a guide to the literature, and an overview of each process.

  18. Handbook of thin film technology

    CERN Document Server

    Frey, Hartmut

    2015-01-01

    “Handbook of Thin Film Technology” covers all aspects of coatings preparation, characterization and applications. Different deposition techniques based on vacuum and plasma processes are presented. Methods of surface and thin film analysis including coating thickness, structural, optical, electrical, mechanical and magnetic properties of films are detailed described. The several applications of thin coatings and a special chapter focusing on nanoparticle-based films can be found in this handbook. A complete reference for students and professionals interested in the science and technology of thin films.

  19. Invited Paper: CIGS-based thin film solar cells and modules: Unique material properties

    Science.gov (United States)

    Nakada, Tokio

    2012-04-01

    Although CIGS solar cells consist of a polycrystalline thin film grown on a glass substrate, more than 20% conversion efficiency has been achieved. The efficiency has reached the same level as polycrystalline silicon solar cells. This high efficiency has not yet been observed in other thin film solar cells including thin film Si and CdTe. Therefore, it is important to understand the mechanisms that allow CIGS solar cells to exhibit high conversion efficiencies. This paper discusses the origin of the high efficiency and demonstrates that it is caused by the unique material properties of CIGS films.

  20. Properties of MoO3 thin film polymorphs

    International Nuclear Information System (INIS)

    McCarron, E.M.; Carcia, P.F.

    1987-01-01

    Thin film polymorphs of molybdenum trioxide have been synthesized by RF sputtering. Films deposited on thermally floating substrates are polycrystalline and exhibit preferred orientation. Depending upon the oxygen partial pressure maintained during sputtering, the films can be made to crystallize in either the thermodynamically stable orthorhombic α MoO 3 form (unique 2D-layered structure) or the metastable monoclinic β MoO 3 phase (3D ReO 3 -related structure). Metastable β films can be converted thermally to the α phase and the transformation appears topotactic. Films deposited on the cooled substrates are amorphous. A correlation between the particular phase formed and adatom mobility is noted

  1. Thin film characterisation by advanced X-ray diffraction techniques

    International Nuclear Information System (INIS)

    Cappuccio, G.; Terranova, M.L.

    1996-09-01

    The Fifth School on X-ray diffraction from polycrystalline materials was devoted to thin film characterization by advanced X-ray diffraction techniques. Twenty contributions are contained in this volume; all twenty are recorded in the INIS Database. X-ray diffraction is known to be a powerful analytical tool for characterizing materials and understanding their structural features. The aim of these articles is to illustrate the fundamental contribution of modern diffraction techniques (grazing incidence, surface analysis, standing waves, etc.) to the characterization of thin and ultra-thin films, which have become important in many advanced technologies

  2. Free-standing polycrystalline boron phosphide film and method for production thereof

    Science.gov (United States)

    Baughman, R.J.; Ginley, D.S.

    1982-09-09

    A process for producing a free-standing polycrystalline boron phosphide film comprises growing a film of boron phosphide in a vertical growth apparatus on a metal substrate. The metal substrate has a coefficient of thermal expansion sufficiently different from that of boron phosphide that the film separates cleanly from the substrate upon cooling thereof, and the substrate is preferably titanium. The invention also comprises a free-standing polycrystalline boron phosphide film for use in electronic device fabrication.

  3. Method for production of free-standing polycrystalline boron phosphide film

    Science.gov (United States)

    Baughman, Richard J.; Ginley, David S.

    1985-01-01

    A process for producing a free-standing polycrystalline boron phosphide film comprises growing a film of boron phosphide in a vertical growth apparatus on a metal substrate. The metal substrate has a coefficient of thermal expansion sufficiently different from that of boron phosphide that the film separates cleanly from the substrate upon cooling thereof, and the substrate is preferably titanium. The invention also comprises a free-standing polycrystalline boron phosphide film for use in electronic device fabrication.

  4. Structural characterization of chemically deposited PbS thin films

    International Nuclear Information System (INIS)

    Fernandez-Lima, F.A.; Gonzalez-Alfaro, Y.; Larramendi, E.M.; Fonseca Filho, H.D.; Maia da Costa, M.E.H.; Freire, F.L.; Prioli, R.; Avillez, R.R. de; Silveira, E.F. da; Calzadilla, O.; Melo, O. de; Pedrero, E.; Hernandez, E.

    2007-01-01

    Polycrystalline thin films of lead sulfide (PbS) grown using substrate colloidal coating chemical bath depositions were characterized by RBS, XPS, AFM and GIXRD techniques. The films were grown on glass substrates previously coated with PbS colloidal particles in a polyvinyl alcohol solution. The PbS films obtained with the inclusion of the polymer showed non-oxygen-containing organic contamination. All samples maintained the Pb:S 1:1 stoichiometry throughout the film. The amount of effective nucleation centers and the mean grain size have being controlled by the substrate colloidal coating. The analysis of the polycrystalline PbS films showed that a preferable (1 0 0) lattice plane orientation parallel to the substrate surface can be obtained using a substrate colloidal coating chemical bath deposition, and the orientation increases when a layer of colloid is initially dried on the substrate

  5. Formation of thin-film crystalline silicon on glass observed by in-situ XRD

    NARCIS (Netherlands)

    Westra, J.M.; Vavrunkova, V.; Sutta, P.; Van Swaaij, R.A.C.M.M.; Zeman, M.

    2010-01-01

    Thin-film poly-crystalline silicon (poly c-Si) on glass obtained by crystallization of an amorphous silicon (a-Si) film is a promising material for low cost, high efficiency solar cells. Our approach to obtain this material is to crystallize a-Si films on glass by solid phase crystallization (SPC).

  6. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with

  7. Effect of crystallinity on the magnetoresistance in perovskite manganese oxide thin films

    International Nuclear Information System (INIS)

    Shreekala, R.; Rajeswari, M.; Ghosh, K.; Goyal, A.; Gu, J.Y.; Kwon, C.; Trajanovic, Z.; Boettcher, T.; Greene, R.L.; Ramesh, R.; Venkatesan, T.

    1997-01-01

    We report our study of the effect of crystallinity on the magnetoresistance in epitaxial and polycrystalline La 2/3 Ba 1/3 MnO 3 and La 2/3 Ca 1/3 MnO 3 thin films. Magnetoresistance in epitaxial films exhibits field dependence and temperature dependence similar to bulk single crystals and sintered bulk ceramics. The polycrystalline films exhibit a markedly different behavior. The magnetoresistance in this case shows either a monotonic increase or saturation with decreasing temperature in contrast to that of epitaxial films in which the magnetoresistance peaks close to the ferromagnetic transition temperature. The field dependence in the polycrystalline films is also remarkably different. At low fields, we observe a sharp drop in resistance followed by a more gradual decrease at higher fields. Our data suggest that in addition to the intrinsic magnetoresistance, grain-boundary transport contributes significantly to the magnetoresistance in polycrystalline films. copyright 1997 American Institute of Physics

  8. Ferromagnetic thin films

    Science.gov (United States)

    Krishnan, Kannan M.

    1994-01-01

    A ferromagnetic .delta.-Mn.sub.1-x Ga.sub.x thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of .delta.-Mn.sub.1-x Ga.sub.x overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of .delta.-Mn.sub.1-x Ga.sub.x and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4 .+-.0.05.

  9. Thin film diamond microstructure applications

    Science.gov (United States)

    Roppel, T.; Ellis, C.; Ramesham, R.; Jaworske, D.; Baginski, M. E.; Lee, S. Y.

    1991-01-01

    Selective deposition and abrasion, as well as etching in atomic oxygen or reduced-pressure air, have been used to prepare patterned polycrystalline diamond films which, on further processing by anisotropic Si etching, yield the microstructures of such devices as flow sensors and accelerometers. Both types of sensor have been experimentally tested in the respective functions of hot-wire anemometer and both single- and double-hinged accelerometer.

  10. Characterization of organic thin films

    CERN Document Server

    Ulman, Abraham; Evans, Charles A

    2009-01-01

    Thin films based upon organic materials are at the heart of much of the revolution in modern technology, from advanced electronics, to optics to sensors to biomedical engineering. This volume in the Materials Characterization series introduces the major common types of analysis used in characterizing of thin films and the various appropriate characterization technologies for each. Materials such as Langmuir-Blodgett films and self-assembled monolayers are first introduced, followed by analysis of surface properties and the various characterization technologies used for such. Readers will find detailed information on: -Various spectroscopic approaches to characterization of organic thin films, including infrared spectroscopy and Raman spectroscopy -X-Ray diffraction techniques, High Resolution EELS studies, and X-Ray Photoelectron Spectroscopy -Concise Summaries of major characterization technologies for organic thin films, including Auger Electron Spectroscopy, Dynamic Secondary Ion Mass Spectrometry, and Tra...

  11. Elaboration and characterisation of thin polycrystalline films deposited by LPCVD for solar cells application; Elaboration et caracterisation de couches minces de silicium polycristallin deposees par LPCVD pour application photovoltaique

    Energy Technology Data Exchange (ETDEWEB)

    Laghla, Y.

    1998-07-16

    This work is separated in 3 parts: a first part told horizontal research, concerning physical studies of the material such as optical characteristics. We have studied the main methods of evaluating optical constants, such as thickness, refractive index and optical coefficient of absorption. The second part is dedicated to calculation of optical properties of thin layers of amorphous and polycrystalline silicon obtained by low pressure chemical vapour deposition (LPCVD). The optical studies of the different materials have allowed us to the final choice of material and to optimise thickness in order to make photovoltaic diodes. Therefore we have, studied the deposit kinetics, optical, electrical, and structural (AFM, SEM) properties of the different layers contributing to the diodes manufacturing. So as to better understand the quality of these layers, we have tried to make a bond between the different observed variation of electrical, and optical parameters, and their structural variation according to their thickness. The lest part, told vertical research, consists in the technological realisation of these diodes with minimum technological steps (only three masc. levels), so as to reply to the demands of the industrial market. In this subject, we have realised diodes with a significant reduction in reverse leakage current, and a very good aware appearance to reverse polarisation up to -100 V without observing the break down voltage. (author) 186 refs.

  12. Interfaces and thin films physics

    International Nuclear Information System (INIS)

    Equer, B.

    1988-01-01

    The 1988 progress report of the Interfaces and Thin Film Physics laboratory (Polytechnic School France) is presented. The research program is focused on the thin films and on the interfaces of the amorphous semiconductor materials: silicon and silicon germanium, silicon-carbon and silicon-nitrogen alloys. In particular, the following topics are discussed: the basic processes and the kinetics of the reactive gas deposition, the amorphous materials manufacturing, the physico-chemical characterization of thin films and interfaces and the electron transport in amorphous semiconductors. The construction and optimization of experimental devices, as well as the activities concerning instrumentation, are also described [fr

  13. Reflectivity modulation with LixWO3 thin films

    International Nuclear Information System (INIS)

    Arntz, F.O.; Berera, G.; Goldner, R.B; Haas, T.E.; Moprel, B.

    1990-01-01

    One potentially improtant application for electrochromic (and other solid-state ionic)thin films is as the electrochemically-controlled reflectivity-modulated layer in smart window glass (or smart windows). In principle, smart windows can be operated in either of two modes: absorptivity modulation or reflectivity modulation. The feasibility of utilizing polycrystalline (pc) tungsten bronze films, M x WO 3 (M = H, Li), to obtain spectrally selective reflectivity modulation has been previously demonstrated. The question addressed in this paper is to determine the upper bound for the near infrared reflectivity modulation of pc-Li x WO 3 films

  14. Optimization of Processing and Modeling Issues for Thin Film Solar Cell Devices Including Concepts for The Development of Polycrystalline Multijunctions: Annual Report; 24 August 1998-23 August 1999

    Energy Technology Data Exchange (ETDEWEB)

    Birkmire, R.W.; Phillips, J.E.; Shafarman, W.N.; Eser, E.; Hegedus, S.S.; McCandless, B.E. (Institute of Energy Conversion)

    2000-08-25

    This report describes results achieved during phase 1 of a three-phase subcontract to develop and understand thin-film solar cell technology associated to CuInSe{sub 2} and related alloys, a-Si and its alloys, and CdTe. Modules based on all these thin films are promising candidates to meet DOE long-range efficiency, reliability, and manufacturing cost goals. The critical issues being addressed under this program are intended to provide the science and engineering basis for the development of viable commercial processes and to improve module performance. The generic research issues addressed are: (1) quantitative analysis of processing steps to provide information for efficient commercial-scale equipment design and operation; (2) device characterization relating the device performance to materials properties and process conditions; (3) development of alloy materials with different bandgaps to allow improved device structures for stability and compatibility with module design; (4) development of improved window/heterojunction layers and contacts to improve device performance and reliability; and (5) evaluation of cell stability with respect to illumination, temperature, and ambient and with respect to device structure and module encapsulation.

  15. Optimization of Processing and Modeling Issues for Thin Film Solar Cell Devices Including Concepts for the Development of Polycrystalline Multijunctions Annual Subcontract Report, 24 August 1999 - 23 August 2000

    Energy Technology Data Exchange (ETDEWEB)

    Birkmire, R. W.; Phillips, J. E.; Shafarman, W. N.; Eser, E.; Hegedus, S. S.; McCandless, B. E.

    2001-11-14

    This report describes the results achieved during Phase I of a three-phase subcontract to develop and understand thin-film solar cell technology associated with CuInSe2 and related alloys, a-Si and its alloys, and CdTe. Modules based on all these thin films are promising candidates to meet DOE long-range efficiency, reliability, and manufacturing cost goals. The critical issues being addressed under this program are intended to provide the science and engineering basis for developing viable commercial processes and to improve module performance. The generic research issues addressed are: (1) quantitative analysis of processing steps to provide information for efficient commercial-scale equipment design and operation; (2) device characterization relating the device performance to materials properties and process conditions; (3) development of alloy materials with different bandgaps to allow improved device structures for stability and compatibility with module design; (4) development of improved window/heterojunction layers and contacts to improve device performance and reliability; and (5) evaluation of cell stability with respect to illumination, temperature, and ambient, and with respect to device structure and module encapsulation.

  16. Thin-Film Power Transformers

    Science.gov (United States)

    Katti, Romney R.

    1995-01-01

    Transformer core made of thin layers of insulating material interspersed with thin layers of ferromagnetic material. Flux-linking conductors made of thinner nonferromagnetic-conductor/insulator multilayers wrapped around core. Transformers have geometric features finer than those of transformers made in customary way by machining and mechanical pressing. In addition, some thin-film materials exhibit magnetic-flux-carrying capabilities superior to those of customary bulk transformer materials. Suitable for low-cost, high-yield mass production.

  17. Thin films of mixed metal compounds

    Science.gov (United States)

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  18. Crystalline Indium Sulphide thin film by photo accelerated deposition technique

    Science.gov (United States)

    Dhanya, A. C.; Preetha, K. C.; Deepa, K.; Remadevi, T. L.

    2015-02-01

    Indium sulfide thin films deserve special attention because of its potential application as buffer layers in CIGS based solar cells. Highly transparent indium sulfide (InS) thin films were prepared using a novel method called photo accelerated chemical deposition (PCD). Ultraviolet source of 150 W was used to irradiate the solution. Compared to all other chemical methods, PCD scores its advantage for its low cost, flexible substrate and capable of large area of deposition. Reports on deposition of high quality InS thin films at room temperature are very rare in literature. The precursor solution was initially heated to 90°C for ten minutes and then deposition was carried out at room temperature for two hours. The appearance of the film changed from lemon yellow to bright yellow as the deposition time increased. The sample was characterized for its structural and optical properties. XRD profile showed the polycrystalline behavior of the film with mixed phases having crystallite size of 17 nm. The surface morphology of the films exhibited uniformly distributed honey comb like structures. The film appeared to be smooth and the value of extinction coefficient was negligible. Optical measurements showed that the film has more than 80% transmission in the visible region. The direct band gap energy was 2.47eV. This method is highly suitable for the synthesis of crystalline and transparent indium sulfide thin films and can be used for various photo voltaic applications.

  19. Structural, optical and electrical properties of ZnO thin films prepared ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. ZnO thin films have been prepared using zinc acetate precursor by spray pyrolytic decomposition of zinc acetate on glass substrates at 450 °C. Effect of precursor concentration on structural and optical pro- perties has been investigated. ZnO films are polycrystalline with (002) plane as preferential orientation. The.

  20. Preparation of manganese-doped ZnO thin films and their ...

    Indian Academy of Sciences (India)

    Structural characterization by X-ray diffraction reveals that polycrystalline nature of the films increases with increasing ... SILAR; Mn:ZnO thin film; X-ray line broadening; SEM; optical bandgap. 1. Introduction. Zinc oxide is a II–IV ... potential in different applications in photo-thermal conver- sion systems, heat mirrors, ...

  1. CdFe2O4 thin films for the detection of benzene vapors

    Science.gov (United States)

    Nagarajan, V.; Thayumanavan, A.

    2018-02-01

    Spinel cadmium ferrite thin films were prepared using spray pyrolysis technique. The structural analysis of synthesized CdFe2O4 thin films shows the spinel structure, which exhibits polycrystalline nature. Morphological study confirms that the crystallites of CdFe2O4 thin film have island-like nature. The size of the crystallite is recorded to be around 13.0-37 nm. Energy-dispersion spectroscopy confirms the presence of oxygen, iron and cadmium in cadmium ferrites film. The prepared CdFe2O4 thin film is extremely sensitive towards toxic benzene vapor molecules at ambient temperature. The resistance of synthesized CdFe2O4 thin film decreases considerably when this material is exposed to benzene vapor molecules. The selectivity, stability, recovery time, sensitivity and response time of CdFe2O4 thin film towards benzene vapor molecules were explored in the present study.

  2. Magnetostriction measurement in thin films using laser Doppler vibrometry

    International Nuclear Information System (INIS)

    Varghese, Ronnie; Viswan, Ravindranath; Joshi, Keyur; Seifikar, Safoura; Zhou, Yuan; Schwartz, Justin; Priya, Shashank

    2014-01-01

    This paper reports the laser Doppler vibrometry based measurement of the magnetostriction in magnetic thin films. Using this method, the strain induced by an AC magnetic field in the polycrystalline cobalt ferrite and nickel ferrite thin films grown on silicon and platinized silicon substrates was measured under a DC magnetic bias. The experimental setup and the derivation of the magnetostriction constant from the experimentally measured deflection values are discussed. The magnetostriction values derived using force and bending moment balances were compared with that derived from an industry standard relationship. In addition, we corroborate our approach by comparing the values derived from bending theory calculations of magnetically induced torque to those from measurements using Vibrating Sample Magnetometer (VSM). At high DC magnetic field bias, the magnitude of magnetization calculated from the measured magnetostriction was found to match the measured magnetization by VSM. - Highlights: • Laser Doppler vibrometry based technique to measure magnetostriction in thin films. • Strain induced by an AC magnetic field under a DC magnetic bias. • Picometer level deflections in polycrystalline cobalt and nickel ferrite thin films

  3. CdTe polycrystalline films on Ni foil substrates by screen printing and their photoelectric performance

    International Nuclear Information System (INIS)

    Yao, Huizhen; Ma, Jinwen; Mu, Yannan; Su, Shi; Lv, Pin; Zhang, Xiaoling; Zhou, Liying; Li, Xue; Liu, Li; Fu, Wuyou; Yang, Haibin

    2015-01-01

    Highlights: • The sintered CdTe polycrystalline films by a simple screen printing. • The flexible Ni foil was chose as substrates to reduce the weight of the electrode. • The compact CdTe film was obtained at 550 °C sintering temperature. • The photoelectric activity of the CdTe polycrystalline films was excellent. - Abstract: CdTe polycrystalline films were prepared on flexible Ni foil substrates by sequential screen printing and sintering in a nitrogen atmosphere for the first time. The effect of temperature on the quality of the screen-printed film was investigated in our work. The high-quality CdTe films were obtained after sintering at 550 °C for 2 h. The properties of the sintered CdTe films were characterized by scanning electron microscopy, X-ray diffraction pattern and UV–visible spectroscopy. The high-quality CdTe films have the photocurrent was 2.04 mA/cm 2 , which is higher than that of samples prepared at other temperatures. Furthermore, CdCl 2 treatment reduced the band gap of the CdTe film due to the larger grain size. The photocurrent of photoelectrode based on high crystalline CdTe polycrystalline films after CdCl 2 treatment improved to 2.97 mA/cm 2 , indicating a potential application in photovoltaic devices

  4. Exploring electronic structure of one-atom thick polycrystalline graphene films: A nano angle resolved photoemission study

    Science.gov (United States)

    Avila, José; Razado, Ivy; Lorcy, Stéphane; Fleurier, Romain; Pichonat, Emmanuelle; Vignaud, Dominique; Wallart, Xavier; Asensio, María C.

    2013-01-01

    The ability to produce large, continuous and defect free films of graphene is presently a major challenge for multiple applications. Even though the scalability of graphene films is closely associated to a manifest polycrystalline character, only a few numbers of experiments have explored so far the electronic structure down to single graphene grains. Here we report a high resolution angle and lateral resolved photoelectron spectroscopy (nano-ARPES) study of one-atom thick graphene films on thin copper foils synthesized by chemical vapor deposition. Our results show the robustness of the Dirac relativistic-like electronic spectrum as a function of the size, shape and orientation of the single-crystal pristine grains in the graphene films investigated. Moreover, by mapping grain by grain the electronic dynamics of this unique Dirac system, we show that the single-grain gap-size is 80% smaller than the multi-grain gap recently reported by classical ARPES. PMID:23942471

  5. Growth of high-quality CuInSe sub 2 polycrystalline films by magnetron sputtering and vacuum selenization

    CERN Document Server

    Xie Da Tao; Wang Li; Zhu Feng; Quan Sheng Wen; Meng Tie Jun; Zhang Bao Cheng; Chen J

    2002-01-01

    High-quality CuInSe sub 2 thin films have been prepared using a two stages process. Cu and In were co-deposited onto glass substrates by magnetron sputtering method to produce a predominant Cu sub 1 sub 1 In sub 9 phase. The alloy films were selenised and annealed in vacuum at different temperature in the range of 200-500 degree C using elemental selenium in a closed graphite box. X-ray diffraction and scanning electron microscopy were used to characterize the films. It is found that the polycrystalline and single-phase CuInSe sub 2 films were uniform and densely packed with a grain size of about 3.0 mu m

  6. Electron-beam deposition of vanadium dioxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Marvel, R.E.; Appavoo, K. [Vanderbilt University, Interdisciplinary Materials Science Program, Nashville, TN (United States); Choi, B.K. [Vanderbilt University, Department of Electrical Engineering and Computer Science, Nashville, TN (United States); Nag, J. [Vanderbilt University, Department of Physics and Astronomy, Nashville, TN (United States); Haglund, R.F. [Vanderbilt University, Interdisciplinary Materials Science Program, Nashville, TN (United States); Vanderbilt University, Institute for Nanoscale Science and Engineering, Nashville, TN (United States); Vanderbilt University, Department of Physics and Astronomy, Nashville, TN (United States)

    2013-06-15

    Developing a reliable and efficient fabrication method for phase-transition thin-film technology is critical for electronic and photonic applications. We demonstrate a novel method for fabricating polycrystalline, switchable vanadium dioxide thin films on glass and silicon substrates and show that the optical switching contrast is not strongly affected by post-processing annealing times. The method relies on electron-beam evaporation of a nominally stoichiometric powder, followed by fast annealing. As a result of the short annealing procedure we demonstrate that films deposited on silicon substrates appear to be smoother, in comparison to pulsed laser deposition and sputtering. However, optical performance of e-beam evaporated film on silicon is affected by annealing time, in contrast to glass. (orig.)

  7. Interfacial Properties of CZTS Thin Film Solar Cell

    Directory of Open Access Journals (Sweden)

    N. Muhunthan

    2014-01-01

    Full Text Available Cu-deficient CZTS (copper zinc tin sulfide thin films were grown on soda lime as well as molybdenum coated soda lime glass by reactive cosputtering. Polycrystalline CZTS film with kesterite structure was produced by annealing it at 500°C in Ar atmosphere. These films were characterized for compositional, structural, surface morphological, optical, and transport properties using energy dispersive X-ray analysis, glancing incidence X-ray diffraction, Raman spectroscopy, scanning electron microscopy, atomic force microscopy, UV-Vis spectroscopy, and Hall effect measurement. A CZTS solar cell device having conversion efficiency of ~0.11% has been made by depositing CdS, ZnO, ITO, and Al layers over the CZTS thin film deposited on Mo coated soda lime glass. The series resistance of the device was very high. The interfacial properties of device were characterized by cross-sectional SEM and cross-sectional HRTEM.

  8. A comparative study of transport properties in polycrystalline and epitaxial chromium nitride films

    KAUST Repository

    Duan, X. F.

    2013-01-08

    Polycrystalline CrNx films on Si(100) and glass substrates and epitaxial CrNx films on MgO(100) substrates were fabricated by reactive sputtering with different nitrogen gas flow rates (fN2). With the increase of fN2, a lattice phase transformation from metallic Cr2N to semiconducting CrN appears in both polycrystalline and epitaxial CrNx films. At fN2= 100 sccm, the low-temperature conductance mechanism is dominated by both Mott and Efros-Shklovskii variable-range hopping in either polycrystalline or epitaxial CrN films. In all of the polycrystalline and epitaxial films, only the polycrystalline CrNx films fabricated at fN2 = 30 and 50 sccm exhibit a discontinuity in ρ(T) curves at 260-280 K, indicating that both the N-vacancy concentration and grain boundaries play important roles in the metal-insulator transition. © 2013 American Institute of Physics.

  9. Large-grain polycrystalline silicon film by sequential lateral solidification on a plastic substrate

    International Nuclear Information System (INIS)

    Kim, Yong-Hae; Chung, Choong-Heui; Yun, Sun Jin; Moon, Jaehyun; Park, Dong-Jin; Kim, Dae-Won; Lim, Jung Wook; Song, Yoon-Ho; Lee, Jin Ho

    2005-01-01

    A large-grain polycrystalline silicon film was obtained on a plastic substrate by sequential lateral solidification. With various combinations of sputtering powers and Ar working gas pressures, the conditions for producing dense amorphous silicon (a-Si) and SiO 2 films were optimized. The successful crystallization of the a-Si film is attributed to the production of a dense a-Si film that has low argon content and can endure high-intensity laser irradiation

  10. Self-assembly of dodecaphenyl POSS thin films

    Science.gov (United States)

    Handke, Bartosz; Klita, Łukasz; Niemiec, Wiktor

    2017-12-01

    The self-assembly abilities of Dodecaphenyl Polyhedral Oligomeric Silsesquioxane thin films on Si(1 0 0) surfaces were studied. Due to their thermal properties - relatively low sublimation temperature and preservation of molecular structure - cage type silsesquioxanes are ideal material for the preparation of a thin films by Physical Vapor Deposition. The Ultra-High Vacuum environment and the deposition precision of the PVD method enable the study of early stages of thin film growth and its molecular organization. X-ray Reflectivity and Atomic Force Microscopy measurements allow to pursuit size-effects in the structure of thin films with thickness ranges from less than a single molecular layer up to several tens of layers. Thermal treatment of the thin films triggered phase change: from a poorly ordered polycrystalline film into a well-ordered multilayer structure. Self-assembly of the layers is the effect of the π-stacking of phenyl rings, which force molecules to arrange in a superlattice, forming stacks of alternating organic-inorganic layers.

  11. A QCM-D Study of the Enzymatic Degradation of Cellulose Thin Films

    Science.gov (United States)

    Glickman, Dan; Tanchak, Oleh; Reid, Michael; Quirk, Amanda; Cockburn, Darrell; MacDougall, Colin; Clarke, Anthony; Lipkowski, Jacek; Dutcher, John

    2009-03-01

    A sophisticated surface-sensitive technique, the quartz crystal microbalance with dissipation monitoring (QCM-D), was used to study the interaction of a mixture of cellulolytic enzymes from the fungus T. reesei with cellulose thin films deposited onto polycrystalline gold surfaces. It was found that the QCM experiment was sensitive to two processes that occur during the enzyme mixture-cellulose thin film experiment: adsorption of the enzyme to the film surface, and the subsequent degradation of the cellulose thin film. A model describing the measured frequency shift in the QCM data will be described, which gives excellent fits to the experimental data.

  12. Dimensional scaling of perovskite ferroelectric thin films

    Science.gov (United States)

    Keech, Ryan R.

    Dimensional size reduction has been the cornerstone of the exponential improvement in silicon based logic devices for decades. However, fundamental limits in the device physics were reached ˜2003, halting further reductions in clock speed without significant penalties in power consumption. This has motivated the research into next generation transistors and switching devices to reinstate the scaling laws for clock speed. This dissertation aims to support the scaling of devices that are based on ferroelectricity and piezoelectricity and to provide a roadmap for the corresponding materials performance. First, a scalable growth process to obtain highly {001}-oriented lead magnesium niobate - lead titanate (PMN-PT) thin films was developed, motivated by the high piezoelectric responses observed in bulk single crystals. It was found that deposition of a 2-3 nm thick PbO buffer layer on {111} Pt thin film bottom electrodes, prior to chemical solution deposition of PMN-PT reduces the driving force for Pb diffusion from the PMN-PT to the bottom electrode, and facilitates nucleation of {001}-oriented perovskite grains. Energy dispersive spectroscopy demonstrated that up to 10% of the Pb from a PMN-PT precursor solution may diffuse into the bottom electrode. PMN-PT grains with a mixed {101}/{111} orientation in a matrix of Pb-deficient pyrochlore phase were then promoted near the interface. When this is prevented, phase pure films with {001} orientation with Lotgering factors of 0.98-1.0, can be achieved. The resulting films of only 300 nm in thickness exhibit longitudinal effective d33,f coefficients of ˜90 pm/V and strain values of ˜1% prior to breakdown. 300 nm thick epitaxial and polycrystalline lead magnesium niobate - lead titanate (70PMN-30PT) blanket thin films were studied for the relative contributions to property thickness dependence from interfacial and grain boundary low permittivity layers. Epitaxial PMN-PT films were grown on SrRuO 3 /(001)SrTiO3, while

  13. Beryllium thin films for resistor applications

    Science.gov (United States)

    Fiet, O.

    1972-01-01

    Beryllium thin films have a protective oxidation resistant property at high temperature and high recrystallization temperature. However, the experimental film has very low temperature coefficient of resistance.

  14. Picosecond and subpicosecond pulsed laser deposition of Pb thin films

    Directory of Open Access Journals (Sweden)

    F. Gontad

    2013-09-01

    Full Text Available Pb thin films were deposited on Nb substrates by means of pulsed laser deposition (PLD with UV radiation (248 nm, in two different ablation regimes: picosecond (5 ps and subpicosecond (0.5 ps. Granular films with grain size on the micron scale have been obtained, with no evidence of large droplet formation. All films presented a polycrystalline character with preferential orientation along the (111 crystalline planes. A maximum quantum efficiency (QE of 7.3×10^{-5} (at 266 nm and 7 ns pulse duration was measured, after laser cleaning, demonstrating good photoemission performance for Pb thin films deposited by ultrashort PLD. Moreover, Pb thin film photocathodes have maintained their QE for days, providing excellent chemical stability and durability. These results suggest that Pb thin films deposited on Nb by ultrashort PLD are a noteworthy alternative for the fabrication of photocathodes for superconductive radio-frequency electron guns. Finally, a comparison with the characteristics of Pb films prepared by ns PLD is illustrated and discussed.

  15. Magnetic field and temperature dependent measurements of hall coefficient in thermal evaporated Tin-Doped Cadmium Oxide Thin films

    International Nuclear Information System (INIS)

    Hamadi, O.; Shakir, N.; Mohammed, F.

    2010-01-01

    CdO:Sn thin films are deposited onto glass substrates by thermal evaporation under vacuum. The studied films are polycrystalline and have an NaCl structure. The Hall effect is studied for films with different thickness as substrates are maintained at different temperatures. The temperature dependence of the Hall mobility is also investigated. (authors)

  16. Natural Oxidation of Ultra-Thin Copper Films

    Science.gov (United States)

    Semenov, V. A.; Oskirko, V. O.; Rabotkin, S. V.; Oskomov, K. V.; Solovyev, A. A.; Stepanov, S. A.

    2018-01-01

    The paper examines the oxidation of polycrystalline Cu films under the impact of ambient atmosphere in the course of extended time (from 20 to 90 days). It shows that in the case of 10 nm thick Cu films deposited onto the glass substrate by method of magnetron sputtering, one eventually observes the increase in transparency, surface resistance and surface roughness, as well as the decrease in reflection in the area of near infrared region. The most dramatic changes occur in films deposited in the pulse mode of sputtering with frequency of 3 kHz compared to films deposited in the direct current mode. Formation of sublayer ZnO:Al and 20 nm thick upper passivating layer ZnO:Al allows effectively preventing the oxidation of thin copper films under the impact of ambient atmosphere.

  17. Preparation of thin vyns films

    International Nuclear Information System (INIS)

    Blanc, R.; Chedin, P.; Gizon, A.

    1965-01-01

    The fabrication of thin films of VYNS resin (copolymer of chloride and vinyl acetate) of superficial density from 3 to 50 μg/cm 2 with solutions in cyclohexanone is presented. Study and discussion of some properties compared with formvar film (polyvinyl formals). It appears that both can be used as source supports but formvar films are prepared more easily and more quickly, in addition they withstand higher temperatures. The main quality of VYNS is that they can be easily separated even several days after their preparation [fr

  18. Polycystalline silicon thin films for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Christian Claus

    2012-01-15

    For the thin polycrystalline Si films fabricated with the aluminium-induced-layer-exchange (ALILE) process a good structural quality up to a layer-thickness value of 10 nm was determined. For 5 nm thick layers however after the layer exchange no closes poly-silicon film was present. In this case the substrate was covered with spherically arranged semiconductor material. Furthermore amorphous contributions in the layer could be determined. The electrical characterization of the samples at room temperature proved a high hole concentration in the range 10{sup 18} cm{sup -3} up to 9.10{sup 19} cm{sup -3}, which is influenced by the process temperature and the layer thickness. Hereby higher hole concentrations at higher process temperatures and thinner films were observed. Furthermore above 150-200 K a thermically activated behaviour of the electrical conductivity was observed. At lower temperatures a deviation of the measured characteristic from the exponential Arrhenius behaviour was determined. For low temperatures (below 20 K) the conductivity follows the behaviour {sigma}{proportional_to}[-(T{sub 0}/T){sup 1/4}]. The hole mobility in the layers was lowered by a passivation step, which can be explained by defect states at the grain boundaries. The for these very thin layers present situation was simulated in the framework of the model of Seto, whereby both the defect states at the grain boundaries (with an area density Q{sub t}) and the defect states at the interfaces (with an area density Q{sub it}) were regarded. By this the values Q{sub t}{approx}(3-4).10{sup 12} cm{sup -2} and Q{sub it}{approx}(2-5).10{sup 12} cm{sup -2} could be determined for these thin ALILE layers on quartz substrates. Additionally th R-ALILE process was studied, which uses the reverse precursor-layer sequence substrate/amorphous silicon/oxide/aluminium. Hereby two steps in the crystallization process of the R-ALILE process were found. First a substrate/Al-Si mixture/poly-Si layer structure

  19. Structural transformation of CsI thin film photocathodes under exposure to air and UV irradiation

    CERN Document Server

    Tremsin, A S; Siegmund, O H W

    2000-01-01

    Transmission electron microscopy has been employed to study the structure of polycrystalline CsI thin films and its transformation under exposure to humid air and UV irradiation. The catastrophic degradation of CsI thin film photocathode performance is shown to be associated with the film dissolving followed by its re-crystallization. This results in the formation of large lumps of CsI crystal on the substrate surface, so that the film becomes discontinuous and its performance as a photocathode is permanently degraded. No change in the surface morphology and the film crystalline structure was observed after the samples were UV irradiated.

  20. Laser applications in thin-film photovoltaics

    OpenAIRE

    Bartlome, R.; Strahm, B.; Sinquin, Y.; Feltrin, A.; Ballif, C.

    2009-01-01

    We review laser applications in thin-film photovoltaics (thin-film Si, CdTe, and Cu(In,Ga)Se2 solar cells). Lasers are applied in this growing field to manufacture modules, to monitor Si deposition processes, and to characterize opto-electrical properties of thin films. Unlike traditional panels based on crystalline silicon wafers, the individual cells of a thin-film photovoltaic module can be serially interconnected by laser scribing during fabrication. Laser scribing applications are descri...

  1. Nanocrystal thin film fabrication methods and apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Kagan, Cherie R.; Kim, David K.; Choi, Ji-Hyuk; Lai, Yuming

    2018-01-09

    Nanocrystal thin film devices and methods for fabricating nanocrystal thin film devices are disclosed. The nanocrystal thin films are diffused with a dopant such as Indium, Potassium, Tin, etc. to reduce surface states. The thin film devices may be exposed to air during a portion of the fabrication. This enables fabrication of nanocrystal-based devices using a wider range of techniques such as photolithography and photolithographic patterning in an air environment.

  2. study in polymer thin films

    Indian Academy of Sciences (India)

    TECS

    carry out a careful study of steady state conduction of poly- styrene (PS) thin film thermo-electrets sandwiched be- tween metal electrodes both in doped and undoped forms. 2. Experimental. 2.1 Sample preparation. Polystyrene supplied by Polymer Chemical Industry,. Mumbai and naphthalene by S.G. Sisco Pvt Ltd., New ...

  3. Magnetization in permalloy thin films

    Indian Academy of Sciences (India)

    1VES College of Arts, Science and Commerce, Sindhi Society, Chembur, Mumbai 400 071,. India. 2UGC-DAE Consortium for Scientific Research, R5 Shed, ... gas alone, while PNR measurements on 5 and 10% sample show splitting in the spin-up and spin-down reflectivity. Keywords. Permalloy; NiFe thin films; NiFe ...

  4. Influence of deposition time on the properties of chemical bath deposited manganese sulfide thin films

    Directory of Open Access Journals (Sweden)

    Anuar Kassim

    2010-12-01

    Full Text Available Manganese sulfide thin films were chemically deposited from an aqueous solution containing manganese sulfate, sodium thiosulfate and sodium tartrate. The influence of deposition time (2, 3, 6 and 8 days on the properties of thin films was investigated. The structure and surface morphology of the thin films were studied by X-ray diffraction and atomic force microscopy, respectively. In addition, in order to investigate the optical properties of the thin films, the UV-visible spectrophotometry was used. The XRD results indicated that the deposited MnS2 thin films exhibited a polycrystalline cubic structure. The number of MnS2 peaks on the XRD patterns initially increased from three to six peaks and then decreased to five peaks, as the deposition time was increased from 2 to 8 days. From the AFM measurements, the film thickness and surface roughness were found to be dependent on the deposition time.

  5. Effect of magnesium doping on the light-induced hydrophilicity of ZnO thin films

    Science.gov (United States)

    Kai, Huang; Jianguo, Lü; Li, Zhang; Zhen, Tang; Jiangying, Yu; Ping, Li; Feng, Liu

    2012-05-01

    Undoped and Mg-doped ZnO thin films were deposited on Si (111) and quartz substrates by using the sol-gel method. Microstructure, surface topography and water contact angle of the thin films have been measured by X-ray diffraction (XRD), an atomic force microscope (AFM) and water contact angle apparatus, respectively. The XRD results show that all the thin films are polycrystalline with a hexagonal structure and have a preferred orientation along the c-axis perpendicular to the substrate. With the increase of Mg concentration, the RMS roughness increases from 2.14 to 9.56 nm and the contact angle of the un-irradiated thin films decreases from 89° to 82°. The wetting behavior of the resulting films can be reversibly switched from hydrophobic to hydrophilic, through alternation of UV illumination and dark storage. The light-induced efficiency of the thin films increases with the increase of Mg concentration.

  6. Structural, optical and electrical characterization of HgxCd1-xTe polycrystalline films fabricated by two-source evaporation technique

    International Nuclear Information System (INIS)

    Basharat, M.; Hannan, M.A.; Shah, N.A.; Ali, A.; Arif, M.; Maqsood, A.

    2007-01-01

    Two-source thermal evaporation technique was used to prepare Hg x Cd 1-x Te thin films onto scratch free transparent glass substrates. The structural investigations revealed that thin films were polycrystalline in nature. Transmittance measurements in the wavelength range (500-2700 nm) were used to calculate optical constants. The analysis of the optical absorption data showed that the optical band gap was of indirect type. In the composition range 0.05 2 and 10 -1 Ω-cm. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Microstructure of Thin Films

    Science.gov (United States)

    1990-02-07

    resultant film could be varied right up to virtually pure aluminum oxide simply by varying the background oxygen pressure. More recently we have been...aT , m..a, lot,, o ,,f,02,d I4 k -1-1..... autocovariance lengths, less than 0.5 um, indicate that , 514n, ob0 o p’,Ofclllc....,,o,,oy0,1- agua sblrt

  8. Cubic erbium trihydride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.P., E-mail: dpadams@sandia.gov; Rodriguez, M.A.; Romero, J.A.; Kotula, P.G.; Banks, J.

    2012-07-31

    High-purity, erbium hydride thin films have been deposited onto {alpha}-Al{sub 2}O{sub 3} and oxidized Si by reactive sputtering methods. Rutherford backscattering spectrometry and elastic recoil detection show that films deposited at temperatures of 35, 150 and 275 Degree-Sign C have a composition of 3H:1Er. Erbium trihydride films consist of a face-centered cubic erbium sub-lattice with a lattice parameter in the range of 5.11-5.20 A. The formation of cubic ErH{sub 3} is intriguing, because previous studies demonstrate a single trihydride phase with a hexagonal metal sub-lattice. The formation of a stable, cubic trihydride phase is attributed to a large, in-plane stress resulting from ion beam sputter deposition. - Highlights: Black-Right-Pointing-Pointer Cubic erbium trihydride thin films produced by ion beam sputter deposition. Black-Right-Pointing-Pointer Face-centered cubic metal sub-lattice verified by X-ray and electron diffraction. Black-Right-Pointing-Pointer Composition evaluated using four different techniques. Black-Right-Pointing-Pointer Film stress monitored during deposition. Black-Right-Pointing-Pointer Formation of cubic erbium trihydride attributed to a large, in-plane film stress.

  9. Investigation of Processing, Microstructures and Efficiencies of Polycrystalline CdTe Photovoltaic Films and Devices

    Science.gov (United States)

    Munshi, Amit Harenkumar

    with processes suitable for mass production. These are the highest efficiencies reported by any university or national laboratory for polycrystalline thin-film CdTe photovoltaics bettered only by researchers at First Solar Inc. Processing experiments are traditionally designed based on simulation results however in these study microscopic materials characterization has been used as the primary driving force to understand the effects of processing conditions. Every structure and efficiency reported in this study has been extensively studied using microscopic imaging and materials characterization and processing conditions accordingly altered to achieve higher efficiencies. Understanding CdCl2 passivation treatment out of this has been critical to this process. Several observations with regard to effect of CdCl 2 passivation have allowed the use to this treatment to achieve optimum performance. The effects of deposition temperature are also studied in rigorous details. All of these studies have played an important role in optimization of process that lead to high efficiency thin-film CdTe photovoltaic devices. An effort is made in this study to better understand and establish a 3-way relationship between processing conditions, film microstructure and device efficiency for sublimated thin-film CdTe photovoltaics. Some crucial findings include impact of grain size on efficiency of photovoltaic devices and improvement in fill-factor resulting from use of thicker CdTe absorber with larger grain size. An attempt is also made to understand the microstructure as the device efficiency improves from 1% efficiency to over 18% efficiency.

  10. YBa2Cu3O(7-x) based superconducting thin films by multitarget sputtering

    International Nuclear Information System (INIS)

    Bouteloup, E.; Mercey, B.; Poullain, G.; Brousse, T.; Murray, H.; Raveau, B.

    1990-01-01

    This paper reports a new technique to prepare superconducting YBa 2 Cu 3 O (7-x) thin films. The multitarget sputtering apparatus described below allows the simultaneous and reproducible production of numerous films with a metallic composition close to Y 17% Ba 33% Cu 50% . Superconducting films (R = 0) at 80 K have been produced on polycrystalline zirconia substrates after a high temperature annealing [fr

  11. Copper nitride thin film prepared by reactive radio-frequency magnetron sputtering

    International Nuclear Information System (INIS)

    Yue, G.H.; Yan, P.X.; Liu, J.Z.; Wang, M.X.; Li, M.; Yuan, X.M.

    2005-01-01

    Copper nitride (Cu 3 N) thin films were deposited on glass substrates by reactive radio-frequency magnetron sputtering of a pure copper target in a nitrogen/argon atmosphere. The deposition rate of the films gradually decreased with increasing nitrogen flow rate. The color of the deposited films was a reddish dark brown. The Cu 3 N films obtained by this method were strongly textured with crystal direction [100]. The grain size of the polycrystalline films ranged from 16 to 26 nm. The Hall effect of the copper nitride (Cu 3 N) thin films was investigated. The optical energy gap of the films was obtained from the Hall coefficient and found to vary with the nitrogen content. The surface morphology was studied by scanning electron microscopy and atomic force microscopy. The copper nitride thin films are unstable and decompose into nitrogen and copper upon heat treatment when annealed in vacuum with argon protected at 200 deg. C for 1 h

  12. Thin films of soft matter

    CERN Document Server

    Kalliadasis, Serafim

    2007-01-01

    A detailed overview and comprehensive analysis of the main theoretical and experimental advances on free surface thin film and jet flows of soft matter is given. At the theoretical front the book outlines the basic equations and boundary conditions and the derivation of low-dimensional models for the evolution of the free surface. Such models include long-wave expansions and equations of the boundary layer type and are analyzed via linear stability analysis, weakly nonlinear theories and strongly nonlinear analysis including construction of stationary periodic and solitary wave and similarity solutions. At the experimental front a variety of very recent experimental developments is outlined and the link between theory and experiments is illustrated. Such experiments include spreading drops and bubbles, imbibitions, singularity formation at interfaces and experimental characterization of thin films using atomic force microscopy, ellipsometry and contact angle measurements and analysis of patterns using Minkows...

  13. Surface roughness and grain boundary scattering effects on the electrical conductivity of thin films

    NARCIS (Netherlands)

    Palasantzas, George

    1998-01-01

    In this work, we investigate surface/interface roughness and grain boundary scattering effects on the electrical conductivity of polycrystalline thin films in the Born approximation. We assume for simplicity a random Gaussian roughness convoluted with a domain size distribution ~e^-πr^2/ζ^2 to

  14. Effects of Ni doping on photocatalytic activity of TiO2 thin films ...

    Indian Academy of Sciences (India)

    Wintec

    Ni–TiO2 thin film; LPD technique; photodegradation. 1. Introduction. In the field of photocatalysis, the polycrystalline system formed by transition metal-ion-doped TiO2 has been the object of several studies (Palmisano et al 1988; Soria et al 1991; Karakitsou and Verykios 1993; Choi et al 1994;. Litter and Navio 1994, 1996).

  15. Sensitivity enhancement of metal oxide thin film transistor with back gate biasing

    NARCIS (Netherlands)

    Dam, V.A.T.; Blauw, M.A.; Brongersma, S.H.; Crego-Calama, M.

    2011-01-01

    In this work, a room-temperature sensing device for detecting carbon monoxide using a ZnO thin film is presented. The ZnO layer (thickness close to the Debye length), which has a polycrystalline structure, is deposited with atomic-layer deposition (ALD) on an Al2O3/Si substrate. The operating

  16. Structural, Optical and Electrical Properties of ITO Thin Films

    Science.gov (United States)

    Sofi, A. H.; Shah, M. A.; Asokan, K.

    2018-02-01

    Transparent and conductive thin films of indium tin oxide were fabricated on glass substrates by the thermal evaporation technique. Tin doped indium ingots with low tin content were evaporated in vacuum (1.33 × 10-7 kpa) followed by an oxidation for 15 min in the atmosphere in the temperature range of 600-700°C. The structure and phase purity, surface morphology, optical and electrical properties of thin films were studied by x-ray diffractometry and Raman spectroscopy, scanning electron microcopy and atomic force microscopy, UV-visible spectrometry and Hall measurements in the van der Pauw configuration. The x-ray diffraction study showed the formation of the cubical phase of polycrystalline thin films. The morphological analysis showed the formation of ginger like structures and the energy dispersive x-ray spectrum confirmed the presence of indium (In), tin (Sn) and oxygen (O) elements. Hall measurements confirmed n-type conductivity of films with low electrical resistivity ( ρ) ˜ 10-3 Ω cm and high carrier concentration ( n) ˜ 1020 cm-3. For prevalent scattering mechanisms in the films, experimental data was analyzed by calculating a mean free path ( L) using a highly degenerate electron gas model. Furthermore, to investigate the performance of the deposited films as a transparent conductive material, the optical figure of merit was obtained for all the samples.

  17. Nanofrictional behavior of amorphous, polycrystalline and textured Y-Cr-O films

    Energy Technology Data Exchange (ETDEWEB)

    Gervacio-Arciniega, J.J. [Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), km. 107, Carretera Tijuana-Ensenada, 22860 Ensenada, B.C. (Mexico); Flores-Ruiz, F.J., E-mail: fcojfloresr@gmail.com [Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), km. 107, Carretera Tijuana-Ensenada, 22860 Ensenada, B.C. (Mexico); Diliegros-Godines, C.J. [Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), km. 107, Carretera Tijuana-Ensenada, 22860 Ensenada, B.C. (Mexico); Broitman, E. [Thin Film Physics Division, IFM, Linköping University, SE-58183 Linköping (Sweden); Enriquez-Flores, C.I.; Espinoza-Beltrán, F.J. [CINVESTAV Unidad Querétaro, Lib. Norponiente 2000, Real de Juriquilla, 76230 Querétaro, Qro. (Mexico); Siqueiros, J.; Cruz, M.P. [Centro de Nanociencias y Nanotecnología (CNyN), Universidad Nacional Autónoma de México (UNAM), km. 107, Carretera Tijuana-Ensenada, 22860 Ensenada, B.C. (Mexico)

    2016-08-15

    Highlights: • Friction coefficient (μ) of ferroelectric textured and polycrystalline YCrO{sub 3} films. • A simple method to evaluate μ from a single AFM image is presented. • The AFM-cantilever spring constant was determined from its dynamic response. • Polycrystalline and amorphous films have a lower μ than textured samples. - Abstract: Differences in friction coefficients (μ) of ferroelectric YCrO{sub 3}, textured and polycrystalline films, and non-ferroelectric Y-Cr-O films are analyzed. The friction coefficient was evaluated by atomic force microscopy using a simple quantitative procedure where the dependence of friction force with the applied load is obtained in only one topographical image. A simple code was developed with the MATLAB{sup ®} software to analyze the experimental data. The code includes a correction of the hysteresis in the forward and backward scanning directions. The quantification of load exerted on the sample surface was obtained by finite element analysis of the AFM cantilever starting from its experimental dynamic information. The results show that the ferroelectric YCrO{sub 3} film deposited on a Pt(150 nm)/TiO{sub 2}(30 nm)/SiO{sub 2}/Si (100) substrate is polycrystalline and has a lower friction coefficient than the deposited on SrTiO{sub 3} (110), which is highly textured. From a viewpoint of industrial application in ferroelectric memories, where the writing process is electrical or mechanically achieved by sliding AFM tips on the sample, polycrystalline YCrO{sub 3} films seem to be the best candidates due to their lower μ.

  18. Nanofrictional behavior of amorphous, polycrystalline and textured Y-Cr-O films

    International Nuclear Information System (INIS)

    Gervacio-Arciniega, J.J.; Flores-Ruiz, F.J.; Diliegros-Godines, C.J.; Broitman, E.; Enriquez-Flores, C.I.; Espinoza-Beltrán, F.J.; Siqueiros, J.; Cruz, M.P.

    2016-01-01

    Highlights: • Friction coefficient (μ) of ferroelectric textured and polycrystalline YCrO 3 films. • A simple method to evaluate μ from a single AFM image is presented. • The AFM-cantilever spring constant was determined from its dynamic response. • Polycrystalline and amorphous films have a lower μ than textured samples. - Abstract: Differences in friction coefficients (μ) of ferroelectric YCrO 3 , textured and polycrystalline films, and non-ferroelectric Y-Cr-O films are analyzed. The friction coefficient was evaluated by atomic force microscopy using a simple quantitative procedure where the dependence of friction force with the applied load is obtained in only one topographical image. A simple code was developed with the MATLAB ® software to analyze the experimental data. The code includes a correction of the hysteresis in the forward and backward scanning directions. The quantification of load exerted on the sample surface was obtained by finite element analysis of the AFM cantilever starting from its experimental dynamic information. The results show that the ferroelectric YCrO 3 film deposited on a Pt(150 nm)/TiO 2 (30 nm)/SiO 2 /Si (100) substrate is polycrystalline and has a lower friction coefficient than the deposited on SrTiO 3 (110), which is highly textured. From a viewpoint of industrial application in ferroelectric memories, where the writing process is electrical or mechanically achieved by sliding AFM tips on the sample, polycrystalline YCrO 3 films seem to be the best candidates due to their lower μ.

  19. About some practical aspects of X-ray diffraction : From powder to thin film

    Energy Technology Data Exchange (ETDEWEB)

    Valvoda, V. [Charles Univ. Prague (Czech Republic). Faculty of Mathematics and Physics

    1996-09-01

    Structure of thin films can be amorphous, polycrystalline or epitaxial, and the films can be prepared as a single layer films, multilayers or as graded films. A complete structure analysis of thin films by means of X-ray diffraction (XRD) usually needs more than one diffraction geometry to be used. Their principles, advantages and disadvantages will be shortly described, especially with respect to their different sampling depth and different response to orientation of diffracting crystallographic planes. Main differences in structure of thin films with respect to powder samples are given by a singular direction of their growth, by their adhesion to a substrate and often also by a simultaneous bombardment by atomic species during the growth. It means that a thermodynamically unstable atomic structures can be found too. These special features of growth of thin polycrystalline films are reflected in often found strong preferred orientation of grains and in residual stresses conserved in the films. The methods of structure analysis of thin films by XRD will be compared with other techniques which can supply structure images on different scales.

  20. Scanning Tunneling Spectroscopy on polycrystalline Cu(In,Ga)(S,Se){sub 2} thin-film solar cells; Rastertunnelspektroskopie an polykristallinen Cu(In,Ga)(S,Se){sub 2}-Duennschichtsolarzellen

    Energy Technology Data Exchange (ETDEWEB)

    Herber, U.

    2006-12-21

    In case of the investigated multinary Cu(In;Ga)Se{sub 2} system with its polycrystalline structure, the question for the lateral homogeneity of its electronic properties arises. By means of the here presented method, a photo-assisted tunneling spectroscopy, such lateral inhomogeneities of the Surface Photo Voltage (SPV) and the Photo-Induced Tunneling Current (PITC) are to be detected. Modulations of the bias voltage and/or the illumination intensity have been applied to a greater number of materials in tunneling spectroscopy. Within these field, disturbing current contributions, coupled via the tip-sample-capacitance, is a known problem. Electronic compensation by using an appropriate compensating circuit is a possible solution. As will be shown in this work, such procedure is very adequate to compensate stray signals generated by bias modulation. After the introduction and careful analysis of our technique in the first part the second part of the thesis deals with its application to a series of different CIGS samples. What becomes apparent is the aforementioned inhomogeneities in PITC signal to be an immanent property of these polycrystalline semiconductor systems. Besides lateral variations in the photocurrent amplitude, also inhomogeneities within its complex phase can be demonstrated. As becomes clear, it is impossible to draw conclusions about the participating capacity of the depletion region because of the dominating admittance of the tunneling junction. However, it is possible to gain a statistical distribution of the PITC by investigating a large number of positions on the sample. For small numbers of weak diodes, the distribution exhibits a distinct maximum at higher photocurrents. Metastable effects are observed by tracking PITC values over a longer period of time. (orig.)

  1. Control of surface ripple amplitude in ion beam sputtered polycrystalline cobalt films

    Energy Technology Data Exchange (ETDEWEB)

    Colino, Jose M., E-mail: josemiguel.colino@uclm.es [Institute of Nanoscience, Nanotechnology and Molecular Materials, University of Castilla-La Mancha, Campus de la Fabrica de Armas, Toledo 45071 (Spain); Arranz, Miguel A. [Facultad de Ciencias Quimicas, University of Castilla-La Mancha, Ciudad Real 13071 (Spain)

    2011-02-15

    We have grown both polycrystalline and partially textured cobalt films by magnetron sputter deposition in the range of thickness (50-200 nm). Kinetic roughening of the growing film leads to a controlled rms surface roughness values (1-6 nm) increasing with the as-grown film thickness. Ion erosion of a low energy 1 keV Ar+ beam at glancing incidence (80{sup o}) on the cobalt film changes the surface morphology to a ripple pattern of nanometric wavelength. The wavelength evolution at relatively low fluency is strongly dependent on the initial surface topography (a wavelength selection mechanism hereby confirmed in polycrystalline rough surfaces and based on the shadowing instability). At sufficiently large fluency, the ripple wavelength steadily increases on a coarsening regime and does not recall the virgin surface morphology. Remarkably, the use of a rough virgin surface makes the ripple amplitude in the final pattern can be controllably increased without affecting the ripple wavelength.

  2. Flexible thin film magnetoimpedance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kurlyandskaya, G.V., E-mail: galina@we.lc.ehu.es [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); Ural Federal University, Laboratory of Magnetic sensoric, Lenin Ave. 51, 620083 Ekaterinburg (Russian Federation); Fernández, E. [BCMaterials UPV-EHU, Vizcaya Science and Technology Park, 48160 Derio (Spain); Svalov, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); Ural Federal University, Laboratory of Magnetic sensoric, Lenin Ave. 51, 620083 Ekaterinburg (Russian Federation); Burgoa Beitia, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); García-Arribas, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); BCMaterials UPV-EHU, Vizcaya Science and Technology Park, 48160 Derio (Spain); Larrañaga, A. [SGIker, Servicios Generales de Investigación, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain)

    2016-10-01

    Magnetically soft thin film deposited onto polymer substrates is an attractive option for flexible electronics including magnetoimpedance (MI) applications. MI FeNi/Ti based thin film sensitive elements were designed and prepared using the sputtering technique by deposition onto rigid and flexible substrates at different deposition rates. Their structure, magnetic properties and MI were comparatively analyzed. The main structural features were sufficiently accurately reproduced in the case of deposition onto cyclo olefine polymer substrates compared to glass substrates for the same conditions. Although for the best condition (28 nm/min rate) of the deposition onto polymer a significant reduction of the MI field sensitivity was found satisfactory for sensor applications sensitivity: 45%/Oe was obtained for a frequency of 60 MHz. - Highlights: • [FeNi/Ti]{sub 3}/Cu/[FeNi/Ti]{sub 3} films were prepared by sputtering at different deposition rates. • Polymer substrates insure sufficiently accurate reproducibility of the film structure. • High deposition rate of 28 nm/min insures the highest values of the magnetoimpedance sensitivity. • Deposition onto polymer results in the satisfactory magnetoimpedance sensitivity of 45%/Oe.

  3. Flexible thin film magnetoimpedance sensors

    International Nuclear Information System (INIS)

    Kurlyandskaya, G.V.; Fernández, E.; Svalov, A.; Burgoa Beitia, A.; García-Arribas, A.; Larrañaga, A.

    2016-01-01

    Magnetically soft thin film deposited onto polymer substrates is an attractive option for flexible electronics including magnetoimpedance (MI) applications. MI FeNi/Ti based thin film sensitive elements were designed and prepared using the sputtering technique by deposition onto rigid and flexible substrates at different deposition rates. Their structure, magnetic properties and MI were comparatively analyzed. The main structural features were sufficiently accurately reproduced in the case of deposition onto cyclo olefine polymer substrates compared to glass substrates for the same conditions. Although for the best condition (28 nm/min rate) of the deposition onto polymer a significant reduction of the MI field sensitivity was found satisfactory for sensor applications sensitivity: 45%/Oe was obtained for a frequency of 60 MHz. - Highlights: • [FeNi/Ti] 3 /Cu/[FeNi/Ti] 3 films were prepared by sputtering at different deposition rates. • Polymer substrates insure sufficiently accurate reproducibility of the film structure. • High deposition rate of 28 nm/min insures the highest values of the magnetoimpedance sensitivity. • Deposition onto polymer results in the satisfactory magnetoimpedance sensitivity of 45%/Oe.

  4. Temperature-dependent plastic hysteresis in highly confined polycrystalline Nb films

    Science.gov (United States)

    Waheed, S.; Hao, R.; Zheng, Z.; Wheeler, J. M.; Michler, J.; Balint, D. S.; Giuliani, F.

    2018-02-01

    In this study, the effect of temperature on the cyclic deformation behaviour of a confined polycrystalline Nb film is investigated. Micropillars encapsulating a thin niobium interlayer are deformed under cyclic axial compression at different test temperatures. A distinct plastic hysteresis is observed for samples tested at elevated temperatures, whereas negligible plastic hysteresis is observed for samples tested at room temperature. These results are interpreted using planar discrete dislocation plasticity incorporating slip transmission across grain boundaries. The effect of temperature-dependent grain boundary energy and dislocation mobility on dislocation penetration and, consequently, the size of plastic hysteresis is simulated to correlate with the experimental results. It is found that the decrease in grain boundary energy barrier caused by the increase in temperature does not lead to any appreciable change in the cyclic response. However, dislocation mobility significantly affects the size of plastic hysteresis, with high mobilities leading to a larger hysteresis. Therefore, it is postulated that the experimental observations are predominantly caused by an increase in dislocation mobility as the temperature is increased above the critical temperature of body-centred cubic niobium.

  5. Photoexcited Carrier Dynamics of In2S3 Thin Films.

    Science.gov (United States)

    McCarthy, Robert F; Schaller, Richard D; Gosztola, David J; Wiederrecht, Gary P; Martinson, Alex B F

    2015-07-02

    Indium sulfide (In2S3) is a promising absorber base for substitutionally doped intermediate band photovoltaics (IBPV); however, the dynamics of charge carriers traversing the electronic density of states that determine the optical and electronic response of thin films under stimuli have yet to be explored. The kinetics of photophysical processes in In2S3 grown by oxygen-free atomic layer deposition are deduced from photoconductivity, photoluminescence (PL), and transient absorption spectroscopy. We develop a map of excited-state dynamics for polycrystalline thin films including a secondary conduction band ∼2.1 eV above the first, plus sulfur vacancy and indium interstitial defect levels resulting in long-lived (∼100 ns) transients. Band-edge recombination produces PL and stimulated emission, which both intensify and red-shift as deposition temperature and grain size increase. The effect of rapid conduction band electron relaxation (In2S3-based absorbers is finally considered.

  6. Direct imaging of dopant distribution in polycrystalline ZnO films

    Czech Academy of Sciences Publication Activity Database

    Lorenzo, F.; Aebersold, A.B.; Morales-Masis, M.; Ledinský, Martin; Escrig, S.; Vetushka, Aliaksi; Alexander, D.T.L.; Hessler-Wyser, A.; Fejfar, Antonín; Hébert, C.; Nicolay, S.; Ballif, C.

    2017-01-01

    Roč. 9, č. 8 (2017), s. 7241-7248 ISSN 1944-8244 R&D Projects: GA ČR GC16-10429J Institutional support: RVO:68378271 Keywords : dopant distribution * film polarity * grain boundaries * NanoSIMS * polycrystalline film * zinc oxide Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 7.504, year: 2016

  7. Atomic layer deposition of superparamagnetic and ferrimagnetic magnetite thin films

    International Nuclear Information System (INIS)

    Zhang, Yijun; Liu, Ming; Ren, Wei; Zhang, Yuepeng; Chen, Xing; Ye, Zuo-Guang

    2015-01-01

    One of the key challenges in realizing superparamagnetism in magnetic thin films lies in finding a low-energy growth way to create sufficiently small grains and magnetic domains which allow the magnetization to randomly and rapidly reverse. In this work, well-defined superparamagnetic and ferrimagnetic Fe 3 O 4 thin films are successfully prepared using atomic layer deposition technique by finely controlling the growth condition and post-annealing process. As-grown Fe 3 O 4 thin films exhibit a conformal surface and poly-crystalline nature with an average grain size of 7 nm, resulting in a superparamagnetic behavior with a blocking temperature of 210 K. After post-annealing in H 2 /Ar at 400 °C, the as-grown α−Fe 2 O 3 sample is reduced to Fe 3 O 4 phase, exhibiting a ferrimagnetic ordering and distinct magnetic shape anisotropy. Atomic layer deposition of magnetite thin films with well-controlled morphology and magnetic properties provides great opportunities for integrating with other order parameters to realize magnetic nano-devices with potential applications in spintronics, electronics, and bio-applications

  8. Chemical bath deposition of indium sulphide thin films: preparation and characterization

    Energy Technology Data Exchange (ETDEWEB)

    Lokhande, C.D.; Ennaoui, A.; Patil, P.S.; Giersig, M.; Diesner, K.; Muller, M.; Tributsch, H. [Hahn-Meitner-Institut Berlin GmbH (Germany). Bereich Physikalische Chemie

    1999-02-26

    Indium sulphide (In{sub 2}S{sub 3}) thin films have been successfully deposited on different substrates under varying deposition conditions using chemical bath deposition technique. The deposition mechanism of In{sub 2}S{sub 3} thin films from thioacetamide deposition bath has been proposed. Films have been characterized with respect to their crystalline structure, composition, optical and electrical properties by means of X-ray diffraction, TEM, EDAX, optical absorption, TRMC (time resolved microwave conductivity) and RBS. Films on glass substrates were amorphous and on FTO (flourine doped tin oxide coated) glass substrates were polycrystalline (element of phase). The optical band gap of In{sub 2}S{sub 3} thin film was estimated to be 2.75 eV. The as-deposited films were photoactive as evidenced by TRMC studies. The presence of oxygen in the film was detected by RBS analysis. (orig.) 27 refs.

  9. Structural and optical properties of electrodeposited molybdenum oxide thin films

    International Nuclear Information System (INIS)

    Patil, R.S.; Uplane, M.D.; Patil, P.S.

    2006-01-01

    Electrosynthesis of Mo(IV) oxide thin films on F-doped SnO 2 conducting glass (10-20/Ω/□) substrates were carried from aqueous alkaline solution of ammonium molybdate at room temperature. The physical characterization of as-deposited films carried by thermogravimetric/differential thermogravimetric analysis (TGA/DTA), infrared spectroscopy and X-ray diffraction (XRD) showed the formation of hydrous and amorphous MoO 2 . Scanning electron microscopy (SEM) revealed a smooth but cracked surface with multi-layered growth. Annealing of these films in dry argon at 450 deg. C for 1 h resulted into polycrystalline MoO 2 with crystallites aligned perpendicular to the substrate. Optical absorption study indicated a direct band gap of 2.83 eV. The band gap variation consistent with Moss rule and band gap narrowing upon crystallization was observed. Structure tailoring of as-deposited thin films by thermal oxidation in ambient air to obtain electrochromic Mo(VI) oxide thin films was exploited for the first time by this novel route. The results of this study will be reported elsewhere

  10. Suppression of graphene nucleation on Cu(111) thin films

    Science.gov (United States)

    Gannett, Will; Miller, David L.; Keller, Mark W.

    2014-03-01

    Chemical vapor deposition (CVD) of graphene on Cu substrates depends on a large number of factors and currently suffers from a lack of reproducibility, both within and between research groups. We used Cu(111) thin films with centimeter-sized grains to avoid variations in surface roughness, crystalline orientation, and impurity content that may affect growth on polycrystalline Cu foils. We found that exposing these films (or commercial foils) to a variety of surface treatments prior to CVD can dramatically reduce the nucleation density of graphene islands. This allowed us to select the resulting average domain size of the graphene film. In addition, this suppression of nucleation may enable seeding of graphene growth at particular locations.

  11. Mapping of polycrystalline films of biological fluids utilizing the Jones-matrix formalism

    Science.gov (United States)

    Ushenko, Vladimir A.; Dubolazov, Alexander V.; Pidkamin, Leonid Y.; Sakchnovsky, Michael Yu; Bodnar, Anna B.; Ushenko, Yuriy A.; Ushenko, Alexander G.; Bykov, Alexander; Meglinski, Igor

    2018-02-01

    Utilizing a polarized light approach, we reconstruct the spatial distribution of birefringence and optical activity in polycrystalline films of biological fluids. The Jones-matrix formalism is used for an accessible quantitative description of these types of optical anisotropy. We demonstrate that differentiation of polycrystalline films of biological fluids can be performed based on a statistical analysis of the distribution of rotation angles and phase shifts associated with the optical activity and birefringence, respectively. Finally, practical operational characteristics, such as sensitivity, specificity and accuracy of the Jones-matrix reconstruction of optical anisotropy, were identified with special emphasis on biomedical application, specifically for differentiation of bile films taken from healthy donors and from patients with cholelithiasis.

  12. Influence of substrate temperature on the properties of spray deposited nanofibrous zinc oxide thin films

    Science.gov (United States)

    Sharmin, Mehnaz; Bhuiyan, A. H.

    2018-01-01

    Zinc oxide (ZnO) thin films were deposited onto glass substrates by a spray pyrolysis technique at the substrate temperatures ( T S) between 250 and 500 °C. T S was observed to be one of the key parameters to influence the structural, surface morphological, optical and transport properties of ZnO thin films. X-ray diffraction patterns of the ZnO thin films showed polycrystalline hexagonal wurtzite structure and the preferred orientation was along (002) plane which got more prominent with the increase of T S. Field emission scanning electron microscopy of ZnO thin films showed the existence of nanofibers in the films with the average thickness ranging from 308 to 540 nm. Atomic force microscopy revealed that roughness of the ZnO thin film increased at higher T S. ZnO thin films were highly transparent in the visible to near infrared region with the maximum transmittance of 89% and the optical band gap was found from 3.23 to 3.31 eV. ZnO thin films showed n-type conductivity with the carrier concentrations ranging between 1019 and 1020 cm- 3. ZnO thin film deposited at the T S of 400 °C showed the highest mobility, highest carrier concentration and less resistivity.

  13. Organic Thin Films for Photonics Applications

    National Research Council Canada - National Science Library

    Thorner, John

    1999-01-01

    The Organic Thin Films for Photonics Applications Topical Meeting provided an interdisciplinary forum for the presentation and discussion of new and previously unpublished results on advanced organic...

  14. Analysis of Hard Thin Film Coating

    Science.gov (United States)

    Shen, Dashen

    1998-01-01

    MSFC is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using electron cyclotron resonance chemical vapor deposition (ECRCVD) to deposit hard thin film an stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  15. Thin films for emerging applications v.16

    CERN Document Server

    Francombe, Maurice H

    1992-01-01

    Following in the long-standing tradition of excellence established by this serial, this volume provides a focused look at contemporary applications. High Tc superconducting thin films are discussed in terms of ion beam and sputtering deposition, vacuum evaporation, laser ablation, MOCVD, and other deposition processes in addition to their ultimate applications. Detailed treatment is also given to permanent magnet thin films, lateral diffusion and electromigration in metallic thin films, and fracture and cracking phenomena in thin films adhering to high-elongation substrates.

  16. Progress in thin film techniques

    International Nuclear Information System (INIS)

    Weingarten, W.

    1996-01-01

    Progress since the last Workshop is reported on superconducting accelerating RF cavities coated with thin films. The materials investigated are Nb, Nb 3 Sn, NbN and NbTiN, the techniques applied are diffusion from the vapour phase (Nb 3 Sn, NbN), the bronze process (Nb 3 Sn), and sputter deposition on a copper substrate (Nb, NbTiN). Specially designed cavities for sample evaluation by RF methods have been developed (triaxial cavity). New experimental techniques to assess the RF amplitude dependence of the surface resistance are presented (with emphasis on niobium films sputter deposited on copper). Evidence is increasing that they are caused by magnetic flux penetration into the surface layer. (R.P.)

  17. Thin film solar energy collector

    Science.gov (United States)

    Aykan, Kamran; Farrauto, Robert J.; Jefferson, Clinton F.; Lanam, Richard D.

    1983-11-22

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  18. Minerals deposited as thin films

    International Nuclear Information System (INIS)

    Vazquez, Cristina; Leyt, D.V. de; Custo, Graciela

    1987-01-01

    Free matrix effects are due to thin film deposits. Thus, it was decided to investigate this technique as a possibility to use pure oxide of the desired element, extrapolating its concentration from analytical curves made with avoiding, at the same time, mathematical corrections. The proposed method was employed to determine iron and titanium concentrations in geological samples. The range studied was 0.1-5%m/m for titanium and 5-20%m/m for iron. For both elements the reproducibility was about 7% and differences between this method and other chemical determinations were 15% for titanium and 7% for iron. (Author) [es

  19. Fractal features of CdTe thin films grown by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Hosseinpanahi, Fayegh, E-mail: f.hosseinpanahi@yahoo.com [Department of Physics, Payame Noor University, P.O. Box 19395-4697, Tehran (Iran, Islamic Republic of); Raoufi, Davood [Department of Physics, University of Bu Ali Sina, P.O. Box 65174, Hamedan (Iran, Islamic Republic of); Ranjbarghanei, Khadijeh [Department of Physics, Plasma Physics Research Center, Science & Research Branch Islamic Azad University, Tehran (Iran, Islamic Republic of); Karimi, Bayan [Department of Physics, Payame Noor University, P.O. Box 19395-4697, Tehran (Iran, Islamic Republic of); Babaei, Reza [Department of Physics, Plasma Physics Research Center, Science & Research Branch Islamic Azad University, Tehran (Iran, Islamic Republic of); Hasani, Ebrahim [Department of Physics, University of Bu Ali Sina, P.O. Box 65174, Hamedan (Iran, Islamic Republic of)

    2015-12-01

    Graphical abstract: - Highlights: • CdTe thin films were deposited on glass substrates by RF magnetron sputtering at room temperature with different deposition time 5, 10 and 15 min. • Nanostructure of CdTe layer indicates that CdTe films are polycrystalline and have zinc blende structure, irrespective of their deposition time. • Complexity and roughness of the CdTe films and strength of multifractality increase with increasing deposition time. • Detrended fluctuation analysis (DFA) and also multifractal detrended fluctuation analysis (MFDFA) methods showed that prepared CdTe films have multifractal nature. - Abstract: Cadmium telluride (CdTe) thin films were prepared by RF magnetron sputtering on glass substrates at room temperature (RT). The film deposition was performed for 5, 10, and 15 min at power of 30 W with a frequency of 13.56 MHz. The crystal structure of the prepared CdTe thin films was studied by X-ray diffraction (XRD) technique. XRD analyses indicate that the CdTe films are polycrystalline, having zinc blende structure of CdTe irrespective of their deposition time. All CdTe films showed a preferred orientation along (1 1 1) crystalline plane. The surface morphology characterization of the films was studied using atomic force microscopy (AFM). The quantitative AFM characterization shows that the RMS surface roughness of the prepared CdTe thin films increases with increasing the deposition time. The detrended fluctuation analysis (DFA) and also multifractal detrended fluctuation analysis (MFDFA) methods showed that prepared CdTe thin films have multifractal nature. The complexity, roughness of the CdTe thin films and strength of the multifractality increase as deposition time increases.

  20. Fractal features of CdTe thin films grown by RF magnetron sputtering

    International Nuclear Information System (INIS)

    Hosseinpanahi, Fayegh; Raoufi, Davood; Ranjbarghanei, Khadijeh; Karimi, Bayan; Babaei, Reza; Hasani, Ebrahim

    2015-01-01

    Graphical abstract: - Highlights: • CdTe thin films were deposited on glass substrates by RF magnetron sputtering at room temperature with different deposition time 5, 10 and 15 min. • Nanostructure of CdTe layer indicates that CdTe films are polycrystalline and have zinc blende structure, irrespective of their deposition time. • Complexity and roughness of the CdTe films and strength of multifractality increase with increasing deposition time. • Detrended fluctuation analysis (DFA) and also multifractal detrended fluctuation analysis (MFDFA) methods showed that prepared CdTe films have multifractal nature. - Abstract: Cadmium telluride (CdTe) thin films were prepared by RF magnetron sputtering on glass substrates at room temperature (RT). The film deposition was performed for 5, 10, and 15 min at power of 30 W with a frequency of 13.56 MHz. The crystal structure of the prepared CdTe thin films was studied by X-ray diffraction (XRD) technique. XRD analyses indicate that the CdTe films are polycrystalline, having zinc blende structure of CdTe irrespective of their deposition time. All CdTe films showed a preferred orientation along (1 1 1) crystalline plane. The surface morphology characterization of the films was studied using atomic force microscopy (AFM). The quantitative AFM characterization shows that the RMS surface roughness of the prepared CdTe thin films increases with increasing the deposition time. The detrended fluctuation analysis (DFA) and also multifractal detrended fluctuation analysis (MFDFA) methods showed that prepared CdTe thin films have multifractal nature. The complexity, roughness of the CdTe thin films and strength of the multifractality increase as deposition time increases.

  1. Activation of boron and phosphorus atoms implanted in polycrystalline silicon films at low temperatures

    International Nuclear Information System (INIS)

    Andoh, Nobuyuki; Sameshima, Toshiyuki; Andoh, Yasunori

    2005-01-01

    Phosphorus atoms implanted in laser crystallized polycrystalline silicon films were activated by a heat treatment in air at 260 deg. C for 1, 3 and 24 h. Analysis of ultraviolet reflectivity of phosphorus-doped silicon films implanted by ion doping method at 4 keV revealed that the thickness of the top disordered layer formed by ion bombardment was 6 nm. It is reduced to 4 nm by a 3 h heat treatment at 260 deg. C by recrystallization of disordered region. The electrical conductance of silicon films implanted increased to 1.7x10 5 S/sq after 3 h heat treatment

  2. Fabrication of highly conductive Ta-doped SnO{sub 2} polycrystalline films on glass using seed-layer technique by pulse laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Nakao, Shoichiro, E-mail: tg-s-nakao@newkast.or.j [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan); Yamada, Naoomi [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Hitosugi, Taro [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Hirose, Yasushi; Shimada, Toshihiro; Hasegawa, Tetsuya [Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan)

    2010-03-31

    We discuss the fabrication of highly conductive Ta-doped SnO{sub 2} (Sn{sub 1-x}Ta{sub x}O{sub 2}; TTO) thin films on glass by pulse laser deposition. On the basis of the comparison of X-ray diffraction patterns and resistivity ({rho}) values between epitaxial films and polycrystalline films deposited on bare glass, we proposed the use of seed-layers for improving the conductivity of the TTO polycrystalline films. We investigated the use of rutile TiO{sub 2} and NbO{sub 2} as seed-layers; these are isostructural materials of SnO{sub 2,} which are expected to promote epitaxial-like growth of the TTO films. The films prepared on the 10-nm-thick seed-layers exhibited preferential growth of the TTO (110) plane. The TTO film with x = 0.05 on rutile TiO{sub 2} exhibited {rho} = 3.5 x 10{sup -4} {Omega} cm, which is similar to those of the epitaxial films grown on Al{sub 2}O{sub 3} (0001).

  3. Thin liquid films dewetting and polymer flow

    CERN Document Server

    Blossey, Ralf

    2012-01-01

    This book is a treatise on the thermodynamic and dynamic properties of thin liquid films at solid surfaces and, in particular, their rupture instabilities. For the quantitative study of these phenomena, polymer thin films haven proven to be an invaluable experimental model system.   What is it that makes thin film instabilities special and interesting, warranting a whole book? There are several answers to this. Firstly, thin polymeric films have an important range of applications, and with the increase in the number of technologies available to produce and to study them, this range is likely to expand. An understanding of their instabilities is therefore of practical relevance for the design of such films.   Secondly, thin liquid films are an interdisciplinary research topic. Interdisciplinary research is surely not an end to itself, but in this case it leads to a fairly heterogeneous community of theoretical and experimental physicists, engineers, physical chemists, mathematicians and others working on the...

  4. Pulse electrodeposition of Prussian Blue thin films

    International Nuclear Information System (INIS)

    Najafisayar, P.; Bahrololoom, M.E.

    2013-01-01

    The effects of pulse electrodeposition parameters like peak current density and frequency on the electrochemical properties of Prussian Blue thin films were investigated. Electrochemical Impedance Spectroscopy, Cyclic Voltammetry and Chronoamperometry tests were carried out on Prussian Blue thin films which were pulse electrodeposited on Indium Tin Oxide coated glass substrates. The results showed that increase in the peak current densities and using higher pulsating frequencies during electrodeposition decreases the charge transfer resistance of the thin films while the diffusion coefficient of electroactive species in the films is increased as a consequence of using the same pulsating parameters. In addition, pulse electrodeposition technique does not alter deposition mechanism and morphology of the Prussian Blue thin films. - Highlights: • Prussian Blue thin films were pulse electrodeposited onto the ITO coated glass. • Pulse current condition affected thin films' electrochemical properties. • High pulsating current and frequency lower thin films' charge transfer resistance. • High pulsating current and frequency increase diffusion coefficient in thin films

  5. Electrical and switching properties of InSe amorphous thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kenawy, M.A.; Zayed, H.A.; El-Zahid, H.A. (Univ. Coll. for Girls, Ain Shams Univ., Cairo (Egypt)); El-Shazly, A.F.; Afifi, M.A. (Faculty of Education, Ain Shams Univ., Cairo (Egypt))

    1991-05-15

    In this work electrical and switching properties of InSe thin films have been studied. The semiconductor compound InSe was obtained by direct synthesis from stoichiometric amounts of spectroscopically pure indium and selenium. By slow cooling of the synthesized InSe a polycrystalline material is obtained. The amorphous films were obtained by thermal evaporation under vacuum of the polycrystalline material on glass or pyrographite substrates. From electrical measurements, it was found that for all films the dark electrical resistivity decreases with an increase in film thickness and temperature. The InSe compound exhibits non-linear I-V characteristics and switching phenomena. The threshold voltage decreases with increasing annealing temperature and increases with increasing film thickness. (orig.).

  6. Morphology reliance of cobalt sulfide thin films: A chemo-thermo-mechanical perception

    Energy Technology Data Exchange (ETDEWEB)

    Kamble, S.S. [Thin Film & Solar Studies Research Laboratory, Solapur University, Solapur 413 255, M.S. (India); Sikora, A. [Electrotechnical Institute, Division of Electrotechnology & Materials Science, ul. M Skłodowskiej-Curie 55/61, 50-369 Wroclaw (Poland); Pawar, S.T. [Thin Film & Solar Studies Research Laboratory, Solapur University, Solapur 413 255, M.S. (India); Kambale, R.C. [Department of Physics, University of Pune, Ganeshkhind, Pune 411 007, M.S. (India); Maldar, N.N. [School of Chemical Sciences, Solapur University, Solapur 413 255, M.S. (India); Deshmukh, L.P., E-mail: laldeshmukh@gmail.com [Thin Film & Solar Studies Research Laboratory, Solapur University, Solapur 413 255, M.S. (India)

    2015-05-15

    Highlights: • Optimized heterogeneous growth process for the deposition of CoS thin films. • As-obtained CoS thin films exhibit hexagonal crystal structure. • Optimized CoS thin films were Co{sup 2+} rich in nature. • Magnetic force microscopy revealed randomly scattered magnetic constellations. - Abstract: We report onto the morphology dependency of CoS thin films by studying the role of mechanical agitation, thermal assistance and deposition duration in an aqueous alkaline bath (pH = 9 ± 0.1). The deposition of CoS thin films was carried out at different mechanical stirring rates, deposition temperatures and times. As-optimized CoS thin film were of polycrystalline nature and exhibited hexagonal crystal structure. Co{sup 2+} rich nature (≈85%) of optimistically grown thin film was detected. Complex multifaceted webbed network of as-grown elongated and threaded into each other CoS crystals was observed through a scanning electron microscope. Surface morphology was further studied by means of an atomic force microscopy. Existence of magnetic domains was marked in the magnetic force microscopy. As-grown CoS thin films were having transmission index of 0.5 with a band gap of ≈1.59 eV.

  7. Effects of bacteria on CdS thin films used in technological devices

    Science.gov (United States)

    Alpdoğan, S.; Adıgüzel, A. O.; Sahan, B.; Tunçer, M.; Metin Gubur, H.

    2017-04-01

    Cadmium sulfide (CdS) thin films were fabricated on glass substrates by the chemical bath deposition method at 70 {}^\\circ \\text{C} considering deposition times ranging from 2 h to 5 h. The optical band gaps of CdS thin films were found to be in the 2.42-2.37 eV range. CdS thin films had uniform spherical nano-size grains which had polycrystalline, hexagonal and cubic phases. The films had a characteristic electrical resistivity of the order of {{10}5} Ω \\text{cm} and n-type conductivity at room condition. CdS thin films were incubated in cultures of B.domonas aeruginosa and Staphylococcus aureus, which exist abundantly in the environment, and form biofilms. SEM images showed that S. aureus and K. pneumonia were detected significantly on the film surfaces with a few of P. aeruginosa and B. subtilis cells attached. CdS thin film surface exhibits relatively good resistance to the colonization of P. aeruginosa and B. subtilis. Optical results showed that the band gap of CdS thin films which interacted with the bacteria is 2.42 \\text{eV} . The crystal structure and electrical properties of CdS thin films were not affected by bacterial adhesion. The antimicrobial effect of CdS nanoparticles was different for different bacterial strains.

  8. Response of diamond thin film detectors to X-rays

    International Nuclear Information System (INIS)

    Foulon, F.; Pochet, T.

    1993-01-01

    Diamond is a material with a large bandgap and a high resistivity that is suitable for gamma and X-ray detector fabrication. The diamond atomic number matches relatively well that of the biological tissues (6,7). This property allows the fabrication of dosimeter for personnel exposed to X-ray and gamma radiations. In this paper, we report the fabrication and the characterization of detectors made from polycrystalline diamond thin film deposited by plasma enhanced chemical vapor deposition (PEVCVD). This technique allows large surface and low cost diamond film fabrication. Detector response to fast Nd: Yag laser pulses was investigated. Response times in the 100 ps range were measured. Tests under low energy Bremsstrahlung X-rays (20-50 keV) have shown that diamond thin films detectors can be used for X-ray flux and dose measurements. Detectors made from 10 μm thick films have a sensitivity of about 3*10 -10 A/V.Gy.s which could be improved by the use of the thicker films (up to 300 μm). (authors). 21 refs., 6 figs

  9. Excimer Laser Deposition of PLZT Thin Films

    National Research Council Canada - National Science Library

    Petersen, GAry

    1991-01-01

    .... In order to integrate these devices into optical systems, the production of high quality thin films with high transparency and perovskite crystal structure is desired. This requires development of deposition technologies to overcome the challenges of depositing and processing PLZT thin films.

  10. Permalloy Thin-film Magnetic Sensors

    NARCIS (Netherlands)

    Groenland, J.P.J.; Eijkel, C.J.M.; Fluitman, J.H.J.; de Ridder, R.M.

    1992-01-01

    An introduction to the theory of the anisotropic magnetoresistance effect in ferromagnetic thin films is given, ending in a treatment of the minimalization of the free energy which is the result of the intrinsic and extrinsic anisotropies of the thin-film structure. The anisotropic magnetoresistance

  11. Characterization of nanocrystalline cadmium telluride thin films ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Structural, electrical and optical characteristics of CdTe thin films prepared by a chemical deposi- tion method, successive ionic layer adsorption and reaction (SILAR), are described. For deposition of CdTe thin films, cadmium acetate was used as cationic and sodium tellurite as anionic precursor in aqueous me-.

  12. Characterization of nanocrystalline cadmium telluride thin films ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 2. Characterization of nanocrystalline ... Structural, electrical and optical characteristics of CdTe thin films prepared by a chemical deposition method, successive ionic layer adsorption and reaction (SILAR), are described. For deposition of CdTe thin films, ...

  13. Growth and structure of thermally evaporated Bi{sub 2}Te{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rogacheva, E.I., E-mail: rogacheva@kpi.kharkov.ua [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine); Budnik, A.V. [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine); Dobrotvorskaya, M.V.; Fedorov, A.G.; Krivonogov, S.I.; Mateychenko, P.V. [Institute for Single Crystals of NAS of Ukraine, 60 Lenin Prospect, Kharkov 61001 (Ukraine); Nashchekina, O.N.; Sipatov, A.Yu. [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine)

    2016-08-01

    The growth mechanism, microstructure, and crystal structure of the polycrystalline n-Bi{sub 2}Te{sub 3} thin films with thicknesses d = 15–350 nm, prepared by thermal evaporation in vacuum onto glass substrates, were studied. Bismuth telluride with Te excess was used as the initial material for the thin film preparation. The thin film characterization was performed using X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, scan electron microscopy, and electron force microscopy. It was established that the chemical composition of the prepared films corresponded rather well to the starting material composition and the films did not contain any phases apart from Bi{sub 2}Te{sub 3}. It was shown that the grain size and the film roughness increased with increasing film thickness. The preferential growth direction changed from [00l] to [015] under increasing d. The X-ray photoelectron spectroscopy studies showed that the thickness of the oxidized surface layer did not exceed 1.5–2.0 nm and practically did not change in the process of aging at room temperature, which is in agreement with the results reported earlier for single crystals. The obtained data show that using simple and inexpensive method of thermal evaporation in vacuum and appropriate technological parameters, one can grow n-Bi{sub 2}Te{sub 3} thin films of a sufficiently high quality. - Highlights: • The polycrystalline n-Bi{sub 2}Te{sub 3} thin films were grown thermal evaporation onto glass. • The growth mechanism and film structure were studied by different structure methods. • The grain size and film roughness increased with increasing film thickness. • The growth direction changes from [00l] to [015] under film thickness increasing. • The oxidized layer thickness (1–2 nm) did not change under aging at room temperature.

  14. Mercury cadmium telluride (HgCdTe) thin films fabricated by close spaced sublimation technique

    International Nuclear Information System (INIS)

    Hannan, M.A.; Basharat, M.; Ali, A.; Shah, N.A.; Maqsood, A.

    2007-01-01

    Thin films of HgCdTe were fabricated by deposition of HgTe on the CdTe thin film substrates. Both depositions were carried out through close spaced sublimation (CSS) technique. The structural investigation performed by means of X-ray diffraction (XRD) technique and energy dispersive X-ray spectroscopy (EDS) showed that the deposited films exhibit a polycrystalline structure with large number of sharp grain boundaries. The samples were then characterized optically to determine the refractive index. Absorption coefficient and the optical band gaps. The estimated band gap decreased, typically from 1.46 to 1.43 Ev as Hg content in the films increased from 1.41 to 3.29-wt. the deposited films showed high value of resistivity. Which decreased with increasing temperature showing the semiconducting behavior of the films. The prepared films gave response to infrared radiation. (author)

  15. Thermally stimulated currents in α-HgI2 polycrystalline films

    International Nuclear Information System (INIS)

    Shiu, Y.-T.; Huang, T.-J.; Shih, C.-T.; Su, C.-F.; Lan, S.-M.; Chiu, K.-C.

    2007-01-01

    A study of thermally stimulated currents (TSC) is applied to α-HgI 2 polycrystalline films grown by physical vapour deposition with various thermal boundary conditions. Five TSC peaks are clearly observed and numerically fitted. The activation energy and the density of the trapping centre that corresponds to each TSC peak are then calculated. Finally, the effects of the deposition conditions on the TSC results are discussed

  16. Theory of transport phenomena in polycrystalline lead chalcogenide films. Mobility. Nondegenerate statistics

    Energy Technology Data Exchange (ETDEWEB)

    Atakulov, Sh. B., E-mail: atakulovsh@mail.ru; Zaynolobidinova, S. M. [Fergana State University (Uzbekistan); Nabiev, G. A., E-mail: gulamnabi@mail.ru [Fergana Polytechnical Institute (Uzbekistan); Nabiyev, M. B. [Fergana State University (Uzbekistan); Yuldashev, A. A. [Fergana Polytechnical Institute (Uzbekistan)

    2013-07-15

    The mobility of nondegenerate electrons in quasi-single-crystal and polycrystalline PbTe films is experimentally investigated. The results obtained are compared with the data for bulk crystals at the same charge-carrier concentration. Under the assumption of limitation of the charge-carrier mobility by intercrystallite potential barriers, electron transport in an electric field is theoretically considered. The theoretical results are in good agreement with the experiment.

  17. Laser thermoreflectance for semiconductor thin films metrology

    Science.gov (United States)

    Gailly, P.; Hastanin, J.; Duterte, C.; Hernandez, Y.; Lecourt, J.-B.; Kupisiewicz, A.; Martin, P.-E.; Fleury-Frenette, K.

    2012-06-01

    We present a thermoreflectance-based metrology concept applied to compound semiconductor thin films off-line characterization in the solar cells scribing process. The presented thermoreflectance setup has been used to evaluate the thermal diffusivity of thin CdTe films and to measure eventual changes in the thermal properties of 5 μm CdTe films ablated by nano and picosecond laser pulses. The temperature response of the CdTe thin film to the nanosecond heating pulse has been numerically investigated using the finite-difference time-domain (FDTD) method. The computational and experimental results have been compared.

  18. Nanostructured thin films and coatings functional properties

    CERN Document Server

    Zhang, Sam

    2010-01-01

    The second volume in ""The Handbook of Nanostructured Thin Films and Coatings"" set, this book focuses on functional properties, including optical, electronic, and electrical properties, as well as related devices and applications. It explores the large-scale fabrication of functional thin films with nanoarchitecture via chemical routes, the fabrication and characterization of SiC nanostructured/nanocomposite films, and low-dimensional nanocomposite fabrication and applications. The book also presents the properties of sol-gel-derived nanostructured thin films as well as silicon nanocrystals e

  19. Structure and Growth Control of Organic–Inorganic Halide Perovskites for Optoelectronics: From Polycrystalline Films to Single Crystals

    Science.gov (United States)

    Chen, Yani; He, Minhong; Peng, Jiajun; Sun, Yong

    2016-01-01

    Recently, organic–inorganic halide perovskites have sparked tremendous research interest because of their ground‐breaking photovoltaic performance. The crystallization process and crystal shape of perovskites have striking impacts on their optoelectronic properties. Polycrystalline films and single crystals are two main forms of perovskites. Currently, perovskite thin films have been under intensive investigation while studies of perovskite single crystals are just in their infancy. This review article is concentrated upon the control of perovskite structures and growth, which are intimately correlated for improvements of not only solar cells but also light‐emitting diodes, lasers, and photodetectors. We begin with the survey of the film formation process of perovskites including deposition methods and morphological optimization avenues. Strategies such as the use of additives, thermal annealing, solvent annealing, atmospheric control, and solvent engineering have been successfully employed to yield high‐quality perovskite films. Next, we turn to summarize the shape evolution of perovskites single crystals from three‐dimensional large sized single crystals, two‐dimensional nanoplates, one‐dimensional nanowires, to zero‐dimensional quantum dots. Siginificant functions of perovskites single crystals are highlighted, which benefit fundamental studies of intrinsic photophysics. Then, the growth mechanisms of the previously mentioned perovskite crystals are unveiled. Lastly, perspectives for structure and growth control of perovskites are outlined towards high‐performance (opto)electronic devices. PMID:27812463

  20. Structure and Growth Control of Organic-Inorganic Halide Perovskites for Optoelectronics: From Polycrystalline Films to Single Crystals.

    Science.gov (United States)

    Chen, Yani; He, Minhong; Peng, Jiajun; Sun, Yong; Liang, Ziqi

    2016-04-01

    Recently, organic-inorganic halide perovskites have sparked tremendous research interest because of their ground-breaking photovoltaic performance. The crystallization process and crystal shape of perovskites have striking impacts on their optoelectronic properties. Polycrystalline films and single crystals are two main forms of perovskites. Currently, perovskite thin films have been under intensive investigation while studies of perovskite single crystals are just in their infancy. This review article is concentrated upon the control of perovskite structures and growth, which are intimately correlated for improvements of not only solar cells but also light-emitting diodes, lasers, and photodetectors. We begin with the survey of the film formation process of perovskites including deposition methods and morphological optimization avenues. Strategies such as the use of additives, thermal annealing, solvent annealing, atmospheric control, and solvent engineering have been successfully employed to yield high-quality perovskite films. Next, we turn to summarize the shape evolution of perovskites single crystals from three-dimensional large sized single crystals, two-dimensional nanoplates, one-dimensional nanowires, to zero-dimensional quantum dots. Siginificant functions of perovskites single crystals are highlighted, which benefit fundamental studies of intrinsic photophysics. Then, the growth mechanisms of the previously mentioned perovskite crystals are unveiled. Lastly, perspectives for structure and growth control of perovskites are outlined towards high-performance (opto)electronic devices.

  1. Photoelectrocatrocatalytic hydrolysis of starch by using sprayed ZnO thin films

    Science.gov (United States)

    Sapkal, R. T.; Shinde, S. S.; Rajpure, K. Y.; Bhosale, C. H.

    2013-05-01

    Thin films of zinc oxide have been deposited onto glass/FTO substrates at optimized 400 °C by using a chemical spray pyrolysis technique. Deposited films are character photocatalytic activity by using XRD, an SEM, a UV-vis spectrophotometer, and a PEC single-cell reactor. Films are polycrystalline and have a hexagonal (wurtzite) crystal structure with c-axis (002) orientation growth perpendicular to the substrate surface. The observed direct band gap is about 3.22 eV for typical films prepared at 400 °C. The photocatalytic activity of starch with a ZnO photocatalyst has been studied by using a novel photoelectrocatalytic process.

  2. Magnetoresistance and anomalous Hall effect of reactive sputtered polycrystalline Ti1 - XCrxN films

    KAUST Repository

    Duan, Xiaofei

    2013-09-01

    The reactive-sputtered polycrystalline Ti1 - xCrxN films with 0.17 ≤ x ≤ 0.51 are ferromagnetic and at x = 0.47 the Curie temperature TC shows a maximum of ~ 120 K. The films are metallic at 0 ≤ x ≤ 0.47, while the films with x = 0.51 and 0.78 are semiconducting-like. The upturn of resistivity below 70 K observed in the films with 0.10 ≤ x ≤ 0.47 is from the effects of the electron-electron interaction and weak localization. The negative magnetoresistance (MR) of the films with 0.10 ≤ x ≤ 0.51 is dominated by the double-exchange interaction, while at x = 0.78, MR is related to the localized magnetic moment scattering at the grain boundaries. The scaling ρxyA/n ∝ ρxx2.19 suggests that the anomalous Hall effect in the polycrystalline Ti1 - xCrxN films is scattering-independent. © 2013 Elsevier B.V. All rights reserved.

  3. Quantum interference effects in [Co/Bi]n thin films

    Directory of Open Access Journals (Sweden)

    Athanasopoulos P.

    2014-07-01

    Full Text Available Magnetoconductivity (MC, Δσ(Β, and Hall coefficient, RH(B, measurements have been performed in polycrystalline thin films of Bi(15nm, Bi(10nm/Co(1nm/Bi(10nm trilayer and [Co(0.7nm/Bi(2nm]10 multilayer, grown by magnetron scattering. The temperature dependence of RH(B curves reveal the existence of a second conduction channel below 250K, that can be assigned to surface states. MC measurements between ±0.4T show at 5K an interplay between weak-antilocalization (WAL in Bi and Bi/Co/Bi films and weal-localization (WL in [Co/Bi]10 multilayer.

  4. Micromechanics of substrate-supported thin films

    Science.gov (United States)

    He, Wei; Han, Meidong; Wang, Shibin; Li, Lin-An; Xue, Xiuli

    2017-09-01

    The mechanical properties of metallic thin films deposited on a substrate play a crucial role in the performance of micro/nano-electromechanical systems (MEMS/NEMS) and flexible electronics. This article reviews ongoing study on the mechanics of substrate-supported thin films, with emphasis on the experimental characterization techniques, such as the rule of mixture and X-ray tensile testing. In particular, the determination of interfacial adhesion energy, film deformation, elastic properties and Bauschinger effect are discussed.

  5. Structural, morphological, optical and electrical properties of spray deposited lithium doped CdO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Velusamy, P.; Babu, R. Ramesh, E-mail: rampap2k@yahoo.co.in [Crystal Growth and Thin Films Laboratory, Department of Physics, Bharathidasan University, Tiruchirappalli-620 024, Tamil Nadu (India); Ramamurthi, K. [Crystal Growth and Thin Films Laboratory, Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM University, Kattankulathur – 603 203, Tamil Nadu (India)

    2016-05-23

    In the present work, CdO and Li doped CdO thin films were deposited on microscopic glass substrates at 300°C by a spray pyrolysis experimental setup. The deposited CdO and Li doped CdO thin films were subjected to XRD, SEM, UV-VIS spectroscopy and Hall measurement analyses. XRD studies revealed the polycrystalline nature of the deposited films and confirmed that the deposited CdO and Li doped CdO thin films belong to cubic crystal system. The Scanning electron microscopy analysis revealed the information on shape of CdO and Li doped CdO films. Electrical study reveals the n-type semiconducting nature of CdO and the optical band gap is varied between 2.38 and 2.44 eV, depending on the Li doping concentrations.

  6. Mechanism of manganese (mono and di) telluride thin-film formation and properties

    Science.gov (United States)

    Sharma, Raj Kishore; Singh, Gurmeet; Shul, Yong Gun; Kim, Hansung

    2007-03-01

    Mechanistic studies on the electrocrystallization of manganese telluride (MnTe) thin film are reported using aqueous acidic solution containing MnSO 4 and TeO 2. Tartaric acid was used for the inhibition of hydrated manganese oxide anodic growth at counter electrode. A detailed study on the mechanistic aspect of electrochemical growth of MnTe using cyclic voltametry is carried out. Conditions for electrochemical growth of manganese mono and di telluride thin films have been reported using cyclic voltammetric scans for Mn 2+, Te 4+ and combined Mn 2+ and Te 4+. X-ray diffraction showed the formation of polycrystalline MnTe films with cubic, hexagonal and orthorhombic mixed phases. MnTe film morphology was studied using scanning electron microscope. Susceptibility and electrical characterization supports the anti-ferromagnetic behavior of the as-deposited MnTe thin film.

  7. Thin film bioreactors in space

    Science.gov (United States)

    Hughes-Fulford, M.; Scheld, H. W.

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers us an opportunity to learn more about basic biological systems with one important variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would enable us to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  8. BDS thin film damage competition

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, C J; Thomas, M D; Griffin, A J

    2008-10-24

    A laser damage competition was held at the 2008 Boulder Damage Symposium in order to determine the current status of thin film laser resistance within the private, academic, and government sectors. This damage competition allows a direct comparison of the current state-of-the-art of high laser resistance coatings since they are all tested using the same damage test setup and the same protocol. A normal incidence high reflector multilayer coating was selected at a wavelength of 1064 nm. The substrates were provided by the submitters. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials, and layer count will also be shared.

  9. Surface and magnetic characteristics of Ni-Mn-Ga/Si (100) thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, S. Vinodh; Pandyan, R. Kodi; Mahendran, M., E-mail: manickam-mahendran@tce.edu, E-mail: perialangulam@gmail.com [Smart Materials Lab, Department of Physics, Thiagarajar College of Engineering, Madurai – 625 015 (India); Raja, M. Manivel [Defence Metallurgical Research Laboratory, Hyderabad – 500 058 (India); Pandi, R. Senthur [School of Advanced Sciences, VIT University, Vellore – 632 014 (India)

    2016-05-23

    Polycrystalline Ni-Mn-Ga thin films have been deposited on Si (100) substrate with different film thickness. The influence of film thickness on the phase structure and magnetic domain of the films has been examined by scanning electron microscope, atomic force microscopy and magnetic force microscopy. Analysis of structural parameters indicates that the film at lower thickness exhibits the coexistence of both austenite and martensite phase, whereas at higher thickness L1{sub 2} cubic non magnetic phase is noticed. The grains size and the surface roughness increase along with the film thickness and attain the maximum of 45 nm and 34.96 nm, respectively. At lower film thickness, the magnetic stripe domain is found like maze pattern with dark and bright images, while at higher thickness the absence of stripe domains is observed. The magnetic results reveal that the films strongly depend on their phase structure and microstructure which influence by the film thickness.

  10. In situ deformation of thin films on substrates.

    Science.gov (United States)

    Legros, Marc; Cabié, Martiane; Gianola, Daniel S

    2009-03-01

    Metallic thin-film plasticity has been widely studied by using the difference between the coefficients of thermal expansion of the film and the underlying substrate to induce stress. This approach is commonly known as the wafer curvature technique, based on the Stoney equation, which has shown that thinner films have higher yield stresses. The linear increase of the film strength as a function of the reciprocal film thickness, down to a couple hundred nanometers, has been rationalized in terms of threading and interfacial dislocations. Polycrystalline films also show this kind of dependence when the grain size is larger than or comparable to the film thickness. In situ TEM performed on plan-view or cross-section specimens faithfully reproduces the stress state and the small strain levels seen by the metallic film during wafer curvature experiments and simultaneously follows the change in its microstructure. Although plan-view experiments are restricted to thinner films, cross-sectional samples where the film is reduced to a strip (or nanowire) on its substrate are a more versatile configuration. In situ thermal cycling experiments revealed that the dislocation/interface interaction could be either attractive or repulsive depending on the interfacial structure. Incoherent interfaces clearly act as dislocation sinks, resulting in a dislocation density drop during thermal cycles. In dislocation-depleted films (initially thin or annealed), grain boundaries can compensate for the absence of dislocations by either shearing the film similarly to threading dislocations or through fast diffusion processes. Conversely, dislocations are confined inside the film by image forces in the cases of epitaxial interfaces on hard substrates. To increase the amount of strain seen by a film, and to decouple the effects of stress and temperature, compliant substrates can also be used as support for the metallic film. The composite can be stretched at a given temperature using heating

  11. Mechanical properties of ultra thin metallic films revealed by synchrotron techniques

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, Patric Alfons

    2007-07-20

    A prerequisite for the study of the scaling behavior of mechanical properties of ultra thin films is a suitable testing technique. Therefore synchrotron-based in situ testing techniques were developed and optimized in order to characterize the stress evolution in ultra thin metallic films on compliant polymer substrates during isothermal tensile tests. Experimental procedures for polycrystalline as well as single crystalline films were established. These techniques were used to systematically investigate the influence of microstructure, film thickness (20 to 1000 nm) and temperature (-150 to 200 C) on the mechanical properties. Passivated and unpassivated Au and Cu films as well as single crystalline Au films on polyimide substrates were tested. Special care was also dedicated to the microstructural characterization of the samples which was very important for the correct interpretation of the results of the mechanical tests. Down to a film thickness of about 100 to 200 nm the yield strength increased for all film systems (passivated and unpassivated) and microstructures (polycrystalline and singlecrystalline). The influence of different interfaces was smaller than expected. This could be explained by a dislocation source model based on the nucleation of perfect dislocations. For polycrystalline films the film thickness as well as the grain size distribution had to be considered. For smaller film thicknesses the increase in flow stress was weaker and the deformation behavior changed because the nucleation of perfect dislocations became unfavorable. Instead, the film materials used alternative mechanisms to relieve the high stresses. For regular and homogeneous deformation the total strain was accommodated by the nucleation and motion of partial dislocations. If the deformation was localized due to initial cracks in a brittle interlayer or local delamination, dislocation plasticity was not effective enough to relieve the stress concentration and the films showed

  12. Method of producing thin cellulose nitrate film

    International Nuclear Information System (INIS)

    Lupica, S.B.

    1975-01-01

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent

  13. Ion irradiation of AZO thin films for flexible electronics

    Energy Technology Data Exchange (ETDEWEB)

    Boscarino, Stefano; Torrisi, Giacomo; Crupi, Isodiana [IMM-CNR and Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania (Italy); Alberti, Alessandra [CNR-IMM, via Strada VIII 5, 95121 Catania (Italy); Mirabella, Salvatore; Ruffino, Francesco [IMM-CNR and Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania (Italy); Terrasi, Antonio, E-mail: antonio.terrasi@ct.infn.it [IMM-CNR and Dipartimento di Fisica e Astronomia, Università di Catania, via S. Sofia 64, 95123 Catania (Italy)

    2017-02-01

    Highlights: • Evidence of electrical good quality AZO ultra thin films without thermal annealing. • Evidence of the main role of Oxygen vs. structural parameters in controlling the electrical performances of AZO. • Evidence of the role of the ion irradiation in improving the electrical properties of AZO ultra thin films. • Synthesis of AZO thin films on flexible/plastic substrates with good electrical properties without thermal processes. - Abstract: Aluminum doped Zinc oxide (AZO) is a promising transparent conductor for solar cells, displays and touch-screen technologies. The resistivity of AZO is typically improved by thermal annealing at temperatures not suitable for plastic substrates. Here we present a non-thermal route to improve the electrical and structural properties of AZO by irradiating the TCO films with O{sup +} or Ar{sup +} ion beams (30–350 keV, 3 × 10{sup 15}–3 × 10{sup 16} ions/cm{sup 2}) after the deposition on glass and flexible polyethylene naphthalate (PEN). X-ray diffraction, optical absorption, electrical measurements, Rutherford Backscattering Spectrometry and Atomic Force Microscopy evidenced an increase of the crystalline grain size and a complete relief of the lattice strain upon ion beam irradiation. Indeed, the resistivity of thin AZO films irradiated at room temperature decreased of two orders of magnitude, similarly to a thermal annealing at 400 °C. We also show that the improvement of the electrical properties does not simply depend on the strain or polycrystalline domain size, as often stated in the literature.

  14. Novel doped hydroxyapatite thin films obtained by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Duta, L. [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, 409 Atomistilor Street, Magurele (Romania); Oktar, F.N. [Department of Bioengineering, Faculty of Engineering, Marmara University, Goztepe, Istanbul 34722 (Turkey); Department of Medical Imaging Technics, Vocational School of Health Services, Marmara University, Uskudar, Istanbul 34668 (Turkey); Nanotechnology and Biomaterials Application and Research Centre, Marmara University, Istanbul (Turkey); Stan, G.E. [National Institute of Materials Physics, 105 Bis Atomistilor Street, Magurele (Romania); Popescu-Pelin, G.; Serban, N.; Luculescu, C. [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, 409 Atomistilor Street, Magurele (Romania); Mihailescu, I.N., E-mail: ion.mihailescu@inflpr.ro [National Institute for Lasers, Plasma and Radiation Physics, Lasers Department, 409 Atomistilor Street, Magurele (Romania)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer HA coatings synthesized by pulsed laser deposition. Black-Right-Pointing-Pointer Comparative study of commercial vs. animal origin materials. Black-Right-Pointing-Pointer HA coatings of animal origin were rougher and more adherent to substrates. Black-Right-Pointing-Pointer Animal origin films can be considered as promising candidates for implant coatings. - Abstract: We report on the synthesis of novel ovine and bovine derived hydroxyapatite thin films on titanium substrates by pulsed laser deposition for a new generation of implants. The calcination treatment applied to produce the hydroxyapatite powders from ovine/bovine bones was intended to induce crystallization and to prohibit the transmission of diseases. The deposited films were characterized by scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, and energy dispersive X-ray spectroscopy. Pull-off adherence and profilometry measurements were also carried out. X-ray diffraction ascertained the polycrystalline hydroxyapatite nature of the powders and films. Fourier transform infrared spectroscopy evidenced the vibrational bands characteristic to a hydroxyapatite material slightly carbonated. The micrographs of the films showed a uniform distribution of spheroidal particulates with a mean diameter of {approx}2 {mu}m. Pull-off measurements demonstrated excellent bonding strength values between the hydroxyapatite films and the titanium substrates. Because of their physical-chemical properties and low cost fabrication from renewable resources, we think that these new coating materials could be considered as a prospective competitor to synthetic hydroxyapatite used for implantology applications.

  15. Highly conductive grain boundaries in copper oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Deuermeier, Jonas, E-mail: j.deuermeier@campus.fct.unl.pt [Department of Materials Science, Faculty of Science and Technology, i3N/CENIMAT, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica (Portugal); Department of Materials and Earth Sciences, Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, D-64287 Darmstadt (Germany); Wardenga, Hans F.; Morasch, Jan; Siol, Sebastian; Klein, Andreas, E-mail: aklein@surface.tu-darmstadt.de [Department of Materials and Earth Sciences, Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, D-64287 Darmstadt (Germany); Nandy, Suman; Calmeiro, Tomás; Martins, Rodrigo; Fortunato, Elvira [Department of Materials Science, Faculty of Science and Technology, i3N/CENIMAT, Universidade NOVA de Lisboa and CEMOP/UNINOVA, Campus de Caparica, 2829-516 Caparica (Portugal)

    2016-06-21

    High conductivity in the off-state and low field-effect mobility compared to bulk properties is widely observed in the p-type thin-film transistors of Cu{sub 2}O, especially when processed at moderate temperature. This work presents results from in situ conductance measurements at thicknesses from sub-nm to around 250 nm with parallel X-ray photoelectron spectroscopy. An enhanced conductivity at low thickness is explained by the occurrence of Cu(II), which is segregated in the grain boundary and locally causes a conductivity similar to CuO, although the surface of the thick film has Cu{sub 2}O stoichiometry. Since grains grow with an increasing film thickness, the effect of an apparent oxygen excess is most pronounced in vicinity to the substrate interface. Electrical properties of Cu{sub 2}O grains are at least partially short-circuited by this effect. The study focuses on properties inherent to copper oxide, although interface effects cannot be ruled out. This non-destructive, bottom-up analysis reveals phenomena which are commonly not observable after device fabrication, but clearly dominate electrical properties of polycrystalline thin films.

  16. Deposition of Y thin films by nanosecond UV pulsed laser ablation for photocathode application

    International Nuclear Information System (INIS)

    Lorusso, A.; Anni, M.; Caricato, A.P.; Gontad, F.; Perulli, A.; Taurino, A.; Perrone, A.; Chiadroni, E.

    2016-01-01

    In this work, yttrium (Y) thin films have been deposited on Si (100) substrates by the pulsed laser deposition technique. Ex-situ morphological, structural and optical characterisations of such films have been performed by scanning electron microscopy, X-ray diffractometry, atomic force microscopy and ellipsometry. Polycrystalline films with a thickness of 1.2 μm, homogenous with a root mean square roughness of about 2 nm, were obtained by optimised laser irradiation conditions. Despite the relatively high thickness, the films resulted very adherent to the substrates. The high quality of such thin films is important to the synthesis of metallic photocathodes based on Y thin film, which could be used as electron sources of high photoemission performance in radio-frequency guns. - Highlights: • Pulsed laser deposition of Yttrium thin films is investigated. • 1.2 μm thick films were deposited with very low RMS roughness. • The Y thin films were very adherent to the Si substrate • Optical characterisation showed a very high absorption coefficient for the films.

  17. Intrinsic stress of bismuth oxide thin films: effect of vapour chopping and air ageing

    International Nuclear Information System (INIS)

    Patil, R B; Puri, R K; Puri, V

    2008-01-01

    Bismuth oxide thin films of thickness 1000 A 0 have been prepared by thermal oxidation (in air) of vacuum evaporated bismuth thin films (on glass substrate) at different oxidation temperatures and duration. Both the vapour chopped and nonchopped bismuth oxide thin films showed polycrystalline and polymorphic structure. The monoclinic bismuth oxide was found to be predominant in both the cases. The effect of vapour chopping and air exposure for 40 days on the intrinsic stress of bismuth oxide thin films has been studied. The vapour chopped films showed low (3.92 - 4.80 x 10 9 N/m 2 ) intrinsic stress than those of nonchopped bismuth oxide thin films (5.77 - 6.74 x 10 9 N/m 2 ). Intrinsic stress was found to increase due to air ageing. The effect of air ageing on the vapour chopped films was found low. The vapour chopped films showed higher packing density. Higher the packing density, lower the film will age. The process of chopping vapour flow creates films with less inhomogenety i.e. a low concentration of flaws and non-planar defects which results in lower intrinsic stress

  18. Thin Film Analysis by X-Ray Scattering Techniques for Structural Characterization

    CERN Document Server

    Birkholz, Mario

    2005-01-01

    With contributions by Paul F. Fewster and Christoph Genzel. While X-ray diffraction investigation of powders and polycrystalline matter was at the forefront of materials science in the 1960s and 70s, high-tech applications at the beginning of the 21st century are driven by the materials science of thin films. Very much an interdisciplinary field, chemists, biochemists, materials scientists, physicists and engineers all have a common interest in thin films and their manifold uses and applications. Grain size, porosity, density, preferred orientation and other properties are important to know: w

  19. Plasmonic modes in thin films: quo vadis?

    Directory of Open Access Journals (Sweden)

    Antonio ePolitano

    2014-07-01

    Full Text Available Herein, we discuss the status and the prospect of plasmonic modes in thin films. Plasmons are collective longitudinal modes of charge fluctuation in metal samples excited by an external electric field. Surface plasmons (SPs are waves that propagate along the surface of a conductor with applications in magneto-optic data storage, optics, microscopy, and catalysis. In thin films the electronic response is influenced by electron quantum confinement. Confined electrons modify the dynamical screening processes at the film/substrate interface by introducing novel properties with potential applications and, moreover, they affect both the dispersion relation of SP frequency and the damping processes of the SP.Recent calculations indicate the emergence of acoustic surface plasmons (ASP in Ag thin films exhibiting quantum well states and in graphene films. The slope of the dispersion of ASP decreases with film thickness. We also discuss open issues in research on plasmonic modes in graphene/metal interfaes.

  20. Stabilized thin film heterostructure for electrochemical applications

    DEFF Research Database (Denmark)

    2015-01-01

    The invention provides a method for the formation of a thin film multi-layered heterostructure upon a substrate, said method comprising the steps of: a. providing a substrate; b. depositing a buffer layer upon said substrate, said buffer layer being a layer of stable ionic conductor (B); c...... or less; and e. repeating steps b. and c. a total of N times, such that N repeating pairs of layers (A/B) are built up, wherein N is 1 or more. The invention also provides a thin film multi-layered heterostructure as such, and the combination of a thin film multi-layered heterostructure and a substrate...

  1. Macro stress mapping on thin film buckling

    International Nuclear Information System (INIS)

    Goudeau, P.; Villain, P.; Renault, P.-O.; Tamura, N.; Celestre, R.S.; Padmore, H.A.

    2002-01-01

    Thin films deposited by Physical Vapour Deposition techniques on substrates generally exhibit large residual stresses which may be responsible of thin film buckling in the case of compressive stresses. Since the 80's, a lot of theoretical work has been done to develop mechanical models but only a few experimental work has been done on this subject to support these theoretical approaches and nothing concerning local stress measurement mainly because of the small dimension of the buckling (few 10th mm). This paper deals with the application of micro beam X-ray diffraction available on synchrotron radiation sources for stress mapping analysis of gold thin film buckling

  2. Study of zinc oxide thin film characteristics

    OpenAIRE

    Johari Shazlina; Muhammad Nazalea Yazmin; Zakaria Mohd Rosydi

    2017-01-01

    This paper presents the characterization of ZnO thin films with the thickness of 8nm, 30nm, and 200nm. The thin films were prepared using sol-gel method and has been deposited onto different substrate of silicon wafer, glass and quartz. The thin films were annealed at 400, 500 and 600°C. By using UV-Vis, the optical transmittance measurement were recorded by using a single beam spectrophotometer in the wavelength 250nm to 800nm. However, the transmittance in the visible range is hardly influe...

  3. Grain Boundary Engineering of Electrodeposited Thin Films

    DEFF Research Database (Denmark)

    Alimadadi, Hossein

    Grain boundary engineering aims for a deliberate manipulation of the grain boundary characteristics to improve the properties of polycrystalline materials. Despite the emergence of some successful industrial applications, the mechanism(s) by which the boundary specific properties can be improved...... to engineer new materials. In this study, one of the most widely used electrolytes for electrodeposition is chosen for the synthesis of nickel films and based on thorough characterization of the boundaries the potentials in grain boundary engineering are outlined. The internal structure of the nickel films...... of the favorable boundaries that break the network of general grain boundaries. Successful dedicated synthesis of a textured nickel film fulfilling the requirements of grain boundary engineered materials, suggests improved boundary specific properties. However, the textured nickel film shows fairly low...

  4. High density nonmagnetic cobalt in thin films

    OpenAIRE

    Banu, Nasrin; Singh, Surendra; Basu, Saibal; Roy, Anupam; Movva, Hema C. P.; Dev, B. N.

    2017-01-01

    Recently high density (HD) nonmagnetic (NM) cobalt has been discovered in a cobalt thin film, grown on Si(111). This cobalt film had a natural cobalt oxide at the top. The oxide layer forms when the film is taken out of the electron-beam deposition chamber and exposed to air. Thin HD NM cobalt layers were found near the cobalt/silicon and the cobalt-oxide/cobalt interfaces, while the thicker mid-depth region of the film was hcp cobalt with normal density and normal magnetic moment. If an ultr...

  5. Ultra-thin film encapsulation processes for micro-electro-mechanical devices and systems

    International Nuclear Information System (INIS)

    Stoldt, Conrad R; Bright, Victor M

    2006-01-01

    A range of physical properties can be achieved in micro-electro-mechanical systems (MEMS) through their encapsulation with solid-state, ultra-thin coatings. This paper reviews the application of single source chemical vapour deposition and atomic layer deposition (ALD) in the growth of submicron films on polycrystalline silicon microstructures for the improvement of microscale reliability and performance. In particular, microstructure encapsulation with silicon carbide, tungsten, alumina and alumina-zinc oxide alloy ultra-thin films is highlighted, and the mechanical, electrical, tribological and chemical impact of these overlayers is detailed. The potential use of solid-state, ultra-thin coatings in commercial microsystems is explored using radio frequency MEMS as a case study for the ALD alloy alumina-zinc oxide thin film. (topical review)

  6. Performance Characterization of Monolithic Thin Film Resistors

    Science.gov (United States)

    Yin, Rong

    Thin film resistors have a large resistance range and stable performance under high temperature operating condition. Thin film resistors trimmed by laser beam are able to achieve very high precision on resistance value. As a result, thin film resistors have been widely used to improve the performance of integrated circuits such as operational amplifier, analog-to-digital (A/D) and digital -to-analog (D/A) converters, etc. In this dissertation, a new class of thin film resistors, silicon chrome (SiCr) thin film resistors, has been investigated at length. From thin film characterization to aging behavior modelling, we have carried out a series of engineering activities. The characteristics of the SiCr thin film incorporated into three bipolar processes were first determined. After laser trimming, we have measured a couple of physical parameters of the SiCr film in the heat affected zone (HAZ). This is the first time the sheet resistance and the temperature coefficient of resistance (TCR) of thin film in the HAZ have been characterized. Both thermal and d.c. load accelerated aging tests were performed. The test structures were subjected to the aging for 1000 hours. Based on the test data, we not only evaluated the classical thermal aging model for untrimmed thin film resistors, but also established several empirical thermal aging models for trimmed resistors and d.c. load aging models for both trimmed and untrimmed thin film resistors. All the experiments were carried out for both conventional bar resistors and our new Swiss Cheese (SC) resistors. For the first time, the performance of laser trimmed SC resistors, which was experimentally evaluated, shown a clear superiority over that of trimmed bar resistors. Besides these experiments, we have examined different die attach techniques and their effects on thin film resistors. Also, we have developed a number of hardware systems and software tools, such as a temperature controller, d.c. current source, temperature

  7. Defects generation by hydrogen passivation of polycrystalline silicon thin films

    Czech Academy of Sciences Publication Activity Database

    Honda, Shinya; Mates, Tomáš; Ledinský, Martin; Fejfar, Antonín; Kočka, Jan; Yamazaki, T.; Uraoka, Y.; Fuyuki, T.; Boldyryeva, Hanna; Macková, Anna; Peřina, Vratislav

    2006-01-01

    Roč. 80, - (2006), s. 653-657 ISSN 0038-092X R&D Projects: GA MŽP(CZ) SM/300/1/03; GA MŽP(CZ) SN/3/172/05; GA AV ČR IAA1010413; GA ČR(CZ) GD202/05/H003; GA AV ČR IAA1010316 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10480505 Keywords : hydrogen passivation * ERDA * photoluminescence * Raman spectroscopy * Si-H 2 bonding * H 2 molecules * grain size. Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.431, year: 2006

  8. Low resistance polycrystalline diamond thin films deposited by hot ...

    Indian Academy of Sciences (India)

    Administrator

    resistivity was investigated using a 4-point probe cur- rent/voltage in van der Pauw (1958) geometry at room temperature with maximum voltage of ± 100 V. The cu- rrent and voltage were measured using a semiconductor device analyser (Agilent B1500A). 3. Results and discussion. To investigate the effect of varying gas ...

  9. Recrystallization behaviour and electrical properties of germanium ion implanted polycrystalline silicon films

    International Nuclear Information System (INIS)

    Kang, Myeon-Koo; Matsui, Takayuki; Kuwano, Hiroshi

    1996-01-01

    The recrystallization behaviour of undoped and phosphorus-doped polycrystalline silicon films amorphized by germanium ion implantation at doses ranging from 1 x 10 15 to 1 x 10 16 cm -2 are investigated, and the electrical properties of phosphorus-doped films after recrystallization are studied. The phosphorus doping concentration ranges from 3 x 10 18 to 1 x 10 20 cm -3 . It is found that the nucleation rate decreases for undoped films and increases for phosphorus-doped films with increasing germanium dose; the growth rates decrease for both doped and undoped films. The decrease in nucleation rate is caused by the increase in implantation damage. The decrease in growth rate is considered to be due to the increase in lattice strain. The grain size increases with germanium dose for undoped films, but decreases for phosphorus-doped films. The dependence of the electrical properties of the recrystallized films as a function of phosphorus doping concentration with different germanium doses can be explained in terms of the grain size, crystallinity and grain boundary barrier height. (Author)

  10. Spectroellipsometric investigation of optical, morphological, and structural properties of reactively sputtered polycrystalline AlN films

    International Nuclear Information System (INIS)

    Easwarakhanthan, T.; Hussain, S. S.; Pigeat, P.

    2010-01-01

    The optical and morphological properties of reactively sputtered AlN films on Si substrates have been studied in this work from a self-consistent three-layer optical model developed from spectroscopic-ellipsometry analysis and validated by observations from transmission-electron microscopy, Auger electron spectroscopy, and in situ reflectance interferometry. These properties correlate to the film microstructural properties. Accordingly, the almost thickness-independent refractive index of 2.01 of the bulk AlN layer indicates its polycrystalline microstructure. This layer also appears ungraded, homogeneous, isotropic, and free of excess Al, as if grown through a steady process. The small film absorption points to the Urbach tail states produced by the structural disorder typical of such sputtered films. The films' interface layer consists of a graded Bruggeman intermix of outdiffused Si and AlN materials spreading over 10-12 nm thickness. The surface morphology includes an Al 2 O 3 -oxidized outer rough surface gradually becoming AlN bulk with diminishing amounts of Al 2 O 3 and inner pores. The increase in the surface-layer thickness, as the film grows, indicates further surface roughening due to enlarging crystals in a disoriented growth. This spectroscopic-ellipsometry analysis of AlN films has allowed us to study the effect of substrate biasing on the AlN microstructure and to place forward a new processing method for the surface smoothening of rough AlN and diamond films.

  11. Thermal conductivity model for nanoporous thin films

    Science.gov (United States)

    Huang, Congliang; Zhao, Xinpeng; Regner, Keith; Yang, Ronggui

    2018-03-01

    Nanoporous thin films have attracted great interest because of their extremely low thermal conductivity and potential applications in thin thermal insulators and thermoelectrics. Although there are some numerical and experimental studies about the thermal conductivity of nanoporous thin films, a simplified model is still needed to provide a straightforward prediction. In this paper, by including the phonon scattering lifetimes due to film thickness boundary scattering, nanopore scattering and the frequency-dependent intrinsic phonon-phonon scattering, a fitting-parameter-free model based on the kinetic theory of phonon transport is developed to predict both the in-plane and the cross-plane thermal conductivities of nanoporous thin films. With input parameters such as the lattice constants, thermal conductivity, and the group velocity of acoustic phonons of bulk silicon, our model shows a good agreement with available experimental and numerical results of nanoporous silicon thin films. It illustrates that the size effect of film thickness boundary scattering not only depends on the film thickness but also on the size of nanopores, and a larger nanopore leads to a stronger size effect of the film thickness. Our model also reveals that there are different optimal structures for getting the lowest in-plane and cross-plane thermal conductivities.

  12. MIS solar cells on thin polycrystalline silicon. Progress report No. 3, September 1-November 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, W.A.

    1980-12-01

    The first task of this project involves electron-beam deposition of thin silicon films on low cost substrates. The goal is to obtain 20 ..mu..m thick films having 20 ..mu..m diameter crystallites which may be recrystallized to > 40 ..mu..m. Material characterization and device studies are to be included in efforts to reach a 6% conversion efficiency. The second task deals with MIS solar cell fabrication on various types of silicon including poly-Si, ribbon-Si, silicon on ceramic, and thin film silicon. Conduction mechanism studies, optimum engineering design, and modification of the fabrication process are to be used to achieve 13% efficiency on Xtal-Si and 11% efficiency on poly-Si. The third task involves more detailed test procedures and includes spectral response, interface and grain boundary effects, computer analysis, materials studies, and grain boundary passivation. Progress is detailed. (WHK)

  13. Thin film production method and apparatus

    Science.gov (United States)

    Loutfy, Raouf O.; Moravsky, Alexander P.; Hassen, Charles N.

    2010-08-10

    A method for forming a thin film material which comprises depositing solid particles from a flowing suspension or aerosol onto a filter and next adhering the solid particles to a second substrate using an adhesive.

  14. Highly stretchable wrinkled gold thin film wires.

    Science.gov (United States)

    Kim, Joshua; Park, Sun-Jun; Nguyen, Thao; Chu, Michael; Pegan, Jonathan D; Khine, Michelle

    2016-02-08

    With the growing prominence of wearable electronic technology, there is a need to improve the mechanical reliability of electronics for more demanding applications. Conductive wires represent a vital component present in all electronics. Unlike traditional planar and rigid electronics, these new wearable electrical components must conform to curvilinear surfaces, stretch with the body, and remain unobtrusive and low profile. In this paper, the piezoresistive response of shrink induced wrinkled gold thin films under strain demonstrates robust conductive performance in excess of 200% strain. Importantly, the wrinkled metallic thin films displayed negligible change in resistance of up to 100% strain. The wrinkled metallic wires exhibited consistent performance after repetitive strain. Importantly, these wrinkled thin films are inexpensive to fabricate and are compatible with roll to roll manufacturing processes. We propose that these wrinkled metal thin film wires are an attractive alternative to conventional wires for wearable applications.

  15. CdS thin films formed on flexible plastic substrates by pulsed-laser deposition

    International Nuclear Information System (INIS)

    Acharya, K P; Skuza, J R; Lukaszew, R A; Liyanage, C; Ullrich, B

    2007-01-01

    The merger of a transparent plastic foil substrate with a semiconductor CdS film for a photonic application was realized using pulsed-laser deposition. Although plastic is not considered to be a favoured substrate material for semiconductor thin-film formation, the deposited CdS film possesses good adhesion, with a polycrystalline texture, flat surface (roughness/thickness = 0.003), and room-temperature photosensitivity with a blue-shifted peak at 2.54 eV. This work demonstrates the capability of pulsed-laser deposition to form novel heterostructures with appealing and useful technological properties such as plasticity and low weight

  16. Dominant pinning mechanisms in YBa2Cu3O7-x films on single and polycrystalline yttria stabilized zirconia substrates

    Science.gov (United States)

    Harshavardhan, K. S.; Rajeswari, M.; Hwang, D. M.; Chen, C. Y.; Sands, T.; Venkatesan, T.; Tkaczyk, J. E.; Lay, K. W.; Safari, A.

    1992-04-01

    Critical-current densities have been measured in YBa2Cu3O7-x films deposited on (100) yttria stabilized zirconia (YSZ) and polycrystalline YSZ substrates as a function of temperature (4.5-88 K), magnetic field (0-1 T) and orientation relative to the applied field. The results indicate that in films on polycrystalline substrates, surface and interface pinning play a dominant role at high temperatures. In films on (100) YSZ, pinning is mainly due to intrinsic layer pinning as well as extrinsic pinning associated with the interaction of the fluxoids with point defects and low energy planar (2D) boundaries. The differences are attributed to the intrinsic rigidity of single fluxoids which is reduced in films on polycrystalline substrates thereby weakening the intrinsic layer pinning.

  17. Epitaxy, thin films and superlattices

    International Nuclear Information System (INIS)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au)

  18. Epitaxy, thin films and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au) 14 tabs.; 58 ills., 96 refs.

  19. Very high-cycle fatigue failure in micron-scale polycrystalline silicon films : Effects of environment and surface oxide thickness

    NARCIS (Netherlands)

    Alsem, D. H.; Boyce, B. L.; Stach, E. A.; De Hosson, J. Th. M.; Ritchie, R. O.

    2007-01-01

    Fatigue failure in micron-scale polycrystalline silicon structural films, a phenomenon that is not observed in bulk silicon, can severely impact the durability and reliability of microelectromechanical system devices. Despite several studies on the very high-cycle fatigue behavior of these films (up

  20. Laser applications in thin-film photovoltaics

    Science.gov (United States)

    Bartlome, R.; Strahm, B.; Sinquin, Y.; Feltrin, A.; Ballif, C.

    2010-08-01

    We review laser applications in thin-film photovoltaics (thin-film Si, CdTe, and Cu(In,Ga)Se2 solar cells). Lasers are applied in this growing field to manufacture modules, to monitor Si deposition processes, and to characterize opto-electrical properties of thin films. Unlike traditional panels based on crystalline silicon wafers, the individual cells of a thin-film photovoltaic module can be serially interconnected by laser scribing during fabrication. Laser scribing applications are described in detail, while other laser-based fabrication processes, such as laser-induced crystallization and pulsed laser deposition, are briefly reviewed. Lasers are also integrated into various diagnostic tools to analyze the composition of chemical vapors during deposition of Si thin films. Silane (SiH4), silane radicals (SiH3, SiH2, SiH, Si), and Si nanoparticles have all been monitored inside chemical vapor deposition systems. Finally, we review various thin-film characterization methods, in which lasers are implemented.

  1. Preparation and characterization of carbonate terminated polycrystalline Al2O3/Al films

    International Nuclear Information System (INIS)

    X-ray photoelectron spectroscopy (XPS) was applied to investigate the surface reactivity of polycrystalline Al films in contact with a gas mixture of carbon dioxide and oxygen at room temperature. Based on the characterization of interactions between these substrates and the individual gases at selected exposures, various surface functionalities were identified. Simultaneously dosing both carbon dioxide and oxygen is shown to create surface-terminating carbonate species, which contribute to inhibiting the formation of an Al 2 O 3 layer. Finally, a reaction scheme is suggested to account for the observed dependence of surface group formation on the dosing conditions

  2. Humidity sensing characteristics of hydrotungstite thin films

    Indian Academy of Sciences (India)

    Wintec

    variety of tungstate materials, such as thick-film manga- nese tungstate, have been applied as humidity sensors. (Qu and Mayer 1997). The humidity sensing characteristics of bulk metal oxide–tungsten oxide systems have also been studied in the literature (Ichinose 1993). Thin films of tungsten oxide have been prepared ...

  3. A thin film magnetoresistive angle detector

    NARCIS (Netherlands)

    Eijkel, C.J.M.; Wieberdink, Johan W.; Fluitman, J.H.J.; Popma, T.J.A.; Groot, Peter; Leeuwis, Henk

    1990-01-01

    An overview is given of the results of our research on a contactless angle detector based on the anisotropic magnetoresistance effect (AMR effect) in a permalloy thin film. The results of high-temperature annealing treatment of the pemalloy film are discussed. Such a treatment suppresses the effects

  4. Measurements of acoustic properties for thin films

    International Nuclear Information System (INIS)

    Kushibiki, J.; Maehara, H.; Chubachi, N.

    1982-01-01

    A measurement method for determining thin-film acoustic properties, such as characteristic acoustic impedance, sound velocity, density, and stiffness constant, is developed with a simple measurement principle and high measurement accuracy. The acoustic properties are determined from a maximum reflection loss and a center frequency obtained through a frequency response of the reflection loss for an acoustic transmission line composed of a sapphire/film/water system by using the acoustic pulse mode measurement system in the UHF range. The determination of the acoustic properties is demonstrated for sputtered fused quartz film, low-expansion borosilicate glass films, and chalcogenide glass films of evaporated As 2 S 3 and As 2 Se 3 , within the measurement accuracy around 1--2%. It is also found that the acoustic properties of thin films are generally different from those of bulk materials, depending on the fabrication techniques and conditions

  5. Polycrystalline La1-xSrxMnO3 films on silicon: Influence of post-Deposition annealing on structural, (Magneto-)Optical, and (Magneto-)Electrical properties

    Science.gov (United States)

    Thoma, Patrick; Monecke, Manuel; Buja, Oana-Maria; Solonenko, Dmytro; Dudric, Roxana; Ciubotariu, Oana-Tereza; Albrecht, Manfred; Deac, Iosif G.; Tetean, Romulus; Zahn, Dietrich R. T.; Salvan, Georgeta

    2018-01-01

    The integration of La1-xSrxMnO3 (LSMO) thin film technology into established industrial silicon processes is regarded as challenging due to lattice mismatch, thermal expansion, and chemical reactions at the interface of LSMO and silicon. In this work, we investigated the physical properties of thin La0.73Sr0.27MnO3 films deposited by magnetron sputtering on silicon without a lattice matching buffer layer. The influence of a post-deposition annealing treatment on the structural, (magneto-)optical, and (magneto-)electrical properties was investigated by a variety of techniques. Using Rutherford backscattering spectroscopy, atomic force microscopy, Raman spectroscopy, and X-ray diffraction we could show that the thin films exhibit a polycrystalline, rhombohedral structure after a post-deposition annealing of at least 700 °C. The dielectric tensor in the spectral range from 1.7 eV to 5 eV determined from spectroscopic ellipsometry in combination with magneto-optical Kerr effect spectroscopy was found to be comparable to that of lattice matched films on single crystal substrates reported in literature [1]. The values of the metal-isolator transition temperature and temperature-dependent resistivities also reflect a high degree of crystalline quality of the thermally treated films.

  6. Effect of Ag doping on opto-electrical properties of CdS thin films for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Nazir, Adnan, E-mail: adnan.nazir@iit.it [Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova (Italy); School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad (Pakistan); Toma, Andrea [Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova (Italy); Shah, Nazar Abbas [Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Panaro, Simone [Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova (Italy); Butt, Sajid [Department of Materials Science and Engineering, Institute of Space Technology (IST), Islamabad 44000 (Pakistan); School of Chemical and Materials Engineering, National University of Sciences and Technology, Islamabad (Pakistan); Sagar, Rizwan ur Rehman [Department of Physics, COMSATS Institute of Information Technology, Islamabad (Pakistan); Raja, Waseem [Istituto Italiano di Tecnologia, Via Morego 30, I-16163 Genova (Italy); Rasool, Kamran [Micro and Nano Devices Group, Department of Metallurgy and Materials Engineering Pakistan, Institute of Engineering and Applied Sciences (PIEAS), P.O. Nilore, Islamabad 45650 (Pakistan); Maqsood, Asghari [Department of Physics, Air University, Islamabad (Pakistan)

    2014-10-01

    Highlights: • Polycrystalline CdS thin films are fabricated by means of Close Spaced Sublimation technique. • Ag is doped by simple ion-exchange technique in order to reduce resistivity of CdS thin films. • Remarkable reduction in resistivity without introducing many transparency losses. - Abstract: Cadmium sulfide (CdS) polycrystalline thin films of different thicknesses (ranging from 370 nm to 750 nm) were fabricated on corning glass substrates using Close Spaced Sublimation (CSS) technique. Optical and electrical investigation revealed that CdS thin films show an appreciable transparency (50–70% transmission) in visible range and a highly resistive behavior (10{sup 6} Ω cm). Samples were doped by silver (Ag) at different concentrations, using ion exchange technique, in order to reduce the resistivity of CdS thin films and to improve their efficiency as a window layer for solar cell application. The doping of Ag in pure CdS thin films resulted into an increase of surface roughness and a decrease both in electrical resistivity and in transparency. By optimizing annealing parameters, we were able to properly control the optical properties of the present system. In fact, the Ag doping of pure CdS films has led to a decrease of the sample resistivity by three orders of magnitude (10{sup 3} Ω cm) against a 20% cut in optical transmission.

  7. Growth and Characterisation of Pulsed-Laser Deposited Tin Thin Films on Cube-Textured Copper at Different Temperatures

    Directory of Open Access Journals (Sweden)

    Szwachta G.

    2016-06-01

    Full Text Available High-quality titanium nitride thin films have been grown on a cube-textured copper surface via pulsed laser deposition. The growth of TiN thin films has been very sensitive to pre-treatment procedure and substrate temperature. It is difficult to grow heteroexpitaxial TiN films directly on copper tape due to large differences in lattice constants, thermal expansion coefficients of the two materials as well as polycrystalline structure of substrate. The X-Ray diffraction measurement revealed presence of high peaks belonged to TiN(200 and TiN(111 thin films, depending on used etcher of copper surface. The electron diffraction patterns of TiN(200/Cu films confirmed the single-crystal nature of the films with cube-on-cube epitaxy. The high-resolution microscopy on our films revealed sharp interfaces between copper and titanium nitride with no presence of interfacial reaction.

  8. Electrochemical fabrication of nanoporous polypyrrole thin films

    International Nuclear Information System (INIS)

    Li Mei; Yuan Jinying; Shi Gaoquan

    2008-01-01

    Polypyrrole thin films with pores in nanometer scale were synthesized by direct electrochemical oxidation of pyrrole in a mixed electrolyte of isopropyl alcohol, boron trifluoride diethyl etherate, sodium dodecylsulfonate and poly(ethylene glycol) using well-aligned ZnO nanowires arrays as templates. The thin films exhibit high conductivity of ca. σ rt ∼ 20.5 s/cm and can be driven to bend during redox processes in 1.0 M lithium perchlorate aqueous solution. The movement rate of an actuator based on this nanoporous film was measured to be over 90 o /s at a driving potential of 0.8 V (vs. Ag/AgCl)

  9. Polymer surfaces, interfaces and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stamm, M. [Max-Planck-Institut fuer Polymerforschung, Mainz (Germany)

    1996-11-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs.

  10. Polymer surfaces, interfaces and thin films

    International Nuclear Information System (INIS)

    Stamm, M.

    1996-01-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs

  11. Restructuring in block copolymer thin films

    DEFF Research Database (Denmark)

    Posselt, Dorthe; Zhang, Jianqi; Smilgies, Detlef-M.

    2017-01-01

    Block copolymer (BCP) thin films have been proposed for a number of nanotechnology applications, such as nanolithography and as nanotemplates, nanoporous membranes and sensors. Solvent vapor annealing (SVA) has emerged as a powerful technique for manipulating and controlling the structure of BCP...... thin films, e.g., by healing defects, by altering the orientation of the microdomains and by changing the morphology. Due to high time resolution and compatibility with SVA environments, grazing-incidence small-angle X-ray scattering (GISAXS) is an indispensable technique for studying the SVA process......, providing information of the BCP thin film structure both laterally and along the film normal. Especially, state-of-the-art combined GISAXS/SVA setups at synchrotron sources have facilitated in situ and real-time studies of the SVA process with a time resolution of a few seconds, giving important insight...

  12. Method for producing silicon thin-film transistors with enhanced forward current drive

    Science.gov (United States)

    Weiner, Kurt H.

    1998-01-01

    A method for fabricating amorphous silicon thin film transistors (TFTs) with a polycrystalline silicon surface channel region for enhanced forward current drive. The method is particularly adapted for producing top-gate silicon TFTs which have the advantages of both amorphous and polycrystalline silicon TFTs, but without problem of leakage current of polycrystalline silicon TFTs. This is accomplished by selectively crystallizing a selected region of the amorphous silicon, using a pulsed excimer laser, to create a thin polycrystalline silicon layer at the silicon/gate-insulator surface. The thus created polysilicon layer has an increased mobility compared to the amorphous silicon during forward device operation so that increased drive currents are achieved. In reverse operation the polysilicon layer is relatively thin compared to the amorphous silicon, so that the transistor exhibits the low leakage currents inherent to amorphous silicon. A device made by this method can be used, for example, as a pixel switch in an active-matrix liquid crystal display to improve display refresh rates.

  13. Preparation and Characterization of Coevaporated Cd1−xZnxS Alloy Thin Films

    Directory of Open Access Journals (Sweden)

    Wei Li

    2011-01-01

    Full Text Available Cd1-xZnxS thin films have been prepared by the vacuum coevaporation method. The structural, compositional, and optical properties of Cd1-xZnxS thin films have been investigated using X-ray diffraction, X-ray fluorescence, and optical transmittance spectra. As-deposited Cd1-xZnxS thin films are polycrystalline and show the cubic structure for x=1 and hexagonal one for x<1 with the highly preferential orientation. The composition of Cd1-xZnxS thin films determined from Vegard's law and quartz thickness monitors agrees with that determined from the X-ray fluorescence spectra. Optical absorption edge of optical transmittance for Cd1-xZnxS thin films shows a blue shift with the increase of the zinc content. The band gap for Cd1-xZnxS thin films can be tuned nonlinearly with x from about 2.38 eV for CdS to 3.74 eV for ZnS. A novel structure for CuInS2-based solar cells with a Cd0.4Zn0.6S layer is proposed in this paper.

  14. Synthesis and characterization of copper antimony tin sulphide thin films for solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Ali, N., E-mail: nisar.ali@utm.my [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Department of Physics, Govt. Post Graduate Jehanzeb College Saidu Sharif, Swat, 19200 (Pakistan); Hussain, A. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Ahmed, R., E-mail: rashidahmed@utm.my [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Wan Shamsuri, W.N. [Department of Physics, Faculty of Science, Universiti Teknologi Malaysia, UTM Skudai, 81310 Johor (Malaysia); Fu, Y.Q., E-mail: richard.fu@northumbria.ac.uk [Department of Physics and Electrical Engineering, Faculty of Engineering & Environment, University of Northumbria, Newcastle upon Tyne, NE1 8ST (United Kingdom)

    2016-12-30

    Highlights: • A new and novel material for solar cell applications is demonstrated as a replacement for toxic and expansive compounds. • The materials used in this compound are abundant and low cost. • Compound exhibit unusual optical and electrical properties. • The band gap was found to be comparable with that of GaAs. - Abstract: Low price thin film modules based on Copper antimony tin sulphide (CATS) are introduced for solar harvesting to compete for the already developed compound semiconductors. Here, CATS thin films were deposited on soda lime glass by thermal evaporation technique followed by a rapid thermal annealing in an argon atmosphere. From Our XRD analysis, it was revealed that the annealed samples were poly-crystalline and their crystallinity was improved with increasing annealing temperature. The constituent elements and their corresponding chemical states were identified using X-ray photoelectron spectroscopy. The obtained optical band gap of 1.4 eV for CATS thin film is found nearly equal to GaAs – one of the highly efficient thin film material for solar cell technology. Furthermore, our observed good optical absorbance and low transmittance for the annealed CATS thin films in the visible region of light spectrum assured the aptness of the CATS thin films for solar cell applications.

  15. Thin film cadmium telluride charged particle sensors for large area neutron detectors

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, J. W.; Smith, L.; Calkins, J.; Mejia, I.; Cantley, K. D.; Chapman, R. A.; Quevedo-Lopez, M.; Gnade, B., E-mail: gnade@utdallas.edu [Materials Science and Engineering, University of Texas at Dallas, Richardson, Texas 75080 (United States); Kunnen, G. R.; Allee, D. R. [Flexible Display Center, Arizona State University, Phoenix, Arizona 85284 (United States); Sastré-Hernández, J.; Contreras-Puente, G. [Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional, Mexico City 07738 (Mexico); Mendoza-Pérez, R. [Universidad Autónoma de la Ciudad de México, Mexico City 09790 (Mexico)

    2014-09-15

    Thin film semiconductor neutron detectors are an attractive candidate to replace {sup 3}He neutron detectors, due to the possibility of low cost manufacturing and the potential for large areas. Polycrystalline CdTe is found to be an excellent material for thin film charged particle detectors—an integral component of a thin film neutron detector. The devices presented here are characterized in terms of their response to alpha and gamma radiation. Individual alpha particles are detected with an intrinsic efficiency of >80%, while the devices are largely insensitive to gamma rays, which is desirable so that the detector does not give false positive counts from gamma rays. The capacitance-voltage behavior of the devices is studied and correlated to the response due to alpha radiation. When coupled with a boron-based neutron converting material, the CdTe detectors are capable of detecting thermal neutrons.

  16. DC magnetron sputtering prepared Ag-C thin film anode for thin film lithium ion microbatteries

    International Nuclear Information System (INIS)

    Li, Y.; Tu, J.P.; Shi, D.Q.; Huang, X.H.; Wu, H.M.; Yuan, Y.F.; Zhao, X.B.

    2007-01-01

    An Ag-C thin film was prepared by DC magnetron co-sputtering, using pure silver and graphite as the targets. The microstructure and morphology of the deposited thin film were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Electrochemical performances of the Ag-C thin film anode were investigated by means of discharge/charge and cyclic voltammogram (CV) tests in model cells. The electrochemical impedance spectrum (EIS) characteristics and the chemical diffusion coefficient, D Li of the Ag-C thin film electrode at different discharging states were discussed. It was believed that the excellent cycling performance of the Ag-C electrode was ascribed to the good conductivity of silver and the volume stability of the thin film

  17. Large negative magnetoresistance in reactive sputtered polycrystalline GdNx films

    KAUST Repository

    Mi, W. B.

    2013-06-07

    Polycrystalline ferromagnetic GdN x films were fabricated at different N2 flow rates ( fN2 ) to modify N-vacancy concentration so as to study its influence on electrotransport. Metal-semiconductor transition appears at Curie temperature (TC ) of ∼40 K. Temperature-dependent magnetoresistance (MR) shows a peak at T C. The films at fN2  = 5, 10, 15, and 20 sccm show MR of −38%, −42%, −46%, and −86% at 5 K and 50 kOe, respectively. Above 15 K, MR is from colossal MR and from both colossal and tunneling MR below 15 K. The enhanced MR at fN2  = 20 sccm is attributed to large spin polarization of half-metallicity in GdN x with low N vacancies.

  18. Critical behavior of ferromagnetic Ising thin films

    International Nuclear Information System (INIS)

    Cossio, P.; Mazo-Zuluaga, J.; Restrepo, J.

    2006-01-01

    In the present work, we study the magnetic properties and critical behavior of simple cubic ferromagnetic thin films. We simulate LxLxd films with semifree boundary conditions on the basis of the Monte Carlo method and the Ising model with nearest neighbor interactions. A Metropolis dynamics was implemented to carry out the energy minimization process. For different film thickness, in the nanometer range, we compute the temperature dependence of the magnetization, the magnetic susceptibility and the fourth order Binder's cumulant. Bulk and surface contributions of these quantities are computed in a differentiated fashion. Additionally, according to finite size scaling theory, we estimate the critical exponents for the correlation length, magnetic susceptibility, and magnetization. Results reveal a strong dependence of critical temperature and critical exponents on the film thickness. The obtained critical exponents are finally compared to those reported in literature for thin films

  19. Magnetostrictive thin films prepared by RF sputtering

    International Nuclear Information System (INIS)

    Carabias, I.; Martinez, A.; Garcia, M.A.; Pina, E.; Gonzalez, J.M.; Hernando, A.; Crespo, P.

    2005-01-01

    Fe 80 B 20 thin films have been prepared by ion beam sputtering magnetron on room temperature. The films were fabricated on different substrates to compare the different magnetic and structural properties. In particular the growth of films on flexible substrates (PDMS, Kapton) has been studied to allow a simple integration of the system in miniaturized magnetostrictive devices. X-ray diffraction patterns indicate that films are mainly amorphous although the presence of some Fe nanoparticles cannot be ruled out. The coercive field of thin films ranges between 15 and 35 Oe, depending on substrate. Magnetostriction measurements indicate the strong dependence of the saturation magnetostriction with the substrate. Samples on flexible substrates exhibit a better performance than samples deposited onto glass substrates

  20. Dynamics of Polymer Thin Film Mixtures

    Science.gov (United States)

    Besancon, Brian M.; Green, Peter F.; Soles, Christopher L.

    2006-03-01

    We examined the influence of film thickness and composition on the glass transition temperature (Tg) and mean square atomic displacements (MSD) of thin film mixtures of deuterated polystyrene (dPS) and tetramethyl bisphenol-A polycarbonate (TMPC) on Si/SiOx substrates using incoherent elastic neutron scattering (ICNS). The onset of dissipative motions, such as those associated with the glass transition and sub-Tg relaxations, are manifested as ``kinks'' in the curve of elastic intensity (or MSD) versus temperature. From the relevant kinks, the Tg was determined as a function of composition and of film thickness. The dependence of the Tg on film thickness exhibited qualitatively similar trends, at a given composition, as determined by the ICNS and ellipsometry measurements. However, with increasing PS content, the values of Tg measured by INS were consistently larger then those measured by ellipsometry. These results are examined in light of existing models on the thin film glass transition and component blend dynamics.

  1. Effect of Sm doping on the physical properties of ZnO thin films deposited by spray pyrolysis technique

    Science.gov (United States)

    Velusamy, P.; Babu, R. Ramesh; Aparna, K. T.

    2017-05-01

    Undoped and Sm doped ZnO thin films have been prepared by chemical spray pyrolysis method on a glass substrate at 430°C. The physical properties of undoped and Sm doped ZnO thin films are characterized by XRD, FE-SEM, UV-VIS spectroscopy, Hall measurement and PL analysis. XRD pattern reveals that all the films are polycrystalline nature. The FE-SEM study of CdO shows the smooth and uniform surface with the spherical shaped particle. The electrical study reveals the n-type semiconductor and the optical study shows that Sm doped ZnO thin films about 92% transparency and optical band gap vary between 3.266-3.276 eV. Sm doped ZnO thin films have strong green emission behavior.

  2. Sputtered boron indium oxide thin-film transistors

    Science.gov (United States)

    Stewart, Kevin A.; Gouliouk, Vasily; Keszler, Douglas A.; Wager, John F.

    2017-11-01

    Boron indium oxide (BIO) is studied for thin-film transistor (TFT) channel layer applications. Sputtered BIO thin films exhibit an amorphous phase over a wide range of B2O3/In2O3 ratios and remain amorphous up to 500 °C. The band gap decreases linearly with decreasing boron content, whereas device performance generally improves with decreasing boron content. The best amorphous BIO TFT exhibits a field-effect mobility of 10 cm2 V-1 s-1, turn-on voltage of 2.5 V, and sub-threshold swing of 0.72 V/dec. Decreasing the boron content to 12.5% leads to a polycrystalline phase, but further increases the mobility up to 20-40 cm2 V-1 s-1. TCAD simulation results suggest that the reason for higher performance after increasing the anneal temperature from 200 to 400 °C is due to a lower defect density in the sub-bandgap region of the BIO channel layer.

  3. Introduction to thin film transistors physics and technology of TFTs

    CERN Document Server

    Brotherton, S D

    2013-01-01

    Introduction to Thin Film Transistors reviews the operation, application, and technology of the main classes of thin film transistor (TFT) of current interest for large area electronics. The TFT materials covered include hydrogenated amorphous silicon (a-Si:H), poly-crystalline silicon (poly-Si), transparent amorphous oxide semiconductors (AOS), and organic semiconductors. The large scale manufacturing of a-Si:H TFTs forms the basis of the active matrix flat panel display industry. Poly-Si TFTs facilitate the integration of electronic circuits into portable active matrix liquid crystal displays, and are increasingly used in active matrix organic light emitting diode (AMOLED) displays for smart phones. The recently developed AOS TFTs are seen as an alternative option to poly-Si and a-Si:H for AMOLED TV and large AMLCD TV applications, respectively. The organic TFTs are regarded as a cost effective route into flexible electronics. As well as treating the highly divergent preparation and properties of these mat...

  4. Magneto-Optical Thin Films for On-Chip Monolithic Integration of Non-Reciprocal Photonic Devices.

    Science.gov (United States)

    Bi, Lei; Hu, Juejun; Jiang, Peng; Kim, Hyun Suk; Kim, Dong Hun; Onbasli, Mehmet Cengiz; Dionne, Gerald F; Ross, Caroline A

    2013-11-08

    Achieving monolithic integration of nonreciprocal photonic devices on semiconductor substrates has been long sought by the photonics research society. One way to achieve this goal is to deposit high quality magneto-optical oxide thin films on a semiconductor substrate. In this paper, we review our recent research activity on magneto-optical oxide thin films toward the goal of monolithic integration of nonreciprocal photonic devices on silicon. We demonstrate high Faraday rotation at telecommunication wavelengths in several novel magnetooptical oxide thin films including Co substituted CeO₂ -δ , Co- or Fe-substituted SrTiO 3- δ , as well as polycrystalline garnets on silicon. Figures of merit of 3~4 deg/dB and 21 deg/dB are achieved in epitaxial Sr(Ti 0.2 Ga 0.4 Fe 0.4 )O 3- δ and polycrystalline (CeY₂)Fe₅O 12 films, respectively. We also demonstrate an optical isolator on silicon, based on a racetrack resonator using polycrystalline (CeY₂)Fe₅O 12 /silicon strip-loaded waveguides. Our work demonstrates that physical vapor deposited magneto-optical oxide thin films on silicon can achieve high Faraday rotation, low optical loss and high magneto-optical figure of merit, therefore enabling novel high-performance non-reciprocal photonic devices monolithically integrated on semiconductor substrates.

  5. TiO2 thin film growth using the MOCVD method

    Directory of Open Access Journals (Sweden)

    Bernardi M.I.B.

    2001-01-01

    Full Text Available Titanium oxide (TiO2 thin films were obtained using the MOCVD method. In this report we discuss the properties of a film, produced using a ordinary deposition apparatus, as a function of the deposition time, with constant deposition temperature (90 °C, oxygen flow (7,0 L/min and substrate temperature (400 °C. The films were characterized by X-ray diffraction (XRD, scanning electron microscopy (SEM, atomic force microscopy (AFM and visible and ultra-violet region spectroscopy (UV-Vis. The films deposited on Si (100 substrates showed the anatase polycrystalline phase, while the films grown on glass substrates showed no crystallinity. Film thickness increased with deposition time as expected, while the transmittance varied from 72 to 91% and the refractive index remained close to 2.6.

  6. Barium titanate thin films deposited by electrophoresis on p-Doped Si (001) substrates.

    Science.gov (United States)

    Barbosa, J G; Pereira, M R; Moura, C; Mendes, J A; Almeida, B G

    2011-10-01

    Barium titanate (BaTiO3) thin films have been prepared by electrophoretic deposition on p-doped and platinum covered silicon (Si) substrates. Their structure, nanostructure and dielectric properties were characterized. The as-deposited films were polycrystalline and composed by barium titanate nanograins with an average grain size approximately 9 nm. Annealing at high temperatures promoted grain growth, so that the samples annealed at 600 degrees C presented average grain sizes approximately 24 nm. From Raman spectroscopy measurements it was found that the tetragonal (ferroelectric) BaTiO3 phase was stabilized on the films. Also, at higher annealing temperatures, cation disorder was reduced on the films. From measurements of the temperature dependence of the dielectric permittivity the corresponding paraelectric-ferroelectric phase transition was determined. The observed transition temperature (approximately 100 degrees C) was found to be below the BaTiO3 bulk or thick film values, due to the small nanosized grains composing the films.

  7. Elaboration and Characterization of Sprayed Tb-Doped ZnO Thin Films

    Directory of Open Access Journals (Sweden)

    Amina ELFAKIR

    2014-05-01

    Full Text Available ZnO and Tb-doped ZnO (TZO thin films were deposited on glass substrate at 350 °C by spray pyrolysis technique. Structural, optical and electrical properties of the films were investigated as a function of dopant concentration, which was varied between 0 and 5 at % of terbium. TZO films were polycrystalline and exhibit hexagonal quartzite crystal structure with a preferential orientation along 2 direction. The AFM measurements show that the roughness of the films increased with Tb doping. All the TZO films exhibit a transmittance between 70 and 80 % in the visible range. The TZO films were n-type degenerate semiconductor with a lowest electrical resistivity of about 6.0´10- 2 W.cm.

  8. Zeolite thin films: from computer chips to space stations.

    Science.gov (United States)

    Lew, Christopher M; Cai, Rui; Yan, Yushan

    2010-02-16

    Zeolites are a class of crystalline oxides that have uniform and molecular-sized pores (3-12 A in diameter). Although natural zeolites were first discovered in 1756, significant commercial development did not begin until the 1950s when synthetic zeolites with high purity and controlled chemical composition became available. Since then, major commercial applications of zeolites have been limited to catalysis, adsorption, and ion exchange, all using zeolites in powder form. Although researchers have widely investigated zeolite thin films within the last 15 years, most of these studies were motivated by the potential application of these materials as separation membranes and membrane reactors. In the last decade, we have recognized and demonstrated that zeolite thin films can have new, diverse, and economically significant applications that others had not previously considered. In this Account, we highlight our work on the development of zeolite thin films as low-dielectric constant (low-k) insulators for future generation computer chips, environmentally benign corrosion-resistant coatings for aerospace alloys, and hydrophilic and microbiocidal coatings for gravity-independent water separation in space stations. Although these three applications might not seem directly related, they all rely on the ability to fine-tune important macroscopic properties of zeolites by changing their ratio of silicon to aluminum. For example, pure-silica zeolites (PSZs, Si/Al = infinity) are hydrophobic, acid stable, and have no ion exchange capacity, while low-silica zeolites (LSZs, Si/Al zeolites that have not been exploited before, such as a higher elastic modulus, hardness, and heat conductivity than those of amorphous porous silicas, and microbiocidal capabilities derived from their ion exchange capacities. Finally, we briefly discuss our more recent work on polycrystalline zeolite thin films as promising biocompatible coatings and environmentally benign wear-resistant and

  9. Thin Films in the Photovoltaic Industry

    International Nuclear Information System (INIS)

    Jaeger-Waldau, A.

    2008-03-01

    In the past years, the yearly world market growth rate for Photovoltaics was an average of more than 40%, which makes it one of the fastest growing industries at present. Business analysts predict the market volume to increase to 40 billion euros in 2010 and expect rising profit margins and lower prices for consumers at the same time. Today PV is still dominated by wafer based Crystalline Silicon Technology as the 'working horse' in the global market, but thin films are gaining market shares. For 2007 around 12% are expected. The current silicon shortage and high demand has kept prices higher than anticipated from the learning curve experience and has widened the windows of opportunities for thin film solar modules. Current production capacity estimates for thin films vary between 3 and 6 GW in 2010, representing a 20% market share for these technologies. Despite the higher growth rates for thin film technologies compared with the industry average, Thin Film Photovoltaic Technologies are still facing a number of challenges to maintain this growth and increase market shares. The four main topics which were discussed during the workshop were: Potential for cost reduction; Standardization; Recycling; Performance over the lifetime.

  10. Structural, electronic transport and optical properties of Cr doped PbS thin film by chemical bath deposition

    Science.gov (United States)

    Preetha, K. C.

    2017-06-01

    Incorporation of Chromium ions into Lead Sulphide thin films have been achieved by CBD technique. Effects of doping were investigated as a function of Pb/Cr ratio from o to 2 at %. X-ray diffraction patterns showed that films were polycrystalline in nature with increase in crystallite size up to an optimum doping concentration. Scanning electron microscopic study revealed excellent morphology with doping concentration. The low transmittance in the UV-VIS region offered the suitability of the samples as solar control coatings. The thin films were found to be P type and electrical conductivity enhanced on doping.

  11. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 Angstrom), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 Angstrom of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films

  12. Thermal conductivity of dielectric thin films

    International Nuclear Information System (INIS)

    Lambropoulos, J.C.; Jolly, M.R.; Amaden, C.A.; Gilman, S.E.; Sinicropi, M.J.; Diakomihalis, D.; Jacobs, S.D.

    1989-05-01

    A direct reading thermal comparator has been used to measure the thermal conductivity of dielectric thin film coatings. In the past, the thermal comparator has been used extensively to measure the thermal conductivity of bulk solids, liquids, and gases. The technique has been extended to thin film materials by making experimental improvements and by the application of an analytical heat flow model. Our technique also allows an estimation of the thermal resistance of the film/substrate interface which is shown to depend on the method of film deposition. The thermal conductivity of most thin films was found to be several orders of magnitude lower than that of the material in bulk form. This difference is attributed to structural disorder of materials deposited in thin film form. The experimentation to date has centered primarily on optical coating materials. These coatings, used to enhance the optical properties of components such as lenses and mirrors, are damaged by thermal loads applied in high-power laser applications. It has been widely postulated that there may be a correlation between the thermal conductivity and the damage threshold of these materials. 31 refs., 11 figs., 8 tabs

  13. Optical properties and structure of HfO{sub 2} thin films grown by high pressure reactive sputtering

    Energy Technology Data Exchange (ETDEWEB)

    MartInez, F L [Departamento de Electronica y TecnologIa de Computadoras, Universidad Politecnica de Cartagena, Campus Universitario Muralla del Mar, E-30202 Cartagena (Spain); Toledano-Luque, M [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28040 Madrid (Spain); GandIa, J J [Departamento de EnergIa, CIEMAT, Avda. Complutense 22, E-28040 Madrid (Spain); Carabe, J [Departamento de EnergIa, CIEMAT, Avda. Complutense 22, E-28040 Madrid (Spain); Bohne, W [Hahn-Meitner-Institut Berlin, Abteilung SF4, D-14109 Berlin (Germany); Roehrich, J [Hahn-Meitner-Institut Berlin, Abteilung SF4, D-14109 Berlin (Germany); Strub, E [Hahn-Meitner-Institut Berlin, Abteilung SF4, D-14109 Berlin (Germany); Martil, I [Departamento de Fisica Aplicada III, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2007-09-07

    Thin films of hafnium oxide (HfO{sub 2}) have been grown by high pressure reactive sputtering on transparent quartz substrates (UV-grade silica) and silicon wafers. Deposition conditions were adjusted to obtain polycrystalline as well as amorphous films. Optical properties of the films deposited on the silica substrates were investigated by transmittance and reflectance spectroscopy in the ultraviolet, visible and near infrared range. A numerical analysis method that takes into account the different surface roughness of the polycrystalline and amorphous films was applied to calculate the optical constants (refractive index and absorption coefficient). Amorphous films were found to have a higher refractive index and a lower transparency than polycrystalline films. This is attributed to a higher density of the amorphous samples, which was confirmed by atomic density measurements performed by heavy-ion elastic recoil detection analysis. The absorption coefficient gave an excellent fit to the Tauc law (indirect gap), which allowed a band gap value of 5.54 eV to be obtained. The structure of the films (amorphous or polycrystalline) was found to have no significant influence on the nature of the band gap. The Tauc plots also give information about the structure of the films, because the slope of the plot (the Tauc parameter) is related to the degree of order in the bond network. The amorphous samples had a larger value of the Tauc parameter, i.e. more order than the polycrystalline samples. This is indicative of a uniform bond network with percolation of the bond chains, in contrast to the randomly oriented polycrystalline grains separated by grain boundaries.

  14. Thin films of thermoelectric compound Mg2Sn deposited by co-sputtering assisted by multi-dipolar microwave plasma

    International Nuclear Information System (INIS)

    Le-Quoc, H.; Lacoste, A.; Hlil, E.K.; Bes, A.; Vinh, T. Tan; Fruchart, D.; Skryabina, N.

    2011-01-01

    Highlights: → Mg 2 Sn thin films deposited by plasma co-sputtering, on silicon and glass substrates. → Formation of nano-grained polycrystalline films on substrates at room temperature. → Structural properties vary with target biasing and target-substrate distance. → Formation of the hexagonal phase of Mg 2 Sn in certain deposition conditions. → Power factor ∼5.0 x 10 -3 W K -2 m -1 for stoichiometric Mg 2 Sn films doped with ∼1 at.% Ag. - Abstract: Magnesium stannide (Mg 2 Sn) thin films doped with Ag intended for thermoelectric applications are deposited on both silicon and glass substrates at room temperature by plasma assisted co-sputtering. Characterization by scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction confirms the formation of fine-grained polycrystalline thin films with thickness of 1-3 μm. Stoichiometry, microstructure and crystal structure of thin films are found to vary with target biasing and the distance from targets to substrate. Measurements of electrical resistivity and Seebeck coefficient at room temperature show the maximum power factor of ∼5.0 x 10 -3 W K -2 m -1 for stoichiometric Mg 2 Sn thin films doped with ∼1 at.% Ag.

  15. Failure and fracture of thin film materials for MEMS

    Science.gov (United States)

    Jonnalagadda, Krishna Nagasai

    Design and reliable operation of Microelectromechanical systems (MEMS) depend on the material parameters that influence the failure and fracture properties of brittle and metallic thin films. Failure in brittle materials is quantified by the onset of catastrophic fracture, while in metals, the onset of inelastic deformation is considered as failure as it increases the material compliance. This dissertation research developed new experimental methods to address three aspects on the failure response of these two categories of materials: (a) the role of microstructure and intrinsic stress gradients in the opening mode fracture of mathematically sharp pre-cracks in amorphous and polycrystalline brittle thin films, (b) the critical conditions for mixed mode I/II pre-cracks and their comparison with linear elastic fracture mechanics (LEFM) criteria for crack initiation in homogeneous materials, and (c) the strain rate sensitivity of textured nanocrystalline Au and Pt films with grain sizes of 38 nm and 25 nm respectively. One of the technical objectives of this research was to develop experimental methods and tools that could become standards in MEMS and thin film experimental mechanics. In this regard, a new method was introduced to conduct mode I and mixed mode I/II fracture studies with microscale thin film specimens containing sharp edge pre-cracks. The mode I experiments permitted the direct application of LEFM handbook solutions. On the other hand, the newly introduced mixed mode I/II experiments in thin films were conducted by establishing a new protocol that employs non-standard oblique edge pre-cracks and a numerical analysis based on the J-integral to calculate the stress intensity factors. Similarly, a new experimental protocol has been implemented to carry out experiments with metallic thin films at strain rates that vary by more than six orders of magnitude. The results of mode I fracture experiments concluded that grain inhomogeneity in polycrystalline

  16. SnS thin films prepared by H2S-free process and its p-type thin film transistor

    Directory of Open Access Journals (Sweden)

    Fan-Yong Ran

    2016-01-01

    Full Text Available Polycrystalline SnS thin films were fabricated by a H2S-free process combing pulsed laser deposition at room temperature and post-deposition thermal annealing in Ar. Thermal annealing improved the crystalline quality of the SnS films and the best films were obtained by 400 °C annealing. The obtained SnS films exhibited p-type conduction with the highest Hall mobility of 28 cm2/(V ⋅ s and the carrier densities of 1.5 × 1015 – 1.8 × 1016 cm−3. The SnS TFT exhibited p-type operation with a field effect mobility and an on-off drain current ratio of 0.4 cm2/(V ⋅ s and 20, respectively.

  17. Organic thin films and surfaces directions for the nineties

    CERN Document Server

    Ulman, Abraham

    1995-01-01

    Physics of Thin Films has been one of the longest running continuing series in thin film science consisting of 20 volumes since 1963. The series contains some of the highest quality studies of the properties ofvarious thin films materials and systems.In order to be able to reflect the development of todays science and to cover all modern aspects of thin films, the series, beginning with Volume 20, will move beyond the basic physics of thin films. It will address the most important aspects of both inorganic and organic thin films, in both their theoretical as well as technological aspects. Ther

  18. Domains in Ferroic Crystals and Thin Films

    CERN Document Server

    Tagantsev, Alexander K; Fousek, Jan

    2010-01-01

    Domains in Ferroic Crystals and Thin Films presents experimental findings and theoretical understanding of ferroic (non-magnetic) domains developed during the past 60 years. It addresses the situation by looking specifically at bulk crystals and thin films, with a particular focus on recently-developed microelectronic applications and methods for observation of domains with techniques such as scanning force microscopy, polarized light microscopy, scanning optical microscopy, electron microscopy, and surface decorating techniques. Domains in Ferroic Crystals and Thin Films covers a large area of material properties and effects connected with static and dynamic properties of domains, which are extremely relevant to materials referred to as ferroics. In most solid state physics books, one large group of ferroics is customarily covered: those in which magnetic properties play a dominant role. Numerous books are specifically devoted to magnetic ferroics and cover a wide spectrum of magnetic domain phenomena. In co...

  19. Nanostructured thin films and coatings mechanical properties

    CERN Document Server

    2010-01-01

    The first volume in "The Handbook of Nanostructured Thin Films and Coatings" set, this book concentrates on the mechanical properties, such as hardness, toughness, and adhesion, of thin films and coatings. It discusses processing, properties, and performance and provides a detailed analysis of theories and size effects. The book presents the fundamentals of hard and superhard nanocomposites and heterostructures, assesses fracture toughness and interfacial adhesion strength of thin films and hard nanocomposite coatings, and covers the processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. It also uses nanomechanics to optimize coatings for cutting tools and explores various other coatings, such as diamond, metal-containing amorphous carbon nanostructured, and transition metal nitride-based nanolayered multilayer coatings.

  20. Solid surfaces, interfaces and thin films

    CERN Document Server

    Lüth, Hans

    2015-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin-film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological structure, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure research, particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures. A special chapter of the book is devoted to collective phenomena at interfaces and in thin films such as superconductivity and magnetism. The latter topic includes the meanwhile important issues giant magnetoresistance and spin-transfer torque mechanism, both effects being of high interest in information technology. In this new edition, for the first time, the effect of spin-orbit coupling on surface states is treated. In this context the class of the recently detected topological insulators,...

  1. Solid Surfaces, Interfaces and Thin Films

    CERN Document Server

    Lüth, Hans

    2010-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure physics particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures as well as to superconductor/semiconductor interfaces and magnetic thin films. The latter topic was significantly extended in this new edition by more details about the giant magnetoresistance and a section about the spin-transfer torque mechanism including one new problem as exercise. Two new panels about Kerr-effect and spin-polarized scanning tunnelling microscopy were added, too. Furthermore, the meanwhile important group III-nitride surfaces and high-k oxide/semiconductor interfaces are shortly discu...

  2. Capillary stress in microporous thin films

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, J.; Hurd, A.J.; Frink, L.J.D.; Swol, F. van [Sandia National Labs., Albuquerque, NM (United States); Brinker, C.J. [Sandia National Labs., Albuquerque, NM (United States). Ceramic Processing Science Dept.]|[Univ. of New Mexico, Albuquerque, NM (United States). Center for Micro Engineering Ceramics; Raman, N.K. [Univ. of New Mexico, Albuquerque, NM (United States). Center for Micro Engineered Ceramics

    1996-06-01

    Development of capillary stress in porous xerogels, although ubiquitous, has not been systematically studied. The authors have used the beam bending technique to measure stress isotherms of microporous thin films prepared by a sol-gel route. The thin films were prepared on deformable silicon substrates which were then placed in a vacuum system. The automated measurement was carried out by monitoring the deflection of a laser reflected off the substrate while changing the overlying relative pressure of various solvents. The magnitude of the macroscopic bending stress was found to reach a value of 180 MPa at a relative pressure of methanol, P/Po = 0.001. The observed stress is determined by the pore size distribution and is an order of magnitude smaller in mesoporous thin films. Density Functional Theory (DFT) indicates that for the microporous materials, the stress at saturation is compressive and drops as the relative pressure is reduced.

  3. Vibration welding system with thin film sensor

    Science.gov (United States)

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  4. Ageing effect in spray pyrolysed B:SnO2 thin films for LPG sensing

    Science.gov (United States)

    Skariah, Benoy; Thomas, Boben

    2014-10-01

    For LPG sensing, boron doped (0.2 to 0.8 wt. %) polycrystalline tin oxide thin films are deposited by spray pyrolysis in the temperature range 325 - 430 °C. Sensor response of 56 % is achieved for 1000 ppm of LPG, at an operating temperature of 350 °C. The effects of ageing under ambient conditions on the sensor response are investigated for a storage period of six years. Ageing increases the film resistance but the gas response is lowered. XRD, SEM, FESEM, FTIR and XPS are utilized for structural, morphological and compositional charaterisations.

  5. Ion beam modification and analysis of thin YBa2Cu3O7 films

    International Nuclear Information System (INIS)

    Meyer, O.

    1989-04-01

    The application of ion beams for the analysis and modification of high Tc superconductors is reviewed. Ion backscattering and channeling spectroscopy is used to optimize the film composition and the epitaxial growth performance on various single crystalline substrates. The influence of radiation damage on the transport properties and on the structure of polycrystalline as well as of single crystalline thin films is presented. The irradiation induced metal to insulator phase transition is discussed in detail. Some applications including the use of ion implantation for structuring are summarized. (orig.) [de

  6. Thermally stimulated currents in polycrystalline diamond films and their application to ultraviolet dosimetry

    International Nuclear Information System (INIS)

    Trajkov, E.; Prawer, S.

    1999-01-01

    Quantifying individual exposure to solar ultraviolet radiation (UVR) is imperative to understanding the epidemiology of UVR related skin cancer. The development of personal UVR dosimeters is hence essential for obtaining data regarding individual UVR exposure, which can then be used to establish appropriate protective measures for occupational and recreational exposure. Because diamond is a tissue equivalent material and has a wide band-gap, CVD polycrystalline diamond has been proposed for use in solar-blind UV dosimetry. It has been reported that the photoconductivity in polycrystalline diamond films is enhanced after UV illumination Photo-generated carriers can be trapped at some deep levels after illumination. Because these levels are deep the thermal release of carriers is a slow process at room temperature. Therefore the new carrier distribution reached after illumination can result in a metastable state because the temperature is too low to restore the initial equilibrium. The sample can be bought back to initial equilibrium by heating. If the current is recorded during heating of the samples one can observe current peaks corresponding to the thermal release of trapped carriers, the so-called thermally stimulated currents (TSC). From first-order kinetics, we find that the TSC intensity is proportional to the initial density of trapped carriers, n to . Since n to varies with the radiation dose, the measurement of TSC can find an application in radiation dosimetry since the measurement of TSC gives a direct measure of that dose. Nitrogen can be used to introduce deep traps in diamond. This investigation will involve examining the affect of the nitrogen concentration on the irradiation response of the films. Furthermore, we will analyse the fading rate of the TSC signal. If diamond films are to have a practical application in UVR dosimetry, then ideally we require a linear relationship between the dose response and the TSC, and we also require a low fading rate

  7. Surface smoothing effect of an amorphous thin film deposited by atomic layer deposition on a surface with nano-sized roughness

    Directory of Open Access Journals (Sweden)

    W. S. Lau

    2014-02-01

    Full Text Available Previously, Lau (one of the authors pointed out that the deposition of an amorphous thin film by atomic layer deposition (ALD on a substrate with nano-sized roughness probably has a surface smoothing effect. In this letter, polycrystalline zinc oxide deposited by ALD onto a smooth substrate was used as a substrate with nano-sized roughness. Atomic force microscopy (AFM and cross-sectional transmission electron microscopy (XTEM were used to demonstrate that an amorphous aluminum oxide thin film deposited by ALD can reduce the surface roughness of a polycrystalline zinc oxide coated substrate.

  8. The role of defects in the electrical properties of NbO2thin film vertical devices

    Science.gov (United States)

    Joshi, Toyanath; Borisov, Pavel; Lederman, David

    Epitaxial NbO2 thin films were grown on Si:GaN layers deposited on Al2O3 substrates using pulsed laser deposition. Pulsed current-voltage (IV) curves and self-sustained current oscillations were measured across a 31 nm NbO2 film and compared with a similar device made from polycrystalline NbO2 film grown on TiN-coated SiO2/Si substrate. Crystal quality of the as grown films was determined from x-ray diffractometric, x-ray photoelectron spectroscopy and atomic force microscopy data. The epitaxial film device was found to be more stable than the defect-rich polycrystalline sample in terms of current switching and oscillation behaviors. This work was supported in part by FAME, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA (Contract 2013-MA-2382), and the WVU Shared Research Facilities.

  9. The role of defects in the electrical properties of NbO2 thin film vertical devices

    Directory of Open Access Journals (Sweden)

    Toyanath Joshi

    2016-12-01

    Full Text Available Epitaxial NbO2 thin films were grown on Si:GaN layers deposited on Al2O3 substrates using pulsed laser deposition. Pulsed current-voltage (IV curves and self-sustained current oscillations were measured across a 31 nm NbO2 film and compared with a similar device made from polycrystalline NbO2 film grown on TiN-coated SiO2/Si substrate. Crystal quality of the as grown films was determined from x-ray diffractometry, x-ray photoelectron spectroscopy and atomic force microscopy data. The epitaxial film device was found to be more stable than the defect-rich polycrystalline sample in terms of current switching and oscillation behaviors.

  10. Intrinsically conductive polymer thin film piezoresistors

    DEFF Research Database (Denmark)

    Lillemose, Michael; Spieser, Martin; Christiansen, N.O.

    2008-01-01

    We report on the piezoresistive effect in the intrinsically conductive polymer, polyaniline. A process recipe for indirect patterning of thin film polyaniline has been developed. Using a specially designed chip, the polyaniline thin films have been characterised with respect to resistivity...... and strain sensitivity using two- and four-point measurement method. We have found that polyaniline has a negative gauge factor of K = -4.9, which makes it a candidate for piezoresistive read-out in polymer based MEMS-devices. (C) 2007 Elsevier B.V. All rights reserved....

  11. Micro-sensor thin-film anemometer

    Science.gov (United States)

    Sheplak, Mark (Inventor); McGinley, Catherine B. (Inventor); Spina, Eric F. (Inventor); Stephens, Ralph M. (Inventor); Hopson, Jr., Purnell (Inventor); Cruz, Vincent B. (Inventor)

    1996-01-01

    A device for measuring turbulence in high-speed flows is provided which includes a micro-sensor thin-film probe. The probe is formed from a single crystal of aluminum oxide having a 14.degree. half-wedge shaped portion. The tip of the half-wedge is rounded and has a thin-film sensor attached along the stagnation line. The bottom surface of the half-wedge is tilted upward to relieve shock induced disturbances created by the curved tip of the half-wedge. The sensor is applied using a microphotolithography technique.

  12. A generalized theory of thin film growth

    Science.gov (United States)

    Du, Feng; Huang, Hanchen

    2018-03-01

    This paper reports a theory of thin film growth that is generalized for arbitrary incidence angle during physical vapor deposition in two dimensions. The accompanying kinetic Monte Carlo simulations serve as verification. A special theory already exists for thin film growth with zero incidence angle, and another theory also exists for nanorod growth with a glancing angle. The theory in this report serves as a bridge to describe the transition from thin film growth to nanorod growth. In particular, this theory gives two critical conditions in analytical form of critical coverage, ΘI and ΘII. The first critical condition defines the onset when crystal growth or step dynamics stops following the wedding cake model for thin film growth. The second critical condition defines the onset when multiple-layer surface steps form to enable nanorod growth. Further, this theory also reveals a critical incidence angle, below which nanorod growth is impossible. The critical coverages, together with the critical incidence angle, defines a phase diagram of thin growth versus nanorod growth.

  13. Lattice Mismatch in Crystalline Nanoparticle Thin Films.

    Science.gov (United States)

    Gabrys, Paul A; Seo, Soyoung E; Wang, Mary X; Oh, EunBi; Macfarlane, Robert J; Mirkin, Chad A

    2018-01-10

    For atomic thin films, lattice mismatch during heteroepitaxy leads to an accumulation of strain energy, generally causing the films to irreversibly deform and generate defects. In contrast, more elastically malleable building blocks should be better able to accommodate this mismatch and the resulting strain. Herein, that hypothesis is tested by utilizing DNA-modified nanoparticles as "soft," programmable atom equivalents to grow a heteroepitaxial colloidal thin film. Calculations of interaction potentials, small-angle X-ray scattering data, and electron microscopy images show that the oligomer corona surrounding a particle core can deform and rearrange to store elastic strain up to ±7.7% lattice mismatch, substantially exceeding the ±1% mismatch tolerated by atomic thin films. Importantly, these DNA-coated particles dissipate strain both elastically through a gradual and coherent relaxation/broadening of the mismatched lattice parameter and plastically (irreversibly) through the formation of dislocations or vacancies. These data also suggest that the DNA cannot be extended as readily as compressed, and thus the thin films exhibit distinctly different relaxation behavior in the positive and negative lattice mismatch regimes. These observations provide a more general understanding of how utilizing rigid building blocks coated with soft compressible polymeric materials can be used to control nano- and microstructure.

  14. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.

    2014-10-30

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  15. Silver buffer layers for YBCO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, J. [Tel Aviv Univ. (Israel). Center for Technol. Education Holon

    1999-09-01

    A simple economical conventional vacuum system was used for evaporation of YBCO thin films on as-deposited unbuffered Ag layers on MgO substrates. The subsequent heat treatment was carried out in low oxygen partial pressure at a relative low temperature and short dwelling time. The films thus obtained were characterized for electrical properties using dc four probe electrical measurements and inspected for structural properties and chemical composition by scanning electron microscopy (SEM). (orig.)

  16. Mechanical integrity of thin films

    International Nuclear Information System (INIS)

    Hoffman, R.W.

    1979-01-01

    Mechanical considerations starting with the initial film deposition including questions of adhesion and grading the interface are reviewed. Growth stresses, limiting thickness, stress relief, control aging, and creep are described

  17. Tight comparison of Mg and Y thin film photocathodes obtained by the pulsed laser deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Lorusso, A. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy); Gontad, F., E-mail: francisco.gontad@le.infn.it [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy); Solombrino, L. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy); Chiadroni, E. [Laboratori Nazionali di Frascati, Istituto Nazionale di Fisica Nucleare, 00044 Frascati (Italy); Broitman, E. [Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-58183 Linköping (Sweden); Perrone, A. [Dipartimento di Matematica e Fisica “E. De Giorgi”, Università del Salento and Istituto Nazionale di Fisica Nucleare, 73100 Lecce (Italy)

    2016-11-11

    In this work Magnesium (Mg) and Yttrium (Y) thin films have been deposited on Copper (Cu) polycrystalline substrates by the pulsed laser ablation technique for photocathode application. Such metallic materials are studied for their interesting photoemission properties and are proposed as a good alternative to the Cu photocathode, which is generally used in radio-frequency guns. Mg and Y films were uniform with no substantial differences in morphology; a polycrystalline structure was found for both of them. Photoemission measurements of such cathodes based on thin films were performed, revealing a quantum efficiency higher than Cu bulk. Photoemission theory according to the three-step model of Spicer is invoked to explain the superior photoemission performance of Mg with respect to Y. - Highlights: • Mg and Y thin film photocathodes were successfully prepared by pulsed laser deposition. • Mg quantum efficiency is higher than Y, despite its higher work function. • The three-step model of Spicer justify the difference in quantum efficiency.

  18. Mesoscale simulations of confined Nafion thin films

    Science.gov (United States)

    Vanya, P.; Sharman, J.; Elliott, J. A.

    2017-12-01

    The morphology and transport properties of thin films of the ionomer Nafion, with thicknesses on the order of the bulk cluster size, have been investigated as a model system to explain the anomalous behaviour of catalyst/electrode-polymer interfaces in membrane electrode assemblies. We have employed dissipative particle dynamics (DPD) to investigate the interaction of water and fluorocarbon chains, with carbon and quartz as confining materials, for a wide range of operational water contents and film thicknesses. We found confinement-induced clustering of water perpendicular to the thin film. Hydrophobic carbon forms a water depletion zone near the film interface, whereas hydrophilic quartz results in a zone with excess water. There are, on average, oscillating water-rich and fluorocarbon-rich regions, in agreement with experimental results from neutron reflectometry. Water diffusivity shows increasing directional anisotropy of up to 30% with decreasing film thickness, depending on the hydrophilicity of the confining material. A percolation analysis revealed significant differences in water clustering and connectivity with the confining material. These findings indicate the fundamentally different nature of ionomer thin films, compared to membranes, and suggest explanations for increased ionic resistances observed in the catalyst layer.

  19. Magnetocaloric effect of thin Terbium films

    Science.gov (United States)

    Mello, V. D.; Anselmo, D. H. A. L.; Vasconcelos, M. S.; Almeida, N. S.

    2017-12-01

    We report a theoretical study of the magnetocaloric effect of Terbium (Tb) thin films due to finite size and surface effects in the helimagnetic phase, corresponding to a temperature range from TC=219 K to TN=231 K, for external fields of the order of kOe. For a Tb thin film of 6 monolayers submitted to an applied field (ΔH =30 kOe, ΔH =50 kOe and ΔH = 70 kOe) we report a significative change in adiabatic temperature, ΔT / ΔH , near the Néel temperature, of the order ten times higher than that observed for Tb bulk. On the other hand, for small values of the magnetic field, large thickness effects are found. For external field strength around few kOe, we have found that the thermal caloric efficiency increases remarkably for ultrathin films. For an ultrathin film with 6 monolayers, we have found ΔT / ΔH = 43 K/T while for thicker films, with 20 monolayers, ΔT / ΔH = 22 K/T. Our results suggest that thin films of Tb are a promising material for magnetocaloric effect devices for applications at intermediate temperatures.

  20. Electron scattering at surfaces and grain boundaries in Cu thin films and wires

    Science.gov (United States)

    Chawla, J. S.; Gstrein, F.; O'Brien, K. P.; Clarke, J. S.; Gall, D.

    2011-12-01

    The electron scattering at surfaces, interfaces, and grain boundaries is investigated using polycrystalline and single-crystal Cu thin films and nanowires. The experimental data is described by a Fuchs-Sondheimer (FS) and Mayadas-Shatzkes (MS) model that is extended to account for the large variation in the specific resistivity of different grain boundaries as well as distinct top and bottom surfaces with different scattering specularity p. Textured polycrystalline Cu(111) thin films with thickness d = 25-50 nm are deposited on a stack of 7.5-nm Ta on SiO2/Si(001). Subsequent annealing results in small-grain (SG) thin films with an average grain size D¯ that increases from 90 to 120 nm with increasing d. Corresponding large-grain (LG) thin films with D¯ = 160-220 nm are obtained by depositing 100-200-nm-thick films, followed by an in-situ anneal and a subsequent etch to match the thickness of the SG samples. Nanowires are fabricated from the SG and LG thin films using a subtractive patterning process, yielding wire widths of 75-350 nm. Single-crystal and LG layers exhibit a 18-22% and 10-15% lower resistivity than SG layers, respectively. The resistivity decrease from SG to LG Cu nanowires is 7-9%. The thickness and grain size dependence of the resistivity of polycrystalline and single-crystal Cu layers is well described by an exact version of the existing FS + MS model but is distinct from the commonly used approximation, which introduces an error that increases with decreasing layer thickness from 6.5% for d = 50 nm to 17% for d = 20 nm. The case of nanowires requires the FS + MS model to be extended to account for variation in the grain boundary reflection coefficient R, which effectively increases the overall resistivity by, for example, 16% for 50 × 45 nm2 wires. The overall data from single and polycrystalline Cu layers and wires yields R = 0.25 ± 0.05, and p = 0 at Cu-air and Cu-Ta interfaces.

  1. Scanning x-ray microdiffraction with submicron white beam for strain and orientation mapping in thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tamura, N.; MacDowell, A.A.; Spolenak, R.; Valek, B.C.; Bravman, J.C.; Brown, W.L.; Celestre, R.S.; Padmore, H.A.; Batterman, B.W.; Patel, J.R.

    2003-01-14

    Scanning X-ray Microdiffraction (m-SXRD) combines the use of high brilliance synchrotron sources with the latest achromatic X-ray focusing optics and fast large area 2D-detector technology. Using white beams or a combination of white and monochromatic beams, it allows for orientation and strain/stress mapping of polycrystalline thin films with submicron spatial resolution. The technique is described in detail as applied to the study of thin aluminium and copper blanket films and lines following electromigration testing and/or thermal cycling experiments. It is shown that there are significant orientation and strain/stress variations between grains and inside individual grains. A polycrystalline film when investigated at the granular (micron) level shows a highly mechanically inhomogeneous medium that allows insight into its mesoscopic properties. If the m-SXRD data are averaged over a macroscopic range, results show good agreement with direct macroscopic texture and stress measurements .

  2. The investigation of the Cr doped ZnO thin films deposited by thermionic vacuum arc technique

    Science.gov (United States)

    Mohammadigharehbagh, Reza; Pat, Suat; Musaoglu, Caner; Korkmaz, Şadan; Özen, Soner

    2018-02-01

    Cr doped ZnO thin films were prepared onto glass and polyethylene terephthalate (PET) substrates using thermionic vacuum arc. XRD patterns show the polycrystalline nature of the films. Cr, Zn, ZnO and Cr2O3 were detected in the layers. The mean crystallite sizes of the films were calculated about 20 nm for the films onto glass and PET substrates. The maximum dislocation density and internal strain values of the films are calculated. According to the optical analysis, the average transmittance and reflectance of the films were found to be approximately 53% and 16% for glass and PET substrates, respectively. The mean refractive index of the layer decreased to 2.15 from 2.38 for the PET substrate. The band gap values of the Cr-doped ZnO thin films were determined as 3.10 and 3.13 eV for glass and PET substrates.

  3. Interfacial effects on the electrical properties of multiferroic BiFeO3/Pt/Si thin film heterostructures

    International Nuclear Information System (INIS)

    Yakovlev, S.; Zekonyte, J.; Solterbeck, C.-H.; Es-Souni, M.

    2005-01-01

    Polycrystalline BiFeO 3 thin films of various thickness were fabricated on (111)Pt/Ti/SiO 2 /Si substrates via chemical solution deposition. The electrical properties were investigated using impedance and leakage current measurements. X-ray photoelectron spectroscopy (XPS) combined with Ar ion milling (depth profiling) was used to investigate elemental distribution near the electrode-film interface. It is shown that the dielectric constant depends on film thickness due to the presence of an interfacial film-electrode layer evidenced by XPS investigation. Direct current conductivity is found to be governed by Schottky and/or Poole-Frenkel mechanisms

  4. Electronic density of state of Mn-N thin films measured by XPS

    CERN Document Server

    Morio, K

    2003-01-01

    Polycrystalline thin films with an oriented direction of epsilon-Mn sub 4 N along the (111) axis and of eta-Mn sub 3 N sub 2 along the (113) axis were prepared as a single phase by RF reactive magnetron sputtering method. A comparison of XPS spectral analysis with discrete Variational-X alpha method showed that the N atoms in Mn-N compounds behave as a donor and govern the magnetic properties of the films. The epsilon-Mn sub 4 N films was a single phase perovskite type crystal with lattice parameter 0.386 nm, and this films had properties of the ferrimagnetism with 1.1 mu sub B per unit cell. The eta-Mn sub 3 N sub 2 films was face center tetragonal (a=0.4205 nm, c=1.2131 nm), and it had properties of antiferromagnetism with 0.4 mu sub B per unit cell. (author)

  5. Properties of SrBi sub 2 Nb sub 2 O sub 9 thin films on Pt-coated Si

    CERN Document Server

    Avila, R E; Martin, V D C; Fernandez, L M; Sylvester, G S; Retuert, P J; Gramsch, E

    2002-01-01

    SrBi sub 2 Nb sub 2 O sub 9 powders and thin films, on Pt-coated Si, were synthesised by the sol-gel method. Three-layer thin films appear homogeneous down to the 100 nm scale, polycrystalline in the tetragonal Aurivillius phase, at a average thickness of 40 nm per layer. The index of refraction at the center of the visible range increases with the sintering temperature from roughly 2.1 (at 400 Centigrade) to 2.5 (at 700 Centigrade). The expression n sup 2 -1 increases linearly with the relative density of the thin films, in similar fashion as previous studies in PbTiO sub 3 thin films. The dielectric constant in quasistatic and high frequency (1 MHz) modes, is between 160 and 230. (Author)

  6. Properties of SrBi2Nb2O9 thin films on Pt-coated Si

    International Nuclear Information System (INIS)

    Avila, R.E.; Navarro, P.O.; Martin, V. del C.; Fernandez, L.M.; Sylvester, G.; Retuert, P.J.; Gramsch, E.

    2002-01-01

    SrBi 2 Nb 2 O 9 powders and thin films, on Pt-coated Si, were synthesised by the sol-gel method. Three-layer thin films appear homogeneous down to the 100 nm scale, polycrystalline in the tetragonal Aurivillius phase, at a average thickness of 40 nm per layer. The index of refraction at the center of the visible range increases with the sintering temperature from roughly 2.1 (at 400 Centigrade) to 2.5 (at 700 Centigrade). The expression n 2 -1 increases linearly with the relative density of the thin films, in similar fashion as previous studies in PbTiO 3 thin films. The dielectric constant in quasistatic and high frequency (1 MHz) modes, is between 160 and 230. (Author)

  7. Optical characterization of niobium pentoxide thin films

    International Nuclear Information System (INIS)

    Pawlicka, A.

    1996-01-01

    Thin films of Nb 2 O 5 were obtained by sol-gel method using ultrasonic irradiation and deposited by dip-coating technique. After calcination at temperatures superior than 500 deg C these films (300 nm thick) were characterized by cyclic voltametry and cronoamperometry. The memory measurements, color efficiency, optical density as a function of wave number and applied potential were effectuated to determine their electrochromic properties. The study of electrochromic properties of these films shows that the insertion process of lithium is reversible and changes their coloration from transparent (T=80%) to dark blue (T=20%). (author)

  8. Transparent thin films of indium tin oxide: Morphology-optical investigations, inter dependence analyzes

    Science.gov (United States)

    Prepelita, P.; Filipescu, M.; Stavarache, I.; Garoi, F.; Craciun, D.

    2017-12-01

    Using a fast and eco-friendly deposition method, ITO thin films with different thicknesses (0.5 μm-0.7 μm) were deposited on glass substrates by radio frequency magnetron sputtering technique. A comparative analysis of these oxide films was then carried out. AFM investigations showed that the deposited films were smooth, uniform and having a surface roughness smaller than 10 nm. X-ray diffraction investigations showed that all samples were polycrystalline and the grain sizes of the films, corresponding to (222) cubic reflection, were found to increase with the increasing film thickness. The optical properties, evaluated by UV-VIS-NIR (190-3000 nm) spectrophotometer, evidenced that the obtained thin films were highly transparent, with a transmission coefficient between 90 and 96%, depending on the film thickness. Various methods (Swanepoel and Drude) were employed to appreciate the optimal behaviour of transparent oxide films, in determining the dielectric optical parameters and refractive index dispersion for ITO films exhibiting interference patterns in the optical transmission spectra. The electrical conductivity also increased as the film thickness increased.

  9. Preparation and spectroscopic analysis of zinc oxide nanorod thin films of different thicknesses

    Directory of Open Access Journals (Sweden)

    Mia Nasrul Haque

    2017-10-01

    Full Text Available Zinc oxide thin films with different thicknesses were prepared on microscopic glass slides by sol-gel spin coating method, then hydrothermal process was applied to produce zinc oxide nanorod arrays. The nanorod thin films were characterized by various spectroscopic methods of analysis. From the images of field emission scanning electron microscope (FESEM, it was observed that for the film thickness up to 200 nm the formed nanorods with wurtzite hexagonal structure were uniformly distributed over the entire surface substrate. From X-ray diffraction analysis it was revealed that the thin films had good polycrystalline nature with highly preferred c-axis orientation along (0 0 2 plane. The optical characterization done by UV-Vis spectrometer showed that all the films had high transparency of 83 % to 96 % in the visible region and sharp cut off at ultraviolet region of electromagnetic spectrum. The band gap of the films decreased as their thickness increased. Energy dispersive X-ray spectroscopy (EDS showed the presence of zinc and oxygen elements in the films and Fourier transform infrared spectroscopy (FT-IR revealed the chemical composition of ZnO in the film.

  10. Correlated dewetting patterns in thin polystyrene films

    CERN Document Server

    Neto, C; Seemann, R; Blossey, R; Becker, J; Grün, G

    2003-01-01

    We describe preliminary results of experiments and simulations concerned with the dewetting of thin polystyrene films (thickness < 7 nm) on top of silicon oxide wafers. In the experiments we scratched an initially flat film with an atomic force microscopy (AFM) tip, producing dry channels in the film. Dewetting of the films was imaged in situ using AFM and a correlated pattern of holes ('satellite holes') was observed along the rims bordering the channels. The development of this complex film rupture process was simulated and the results of experiments and simulations are in good agreement. On the basis of these results, we attempt to explain the appearance of satellite holes and their positions relative to pre-existing holes.

  11. Tailored piezoelectric thin films for energy harvester

    NARCIS (Netherlands)

    Wan, X.

    2013-01-01

    Piezoelectric materials are excellent materials to transfer mechanical energy into electrical energy, which can be stored and used to power other devices. PiezoMEMS is a good way to combine silicon wafer processing and piezoelectric thin film technology and lead to a variety of miniaturized and

  12. Reliability growth of thin film resistors contact

    Directory of Open Access Journals (Sweden)

    Lugin A. N.

    2010-10-01

    Full Text Available Necessity of resistive layer growth under the contact and in the contact zone of resistive element is shown in order to reduce peak values of current flow and power dissipation in the contact of thin film resistor, thereby to increase the resistor stability to parametric and catastrophic failures.

  13. Thermoviscoelastic models for polyethylene thin films

    DEFF Research Database (Denmark)

    Li, Jun; Kwok, Kawai; Pellegrino, Sergio

    2016-01-01

    This paper presents a constitutive thermoviscoelastic model for thin films of linear low-density polyethylene subject to strains up to yielding. The model is based on the free volume theory of nonlinear thermoviscoelasticity, extended to orthotropic membranes. An ingredient of the present approach...

  14. Incipient plasticity in metallic thin films

    NARCIS (Netherlands)

    Soer, W. A.; De Hosson, J. Th. M.; Minor, A. M.; Shan, Z.; Asif, S. A. Syed; Warren, O. L.

    2007-01-01

    The authors have compared the incipient plastic behaviors of Al and Al-Mg thin films during indentation under load control and displacement control. In Al-Mg, solute pinning limits the ability of dislocations to propagate into the crystal and thus substantially affects the appearance of plastic

  15. Thin film hydrous metal oxide catalysts

    Science.gov (United States)

    Dosch, Robert G.; Stephens, Howard P.

    1995-01-01

    Thin film (metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  16. Polyaniline. Thin films and colloidal dispersions

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Sapurina, I.

    2005-01-01

    Roč. 77, č. 5 (2005), s. 815-826 ISSN 0033-4545 R&D Projects: GA MŠk ME 539; GA AV ČR IAA4050313 Grant - others:IUPAC project 2002-019-1-400 Keywords : polyaniline * thin films * dispersions Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.679, year: 2005

  17. A ferroelectric transparent thin-film transistor

    NARCIS (Netherlands)

    Prins, MWJ; GrosseHolz, KO; Muller, G; Cillessen, JFM; Giesbers, JB; Weening, RP; Wolf, RM

    1996-01-01

    Operation is demonstrated of a field-effect transistor made of transparant oxidic thin films, showing an intrinsic memory function due to the usage of a ferroelectric insulator. The device consists of a high mobility Sb-doped n-type SnO2 semiconductor layer, PbZr0.2Ti0.8Os3 as a ferroelectric

  18. Flexoelectricity in barium strontium titanate thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Seol Ryung; Huang, Wenbin; Yuan, Fuh-Gwo; Jiang, Xiaoning, E-mail: xjiang5@ncsu.edu [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Shu, Longlong [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Electronic Materials Research Laboratory, International Center for Dielectric Research, Xi' an Jiao Tong University, Xi' an, Shaanxi 710049 (China); Maria, Jon-Paul [Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-10-06

    Flexoelectricity, the linear coupling between the strain gradient and the induced electric polarization, has been intensively studied as an alternative to piezoelectricity. Especially, it is of interest to develop flexoelectric devices on micro/nano scales due to the inherent scaling effect of flexoelectric effect. Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin film with a thickness of 130 nm was fabricated on a silicon wafer using a RF magnetron sputtering process. The flexoelectric coefficients of the prepared thin films were determined experimentally. It was revealed that the thin films possessed a transverse flexoelectric coefficient of 24.5 μC/m at Curie temperature (∼28 °C) and 17.44 μC/m at 41 °C. The measured flexoelectric coefficients are comparable to that of bulk BST ceramics, which are reported to be 10–100 μC/m. This result suggests that the flexoelectric thin film structures can be effectively used for micro/nano-sensing devices.

  19. Flexoelectricity in barium strontium titanate thin film

    International Nuclear Information System (INIS)

    Kwon, Seol Ryung; Huang, Wenbin; Yuan, Fuh-Gwo; Jiang, Xiaoning; Shu, Longlong; Maria, Jon-Paul

    2014-01-01

    Flexoelectricity, the linear coupling between the strain gradient and the induced electric polarization, has been intensively studied as an alternative to piezoelectricity. Especially, it is of interest to develop flexoelectric devices on micro/nano scales due to the inherent scaling effect of flexoelectric effect. Ba 0.7 Sr 0.3 TiO 3 thin film with a thickness of 130 nm was fabricated on a silicon wafer using a RF magnetron sputtering process. The flexoelectric coefficients of the prepared thin films were determined experimentally. It was revealed that the thin films possessed a transverse flexoelectric coefficient of 24.5 μC/m at Curie temperature (∼28 °C) and 17.44 μC/m at 41 °C. The measured flexoelectric coefficients are comparable to that of bulk BST ceramics, which are reported to be 10–100 μC/m. This result suggests that the flexoelectric thin film structures can be effectively used for micro/nano-sensing devices.

  20. Magnetic surfaces, thin films, and multilayers

    International Nuclear Information System (INIS)

    Parkin, S.S.P.; Renard, J.P.; Shinjo, T.; Zinn, W.

    1992-01-01

    This paper details recent developments in the magnetism of surfaces, thin films and multilayers. More than 20 invited contributions and more than 60 contributed papers attest to the great interest and vitality of this subject. In recent years the study of magnetic surfaces, thin films and multilayers has undergone a renaissance, partly motivated by the development of new growth and characterization techniques, but perhaps more so by the discovery of many exciting new properties, some quite unanticipated. These include, most recently, the discovery of enormous values of magnetoresistance in magnetic multilayers far exceeding those found in magnetic single layer films and the discovery of oscillatory interlayer coupling in transition metal multilayers. These experimental studies have motivated much theoretical work. However these developments are to a large extent powered by materials engineering and our ability to control and understand the growth of thin layers just a few atoms thick. The preparation of single crystal thin film layers and multilayers remains important for many studies, in particular, for properties dependent. These studies obviously require engineering not just a layer thicknesses but of lateral dimensions as well. The properties of such structures are already proving to be a great interest

  1. Functional planar thin film optical waveguide lasers

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav

    2012-01-01

    Roč. 9, č. 2 (2012), 91-99 ISSN 1612-2011 R&D Projects: GA ČR(CZ) GAP106/10/1477 Institutional research plan: CEZ:AV0Z10100522 Keywords : waveguide laser * planar waveguides * thin films * pulsed laser deposition * optical waveguides * laser materials Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.714, year: 2012

  2. Effect of annealing temperature on a polycrystalline lead oxide film derived by using the sedimentation method

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sang-Sik; Choi, Young-Zun; Lee, Mi-Hyun; Jung, Bong-Jae; Park, Ji-Koon [International University of Korea, Jinju (Korea, Republic of); Nam, Sang-Hee; Cho, Kyu-Seuk [InJe University, Gimhae (Korea, Republic of)

    2011-12-15

    Polycrystalline PbO has a low effective work function, a high atomic number and the possibility of large-area deposition. In this research, fine lead-oxide particles were synthesized using a solution-combustion method, and PbO films of 200 {mu}m in thickness were deposited by a special wet sedimentation coating process at room temperature. The influences of annealing temperature on the X-ray detection properties of the film were investigated in detail. From the experimental results, the dark current was stable in about 0.4 second at a 500 .deg. C annealing temperature, but with no annealing, several tens of seconds were required for dark-current stability. In addition, the dark current density decreased rapidly with increasing annealing temperature, and the value was below 2 nA/cm{sup 2} after 300 .deg. C annealing. The X-ray sensitivity was about 2 {approx} 4 nC/mR-cm{sup 2} at 500 .deg. C annealing and this value is higher by 10 time than that of a commercial 500 {mu}m a-Se film. Finally, the signal loss of the 300 {approx} 500 .deg. C annealed sample was lower by 2% at five continuous X-ray exposures.

  3. Ferroelectricity and Piezoelectricity in Free-Standing Polycrystalline Films of Plastic Crystals.

    Science.gov (United States)

    Harada, Jun; Yoneyama, Naho; Yokokura, Seiya; Takahashi, Yukihiro; Miura, Atsushi; Kitamura, Noboru; Inabe, Tamotsu

    2018-01-10

    Plastic crystals represent a unique compound class that is often encountered in molecules with globular structures. The highly symmetric cubic crystal structure of plastic crystals endows these materials with multiaxial ferroelectricity that allows a three-dimensional realignment of the polarization axes of the crystals, which cannot be achieved using conventional molecular ferroelectric crystals with low crystal symmetry. In this work, we focused our attention on malleability as another characteristic feature of plastic crystals. We have synthesized the new plastic/ferroelectric ionic crystals tetramethylammonium tetrachloroferrate(III) and tetramethylammonium bromotrichloroferrate(III), and discovered that free-standing translucent films can be easily prepared by pressing powdered samples of these compounds. The thus obtained polycrystalline films exhibit ferroelectric polarization switching and a relatively large piezoelectric response at room temperature. The ready availability of functional films demonstrates the practical utility of such plastic/ferroelectric crystals, and considering the vast variety of possible constituent cations and anions, a wide range of applications should be expected for these unique and attractive functional materials.

  4. ZnO Thin Film Electronics for More than Displays

    Science.gov (United States)

    Ramirez, Jose Israel

    Zinc oxide thin film transistors (TFTs) are investigated in this work for large-area electronic applications outside of display technology. A constant pressure, constant flow, showerhead, plasma-enhanced atomic layer deposition (PEALD) process has been developed to fabricate high mobility TFTs and circuits on rigid and flexible substrates at 200 °C. ZnO films and resulting devices prepared by PEALD and pulsed laser deposition (PLD) have been compared. Both PEALD and PLD ZnO films result in densely packed, polycrystalline ZnO thin films that were used to make high performance devices. PEALD ZnO TFTs deposited at 300 °C have a field-effect mobility of ˜ 40 cm2/V-s (and > 20 cm2/V-S deposited at 200 °C). PLD ZnO TFTs, annealed at 400 °C, have a field-effect mobility of > 60 cm2/V-s (and up to 100 cm2/V-s). Devices, prepared by either technique, show high gamma-ray radiation tolerance of up to 100 Mrad(SiO2) with only a small radiation-induced threshold voltage shift (VT ˜ -1.5 V). Electrical biasing during irradiation showed no enhanced radiation-induced effects. The study of the radiation effects as a function of material stack thicknesses revealed the majority of the radiation-induced charge collection happens at the semiconductor-passivation interface. A simple sheet-charge model at that interface can describe the radiation-induced charge in ZnO TFTs. By taking advantage of the substrate-agnostic process provided by PEALD, due to its low-temperature and excellent conformal coatings, ZnO electronics were monolithically integrated with thin-film complex oxides. Application-based examples where ZnO electronics provide added functionality to complex oxide-based devices are presented. In particular, the integration of arrayed lead zirconate titanate (Pb(Zr, Ti)O3 or PZT) thin films with ZnO electronics for microelectromechanical systems (MEMs) and deformable mirrors is demonstrated. ZnO switches can provide voltage to PZT capacitors with fast charging and slow

  5. Silicon solar cell performance deposited by diamond like carbon thin film ;Atomic oxygen effects;

    Science.gov (United States)

    Aghaei, Abbas Ail; Eshaghi, Akbar; Karami, Esmaeil

    2017-09-01

    In this research, a diamond-like carbon thin film was deposited on p-type polycrystalline silicon solar cell via plasma-enhanced chemical vapor deposition method by using methane and hydrogen gases. The effect of atomic oxygen on the functioning of silicon coated DLC thin film and silicon was investigated. Raman spectroscopy, field emission scanning electron microscopy, atomic force microscopy and attenuated total reflection-Fourier transform infrared spectroscopy were used to characterize the structure and morphology of the DLC thin film. Photocurrent-voltage characteristics of the silicon solar cell were carried out using a solar simulator. The results showed that atomic oxygen exposure induced the including oxidation, structural changes, cross-linking reactions and bond breaking of the DLC film; thus reducing the optical properties. The photocurrent-voltage characteristics showed that although the properties of the fabricated thin film were decreased after being exposed to destructive rays, when compared with solar cell without any coating, it could protect it in atomic oxygen condition enhancing solar cell efficiency up to 12%. Thus, it can be said that diamond-like carbon thin layer protect the solar cell against atomic oxygen exposure.

  6. Reversible wettability of nanostructured ZnO thin films by sol-gel method

    Science.gov (United States)

    Lü, Jianguo; Huang, Kai; Chen, Xuemei; Zhu, Jianbo; Meng, Fanming; Song, Xueping; Sun, Zhaoqi

    2010-05-01

    Nanostructured ZnO thin films were deposited on Si(1 1 1) and quartz substrate by sol-gel method. The thin films were annealed at 673 K, 873 K, and 1073 K for 60 min. Microstructure, surface topography, and water contact angle of the thin films have been measured by X-ray diffractometer, atomic force microscopy, and water contact angle apparatus. XRD results showed that the ZnO thin films are polycrystalline with hexagonal wurtzite structure. AFM studies revealed that rms roughness changes from 2.3 nm to 7.4 nm and the grain size grow up continuously with increasing annealing temperature. Wettability results indicated that hydrophobicity of the un-irradiated ZnO thin films enhances with annealing temperature increase. The hydrophobic ZnO surfaces could be reversibly switched to hydrophilic by alternation of UV illumination and dark storage (thermal treatment). By studying the magnitude and the contact angle reduction rate of the light-induced process, the contribution of surface roughness is discussed.

  7. Dielectric loss of strontium titanate thin films

    Science.gov (United States)

    Dalberth, Mark Joseph

    1999-12-01

    Interest in strontium titanate (STO) thin films for microwave device applications continues to grow, fueled by the telecommunications industry's interest in phase shifters and tunable filters. The optimization of these devices depends upon increasing the phase or frequency tuning and decreasing the losses in the films. Currently, the dielectric response of thin film STO is poorly understood through lack of data and a theory to describe it. We have studied the growth of STO using pulsed laser deposition and single crystal substrates like lanthanum aluminate and neodymium gallate. We have researched ways to use ring resonators to accurately measure the dielectric response as a function of temperature, electric field, and frequency from low radio frequencies to a few gigahertz. Our films grown on lanthanum aluminate show marked frequency dispersion in the real part of the dielectric constant and hints of thermally activated loss behavior. We also found that films grown with conditions that optimized the dielectric constant showed increased losses. In an attempt to simplify the system, we developed a technique called epitaxial lift off, which has allowed us to study films removed from their growth substrates. These free standing films have low losses and show obvious thermally activated behavior. The "amount of tuning," as measured by a figure of merit, KE, is greater in these films than in the films still attached to their growth substrates. We have developed a theory that describes the real and imaginary parts of the dielectric constant. The theory models the real part using a mean field description of the ionic motion in the crystal and includes the loss by incorporating the motion of charged defects in the films.

  8. Gravitationally driven drainage of thin films

    Science.gov (United States)

    Naire, Shailesh

    In this thesis we develop theory for an experiment done by Snow and coworkers at Dow Corning that involves a vertically-oriented, thinned polyurethane film with silicone surfactant, draining under gravity. We present the mathematical formulation for a 1+1- and 2+1-dimensional model to study the evolution of a vertically-oriented thin liquid film draining under gravity when there is an insoluble surfactant with finite surface viscosity on its free surface. This formulation has all the ingredients that include: surface tension, gravity, surface viscosity, the Marangoni effect, convective and diffusive surfactant transport; essential to describe the behavior of a vertical draining film with surfactant. We study a hierarchy of mathematical models with increasing complexity starting with the flat film model where gravity balances viscous shear and surface tension is neglected, this is generalized to include surface tension. We further generalize to incorporate variable surface viscosity and more complicated constitutive laws for surface tension as a function of surfactant concentration. Lubrication theory is employed to derive three coupled nonlinear partial differential equations (PDEs) describing the free surface shape, a component of surface velocity and the surfactant transport at leading order. A large surface viscosity limit recovers the tangentially-immobile model; for small surface viscosity, the film is mobile. Transition from a mobile to an immobile film is observed for intermediate values of surface viscosity and Marangoni number. The above models reproduce a number of features observed in experiments, these include film shapes and thinning rates which can be correlated to experiment. The 2+1-dimensional model for simplified surface properties has also been studied. Numerical experiments were performed to understand the stability of the system to perturbations across the film. An instability was seen in the mobile case; this was caused by a competition

  9. Glancing angle deposition of sculptured thin metal films at room temperature

    Science.gov (United States)

    Liedtke, S.; Grüner, Ch; Lotnyk, A.; Rauschenbach, B.

    2017-09-01

    Metallic thin films consisting of separated nanostructures are fabricated by evaporative glancing angle deposition at room temperature. The columnar microstructure of the Ti and Cr columns is investigated by high resolution transmission electron microscopy and selective area electron diffraction. The morphology of the sculptured metallic films is studied by scanning electron microscopy. It is found that tilted Ti and Cr columns grow with a single crystalline morphology, while upright Cr columns are polycrystalline. Further, the influence of continuous substrate rotation on the shaping of Al, Ti, Cr and Mo nanostructures is studied with view to surface diffusion and the shadowing effect. It is observed that sculptured metallic thin films deposited without substrate rotation grow faster compared to those grown with continuous substrate rotation. A theoretical model is provided to describe this effect.

  10. Thin film preparation of semiconducting iron pyrite

    Science.gov (United States)

    Smestad, Greg P.; Ennaoui, Ahmed; Fiechter, Sebastian; Hofmann, Wolfgang; Tributsch, Helmut; Kautek, Wolfgang

    1990-08-01

    Pyrite (Fe52) has been investigated as a promising new absorber material for thin film solar cell applications because of its high optical absorption coefficient of 1OL cm1, and its bandgap of 0.9 to 1.0 eV. Thin layers have been prepared by Metal Organic Chemical Vapor Deposition, MOCVD, Chemical Spray Pyrolysis, CSP, Chemical Vapor Transport, CVT, and Sulfurization of Iron Oxide films, 510. It is postulated that for the material FeS2, if x is not zero, a high point defect concentration results from replacing 2 dipoles by single S atoms. This causes the observed photovoltages and solar conversion efficiencies to be lower than expected. Using the Fe-O-S ternary phase diagram and the related activity plots, a thermodynamic understanding is formulated for the resulting composition of each of these types of films. It is found that by operating in the oxide portion of the phase diagram, the resulting oxidation state favors pyrite formation over FeS. By proper orientation of the grains relative to the film surface, and by control of pinholes and stoichiometry, an efficient thin film photovolatic solar cell material could be achieved.

  11. Study of zinc oxide thin film characteristics

    Directory of Open Access Journals (Sweden)

    Johari Shazlina

    2017-01-01

    Full Text Available This paper presents the characterization of ZnO thin films with the thickness of 8nm, 30nm, and 200nm. The thin films were prepared using sol-gel method and has been deposited onto different substrate of silicon wafer, glass and quartz. The thin films were annealed at 400, 500 and 600°C. By using UV-Vis, the optical transmittance measurement were recorded by using a single beam spectrophotometer in the wavelength 250nm to 800nm. However, the transmittance in the visible range is hardly influenced by the film thickness, substrate used and annealed temperature and the averages are all above 80%. On surface morphology observed by AFM and FESEM, the results show that the increase of film thickness and annealed temperature will increase the mean grain size, surface-to-volume ration and RMS roughness. Besides that, higher annealing temperature cause the crystalline quality to gradually improve and the wurtzite structure of ZnO can be seen more clearly. Nonetheless, the substrate used had no effect on surface morphology, yet the uniformity of deposition on silicon wafer is better than glass and quartz.

  12. Practical design and production of optical thin films

    CERN Document Server

    Willey, Ronald R

    2002-01-01

    Fundamentals of Thin Film Optics and the Use of Graphical Methods in Thin Film Design Estimating What Can Be Done Before Designing Fourier Viewpoint of Optical Coatings Typical Equipment for Optical Coating Production Materials and Process Know-How Process Development Monitoring and Control of Thin Film Growth Appendix: Metallic and Semiconductor Material Graphs Author IndexSubject Index

  13. Density functional study of ferromagnetism in alkali metal thin films

    Indian Academy of Sciences (India)

    model (UJM), and it is argued that within LSDA or GGA, alkali metal thin films cannot be claimed to have an FM ground state. Relevance of these results to the experiments on transition metal-doped alkali metal thin films and bulk hosts are also discussed. Keywords. Alkali metal; thin films; magnetism; density functional ...

  14. Optical and electrical properties of nickel xanthate thin films

    Indian Academy of Sciences (India)

    Keywords. Nickel xanthate thin film; organometallic thin film; chemical bath deposition. Abstract. Nickel xanthate thin films (NXTF) were successfully deposited by chemical bath deposition, on to amorphous glass substrates, as well as on - and -silicon, indium tin oxide and poly(methyl methacrylate). The structure of the ...

  15. Electrochemical fabrication of nanoporous polypyrrole thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li Mei [Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 (China); Yuan Jinying [Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 (China)], E-mail: yuanjy@mail.tsinghua.edu.cn; Shi Gaoquan [Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 (China)], E-mail: gshi@mail.tsinghua.edu.cn

    2008-04-30

    Polypyrrole thin films with pores in nanometer scale were synthesized by direct electrochemical oxidation of pyrrole in a mixed electrolyte of isopropyl alcohol, boron trifluoride diethyl etherate, sodium dodecylsulfonate and poly(ethylene glycol) using well-aligned ZnO nanowires arrays as templates. The thin films exhibit high conductivity of ca. {sigma}{sub rt} {approx} 20.5 s/cm and can be driven to bend during redox processes in 1.0 M lithium perchlorate aqueous solution. The movement rate of an actuator based on this nanoporous film was measured to be over 90{sup o}/s at a driving potential of 0.8 V (vs. Ag/AgCl)

  16. Synthesis and characterization of ZnO thin film by low cost modified SILAR technique

    Directory of Open Access Journals (Sweden)

    Haridas D. Dhaygude

    2016-03-01

    Full Text Available The ZnO thin film is prepared on Fluorine Tin Oxide (FTO coated glass substrate by using SILAR deposition technique containing ZnSO4.7H2O and NaOH as precursor solution with 150 deeping cycles at 70 °C temperature. Nanocrystalline diamond like ZnO thin film is characterized by different characterization techniques such as X-ray diffraction (XRD, Fourier transform (FT Raman spectrometer, Field Emission Scanning Electron Microscopy (FE-SEM with Energy dispersive X-Ray Analysis (EDAX, optical absorption, surface wettability and photoelectrochemical cell performance measurement. The X-ray diffraction analysis shows that the ZnO thin film is polycrystalline in nature having hexagonal crystal structure. The FT-Raman scattering exhibits a sharp and strong mode at 383 cm−1 which confirms hexagonal ZnO nanostructure. The surface morphology study reveals that deposited ZnO film consists of nanocrystalline diamond like morphology all over the substrate. The synthesized thin film exhibited absorption wavelength around 309 nm. Optical study predicted the direct band gap and band gap energy of this film is found to be 3.66 eV. The photoelectrochemical cell (PEC parameter measurement study shows that ZnO sample confirmed the highest values of, short circuit current (Isc - 629 mAcm−2, open circuit voltage (Voc - 878 mV, fill factor (FF - 0.48, and maximum efficiency (η - 0.89%, respectively.

  17. Synthesis of manganese sulfide (MnS thin films by chemical bath deposition and their characterization

    Directory of Open Access Journals (Sweden)

    Sunil H. Chaki

    2017-04-01

    Full Text Available Films of γ-MnS were deposited by chemical bath deposition (CBD technique on glass slide substrates. The EDAX analysis showed that the film contains Mn and S elements without any other impurity. The EDAX weight percentage showed the film to be in perfect stoichiometry. The XRD showed that the synthesized MnS thin film possess hexagonal structure. The determined lattice parameters a = b = 3.9 Å and c = 6.4 Å were in match with the reported values. The crystallite size determined using XRD pattern employing Scherrer's formula and Hall–Williamson plot were 8.35 nm and 7.42 nm, respectively. The SAED shows ring pattern, clearly stating the thin film to be polycrystalline in nature. The SEM image of MnS thin film clearly reveals that the film surface is homogenous consisting of two sizes of spheres. Smaller spherical grain particles of size ∼1.6–2 μm covers the substrate and on top of covered small grain size particles are the large size spherical grain particles having size ∼5.0–7.0 μm. The 2D AFM image of MnS thin film shows coalescences between spherical grains. The optical absorbance analysis of the MnS thin film confirmed that the film possesses direct and indirect optical bandgap values of 3.67 eV and 2.67 eV, respectively. All the obtained results have been deliberated in this paper.

  18. Colossal magnetoresistance and phase separation in manganite thin films

    Science.gov (United States)

    Srivastava, M. K.; Agarwal, V.; Kaur, A.; Singh, H. K.

    2017-05-01

    In the present work, polycrystalline Sm0.55Sr0.45MnO3 thin films were prepared on LSAT (001) single crystal substrates by ultrasonic nebulized spray pyrolysis technique. The X-ray diffraction θ-2θ scan reveals that these films (i) have very good crystallinity, (ii) are oriented along out-of-plane c-direction, and (iii) are under small tensile strain. The impact of oxygen vacancy results into (i) higher value of paramagnetic insulator (PMI) to ferromagnetic metal (FMM) transition temperature, i.e., TC/TIM, (ii) sharper PMI-FMM transition, (iii) higher value of magnetization and magnetic saturation moment, and (iv) higher value of magnetoresistance (˜99%). We suggest here that oxygen vacancy favors FMM phase while oxygen vacancy annihilation leads to antiferromagnetic-charge ordered insulator (AFM-COI) phase. The observed results have been explained in context of phase separation (PS) caused by different fractions of the competing FMM and AFM-COI phases.

  19. Magnesium Diboride thin Films, multilayers, and coatings for SRF cavities

    Energy Technology Data Exchange (ETDEWEB)

    Xi, Xiaoxing [Temple Univ., Philadelphia, PA (United States)

    2017-08-17

    achieved by using in both epitaxial and polycrystalline MgB2 films. Although Hc1 is low for bulk MgB2 samples, about 600 Oe at 5 K, it increases with decreasing film thickness, reaching 1880 Oe when the film thickness is 100 nm. Two, we coated Nb ellipsoids with MgB2 films to achieve an “inverse cavity” configuration, mimicking the coating of an actual RF cavity. Our results demonstrate that it is indeed possible to increase the vortex penetration field of a cavity by a substantial amount (~600 Oe) by coating it with a thin MgB2 film. For the second objective, we modified the existing HPCVD system to be able to coat a 3.9 GHz SRF cavity, and using a stainless steel mock cavity showed that a uniform film with good superconducting property can be grown across the cavity interior. Further, we successfully deposited MgB2 on Cu disc. The two results combined demonstrate that it is possible to coat Cu cavities with high quality MgB2 films using HPCVD. MgB2 coated Cu could open up a possibility of using SRF cavities at 20–25 K with cryocoolers.

  20. Research and development of photovoltaic power system. Development of novel technologies for fabrication of high quality silicon thin films for solar cells; Taiyoko hatsuden system no kenkyu kaihatsu. Kohinshitsu silicon usumaku sakusei gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, T. [Kanazawa University, Ishikawa (Japan). Faculty of Engineering

    1994-12-01

    Described herein are the results of the FY1994 research program for development of novel technologies for fabrication of high quality thin films of silicon for solar cells. The study on the mechanisms and effects of chemical annealing reveals that the film structure greatly varies depending on substrate temperature during the hydrotreatment process, based on the tests with substrate temperature, deposition of superthin film (T1) and hydrotreatment (T2) as the variable parameters. Chemical annealing at low temperature produces a high-quality a-Si:H film of low defect content. The study on fabrication of thin polycrystalline silicon films at low temperature observes on real time the process of deposition of the thin films on polycrystalline silicon substrates, where a natural oxide film is removed beforehand from the substrate. The results indicate that a thin polycrystalline silicon film of 100% crystallinity can be formed even on a polycrystalline silicon substrate by controlling starting gas composition and substrate temperature. The layer-by-layer method is used as the means for forming the seed crystals on a glass substrate, where deposition and hydrotreatment are repeated alternately, to produce the thin crystalline silicon films of high crystallinity. 3 figs.

  1. Effect of copper concentration on the physical properties of copper doped NiO thin films deposited by spray pyrolysis

    International Nuclear Information System (INIS)

    Mani Menaka, S.; Umadevi, G.; Manickam, M.

    2017-01-01

    The spray pyrolysis (SP) technique is an important and powerful method for the preparation of nickel oxide (NiO) and copper-doped nickel oxide thin films. The best films were obtained when the substrate temperature, T s = 450 °C on glass substrates. Copper (Cu) concentrations in the films were varied from 0 to 8%. The effect of Cu concentration on the structural, morphological, spectral, optical, and electrical properties of the thin films were studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transformed infrared spectroscopy (FTIR), UV–vis–NIR spectrophotometer, Hot probe and Hall system. The X-ray diffraction result shows the polycrystalline cubic structure of sprayed films with (200) preferred orientation. The variations of the structural parameters such as lattice parameters and grain sizes were investigated. The SEM image displays the surface morphology of the NiO and Cu:NiO thin films. The FTIR of the as-deposited films were associated with chemical identification. The optical transmittance and absorbance spectra of the films were measured by UV–vis–NIR spectrophotometer. The absorption coefficient and band gaps of the films were calculated using the optical method. All the NiO and Cu:NiO films were p-type. The resistivity of the above films decreases with the increase in copper concentration and so the conductivity of the films depend on the precursor concentration. - Highlights: • Pure and Cu:NiO films were deposited by Spray pyrolysis technique. • The XRD result shows the polycrystalline nature of pure and Cu:NiO films. • The formation of pure and Cu:NiO were confirmed by FTIR analysis. • Band gap values of pure and Cu:NiO decreases. • All the pure and Cu:NiO films were p-type.

  2. Effect of copper concentration on the physical properties of copper doped NiO thin films deposited by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Mani Menaka, S., E-mail: manimenaka.phy@gmail.com [PG and Research Department of Physics, Government Arts College, Coimbatore, 641018, Tamilnadu (India); Umadevi, G. [PG and Research Department of Physics, Government Arts College, Coimbatore, 641018, Tamilnadu (India); Manickam, M. [SRMV College of Arts and Science, Coimbatore, 641020, Tamilnadu (India)

    2017-04-15

    The spray pyrolysis (SP) technique is an important and powerful method for the preparation of nickel oxide (NiO) and copper-doped nickel oxide thin films. The best films were obtained when the substrate temperature, T{sub s} = 450 °C on glass substrates. Copper (Cu) concentrations in the films were varied from 0 to 8%. The effect of Cu concentration on the structural, morphological, spectral, optical, and electrical properties of the thin films were studied by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Fourier transformed infrared spectroscopy (FTIR), UV–vis–NIR spectrophotometer, Hot probe and Hall system. The X-ray diffraction result shows the polycrystalline cubic structure of sprayed films with (200) preferred orientation. The variations of the structural parameters such as lattice parameters and grain sizes were investigated. The SEM image displays the surface morphology of the NiO and Cu:NiO thin films. The FTIR of the as-deposited films were associated with chemical identification. The optical transmittance and absorbance spectra of the films were measured by UV–vis–NIR spectrophotometer. The absorption coefficient and band gaps of the films were calculated using the optical method. All the NiO and Cu:NiO films were p-type. The resistivity of the above films decreases with the increase in copper concentration and so the conductivity of the films depend on the precursor concentration. - Highlights: • Pure and Cu:NiO films were deposited by Spray pyrolysis technique. • The XRD result shows the polycrystalline nature of pure and Cu:NiO films. • The formation of pure and Cu:NiO were confirmed by FTIR analysis. • Band gap values of pure and Cu:NiO decreases. • All the pure and Cu:NiO films were p-type.

  3. Effect of temperature on optical and structural properties of indium selenide thin films

    International Nuclear Information System (INIS)

    Asabe, M.R.; Manikshete, A.H.; Hankare, P.P.

    2013-01-01

    In 2 Se 3 thin film have been prepared for the first time by using a relatively simple chemical bath deposition technique at room temperature using indium chloride, tartaric acid, hydrazine hydrate and sodium selenosulphate in an aqueous alkaline medium. Various preparative conditions of thin film deposition are outlined. The films deposited at optimum preparative parameters are annealed at different temperatures. The as-deposited films those annealed at 100℃ and have been characterized by X-ray diffraction (XRD), Energy Dispersive Analysis by X-ray (EDAX), Optical absorption and scanning electron microscopy (SEM). The as grown films were found to be transparent, uniform, well adherent and brown in color. The XRD analysis of the as-deposited and annealed films shows the presence of polycrystalline nature in tetragonal crystal structure. EDAX study reveals that as-deposited films are almost stoichiometric while optical absorption study shows the presence of band gap for direct while optical absorption study shows the presence of band gap for direct transition at 2.35 and 2.10 eV respectively, for the as-deposited and annealed films. SEM study indicated the presence of uniformly distributed grains over the surface of substrate for the as-deposited as well as annealed film. (author)

  4. Mueller-matrix of laser-induced autofluorescence of polycrystalline films of dried peritoneal fluid in diagnostics of endometriosis

    Science.gov (United States)

    Ushenko, Yuriy A.; Koval, Galina D.; Ushenko, Alexander G.; Dubolazov, Olexander V.; Ushenko, Vladimir A.; Novakovskaia, Olga Yu.

    2016-07-01

    This research presents investigation results of the diagnostic efficiency of an azimuthally stable Mueller-matrix method of analysis of laser autofluorescence of polycrystalline films of dried uterine cavity peritoneal fluid. A model of the generalized optical anisotropy of films of dried peritoneal fluid is proposed in order to define the processes of laser autofluorescence. The influence of complex mechanisms of both phase (linear and circular birefringence) and amplitude (linear and circular dichroism) anisotropies is taken into consideration. The interconnections between the azimuthally stable Mueller-matrix elements characterizing laser autofluorescence and different mechanisms of optical anisotropy are determined. The statistical analysis of coordinate distributions of such Mueller-matrix rotation invariants is proposed. Thereupon the quantitative criteria (statistic moments of the first to the fourth order) of differentiation of polycrystalline films of dried peritoneal fluid, group 1 (healthy donors) and group 2 (uterus endometriosis patients), are determined.

  5. High-Performance Single-Crystalline Perovskite Thin-Film Photodetector

    KAUST Repository

    Yang, Zhenqian

    2018-01-10

    The best performing modern optoelectronic devices rely on single-crystalline thin-film (SC-TF) semiconductors grown epitaxially. The emerging halide perovskites, which can be synthesized via low-cost solution-based methods, have achieved substantial success in various optoelectronic devices including solar cells, lasers, light-emitting diodes, and photodetectors. However, to date, the performance of these perovskite devices based on polycrystalline thin-film active layers lags behind the epitaxially grown semiconductor devices. Here, a photodetector based on SC-TF perovskite active layer is reported with a record performance of a 50 million gain, 70 GHz gain-bandwidth product, and a 100-photon level detection limit at 180 Hz modulation bandwidth, which as far as we know are the highest values among all the reported perovskite photodetectors. The superior performance of the device originates from replacing polycrystalline thin film by a thickness-optimized SC-TF with much higher mobility and longer recombination time. The results indicate that high-performance perovskite devices based on SC-TF may become competitive in modern optoelectronics.

  6. Investigation of resistive switching in barium strontium titanate thin films for memory applications

    International Nuclear Information System (INIS)

    Shen, Wan

    2010-01-01

    Resistive random access memory (RRAM) has attracted much attention due to its low power consumption, high speed operation, non-readout disturbance and high density integration potential and is regarded as one of the most promising candidates for the next generation non-volatile memory. The resistive switching behavior of Mn-doped BaSrTiO 3 (BST) thin films with different crystalline properties was investigated within this dissertation. The laser fluence dependence was checked in order to optimize the RRAM properties. Although the film epitaxial quality was improved by reducing the laser energy during deposition process, the yields fluctuated and only 3% RRAM devices with highest epitaxial quality of BST film shows resistive switching behavior instead of 67% for the samples with worse film quality. It gives a clue that the best thin film quality does not result in the best switching performance, and it is a clear evidence of the importance of the defects to obtain resistive switching phenomena. The bipolar resistive switching behavior was studied with epitaxial BST thin films on SRO/STO. Compared to Pt top electrode, the yield, endurance and reliability were strongly improved for the samples with W top electrode. Whereas the samples with Pt top electrode show a fast drop of the resistance for both high and low resistance states, the devices with W top electrode can be switched for 10 4 times without any obvious degradation. The resistance degradation for devices with Pt top electrode may result from the diffusion of oxygen along the Pt grain boundaries during cycling whereas for W top electrode the reversible oxidation and reduction of a WO x layer, present at the interface between W top electrode and BST film, attributes to the improved switching property. The transition from bipolar to unipolar resistive switching in polycrystalline BST thin films was observed. A forming process which induces a metallic low resistance state is prerequisite for the observation of

  7. Investigation of resistive switching in barium strontium titanate thin films for memory applications

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Wan

    2010-11-17

    Resistive random access memory (RRAM) has attracted much attention due to its low power consumption, high speed operation, non-readout disturbance and high density integration potential and is regarded as one of the most promising candidates for the next generation non-volatile memory. The resistive switching behavior of Mn-doped BaSrTiO{sub 3} (BST) thin films with different crystalline properties was investigated within this dissertation. The laser fluence dependence was checked in order to optimize the RRAM properties. Although the film epitaxial quality was improved by reducing the laser energy during deposition process, the yields fluctuated and only 3% RRAM devices with highest epitaxial quality of BST film shows resistive switching behavior instead of 67% for the samples with worse film quality. It gives a clue that the best thin film quality does not result in the best switching performance, and it is a clear evidence of the importance of the defects to obtain resistive switching phenomena. The bipolar resistive switching behavior was studied with epitaxial BST thin films on SRO/STO. Compared to Pt top electrode, the yield, endurance and reliability were strongly improved for the samples with W top electrode. Whereas the samples with Pt top electrode show a fast drop of the resistance for both high and low resistance states, the devices with W top electrode can be switched for 10{sup 4} times without any obvious degradation. The resistance degradation for devices with Pt top electrode may result from the diffusion of oxygen along the Pt grain boundaries during cycling whereas for W top electrode the reversible oxidation and reduction of a WO{sub x} layer, present at the interface between W top electrode and BST film, attributes to the improved switching property. The transition from bipolar to unipolar resistive switching in polycrystalline BST thin films was observed. A forming process which induces a metallic low resistance state is prerequisite for the

  8. Flexible magnetic thin films and devices

    Science.gov (United States)

    Sheng, Ping; Wang, Baomin; Li, Runwei

    2018-01-01

    Flexible electronic devices are highly attractive for a variety of applications such as flexible circuit boards, solar cells, paper-like displays, and sensitive skin, due to their stretchable, biocompatible, light-weight, portable, and low cost properties. Due to magnetic devices being important parts of electronic devices, it is essential to study the magnetic properties of magnetic thin films and devices fabricated on flexible substrates. In this review, we mainly introduce the recent progress in flexible magnetic thin films and devices, including the study on the stress-dependent magnetic properties of magnetic thin films and devices, and controlling the properties of flexible magnetic films by stress-related multi-fields, and the design and fabrication of flexible magnetic devices. Project supported by the National Key R&D Program of China (No. 2016YFA0201102), the National Natural Science Foundation of China (Nos. 51571208, 51301191, 51525103, 11274321, 11474295, 51401230), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2016270), the Key Research Program of the Chinese Academy of Sciences (No. KJZD-EW-M05), the Ningbo Major Project for Science and Technology (No. 2014B11011), the Ningbo Science and Technology Innovation Team (No. 2015B11001), and the Ningbo Natural Science Foundation (No. 2015A610110).

  9. Nanocomposite thin films for triggerable drug delivery.

    Science.gov (United States)

    Vannozzi, Lorenzo; Iacovacci, Veronica; Menciassi, Arianna; Ricotti, Leonardo

    2018-05-01

    Traditional drug release systems normally rely on a passive delivery of therapeutic compounds, which can be partially programmed, prior to injection or implantation, through variations in the material composition. With this strategy, the drug release kinetics cannot be remotely modified and thus adapted to changing therapeutic needs. To overcome this issue, drug delivery systems able to respond to external stimuli are highly desirable, as they allow a high level of temporal and spatial control over drug release kinetics, in an operator-dependent fashion. Areas covered: On-demand drug delivery systems actually represent a frontier in this field and are attracting an increasing interest at both research and industrial level. Stimuli-responsive thin films, enabled by nanofillers, hold a tremendous potential in the field of triggerable drug delivery systems. The inclusion of responsive elements in homogeneous or heterogeneous thin film-shaped polymeric matrices strengthens and/or adds intriguing properties to conventional (bare) materials in film shape. Expert opinion: This Expert Opinion review aims to discuss the approaches currently pursued to achieve an effective on-demand drug delivery, through nanocomposite thin films. Different triggering mechanisms allowing a fine control on drug delivery are described, together with current challenges and possible future applications in therapy and surgery.

  10. Thin-film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.

    1987-10-01

    Cadmium telluride, with a room-temperature band-gap energy of 1.5 eV, is a promising thin-film photovoltaic material. The major objective of this research has been to demonstrate thin-film CdTe heterojunction solar cells with a total area greater than 1 sq cm and photovoltaic efficiencies of 13 percent or more. Thin-film p-CdTe/CdS/SnO2:F/glass solar cells with an AM1.5 efficiency of 10.5 percent have been reported previously. This report contains results of work done on: (1) the deposition, resistivity control, and characterization of p-CdTe films by the close-spaced sublimation process; (2) the deposition of large-band-gap window materials; (3) the electrical properties of CdS/CdTe heterojunctions; (4) the formation of stable, reproducible, ohmic contacts (such as p-HgTe) to p-CdTe; and (5) the preparation and evaluation of heterojunction solar cells.

  11. Nanostructured thin film coatings with different strengthening effects

    Directory of Open Access Journals (Sweden)

    Panfilov Yury

    2017-01-01

    Full Text Available A number of articles on strengthening thin film coatings were analyzed and a lot of unusual strengthening effects, such as super high hardness and plasticity simultaneously, ultra low friction coefficient, high wear-resistance, curve rigidity increasing of drills with small diameter, associated with process formation of nanostructured coatings by the different thin film deposition methods were detected. Vacuum coater with RF magnetron sputtering system and ion-beam source and arc evaporator for nanostructured thin film coating manufacture are represented. Diamond Like Carbon and MoS2 thin film coatings, Ti, Al, Nb, Cr, nitride, carbide, and carbo-nitride thin film materials are described as strengthening coatings.

  12. Thin film bismuth iron oxides useful for piezoelectric devices

    Science.gov (United States)

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  13. Annealing-Induced Modifications in Physicochemical and Optoelectronic Properties of Ag-Doped Nanostructured CdS Thin Films

    Directory of Open Access Journals (Sweden)

    Vidya S. Taur

    2012-01-01

    Full Text Available The Ag-doped nanostructured CdS thin films are grown by simple, cost effective chemical ion exchange technique at room temperature on ITO-coated glass substrate. These as grown thin films are annealed at 100, 200, 300, and 400°C in air atmosphere for 1 hour. To study the effect of annealing on physicochemical and optoelectronic properties, these as grown and annealed thin films are characterized for structural, compositional, morphological, optical, and electrical properties. X-ray diffraction (XRD pattern reveals polycrystalline nature of these thin films with increase in crystallite size from 6.4 to 11.2 nm, from XRD the direct identification of Ag doping in CdS thin films cannot be judged, while shift in characteristics peak position of CdS is observed. The Raman spectrum represents increase in full width at half maxima and intensity of characteristic peak, confirming the material modification upon annealing treatment. Presence of Cd, Ag, and S in energy dispersive X-ray analysis spectra (EDAX confirms expected elemental composition in thin films. Scanning electron microscopy (SEM images represent grain growth and agglomeration upon annealing. Red shift in optical absorbance strength and energy band gap values from 2.28 to 2.14 eV is obtained. I-V response obtained from as grown and annealed thin films shows an enhancement in photosensitivity from 72% to 96% upon illumination to 100 mW/cm2 light source.

  14. Physical properties of spray deposited CdTe thin films: PEC performance

    International Nuclear Information System (INIS)

    Nikale, V. M.; Shinde, S. S.; Bhosale, C. H.; Rajpure, K.Y.

    2011-01-01

    p-CdTe thin films were prepared by spray pyrolysis under different ambient conditions and characterized using photoelectrochemical (PEC), X-ray diffraction (XRD), scanning electron microscopy, energy-dispersive analysis by X-ray (EDAX), and optical transmission studies. The different preparative parameters viz solution pH, solution quantity, substrate temperature and solution concentration have been optimized by the PEC technique in order to get good-quality photosensitive material. XRD analysis shows the polycrystalline nature of the film, having cubic structure with strong (111) orientation. Micrographs reveal that grains are uniformly distributed over the surface of the substrate indicating the well-defined growth of polycrystalline CdTe thin film. The EDAX study for the sample deposited at optimized preparative parameters shows the nearly stoichiometric Cd : Te ratio. Optical absorption shows the presence of direct transition with band gap energy of 1.5 eV Deposited films exhibit the highest photocurrent of 2.3 mA, a photovoltage of 462 mV, a 0.48 fill factor and 3.4% efficiency for the optimized preparative parameters. (semiconductor materials)

  15. Investigation of electrodeposited cuprous oxide thin films

    Science.gov (United States)

    Mortensen, Emma L.

    This dissertation focuses on improvements to electrodeposited cuprous oxide as a candidate for the absorber layer for a thin film solar cell that could be integrated into a mechanical solar cell stack. Cuprous oxide (Cu2O) is an earth abundant material that has a bandgap of 2 eV with absorption coefficients around 102-106 cm-1. This bandgap is not optimized for use as a single-junction solar cell, but could be ideal for use in a tandem solar cell device. The theoretical efficiency of a material with a bandgap of 2.0 eV is 20%. The greatest actual efficiency that has been achieved for a Cu2O solar cell is only 8.1%. For the present work the primary focus has been on improving the microstructure of the absorber layer film. The Cu2O films were fabricated using electrodeposition. A seeding layer was developed using gold (Au); which was manipulated into nano-islands and used as the substrate for the Cu2O electrodeposition. The films were characterized and compared to determine the growth mechanism of each film using scanning electron microscopy (SEM). X-ray diffraction (XRD) was used to establish and compare the chemical phases that were present in each of the films. The crystal structure of the Cu2O film grown on gold was explored using transmission electron microscopy (TEM), and this helped confirm the effect that the gold had on the growth of Cu2O. The Tauc method was then used to determine the bandgap of the films of Cu2O grown on both substrates and this showed that the Au based Cu2O film was a superior film. Electrical tests were also completed using a solar simulator and this established that the film grown on gold exhibited photoconductivity that was not seen on the film without gold. In addition, for this thesis, a method for depositing an n-type Cu2O film, based on a Cu-metal solution-boiling process, was investigated. Three forms of copper were tested: a sheet of copper, electrodeposited copper, and sputtered copper. The chemical phases were observed using

  16. Tribological performance of polycrystalline tantalum-carbide-incorporated diamond films on silicon substrates

    Science.gov (United States)

    Ullah, Mahtab; Rana, Anwar Manzoor; Ahmed, E.; Malik, Abdul Sattar; Shah, Z. A.; Ahmad, Naseeb; Mehtab, Ujala; Raza, Rizwan

    2018-05-01

    Polycrystalline tantalum-carbide-incorporated diamond coatings have been made on unpolished side of Si (100) wafer by hot filament chemical vapor deposition process. Morphology of the coatings has been found to vary from (111) triangular-facetted to predominantly (111) square-faceted by increasing the concentration of tantalum carbide. The results have been compared to those of a diamond reference coating with no tantalum content. An increase in roughness has been observed with the increase of tantalum carbide (TaC) due to change in morphology of the diamond films. It is noticed that roughness of the coatings increases as grains become more square-faceted. It is found that diamond coatings involving tantalum carbide are not as resistant as diamond films with no TaC content and the coefficient of friction for such coatings with microcrystalline grains can be manipulated to 0·33 under high vacuum of 10-7 Torr. Such a low friction coefficient value enhances tribological behavior of unpolished Si substrates and can possibly be used in sliding applications.

  17. Investigation of MBE grown polycrystalline CdTe films on the Medipix readout chip

    Science.gov (United States)

    Schütt, S.; Vogt, A.; Frei, K.; Fischer, F.; Fiederle, M.

    2017-06-01

    Cadmium Telluride (CdTe) films are directly deposited on a CMOS (complementary metal-oxide-semiconductor) based readout chip as sensor layer for X-ray detection. This is performed by using a modified Molecular Beam Epitaxy (MBE) setup with a carbon collimator enabling growth rates up to 10 μm/h. To obtain a good contacting behaviour of the 25-50 μm thick CdTe films, Te and Sb2Te3 are additionally evaporated during the process. The investigation of polycrystalline sensor layers deposited at 400 °C with SEM (scanning electron microscopy) and XRD (X-ray diffraction) reveals a columnar growth of the individual grains oriented predominantly in (111). By PES (photoelectron spectroscopy) measurements the chemical composition of the different layers is identified in a depth profile and changes in work function along the contact structure are observed. Detector properties reveal a linear behaviour of the count rate with increasing radiation intensity as well as sensibility to holes and electrons. Spatial resolution measurements result in a resolution of 5 lp/mm, which is a mandatory requirement for medical applications.

  18. Band edges determination of CuInS2 thin films prepared by electrodeposition

    International Nuclear Information System (INIS)

    Martinez, A.M.; Arriaga, L.G.; Fernandez, A.M.; Cano, U.

    2004-01-01

    A CuInS 2 (CIS) semiconductor thin film was growth by electrodeposition on a stainless steel substrate. In order to improve the polycrystallinity the samples were annealed in a N 2 atmosphere. The films were characterized by electrochemical techniques and X ray diffraction and their band gaps were determined by photocurrent spectroscopy. When the electrolytic bath has the same concentration [Cu 2+ ] = [In 3+ ] the resulting film was of the n-type, while for different concentrations of Cu and In ions the film was of the p-type. A depletion zone during capacitance-voltage measurements at 10 kHz frequency was seen over the voltage range used. Using C-V plots in the depletion zone, flat-band potentials and the energetic position of band edges were calculated

  19. Electrodeposition and characterization of CdSe x-Te 1- x semiconducting thin films

    Science.gov (United States)

    Benamar, E.; Rami, M.; Fahoume, M.; Chraibi, F.; Ennaoui, A.

    1999-07-01

    Thin polycrystalline films of cadmium chalcogenides CdSe xTe 1-x ( 0 ≤ x ≤ 1) have been prepared by electrochemical plating on ITO (indium tin oxide) coated glass substrates from an acid sulfate solution at 90 °C. Structural, morphological and compositional studies of the deposited films are reported as a function of the x coefficient. XRD analysis shows that all deposits have a cubic structure with a preferred orientation along the (111) direction. The composition in the films is found to vary linearly with the composition in the solution. The increase in the selenium content x in the CdSe xTe 1-x films decreases the lattice constant and increases the band gap. Nevertheless this latter presents a minimum for x = 0.27.

  20. Structural and morphological characterization of CdSe:Mn thin films

    Science.gov (United States)

    Singh, Sarika; Shrivastava, A. K.

    2017-07-01

    CdSe:Mn thin films were grown by chemical bath deposition. The pH of the solution was maintained at 11. Dry films so obtained were annealed in vacuum (10^{-1} Torr) for about 2 h at 400°C. The annealed samples were subjected to morphological and structural characterization using scanning electron microscope and XRD. XRD was used for structural characterization whereas scanning electron microscope shows the surface morphology of the films. XRD spectra reveal that the grown CdSe films are polycrystalline in nature and have cubic structure. The average particle size decreases on doping CdSe with Mn ions. The FE-SEM images show spherical particles having uniform distribution. Optical characterization was done using PL studies and UV-Visible spectrophotometer. PL spectra show an increase in PL intensity on doping. Optical band gap also decreases on doping.

  1. Photoelectrocatrocatalytic hydrolysis of starch by using sprayed ZnO thin films

    International Nuclear Information System (INIS)

    Sapkal, R. T.; Shinde, S. S.; Rajpure, K.Y.; Bhosale, C. H.

    2013-01-01

    Thin films of zinc oxide have been deposited onto glass/FTO substrates at optimized 400 °C by using a chemical spray pyrolysis technique. Deposited films are character photocatalytic activity by using XRD, an SEM, a UV-vis spectrophotometer, and a PEC single-cell reactor. Films are polycrystalline and have a hexagonal (wurtzite) crystal structure with c-axis (002) orientation growth perpendicular to the substrate surface. The observed direct band gap is about 3.22 eV for typical films prepared at 400 °C. The photocatalytic activity of starch with a ZnO photocatalyst has been studied by using a novel photoelectrocatalytic process. (semiconductor materials)

  2. Photocatalytic and magnetic behaviors of BiFeO3 thin films deposited on different substrates

    Science.gov (United States)

    Xu, Hao-Min; Wang, Huan-Chun; Shen, Yang; Lin, Yuan-Hua; Nan, Ce-Wen

    2014-11-01

    Single phase polycrystalline BiFeO3 thin films were grown on three different substrates via chemical solution deposition. Our results indicate that the band gap of as-prepared BiFeO3 films can be tuned (2.02-2.67 eV) by the grain size effects caused by the substrates. These BiFeO3 films show good photocatalytic properties by the degradation of Congo red solution under visible-light irradiation ( λ> 400 nm). Additionally, weak ferromagnetic behaviors can be observed at room temperature in all the films, which should be correlated to the destruction of the incommensurate cycloid spin structure of BiFeO3 phase and the coexistence of Fe3+ and Fe2+ as confirmed by X-ray photoelectron spectroscopy.

  3. Deposition and characterization of CuInS2 thin films deposited over copper thin films

    Science.gov (United States)

    Thomas, Titu; Kumar, K. Rajeev; Kartha, C. Sudha; Vijayakumar, K. P.

    2015-06-01

    Simple, cost effective and versatile spray pyrolysis method is effectively combined with vacuum evaporation for the deposition of CuIns2 thin films for photovoltaic applications. In the present study In2s3 was spray deposited over vacuum evaporated Cu thin films and Cu was allowed to diffuse in to the In2S3 layer to form CuInS2. To analyse the dependence of precursor volume on the formation of CuInS2 films structural, electrical and morphological analzes are carried out. Successful deposition of CuInS2thin films with good crystallinity and morphology with considerably low resistivity is reported in this paper.

  4. Thermal conductivities of thin, sputtered optical films

    International Nuclear Information System (INIS)

    Henager, C.H. Jr.; Pawlewicz, W.T.

    1991-05-01

    The normal component of the thin film thermal conductivity has been measured for the first time for several advanced sputtered optical materials. Included are data for single layers of boron nitride (BN), aluminum nitride (AIN), silicon aluminum nitride (Si-Al-N), silicon aluminum oxynitride (Si-Al-O-N), silicon carbide (SiC), and for dielectric-enhanced metal reflectors of the form Al(SiO 2 /Si 3 N 4 ) n and Al(Al 2 O 3 /AIN) n . Sputtered films of more conventional materials like SiO 2 , Al 2 O 3 , Ta 2 O 5 , Ti, and Si have also been measured. The data show that thin film thermal conductivities are typically 10 to 100 times lower than conductivities for the same materials in bulk form. Structural disorder in the amorphous or very fine-grained films appears to account for most of the conductivity difference. Conclusive evidence for a film/substrate interface contribution is presented

  5. Optical thin films and coatings from materials to applications

    CERN Document Server

    Flory, Francois

    2013-01-01

    Optical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. This book provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas.$bOptical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. Optical thin films and coatings provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas. Part one explores the design and manufacture of optical coatings. Part two highlights unconventional features of optical thin films including scattering properties of random structures in thin films, optical properties of thin film materials at short wavelengths, thermal properties and colour effects. Part three focusses on novel materials for optical thin films and coatings...

  6. Photoelectric properties of Cu2ZnSnS4 thin films deposited by thermal evaporation

    Science.gov (United States)

    Xinkun, Wu; Wei, Liu; Shuying, Cheng; Yunfeng, Lai; Hongjie, Jia

    2012-02-01

    Sn/Cu/ZnS precursor were deposited by evaporation on soda lime glass at room temperature, and then polycrystalline thin films of Cu2ZnSnS4 (CZTS) were produced by sulfurizing the precursors in a sulfur atmosphere at a temperature of 550 °C for 3 h Fabricated CZTS thin films were characterized by X-ray diffraction, energy dispersive X-ray spectroscopy, ultraviolet-visible-near infrared spectrophotometry, the Hall effect system, and 3D optical microscopy. The experimental results show that, when the ratios of [Cu]/([Zn] + [Sn]) and [Zn]/[Sn] in the CZTS are 0.83 and 1.15, the CZTS thin films possess an absorption coefficient of larger than 4.0 × 104 cm-1 in the energy range 1.5-3.5 eV, and a direct band gap of about 1.47 eV. The carrier concentration, resistivity and mobility of the CZTS film are 6.98 × 1016 cm-3, 6.96 Ω·cm, and 12.9 cm2/(V·s), respectively and the conduction type is p-type. Therefore, the CZTS thin films are suitable for absorption layers of solar cells.

  7. Chalcogenide thin films deposited by rfMS technique using a single quaternary target

    Science.gov (United States)

    Prepelita, P.; Stavarache, I.; Negrila, C.; Garoi, F.; Craciun, V.

    2017-12-01

    Thin films of chalcogenide, Cu(In,Ga)Se2 have been obtained using a single quaternary target by radio frequency magnetron sputtering method, with thickness in the range 750 nm to 1200 nm. X-ray photoelectron spectroscopy investigations showed, that the composition of Cu(In,Ga)Se2 thin films was very similar to that of the used target CuIn0.75Ga0.25Se2. Identification of the chemical composition of Cu(In,Ga)Se2 thin films by XPS performed in high vacuum, emphasized that the samples exhibit surface features suitable to be integrated into the structure of solar cells. Atomic Force Microscopy and Scanning Electron Microscopy investigations showed that surface morphology was influenced by the increase in thickness of the Cu(In,Ga)Se2 layer. From X-Ray Diffraction investigations it was found that all films were polycrystalline, having a tetragonal lattice with a preferential orientation along the (112) direction. The optical reflectance as a function of wavelength was measured for the studied samples. The increase in thickness of the Cu(In,Ga)Se2 absorber determined a decrease of its optical bandgap value from 1.53 eV to 1.44 eV. The results presented in this paper showed an excellent alternative of obtaining Cu(In,Ga)Se2 compound thin films from a single target.

  8. Far-infrared reflection-absorption spectroscopy of amorphous and polycrystalline gallium arsenide films

    International Nuclear Information System (INIS)

    Gregory, J.R.

    1992-01-01

    We have reported far-infrared reflection absorption spectra (30-320CM -1 ) at 30 and 310K for nine films of non-stoichiometric GaAs. The FIRRAS measurements were performed using the grazing incidence FIR double-modulation spectroscopy technique first described by DaCosta and Coleman. The films were fabricated by molecular beam deposition on metallized substrates for two As/Ga molecular beam flux ratios. The films were characterized by depth profilometry, IRAS, XRD, and x-ray microprobe analysis. Film thicknesses ranged from 800 to 5800 angstrom and compositions were 45-50% As for a MB flux ratio of 0.29 and 60-70% As for a ratio of 1.12. FIRRAS measurements were made and characterizations performed for as-deposited films and for 5 hour anneals at 473, 573, 673 and 723 degrees C. Vibrational spectra of the crystallized films were interpreted in terms of the exact reflectivity of a thin dielectric film on a conducting substrate, using a classical Lorentzian dielectric function for the response of the film. Resonances appearing in the open-quote forbidden close-quote region between the TO and LO frequencies were modelled with an effective medium approximation and are interpreted as arising from small-scale surface roughness. The behavior of the amorphous film spectra were examined within two models. The effective force constant model describes the variation of the reflection-absorption maxima with measured crystallite size in terms of the effective vibration frequency of 1-D atomic chains having force constants distributed according to the parameters of the crystalline-to-amorphous relaxation length and the crystalline to amorphous force constant ratio. The dielectric function continuum model uses the relaxation of the crystal momentum selection rule to calculate the reflection-absorption spectrum based on a dielectric function in which the oscillator strength is the normalized product of a constant dipole strength and the smoothed vibrational density of states

  9. Nanoporous Zeolite Thin Film-Based Fiber Intrinsic Fabry-Perot Interferometric Sensor for Detection of Dissolved Organics in Water

    Directory of Open Access Journals (Sweden)

    Hai Xiao

    2006-08-01

    Full Text Available A fiber optic intrinsic Fabry-Perot interferometric (IFPI chemical sensor wasdeveloped by fine-polishing a thin layer of polycrystalline nanoporous MFI zeolitesynthesized on the cleaved endface of a single mode fiber. The sensor operated bymonitoring the optical thickness changes of the zeolite thin film caused by the adsorption oforganic molecules into the zeolite channels. The optical thickness of the zeolite thin filmwas measured by white light interferometry. Using methanol, 2-propanol, and toluene as themodel chemicals, it was demonstrated that the zeolite IPFI sensor could detect dissolvedorganics in water with high sensitivity.

  10. Electrical transport characterization of Al and Sn doped Mg 2 Si thin films

    KAUST Repository

    Zhang, Bo

    2017-05-22

    Thin-film Mg2Si was deposited using radio frequency (RF) magnetron sputtering. Al and Sn were incorporated as n-type dopants using co-sputtering to tune the thin-film electrical properties. X-ray diffraction (XRD) analysis confirmed that the deposited films are polycrystalline Mg2Si. The Sn and Al doping concentrations were measured using Rutherford backscattering spectroscopy (RBS) and energy dispersive X-ray spectroscopy (EDS). The charge carrier concentration and the charge carrier type of the Mg2Si films were measured using a Hall bar structure. Hall measurements show that as the doping concentration increases, the carrier concentration of the Al-doped films increases, whereas the carrier concentration of the Sn-doped films decreases. Combined with the resistivity measurements, the mobility of the Al-doped Mg2Si films is found to decrease with increasing doping concentration, whereas the mobility of the Sn-doped Mg2Si films is found to increase.

  11. Effect of protic solvents on CdS thin films prepared by chemical bath deposition

    International Nuclear Information System (INIS)

    Yao, Pin-Chuan; Chen, Chun-Yu

    2015-01-01

    In this study, cadmium sulfide (CdS) thin films are grown on glass substrates by chemical bath deposition (CBD) in an aqueous bath containing 10–20 vol.% alcohol. The roles of ethanol as a protic solvent that substantially improves the quality of films are explored extensively. The deposited films in an alcohol bath are found to be more compact and smoother with smaller CdS grains. The X-ray diffractograms of the samples confirm that all films were polycrystalline with mixed wurtzite (hexagonal) and zinkblende (cubic) phases. Raman spectra indicate that, for a film deposited in an alcohol bath, the position of 1LO is closer to the value for single crystal CdS, indicating that these films have a high degree of crystallinity. The as-deposited CdS thin films in a 10 vol.% alcohol bath were found to have the highest visible transmittance of 81.9%. XPS analysis reveals a stronger signal of C1s for samples deposited in the alcohol baths, indicating that there are more carbonaceous residues on the films with protic solvent than on the films with water. A higher XPS S/Cd atomic ratio for films deposited in an alcohol bath indicates that undesirable surface reactions (leading to sulfur containing compounds other than CdS) occur less frequently over the substrates. - Highlights: • Study of CBD-CdS films grown in an alcohol-containing aqueous bath is reported. • The deposited films in an alcohol bath are more compact with smaller CdS grains. • Raman spectra show that in an alcohol bath, the CdS film has a better crystallinity. • XPS reveals more carbon residues remain on the films deposited using alcohol bath. • In an alcohol bath, the undesirable surface reactions with Cd ions were hindered

  12. Synthesis and optical characterization of nanocrystalline CdTe thin films

    Science.gov (United States)

    Al-Ghamdi, A. A.; Khan, Shamshad A.; Nagat, A.; Abd El-Sadek, M. S.

    2010-11-01

    From several years the study of binary compounds has been intensified in order to find new materials for solar photocells. The development of thin film solar cells is an active area of research at this time. Much attention has been paid to the development of low cost, high efficiency thin film solar cells. CdTe is one of the suitable candidates for the production of thin film solar cells due to its ideal band gap, high absorption coefficient. The present work deals with thickness dependent study of CdTe thin films. Nanocrystalline CdTe bulk powder was synthesized by wet chemical route at pH≈11.2 using cadmium chloride and potassium telluride as starting materials. The product sample was characterized by transmission electron microscope, X-ray diffraction and scanning electron microscope. The structural characteristics studied by X-ray diffraction showed that the films are polycrystalline in nature. CdTe thin films with thickness 40, 60, 80 and 100 nm were prepared on glass substrates by using thermal evaporation onto glass substrate under a vacuum of 10 -6 Torr. The optical constants (absorption coefficient, optical band gap, refractive index, extinction coefficient, real and imaginary part of dielectric constant) of CdTe thin films was studied as a function of photon energy in the wavelength region 400-2000 nm. Analysis of the optical absorption data shows that the rule of direct transitions predominates. It has been found that the absorption coefficient, refractive index ( n) and extinction coefficient ( k) decreases while the values of optical band gap increase with an increase in thickness from 40 to 100 nm, which can be explained qualitatively by a thickness dependence of the grain size through decrease in grain boundary barrier height with grain size.

  13. Substrate heater for thin film deposition

    Science.gov (United States)

    Foltyn, Steve R.

    1996-01-01

    A substrate heater for thin film deposition of metallic oxides upon a target substrate configured as a disk including means for supporting in a predetermined location a target substrate configured as a disk, means for rotating the target substrate within the support means, means for heating the target substrate within the support means, the heating means about the support means and including a pair of heating elements with one heater element situated on each side of the predetermined location for the target substrate, with one heater element defining an opening through which desired coating material can enter for thin film deposition and with the heating means including an opening slot through which the target substrate can be entered into the support means, and, optionally a means for thermal shielding of the heating means from surrounding environment is disclosed.

  14. Multiferroic oxide thin films and heterostructures

    KAUST Repository

    Lu, Chengliang

    2015-05-26

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  15. Quantifying clustering in disordered carbon thin films

    International Nuclear Information System (INIS)

    Carey, J.D.

    2006-01-01

    The quantification of disorder and the effects of clustering in the sp 2 phase of amorphous carbon thin films are discussed. The sp 2 phase is described in terms of disordered nanometer-sized conductive sp 2 clusters embedded in a less conductive sp 3 matrix. Quantification of the clustering of the sp 2 phase is estimated from optical as well as from electron and nuclear magnetic resonance methods. Unlike in other disordered group IV thin film semiconductors, we show that care must be exercised in attributing a meaning to the Urbach energy extracted from absorption measurements in the disordered carbon system. The influence of structural disorder, associated with sp 2 clusters of similar size, and topological disorder due to undistorted clusters of different sizes is also discussed. Extensions of this description to other systems are also presented

  16. Thin film photovoltaic panel and method

    Science.gov (United States)

    Ackerman, Bruce; Albright, Scot P.; Jordan, John F.

    1991-06-11

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  17. Domain switching of fatigued ferroelectric thin films

    International Nuclear Information System (INIS)

    Tak Lim, Yun; Yeog Son, Jong; Shin, Young-Han

    2014-01-01

    We investigate the domain wall speed of a ferroelectric PbZr 0.48 Ti 0.52 O 3 (PZT) thin film using an atomic force microscope incorporated with a mercury-probe system to control the degree of electrical fatigue. The depolarization field in the PZT thin film decreases with increasing the degree of electrical fatigue. We find that the wide-range activation field previously reported in ferroelectric domains result from the change of the depolarization field caused by the electrical fatigue. Domain wall speed exhibits universal behavior to the effective electric field (defined by an applied electric field minus the depolarization field), regardless of the degree of the electrical fatigue

  18. Thin films for gas sensors

    Science.gov (United States)

    Pires, Jose Miguel Alves Correia

    Nos ultimos anos tem-se assistido a um aumento dos investimentos na investigacao de novos materiais para aplicacao em sensores. Apesar de ja existir um bom numero de dispositivos explorados comercialmente, muitas vezes, quer devido aos elevados custos de producao, quer devido a uma crescente exigencia do ponto de vista das caracteristicas de funcionamento, continua a ser necessario procurar novos materiais ou novas formas de producao que permitam baixar os custos e melhorar o desempenho dos dispositivos. No campo dos sensores de gases tem-se verificado continuos avancos nos ultimos anos. Continua todavia a ser necessario conhecer melhor, tanto os processos de producao dos materiais, como os mecanismos que regulam a sensibilidade dos dispositivos aos gases, de modo a orientar adequadamente a investigacao dos novos materiais, nomeadamente no que se refere a optimizacao dos parâmetros que nao satisfazem ainda os requisitos do mercado. Um dos materiais que tem mostrado melhores qualidades para aplicacao em sensores de gases de tipo resistivo e o dioxido de estanho. Este material tem sido produzido sob diversas formas e usando diferentes tecnicas, como sejam: sol-gel [1], pulverizacao catodica (sputtering) por magnetrao [2-4], sinterizacao de pos [5, 6], ablacao laser [7] ou RGTO [8]. Os resultados obtidos revelam que as caracteristicas dos dispositivos sao muito dependentes das tecnicas usadas na sua producao. A deposicao usando sputtering reactivo por magnetrao e uma tecnica que permite obter filmes finos de oxido de estanho com diferentes caracteristicas, quer do ponto de vista da estrutura, quer da composicao, e por isso, tambem, com diferentes sensibilidades aos gases. No âmbito deste trabalho, foram produzidos filmes de SnO2 usando sputtering DC reactivo com diferentes condicoes de deposicao. Os substratos usados foram lâminas de vidro e o alvo foi estanho com 99.9% de pureza. Foi estudada a influencia da atmosfera de deposicao, da pressao parcial do O2, da

  19. The carbonization of thin polyaniline films

    Czech Academy of Sciences Publication Activity Database

    Morávková, Zuzana; Trchová, Miroslava; Exnerová, Milena; Stejskal, Jaroslav

    2012-01-01

    Roč. 520, č. 19 (2012), s. 6088-6094 ISSN 0040-6090 R&D Projects: GA AV ČR IAA400500905; GA AV ČR IAA100500902; GA ČR GAP205/12/0911 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : polyaniline * thin films * infrared spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.604, year: 2012

  20. Thin film interfaces for microelectrochemical sensors

    Science.gov (United States)

    Tvarozek, Vladimir; Ivanic, Rastislav; Jakubec, Andrej; Novotny, Ivan; Rehacek, Vlastimil

    2001-09-01

    Planar microelectrochemical chips with thin film electodes of different shapes and arrangement, have been developed and fabricated. Micro electrochemical cell with closely vertically spaced electrodes allows to exploit the effect of redox recycling and an increase of collection efficiency for a high current amplification. PC simulations of electro- mechanical properties of sl-BLM is useful tool for evaluation and prediction of BLM behavior. Non-symmetric microelectrode arrays were designed and fabricated for electrical monitoring of human skin.

  1. Thin-film silicon solar cell technology

    Czech Academy of Sciences Publication Activity Database

    Shah, A. V.; Schade, H.; Vaněček, Milan; Meier, J.; Vallat-Sauvain, E.; Wyrsch, N.; Kroll, U.; Droz, C.; Bailat, J.

    2004-01-01

    Roč. 12, - (2004), s. 113-142 ISSN 1062-7995 R&D Projects: GA MŽP SN/320/11/03 Institutional research plan: CEZ:AV0Z1010914 Keywords : thin-film silicon modules * hydrogenerated amorphous silicon(a-Si:H) * hydrogenerated microcrystalline (ćc-Si:H) * transparent conductive oxydes(TCOs) * building -integrated photovoltaics(BIPV) Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.196, year: 2004

  2. Mesoscale simulations of confined Nafion thin films

    OpenAIRE

    Vanya, Peter; Sharman, Jonathan; Elliott, James A.

    2017-01-01

    The morphology and transport properties of thin films of the ionomer Nafion, with thicknesses on the order of the bulk cluster size, have been investigated as a model system to explain the anomalous behaviour of catalyst/electrode-polymer interfaces in membrane-electrode assemblies. We have employed dissipative particle dynamics (DPD) to investigate the interaction of water and fluorocarbon chains with carbon and quartz as confining materials for a wide range of operational water contents and...

  3. Mesoscale simulations of confined Nafion thin films

    OpenAIRE

    Vanya, Peter; Sharman, J; Elliott, James Arthur

    2017-01-01

    The morphology and transport properties of thin films of the ionomer Nafion, with thicknesses on the order of the bulk cluster size, have been investigated as a model system to explain the anomalous behaviour of catalyst/electrode-polymer interfaces in membrane electrode assemblies. We have employed dissipative particle dynamics (DPD) to investigate the interaction of water and fluorocarbon chains with carbon and quartz as confining materials for a wide range of operational water contents and...

  4. Optical characterization of thin solid films

    CERN Document Server

    Ohlídal, Miloslav

    2018-01-01

    This book is an up-to-date survey of the major optical characterization techniques for thin solid films. Emphasis is placed on practicability of the various approaches. Relevant fundamentals are briefly reviewed before demonstrating the application of these techniques to practically relevant research and development topics. The book is written by international top experts, all of whom are involved in industrial research and development projects.

  5. P-type CuxS thin films: Integration in a thin film transistor structure

    International Nuclear Information System (INIS)

    Nunes de Carvalho, C.; Parreira, P.; Lavareda, G.; Brogueira, P.; Amaral, A.

    2013-01-01

    Cu x S thin films, 80 nm thick, are deposited by vacuum thermal evaporation of sulfur-rich powder mixture, Cu 2 S:S (50:50 wt.%) with no intentional heating of the substrate. The process of deposition occurs at very low deposition rates (0.1–0.3 nm/s) to avoid the formation of Cu or S-rich films. The evolution of Cu x S films surface properties (morphology/roughness) under post deposition mild annealing in air at 270 °C and their integration in a thin film transistor (TFT) are the main objectives of this study. Accordingly, Scanning Electron Microscopy studies show Cu x S films with different surface morphologies, depending on the post deposition annealing conditions. For the shortest annealing time, the Cu x S films look to be constructed of grains with large dimension at the surface (approximately 100 nm) and consequently, irregular shape. For the longest annealing time, films with a fine-grained surface are found, with some randomly distributed large particles bound to this fine-grained surface. Atomic Force Microscopy results indicate an increase of the root-mean-square roughness of Cu x S surface with annealing time, from 13.6 up to 37.4 nm, for 255 and 345 s, respectively. The preliminary integration of Cu x S films in a TFT bottom-gate type structure allowed the study of the feasibility and compatibility of this material with the remaining stages of a TFT fabrication as well as the determination of the p-type characteristic of the Cu x S material. - Highlights: • Surface properties of annealed Cu x S films. • Variation of conductivity with annealing temperatures of Cu x S films. • Application of evaporated Cu x S films in a thin film transistor (TFT) structure. • Determination of Cu x S p-type characteristic from TFT behaviour

  6. Aluminum nitride and nanodiamond thin film microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Knoebber, Fabian; Bludau, Oliver; Roehlig, Claus-Christian; Williams, Oliver; Sah, Ram Ekwal; Kirste, Lutz; Cimalla, Volker; Lebedev, Vadim; Nebel, Christoph; Ambacher, Oliver [Fraunhofer-Institute for Applied Solid State Physics, Freiburg (Germany)

    2010-07-01

    In this work, aluminum nitride (AlN) and nanocrystalline diamond (NCD) thin film microstructures have been developed. Freestanding NCD membranes were coated with a piezoelectrical AlN layer in order to build tunable micro-lens arrays. For the evaluation of the single material quality, AlN and NCD thin films on silicon substrates were fabricated using RF magnetron sputtering and microwave chemical vapor deposition techniques, respectively. The crystal quality of AlN was investigated by X-ray diffraction. The piezoelectric constant d{sub 33} was determined by scanning laser vibrometry. The NCD thin films were optimized with respect to surface roughness, mechanical stability, intrinsic stress and transparency. To determine the mechanical properties of the materials, both, micromechanical resonator and membrane structures were fabricated and measured by magnetomotive resonant frequency spectroscopy and bulging experiments, respectively. Finally, the behavior of AlN/NCD heterostructures was modeled using the finite element method and the first structures were characterized by piezoelectrical measurements.

  7. Multiferroic RMnO3 thin films

    Science.gov (United States)

    Fontcuberta, Josep

    2015-03-01

    Multiferroic materials have received an astonishing attention in the last decades due to expectations that potential coupling between distinct ferroic orders could inspire new applications and new device concepts. As a result, a new knowledge on coupling mechanisms and materials science has dramatically emerged. Multiferroic RMnO3 perovskites are central to this progress, providing a suitable platform to tailor spin-spin and spin-lattice interactions. With views towards applications, the development of thin films of multiferroic materials have also progressed enormously and nowadays thin-film manganites are available, with properties mimicking those of bulk compounds. Here we review achievements on the growth of hexagonal and orthorhombic RMnO3 epitaxial thin films and the characterization of their magnetic and ferroelectric properties, we discuss some challenging issues, and we suggest some guidelines for future research and developments. En ce qui concerne les applications, le développement de films minces de matériaux multiferroïques a aussi énormément progressé, et de nos jours des films minces de manganites avec des propriétés similaires à celles des matériaux massifs existent. Nous passons en revue ici les résultats obtenus dans le domaine de la croissance de couches minces épitaxiés de RMnO3 hexagonal et orthorhombique et de la caractérisation de leurs propriétés magnétiques et ferroélectriques. Nous discutons certains enjeux et proposons quelques idées pour des recherches et développements futurs.

  8. Synthesis Characterization and Decomposition Studies of tris[N-N-dibenzyidithocarbaso)Indium (III) Chemical Spray Deposition of Polycrystalline CuInS2 on Copper Films

    Science.gov (United States)

    Hehemann, David G.; Lau, J. Eva; Harris, Jerry D.; Hoops, Michael D.; Duffy, Norman V.

    2005-01-01

    This paper presents the results of the synthesis characterization and decomposition studies of tris[N-N-dibenzyidithocarbaso)Indium (III) with chemical spray deposition of polycrystalline CuInS2 on Copper Films.

  9. Study of sputtered ZnO thin films on SiO2 and GaP substrates

    International Nuclear Information System (INIS)

    Brath, T.; Buc, D.; Kovac, J.; Hrnciar, V.; Caplovic, L.

    2011-01-01

    We have investigated n-ZnO polycrystalline thin films prepared on SiO 2 and p-GaP substrate using magnetron sputtering technique. The structural and electrical properties of these structures were studied. The measured parameters give promising results with a possibility to utilize n-ZnO/p-GaP heterostructure for application in the solar cells development especially in the field of nanostructures. The prepared structures will be a subject of further research. (authors)

  10. Structural, optical and electrical characteristics of nickel oxide thin films synthesised through chemical processing method

    Science.gov (United States)

    Akinkuade, Shadrach; Mwankemwa, Benanrd; Nel, Jacqueline; Meyer, Walter

    2018-04-01

    A simple and cheap chemical deposition method was used to produce a nickel oxide (NiO) thin film on glass substrates from a solution that contained Ni2+ and monoethanolamine. Thermal treatment of the film at temperatures above 350 °C for 1 h caused decomposition of the nickel hydroxide into nickel oxide. Structural, optical and electrical properties of the film were studied using X-ray diffraction (XRD), spectrophotometry, current-voltage measurements and scanning electron microscopy (SEM). The film was found to be polycrystalline with interplanar spacing of 0.241 nm, 0.208 nm and 0.148 nm for (111), (200) and (220) planes respectively, the lattice constant a was found to be 0.417 nm. The film had a porous surface morphology, formed from a network of nanowalls of average thickness of 66.67 nm and 52.00 nm for as-deposited and annealed films respectively. Transmittance of visible light by the as-deposited film was higher and the absorption edge of the film blue-shifted after annealing. The optical band gap of the annealed film was 3.8 eV. Electrical resistivity of the film was 378 Ωm.

  11. Additives to silane for thin film silicon photovoltaic devices

    Science.gov (United States)

    Hurley, Patrick Timothy; Ridgeway, Robert Gordon; Hutchison, Katherine Anne; Langan, John Giles

    2013-09-17

    Chemical additives are used to increase the rate of deposition for the amorphous silicon film (.alpha.Si:H) and/or the microcrystalline silicon film (.mu.CSi:H). The electrical current is improved to generate solar grade films as photoconductive films used in the manufacturing of Thin Film based Photovoltaic (TFPV) devices.

  12. Laser-induced surface recrystallization of polycrystalline PbI2 thick films for X-ray detector application

    Science.gov (United States)

    Sun, Hui; Zhao, Beijun; Zhu, Xinghua; Zhu, Shifu; Yang, Dingyu; Wangyang, Peihua; Gao, Xiuyin

    2018-01-01

    In this work, laser-induced surface recrystallization process was developed to improve the surface properties and device performance of the polycrystalline PbI2 thick films prepared by using close space vapor deposition method. A continuous polycrystalline PbI2 recrystallized layer with a better mechanical strength and reflectivity improved from 2% to 4%-6% was obtained by this recrystallization process for the films with mechanical pretreatment. Other polytypes is absent in the recrystallized layer with the 2H-polytype remaining before and after treatment and obtaining improved electrical and X-ray photoelectric response performance. The pretreatment such as mechanical cutting/polishing and hydrogenation is necessary to lower the non-wetting crystallization behavior during the recrystallization process due to the rough surface state and oxygen contamination.

  13. The microstructure investigation of GeTi thin film used for non-volatile memory

    International Nuclear Information System (INIS)

    Shen Jie; Liu Bo; Song Zhitang; Xu Cheng; Liang Shuang; Feng Songlin; Chen Bomy

    2008-01-01

    GeTi thin film has been found to have the reversible resistance switching property in our previous work. In this paper, the microstructure of this material with a given composition was investigated. The film was synthesized by magnetron sputtering and treated by the rapid temperature process. The results indicate a coexist status of amorphous and polycrystalline states in the as-deposited GeTi film, and the grains in the film are extremely fine. Furthermore, not until the film annealed at 600 deg. C, can the polycrystalline state be detected by X-ray diffraction. Based on the morphological analysis, the sputtered GeTi has the column growth tendency, and the column structure vanishes with the temperature increasing. The microstructure and thermal property analysis indicate that GeTi does not undergo evident phase change process during the annealing process, which makes the switching mechanism of GeTi different from that of chalcogenide memory material, the most widely used phase change memory material

  14. Electrical resistivity of thin metal films

    CERN Document Server

    Wissmann, Peter

    2007-01-01

    The aim of the book is to give an actual survey on the resistivity of thin metal and semiconductor films interacting with gases. We discuss the influence of the substrate material and the annealing treatment of the films, presenting our experimental data as well as theoretical models to calculate the scattering cross section of the conduction electrons in the frame-work of the scattering hypothesis. Main emphasis is laid on the comparison of gold and silver films which exhibit nearly the same lattice structure but differ in their chemical activity. In conclusion, the most important quantity for the interpretation is the surface charging z while the correlation with the optical data or the frustrated IR vibrations seems the show a more material-specific character. Z can be calculated on the basis of the density functional formalism or the self-consistent field approximation using Mulliken’s population analysis.

  15. Thermal properties of methyltrimethoxysilane aerogel thin films

    Directory of Open Access Journals (Sweden)

    Leandro N. Acquaroli

    2016-10-01

    Full Text Available Aerogels are light and porous solids whose properties, largely determined by their nanostructure, are useful in a wide range of applications, e.g., thermal insulation. In this work, as-deposited and thermally treated air-filled silica aerogel thin films synthesized using the sol-gel method were studied for their thermal properties using the 3-omega technique, at ambient conditions. The thermal conductivity and diffusivity were found to increase as the porosity of the aerogel decreased. Thermally treated films show a clear reduction in thermal conductivity compared with that of as-deposited films, likely due to an increase of porosity. The smallest thermal conductivity and diffusivity found for our aerogels were 0.019 W m−1 K−1 and 9.8 × 10-9 m2 s−1. A model was used to identify the components (solid, gaseous and radiative of the total thermal conductivity of the aerogel.

  16. Characterization of cobalt oxide thin films prepared by a facile spray pyrolysis technique using perfume atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Louardi, A.; Rmili, A.; Ouachtari, F.; Bouaoud, A. [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Elidrissi, B., E-mail: e.bachir@mailcity.com [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco); Erguig, H. [Laboratoire des Hautes Energies, Sciences de l' Ingenierie et Reacteurs (LHESIR), Equipe Ingenierie et Materiaux (INMA), Departement de Physique, Faculte des Sciences, Kenitra (Morocco)

    2011-09-15

    Highlights: > Co{sub 3}O{sub 4} thin films show a micro porous structure. > Co{sub 3}O{sub 4} thin films are formed with spherical grains less than 50 nm in diameter. > The porous structure of Co{sub 3}O{sub 4} films is expected to have promising application in electrochromism. - Abstract: Cobalt oxide (Co{sub 3}O{sub 4}) thin films were prepared by a facile spray pyrolysis technique using perfume atomizer from aqueous solution of hydrated cobalt chloride salt (CoCl{sub 2}.6H{sub 2}O) as source of cobalt. The films were deposited onto the amorphous glass substrates kept at different temperatures (300-500 deg. C). The influences of molar concentration of the starting solution and substrate temperature on the structural, morphological and optical properties of (Co{sub 3}O{sub 4}) thin films were studied. It was found from X-ray diffraction (XRD) analysis that the films prepared with molar concentration greater than 0.025 M/L were polycrystalline spinel type cubic structure. The preferred orientation of the crystallites of these films changes gradually from (6 2 2) to (1 1 1) when the substrate temperature increases. By Raman spectroscopy, five Raman active modes characteristic of Co{sub 3}O{sub 4} spinel type cubic structure were found and identified at 194, 484, 522, 620 and 691 cm{sup -1}. The scanning electron microscopy (SEM) images showed micro porous structure with very fine grains less than 50 nm in diameter. These films exhibited also a transmittance value of about 70% in the visible and infra red range.

  17. Composition and morphological characteristics of chemically sprayed fluorine-doped zinc oxide thin films deposited on Si(1 0 0)

    International Nuclear Information System (INIS)

    Castaneda, L.; Maldonado, A.; Cheang-Wong, J.C.; Terrones, M.; Olvera, M. de la L

    2007-01-01

    Fluorine-doped zinc oxide thin films (ZnO:F) were deposited on Si(1 0 0) substrates by the chemical spray technique (CST) from an aged-solution. The effect of the substrate temperature on the morphology and composition of the ZnO:F thin films was studied. The films were polycrystalline, with a preferential growth along the ZnO (0 0 2) plane, irrespective of the deposition temperature. The average crystal size within the films was ca. 35 nm and the morphology of the surface was found to be dependent on the substrate temperature. At low substrate temperatures irregular-shaped grains were observed, whereas at higher temperatures uniform flat grains were obtained. Elemental analysis showed that the composition of the films is close to stoichiometric ZnO and that samples contain quite a low fluorine concentration, which decreases as a function of the deposition temperature

  18. Current-induced metal-insulator transition in VO x thin film prepared by rapid-thermal-annealing

    International Nuclear Information System (INIS)

    Cho, Choong-Rae; Cho, SungIl; Vadim, Sidorkin; Jung, Ranju; Yoo, Inkyeong

    2006-01-01

    The phenomenon of metal-insulator transition (MIT) in polycrystalline VO x thin films and their preparations have been studied. The films were prepared by sputtering of vanadium thin films succeeded by Rapid Thermal Annealing (RTA) in oxygen ambient at 500 deg. C. Crystalline, compositional, and morphological characterizations reveal a continuous change of phase from vanadium metal to the highest oxide phase, V 2 O 5 , with the time of annealing. Electrical MIT switching has been observed in these films. Sweeping mode, electrode area, and temperature dependent MIT has been studied in Pt/VO x /Pt vertical structure. The important parameters for MIT in VO x have been found to be the current density and the electric field, which depend on carrier density in the films

  19. Effect of substrate temperature on structural and optical properties of spray deposited ZnO thin films

    Directory of Open Access Journals (Sweden)

    Larbah Y.

    2015-09-01

    Full Text Available Undoped ZnO thin films have been prepared on glass substrates at different substrate temperatures by spray pyrolysis method. The effect of temperature on the structural, morphological and optical properties of n-type ZnO films was studied. The X-ray diffraction (XRD results confirmed that the ZnO thin films were polycrystalline with wurtzite structure. Scanning electron microscopy (SEM measurements showed that the surface morphology of the films changed with temperature. The studies demonstrated that the ZnO film had a transmission of about 85 % and energy gap of 3.28 eV at 450 °C. The RBS measurements revealed that ZnO layers with a thickness up to 200 nm had a good stoichiometry.

  20. Composition and morphological characteristics of chemically sprayed fluorine-doped zinc oxide thin films deposited on Si(1 0 0)

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda, L. [Centro de Ciencias Aplicadas y Desarrollo Tecnologico, Universidad Nacional Autonoma de Mexico, Apartado Postal 70-186, 04510 D. F. (Mexico); Departamento de Fisica y Matematicas, Division de Ciencia, Arte y Tecnologia, Universidad Iberoamericana, Av. Prolongacion Paseo de la Reforma 880, Santa Fe 012100, D. F. (Mexico); Maldonado, A. [Depto. de Ing. Electrica, CINVESTAV IPN, SEES, Apartado Postal 14740, Mexico, D.F. 07000 (Mexico); Cheang-Wong, J.C. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Apartado Postal 20-364, Mexico, D.F. 01000 (Mexico); Terrones, M. [Advanced Materials Department, IPICYT, Camino a la Presa San Jose 2055, Col. Lomas, 4a. seccion, San Luis Potosi, 78216 (Mexico); Departamento de Fisica y Matematicas, Division de Ciencia, Arte y Tecnologia, Universidad Iberoamericana, Av. Prolongacion Paseo de la Reforma 880, Santa Fe 012100, D. F. (Mexico); Olvera, M. de la L [Depto. de Ing. Electrica, CINVESTAV IPN, SEES, Apartado Postal 14740, Mexico, D.F. 07000 (Mexico)]. E-mail: molvera@cinvestav.mx

    2007-03-01

    Fluorine-doped zinc oxide thin films (ZnO:F) were deposited on Si(1 0 0) substrates by the chemical spray technique (CST) from an aged-solution. The effect of the substrate temperature on the morphology and composition of the ZnO:F thin films was studied. The films were polycrystalline, with a preferential growth along the ZnO (0 0 2) plane, irrespective of the deposition temperature. The average crystal size within the films was ca. 35 nm and the morphology of the surface was found to be dependent on the substrate temperature. At low substrate temperatures irregular-shaped grains were observed, whereas at higher temperatures uniform flat grains were obtained. Elemental analysis showed that the composition of the films is close to stoichiometric ZnO and that samples contain quite a low fluorine concentration, which decreases as a function of the deposition temperature.

  1. Structural and optical properties of nano-structured CdS thin films prepared by chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Rekha, E-mail: rekha.mittal07@gmail.com; Kumar, Dinesh; Chaudhary, Sujeet; Pandya, Dinesh K. [Thin Film Laboratory, Physics Department, Indian Institute of Technology Delhi, New Delhi-110016 (India)

    2016-05-06

    Cadmium sulfide (CdS) thin films have been deposited on conducting glass substrates by chemical bath deposition (CBD) technique. The effect of precursor concentration on the structural, morphological, compositional, and optical properties of the CdS films has been studied. Crystal structure of these CdS films is characterized by X-ray diffraction (XRD) and it reveals polycrystalline structure with mixture of cubic and wurtzite phases with grain size decreasing as precursor concentration is increased. Optical studies reveal that the CdS thin films have high transmittance in visible spectral region reaching 90% and the films possess direct optical band gap that decreases from 2.46 to 2.39 eV with decreasing bath concentration. Our study suggests that growth is nucleation controlled.

  2. Structural and Optical Studies of Magnesium Doped Zinc Oxide Thin Films

    OpenAIRE

    Arpana Agrawal; Tanveer Ahmad Dar; Pratima Sen

    2013-01-01

    The paper describes the structural and optical properties of Magnesium doped Zinc Oxide (Mg  3.5 %, 6 %, 9 %, 12 % by weight) thin films prepared by pulsed laser deposition technique. The samples are characterized by X-ray diffraction technique, Ultra-violet visible absorption spectroscopy, X-ray photoelectron spectroscopy. X-ray diffraction results reveal the polycrystalline nature of samples with no impurity or secondary phase formation. Ultra-violet visible absorption spectroscopy studies...

  3. Deposition and characterization of ZnSe nanocrystalline thin films

    Science.gov (United States)

    Temel, Sinan; Gökmen, F. Özge; Yaman, Elif; Nebi, Murat

    2018-02-01

    ZnSe nanocrystalline thin films were deposited at different deposition times by using the Chemical Bath Deposition (CBD) technique. Effects of deposition time on structural, morphological and optical properties of the obtained thin films were characterized. X-ray diffraction (XRD) analysis was used to study the structural properties of ZnSe nanocrystalline thin films. It was found that ZnSe thin films have a cubic structure with a preferentially orientation of (111). The calculated average grain size value was about 28-30 nm. The surface morphology of these films was studied by the Field Emission Scanning Electron Microscope (FESEM). The surfaces of the thin films were occurred from small stacks and nano-sized particles. The band gap values of the ZnSe nanocrystalline thin films were determined by UV-Visible absorption spectrum and the band gap values were found to be between 2.65-2.86 eV.

  4. Growth, surface treatment and characterization of polycrystalline lead iodide thick films prepared using close space deposition technique

    International Nuclear Information System (INIS)

    Zhu, Xinghua; Sun, Hui; Yang, Dingyu; Zheng, Xiaolin

    2012-01-01

    Lead iodide (PbI 2 ) polycrystalline thick films were fabricated on glass substrates with a conductive indium–tin-oxide layer using a close space deposition technique. The morphology of the as-deposited PbI 2 films is typically and highly oriented polycrystalline structure, made up of microcrystal platelets upright on the substrate plane. Two techniques including the surface mechanical cutting and after-growth cadmium telluride coating were employed to improve the films′ surface properties. It was shown that both of the film surface treatment methods markedly decreased the dark current of PbI 2 films. The photo-to-dark current ratio of about 2.05 under 241 Am γ-ray source with activity of 2.78 μCi irradiation was obtained from the film treated using both surface cutting and after-growth CdTe coating. Charge transport characteristics of these films were measured and the hole mobility 7.7×10 −2 –1.67×10 −1 cm 2 /V s was estimated.

  5. Structural and magnetic properties of evaporated Co/Si(100) and Co/glass thin films

    International Nuclear Information System (INIS)

    Kharmouche, A; Cherif, S-M; Bourzami, A; Layadi, A; Schmerber, G

    2004-01-01

    A series of Co thin films have been evaporated onto Si(100) and glass substrates. The Co thickness, t Co , ranges from 50 to 195 nm. The structural and magnetic properties have been investigated by x-ray diffraction, hysteresis curves, Brillouin light scattering and magnetic force microscopy (MFM) techniques. The Co thin films are found to be polycrystalline with (0001) texture. There is an increase of the grain size with increasing film thickness. The coercive fields range from values as low as 2 Oe in thinner films to the highest values, 2500 Oe, in 195 nm thick Co/Si films. The magnetocrystalline anisotropy field H a decreases as the thickness increases; surface and stress induced anisotropies seem to contribute to the value of H a . MFM images reveal a well-defined stripe pattern for thicker Co/Si samples. Such domains are not observed in the case of the thinner films. These so-called weak-stripe domains appear in magnetic films with a low or intermediate perpendicular anisotropy. Similar behaviour was observed in Co/glass samples, in addition, cross-tie walls were seen in thinner ones

  6. Scanning tunneling spectroscopy of Pb thin films

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Michael

    2010-12-13

    The present thesis deals with the electronic structure, work function and single-atom contact conductance of Pb thin films, investigated with a low-temperature scanning tunneling microscope. The electronic structure of Pb(111) thin films on Ag(111) surfaces is investigated using scanning tunneling spectroscopy (STS). Quantum size effects, in particular, quantum well states (QWSs), play a crucial role in the electronic and physical properties of these films. Quantitative analysis of the spectra yields the QWS energies as a function of film thickness, the Pb bulk-band dispersion in {gamma}-L direction, scattering phase shifts at the Pb/Ag interface and vacuum barrier as well as the lifetime broadening at anti {gamma}. The work function {phi} is an important property of surfaces, which influences catalytic reactivity and charge injection at interfaces. It controls the availability of charge carriers in front of a surface. Modifying {phi} has been achieved by deposition of metals and molecules. For investigating {phi} at the atomic scale, scanning tunneling microscopy (STM) has become a widely used technique. STM measures an apparent barrier height {phi}{sub a}, which is commonly related to the sample work function {phi}{sub s} by: {phi}{sub a}=({phi}{sub s}+{phi}{sub t}- vertical stroke eV vertical stroke)/2, with {phi}{sub t} the work function of the tunneling tip, V the applied tunneling bias voltage, and -e the electron charge. Hence, the effect of the finite voltage in STM on {phi}{sub a} is assumed to be linear and the comparison of {phi}{sub a} measured at different surface sites is assumed to yield quantitative information about work function differences. Here, the dependence of {phi}{sub a} on the Pb film thickness and applied bias voltage V is investigated. {phi}{sub a} is found to vary significantly with V. This bias dependence leads to drastic changes and even inversion of contrast in spatial maps of {phi}{sub a}, which are related to the QWSs in the Pb

  7. Photoelectrochemical (PEC) studies on CdSe thin films ...

    Indian Academy of Sciences (India)

    TECS

    Abstract. Thin films of CdSe were deposited by potentiostatic mode on different substrates such as stainless steel, titanium and fluorine tin–oxide (FTO) coated glass using non-aqueous bath. The preparative parameters were optimized to get good quality CdSe thin films. These films were characterized by X-ray diffraction.

  8. Oriented growth of thin films of samarium oxide by MOCVD

    Indian Academy of Sciences (India)

    Unknown

    Infrared spectroscopic study reveals that films grown above 600°C are free of carbon. Keywords. MOCVD; thin films .... Simultaneous thermogravimetry and differential thermal analysis (TG/DTA) of the complex was carried ..... quality thin films of rare earth oxides by MOCVD, using the phenanthroline adducts of pentadionate ...

  9. Dynamics of a spreading thin film with gravitational counterflow ...

    Indian Academy of Sciences (India)

    In the present work, dynamics of a thin film spreading due to a thermocapillary stress is mod- eled within lubrication approximation. In microscale flows, the large surface to volume ratios allow interfacial stresses to exert a driving influence. This ability to drive thin film using thermo- capillary stress is used to spread film for ...

  10. Structural characterization of vacuum evaporated ZnSe thin films

    Indian Academy of Sciences (India)

    The lattice parameter, grain size, average internal stress, microstrain, dislocation density and degree of pre- ferred orientation in the film are calculated and correlated with Ts. Keywords. ZnSe thin films; X-ray diffraction; average internal stress; microstrain; dislocation density. 1. Introduction. Thin films of ZnSe has attracted ...

  11. Microstructural study of annealed gold-silicon thin films under nanoindentation

    International Nuclear Information System (INIS)

    Lee, W.-S.; Fong, F.-J.

    2008-01-01

    The mechanical properties of as-deposited Au/Si thin films indented to depths of 1000 nm are measured using a nanoindentation technique. The microstructural evolution of the as-deposited indented specimens and specimens annealed at temperatures of 250, 350 and 450 deg. C, respectively, are examined via transmission electron microscopy (TEM). The initial deposited thin film system is a composite structure consisting of a 500 nm Au thin film, a 5 nm Cr adhesive layer and a Si(1 0 0) substrate. The Au thin film has a polycrystalline structure, while both the Cr adhesive layer and the Si substrate have a single crystal state. The experimental nanoindentation results for the as-deposited specimens show that the loading curves are continuous and smooth. However, a pop-out feature is observed in the unloading curves. Furthermore, a pile-up of the thin film material is observed around the edges of the indentation. By contrast, a total recovery of the plastic zones in the indentation site takes place in the annealed specimens. TEM observations show that the microstructural evolution of the thin films within the indentation zone is strongly dependent on the annealing temperature. In the case of the as-deposited specimens, the indentation pressure induces a chain-like island structure and a distorted crystalline structure within the indentation zone. However, in the specimens annealed at temperatures of 250 and 350 deg. C, respectively, the microstructure of the indentation zone changes from a distorted crystalline structure to an amorphous phase as a result of the plastic deformation induced during indentation. The pop-out event observed in the unloading curve of the as-deposited specimens is also thought to be related to a similar amorphous transformation. At an annealing temperature of 450 deg. C, the microstructure contains both amorphous phase and crystalline eutectic phase. The formation of eutectic phase is the result of a higher annealing temperature and a greater

  12. Property elucidation of vacuum-evaporated zinc telluride thin film ...

    Indian Academy of Sciences (India)

    The deposited film has been characterised by X-ray diffraction (XRD), atomic forcemicroscopy (AFM), and UV-VIS-NIR spectrophotometer. The polycrystalline and cubic structure of the sample has been confirmed by XRD. The order parameter(s), which determines the crystallinity and good environmental stability of the ...

  13. Thin film pc-Si by aluminium induced crystallization on metallic substrate

    Directory of Open Access Journals (Sweden)

    Cayron C.

    2013-04-01

    Full Text Available Thin film polycrystalline silicon (pc-Si on flexible metallic substrates is promising for low cost production of photovoltaic solar cells. One of the attractive methods to produce pc-Si solar cells consists in thickening a large-grained seed layer by epitaxy. In this work, the deposited seed layer is made by aluminium induced crystallization (AIC of an amorphous silicon (a-Si thin film on metallic substrates (Ni/Fe alloy initially coated with a tantalum nitride (TaN conductive diffusion barrier layer. Effect of the thermal budget on the AIC grown pc-Si seed layer was investigated in order to optimize the process (i.e. the quality of the pc-Si thin film. Structural and optical characterizations were carried out using optical microscopy, μ-Raman and Electron Backscatter Diffraction (EBSD. At optimal thermal annealing conditions, the continuous AIC grown pc-Si thin film showed an average grain size around 15 μm. The grains were preferably (001 oriented which is favorable for its epitaxial thickening. This work proves the feasibility of the AIC method to grow large grains pc-Si seed layer on TaN coated metal substrates. These results are, in terms of grains size, the finest obtained by AIC on metallic substrates.

  14. Characterization methodology for lead zirconate titanate thin films with interdigitated electrode structures

    Science.gov (United States)

    Nigon, R.; Raeder, T. M.; Muralt, P.

    2017-05-01

    The accurate evaluation of ferroelectric thin films operated with interdigitated electrodes is quite a complex task. In this article, we show how to correct the electric field and the capacitance in order to obtain identical polarization and CV loops for all geometrical variants. The simplest model is compared with corrections derived from Schwartz-Christoffel transformations, and with finite element simulations. The correction procedure is experimentally verified, giving almost identical curves for a variety of gaps and electrode widths. It is shown that the measured polarization change corresponds to the average polarization change in the center plane between the electrode fingers, thus at the position where the electric field is most homogeneous with respect to the direction and size. The question of maximal achievable polarization in the various possible textures, and compositional types of polycrystalline lead zirconate titanate thin films is revisited. In the best case, a soft (110) textured thin film with the morphotropic phase boundary composition should yield a value of 0.95Ps, and in the worst case, a rhombohedral (100) textured thin film should deliver a polarization of 0.74Ps.

  15. Perovskite oxynitride LaTiOxNy thin films: Dielectric characterization in low and high frequencies

    International Nuclear Information System (INIS)

    Lu, Y.; Ziani, A.; Le Paven-Thivet, C.; Benzerga, R.; Le Gendre, L.; Fasquelle, D.; Kassem, H.

    2011-01-01

    Lanthanum titanium oxynitride (LaTiO x N y ) thin films are studied with respect to their dielectric properties in low and high frequencies. Thin films are deposited by radio frequency magnetron sputtering on different substrates. Effects of nitrogen content and crystalline quality on dielectric properties are investigated. In low-frequency range, textured LaTiO x N y thin films deposited on conductive single crystal Nb–STO show a dielectric constant ε′ ≈ 140 with low losses tanδ = 0.012 at 100 kHz. For the LaTiO x N y polycrystalline films deposited on conductive silicon substrates with platinum (Pt/Ti/SiO 2 /Si), the tunability reached up to 57% for a weak electric field of 50 kV/cm. In high-frequency range, epitaxial LaTiO x N y films deposited on MgO substrate present a high dielectric constant with low losses (ε′ ≈ 170, tanδ = 0.011, 12 GHz).

  16. Study of CdTe and HgCdTe thin films obtained by electrochemical methods

    International Nuclear Information System (INIS)

    Guillen, C.

    1990-01-01

    Cadmium telluride polycrystalline thin films were fabricated on SnO 2 -coated glass substrates by potentiostatic electrodeposition and characterized by X-ray diffraction, energy dispersive X-ray analyses (EDAX), optical and electrical measurements. The films dseposited at potentials more positive than -0.65 V vs.SCE were p-type but those deposited at more negative potentials were n-type. All CdTe thin films showed a band-gap energy about 1.45 eV and a large absorption coeffici-ent (a=10 5 cm -1 ) above de band edge. The addition of even small amounts of mercury to the CdTe produces higuer conductivity values and lower band-gap energies. We have prepared HgCdTe thin films where the band-gap energies ranged between 0.93 and 0.88 eV depending on the ratio of mercury to cadmium. Heat treatment at 300 0 C increases the crystalline diameter and alter the composition of the electrodeposited films, a decrease of the resistivity values was also observed. (Author)

  17. Structural, Optical, and Dielectric Properties of Azure B Thin Films and Impact of Thermal Annealing

    Science.gov (United States)

    Zeyada, H. M.; Zidan, H. M.; Abdelghany, A. M.; Abbas, I.

    2017-07-01

    Thin films of azure B (AB) have been prepared by thermal evaporation. Structural, optical, and dielectric characteristics of as-prepared and annealed samples were studied. AB is polycrystalline in as-synthesized powder form. Detailed x-ray diffraction studies showed amorphous structure for pristine and annealed films. Fourier-transform infrared vibrational spectroscopy indicated minor changes in molecular bonds of AB thin films either after deposition or after thermal annealing. Optical transmittance and reflection spectra of prepared thin films were studied at nearly normal light incidence in the spectral range from 200 nm to 2500 nm, showing marked changes without new peaks. Annealing increased the absorption coefficient and decreased the optical bandgap. Onset and optical energy gaps of pristine films were found to obey indirect allowed transition with values of 1.10 eV and 2.64 eV, respectively. Annealing decreased the onset and optical energy gaps to 1.0 eV and 2.57 eV, respectively. The dispersion parameters before and after annealing are discussed in terms of a single-oscillator model. The spectra of the dielectric constants ( ɛ 1, ɛ 2) were found to depend on the annealing temperature in addition to the incident photon energy.

  18. Modification of magnetoresistance and magnetic properties of Ni thin films by adding Dy interlayer

    Science.gov (United States)

    Vorobiov, S. I.; Shabelnyk, T. M.; Shutylieva, O. V.; Pazukha, I. M.; Chornous, A. M.

    2018-03-01

    The paper reports the influence of dysprosium (Dy) interlayer addition on structure, magnetoresistance and magnetic properties of nickel (Ni) thin films. Trilayer film systems Ni/Dy/Ni have been prepared by alternate electron-beam evaporation. It is demonstrated that all as-prepared and annealed Ni thin films have face-centered cubic structure. The composition of the samples after addition of the Dy interlayer corresponds to the combination of face-centered cubic (Ni) and hexagonal close-packed (Dy) structures. The structure of Ni/Dy/Ni film systems changes from amorphous to polycrystalline when Dy interlayer thickness (t Dy) is more than 15 nm. The value of magnetoresistance increases with the adding the Dy interlayer in both longitudinal and transverse geometries, meanwhile the anisotropic character of magnetoresistance field dependences retained. The saturation and reversal magnetizations are reduced with the increasing of the Dy thickness interlayer, while the coercivity takes the minimum value at t Dy = 15 nm. The following increasing of t Dy leads to increasing of coercivity near to three times. This result indicates the influence of the crystal structure on the magnetic properties of Ni thin films at adding Dy interlayer.

  19. Physical and electrical degradation of ZrO{sub 2} thin films with aluminum electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Seok-Woo; Yoo, Jung-Ho; Nam, Suheun; Ko, Dae-Hong; Ku, Ja-Hum; Yang, Cheol-Woong

    2003-09-15

    Zirconium oxide thin films were deposited on p-type (1 0 0) silicon wafers by reactive d.c. magnetron sputtering. The as-deposited ZrO{sub 2} films at the power of 300 W and at room temperature were amorphous and the ZrO{sub 2} films became polycrystalline with both the monoclinic and tetragonal phases after post-annealing at 450 deg. C in N{sub 2} ambient. The ZrO{sub 2} films with Al electrode had the interfacial amorphous Al-O-containing layer, which was formed by their interaction, but the films with inactive electrodes such as Pt had no additional interfacial layer. The value of the capacitance equivalent thickness (CET) for ZrO{sub 2} film with Al electrode was increased to about 12.4 A compared with the film with Pt electrode due to the additional interfacial layer between Al and ZrO{sub 2} film. The difference of flat band voltage ({delta}V{sub FB}) between the films with two different electrodes was about 1.2 V because of their work function difference.

  20. In Situ Monitoring the Uptake of Moisture into Hybrid Perovskite Thin Films.

    Science.gov (United States)

    Schlipf, Johannes; Bießmann, Lorenz; Oesinghaus, Lukas; Berger, Edith; Metwalli, Ezzeldin; Lercher, Johannes A; Porcar, Lionel; Müller-Buschbaum, Peter

    2018-04-09

    Solution-processed hybrid perovskites are of great interest for use in photovoltaics. However, polycrystalline perovskite thin films show strong degradation in humid atmospheres, which poses an important challenge for large-scale market introduction. With in situ grazing incidence neutron scattering (GISANS) we analyzed water content, degradation products, and morphological changes during prolonged exposure to several humidity levels. In high humidity, the formation of metastable hydrate phases is accompanied by domain swelling, which transforms the faceted crystals to a round-washed, pebble-like form. The films incorporate much more water than is integrated into the hydrates, with smaller crystals being more affected, making the degradation strongly dependent on film morphology. Even at low humidity, water is adsorbed on the crystal surfaces without the formation of crystalline degradation products. Thus, although production in an ambient atmosphere is of interest for industrial production it might lead to long-term degradation without appropriate countermeasures like postproduction drying below 30% RH.