WorldWideScience

Sample records for thin film electrolytes

  1. MultiLayer solid electrolyte for lithium thin film batteries

    Science.gov (United States)

    Lee, Se -Hee; Tracy, C. Edwin; Pitts, John Roland; Liu, Ping

    2015-07-28

    A lithium metal thin-film battery composite structure is provided that includes a combination of a thin, stable, solid electrolyte layer [18] such as Lipon, designed in use to be in contact with a lithium metal anode layer; and a rapid-deposit solid electrolyte layer [16] such as LiAlF.sub.4 in contact with the thin, stable, solid electrolyte layer [18]. Batteries made up of or containing these structures are more efficient to produce than other lithium metal batteries that use only a single solid electrolyte. They are also more resistant to stress and strain than batteries made using layers of only the stable, solid electrolyte materials. Furthermore, lithium anode batteries as disclosed herein are useful as rechargeable batteries.

  2. Electrolytic Preparation of High Dielectric Thin Films

    National Research Council Canada - National Science Library

    Hultquist, A. E; Sibert, M. E

    1966-01-01

    .... Some attention is devoted to zirconates, niobates, and tantalates. In addition to barium compounds, the comparable calcium, magnesium, strontium and potassium double oxides are evaluated by the appropriate electrolytic techniques...

  3. Nanostructured anion conducting block copolymer electrolyte thin films

    Science.gov (United States)

    Arges, Christopher; Kambe, Yu; Nealey, Paul

    Lamellae forming block copolymer electrolyte (BCE) thin-films with perpendicular aligned orientation were registered with high fidelity over large areas via a self-assembly process followed by a novel chemical vapor infiltration reaction (CVIR) technique. In this scheme, poly(styrene- b-2-vinyl pyridine) (PS bP2VP) block copolymers were self-assembled with perpendicular orientations on neutral chemical brushes using solvent vapor annealing. The ionic groups were selectively introduced into the P2VP block via a Menshutkin reaction that converted the nitrogen in the pyridine to n-methylpyridinium - anion carrier groups. FTIR-ATR and XPS tools confirmed the formation of the aforementioned ionic moieties post CVIR process and structure imaging tools (e.g., SEM and AFM imaging, GI-SAXS and RSOXs) established that incorporation of the ionic groups did not alter the self-assembled nanostructured films nor did subsequent ion-exchange processes. Electrochemical impedance spectroscopy determined the in-plane ion conductivity of different counteranions in the BCE thin films and alteration to the symmetry of the block copolymer film substantially improved (or hindered) BCE ion conductivity if the P2VP block's volume fraction was slightly greater than (or less than) 0.5. U.S. Department of Energy, Office of Science under Contract No. DE-AC02-06CH11357.

  4. Thin films produced on 5052 aluminum alloy by plasma electrolytic oxydation with red mud-containing electrolytes

    OpenAIRE

    Sottovia, Livia [UNESP; Pereira Antunes, Maria Lucia [UNESP; Antonio, Cesar Augusto [UNESP; Rangel, Elidiane Cipriano [UNESP; Cruz, Nilson Cristino da [UNESP

    2014-01-01

    In this paper, we propose the production of ceramic protective thin films by plasma electrolytic oxidation using red mud-containing electrolytes. The treatments were performed through the application of pulsed voltage (600 V, 200 Hz) during 300 seconds to aluminum samples immersed in electrolytic solutions with 5 g of red mud per liter of distilled water. The coatings were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray energy dispersive spectroscopy (EDS) ...

  5. Thin Film Electrodes with an Integral Current Collection Grid for Use with Solid Electrolytes

    Science.gov (United States)

    Ryan, M. A.; Kisor, A.; Williams, R. M.; Jeffries-Nakamura, B.; O'Connor, D.

    1994-01-01

    Thin film, high performance electrodes which can operate in high temperature environments are necessary for many devices which use a solid electrolyte. Electrodes of rhodium-tungsten alloy have been deposited on solid electrolyte using photolytic chemical vapor deposition (PCVD). A technique for depositing electrodes and current collection grids simultaneously has been developed using the prenucleation characteristics of PCVD. This technique makes it possible to fabricate electrodes which allow vapor transport through the thin (micro)m) portions of the electrode while integral thick grid lines improve the electronic conductivity of the electrode, thus improving overall performance.

  6. Effect of interface on surface morphology and proton conduction of polymer electrolyte thin films.

    Science.gov (United States)

    Ohira, Akihiro; Kuroda, Seiichi; Mohamed, Hamdy F M; Tavernier, Bruno

    2013-07-21

    To understand the relationship between surface morphology and proton conduction of polymer electrolyte thin films, perfluorinated ionomer Nafion® thin films were prepared on different substrates such as glassy carbon (GC), hydrophilic-GC (H-GC), and platinum (Pt) as models for the ionomer film within a catalyst layer. Atomic force microscopy coupled with an electrochemical (e-AFM) technique revealed that proton conduction decreased with film thickness; an abrupt decrease in proton conductance was observed when the film thickness was less than ca. 10 nm on GC substrates in addition to a significant change in surface morphology. Furthermore, thin films prepared on H-GC substrates with UV-ozone treatment exhibited higher proton conduction than those on untreated GC substrates. However, Pt substrates exhibited proton conduction comparable to that of GCs for films thicker than 20 nm; a decrease in proton conduction was observed at ∼5 nm thick film but was still much higher than for carbon substrates. These results indicate that the number of active proton-conductive pathways and/or the connectivity of the proton path network changed with film thickness. The surface morphology of thinner films was significantly affected by the film/substrate interface and was fundamentally different from that of the bulk thick membrane.

  7. High power density thin film SOFCs with YSZ/GDC bilayer electrolyte

    International Nuclear Information System (INIS)

    Cho, Sungmee; Kim, YoungNam; Kim, Jung-Hyun; Manthiram, Arumugam; Wang Haiyan

    2011-01-01

    Graphical abstract: . A: Cross-sectional TEM images show a GDC single layer and YSZ/GDC bilayer electrolyte structures. As clearly observed from TEM images, the YSZ interlayer thickness varies from ∼330 nm to ∼1 μm. B: The cell with the bilayer electrolyte (YSZ ∼330 nm) doubles the overall power output at 750 deg. C compared to that achieved in the GDC single layer cell. Display Omitted Highlights: → YSZ/ GDC bilayer thin film electrolytes were deposited by a pulsed laser deposition (PLD) technique. → Thin YSZ film as a blocking layer effectively suppresses the cell voltage drop without reducing the ionic conductivity of the electrolyte layer. → The YSZ/ GDC bilayer structure presents a feasible architecture for enhancing the overall power density and enabling chemical, mechanical, and structural stability in the cells. - Abstract: Bilayer electrolytes composed of a gadolinium-doped CeO 2 (GDC) layer (∼6 μm thickness) and an yttria-stabilized ZrO 2 (YSZ) layer with various thicknesses (∼330 nm, ∼440 nm, and ∼1 μm) were deposited by a pulsed laser deposition (PLD) technique for thin film solid oxide fuel cells (TFSOFCs). The bilayer electrolytes were prepared between a NiO-YSZ (60:40 wt.% with 7.5 wt.% carbon) anode and La 0.5 Sr 0.5 CoO 3 -Ce 0.9 Gd 0.1 O 1.95 (50:50 wt.%) composite cathode for anode-supported single cells. Significantly enhanced maximum power density was achieved, i.e., a maximum power density of 188, 430, and 587 mW cm -2 was measured in a bilayer electrolyte single cell with ∼330 nm thin YSZ at 650, 700, and 750 deg. C, respectively. The cell with the bilayer electrolyte (YSZ ∼330 nm) doubles the overall power output at 750 deg. C compared to that achieved in the GDC single layer cell. This signifies that the YSZ thin film serves as a blocking layer for preventing electrical current leakage in the GDC layer and also provides chemical, mechanical, and structural integrity in the cell, which leads to the overall enhanced

  8. Synthesis and characterization of nanocomposite polymer blend electrolyte thin films by spin-coating method

    Energy Technology Data Exchange (ETDEWEB)

    Chapi, Sharanappa; Niranjana, M.; Devendrappa, H., E-mail: dehu2010@gmail.com [Department of Physics, Mangalore University, Mangalagangothri - 574 199 (India)

    2016-05-23

    Solid Polymer blend electrolytes based on Polyethylene oxide (PEO) and poly vinyl pyrrolidone (PVP) complexed with zinc oxide nanoparticles (ZnO NPs; Synthesized by Co-precipitation method) thin films have prepared at a different weight percent using the spin-coating method. The complexation of the NPs with the polymer blend was confirmed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR). The variation in film morphology was examined by polarized optical micrographs (POMs). The thermal behavior of blends was investigated under non-isothermal conditions by differential thermal analyses (DTA). A single glass transition temperature for each blend was observed, which supports the existence of compatibility of such system. The obtained results represent that the ternary based thin films are prominent materials for battery and optoelectronic device applications.

  9. Thin film galvanic cell with RbAg4I5 solid electrolyte

    International Nuclear Information System (INIS)

    Bodnaruk, L.I.; Danilov, A.V.; Kulinkovich, V.E.; Aleskovskij, V.B.

    1975-01-01

    In order to decrease the size and weight and to increase the specific capacity and energy of galvanic cells, some solid electrolytes in the form of thin films are proposed. The galvanic cells were prepared by a combined method: the cathodic and anodic materials (Te and Ag) were evaporated under vacuo to cover an electrolyte layer, the latter being obtained by impregnating the porous materials with RbAg 4 I 5 acetonic solution. The most specific charge curves of the galvanic cells at various current densities are given: specific energy of the samples was 0.2 to 0.7 watt-h/kg, their capacity being 0.1 to 0.2 mah. Behaviour of the cells when stored (that of Ag(RbAg 4 I 5 ) interface in particular) was investigated, namely, the effect of the storage time on the capacity and internal resistance of the galvanic cell

  10. Electrodeposition of polymer electrolyte in nanostructured electrodes for enhanced electrochemical performance of thin-film Li-ion microbatteries

    Science.gov (United States)

    Salian, Girish D.; Lebouin, Chrystelle; Demoulin, A.; Lepihin, M. S.; Maria, S.; Galeyeva, A. K.; Kurbatov, A. P.; Djenizian, Thierry

    2017-02-01

    We report that electrodeposition of polymer electrolyte in nanostructured electrodes has a strong influence on the electrochemical properties of thin-film Li-ion microbatteries. Electropolymerization of PMMA-PEG (polymethyl methacrylate-polyethylene glycol) was carried out on both the anode (self-supported titania nanotubes) and the cathode (porous LiNi0.5Mn1.5O4) by cyclic voltammetry and the resulting electrode-electrolyte interface was examined by scanning electron microscopy. The electrochemical characterizations performed by galvanostatic experiments reveal that the capacity values obtained at different C-rates are doubled when the electrodes are completely filled by the polymer electrolyte.

  11. The study of effect of solid electrolyte on charge-discharge characteristics of thin-film lithium-ion batteries

    Science.gov (United States)

    Mazaletskiy, L. A.; Lebedev, M. E.; Mironenko, A. A.; Naumov, V. V.; Novozhilova, A. V.; Fedorov, I. S.; Rudy, A. S.

    2017-11-01

    Results of studies of the solid electrolyte effect on capacitance of thin-film electrodes on the basis of Si-O-Al and VxOy nanocomposites are presented. The studies were carried out by comparing the charge-discharge characteristics of two pairs of the identical electrodes, one of which was covered by LiPON film, within prototypes with two lithium electrodes - the counter and the reference electrode.

  12. Conductive Nature of Grain Boundaries in Nanocrystalline Stabilized Bi2O3Thin-Film Electrolyte.

    Science.gov (United States)

    Jeong, Seung Jin; Kwak, No Woo; Byeon, Pilgyu; Chung, Sung-Yoon; Jung, WooChul

    2018-02-21

    Stabilized Bi 2 O 3 has gained a considerable amount of attention as a solid electrolyte material for low-temperature solid oxide fuel cells due to its superior oxygen-ion conductivity at the temperature of relevance (≤500 °C). Despite many research efforts to measure the transport properties of stabilized Bi 2 O 3 , the effects of grain boundaries on the electrical conductivity have rarely been reported and their results are even controversial. Here, we attempt quantitatively to assess the grain boundary contribution out of the total ionic conductivity at elevated temperatures (350-500 °C) by fabricating epitaxial and nano-polycrystalline thin films of yttrium-stabilized Bi 2 O 3 . Surprisingly, both epitaxial and polycrystalline films show nearly identical levels of ionic conductivity, as measured by alternating current impedance spectroscopy and this is the case despite the fact that the polyfilm possesses nanosized columnar grains and thus an extremely high density of the grain boundaries. The highly conductive nature of grain boundaries in stabilized Bi 2 O 3 is discussed in terms of the clean and chemically uniform grain boundary without segregates, and the implications for device application are suggested.

  13. Tunable transport property of oxygen ion in metal oxide thin film: Impact of electrolyte orientation on conductivity.

    Science.gov (United States)

    Arunkumar, P; Ramaseshan, R; Dash, S; Babu, K Suresh

    2017-06-14

    Quest for efficient ion conducting electrolyte thin film operating at intermediate temperature (~600 °C) holds promise for the real-world utilization of solid oxide fuel cells. Here, we report the correlation between mixed as well as preferentially oriented samarium doped cerium oxide electrolyte films fabricated by varying the substrate temperatures (100, 300 and 500 °C) over anode/ quartz by electron beam physical vapor deposition. Pole figure analysis of films deposited at 300 °C demonstrated a preferential (111) orientation in out-off plane direction, while a mixed orientation was observed at 100 and 500 °C. As per extended structural zone model, the growth mechanism of film differs with surface mobility of adatom. Preferential orientation resulted in higher ionic conductivity than the films with mixed orientation, demonstrating the role of growth on electrochemical properties. The superior ionic conductivity upon preferential orientation arises from the effective reduction of anisotropic nature and grain boundary density in highly oriented thin films in out-of-plane direction, which facilitates the hopping of oxygen ion at a lower activation energy. This unique feature of growing an oriented electrolyte over the anode material opens a new approach to solving the grain boundary limitation and makes it as a promising solution for efficient power generation.

  14. Opto-electrical energy conversion by thin electrolytic CdSe films on Ni substrates

    Science.gov (United States)

    Glenis, G. X.; Athanassopoulou, M. D.; Argyropoulos, Th G.; Dervos, C. T.

    2015-02-01

    Thin-films (300 nm) of zinc-blende (cubic structure) CdSe (111) electrolytically deposited on nickel substrates had their surface characteristics investigated by XRD, SEM, and profilometry scans. A metal-CdSe-metal structure was formed by positioning a Au electrode on top of CdSe and the I-V characteristics of the resulting device were investigated in the dark and under low intensities (≤0.2 mW cm-2) of diffused solar radiation. The experimental results show that the illuminated structure is an active device that produces electric power in the 2nd quadrant of the I-V curve. This response may be related to the Ni-to-CdSe interface, where carriers are effectively generated as a result of deep energy level formations, spatially confined in the interfacial region of the depletion layer width of the Ni-CdSe junction. A potential energy diagram is proposed to present the spatially and energetically confined deep-level parameters, the operation principles (carrier generation and transport processes) across the structure and link them to the obtained I-V response. A mathematical modeling based on the Schokley-Read-Hall recombination theory confirms the experimentally obtained current profiles of illuminated junctions. Such opto-electrical tranducers might be implemented in multilayer photovoltaic hetero-structures to enhance their conversion efficiencies and reduce their operating temperatures.

  15. Highly conformal and high-ionic conductivity thin-film electrolyte for 3D-structured micro batteries: Characterization of LiPON film deposited by MOCVD method

    Science.gov (United States)

    Fujibayashi, Takashi; Kubota, Yusuke; Iwabuchi, Katsuhiko; Yoshii, Naoki

    2017-08-01

    This paper reports a lithium phosphorus oxynitride (LiPON) thin-film electrolyte deposited using a metalorganic-chemical vapor deposition (MOCVD) method for 3D-structured micro batteries. It is shown that the MOCVD-LiPON film has both highly-conformal step coverage on a patterned substrate with line/space=2μm/2μm and aspect ratio=1 (51±3 nm) and high-ionic conductivity for very thin films deposited at 4.7 nm/min (5.9×10-6 S/cm for 190 nm and 5.3×10-6 S/cm for 95 nm). Detailed material characterization attributes the enhancement in ionic conductivity to a decrease in nanocrystallite size and improvement in chemical-composition uniformity in the film. In addition, electrochemical characterization of an all-solid-state thin-film battery fabricated with the 190 nm-thick LiPON film (Si substrate/Ti/Pt/LiCoO2/LiPON/a-Si:H/Cu) demonstrates that the LiPON film can successfully act as the electrolyte for lithium-ion batteries. Therefore, the MOCVD-LiPON film is a promising candidate material to realize 3D-structured micro batteries in the near future.

  16. Highly conformal and high-ionic conductivity thin-film electrolyte for 3D-structured micro batteries: Characterization of LiPON film deposited by MOCVD method

    Directory of Open Access Journals (Sweden)

    Takashi Fujibayashi

    2017-08-01

    Full Text Available This paper reports a lithium phosphorus oxynitride (LiPON thin-film electrolyte deposited using a metalorganic-chemical vapor deposition (MOCVD method for 3D-structured micro batteries. It is shown that the MOCVD-LiPON film has both highly-conformal step coverage on a patterned substrate with line/space=2μm/2μm and aspect ratio=1 (51±3 nm and high-ionic conductivity for very thin films deposited at 4.7 nm/min (5.9×10-6 S/cm for 190 nm and 5.3×10-6 S/cm for 95 nm. Detailed material characterization attributes the enhancement in ionic conductivity to a decrease in nanocrystallite size and improvement in chemical-composition uniformity in the film. In addition, electrochemical characterization of an all-solid-state thin-film battery fabricated with the 190 nm-thick LiPON film (Si substrate/Ti/Pt/LiCoO2/LiPON/a-Si:H/Cu demonstrates that the LiPON film can successfully act as the electrolyte for lithium-ion batteries. Therefore, the MOCVD-LiPON film is a promising candidate material to realize 3D-structured micro batteries in the near future.

  17. Electrodeposition of In{sub 2}O{sub 3} thin films from a dimethylsulfoxide based electrolytic solution

    Energy Technology Data Exchange (ETDEWEB)

    Henriquez, R.; Munoz, E.; Gomez, H. [Instituto de Quimica, Facultad de Ciencias, Pontificia Universidad Catolica de Valparaiso, Curauma Valparaiso (Chile); Dalchiele, E.A.; Marotti, R.E. [Instituto de Fisica and CINQUIFIMA, Facultad de Ingenieria, Montevideo (Uruguay); Martin, F.; Leinen, D.; Ramos-Barrado, J.R. [Laboratorio de Materiales y Superficie, Departamento de Fisica Aplicada and Ingenieria Quimica, Universidad de Malaga (Spain)

    2013-02-15

    Indium (III) oxide (In{sub 2}O{sub 3}) thin films have been obtained after heat treatment of In(OH){sub 3} precursor layers grown by a potential cycling electrodeposition (PCED) method from a dimethylsulfoxide (DMSO) based electrolytic solution onto fluorine-doped tin oxide (FTO) coated glass substrates. X-ray diffraction (XRD) measurements indicate the formation of a polycrystalline In{sub 2}O{sub 3} phase with a cubic structure. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) showed a smooth morphology of the In{sub 2}O{sub 3} thin films after an optimized heat treatment had been developed. The surface composition and chemical state of the semiconductor films was established by X-ray photoelectron spectroscopy analysis. The nature of the semiconductor material, flat band potential and donor density were determined from Mott-Schottky plots. This study reveals that the In{sub 2}O{sub 3} films exhibited n-type conductivity with an average donor density of 2.2 x 10{sup 17} cm{sup -3}. The optical characteristics were determined through transmittance spectra. The direct and indirect band gap values obtained are according to the accepted values for the In{sub 2}O{sub 3} films of 2.83 and 3.54 eV for the indirect and direct band gap values. (Copyright copyright 2013 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  18. Preparation of sodium beta″-alumina electrolyte thin film by electrophoretic deposition using Taguchi experimental design approach

    International Nuclear Information System (INIS)

    Wei, Xiao-ling; Xia, Yi; Liu, Xiao-min; Yang, Hui; Shen, Xiao-dong

    2014-01-01

    Highlights: • Sodium beta″ alumina electrolyte thin film is successfully prepared via electrophoretic deposition. • The ionic conductivity of the optimized electrolyte disk is 0.138 S cm -1 . • A Daniell-typed cell is built which approves the reversible Na + conduction at only 100 °C. - Abstract: With the desire to lowering the working temperature of Na-β″-Al 2 O 3 solid electrolyte (BASE) based batteries, electrophoretic deposition process is employed to fabricate 300 μm thick Na-β″-Al 2 O 3 sheet with densification microstructure and high ionic conductivity. Taguchi design of experiment approach with signal to noise ratio analysis is utilized to optimize the operation parameters. The results show that the TiO 2 content in the precursor powders is critical to determine the ionic conductivity of the resulting electrolyte. X-Ray diffraction analysis and X-ray photoelectron spectroscopy examination point out that Ti 4+ can enter the crystal lattice of Na-β″-Al 2 O 3 , which results in the variation of lattice parameters, densifies the microstructure and improves both β″ phase content and ionic conductivity of the resulting sample. The thin Na-β″-Al 2 O 3 disk obtained under the optimized conditions Exhibit 97% β″ phase content and relatively high ionic conductivity. Moreover, a Daniell-typed cell built with this optimized sample disk, using copper/zinc redox couples as electrodes and 1 M NaBF 4 in DMSO as the secondary electrolyte, shows reversible charge and discharge behaviors at relatively low temperature, 100 °C

  19. Electrolytic Manganese Dioxide Coatings on High Aspect Ratio Micro-Pillar Arrays for 3D Thin Film Lithium Ion Batteries

    Directory of Open Access Journals (Sweden)

    Yafa Zargouni

    2017-05-01

    Full Text Available In this work, we present the electrochemical deposition of manganese dioxide (MnO2 thin films on carbon-coated TiN/Si micro-pillars. The carbon buffer layer, grown by plasma enhanced chemical vapor deposition (PECVD, is used as a protective coating for the underlying TiN current collector from oxidation, during the film deposition, while improving the electrical conductivity of the stack. A conformal electrolytic MnO2 (EMD coating is successfully achieved on high aspect ratio C/TiN/Si pillar arrays by tailoring the deposition process. Lithiation/Delithiation cycling tests have been performed. Reversible insertion and extraction of Li+ through EMD structure are observed. The fabricated stack is thus considered as a good candidate not only for 3D micorbatteries but also for other energy storage applications.

  20. Long-Term Synaptic Plasticity Emulated in Modified Graphene Oxide Electrolyte Gated IZO-Based Thin-Film Transistors.

    Science.gov (United States)

    Yang, Yi; Wen, Juan; Guo, Liqiang; Wan, Xiang; Du, Peifu; Feng, Ping; Shi, Yi; Wan, Qing

    2016-11-09

    Emulating neural behaviors at the synaptic level is of great significance for building neuromorphic computational systems and realizing artificial intelligence. Here, oxide-based electric double-layer (EDL) thin-film transistors were fabricated using 3-triethoxysilylpropylamine modified graphene oxide (KH550-GO) electrolyte as the gate dielectrics. Resulting from the EDL effect and electrochemical doping between mobile protons and the indium-zinc-oxide channel layer, long-term synaptic plasticity was emulated in our devices. Synaptic functions including long-term memory, synaptic temporal integration, and dynamic filters were successfully reproduced. In particular, spike rate-dependent plasticity (SRDP), one of the basic learning rules of long-term plasticity in the neural network where the synaptic weight changes according to the rate of presynaptic spikes, was emulated in our devices. Our results may facilitate the development of neuromorphic computational systems.

  1. Thin Film

    African Journals Online (AJOL)

    a

    organic substances. KEY WORDS: Photoelectrocatalysis, Titanium dioxide, Cuprous oxide, Composite thin film, Photo electrode. INTRODUCTION ... reddish p-type semiconductor with a direct band gap of 2.0-2.2 eV [18, 19]. ... Photoelectrocatalytic removal of color from water using TiO2 and TiO2/Cu2O electrodes. Bull.

  2. Epitaxial thin films

    Science.gov (United States)

    Hunt, Andrew Tye; Deshpande, Girish; Lin, Wen-Yi; Jan, Tzyy-Jiuan

    2006-04-25

    Epitatial thin films for use as buffer layers for high temperature superconductors, electrolytes in solid oxide fuel cells (SOFC), gas separation membranes or dielectric material in electronic devices, are disclosed. By using CCVD, CACVD or any other suitable deposition process, epitaxial films having pore-free, ideal grain boundaries, and dense structure can be formed. Several different types of materials are disclosed for use as buffer layers in high temperature superconductors. In addition, the use of epitaxial thin films for electrolytes and electrode formation in SOFCs results in densification for pore-free and ideal gain boundary/interface microstructure. Gas separation membranes for the production of oxygen and hydrogen are also disclosed. These semipermeable membranes are formed by high-quality, dense, gas-tight, pinhole free sub-micro scale layers of mixed-conducting oxides on porous ceramic substrates. Epitaxial thin films as dielectric material in capacitors are also taught herein. Capacitors are utilized according to their capacitance values which are dependent on their physical structure and dielectric permittivity. The epitaxial thin films of the current invention form low-loss dielectric layers with extremely high permittivity. This high permittivity allows for the formation of capacitors that can have their capacitance adjusted by applying a DC bias between their electrodes.

  3. thin films

    Indian Academy of Sciences (India)

    The anionic precursor was 1% H2O2 solution. Both the cationic and anionic precursors were kept at room temperature (∼300 K). One SILAR cycle consists of two steps: (i) adsorption of Sn4+ ions on the substrate surface for 20 s and (ii) reaction with H2O2 solution for 40 s to form stable SnO2:H2O thin film on the substrate.

  4. Temperature and concentration effects on electrolyte transport across porous thin-film composite nanofiltration membranes: Pore transport mechanisms and energetics of permeation.

    Science.gov (United States)

    Sharma, Ramesh R; Chellam, Shankararaman

    2006-06-01

    The influence of temperature and concentration on nanofilter charge density and electrolyte pore transport mechanisms is reported. Crossflow filtration experiments were performed to measure transport of several electrolytes (NaCl, NaNO3, NaClO4, CaCl2, MgCl2, and MgSO4) across two commercially available thin-film composite nanofiltration membranes in the range 5-41 degrees C. Experiments were also performed with selected salts in the range 1-50 meq/L to quantify concentration effects. Three different approaches, irreversible thermodynamics, extended Nernst-Planck formulation, and theory of rate processes, were employed to interpret retentions of these symmetric and asymmetric electrolytes at varying temperature and concentration. Increasing feed water temperature slightly increased electrolyte reflection coefficients and only weakly increased permeability compared with neutral solutes. Electromigration and convection tended to counteract each other at high fluxes explaining the weak temperature dependence of the reflection coefficient. Changes in membrane surface charge density with temperature were attributed to increased adsorption of electrolytes on the polymer constituting the active layer. Activation energy of permeation for charged solutes was primarily determined by the Donnan potential at the membrane-feed water interface. Electrolyte permeation was shown to be an enthalpy-driven process that resulted in small entropy changes. Increasing sorption capacity with temperature and low sorption energies indicated that co-ion sorption on polymeric membranes was an endothermic physicosorption process, which appears to determine temperature dependence of electrolyte permeation at increased feed concentrations.

  5. Thin Films

    Directory of Open Access Journals (Sweden)

    M. Benmouss

    2003-01-01

    the optical absorption are consistent with the film color changes. Finally, the optical and electrochromic properties of the films prepared by this method are compared with those of our sputtered films already studied and with other works.

  6. Identification of an Actual Strain-Induced Effect on Fast Ion Conduction in a Thin-Film Electrolyte.

    Science.gov (United States)

    Ahn, Junsung; Jang, Ho Won; Ji, Hoil; Kim, Hyoungchul; Yoon, Kyung Joong; Son, Ji-Won; Kim, Byung-Kook; Lee, Hae-Weon; Lee, Jong-Ho

    2018-04-11

    Strain-induced fast ion conduction has been a research area of interest for nanoscale energy conversion and storage systems. However, because of significant discrepancies in the interpretation of strain effects, there remains a lack of understanding of how fast ionic transport can be achieved by strain effects and how strain can be controlled in a nanoscale system. In this study, we investigated strain effects on the ionic conductivity of Gd 0.2 Ce 0.8 O 1.9-δ (100) thin films under well controlled experimental conditions, in which errors due to the external environment could not intervene during the conductivity measurement. In order to avoid any interference from perpendicular-to-surface defects, such as grain boundaries, the ionic conductivity was measured in the out-of-plane direction by electrochemical impedance spectroscopy analysis. With varying film thickness, we found that a thicker film has a lower activation energy of ionic conduction. In addition, careful strain analysis using both reciprocal space mapping and strain mapping in transmission electron microscopy shows that a thicker film has a higher tensile strain than a thinner film. Furthermore, the tensile strain of thicker film was mostly developed near a grain boundary, which indicates that intrinsic strain is dominant rather than epitaxial or thermal strain during thin-film deposition and growth via the Volmer-Weber (island) growth mode.

  7. Microporous SiO2-based solid electrolyte with improved polarization response for 0.8 V transparent thin-film transistors

    International Nuclear Information System (INIS)

    Sun Jia; Jiang Jie; Lu Aixia; Wan Qing

    2010-01-01

    The polarization mechanism of a microporous SiO 2 -based solid electrolyte is developed and three polarizations (electric double layer formation, ionic relaxation and dipole relaxation) are identified. The polarization response of the microporous SiO 2 -based solid electrolyte is optimized by tuning the deposition temperature and the improved specific capacitance is 1 μF cm -2 at 1 kHz and remains above 0.6 μF cm -2 even at 10 kHz. Ultralow-voltage transparent In-Zn-O thin-film transistors (TFTs) gated by such dielectrics are fabricated at low temperatures. The field-effect mobility, current on/off ratio and subthreshold swing are estimated to be 46.2 cm 2 V -1 s -1 , ∼10 6 and 69 mV/decade, respectively. Such TFTs hold promise for portable electronic applications.

  8. Microporous SiO{sub 2}-based solid electrolyte with improved polarization response for 0.8 V transparent thin-film transistors

    Energy Technology Data Exchange (ETDEWEB)

    Sun Jia; Jiang Jie; Lu Aixia; Wan Qing, E-mail: wanqing7686@hotmail.co [Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, and State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082 (China)

    2010-07-28

    The polarization mechanism of a microporous SiO{sub 2}-based solid electrolyte is developed and three polarizations (electric double layer formation, ionic relaxation and dipole relaxation) are identified. The polarization response of the microporous SiO{sub 2}-based solid electrolyte is optimized by tuning the deposition temperature and the improved specific capacitance is 1 {mu}F cm{sup -2} at 1 kHz and remains above 0.6 {mu}F cm{sup -2} even at 10 kHz. Ultralow-voltage transparent In-Zn-O thin-film transistors (TFTs) gated by such dielectrics are fabricated at low temperatures. The field-effect mobility, current on/off ratio and subthreshold swing are estimated to be 46.2 cm{sup 2} V{sup -1} s{sup -1}, {approx}10{sup 6} and 69 mV/decade, respectively. Such TFTs hold promise for portable electronic applications.

  9. Electrochemically synthesized CuInSe2 thin films from non-aqueous electrolyte for solar cell applications

    Science.gov (United States)

    Londhe, Priyanka U.; Rohom, Ashwini B.; Lakhe, Manorama G.; Bhand, Ganesh R.; Chaure, Nandu B.

    2016-12-01

    Highly polycrystalline CuInSe2 (CIS) thin films have been electrodeposited from non-aqueous ethylene glycol (EG) solvent on fluorine-doped tin-oxide-coated glass substrates at 130 °C. The co-deposition potential for Cu, In and Se was optimized by using cyclic voltammetry. CIS layers have been electrodeposited from -1.1 V to -1.5 V versus the Ag/AgCl reference electrode. The effect of selenization on structural, morphological, optical and compositional properties has been studied extensively. Highly crystalline CIS thin films are electrodeposited for all reported growth potentials without post-annealing treatment. The Raman spectra of stoichiometric CIS thin films showed a dominant A1 mode with features receptive to the crystalline quality of the layers. Noticeable changes in the surface morphology and composition of films deposited at different deposition potential were observed. All CIS layers were void free, compact, uniform, and well adherent to the substrates with particle size ˜1-3 μm. Both as-deposited and selenized samples were Cu-rich, however, the composition of selenium remained closer to the ideal value, 50%. A typical solar cell prepared at -1.3 V measured V OC = 0.316 V, J SC = 26 mA, FF = 49, and η = 4.2, under illuminated conditions at 100 mW cm-2.

  10. Performance evaluation of solid oxide fuel cells with thin film electrolyte fabricated by binder-assisted slurry casting

    Energy Technology Data Exchange (ETDEWEB)

    Guo, W.M.; Liu, X.M.; Li, L.J. [Department of Biological and Chemical Engineering, Guangxi University of Technology, Liuzhou 545006 (China); Xiao, Y.F. [Department of Stomatology, Liuzhou Maternity and Child Health Hospital, Liuzhou 545001 (China); Chen, Y. [School of Yingdong Life Science, Shaoguan University, Shaoguan 512005 (China)

    2011-10-15

    A gas-tight yttria-stabilized zirconia (YSZ) electrolyte film was fabricated on porous NiO-YSZ anode substrates by a binder-assisted slurry casting technique. The scanning electron microscope (SEM) results showed that the YSZ film was relatively dense with a thickness of 10 {mu}m. La{sub 0.8}Sr{sub 0.2}MnO{sub 3} (LSM)-YSZ was applied to cathode using a screen-print technique and the single fuel cells were tested in a temperature range from 600 to 800 C. An open circuit voltage (OCV) of over 1.0 V was observed. The maximum power densities at 600, 700, and 800 C were 0.13, 0.44, and 1.1 W cm{sup -2}, respectively. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Thin film processes II

    CERN Document Server

    Kern, Werner

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques.Key Features* Provides an all-new sequel to the 1978 classic, Thin Film Processes* Introduces new topics, and sever

  12. Thin Film Processes

    CERN Document Server

    Vossen, John L.

    1991-01-01

    This sequel to the 1978 classic, Thin Film Processes, gives a clear, practical exposition of important thin film deposition and etching processes that have not yet been adequately reviewed. It discusses selected processes in tutorial overviews with implementation guide lines and an introduction to the literature. Though edited to stand alone, when taken together, Thin Film Processes II and its predecessor present a thorough grounding in modern thin film techniques. Key Features * Provides an all-new sequel to the 1978 classic, Thin Film Processes * Introduces new topics, and several key topics presented in the original volume are updated * Emphasizes practical applications of major thin film deposition and etching processes * Helps readers find the appropriate technology for a particular application

  13. Schottky junction/ohmic contact behavior of a nanoporous TiO2 thin film photoanode in contact with redox electrolyte solutions

    Directory of Open Access Journals (Sweden)

    Masao Kaneko

    2011-02-01

    Full Text Available The nature and photoelectrochemical reactivity of nanoporous semiconductor electrodes have attracted a great deal of attention. Nanostructured materials have promising capabilities applicable for the construction of various photonic and electronic devices. In this paper, a mesoporous TiO2 thin film photoanode was soaked in an aqueous methanol solution using an O2-reducing Pt-based cathode in contact with atmospheric air on the back side. It was shown from distinct photocurrents in the cyclic voltammogram (CV that the nanosurface of the mesoporous n-TiO2 film forms a Schottky junction with water containing a strong electron donor such as methanol. Formation of a Schottky junction (liquid junction was also proved by Mott–Schottky plots at the mesoporous TiO2 thin film photoanode, and the thickness of the space charge layer was estimated to be very thin, i.e., only 3.1 nm at −0.1 V vs Ag/AgCl. On the other hand, the presence of [Fe(CN6]4− and the absence of methanol brought about ohmic contact behavior on the TiO2 film and exhibited reversible redox waves in the dark due to the [Fe(CN6]4−/3− couple. Further studies showed that multiple Schottky junctions/ohmic contact behavior inducing simultaneously both photocurrent and overlapped reversible redox waves was found in the CV of a nanoporous TiO2 photoanode soaked in an aqueous redox electrolyte solution containing methanol and [Fe(CN6]4−. That is, the TiO2 nanosurface responds to [Fe(CN6]4− to give ohmic redox waves overlapped simultaneously with photocurrents due to the Schottky junction. Additionally, a second step photocurrent generation was observed in the presence of both MeOH and [Fe(CN6]4− around the redox potential of the iron complex. It was suggested that the iron complex forms a second Schottky junction for which the flat band potential (Efb lies near the redox potential of the iron complex.

  14. Optical thin film devices

    Science.gov (United States)

    Mao, Shuzheng

    1991-11-01

    Thin film devices are applied to almost all modern scientific instruments, and these devices, especially optical thin film devices, play an essential role in the performances of the instruments, therefore, they are attracting more and more attention. Now there are numerous kinds of thin film devices and their applications are very diversified. The 300-page book, 'Thin Film Device and Applications,' by Prof. K. L. Chopra gives some general ideas, and my paper also outlines the designs, fabrication, and applications of some optical thin film devices made in my laboratory. Optical thin film devices have been greatly developed in the recent decades. Prof. A. Thelan has given a number of papers on the theory and techniques, Prof. H. A. Macleod's book, 'Thin Film Optical Filters,' has concisely concluded the important concepts of optical thin film devices, and Prof. J. A. Dobrowobski has proposed many successful designs for optical thin film devices. Recently, fully-automatic plants make it easier to produce thin film devices with various spectrum requirements, and some companies, such as Balzers, Leybold AG, Satis Vacuum AG, etc., have manufactured such kinds of coating plants for research or mass-production, and the successful example is the production of multilayer antireflection coatings with high stability and reproducibility. Therefore, it could be said that the design of optical thin film devices and coating plants is quite mature. However, we cannot expect that every problem has been solved, the R&D work still continues, the competition still continues, and new design concepts, new techniques, and new film materials are continually developed. Meanwhile, the high-price of fully-automatic coating plants makes unpopular, and automatic design of coating stacks is only the technique for optimizing the manual design according to the physical concepts and experience, in addition, not only the optical system, but also working environment should be taken into account when

  15. Thin films on cantilevers

    NARCIS (Netherlands)

    Nazeer, H.

    2012-01-01

    The main goal of the work compiled in this thesis is to investigate thin films for integration in micro electromechanical systems (MEMS). The miniaturization of MEMS actuators and sensors without compromising their performance requires thin films of different active materials with specific

  16. Thin Film & Deposition Systems (Windows)

    Data.gov (United States)

    Federal Laboratory Consortium — Coating Lab: Contains chambers for growing thin film window coatings. Plasma Applications Coating Lab: Contains chambers for growing thin film window coatings. Solar...

  17. Carbon thin film thermometry

    Science.gov (United States)

    Collier, R. S.; Sparks, L. L.; Strobridge, T. R.

    1973-01-01

    The work concerning carbon thin film thermometry is reported. Optimum film deposition parameters were sought on an empirical basis for maximum stability of the films. One hundred films were fabricated for use at the Marshall Space Flight Center; 10 of these films were given a precise quasi-continuous calibration of temperature vs. resistance with 22 intervals between 5 and 80 K using primary platinum and germanium thermometers. Sensitivity curves were established and the remaining 90 films were given a three point calibration and fitted to the established sensitivity curves. Hydrogen gas-liquid discrimination set points are given for each film.

  18. Thin film hydrogen sensor

    Science.gov (United States)

    Cheng, Yang-Tse; Poli, Andrea A.; Meltser, Mark Alexander

    1999-01-01

    A thin film hydrogen sensor, includes: a substantially flat ceramic substrate with first and second planar sides and a first substrate end opposite a second substrate end; a thin film temperature responsive resistor on the first planar side of the substrate proximate to the first substrate end; a thin film hydrogen responsive metal resistor on the first planar side of the substrate proximate to the fist substrate end and proximate to the temperature responsive resistor; and a heater on the second planar side of the substrate proximate to the first end.

  19. Characterization of Sputter-Deposited LiCoO2Thin Film Grown on NASICON-type Electrolyte for Application in All-Solid-State Rechargeable Lithium Battery.

    Science.gov (United States)

    Kim, Hee-Soo; Oh, Yoong; Kang, Ki Hoon; Kim, Ju Hwan; Kim, Joosun; Yoon, Chong Seung

    2017-05-17

    All-solid-state Li-rechargeable batteries using a 500 nm-thick LiCoO 2 (LCO) film deposited on two NASICON-type solid electrolyte substrates, LICGC (OHARA Inc.) and Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 (LATP), are constructed. The postdeposition annealing temperature prior to the cell assembly is critical to produce a stable sharp LCO/electrolyte interface and to develop a strong crystallographic texture in the LCO film, conducive to migration of Li ions. Although the cells deliver a limited discharge capacity, the cells cycled stably for 50 cycles. The analysis of the LCO/electrolyte interfaces after cycling demonstrates that the sharp interface, once formed by proper thermal annealing, will remain stable without any evidence for contamination and with minimal intermixing of the constituent elements during cycling. Hence, although ionic conductivity of the NASICON-type solid electrolyte is lower than that of the sulfide electrolytes, the NACSICON-type electrolytes will maintain a stable interface in contact with a LCO cathode, which should be beneficial to improving the capacity retention as well as the rate capability of the all-solid state cell.

  20. Thin film device applications

    CERN Document Server

    Kaur, Inderjeet

    1983-01-01

    Two-dimensional materials created ab initio by the process of condensation of atoms, molecules, or ions, called thin films, have unique properties significantly different from the corresponding bulk materials as a result of their physical dimensions, geometry, nonequilibrium microstructure, and metallurgy. Further, these characteristic features of thin films can be drasti­ cally modified and tailored to obtain the desired and required physical characteristics. These features form the basis of development of a host of extraordinary active and passive thin film device applications in the last two decades. On the one extreme, these applications are in the submicron dimensions in such areas as very large scale integration (VLSI), Josephson junction quantum interference devices, magnetic bubbles, and integrated optics. On the other extreme, large-area thin films are being used as selective coatings for solar thermal conversion, solar cells for photovoltaic conver­ sion, and protection and passivating layers. Ind...

  1. Synthesis and characterization of electrolyte-grade 10%Gd-doped ceria thin film/ceramic substrate structures for solid oxide fuel cells

    DEFF Research Database (Denmark)

    Chourashiya, M. G.; Bharadwaj, S. R.; Jadhav, L. D.

    2010-01-01

    In the present research, spray pyrolysis technique is employed to synthesize 10%Gd-doped ceria (GDC) thin films on ceramic substrates with an intention to use the "film/substrate" structure in solid oxide fuel cells. GDC films deposited on GDC substrate showed enhanced crystallite formation....... In case of NiO-GDC composite substrate, the thickness of film was higher (∼ 13 μm) as compared to the film thickness on GDC substrate (∼ 2 μm). The relative density of the films deposited on both the substrates was of the order of 95%. The impedance measurements revealed that ionic conductivity of GDC...

  2. Multifunctional thin film surface

    Energy Technology Data Exchange (ETDEWEB)

    Brozik, Susan M.; Harper, Jason C.; Polsky, Ronen; Wheeler, David R.; Arango, Dulce C.; Dirk, Shawn M.

    2015-10-13

    A thin film with multiple binding functionality can be prepared on an electrode surface via consecutive electroreduction of two or more aryl-onium salts with different functional groups. This versatile and simple method for forming multifunctional surfaces provides an effective means for immobilization of diverse molecules at close proximities. The multifunctional thin film has applications in bioelectronics, molecular electronics, clinical diagnostics, and chemical and biological sensing.

  3. Reversible electrical resistance switching in GeSbTe thin films : An electrolytic approach without amorphous-crystalline phase-change

    NARCIS (Netherlands)

    Pandian, Ramanathaswamy; Kooi, Bart J.; Palasantzas, George; De Hosson, Jeff Th. M.; Wouters, DJ; Hong, S; Soss, S; Auciello, O

    2008-01-01

    Besides the well-known resistance switching originating from the amorphous-crystalline phase-change in GeSbTe thin films, we demonstrate another switching mechanism named 'polarity-dependent resistance (PDR) switching'. 'Me electrical resistance of the film switches between a low- and high-state

  4. Electrochemical fabrication of nanoporous polypyrrole thin films

    International Nuclear Information System (INIS)

    Li Mei; Yuan Jinying; Shi Gaoquan

    2008-01-01

    Polypyrrole thin films with pores in nanometer scale were synthesized by direct electrochemical oxidation of pyrrole in a mixed electrolyte of isopropyl alcohol, boron trifluoride diethyl etherate, sodium dodecylsulfonate and poly(ethylene glycol) using well-aligned ZnO nanowires arrays as templates. The thin films exhibit high conductivity of ca. σ rt ∼ 20.5 s/cm and can be driven to bend during redox processes in 1.0 M lithium perchlorate aqueous solution. The movement rate of an actuator based on this nanoporous film was measured to be over 90 o /s at a driving potential of 0.8 V (vs. Ag/AgCl)

  5. Thin films and nanomaterials

    International Nuclear Information System (INIS)

    Jayakumar, S.; Kannan, M.D.; Prasanna, S.

    2012-01-01

    The objective of this book is to disseminate the most recent research in Thin Films, Nanomaterials, Corrosion and Metallurgy presented at the International Conference on Advanced Materials (ICAM 2011) held in PSG College of Technology, Coimbatore, India during 12-16 December 2011. The book is a compilation of 113 chapters written by active researchers providing information and critical insights into the recent advancements that have taken place. Important new applications are possible today in the fields of microelectronics, opto-electronics, metallurgy and energy by the application of thin films on solid surfaces. Recent progress in high vacuum technology and new materials has a remarkable effect in thin film quality and cost. This has led to the development of new single or multi-layered thin film devices with diverse applications in a multitude of production areas, such as optics, thermal barrier coatings and wear protections, enhancing service life of tools and to protect materials against thermal and atmospheric influence. On the other hand, thin film process techniques and research are strongly related to the basic research activities in nano technology, an increasingly important field with countless opportunities for applications due to the emergence of new properties at the nanoscale level. Materials and structures that are designed and fabricated at the nano scale level, offer the potential to produce new devices and processes that may enhance efficiencies and reduce costs in many areas, as photovoltaic systems, hydrogen storage, fuel cells and solar thermal systems. In the book, the contributed papers are classified under two sections i) thin films and ii) nanomaterials. The thin film section includes single or multi layer conducting, insulating or semiconducting films synthesized by a wide variety of physical or chemical techniques and characterized or analyzed for different applications. The nanomaterials section deals with novel or exciting materials

  6. Optical thin film deposition

    International Nuclear Information System (INIS)

    Macleod, H.A.

    1979-01-01

    The potential usefulness in the production of optical thin-film coatings of some of the processes for thin film deposition which can be classified under the heading of ion-assisted techniques is examined. Thermal evaporation is the process which is virtually universally used for this purpose and which has been developed to a stage where performance is in almost all respects high. Areas where further improvements would be of value, and the possibility that ion-assisted deposition might lead to such improvements, are discussed. (author)

  7. Thin Film Photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K.

    1998-11-19

    The motivation to develop thin film technologies dates back to the inception of photovoltaics. It is an idea based on achieving truly low-cost photovoltaics appropriate for mass production and energy significant markets. The key to the idea is the use of pennies worth of active materials. Since sunlight carries relatively little energy in comparison with combustion-based energy sources, photovoltaic (PV) modules must be cheap to produce energy that can be competitive. Thin films are presumed to be the answer to that low-cost requirement. But how cheap do they have to be? The following is an oversimplified analysis that allows some insight into this question.

  8. Thin film metal-oxides

    CERN Document Server

    Ramanathan, Shriram

    2009-01-01

    Presents an account of the fundamental structure-property relations in oxide thin films. This title discusses the functional properties of thin film oxides in the context of applications in the electronics and renewable energy technologies.

  9. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  10. Protein thin film machines.

    Science.gov (United States)

    Federici, Stefania; Oliviero, Giulio; Hamad-Schifferli, Kimberly; Bergese, Paolo

    2010-12-01

    We report the first example of microcantilever beams that are reversibly driven by protein thin film machines fueled by cycling the salt concentration of the surrounding solution. We also show that upon the same salinity stimulus the drive can be completely reversed in its direction by introducing a surface coating ligand. Experimental results are throughout discussed within a general yet simple thermodynamic model.

  11. Thin film superconductor magnetic bearings

    Science.gov (United States)

    Weinberger, Bernard R.

    1995-12-26

    A superconductor magnetic bearing includes a shaft (10) that is subject to a load (L) and rotatable around an axis of rotation, a magnet (12) mounted to the shaft, and a stator (14) in proximity to the shaft. The stator (14) has a superconductor thin film assembly (16) positioned to interact with the magnet (12) to produce a levitation force on the shaft (10) that supports the load (L). The thin film assembly (16) includes at least two superconductor thin films (18) and at least one substrate (20). Each thin film (18) is positioned on a substrate (20) and all the thin films are positioned such that an applied magnetic field from the magnet (12) passes through all the thin films. A similar bearing in which the thin film assembly (16) is mounted on the shaft (10) and the magnet (12) is part of the stator (14) also can be constructed.

  12. Characterization of thin films of the solid electrolyte Li(x)Mg(1-2x)Al(2+x)O4 (x = 0, 0.05, 0.15, 0.25).

    Science.gov (United States)

    Put, Brecht; Vereecken, Philippe M; Mees, Maarten J; Rosciano, Fabio; Radu, Iuliana P; Stesmans, Andre

    2015-11-21

    RF-sputtered thin films of spinel Li(x)Mg(1-2x)Al(2+x)O4 were investigated for use as solid electrolyte. The usage of this material can enable the fabrication of a lattice matched battery stack, which is predicted to lead to superior battery performance. Spinel Li(x)Mg(1-2x)Al(2+x)O4 thin films, with stoichiometry (x) ranging between 0 and 0.25, were formed after a crystallization anneal as shown by X-ray diffraction and transmission electron microscopy. The stoichiometry of the films was evaluated by elastic recoil detection and Rutherford backscattering and found to be slightly aluminum rich. The excellent electronic insulation properties were confirmed by both current-voltage measurements as well as by copper plating tests. The electrochemical stability window of the material was probed using cyclic voltammetry. Lithium plating and stripping was observed together with the formation of a Li-Pt alloy, indicating that Li-ions passed through the film. This observation contradicted with impedance measurements at open circuit potential, which showed no apparent Li-ion conductivity of the film. Impedance spectroscopy as a function of potential showed the occurrence of Li-ion intercalation into the Li(x)Mg(1-2x)Al(2+x)O4 layers. When incorporating Li-ions in the material the ionic conductivity can be increased by 3 orders of magnitude. Therefore it is anticipated that the response of Li(x)Mg(1-2x)Al(2+x)O4 is more adequate for a buffer layer than as the solid electrolyte.

  13. Functional organic thin films

    OpenAIRE

    Scharnberg, Michael

    2007-01-01

    Organic thin films are used in many technological and engineering applications nowadays. They find use as coatings, sensors, detectors, as matrix materials in nanocomposites, as self-assembled monolayers for surface functionalization, as low-k dielectrics in integrated circuits and in advanced organic electronic applications like organic light emitting diodes, organic field effect transistors and organic photovoltaics (esp. organic solar cells) and many other applications. OLED displays are n...

  14. Thin film processes

    CERN Document Server

    Vossen, John L

    1978-01-01

    Remarkable advances have been made in recent years in the science and technology of thin film processes for deposition and etching. It is the purpose of this book to bring together tutorial reviews of selected filmdeposition and etching processes from a process viewpoint. Emphasis is placed on the practical use of the processes to provide working guidelines for their implementation, a guide to the literature, and an overview of each process.

  15. Handbook of thin film technology

    CERN Document Server

    Frey, Hartmut

    2015-01-01

    “Handbook of Thin Film Technology” covers all aspects of coatings preparation, characterization and applications. Different deposition techniques based on vacuum and plasma processes are presented. Methods of surface and thin film analysis including coating thickness, structural, optical, electrical, mechanical and magnetic properties of films are detailed described. The several applications of thin coatings and a special chapter focusing on nanoparticle-based films can be found in this handbook. A complete reference for students and professionals interested in the science and technology of thin films.

  16. Break down of losses in thin electrolyte SOFCs

    DEFF Research Database (Denmark)

    Barfod, Rasmus; Hagen, Anke; Ramousse, S.

    2006-01-01

    The contributions of the individual components of the cell (anode, cathode, and electrolyte) to the cell resistance were determined experimentally, directly from impedance spectra obtained from a full cell. It was an anode supported thin electrolyte cell, consisting of a YSZ electrolyte, a Ni/YSZ...

  17. Low Temperature, High Energy Density Micro Thin Film Solid Oxide Fuel Cell Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A new type of solid oxide fuel cell based on thin film technology and ultra-thin electrolyte is being proposed to develop to realize major reductions in fuel cell...

  18. Printable Thin Film Supercapacitors Using Single-Walled Carbon Nanotubes

    KAUST Repository

    Kaempgen, Martti

    2009-05-13

    Thin film supercapacitors were fabricated using printable materials to make flexible devices on plastic. The active electrodes were made from sprayed networks of single-walled carbon nanotubes (SWCNTs) serving as both electrodes and charge collectors. Using a printable aqueous gel electrolyte as well as an organic liquid electrolyte, the performances of the devices show very high energy and power densities (6 W h/kg for both electrolytes and 23 and 70 kW/kg for aqueous gel electrolyte and organic electrolyte, respectively) which is comparable to performance in other SWCNT-based supercapacitor devices fabricated using different methods. The results underline the potential of printable thin film supercapacitors. The simplified architecture and the sole use of printable materials may lead to a new class of entirely printable charge storage devices allowing for full integration with the emerging field of printed electronics. © 2009 American Chemical Society.

  19. Electrochemical fabrication of nanoporous polypyrrole thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li Mei [Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 (China); Yuan Jinying [Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 (China)], E-mail: yuanjy@mail.tsinghua.edu.cn; Shi Gaoquan [Key Laboratory of Organic Optoelectronics and Molecular Engineering (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing, 100084 (China)], E-mail: gshi@mail.tsinghua.edu.cn

    2008-04-30

    Polypyrrole thin films with pores in nanometer scale were synthesized by direct electrochemical oxidation of pyrrole in a mixed electrolyte of isopropyl alcohol, boron trifluoride diethyl etherate, sodium dodecylsulfonate and poly(ethylene glycol) using well-aligned ZnO nanowires arrays as templates. The thin films exhibit high conductivity of ca. {sigma}{sub rt} {approx} 20.5 s/cm and can be driven to bend during redox processes in 1.0 M lithium perchlorate aqueous solution. The movement rate of an actuator based on this nanoporous film was measured to be over 90{sup o}/s at a driving potential of 0.8 V (vs. Ag/AgCl)

  20. Oxygen Reduction Reaction Activity of Platinum Thin Films with Different Densities

    Energy Technology Data Exchange (ETDEWEB)

    Ergul, Busra; Begum, Mahbuba; Kariuki, Nancy; Myers, Deborah J.; Karabacak, Tansel

    2017-08-24

    Platinum thin films with different densities were grown on glassy carbon electrodes by high pressure sputtering deposition and evaluated as oxygen reduction reaction catalysts for polymer electrolyte fuel cells using cyclic voltammetry and rotating disk electrode techniques in aqueous perchloric acid electrolyte. The electrochemically active surface area, ORR mass activity (MA) and specific activity (SA) of the thin film electrodes were obtained. MA and SA were found to be higher for low-density films than for high-density film.

  1. Thin-film solar cell

    NARCIS (Netherlands)

    Metselaar, J.W.; Kuznetsov, V.I.

    1998-01-01

    The invention relates to a thin-film solar cell provided with at least one p-i-n junction comprising at least one p-i junction which is at an angle alpha with that surface of the thin-film solar cell which collects light during operation and at least one i-n junction which is at an angle beta with

  2. Electrochromic performances of nonstoichiometric NiO thin films

    International Nuclear Information System (INIS)

    Moulki, H.; Faure, C.; Mihelčič, M.; Vuk, A. Šurca; Švegl, F.; Orel, B.; Campet, G.; Alfredsson, M.; Chadwick, A.V.; Gianolio, D.; Rougier, A.

    2014-01-01

    Electrochromic (EC) performances of Ni 3+ containing NiO thin films, called modified NiO thin films, prepared either by pulsed laser deposition or by chemical route are reported. When cycled in lithium based electrolyte, the comparison of the EC behavior of nonstoichiometric NiO thin films points out a larger optical contrast for the films synthesized by chemical route with the absence of an activation period on early electrochemical cycling due in particular to a larger porosity. Herein we demonstrate faster kinetics for modified NiO thin films cycled in lithium ion free electrolyte. Finally, X-ray absorption spectroscopy is used for a preliminary understanding of the mechanism involved in this original EC behavior linked to the film characteristics including their disorder character, the presence of Ni 3+ and their porous morphology. - Highlights: • Nonstoichiometric NiO thin films • Electrochromic performances in lithium free electrolyte • X-ray absorption spectroscopy investigation of as-deposited films and upon cycling

  3. Ferromagnetic thin films

    Science.gov (United States)

    Krishnan, Kannan M.

    1994-01-01

    A ferromagnetic .delta.-Mn.sub.1-x Ga.sub.x thin film having perpendicular anisotropy is described which comprises: (a) a GaAs substrate, (b) a layer of undoped GaAs overlying said substrate and bonded thereto having a thickness ranging from about 50 to about 100 nanometers, (c) a layer of .delta.-Mn.sub.1-x Ga.sub.x overlying said layer of undoped GaAs and bonded thereto having a thickness ranging from about 20 to about 30 nanometers, and (d) a layer of GaAs overlying said layer of .delta.-Mn.sub.1-x Ga.sub.x and bonded thereto having a thickness ranging from about 2 to about 5 nanometers, wherein x is 0.4 .+-.0.05.

  4. Characterization of organic thin films

    CERN Document Server

    Ulman, Abraham; Evans, Charles A

    2009-01-01

    Thin films based upon organic materials are at the heart of much of the revolution in modern technology, from advanced electronics, to optics to sensors to biomedical engineering. This volume in the Materials Characterization series introduces the major common types of analysis used in characterizing of thin films and the various appropriate characterization technologies for each. Materials such as Langmuir-Blodgett films and self-assembled monolayers are first introduced, followed by analysis of surface properties and the various characterization technologies used for such. Readers will find detailed information on: -Various spectroscopic approaches to characterization of organic thin films, including infrared spectroscopy and Raman spectroscopy -X-Ray diffraction techniques, High Resolution EELS studies, and X-Ray Photoelectron Spectroscopy -Concise Summaries of major characterization technologies for organic thin films, including Auger Electron Spectroscopy, Dynamic Secondary Ion Mass Spectrometry, and Tra...

  5. Interfaces and thin films physics

    International Nuclear Information System (INIS)

    Equer, B.

    1988-01-01

    The 1988 progress report of the Interfaces and Thin Film Physics laboratory (Polytechnic School France) is presented. The research program is focused on the thin films and on the interfaces of the amorphous semiconductor materials: silicon and silicon germanium, silicon-carbon and silicon-nitrogen alloys. In particular, the following topics are discussed: the basic processes and the kinetics of the reactive gas deposition, the amorphous materials manufacturing, the physico-chemical characterization of thin films and interfaces and the electron transport in amorphous semiconductors. The construction and optimization of experimental devices, as well as the activities concerning instrumentation, are also described [fr

  6. Preparation of redox polymer cathodes for thin film rechargeable batteries

    Science.gov (United States)

    Skotheim, Terje A.; Lee, Hung S.; Okamoto, Yoshiyuki

    1994-11-08

    The present invention relates to the manufacture of thin film solid state electrochemical devices using composite cathodes comprising a redox polymer capable of undergoing oxidation and reduction, a polymer solid electrolyte and conducting carbon. The polymeric cathode material is formed as a composite of radiation crosslinked polymer electrolytes and radiation crosslinked redox polymers based on polysiloxane backbones with attached organosulfur side groups capable of forming sulfur-sulfur bonds during electrochemical oxidation.

  7. Effects of specific adsorption of copper (II) ion on charge transfer reaction at the thin film LiMn2O4 electrode/aqueous electrolyte interface

    International Nuclear Information System (INIS)

    Nakayama, N.; Yamada, I.; Huang, Y.; Nozawa, T.; Iriyama, Y.; Abe, T.; Ogumi, Z.

    2009-01-01

    This study investigated the effect of a specific adsorption ion, copper (II) ion, on the kinetics of the charge transfer reaction at a LiMn 2 O 4 thin film electrode/aqueous solution (1 mol dm -3 LiNO 3 ) interface. The zeta potential of LiMn 2 O 4 particles showed a negative value in 1 x 10 -2 mol dm -3 LiNO 3 aqueous solution, while it was measured as positive in the presence of 1 x 10 -2 mol dm -3 Cu(NO 3 ) 2 in the solution. The presence of copper (II) ions in the solution increased the charge transfer resistance, and CV measurement revealed that the lithium insertion/extraction reaction was retarded by the presence of small amount of copper (II) ions. The activation energy for the charge transfer reaction in the solution with Cu(NO 3 ) 2 was estimated to be 35 kJ mol -1 , which was ca. 10 kJ mol -1 larger than that observed in the solution without Cu(NO 3 ) 2 . These results suggest that the interaction between the lithium ion and electrode surface is a factor in the kinetics of charge transfer reaction

  8. Thin-Film Power Transformers

    Science.gov (United States)

    Katti, Romney R.

    1995-01-01

    Transformer core made of thin layers of insulating material interspersed with thin layers of ferromagnetic material. Flux-linking conductors made of thinner nonferromagnetic-conductor/insulator multilayers wrapped around core. Transformers have geometric features finer than those of transformers made in customary way by machining and mechanical pressing. In addition, some thin-film materials exhibit magnetic-flux-carrying capabilities superior to those of customary bulk transformer materials. Suitable for low-cost, high-yield mass production.

  9. Structural and electrical properties of NASICON type solid electrolyte nanoscaled glass-ceramic powder by mechanical milling for thin film batteries.

    Science.gov (United States)

    Patil, Vaishali; Patil, Arun; Yoon, Seok-Jin; Choi, Ji-Won

    2013-05-01

    During last two decades, lithium-based glasses have been studied extensively as electrolytes for solid-state secondary batteries. For practical use, solid electrolyte must have high ionic conductivity as well as chemical, thermal and electrochemical stability. Recent progresses have focused on glass electrolytes due to advantages over crystalline solid. Glass electrolytes are generally classified into two types oxide glass and sulfide glass. Oxide glasses do not react with electrode materials and this chemical inertness is advantageous for cycle performances of battery. In this study, major effort has been focused on the improvement of the ion conductivity of nanosized LiAlTi(PO4)3 oxide electrolyte prepared by mechanical milling (MM) method. After heating at 1000 degrees C the material shows good crystallinity and ionic conductivity with low electronic conductivity. In LiTi2(PO4)3, Ti4+ ions are partially substituted by Al3+ ions by heat-treatment of Li20-Al2O3-TiO2-P2O5 glasses at 1000 degrees C for 10 h. The conductivity of this material is 1.09 x 10(-3) S/cm at room temp. The glass-ceramics show fast ion conduction and low E(a) value. It is suggested that high conductivity, easy fabrication and low cost make this glass-ceramics promising to be used as inorganic solid electrolyte for all-solid-state Li rechargeable batteries.

  10. Electroviscous dissipation in aqueous electrolyte films with overlapping electric double layers

    NARCIS (Netherlands)

    Liu, Fei; Klaassen, Aram Harold; Zhao, Cunlu; Mugele, Friedrich Gunther; van den Ende, Henricus T.M.

    2018-01-01

    We use dynamic atomic force microscopy (AFM) to investigate the forces involved in squeezing out thin films of aqueous electrolyte between an AFM tip and silica substrates at variable pH and salt concentration. From amplitude and phase of the AFM signal we determine both conservative and dissipative

  11. Deposition and characterisation of epitaxial oxide thin films for SOFCs

    KAUST Repository

    Santiso, José

    2010-10-24

    This paper reviews the recent advances in the use of thin films, mostly epitaxial, for fundamental studies of materials for solid oxide fuel cell (SOFC) applications. These studies include the influence of film microstructure, crystal orientation and strain in oxide ionic conducting materials used as electrolytes, such as fluorites, and in mixed ionic and electronic conducting materials used as electrodes, typically oxides with perovskite or perovskite-related layered structures. The recent effort towards the enhancement of the electrochemical performance of SOFC materials through the deposition of artificial film heterostructures is also presented. These thin films have been engineered at a nanoscale level, such as the case of epitaxial multilayers or nanocomposite cermet materials. The recent progress in the implementation of thin films in SOFC devices is also reported. © 2010 Springer-Verlag.

  12. Development of Flexible Electrochromic Device with Thin-Film Configuration

    Science.gov (United States)

    Yoshimura, Hideo; Sakaguchi, Tomonori; Koshida, Nobuyoshi

    2007-04-01

    As we reported previously, the carrier accumulation mechanism is very useful for obtaining a quick-response electrochromic (EC) device with the inorganic-thin-film configuration. To confirm the availability of this concept for flexible substrates, the EC device has been fabricated on a polymeric film. The device is composed of a top semitransparent electrode, an electrolytic thin Ta2O5 film, a very thin SiO2 film, a thin amorphous WO3 film, and an indium-tin-oxide-coated poly(ethylene terephthalate) (PET) film. The experimental results show that the insertion of thin SiO2 film significantly accelerates the EC coloration as in the case of glass substrates. In accordance with cyclic voltammogram analyses, the enhanced EC kinetics is associated with an increased EC efficiency owing to the carrier accumulation effect of thin SiO2 film. The present result is potentially useful for development of flexible paper-like EC display devices and simple optical control systems.

  13. Beryllium thin films for resistor applications

    Science.gov (United States)

    Fiet, O.

    1972-01-01

    Beryllium thin films have a protective oxidation resistant property at high temperature and high recrystallization temperature. However, the experimental film has very low temperature coefficient of resistance.

  14. Preparation of thin vyns films

    International Nuclear Information System (INIS)

    Blanc, R.; Chedin, P.; Gizon, A.

    1965-01-01

    The fabrication of thin films of VYNS resin (copolymer of chloride and vinyl acetate) of superficial density from 3 to 50 μg/cm 2 with solutions in cyclohexanone is presented. Study and discussion of some properties compared with formvar film (polyvinyl formals). It appears that both can be used as source supports but formvar films are prepared more easily and more quickly, in addition they withstand higher temperatures. The main quality of VYNS is that they can be easily separated even several days after their preparation [fr

  15. Laser applications in thin-film photovoltaics

    OpenAIRE

    Bartlome, R.; Strahm, B.; Sinquin, Y.; Feltrin, A.; Ballif, C.

    2009-01-01

    We review laser applications in thin-film photovoltaics (thin-film Si, CdTe, and Cu(In,Ga)Se2 solar cells). Lasers are applied in this growing field to manufacture modules, to monitor Si deposition processes, and to characterize opto-electrical properties of thin films. Unlike traditional panels based on crystalline silicon wafers, the individual cells of a thin-film photovoltaic module can be serially interconnected by laser scribing during fabrication. Laser scribing applications are descri...

  16. Nanocrystal thin film fabrication methods and apparatus

    Energy Technology Data Exchange (ETDEWEB)

    Kagan, Cherie R.; Kim, David K.; Choi, Ji-Hyuk; Lai, Yuming

    2018-01-09

    Nanocrystal thin film devices and methods for fabricating nanocrystal thin film devices are disclosed. The nanocrystal thin films are diffused with a dopant such as Indium, Potassium, Tin, etc. to reduce surface states. The thin film devices may be exposed to air during a portion of the fabrication. This enables fabrication of nanocrystal-based devices using a wider range of techniques such as photolithography and photolithographic patterning in an air environment.

  17. study in polymer thin films

    Indian Academy of Sciences (India)

    TECS

    carry out a careful study of steady state conduction of poly- styrene (PS) thin film thermo-electrets sandwiched be- tween metal electrodes both in doped and undoped forms. 2. Experimental. 2.1 Sample preparation. Polystyrene supplied by Polymer Chemical Industry,. Mumbai and naphthalene by S.G. Sisco Pvt Ltd., New ...

  18. Magnetization in permalloy thin films

    Indian Academy of Sciences (India)

    1VES College of Arts, Science and Commerce, Sindhi Society, Chembur, Mumbai 400 071,. India. 2UGC-DAE Consortium for Scientific Research, R5 Shed, ... gas alone, while PNR measurements on 5 and 10% sample show splitting in the spin-up and spin-down reflectivity. Keywords. Permalloy; NiFe thin films; NiFe ...

  19. Electrodeposition of thin Pd-Ag films

    International Nuclear Information System (INIS)

    Hasler, P.; Allmendinger, T.

    1993-01-01

    Thin Pd-Ag layers were electroplated preferably on brass and on nickel substrates using a two-compartment cell separated by an anion exchange membrane. The weakly alkaline electrolyte contained glycine-glycinate as the major complexing agents. The plating experiments were usually carried out without stirring, at different potentials and temperatures and in the absence or in the presence of sodium benzaldehyde-2,4-disulphonate (BDS). The samples were characterized by scanning electron microscopy and light microscopy. Their compositions were determined analytically by the inductively coupled plasma technique. In addition, the film porosity was tested. Electrodeposition in almost limiting current conditions for both components and without simultaneous hydrogen evolution led to deposits with compositions being in good agreement with the molar metal ratio in the electrolyte (77:23). The best results were achieved between 0 and -50 mV with respect to a reversible hydrogen electrode at 0 C in the presence of BDS. These deposits were bright, had good adherence and exhibited no pores at a film thickness of 1.2 μm. At too negative potentials, the deposits became black and powdery. (orig.)

  20. Microstructure of Thin Films

    Science.gov (United States)

    1990-02-07

    resultant film could be varied right up to virtually pure aluminum oxide simply by varying the background oxygen pressure. More recently we have been...aT , m..a, lot,, o ,,f,02,d I4 k -1-1..... autocovariance lengths, less than 0.5 um, indicate that , 514n, ob0 o p’,Ofclllc....,,o,,oy0,1- agua sblrt

  1. Cubic erbium trihydride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Adams, D.P., E-mail: dpadams@sandia.gov; Rodriguez, M.A.; Romero, J.A.; Kotula, P.G.; Banks, J.

    2012-07-31

    High-purity, erbium hydride thin films have been deposited onto {alpha}-Al{sub 2}O{sub 3} and oxidized Si by reactive sputtering methods. Rutherford backscattering spectrometry and elastic recoil detection show that films deposited at temperatures of 35, 150 and 275 Degree-Sign C have a composition of 3H:1Er. Erbium trihydride films consist of a face-centered cubic erbium sub-lattice with a lattice parameter in the range of 5.11-5.20 A. The formation of cubic ErH{sub 3} is intriguing, because previous studies demonstrate a single trihydride phase with a hexagonal metal sub-lattice. The formation of a stable, cubic trihydride phase is attributed to a large, in-plane stress resulting from ion beam sputter deposition. - Highlights: Black-Right-Pointing-Pointer Cubic erbium trihydride thin films produced by ion beam sputter deposition. Black-Right-Pointing-Pointer Face-centered cubic metal sub-lattice verified by X-ray and electron diffraction. Black-Right-Pointing-Pointer Composition evaluated using four different techniques. Black-Right-Pointing-Pointer Film stress monitored during deposition. Black-Right-Pointing-Pointer Formation of cubic erbium trihydride attributed to a large, in-plane film stress.

  2. Performance and Electrochemical Characterisation of Thin Electrolyte SOFCs

    DEFF Research Database (Denmark)

    Ramos, Tania; Hjelm, Johan; Wandel, Marie Emilie

    2008-01-01

    The performance and electrochemical behavior of two anode-supported thin electrolyte cells, with different manufacturing parameters, is determined by polarization measurements and electrochemical impedance spectroscopy (EIS). In addition to characterization, a previously suggested equivalent......-depth electrochemical characterization can provide valuable guidelines for production/performance optimization. © 2008 ECS - The Electrochemical Society...

  3. Nanostructured hematite thin films for photoelectrochemical water splitting

    Science.gov (United States)

    Maabong, Kelebogile; Machatine, Augusto G. J.; Mwankemwa, Benard S.; Braun, Artur; Bora, Debajeet K.; Toth, Rita; Diale, Mmantsae

    2018-04-01

    Nanostructured hematite thin films prepared by dip coating technique were investigated for their photoelectrochemical activity for generation of hydrogen from water splitting. Structural, morphological and optical analyses of the doped/undoped films were performed by X-ray diffraction, high resolution field emission-scanning electron microscopy, UV-vis spectrophotometry and Raman spectroscopy. The photoelectrochemical measurements of the films showed enhanced photoresponse and cathodic shift of the onset potential upon Ti doping indicating improved transfer of photoholes at the semiconductor-electrolyte interface. Films doped with 1 at% Ti produced 0.72 mA/cm2 at 1.23 V vs RHE which is 2 times higher than current density for the pure film (0.30 mA/cm2, at 1.23 V vs RHE). Gas chromatography analysis of the films also showed enhanced hydrogen evolution at 1 at% Ti with respect to pure film.

  4. Micromachined Dense Palladium Electrodes for Thin-film Solid Acid Fuel Cells

    NARCIS (Netherlands)

    Unnikrishnan, S.

    2009-01-01

    This thesis paves the way towards the microfabrication of a solid acid electrolyte based fuel cell (µSAFC), which has a membrane electrode assembly (MEA) consisting of a thin-film of water soluble electrolyte encapsulated between two dense palladium electrode membranes. This project work

  5. Polycrystalline thin films : A review

    Energy Technology Data Exchange (ETDEWEB)

    Valvoda, V. [Charles Univ., Prague (Czech Republic). Faculty of Mathematics and Physics

    1996-09-01

    Polycrystalline thin films can be described in terms of grain morphology and in terms of their packing by the Thornton`s zone model as a function of temperature of deposition and as a function of energy of deposited atoms. Grain size and preferred grain orientation (texture) can be determined by X-ray diffraction (XRD) methods. A review of XRD analytical methods of texture analysis is given with main attention paid to simple empirical functions used for texture description and for structure analysis by joint texture refinement. To illustrate the methods of detailed structure analysis of thin polycrystalline films, examples of multilayers are used with the aim to show experiments and data evaluation to determine layer thickness, periodicity, interface roughness, lattice spacing, strain and the size of diffraction coherent volumes. The methods of low angle and high angle XRD are described and discussed with respect to their complementary information content.

  6. Thin films of soft matter

    CERN Document Server

    Kalliadasis, Serafim

    2007-01-01

    A detailed overview and comprehensive analysis of the main theoretical and experimental advances on free surface thin film and jet flows of soft matter is given. At the theoretical front the book outlines the basic equations and boundary conditions and the derivation of low-dimensional models for the evolution of the free surface. Such models include long-wave expansions and equations of the boundary layer type and are analyzed via linear stability analysis, weakly nonlinear theories and strongly nonlinear analysis including construction of stationary periodic and solitary wave and similarity solutions. At the experimental front a variety of very recent experimental developments is outlined and the link between theory and experiments is illustrated. Such experiments include spreading drops and bubbles, imbibitions, singularity formation at interfaces and experimental characterization of thin films using atomic force microscopy, ellipsometry and contact angle measurements and analysis of patterns using Minkows...

  7. Preparation and Characterization of Self-Assembled Manganese Dioxide Thin Films

    Directory of Open Access Journals (Sweden)

    Suh Cem Pang

    2011-01-01

    Full Text Available Thin films of manganese dioxide (MnO2 were prepared by self-assembly of MnO2 nanoparticles directly unto nickel-coated poly(ethylene terephthalate flexible films using the newly developed horizontal submersion process. The thickness of deposited thin films was controllable by the deposition duration. This horizontal submersion deposition process for thin-film deposition is relatively easy, simple, and cost effective. Effects of deposition duration and calcination temperatures on the microstructure and electrochemical properties of self-assembled MnO2 thin films were investigated. Optimized MnO2 thin films exhibited high charge capacity, good cycling reversibility, and stability in a mild aqueous electrolyte and are thus promising electrode materials for the fabrication of thin-film electrochemical capacitors.

  8. Flexible thin film magnetoimpedance sensors

    Energy Technology Data Exchange (ETDEWEB)

    Kurlyandskaya, G.V., E-mail: galina@we.lc.ehu.es [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); Ural Federal University, Laboratory of Magnetic sensoric, Lenin Ave. 51, 620083 Ekaterinburg (Russian Federation); Fernández, E. [BCMaterials UPV-EHU, Vizcaya Science and Technology Park, 48160 Derio (Spain); Svalov, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); Ural Federal University, Laboratory of Magnetic sensoric, Lenin Ave. 51, 620083 Ekaterinburg (Russian Federation); Burgoa Beitia, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); García-Arribas, A. [Universidad del País Vasco, UPV/EHU, Departamento de Electricidad y Electrónica, P.O. Box 644, Bilbao 48080 (Spain); BCMaterials UPV-EHU, Vizcaya Science and Technology Park, 48160 Derio (Spain); Larrañaga, A. [SGIker, Servicios Generales de Investigación, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain)

    2016-10-01

    Magnetically soft thin film deposited onto polymer substrates is an attractive option for flexible electronics including magnetoimpedance (MI) applications. MI FeNi/Ti based thin film sensitive elements were designed and prepared using the sputtering technique by deposition onto rigid and flexible substrates at different deposition rates. Their structure, magnetic properties and MI were comparatively analyzed. The main structural features were sufficiently accurately reproduced in the case of deposition onto cyclo olefine polymer substrates compared to glass substrates for the same conditions. Although for the best condition (28 nm/min rate) of the deposition onto polymer a significant reduction of the MI field sensitivity was found satisfactory for sensor applications sensitivity: 45%/Oe was obtained for a frequency of 60 MHz. - Highlights: • [FeNi/Ti]{sub 3}/Cu/[FeNi/Ti]{sub 3} films were prepared by sputtering at different deposition rates. • Polymer substrates insure sufficiently accurate reproducibility of the film structure. • High deposition rate of 28 nm/min insures the highest values of the magnetoimpedance sensitivity. • Deposition onto polymer results in the satisfactory magnetoimpedance sensitivity of 45%/Oe.

  9. Flexible thin film magnetoimpedance sensors

    International Nuclear Information System (INIS)

    Kurlyandskaya, G.V.; Fernández, E.; Svalov, A.; Burgoa Beitia, A.; García-Arribas, A.; Larrañaga, A.

    2016-01-01

    Magnetically soft thin film deposited onto polymer substrates is an attractive option for flexible electronics including magnetoimpedance (MI) applications. MI FeNi/Ti based thin film sensitive elements were designed and prepared using the sputtering technique by deposition onto rigid and flexible substrates at different deposition rates. Their structure, magnetic properties and MI were comparatively analyzed. The main structural features were sufficiently accurately reproduced in the case of deposition onto cyclo olefine polymer substrates compared to glass substrates for the same conditions. Although for the best condition (28 nm/min rate) of the deposition onto polymer a significant reduction of the MI field sensitivity was found satisfactory for sensor applications sensitivity: 45%/Oe was obtained for a frequency of 60 MHz. - Highlights: • [FeNi/Ti] 3 /Cu/[FeNi/Ti] 3 films were prepared by sputtering at different deposition rates. • Polymer substrates insure sufficiently accurate reproducibility of the film structure. • High deposition rate of 28 nm/min insures the highest values of the magnetoimpedance sensitivity. • Deposition onto polymer results in the satisfactory magnetoimpedance sensitivity of 45%/Oe.

  10. Preparation and characterization of Cu-In-S thin films by electrodeposition

    International Nuclear Information System (INIS)

    Martinez, A.M.; Fernandez, A.M.; Arriaga, L.G.; Cano, U.

    2006-01-01

    In this paper, we report the preparation and characterization of Cu-In-S thin films on stainless steel prepared by electrodeposition technique. The electrolytic bath used for preparation of the thin films consists of metal salts dissolved in a buffer solution. This buffer solution can control the formation and composition of thin films. In order to get adequate crystalline of CuInS 2 thin films, the as deposited films were annealed in N 2 -atmosphere. Samples were characterized using X-ray diffraction (XRD), electron probe micro-analysis (EPMA), and scanning electron microscopy (SEM). The band-gap value of the material was estimated using optical transmittance and reflectance data on thin films deposited on commercial glass/indium tin oxide (ITO) substrates. It was found that the band-gap of the films is close to 1.5 eV

  11. Organic Thin Films for Photonics Applications

    National Research Council Canada - National Science Library

    Thorner, John

    1999-01-01

    The Organic Thin Films for Photonics Applications Topical Meeting provided an interdisciplinary forum for the presentation and discussion of new and previously unpublished results on advanced organic...

  12. Analysis of Hard Thin Film Coating

    Science.gov (United States)

    Shen, Dashen

    1998-01-01

    MSFC is interested in developing hard thin film coating for bearings. The wearing of the bearing is an important problem for space flight engine. Hard thin film coating can drastically improve the surface of the bearing and improve the wear-endurance of the bearing. However, many fundamental problems in surface physics, plasma deposition, etc, need further research. The approach is using electron cyclotron resonance chemical vapor deposition (ECRCVD) to deposit hard thin film an stainless steel bearing. The thin films in consideration include SiC, SiN and other materials. An ECRCVD deposition system is being assembled at MSFC.

  13. Thin films for emerging applications v.16

    CERN Document Server

    Francombe, Maurice H

    1992-01-01

    Following in the long-standing tradition of excellence established by this serial, this volume provides a focused look at contemporary applications. High Tc superconducting thin films are discussed in terms of ion beam and sputtering deposition, vacuum evaporation, laser ablation, MOCVD, and other deposition processes in addition to their ultimate applications. Detailed treatment is also given to permanent magnet thin films, lateral diffusion and electromigration in metallic thin films, and fracture and cracking phenomena in thin films adhering to high-elongation substrates.

  14. Progress in thin film techniques

    International Nuclear Information System (INIS)

    Weingarten, W.

    1996-01-01

    Progress since the last Workshop is reported on superconducting accelerating RF cavities coated with thin films. The materials investigated are Nb, Nb 3 Sn, NbN and NbTiN, the techniques applied are diffusion from the vapour phase (Nb 3 Sn, NbN), the bronze process (Nb 3 Sn), and sputter deposition on a copper substrate (Nb, NbTiN). Specially designed cavities for sample evaluation by RF methods have been developed (triaxial cavity). New experimental techniques to assess the RF amplitude dependence of the surface resistance are presented (with emphasis on niobium films sputter deposited on copper). Evidence is increasing that they are caused by magnetic flux penetration into the surface layer. (R.P.)

  15. Thin film solar energy collector

    Science.gov (United States)

    Aykan, Kamran; Farrauto, Robert J.; Jefferson, Clinton F.; Lanam, Richard D.

    1983-11-22

    A multi-layer solar energy collector of improved stability comprising: (1) a substrate of quartz, silicate glass, stainless steel or aluminum-containing ferritic alloy; (2) a solar absorptive layer comprising silver, copper oxide, rhodium/rhodium oxide and 0-15% by weight of platinum; (3) an interlayer comprising silver or silver/platinum; and (4) an optional external anti-reflective coating, plus a method for preparing a thermally stable multi-layered solar collector, in which the absorptive layer is undercoated with a thin film of silver or silver/platinum to obtain an improved conductor-dielectric tandem.

  16. Minerals deposited as thin films

    International Nuclear Information System (INIS)

    Vazquez, Cristina; Leyt, D.V. de; Custo, Graciela

    1987-01-01

    Free matrix effects are due to thin film deposits. Thus, it was decided to investigate this technique as a possibility to use pure oxide of the desired element, extrapolating its concentration from analytical curves made with avoiding, at the same time, mathematical corrections. The proposed method was employed to determine iron and titanium concentrations in geological samples. The range studied was 0.1-5%m/m for titanium and 5-20%m/m for iron. For both elements the reproducibility was about 7% and differences between this method and other chemical determinations were 15% for titanium and 7% for iron. (Author) [es

  17. Thin liquid films dewetting and polymer flow

    CERN Document Server

    Blossey, Ralf

    2012-01-01

    This book is a treatise on the thermodynamic and dynamic properties of thin liquid films at solid surfaces and, in particular, their rupture instabilities. For the quantitative study of these phenomena, polymer thin films haven proven to be an invaluable experimental model system.   What is it that makes thin film instabilities special and interesting, warranting a whole book? There are several answers to this. Firstly, thin polymeric films have an important range of applications, and with the increase in the number of technologies available to produce and to study them, this range is likely to expand. An understanding of their instabilities is therefore of practical relevance for the design of such films.   Secondly, thin liquid films are an interdisciplinary research topic. Interdisciplinary research is surely not an end to itself, but in this case it leads to a fairly heterogeneous community of theoretical and experimental physicists, engineers, physical chemists, mathematicians and others working on the...

  18. Pulse electrodeposition of Prussian Blue thin films

    International Nuclear Information System (INIS)

    Najafisayar, P.; Bahrololoom, M.E.

    2013-01-01

    The effects of pulse electrodeposition parameters like peak current density and frequency on the electrochemical properties of Prussian Blue thin films were investigated. Electrochemical Impedance Spectroscopy, Cyclic Voltammetry and Chronoamperometry tests were carried out on Prussian Blue thin films which were pulse electrodeposited on Indium Tin Oxide coated glass substrates. The results showed that increase in the peak current densities and using higher pulsating frequencies during electrodeposition decreases the charge transfer resistance of the thin films while the diffusion coefficient of electroactive species in the films is increased as a consequence of using the same pulsating parameters. In addition, pulse electrodeposition technique does not alter deposition mechanism and morphology of the Prussian Blue thin films. - Highlights: • Prussian Blue thin films were pulse electrodeposited onto the ITO coated glass. • Pulse current condition affected thin films' electrochemical properties. • High pulsating current and frequency lower thin films' charge transfer resistance. • High pulsating current and frequency increase diffusion coefficient in thin films

  19. Influence of Direct Current Electric Field on Corrosion Behavior of Tin Under a Thin Electrolyte Layer

    Science.gov (United States)

    Huang, H. L.; Bu, F. R.; Tian, J.; Liu, D.

    2017-12-01

    The influence of a direct current electric field (DCEF) on corrosion behavior of tin under a thin electrolyte layer was investigated based on an array electrode technology by polarization, electrochemical impedance spectroscopy and surface analysis. The experimental results indicate that the corrosion rate of tin near the positive plate of DCEF increases with increased electric field intensity, which could be attributed to the acceleration of the migration of ions, the removal of corrosion products under DCEF and the damage of tin surface oxide film. Furthermore, tin at different positions in a DCEF exhibits different corrosion behavior, which could be ascribed to the difference of the local corrosion environment caused by the DCEF.

  20. Excimer Laser Deposition of PLZT Thin Films

    National Research Council Canada - National Science Library

    Petersen, GAry

    1991-01-01

    .... In order to integrate these devices into optical systems, the production of high quality thin films with high transparency and perovskite crystal structure is desired. This requires development of deposition technologies to overcome the challenges of depositing and processing PLZT thin films.

  1. Permalloy Thin-film Magnetic Sensors

    NARCIS (Netherlands)

    Groenland, J.P.J.; Eijkel, C.J.M.; Fluitman, J.H.J.; de Ridder, R.M.

    1992-01-01

    An introduction to the theory of the anisotropic magnetoresistance effect in ferromagnetic thin films is given, ending in a treatment of the minimalization of the free energy which is the result of the intrinsic and extrinsic anisotropies of the thin-film structure. The anisotropic magnetoresistance

  2. Characterization of nanocrystalline cadmium telluride thin films ...

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Structural, electrical and optical characteristics of CdTe thin films prepared by a chemical deposi- tion method, successive ionic layer adsorption and reaction (SILAR), are described. For deposition of CdTe thin films, cadmium acetate was used as cationic and sodium tellurite as anionic precursor in aqueous me-.

  3. Characterization of nanocrystalline cadmium telluride thin films ...

    Indian Academy of Sciences (India)

    Home; Journals; Bulletin of Materials Science; Volume 29; Issue 2. Characterization of nanocrystalline ... Structural, electrical and optical characteristics of CdTe thin films prepared by a chemical deposition method, successive ionic layer adsorption and reaction (SILAR), are described. For deposition of CdTe thin films, ...

  4. Laser thermoreflectance for semiconductor thin films metrology

    Science.gov (United States)

    Gailly, P.; Hastanin, J.; Duterte, C.; Hernandez, Y.; Lecourt, J.-B.; Kupisiewicz, A.; Martin, P.-E.; Fleury-Frenette, K.

    2012-06-01

    We present a thermoreflectance-based metrology concept applied to compound semiconductor thin films off-line characterization in the solar cells scribing process. The presented thermoreflectance setup has been used to evaluate the thermal diffusivity of thin CdTe films and to measure eventual changes in the thermal properties of 5 μm CdTe films ablated by nano and picosecond laser pulses. The temperature response of the CdTe thin film to the nanosecond heating pulse has been numerically investigated using the finite-difference time-domain (FDTD) method. The computational and experimental results have been compared.

  5. Nanostructured thin films and coatings functional properties

    CERN Document Server

    Zhang, Sam

    2010-01-01

    The second volume in ""The Handbook of Nanostructured Thin Films and Coatings"" set, this book focuses on functional properties, including optical, electronic, and electrical properties, as well as related devices and applications. It explores the large-scale fabrication of functional thin films with nanoarchitecture via chemical routes, the fabrication and characterization of SiC nanostructured/nanocomposite films, and low-dimensional nanocomposite fabrication and applications. The book also presents the properties of sol-gel-derived nanostructured thin films as well as silicon nanocrystals e

  6. Simple Formation of Nanostructured Molybdenum Disulfide Thin Films by Electrodeposition

    Directory of Open Access Journals (Sweden)

    S. K. Ghosh

    2013-01-01

    Full Text Available Nanostructured molybdenum disulfide thin films were deposited on various substrates by direct current (DC electrolysis form aqueous electrolyte containing molybdate and sulfide ions. Post deposition annealing at higher temperatures in the range 450–700°C transformed the as-deposited amorphous films to nanocrystalline structure. High temperature X-ray diffraction studies clearly recorded the crystal structure transformations associated with grain growth with increase in annealing temperature. Surface morphology investigations revealed featureless structure in case of as-deposited surface; upon annealing it converts into a surface with protruding nanotubes, nanorods, or dumbbell shape nanofeatures. UV-visible and FTIR spectra confirmed about the presence of Mo-S bonding in the deposited films. Transmission electron microscopic examination showed that the annealed MoS2 films consist of nanoballs, nanoribbons, and multiple wall nanotubes.

  7. Micromechanics of substrate-supported thin films

    Science.gov (United States)

    He, Wei; Han, Meidong; Wang, Shibin; Li, Lin-An; Xue, Xiuli

    2017-09-01

    The mechanical properties of metallic thin films deposited on a substrate play a crucial role in the performance of micro/nano-electromechanical systems (MEMS/NEMS) and flexible electronics. This article reviews ongoing study on the mechanics of substrate-supported thin films, with emphasis on the experimental characterization techniques, such as the rule of mixture and X-ray tensile testing. In particular, the determination of interfacial adhesion energy, film deformation, elastic properties and Bauschinger effect are discussed.

  8. Thin film bioreactors in space

    Science.gov (United States)

    Hughes-Fulford, M.; Scheld, H. W.

    Studies from the Skylab, SL-3 and D-1 missions have demonstrated that biological organisms grown in microgravity have changes in basic cellular functions such as DNA, mRNA and protein synthesis, cytoskeleton synthesis, glucose utilization and cellular differentiation. Since microgravity could affect prokaryotic and eukaryotic cells at a subcellular and molecular level, space offers us an opportunity to learn more about basic biological systems with one important variable removed. The thin film bioreactor will facilitate the handling of fluids in microgravity, under constant temperature and will allow multiple samples of cells to be grown with variable conditions. Studies on cell cultures grown in microgravity would enable us to identify and quantify changes in basic biological function in microgravity which are needed to develop new applications of orbital research and future biotechnology.

  9. BDS thin film damage competition

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, C J; Thomas, M D; Griffin, A J

    2008-10-24

    A laser damage competition was held at the 2008 Boulder Damage Symposium in order to determine the current status of thin film laser resistance within the private, academic, and government sectors. This damage competition allows a direct comparison of the current state-of-the-art of high laser resistance coatings since they are all tested using the same damage test setup and the same protocol. A normal incidence high reflector multilayer coating was selected at a wavelength of 1064 nm. The substrates were provided by the submitters. A double blind test assured sample and submitter anonymity so only a summary of the results are presented here. In addition to the laser resistance results, details of deposition processes, coating materials, and layer count will also be shared.

  10. Method of producing thin cellulose nitrate film

    International Nuclear Information System (INIS)

    Lupica, S.B.

    1975-01-01

    An improved method for forming a thin nitrocellulose film of reproducible thickness is described. The film is a cellulose nitrate film, 10 to 20 microns in thickness, cast from a solution of cellulose nitrate in tetrahydrofuran, said solution containing from 7 to 15 percent, by weight, of dioctyl phthalate, said cellulose nitrate having a nitrogen content of from 10 to 13 percent

  11. Application of the thin electrolyte layer technique to corrosion testing of dental materials

    Science.gov (United States)

    Ledvina, Martin

    Proper simulation of the oral environment for the corrosion testing of dental materials is crucial for determining corrosion rates and mechanisms correctly. In this study, the thin electrolyte layer technique (TET) was characterized and employed to investigate the importance of the chemical composition of the testing environment on the outcome of electrochemical tests. The thickness of the electrolyte layer in TET is only 0.5 mm and contains only 20 muL of electrolyte. This arrangement simulates the physical characteristics of the oral environment and facilitates testing in human saliva. Oxygen availability for reduction on the sample surface was determined, using cathodic polarization of Pt in borate buffer, to be lower in TET than in traditional (bulk electrolyte) techniques. Appreciable differences were found during polarization experiments on 316 L SS in saline and artificial saliva. Oxygen content was found to play a significant role in the corrosivity of various species contained in artificial saliva. Potentiodynamic polarization employing human saliva in TET on 316L SS proved to be very different from tests performed in artificial saliva. This was believed to be due to the presence of organic species, specifically proteins, contained in human saliva. This was further confirmed by cyclic polarization and corrosion current measurements of four commercial nickel-chromium (NiCr) alloys with varying amounts of Be. For this phase of the experiment, artificial saliva (AS), AS with 1% albumin, AS with 1% of mucin and parotid human saliva were employed as electrolytes. The results obtained in the various electrolytes depended on the composition, microstructure, stability of passive film, and the presence of casting porosity of the alloys tested. Proteins had insignificant effect on alloys with highly stable passive films, whereas, corrosion rates increased substantially in those alloys with compromised passive film formation. Proteins, especially mucin, lowered the

  12. Thin-film voltammetry and its analytical applications: A review

    International Nuclear Information System (INIS)

    Tian, Huihui; Li, Yunchao; Shao, Huibo; Yu, Hua-Zhong

    2015-01-01

    Highlights: • Electrochemistry at immiscible liquid–liquid interfaces is fundamentally important. • Methods for studying redox processes at liquid–liquid interfaces are reviewed. • Thin-film voltammetry is simple in experimental operation and kinetic data analysis. • Thin-film voltammetry’s analytical applications are prevailing and comprehensive. - Abstract: Electrochemical reactions at the interfaces of immiscible electrolyte solutions (ITIES) are of fundamental importance in the fields of chemical, biological and pharmaceutical sciences. Four-electrode cell setup, scanning electrochemical microscopy (SECM) and thin-film voltammetry are the three most frequently used methods for studying the electrochemical processes at these interfaces. The principle, experimental design, advantages and challenges of the three methods are described and compared. The thin-film voltammetry is highlighted for its simplicity in experimental operation and kinetic data analysis. Its versatile analytical applications are discussed in detail, including the study of redox properties of hydrophobic compounds, evaluation of interfacial electron transfer kinetics, synthesis of nanoparticles/nanostructures, and illustration of cross-membrane ion transport phenomena

  13. Effects of accelerated degradation on metal supported thin film-based solid oxide fuel cell

    DEFF Research Database (Denmark)

    Reolon, R. P.; Sanna, S.; Xu, Yu

    2018-01-01

    A thin film-based solid oxide fuel cell is deposited on a Ni-based metal porous support by pulsed laser deposition with a multi-scale-graded microstructure design. The fuel cell, around 1 μm in thickness, is composed of a stabilized-zirconia/doped-ceria bi-layered dense electrolyte and nanostruct......A thin film-based solid oxide fuel cell is deposited on a Ni-based metal porous support by pulsed laser deposition with a multi-scale-graded microstructure design. The fuel cell, around 1 μm in thickness, is composed of a stabilized-zirconia/doped-ceria bi-layered dense electrolyte...

  14. Optical constant of thin gold films

    DEFF Research Database (Denmark)

    Yakubovsky, D. I.; Fedyanin, D. Yu; Arsenin, A. V.

    2017-01-01

    The performance of metal-based devices is limited by ohmic losses in the metal, which are determined by electron scattering. The structural properties of gold thin films also play an important role in the film quality, which may affect its' optical properties and the overall capability of the dev......The performance of metal-based devices is limited by ohmic losses in the metal, which are determined by electron scattering. The structural properties of gold thin films also play an important role in the film quality, which may affect its' optical properties and the overall capability...... and spectroscopic ellipsometry, the structural morphology and optical properties of polycrystalline gold thin films (fabricated by e-beam deposition at a low sputtering rate smooth gold) in the thickness range of 20 - 200 nm. By extracting the real and imaginary dielectric function and the Drude parameter...... predicts optical losses based on structure of the gold films....

  15. Plasmonic modes in thin films: quo vadis?

    Directory of Open Access Journals (Sweden)

    Antonio ePolitano

    2014-07-01

    Full Text Available Herein, we discuss the status and the prospect of plasmonic modes in thin films. Plasmons are collective longitudinal modes of charge fluctuation in metal samples excited by an external electric field. Surface plasmons (SPs are waves that propagate along the surface of a conductor with applications in magneto-optic data storage, optics, microscopy, and catalysis. In thin films the electronic response is influenced by electron quantum confinement. Confined electrons modify the dynamical screening processes at the film/substrate interface by introducing novel properties with potential applications and, moreover, they affect both the dispersion relation of SP frequency and the damping processes of the SP.Recent calculations indicate the emergence of acoustic surface plasmons (ASP in Ag thin films exhibiting quantum well states and in graphene films. The slope of the dispersion of ASP decreases with film thickness. We also discuss open issues in research on plasmonic modes in graphene/metal interfaes.

  16. Stabilized thin film heterostructure for electrochemical applications

    DEFF Research Database (Denmark)

    2015-01-01

    The invention provides a method for the formation of a thin film multi-layered heterostructure upon a substrate, said method comprising the steps of: a. providing a substrate; b. depositing a buffer layer upon said substrate, said buffer layer being a layer of stable ionic conductor (B); c...... or less; and e. repeating steps b. and c. a total of N times, such that N repeating pairs of layers (A/B) are built up, wherein N is 1 or more. The invention also provides a thin film multi-layered heterostructure as such, and the combination of a thin film multi-layered heterostructure and a substrate...

  17. Macro stress mapping on thin film buckling

    International Nuclear Information System (INIS)

    Goudeau, P.; Villain, P.; Renault, P.-O.; Tamura, N.; Celestre, R.S.; Padmore, H.A.

    2002-01-01

    Thin films deposited by Physical Vapour Deposition techniques on substrates generally exhibit large residual stresses which may be responsible of thin film buckling in the case of compressive stresses. Since the 80's, a lot of theoretical work has been done to develop mechanical models but only a few experimental work has been done on this subject to support these theoretical approaches and nothing concerning local stress measurement mainly because of the small dimension of the buckling (few 10th mm). This paper deals with the application of micro beam X-ray diffraction available on synchrotron radiation sources for stress mapping analysis of gold thin film buckling

  18. Study of zinc oxide thin film characteristics

    OpenAIRE

    Johari Shazlina; Muhammad Nazalea Yazmin; Zakaria Mohd Rosydi

    2017-01-01

    This paper presents the characterization of ZnO thin films with the thickness of 8nm, 30nm, and 200nm. The thin films were prepared using sol-gel method and has been deposited onto different substrate of silicon wafer, glass and quartz. The thin films were annealed at 400, 500 and 600°C. By using UV-Vis, the optical transmittance measurement were recorded by using a single beam spectrophotometer in the wavelength 250nm to 800nm. However, the transmittance in the visible range is hardly influe...

  19. High density nonmagnetic cobalt in thin films

    OpenAIRE

    Banu, Nasrin; Singh, Surendra; Basu, Saibal; Roy, Anupam; Movva, Hema C. P.; Dev, B. N.

    2017-01-01

    Recently high density (HD) nonmagnetic (NM) cobalt has been discovered in a cobalt thin film, grown on Si(111). This cobalt film had a natural cobalt oxide at the top. The oxide layer forms when the film is taken out of the electron-beam deposition chamber and exposed to air. Thin HD NM cobalt layers were found near the cobalt/silicon and the cobalt-oxide/cobalt interfaces, while the thicker mid-depth region of the film was hcp cobalt with normal density and normal magnetic moment. If an ultr...

  20. Performance Characterization of Monolithic Thin Film Resistors

    Science.gov (United States)

    Yin, Rong

    Thin film resistors have a large resistance range and stable performance under high temperature operating condition. Thin film resistors trimmed by laser beam are able to achieve very high precision on resistance value. As a result, thin film resistors have been widely used to improve the performance of integrated circuits such as operational amplifier, analog-to-digital (A/D) and digital -to-analog (D/A) converters, etc. In this dissertation, a new class of thin film resistors, silicon chrome (SiCr) thin film resistors, has been investigated at length. From thin film characterization to aging behavior modelling, we have carried out a series of engineering activities. The characteristics of the SiCr thin film incorporated into three bipolar processes were first determined. After laser trimming, we have measured a couple of physical parameters of the SiCr film in the heat affected zone (HAZ). This is the first time the sheet resistance and the temperature coefficient of resistance (TCR) of thin film in the HAZ have been characterized. Both thermal and d.c. load accelerated aging tests were performed. The test structures were subjected to the aging for 1000 hours. Based on the test data, we not only evaluated the classical thermal aging model for untrimmed thin film resistors, but also established several empirical thermal aging models for trimmed resistors and d.c. load aging models for both trimmed and untrimmed thin film resistors. All the experiments were carried out for both conventional bar resistors and our new Swiss Cheese (SC) resistors. For the first time, the performance of laser trimmed SC resistors, which was experimentally evaluated, shown a clear superiority over that of trimmed bar resistors. Besides these experiments, we have examined different die attach techniques and their effects on thin film resistors. Also, we have developed a number of hardware systems and software tools, such as a temperature controller, d.c. current source, temperature

  1. Thermal conductivity model for nanoporous thin films

    Science.gov (United States)

    Huang, Congliang; Zhao, Xinpeng; Regner, Keith; Yang, Ronggui

    2018-03-01

    Nanoporous thin films have attracted great interest because of their extremely low thermal conductivity and potential applications in thin thermal insulators and thermoelectrics. Although there are some numerical and experimental studies about the thermal conductivity of nanoporous thin films, a simplified model is still needed to provide a straightforward prediction. In this paper, by including the phonon scattering lifetimes due to film thickness boundary scattering, nanopore scattering and the frequency-dependent intrinsic phonon-phonon scattering, a fitting-parameter-free model based on the kinetic theory of phonon transport is developed to predict both the in-plane and the cross-plane thermal conductivities of nanoporous thin films. With input parameters such as the lattice constants, thermal conductivity, and the group velocity of acoustic phonons of bulk silicon, our model shows a good agreement with available experimental and numerical results of nanoporous silicon thin films. It illustrates that the size effect of film thickness boundary scattering not only depends on the film thickness but also on the size of nanopores, and a larger nanopore leads to a stronger size effect of the film thickness. Our model also reveals that there are different optimal structures for getting the lowest in-plane and cross-plane thermal conductivities.

  2. Proteins at fluid interfaces: adsorption layers and thin liquid films.

    Science.gov (United States)

    Yampolskaya, Galina; Platikanov, Dimo

    2006-12-21

    A review in which many original published results of the authors as well as many other papers are discussed. The structure and some properties of the globular proteins are shortly presented, special accent being put on the alpha-chymotrypsin (alpha-ChT), lysozyme (LZ), human serum albumin (HSA), and bovine serum albumin (BSA) which have been used in the experiments with thin liquid films. The behaviour of protein adsorption layers (PAL) is extensively discussed. The dynamics of PAL formation, including the kinetics of adsorption as well as the time evolution of the surface tension of protein aqueous solutions, are considered. A considerable place is devoted to the surface tension and adsorption isotherms of the globular protein solutions, the simulation of PAL by interacting hard spheres, the experimental surface tension isotherms of the above mentioned proteins, and the interfacial tension isotherms for the protein aqueous solution/oil interface. The rheological properties of PAL at fluid interfaces are shortly reviewed. After a brief information about the experimental methods for investigation of protein thin liquid (foam or emulsion) films, the properties of the protein black foam films are extensively discussed: the conditions for their formation, the influence of the electrolytes and pH on the film type and stability, the thermodynamic properties of the black foam films, the contact angles film/bulk and their dynamic hysteresis. The next center of attention concerns some properties of the protein emulsion films: the conditions for formation of emulsion black films, the formation and development of a dimpling in microscopic, circular films. The protein-phospholipid mixed foam films are also briefly considered.

  3. Thin film production method and apparatus

    Science.gov (United States)

    Loutfy, Raouf O.; Moravsky, Alexander P.; Hassen, Charles N.

    2010-08-10

    A method for forming a thin film material which comprises depositing solid particles from a flowing suspension or aerosol onto a filter and next adhering the solid particles to a second substrate using an adhesive.

  4. Highly stretchable wrinkled gold thin film wires.

    Science.gov (United States)

    Kim, Joshua; Park, Sun-Jun; Nguyen, Thao; Chu, Michael; Pegan, Jonathan D; Khine, Michelle

    2016-02-08

    With the growing prominence of wearable electronic technology, there is a need to improve the mechanical reliability of electronics for more demanding applications. Conductive wires represent a vital component present in all electronics. Unlike traditional planar and rigid electronics, these new wearable electrical components must conform to curvilinear surfaces, stretch with the body, and remain unobtrusive and low profile. In this paper, the piezoresistive response of shrink induced wrinkled gold thin films under strain demonstrates robust conductive performance in excess of 200% strain. Importantly, the wrinkled metallic thin films displayed negligible change in resistance of up to 100% strain. The wrinkled metallic wires exhibited consistent performance after repetitive strain. Importantly, these wrinkled thin films are inexpensive to fabricate and are compatible with roll to roll manufacturing processes. We propose that these wrinkled metal thin film wires are an attractive alternative to conventional wires for wearable applications.

  5. Epitaxy, thin films and superlattices

    International Nuclear Information System (INIS)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au)

  6. Epitaxy, thin films and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au) 14 tabs.; 58 ills., 96 refs.

  7. Laser processing for thin-film photovoltaics

    Science.gov (United States)

    Compaan, Alvin D.

    1995-04-01

    Over the past decade major advances have occurred in the field of thin- film photovoltaics (PV) with many of them a direct consequence of the application of laser processing. Improved cell efficiencies have been achieved in crystalline and polycrystalline Si, in hydrogenated amorphous silicon, and in two polycrystalline thin-film materials. The use of lasers in photovoltaics includes laser hole drilling for emitter wrap-through, laser trenching for buried bus lines, and laser texturing of crystalline and polycrystalline Si cells. In thin-film devices, laser scribing is gaining increased importance for module interconnects. Pulsed laser recrystallization of boron-doped hydrogenated amorphous silicon is used to form highly conductive p-layers in p-i-n amorphous silicon cells and in thin-film transistors. Optical beam melting appears to be an attractive method for forming metal semiconductor alloys for contact formation. Finally, pulsed lasers are used for deposition of the entire semiconductor absorber layer in two types of polycrystalline thin-film cells-those based on copper indium diselenide and those based on cadmium telluride. In our lab we have prepared and studied heavily doped polycrystalline silicon thin films and also have used laser physical vapor deposition (LPVD) to prepare 'all-LPVD' CdS/CdTe solar cells on glass with efficiencies tested at NREL at 10.5%. LPVD is highly flexible and ideally suited for prototyping PV cells using ternary or quaternary alloys and for exploring new dopant combinations.

  8. Laser applications in thin-film photovoltaics

    Science.gov (United States)

    Bartlome, R.; Strahm, B.; Sinquin, Y.; Feltrin, A.; Ballif, C.

    2010-08-01

    We review laser applications in thin-film photovoltaics (thin-film Si, CdTe, and Cu(In,Ga)Se2 solar cells). Lasers are applied in this growing field to manufacture modules, to monitor Si deposition processes, and to characterize opto-electrical properties of thin films. Unlike traditional panels based on crystalline silicon wafers, the individual cells of a thin-film photovoltaic module can be serially interconnected by laser scribing during fabrication. Laser scribing applications are described in detail, while other laser-based fabrication processes, such as laser-induced crystallization and pulsed laser deposition, are briefly reviewed. Lasers are also integrated into various diagnostic tools to analyze the composition of chemical vapors during deposition of Si thin films. Silane (SiH4), silane radicals (SiH3, SiH2, SiH, Si), and Si nanoparticles have all been monitored inside chemical vapor deposition systems. Finally, we review various thin-film characterization methods, in which lasers are implemented.

  9. Dense zig-zag microstructures in YSZ thin films by pulsed laser deposition

    Directory of Open Access Journals (Sweden)

    Dieter Stender

    2015-01-01

    Full Text Available The very brittle oxygen ion conductor yttria stabilized zirconia (YSZ is a typical solid electrolyte for miniaturized thin film fuel cells. In order to decrease the fuel cell operating temperature, the thickness of yttria stabilized zirconia thin films is reduced. Often, these thin membranes suffer from mechanical failure and gas permeability. To improve these mechanical issues, a glancing angle deposition approach is used to grow yttria stabilized zirconia thin films with tilted columnar structures. Changes of the material flux direction during the deposition result in a dense, zigzag-like structure with columnar crystallites. This structure reduces the elastic modulus of these membranes as compared to columnar yttria stabilized zirconia thin films as monitored by nano-indentation which makes them more adaptable to applied stress.

  10. High performance direct methanol fuel cell with thin electrolyte membrane

    Science.gov (United States)

    Wan, Nianfang

    2017-06-01

    A high performance direct methanol fuel cell is achieved with thin electrolyte membrane. 320 mW cm-2 of peak power density and over 260 mW cm-2 at 0.4 V are obtained when working at 90 °C with normal pressure air supply. It is revealed that the increased anode half-cell performance with temperature contributes primarily to the enhanced performance at elevated temperature. From the comparison of iR-compensated cathode potential of methanol/air with that of H2/air fuel cell, the impact of methanol crossover on cathode performance decreases with current density and becomes negligible at high current density. Current density is found to influence fuel efficiency and methanol crossover significantly from the measurement of fuel efficiency at different current density. At high current density, high fuel efficiency can be achieved even at high temperature, indicating decreased methanol crossover.

  11. Humidity sensing characteristics of hydrotungstite thin films

    Indian Academy of Sciences (India)

    Wintec

    variety of tungstate materials, such as thick-film manga- nese tungstate, have been applied as humidity sensors. (Qu and Mayer 1997). The humidity sensing characteristics of bulk metal oxide–tungsten oxide systems have also been studied in the literature (Ichinose 1993). Thin films of tungsten oxide have been prepared ...

  12. A thin film magnetoresistive angle detector

    NARCIS (Netherlands)

    Eijkel, C.J.M.; Wieberdink, Johan W.; Fluitman, J.H.J.; Popma, T.J.A.; Groot, Peter; Leeuwis, Henk

    1990-01-01

    An overview is given of the results of our research on a contactless angle detector based on the anisotropic magnetoresistance effect (AMR effect) in a permalloy thin film. The results of high-temperature annealing treatment of the pemalloy film are discussed. Such a treatment suppresses the effects

  13. Measurements of acoustic properties for thin films

    International Nuclear Information System (INIS)

    Kushibiki, J.; Maehara, H.; Chubachi, N.

    1982-01-01

    A measurement method for determining thin-film acoustic properties, such as characteristic acoustic impedance, sound velocity, density, and stiffness constant, is developed with a simple measurement principle and high measurement accuracy. The acoustic properties are determined from a maximum reflection loss and a center frequency obtained through a frequency response of the reflection loss for an acoustic transmission line composed of a sapphire/film/water system by using the acoustic pulse mode measurement system in the UHF range. The determination of the acoustic properties is demonstrated for sputtered fused quartz film, low-expansion borosilicate glass films, and chalcogenide glass films of evaporated As 2 S 3 and As 2 Se 3 , within the measurement accuracy around 1--2%. It is also found that the acoustic properties of thin films are generally different from those of bulk materials, depending on the fabrication techniques and conditions

  14. Large grain gallium arsenide thin films

    Science.gov (United States)

    Chu, S. S.; Chu, T. L.; Firouzi, H.; Han, Y. X.; Chen, W. J.; Wang, Q. H.

    Polycrystalline gallium arsenide films deposited on tungsten/graphite substrates have been used for the fabrication of thin film solar cells. Gallium arsenide films deposited on foreign substrates of 10 microns or less thickness exhibit, in most cases, pronounced shunting effects due to grain boundaries. MOS solar cells of 9 sq cm area with an AM1 efficiency of 8.5 percent and p(+)/n/n(+) homojunction solar cells of 1 sq cm area with an AM1 efficiency of 8.8 percent have been prepared. However, in order to further improve the conversion efficiency before the development of effective passivation techniques, gallium arsenide films with large and uniform grain structure are necessary. The large grain gallium arsenide films have been prepared by using (1) the arsine treatment of a thin layer of molten gallium on the substrate surface and (2) the recrystallized germanium films on tungsten/graphite as substrates.

  15. Polymer surfaces, interfaces and thin films

    Energy Technology Data Exchange (ETDEWEB)

    Stamm, M. [Max-Planck-Institut fuer Polymerforschung, Mainz (Germany)

    1996-11-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs.

  16. Polymer surfaces, interfaces and thin films

    International Nuclear Information System (INIS)

    Stamm, M.

    1996-01-01

    Neutron reflectometry can be used in various ways to investigate surfaces, interfaces and thin films of polymers. Its potential comes mostly from the possibilities offered by selective deuteration, where a particular component can be made visible with respect to its activity at the interface. In addition the depth resolution is much better than with most other direct techniques, and details of the profiles may be resolved. Several examples will be discussed including the segment diffusion at the interface between two polymer films, the determination of the narrow interfaces between incompatible polymer blends and the development of order in thin diblock copolymer films. (author) 10 figs., 2 tabs., 38 refs

  17. Decomposition of ethylene carbonate on electrodeposited metal thin film anode

    Energy Technology Data Exchange (ETDEWEB)

    Bridel, Jean-Sebastien; Grugeon, Sylvie; Laruelle, Stephane; Tarascon, Jean-Marie [Laboratoire de Reactivite et Chimie des Solides, Universite de Picardie Jules Verne CNRS (UMR-6007), Faculte des Sciences, 33 rue Saint-Leu 80039, Amiens Cedex (France); Hassoun, Jusef; Reale, Priscilla; Scrosati, Bruno [Chemistry Department, University of Rome ' ' La Sapienza' ' , 00185 Roma (Italy)

    2010-04-02

    Metals capable of forming alloys with Li are of great interest as an alternative to present carbon electrodes, hence the importance of knowing their interactions with electrolytes is necessary. Herein we report further on the high-voltage extra irreversibility of Sn electrodeposited thin films vs. Li in EC-DMC 1 M LiPF{sub 6} electrolytes. We show that this high-voltage irreversibility is strongly dependent upon the electrolyte composition as demonstrated by its disappearance in EC-free electrolytes. This finding coupled with IR spectroscopy measurements provides direct evidence for the tin-driven catalytic degradation of EC during the discharge of Sn/Li cells. From an electrochemical survey of various metals, capable of alloying with Li, we found that Bi and Pb behaved like Sn while Si and Sb did not act as catalysts towards EC degradation. A rationale for such behaviour is proposed, a procedure to bypass EC degradation with the addition of VC is presented, and an explanation for the non-observance of catalytic-driven EC degradation for Sn/C composites is provided. (author)

  18. Restructuring in block copolymer thin films

    DEFF Research Database (Denmark)

    Posselt, Dorthe; Zhang, Jianqi; Smilgies, Detlef-M.

    2017-01-01

    Block copolymer (BCP) thin films have been proposed for a number of nanotechnology applications, such as nanolithography and as nanotemplates, nanoporous membranes and sensors. Solvent vapor annealing (SVA) has emerged as a powerful technique for manipulating and controlling the structure of BCP...... thin films, e.g., by healing defects, by altering the orientation of the microdomains and by changing the morphology. Due to high time resolution and compatibility with SVA environments, grazing-incidence small-angle X-ray scattering (GISAXS) is an indispensable technique for studying the SVA process......, providing information of the BCP thin film structure both laterally and along the film normal. Especially, state-of-the-art combined GISAXS/SVA setups at synchrotron sources have facilitated in situ and real-time studies of the SVA process with a time resolution of a few seconds, giving important insight...

  19. Mott-Schottky analysis of thin ZnO films

    International Nuclear Information System (INIS)

    Windisch, Charles F. Jr.; Exarhos, Gregory J.

    2000-01-01

    Thin ZnO films, both native and doped with secondary metal ions, have been prepared by sputter deposition and also by casting from solutions containing a range of precursor salts. The conductivity and infrared reflectivity of these films are subsequently enhanced chemically following treatment in H 2 gas at 400 degree sign C or by cathodic electrochemical treatment in a neutral (pH=7) phosphate buffer solution. While Hall-type measurements usually are used to evaluate the electrical properties of such films, the present study investigated whether a conventional Mott-Schottky analysis could be used to monitor the change in concentration of free carriers in these films before and after chemical and electrochemical reduction. The Mott-Schottky approach would be particularly appropriate for electrochemically modified films since the measurements could be made in the same electrolyte used for the post-deposition electrochemical processing. Results of studies on sputtered pure ZnO films in ferricyanide solution were promising. Mott-Schottky plots were linear and gave free carrier concentrations typical for undoped semiconductors. Film thicknesses estimated from the Mott-Schottky data were also reasonably close to thicknesses calculated from reflectance measurements. Studies on solution-deposited films were less successful. Mott-Schottky plots were nonlinear, apparently due to film porosity. A combination of dc polarization and atomic force microscopy measurements confirmed this conclusion. The results suggest that Mott-Schottky analysis would be suitable for characterizing solution-deposited ZnO films only after extensive modeling was performed to incorporate the effects of film porosity on the characteristics of the space-charge region of the semiconductor. (c) 2000 American Vacuum Society

  20. Sol-gel derived ceramic electrolyte films on porous substrates

    Energy Technology Data Exchange (ETDEWEB)

    Kueper, Timothy Walter [Univ. of California, Berkeley, CA (United States)

    1992-05-01

    A process for the deposition of sol-gel derived thin films on porous substrates has been developed; such films should be useful for solid oxide fuel cells and related applications. Yttria-stabilized zirconia films have been formed from metal alkoxide starting solutions. Dense films have been deposited on metal substrates and ceramic substrates, both dense and porous, through dip-coating and spin-coating techniques, followed by a heat treatment in air. X-ray diffraction has been used to determine the crystalline phases formed and the extent of reactions with various substrates which may be encountered in gas/gas devices. Surface coatings have been successfully applied to porous substrates through the control of substrate pore size and deposition parameters. Wetting of the substrate pores by the coating solution is discussed, and conditions are defined for which films can be deposited over the pores without filling the interiors of the pores. Shrinkage cracking was encountered in films thicker than a critical value, which depended on the sol-gel process parameters and on the substrate characteristics. Local discontinuities were also observed in films which were thinner than a critical value which depended on the substrate pore size. A theoretical discussion of cracking mechanisms is presented for both types of cracking, and the conditions necessary for successful thin formation are defined. The applicability of these film gas/gas devices is discussed.

  1. DC magnetron sputtering prepared Ag-C thin film anode for thin film lithium ion microbatteries

    International Nuclear Information System (INIS)

    Li, Y.; Tu, J.P.; Shi, D.Q.; Huang, X.H.; Wu, H.M.; Yuan, Y.F.; Zhao, X.B.

    2007-01-01

    An Ag-C thin film was prepared by DC magnetron co-sputtering, using pure silver and graphite as the targets. The microstructure and morphology of the deposited thin film were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Electrochemical performances of the Ag-C thin film anode were investigated by means of discharge/charge and cyclic voltammogram (CV) tests in model cells. The electrochemical impedance spectrum (EIS) characteristics and the chemical diffusion coefficient, D Li of the Ag-C thin film electrode at different discharging states were discussed. It was believed that the excellent cycling performance of the Ag-C electrode was ascribed to the good conductivity of silver and the volume stability of the thin film

  2. INFLUENCE OF PH ON THE STRUCTURAL AND MORPHOLOGICAL PROPERTIES OF ZnS THIN FILMS

    Directory of Open Access Journals (Sweden)

    A KASSIM

    2010-06-01

    Full Text Available The ZnS thin films have been obtained from aqueous solution by means of cyclic voltammetry method. The electrochemical bath consisted of zinc sulphate, sodium thiosulfate and triethanolamine. The effect of electrolyte pH on the properties of ZnS thin films was investigated within the range from 3 to 9. The cyclic voltammetry was used to analyse the electrochemical bath. The structural and morphological of thin films were investigated by X-ray diffraction and atomic force microscopy, respectively. The thin films obtained have cubic structure and single phase as analysed by XRD. As the pH was reduced from 9 to 3, the intensities of the peaks corresponding to ZnS increased. AFM image shows the thin films prepared at pH 3 are homogeneous and well covered on the substrate. These thin films consist of small grains which lead to deposition of smoother films. However, as the pH increases up to 7, the number of grains decreases and larger grain size could be obtained. Therefore, the pH plays a major role in synthesis of ZnS thin film and the pH 3 is the best pH under current conditions.

  3. Critical behavior of ferromagnetic Ising thin films

    International Nuclear Information System (INIS)

    Cossio, P.; Mazo-Zuluaga, J.; Restrepo, J.

    2006-01-01

    In the present work, we study the magnetic properties and critical behavior of simple cubic ferromagnetic thin films. We simulate LxLxd films with semifree boundary conditions on the basis of the Monte Carlo method and the Ising model with nearest neighbor interactions. A Metropolis dynamics was implemented to carry out the energy minimization process. For different film thickness, in the nanometer range, we compute the temperature dependence of the magnetization, the magnetic susceptibility and the fourth order Binder's cumulant. Bulk and surface contributions of these quantities are computed in a differentiated fashion. Additionally, according to finite size scaling theory, we estimate the critical exponents for the correlation length, magnetic susceptibility, and magnetization. Results reveal a strong dependence of critical temperature and critical exponents on the film thickness. The obtained critical exponents are finally compared to those reported in literature for thin films

  4. Magnetostrictive thin films prepared by RF sputtering

    International Nuclear Information System (INIS)

    Carabias, I.; Martinez, A.; Garcia, M.A.; Pina, E.; Gonzalez, J.M.; Hernando, A.; Crespo, P.

    2005-01-01

    Fe 80 B 20 thin films have been prepared by ion beam sputtering magnetron on room temperature. The films were fabricated on different substrates to compare the different magnetic and structural properties. In particular the growth of films on flexible substrates (PDMS, Kapton) has been studied to allow a simple integration of the system in miniaturized magnetostrictive devices. X-ray diffraction patterns indicate that films are mainly amorphous although the presence of some Fe nanoparticles cannot be ruled out. The coercive field of thin films ranges between 15 and 35 Oe, depending on substrate. Magnetostriction measurements indicate the strong dependence of the saturation magnetostriction with the substrate. Samples on flexible substrates exhibit a better performance than samples deposited onto glass substrates

  5. Dynamics of Polymer Thin Film Mixtures

    Science.gov (United States)

    Besancon, Brian M.; Green, Peter F.; Soles, Christopher L.

    2006-03-01

    We examined the influence of film thickness and composition on the glass transition temperature (Tg) and mean square atomic displacements (MSD) of thin film mixtures of deuterated polystyrene (dPS) and tetramethyl bisphenol-A polycarbonate (TMPC) on Si/SiOx substrates using incoherent elastic neutron scattering (ICNS). The onset of dissipative motions, such as those associated with the glass transition and sub-Tg relaxations, are manifested as ``kinks'' in the curve of elastic intensity (or MSD) versus temperature. From the relevant kinks, the Tg was determined as a function of composition and of film thickness. The dependence of the Tg on film thickness exhibited qualitatively similar trends, at a given composition, as determined by the ICNS and ellipsometry measurements. However, with increasing PS content, the values of Tg measured by INS were consistently larger then those measured by ellipsometry. These results are examined in light of existing models on the thin film glass transition and component blend dynamics.

  6. Chemical synthesis of porous web-structured CdS thin films for photosensor applications

    International Nuclear Information System (INIS)

    Gosavi, S.R.; Nikam, C.P.; Shelke, A.R.; Patil, A.M.; Ryu, S.-W.; Bhat, J.S.; Deshpande, N.G.

    2015-01-01

    The photo-activity of chemically deposited cadmium sulphide (CdS) thin film has been studied. The simple chemical route nucleates the CdS films with size up to the mean free path of the electron. Growth Kinematics of crystalline hexagonal CdS phase in the thin film form was monitored using X-ray diffraction. The time limitation set for the formation of the amorphous/nano-crystalline material is 40 and 60 min. Thereafter enhancement of the crystalline orientation along the desired plane was identified. Web-like porous structured surface morphology of CdS thin film over the entire area is observed. With decrease in synthesis time, increase of band gap energy i.e., a blue spectral shift was seen. The activation energy of CdS thin film at low and high temperature region was examined. It is considered that this activation energy corresponds to the donor levels associated with shallow traps or surface states of CdS thin film. The photo-electrochemical performance of CdS thin films in polysulphide electrolyte showed diode-like characteristics. Exposure of light on the CdS electrode increases the photocurrent. This suggests the possibility of production of free carriers via excited ions and also the light harvesting mechanism due to porous web-structured morphology. These studies hint that the obtained CdS films can work as a photosensor. - Highlights: • Photoactivity of chemically synthesized cadmium sulphide (CdS) thin films was studied. • Web-like porous structured surface morphology of CdS thin film over the entire area was observed. • Blue spectral shift with lowering of the synthesis time suggests films can act as a window layer over the absorber layer. • Porous web-structured CdS thin films can be useful in light harvesting

  7. Thin Films in the Photovoltaic Industry

    International Nuclear Information System (INIS)

    Jaeger-Waldau, A.

    2008-03-01

    In the past years, the yearly world market growth rate for Photovoltaics was an average of more than 40%, which makes it one of the fastest growing industries at present. Business analysts predict the market volume to increase to 40 billion euros in 2010 and expect rising profit margins and lower prices for consumers at the same time. Today PV is still dominated by wafer based Crystalline Silicon Technology as the 'working horse' in the global market, but thin films are gaining market shares. For 2007 around 12% are expected. The current silicon shortage and high demand has kept prices higher than anticipated from the learning curve experience and has widened the windows of opportunities for thin film solar modules. Current production capacity estimates for thin films vary between 3 and 6 GW in 2010, representing a 20% market share for these technologies. Despite the higher growth rates for thin film technologies compared with the industry average, Thin Film Photovoltaic Technologies are still facing a number of challenges to maintain this growth and increase market shares. The four main topics which were discussed during the workshop were: Potential for cost reduction; Standardization; Recycling; Performance over the lifetime.

  8. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 Angstrom), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 Angstrom of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films

  9. Thermal conductivity of dielectric thin films

    International Nuclear Information System (INIS)

    Lambropoulos, J.C.; Jolly, M.R.; Amaden, C.A.; Gilman, S.E.; Sinicropi, M.J.; Diakomihalis, D.; Jacobs, S.D.

    1989-05-01

    A direct reading thermal comparator has been used to measure the thermal conductivity of dielectric thin film coatings. In the past, the thermal comparator has been used extensively to measure the thermal conductivity of bulk solids, liquids, and gases. The technique has been extended to thin film materials by making experimental improvements and by the application of an analytical heat flow model. Our technique also allows an estimation of the thermal resistance of the film/substrate interface which is shown to depend on the method of film deposition. The thermal conductivity of most thin films was found to be several orders of magnitude lower than that of the material in bulk form. This difference is attributed to structural disorder of materials deposited in thin film form. The experimentation to date has centered primarily on optical coating materials. These coatings, used to enhance the optical properties of components such as lenses and mirrors, are damaged by thermal loads applied in high-power laser applications. It has been widely postulated that there may be a correlation between the thermal conductivity and the damage threshold of these materials. 31 refs., 11 figs., 8 tabs

  10. Grain Boundary Engineering of Electrodeposited Thin Films

    DEFF Research Database (Denmark)

    Alimadadi, Hossein

    Grain boundary engineering aims for a deliberate manipulation of the grain boundary characteristics to improve the properties of polycrystalline materials. Despite the emergence of some successful industrial applications, the mechanism(s) by which the boundary specific properties can be improved...... to engineer new materials. In this study, one of the most widely used electrolytes for electrodeposition is chosen for the synthesis of nickel films and based on thorough characterization of the boundaries the potentials in grain boundary engineering are outlined. The internal structure of the nickel films...... of the favorable boundaries that break the network of general grain boundaries. Successful dedicated synthesis of a textured nickel film fulfilling the requirements of grain boundary engineered materials, suggests improved boundary specific properties. However, the textured nickel film shows fairly low...

  11. Photoelectrochemical processes in organic semiconductor: Ambipolar perylene diimide thin film

    Science.gov (United States)

    Kim, Jung Yong; Chung, In Jae

    2018-03-01

    A thin film of N,N‧-dioctadecyl-3,4,9,10-perylene tetracarboxylic diimide (PTCDI-C18) is spin-coated on indium tin oxide (ITO) glass. Using the PTCDI-C18/ITO electrode, we fabricate a photoelectrochemical cell with the ITO/PTCDI-C18/Redox Electrolyte/Pt configuration. The electrochemical properties of this device are investigated as a function of hydroquinone (HQ) concentration, bias voltage, and wavelength of light. Anodic photocurrent is observed at V ≥ -0.2 V vs. Ag/AgCl, indicating that the PTCDI-C18 film acts as an n-type semiconductor as usual. However, when benzoquinone (BQ) is inserted into the electrolyte system instead of HQ, cathodic photocurrent is observed at V ≤ 0.0 V, displaying that PTCDI-C18 abnormally serves as a p-type semiconductor. Hence the overall results reveal that the PTCDI-C18 film can be an ambipolar functional semiconductor depending on the redox couple in the appropriate voltage.

  12. Photoelectrocatalytic Degradation of Sodium Oxalate by TiO2/Ti Thin Film Electrode

    Directory of Open Access Journals (Sweden)

    Chen-Yu Chang

    2012-01-01

    Full Text Available The photocatalytically active TiO2 thin film was deposited on the titanium substrate plate by chemical vapor deposition (CVD method, and the photoelectrocatalytic degradation of sodium oxalate was investigated by TiO2 thin film reactor prepared in this study with additional electric potential at 365 nm irradiation. The batch system was chosen in this experiment, and the controlled parameters were pH, different supporting electrolytes, applied additional potential, and different electrolyte solutions that were examined and discussed. The experimental results revealed that the additional applied potential in photocatalytic reaction could prohibit recombination of electron/hole pairs, but the photoelectrocatalytic effect was decreased when the applied electric potential was over 0.25 V. Among the electrolyte solutions added, sodium sulfate improved the photoelectrocatalytic effect most significantly. At last, the better photoelectrocatalytic degradation of sodium oxalate occurred at pH 3 when comparing the pH influence.

  13. Organic thin films and surfaces directions for the nineties

    CERN Document Server

    Ulman, Abraham

    1995-01-01

    Physics of Thin Films has been one of the longest running continuing series in thin film science consisting of 20 volumes since 1963. The series contains some of the highest quality studies of the properties ofvarious thin films materials and systems.In order to be able to reflect the development of todays science and to cover all modern aspects of thin films, the series, beginning with Volume 20, will move beyond the basic physics of thin films. It will address the most important aspects of both inorganic and organic thin films, in both their theoretical as well as technological aspects. Ther

  14. Domains in Ferroic Crystals and Thin Films

    CERN Document Server

    Tagantsev, Alexander K; Fousek, Jan

    2010-01-01

    Domains in Ferroic Crystals and Thin Films presents experimental findings and theoretical understanding of ferroic (non-magnetic) domains developed during the past 60 years. It addresses the situation by looking specifically at bulk crystals and thin films, with a particular focus on recently-developed microelectronic applications and methods for observation of domains with techniques such as scanning force microscopy, polarized light microscopy, scanning optical microscopy, electron microscopy, and surface decorating techniques. Domains in Ferroic Crystals and Thin Films covers a large area of material properties and effects connected with static and dynamic properties of domains, which are extremely relevant to materials referred to as ferroics. In most solid state physics books, one large group of ferroics is customarily covered: those in which magnetic properties play a dominant role. Numerous books are specifically devoted to magnetic ferroics and cover a wide spectrum of magnetic domain phenomena. In co...

  15. Nanostructured thin films and coatings mechanical properties

    CERN Document Server

    2010-01-01

    The first volume in "The Handbook of Nanostructured Thin Films and Coatings" set, this book concentrates on the mechanical properties, such as hardness, toughness, and adhesion, of thin films and coatings. It discusses processing, properties, and performance and provides a detailed analysis of theories and size effects. The book presents the fundamentals of hard and superhard nanocomposites and heterostructures, assesses fracture toughness and interfacial adhesion strength of thin films and hard nanocomposite coatings, and covers the processing and mechanical properties of hybrid sol-gel-derived nanocomposite coatings. It also uses nanomechanics to optimize coatings for cutting tools and explores various other coatings, such as diamond, metal-containing amorphous carbon nanostructured, and transition metal nitride-based nanolayered multilayer coatings.

  16. Solid surfaces, interfaces and thin films

    CERN Document Server

    Lüth, Hans

    2015-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin-film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological structure, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure research, particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures. A special chapter of the book is devoted to collective phenomena at interfaces and in thin films such as superconductivity and magnetism. The latter topic includes the meanwhile important issues giant magnetoresistance and spin-transfer torque mechanism, both effects being of high interest in information technology. In this new edition, for the first time, the effect of spin-orbit coupling on surface states is treated. In this context the class of the recently detected topological insulators,...

  17. Solid Surfaces, Interfaces and Thin Films

    CERN Document Server

    Lüth, Hans

    2010-01-01

    This book emphasises both experimental and theoretical aspects of surface, interface and thin film physics. As in previous editions the preparation of surfaces and thin films, their atomic and morphological, their vibronic and electronic properties as well as fundamentals of adsorption are treated. Because of their importance in modern information technology and nanostructure physics particular emphasis is paid to electronic surface and interface states, semiconductor space charge layers and heterostructures as well as to superconductor/semiconductor interfaces and magnetic thin films. The latter topic was significantly extended in this new edition by more details about the giant magnetoresistance and a section about the spin-transfer torque mechanism including one new problem as exercise. Two new panels about Kerr-effect and spin-polarized scanning tunnelling microscopy were added, too. Furthermore, the meanwhile important group III-nitride surfaces and high-k oxide/semiconductor interfaces are shortly discu...

  18. Capillary stress in microporous thin films

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, J.; Hurd, A.J.; Frink, L.J.D.; Swol, F. van [Sandia National Labs., Albuquerque, NM (United States); Brinker, C.J. [Sandia National Labs., Albuquerque, NM (United States). Ceramic Processing Science Dept.]|[Univ. of New Mexico, Albuquerque, NM (United States). Center for Micro Engineering Ceramics; Raman, N.K. [Univ. of New Mexico, Albuquerque, NM (United States). Center for Micro Engineered Ceramics

    1996-06-01

    Development of capillary stress in porous xerogels, although ubiquitous, has not been systematically studied. The authors have used the beam bending technique to measure stress isotherms of microporous thin films prepared by a sol-gel route. The thin films were prepared on deformable silicon substrates which were then placed in a vacuum system. The automated measurement was carried out by monitoring the deflection of a laser reflected off the substrate while changing the overlying relative pressure of various solvents. The magnitude of the macroscopic bending stress was found to reach a value of 180 MPa at a relative pressure of methanol, P/Po = 0.001. The observed stress is determined by the pore size distribution and is an order of magnitude smaller in mesoporous thin films. Density Functional Theory (DFT) indicates that for the microporous materials, the stress at saturation is compressive and drops as the relative pressure is reduced.

  19. Vibration welding system with thin film sensor

    Science.gov (United States)

    Cai, Wayne W; Abell, Jeffrey A; Li, Xiaochun; Choi, Hongseok; Zhao, Jingzhou

    2014-03-18

    A vibration welding system includes an anvil, a welding horn, a thin film sensor, and a process controller. The anvil and horn include working surfaces that contact a work piece during the welding process. The sensor measures a control value at the working surface. The measured control value is transmitted to the controller, which controls the system in part using the measured control value. The thin film sensor may include a plurality of thermopiles and thermocouples which collectively measure temperature and heat flux at the working surface. A method includes providing a welder device with a slot adjacent to a working surface of the welder device, inserting the thin film sensor into the slot, and using the sensor to measure a control value at the working surface. A process controller then controls the vibration welding system in part using the measured control value.

  20. The future of rare earth thin films

    International Nuclear Information System (INIS)

    Gasgnier, M.

    1986-01-01

    This paper presents some recent applications in the rare earth field and also may be, some of the future new developments of laboratory works. The field of investigations will concern only materials which contain at least one rare earth element (lanthanide series, from La to Lu, Sc and Y). After a rapid survey of the experimental procedures relative to the preparation and to the analytical characterization of thin films, technological applications in various fields of research are briefly reviewed: for polycrystalline metals (superconductors, neutron absorption, photovoltaic effect...), alloys (hydrogen storage, superconductors) and compounds (target for intense neutron sources, radiology...) and for amorphous magnetic thin films. 81 refs [fr

  1. Intrinsically conductive polymer thin film piezoresistors

    DEFF Research Database (Denmark)

    Lillemose, Michael; Spieser, Martin; Christiansen, N.O.

    2008-01-01

    We report on the piezoresistive effect in the intrinsically conductive polymer, polyaniline. A process recipe for indirect patterning of thin film polyaniline has been developed. Using a specially designed chip, the polyaniline thin films have been characterised with respect to resistivity...... and strain sensitivity using two- and four-point measurement method. We have found that polyaniline has a negative gauge factor of K = -4.9, which makes it a candidate for piezoresistive read-out in polymer based MEMS-devices. (C) 2007 Elsevier B.V. All rights reserved....

  2. Micro-sensor thin-film anemometer

    Science.gov (United States)

    Sheplak, Mark (Inventor); McGinley, Catherine B. (Inventor); Spina, Eric F. (Inventor); Stephens, Ralph M. (Inventor); Hopson, Jr., Purnell (Inventor); Cruz, Vincent B. (Inventor)

    1996-01-01

    A device for measuring turbulence in high-speed flows is provided which includes a micro-sensor thin-film probe. The probe is formed from a single crystal of aluminum oxide having a 14.degree. half-wedge shaped portion. The tip of the half-wedge is rounded and has a thin-film sensor attached along the stagnation line. The bottom surface of the half-wedge is tilted upward to relieve shock induced disturbances created by the curved tip of the half-wedge. The sensor is applied using a microphotolithography technique.

  3. A generalized theory of thin film growth

    Science.gov (United States)

    Du, Feng; Huang, Hanchen

    2018-03-01

    This paper reports a theory of thin film growth that is generalized for arbitrary incidence angle during physical vapor deposition in two dimensions. The accompanying kinetic Monte Carlo simulations serve as verification. A special theory already exists for thin film growth with zero incidence angle, and another theory also exists for nanorod growth with a glancing angle. The theory in this report serves as a bridge to describe the transition from thin film growth to nanorod growth. In particular, this theory gives two critical conditions in analytical form of critical coverage, ΘI and ΘII. The first critical condition defines the onset when crystal growth or step dynamics stops following the wedding cake model for thin film growth. The second critical condition defines the onset when multiple-layer surface steps form to enable nanorod growth. Further, this theory also reveals a critical incidence angle, below which nanorod growth is impossible. The critical coverages, together with the critical incidence angle, defines a phase diagram of thin growth versus nanorod growth.

  4. Lattice Mismatch in Crystalline Nanoparticle Thin Films.

    Science.gov (United States)

    Gabrys, Paul A; Seo, Soyoung E; Wang, Mary X; Oh, EunBi; Macfarlane, Robert J; Mirkin, Chad A

    2018-01-10

    For atomic thin films, lattice mismatch during heteroepitaxy leads to an accumulation of strain energy, generally causing the films to irreversibly deform and generate defects. In contrast, more elastically malleable building blocks should be better able to accommodate this mismatch and the resulting strain. Herein, that hypothesis is tested by utilizing DNA-modified nanoparticles as "soft," programmable atom equivalents to grow a heteroepitaxial colloidal thin film. Calculations of interaction potentials, small-angle X-ray scattering data, and electron microscopy images show that the oligomer corona surrounding a particle core can deform and rearrange to store elastic strain up to ±7.7% lattice mismatch, substantially exceeding the ±1% mismatch tolerated by atomic thin films. Importantly, these DNA-coated particles dissipate strain both elastically through a gradual and coherent relaxation/broadening of the mismatched lattice parameter and plastically (irreversibly) through the formation of dislocations or vacancies. These data also suggest that the DNA cannot be extended as readily as compressed, and thus the thin films exhibit distinctly different relaxation behavior in the positive and negative lattice mismatch regimes. These observations provide a more general understanding of how utilizing rigid building blocks coated with soft compressible polymeric materials can be used to control nano- and microstructure.

  5. Perovskite Thin Films via Atomic Layer Deposition

    KAUST Repository

    Sutherland, Brandon R.

    2014-10-30

    © 2014 Wiley-VCH Verlag GmbH & Co. KGaA. (Graph Presented) A new method to deposit perovskite thin films that benefit from the thickness control and conformality of atomic layer deposition (ALD) is detailed. A seed layer of ALD PbS is place-exchanged with PbI2 and subsequently CH3NH3PbI3 perovskite. These films show promising optical properties, with gain coefficients of 3200 ± 830 cm-1.

  6. Silver buffer layers for YBCO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Azoulay, J. [Tel Aviv Univ. (Israel). Center for Technol. Education Holon

    1999-09-01

    A simple economical conventional vacuum system was used for evaporation of YBCO thin films on as-deposited unbuffered Ag layers on MgO substrates. The subsequent heat treatment was carried out in low oxygen partial pressure at a relative low temperature and short dwelling time. The films thus obtained were characterized for electrical properties using dc four probe electrical measurements and inspected for structural properties and chemical composition by scanning electron microscopy (SEM). (orig.)

  7. Mechanical integrity of thin films

    International Nuclear Information System (INIS)

    Hoffman, R.W.

    1979-01-01

    Mechanical considerations starting with the initial film deposition including questions of adhesion and grading the interface are reviewed. Growth stresses, limiting thickness, stress relief, control aging, and creep are described

  8. Mesoscale simulations of confined Nafion thin films

    Science.gov (United States)

    Vanya, P.; Sharman, J.; Elliott, J. A.

    2017-12-01

    The morphology and transport properties of thin films of the ionomer Nafion, with thicknesses on the order of the bulk cluster size, have been investigated as a model system to explain the anomalous behaviour of catalyst/electrode-polymer interfaces in membrane electrode assemblies. We have employed dissipative particle dynamics (DPD) to investigate the interaction of water and fluorocarbon chains, with carbon and quartz as confining materials, for a wide range of operational water contents and film thicknesses. We found confinement-induced clustering of water perpendicular to the thin film. Hydrophobic carbon forms a water depletion zone near the film interface, whereas hydrophilic quartz results in a zone with excess water. There are, on average, oscillating water-rich and fluorocarbon-rich regions, in agreement with experimental results from neutron reflectometry. Water diffusivity shows increasing directional anisotropy of up to 30% with decreasing film thickness, depending on the hydrophilicity of the confining material. A percolation analysis revealed significant differences in water clustering and connectivity with the confining material. These findings indicate the fundamentally different nature of ionomer thin films, compared to membranes, and suggest explanations for increased ionic resistances observed in the catalyst layer.

  9. Magnetocaloric effect of thin Terbium films

    Science.gov (United States)

    Mello, V. D.; Anselmo, D. H. A. L.; Vasconcelos, M. S.; Almeida, N. S.

    2017-12-01

    We report a theoretical study of the magnetocaloric effect of Terbium (Tb) thin films due to finite size and surface effects in the helimagnetic phase, corresponding to a temperature range from TC=219 K to TN=231 K, for external fields of the order of kOe. For a Tb thin film of 6 monolayers submitted to an applied field (ΔH =30 kOe, ΔH =50 kOe and ΔH = 70 kOe) we report a significative change in adiabatic temperature, ΔT / ΔH , near the Néel temperature, of the order ten times higher than that observed for Tb bulk. On the other hand, for small values of the magnetic field, large thickness effects are found. For external field strength around few kOe, we have found that the thermal caloric efficiency increases remarkably for ultrathin films. For an ultrathin film with 6 monolayers, we have found ΔT / ΔH = 43 K/T while for thicker films, with 20 monolayers, ΔT / ΔH = 22 K/T. Our results suggest that thin films of Tb are a promising material for magnetocaloric effect devices for applications at intermediate temperatures.

  10. Enhanced Photoelectrochemical Response from Copper Antimony Zinc Sulfide Thin Films on Transparent Conducting Electrode

    Directory of Open Access Journals (Sweden)

    Prashant K. Sarswat

    2013-01-01

    Full Text Available Copper antimony sulfide (CAS is a relatively new class of sustainable absorber material, utilizing cost effective and abundant elements. Band gap engineered, modified CAS thin films were synthesized using electrodeposition and elevated temperature sulfurization approach. A testing analog of copper zinc antimony sulfide (CZAS film-electrolyte interface was created in order to evaluate photoelectrochemical performance of the thin film of absorber materials. Eu3+/Eu2+ redox couple was selected for this purpose, based on its relative band offset with copper antimony sulfide. It was observed that zinc has a significant effect on CAS film properties. An enhanced photocurrent was observed for CAS film, modified with zinc addition. A detailed investigation has been carried out by changing stoichiometry, and corresponding surface and optical characterization results have been evaluated. A summary of favorable processing parameters of the films showing enhanced photoelectrochemical response is presented.

  11. Ion Movement in Polypyrrole/Dodecylbenzenesulphonate Films in aqueous and non-aqueous electrolytes

    DEFF Research Database (Denmark)

    Vidanapathirana, K.; Careem, M.A.; Skaarup, Steen

    2002-01-01

    . Investigations were carried out using aqueous and non-aqueous electrolytes to study the effect of solvent on the ion movement during redox processes. When PPy films are cycled in aqueous electrolytes transport of both anion and cation occurs during oxidation and reduction. However, when cycled in the nonaqueous...... electrolyte propylene carbonate (PC) only anion movement takes place....

  12. Optical characterization of niobium pentoxide thin films

    International Nuclear Information System (INIS)

    Pawlicka, A.

    1996-01-01

    Thin films of Nb 2 O 5 were obtained by sol-gel method using ultrasonic irradiation and deposited by dip-coating technique. After calcination at temperatures superior than 500 deg C these films (300 nm thick) were characterized by cyclic voltametry and cronoamperometry. The memory measurements, color efficiency, optical density as a function of wave number and applied potential were effectuated to determine their electrochromic properties. The study of electrochromic properties of these films shows that the insertion process of lithium is reversible and changes their coloration from transparent (T=80%) to dark blue (T=20%). (author)

  13. Pyroelectric coupling in thin film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Karpov, Victor G.; Shvydka, Diana [Department of Physics and Astronomy, University of Toledo, OH (United States)

    2007-07-15

    We propose a theory of thin film photovoltaics in which one of the polycrystalline films is made of a pyroelectric material grains such as CdS. That film is shown to generate strong polarization improving the device open circuit voltage. Implications and supporting facts for the major photovoltaic types based on CdTe and CuIn(Ga)Se{sub 2} absorber layers are discussed. Band diagram of a pyroelectric (CdS) based PV junction. Arrows represent the charge carrier photo-generation. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  14. Correlated dewetting patterns in thin polystyrene films

    CERN Document Server

    Neto, C; Seemann, R; Blossey, R; Becker, J; Grün, G

    2003-01-01

    We describe preliminary results of experiments and simulations concerned with the dewetting of thin polystyrene films (thickness < 7 nm) on top of silicon oxide wafers. In the experiments we scratched an initially flat film with an atomic force microscopy (AFM) tip, producing dry channels in the film. Dewetting of the films was imaged in situ using AFM and a correlated pattern of holes ('satellite holes') was observed along the rims bordering the channels. The development of this complex film rupture process was simulated and the results of experiments and simulations are in good agreement. On the basis of these results, we attempt to explain the appearance of satellite holes and their positions relative to pre-existing holes.

  15. Tailored piezoelectric thin films for energy harvester

    NARCIS (Netherlands)

    Wan, X.

    2013-01-01

    Piezoelectric materials are excellent materials to transfer mechanical energy into electrical energy, which can be stored and used to power other devices. PiezoMEMS is a good way to combine silicon wafer processing and piezoelectric thin film technology and lead to a variety of miniaturized and

  16. Reliability growth of thin film resistors contact

    Directory of Open Access Journals (Sweden)

    Lugin A. N.

    2010-10-01

    Full Text Available Necessity of resistive layer growth under the contact and in the contact zone of resistive element is shown in order to reduce peak values of current flow and power dissipation in the contact of thin film resistor, thereby to increase the resistor stability to parametric and catastrophic failures.

  17. Thermoviscoelastic models for polyethylene thin films

    DEFF Research Database (Denmark)

    Li, Jun; Kwok, Kawai; Pellegrino, Sergio

    2016-01-01

    This paper presents a constitutive thermoviscoelastic model for thin films of linear low-density polyethylene subject to strains up to yielding. The model is based on the free volume theory of nonlinear thermoviscoelasticity, extended to orthotropic membranes. An ingredient of the present approach...

  18. Incipient plasticity in metallic thin films

    NARCIS (Netherlands)

    Soer, W. A.; De Hosson, J. Th. M.; Minor, A. M.; Shan, Z.; Asif, S. A. Syed; Warren, O. L.

    2007-01-01

    The authors have compared the incipient plastic behaviors of Al and Al-Mg thin films during indentation under load control and displacement control. In Al-Mg, solute pinning limits the ability of dislocations to propagate into the crystal and thus substantially affects the appearance of plastic

  19. Thin film hydrous metal oxide catalysts

    Science.gov (United States)

    Dosch, Robert G.; Stephens, Howard P.

    1995-01-01

    Thin film (metal oxide catalysts are prepared by 1) synthesis of a hydrous metal oxide, 2) deposition of the hydrous metal oxide upon an inert support surface, 3) ion exchange with catalytically active metals, and 4) activating the hydrous metal oxide catalysts.

  20. Polyaniline. Thin films and colloidal dispersions

    Czech Academy of Sciences Publication Activity Database

    Stejskal, Jaroslav; Sapurina, I.

    2005-01-01

    Roč. 77, č. 5 (2005), s. 815-826 ISSN 0033-4545 R&D Projects: GA MŠk ME 539; GA AV ČR IAA4050313 Grant - others:IUPAC project 2002-019-1-400 Keywords : polyaniline * thin films * dispersions Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.679, year: 2005

  1. A ferroelectric transparent thin-film transistor

    NARCIS (Netherlands)

    Prins, MWJ; GrosseHolz, KO; Muller, G; Cillessen, JFM; Giesbers, JB; Weening, RP; Wolf, RM

    1996-01-01

    Operation is demonstrated of a field-effect transistor made of transparant oxidic thin films, showing an intrinsic memory function due to the usage of a ferroelectric insulator. The device consists of a high mobility Sb-doped n-type SnO2 semiconductor layer, PbZr0.2Ti0.8Os3 as a ferroelectric

  2. Flexoelectricity in barium strontium titanate thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Seol Ryung; Huang, Wenbin; Yuan, Fuh-Gwo; Jiang, Xiaoning, E-mail: xjiang5@ncsu.edu [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Shu, Longlong [Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Electronic Materials Research Laboratory, International Center for Dielectric Research, Xi' an Jiao Tong University, Xi' an, Shaanxi 710049 (China); Maria, Jon-Paul [Department of Material Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2014-10-06

    Flexoelectricity, the linear coupling between the strain gradient and the induced electric polarization, has been intensively studied as an alternative to piezoelectricity. Especially, it is of interest to develop flexoelectric devices on micro/nano scales due to the inherent scaling effect of flexoelectric effect. Ba{sub 0.7}Sr{sub 0.3}TiO{sub 3} thin film with a thickness of 130 nm was fabricated on a silicon wafer using a RF magnetron sputtering process. The flexoelectric coefficients of the prepared thin films were determined experimentally. It was revealed that the thin films possessed a transverse flexoelectric coefficient of 24.5 μC/m at Curie temperature (∼28 °C) and 17.44 μC/m at 41 °C. The measured flexoelectric coefficients are comparable to that of bulk BST ceramics, which are reported to be 10–100 μC/m. This result suggests that the flexoelectric thin film structures can be effectively used for micro/nano-sensing devices.

  3. Flexoelectricity in barium strontium titanate thin film

    International Nuclear Information System (INIS)

    Kwon, Seol Ryung; Huang, Wenbin; Yuan, Fuh-Gwo; Jiang, Xiaoning; Shu, Longlong; Maria, Jon-Paul

    2014-01-01

    Flexoelectricity, the linear coupling between the strain gradient and the induced electric polarization, has been intensively studied as an alternative to piezoelectricity. Especially, it is of interest to develop flexoelectric devices on micro/nano scales due to the inherent scaling effect of flexoelectric effect. Ba 0.7 Sr 0.3 TiO 3 thin film with a thickness of 130 nm was fabricated on a silicon wafer using a RF magnetron sputtering process. The flexoelectric coefficients of the prepared thin films were determined experimentally. It was revealed that the thin films possessed a transverse flexoelectric coefficient of 24.5 μC/m at Curie temperature (∼28 °C) and 17.44 μC/m at 41 °C. The measured flexoelectric coefficients are comparable to that of bulk BST ceramics, which are reported to be 10–100 μC/m. This result suggests that the flexoelectric thin film structures can be effectively used for micro/nano-sensing devices.

  4. Magnetic surfaces, thin films, and multilayers

    International Nuclear Information System (INIS)

    Parkin, S.S.P.; Renard, J.P.; Shinjo, T.; Zinn, W.

    1992-01-01

    This paper details recent developments in the magnetism of surfaces, thin films and multilayers. More than 20 invited contributions and more than 60 contributed papers attest to the great interest and vitality of this subject. In recent years the study of magnetic surfaces, thin films and multilayers has undergone a renaissance, partly motivated by the development of new growth and characterization techniques, but perhaps more so by the discovery of many exciting new properties, some quite unanticipated. These include, most recently, the discovery of enormous values of magnetoresistance in magnetic multilayers far exceeding those found in magnetic single layer films and the discovery of oscillatory interlayer coupling in transition metal multilayers. These experimental studies have motivated much theoretical work. However these developments are to a large extent powered by materials engineering and our ability to control and understand the growth of thin layers just a few atoms thick. The preparation of single crystal thin film layers and multilayers remains important for many studies, in particular, for properties dependent. These studies obviously require engineering not just a layer thicknesses but of lateral dimensions as well. The properties of such structures are already proving to be a great interest

  5. Functional planar thin film optical waveguide lasers

    Czech Academy of Sciences Publication Activity Database

    Jelínek, Miroslav

    2012-01-01

    Roč. 9, č. 2 (2012), 91-99 ISSN 1612-2011 R&D Projects: GA ČR(CZ) GAP106/10/1477 Institutional research plan: CEZ:AV0Z10100522 Keywords : waveguide laser * planar waveguides * thin films * pulsed laser deposition * optical waveguides * laser materials Subject RIV: BH - Optics, Masers, Lasers Impact factor: 7.714, year: 2012

  6. Dielectric loss of strontium titanate thin films

    Science.gov (United States)

    Dalberth, Mark Joseph

    1999-12-01

    Interest in strontium titanate (STO) thin films for microwave device applications continues to grow, fueled by the telecommunications industry's interest in phase shifters and tunable filters. The optimization of these devices depends upon increasing the phase or frequency tuning and decreasing the losses in the films. Currently, the dielectric response of thin film STO is poorly understood through lack of data and a theory to describe it. We have studied the growth of STO using pulsed laser deposition and single crystal substrates like lanthanum aluminate and neodymium gallate. We have researched ways to use ring resonators to accurately measure the dielectric response as a function of temperature, electric field, and frequency from low radio frequencies to a few gigahertz. Our films grown on lanthanum aluminate show marked frequency dispersion in the real part of the dielectric constant and hints of thermally activated loss behavior. We also found that films grown with conditions that optimized the dielectric constant showed increased losses. In an attempt to simplify the system, we developed a technique called epitaxial lift off, which has allowed us to study films removed from their growth substrates. These free standing films have low losses and show obvious thermally activated behavior. The "amount of tuning," as measured by a figure of merit, KE, is greater in these films than in the films still attached to their growth substrates. We have developed a theory that describes the real and imaginary parts of the dielectric constant. The theory models the real part using a mean field description of the ionic motion in the crystal and includes the loss by incorporating the motion of charged defects in the films.

  7. Gravitationally driven drainage of thin films

    Science.gov (United States)

    Naire, Shailesh

    In this thesis we develop theory for an experiment done by Snow and coworkers at Dow Corning that involves a vertically-oriented, thinned polyurethane film with silicone surfactant, draining under gravity. We present the mathematical formulation for a 1+1- and 2+1-dimensional model to study the evolution of a vertically-oriented thin liquid film draining under gravity when there is an insoluble surfactant with finite surface viscosity on its free surface. This formulation has all the ingredients that include: surface tension, gravity, surface viscosity, the Marangoni effect, convective and diffusive surfactant transport; essential to describe the behavior of a vertical draining film with surfactant. We study a hierarchy of mathematical models with increasing complexity starting with the flat film model where gravity balances viscous shear and surface tension is neglected, this is generalized to include surface tension. We further generalize to incorporate variable surface viscosity and more complicated constitutive laws for surface tension as a function of surfactant concentration. Lubrication theory is employed to derive three coupled nonlinear partial differential equations (PDEs) describing the free surface shape, a component of surface velocity and the surfactant transport at leading order. A large surface viscosity limit recovers the tangentially-immobile model; for small surface viscosity, the film is mobile. Transition from a mobile to an immobile film is observed for intermediate values of surface viscosity and Marangoni number. The above models reproduce a number of features observed in experiments, these include film shapes and thinning rates which can be correlated to experiment. The 2+1-dimensional model for simplified surface properties has also been studied. Numerical experiments were performed to understand the stability of the system to perturbations across the film. An instability was seen in the mobile case; this was caused by a competition

  8. Thin film preparation of semiconducting iron pyrite

    Science.gov (United States)

    Smestad, Greg P.; Ennaoui, Ahmed; Fiechter, Sebastian; Hofmann, Wolfgang; Tributsch, Helmut; Kautek, Wolfgang

    1990-08-01

    Pyrite (Fe52) has been investigated as a promising new absorber material for thin film solar cell applications because of its high optical absorption coefficient of 1OL cm1, and its bandgap of 0.9 to 1.0 eV. Thin layers have been prepared by Metal Organic Chemical Vapor Deposition, MOCVD, Chemical Spray Pyrolysis, CSP, Chemical Vapor Transport, CVT, and Sulfurization of Iron Oxide films, 510. It is postulated that for the material FeS2, if x is not zero, a high point defect concentration results from replacing 2 dipoles by single S atoms. This causes the observed photovoltages and solar conversion efficiencies to be lower than expected. Using the Fe-O-S ternary phase diagram and the related activity plots, a thermodynamic understanding is formulated for the resulting composition of each of these types of films. It is found that by operating in the oxide portion of the phase diagram, the resulting oxidation state favors pyrite formation over FeS. By proper orientation of the grains relative to the film surface, and by control of pinholes and stoichiometry, an efficient thin film photovolatic solar cell material could be achieved.

  9. Study of zinc oxide thin film characteristics

    Directory of Open Access Journals (Sweden)

    Johari Shazlina

    2017-01-01

    Full Text Available This paper presents the characterization of ZnO thin films with the thickness of 8nm, 30nm, and 200nm. The thin films were prepared using sol-gel method and has been deposited onto different substrate of silicon wafer, glass and quartz. The thin films were annealed at 400, 500 and 600°C. By using UV-Vis, the optical transmittance measurement were recorded by using a single beam spectrophotometer in the wavelength 250nm to 800nm. However, the transmittance in the visible range is hardly influenced by the film thickness, substrate used and annealed temperature and the averages are all above 80%. On surface morphology observed by AFM and FESEM, the results show that the increase of film thickness and annealed temperature will increase the mean grain size, surface-to-volume ration and RMS roughness. Besides that, higher annealing temperature cause the crystalline quality to gradually improve and the wurtzite structure of ZnO can be seen more clearly. Nonetheless, the substrate used had no effect on surface morphology, yet the uniformity of deposition on silicon wafer is better than glass and quartz.

  10. Practical design and production of optical thin films

    CERN Document Server

    Willey, Ronald R

    2002-01-01

    Fundamentals of Thin Film Optics and the Use of Graphical Methods in Thin Film Design Estimating What Can Be Done Before Designing Fourier Viewpoint of Optical Coatings Typical Equipment for Optical Coating Production Materials and Process Know-How Process Development Monitoring and Control of Thin Film Growth Appendix: Metallic and Semiconductor Material Graphs Author IndexSubject Index

  11. Density functional study of ferromagnetism in alkali metal thin films

    Indian Academy of Sciences (India)

    model (UJM), and it is argued that within LSDA or GGA, alkali metal thin films cannot be claimed to have an FM ground state. Relevance of these results to the experiments on transition metal-doped alkali metal thin films and bulk hosts are also discussed. Keywords. Alkali metal; thin films; magnetism; density functional ...

  12. Optical and electrical properties of nickel xanthate thin films

    Indian Academy of Sciences (India)

    Keywords. Nickel xanthate thin film; organometallic thin film; chemical bath deposition. Abstract. Nickel xanthate thin films (NXTF) were successfully deposited by chemical bath deposition, on to amorphous glass substrates, as well as on - and -silicon, indium tin oxide and poly(methyl methacrylate). The structure of the ...

  13. Neuromorphic transistor achieved by redox reaction of WO3 thin film

    Science.gov (United States)

    Tsuchiya, Takashi; Jayabalan, Manikandan; Kawamura, Kinya; Takayanagi, Makoto; Higuchi, Tohru; Jayavel, Ramasamy; Terabe, Kazuya

    2018-04-01

    An all-solid-state neuromorphic transistor composed of a WO3 thin film and a proton-conducting electrolyte was fabricated for application to next-generation information and communication technology including artificial neural networks. The drain current exhibited a 4-order-of-magnitude increment by redox reaction of the WO3 thin film owing to proton migration. Learning and forgetting characteristics were well tuned by the gate control of WO3 redox reactions owing to the separation of the current reading path and pulse application path in the transistor structure. This technique should lead to the development of versatile and low-power-consumption neuromorphic devices.

  14. Thin film diamond microstructure applications

    Science.gov (United States)

    Roppel, T.; Ellis, C.; Ramesham, R.; Jaworske, D.; Baginski, M. E.; Lee, S. Y.

    1991-01-01

    Selective deposition and abrasion, as well as etching in atomic oxygen or reduced-pressure air, have been used to prepare patterned polycrystalline diamond films which, on further processing by anisotropic Si etching, yield the microstructures of such devices as flow sensors and accelerometers. Both types of sensor have been experimentally tested in the respective functions of hot-wire anemometer and both single- and double-hinged accelerometer.

  15. Tungsten oxide proton conducting films for low-voltage transparent oxide-based thin-film transistors

    International Nuclear Information System (INIS)

    Zhang, Hongliang; Wan, Qing; Wan, Changjin; Wu, Guodong; Zhu, Liqiang

    2013-01-01

    Tungsten oxide (WO x ) electrolyte films deposited by reactive magnetron sputtering showed a high room temperature proton conductivity of 1.38 × 10 −4 S/cm with a relative humidity of 60%. Low-voltage transparent W-doped indium-zinc-oxide thin-film transistors gated by WO x -based electrolytes were self-assembled on glass substrates by one mask diffraction method. Enhancement mode operation with a large current on/off ratio of 4.7 × 10 6 , a low subthreshold swing of 108 mV/decade, and a high field-effect mobility 42.6 cm 2 /V s was realized. Our results demonstrated that WO x -based proton conducting films were promising gate dielectric candidates for portable low-voltage oxide-based devices.

  16. Flexible magnetic thin films and devices

    Science.gov (United States)

    Sheng, Ping; Wang, Baomin; Li, Runwei

    2018-01-01

    Flexible electronic devices are highly attractive for a variety of applications such as flexible circuit boards, solar cells, paper-like displays, and sensitive skin, due to their stretchable, biocompatible, light-weight, portable, and low cost properties. Due to magnetic devices being important parts of electronic devices, it is essential to study the magnetic properties of magnetic thin films and devices fabricated on flexible substrates. In this review, we mainly introduce the recent progress in flexible magnetic thin films and devices, including the study on the stress-dependent magnetic properties of magnetic thin films and devices, and controlling the properties of flexible magnetic films by stress-related multi-fields, and the design and fabrication of flexible magnetic devices. Project supported by the National Key R&D Program of China (No. 2016YFA0201102), the National Natural Science Foundation of China (Nos. 51571208, 51301191, 51525103, 11274321, 11474295, 51401230), the Youth Innovation Promotion Association of the Chinese Academy of Sciences (No. 2016270), the Key Research Program of the Chinese Academy of Sciences (No. KJZD-EW-M05), the Ningbo Major Project for Science and Technology (No. 2014B11011), the Ningbo Science and Technology Innovation Team (No. 2015B11001), and the Ningbo Natural Science Foundation (No. 2015A610110).

  17. Nanocomposite thin films for triggerable drug delivery.

    Science.gov (United States)

    Vannozzi, Lorenzo; Iacovacci, Veronica; Menciassi, Arianna; Ricotti, Leonardo

    2018-05-01

    Traditional drug release systems normally rely on a passive delivery of therapeutic compounds, which can be partially programmed, prior to injection or implantation, through variations in the material composition. With this strategy, the drug release kinetics cannot be remotely modified and thus adapted to changing therapeutic needs. To overcome this issue, drug delivery systems able to respond to external stimuli are highly desirable, as they allow a high level of temporal and spatial control over drug release kinetics, in an operator-dependent fashion. Areas covered: On-demand drug delivery systems actually represent a frontier in this field and are attracting an increasing interest at both research and industrial level. Stimuli-responsive thin films, enabled by nanofillers, hold a tremendous potential in the field of triggerable drug delivery systems. The inclusion of responsive elements in homogeneous or heterogeneous thin film-shaped polymeric matrices strengthens and/or adds intriguing properties to conventional (bare) materials in film shape. Expert opinion: This Expert Opinion review aims to discuss the approaches currently pursued to achieve an effective on-demand drug delivery, through nanocomposite thin films. Different triggering mechanisms allowing a fine control on drug delivery are described, together with current challenges and possible future applications in therapy and surgery.

  18. Thin-film cadmium telluride solar cells

    Science.gov (United States)

    Chu, T. L.

    1987-10-01

    Cadmium telluride, with a room-temperature band-gap energy of 1.5 eV, is a promising thin-film photovoltaic material. The major objective of this research has been to demonstrate thin-film CdTe heterojunction solar cells with a total area greater than 1 sq cm and photovoltaic efficiencies of 13 percent or more. Thin-film p-CdTe/CdS/SnO2:F/glass solar cells with an AM1.5 efficiency of 10.5 percent have been reported previously. This report contains results of work done on: (1) the deposition, resistivity control, and characterization of p-CdTe films by the close-spaced sublimation process; (2) the deposition of large-band-gap window materials; (3) the electrical properties of CdS/CdTe heterojunctions; (4) the formation of stable, reproducible, ohmic contacts (such as p-HgTe) to p-CdTe; and (5) the preparation and evaluation of heterojunction solar cells.

  19. Nanostructured thin film coatings with different strengthening effects

    Directory of Open Access Journals (Sweden)

    Panfilov Yury

    2017-01-01

    Full Text Available A number of articles on strengthening thin film coatings were analyzed and a lot of unusual strengthening effects, such as super high hardness and plasticity simultaneously, ultra low friction coefficient, high wear-resistance, curve rigidity increasing of drills with small diameter, associated with process formation of nanostructured coatings by the different thin film deposition methods were detected. Vacuum coater with RF magnetron sputtering system and ion-beam source and arc evaporator for nanostructured thin film coating manufacture are represented. Diamond Like Carbon and MoS2 thin film coatings, Ti, Al, Nb, Cr, nitride, carbide, and carbo-nitride thin film materials are described as strengthening coatings.

  20. Thin film bismuth iron oxides useful for piezoelectric devices

    Science.gov (United States)

    Zeches, Robert J.; Martin, Lane W.; Ramesh, Ramamoorthy

    2016-05-31

    The present invention provides for a composition comprising a thin film of BiFeO.sub.3 having a thickness ranging from 20 nm to 300 nm, a first electrode in contact with the BiFeO.sub.3 thin film, and a second electrode in contact with the BiFeO.sub.3 thin film; wherein the first and second electrodes are in electrical communication. The composition is free or essentially free of lead (Pb). The BFO thin film is has the piezoelectric property of changing its volume and/or shape when an electric field is applied to the BFO thin film.

  1. Preparation and properties of KCl-doped Cu2O thin film by electrodeposition

    International Nuclear Information System (INIS)

    Yu, Xiaojiao; Li, Xinming; Zheng, Gang; Wei, Yuchen; Zhang, Ama; Yao, Binghua

    2013-01-01

    With the indium tin oxide-coated glass as working electrode, cuprous oxide thin film is fabricated by means of electrodeposition. The effects of KCl doped and annealing treatment upon Cu 2 O thin film morphology, surface resistivity, open-circuit voltage, electric conduction types and visible light response are studied. The research results indicate that KCl doped has a great effect upon Cu 2 O crystal morphology, thus, making Cu 2 O thin film surface resistivity drop, and the open-circuit voltage increase and that electric conduction types are transformed from p type into n type, and the visible light (400–500 nm) absorption rate is slightly reduced. Annealing treatment can obviously decrease Cu 2 O thin film surface resistivity and improve its open-circuit voltage. When KCl concentration in electrolytic solution reaches 7 mmol/L, Cu 2 O thin film morphology can be changed from the dendritic crystal into the cubic crystal and Cu 2 O thin film surface resistivity decreases from the initial 2.5 × 10 6 Ω cm to 8.5 × 10 4 Ω cm. After annealing treatment at 320 °C for 30 min, the surface resistivity decreases to 8.5 × 10 2 Ω cm, and the open-circuit voltage increases from the initial 3.1 mV to 79.2 mV.

  2. Investigation of electrodeposited cuprous oxide thin films

    Science.gov (United States)

    Mortensen, Emma L.

    This dissertation focuses on improvements to electrodeposited cuprous oxide as a candidate for the absorber layer for a thin film solar cell that could be integrated into a mechanical solar cell stack. Cuprous oxide (Cu2O) is an earth abundant material that has a bandgap of 2 eV with absorption coefficients around 102-106 cm-1. This bandgap is not optimized for use as a single-junction solar cell, but could be ideal for use in a tandem solar cell device. The theoretical efficiency of a material with a bandgap of 2.0 eV is 20%. The greatest actual efficiency that has been achieved for a Cu2O solar cell is only 8.1%. For the present work the primary focus has been on improving the microstructure of the absorber layer film. The Cu2O films were fabricated using electrodeposition. A seeding layer was developed using gold (Au); which was manipulated into nano-islands and used as the substrate for the Cu2O electrodeposition. The films were characterized and compared to determine the growth mechanism of each film using scanning electron microscopy (SEM). X-ray diffraction (XRD) was used to establish and compare the chemical phases that were present in each of the films. The crystal structure of the Cu2O film grown on gold was explored using transmission electron microscopy (TEM), and this helped confirm the effect that the gold had on the growth of Cu2O. The Tauc method was then used to determine the bandgap of the films of Cu2O grown on both substrates and this showed that the Au based Cu2O film was a superior film. Electrical tests were also completed using a solar simulator and this established that the film grown on gold exhibited photoconductivity that was not seen on the film without gold. In addition, for this thesis, a method for depositing an n-type Cu2O film, based on a Cu-metal solution-boiling process, was investigated. Three forms of copper were tested: a sheet of copper, electrodeposited copper, and sputtered copper. The chemical phases were observed using

  3. Thin-film silicon for flexible metal-air batteries.

    Science.gov (United States)

    Garamoun, Ahmed; Schubert, Markus B; Werner, Jürgen H

    2014-12-01

    Due to its high energy density, theoretical studies propose silicon as a promising candidate material for metal-air batteries. Herein, for the first time, experimental results detail the use of n-type doped amorphous silicon and silicon carbide as fuel in Si-air batteries. Thin-film silicon is particularly interesting for flexible and rolled batteries with high specific energies. Our Si-air batteries exhibit a specific capacity of 269 Ah kg(-1) and an average cell voltage of 0.85 V at a discharge current density of 7.9 μA cm(-2) , corresponding to a specific energy of 229 Wh kg(-1) . Favorably in terms of safety, low concentrated alkaline solution serves as electrolyte. Discharging of the Si-air cells continues as long as there is silicon available for oxidation. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Photoelectrochemical synthesis of thin polyazole films on semiconductor surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kogan, Y.L.; Kozel, A.L.; Khidekel, M.L.

    1983-03-01

    The synthesis of thin films of conducting polymers on the surface of a semiconductor is of considerable interest for microelectronics and nonsilver photography, and also for the creation of solar energy converters. In the present article a method of synthesizing a poly-azole is proposed which consists of polymerizing the monomer at a semiconductor-electrolyte interface, with simultaneous application of a potential and illumination of the electrode surface. The method proposed here differs from the electrochemical method of Kanazawa et al. directors of the p-type; even with high-alloy samples (under certain conditions) the growth of polymer takes place only upon illumination and on those parts of the electrode on which the light is incident.

  5. Effect of an electrolyte salt dissolving in polysiloxane-based electrolyte on passive film formation on a graphite electrode

    Science.gov (United States)

    Nakahara, Hiroshi; Nutt, Steven

    Electrochemical impedance spectroscopy (EIS) was performed during the first charge of a graphite/lithium metal test cell to determine the effect of an electrolyte salt on passive film formation in a polysiloxane-based electrolyte. The graphite electrode was separated from the lithium metal electrode by a porous polyethylene membrane immersed in a polysiloxane-based electrolyte with the dissolved lithium bis(oxalato) borate (LiBOB) or lithium bis(trifluoromethanesulfonyl) imide (LiTFSI). In case of LiTFSI, the conductivity of system decreased at 1.2 V. In contrast, for the case of LiBOB, the conductivity decreased at 1.7 V. The magnitudes of charge transfer resistance and film resistance for LiTFSI were smaller than that for LiBOB. Passive films on highly oriented pyrolytic graphite (HOPG) after charging (lithiating) in polysiloxane-based electrolyte were inspected microscopically. Gel-like film and island-like films were observed for LiBOB [H. Nakahara, A. Masias, S.Y. Yoon, T. Koike, K. Takeya, Proceedings of the 41st Power Sources Conference, vol. 165, Philadelphia, June 14-17, 2004; H. Nakahara, S.Y. Yoon, T. Piao, S. Nutt, F. Mansfeld, J. Power Sources, in press; H. Nakahara, S.Y. Yoon, S. Nutt, J. Power Sources, in press]. However, for LiTFSI, there was sludge accumulation on the HOPG surface. Compositional analysis revealed the presence of silicon on both HOPG specimens with LiBOB and with LiTFSI. The electrolyte salt dissolved in the polysiloxane-based electrolyte changed the electrochemical and morphological nature of passive films on graphite electrode.

  6. Deposition and characterization of CuInS2 thin films deposited over copper thin films

    Science.gov (United States)

    Thomas, Titu; Kumar, K. Rajeev; Kartha, C. Sudha; Vijayakumar, K. P.

    2015-06-01

    Simple, cost effective and versatile spray pyrolysis method is effectively combined with vacuum evaporation for the deposition of CuIns2 thin films for photovoltaic applications. In the present study In2s3 was spray deposited over vacuum evaporated Cu thin films and Cu was allowed to diffuse in to the In2S3 layer to form CuInS2. To analyse the dependence of precursor volume on the formation of CuInS2 films structural, electrical and morphological analzes are carried out. Successful deposition of CuInS2thin films with good crystallinity and morphology with considerably low resistivity is reported in this paper.

  7. Thermal conductivities of thin, sputtered optical films

    International Nuclear Information System (INIS)

    Henager, C.H. Jr.; Pawlewicz, W.T.

    1991-05-01

    The normal component of the thin film thermal conductivity has been measured for the first time for several advanced sputtered optical materials. Included are data for single layers of boron nitride (BN), aluminum nitride (AIN), silicon aluminum nitride (Si-Al-N), silicon aluminum oxynitride (Si-Al-O-N), silicon carbide (SiC), and for dielectric-enhanced metal reflectors of the form Al(SiO 2 /Si 3 N 4 ) n and Al(Al 2 O 3 /AIN) n . Sputtered films of more conventional materials like SiO 2 , Al 2 O 3 , Ta 2 O 5 , Ti, and Si have also been measured. The data show that thin film thermal conductivities are typically 10 to 100 times lower than conductivities for the same materials in bulk form. Structural disorder in the amorphous or very fine-grained films appears to account for most of the conductivity difference. Conclusive evidence for a film/substrate interface contribution is presented

  8. Optical thin films and coatings from materials to applications

    CERN Document Server

    Flory, Francois

    2013-01-01

    Optical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. This book provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas.$bOptical coatings, including mirrors, anti-reflection coatings, beam splitters, and filters, are an integral part of most modern optical systems. Optical thin films and coatings provides an overview of thin film materials, the properties, design and manufacture of optical coatings and their use across a variety of application areas. Part one explores the design and manufacture of optical coatings. Part two highlights unconventional features of optical thin films including scattering properties of random structures in thin films, optical properties of thin film materials at short wavelengths, thermal properties and colour effects. Part three focusses on novel materials for optical thin films and coatings...

  9. Lithiated and sulphonated poly(ether ether ketone) solid state electrolyte films for supercapacitors

    International Nuclear Information System (INIS)

    Chiu, K.-F.; Su, S.-H.

    2013-01-01

    Poly(ether ether ketone) (PEEK) films have been synthesised and used as solid-state electrolytes for supercapacitors. In order to increase their ion conductivity, the PEEK films were sulphonated by sulphuric acid, and various amounts of LiClO 4 were added. The solid-state electrolyte films were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The ionic conductivities of the electrolyte films were analysed by performing electrochemical impedance spectroscopy. The obtained electrolyte films can be sandwiched or directly coated on activated carbon electrodes to form solid-state supercapacitors. The electrochemical characteristics of these supercapacitors were investigated by performing cyclic voltammetry and charge–discharge tests. Under an optimal content of LiClO 4 , the supercapacitor can provide a capacitance as high as 190 F/g. After 1000 cycles, the supercapacitors show almost no capacitance fading, indicating high stability of the solid-state electrolyte films. - Highlights: • Poly(ether ether ketone) (PEEK) films have been used as solid-state electrolytes. • LiClO4 addition can efficiently improve the ionic conductivity. • Supercapacitors using PEEK electrolyte films deliver high capacitance

  10. Lithiated and sulphonated poly(ether ether ketone) solid state electrolyte films for supercapacitors

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, K.-F.; Su, S.-H., E-mail: minimono42@gmail.com

    2013-10-01

    Poly(ether ether ketone) (PEEK) films have been synthesised and used as solid-state electrolytes for supercapacitors. In order to increase their ion conductivity, the PEEK films were sulphonated by sulphuric acid, and various amounts of LiClO{sub 4} were added. The solid-state electrolyte films were characterised by Fourier transform infrared spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The ionic conductivities of the electrolyte films were analysed by performing electrochemical impedance spectroscopy. The obtained electrolyte films can be sandwiched or directly coated on activated carbon electrodes to form solid-state supercapacitors. The electrochemical characteristics of these supercapacitors were investigated by performing cyclic voltammetry and charge–discharge tests. Under an optimal content of LiClO{sub 4}, the supercapacitor can provide a capacitance as high as 190 F/g. After 1000 cycles, the supercapacitors show almost no capacitance fading, indicating high stability of the solid-state electrolyte films. - Highlights: • Poly(ether ether ketone) (PEEK) films have been used as solid-state electrolytes. • LiClO4 addition can efficiently improve the ionic conductivity. • Supercapacitors using PEEK electrolyte films deliver high capacitance.

  11. Substrate heater for thin film deposition

    Science.gov (United States)

    Foltyn, Steve R.

    1996-01-01

    A substrate heater for thin film deposition of metallic oxides upon a target substrate configured as a disk including means for supporting in a predetermined location a target substrate configured as a disk, means for rotating the target substrate within the support means, means for heating the target substrate within the support means, the heating means about the support means and including a pair of heating elements with one heater element situated on each side of the predetermined location for the target substrate, with one heater element defining an opening through which desired coating material can enter for thin film deposition and with the heating means including an opening slot through which the target substrate can be entered into the support means, and, optionally a means for thermal shielding of the heating means from surrounding environment is disclosed.

  12. Multiferroic oxide thin films and heterostructures

    KAUST Repository

    Lu, Chengliang

    2015-05-26

    Multiferroic materials promise a tantalizing perspective of novel applications in next-generation electronic, memory, and energy harvesting technologies, and at the same time they also represent a grand scientific challenge on understanding complex solid state systems with strong correlations between multiple degrees of freedom. In this review, we highlight the opportunities and obstacles in growing multiferroic thin films with chemical and structural integrity and integrating them in functional devices. Besides the magnetoelectric effect, multiferroics exhibit excellent resistant switching and photovoltaic properties, and there are plenty opportunities for them to integrate with other ferromagnetic and superconducting materials. The challenges include, but not limited, defect-related leakage in thin films, weak magnetism, and poor control on interface coupling. Although our focuses are Bi-based perovskites and rare earth manganites, the insights are also applicable to other multiferroic materials. We will also review some examples of multiferroic applications in spintronics, memory, and photovoltaic devices.

  13. Quantifying clustering in disordered carbon thin films

    International Nuclear Information System (INIS)

    Carey, J.D.

    2006-01-01

    The quantification of disorder and the effects of clustering in the sp 2 phase of amorphous carbon thin films are discussed. The sp 2 phase is described in terms of disordered nanometer-sized conductive sp 2 clusters embedded in a less conductive sp 3 matrix. Quantification of the clustering of the sp 2 phase is estimated from optical as well as from electron and nuclear magnetic resonance methods. Unlike in other disordered group IV thin film semiconductors, we show that care must be exercised in attributing a meaning to the Urbach energy extracted from absorption measurements in the disordered carbon system. The influence of structural disorder, associated with sp 2 clusters of similar size, and topological disorder due to undistorted clusters of different sizes is also discussed. Extensions of this description to other systems are also presented

  14. Thin film photovoltaic panel and method

    Science.gov (United States)

    Ackerman, Bruce; Albright, Scot P.; Jordan, John F.

    1991-06-11

    A thin film photovoltaic panel includes a backcap for protecting the active components of the photovoltaic cells from adverse environmental elements. A spacing between the backcap and a top electrode layer is preferably filled with a desiccant to further reduce water vapor contamination of the environment surrounding the photovoltaic cells. The contamination of the spacing between the backcap and the cells may be further reduced by passing a selected gas through the spacing subsequent to sealing the backcap to the base of the photovoltaic panels, and once purged this spacing may be filled with an inert gas. The techniques of the present invention are preferably applied to thin film photovoltaic panels each formed from a plurality of photovoltaic cells arranged on a vitreous substrate. The stability of photovoltaic conversion efficiency remains relatively high during the life of the photovoltaic panel, and the cost of manufacturing highly efficient panels with such improved stability is significantly reduced.

  15. Domain switching of fatigued ferroelectric thin films

    International Nuclear Information System (INIS)

    Tak Lim, Yun; Yeog Son, Jong; Shin, Young-Han

    2014-01-01

    We investigate the domain wall speed of a ferroelectric PbZr 0.48 Ti 0.52 O 3 (PZT) thin film using an atomic force microscope incorporated with a mercury-probe system to control the degree of electrical fatigue. The depolarization field in the PZT thin film decreases with increasing the degree of electrical fatigue. We find that the wide-range activation field previously reported in ferroelectric domains result from the change of the depolarization field caused by the electrical fatigue. Domain wall speed exhibits universal behavior to the effective electric field (defined by an applied electric field minus the depolarization field), regardless of the degree of the electrical fatigue

  16. Thin films for gas sensors

    Science.gov (United States)

    Pires, Jose Miguel Alves Correia

    Nos ultimos anos tem-se assistido a um aumento dos investimentos na investigacao de novos materiais para aplicacao em sensores. Apesar de ja existir um bom numero de dispositivos explorados comercialmente, muitas vezes, quer devido aos elevados custos de producao, quer devido a uma crescente exigencia do ponto de vista das caracteristicas de funcionamento, continua a ser necessario procurar novos materiais ou novas formas de producao que permitam baixar os custos e melhorar o desempenho dos dispositivos. No campo dos sensores de gases tem-se verificado continuos avancos nos ultimos anos. Continua todavia a ser necessario conhecer melhor, tanto os processos de producao dos materiais, como os mecanismos que regulam a sensibilidade dos dispositivos aos gases, de modo a orientar adequadamente a investigacao dos novos materiais, nomeadamente no que se refere a optimizacao dos parâmetros que nao satisfazem ainda os requisitos do mercado. Um dos materiais que tem mostrado melhores qualidades para aplicacao em sensores de gases de tipo resistivo e o dioxido de estanho. Este material tem sido produzido sob diversas formas e usando diferentes tecnicas, como sejam: sol-gel [1], pulverizacao catodica (sputtering) por magnetrao [2-4], sinterizacao de pos [5, 6], ablacao laser [7] ou RGTO [8]. Os resultados obtidos revelam que as caracteristicas dos dispositivos sao muito dependentes das tecnicas usadas na sua producao. A deposicao usando sputtering reactivo por magnetrao e uma tecnica que permite obter filmes finos de oxido de estanho com diferentes caracteristicas, quer do ponto de vista da estrutura, quer da composicao, e por isso, tambem, com diferentes sensibilidades aos gases. No âmbito deste trabalho, foram produzidos filmes de SnO2 usando sputtering DC reactivo com diferentes condicoes de deposicao. Os substratos usados foram lâminas de vidro e o alvo foi estanho com 99.9% de pureza. Foi estudada a influencia da atmosfera de deposicao, da pressao parcial do O2, da

  17. The carbonization of thin polyaniline films

    Czech Academy of Sciences Publication Activity Database

    Morávková, Zuzana; Trchová, Miroslava; Exnerová, Milena; Stejskal, Jaroslav

    2012-01-01

    Roč. 520, č. 19 (2012), s. 6088-6094 ISSN 0040-6090 R&D Projects: GA AV ČR IAA400500905; GA AV ČR IAA100500902; GA ČR GAP205/12/0911 Institutional research plan: CEZ:AV0Z40500505 Institutional support: RVO:61389013 Keywords : polyaniline * thin films * infrared spectroscopy Subject RIV: CD - Macromolecular Chemistry Impact factor: 1.604, year: 2012

  18. Thin film interfaces for microelectrochemical sensors

    Science.gov (United States)

    Tvarozek, Vladimir; Ivanic, Rastislav; Jakubec, Andrej; Novotny, Ivan; Rehacek, Vlastimil

    2001-09-01

    Planar microelectrochemical chips with thin film electodes of different shapes and arrangement, have been developed and fabricated. Micro electrochemical cell with closely vertically spaced electrodes allows to exploit the effect of redox recycling and an increase of collection efficiency for a high current amplification. PC simulations of electro- mechanical properties of sl-BLM is useful tool for evaluation and prediction of BLM behavior. Non-symmetric microelectrode arrays were designed and fabricated for electrical monitoring of human skin.

  19. Thin-film silicon solar cell technology

    Czech Academy of Sciences Publication Activity Database

    Shah, A. V.; Schade, H.; Vaněček, Milan; Meier, J.; Vallat-Sauvain, E.; Wyrsch, N.; Kroll, U.; Droz, C.; Bailat, J.

    2004-01-01

    Roč. 12, - (2004), s. 113-142 ISSN 1062-7995 R&D Projects: GA MŽP SN/320/11/03 Institutional research plan: CEZ:AV0Z1010914 Keywords : thin-film silicon modules * hydrogenerated amorphous silicon(a-Si:H) * hydrogenerated microcrystalline (ćc-Si:H) * transparent conductive oxydes(TCOs) * building -integrated photovoltaics(BIPV) Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.196, year: 2004

  20. Mesoscale simulations of confined Nafion thin films

    OpenAIRE

    Vanya, Peter; Sharman, Jonathan; Elliott, James A.

    2017-01-01

    The morphology and transport properties of thin films of the ionomer Nafion, with thicknesses on the order of the bulk cluster size, have been investigated as a model system to explain the anomalous behaviour of catalyst/electrode-polymer interfaces in membrane-electrode assemblies. We have employed dissipative particle dynamics (DPD) to investigate the interaction of water and fluorocarbon chains with carbon and quartz as confining materials for a wide range of operational water contents and...

  1. Mesoscale simulations of confined Nafion thin films

    OpenAIRE

    Vanya, Peter; Sharman, J; Elliott, James Arthur

    2017-01-01

    The morphology and transport properties of thin films of the ionomer Nafion, with thicknesses on the order of the bulk cluster size, have been investigated as a model system to explain the anomalous behaviour of catalyst/electrode-polymer interfaces in membrane electrode assemblies. We have employed dissipative particle dynamics (DPD) to investigate the interaction of water and fluorocarbon chains with carbon and quartz as confining materials for a wide range of operational water contents and...

  2. Optical characterization of thin solid films

    CERN Document Server

    Ohlídal, Miloslav

    2018-01-01

    This book is an up-to-date survey of the major optical characterization techniques for thin solid films. Emphasis is placed on practicability of the various approaches. Relevant fundamentals are briefly reviewed before demonstrating the application of these techniques to practically relevant research and development topics. The book is written by international top experts, all of whom are involved in industrial research and development projects.

  3. P-type CuxS thin films: Integration in a thin film transistor structure

    International Nuclear Information System (INIS)

    Nunes de Carvalho, C.; Parreira, P.; Lavareda, G.; Brogueira, P.; Amaral, A.

    2013-01-01

    Cu x S thin films, 80 nm thick, are deposited by vacuum thermal evaporation of sulfur-rich powder mixture, Cu 2 S:S (50:50 wt.%) with no intentional heating of the substrate. The process of deposition occurs at very low deposition rates (0.1–0.3 nm/s) to avoid the formation of Cu or S-rich films. The evolution of Cu x S films surface properties (morphology/roughness) under post deposition mild annealing in air at 270 °C and their integration in a thin film transistor (TFT) are the main objectives of this study. Accordingly, Scanning Electron Microscopy studies show Cu x S films with different surface morphologies, depending on the post deposition annealing conditions. For the shortest annealing time, the Cu x S films look to be constructed of grains with large dimension at the surface (approximately 100 nm) and consequently, irregular shape. For the longest annealing time, films with a fine-grained surface are found, with some randomly distributed large particles bound to this fine-grained surface. Atomic Force Microscopy results indicate an increase of the root-mean-square roughness of Cu x S surface with annealing time, from 13.6 up to 37.4 nm, for 255 and 345 s, respectively. The preliminary integration of Cu x S films in a TFT bottom-gate type structure allowed the study of the feasibility and compatibility of this material with the remaining stages of a TFT fabrication as well as the determination of the p-type characteristic of the Cu x S material. - Highlights: • Surface properties of annealed Cu x S films. • Variation of conductivity with annealing temperatures of Cu x S films. • Application of evaporated Cu x S films in a thin film transistor (TFT) structure. • Determination of Cu x S p-type characteristic from TFT behaviour

  4. Photoanode for Aqueous Dye-Sensitized Solar Cells based on a Novel Multicomponent Thin Film.

    Science.gov (United States)

    Husmann, Samantha; Lima, Lucas F; Roman, Lucimara S; Zarbin, Aldo J G

    2018-02-13

    Most of the dye-sensitized solar cells (DSSCs) developed so far use organic electrolytes and water-sensible sensitizers. The search for aqueous DSSCs, a promising technology for solar-energy conversion, implies finding materials that are stable in aqueous solution. In this study, Prussian blue (PB) was utilized as an innovative sensitizer in a photoanode for DSSCs and a novel synthetic approach to a carbon nanotubes/TiO 2 /PB nanocomposite thin film was developed. The photoresponse was evaluated in a total aqueous electrolyte, and photocurrents of 600 μA cm -2 were achieved. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Aluminum nitride and nanodiamond thin film microstructures

    Energy Technology Data Exchange (ETDEWEB)

    Knoebber, Fabian; Bludau, Oliver; Roehlig, Claus-Christian; Williams, Oliver; Sah, Ram Ekwal; Kirste, Lutz; Cimalla, Volker; Lebedev, Vadim; Nebel, Christoph; Ambacher, Oliver [Fraunhofer-Institute for Applied Solid State Physics, Freiburg (Germany)

    2010-07-01

    In this work, aluminum nitride (AlN) and nanocrystalline diamond (NCD) thin film microstructures have been developed. Freestanding NCD membranes were coated with a piezoelectrical AlN layer in order to build tunable micro-lens arrays. For the evaluation of the single material quality, AlN and NCD thin films on silicon substrates were fabricated using RF magnetron sputtering and microwave chemical vapor deposition techniques, respectively. The crystal quality of AlN was investigated by X-ray diffraction. The piezoelectric constant d{sub 33} was determined by scanning laser vibrometry. The NCD thin films were optimized with respect to surface roughness, mechanical stability, intrinsic stress and transparency. To determine the mechanical properties of the materials, both, micromechanical resonator and membrane structures were fabricated and measured by magnetomotive resonant frequency spectroscopy and bulging experiments, respectively. Finally, the behavior of AlN/NCD heterostructures was modeled using the finite element method and the first structures were characterized by piezoelectrical measurements.

  6. Multiferroic RMnO3 thin films

    Science.gov (United States)

    Fontcuberta, Josep

    2015-03-01

    Multiferroic materials have received an astonishing attention in the last decades due to expectations that potential coupling between distinct ferroic orders could inspire new applications and new device concepts. As a result, a new knowledge on coupling mechanisms and materials science has dramatically emerged. Multiferroic RMnO3 perovskites are central to this progress, providing a suitable platform to tailor spin-spin and spin-lattice interactions. With views towards applications, the development of thin films of multiferroic materials have also progressed enormously and nowadays thin-film manganites are available, with properties mimicking those of bulk compounds. Here we review achievements on the growth of hexagonal and orthorhombic RMnO3 epitaxial thin films and the characterization of their magnetic and ferroelectric properties, we discuss some challenging issues, and we suggest some guidelines for future research and developments. En ce qui concerne les applications, le développement de films minces de matériaux multiferroïques a aussi énormément progressé, et de nos jours des films minces de manganites avec des propriétés similaires à celles des matériaux massifs existent. Nous passons en revue ici les résultats obtenus dans le domaine de la croissance de couches minces épitaxiés de RMnO3 hexagonal et orthorhombique et de la caractérisation de leurs propriétés magnétiques et ferroélectriques. Nous discutons certains enjeux et proposons quelques idées pour des recherches et développements futurs.

  7. Additives to silane for thin film silicon photovoltaic devices

    Science.gov (United States)

    Hurley, Patrick Timothy; Ridgeway, Robert Gordon; Hutchison, Katherine Anne; Langan, John Giles

    2013-09-17

    Chemical additives are used to increase the rate of deposition for the amorphous silicon film (.alpha.Si:H) and/or the microcrystalline silicon film (.mu.CSi:H). The electrical current is improved to generate solar grade films as photoconductive films used in the manufacturing of Thin Film based Photovoltaic (TFPV) devices.

  8. Grain coarsening mechanism of Cu thin films by rapid annealing

    International Nuclear Information System (INIS)

    Sasajima, Yasushi; Kageyama, Junpei; Khoo, Khyoupin; Onuki, Jin

    2010-01-01

    Cu thin films have been produced by an electroplating method using nominal 9N anode and nominal 6N CuSO 4 .5H 2 O electrolyte. Film samples were heat-treated by two procedures: conventional isothermal annealing in hydrogen atmosphere (abbreviated as H 2 annealing) and rapid thermal annealing with an infrared lamp (abbreviated as RTA). After heat treatment, the average grain diameters and the grain orientation distributions were examined by electron backscattering pattern analysis. The RTA samples (400 o C for 5 min) have a larger average grain diameter, more uniform grain distribution and higher ratio of (111) orientation than H 2 annealed samples (400 o C for 30 min). This means that RTA can produce films with coarser and more uniformly distributed grains than H 2 annealing within a short time, i.e. only a few minutes. To clarify the grain coarsening mechanism, grain growth by RTA was simulated using the phase field method. The simulated grain diameter reaches its maximum at a heating rate which is the same order as that in the actual RTA experiment. The maximum grain diameter is larger than that obtained by H 2 annealing with the same annealing time at the isothermal stage as in RTA. The distribution of the misorientation was analyzed which led to a proposed grain growth model for the RTA method.

  9. Electrical resistivity of thin metal films

    CERN Document Server

    Wissmann, Peter

    2007-01-01

    The aim of the book is to give an actual survey on the resistivity of thin metal and semiconductor films interacting with gases. We discuss the influence of the substrate material and the annealing treatment of the films, presenting our experimental data as well as theoretical models to calculate the scattering cross section of the conduction electrons in the frame-work of the scattering hypothesis. Main emphasis is laid on the comparison of gold and silver films which exhibit nearly the same lattice structure but differ in their chemical activity. In conclusion, the most important quantity for the interpretation is the surface charging z while the correlation with the optical data or the frustrated IR vibrations seems the show a more material-specific character. Z can be calculated on the basis of the density functional formalism or the self-consistent field approximation using Mulliken’s population analysis.

  10. Thermal properties of methyltrimethoxysilane aerogel thin films

    Directory of Open Access Journals (Sweden)

    Leandro N. Acquaroli

    2016-10-01

    Full Text Available Aerogels are light and porous solids whose properties, largely determined by their nanostructure, are useful in a wide range of applications, e.g., thermal insulation. In this work, as-deposited and thermally treated air-filled silica aerogel thin films synthesized using the sol-gel method were studied for their thermal properties using the 3-omega technique, at ambient conditions. The thermal conductivity and diffusivity were found to increase as the porosity of the aerogel decreased. Thermally treated films show a clear reduction in thermal conductivity compared with that of as-deposited films, likely due to an increase of porosity. The smallest thermal conductivity and diffusivity found for our aerogels were 0.019 W m−1 K−1 and 9.8 × 10-9 m2 s−1. A model was used to identify the components (solid, gaseous and radiative of the total thermal conductivity of the aerogel.

  11. Deposition and characterization of ZnSe nanocrystalline thin films

    Science.gov (United States)

    Temel, Sinan; Gökmen, F. Özge; Yaman, Elif; Nebi, Murat

    2018-02-01

    ZnSe nanocrystalline thin films were deposited at different deposition times by using the Chemical Bath Deposition (CBD) technique. Effects of deposition time on structural, morphological and optical properties of the obtained thin films were characterized. X-ray diffraction (XRD) analysis was used to study the structural properties of ZnSe nanocrystalline thin films. It was found that ZnSe thin films have a cubic structure with a preferentially orientation of (111). The calculated average grain size value was about 28-30 nm. The surface morphology of these films was studied by the Field Emission Scanning Electron Microscope (FESEM). The surfaces of the thin films were occurred from small stacks and nano-sized particles. The band gap values of the ZnSe nanocrystalline thin films were determined by UV-Visible absorption spectrum and the band gap values were found to be between 2.65-2.86 eV.

  12. Structure and Dynamics of Thin Ionomer Films: a Key to A Stable Fuel Cell Membrane.

    Science.gov (United States)

    Perahia, Dvora

    2000-03-01

    The technology for solid polymeric electrolytic membranes for a fuel cells, calls for the thinnest film which is electrochemically stable. At present, none supported polymeric solid state fuel cell membranes, thinner than 50 microns, fail mechanically during fuel cell operation. When approaching the thin film limits, interfacial effects become significant to structure dynamics and consequently, the stability of the membranes. Our work focuses on understanding the interfacial effects on thin per-fluorinated ionomer films, including interfacial effects on the thin films themselves and nanotubes-thin film complexes, mimicking the catalyst-ionomer complexes. In particular we investigated the dynamics and structure in 500 angstrom and less, films made by several perfluorinated ionomers, cast on a solid support. Both the films and their parent solutions were investigated with the goal of resolving the factors that affect the stability in the ultra thin regime. AFM/STM and X-ray and neutron reflectivity were used to investigate the thin films and small angle neutron scattering was utilized to the study of the solutions. Films were both spin-coated and self assembles from solutions on a model oxidized single crystal silicon wafer, treated with HF. When coated from molecular solutions, the films tend to dewet on a time scale of minutes to hours. With increasing concentrations, above the critical micellar concentration of the ionomers in water/alcohol, stable films on the order of 200-500 angstroms were formed. While self-assembled films were found to be stable at temperatures close to Tg of the ionomer, spin-coated ones partially dewet. The surface structure obtained, exhibit periodicity on different length scales, depending on the concentration of the polymer in the solution from which the film was assembled. In the ultra dilute regime, micelles were detected at the solid interface. Films formed from dilute solutions exhibit fractal nature with a fractal dimension varying

  13. Scanning tunneling spectroscopy of Pb thin films

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Michael

    2010-12-13

    The present thesis deals with the electronic structure, work function and single-atom contact conductance of Pb thin films, investigated with a low-temperature scanning tunneling microscope. The electronic structure of Pb(111) thin films on Ag(111) surfaces is investigated using scanning tunneling spectroscopy (STS). Quantum size effects, in particular, quantum well states (QWSs), play a crucial role in the electronic and physical properties of these films. Quantitative analysis of the spectra yields the QWS energies as a function of film thickness, the Pb bulk-band dispersion in {gamma}-L direction, scattering phase shifts at the Pb/Ag interface and vacuum barrier as well as the lifetime broadening at anti {gamma}. The work function {phi} is an important property of surfaces, which influences catalytic reactivity and charge injection at interfaces. It controls the availability of charge carriers in front of a surface. Modifying {phi} has been achieved by deposition of metals and molecules. For investigating {phi} at the atomic scale, scanning tunneling microscopy (STM) has become a widely used technique. STM measures an apparent barrier height {phi}{sub a}, which is commonly related to the sample work function {phi}{sub s} by: {phi}{sub a}=({phi}{sub s}+{phi}{sub t}- vertical stroke eV vertical stroke)/2, with {phi}{sub t} the work function of the tunneling tip, V the applied tunneling bias voltage, and -e the electron charge. Hence, the effect of the finite voltage in STM on {phi}{sub a} is assumed to be linear and the comparison of {phi}{sub a} measured at different surface sites is assumed to yield quantitative information about work function differences. Here, the dependence of {phi}{sub a} on the Pb film thickness and applied bias voltage V is investigated. {phi}{sub a} is found to vary significantly with V. This bias dependence leads to drastic changes and even inversion of contrast in spatial maps of {phi}{sub a}, which are related to the QWSs in the Pb

  14. Photoelectrochemical (PEC) studies on CdSe thin films ...

    Indian Academy of Sciences (India)

    TECS

    Abstract. Thin films of CdSe were deposited by potentiostatic mode on different substrates such as stainless steel, titanium and fluorine tin–oxide (FTO) coated glass using non-aqueous bath. The preparative parameters were optimized to get good quality CdSe thin films. These films were characterized by X-ray diffraction.

  15. Oriented growth of thin films of samarium oxide by MOCVD

    Indian Academy of Sciences (India)

    Unknown

    Infrared spectroscopic study reveals that films grown above 600°C are free of carbon. Keywords. MOCVD; thin films .... Simultaneous thermogravimetry and differential thermal analysis (TG/DTA) of the complex was carried ..... quality thin films of rare earth oxides by MOCVD, using the phenanthroline adducts of pentadionate ...

  16. Dynamics of a spreading thin film with gravitational counterflow ...

    Indian Academy of Sciences (India)

    In the present work, dynamics of a thin film spreading due to a thermocapillary stress is mod- eled within lubrication approximation. In microscale flows, the large surface to volume ratios allow interfacial stresses to exert a driving influence. This ability to drive thin film using thermo- capillary stress is used to spread film for ...

  17. Structural characterization of vacuum evaporated ZnSe thin films

    Indian Academy of Sciences (India)

    The lattice parameter, grain size, average internal stress, microstrain, dislocation density and degree of pre- ferred orientation in the film are calculated and correlated with Ts. Keywords. ZnSe thin films; X-ray diffraction; average internal stress; microstrain; dislocation density. 1. Introduction. Thin films of ZnSe has attracted ...

  18. Electrical and magnetic properties of electrodeposited nickel incorporated diamond-like carbon thin films

    Science.gov (United States)

    Pandey, B.; Das, D.; Kar, A. K.

    2015-05-01

    Nanocomposite diamond-like carbon (DLC) thin films have been synthesized by incorporating nickel (Ni) nanoparticles in DLC matrix with varying concentration of nickel. DLC and Ni-DLC thin films have been deposited on ITO coated glass substrates employing low voltage electrodeposition method. Electrical properties of the samples were studied by measuring current-voltage characteristics and dielectric properties. The current approaches toward an ohmic behavior with metal addition. This tendency of increasing ohmicity is enhanced with increase in dilution of the electrolyte. The conductivity increases with Ni addition and interestingly it continues to increase with dilution of Ni concentration in the electrolyte in the range of our study. Magnetic properties for DLC and Ni-DLC thin film samples were examined by electron paramagnetic resonance (EPR) measurements and Super Conducting Quantum Interference Device (SQUID) measurements. g-Value for DLC is 2.074, whereas it decreases to 2.055 with Ni addition in the electrolyte. This decrement arises from the increased sp2 content in DLC matrix. The magnetic moment vs. magnetic field (m-H) curves of Ni-DLC indicate superparamagnetic behavior which may be due to ferromagnetic contribution from the incorporated nickel nanoparticles in the DLC matrix. The ZFC curve of Ni-DLC after the blocking temperature shows a combined contribution of ferromagnetic, superparamagnetic and paramagnetic nature of the materials persisting up to 300 K.

  19. Interfacial properties of a carbyne-rich nanostructured carbon thin film in ionic liquid

    Science.gov (United States)

    Giacomo Bettini, Luca; Della Foglia, Flavio; Piseri, Paolo; Milani, Paolo

    2016-03-01

    Nanostructured carbon sp2 (ns-C) thin films with up to 30% of sp-coordinated atoms (carbynes) were produced in a high vacuum by the low kinetic energy deposition of carbon clusters produced in the gas phase and accelerated by a supersonic expansion. Immediately after deposition the ns-C films were immersed in situ in an ionic liquid electrolyte. The interfacial properties of ns-C films in the ionic liquid electrolyte were characterized by electrochemical impedance spectroscopy and cyclic voltammetry (CV). The so-prepared carbyne-rich electrodes showed superior electric double layer (EDL) capacitance and electric conductivity compared to ns-C electrodes containing only sp2 carbon, showing the substantial influence of carbynes on the electrochemical properties of nanostructured carbon electrodes.

  20. Metallic Thin-Film Bonding and Alloy Generation

    Science.gov (United States)

    Fryer, Jack Merrill (Inventor); Campbell, Geoff (Inventor); Peotter, Brian S. (Inventor); Droppers, Lloyd (Inventor)

    2016-01-01

    Diffusion bonding a stack of aluminum thin films is particularly challenging due to a stable aluminum oxide coating that rapidly forms on the aluminum thin films when they are exposed to atmosphere and the relatively low meting temperature of aluminum. By plating the individual aluminum thin films with a metal that does not rapidly form a stable oxide coating, the individual aluminum thin films may be readily diffusion bonded together using heat and pressure. The resulting diffusion bonded structure can be an alloy of choice through the use of a carefully selected base and plating metals. The aluminum thin films may also be etched with distinct patterns that form a microfluidic fluid flow path through the stack of aluminum thin films when diffusion bonded together.

  1. Porous Organic Cage Thin Films and Molecular-Sieving Membranes.

    Science.gov (United States)

    Song, Qilei; Jiang, Shan; Hasell, Tom; Liu, Ming; Sun, Shijing; Cheetham, Anthony K; Sivaniah, Easan; Cooper, Andrew I

    2016-04-06

    Porous organic cage molecules are fabricated into thin films and molecular-sieving membranes. Cage molecules are solution cast on various substrates to form amorphous thin films, with the structures tuned by tailoring the cage chemistry and processing conditions. For the first time, uniform and pinhole-free microporous cage thin films are formed and demonstrated as molecular-sieving membranes for selective gas separation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Solution processed pentacene thin films and their structural properties

    International Nuclear Information System (INIS)

    Tao Chunlan; Zhang Xuhui; Zhang Fujia; Liu Yiyang; Zhang Haoli

    2007-01-01

    The paper reported the solution process of pentacene thin films from organic solvent O-dichlorobenzene. The pentacene thin films obtained from different conditions were characterized by X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), and UV-vis spectroscopy. The result shows that the pentacene solution was successfully obtained at a minimum temperature of 40 deg. C. The optimum temperature of forming pentacene thin films was 100 deg. C

  3. Polycrystalline-thin-film thermophotovoltaic cells

    Science.gov (United States)

    Dhere, Neelkanth G.

    1996-02-01

    Thermophotovoltaic (TPV) cells convert thermal energy to electricity. Modularity, portability, silent operation, absence of moving parts, reduced air pollution, rapid start-up, high power densities, potentially high conversion efficiencies, choice of a wide range of heat sources employing fossil fuels, biomass, and even solar radiation are key advantages of TPV cells in comparison with fuel cells, thermionic and thermoelectric convertors, and heat engines. The potential applications of TPV systems include: remote electricity supplies, transportation, co-generation, electric-grid independent appliances, and space, aerospace, and military power applications. The range of bandgaps for achieving high conversion efficiencies using low temperature (1000-2000 K) black-body or selective radiators is in the 0.5-0.75 eV range. Present high efficiency convertors are based on single crystalline materials such as In1-xGaxAs, GaSb, and Ga1-xInxSb. Several polycrystalline thin films such as Hg1-xCdxTe, Sn1-xCd2xTe2, and Pb1-xCdxTe, etc., have great potential for economic large-scale applications. A small fraction of the high concentration of charge carriers generated at high fluences effectively saturates the large density of defects in polycrystalline thin films. Photovoltaic conversion efficiencies of polycrystalline thin films and PV solar cells are comparable to single crystalline Si solar cells, e.g., 17.1% for CuIn1-xGaxSe2 and 15.8% for CdTe. The best recombination-state density Nt is in the range of 10-15-10-16 cm-3 acceptable for TPV applications. Higher efficiencies may be achieved because of the higher fluences, possibility of bandgap tailoring, and use of selective emitters such as rare earth oxides (erbia, holmia, yttria) and rare earth-yttrium aluminium garnets. As compared to higher bandgap semiconductors such as CdTe, it is easier to dope the lower bandgap semiconductors. TPV cell development can benefit from the more mature PV solar cell and opto

  4. A study on the electrodeposition of NiFe alloy thin films using chronocoulometry and electrochemical quartz crystal microgravimetry

    CERN Document Server

    Myung, N S

    2001-01-01

    Ni, Fe and NiFe alloy thin films were electrodeposited at a polycrystalline Au surface using a range of electrolytes and potentials. Coulometry and EQCM were used for real-time monitoring of electroplating efficiency of the Ni and Fe. The plating efficiency of NiFe alloy thin films was computed with the aid of ICP spectrometry. In general, plating efficiency increased to a steady value with deposition time. Plating efficiency of Fe was lower than that of Ni at -0.85 and -1.0 V but the efficiency approached to the similar plateau value to that of Ni at more negative potentials. The films with higher content of Fe showed different stripping behavior from the ones with higher content of Ni. Finally, compositional data and real-time plating efficiency are presented for films electrodeposited using a range of electrolytes and potentials.

  5. Review of the fundamentals of thin-film growth.

    Science.gov (United States)

    Kaiser, Norbert

    2002-06-01

    The properties of a thin film of a given material depend on the film's real structure. The real structure is defined as the link between a thin film's deposition parameters and its properties. To facilitate engineering the properties of a thin film by manipulating its real structure, thin-film formation is reviewed as a process starting with nucleation followed by coalescence and subsequent thickness growth, all stages of which can be influenced by deposition parameters. The focus in this review is on dielectric and metallic films and their optical properties. In contrast to optoelectronics all these film growth possibilities for the engineering of novel optical films with extraordinary properties are just beginning to be used.

  6. Evaluation of double-layer density modulated Si thin films as Li-ion battery anodes

    Science.gov (United States)

    Taha Demirkan, Muhammed; Yurukcu, Mesut; Dursun, Burcu; Demir-Cakan, Rezan; Karabacak, Tansel

    2017-10-01

    Double-layer density modulated silicon thin films which contain alternating low and high density Si film layers were fabricated by magnetron sputtering. Two different samples consisting of alternating layers of high-density/low-density and low-density/high-density Si thin film layers were investigated as anode electrodes in Li-ion batteries. Si thin film in which the terminating layer at the top is low density Si layer-quoted as low-density/high-density film (LD/HD)- exhibits better performance than Si thin film that has high density layer at the top, -quoted as high-density/low-density (HD/LD). A highly stabilized cycling performance with the specific charge capacities of 2000 mAh g‑1 at the 150th cycle at C/2 current density, and 1200 mAh g‑1 at the 240th cycle at 10 C current density were observed for the LD/HD Si anode in the presence of fluoroethylene carbonate (FEC) electrolyte additive.

  7. Progress on thin-film sensors for space propulsion technology

    Science.gov (United States)

    Kim, Walter S.

    1987-01-01

    The objective is to develop thin-film thermocouples for Space Shuttle Main Engine (SSME) components. Thin-film thermocouples have been developed for aircraft gas turbine engines and are in use for temperature measurement on turbine blades to 1800 F. The technology established for aircraft gas turbine engines will be adapted to the materials and environment encountered in the SSME. Specific goals are to expand the existing in-house thin-film sensor technology and to test the survivability and durability of thin-film sensors in the SSME environment.

  8. Physics of thin films advances in research and development

    CERN Document Server

    Hass, Georg; Vossen, John L

    2013-01-01

    Physics of Thin Films: Advances in Research and Development, Volume 12 reviews advances that have been made in research and development concerning the physics of thin films. This volume covers a wide range of preparative approaches, physics phenomena, and applications related to thin films. This book is comprised of four chapters and begins with a discussion on metal coatings and protective layers for front surface mirrors used at various angles of incidence from the ultraviolet to the far infrared. Thin-film materials and deposition conditions suitable for minimizing reflectance changes with

  9. Sputtering materials for VLSI and thin film devices

    CERN Document Server

    Sarkar, Jaydeep

    2010-01-01

    An important resource for students, engineers and researchers working in the area of thin film deposition using physical vapor deposition (e.g. sputtering) for semiconductor, liquid crystal displays, high density recording media and photovoltaic device (e.g. thin film solar cell) manufacturing. This book also reviews microelectronics industry topics such as history of inventions and technology trends, recent developments in sputtering technologies, manufacturing steps that require sputtering of thin films, the properties of thin films and the role of sputtering target performance on overall p

  10. Crystalline thin films: The electrochemical atomic layer deposition (ECALD) view

    CSIR Research Space (South Africa)

    Modibedi, M

    2011-09-01

    Full Text Available Electrochemical atomic layer deposition technique is selected as one of the methods to prepare thin films for various applications, including electrocatalytic materials and compound....

  11. Thin-Film Materials Synthesis and Processing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Provides a wide capability for deposition and processing of thin films, including sputter and ion-beam deposition, thermal evaporation, electro-deposition,...

  12. Seebeck effect of some thin film carbides

    International Nuclear Information System (INIS)

    Beensh-Marchwicka, G.; Prociow, E.

    2002-01-01

    Several materials have been investigated for high-temperature thin film thermocouple applications. These include silicon carbide with boron (Si-C-B), ternary composition based on Si-C-Mn, fourfold composition based on Si-C-Zr-B and tantalum carbide (TaC). All materials were deposited on quartz or glass substrates using the pulse sputter deposition technique. Electrical conduction and thermoelectric power were measured for various compositions at 300-550 K. It has been found, that the efficiency of thermoelectric power of films containing Si-C base composition was varied from 0.0015-0.034 μW/cmK 2 . However for TaC the value about 0.093 μW/cmK 2 was obtained. (author)

  13. TEM characterization of nanodiamond thin films.

    Energy Technology Data Exchange (ETDEWEB)

    Qin, L.-C.; Zhou, D.; Krauss, A. R.; Gruen, D. M.; Chemistry

    1998-05-01

    The microstructure of thin films grown by microwave plasma-enhanced chemical vapor deposition (MPCVD) from fullerene C{sub 60} precursors has been characterized by scanning electron microscopy (SEM), selected-area electron diffraction (SAED), bright-field electron microscopy, high-resolution electron microscopy (HREM), and parallel electron energy loss spectroscopy (PEELS). The films are composed of nanosize crystallites of diamond, and no graphitic or amorphous phases were observed. The diamond crystallite size measured from lattice images shows that most grains range between 3-5 nm, reflecting a gamma distribution. SAED gave no evidence of either sp2-bonded glassy carbon or sp3-bonded diamondlike amorphous carbon. The sp2-bonded configuration found in PEELS was attributed to grain boundary carbon atoms, which constitute 5-10% of the total. Occasionally observed larger diamond grains tend to be highly faulted.

  14. Thin Film Photovoltaics: Markets and Industry

    OpenAIRE

    Jäger-Waldau, Arnulf

    2012-01-01

    Since 2000, total PV production increased almost by two orders of magnitude, with a compound annual growth rate of over 52%. The most rapid growth in annual cell and module production over the last five years could be observed in Asia, where China and Taiwan together now account for about 60% of worldwide production. Between 2005 and 2009, thin film production capacity and volume increased more than the overall industry but did not keep up in 2010 and 2011 due to the rapid price decline for s...

  15. Thin-film optical shutter. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Matlow, S.L.

    1981-02-01

    A specific embodiment of macroconjugated macromolecules, the poly (p-phenylene)'s, has been chosen as the one most likely to meet all of the requirements of the Thin Film Optical Shutter project (TFOS). The reason for this choice is included. In order to be able to make meaningful calculations of the thermodynamic and optical properties of the poly (p-phenylene)'s a new quantum mechanical method was developed - Equilibrium Bond Length (EBL) Theory. Some results of EBL Theory are included.

  16. Thin molecular films of supramolecular porphyrins

    Directory of Open Access Journals (Sweden)

    KOITI ARAKI

    2000-03-01

    Full Text Available A relevant series of symmetric supramolecular porphyrins has been obtained by attaching four [Ru II(bipy2Cl] groups to the pyridyl substituents of meso-tetra(4-pyridylporphyrin and its metallated derivatives. These compounds display a rich electrochemistry and versatile catalytic, electrocatalytic and photochemical properties, associated with the ruthenium-bipyridine and the porphyrin complexes. These properties can be transferred to the electrodes by attaching thin molecular films of the compounds, by dip-coating, electrostatic assembly or electropolymerization. In this way, the interesting properties of those supermolecules and supramolecular assemblies can be used to prepare molecular devices and sensors.

  17. Infrared control coating of thin film devices

    Energy Technology Data Exchange (ETDEWEB)

    Berland, Brian Spencer; Stowell, Jr., Michael Wayne; Hollingsworth, Russell

    2017-02-28

    Systems and methods for creating an infrared-control coated thin film device with certain visible light transmittance and infrared reflectance properties are disclosed. The device may be made using various techniques including physical vapor deposition, chemical vapor deposition, thermal evaporation, pulsed laser deposition, sputter deposition, and sol-gel processes. In particular, a pulsed energy microwave plasma enhanced chemical vapor deposition process may be used. Production of the device may occur at speeds greater than 50 Angstroms/second and temperatures lower than 200.degree. C.

  18. Atomic Structure Control of Silica Thin Films on Pt(111)

    KAUST Repository

    Crampton, Andrew S

    2015-05-27

    Metal oxide thin films grown on metal single crystals are commonly used to model heterogeneous catalyst supports. The structure and properties of thin silicon dioxide films grown on metal single crystals have only recently been thoroughly characterized and their spectral properties well established. We report the successful growth of a three- dimensional, vitreous silicon dioxide thin film on the Pt(111) surface and reproduce the closed bilayer structure previously reported. The confirmation of the three dimensional nature of the film is unequivocally shown by the infrared absorption band at 1252 cm−1. Temperature programmed desorption was used to show that this three-dimensional thin film covers the Pt(111) surface to such an extent that its application as a catalyst support for clusters/nanoparticles is possible. The growth of a three-dimensional film was seen to be directly correlated with the amount of oxygen present on the surface after the silicon evaporation process. This excess of oxygen is tentatively attributed to atomic oxygen being generated in the evaporator. The identification of atomic oxygen as a necessary building block for the formation of a three-dimensional thin film opens up new possibilities for thin film growth on metal supports, whereby simply changing the type of oxygen enables thin films with different atomic structures to be synthesized. This is a novel approach to tune the synthesis parameters of thin films to grow a specific structure and expands the options for modeling common amorphous silica supports under ultra high vacuum conditions.

  19. High power impulse magnetron sputtering of CIGS thin films for high efficiency thin film solar cells

    Czech Academy of Sciences Publication Activity Database

    Olejníček, Jiří; Hubička, Zdeněk; Kohout, Michal; Kšírová, Petra; Kment, Štěpán; Brunclíková, Michaela; Čada, Martin; Darveau, S.A.; Exstrom, C.L.

    2014-01-01

    Roč. 1, č. 3 (2014), s. 135-137 ISSN 2336-2626 R&D Projects: GA MŠk LH12045 Institutional support: RVO:68378271 Keywords : CIGS * HiPIMS * emission spectroscopy * thin films * magnetron sputtering Subject RIV: BL - Plasma and Gas Discharge Physics http://fyzika.feld.cvut.cz/misc/ppt/articles/2014/olejnicek.pdf

  20. Role of electrolyte composition on structural, morphological and in-vitro biological properties of plasma electrolytic oxidation films formed on zirconium

    International Nuclear Information System (INIS)

    M, Sandhyarani; T, Prasadrao; N, Rameshbabu

    2014-01-01

    Highlights: • Uniform oxide films were formed on zirconium by plasma electrolytic oxidation. • Silicate in electrolyte alter the growth of m-ZrO 2 from (1 ¯ 11) to (2 0 0) orientation. • Addition of KOH to electrolyte improved the corrosion resistance of oxide films. • Silicon incorporated oxide films showed higher surface roughness and wettability. • Human osteosarcoma cells were strongly adhered and spreaded on all the oxide films. - Abstract: Development of oxide films on metallic implants with a good combination of corrosion resistance, bioactivity and cell adhesion can greatly improve its biocompatibility and functionality. Thus, the present work is aimed to fabricate oxide films on metallic Zr by plasma electrolytic oxidation (PEO) in methodically varied concentrations of phosphate, silicate and KOH based electrolyte systems using a pulsed DC power source. The oxide films fabricated on Zr are characterized for its phase composition, surface morphology, chemical composition, roughness, wettability, surface energy, corrosion resistance, apatite forming ability and osteoblast cell adhesion. Uniform films with thickness varying from 6 to 11 μm are formed. XRD patterns of all the PEO films showed the predominance of monoclinic zirconia phase. The film formed in phosphate + KOH electrolyte showed superior corrosion resistance, which can be ascribed to its pore free morphology. The films formed in silicate electrolyte showed higher apatite forming ability with good cell adhesion and spreading over its surface which is attributed to its superior surface roughness and wettability characteristics. Among the five different electrolyte systems employed in the present study, the PEO film formed in an electrolyte system with phosphate + silicate + KOH showed optimum corrosion resistance, apatite forming ability and biocompatibility

  1. Thin films of metal-organic compounds and metal nanoparticle ...

    Indian Academy of Sciences (India)

    matrix. The methodology can be used to produce free-standing films. Optical limiting capability of the nanoparticle-embedded polymer film is demonstrated. Keywords. Polar crystal; uniaxial orientational order; thin film; second harmonic gen- eration; silver nanoparticle; polyvinyl alcohol; free-standing film; optical limiter.

  2. Methods for producing thin film charge selective transport layers

    Science.gov (United States)

    Hammond, Scott Ryan; Olson, Dana C.; van Hest, Marinus Franciscus Antonius Maria

    2018-01-02

    Methods for producing thin film charge selective transport layers are provided. In one embodiment, a method for forming a thin film charge selective transport layer comprises: providing a precursor solution comprising a metal containing reactive precursor material dissolved into a complexing solvent; depositing the precursor solution onto a surface of a substrate to form a film; and forming a charge selective transport layer on the substrate by annealing the film.

  3. Dimensional scaling of perovskite ferroelectric thin films

    Science.gov (United States)

    Keech, Ryan R.

    Dimensional size reduction has been the cornerstone of the exponential improvement in silicon based logic devices for decades. However, fundamental limits in the device physics were reached ˜2003, halting further reductions in clock speed without significant penalties in power consumption. This has motivated the research into next generation transistors and switching devices to reinstate the scaling laws for clock speed. This dissertation aims to support the scaling of devices that are based on ferroelectricity and piezoelectricity and to provide a roadmap for the corresponding materials performance. First, a scalable growth process to obtain highly {001}-oriented lead magnesium niobate - lead titanate (PMN-PT) thin films was developed, motivated by the high piezoelectric responses observed in bulk single crystals. It was found that deposition of a 2-3 nm thick PbO buffer layer on {111} Pt thin film bottom electrodes, prior to chemical solution deposition of PMN-PT reduces the driving force for Pb diffusion from the PMN-PT to the bottom electrode, and facilitates nucleation of {001}-oriented perovskite grains. Energy dispersive spectroscopy demonstrated that up to 10% of the Pb from a PMN-PT precursor solution may diffuse into the bottom electrode. PMN-PT grains with a mixed {101}/{111} orientation in a matrix of Pb-deficient pyrochlore phase were then promoted near the interface. When this is prevented, phase pure films with {001} orientation with Lotgering factors of 0.98-1.0, can be achieved. The resulting films of only 300 nm in thickness exhibit longitudinal effective d33,f coefficients of ˜90 pm/V and strain values of ˜1% prior to breakdown. 300 nm thick epitaxial and polycrystalline lead magnesium niobate - lead titanate (70PMN-30PT) blanket thin films were studied for the relative contributions to property thickness dependence from interfacial and grain boundary low permittivity layers. Epitaxial PMN-PT films were grown on SrRuO 3 /(001)SrTiO3, while

  4. Photoelectrochemical investigations on naphthalocyanine derivatives in thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yanagi, Hisao; Kanbayashi, Yoshihiro (Kobe Univ. (Japan)); Schlettwein, D. (Universitaet Bremen (Germany) Univ. of Arizona, Tucson, AZ (United States)); Woehrle, D. (Universitaet Bremen (Germany)); Armstrong, N.R. (Univ. of Arizona, Tucson, AZ (United States))

    1994-04-28

    Photoelectrochemical properties of Zn-naphthalocyanine (ZnNc) and its modified compound, Zn-2,3-tetraquinoxalinotetraazaporphyrin (ZnTQP) were investigated in thin films. The ZnNc electrode vacuum-deposited on an indium tin oxide (ITO) substrate exhibited almost an ohmic I-V curve in the dark and small cathodic photocurrents under illumination, which was typical for the p-type semiconduction of the ZnNc layer, in a photoelectrochemical cell. The drop-casted film electrode of ZnTQP, on the other hand, showed rectified I-V characteristics in the dark and high anodic photocurrents under illumination, which was attributed to the n-type semiconducting character of the ZnTQP layer. These different photoelectrochemical behaviors were characterized by photocurrent action spectra and ultraviolet photoelectron spectroscopy. The substitution with quinoxalino groups into the Nc macrocyclic system gave rise to lowering of the HOMO energy level for the TQP molecule. This electronic energy shift generated donor electron states in the band gap after contact with the substrate or electrolyte and enabled the photooxidation at the valence band edges corresponding to the Soret-and Q-band excitations. 55 refs., 10 figs.

  5. Characterization of ultrasonic spray pyrolysed ruthenium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Patil, P.S.; Ennaoui, E.A.; Lokhande, C.D.; Mueller, M.; Giersig, M.; Diesner, K.; Tributsch, H. [Hahn-Meitner-Institut Berlin GmbH (Germany). Bereich Physikalische Chemie

    1997-11-21

    The ultrasonic spray pyrolysis (USP) technique was employed to deposit ruthenium oxide thin films. The films were prepared at 190 C substrate temperature and further annealed at 350 C for 30 min in air. The films were 0.22 {mu} thick and black grey in color. The structural, compositional and optical properties of ruthenium oxide thin films are reported. Contactless transient photoconductivity measurement was carried out to calculate the decay time of excess charge carriers in ruthenium oxide thin films. (orig.) 28 refs.

  6. Stabilization of thin liquid films by repulsive van der waals force

    KAUST Repository

    Li, Erqiang

    2014-05-13

    Using high-speed video recording of bubble rise experiments, we study the stability of thin liquid films trapped between a rising bubble and a surfactant-free liquid-liquid meniscus interface. Using different combinations of nonpolar oils and water that are all immiscible, we investigate the extent to which film stability can be predicted by attractive and repulsive van der Waals (vdW) interactions that are indicated by the relative magnitude of the refractive indices of the liquid combinations, for example, water (refractive index, n = 1.33), perfluorohexane (n = 1.23), and tetradecane (n = 1.43). We show that, when the film-forming phase was oil (perfluorohexane or tetradecane), the stability of the film could always be predicted from the sign of the vdW interaction, with a repulsive vdW force resulting in a stable film and an attractive vdW force resulting in film rupture. However, if aqueous electrolyte is the film-forming bulk phase between the rising air bubble and the upper oil phase, the film always ruptured, even when a repulsive vdW interaction was predicted. We interpret these results as supporting the hypothesis that a short-ranged hydrophobic attraction determines the stability of the thin water film formed between an air phase and a nonpolar oil phase. © 2014 American Chemical Society.

  7. Glassy dynamics and heterogeneity of polymer thin films

    International Nuclear Information System (INIS)

    Kanaya, Toshiji; Inoue, Rintaro; Kawashima, Kazuko; Miyazaki, Tsukasa; Matsuba, Go; Nishida, Koji; Tsukushi, Itaru; Shibata, Kaoru; Hino, Masahiro

    2009-01-01

    We review our recent studies on glassy dynamics and glass transition of polymer thin films using neutron and X-ray reflectivity and inelastic neutron techniques. In the last decade extensive studies have been performed on polymer thin films to reveal very interesting but unusual properties such as reduction in the glass transition temperature T g with film thickness and negative thermal expansivity for thin films below about 25 nm, and often some contradictory experimental results have been reported. It is believed that a key to solve the controversial situation is to disclose heterogeneous structure or multi-layer structure in polymer thin films. In the review, therefore, we summarize our recent experimental results by neutron and X-ray reflectivity and inelastic neutron scattering, focusing on the dynamic heterogeneity in polymer thin films. (author)

  8. Ta-based amorphous metal thin films

    Energy Technology Data Exchange (ETDEWEB)

    McGlone, John M., E-mail: mcglone@eecs.oregonstate.edu [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331-5501 (United States); Olsen, Kristopher R. [Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003 (United States); Stickle, William F.; Abbott, James E.; Pugliese, Roberto A.; Long, Greg S. [Hewlett-Packard Company, Corvallis, OR, 97333 (United States); Keszler, Douglas A. [Department of Chemistry, Oregon State University, Corvallis, OR 97331-4003 (United States); Wager, John F. [School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR 97331-5501 (United States)

    2015-11-25

    With their lack of grains and grain boundaries, amorphous metals are known to possess advantageous mechanical properties and enhanced chemical stability relative to crystalline metals. Commonly, however, they exhibit poor high-temperature stability because of their metastable nature. Here, we describe two new Ta-based ternary metal thin films that retain thermal stability to 600 °C and above. The new thin-film compositions, Ta{sub 2}Ni{sub 2}Si{sub 1} and Ta{sub 2}Mo{sub 2}Si{sub 1}, are amorphous, exhibiting ultra-smooth surfaces (<0.4 nm) and resistivities typical of amorphous metals (224 and 177 μΩ cm, respectively). - Highlights: • New Ta-based amorphous metals were sputter deposited from individual targets. • As-deposited amorphous structure was confirmed through diffraction techniques. • Electrical and surface properties were characterized and possess smooth surfaces. • No evidence of crystallization up to 600 °C (TaNiSi) and 800 °C (TaMoSi). • Ultra-smooth surfaces remained unchanged up to crystallization temperature.

  9. Stable organic thin-film transistors

    Science.gov (United States)

    Jia, Xiaojia; Fuentes-Hernandez, Canek; Wang, Cheng-Yin; Park, Youngrak; Kippelen, Bernard

    2018-01-01

    Organic thin-film transistors (OTFTs) can be fabricated at moderate temperatures and through cost-effective solution-based processes on a wide range of low-cost flexible and deformable substrates. Although the charge mobility of state-of-the-art OTFTs is superior to that of amorphous silicon and approaches that of amorphous oxide thin-film transistors (TFTs), their operational stability generally remains inferior and a point of concern for their commercial deployment. We report on an exhaustive characterization of OTFTs with an ultrathin bilayer gate dielectric comprising the amorphous fluoropolymer CYTOP and an Al2O3:HfO2 nanolaminate. Threshold voltage shifts measured at room temperature over time periods up to 5.9 × 105 s do not vary monotonically and remain below 0.2 V in microcrystalline OTFTs (μc-OTFTs) with field-effect carrier mobility values up to 1.6 cm2 V−1 s−1. Modeling of these shifts as a function of time with a double stretched-exponential (DSE) function suggests that two compensating aging mechanisms are at play and responsible for this high stability. The measured threshold voltage shifts at temperatures up to 75°C represent at least a one-order-of-magnitude improvement in the operational stability over previous reports, bringing OTFT technologies to a performance level comparable to that reported in the scientific literature for other commercial TFTs technologies. PMID:29340301

  10. Metal nanoparticles for thin film solar cells

    DEFF Research Database (Denmark)

    Gritti, Claudia

    Among the different renewable ways to produce energy, photovoltaic cells have a big potential and the research is now focusing on getting higher efficiency and at the same time saving the manufacturing costs improving the performance of thin film solar cells. The spectral distribution in the infr......Among the different renewable ways to produce energy, photovoltaic cells have a big potential and the research is now focusing on getting higher efficiency and at the same time saving the manufacturing costs improving the performance of thin film solar cells. The spectral distribution...... characterized. Spectral responses are measured and in two types of measured GaAs solar cells (with Au and Ag nanoparticles) there was no clear efficiency enhancement in the NIR spectral range. In the case of Au nanoparticles it could be explained in similar way to the absorption data: the effect being broad...... cells spectral response to longer wavelengths, through possibly cheap and simple technologies: EBL can be substituted by colloidal solutions implementation and electroless plating is not expensive and results to be effective within a broad set of parameters (size, shape, density). Another application...

  11. Polycystalline silicon thin films for electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Jaeger, Christian Claus

    2012-01-15

    For the thin polycrystalline Si films fabricated with the aluminium-induced-layer-exchange (ALILE) process a good structural quality up to a layer-thickness value of 10 nm was determined. For 5 nm thick layers however after the layer exchange no closes poly-silicon film was present. In this case the substrate was covered with spherically arranged semiconductor material. Furthermore amorphous contributions in the layer could be determined. The electrical characterization of the samples at room temperature proved a high hole concentration in the range 10{sup 18} cm{sup -3} up to 9.10{sup 19} cm{sup -3}, which is influenced by the process temperature and the layer thickness. Hereby higher hole concentrations at higher process temperatures and thinner films were observed. Furthermore above 150-200 K a thermically activated behaviour of the electrical conductivity was observed. At lower temperatures a deviation of the measured characteristic from the exponential Arrhenius behaviour was determined. For low temperatures (below 20 K) the conductivity follows the behaviour {sigma}{proportional_to}[-(T{sub 0}/T){sup 1/4}]. The hole mobility in the layers was lowered by a passivation step, which can be explained by defect states at the grain boundaries. The for these very thin layers present situation was simulated in the framework of the model of Seto, whereby both the defect states at the grain boundaries (with an area density Q{sub t}) and the defect states at the interfaces (with an area density Q{sub it}) were regarded. By this the values Q{sub t}{approx}(3-4).10{sup 12} cm{sup -2} and Q{sub it}{approx}(2-5).10{sup 12} cm{sup -2} could be determined for these thin ALILE layers on quartz substrates. Additionally th R-ALILE process was studied, which uses the reverse precursor-layer sequence substrate/amorphous silicon/oxide/aluminium. Hereby two steps in the crystallization process of the R-ALILE process were found. First a substrate/Al-Si mixture/poly-Si layer structure

  12. The role of microstructural phenomena in magnetic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Laughlin, D.E.; Lambeth, D.N.

    1992-12-31

    The subject is germane to magnetic recording media. Results during the first 2 years are presented under the following headings: atomic resolution TEM of CoNiCr films; CoNiCr and CoCrTa thin films; development of texture; and CoSm/Cr thin films. The HREM results showed that defects in Co-based films may be responsible for higher coercivity. Findings are presented on the effects of Cr interlayers on the microstructure of the second Co-based film in Co/Cr/Co/Cr multilayer films. Proposed research plans are outlined.

  13. The role of microstructural phenomena in magnetic thin films

    Energy Technology Data Exchange (ETDEWEB)

    Laughlin, D.E.; Lambeth, D.N.

    1992-01-01

    The subject is germane to magnetic recording media. Results during the first 2 years are presented under the following headings: atomic resolution TEM of CoNiCr films; CoNiCr and CoCrTa thin films; development of texture; and CoSm/Cr thin films. The HREM results showed that defects in Co-based films may be responsible for higher coercivity. Findings are presented on the effects of Cr interlayers on the microstructure of the second Co-based film in Co/Cr/Co/Cr multilayer films. Proposed research plans are outlined.

  14. Laser scribing of polycrystalline thin films

    Science.gov (United States)

    Compaan, A. D.; Matulionis, I.; Nakade, S.

    2000-07-01

    We have investigated the use of several different types of lasers for scribing of the polycrystalline materials used for thin-film solar cells: CdTe, CuInGaSe 2 (CIGS), ZnO, SnO 2, Mo, Al, and Au. The lasers included four different neodymium-yttrium-aluminum garnet (Nd:YAG) (both 1064 and 532 nm wavelengths), a Cu vapor (511/578 nm), an XeCl excimer (308 nm), and a KrF excimer (248 nm). Pulse durations ranged from ˜0.1 to ˜250 ns. We found that the fundamental and frequency-doubled wavelengths of the Nd:YAG systems work well for almost all of the above materials except for the transparent conductor ZnO. The diode-laser-pumped Nd:YAG was particularly convenient to use. For ZnO the uv wavelengths of the two excimer lasers produced good results. Pulse duration was found generally not to be critical except for the case of CIGS on Mo where longer pulse durations (≥250 ns) are advantageous. The frequently observed problem of ridge formation along the edges of scribe lines in the semiconductor films can be eliminated by control of intensity gradients at the film through adjustment of the focus conditions.

  15. Magnetism of FePt Thin Films

    Science.gov (United States)

    Alqhtany, Norah H.

    Materials with large magnetic anisotropy have received significant attention from the scientific community due to its advantages in technological applications. Equiatomic FePt has been identified as such a material which could possibly be a potential candidate for ultra- high density magnetic recording and other applications like permanent magnets. FePt thin films exhibit ordered L10 texture with high magnetocrystalline anisotropy and high saturation magnetization which seem lucrative for technological applications. This thesis presents an investigation of structural and magnetic properties of granular and epitaxial FePt films with L10 phase prepared by DC sputtering on different substrates (SrTiO3 and glass). X-ray Diffraction (XRD), Atomic Force Microscopy/Magnetic Force Microscopy (AFM/MFM) and Vibrating Sample Magnetometer (VSM) were employed in characterization process. The measurements obtained from these equipment were significant in establishing the relationship between the microstructure and the magnetic properties of these films. The symmetry and magnitude of magnetic anisotropy has also been analyzed and discussed in detail.

  16. Pressureless Bonding Using Sputtered Ag Thin Films

    Science.gov (United States)

    Oh, Chulmin; Nagao, Shijo; Suganuma, Katsuaki

    2014-12-01

    To improve the performance and reliability of power electronic devices, particularly those built around next-generation wide-bandgap semiconductors such as SiC and GaN, the bonding method used for packaging must change from soldering to solderless technology. Because traditional solders are problematic in the harsh operating conditions expected for emerging high-temperature power devices, we propose a new bonding method in this paper, namely a pressureless, low-temperature bonding process in air, using abnormal grain growth on sputtered Ag thin films to realize extremely high temperature resistance. To investigate the mechanisms of this bonding process, we characterized the microstructural changes in the Ag films over various bonding temperatures and times. We measured the bonding properties of the specimens by a die-shear strength test, as well as by x-ray diffraction measurements of the residual stress in the Ag films to show how the microstructural developments were essential to the bonding technology. Sound bonds with high die strength can be achieved only with abnormal grain growth at optimum bonding temperature and time. Pressureless bonding allows for production of reliable high-temperature power devices for a wide variety of industrial, energy, and environmental applications.

  17. Surface microtopography of thin silver films

    Science.gov (United States)

    Costa, Manuel F. M.; Almeida, Jose B.

    1991-01-01

    The authors present ne applications for the recently developed nori-contact optical inicrotopographer emphasizing the results of topographic inspections of thin silver films edges. These films were produced by sputtering of silver through different masks, using a planar magnetron source. The results show the influence ot the thickness and position of the masks on the topography of the film near its edge. Topographic information is obtained from the horizontal shift incurred by the bright spot on an horizontal surface, which is displaced vertically, when this is illuminated by an oblique collimated laser beam. The laser beam is focused onto the surface into a diffraction limited spot and is made to sweep the surface to be examined.. The horizontal position of the bright spot is continuously imaged onto a light detector array and the information about individual detectors that are activated is used to compute the corresponding horizontal shift on the reference plane. Simple trignometric calculations are used to relate the horizontal shift to the distance between the surface and a reference plane at each sampling point and thus a map of the surface topography can be built.

  18. Thinning and rupture of a thin liquid film on a heated surface

    Energy Technology Data Exchange (ETDEWEB)

    Bankoff, S.G.; Davis, S.H.

    1992-08-05

    Results on the dynamics and stability of thin films are summarized on the following topics: forced dryout, film instabilities on a horizontal plane and on inclined planes, instrumentation, coating flows, and droplet spreading. (DLC)

  19. Factors affecting surface and release properties of thin PDMS films

    DEFF Research Database (Denmark)

    Vudayagiri, Sindhu; Junker, Michael Daniel; Skov, Anne Ladegaard

    2013-01-01

    Polydimethysiloxane (PDMS) elastomers are commonly used as dielectric electroactive polymers (DEAP). DEAP films are used in making actuators, generators and sensors. In the large scale manufacture of DEAP films, release of films from the substrate (carrier web) induces some defects and pre......-strain in the films which affect the overall performance of the films. The current research is directed towards investigating factors affecting the peel force and release of thin, corrugated polydimethylsiloxane films used in DEAP films. It has been shown that doping the PDMS films with small quantities...

  20. Use of thin films in high-temperature superconducting bearings.

    Energy Technology Data Exchange (ETDEWEB)

    Hull, J. R.; Cansiz, A.

    1999-09-30

    In a PM/HTS bearing, locating a thin-film HTS above a bulk HTS was expected to maintain the large levitation force provided by the bulk with a lower rotational drag provided by the very high current density of the film. For low drag to be achieved, the thin film must shield the bulk from inhomogeneous magnetic fields. Measurement of rotational drag of a PM/HTS bearing that used a combination of bulk and film HTS showed that the thin film is not effective in reducing the rotational drag. Subsequent experiments, in which an AC coil was placed above the thin-film HTS and the magnetic field on the other side of the film was measured, showed that the thin film provides good shielding when the coil axis is perpendicular to the film surface but poor shielding when the coil axis is parallel to the surface. This is consistent with the lack of reduction in rotational drag being due to a horizontal magnetic moment of the permanent magnet. The poor shielding with the coil axis parallel to the film surface is attributed to the aspect ratio of the film and the three-dimensional nature of the current flow in the film for this coil orientation.

  1. Structural and Optical Properties of Nanoscale Galinobisuitite Thin Films

    Directory of Open Access Journals (Sweden)

    Omar H. Abd-Elkader

    2014-01-01

    Full Text Available Galinobisuitite thin films of (Bi2S3(PbS were prepared using the chemical bath deposition technique (CBD. Thin films were prepared by a modified chemical deposition process by allowing the triethanolamine (TEA complex of Bi3+ and Pb2+ to react with S2− ions, which are released slowly by the dissociation of the thiourea (TU solution. The films are polycrystalline and the average crystallite size is 35 nm. The composition of the films was measured using the atomic absorption spectroscopy (AAS technique. The films are very adherent to the substrates. The crystal structure of Galinobisuitite thin films was calculated by using the X-ray diffraction (XRD technique. The surface morphology and roughness of the films were studied using scanning electron microscopes (SEM, transmission electron microscopes (TEM and stylus profilers respectively. The optical band gaps of the films were estimated from optical measurements.

  2. Magnetic thin films for high-density recording

    NARCIS (Netherlands)

    Lodder, J.C.

    1996-01-01

    Magnetic and magneto-optic recording technologies are continuing to evolve at a rapid pace resulting in longer playing times and more data being stored in ever decreasing volumes. Thin-film media are playing an important role in this process. Three different type of thin-film media are discussed

  3. Bonding of a niobium wire to a niobium thin film

    NARCIS (Netherlands)

    Jaszczuk, W.; Jaszczuk, W.; ter Brake, Hermanus J.M.; Flokstra, Jakob; Veldhuis, Dick; Stammis, R.; Rogalla, Horst

    1991-01-01

    A method for bonding a niobium wire to a niobium thin film is described. The bonds are to be used as superconducting connections between wire-wound gradiometers and thin-film coupling coils on DC SQUIDS. The method is characterized by two steps. Firstly, the hardness of the niobium wire is reduced

  4. Thin films of metal-organic compounds and metal nanoparticle

    Indian Academy of Sciences (India)

    Thin films of metal-organic compounds and metal nanoparticle-embedded polymers for nonlinear optical applications. S Philip Anthony Shatabdi Porel D ... Thin films based on two very different metal-organic systems are developed and some nonlinear optical applications are explored. A family of zinc complexes which ...

  5. Ferroelectricity in Sodium Nitrite Thin Films | Britwum | Journal of the ...

    African Journals Online (AJOL)

    Investigations have been conducted on the ferroelectric property of thin films of NaNO2. The thin films were prepared with the dip coating technique. The phase transition was investigated by observing the change in the dielectric constant with temperature change. The presence of ferro-electricity was investigated with a ...

  6. Electrical properties of epitaxially grown VOx thin films

    NARCIS (Netherlands)

    Rata, A.D.; Chezan, A.R; Presura, C.N.; Hibma, T

    2003-01-01

    High quality VOx thin films on MgO(100) substrates were prepared and studied from the structural and electronic point of view. Epitaxial growth was confirmed by RHEED and XRD techniques. The oxygen content of VOx thin films as a function of oxygen flux was determined using RBS. The upper and lower

  7. Stoichiometry control in oxide thin films by pulsed laser deposition

    NARCIS (Netherlands)

    Groenen, R.

    2017-01-01

    A general challenge in the synthesis of complex oxide nanostructures and thin films is the control of the stoichiometry and herewith control of thin film properties. Pulsed Laser Deposition (PLD) is widely known for its potential for growing near stoichiometric highly crystalline complex metal oxide

  8. Optimized grid design for thin film solar panels

    NARCIS (Netherlands)

    Deelen, J. van; Klerk, L.; Barink, M.

    2014-01-01

    There is a gap in efficiency between record thin film cells and mass produced thin film solar panels. In this paper we quantify the effect of monolithic integration on power output for various configurations by modeling and present metallization as a way to improve efficiency of solar panels. Grid

  9. Cadmium sulphide thin film for application in gamma radiation ...

    African Journals Online (AJOL)

    Cadmium Sulphide (CdS) thin film was prepared using pyrolytic spraying technique and then irradiated at varied gamma dosage. The CdS thin film absorption before gamma irradiation was 0.6497. Absorbed doses were computed using standard equation established for an integrating dosimeter. The plot of absorbed dose ...

  10. Thin films of metal-organic compounds and metal nanoparticle ...

    Indian Academy of Sciences (India)

    Thin films based on two very different metal-organic systems are developed and some nonlinear optical applications are explored. A family of zinc complexes which form perfectly polar assemblies in their crystalline state are found to organize as uniaxially oriented crystallites in vapor deposited thin films on glass substrate.

  11. Optical characteristics of transparent samarium oxide thin films ...

    Indian Academy of Sciences (India)

    Transparent metal oxide thin films of samarium oxide (Sm 2 O 3 ) were prepared on pre-cleaned fused optically flat quartz substrates by radio-frequency (RF) sputtering technique. The as-deposited thin films were annealed at different temperatures (873, 973 and 1073 K) for 4 h in air under normal atmospheric pressure.

  12. Piezoelectric MEMS: Ferroelectric thin films for MEMS applications

    Science.gov (United States)

    Kanno, Isaku

    2018-04-01

    In recent years, piezoelectric microelectromechanical systems (MEMS) have attracted attention as next-generation functional microdevices. Typical applications of piezoelectric MEMS are micropumps for inkjet heads or micro-gyrosensors, which are composed of piezoelectric Pb(Zr,Ti)O3 (PZT) thin films and have already been commercialized. In addition, piezoelectric vibration energy harvesters (PVEHs), which are regarded as one of the key devices for Internet of Things (IoT)-related technologies, are promising future applications of piezoelectric MEMS. Significant features of piezoelectric MEMS are their simple structure and high energy conversion efficiency between mechanical and electrical domains even on the microscale. The device performance strongly depends on the function of the piezoelectric thin films, especially on their transverse piezoelectric properties, indicating that the deposition of high-quality piezoelectric thin films is a crucial technology for piezoelectric MEMS. On the other hand, although the difficulty in measuring the precise piezoelectric coefficients of thin films is a serious obstacle in the research and development of piezoelectric thin films, a simple unimorph cantilever measurement method has been proposed to obtain precise values of the direct or converse transverse piezoelectric coefficient of thin films, and recently this method has become to be the standardized testing method. In this article, I will introduce fundamental technologies of piezoelectric thin films and related microdevices, especially focusing on the deposition of PZT thin films and evaluation methods for their transverse piezoelectric properties.

  13. Thermal properties and stabilities of polymer thin films

    International Nuclear Information System (INIS)

    Kanaya, Toshiji; Kawashima, Kazuko; Inoue, Rintaro; Miyazaki, Tsukasa

    2009-01-01

    Recent extensive studies have revealed that polymer thin films showed very interesting but unusual thermal properties and stabilities. In the article we show that X-ray reflectivity and neutron reflectivity are very powerful tools to study the anomalous properties of polymer thin films. (author)

  14. Dip-coated hydrotungstite thin films as humidity sensors

    Indian Academy of Sciences (India)

    Unknown

    Dip-coated hydrotungstite thin films as humidity sensors. G V KUNTE, UJWALA AIL, S A SHIVASHANKAR and A M UMARJI*. Materials Research Centre, Indian Institute of Science, Bangalore 560 012, India. MS received 6 December 2004; revised 28 February 2005. Abstract. Thin films of a hydrated phase of tungsten ...

  15. Thermal stability of gold-PS nanocomposites thin films

    Indian Academy of Sciences (India)

    Low-temperature transmission electron microscopy (TEM) studies were performed on polystyrene (PS, w = 234 K) – Au nanoparticle composite thin films that were annealed up to 350°C under reduced pressure conditions. The composite thin films were prepared by wet chemical approach and the samples were then ...

  16. Density functional study of ferromagnetism in alkali metal thin films

    Indian Academy of Sciences (India)

    thickness uniform jellium model (UJM), and it is argued that within LSDA or GGA, alkali metal thin films cannot be claimed to have an FM ground state. Relevance of these results to the experiments on transition metal-doped alkali metal thin films ...

  17. Nanoporous nickel oxide thin films and its improved electrochromic performance: Effect of thickness

    Science.gov (United States)

    Dalavi, D. S.; Suryavanshi, M. J.; Patil, D. S.; Mali, S. S.; Moholkar, A. V.; Kalagi, S. S.; Vanalkar, S. A.; Kang, S. R.; Kim, J. H.; Patil, P. S.

    2011-01-01

    Electrochromic properties of chemically bath deposited nanoporous NiO thin films were investigated as a function of film thickness using Ni sulphate precursor, aqueous ammonia and potassium persulphate as complexing and oxidizing agents respectively. The films were characterized for their structural, morphological, optical and electrochromic properties using X-ray diffraction, scanning electron microscopy, FT-IR spectroscopy, cyclic voltammetry, chronoamperometry and optical transmittance studies. X-ray diffraction patterns show that the films are polycrystalline, consisting of NiO cubic phase. Infrared spectroscopy results show the presence of free hydroxyl ion and water in NiO thin films. SEM micrographs revealed nanoporous nature composed of interconnected nanoporous network, forming well defined 3D nano envelopes. The optical band gap energy was found to be decreased from 3.22 to 2.80 eV with increasing film thickness. The electrochromic properties of all the films were investigated in aqueous (KOH) and non aqueous (LiClO4-PC) electrolyte by means of cyclic voltammetry (CV), chronocoulometry (CC) and optical studies. The transmittance modulations or optical density differences during the coloring/bleaching process were found to be increased with the film thickness. This increment in optical differences led to an increase in coloration efficiency (CE) to about 95 cm2/C, which is two times more than that observed in KOH and response time of 2.9 s for bleaching (reduction) and 3.5 s for coloration (oxidation) observed for the film deposited at 60 min with excellent electrochemical stability up to 3000 c/b cycles in LiClO4-PC electrolyte.

  18. Nanoporous nickel oxide thin films and its improved electrochromic performance: Effect of thickness

    Energy Technology Data Exchange (ETDEWEB)

    Dalavi, D.S.; Suryavanshi, M.J.; Patil, D.S.; Mali, S.S. [Thin Films Materials Laboratory, Department of Physics, Shivaji University, Kolhapur-416004, Maharashtra (India); Moholkar, A.V. [Department of Materials Science and Engineering, Chonnam National University (Korea, Republic of); Kalagi, S.S.; Vanalkar, S.A. [Thin Films Materials Laboratory, Department of Physics, Shivaji University, Kolhapur-416004, Maharashtra (India); Kang, S.R.; Kim, J.H. [Department of Materials Science and Engineering, Chonnam National University (Korea, Republic of); Patil, P.S., E-mail: patilps_2000@yahoo.com [Thin Films Materials Laboratory, Department of Physics, Shivaji University, Kolhapur-416004, Maharashtra (India)

    2011-01-15

    Electrochromic properties of chemically bath deposited nanoporous NiO thin films were investigated as a function of film thickness using Ni sulphate precursor, aqueous ammonia and potassium persulphate as complexing and oxidizing agents respectively. The films were characterized for their structural, morphological, optical and electrochromic properties using X-ray diffraction, scanning electron microscopy, FT-IR spectroscopy, cyclic voltammetry, chronoamperometry and optical transmittance studies. X-ray diffraction patterns show that the films are polycrystalline, consisting of NiO cubic phase. Infrared spectroscopy results show the presence of free hydroxyl ion and water in NiO thin films. SEM micrographs revealed nanoporous nature composed of interconnected nanoporous network, forming well defined 3D nano envelopes. The optical band gap energy was found to be decreased from 3.22 to 2.80 eV with increasing film thickness. The electrochromic properties of all the films were investigated in aqueous (KOH) and non aqueous (LiClO{sub 4}-PC) electrolyte by means of cyclic voltammetry (CV), chronocoulometry (CC) and optical studies. The transmittance modulations or optical density differences during the coloring/bleaching process were found to be increased with the film thickness. This increment in optical differences led to an increase in coloration efficiency (CE) to about 95 cm{sup 2}/C, which is two times more than that observed in KOH and response time of 2.9 s for bleaching (reduction) and 3.5 s for coloration (oxidation) observed for the film deposited at 60 min with excellent electrochemical stability up to 3000 c/b cycles in LiClO{sub 4}-PC electrolyte.

  19. Magnetic damping phenomena in ferromagnetic thin-films and multilayers

    Science.gov (United States)

    Azzawi, S.; Hindmarch, A. T.; Atkinson, D.

    2017-11-01

    Damped ferromagnetic precession is an important mechanism underpinning the magnetisation processes in ferromagnetic materials. In thin-film ferromagnets and ferromagnetic/non-magnetic multilayers, the role of precession and damping can be critical for spintronic device functionality and as a consequence there has been significant research activity. This paper presents a review of damping in ferromagnetic thin-films and multilayers and collates the results of many experimental studies to present a coherent synthesis of the field. The terms that are used to define damping are discussed with the aim of providing consistent definitions for damping phenomena. A description of the theoretical basis of damping is presented from early developments to the latest discussions of damping in ferromagnetic thin-films and multilayers. An overview of the time and frequency domain methods used to study precessional magnetisation behaviour and damping in thin-films and multilayers is also presented. Finally, a review of the experimental observations of magnetic damping in ferromagnetic thin-films and multilayers is presented with the most recent explanations. This brings together the results from many studies and includes the effects of ferromagnetic film thickness, the effects of composition on damping in thin-film ferromagnetic alloys, the influence of non-magnetic dopants in ferromagnetic films and the effects of combining thin-film ferromagnets with various non-magnetic layers in multilayered configurations.

  20. Thermally stable antireflective coatings based on nanoporous organosilicate thin films.

    Science.gov (United States)

    Kim, Suhan; Cho, Jinhan; Char, Kookheon

    2007-06-05

    Thermally stable nanoporous organosilicate thin films were realized by the microphase separation of pore-generating polymers mixed with an organosilicate matrix to be antireflective coatings (ARCs), for which a thin film with a refractive index (n) of 1.23 for zero reflection is required. The refractive index of such nanoporous organosilicate films can be tuned from 1.39 down to 1.23 by incorporating nanopores within the films. With a nanoporous single layer with n approximately 1.23, the light transmittance of the glass above 99.8% was achieved in the visible range (lambda approximately 550 nm). To overcome the limitation on the narrow wavelength for high transmittance imposed by a single antireflective nanoporous thin film, bilayer thin films with different refractive indices were prepared by placing a high refractive index layer with a refractive index of 1.45 below the nanoporous thin film. UV-vis transmittance of a glass coated with the bilayer films was compared with nanoporous single-layer films and it is demonstrated that the novel broadband antireflection coatings in a wide range of visible wavelength can be easily obtained by the organosilicate bilayer thin films described in this study. Also, ARCs developed in this study demonstrate excellent AR durability owing to the hydrophobic nature of the organosilicate matrix.

  1. Probing the bulk ionic conductivity by thin film hetero-epitaxial engineering

    KAUST Repository

    Pergolesi, Daniele

    2015-02-01

    Highly textured thin films with small grain boundary regions can be used as model systems to directly measure the bulk conductivity of oxygen ion conducting oxides. Ionic conducting thin films and epitaxial heterostructures are also widely used to probe the effect of strain on the oxygen ion migration in oxide materials. For the purpose of these investigations a good lattice matching between the film and the substrate is required to promote the ordered film growth. Moreover, the substrate should be a good electrical insulator at high temperature to allow a reliable electrical characterization of the deposited film. Here we report the fabrication of an epitaxial heterostructure made with a double buffer layer of BaZrO3 and SrTiO3 grown on MgO substrates that fulfills both requirements. Based on such template platform, highly ordered (001) epitaxially oriented thin films of 15% Sm-doped CeO2 and 8 mol% Y2O3 stabilized ZrO2 are grown. Bulk conductivities as well as activation energies are measured for both materials, confirming the success of the approach. The reported insulating template platform promises potential application also for the electrical characterization of other novel electrolyte materials that still need a thorough understanding of their ionic conductivity.

  2. Modifying thin film diamond for electronic applications

    International Nuclear Information System (INIS)

    Baral, B.

    1999-01-01

    The unique combination of properties that diamond possesses are being exploited in both electronic and mechanical applications. An important step forward in the field has been the ability to grow thin film diamond by chemical vapour deposition (CVD) methods and to control parameters such as crystal orientation, dopant level and surface roughness. An extensive understanding of the surface of any potential electronic material is vital to fully comprehend its behaviour within device structures. The surface itself ultimately controls key aspects of device performance when interfaced with other materials. This study has provided insight into important chemical reactions on polycrystalline CVD diamond surfaces, addressing how certain surface modifications will ultimately affect the properties of the material. A review of the structure, bonding, properties and potential of diamond along with an account of the current state of diamond technology and CVD diamond growth is provided. The experimental chapter reviews bulk material and surface analytical techniques employed in this work and is followed by an investigation of cleaning treatments for polycrystalline CVD diamond aimed at removing non-diamond carbon from the surface. Selective acid etch treatments are compared and contrasted for efficacy with excimer laser irradiation and hydrogen plasma etching. The adsorption/desorption kinetics of potential dopant-containing precursors on polycrystalline CVD diamond surfaces have been investigated to compare their effectiveness at introducing dopants into the diamond during the growth stage. Both boron and sulphur-containing precursor compounds have been investigated. Treating polycrystalline CVD diamond in various atmospheres / combination of atmospheres has been performed to enhance electron field emission from the films. Films which do not emit electrons under low field conditions can be modified such that they emit at fields as low as 10 V/μm. The origin of this enhancement

  3. Thin Films for Advanced Glazing Applications

    Directory of Open Access Journals (Sweden)

    Ann-Louise Anderson

    2016-09-01

    Full Text Available Functional thin films provide many opportunities for advanced glazing systems. This can be achieved by adding additional functionalities such as self-cleaning or power generation, or alternately by providing energy demand reduction through the management or modulation of solar heat gain or blackbody radiation using spectrally selective films or chromogenic materials. Self-cleaning materials have been generating increasing interest for the past two decades. They may be based on hydrophobic or hydrophilic systems and are often inspired by nature, for example hydrophobic systems based on mimicking the lotus leaf. These materials help to maintain the aesthetic properties of the building, help to maintain a comfortable working environment and in the case of photocatalytic materials, may provide external pollutant remediation. Power generation through window coatings is a relatively new idea and is based around the use of semi-transparent solar cells as windows. In this fashion, energy can be generated whilst also absorbing some solar heat. There is also the possibility, in the case of dye sensitized solar cells, to tune the coloration of the window that provides unheralded external aesthetic possibilities. Materials and coatings for energy demand reduction is highly desirable in an increasingly energy intensive world. We discuss new developments with low emissivity coatings as the need to replace scarce indium becomes more apparent. We go on to discuss thermochromic systems based on vanadium dioxide films. Such systems are dynamic in nature and present a more sophisticated and potentially more beneficial approach to reducing energy demand than static systems such as low emissivity and solar control coatings. The ability to be able to tune some of the material parameters in order to optimize the film performance for a given climate provides exciting opportunities for future technologies. In this article, we review recent progress and challenges in

  4. Thin Films of Quasicrystals: Optical, Electronic, and Mechanical Properties

    Science.gov (United States)

    Symko, Orest G.

    1998-03-01

    In order to extend some of the unusual properties of quasicrystals toward practical applications and to study fundamental aspects of these properties, we have developed a technology for the deposition of high quality thin films of quasicrystals on a variety of substrates. Mechanical support for the thin films is provided by the substrate as bulk quasicrystals are brittle. We have applied the thin films to studies of their optical, electrical, and mechanical properties as well as to coatings of biomedical devices. An important characteristic of a quasicrystal is its pseudogap in the electronic density of states; it is determined directly from optical transmission measurements. Optical and mechanical characteristics of the thin films provide strong support for the cluster nature of quasicrystals and emphasize their importance for coatings. When used in biomedical devices, thin film quasicrystalline coatings show remarkable strength, low friction, and non-stick behavior. This work was in collaboration with W. Park, E. Abdel-Rahman, and T. Klein.

  5. Nanocoatings and ultra-thin films technologies and applications

    CERN Document Server

    Tiginyanu, Ion

    2011-01-01

    Gives a comprehensive account of the developments of nanocoatings and ultra-thin films. This book covers the fundamentals, processes of deposition and characterisation of nanocoatings, as well as the applications. It is suitable for the glass and glazing, automotive, electronics, aerospace, construction and biomedical industries in particular.$bCoatings are used for a wide range of applications, from anti-fogging coatings for glass through to corrosion control in the aerospace and automotive industries. Nanocoatings and ultra-thin films provides an up-to-date review of the fundamentals, processes of deposition, characterisation and applications of nanocoatings. Part one covers technologies used in the creation and analysis of thin films, including chapters on current and advanced coating technologies in industry, nanostructured thin films from amphiphilic molecules, chemical and physical vapour deposition methods and methods for analysing nanocoatings and ultra-thin films. Part two focuses on the applications...

  6. Thermoluminescence of thin films deposited by laser ablation

    International Nuclear Information System (INIS)

    Escobar A, L.; Camps, E.; Arrieta, A.; Romero, S.; Gonzalez, P.R.; Olea M, O.; Diaz E, R.

    2003-01-01

    Materials in thin film form have received great attention in the last few years mainly because of their singular properties, which may differ significantly from their bulk attributes making them attractive for a wide variety of applications. In particular, thermoluminescence (Tl) properties of thin films have been studied recently owing to their potential applications in detection for both ionizing and non ionizing radiation. The aim of the present work is to report the synthesis and characterization of C Nx, aluminum oxide and titanium oxide thin films. Thermoluminescence response of the obtained thin films was studied after subject thin films to UV radiation (254 nm) as well as to gamma radiation (Co-60). Thermoluminescence glow curves exhibited a peak centered at 150 C for CN x whereas for titanium oxide the glow curve shows a maximum peaking at 171 C. Characterization of the physical properties of the deposited materials is presented. (Author)

  7. Infrared analysis of thin films amorphous, hydrogenated carbon on silicon

    CERN Document Server

    Jacob, W; Schwarz-Selinger, T

    2000-01-01

    The infrared analysis of thin films on a thick substrate is discussed using the example of plasma-deposited, amorphous, hydrogenated carbon layers (a-C:H) on silicon substrates. The framework for the optical analysis of thin films is presented. The main characteristic of thin film optics is the occurrence of interference effects due to the coherent superposition of light multiply reflected at the various internal and external interfaces of the optical system. These interference effects lead to a sinusoidal variation of the transmitted and reflected intensity. As a consequence, the Lambert-Beer law is not applicable for the determination of the absorption coefficient of thin films. Furthermore, observable changes of the transmission and reflection spectra occur in the vicinity of strong absorption bands due to the Kramers-Kronig relation. For a sound data evaluation these effects have to be included in the analysis. To be able to extract the full information contained in a measured optical thin film spectrum, ...

  8. Thin films and coatings toughening and toughness characterization

    CERN Document Server

    Zhang, Sam

    2015-01-01

    Thin Films and Coatings: Toughening and Toughness Characterization captures the latest developments in the toughening of hard coatings and in the measurement of the toughness of thin films and coatings. Featuring chapters contributed by experts from Australia, China, Czech Republic, Poland, Singapore, Spain, and the United Kingdom, this first-of-its-kind book:Presents the current status of hard-yet-tough ceramic coatingsReviews various toughness evaluation methods for films and hard coatingsExplores the toughness and toughening mechanisms of porous thin films and laser-treated surfacesExamines

  9. Room temperature deposition of magnetite thin films on organic substrate

    International Nuclear Information System (INIS)

    Arisi, E.; Bergenti, I.; Cavallini, M.; Murgia, M.; Riminucci, A.; Ruani, G.; Dediu, V.

    2007-01-01

    We report on the growth of magnetite films directly on thin layers of organic semiconductors by means of an electron beam ablation method. The deposition was performed at room temperature in a reactive plasma atmosphere. Thin films show ferromagnetic (FM) hysteresis loops and coercive fields of hundreds of Oersted. Micro Raman analysis indicates no presence of spurious phases. The morphology of the magnetite film is strongly influenced by the morphology of the underlayer of the organic semiconductor. These results open the way for the application of magnetite thin films in the field of organic spintronics

  10. Novel photon management for thin-film photovoltaics

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Rajesh [Univ. of Utah, Salt Lake City, UT (United States)

    2016-11-11

    The objective of this project is to enable commercially viable thin-film photovoltaics whose efficiencies are increased by over 10% using a novel optical spectral-separation technique. A thin planar diffractive optic is proposed that efficiently separates the solar spectrum and assigns these bands to optimal thin-film sub-cells. An integrated device that is comprised of the optical element, an array of sub-cells and associated packaging is proposed.

  11. Band edges determination of CuInS2 thin films prepared by electrodeposition

    International Nuclear Information System (INIS)

    Martinez, A.M.; Arriaga, L.G.; Fernandez, A.M.; Cano, U.

    2004-01-01

    A CuInS 2 (CIS) semiconductor thin film was growth by electrodeposition on a stainless steel substrate. In order to improve the polycrystallinity the samples were annealed in a N 2 atmosphere. The films were characterized by electrochemical techniques and X ray diffraction and their band gaps were determined by photocurrent spectroscopy. When the electrolytic bath has the same concentration [Cu 2+ ] = [In 3+ ] the resulting film was of the n-type, while for different concentrations of Cu and In ions the film was of the p-type. A depletion zone during capacitance-voltage measurements at 10 kHz frequency was seen over the voltage range used. Using C-V plots in the depletion zone, flat-band potentials and the energetic position of band edges were calculated

  12. Patterns and conformations in molecularly thin films

    Science.gov (United States)

    Basnet, Prem B.

    Molecularly thin films have been a subject of great interest for the last several years because of their large variety of industrial applications ranging from micro-electronics to bio-medicine. Additionally, molecularly thin films can be used as good models for biomembrane and other systems where surfaces are critical. Many different kinds of molecules can make stable films. My research has considered three such molecules: a polymerizable phospholipid, a bent-core molecules, and a polymer. One common theme of these three molecules is chirality. The phospolipid molecules studied here are strongly chiral, which can be due to intrinsically chiral centers on the molecules and also due to chiral conformations. We find that these molecules give rise to chiral patterns. Bent-core molecules are not intrinsically chiral, but individual molecules and groups of molecules can show chiral structures, which can be changed by surface interactions. One major, unconfirmed hypothesis for the polymer conformation at surface is that it forms helices, which would be chiral. Most experiments were carried out at the air/water interface, in what are called Langmuir films. Our major tools for studying these films are Brewster Angle Microscopy (BAM) coupled with the thermodynamic information that can be deduced from surface pressure isotherms. Phospholipids are one of the important constituents of liposomes -- a spherical vesicle com-posed of a bilayer membrane, typically composed of a phospholipid and cholesterol bilayer. The application of liposomes in drug delivery is well-known. Crumpling of vesicles of polymerizable phospholipids has been observed. With BAM, on Langmuir films of such phospholipids, we see novel spiral/target patterns during compression. We have found that both the patterns and the critical pressure at which they formed depend on temperature (below the transition to a i¬‘uid layer). Bent-core liquid crystals, sometimes knows as banana liquid crystals, have drawn

  13. Preparation and optical characterization of DNA-riboflavin thin films

    Science.gov (United States)

    Paulson, Bjorn; Shin, Inchul; Kong, Byungjoo; Sauer, Gregor; Dugasani, Sreekantha Reddy; Khazaeinezhad, Reza; Jung, Woohyun; Joo, Boram; Oh, Kyunghwan

    2016-09-01

    Thin films of DNA biopolymer thin film are fabricated by a drop casting process on glass and silicon substrates, as well as freestanding. The refractive index is measured by elliposmetry and in bulk DNA film the refractive index is shown to be increased in the 600 to 900 nm DNA transparency window by doping with riboflavin. Further analysis with FT-IR, Raman, and XRD are used to determine whether binding between riboflavin and DNA occurs.

  14. Pulsed laser deposition and characterisation of thin superconducting films

    Energy Technology Data Exchange (ETDEWEB)

    Morone, A. [CNR, zona industriale di Tito Scalo, Potenza (Italy). Istituto per i Materiali Speciali

    1996-09-01

    Same concepts on pulsed laser deposition of thin films will be discussed and same examples of high transition temperature (HTc) BiSrCaCuO (BISCO) and low transition temperature NbN/MgO/NbN multilayers will be presented. X-ray and others characterizations of these films will be reported and discussed. Electrical properties of superconducting thin films will be realized as a function of structural and morphological aspect.

  15. Thin film adhesion by nanoindentation-induced superlayers. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Gerberich, William W.; Volinsky, A.A.

    2001-06-01

    This work has analyzed the key variables of indentation tip radius, contact radius, delamination radius, residual stress and superlayer/film/interlayer properties on nanoindentation measurements of adhesion. The goal to connect practical works of adhesion for very thin films to true works of adhesion has been achieved. A review of this work titled ''Interfacial toughness measurements of thin metal films,'' which has been submitted to Acta Materialia, is included.

  16. Thin films of mixed metal compounds

    Science.gov (United States)

    Mickelsen, R.A.; Chen, W.S.

    1985-06-11

    Disclosed is a thin film heterojunction solar cell, said heterojunction comprising a p-type I-III-IV[sub 2] chalcopyrite substrate and an overlying layer of an n-type ternary mixed metal compound wherein said ternary mixed metal compound is applied to said substrate by introducing the vapor of a first metal compound to a vessel containing said substrate from a first vapor source while simultaneously introducing a vapor of a second metal compound from a second vapor source of said vessel, said first and second metals comprising the metal components of said mixed metal compound; independently controlling the vaporization rate of said first and second vapor sources; reducing the mean free path between vapor particles in said vessel, said gas being present in an amount sufficient to induce homogeneity of said vapor mixture; and depositing said mixed metal compound on said substrate in the form of a uniform composition polycrystalline mixed metal compound. 5 figs.

  17. Printed Thin Film Transistors: Research from China.

    Science.gov (United States)

    Tong, Sichao; Sun, Jia; Yang, Junliang

    2018-03-01

    Thin film transistors (TFTs) have experienced tremendous development during the past decades and show great potential applications in flat displays, sensors, radio frequency identification tags, logic circuit, and so on. The printed TFTs are the key components for rapid development and commercialization of printed electronics. The researchers in China play important roles to accelerate the development and commercialization of printed TFTs. In this review, we comprehensively summarize the research progress of printed TFTs on rigid and flexible substrates from China. The review will focus on printing techniques of TFTs, printed TFTs components including semiconductors, dielectrics and electrodes, as well as fully-printed TFTs and printed flexible TFTs. Furthermore, perspectives on the remaining challenges and future developments are proposed as well.

  18. Superconducting fluctuations in molybdenum nitride thin films

    Science.gov (United States)

    Baskaran, R.; Thanikai Arasu, A. V.; Amaladass, E. P.; Vaidhyanathan, L. S.; Baisnab, D. K.

    2018-02-01

    MoN thin films have been deposited using reactive sputtering. The change in resistance near superconducting transition temperature at various magnetic fields has been analyzed based on superconducting fluctuations in the system. The Aslamazov and Larkin scaling theory has been utilized to analyze the conductance change. The results indicate that most of the measurements show two dimensional (2D) nature and exhibit scaling behavior at lower magnetic fields (7T). We have also analyzed our data based on the model in which there is no explicit dependence of Tc. These analyses also substantiate a crossover from a 2D nature to a 3D at larger fields. Analysis using lowest Landau level scaling theory for a 2D system exhibit scaling behavior and substantiate our observations. The broadening at low resistance part has been explained based on thermally activated flux flow model and show universal behavior. The dependence of Uo on magnetic field indicates both single and collective vortex behavior.

  19. Review of Zinc Oxide Thin Films

    Science.gov (United States)

    2014-12-23

    Chemical Properties ZnO occurs  as white powder  known  as  zinc white or  as  the mineral  zincite.  Zinc  oxide   is  an  amphoteric   oxide .  It  is...AFRL-OSR-VA-TR-2015-0044 Review of Zinc Oxide Thin Films Tom Otiti COLLEGE OF COMPUTING AND INFORMATION SCIENCE MAKERERE U Final Report 12/23/2014...COVERED (From - To)      01-07-2011 to 30-06-2014 4.  TITLE AND SUBTITLE ZINC OXIDE MATERIALS FOR PHOTOVOLTAIC APPLICATIONS 5a.  CONTRACT NUMBER 5b

  20. Amperometric noise at thin film band electrodes.

    Science.gov (United States)

    Larsen, Simon T; Heien, Michael L; Taboryski, Rafael

    2012-09-18

    Background current noise is often a significant limitation when using constant-potential amperometry for biosensor application such as amperometric recordings of transmitter release from single cells through exocytosis. In this paper, we fabricated thin-film electrodes of gold and conductive polymers and measured the current noise in physiological buffer solution for a wide range of different electrode areas. The noise measurements could be modeled by an analytical expression, representing the electrochemical cell as a resistor and capacitor in series. The studies revealed three domains; for electrodes with low capacitance, the amplifier noise dominated, for electrodes with large capacitances, the noise from the resistance of the electrochemical cell was dominant, while in the intermediate region, the current noise scaled with electrode capacitance. The experimental results and the model presented here can be used for choosing an electrode material and dimensions and when designing chip-based devices for low-noise current measurements.

  1. Effects of TiO2 Film Thickness and Electrolyte Concentration on Photovoltaic Performance of Dye-Sensitized Solar Cell

    Science.gov (United States)

    Domtau, D. L.; Simiyu, J.; Ayieta, E. O.; Nyakiti, L. O.; Muthoka, B.; Mwabora, J. M.

    Effects of film thickness and electrolyte concentration on the photovoltaic performance of TiO2-based dye-sensitized solar cell (DSSC) were studied. Nanocrystalline anatase TiO2 thin films with varying thicknesses (3.2-18.9μm) have been deposited on FTO/glass substrates by screen printing method as work electrodes for DSSC. The prepared samples were characterized by UV-Vis spectroscopy, Atomic Force Microscopy/Scanning Tunneling Microscopy (AFM/STM) and X-ray diffraction (XRD). The optimal thickness of the TiO2 photoanode is 13.5μm. Short-circuit photocurrent density (Jsc) increases with film thickness due to enlargement of surface area whereas open-circuit voltage decreases with increase in thickness due to increase in electron diffusion length to the electrode. However, the Jsc and Voc of DSSC with a film thickness of 18.9μm (7.5mA/cm2 and 0.687V) are smaller than those of DSSC with a TiO2 film thickness of 13.5μm (9.9mA/cm2 and 0.734V). This is because the increased thickness of TiO2 thin film resulted in the decrease in the transmittance of TiO2 thin films hence reducing the incident light intensity on the N719 dye. Photovoltaic performance also depends greatly on the redox couple concentration in iodide∖triiodide. Jsc decreases as the redox concentration increases as a result of increased viscosity of the solution which lowers ion mobility. Similarly, Voc decreases as the electrolyte concentration increases due to enhanced back electron transfer reaction. An optimum power conversion efficiency of 4.3% was obtained in a DSSC with the TiO2 film thickness of 13.5μm and redox concentration of 0.03mol dm-3 under AM 1.5G illumination at 100mW/cm2.

  2. Optical properties of aluminum oxide thin films and colloidal nanostructures

    International Nuclear Information System (INIS)

    Koushki, E.; Mousavi, S.H.; Jafari Mohammadi, S.A.; Majles Ara, M.H.; Oliveira, P.W. de

    2015-01-01

    In this work, we prepared thin films of aluminum oxide (Al 2 O 3 ) with different thicknesses, using a wet chemical process. The Al 2 O 3 nanoparticles with an average size of 40 nm were dispersed in water and deposited on soda glass substrates. The morphology of the resulting thin films was characterized by means of scanning electron microscopy. The optical properties of the thin films were studied by measuring reflectance and transmittance. A theoretical description of the reflection and transmission mechanism of the films was developed by measuring the thickness and spectral behavior of the refractive index. Numerical evaluations were used for modeling the optical spectra of the thin films of alumina. By fitting numerical curves to the experimental data, the extinction coefficient and refractive index were obtained. The dielectric constant and optical properties of the colloidal solution of the particles were also studied. - Highlights: • Optical properties of alumina thin films and nanocolloids were investigated. • New theoretical depiction of transmission and reflection from the thin films was evaluated. • Interference in reflection from thin films was studied. • Real and imaginary parts of the dielectric constant for alumina nanoparticles were calculated. • Using a novel method, evaluation of optical dispersion and UV–visible absorption were performed.

  3. Optical properties of aluminum oxide thin films and colloidal nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Koushki, E., E-mail: ehsan.koushki@yahoo.com [Photonics Laboratory, Physics Faculty, Kharazmi University, Tehran (Iran, Islamic Republic of); Physics Department, Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); Mousavi, S.H. [INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken (Germany); Jafari Mohammadi, S.A. [INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken (Germany); Department of Chemistry, College of Science, Islamshahr Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Majles Ara, M.H. [Photonics Laboratory, Physics Faculty, Kharazmi University, Tehran (Iran, Islamic Republic of); Oliveira, P.W. de [INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken (Germany)

    2015-10-01

    In this work, we prepared thin films of aluminum oxide (Al{sub 2}O{sub 3}) with different thicknesses, using a wet chemical process. The Al{sub 2}O{sub 3} nanoparticles with an average size of 40 nm were dispersed in water and deposited on soda glass substrates. The morphology of the resulting thin films was characterized by means of scanning electron microscopy. The optical properties of the thin films were studied by measuring reflectance and transmittance. A theoretical description of the reflection and transmission mechanism of the films was developed by measuring the thickness and spectral behavior of the refractive index. Numerical evaluations were used for modeling the optical spectra of the thin films of alumina. By fitting numerical curves to the experimental data, the extinction coefficient and refractive index were obtained. The dielectric constant and optical properties of the colloidal solution of the particles were also studied. - Highlights: • Optical properties of alumina thin films and nanocolloids were investigated. • New theoretical depiction of transmission and reflection from the thin films was evaluated. • Interference in reflection from thin films was studied. • Real and imaginary parts of the dielectric constant for alumina nanoparticles were calculated. • Using a novel method, evaluation of optical dispersion and UV–visible absorption were performed.

  4. Thin Film Approaches to the SRF Cavity Problem Fabrication and Characterization of Superconducting Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Beringer, Douglas [College of William and Mary, Williamsburg, VA (United States)

    2017-08-01

    Superconducting Radio Frequency (SRF) cavities are responsible for the acceleration of charged particles to relativistic velocities in most modern linear accelerators, such as those employed at high-energy research facilities like Thomas Jefferson National Laboratory’s CEBAF and the LHC at CERN. Recognizing SRF as primarily a surface phenomenon enables the possibility of applying thin films to the interior surface of SRF cavities, opening a formidable tool chest of opportunities by combining and designing materials that offer greater performance benefit. Thus, while improvements in radio frequency cavity design and refinements in cavity processing techniques have improved accelerator performance and efficiency – 1.5 GHz bulk niobium SRF cavities have achieved accelerating gradients in excess of 35 MV/m – there exist fundamental material bounds in bulk superconductors limiting the maximally sustained accelerating field gradient (≈ 45 MV/m for Nb) where inevitable thermodynamic breakdown occurs. With state of the art Nb based cavity design fast approaching these theoretical limits, novel material innovations must be sought in order to realize next generation SRF cavities. One proposed method to improve SRF performance is to utilize thin film superconducting-insulating-superconducting (SIS) multilayer structures to effectively magnetically screen a bulk superconducting layer such that it can operate at higher field gradients before suffering critically detrimental SRF losses. This dissertation focuses on the production and characterization of thin film superconductors for such SIS layers for radio frequency applications. Correlated studies on structure, surface morphology and superconducting properties of epitaxial Nb and MgB2 thin films are presented.

  5. Glass transition and thermal expansivity of polystyrene thin films

    International Nuclear Information System (INIS)

    Inoue, R.; Kanaya, T.; Miyazaki, T.; Nishida, K.; Tsukushi, I.; Shibata, K.

    2006-01-01

    We have studied glass transition temperature and thermal expansivity of polystyrene thin films supported on silicon substrate using X-ray reflectivity and inelastic neutron scattering techniques. In annealing experiments, we have found that the reported apparent negative expansivity of polymer thin films is caused by unrelaxed structure due to insufficient annealing. Using well-annealed films, we have evaluated glass transition temperature T g and thermal expansivity as a function of film thickness. The glass transition temperature decreases with film thickness and is constant below about 10 nm, suggesting the surface glass transition temperature of 355 K, which is lower than that in bulk. We have also found that the thermal expansivity in the glassy state decreases with film thickness even after annealing. The decrease has been attributed to hardening of harmonic force constant arising from chain confinement in a thin film. This idea has been confirmed in the inelastic neutron scattering measurements

  6. Glass transition and thermal expansivity of polystyrene thin films

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, R. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan); Kanaya, T. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan)]. E-mail: kanaya@scl.kyoto-u.ac.jp; Miyazaki, T. [Nitto Denko Corporation, 1-1-2 Shimohozumi, Ibaraki, Osaka-fu 567-8680 (Japan); Nishida, K. [Institute for Chemical Research, Kyoto University, Uji, Kyoto-fu 611-0011 (Japan); Tsukushi, I. [Chiba Institute of Technology, Narashino, Chiba-ken 275-0023 (Japan); Shibata, K. [Japan Atomic Energy Research Institute, Tokai, Ibaraki-ken 319-1195 (Japan)

    2006-12-20

    We have studied glass transition temperature and thermal expansivity of polystyrene thin films supported on silicon substrate using X-ray reflectivity and inelastic neutron scattering techniques. In annealing experiments, we have found that the reported apparent negative expansivity of polymer thin films is caused by unrelaxed structure due to insufficient annealing. Using well-annealed films, we have evaluated glass transition temperature T {sub g} and thermal expansivity as a function of film thickness. The glass transition temperature decreases with film thickness and is constant below about 10 nm, suggesting the surface glass transition temperature of 355 K, which is lower than that in bulk. We have also found that the thermal expansivity in the glassy state decreases with film thickness even after annealing. The decrease has been attributed to hardening of harmonic force constant arising from chain confinement in a thin film. This idea has been confirmed in the inelastic neutron scattering measurements.

  7. Sensing of volatile organic compounds by copper phthalocyanine thin films

    Science.gov (United States)

    Ridhi, R.; Saini, G. S. S.; Tripathi, S. K.

    2017-02-01

    Thin films of copper phthalocyanine have been deposited by thermal evaporation technique. We have subsequently exposed these films to the vapours of methanol, ethanol and propanol. Optical absorption, infrared spectra and electrical conductivities of these films before and after exposure to chemical vapours have been recorded in order to study their sensing mechanisms towards organic vapours. These films exhibit maximum sensing response to methanol while low sensitivities of the films towards ethanol and propanol have been observed. The changes in sensitivities have been correlated with presence of carbon groups in the chemical vapours. The effect of different types of electrodes on response-recovery times of the thin film with organic vapours has been studied and compared. The electrodes gap distance affects the sensitivity as well as response-recovery time values of the thin films.

  8. Thin film characterization by resonantly excited internal standing waves

    Energy Technology Data Exchange (ETDEWEB)

    Di Fonzio, S. [SINCROTRONE TRIESTE, Trieste (Italy)

    1996-09-01

    This contribution describes how a standing wave excited in a thin film can be used for the characterization of the properties of the film. By means of grazing incidence X-ray reflectometry one can deduce the total film thickness. On the other hand in making use of a strong resonance effect in the electric field intensity distribution inside a thin film on a bulk substrate one can learn more about the internal structure of the film. The profile of the internal standing wave is proven by diffraction experiments. The most appropriate non-destructive technique for the subsequent thin film characterization is angularly dependent X-ray fluorescence analysis. The existence of the resonance makes it a powerful tool for the detection of impurities and of ultra-thin maker layers, for which the position can be determined with very high precision (about 1% of the total film thickness). This latter aspect will be discussed here on samples which had a thin Ti marker layer at different positions in a carbon film. Due to the resonance enhancement it was still possible to perform these experiments with a standard laboratory x-ray tube and with standard laboratory tool for marker or impurity detection in thin films.

  9. Dip-coated hydrotungstite thin films as humidity sensors

    Indian Academy of Sciences (India)

    Thin films of a hydrated phase of tungsten oxide, viz. hydrotungstite, have been prepared on glass substrates by dip-coating method using ammonium tungstate precursor solution. X-ray diffraction shows the films to have a strong -axis orientation. The resistance of the films is observed to be sensitive to the humidity content ...

  10. Electrical Conductivity of CUXS Thin Film Deposited by Chemical ...

    African Journals Online (AJOL)

    Thin films of CuxS have successfully been deposited on glass substrates using the Chemical Bath Deposition (CBD) technique. The films were then investigated for their electrical properties. The results showed that the electrical conductivities of the CuxS films with different molarities (n) of thiourea (Tu), determined using ...

  11. Strain-induced properties of epitaxial VOx thin films

    NARCIS (Netherlands)

    Rata, AD; Hibma, T

    We have grown VOx thin films on different substrates in order to investigate the influence of epitaxial strain on the transport properties. We found that the electric conductivity is much larger for films grown under compressive strain on SrTiO3 substrates, as compared to bulk material and VOx films

  12. Thin-film cryogenic resistors from aluminium alloys

    Science.gov (United States)

    Tadros, N. N.; Holdeman, L. B.

    The temperature dependence of the resistances of thin films sputtered from three commercially available aluminium alloys (5052, 5086, 5456) has been measured in the temperature range 1.5-4.2 K. The 5052-alloy films had a positive temperature coefficient of resistance (TCR) throughout this temperature range, whereas films of the other two alloys had a negative TCR.

  13. OPTIMISATION OF SPRAY DEPOSITED Sno2 THIN FILM FOR ...

    African Journals Online (AJOL)

    Dr Obe

    1987-09-01

    Sep 1, 1987 ... ABSTRACT. The use of conducting tin-oxide (SnO2 ) films for fabrication of solar cell is becoming increasingly important because of reasonably high efficiency and ease in fabrication. The role of the thin-oxide film is very critical for high efficiency. Resistivity, thickness and transmittance of the film should be ...

  14. Thin Film Approaches to the SRF Cavity Problem: Fabrication and Characterization of Superconducting Thin Films

    Science.gov (United States)

    Beringer, Douglas B.

    Superconducting Radio Frequency (SRF) cavities are responsible for the acceleration of charged particles to relativistic velocities in most modern linear accelerators, such as those employed at high-energy research facilities like Thomas Jefferson National Laboratory's CEBAF and the LHC at CERN. Recognizing SRF as primarily a surface phenomenon enables the possibility of applying thin films to the interior surface of SRF cavities, opening a formidable tool chest of opportunities by combining and designing materials that offer greater benefit. Thus, while improvements in radio frequency cavity design and refinements in cavity processing techniques have improved accelerator performance and efficiency - 1.5 GHz bulk niobium SRF cavities have achieved accelerating gradients in excess of 35 MV/m - there exist fundamental material bounds in bulk superconductors limiting the maximally sustained accelerating field gradient (approximately 45 MV/m for Niobium) where inevitable thermodynamic breakdown occurs. With state of the art niobium based cavity design fast approaching these theoretical limits, novel material innovations must be sought in order to realize next generation SRF cavities. One proposed method to improve SRF performance is to utilize thin film superconducting-insulating-superconducting (SIS) multilayer structures to effectively magnetically screen a bulk superconducting layer such that it can operate at higher field gradients before suffering critically detrimental SRF losses. This dissertation focuses on the production and characterization of thin film superconductors for such SIS layers for radio-frequency applications.

  15. Photoinduced conductivity in tin dioxide thin films

    International Nuclear Information System (INIS)

    Muraoka, Y.; Takubo, N.; Hiroi, Z.

    2009-01-01

    The effects of ultraviolet light irradiation on the conducting properties of SnO 2-x thin films grown epitaxially on TiO 2 or Al 2 O 3 single-crystal substrates are studied at room temperature. A large increase in conductivity by two to four orders of magnitude is observed with light irradiation in an inert atmosphere and remains after the light is removed. The high-conducting state reverts to the original low-conducting state by exposing it to oxygen gas. These reversible phenomena are ascribed to the desorption and adsorption of negatively charged oxygen species at the grain boundaries, which critically change the mobility of electron carriers already present inside grains by changing the potential barrier height at the grain boundary. The UV light irradiation provides us with an easy and useful route to achieve a high-conducting state even at low carrier density in transparent conducting oxides and also to draw an invisible conducting wire or a specific pattern on an insulating film.

  16. Polymer Based Thin Film Screen Preparation Technique

    Science.gov (United States)

    Valais, I.; Michail, C.; Fountzoula, C.; Fountos, G.; Saatsakis, G.; Karabotsos, A.; Panayiotakis, G. S.; Kandarakis, I.

    2017-11-01

    Phosphor screens, mainly prepared by electrophoresis, demonstrate brightness equal to the standard sedimentation on glass or quartz substrate process and are capable of very high resolution. Nevertheless, they are very fragile, the shape of the screen is limited to the substrate shape and in order to achieve adequate surface density for application in medical imaging, a significant quantity of the phosphor will be lost. Fluorescent films prepared by the dispersion of phosphor particles into a polymer matrix could solve the above disadvantages. The aim of this study is to enhance the stability of phosphor screens via the incorporation of phosphor particles into a PMMA (PolyMethyl MethAcrylate) matrix. PMMA is widely used as a plastic optical fiber, it shows almost nearly no dispersion effects and it is transparent in the whole visible spectral range. Different concentrations of PMMA in MMA (Methyl Methacrylate) were examined and a 37.5 % w/w solution was used for the preparation of the thin polymer film, since optical quality characteristics were found to depend on PMMA in MMA concentration. Scanning Electron Microscopy (SEM) images of the polymer screens demonstrated high packing density and uniform distribution of the phosphor particles. This method could be potentially used for phosphor screen preparation of any size and shape.

  17. Electroluminescence of doped organic thin films

    Science.gov (United States)

    Tang, C. W.; VanSlyke, S. A.; Chen, C. H.

    1989-05-01

    Electroluminescent (EL) devices are constructed using multilayer organic thin films. The basic structure consists of a hole-transport layer and a luminescent layer. The hole-transport layer is an amorphous diamine film in which the only mobile carrier is the hole. The luminescent layer consists of a host material, 8-hydroxyquinoline aluminum (Alq), which predominantly transports electrons. High radiance has been achieved at an operating voltage of less than 10 V. By doping the Alq layer with highly fluorescent molecules, the EL efficiency has been improved by about a factor of 2 in comparison with the undoped cell. Representative dopants are coumarins and DCMs. The EL quantum efficiency of the doped system is about 2.5%, photon/electron. The EL colors can be readily tuned from the blue-green to orange-red by a suitable choice of dopants as well as by changing the concentration of the dopant. In the doped system the electron-hole recombination and emission zones can be confined to about 50 Å near the hole-transport interface. In the undoped Alq, the EL emission zone is considerably larger due to exciton diffusion. The multilayer doped EL structure offers a simple means for the direct determination of exciton diffusion length.

  18. Synthesis and characteristics of PbTe1-xSex thin films formed via electrodeposition

    Science.gov (United States)

    Bae, Sangwoo; Lee, Sangwon; Sohn, Ho-Sang; Lee, Ho Seong

    2017-09-01

    PbTe1-xSex films were grown using electrodeposition and their microstructural and electrical properties were investigated. The Se content incorporated in the PbTe1-xSex films increased with the Se content in the electrolyte. X-ray diffraction peaks of the PbTe1-xSex films shifted to higher angles according to Vegard's law. For the sample with a small Se content, the PbTe1-xSex films showed a characteristic feather-like dendrite, while PbTe1-xSex films with a higher Se content showed faceted particles. Transmission electron microscopy results showed that the feather-like dendritic PbTe1-xSex grew like a single crystal and a growing twinning was formed in some dendrites. With an increase in the Se content in the PbTe1-xSex thin films, the carrier concentrations increased but the mobility reduced. Electrical conductivity of the PbTe1-xSex thin films increased and then slightly decreased with increasing Se content.

  19. Subtractive fabrication of ferroelectric thin films with precisely controlled thickness

    Science.gov (United States)

    Ievlev, Anton V.; Chyasnavichyus, Marius; Leonard, Donovan N.; Agar, Joshua C.; Velarde, Gabriel A.; Martin, Lane W.; Kalinin, Sergei V.; Maksymovych, Petro; Ovchinnikova, Olga S.

    2018-04-01

    The ability to control thin-film growth has led to advances in our understanding of fundamental physics as well as to the emergence of novel technologies. However, common thin-film growth techniques introduce a number of limitations related to the concentration of defects on film interfaces and surfaces that limit the scope of systems that can be produced and studied experimentally. Here, we developed an ion-beam based subtractive fabrication process that enables creation and modification of thin films with pre-defined thicknesses. To accomplish this we transformed a multimodal imaging platform that combines time-of-flight secondary ion mass spectrometry with atomic force microscopy to a unique fabrication tool that allows for precise sputtering of the nanometer-thin layers of material. To demonstrate fabrication of thin-films with in situ feedback and control on film thickness and functionality we systematically studied thickness dependence of ferroelectric switching of lead-zirconate-titanate, within a single epitaxial film. Our results demonstrate that through a subtractive film fabrication process we can control the piezoelectric response as a function of film thickness as well as improve on the overall piezoelectric response versus an untreated film.

  20. Microfabricated Thin Film Impedance Sensor & AC Impedance Measurements

    Science.gov (United States)

    Yu, Jinsong; Liu, Chung-Chiun

    2010-01-01

    Thin film microfabrication technique was employed to fabricate a platinum based parallel-electrode structured impedance sensor. Electrochemical impedance spectroscopy (EIS) and equivalent circuit analysis of the small amplitude (±5 mV) AC impedance measurements (frequency range: 1 MHz to 0.1 Hz) at ambient temperature were carried out. Testing media include 0.001 M, 0.01 M, 0.1 M NaCl and KCl solutions, and alumina (∼3 μm) and sand (∼300 μm) particulate layers saturated with NaCl solutions with the thicknesses ranging from 0.6 mm to 8 mm in a testing cell, and the results were used to assess the effect of the thickness of the particulate layer on the conductivity of the testing solution. The calculated resistances were approximately around 20 MΩ, 4 MΩ, and 0.5 MΩ for 0.001 M, 0.01 M, and 0.1 M NaCl solutions, respectively. The presence of the sand particulates increased the impedance dramatically (6 times and 3 times for 0.001 M and 0.1 M NaCl solutions, respectively). A cell constant methodology was also developed to assess the measurement of the bulk conductivity of the electrolyte solution. The cell constant ranged from 1.2 to 0.8 and it decreased with the increase of the solution thickness. PMID:22219690

  1. Electron field emission from amorphous semiconductor thin films

    International Nuclear Information System (INIS)

    Forrest, R.D.

    2001-01-01

    The flat panel display market requires new and improved technologies in order to keep up with the requirements of modem lifestyles. Electron field emission from thin film amorphous semiconductors is potentially such a technology. For this technology to become viable, improvements in the field emitting properties of these materials must be achieved. To this end, it is important that a better understanding of the emission mechanisms responsible is attained. Amorphous carbon thin films, amorphous silicon thin films and other materials have been deposited, in-house and externally. These materials have been characterised using ellipsometry, profilometry, optical absorption, scanning electron microscopy, atomic force microscopy, electron paramagnetic resonance and Rutherford backscattering spectroscopy. An experimental system for evaluating the electron field emitting performance of thin films has been developed. In the process of developing thin film cathodes in this study, it has been possible to add a new and potentially more useful semiconductor, namely amorphous silicon, to the family of cold cathode emitters. Extensive experimental field emission data from amorphous carbon thin films, amorphous silicon thin films and other materials has been gathered. This data has been used to determine the mechanisms responsible for the observed electron emission. Preliminary computer simulations using appropriate values for the different material properties have exhibited emission mechanisms similar to those identified by experiment. (author)

  2. Plasma polymerised thin films for flexible electronic applications

    International Nuclear Information System (INIS)

    Jacob, Mohan V.; Olsen, Natalie S.; Anderson, Liam J.; Bazaka, Kateryna; Shanks, Robert A.

    2013-01-01

    The significant advancement and growth of organic and flexible electronic applications demand materials with enhanced properties. This paper reports the fabrication of a nonsynthetic polymer thin film using radio frequency plasma polymerisation of 3,7-dimethyl-1,6-octadien-3-ol. The fabricated optically transparent thin film exhibited refractive index of approximately 1.55 at 500 nm and rate of deposition was estimated to be 40 nm/min. The surface morphology and chemical properties of the thin films were also reported in this paper. The optical band gap of the material is around 2.8 eV. The force of adhesion and Young's modulus of the linalool polymer thin films were measured using force-displacement curves obtained from a scanning probe microscope. The friction coefficient of linalool polymer thin films was measured using the nanoscratch test. The calculated Young's modulus increased linearly with increase in input power while the friction coefficient decreased. - Highlights: • Fabrication of a novel polymer thin film from non-synthetic source • The surface, optical and chemical properties are reported. • The fabricated thin film is transparent and smooth. • An environmentally friendly material • Candidate for flexible electronics as dielectric layer or as an encapsulation layer

  3. Plasma polymerised thin films for flexible electronic applications

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Mohan V., E-mail: mohan.jacob@jcu.edu.au [Electronic Materials Research Lab, School of Engineering and Physical Sciences, James Cook University, Townsville 4811 (Australia); Olsen, Natalie S.; Anderson, Liam J.; Bazaka, Kateryna [Electronic Materials Research Lab, School of Engineering and Physical Sciences, James Cook University, Townsville 4811 (Australia); Shanks, Robert A. [Applied Sciences, RMIT University, GPO Box 2476V, Melbourne 3001 (Australia)

    2013-11-01

    The significant advancement and growth of organic and flexible electronic applications demand materials with enhanced properties. This paper reports the fabrication of a nonsynthetic polymer thin film using radio frequency plasma polymerisation of 3,7-dimethyl-1,6-octadien-3-ol. The fabricated optically transparent thin film exhibited refractive index of approximately 1.55 at 500 nm and rate of deposition was estimated to be 40 nm/min. The surface morphology and chemical properties of the thin films were also reported in this paper. The optical band gap of the material is around 2.8 eV. The force of adhesion and Young's modulus of the linalool polymer thin films were measured using force-displacement curves obtained from a scanning probe microscope. The friction coefficient of linalool polymer thin films was measured using the nanoscratch test. The calculated Young's modulus increased linearly with increase in input power while the friction coefficient decreased. - Highlights: • Fabrication of a novel polymer thin film from non-synthetic source • The surface, optical and chemical properties are reported. • The fabricated thin film is transparent and smooth. • An environmentally friendly material • Candidate for flexible electronics as dielectric layer or as an encapsulation layer.

  4. Thin Film Evaporation of Receding Meniscus within Micro Pillar Arrays

    Science.gov (United States)

    Alhosani, Mohamed H.; Alsheghri, Ammar A.; Alghaferi, Amal; Zhang, Tiejun

    2015-03-01

    Evaporation is a key process in power generation, water desalination, and thermal management applications. It has been proved that hydrophilic micro structured surfaces can enhance the convection heat transfer by promoting high-performance thin film evaporation and enlarging the total heat transfer surface area. When depositing a water droplet on hydrophilic structured surfaces, two distinct regions can be observed, a) central region with water level higher than the micro pillar height (droplet region), b) thin film region as a result of liquid meniscus receding among micro structures. In this study, we are able to probe the physics of thin film evaporation of receding liquid meniscus among micro pillar arrays with different pillar heights, spacings and diameters. Heat transfer is systematically studied in the droplet and thin film region for each sample. Also, Young-Laplace equation and kinetic theory of mass transport are used to model the thin film evaporation around micro pillars. With the proposed model, the shape of meniscus around micro pillars and the diameter of droplet/extended thin film region can be predicted and compared with the experimental measurement. The model can also be extended to model thin film evaporation of meniscus within nano structured surfaces. Supported by cooperative agreement between Masdar Inst and MIT.

  5. Resistivity of thiol-modified gold thin films

    International Nuclear Information System (INIS)

    Correa-Puerta, Jonathan; Del Campo, Valeria; Henríquez, Ricardo; Häberle, Patricio

    2014-01-01

    In this work, we study the effect of thiol self assembled monolayers on the electrical resistivity of metallic thin films. The analysis is based on the Fuchs–Sondheimer–Lucas theory and on electrical transport measurements. We determined resistivity change due to dodecanethiol adsorption on gold thin films. For this purpose, we controlled the deposition and annealing temperatures of the films to change the surface topography and to diminish the effect of electron grain boundary scattering. Results show that the electrical response to the absorption of thiols strongly depends on the initial topography of the surface. - Highlights: • We study the effect of self assembled monolayers on the resistivity of thin films. • Fuchs–Sondheimer theory reproduces the resistivity increase due to thiol deposition. • We determined resistivity change due to dodecanethiol deposition on gold thin films. • The electrical response strongly depends on the substrate surface topography

  6. Multifunctional Parylene-C Microfibrous Thin Films

    Science.gov (United States)

    Chindam, Chandraprakash

    Towards sustainable development, multifunctional products have many advantageous over single-function products: reduction in number of parts, raw material, assembly time, and cost involved in a product's life cycle. My goal for this thesis was to demonstrate the multifunctionalities of Parylene-C microfibrous thin films. To achieve this goal, I chose Parylene C, a polymer, because the fabrication of periodic mediums of Parylene C in the form of microfibrous thin films (muFTFs) was already established. A muFTFs is a parallel arrangement of identical micrometer-sized fibers of shapes cylindrical, chevronic, or helical. Furthermore, Parylene C had three existing functions: in medical-device industries as corrosion-resistive coatings, in electronic industries as electrically insulating coatings, and in biomedical research for tissue-culture substrates. As the functionalities of a material are dependent on the microstructure and physical properties, the investigation made for this thesis was two-fold: (1) Experimentally, I determined the wetting, mechanical, and dielectric properties of columnar muFTFs and examined the microstructural and molecular differences between bulk films and muFTFs. (2) Using physical properties of bulk film, I computationally determined the elastodynamic and determined the electromagnetic filtering capabilities of Parylene-C muFTFs. Several columnar muFTFs of Parylene C were fabricated by varying the monomer deposition angle. Following are the significant experimental findings: 1. Molecular and microstructural characteristics: The dependence of the microfiber inclination angle on the monomer deposition angle was classified into four regimes of two different types. X-ray diffraction experiments indicated that the columnar muFTFs contain three crystal planes not evident in bulk Parylene-C films and that the columnar muFTFs are less crystalline than bulk films. Infrared absorbance spectra revealed that the atomic bonding is the same in all

  7. Fabrication and Film Qualification of Sr Modified Pb(Ca) TiO3 Thin Films

    International Nuclear Information System (INIS)

    Naw Hla Myat San; Khin Aye Thwe; Than Than Win; Yin Maung Maung; Ko Ko Kyaw Soe

    2011-12-01

    Strontium and calcium - modified lead titanate (Pb0.7 Ca0.15 Sr0.15 ) TiO3 (PCST)thin films were prepared by using spin coating technique. Phase transition of PCST was interpreted by means of Er-T characteristics. Process temperature dependence on micro-structure of PCST film was studied. Charge conduction mechanism of PCST thin film was also investigated for film qualification.

  8. Molecular simulation of freestanding amorphous nickel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Dong, T.Q. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France); Hoang, V.V., E-mail: vvhoang2002@yahoo.com [Department of Physics, Institute of Technology, National University of Ho Chi Minh City, 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City (Viet Nam); Lauriat, G. [Université Paris-Est, Laboratoire Modélisation et Simulation Multi Echelle, UMR 8208 CNRS, 5 Boulevard Descartes, 77454 Marne-la-Vallée, Cedex 2 (France)

    2013-10-31

    Size effects on glass formation in freestanding Ni thin films have been studied via molecular dynamics simulation with the n-body Gupta interatomic potential. Atomic mechanism of glass formation in the films is determined via analysis of the spatio-temporal arrangements of solid-like atoms occurred upon cooling from the melt. Solid-like atoms are detected via the Lindemann ratio. We find that solid-like atoms initiate and grow mainly in the interior of the film and grow outward. Their number increases with decreasing temperature and at a glass transition temperature they dominate in the system to form a relatively rigid glassy state of a thin film shape. We find the existence of a mobile surface layer in both liquid and glassy states which can play an important role in various surface properties of amorphous Ni thin films. We find that glass formation is size independent for models containing 4000 to 108,000 atoms. Moreover, structure of amorphous Ni thin films has been studied in details via coordination number, Honeycutt–Andersen analysis, and density profile which reveal that amorphous thin films exhibit two different parts: interior and surface layer. The former exhibits almost the same structure like that found for the bulk while the latter behaves a more porous structure containing a large amount of undercoordinated sites which are the origin of various surface behaviors of the amorphous Ni or Ni-based thin films found in practice. - Highlights: • Glass formation is analyzed via spatio-temporal arrangements of solid-like atoms. • Amorphous Ni thin film exhibits two different parts: surface and interior. • Mobile surface layer enhances various surface properties of the amorphous Ni thin films. • Undercoordinated sites play an important role in various surface activities.

  9. Nanoscale phenomena in ferroelectric thin films

    Science.gov (United States)

    Ganpule, Chandan S.

    Ferroelectric materials are a subject of intense research as potential candidates for applications in non-volatile ferroelectric random access memories (FeRAM), piezoelectric actuators, infrared detectors, optical switches and as high dielectric constant materials for dynamic random access memories (DRAMs). With current trends in miniaturization, it becomes important that the fundamental aspects of scaling of ferroelectric and piezoelectric properties in these devices be studied thoroughly and their impact on the device reliability assessed. In keeping with this spirit of miniaturization, the dissertation has two broad themes: (a) Scaling of ferroelectric and piezoelectric properties and (b) The key reliability issue of retention loss. The thesis begins with a look at results on scaling studies of focused-ion-beam milled submicron ferroelectric capacitors using a variety of scanning probe characterization tools. The technique of piezoresponse microscopy, which is rapidly becoming an accepted form of domain imaging in ferroelectrics, has been used in this work for another very important application: providing reliable, repeatable and quantitative numbers for the electromechanical properties of submicron structures milled in ferroelectric films. This marriage of FIB and SPM based characterization of electromechanical and electrical properties has proven unbeatable in the last few years to characterize nanostructures qualitatively and quantitatively. The second half of this dissertation focuses on polarization relaxation in FeRAMs. In an attempt to understand the nanoscale origins of back-switching of ferroelectric domains, the time dependent relaxation of remnant polarization in epitaxial lead zirconate titanate (PbZr0.2Ti0.8O 3, PZT) ferroelectric thin films (used as a model system), containing a uniform 2-dimensional grid of 90° domains (c-axis in the plane of the film) has been examined using voltage modulated scanning force microscopy. A novel approach of

  10. Stability of tetraphenyl butadiene thin films in liquid xenon

    International Nuclear Information System (INIS)

    Sanguino, P.; Balau, F.; Botelho do Rego, A.M.; Pereira, A.; Chepel, V.

    2016-01-01

    Tetraphenyl butadiene (TPB) is widely used in particle detectors as a wavelength shifter. In this work we studied the stability of TPB thin films when immersed in liquid xenon (LXe). The thin films were deposited on glass and quartz substrates by thermal evaporation. Morphological and chemical surface properties were monitored before and after immersion into LXe by scanning electron microscopy and X-ray photoelectron spectroscopy. No appreciable changes have been detected with these two methods. Grain size and surface chemical composition were found to be identical before and after submersion into LXe. However, the film thickness, measured via optical transmission in the ultraviolet–visible wavelength regions, decreased by 1.6 μg/cm 2 (24%) after immersion in LXe during 20 h. These results suggest the necessity of using a protective thin film over the Tetraphenyl butadiene when used as a wavelength shifter in LXe particle detectors. - Highlights: • Stability of tetraphenyl butadiene (TPB) thin films immersed in liquid xenon (LXe). • Thermally evaporated TPB thin films were immersed in LXe for 20 h. • Film morphology and chemical surface properties remained unchanged. • Surface density of the films decreased by 1.6 μg/cm 2 (24%) after immersion in LXe. • For using in LXe particle detectors, TPB films should be protected with a coating.

  11. Buckling of Thin Films in Nano-Scale

    Directory of Open Access Journals (Sweden)

    Li L.A.

    2010-06-01

    Full Text Available Investigation of thin film buckling is important for life prediction of MEMS device which are damaged mainly by the delamination and buckling of thin films. In this paper the mechanical and thermal properties of compressed thin film titanium films with 150 nm thickness deposited on an organic glass substrate under mechanical and thermal loads were measured and characterized. In order to simulate the thin films which subjected to compound loads and the buckle modes the external uniaxial compression and thermal loading were subjected to the specimen by the symmetric loading device and the electrical film in this experiment. The temperature of the thin film deposited on substrate was measured using thermoelectric couple. The range of temperature accords with the temperature range of the MEMS. It is found that the size and number of the delamination and buckling of the film are depended upon the pre-fixed mechanical loading and thermal temperature. The thermal transient conduction and thermal stability of the film and substrate was studied with finite element method.

  12. Buckling of Thin Films in Nano-Scale

    Science.gov (United States)

    Wang, S.; Jia, H. K.; Sun, J.; Ren, X. N.; Li, L. A.

    2010-06-01

    Investigation of thin film buckling is important for life prediction of MEMS device which are damaged mainly by the delamination and buckling of thin films. In this paper the mechanical and thermal properties of compressed thin film titanium films with 150 nm thickness deposited on an organic glass substrate under mechanical and thermal loads were measured and characterized. In order to simulate the thin films which subjected to compound loads and the buckle modes the external uniaxial compression and thermal loading were subjected to the specimen by the symmetric loading device and the electrical film in this experiment. The temperature of the thin film deposited on substrate was measured using thermoelectric couple. The range of temperature accords with the temperature range of the MEMS. It is found that the size and number of the delamination and buckling of the film are depended upon the pre-fixed mechanical loading and thermal temperature. The thermal transient conduction and thermal stability of the film and substrate was studied with finite element method.

  13. Effect of the electrolyte cations and anions on the photocurrent of dodecylsulphate doped polypyrrole films

    Energy Technology Data Exchange (ETDEWEB)

    Martini, Milena; De Paoli, Marco-A. [Laboratorio de Poliimeros Condutores, Instituto de Quimica-UNICAMP, Universidade de Campinas, Cx Postal 6154, 13081-970 , SP Campinas (Brazil)

    2002-07-01

    Photoelectrochemical and UV-Vis spectroelectrochemical measurements were performed in a three-electrode cell containing dodecylsulphate-doped polypyrrole films as active layers in contact with different aqueous electrolytes. The effect of both cations and anions of the electrolyte on the photocurrent generation and on the absorption spectra of the system was studied. Dynamic photocurrent and absorption spectra measurements performed during the redox cycles of the films show that both cation and anion insertion and deinsertion occurs during the cycles. These results are in agreement with the previously reported redox mechanism proposed for amphiphilic anion doped polypyrrole. Reduced films show cathodic photocurrent at -0.4>E>-0.8V vs. Ag|AgCl. Photocurrent voltammograms are reproducible after the conditioning of the films and the higher cathodic currents were observed in films with thickness of =0.05-0.5{mu}m.

  14. Principles of electron backscattering by solids and thin films

    International Nuclear Information System (INIS)

    Niedrig, H.

    1977-01-01

    The parameters concerning the electron backscattering from thin films and solids (atomic scattering cross-section, atomic number, single/multiple scattering, film thickness of self-supporting films and of surface films on bulk substrates, scattering angular distribution, angle of incidence, diffraction effects) are described. Their influence on some important contrast mechanisms in scanning electron microscopy (thickness contrast, Z/material contrast, tilting/topography contrast, orientation contrast) is discussed. The main backscattering electron detection systems are briefly described. (orig.) [de

  15. Sulfonated Polyimide-Clay Thin Films for Energy Application.

    Science.gov (United States)

    Ali, Farman; Saeed, Shaukat; Shah, Syed Sakhawat; Rahim, Fazal; Duclaux, Laurent; Levêque, Jean-Marc; Reinert, Laurence

    2016-01-01

    Sulfonated polyimides (SPIs) are considered as the promising alternatives to Nafion as membrane materials for the polymer electrolyte membrane (PEM). They generally exhibit high ionic conductivity, good mechanical properties, excellent thermal and chemical stabilities. The six-membered ring, naphthalenic anhydride-based SPIs, not only exhibit superior chemical and thermo-oxidative stabilities but are also more resistant to hydrolysis than their five-membered phthalic anhydride-based SPIs. The composites based on napthalenic polyimides are also significantly stable in high temperature environment and show better stability to hydrolysis. Incorporation of inorganic fillers into organic polymers has gained tremendous attention and these new materials are called organic-inorganic hybrids. Few patents related to the synthesis and performance PEM materials have been reviewed and cited. Keeping in view the importance of sulfonated polyimide based nanocomposites as potential membrane materials for PEM in fuel cell, we have synthesized SPIs clay based nanocomposite as potential membrane material. The objective of this work was to synthesize clay based SPIs thin films which could be used as membrane materials in PEM fuel cell for energy applications. Methods/Experimental: At the first step the nanometric sheets of vermiculite clay prepared via sonication was surface modified by grafting 3-APTES. Then the SPI was synthesized via one-step high temperature direct imidization method, which serve as a matrix material. The organo modified VMT was dispersed via sonication in the SPI matrix. Four different sets of organic-inorganic nanocomposite membranes thin films, having VMT contents in the range of 1 to 7 wt.% were prepared by casting, curing and acidification route. The synthesis of SPIs clay based thin films were carried out at three different steps and fully characterized. The synthesis of SPIs and SPIs clay based thin films were analyzed via different analytical techniques

  16. Modification of thin film properties by ion bombardment during deposition

    International Nuclear Information System (INIS)

    Harper, J.M.E.; Cuomo, J.J.; Gambino, R.J.; Kaufman, H.R.

    1984-01-01

    Many thin film deposition techniques involve some form of energetic particle bombardment of the growing film. The degree of bombardment greatly influences the film composition, structure and other properties. While in some techniques the degree of bombardment is secondary to the original process design, in recent years more deposition systems are being designed with the capability for controlled ion bombardment of thin films during deposition. The highest degree of control is obtained with ion beam sources which operate independently of the vapor source providing the thin film material. Other plasma techniques offer varying degrees of control of energetic particle bombardment. Deposition methods involving ion bombardment are described, and the basic processes with which film properties are modified by ion bombardment are summarized. (Auth.)

  17. Controllable Electrochemical Synthesis of Reduced Graphene Oxide Thin-Film Constructed as Efficient Photoanode in Dye-Sensitized Solar Cells

    Directory of Open Access Journals (Sweden)

    Soon Weng Chong

    2016-01-01

    Full Text Available A controllable electrochemical synthesis to convert reduced graphene oxide (rGO from graphite flakes was introduced and investigated in detail. Electrochemical reduction was used to prepare rGO because of its cost effectiveness, environmental friendliness, and ability to produce rGO thin films in industrial scale. This study aimed to determine the optimum applied potential for the electrochemical reduction. An applied voltage of 15 V successfully formed a uniformly coated rGO thin film, which significantly promoted effective electron transfer within dye-sensitized solar cells (DSSCs. Thus, DSSC performance improved. However, rGO thin films formed in voltages below or exceeding 15 V resulted in poor DSSC performance. This behavior was due to poor electron transfer within the rGO thin films caused by poor uniformity. These results revealed that DSSC constructed using 15 V rGO thin film exhibited high efficiency (η = 1.5211% attributed to its higher surface uniformity than other samples. The addition of natural lemon juice (pH ~ 2.3 to the electrolyte accelerated the deposition and strengthened the adhesion of rGO thin film onto fluorine-doped tin oxide (FTO glasses.

  18. The state of the art of thin-film photovoltaics

    International Nuclear Information System (INIS)

    Surek, T.

    1993-10-01

    Thin-film photovoltaic technologies, based on materials such as amorphous or polycrystalline silicon, copper indium diselenide, cadmium telluride, and gallium arsenide, offer the potential for significantly reducing the cost of electricity generated by photovoltaics. The significant progress in the technologies, from the laboratory to the marketplace, is reviewed. The common concerns and questions raised about thin films are addressed. Based on the progress to date and the potential of these technologies, along with continuing investments by the private sector to commercialize the technologies, one can conclude that thin-film PV will provide a competitive alternative for large-scale power generation in the future

  19. Rapid protein immobilization for thin film continuous flow biocatalysis.

    Science.gov (United States)

    Britton, Joshua; Raston, Colin L; Weiss, Gregory A

    2016-08-09

    A versatile enzyme immobilization strategy for thin film continuous flow processing is reported. Here, non-covalent and glutaraldehyde bioconjugation are used to immobilize enzymes on the surfaces of borosilicate reactors. This approach requires only ng of protein per reactor tube, with the stock protein solution readily recycled to sequentially coat >10 reactors. Confining reagents to thin films during immobilization reduced the amount of protein, piranha-cleaning solution, and other reagents by ∼96%. Through this technique, there was no loss of catalytic activity over 10 h processing. The results reported here combines the benefits of thin film flow processing with the mild conditions of biocatalysis.

  20. Plasma polymerized hexamethyldisiloxane thin films for corrosion protection

    Science.gov (United States)

    Saloum, S.; Alkhaled, B.; Alsadat, W.; Kakhia, M.; Shaker, S. A.

    2018-01-01

    This study focused on the corrosion protection performance of plasma polymerized HMDSO thin films in two different corrosive medias, 0.3M NaCl and 0.3M H2SO4. The pp-HMDSO thin films were deposited on steel substrates for electrochemical tests using the potentiodynamic polarization technique, they were deposited also on aluminum and silicon substrates to investigate their resistance to corrosion, through the analysis of the degradation of microhardness and morphology, respectively, after immersion of the substrates for one week in the corrosive media. The results showed promising corrosion protection properties of the pp-HMDSO thin films.

  1. Optical modeling and simulation of thin-film photovoltaic devices

    CERN Document Server

    Krc, Janez

    2013-01-01

    In wafer-based and thin-film photovoltaic (PV) devices, the management of light is a crucial aspect of optimization since trapping sunlight in active parts of PV devices is essential for efficient energy conversions. Optical modeling and simulation enable efficient analysis and optimization of the optical situation in optoelectronic and PV devices. Optical Modeling and Simulation of Thin-Film Photovoltaic Devices provides readers with a thorough guide to performing optical modeling and simulations of thin-film solar cells and PV modules. It offers insight on examples of existing optical models

  2. Organic nanostructured thin film devices and coatings for clean energy

    CERN Document Server

    Zhang, Sam

    2010-01-01

    Authored by leading experts from around the world, the three-volume Handbook of Nanostructured Thin Films and Coatings gives scientific researchers and product engineers a resource as dynamic and flexible as the field itself. The first two volumes cover the latest research and application of the mechanical and functional properties of thin films and coatings, while the third volume explores the cutting-edge organic nanostructured devices used to produce clean energy. This third volume, Organic Nanostructured Thin Film Devices and Coatings for Clean Energy, addresses various aspects of the proc

  3. Copper zinc tin sulfide-based thin film solar cells

    CERN Document Server

    Ito, Kentaro

    2014-01-01

    Beginning with an overview and historical background of Copper Zinc Tin Sulphide (CZTS) technology, subsequent chapters cover properties of CZTS thin films, different preparation methods of CZTS thin films, a comparative study of CZTS and CIGS solar cell, computational approach, and future applications of CZTS thin film solar modules to both ground-mount and rooftop installation. The semiconducting compound (CZTS) is made up earth-abundant, low-cost and non-toxic elements, which make it an ideal candidate to replace Cu(In,Ga)Se2 (CIGS) and CdTe solar cells which face material scarcity and tox

  4. Fabrication of thin yttria-stabilized-zirconia dense electrolyte layers by inkjet printing for high performing solid oxide fuel cells

    DEFF Research Database (Denmark)

    Esposito, Vincenzo; Gadea, Christophe; Hjelm, Johan

    2015-01-01

    In this work, we present how a low-cost HP Deskjet 1000 inkjet printer was used to fabricate a 1.2 mm thin, dense and gas tight 16 cm2 solid oxide fuel cells (SOFC) electrolyte. The electrolyte was printed using an ink made of highly diluted (

  5. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes.

    Science.gov (United States)

    Gu, Yu; Wang, Wei-Wei; Li, Yi-Juan; Wu, Qi-Hui; Tang, Shuai; Yan, Jia-Wei; Zheng, Ming-Sen; Wu, De-Yin; Fan, Chun-Hai; Hu, Wei-Qiang; Chen, Zhao-Bin; Fang, Yuan; Zhang, Qing-Hong; Dong, Quan-Feng; Mao, Bing-Wei

    2018-04-09

    Dendrite growth of alkali metal anodes limited their lifetime for charge/discharge cycling. Here, we report near-perfect anodes of lithium, sodium, and potassium metals achieved by electrochemical polishing, which removes microscopic defects and creates ultra-smooth ultra-thin solid-electrolyte interphase layers at metal surfaces for providing a homogeneous environment. Precise characterizations by AFM force probing with corroborative in-depth XPS profile analysis reveal that the ultra-smooth ultra-thin solid-electrolyte interphase can be designed to have alternating inorganic-rich and organic-rich/mixed multi-layered structure, which offers mechanical property of coupled rigidity and elasticity. The polished metal anodes exhibit significantly enhanced cycling stability, specifically the lithium anodes can cycle for over 200 times at a real current density of 2 mA cm -2 with 100% depth of discharge. Our work illustrates that an ultra-smooth ultra-thin solid-electrolyte interphase may be robust enough to suppress dendrite growth and thus serve as an initial layer for further improved protection of alkali metal anodes.

  6. Chemically synthesized hydrous RuO2 thin films for supercapacitor application

    International Nuclear Information System (INIS)

    Patil, U.M.; Kulkarni, S.B.; Jamadade, V.S.; Lokhande, C.D.

    2011-01-01

    Research highlights: → The hydrous RuO 2 thin films have been successfully synthesized at low temperature on glass and stainless steel substrates using lucrative chemical bath deposition (CBD) method. → The cost effective CBD method allows to formation of amorphous, porous, superhydrophilic, semiconducting, hydrous RuO 2 thin films with 2.7 eV optical band gap. → The supercapacitive behavior of hydrous RuO 2 in 0.5 M H 2 SO 4 electrolyte showed maximum specific capacitance of 73 F g -1 . → The electrochemical parameters such as, specific power (SP), specific energy (SE) and coulombic efficiency (η%) is found to be 0.151 kW kg -1 , 3.57 Wh kg -1 and 94%, respectively. - Abstract: The hydrous RuO 2 thin films have been successfully synthesized at low temperature on glass and stainless steel substrates using lucrative chemical bath deposition (CBD) method. Their structural, morphological, optical, electrical and wettability properties were studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier transform infrared (FT-IR), UV-vis-NIR spectrophotometer, two point probe method and water contact angle measurement techniques. The results showed that, the CBD method allows to formation of amorphous, porous, superhydrophilic, semiconducting, hydrous RuO 2 thin films with optical band gap of 2.7 eV. The supercapacitive behavior of hydrous RuO 2 in 0.5 M H 2 SO 4 electrolyte examined by cyclic voltammetric (CV) measurements showed maximum specific capacitance of 73 F g -1 .

  7. Tunneling magnetoresistance in Co-Ni-N/Al granular thin films

    International Nuclear Information System (INIS)

    Tanase, S.I.; Tanase, D.; Pascariu, P.; Vlad, L.; Sandu, A.V.; Georgescu, V.

    2010-01-01

    In this work, we report on experimental investigation of the influence of nitrogen addition on magnetic and transport properties of Co-Ni granular films with different nitrogen content correlated with the surface morphology. The granular thin films were electrodeposited on aluminium substrate, from the following base solution: 30 g/l CoSO 4 .7H 2 O, 50 g/l NiSO 4 .7H 2 O, 10 g/l NiCl 2 .6H 2 O, 50 g/l Na 2 SO 4 .10H 2 O, 30 g/l H 3 BO 3 and 10 g/l NaCl. Sodium laurylsulphate (C 12 H 25 NaO 4 S) and sodium saccharine (NaC 7 H 4 O 3 NS.2H 2 O) were used as additives. As a source for nitrogen inclusion in the films by cationic catalysis, sodium nitrate (NaNO 3 ) was introduced in the electrolyte. The concentration of NaNO 3 in electrolytic bath was varied with the aim to control the films nitrogen content. Co-Ni-N/Al granular films display tunneling magnetoresistance (2-160%) effect which could be explained mainly by the elastic spin-dependent scattering of conduction electrons at the interface between magnetic grains (constituted of Co-Ni solid solution) and nonmagnetic regions (rich in N inter-granular frontiers and aluminium oxidized substrate).

  8. Thin Films for X-ray Optics

    Science.gov (United States)

    Conley, Raymond

    Focusing x-rays with refraction requires an entire array of lens instead of a single element, each contributing a minute amount of focusing to the system. In contrast to their visible light counterparts, diffractive optics require a certain depth along the optical axis in order to provide sufficient phase shift. Mirrors reflect only at very shallow angles. In order to increase the angle of incidence, contribution from constructive interference within many layers needs to be collected. This requires a multilayer coating. Thin films have become a central ingredient for many x-ray optics due to the ease of which material composition and thickness can be controlled. Chapter 1 starts with a short introduction and survey of the field of x-ray optics. This begins with an explanation of reflective multilayers. Focusing optics are presented next, including mirrors, zone plates, refractive lenses, and multilayer Laue lens (MLL). The strengths and weaknesses of each "species" of optic are briefly discussed, alongside fabrication issues and the ultimate performance for each. Practical considerations on the use of thin-films for x-ray optics fabrication span a wide array of topics including material systems selection and instrumentation design. Sputter deposition is utilized exclusively for the work included herein because this method of thin-film deposition allows a wide array of deposition parameters to be controlled. This chapter also includes a short description of two deposition systems I have designed. Chapter 2 covers a small sampling of some of my work on reflective multilayers, and outlines two of the deposition systems I have designed and built at the Advanced Photon Source. A three-stripe double multilayer monochromator is presented as a case study in order to detail specifications, fabrication, and performance of this prolific breed of x-ray optics. The APS Rotary Deposition System was the first deposition system in the world designed specifically for multilayer

  9. Tools to synthesize the learning of thin films

    International Nuclear Information System (INIS)

    Rojas, Roberto; Fuster, Gonzalo; Sluesarenko, Viktor

    2011-01-01

    After a review of textbooks written for undergraduate courses in physics, we have found that discussions on thin films are mostly incomplete. They consider the reflected and not the transmitted light for two instead of the four types of thin films. In this work, we complement the discussion in elementary textbooks, by analysing the phase differences required to match the conditions for constructive and destructive interference, in the reflected and transmitted light in four types of thin films. We consider thin films with varied sequences in the refractive index, which we identify as barriers, wells and stairs (up and down). Also, we use the conservation of energy in order to understand the complementary colour fringes observed in the reflected and transmitted light through thin films. We analyse systematically the phase changes by introducing a phase table and we synthesize the results in a circular diagram matching 16 physical situations of interference and their corresponding conditions on the film thickness. The phase table and the circular diagram are a pair of tools easily assimilated by students, and useful to organize, analyse and activate the knowledge about thin films.

  10. Radiation Effects in Interfaces and Thin Films

    Science.gov (United States)

    Mairov, Alexander

    One of the key approaches to developing materials with greater radiation damage resistance is to introduce a large fraction of internal interfaces. Interfaces act as sinks for recombination of radiation-induced defects and as sites for accumulation of helium bubbles, thereby diverting them away from grain boundaries, where they can induce embrittlement. The beneficial role of interfaces in mitigating radiation damage has been demonstrated in nanoscale multilayered structures and in nanograined materials. Another more common example is oxide dispersion strengthened (ODS) steels and nanostructured ferritic alloys (NFA) where a fine distribution of particles (clusters) of varying stoichiometries (e.g., Y2Ti2O7, Y2TiO 5, Y2O3, TiO2 and Y-Ti-O non-stoichiometric oxides) not only confer high creep strength, but also high radiation damage tolerance due to the large area of metal/oxide interfaces. However, the efficacy of these interfaces to act as defect sinks depends on their compositional and physical stability under radiation. With this background, this work focused on the stability of interfaces between Ti, TiO2, and Y2O 3 thin film deposited on Fe-12%Cr substrates after irradiation with 5MeV Ni+2 ions at various temperatures. TEM and STEM-EDS methods were used to understand the compositional changes at the interfaces. Additionally, accumulation of implanted helium at epitaxial and non-epitaxial Fe/Y 2O3 interfaces was also studied. Finally, the study was extended to study irradiation effects (up to 150 dpa) in novel Al2O 3 nanoceramic films with immediate potential applications as coatings for corrosion protection in the harsh high temperature environments of Gen IV reactors. This research is expected to have implications in the development of radiation damage tolerant nanostructured alloys for nuclear reactors while also expanding the scientific knowledge-base in the area of radiation stability of interfaces in solids and protective coatings.

  11. Comprehensive characterization of all-solid-state thin films commercial microbatteries by Electrochemical Impedance Spectroscopy

    Science.gov (United States)

    Larfaillou, S.; Guy-Bouyssou, D.; le Cras, F.; Franger, S.

    2016-07-01

    Constant miniaturization of electronic devices opens the way to the development of thin film microbatteries (TFB). For this type of devices, the use of an all-solid-state thin film technology has many advantages over conventional lithium cells. These microbatteries are thin, bendable and can be produced with a customizable shape for integration in microelectronic devices. Moreover, without liquid electrolyte, they are safer. With the aim to support the industrial production of these TFBs, adequate tools for understanding the electrochemical behavior of the complete microbattery and the identification of their possible failures that can occur have to be developed. In this context, the Electrochemical Impedance Spectroscopy seems to be a good compromise for cells characterization. Widely used for the characterization of liquid electrolyte-based batteries, this technique has been less applied to all solid state batteries, mainly because of the difficulty to work with a two-electrode system. There has been no comprehensive study deeply explaining the impedance evolution during the entire life of a microbattery. In this paper, physical characterizations of individual active materials and aging experiments have been performed in order to undoubtedly assign each EIS contributions, and to propose a more comprehensive electrical model for this family of commercial all-solid-state microbatteries.

  12. Schottky Diodes and Thin Films Based on Copolymer: Poly(aniline-co-toluidine

    Directory of Open Access Journals (Sweden)

    A. Elmansouri

    2009-01-01

    Full Text Available Poly(aniline-co-o-toluidine (PANI-co-POT thin films were deposited on indium tin oxide- (ITO- coated glass substrates by electrochemical polymerization under cyclic voltammetric conditions from aniline-co-o-toluidine monomer in an aqueous solution of HCl as a supporting electrolyte. These measurements showed that the optical band gap of the copolymer films is on the order of 2.65 eV. On the other hand, ITO/PANI-co-POT/Al devices were fabricated by thermal evaporation of Aluminum circular electrodes on the as-deposited PANI-co-POT films. The Current-Voltage characteristics of these devices are nonlinear. The diode parameters were calculated from I-V characteristics using the modified Shockley equation. The C-F characteristics were also measured.

  13. Degradation process in organic thin film devices fabricated using ...

    Indian Academy of Sciences (India)

    hexylthiophene); organic semiconductors; conducting polymers; degradation. ... The stability of regioregular poly(3-hexylthiophene 2,5-diyl) (P3HT) thin films sandwiched between indium tin oxide (ITO) and aluminium (Al) electrodes have ...

  14. Modeling surface imperfections in thin films and nanostructured surfaces

    DEFF Research Database (Denmark)

    Hansen, Poul-Erik; Madsen, J. S.; Jensen, S. A.

    2017-01-01

    Accurate scatterometry and ellipsometry characterization of non-perfect thin films and nanostructured surfaces are challenging. Imperfections like surface roughness make the associated modelling and inverse problem solution difficult due to the lack of knowledge about the imperfection...

  15. Property elucidation of vacuum-evaporated zinc telluride thin film ...

    Indian Academy of Sciences (India)

    J U Ahamed

    2017-08-31

    ZnTe) thin film on glass substrate in order to investigate the ... photovoltaic solar cells, light-emitting diodes, laser diodes, microwave devices .... integrated intensity ratio of a super lattice peak to a fun- damental peak. Comparing ...

  16. Chemical solution deposition of functional oxide thin films

    CERN Document Server

    Schneller, Theodor; Kosec, Marija

    2014-01-01

    Chemical Solution Deposition (CSD) is a highly-flexible and inexpensive technique for the fabrication of functional oxide thin films. Featuring nearly 400 illustrations, this text covers all aspects of the technique.

  17. Self-organized structures in soft confined thin films

    Indian Academy of Sciences (India)

    organized creation of mesostructures in soft materials like thin films of polymeric liquids and elas- tic solids. These very small scale, highly confined systems are inherently unstable and thus self-organize into ordered structures which can be ...

  18. Broadband back grating design for thin film solar cells

    KAUST Repository

    Janjua, Bilal

    2013-01-01

    In this paper, design based on tapered circular grating structure was studied, to provide broadband enhancement in thin film amorphous silicon solar cells. In comparison to planar structure an absorption enhancement of ~ 7% was realized.

  19. Laser Induced Chemical Vapor Deposition of Thin Films

    National Research Council Canada - National Science Library

    Zahavi, Joseph

    1995-01-01

    .... It completes the information which was given in the previous two progress reports. Basically, the aim of the first year was to study the possibility of deposition of silicon nitride thin films from silane and ammonia at low temperatures...

  20. Thin carbon film serves as UV bandpass filter

    Science.gov (United States)

    1966-01-01

    Thin carbon film deposited on a 70 percent transparent screen provides a filter for narrow-band detectors in the extreme ultraviolet. The filter also suppresses scattered light and light of unwanted orders in vacuum spectrographs.

  1. Simple gun for vapor deposition of organic thin films

    International Nuclear Information System (INIS)

    Sato, N.; Seki, K.; Inokuchi, H.

    1987-01-01

    A simple evaporation gun for preparing organic thin films was fabricated using commercially available parts of an electron gun for a TV Braun tube. The device permits sample heating to be easily controlled because of the small heat capacity

  2. A thin film hydroponic system for plant studies

    Science.gov (United States)

    Hines, Robert; Prince, Ralph; Muller, Eldon; Schuerger, Andrew

    1990-01-01

    The Land Pavillion, EPCOT Center, houses a hydroponic, thin film growing system identical to that residing in NASA's Biomass Production Chamber at Kennedy Space Center. The system is targeted for plant disease and nutrition studies. The system is described.

  3. Thin films of xyloglucans for BSA adsorption

    Energy Technology Data Exchange (ETDEWEB)

    Jo, T.A. [Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba, PR (Brazil); Laboratory of Biopolymers, Department of Chemistry, Federal University of Parana, Curitiba, PR (Brazil); Petri, D.F.S. [Institute of Chemistry, University of Sao Paulo, Sao Paulo, SP (Brazil); Valenga, F. [Department of Biochemistry and Molecular Biology, Federal University of Parana, Curitiba, PR (Brazil); Laboratory of Biopolymers, Department of Chemistry, Federal University of Parana, Curitiba, PR (Brazil); Lucyszyn, N. [Laboratory of Biopolymers, Department of Chemistry, Federal University of Parana, Curitiba, PR (Brazil); Sierakowski, M.-R. [Laboratory of Biopolymers, Department of Chemistry, Federal University of Parana, Curitiba, PR (Brazil)], E-mail: mariarita.sierakowski@ufpr.br

    2009-03-01

    In this work, XG extracted from Tamarindus indica (XGT) and Copaifera langsdorffii (XGC) seeds were deposited onto Si wafers as thin films. The characteristics of XGT and XGC adsorbed layers were compared with a commercial XG sample (TKP, Tamarind kernel powder) by ellipsometry and atomic force microscopy (AFM). Moreover, the adsorption of oxidized derivative of XGT (To60) onto amino-terminated Si wafers and the immobilization of bovine serum albumin (BSA) onto polysaccharides covered wafers, as a function of pH, were also investigated. The XG samples presented molar ratios Glc:Xyl:Gal of 2.4:2.1:1 (XGC); 2.8: 2.3: 1 (XGT) and 1.9:1.9:1 (TKP). The structure of XGT and XGC was determined by O-methy alditol acetate derivatization and showed similar features, but XGC confirmed the presence of more {alpha}-D-Xyl branches due to more {beta}-D-Gal ends. XGT deposited onto Si adsorbed as fibers and small entities uniformly distributed, as evidenced by AFM, while TPK and XGC formed larger aggregates. The thickness of To60 onto amino-terminated surface was similar to that determined for XGT onto Si wafers. A maximum in the adsorbed amount of BSA occurred close to its isoelectric point (5.5). These findings indicate that XGT and To60 are potential materials for the development of biomaterials and biotechnological devices.

  4. Degradation analysis of thin film photovoltaic modules

    Energy Technology Data Exchange (ETDEWEB)

    Radue, C., E-mail: chantelle.radue@nmmu.ac.z [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa); Dyk, E.E. van [Department of Physics, PO Box 77000, Nelson Mandela Metropolitan University, Port Elizabeth 6031 (South Africa)

    2009-12-01

    Five thin film photovoltaic modules were deployed outdoors under open circuit conditions after a thorough indoor evaluation. Two technology types were investigated: amorphous silicon (a-Si:H) and copper indium gallium diselenide (CIGS). Two 14 W a-Si:H modules, labelled Si-1 and Si-2, were investigated. Both exhibited degradation, initially due to the well-known light-induced degradation described by Staebler and Wronski [Applied Physics Letters 31 (4) (1977) 292], and thereafter due to other degradation modes such as cell degradation. The various degradation modes contributing to the degradation of the a-Si:H modules will be discussed. The initial maximum power output (P{sub MAX}) of Si-1 was 9.92 W, with the initial light-induced degradation for Si-1 approx30% and a total degradation of approx42%. For Si-2 the initial P{sub MAX} was 7.93 W, with initial light-induced degradation of approx10% and a total degradation of approx17%. Three CIGS modules were investigated: two 20 W modules labelled CIGS-1 and CIGS-2, and a 40 W module labelled CIGS-3. CIGS-2 exhibited stable performance while CIGS-1 and CIGS-3 exhibited degradation. CIGS is known to be stable over long periods of time, and thus the possible reasons for the degradation of the two modules are discussed.

  5. Degradation analysis of thin film photovoltaic modules

    International Nuclear Information System (INIS)

    Radue, C.; Dyk, E.E. van

    2009-01-01

    Five thin film photovoltaic modules were deployed outdoors under open circuit conditions after a thorough indoor evaluation. Two technology types were investigated: amorphous silicon (a-Si:H) and copper indium gallium diselenide (CIGS). Two 14 W a-Si:H modules, labelled Si-1 and Si-2, were investigated. Both exhibited degradation, initially due to the well-known light-induced degradation described by Staebler and Wronski [Applied Physics Letters 31 (4) (1977) 292], and thereafter due to other degradation modes such as cell degradation. The various degradation modes contributing to the degradation of the a-Si:H modules will be discussed. The initial maximum power output (P MAX ) of Si-1 was 9.92 W, with the initial light-induced degradation for Si-1 ∼30% and a total degradation of ∼42%. For Si-2 the initial P MAX was 7.93 W, with initial light-induced degradation of ∼10% and a total degradation of ∼17%. Three CIGS modules were investigated: two 20 W modules labelled CIGS-1 and CIGS-2, and a 40 W module labelled CIGS-3. CIGS-2 exhibited stable performance while CIGS-1 and CIGS-3 exhibited degradation. CIGS is known to be stable over long periods of time, and thus the possible reasons for the degradation of the two modules are discussed.

  6. Thin wetting film lens-less imaging

    International Nuclear Information System (INIS)

    Allier, C.P.; Poher, V.; Coutard, J.G.; Hiernard, G.; Dinten, J.M.

    2011-01-01

    Lens-less imaging has recently attracted a lot of attention as a compact, easy-to-use method to image or detect biological objects like cells, but failed at detecting micron size objects like bacteria that often do not scatter enough light. In order to detect single bacterium, we have developed a method based on a thin wetting film that produces a micro-lens effect. Compared with previously reported results, a large improvement in signal to noise ratio is obtained due to the presence of a micro-lens on top of each bacterium. In these conditions, standard CMOS sensors are able to detect single bacterium, e.g. E. coli, Bacillus subtilis and Bacillus thuringiensis, with a large signal to noise ratio. This paper presents our sensor optimization to enhance the SNR; improve the detection of sub-micron objects; and increase the imaging FOV, from 4.3 mm 2 to 12 mm 2 to 24 mm 2 , which allows the detection of bacteria contained in 0.5 μl to 4 μl to 10 μl, respectively. (authors)

  7. Trends and new applications in thin films

    International Nuclear Information System (INIS)

    1996-01-01

    The proceedings of this symposium comprise 95 communications from which 64 were selected and fall into the scope of INIS subject categories, and 1 was selected for ETDE indexing. The selected communications deal with the techniques used for thin films preparation using chemical or physical vapor deposition techniques (plasma-arc or jet spraying, cathode sputtering, reactive DC or RF magnetron sputtering, plasma-ion deposition, ion implantation, electron or ion beam spraying, ion beam assisted plasma etching, dynamic ion mixing, distributed electron cyclotron resonance plasma sputtering, laser induced plasma sputtering etc..). The effects and interactions with the substrates (ion implantation, crystal growth, crystal-phase transformations, microstructures, penetration depth, changes in lattice parameters etc..) are analysed using various techniques such as grazing incidence X-ray diffraction, X-ray reflectometry, X-ray and angle resolved electron spectroscopy, Auger electron spectroscopy, Rutherford backscattering spectroscopy, SEM, TEM, IR absorption spectroscopy, UV or visible emission spectroscopy, conversion electron Moessbauer spectroscopy, X-ray fluorescence, mass spectroscopy, optical ellipsometry etc.. Mechanical tests such as scratch, microhardness and wear tests are also performed on the coatings to analyse their mechanical properties. (J.S.)

  8. Silicon Thin-Film Solar Cells

    Directory of Open Access Journals (Sweden)

    Guy Beaucarne

    2007-01-01

    with plasma-enhanced chemical vapor deposition (PECVD. In spite of the fundamental limitation of this material due to its disorder and metastability, the technology is now gaining industrial momentum thanks to the entry of equipment manufacturers with experience with large-area PECVD. Microcrystalline Si (also called nanocrystalline Si is a material with crystallites in the nanometer range in an amorphous matrix, and which contains less defects than amorphous silicon. Its lower bandgap makes it particularly appropriate as active material for the bottom cell in tandem and triple junction devices. The combination of an amorphous silicon top cell and a microcrystalline bottom cell has yielded promising results, but much work is needed to implement it on large-area and to limit light-induced degradation. Finally thin-film polysilicon solar cells, with grain size in the micrometer range, has recently emerged as an alternative photovoltaic technology. The layers have a grain size ranging from 1 μm to several tens of microns, and are formed at a temperature ranging from 600 to more than 1000∘C. Solid Phase Crystallization has yielded the best results so far but there has recently been fast progress with seed layer approaches, particularly those using the aluminum-induced crystallization technique.

  9. Inverse bilayer magnetoelectric thin film sensor

    Energy Technology Data Exchange (ETDEWEB)

    Yarar, E.; Piorra, A.; Quandt, E., E-mail: eq@tf.uni-kiel.de [Chair for Inorganic Functional Materials, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143 Kiel (Germany); Salzer, S.; Höft, M.; Knöchel, R. [Microwave Laboratory, Institute of Electrical and Information Engineering, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143 Kiel (Germany); Hrkac, V.; Kienle, L. [Chair for Synthesis and Real Structure, Institute for Materials Science, Faculty of Engineering, Kiel University, Kaiserstraße 2, D-24143 Kiel (Germany)

    2016-07-11

    Prior investigations on magnetoelectric (ME) thin film sensors using amorphous FeCoSiB as a magnetostrictive layer and AlN as a piezoelectric layer revealed a limit of detection (LOD) in the range of a few pT/Hz{sup 1/2} in the mechanical resonance. These sensors are comprised of a Si/SiO{sub 2}/Pt/AlN/FeCoSiB layer stack, as dictated by the temperatures required for the deposition of the layers. A low temperature deposition route of very high quality AlN allows the reversal of the deposition sequence, thus allowing the amorphous FeCoSiB to be deposited on the very smooth Si substrate. As a consequence, the LOD could be enhanced by almost an order of magnitude reaching 400 fT/Hz{sup 1/2} at the mechanical resonance of the sensor. Giant ME coefficients (α{sub ME}) as high as 5 kV/cm Oe were measured. Transmission electron microscopy investigations revealed highly c-axis oriented growth of the AlN starting from the Pt-AlN interface with local epitaxy.

  10. Thin film deposition using rarefied gas jet

    Science.gov (United States)

    Pradhan, Sahadev, , Dr.

    2017-06-01

    The rarefied gas jet of aluminium is studied at Mach number Ma = (Uj /√{ kbTj / mg }) in the range .01 PVD) process for the development of the highly oriented pure metallic aluminum thin film with uniform thickness and strong adhesion on the surface of the substrate in the form of ionic plasma, so that the substrate can be protected from corrosion and oxidation and thereby enhance the lifetime and safety, and to introduce the desired surface properties for a given application. Here, H is the characteristic dimension, U_j and T_j are the jet velocity and temperature, n_d is the number density of the jet, m and d are the molecular mass and diameter, and kbis the Boltzmann constant. An important finding is that the capture width (cross-section of the gas jet deposited on the substrate) is symmetric around the centerline of the substrate, and decreases with increased Mach number due to an increase in the momentum of the gas molecules. DSMC simulation results reveals that at low Knudsen number ((Kn=0.01); shorter mean free paths), the atoms experience more collisions, which direct them toward the substrate. However, the atoms also move with lower momentum at low Mach number, which allows scattering collisions to rapidly direct the atoms to the substrate.

  11. Magnetostatic excitations in thin ferrite films

    International Nuclear Information System (INIS)

    Zil'berman, P.E.; Lugovskoi, A.V.

    1987-01-01

    The authors discuss the influence of the exchange interaction and dissipative processes in thin ferrite films on the eigenfrequency spectrum of magnetostatic standing waves and on the dispersion relation and attenuation of magnetostatic traveling waves. For the first time they obtain explicitly the dispersion relation for magnetostatic waves (MSWs) in a tangential saturating magnetic field H 0 to second order (inclusive) in the exchange interaction parameter λ. The authors obtain computer solutions for this equation in the complex frequency (ω) plane (for standing waves) or wave-number (q) plane (for traveling waves). The authors show that the dispersion relation constructed from the standing-wave spectrum is different from that of the traveling waves if λ≠0, even if dissipation is neglected. The traveling waves have auxiliary branches of the dispersion relation with weak damping near the spin-wave-resonance (SWR) frequencies. Dissipation has only a relatively weak effect on the frequency spectrum of the standing waves, shifting it upward. For the traveling waves, however, dissipation leads to qualitative changes in the structure of the dispersion relation, giving rise to new branches, forbidden bands, reentrant and anomalous-dispersion regions

  12. Properties of Spray Pyrolysied Copper Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    S. S. Roy

    2017-02-01

    Full Text Available Copper oxide (CuO thin films were deposited on well cleaned glass substrates by spray pyrolysis technique (SPT from cupric acetate (Cu(CH3COO2.H2O precursor solutions of 0.05 – 0.15 M molar concentrations (MC at a substrate temperature of 350 °C and at an air pressure of 1 bar. Effect of varying MC on the surface morphology, structural optical and electrical properties of CuO thin films were investigated. XRD patterns of the prepared films revealed the formation of CuO thin films having monoclinic structure with the main CuO (111 orientation and crystalline size ranging from 8.02 to 9.05 nm was observed. The optical transmission of the film was found to decrease with the increase of MC. The optical band gap of the thin films for 0.10 M was fond to be 1.60 eV. The room temperature electrical resistivity varies from 31 and 24 ohm.cm for the films grown with MC of 0.05 and 0.10 M respectively. The change in resistivity of the films was studied with respect to the change in temperature was shown that semiconductor nature is present. This information is expected to underlie the successful development of CuO films for solar windows and other semi-conductor applications including gas sensors.

  13. Crystalline Indium Sulphide thin film by photo accelerated deposition technique

    Science.gov (United States)

    Dhanya, A. C.; Preetha, K. C.; Deepa, K.; Remadevi, T. L.

    2015-02-01

    Indium sulfide thin films deserve special attention because of its potential application as buffer layers in CIGS based solar cells. Highly transparent indium sulfide (InS) thin films were prepared using a novel method called photo accelerated chemical deposition (PCD). Ultraviolet source of 150 W was used to irradiate the solution. Compared to all other chemical methods, PCD scores its advantage for its low cost, flexible substrate and capable of large area of deposition. Reports on deposition of high quality InS thin films at room temperature are very rare in literature. The precursor solution was initially heated to 90°C for ten minutes and then deposition was carried out at room temperature for two hours. The appearance of the film changed from lemon yellow to bright yellow as the deposition time increased. The sample was characterized for its structural and optical properties. XRD profile showed the polycrystalline behavior of the film with mixed phases having crystallite size of 17 nm. The surface morphology of the films exhibited uniformly distributed honey comb like structures. The film appeared to be smooth and the value of extinction coefficient was negligible. Optical measurements showed that the film has more than 80% transmission in the visible region. The direct band gap energy was 2.47eV. This method is highly suitable for the synthesis of crystalline and transparent indium sulfide thin films and can be used for various photo voltaic applications.

  14. Structural And Optical Properties Of VOx Thin Films

    Directory of Open Access Journals (Sweden)

    Schneider K.

    2015-06-01

    Full Text Available VOx thin films were deposited on Corning glass, fused silica and Ti foils by means of rf reactive sputtering from a metallic vanadium target. Argon-oxygen gas mixtures of different compositions controlled by the flow rates were used for sputtering. Influence of the oxygen partial pressure in the sputtering chamber on the structural and optical properties of thin films has been investigated.

  15. Health, safety and environmental issues in thin film manufacturing

    OpenAIRE

    Alsema, E.A.; Baumann, A.E.; Hill, R.; Patterson, M.H.

    1997-01-01

    An investigation is made of Health, Safety and Environmental (HSE) aspects for the manufacturing, use and decommissioning of CdTe, CIS and a-Si modules. Issues regarding energy requirements, resource availability, emissions of toxic materials, occupational health and safety and module waste treatment are reviewed. Waste streams in thin film module manufacturing are analyzed in detail and treatment methods are discussed. Finally the technological options for thin film module recycling are inve...

  16. Growth of cuprate high temperature superconductor thin films

    Directory of Open Access Journals (Sweden)

    H-U Habermeier

    2006-09-01

    Full Text Available   This paper reviews briefly the development of physical vapour deposition based HTS thin film preparation technologies to today’s state-of-the-art methods. It covers the main trends of in-situ process and growth control. The current activities to fabricate tapes for power applications as well as to tailor interfaces in cuprate are described. Some future trends in HTS thin film research, both for science as well as application driven activities are outlined.

  17. Simple flash evaporator for making thin films of compounds

    Energy Technology Data Exchange (ETDEWEB)

    Hemanadhan, M.; Bapanayya, Ch.; Agarwal, S. C. [Department of Physics, Indian Institute of Technology, Kanpur 208016 (India)

    2010-07-15

    A simple and compact arrangement for flash evaporation is described. It uses a cell phone vibrator for powder dispensing that can be incorporated into a vacuum deposition chamber without any major alterations. The performance of the flash evaporation system is checked by making thin films of the optical memory chalcogenide glass Ge{sub 2}Sb{sub 2}Te{sub 5} (GST). Energy dispersive x-ray analysis shows that the flash evaporation preserves the stoichiometry in thin films.

  18. Optical thin-film technology: past, present, future

    Science.gov (United States)

    Strickland, William P.

    1990-12-01

    The evolution of the vacuum coating industry is reviewed. Vacuum science progressed slowly until the late nineteenth century due to an incomplete understanding of vacuum and lack of applications. Edison's invention of the light bulb launched the vacuum industry and increased developmentof improved vacuum systems. The thin film optical coating industry arose from the needs of the German and U.S. military efforts during World War II. The author presents his experience in thin film coating from 1939 to the present.

  19. Thin film bulk acoustic wave devices : performance optimization and modeling

    OpenAIRE

    Pensala, Tuomas

    2011-01-01

    Thin film bulk acoustic wave (BAW) resonators and filters operating in the GHz range are used in mobile phones for the most demanding filtering applications and complement the surface acoustic wave (SAW) based filters. Their main advantages are small size and high performance at frequencies above 2 GHz. This work concentrates on the characterization, performance optimization, and modeling techniques of thin film BAW devices. Laser interferometric vibration measurements together with plat...

  20. The 1989 progress report: interface physics and thin films

    International Nuclear Information System (INIS)

    Equer, B.

    1989-01-01

    The 1989 progress report of the laboratory of Interface Physics and Thin Films of the Polytechnic School (France) is presented. The properties and the interfaces of thin films, which show optoelectronic activity, are studied. The materials investigated are hydrogenated amorphous silicon compounds, amorphous compounds of silicon-germanium, silicon-carbon and silicon-mitrogen. The techniques developed for manufacturing and characterizing those materials are included. The published papers, the conferences and the Laboratory staff are listed [fr

  1. Liquid phase epitaxial growth of heterostructured hierarchical MOF thin films

    KAUST Repository

    Chernikova, Valeriya

    2017-05-10

    Precise control of epitaxial growth of MOF-on-MOF thin films, for ordered hierarchical tbo-type structures is demonstrated. The heterostructured MOF thin film was fabricated by successful sequential deposition of layers from two different MOFs. The 2-periodic layers, edge-transitive 4,4-square lattices regarded as supermolecular building layers, were commendably cross-linked using a combination of inorganic/organic and organic pillars.

  2. Thermomagnetic marking of rare-earth-transition-metal thin films

    Science.gov (United States)

    Bartholomeusz, Brian Josef

    1989-01-01

    Analytical derivation of temperature profiles in laser-irradiated thin-film structures is hindered by the nature of the heat source terms and by the geometrical complexity that often exists. This study utilizes a combined Laplace-transform-Fourier-integral method to obtain approximate solutions for a number of simple cases. The results are used to study the thermomagnetic marking process in rare-earth-transition-metal (RE-TM) thin films, and the predictions are compared with experimental observations.

  3. CO2 gas sensitivity of sputtered zinc oxide thin films

    Indian Academy of Sciences (India)

    TECS

    Abstract. For the first time, sputtered zinc oxide (ZnO) thin films have been used as a CO2 gas sensor. Zinc oxide thin films have been synthesized using reactive d.c. sputtering method for gas sensor applications, in the deposition temperature range from 130–153°C at a chamber pressure of 8⋅5 mbar for 18 h. Argon and ...

  4. Multiferroicity in oxide thin films and heterostructures

    International Nuclear Information System (INIS)

    Glavic, Artur

    2012-01-01

    In this work a variety of different systems of transition metal oxides ABO 3 (perovskite materials, where B stands for a transition metal and A for a rare earth element) were produced as thin films and heterostructures and analyzed for the structural, magnetic and ferroelectric properties. For the epitaxial film preparation mostly pulse laser deposition (PLD) was applied. For one series high pressure oxide sputter deposition was used as well. The bulk multiferroics TbMnO 3 and DyMnO 3 , which develop their electric polarization due to a cycloidal magnetic order, have been prepared as single layers with thicknesses between 2 and 200 nm on YAlO 3 substrates using PLD and sputter deposition. The structural characterization of the surfaces and crystal structure where performed using X-ray reflectometry and diffraction, respectively. These yielded low surface roughness and good epitaxial growth. The magnetic behavior was macroscopically measured with SQUID magnetometry and microscopically with polarized neutron diffraction and resonant magnetic X-ray scattering. While all investigated samples showed antiferromagnetic order, comparable with the collinear magnetic phase of their bulk materials, only the sputter deposited samples exhibited the multiferroic low temperature cycloidal order. The investigation of the optical second harmonic generation in a TbMnO 3 sample could proof the presence of a ferroelectric order in the low temperature phase. The respective transition temperatures of the thin films have been very similar to those of the bulk materials. In contrast an increase in the rare earth ordering temperature has been observed, which reduces the Mn order slightly, an effect not known from bulk TbMnO 3 crystals. The coupling of the antiferromagnetic order in TbMnO 3 to ferromagnetic layers of LaCoO 3 was investigated in super-lattices containing 20 bilayers produced with PLD on the same substrates. The SQUID magnetometry yielded a strong influence of the

  5. Silver nanowire-based transparent, flexible, and conductive thin film

    Directory of Open Access Journals (Sweden)

    Liu Cai-Hong

    2011-01-01

    Full Text Available Abstract The fabrication of transparent, conductive, and uniform silver nanowire films using the scalable rod-coating technique is described in this study. Properties of the transparent conductive thin films are investigated, as well as the approaches to improve the performance of transparent silver nanowire electrodes. It is found that silver nanowires are oxidized during the coating process. Incubation in hydrogen chloride (HCl vapor can eliminate oxidized surface, and consequently, reduce largely the resistivity of silver nanowire thin films. After HCl treatment, 175 Ω/sq and approximately 75% transmittance are achieved. The sheet resistivity drops remarkably with the rise of the film thickness or with the decrease of transparency. The thin film electrodes also demonstrated excellent flexible stability, showing < 2% resistance change after over 100 bending cycles.

  6. Field effect of screened charges: electrical detection of peptides and proteins by a thin-film resistor.

    Science.gov (United States)

    Lud, Simon Q; Nikolaides, Michael G; Haase, Ilka; Fischer, Markus; Bausch, Andreas R

    2006-02-13

    For many biotechnological applications the label-free detection of biomolecular interactions is becoming of outstanding importance. In this Article we report the direct electrical detection of small peptides and proteins by their intrinsic charges using a biofunctionalized thin-film resistor. The label-free selective and quantitative detection of small peptides and proteins is achieved using hydrophobized silicon-on-insulator (SOI) substrates functionalized with lipid membranes that incorporate metal-chelating lipids. The response of the nanometer-thin conducting silicon film to electrolyte screening effects is taken into account to determine quantitatively the charges of peptides. It is even possible to detect peptides with a single charge and to distinguish single charge variations of the analytes even in physiological electrolyte solutions. As the device is based on standard semiconductor technologies, parallelization and miniaturization of the SOI-based biosensor is achievable by standard CMOS technologies and thus a promising basis for high-throughput screening or biotechnological applications.

  7. Femtosecond pulsed laser deposition of cobalt ferrite thin films

    Science.gov (United States)

    Dascalu, Georgiana; Pompilian, Gloria; Chazallon, Bertrand; Caltun, Ovidiu Florin; Gurlui, Silviu; Focsa, Cristian

    2013-08-01

    The insertion of different elements in the cobalt ferrite spinel structure can drastically change the electric and magnetic characteristics of CoFe2O4 bulks and thin films. Pulsed Laser Deposition (PLD) is a widely used technique that allows the growth of thin films with complex chemical formula. We present the results obtained for stoichiometric and Gadolinium-doped cobalt ferrite thin films deposited by PLD using a femtosecond laser with 1 kHz repetition rate. The structural properties of the as obtained samples were compared with other thin films deposited by ns-PLD. The structural characteristics and chemical composition of the samples were investigated using profilometry, Raman spectroscopy, X-Ray diffraction measurements and ToF-SIMS analysis. Cobalt ferrite thin films with a single spinel structure and a preferential growth direction have been obtained. The structural analysis results indicated the presence of internal stress for all the studied samples. By fs-PLD, uniform thin films were obtained in a short deposition time.

  8. Thin films as an emerging platform for drug delivery

    Directory of Open Access Journals (Sweden)

    Sandeep Karki

    2016-10-01

    Full Text Available Pharmaceutical scientists throughout the world are trying to explore thin films as a novel drug delivery tool. Thin films have been identified as an alternative approach to conventional dosage forms. The thin films are considered to be convenient to swallow, self-administrable, and fast dissolving dosage form, all of which make it as a versatile platform for drug delivery. This delivery system has been used for both systemic and local action via several routes such as oral, buccal, sublingual, ocular, and transdermal routes. The design of efficient thin films requires a comprehensive knowledge of the pharmacological and pharmaceutical properties of drugs and polymers along with an appropriate selection of manufacturing processes. Therefore, the aim of this review is to provide an overview of the critical factors affecting the formulation of thin films, including the physico-chemical properties of polymers and drugs, anatomical and physiological constraints, as well as the characterization methods and quality specifications to circumvent the difficulties associated with formulation design. It also highlights the recent trends and perspectives to develop thin film products by various companies.

  9. Reflectometric monitoring of the dissolution process of thin polymeric films.

    Science.gov (United States)

    Laitinen, Riikka; Räty, Jukka; Korhonen, Kristiina; Ketolainen, Jarkko; Peiponen, Kai-Erik

    2017-05-15

    Pharmaceutical thin films are versatile drug-delivery platforms i.e. allowing transdermal, oral, sublingual and buccal administration. However, dissolution testing of thin films is challenging since the commonly used dissolution tests for conventional dosage forms correspond rather poorly to the physiological conditions at the site of administration. Here we introduce a traditional optical reflection method for monitoring the dissolution behavior of thin polymeric films. The substances, e.g. drug molecules, released from the film generate an increase in the refractive index in the liquid medium which can be detected by reflectance monitoring. Thin EUDRAGIT ® RL PO poly(ethyl acrylate-co-methyl methacrylate-co trimethylammonioethyl methacrylate chloride) (RLPO) films containing the model drug perphenazine (PPZ) were prepared by spraying on a glass substrate. The glass substrates were placed inside the flow cell in the reflectometer which was then filled with phosphate buffer solution. Dissolution was monitored by measuring the reflectance of the buffer liquid. The method was able to detect the distinctive dissolution characteristics of different film formulations and measured relatively small drug concentrations. In conclusion, it was demonstrated that a traditional optical reflection method can provide valuable information about the dissolution characteristics of thin polymeric films in low liquid volume surroundings. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Reduction mechanism of fluoroethylene carbonate for stable solid–electrolyte interphase film on silicon anode.

    Science.gov (United States)

    Chen, Xilin; Li, Xiaolin; Mei, Donghai; Feng, Ju; Hu, Mary Y; Hu, Jianzhi; Engelhard, Mark; Zheng, Jianming; Xu, Wu; Xiao, Jie; Liu, Jun; Zhang, Ji-Guang

    2014-02-01

    Fluoroethylene carbonate (FEC) is an effective electrolyte additive that can significantly improve the cycling ability of silicon and other anode materials. However, the fundamental mechanism of this improvement is still not well understood. Based on the results obtained from (6)Li NMR and X-ray photoelectron spectroscopy studies, we propose a molecular-level mechanism for how FEC affects the formation of solid electrolyte interphase (SEI) film: 1) FEC is reduced through the opening of the five-membered ring leading to the formation of lithium poly(vinyl carbonate), LiF, and some dimers; 2) the FEC-derived lithium poly(vinyl carbonate) enhances the stability of the SEI film. The proposed reduction mechanism opens a new path to explore new electrolyte additives that can improve the cycling stability of silicon-based electrodes.

  11. Electrodeposition of nickel from low temperature sulfamate electrolytes.Part 1 :Electrochemistry and film stress.

    Energy Technology Data Exchange (ETDEWEB)

    Hachman, John T.; Kelly, J.J. (IBM/T.J. Watson Research Center, Yorktown Heights, NY); Talin, Albert Alec; Goods, Steven Howard

    2005-11-01

    The film stress of Ni films deposited at near-ambient temperatures from sulfamate electrolytes was studied. The particulate filtering of the electrolyte, a routine industrial practice, becomes an important deposition parameter at lower bath temperatures. At 28 C, elevated tensile film stress develops at low current densities (<10 mA/cm{sup 2}) if the electrolyte is filtered. Filtering at higher current densities has a negligible effect on film stress. A similar though less pronounced trend is observed at 32 C. Sulfate-based Ni plating baths display similar film stress sensitivity to filtering, suggesting that this is a general effect for Ni electrodeposition. It is shown that filtering does not significantly change the current efficiency or the pH near the surface during deposition. The observed changes in film stress are thus attributed not to adsorbed hydrogen but instead to the effects of filtering on the formation and concentration of polyborate species due to the decreased solubility of boric acid at near-ambient temperatures.

  12. Properties of MoO3 thin film polymorphs

    International Nuclear Information System (INIS)

    McCarron, E.M.; Carcia, P.F.

    1987-01-01

    Thin film polymorphs of molybdenum trioxide have been synthesized by RF sputtering. Films deposited on thermally floating substrates are polycrystalline and exhibit preferred orientation. Depending upon the oxygen partial pressure maintained during sputtering, the films can be made to crystallize in either the thermodynamically stable orthorhombic α MoO 3 form (unique 2D-layered structure) or the metastable monoclinic β MoO 3 phase (3D ReO 3 -related structure). Metastable β films can be converted thermally to the α phase and the transformation appears topotactic. Films deposited on the cooled substrates are amorphous. A correlation between the particular phase formed and adatom mobility is noted

  13. Processing-Structure Correlation in DC Sputtered Molybdenum Thin Films

    Science.gov (United States)

    Khan, Majid; Islam, Mohammad; Akram, Aftab; Manzoor, Umair

    2013-12-01

    Molybdenum thin films were sputter deposited under different conditions of DC power and chamber pressure. The structure and topography of the films were investigated using AFM, SEM and XRD techniques. Van der Pauw method and tape test were employed to determine electrical resistivity and interfacial strength to the substrate, respectively. All the films are of sub-micron thickness with maximum growth rate of 78 nm/min and crystallite size in the range of 4 to 21 nm. The films produced at high power and low pressure exhibit compressive residual strains, low electrical resistivity and poor adhesion to the glass substrate, whereas the converse is true for films produced at high pressure.

  14. The deposition of magnesium fluoride (MGF 2 ) thin films by ...

    African Journals Online (AJOL)

    The Chemical Bath Deposition (CBD) technique was successfully employed in the growth of magnesium fluoride (MgF2) thin films. The films were characterized and optimized. The characterization included: the optical and solid state properties such as the transmittance (T)/reflectance (R) absorbance (A) spectra which ...

  15. Reorientation of magnetic anisotropy in epitaxial cobalt ferrite thin films

    NARCIS (Netherlands)

    Lisfi, A.; Williams, C.M.; Nguyen, L.T.; Lodder, J.C.; Coleman, A.; Corcoran, H.; Johnson, A.; Chang, P.; Abhishek Kumar, A.K.; Kumar, A.; Morgan, W.

    2007-01-01

    Spin reorientation has been observed in CoFe2O4 thin single crystalline films epitaxially grown on (100) MgO substrate upon varying the film thickness. The critical thickness for such a spin-reorientation transition was estimated to be 300 nm. The reorientation is driven by a structural transition

  16. Thin films of metal-organic compounds and metal nanoparticle ...

    Indian Academy of Sciences (India)

    Thin films based on two very different metal-organic systems are developed and some nonlinear optical ... capability of the nanoparticle-embedded polymer film is demonstrated. Keywords. Polar crystal; uniaxial ... systems promising candidates for a wide range of electronic, magnetic and optical applications. However ...

  17. Oriented growth of thin films of samarium oxide by MOCVD

    Indian Academy of Sciences (India)

    Unknown

    Abstract. Thin films of Sm2O3 have been grown on Si(100) and fused quartz by low-pressure chemical va- pour deposition using an adducted β-diketonate precursor. The films on quartz are cubic, with no preferred orientation at lower growth temperatures (~ 550°C), while they grow with a strong (111) orientation as the.

  18. Experimental and Theoretical Approaches to Thin Film Lubrication Problems

    NARCIS (Netherlands)

    Lee-Prudhoe, I.; Venner, C.H.; Cann, P.M.; Spikes, H.; Snidle, R.W.; Evans, H.P.

    2006-01-01

    The last fifty years have seen tremendous advances in the field of thin film lubrication. This is particularly true of steady-state Elastohydrodynamic lubrication (EHL) where the accurate measurement of film thickness combined with advanced numerical modelling methods has been very successful.

  19. Oxide ferroelectric thin films: synthesis from organometallic compounds and properties

    International Nuclear Information System (INIS)

    Vertoprakhov, Vladimir N; Nikulina, Lyubov' D; Igumenov, Igor K

    2005-01-01

    Chemical methods for the preparation of oxide ferroelectric thin films from organometallic compounds published over the last 10-15 years are considered systematically and generalised. Layers of these films are promising for the creation of non-volatile memory elements and for use in nano- and microelectronic devices.

  20. Preparation of self-supporting thin metal target films

    International Nuclear Information System (INIS)

    Wang Xiuying; Ge Suxian; Yin Jianhua; Yin Xu; Jin Genming

    1989-01-01

    The preparation method and equipment for thin metal self-supporting target without oil contamination are described. The influence of target films contaminated by oil vapor on accuracy of nuclear-physics experimental data are also discussed. The analytical results on carbon content in the prepared films of three elements show that the equipment is very effective for eliminating contamination

  1. Ultra thin films of nanocrystalline Ge studied by AFM and ...

    Indian Academy of Sciences (India)

    Initial growth stages of the ultra thin films of germanium (Ge) prepared by ion beam sputter deposition have been studied using atomic force microscope (AFM) and interference enhanced Raman scattering. The growth of the films follows Volmer-Weber growth mechanism. Analysis of the AFM images shows that Ostwald ...

  2. Optical Properties of Lead Silver Sulphide Ternary Thin Films ...

    African Journals Online (AJOL)

    Optical Properties of Lead Silver Sulphide Ternary Thin Films Deposited by Chemical Bath Method. ... The optical properties studied include reflectance, absorption coefficient, thickness, refractive index, extinction coefficient, optical conductivity and band gap energy. The films showed very high absorbance in the UV region, ...

  3. Conductance of perovskite oxide thin films and interfaces

    NARCIS (Netherlands)

    Mubeen Dildar, Ishrat

    2013-01-01

    This thesis deals with the properties of doped perovskite manganites in the form of thin films, and with interfaces between insulating perovskites. The first question we investigate has to do with the strong reduction of the metal-insulator (MI) transition temperature when the films are strained.In

  4. WO/sub 3/ thin films for practical electrochromic windows

    International Nuclear Information System (INIS)

    Goldner, R.B.; Wong, K.; Foley, G.; Norton, P.; Wamboldt, L.; Seward, G.; Haas, T.; Chapman, R.

    1986-01-01

    This paper shows that practical spectrally-selective transmittance modulation can be achieved with thin (50-100nm) WO/sub 3/ films, and therefore such films should be useful for fabricating electrochromic windows. The transmittance and reflectance modulation results are compared with theoretical predictions. The results indicate an excess intraband absorptance, which is attributed to free electron scattering arising from extended defects

  5. Magnetic hysteresis measurements of thin films under isotropic stress.

    Science.gov (United States)

    Holland, Patrick; Dubey, Archana; Geerts, Wilhelmus

    2000-10-01

    Nowadays, ferromagnetic thin films are widely applied in devices for information technology (credit cards, video recorder tapes, floppies, hard disks) and sensors (air bags, anti-breaking systems, navigation systems). Thus, with the increase in the use of magnetic media continued investigation of magnetic properties of materials is necessary to help in determining the useful properties of materials for new or improved applications. We are currently interested in studying the effect of applied external stress on Kerr hysteresis curves of thin magnetic films. The Ni and NiFe films were grown using DC magnetron sputtering with Ar as the sputter gas (pAr=4 mTorr; Tsub=55-190 C). Seed and cap layers of Ti were used on all films for adhesion and oxidation protection, respectively. A brass membrane pressure cell was designed to apply in-plane isotropic stress to thin films. In this pressure cell, gas pressure is used to deform a flexible substrate onto which a thin magnetic film has been sputtered. The curvature of the samples could be controlled by changing the gas pressure to the cell. Magneto-Optical in-plane hysteresis curves at different values of strain were measured. The results obtained show that the stress sensitivity is dependent on the film thickness. For the 500nm NiFe films, the coercivity strongly decreased as a function of the applied stress.

  6. Determination of magnetic properties of multilayer metallic thin films

    International Nuclear Information System (INIS)

    Birlikseven, C.

    2000-01-01

    In recent year, Giant Magnetoresistance Effect has been attracting an increasingly high interest. High sensitivity magnetic field detectors and high sensitivity read heads of magnetic media can be named as important applications of these films. In this work, magnetic and electrical properties of single layer and thin films were investigated. Multilayer thin films were supplied by Prof. Dr. A. Riza Koeymen from Texas University. Multilayer magnetic thin films are used especially for magnetic reading and magnetic writing. storing of large amount of information into small areas become possible with this technology. Single layer films were prepared using the electron beam evaporation technique. For the exact determination of film thicknesses, a careful calibration of the thicknesses was made. Magnetic properties of the multilayer films were studied using the magnetization, magnetoresistance measurements and ferromagnetic resonance technique. Besides, by fitting the experimental results to the theoretical models, effective magnetization and angles between the ferromagnetic layers were calculated. The correspondence between magnetization and magnetoresistance was evaluated. To see the effect of anisotropic magnetoresistance in the magnetoresistance measurements, a new experimental set-up was build and measurements were taken in this set-up. A series of soft permalloy thin films were made, and temperature dependent resistivity, magnetoresistance, anisotropic magnetoresistance and magnetization measurements were taken

  7. Unusual strain relaxation in Cu thin films on Ni(001)

    DEFF Research Database (Denmark)

    Rasmussen, F.B.; Baker, J.; Nielsen, M.

    1997-01-01

    Surface x-ray diffraction has been used to study the growth of thin Cu films on Ni(001). We give direct evidence for the formation of embedded wedges with internal {111} facets in the film, as recently suggested by Muller et al. [Phys. Rev. Lett. 76, 2358 (1996)]. The unusual strain distribution...

  8. Epitaxial oxide thin films by pulsed laser deposition: Retrospect and ...

    Indian Academy of Sciences (India)

    Epitaxial thin films of high c cuprates, metallic, ferroelectric, ferromagnetic, dielectric oxides, super conduc tor-metal-superconductor Josephson junctions and oxide superlattices have been made by PLD. In this article, an overview of preparation, characterization and properties of epitaxial oxide films and their applications ...

  9. Electrodeposition of bismuth telluride thermoelectric films from a nonaqueous electrolyte using ethylene glycol

    NARCIS (Netherlands)

    Nguyen, H.P.; Wu, M.; Su, J.; Vullers, R.J.M.; Vereecken, P.M.; Fransaer, J.

    2012-01-01

    Ethylene glycol was studied as an electrolyte for the electrodeposition of thermoelectric bismuth telluride films by cyclic voltammetry, rotating ring disk electrode and electrochemical quartz crystal microbalance (EQCM). The reduction of both Bi3+ and Te4+ ions proceeds in one step without the

  10. TI--CR--AL--O thin film resistors

    Science.gov (United States)

    Jankowski, Alan F.; Schmid, Anthony P.

    2000-01-01

    Thin films of Ti--Cr--Al--O are used as a resistor material. The films are rf sputter deposited from ceramic targets using a reactive working gas mixture of Ar and O.sub.2. Resistivity values from 10.sup.4 to 10.sup.10 Ohm-cm have been measured for Ti--Cr--Al--O film Ti--Cr--Al--O as a thin film resistor has been found to be thermodynamically stable, unlike other metal-oxide films. The Ti--Cr--Al--O film can be used as a vertical or lateral resistor, for example, as a layer beneath a field emission cathode in a flat panel display; or used to control surface emissivity, for example, as a coating on an insulating material such as vertical wall supports in flat panel displays.

  11. Thermoanalytical study of the decomposition of yttrium trifluoroacetate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Eloussifi, H. [GRMT, GRMT, Department of Physics, University of Girona, Campus Montilivi, E17071 Girona, Catalonia (Spain); Laboratoire de Chimie Inorganique, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000 Sfax (Tunisia); Farjas, J., E-mail: jordi.farjas@udg.cat [GRMT, GRMT, Department of Physics, University of Girona, Campus Montilivi, E17071 Girona, Catalonia (Spain); Roura, P. [GRMT, GRMT, Department of Physics, University of Girona, Campus Montilivi, E17071 Girona, Catalonia (Spain); Ricart, S.; Puig, T.; Obradors, X. [Institut de Ciència de Materials de Barcelona (CSIC), Campus UAB, 08193 Bellaterra, Catalonia (Spain); Dammak, M. [Laboratoire de Chimie Inorganique, Faculté des Sciences de Sfax, Université de Sfax, BP 1171, 3000 Sfax (Tunisia)

    2013-10-31

    We present the use of the thermal analysis techniques to study yttrium trifluoroacetate thin films decomposition. In situ analysis was done by means of thermogravimetry, differential thermal analysis, and evolved gas analysis. Solid residues at different stages and the final product have been characterized by X-ray diffraction and scanning electron microscopy. The thermal decomposition of yttrium trifluoroacetate thin films results in the formation of yttria and presents the same succession of intermediates than powder's decomposition, however, yttria and all intermediates but YF{sub 3} appear at significantly lower temperatures. We also observe a dependence on the water partial pressure that was not observed in the decomposition of yttrium trifluoroacetate powders. Finally, a dependence on the substrate chemical composition is discerned. - Highlights: • Thermal decomposition of yttrium trifluoroacetate films. • Very different behavior of films with respect to powders. • Decomposition is enhanced in films. • Application of thermal analysis to chemical solution deposition synthesis of films.

  12. Thermoanalytical study of the decomposition of yttrium trifluoroacetate thin films

    International Nuclear Information System (INIS)

    Eloussifi, H.; Farjas, J.; Roura, P.; Ricart, S.; Puig, T.; Obradors, X.; Dammak, M.

    2013-01-01

    We present the use of the thermal analysis techniques to study yttrium trifluoroacetate thin films decomposition. In situ analysis was done by means of thermogravimetry, differential thermal analysis, and evolved gas analysis. Solid residues at different stages and the final product have been characterized by X-ray diffraction and scanning electron microscopy. The thermal decomposition of yttrium trifluoroacetate thin films results in the formation of yttria and presents the same succession of intermediates than powder's decomposition, however, yttria and all intermediates but YF 3 appear at significantly lower temperatures. We also observe a dependence on the water partial pressure that was not observed in the decomposition of yttrium trifluoroacetate powders. Finally, a dependence on the substrate chemical composition is discerned. - Highlights: • Thermal decomposition of yttrium trifluoroacetate films. • Very different behavior of films with respect to powders. • Decomposition is enhanced in films. • Application of thermal analysis to chemical solution deposition synthesis of films

  13. Conductance Thin Film Model of Flexible Organic Thin Film Device using COMSOL Multiphysics

    Science.gov (United States)

    Carradero-Santiago, Carolyn; Vedrine-Pauléus, Josee

    We developed a virtual model to analyze the electrical conductivity of multilayered thin films placed above a graphene conducting and flexible polyethylene terephthalate (PET) substrate. The organic layers of poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) as a hole conducting layer, poly(3-hexylthiophene-2,5-diyl) (P3HT), as a p-type, phenyl-C61-butyric acid methyl ester (PCBM) and as n-type, with aluminum as a top conductor. COMSOL Multiphysics was the software we used to develop the virtual model to analyze potential variations and conductivity through the thin-film layers. COMSOL Multiphysics software allows simulation and modeling of physical phenomena represented by differential equations such as heat transfer, fluid flow, electromagnetism, and structural mechanics. In this work, using the AC/DC, electric currents module we defined the geometry of the model and properties for each of the six layers: PET/graphene/PEDOT:PSS/P3HT/PCBM/aluminum. We analyzed the model with varying thicknesses of graphene and active layers (P3HT/PCBM). This simulation allowed us to analyze the electrical conductivity, and visualize the model with varying voltage potential, or bias across the plates, useful for applications in solar cell devices.

  14. All-solid-state thin film battery based on well-aligned slanted LiCoO2 nanowires fabricated by glancing angle deposition

    Science.gov (United States)

    Yoon, Miyoung; Lee, Seunghwan; Lee, Daehee; Kim, Joosun; Moon, Jooho

    2017-08-01

    We fabricated all-solid-state thin film batteries based on well-aligned slanted LiCoO2 nanowires by glancing angle deposition, as a facile template-free method in order to increase the electrochemically active site, i.e., the contact area between the solid electrolyte and the electrode. A highly porous thin film composed of well-separated slanted LiCoO2 nanowires not only facilitates the penetration of solid electrolyte phase into the cathode, but also alleviates the thermally and mechanically induced stresses during post-annealing and electrochemical cycling. The all-solid-state thin film battery based on the well-aligned slanted LiCoO2 nanowires, whose contact area between electrolyte and electrode was three times as high as that of a dense thin film, could provide additional migration pathways for lithium ion diffusion due to the enlarged reaction sites. This resulted in enhanced electrochemical kinetics, thereby leading to better rate capability and long-term cyclic stability as compared to the dense LiCoO2 thin film.

  15. Impact of X-ray irradiation on PMMA thin films

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Saman, E-mail: saman.khan343@gmail.com [Physics Department, University of Engineering and Technology, Lahore (Pakistan); Rafique, Muhammad Shahid [Physics Department, University of Engineering and Technology, Lahore (Pakistan); Anjum, Safia [Physics Department, Lahore College for Woman University, Lahore (Pakistan); Hayat, Asma [Physics Department, University of Engineering and Technology, Lahore (Pakistan); Iqbal, Nida [Faculty of Biomedical Engineering and Health Science, Universiti Teknologi Malaysia (UTM) (Malaysia)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer PMMA thin films were deposited at 300 Degree-Sign C and 500 Degree-Sign C using PLD technique. Black-Right-Pointing-Pointer These films were irradiated with different fluence of laser produced X-rays. Black-Right-Pointing-Pointer Irradiation affects the ordered packing as well as surface morphology of film. Black-Right-Pointing-Pointer Hardness of film decreases up to certain value of X-ray fluence. Black-Right-Pointing-Pointer Absorption in UV-visible range exhibits a non linear behavior. - Abstract: The objective of this project is to explore the effect of X-ray irradiation of thin polymeric films deposited at various substrate temperatures. pulsed laser deposition (PLD) technique is used for the deposition of PMMA thin films on glass substrate at 300 Degree-Sign C and 500 Degree-Sign C. These films have been irradiated with various X-rays fluences ranging from 2.56 to 5.76 mJ cm{sup -2}. Characterization of the films (before and after the irradiation) is done with help of X-ray Diffractrometer, Optical Microscope, Vickers hardness tester and UV-vis spectroscopy techniques. From XRD data, it is revealed that ordered packing has been improved for the films deposited at 300 Degree-Sign C. However after irradiation the films exhibited the amorphous behavior regardless of the X-ray fluence. Film deposited at 500 Degree-Sign C shows amorphous structure before and after irradiation. Hardness and particle size of thin film have also increased with the increasing substrate temperature. However, the irradiation has reverse effect i.e. the particle size as well as the hardness has reduced. Irradiation has also enhanced the absorption in the UV-visible region.

  16. Impact of X-ray irradiation on PMMA thin films

    International Nuclear Information System (INIS)

    Iqbal, Saman; Rafique, Muhammad Shahid; Anjum, Safia; Hayat, Asma; Iqbal, Nida

    2012-01-01

    Highlights: ► PMMA thin films were deposited at 300 °C and 500 °C using PLD technique. ► These films were irradiated with different fluence of laser produced X-rays. ► Irradiation affects the ordered packing as well as surface morphology of film. ► Hardness of film decreases up to certain value of X-ray fluence. ► Absorption in UV–visible range exhibits a non linear behavior. - Abstract: The objective of this project is to explore the effect of X-ray irradiation of thin polymeric films deposited at various substrate temperatures. pulsed laser deposition (PLD) technique is used for the deposition of PMMA thin films on glass substrate at 300 °C and 500 °C. These films have been irradiated with various X-rays fluences ranging from 2.56 to 5.76 mJ cm −2 . Characterization of the films (before and after the irradiation) is done with help of X-ray Diffractrometer, Optical Microscope, Vickers hardness tester and UV–vis spectroscopy techniques. From XRD data, it is revealed that ordered packing has been improved for the films deposited at 300 °C. However after irradiation the films exhibited the amorphous behavior regardless of the X-ray fluence. Film deposited at 500 °C shows amorphous structure before and after irradiation. Hardness and particle size of thin film have also increased with the increasing substrate temperature. However, the irradiation has reverse effect i.e. the particle size as well as the hardness has reduced. Irradiation has also enhanced the absorption in the UV–visible region.

  17. The effect of Argon pressure dependent V thin film on the phase transition process of (020) VO2 thin film

    Science.gov (United States)

    Meng, Yifan; Huang, Kang; Tang, Zhou; Xu, Xiaofeng; Tan, Zhiyong; Liu, Qian; Wang, Chunrui; Wu, Binhe; Wang, Chang; Cao, Juncheng

    2018-01-01

    It has been proved challenging to fabricate the single crystal orientation of VO2 thin film by a simple method. Based on chemical reaction thermodynamic and crystallization analysis theory, combined with our experimental results, we find out that when stoichiometric number of metallic V in the chemical equation is the same, the ratio of metallic V thin film surface average roughness Ra to thin film average particle diameter d decreases with the decreasing sputtering Argon pressure. Meanwhile, the oxidation reaction equilibrium constant K also decreases, which will lead to the increases of oxidation time, thereby the crystal orientation of the VO2 thin film will also become more uniform. By sputtering oxidation coupling method, metallic V thin film is deposited on c-sapphire substrate at 1 × 10-1 Pa, and then oxidized in the air with the maximum oxidation time of 65s, high oriented (020) VO2 thin film has been fabricated successfully, which exhibits ∼4.6 orders sheet resistance change across the metal-insulator transition.

  18. Nanostructured thin films for icephobic applications

    Science.gov (United States)

    Noormohammed, Saleema

    Icing on surfaces such as cables or high voltage insulators often leads to severe safety issues such as power outages in cold winter conditions. Conventional methods used to avoid such icing problems include mechanical deicing where the ice is scraped or broken and chemical deicing where deicers such as ethylene glycol are used. These methods have their own disadvantages of being destructive, expensive and time consuming. A better approach would be to prevent ice from forming in the first place by producing coating materials that are icephobic. Superhydrophobic surfaces, which demonstrate high water-repellency due to the negligible contact area of water with those surfaces, are also expected to minimize the contact area of ice. A low dielectric constant surface is also expected to reduce the adhesion of ice due to the screening of mirror charges, thereby eliminating one of the strongest interaction forces---the electrostatic forces of attraction at the ice-surface interface. In the present research work, both concepts were studied by producing superhydrophobic nanorough low-epsilon dielectric surfaces on aluminum or alumina substrates. Superhydrophobic properties were achieved on surfaces of aluminum or alumina by creating a certain nanoroughness using chemical methods followed by a low surface energy coating of rf-sputtered Teflon or fluoroalkyl-silane (FAS-17) providing a water contact angle greater than 160°. The same behavior is reported even when the nanorough substrates were coated with dielectric thin films of ZnO (lower epsilon) or TiO 2, (higher epsilon). It is found that the superhydrophobic nanorough low surface energy surfaces are also icephobic and the presence of a low dielectric constant surface coating of Teflon (lowest epsilon; epsilon = 2) allows a considerable reduction of the ice adhesion strength even on non-nanotextured surfaces where ice would stick. The superhydrophobic nanorough low-epsilon surfaces also demonstrate morphological and

  19. Optical conductivity of topological insulator thin films

    International Nuclear Information System (INIS)

    Li, L. L.; Xu, W.; Peeters, F. M.

    2015-01-01

    We present a detailed theoretical study on the optoelectronic properties of topological insulator thin film (TITFs). The k·p approach is employed to calculate the energy spectra and wave functions for both the bulk and surface states in the TITF. With these obtained results, the optical conductivities induced by different electronic transitions among the bulk and surface states are evaluated using the energy-balance equation derived from the Boltzmann equation. We find that for Bi 2 Se 3 -based TITFs, three characteristic regimes for the optical absorption can be observed. (i) In the low radiation frequency regime (photon energy ℏω<200 meV), the free-carrier absorption takes place due to intraband electronic transitions. An optical absorption window can be observed. (ii) In the intermediate radiation frequency regime (200<ℏω<300 meV), the optical absorption is induced mainly by interband electronic transitions from surface states in the valance band to surface states in the conduction band and an universal value σ 0 =e 2 /(8ℏ) for the optical conductivity can be obtained. (iii) In the high radiation frequency regime (ℏω>300 meV), the optical absorption can be achieved via interband electronic transitions from bulk and surface states in the valance band to bulk and surface states in the conduction band. A strong absorption peak can be observed. These interesting findings indicate that optical measurements can be applied to identify the energy regimes of bulk and surface states in the TITF

  20. High-throughput characterization of film thickness in thin film materials libraries by digital holographic microscopy

    Directory of Open Access Journals (Sweden)

    Yiu Wai Lai, Michael Krause, Alan Savan, Sigurd Thienhaus, Nektarios Koukourakis, Martin R Hofmann and Alfred Ludwig

    2011-01-01

    Full Text Available A high-throughput characterization technique based on digital holography for mapping film thickness in thin-film materials libraries was developed. Digital holographic microscopy is used for fully automatic measurements of the thickness of patterned films with nanometer resolution. The method has several significant advantages over conventional stylus profilometry: it is contactless and fast, substrate bending is compensated, and the experimental setup is simple. Patterned films prepared by different combinatorial thin-film approaches were characterized to investigate and demonstrate this method. The results show that this technique is valuable for the quick, reliable and high-throughput determination of the film thickness distribution in combinatorial materials research. Importantly, it can also be applied to thin films that have been structured by shadow masking.

  1. Thin film characterisation by advanced X-ray diffraction techniques

    International Nuclear Information System (INIS)

    Cappuccio, G.; Terranova, M.L.

    1996-09-01

    The Fifth School on X-ray diffraction from polycrystalline materials was devoted to thin film characterization by advanced X-ray diffraction techniques. Twenty contributions are contained in this volume; all twenty are recorded in the INIS Database. X-ray diffraction is known to be a powerful analytical tool for characterizing materials and understanding their structural features. The aim of these articles is to illustrate the fundamental contribution of modern diffraction techniques (grazing incidence, surface analysis, standing waves, etc.) to the characterization of thin and ultra-thin films, which have become important in many advanced technologies

  2. Highly Mass-Sensitive Thin Film Plate Acoustic Resonators (FPAR

    Directory of Open Access Journals (Sweden)

    Ventsislav Yantchev

    2011-07-01

    Full Text Available The mass sensitivity of thin aluminum nitride (AlN film S0 Lamb wave resonators is theoretically and experimentally studied. Theoretical predictions based on modal and finite elements method analysis are experimentally verified. Here, two-port 888 MHz synchronous FPARs are micromachined and subsequently coated with hexamethyl-disiloxane(HMDSO-plasma-polymerized thin films of various thicknesses. Systematic data on frequency shift and insertion loss versus film thickness are presented. FPARs demonstrate high mass-loading sensitivity as well as good tolerance towards the HMDSO viscous losses. Initial measurements in gas phase environment are further presented.

  3. Formation of nanomagnetic thin films by dispersed fullerenes

    Science.gov (United States)

    Zheng, Lingyi A.; Lairson, Bruce M.; Barrera, Enrique V.; Shull, Robert D.

    2000-11-01

    A method of forming magnetic materials using dispersed fullerenes in ferromagnetic materials has been studied. Fullerenes (C60) have been integrated into the matrix of Co, Fe, CoFe thin films by thermal vapor codeposition. The size effects and interaction of the C60 molecules to the metallic atoms promote a self-assembly grain growth mode to produce thin films with unique evoluted microstructures characterized by nanosize columnar grains with uniformly dispersed C60 on the grain boundaries. These nanocrystalline films have displayed a series of promising magnetic properties, such as high out of plane remanence, high coercivity, fast magnetic switching, and unusual hysteresis behavior.

  4. Synthesis of thin films by the pyrosol process

    Directory of Open Access Journals (Sweden)

    Tucić Aleksandar

    2002-01-01

    Full Text Available Among many aerosol routes, the Pyrosol process, due to its simplicity, low cost and quality of obtained films, represents a promising technique for the synthesis of thin films. The pyrosol process is based on the transport and pyrolysls of an aerosol of processor solution, generated in an ultrasonic atomizer, on a heated substrate. The theoretical principles of the pyrosol process are presented in this paper, as well as the influence of some synthesis parameters on the deposition of SnO2 thin films.

  5. Infrared reflectance measurement for InN thin film characterization

    International Nuclear Information System (INIS)

    Fukui, K.; Kugumiya, Y.; Nakagawa, N.; Yamamoto, A.

    2006-01-01

    Infrared reflectance measurements of a series of InN thin films have been performed and attempt to derive carrier concentration and other physical constants for InN thin film characterization. Fitting calculations are performed by use of the dielectric function equation based on phonon-plasmon coupling model. Longitudinal and transverse optical phonon frequencies, plasma frequency and their damping parameters can be derived from fitting. From those results, electrical and phonon properties of InN and characterization of films are discussed. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  6. Morphological Study Of Palladium Thin Films Deposited By Sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Salcedo, K L; Rodriguez, C A [Grupo Plasma Laser y Aplicaciones, Ingenieria Fisica, Universidad Tecnologica de Pereira (Colombia); Perez, F A [WNANO, West Virginia University (United States); Riascos, H [Grupo Plasma Laser y Aplicaciones, Departamento de Fisica, Universidad Tecnologica de Pereira (Colombia)

    2011-01-01

    This paper presents a morphological analysis of thin films of palladium (Pd) deposited on a substrate of sapphire (Al{sub 2}O{sub 3}) at a constant pressure of 3.5 mbar at different substrate temperatures (473 K, 523 K and 573 K). The films were morphologically characterized by means of an Atomic Force Microscopy (AFM); finding a relation between the roughness and the temperature. A morphological analysis of the samples through AFM was carried out and the roughness was measured by simulating the X-ray reflectivity curve using GenX software. A direct relation between the experimental and simulation data of the Palladium thin films was found.

  7. Resistance switching induced by electric fields in manganite thin films

    International Nuclear Information System (INIS)

    Villafuerte, M; Juarez, G; Duhalde, S; Golmar, F; Degreef, C L; Heluani, S P

    2007-01-01

    In this work, we investigate the polarity-dependent Electric Pulses Induced Resistive (EPIR) switching phenomenon in thin films driven by electric pulses. Thin films of 0.5 Ca 0.5 MnO 3 (manganite) were deposited by PLD on Si substrate. The transport properties at the interface between the film and metallic electrode are characterized in order to study the resistance switching. Sample thermal treatment and electrical field history are important to be considered for get reproducible EPIR effect. Carriers trapping at the interfaces are considered as a possible explanation of our results

  8. Giant flexoelectric effect in ferroelectric epitaxial thin films.

    Science.gov (United States)

    Lee, D; Yoon, A; Jang, S Y; Yoon, J-G; Chung, J-S; Kim, M; Scott, J F; Noh, T W

    2011-07-29

    We report on nanoscale strain gradients in ferroelectric HoMnO(3) epitaxial thin films, resulting in a giant flexoelectric effect. Using grazing-incidence in-plane x-ray diffraction, we measured strain gradients in the films, which were 6 or 7 orders of magnitude larger than typical values reported for bulk oxides. The combination of transmission electron microscopy, electrical measurements, and electrostatic calculations showed that flexoelectricity provides a means of tuning the physical properties of ferroelectric epitaxial thin films, such as domain configurations and hysteresis curves. © 2011 American Physical Society

  9. Cathodoluminescence study of thin films of high Tc superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Barkay, Z.; Azoulay, J.; Lereah, Y.; Dai, U.; Hess, N.; Racah, D.; Gruenbaum, E.; Deutscher, G. (School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, 69978 Ramat Aviv (Israel))

    1990-10-22

    Cathodoluminescence (CL) of thin films of high {ital T}{sub {ital c}} superconductors was studied in the scanning electron microscope. The depth and the lateral locations of the different phases can be revealed. In thin films, unlike the bulk superconductors, the CL information can be obtained either from the film itself or the substrate by varying the primary beam energy. At high beam energy, substrate defects and slight thickness variations of a single high {ital T}{sub {ital c}} phase are observed. The resolution of the CL measurements improves at low temperatures.

  10. Characterization of Sucrose Thin Films for Biomedical Applications

    Directory of Open Access Journals (Sweden)

    S. L. Iconaru

    2011-01-01

    Full Text Available Sucrose is a natural osmolyte accumulated in the cells of organisms as they adapt to environmental stress. In vitro sucrose increases protein stability and forces partially unfolded structures to refold. Thin films of sucrose (C12H22O11 were deposited on thin cut glass substrates by the thermal evaporation technique (P∼10−5 torr. Characteristics of thin films were put into evidence by Fourier Transform Infrared Spectroscopy (FTIR, X-ray Photoelectron Spectroscopy (XPS, scanning electron microscopy (SEM, and differential thermal analysis and thermal gravimetric analysis (TG/DTA. The experimental results confirm a uniform deposition of an adherent layer. In this paper we present a part of the characteristics of sucrose thin films deposited on glass in medium vacuum conditions, as a part of a culture medium for osteoblast cells. Osteoblast cells were used to determine proliferation, viability, and cytotoxicity interactions with sucrose powder and sucrose thin films. The osteoblast cells have been provided from the American Type Culture Collection (ATCC Centre. The outcome of this study demonstrated the effectiveness of sucrose thin films as a possible nontoxic agent for biomedical applications.

  11. Visualizing Nanoscopic Topography and Patterns in Freely Standing Thin Films

    Science.gov (United States)

    Yilixiati, Subinuer; Zhang, Yiran; Pearsall, Collin; Sharma, Vivek

    Thin liquid films containing micelles, nanoparticles, polyelectrolyte-surfactant complexes and smectic liquid crystals undergo thinning in a discontinuous, step-wise fashion. The discontinuous jumps in thickness are often characterized by quantifying changes in the intensity of reflected monochromatic light, modulated by thin film interference from a region of interest. Stratifying thin films exhibit a mosaic pattern in reflected white light microscopy, attributed to the coexistence of domains with various thicknesses, separated by steps. Using Interferometry Digital Imaging Optical Microscopy (IDIOM) protocols developed in the course of this study, we spatially resolve for the first time, the landscape of stratifying freestanding thin films. In particular, for thin films containing micelles of sodium dodecyl sulfate (SDS), discontinuous, thickness transitions with concentration-dependent steps of 5-25 nm are visualized and analyzed using IDIOM protocols. We distinguish nanoscopic rims, mesas and craters and show that the non-flat features are sculpted by oscillatory, periodic, supramolecular structural forces that arise in confined fluids

  12. Oxide-based thin film transistors for flexible electronics

    Science.gov (United States)

    He, Yongli; Wang, Xiangyu; Gao, Ya; Hou, Yahui; Wan, Qing

    2018-01-01

    The continuous progress in thin film materials and devices has greatly promoted the development in the field of flexible electronics. As one of the most common thin film devices, thin film transistors (TFTs) are significant building blocks for flexible platforms. Flexible oxide-based TFTs are well compatible with flexible electronic systems due to low process temperature, high carrier mobility, and good uniformity. The present article is a review of the recent progress and major trends in the field of flexible oxide-based thin film transistors. First, an introduction of flexible electronics and flexible oxide-based thin film transistors is given. Next, we introduce oxide semiconductor materials and various flexible oxide-based TFTs classified by substrate materials including polymer plastics, paper sheets, metal foils, and flexible thin glass. Afterwards, applications of flexible oxide-based TFTs including bendable sensors, memories, circuits, and displays are presented. Finally, we give conclusions and a prospect for possible development trends. Project supported in part by the National Science Foundation for Distinguished Young Scholars of China (No. 61425020), in part by the National Natural Science Foundation of China (No. 11674162).

  13. Pd thin films on flexible substrate for hydrogen sensor

    Energy Technology Data Exchange (ETDEWEB)

    Öztürk, Sadullah [Fatih Sultan Mehmet Vakıf University, Engineering Faculty, Istanbul (Turkey); Kılınç, Necmettin, E-mail: nkilinc@nigde.edu.tr [Nigde University, Mechatronics Engineering Department, 51245 Nigde (Turkey); Nigde University, Nanotechnology Application and Research Center, 51245 Nigde (Turkey)

    2016-07-25

    In this work, palladium (Pd) thin films were prepared via RF sputtering method with various thicknesses (6 nm, 20 nm and 60 nm) on both a flexible substrate and a hard substrate. Hydrogen (H{sub 2}) sensing properties of Pd films on flexible substrate have been investigated depending on temperatures (25–100 °C) and H{sub 2} concentrations (600 ppm – 10%). The effect of H{sub 2} on structural properties of the films was also studied. The films were characterized by Scanning Electron Microscopy (SEM) and X-ray diffraction. It is found that whole Pd films on hard substrate show permanent structural deformation after exposed to 10% H{sub 2} for 30 min. But, this H{sub 2} exposure does not causes any structural deformation for 6 nm Pd film on flexible substrate and 6 nm Pd film on flexible substrate shows reversible sensor response up to 10% H{sub 2} concentration without any structural deformation. On the other hand, Pd film sensors that have the thicknesses 20 nm and 60 nm on flexible substrate are irreversible for higher H{sub 2} concentration (>2%) with film deformation. The sensor response of 6 nm Pd film on flexible substrate increased with increasing H{sub 2} concentration up 4% and then saturated. The sensitivity of the film decreased with increasing operation temperature. - Highlights: • Pd thin films fabricated by RF sputtering on both flexible and hard substrates. • Structural deformation observed for films on hard substrate after exposing 10% H{sub 2}. • 6 nm Pd film on flexible substrate shows reversible sensor response up to 10% H{sub 2}. • H{sub 2} sensing properties of film on flexible substrate investigated depending on temperature and concentration. • The sensitivity of the film decreased with increasing operation temperature.

  14. Aluminosilicate glass thin films elaborated by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Carlier, Thibault [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Saitzek, Sébastien [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Méar, François O., E-mail: francois.mear@univ-lille1.fr [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France); Blach, Jean-François; Ferri, Anthony [Univ. Artois, CNRS, Centrale Lille, ENSCL, Univ. Lille, UMR 8181, Unité de Catalyse et de Chimie du Solide (UCCS), F-62300 Lens (France); Huvé, Marielle; Montagne, Lionel [Univ. Lille, CNRS, Centrale Lille, ENSCL, Univ. Artois, UMR 8181 – UCCS – Unité de Catalyse et Chimie du Solide, F-59000 Lille (France)

    2017-03-01

    Highlights: • Successfully deposition of a glassy thin film by PLD. • A good homogeneity and stoichiometry of the coating. • Influence of the deposition temperature on the glassy thin-film structure. - Abstract: In the present work, we report the elaboration of aluminosilicate glass thin films by Pulsed Laser Deposition at various temperatures deposition. The amorphous nature of glass thin films was highlighted by Grazing Incidence X-Ray Diffraction and no nanocristallites were observed in the glassy matrix. Chemical analysis, obtained with X-ray Photoelectron Spectroscopy and Time of Flight Secondary Ion Mass Spectroscopy, showed a good transfer and homogeneous elementary distribution with of chemical species from the target to the film a. Structural studies performed by Infrared Spectroscopy showed that the substrate temperature plays an important role on the bonding configuration of the layers. A slight shift of Si-O modes to larger wavenumber was observed with the synthesis temperature, assigned to a more strained sub-oxide network. Finally, optical properties of thins film measured by Spectroscopic Ellipsometry are similar to those of the bulk aluminosilicate glass, which indicate a good deposition of aluminosilicate bulk glass.

  15. Self-assembly of dodecaphenyl POSS thin films

    Science.gov (United States)

    Handke, Bartosz; Klita, Łukasz; Niemiec, Wiktor

    2017-12-01

    The self-assembly abilities of Dodecaphenyl Polyhedral Oligomeric Silsesquioxane thin films on Si(1 0 0) surfaces were studied. Due to their thermal properties - relatively low sublimation temperature and preservation of molecular structure - cage type silsesquioxanes are ideal material for the preparation of a thin films by Physical Vapor Deposition. The Ultra-High Vacuum environment and the deposition precision of the PVD method enable the study of early stages of thin film growth and its molecular organization. X-ray Reflectivity and Atomic Force Microscopy measurements allow to pursuit size-effects in the structure of thin films with thickness ranges from less than a single molecular layer up to several tens of layers. Thermal treatment of the thin films triggered phase change: from a poorly ordered polycrystalline film into a well-ordered multilayer structure. Self-assembly of the layers is the effect of the π-stacking of phenyl rings, which force molecules to arrange in a superlattice, forming stacks of alternating organic-inorganic layers.

  16. Structural and Electrochemical Properties of Lithium Nickel Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Gyu-bong Cho

    2014-01-01

    Full Text Available LiNiO2 thin films were fabricated by RF magnetron sputtering. The microstructure of the films was determined by X-ray diffraction and field-emission scanning electron microscopy. The electrochemical properties were investigated with a battery cycler using coin-type half-cells. The LiNiO2 thin films annealed below 500°C had the surface carbonate. The results suggest that surface carbonate interrupted the Li intercalation and deintercalation during charge/discharge. Although the annealing process enhanced the crystallization of LiNiO2, the capacity did not increase. When the annealing temperature was increased to 600°C, the FeCrNiO4 oxide phase was generated and the discharge capacity decreased due to an oxygen deficiency in the LiNiO2 thin film. The ZrO2-coated LiNiO2 thin film provided an improved discharge capacity compared to bare LiNiO2 thin film suggesting that the improved electrochemical characteristic may be attributed to the inhibition of surface carbonate by ZrO2 coating layer.

  17. Robust lanthanide emitters in polyelectrolyte thin films for photonic applications

    Science.gov (United States)

    Greenspon, Andrew S.; Marceaux, Brandt L.; Hu, Evelyn L.

    2018-02-01

    Trivalent lanthanides provide stable emission sources at wavelengths spanning the ultraviolet through the near infrared with uses in telecommunications, lighting, and biological sensing and imaging. We describe a method for incorporating an organometallic lanthanide complex within polyelectrolyte multilayers, producing uniform, optically active thin films on a variety of substrates. These films demonstrate excellent emission with narrow linewidths, stable over a period of months, even when bound to metal substrates. Utilizing different lanthanides such as europium and terbium, we are able to easily tune the resulting wavelength of emission of the thin film. These results demonstrate the suitability of this platform as a thin film emitter source for a variety of photonic applications such as waveguides, optical cavities, and sensors.

  18. Scanning Angle Raman spectroscopy in polymer thin film characterization

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Vy H.T. [Iowa State Univ., Ames, IA (United States)

    2015-12-19

    The focus of this thesis is the application of Raman spectroscopy for the characterization of thin polymer films. Chapter 1 provides background information and motivation, including the fundamentals of Raman spectroscopy for chemical analysis, scanning angle Raman scattering and scanning angle Raman scattering for applications in thin polymer film characterization. Chapter 2 represents a published manuscript that focuses on the application of scanning angle Raman spectroscopy for the analysis of submicron thin films with a description of methodology for measuring the film thickness and location of an interface between two polymer layers. Chapter 3 provides an outlook and future directions for the work outlined in this thesis. Appendix A, contains a published manuscript that outlines the use of Raman spectroscopy to aid in the synthesis of heterogeneous catalytic systems. Appendix B and C contain published manuscripts that set a foundation for the work presented in Chapter 2.

  19. Recent progress of optical thin films in the automobile industry.

    Science.gov (United States)

    Taga, Y

    1993-10-01

    There are increasing demands for the application of optical thin films to transparent substrates such as glass and plastics for windows in automobiles with the view of adding fascinating optical properties to them. These properties include surface hardening of plastics, infrared reflection, ultraviolet absorption, polarization and birefringence, and hydrophobicity. Recent examples of applications of sophisticated thin-film processes of plasma treatment and physical vapor deposition are reviewed. The novelty of the functions provided by physical vapor deposition films together with their durability for practical usage are emphasized as areas in which the thin-film process has a significant impact. Characterization of the modified surface and interface is also included to demonstrate recent advances in surface chemistry. Finally, future challenges for optical modification of transparent substrates in the automobile industry are also discussed.

  20. Thin film encapsulation for flexible AM-OLED: a review

    Science.gov (United States)

    Park, Jin-Seong; Chae, Heeyeop; Chung, Ho Kyoon; In Lee, Sang

    2011-03-01

    Flexible organic light emitting diode (OLED) will be the ultimate display technology to customers and industries in the near future but the challenges are still being unveiled one by one. Thin-film encapsulation (TFE) technology is the most demanding requirement to prevent water and oxygen permeation into flexible OLED devices. As a polymer substrate does not offer the same barrier performance as glass, the TFE should be developed on both the bottom and top side of the device layers for sufficient lifetimes. This work provides a review of promising thin-film barrier technologies as well as the basic gas diffusion background. Topics include the significance of the device structure, permeation rate measurement, proposed permeation mechanism, and thin-film deposition technologies (Vitex system and atomic layer deposition (ALD)/molecular layer deposition (MLD)) for effective barrier films.

  1. Thin-film Rechargeable Lithium Batteries for Implantable Devices

    Science.gov (United States)

    Bates, J. B.; Dudney, N. J.

    1997-05-01

    Thin films of LiCoO{sub 2} have been synthesized in which the strongest x ray reflection is either weak or missing, indicating a high degree of preferred orientation. Thin film solid state batteries with these textured cathode films can deliver practical capacities at high current densities. For example, for one of the cells 70% of the maximum capacity between 4.2 V and 3 V ({approximately}0.2 mAh/cm{sup 2}) was delivered at a current of 2 mA/cm{sup 2}. When cycled at rates of 0.1 mA/cm{sup 2}, the capacity loss was 0.001%/cycle or less. The reliability and performance of Li LiCoO{sub 2} thin film batteries make them attractive for application in implantable devices such as neural stimulators, pacemakers, and defibrillators.

  2. Influence of annealing on microstructural and photoelectrochemical characteristics of CuSCN thin films via electrochemical process

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Mao-Chia [Institute of Materials Science and Engineering, National Central University, Jhongli 32001, Taiwan (China); Wang, TsingHai [Department of Biomedical Engineering and Environment Sciences, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Tseng, Yao-Tien [Institute of Materials Science and Engineering, National Central University, Jhongli 32001, Taiwan (China); Wu, Ching-Chen [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan (China); Lin, Jing-Chie, E-mail: jclin4046@gmail.com [Institute of Materials Science and Engineering, National Central University, Jhongli 32001, Taiwan (China); Department of Mechanical Engineering, National Central University, Jhongli 32001, Taiwan (China); Hsu, Wan-Yi [Department of Mechanical Engineering, National Central University, Jhongli 32001, Taiwan (China); Chang, Wen-Sheng [Green Energy and Environment Research Laboratories, Industrial Technology Research Institute, Hsinchu 310, Taiwan (China); Chen, I-Chen [Institute of Materials Science and Engineering, National Central University, Jhongli 32001, Taiwan (China); Peng, Kun-Cheng [Department of Materials Engineering, Mingchi University of Technology, New Taipei City 24301, Taiwan (China)

    2015-02-15

    Highlights: • CuSCN films were synthesized by electrochemical process. • The parameter of CuSCN films was annealing temperature. • The photoelectrochemical characteristics of CuSCN films were investigated. - Abstract: Thin films of p-type β-CuSCN were deposited on indium-tin oxide glass substrates via electrochemical process. Various annealing temperatures (200, 300 and 400 °C) were taken into consideration. The influence of annealing temperature on structural, optical, electrical and photoelectrochemical characteristics of β-CuSCN thin films were investigated. Results from X-ray diffraction indicated as-obtained β-CuSCN thin film was in a hexagonal close pack crystal structure. We found that the crystallographic orientation changed and the optical energy band gap slightly increased with increasing annealing temperatures. These properties made CuSCN films annealed at 400 °C a better photoelectrochemical performance with photocurrent density of about −0.39 mA/cm{sup 2} at −0.5 V vs. SCE. This value is about 5 times higher than the as-deposited CuSCN film. Observed higher photocurrent density is likely due to the intrinsic of a higher charge carrier concentration, and a lower resistance within CuSCN crystal and at CuSCN/electrolyte interface.

  3. Polycrystalline Thin Film Photovoltaics: Research, Development, and Technologies: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Ullal, H. S.; Zweibel, K.; von Roedern, B.

    2002-05-01

    II-VI binary thin-film solar cells based on cadmium telluride (CdTe) and I-III-VI ternary thin-film solar cells based on copper indium diselenide (CIS) and related materials have been the subject of intense research and development in the past few years. Substantial progress has been made thus far in the area of materials research, device fabrication, and technology development, and numerous applications based on CdTe and CIS have been deployed worldwide. World record efficiency of 16.5% has been achieved by NREL scientists for a thin-film CdTe solar cell using a modified device structure. Also, NREL scientists achieved world-record efficiency of 21.1% for a thin-film CIGS solar cell under a 14X concentration and AM1.5 global spectrum. When measured under a AM1.5 direct spectrum, the efficiency increases to 21.5%. Pathways for achieving 25% efficiency for tandem polycrystalline thin-film solar cells are elucidated. R&D issues relating to CdTe and CIS are reported in this paper, such as contact stability and accelerated life testing in CdTe, and effects of moisture ingress in thin-film CIS devices. Substantial technology development is currently under way, with various groups reporting power module efficiencies in the range of 7.0% to 12.1% and power output of 40.0 to 92.5 W. A number of lessons learned during the scale-up activities of the technology development for fabrication of thin-film power modules are discussed. The major global players actively involved in the technology development and commercialization efforts using both rigid and flexible power modules are highlighted.

  4. Optical and Nonlinear Optical Response of Light Sensor Thin Films

    Directory of Open Access Journals (Sweden)

    S. Z. Weisz

    2005-04-01

    Full Text Available For potential ultrafast optical sensor application, both VO2 thin films andnanocomposite crystal-Si enriched SiO2 thin films grown on fused quartz substrates weresuccessfully prepared using pulsed laser deposition (PLD and RF co-sputteringtechniques. In photoluminescence (PL measurement c-Si/SiO2 film containsnanoparticles of crystal Si exhibits strong red emission with the band maximum rangingfrom 580 to 750 nm. With ultrashort pulsed laser excitation all films show extremelyintense and ultrafast nonlinear optical (NLO response. The recorded holography fromall these thin films in a degenerate-four-wave-mixing configuration shows extremelylarge third-order response. For VO2 thin films, an optically induced semiconductor-tometalphase transition (PT immediately occurred upon laser excitation. it accompanied.It turns out that the fast excited state dynamics was responsible to the induced PT. For c-Si/SiO2 film, its NLO response comes from the contribution of charge carriers created bylaser excitation in conduction band of the c-Si nanoparticles. It was verified byintroducing Eu3+ which is often used as a probe sensing the environment variations. Itturns out that the entire excited state dynamical process associated with the creation,movement and trapping of the charge carriers has a characteristic 500 ps duration.

  5. Picosecond and subpicosecond pulsed laser deposition of Pb thin films

    Directory of Open Access Journals (Sweden)

    F. Gontad

    2013-09-01

    Full Text Available Pb thin films were deposited on Nb substrates by means of pulsed laser deposition (PLD with UV radiation (248 nm, in two different ablation regimes: picosecond (5 ps and subpicosecond (0.5 ps. Granular films with grain size on the micron scale have been obtained, with no evidence of large droplet formation. All films presented a polycrystalline character with preferential orientation along the (111 crystalline planes. A maximum quantum efficiency (QE of 7.3×10^{-5} (at 266 nm and 7 ns pulse duration was measured, after laser cleaning, demonstrating good photoemission performance for Pb thin films deposited by ultrashort PLD. Moreover, Pb thin film photocathodes have maintained their QE for days, providing excellent chemical stability and durability. These results suggest that Pb thin films deposited on Nb by ultrashort PLD are a noteworthy alternative for the fabrication of photocathodes for superconductive radio-frequency electron guns. Finally, a comparison with the characteristics of Pb films prepared by ns PLD is illustrated and discussed.

  6. Electrical properties of biodegradable poly(ε-caprolactone): lithium thiocyanate complexed polymer electrolyte films

    Energy Technology Data Exchange (ETDEWEB)

    Ravi, M. [Shenzhen Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Song, Shenhua, E-mail: shsonguk@aliyun.com [Shenzhen Key Laboratory of Advanced Materials, Department of Materials Science and Engineering, Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen 518055 (China); Gu, Kunming; Tang, Jiaoning [College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060 (China); Zhang, Zhongyi [Advanced Polymer and Composites (APC) Research Group, School of Engineering, University of Portsmouth, Portsmouth PO1 3DJ, Hampshire (United Kingdom)

    2015-05-15

    Graphical abstract: - Highlights: • The minimum T{sub m} and χ{sub c} values are observed in 15 wt% LiSCN complexed film. • The conductivity of PCL:LiSCN complexed films follows Johnscher's power law. • Conductivity and dielectric constant follows the same trend. • The charge carriers responsible for both conduction and relaxation are the same. - Abstract: Lithium ion conducting polymer electrolyte films based on biodegradable poly(ε-caprolactone) (PCL) complexed with lithium thiocyanate (LiSCN) salt were prepared by solution cast technique. Thermal and electrical properties of the polymer electrolyte films were studied using differential scanning calorimetry (DSC) and ac impedance spectroscopy. In order to investigate the ion conduction mechanism and relaxation behavior of complex polymer electrolyte films, the conductivity, dielectric constant, loss tangent and electric modulus were analyzed as a function of frequency and temperature. The variation of conductivity with frequency obeyed the Johnscher's power law. The dielectric constant exhibited a higher value at a lower frequency and increased with rising temperature due to the polar nature of host polymer. The activation energies for both dc conductivity and relaxation had the same value (∼0.87 eV), implying that the charge carriers responsible for both conduction and relaxation were the same.

  7. Electrical properties of biodegradable poly(ε-caprolactone): lithium thiocyanate complexed polymer electrolyte films

    International Nuclear Information System (INIS)

    Ravi, M.; Song, Shenhua; Gu, Kunming; Tang, Jiaoning; Zhang, Zhongyi

    2015-01-01

    Graphical abstract: - Highlights: • The minimum T m and χ c values are observed in 15 wt% LiSCN complexed film. • The conductivity of PCL:LiSCN complexed films follows Johnscher's power law. • Conductivity and dielectric constant follows the same trend. • The charge carriers responsible for both conduction and relaxation are the same. - Abstract: Lithium ion conducting polymer electrolyte films based on biodegradable poly(ε-caprolactone) (PCL) complexed with lithium thiocyanate (LiSCN) salt were prepared by solution cast technique. Thermal and electrical properties of the polymer electrolyte films were studied using differential scanning calorimetry (DSC) and ac impedance spectroscopy. In order to investigate the ion conduction mechanism and relaxation behavior of complex polymer electrolyte films, the conductivity, dielectric constant, loss tangent and electric modulus were analyzed as a function of frequency and temperature. The variation of conductivity with frequency obeyed the Johnscher's power law. The dielectric constant exhibited a higher value at a lower frequency and increased with rising temperature due to the polar nature of host polymer. The activation energies for both dc conductivity and relaxation had the same value (∼0.87 eV), implying that the charge carriers responsible for both conduction and relaxation were the same

  8. A dynamic rheological model for thin-film lubrication

    International Nuclear Information System (INIS)

    Zhang Xiang-Jun; Huang Ying; Guo Yan-Bao; Tian Yu; Meng Yong-Gang

    2013-01-01

    In this study, the effects of the non-Newtonian rheological properties of the lubricant in a thin-film lubrication regime between smooth surfaces were investigated. The thin-film lubrication regime typically appears in Stribeck curves with a clearly observable minimum coefficient of friction (COF) and a low-COF region, which is desired for its lower energy dissipation. A dynamic rheology of the lubricant from the hydrodynamic lubrication regime to the thin-film lubrication regime was proposed based on the convected Maxwell constitutive equation. This rheology model includes the increased relaxation time and the yield stress of the confined lubricant thin film, as well as their dependences on the lubricant film thickness. The Deborah number (De number) was adopted to describe the liquid-solid transition of the confined lubricant thin film under shearing. Then a series of Stribeck curves were calculated based on Tichy's extended lubrication equations with a perturbation of the De number. The results show that the minimum COF points in the Stribeck curve correspond to a critical De number of 1.0, indicating a liquid-to-solid transition of the confined lubricant film. Furthermore, the two proposed parameters in the dynamic rheological model, namely negative slipping length b (indicating the lubricant interfacial effect) and the characteristic relaxation time λ 0 , were found to determine the minimum COF and the width of the low-COF region, both of which were required to optimize the shape of the Stribeck curve. The developed dynamic rheological model interprets the correlation between the rheological and interfacial properties of lubricant and its lubrication behavior in the thin-film regime. (condensed matter: structural, mechanical, and thermal properties)

  9. Sol-gel preparation of silica and titania thin films

    Science.gov (United States)

    Thoř, Tomáš; Václavík, Jan

    2016-11-01

    Thin films of silicon dioxide (SiO2) and titanium dioxide (TiO2) for application in precision optics prepared via the solgel route are being investigated in this paper. The sol-gel process presents a low cost approach, which is capable of tailoring thin films of various materials in optical grade quality. Both SiO2 and TiO2 are materials well known for their application in the field of anti-reflective and also highly reflective optical coatings. For precision optics purposes, thickness control and high quality of such coatings are of utmost importance. In this work, thin films were deposited on microscope glass slides substrates using the dip-coating technique from a solution based on alkoxide precursors of tetraethyl orthosilicate (TEOS) and titanium isopropoxide (TIP) for SiO2 and TiO2, respectively. As-deposited films were studied using spectroscopic ellipsometry to determine their thickness and refractive index. Using a semi-empirical equation, a relationship between the coating speed and the heat-treated film thickness was described for both SiO2 and TiO2 thin films. This allows us to control the final heat-treated thin film thickness by simply adjusting the coating speed. Furthermore, films' surface was studied using the white-light interferometry. As-prepared films exhibited low surface roughness with the area roughness parameter Sq being on average of 0.799 nm and 0.33 nm for SiO2 and TiO2, respectively.

  10. New Fabrication Strategies for Polymer Electrolyte Batteries

    National Research Council Canada - National Science Library

    Shriver, D

    1997-01-01

    .... The objective of this research was to fabricate lithium-polymer batteries by techniques that may produce a thin electrolyte and cathode films and with minimal contamination during fabrication. One such technique, ultrasonic spray was used. Another objective of this research was to test lithium cells that incorporate the new polymer electrolytes and polyelectrolytes.

  11. CrN thin films prepared by reactive DC magnetron sputtering for symmetric supercapacitors

    KAUST Repository

    Wei, Binbin

    2016-12-29

    Supercapacitors have been becoming indispensable energy storage devices in micro-electromechanical systems and have been widely studied over the past few decades. Transition metal nitrides with excellent electrical conductivity and superior cycling stability are promising candidates as supercapacitor electrode materials. In this work, we report the fabrication of CrN thin films using reactive DC magnetron sputtering and further their applications for symmetric supercapacitors for the first time. The CrN thin film electrodes fabricated under the deposition pressure of 3.5 Pa show an areal specific capacitance of 12.8 mF cm at 1.0 mA cm and high cycling stability with 92.1% capacitance retention after 20 000 cycles in a 0.5 M HSO electrolyte. Furthermore, our developed CrN//CrN symmetric supercapacitor can deliver a high energy density of 8.2 mW h cm at the power density of 0.7 W cm along with outstanding cycling stability. Thus, the CrN thin films have great potential for application in supercapacitors and other energy storage systems.

  12. Magnetron sputtered TiN thin films toward enhanced performance supercapacitor electrodes

    KAUST Repository

    Wei, Binbin

    2018-04-09

    Supercapacitors as a new type of energy storage devices bridging the gap between conventional capacitors and batteries have aroused widespread concern. Herein, binder-free titanium nitride (TiN) thin film electrodes for supercapacitors prepared by reactive magnetron sputtering technology are reported. The effect of N2 content on the supercapacitor performance is evaluated. A highest specific capacitance of 27.3 mF cm−2 at a current density of 1.0 mA cm−2, together with excellent cycling performance (98.2% capacitance retention after 20,000 cycles at 2.0 mA cm−2) is achieved in a 0.5 M H2SO4 aqueous electrolyte. More importantly, a symmetric supercapacitor device assembled on the basis of TiN thin films can deliver a maximum energy density of 17.6 mWh cm−3 at a current density of 0.2 mA cm−2 and a maximum power density of 10.8 W cm−3 at a current density of 2 mA cm−2 with remarkable cycling stability. As a consequence, TiN thin films demonstrate great potential as promising supercapacitor electrode materials.

  13. Low thermal emissivity surfaces using AgNW thin films

    Science.gov (United States)

    Pantoja, Elisa; Bhatt, Rajendra; Liu, Anping; Gupta, Mool C.

    2017-12-01

    The properties of silver nanowire (AgNW) films in the optical and infrared spectral regime offer an interesting opportunity for a broad range of applications that require low-emissivity coatings. This work reports a method to reduce the thermal emissivity of substrates by the formation of low-emissivity AgNW coating films from solution. The spectral emissivity was characterized by thermal imaging with an FLIR camera, followed by Fourier transform infrared spectroscopy. In a combined experimental and simulation study, we provide fundamental data of the transmittance, reflectance, haze, and emissivity of AgNW thin films. Emissivity values were finely tuned by modifying the concentration of the metal nanowires in the films. The simulation models based on the transfer matrix method developed for the AgNW thin films provided optical values that show a good agreement with the measurements.

  14. Effects of Gamma Irradiation on Polyvinylidene Fluoride Thin Films

    Science.gov (United States)

    Madivalappa, Shivaraj; Jali, V. M.

    2018-02-01

    Polyvinylidene fluoride thin films were synthesized by Sol-Gel method with spin rate of 3000 rpm for 30 sec on ITO glass substrates and were annealed at 170 C. The films were irradiated by Gamma radiation with different doses (10, 30, 40 and 50 kGy). XRD and FTIR spectra have been obtained to identify the presence of α / β phases. Mean crystallite size was calculated by Scherer’s equation. Different vibrational bands were identified and percentage of β phase was determined by FTIR analysis. Optical properties like band gap, refractive index, optical activation energy have been determined. Surface morphology and compositions of pristine and gamma irradiated PVDF thin films were confirmed respectively, by SEM and Energy dispersive X-ray analysis. The comparison of the structural and optical optical properties of pristine PVDF polymer film has been made with those of the Gamma irradiated films.

  15. Characterization of fully functional spray-on antibody thin films

    Energy Technology Data Exchange (ETDEWEB)

    Figueroa, Jhon [Department of Chemistry, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620-5250 (United States); Magaña, Sonia; Lim, Daniel V. [Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620-7115 (United States); Schlaf, Rudy, E-mail: schlaf@eng.usf.edu [Department of Electrical Engineering, University of South Florida, 4202 E. Fowler Ave., Tampa, FL 33620-5101 (United States)

    2014-02-15

    The authors recently demonstrated that fully functional Escherichia coli O157:H7 antibody thin films can be prepared using a simple pneumatic nebulizer on glass surface [1]. This paper focuses on the investigation of the morphology and physical properties of these films with the aim to better understand their performance. A series of E. coli O157:H7 antibody spray-on thin films were investigated by ellipsometry, X-ray photoelectron spectroscopy (XPS), immunoassays, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), fluorescence microscopy, atomic force microscope (AFM) and contact angle analysis. These data were compared to measurements on films prepared with the biotin–avidin covalent bonding scheme. The investigation showed that films created by a 2 min pneumatic spray deposition time can capture antigens similar as the avidin–biotin wet-chemical method. The results also suggests that an influential factor for the comparable capture cell ability between sprayed and covalent films is an increased antibody surface coverage for the sprayed films (non-equilibrium technique), which compensates for the lack of its antibody orientation. There was no significant antibody denaturation detected on any of the sprayed films. Both techniques led to the formation of cluster-aggregates, a factor that seems unavoidable due to the natural tendency of protein to cluster. The avidin–biotin bridge films generally had a higher roughness, which manifested itself in a higher wettability compared to the sprayed films.

  16. Characterization of fully functional spray-on antibody thin films

    Science.gov (United States)

    Figueroa, Jhon; Magaña, Sonia; Lim, Daniel V.; Schlaf, Rudy

    2014-02-01

    The authors recently demonstrated that fully functional Escherichia coli O157:H7 antibody thin films can be prepared using a simple pneumatic nebulizer on glass surface [1]. This paper focuses on the investigation of the morphology and physical properties of these films with the aim to better understand their performance. A series of E. coli O157:H7 antibody spray-on thin films were investigated by ellipsometry, X-ray photoelectron spectroscopy (XPS), immunoassays, attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), fluorescence microscopy, atomic force microscope (AFM) and contact angle analysis. These data were compared to measurements on films prepared with the biotin-avidin covalent bonding scheme. The investigation showed that films created by a 2 min pneumatic spray deposition time can capture antigens similar as the avidin-biotin wet-chemical method. The results also suggests that an influential factor for the comparable capture cell ability between sprayed and covalent films is an increased antibody surface coverage for the sprayed films (non-equilibrium technique), which compensates for the lack of its antibody orientation. There was no significant antibody denaturation detected on any of the sprayed films. Both techniques led to the formation of cluster-aggregates, a factor that seems unavoidable due to the natural tendency of protein to cluster. The avidin-biotin bridge films generally had a higher roughness, which manifested itself in a higher wettability compared to the sprayed films.

  17. Nanometric thin film membranes manufactured on square meter scale: ultra-thin films for CO 2 capture

    KAUST Repository

    Yave, Wilfredo

    2010-09-01

    Miniaturization and manipulation of materials at nanometer scale are key challenges in nanoscience and nanotechnology. In membrane science and technology, the fabrication of ultra-thin polymer films (defect-free) on square meter scale with uniform thickness (<100 nm) is crucial. By using a tailor-made polymer and by controlling the nanofabrication conditions, we developed and manufactured defect-free ultra-thin film membranes with unmatched carbon dioxide permeances, i.e. >5 m3 (STP) m-2 h -1 bar-1. The permeances are extremely high, because the membranes are made from a CO2 philic polymer material and they are only a few tens of nanometers thin. Thus, these thin film membranes have potential application in the treatment of large gas streams under low pressure like, e.g., carbon dioxide separation from flue gas. © 2010 IOP Publishing Ltd.

  18. A new thin film deposition process by cathodic plasma electrolysis

    International Nuclear Information System (INIS)

    Paulmier, T.; Kiriakos, E.; Bell, J.; Fredericks, P.

    2004-01-01

    Full text: A new technique, called atmospheric pressure plasma deposition (APPD), has been developed since a few years for the deposition of carbon and DLC, Titanium or Silicon films on metal and metal alloys substrates. A high voltage (2kV) is applied in a liquid electrolytic solution between an anode and a cathode, both electrodes being cylindrical: a glow discharge is then produced and confined at the vicinity of the cathode. The physic of the plasma in the electrolytic solution near the cathode is very different form the other techniques of plasma deposition since the pressure is here close to the atmospheric pressure. We describe here the different physico-chemical processes occurring during the process. In this cathodic process, the anodic area is significantly larger than the cathode area. In a first step, the electrolytic solution is heated by Joule effect induced by the high voltage between the electrodes. Due to the high current density, the vaporization of the solution occurs near the cathode: a large amount of bubbles are produced which are stabilized at the electrode by hydrodynamic and electromagnetic forces, forming a vapour sheath. The electric field and voltage drop are then concentrated in this gas envelope, inducing the ionization of the gas and the ignition of a glow discharge at the surface of the material. This plasma induces the formation of ionized and reactive species which diffuse and are accelerated toward the cathode. These excited species are the precursors for the formation of the deposition material. At the same time, the glow discharge interacts with the electrolyte solution inducing also ionization, convection and polymerization processes in the liquid: the solution is therefore a second source of the deposition material. A wide range of films have been deposited with a thickness up to 10 micrometers. These films have been analyzed by SEM and Raman spectroscopy. The electrolytic solution has been characterized by GC-MS and the

  19. Laser-induced vibration of a thin soap film.

    Science.gov (United States)

    Emile, Olivier; Emile, Janine

    2014-09-21

    We report on the vibration of a thin soap film based on the optical radiation pressure force. The modulated low power laser induces a counter gravity flow in a vertical free-standing draining film. The thickness of the soap film is then higher in the upper region than in the lower region of the film. Moreover, the lifetime of the film is dramatically increased by a factor of 2. Since the laser beam only acts mechanically on the film interfaces, such a film can be employed in an optofluidic diaphragm pump, the interfaces behaving like a vibrating membrane and the liquid in-between being the fluid to be pumped. Such a pump could then be used in delicate micro-equipment, in chips where temperature variations are detrimental and even in biological systems.

  20. All-solid-state thin film battery based on well-aligned slanted LiCoO{sub 2} nanowires fabricated by glancing angle deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Miyoung [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Lee, Seunghwan [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Department of Energy Science, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Lee, Daehee [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of); Kim, Joosun, E-mail: joosun@kist.re.kr [High Temperature Energy Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Moon, Jooho, E-mail: jmoon@yonsei.ac.kr [Department of Materials Science and Engineering, Yonsei University, Seoul 120-749 (Korea, Republic of)

    2017-08-01

    Graphical abstract: We successfully fabricated well-aligned slanted LiCoO{sub 2} nanowires as a one-dimensional nanostructured cathode by glancing angle deposition to enhance the electrochemical performance of all-solid-state thin film batteries. - Highlights: • Well-aligned slanted LiCoO{sub 2} nanowires are fabricated by glancing angle deposition. • One-dimensional nanostructured LiCoO{sub 2} cathode enlarges the contact area. • All-solid-state thin film battery exhibits enhances rate capability and cycling stability. - Abstract: We fabricated all-solid-state thin film batteries based on well-aligned slanted LiCoO{sub 2} nanowires by glancing angle deposition, as a facile template-free method in order to increase the electrochemically active site, i.e., the contact area between the solid electrolyte and the electrode. A highly porous thin film composed of well-separated slanted LiCoO{sub 2} nanowires not only facilitates the penetration of solid electrolyte phase into the cathode, but also alleviates the thermally and mechanically induced stresses during post-annealing and electrochemical cycling. The all-solid-state thin film battery based on the well-aligned slanted LiCoO{sub 2} nanowires, whose contact area between electrolyte and electrode was three times as high as that of a dense thin film, could provide additional migration pathways for lithium ion diffusion due to the enlarged reaction sites. This resulted in enhanced electrochemical kinetics, thereby leading to better rate capability and long-term cyclic stability as compared to the dense LiCoO{sub 2} thin film.

  1. Polycaprolactone thin films for retinal tissue engineering and drug delivery

    Science.gov (United States)

    Steedman, Mark Rory

    This dissertation focuses on the development of polycaprolactone thin films for retinal tissue engineering and drug delivery. We combined these thin films with techniques such as micro and nanofabrication to develop treatments for age-related macular degeneration (AMD), a disease that leads to the death of rod and cone photoreceptors. Current treatments are only able to slow or limit the progression of the disease, and photoreceptors cannot be regenerated or replaced by the body once lost. The first experiments presented focus on a potential treatment for AMD after photoreceptor death has occurred. We developed a polymer thin film scaffold technology to deliver retinal progenitor cells (RPCs) to the affected area of the eye. Earlier research showed that RPCs destined to become photoreceptors are capable of incorporating into a degenerated retina. In our experiments, we showed that RPC attachment to a micro-welled polycaprolactone (PCL) thin film surface enhanced the differentiation of these cells toward a photoreceptor fate. We then used our PCL thin films to develop a drug delivery device capable of sustained therapeutic release over a multi-month period that would maintain an effective concentration of the drug in the eye and eliminate the need for repeated intraocular injections. We first investigated the biocompatibility of PCL in the rabbit eye. We injected PCL thin films into the anterior chamber or vitreous cavity of rabbit eyes and monitored the animals for up to 6 months. We found that PCL thin films were well tolerated in the rabbit eye, showing no signs of chronic inflammation due to the implant. We then developed a multilayered thin film device containing a microporous membrane. We loaded these devices with lyophilized proteins and quantified drug elution for 10 weeks, finding that both bovine serum albumin and immunoglobulin G elute from these devices with zero order release kinetics. These experiments demonstrate that PCL is an extremely useful

  2. Catalytic EC′ reaction at a thin film modified electrode

    International Nuclear Information System (INIS)

    Gerbino, Leandro; Baruzzi, Ana M.; Iglesias, Rodrigo A.

    2013-01-01

    Numerical simulations of cyclic voltammograms corresponding to a catalytic EC′ reaction taking place at a thin film modified electrode are performed by way of finite difference method. Besides considering the chemical kinetic occurring inside the thin film, the model takes into account the different diffusion coefficients for each species at each of the involved phases, i.e. the thin film layer and bulk solution. The theoretical formulation is given in terms of dimensionless model parameters but a brief discussion of each of these parameters and their relationship to experimental variables is presented. Special emphasis is given to the use of working curve characteristics to quantify diffusion coefficient, homogeneous kinetic constant and thickness of the thin layer in a real system. Validation of the model is made by comparison of experimental results corresponding to the electron charge transfer of Ru(NH 3 ) 6 3+ /Ru(NH 3 ) 6 2+ hemi-couple at a thin film of a cross-linked chitosan film containing an immobilized redox dye

  3. Surface tension gradient enhanced thin film flow for particle deposition

    Science.gov (United States)

    Gilchrist, James; Joshi, Kedar; Muangnapoh, Tanyakorn; Stever, Michael

    2015-11-01

    We investigate the effect of varying concentration in binary mixtures of water and ethanol as the suspending medium for micron-scale silica particles on convective deposition. By pulling a suspension along a substrate, a thin film is created that results in enhanced evaporation of the solvent and capillary forces that order particles trapped in the thin film. In pure water or pure ethanol, assembly and deposition is easily understood by a simply flux balance first developed by Dimitrov and Nagayama in 1996. In solvent mixtures having only a few percent of ethanol, Marangoni stresses from the concentration gradient set by unbalanced solvent evaporation dominates the thin film flow. The thin film profile is similar to that found in ``tears of wine'' where the particles are deposited in the thin film between the tears and the reservoir. A simple model describes the 10x increase of deposition speed found in forming well-ordered monolayers of particles. At higher ethanol concentrations, lateral instabilities also generated by Marangoni stresses cause nonuniform deposition in the form of complex streaks that mirror sediment deposits in larger scale flows. We acknowledge funding from the NSF Scalable Nanomanufacturing Program under grant No. 1120399.

  4. Thin film PV manufacturing. Materials costs and their optimization

    Energy Technology Data Exchange (ETDEWEB)

    Zweibel, K. [National Renewable Energy Laboratory, Thin Film PV Partnership, 1617 Cole Boulevard, 80401 Golden, CO (United States)

    2000-08-31

    Thin film PV technologies face a number of hurdles as they advance towards low-cost goals that would make them competitive with traditional sources of electricity. The US Department of Energy cost goal for thin films is about $0.33/W{sub p}, which corresponds to module efficiencies of about 15% and module manufacturing costs of about $50/m{sup 2}. Past papers have provided a framework for examining thin film efficiencies and manufacturing costs, especially those costs for equipment, labor, materials, utilities, and others. Although materials costs appear to be a large fraction of the total, we have not yet broken them down in enough detail to seek significant improvement. In the future, with more mature thin film production, materials costs such as those from semiconductor layers, contacts, pottants, substrates, and electrical interconnection will dominate total module cost. This paper (1) breaks down the materials costs into two broad categories (active and inactive materials) and then (2) investigates the issues associated with reducing their costs much below today's levels. Materials will likely be such an overwhelming cost-driver for mature manufacturing of thin film PV that issues associated with their optimization should be examined as soon as possible in order to meet the DOE long-term goals for PV module costs.

  5. A Variational approach to thin film hydrodynamics of binary mixtures

    KAUST Repository

    Xu, Xinpeng

    2015-02-04

    In order to model the dynamics of thin films of mixtures, solutions, and suspensions, a thermodynamically consistent formulation is needed such that various coexisting dissipative processes with cross couplings can be correctly described in the presence of capillarity, wettability, and mixing effects. In the present work, we apply Onsager\\'s variational principle to the formulation of thin film hydrodynamics for binary fluid mixtures. We first derive the dynamic equations in two spatial dimensions, one along the substrate and the other normal to the substrate. Then, using long-wave asymptotics, we derive the thin film equations in one spatial dimension along the substrate. This enables us to establish the connection between the present variational approach and the gradient dynamics formulation for thin films. It is shown that for the mobility matrix in the gradient dynamics description, Onsager\\'s reciprocal symmetry is automatically preserved by the variational derivation. Furthermore, using local hydrodynamic variables, our variational approach is capable of introducing diffusive dissipation beyond the limit of dilute solute. Supplemented with a Flory-Huggins-type mixing free energy, our variational approach leads to a thin film model that treats solvent and solute in a symmetric manner. Our approach can be further generalized to include more complicated free energy and additional dissipative processes.

  6. Porous Zinc Oxide Thin Films: Synthesis Approaches and Applications

    Directory of Open Access Journals (Sweden)

    Marco Laurenti

    2018-02-01

    Full Text Available Zinc oxide (ZnO thin films have been widely investigated due to their multifunctional properties, i.e., catalytic, semiconducting and optical. They have found practical use in a wide number of application fields. However, the presence of a compact micro/nanostructure has often limited the resulting material properties. Moreover, with the advent of low-dimensional ZnO nanostructures featuring unique physical and chemical properties, the interest in studying ZnO thin films diminished more and more. Therefore, the possibility to combine at the same time the advantages of thin-film based synthesis technologies together with a high surface area and a porous structure might represent a powerful solution to prepare ZnO thin films with unprecedented physical and chemical characteristics that may find use in novel application fields. Within this scope, this review offers an overview on the most successful synthesis methods that are able to produce ZnO thin films with both framework and textural porosities. Moreover, we discuss the related applications, mainly focused on photocatalytic degradation of dyes, gas sensor fabrication and photoanodes for dye-sensitized solar cells.

  7. Hydrophobicity studies of polymer thin films with varied CNT concentration

    Science.gov (United States)

    M. Rodzi, N. H.; M. Shahimin, M.; Poopalan, P.; Man, B.; M. Nor, M. N.

    2013-12-01

    Surface functionalization studies for re-creating a `Lotus Leaf' effect (superhydrophobic) have been carried out for the past decade; looking for the material which can provide high transparency, low energy surface and high surface roughness. Fabrication of polydimethylsiloxane (PDMS) and multiwalled carbon nanotubes (MWCNT) hybrid thin film variations on glass to produce near-superhydrophobic surfaces is presented in this paper. There are three important parameters studied in producing hydrophobic surfaces based on the hybrid thin films; concentration of PDMS, concentration of MWCNT and droplet sizes. The study is carried out by using PDMS of varied cross linker ratio (10:1, 30:1 and 50:1) with MWCNT concentration of 1mg, 10mg and 15mg for 0.5 μl, 2.0 μl, 5.0 μl and 10 μl droplet sizes. The resulting hybrid thin films show that hydrophobicity increased with increasing cross linker ratio and MWCNT percentage in the PDMS solution. A near superhydrophobic surface can be created when using 15 mg of MWCNT with 50:1 cross linker ratio PDMS thin films, measured on 10 μl droplet size. The hybrid thin films produced can be potentially tailored to the application of biosensors, MEMS and even commercial devices.

  8. Thermochemical hydrogen generation of indium oxide thin films

    Directory of Open Access Journals (Sweden)

    Taekyung Lim

    2017-03-01

    Full Text Available Development of alternative energy resources is an urgent requirement to alleviate current energy constraints. As such, hydrogen gas is gaining attention as a future alternative energy source to address existing issues related to limited energy resources and air pollution. In this study, hydrogen generation by a thermochemical water-splitting process using two types of In2O3 thin films was investigated. The two In2O3 thin films prepared by chemical vapor deposition (CVD and sputtering deposition systems contained different numbers of oxygen vacancies, which were directly related to hydrogen generation. The as-grown In2O3 thin film prepared by CVD generated a large amount of hydrogen because of its abundant oxygen vacancies, while that prepared by sputtering had few oxygen vacancies, resulting in low hydrogen generation. Increasing the temperature of the In2O3 thin film in the reaction chamber caused an increase in hydrogen generation. The oxygen-vacancy-rich In2O3 thin film is expected to provide a highly effective production of hydrogen as a sustainable and efficient energy source.

  9. Composition and growth procedure-dependent properties of electrodeposited CuInSe 2 thin films

    Science.gov (United States)

    Babu, S. Moorthy; Ennaoui, A.; Lux-Steiner, M. Ch.

    2005-02-01

    CuInSe 2 thin films were deposited on molybdenum-coated glass substrates by electrodeposition. Deposition was carried out with a variety of electrochemical bath compositions. The quality of the deposits depends very much on the source materials as well as the concentration of the same in the electrolyte. The deposition potential was varied from -0.4 to -0.75 V vs. SCE. The pH of the solution was adjusted to 1.5-2 using diluted sulphuric acid. Chloride salts containing bath yield good surface morphology, but there is always excess of the metallic content in the deposited films. Different growth procedures, like initial metallic layers of copper or indium, layers of copper selenide or indium selenide before the actual deposition of ternary chalcopyrite layers were attempted. Fabrication pathway, morphological and compositional changes due to the different precursor route has been analysed. The quality of the deposits prepared by one-step electrodeposition is better than the deposits with a two-stage process. The deposited films were characterized with XRD, SEM-EDAX, UV-visible spectroscopy and I- V characteristics. The deposited films were annealed in air as well as in nitrogen atmosphere. The influence of annealing temperature, environment and annealing time on the properties of the films are evaluated. Attempts were made to fabricate solar cell structure from the deposited absorber films. The structure of Mo/CuInSe 2/CdS/ZnO/Ni was characterized with surface, optical and electrical studies.

  10. Physico-chemical, optical and electrochemical properties of iron oxide thin films prepared by spray pyrolysis

    International Nuclear Information System (INIS)

    Dghoughi, L.; Elidrissi, B.; Bernede, C.; Addou, M.; Lamrani, M. Alaoui; Regragui, M.; Erguig, H.

    2006-01-01

    Iron oxide thin films were prepared by spray pyrolysis technique onto glass substrates from iron chloride solution. They were characterized by X-ray diffractometry (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and (UV-vis) spectroscopy. The films deposited at T s ≤ 450 deg. C were amorphous; while those produced at T sub = 500 deg. C were polycrystalline α-Fe 2 O 3 with a preferential orientation along the (1 0 4) direction. By observing scanning electron microscopy (SEM), it was seen that iron oxide films were relatively homogeneous uniform and had a good adherence to the glass substrates. The grain size was found (by RX) between 19 and 25 nm. The composition of these films was examined by X-ray photoelectron spectroscopy and electron probe microanalysis (EPMA). These films exhibited also a transmittance value about 80% in the visible and infrared range. The cyclic voltammetry study showed that the films of Fe 2 O 3 deposited on ITO pre-coated glass substrates were capable of charge insertion/extraction when immersed in an electrolyte of propylene carbonate (PC) with 0.5 M LiCLO 4

  11. Platinum thin film resistors as accurate and stable temperature sensors

    Science.gov (United States)

    Diehl, W.

    1984-01-01

    The measurement characteristics of thin-Pt-film temperature sensors fabricated using advanced methods are discussed. The limitations of wound-wire Pt temperature sensors and the history of Pt-film development are outlined, and the commonly used film-deposition, structuring, and trimming methods are presented in a table. The development of a family of sputtered film resistors is described in detail and illustrated with photographs of the different types. The most commonly used tolerances are reported as + or - 0.3 C + 0.5 percent of the temperature measured.

  12. Texture-dependent twin formation in nanocrystalline thin Pd films

    International Nuclear Information System (INIS)

    Wang, B.; Idrissi, H.; Shi, H.; Colla, M.S.; Michotte, S.; Raskin, J.P.; Pardoen, T.; Schryvers, D.

    2012-01-01

    Nanocrystalline Pd films were produced by electron-beam evaporation and sputter deposition. The electron-beam-evaporated films reveal randomly oriented nanograins with a relatively high density of growth twins, unexpected in view of the high stacking fault energy of Pd. In contrast, sputter-deposited films show a clear 〈1 1 1〉 crystallographic textured nanostructure without twins. These results provide insightful information to guide the generation of microstructures with enhanced strength/ductility balance in high stacking fault energy nanocrystalline metallic thin films.

  13. Resonant infrared pulsed laser deposition of thin biodegradable polymer films

    DEFF Research Database (Denmark)

    Bubb, D.M.; Toftmann, B.; Haglund Jr., R.F.

    2002-01-01

    Thin films of the biodegradable polymer poly(DL-lactide-co-glycolide) (PLGA) were deposited using resonant infrared pulsed laser deposition (RIR-PLD). The output of a free-electron laser was focused onto a solid target of the polymer, and the films were deposited using 2.90 (resonant with O...... absorbance spectrum of the films is nearly identical with that of the native polymer, the average molecular weight of the films is a little less than half that of the starting material. Potential strategies for defeating this mass change are discussed....

  14. Cuprous oxide thin films grown by hydrothermal electrochemical deposition technique

    International Nuclear Information System (INIS)

    Majumder, M.; Biswas, I.; Pujaru, S.; Chakraborty, A.K.

    2015-01-01

    Semiconducting cuprous oxide films were grown by a hydrothermal electro-deposition technique on metal (Cu) and glass (ITO) substrates between 60 °C and 100 °C. X-ray diffraction studies reveal the formation of cubic cuprous oxide films in different preferred orientations depending upon the deposition technique used. Film growth, uniformity, grain size, optical band gap and photoelectrochemical response were found to improve in the hydrothermal electrochemical deposition technique. - Highlights: • Cu 2 O thin films were grown on Cu and glass substrates. • Conventional and hydrothermal electrochemical deposition techniques were used. • Hydrothermal electrochemical growth showed improved morphology, thickness and optical band gap

  15. Nanocrystalline CdTe thin films by electrochemical synthesis

    Directory of Open Access Journals (Sweden)

    Ramesh S. Kapadnis

    2013-03-01

    Full Text Available Cadmium telluride thin films were deposited onto different substrates as copper, Fluorine-doped tin oxide (FTO, Indium tin oxide (ITO, Aluminum and zinc at room temperature via electrochemical route. The morphology of the film shows the nanostructures on the deposited surface of the films and their growth in vertical direction. Different nanostructures developed on different substrates. The X-ray diffraction study reveals that the deposited films are nanocrystalline in nature. UV-Visible absorption spectrum shows the wide range of absorption in the visible region. Energy-dispersive spectroscopy confirms the formation of cadmium telluride.

  16. Thin film-XRF determination of uranium following thin-film solid phase extraction

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Jalal, E-mail: jalalhassan@ut.ac.ir [Department of Toxicology, Faculty of Veterinary Medicine, University of Tehran (Iran, Islamic Republic of); Hosseini, Seyed M.; Mozaffari, Shahla [Department of Chemistry, Payame Noor University, Tehran (Iran, Islamic Republic of); Jahanparast, Babak; Karbasi, Mohammad H. [Iranian Mineral Processing Research Center, Ministry of Industry and Mineral, Karaj (Iran, Islamic Republic of)

    2014-07-01

    A sensitive method based on the preconcentration of uranium on modified filter paper (thin film) has been developed to determinate this element in water and soil samples by wavelength dispersive X-ray fluorescence. Uranium (VI) extraction from nitric acid medium by trioctyl phosphine (TOPO) from 100 mL of sample was carried out. The effects of nitric acid concentration, TOPO concentration and sample breakthrough on uranium extraction were investigated in this study. The proposed method provided good linearity from 7 to 1000 μg and the limit of detection (LOD), based on a signal-to noise ratio (S/N) of 3, was 2.5 μg. (author)

  17. Deposition of magnetoelectric hexaferrite thin films on substrates of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Zare, Saba; Izadkhah, Hessam; Vittoria, Carmine

    2016-12-15

    Magnetoelectric M-type hexaferrite thin films (SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19}) were deposited using Pulsed Laser Deposition (PLD) technique on Silicon substrate. A conductive oxide layer of Indium-Tin Oxide (ITO) was deposited as a buffer layer with the dual purposes of 1) to reduce lattice mismatch between the film and silicon and 2) to lower applied voltages to observe magnetoelectric effects at room temperature on Silicon based devices. The film exhibited magnetoelectric effects as confirmed by vibrating sample magnetometer (VSM) techniques in voltages as low as 0.5 V. Without the oxide conductive layer the required voltages to observe magnetoelectric effects was typically about 1000 times larger. The magnetoelectric thin films were characterized by X-ray diffractometer, scanning electron microscope, energy-dispersive spectroscopy, vibrating sample magnetometer, and ferromagnetic resonance techniques. We measured saturation magnetization of 650 G, and coercive field of about 150 Oe for these thin films. The change in remanence magnetization was measured in the presence of DC voltages and the changes in remanence were in the order of 15% with the application of only 0.5 V (DC voltage). We deduced a magnetoelectric coupling, α, of 1.36×10{sup −9} s m{sup −1} in SrCo{sub 2}Ti{sub 2}Fe{sub 8}O{sub 19} thin films.

  18. Optical and structural properties of sputtered CdS films for thin film solar cell applications

    International Nuclear Information System (INIS)

    Kim, Donguk; Park, Young; Kim, Minha; Choi, Youngkwan; Park, Yong Seob; Lee, Jaehyoeng

    2015-01-01

    Graphical abstract: Photo current–voltage curves (a) and the quantum efficiency (QE) (b) for the solar cell with CdS film grown at 300 °C. - Highlights: • CdS thin films were grown by a RF magnetron sputtering method. • Influence of growth temperature on the properties of CdS films was investigated. • At higher T g , the crystallinity of the films improved and the grains enlarged. • CdS/CdTe solar cells with efficiencies of 9.41% were prepared at 300 °C. - Abstract: CdS thin films were prepared by radio frequency magnetron sputtering at various temperatures. The effects of growth temperature on crystallinity, surface morphology and optical properties of the films were characterized with X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), Raman spectra, UV–visible spectrophotometry, and photoluminescence (PL) spectra. As the growth temperature was increased, the crystallinity of the sputtered CdS films was improved and the grains were enlarged. The characteristics of CdS/CdTe thin film solar cell appeared to be significantly influenced by the growth temperature of the CdS films. Thin film CdS/CdTe solar cells with efficiencies of 9.41% were prepared at a growth temperature of 300 °C

  19. Semiconducting boron carbide thin films: Structure, processing, and diode applications

    Science.gov (United States)

    Bao, Ruqiang

    The high energy density and long lifetime of betavoltaic devices make them very useful to provide the power for applications ranging from implantable cardiac pacemakers to deep space satellites and remote sensors. However, when made with conventional semiconductors, betavoltaic devices tend to suffer rapid degradation as a result of radiation damage. It has been suggested that the degradation problem could potentially be alleviated by replacing conventional semiconductors with a radiation hard semiconducting material like icosahedral boron carbide. The goal of my dissertation was to better understand the fundamental properties and structure of boron carbide thin films and to explore the processes to fabricate boron carbide based devices for voltaic applications. A pulsed laser deposition system and a radio frequency (RF) magnetron sputtering deposition system were designed and built to achieve the goals. After comparing the experimental results obtained using these two techniques, it was concluded that RF magnetron sputtering deposition technique is a good method to make B4C boron carbide thin films to fabricate repeatable and reproducible voltaic devices. The B4C thin films deposited by RF magnetron sputtering require in situ dry pre-cleaning to make ohmic contacts for B4C thin films to fabricate the devices. By adding another RF sputtering to pre-clean the substrate and thin films, a process to fabricate B4C / n-Si heterojunctions has been established. In addition, a low energy electron accelerator (LEEA) was built to mimic beta particles emitted from Pm147 and used to characterize the betavoltaic performance of betavoltaic devices as a function of beta energy and beta flux as well as do accelerated lifetime testing for betavoltaic devices. The energy range of LEEA is 20 - 250 keV with the current from several nA to 50 muA. High efficiency Si solar cells were used to demonstrate the powerful capabilities of LEEA, i.e., the characterization of betavoltaic

  20. Film-thickness dependence of structure formation in ultra-thin polymer blend films

    CERN Document Server

    Gutmann, J S; Stamm, M

    2002-01-01

    We investigated the film-thickness dependence of structure formation in ultra-thin polymer blend films prepared from solution. As a model system we used binary blends of statistical poly(styrene-co-p-bromostyrene) copolymers of different degrees of bromination. Ultra-thin-film samples differing in miscibility and film thickness were prepared via spin coating of common toluene solutions onto silicon (100) substrates. The resulting morphologies were investigated with scanning force microscopy, reflectometry and grazing-incidence scattering techniques using both X-rays and neutrons in order to obtain a picture of the sample structure at and below the sample surface. (orig.)