WorldWideScience

Sample records for thin epitaxial fe

  1. Thickness-modulated anisotropic ferromagnetism in Fe-doped epitaxial HfO2 thin films

    Science.gov (United States)

    Liu, Wenlong; Liu, Ming; Zhang, Ruyi; Ma, Rong; Wang, Hong

    2017-10-01

    Epitaxial tetragonal Fe-doped Hf0.95Fe0.05O2 (FHO) thin films with various thicknesses were deposited on (001)-oriented NdCaAlO4 (NCAO) substrates by using a pulsed laser deposition (PLD) system. The crystal structure and epitaxial nature of the FHO thin films were confirmed by typical x-ray diffraction (XRD) θ-2θ scan and reciprocal space mapping (RSM). The results indicate that two sets of lattice sites exist with two different crystal orientations [(001) and (100)] in the thicker FHO thin films. Further, the intensity of the (100) direction increases with the increase in thicknesses, which should have a significant effect on the anisotropic magnetization of the FHO thin films. Meanwhile, all the FHO thin films possess a tetragonal phase structure. An anisotropy behavior in magnetization has been observed in the FHO thin films. The anisotropic magnetization of the FHO thin films is slowly weakened as the thickness increases. Meanwhile, the saturation magnetization (Ms) of both in-plane and out-of-plane decreases with the increase in the thickness. The change in the anisotropic magnetization and Ms is attributed to the crystal lattice and the variation in the valence of Fe ions. These results indicate that the thickness-modulated anisotropic ferromagnetism of the tetragonal FHO epitaxial thin films is of potential use for the integration of metal-oxide semiconductors with spintronics.

  2. Magnetic domains in epitaxial (100) Fe thin films

    International Nuclear Information System (INIS)

    Florczak, J.M.; Dahlberg, E.D.; Ryan, P.J.; White, R.M.; Kuznia, J.N.; Wowchak, A.M.; Cohen, P.I.

    1989-01-01

    This paper discusses the investigation of the domain patterns of thin Fe films (10 nm) grown on In x Ga 1 - x As (0.09< x<0.25)/GaAs substrates by use of Kerr microscopy. For this investigation, two types of InGaAs buffer layers were prepared. One consisted of a single, thick InGaAs layer and the second composed of an InGaAs strained layer superlattice. Both were grown on (100) GaAs substrates. The study showed that many of the domain walls were approximately parallel to the easy axis of Fe for those films grown on the low x alloy, e.g. x = 0.1, InGaAs buffer layers

  3. Epitaxial growth and characterization of CoO/Fe(001) thin film layered structures

    International Nuclear Information System (INIS)

    Brambilla, A.; Sessi, P.; Cantoni, M.; Duo, L.; Finazzi, M.; Ciccacci, F.

    2008-01-01

    By means of X-ray photoemission spectroscopy and low energy electron diffraction, we show that it is possible to grow good quality thin epitaxial CoO films on Fe(001) substrates, through deposition in oxygen atmosphere. In particular, the composition and the structure of CoO(001)/Fe(001) bilayer systems and Fe(001)/CoO(001)/Fe(001) trilayer systems have been investigated by monitoring the evolution of the chemical interactions at the interfaces as a function of CoO thickness and growth temperature. We observe the presence of Fe oxides at the CoO/Fe interface and of a thin layer of metallic cobalt at the upper Fe/CoO interface of trilayer systems

  4. Epitaxial growth of Fe-based superconductor thin films

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Sven; Haenisch, Jens; Holzapfel, Bernhard [Institut fuer Technische Physik, Karlsruher Institut fuer Technologie, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany)

    2016-07-01

    The Fe-based superconductors (FBS), discovered in 2008, are not only interesting for possible applications due to their large upper critical fields and low anisotropies, but also for basic understanding of unconventional superconductivity. With their properties, they constitute a link between the classic low-T{sub c} superconductors (low anisotropies, low thermal fluctuations, s-wave type symmetry) and the oxocuprates (T{sub c} up to 55 K, large H{sub c2}, unconventional pairing). Their multi-band nature reminds of MgB{sub 2}. We prepare thin films of FBS in the so called 122 family, namely Co- and P-doped BaFe{sub 2}As{sub 2} to investigate application relevant properties, such as critical current density J{sub c}, by pulsed laser deposition using a frequency-tripled Nd:YAG laser (λ = 355 nm). Microstructure and chemical composition will be investigated by XRD, AFM and SEM, and electrical transport using a 14 T PPMS. The results are compared to literature data on films grown at different wavelengths.

  5. Epitaxial Fe16N2 thin film on nonmagnetic seed layer

    Science.gov (United States)

    Hang, Xudong; Zhang, Xiaowei; Ma, Bin; Lauter, Valeria; Wang, Jian-Ping

    2018-05-01

    Metastable α″ -Fe16N2 has attracted much interest as a candidate for rare-earth-free hard magnetic materials. We demonstrate that Fe16N2 thin films were grown epitaxially on Cr seed layers with MgO (001) substrates by facing-target sputtering. Good crystallinity with the epitaxial relation MgO (001 )[110 ] ∥ Cr (001 )[100 ] ∥ Fe16N2 (001 )[100 ] was obtained. The chemical order parameter, which quantifies the degree of N ordering in the Fe16N2 (the N-disordered phase is α' -Fe8N martensite), reaches 0.75 for Cr-seeded samples. Cr has a perfect lattice constant match with Fe16N2, and no noticeable strain can be assigned to Fe16N2. The intrinsic saturation magnetization of this non-strained Fe16N2 thin film at room temperature is determined to be 2.31 T by polarized neutron reflectometry and confirmed with vibrating sample magnetometry. Our work provides a platform to directly study the magnetic properties of high purity Fe16N2 films with a high order parameter.

  6. BiFeO3 epitaxial thin films and devices: past, present and future

    Science.gov (United States)

    Sando, D.; Barthélémy, A.; Bibes, M.

    2014-11-01

    The celebrated renaissance of the multiferroics family over the past ten years has also been that of its most paradigmatic member, bismuth ferrite (BiFeO3). Known since the 1960s to be a high temperature antiferromagnet and since the 1970s to be ferroelectric, BiFeO3 only had its bulk ferroic properties clarified in the mid-2000s. It is however the fabrication of BiFeO3 thin films and their integration into epitaxial oxide heterostructures that have fully revealed its extraordinarily broad palette of functionalities. Here we review the first decade of research on BiFeO3 films, restricting ourselves to epitaxial structures. We discuss how thickness and epitaxial strain influence not only the unit cell parameters, but also the crystal structure, illustrated for instance by the discovery of the so-called T-like phase of BiFeO3. We then present its ferroelectric and piezoelectric properties and their evolution near morphotropic phase boundaries. Magnetic properties and their modification by thickness and strain effects, as well as optical parameters, are covered. Finally, we highlight various types of devices based on BiFeO3 in electronics, spintronics, and optics, and provide perspectives for the development of further multifunctional devices for information technology and energy harvesting.

  7. Microstructure and magnetic properties of FeCo epitaxial thin films grown on MgO single-crystal substrates

    International Nuclear Information System (INIS)

    Shikada, Kouhei; Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi

    2009-01-01

    FeCo epitaxial films were prepared on MgO(100), MgO(110), and MgO(111) substrates by ultrahigh vacuum molecular beam epitaxy. FeCo thin films with (100), (211), and (110) planes parallel to the substrate surface grow on respective MgO substrates. FeCo/MgO interface structures are studied by high-resolution cross-sectional transmission electron microscopy and the epitaxial growth mechanism is discussed. Atomically sharp boundaries are recognized between the FeCo thin films and the MgO substrates where misfit dislocations are introduced in the FeCo thin films presumably to decrease the lattice misfits. Misfit dislocations are observed approximately every 9 and 1.4 nm in FeCo thin film at the FeCo/MgO(100) and the FeCo/MgO(110) interfaces, respectively. X-ray diffraction analysis indicates that the lattice spacing measured parallel to the single-crystal substrate surfaces are in agreement within 0.1% with those of the respective bulk values of Fe 50 Co 50 alloy crystal, showing that the FeCo film strain is very small. The magnetic anisotropies of these epitaxial films basically reflect the magnetocrystalline anisotropy of bulk FeCo alloy crystal

  8. Synthesis and electronic properties of Fe2TiO5 epitaxial thin films

    Science.gov (United States)

    Osada, Motoki; Nishio, Kazunori; Hwang, Harold Y.; Hikita, Yasuyuki

    2018-05-01

    We investigate the growth phase diagram of pseudobrookite Fe2TiO5 epitaxial thin films on LaAlO3 (001) substrates using pulsed laser deposition. Control of the oxygen partial pressure and temperature during deposition enabled selective stabilization of (100)- and (230)-oriented films. In this regime, we find an optical gap of 2.1 eV and room temperature resistivity in the range of 20-80 Ω cm, which are significantly lower than α-Fe2O3, making Fe2TiO5 potentially an ideal inexpensive visible-light harvesting semiconductor. These results provide a basis to incorporate Fe2TiO5 in oxide heterostructures for photocatalytic and photoelectrochemical applications.

  9. Carbon dioxide and water adsorption on highly epitaxial Delafossite CuFeO2 thin film

    Science.gov (United States)

    Rojas, S.; Joshi, T.; Borisov, P.; Sarabia, M.; Lederman, D.; Cabrera, A. L.

    2015-03-01

    Thermal programmed desorption (TPD) of CO2 and H2O from a 200 nm thick CuFeO2 Delafossite surface was performed in a standard UHV chamber, The CuFeO2 thin film grown using Pulsed Laser Deposition (PLD) over an Al2O3 (0001) substrate with controlled O2 atmosphere resulted with highly epitaxial crystal structure. The adsorption/desorption of CO2 and H2O process was also monitored with X-ray Photoelectron Spectroscopy (XPS) and Auger Electron Spectroscopy (AES). Our results revealed that carbon dioxide interacts with CuFeO2 forming Fe carbonates compounds on its surface. Hydroxides were also formed on the surface due to water presence. Using TPD data, Arrhenius plots for CO2 and water desorption were done and activation energy for desorption was obtained. Funds FONDECyT 1130372; Thanks to P. Ferrari.

  10. Spin Seebeck effect in insulating epitaxial γ−Fe2O3 thin films

    Directory of Open Access Journals (Sweden)

    P. Jiménez-Cavero

    2017-02-01

    Full Text Available We report the fabrication of high crystal quality epitaxial thin films of maghemite (γ−Fe2O3, a classic ferrimagnetic insulating iron oxide. Spin Seebeck effect (SSE measurements in γ−Fe2O3/Pt bilayers as a function of sample preparation conditions and temperature yield a SSE coefficient of 0.5(1 μV/K at room temperature. Dependence on temperature allows us to estimate the magnon diffusion length in maghemite to be in the range of tens of nanometers, in good agreement with that of conducting iron oxide magnetite (Fe3O4, establishing the relevance of spin currents of magnonic origin in magnetic iron oxides.

  11. The preparation of Zn-ferrite epitaxial thin film from epitaxial Fe3O4:ZnO multilayers by ion beam sputtering deposition

    International Nuclear Information System (INIS)

    Su, Hui-Chia; Dai, Jeng-Yi; Liao, Yen-Fa; Wu, Yu-Han; Huang, J.C.A.; Lee, Chih-Hao

    2010-01-01

    A new method to grow a well-ordered epitaxial ZnFe 2 O 4 thin film on Al 2 O 3 (0001) substrate is described in this work. The samples were made by annealing the ZnO/Fe 3 O 4 multilayer which was grown with low energy ion beam sputtering deposition. Both the Fe 3 O 4 and ZnO layers were found grown epitaxially at low temperature and an epitaxial ZnFe 2 O 4 thin film was formed after annealing at 1000 o C. X-ray diffraction shows the ZnFe 2 O 4 film is grown with an orientation of ZnFe 2 O 4 (111)//Al 2 O 3 (0001) and ZnFe 2 O 4 (1-10)//Al 2 O 3 (11-20). X-ray absorption spectroscopy studies show that Zn 2+ atoms replace the tetrahedral Fe 2+ atoms in Fe 3 O 4 during the annealing. The magnetic properties measured by vibrating sample magnetometer show that the saturation magnetization of ZnFe 2 O 4 grown from ZnO/Fe 3 O 4 multilayer reaches the bulk value after the annealing process.

  12. Bulk photovoltaic effect in epitaxial (K, Nb) substituted BiFeO3 thin films

    Science.gov (United States)

    Agarwal, Radhe; Zheng, Fan; Sharma, Yogesh; Hong, Seungbum; Rappe, Andrew; Katiyar, Ram

    We studied the bulk photovoltaic effect in epitaxial (K, Nb) modified BiFeO3 (BKFNO) thin films using theoretical and experimental methods. Epitaxial BKFNO thin films were grown by pulsed laser deposition (PLD). First, we have performed first principles density function theory (DFT) using DFT +U method to calculate electronic band structure, including Hubbard-Ueff (Ueff =U-J) correction into Hamiltonian. The electronic band structure calculations showed a direct band gap at 1.9 eV and a defect level at 1.7 eV (in a 40 atom BKFNO supercell), sufficiently lower in comparison to the experimentally observed values. Furthermore, the piezoforce microscopy (PFM) measurements indicated the presence of striped polydomains in BKFNO thin films. Angle-resolved PFM measurements were also performed to find domain orientation and net polarization directions in these films. The experimental studies of photovoltaic effect in BKNFO films showed a short circuit current of 59 micro amp/cm2 and open circuit voltage of 0.78 V. We compared our experimental results with first principles shift current theory calculations of bulk photovoltaic effect (BPVE).The synergy between theory and experimental results provided a realization of significant role of BPVE in order to understand the photovoltaic mechanism in ferroelectrics.

  13. Depth resolved lattice-charge coupling in epitaxial BiFeO3 thin film

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hyeon Jun; Lee, Sung Su; Kwak, Jeong Hun; Kim, Young-Min; Jeong, Hu Young; Borisevich, Albina Y.; Lee, Su Yong; Noh, Do Young; Kwon, Owoong; Kim, Yunseok; Jo, Ji Young

    2016-12-01

    For epitaxial films, a critical thickness (tc) can create a phenomenological interface between a strained bottom layer and a relaxed top layer. Here, we present an experimental report of how the tc in BiFeO3 thin films acts as a boundary to determine the crystalline phase, ferroelectricity, and piezoelectricity in 60 nm thick BiFeO3/SrRuO3/SrTiO3 substrate. We found larger Fe cation displacement of the relaxed layer than that of strained layer. In the time-resolved X-ray microdiffraction analyses, the piezoelectric response of the BiFeO3 film was resolved into a strained layer with an extremely low piezoelectric coefficient of 2.4 pm/V and a relaxed layer with a piezoelectric coefficient of 32 pm/V. The difference in the Fe displacements between the strained and relaxed layers is in good agreement with the differences in the piezoelectric coefficient due to the electromechanical coupling.

  14. Thin film growth of CaFe2As2 by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Hatano, T; Fujimoto, R; Nakamura, I; Mori, Y; Ikuta, H; Kawaguchi, T; Harada, S; Ujihara, T

    2016-01-01

    Film growth of CaFe 2 As 2 was realized by molecular beam epitaxy on six different substrates that have a wide variation in the lattice mismatch to the target compound. By carefully adjusting the Ca-to-Fe flux ratio, we obtained single-phase thin films for most of the substrates. Interestingly, an expansion of the CaFe 2 As 2 lattice to the out-of-plane direction was observed for all films, even when an opposite strain was expected. A detailed microstructure observation of the thin film grown on MgO by transmission electron microscope revealed that it consists of cube-on-cube and 45°-rotated domains. The latter domains were compressively strained in plane, which caused a stretching along the c-axis direction. Because the domains were well connected across the boundary with no appreciable discontinuity, we think that the out-of-plane expansion in the 45°-rotated domains exerted a tensile stress on the other domains, resulting in the unexpectedly large c-axis lattice parameter, despite the apparently opposite lattice mismatch. (paper)

  15. Thin film growth of CaFe2As2 by molecular beam epitaxy

    Science.gov (United States)

    Hatano, T.; Kawaguchi, T.; Fujimoto, R.; Nakamura, I.; Mori, Y.; Harada, S.; Ujihara, T.; Ikuta, H.

    2016-01-01

    Film growth of CaFe2As2 was realized by molecular beam epitaxy on six different substrates that have a wide variation in the lattice mismatch to the target compound. By carefully adjusting the Ca-to-Fe flux ratio, we obtained single-phase thin films for most of the substrates. Interestingly, an expansion of the CaFe2As2 lattice to the out-of-plane direction was observed for all films, even when an opposite strain was expected. A detailed microstructure observation of the thin film grown on MgO by transmission electron microscope revealed that it consists of cube-on-cube and 45°-rotated domains. The latter domains were compressively strained in plane, which caused a stretching along the c-axis direction. Because the domains were well connected across the boundary with no appreciable discontinuity, we think that the out-of-plane expansion in the 45°-rotated domains exerted a tensile stress on the other domains, resulting in the unexpectedly large c-axis lattice parameter, despite the apparently opposite lattice mismatch.

  16. Topotactic Metal-Insulator Transition in Epitaxial SrFeOx Thin Films.

    Science.gov (United States)

    Khare, Amit; Shin, Dongwon; Yoo, Tae Sup; Kim, Minu; Kang, Tae Dong; Lee, Jaekwang; Roh, Seulki; Jung, In-Ho; Hwang, Jungseek; Kim, Sung Wng; Noh, Tae Won; Ohta, Hiromichi; Choi, Woo Seok

    2017-10-01

    Topotactic phase transformation enables structural transition without losing the crystalline symmetry of the parental phase and provides an effective platform for elucidating the redox reaction and oxygen diffusion within transition metal oxides. In addition, it enables tuning of the emergent physical properties of complex oxides, through strong interaction between the lattice and electronic degrees of freedom. In this communication, the electronic structure evolution of SrFeO x epitaxial thin films is identified in real-time, during the progress of reversible topotactic phase transformation. Using real-time optical spectroscopy, the phase transition between the two structurally distinct phases (i.e., brownmillerite and perovskite) is quantitatively monitored, and a pressure-temperature phase diagram of the topotactic transformation is constructed for the first time. The transformation at relatively low temperatures is attributed to a markedly small difference in Gibbs free energy compared to the known similar class of materials to date. This study highlights the phase stability and reversibility of SrFeO x thin films, which is highly relevant for energy and environmental applications exploiting the redox reactions. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Structural characterization of epitaxial LiFe_5O_8 thin films grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Loukya, B.; Negi, D.S.; Sahu, R.; Pachauri, N.; Gupta, A.; Datta, R.

    2016-01-01

    We report on detailed microstructural and atomic ordering characterization by transmission electron microscopy in epitaxial LiFe_5O_8 (LFO) thin films grown by chemical vapor deposition (CVD) on MgO (001) substrates. The experimental results of LFO thin films are compared with those for bulk LFO single crystal. Electron diffraction studies indicate weak long-range ordering in LFO (α-phase) thin films in comparison to bulk crystal where strong ordering is observed in optimally annealed samples. The degree of long-range ordering depends on the growth conditions and the thickness of the film. Annealing experiment along with diffraction study confirms the formation of α-Fe_2O_3 phase in some regions of the films. This suggests that under certain growth conditions γ-Fe_2O_3-like phase forms in some pockets in the as-grown LFO thin films that then convert to α-Fe_2O_3 on annealing. - Highlights: • Atomic ordering in LiFe_5O_8 bulk single crystal and epitaxial thin films. • Electron diffraction studies reveal different level of ordering in the system. • Formation of γ-Fe_2O_3 like phase has been observed.

  18. Effect of carbon additive on microstructure evolution and magnetic properties of epitaxial FePt (001) thin films

    International Nuclear Information System (INIS)

    Ding, Y.F.; Chen, J.S.; Liu, E.; Lim, B.C.; Hu, J.F.; Liu, B.

    2009-01-01

    FePt:C thin films were deposited on CrRu underlayers by DC magnetron co-sputtering. The effects of C content, FePt:C film thickness and substrate temperature on the microstructural and magnetic properties of the epitaxial FePt (001) films were studied. Experimental results showed that even with 30 vol.% C doping, the FePt films could keep a (001) preferred orientation at 350 deg. C . When a FePt:C film was very thin (< 5 nm), the film had a continuous microstructure instead of a granual structure with C diffused onto the film surface. With further increased film thickness, the film started to nucleate and formed a column microstructure over continuous FePt films. A strong exchange coupling in the FePt:C films was believed to be due to the presence of a thin continuous FePt layer attributed to the carbon diffusion during the initial stage of the FePt:C film growth. Despite the presence of a strong exchange coupling in the FePt:C (20 vol.% C) film, the SNR ratio of the FePt:C media was about 10 dB better than that of the pure FePt media. The epitaxial growth of the FePt:C films on the Pt layers was observed from high resolution TEM cross sectional images even for the films grown at about 200 deg. C . The TEM images did not show an obvious change in the morphology of the FePt:C films deposited at different temperatures (from 200 deg. C to 350 deg. C ), though the ordering degree and coercivity of the films increased with increased substrate temperature

  19. Epitaxial Fe3Si/Ge/Fe3Si thin film multilayers grown on GaAs(001)

    International Nuclear Information System (INIS)

    Jenichen, B.; Herfort, J.; Jahn, U.; Trampert, A.; Riechert, H.

    2014-01-01

    We demonstrate Fe 3 Si/Ge/Fe 3 Si/GaAs(001) structures grown by molecular-beam epitaxy and characterized by transmission electron microscopy, electron backscattered diffraction, and X-ray diffraction. The bottom Fe 3 Si epitaxial film on GaAs is always single crystalline. The structural properties of the Ge film and the top Fe 3 Si layer depend on the substrate temperature during Ge deposition. Different orientation distributions of the grains in the Ge and the upper Fe 3 Si film were found. The low substrate temperature T s of 150 °C during Ge deposition ensures sharp interfaces, however, results in predominantly amorphous films. We find that the intermediate T s (225 °C) leads to a largely [111] oriented upper Fe 3 Si layer and polycrystal films. The high T s of 325 °C stabilizes the [001] oriented epitaxial layer structure, i.e., delivers smooth interfaces and single crystal films over as much as 80% of the surface area. - Highlights: • Fe 3 Si/Ge/Fe 3 Si/GaAs(001) structures are grown by MBE. • The bottom Fe 3 Si film is always single crystalline. • The properties of the Ge film depend on the substrate temperature during deposition. • Optimum growth conditions lead to almost perfect epitaxy of Ge on Fe 3 Si

  20. Epitaxial strain-engineered self-assembly of magnetic nanostructures in FeRh thin films

    International Nuclear Information System (INIS)

    Witte, Ralf; Kruk, Robert; Molinari, Alan; Wang, Di; Brand, Richard A; Hahn, Horst; Schlabach, Sabine; Provenzano, Virgil

    2017-01-01

    In this paper we introduce an innovative bottom–up approach for engineering self-assembled magnetic nanostructures using epitaxial strain-induced twinning and phase separation. X-ray diffraction, 57 Fe Mössbauer spectroscopy, scanning tunneling microscopy, and transmission electron microscopy show that epitaxial films of a near-equiatomic FeRh alloy respond to the applied epitaxial strain by laterally splitting into two structural phases on the nanometer length scale. Most importantly, these two structural phases differ with respect to their magnetic properties, one being paramagnetic and the other ferromagnetic, thus leading to the formation of a patterned magnetic nanostructure. It is argued that the phase separation directly results from the different strain-dependence of the total energy of the two competing phases. This straightforward relation directly enables further tailoring and optimization of the nanostructures’ properties. (paper)

  1. Magnetic and magnetoelastic properties of epitaxial SmFe{sub 2} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Fuente, C de la; Arnaudas, J I; Ciria, M; Del Moral, A [Departamento de Magnetismo de Solidos and Departamento de Fisica de la Materia Condensada, Instituto de Ciencia de los Materiales de Aragon and Universidad de Zaragoza, 50071, Zaragoza (Spain); Dufour, C; Dumesnil, K, E-mail: cesar@unizar.e [Laboratoire de Metallurgie Physique et de Science des Materiaux, Universite Henry Poincare, Nancy 1, BP 239, 54506 (France)

    2010-02-03

    We report on magnetic and magnetoelastic measurements for a 5000 A (110) SmFe{sub 2} thin film, which was successfully analyzed by means of a point charge model for describing the effect of the epitaxial growth in this kind of system. Some of the main conclusions of the Moessbauer and magnetoelastic results and the new magnetization results up to 5 T allow us to get a full description of the crystal electric field, exchange, and magnetoelastic behavior in this compound. So, new single-ion parameters are obtained for the crystal field interaction of samarium ions, A{sub 4}(r{sup 4}) = +755 K/ion and A{sub 6}(r{sup 6}) = -180 K/ion, and new single-ion magnetoelastic coupling B{sup gamma}{sup ,2}approx =-200 MPa and B{sup epsilon}{sup ,2}approx =800 MPa, which represent the tetragonal and the in-plane shear deformations, respectively. Moreover, the new thermal behavior of the samarium magnetic moment, the exchange coupling parameter, and the magnetocrystalline anisotropy of the iron sublattice are obtained too. From these, the softening of the spin reorientation transition with respect to the bulk case could be accounted for.

  2. Thin epitaxial silicon detectors

    International Nuclear Information System (INIS)

    Stab, L.

    1989-01-01

    Manufacturing procedures of thin epitaxial surface barriers will be given. Some improvements have been obtained: larger areas, lower leakage currents and better resolutions. New planar epitaxial dE/dX detectors, made in a collaboration work with ENERTEC-INTERTECHNIQUE, and a new application of these thin planar diodes to EXAFS measurements, made in a collaboration work with LURE (CNRS,CEA,MEN) will also be reported

  3. Study of electronic structure and magnetic properties of epitaxial Co{sub 2}FeAl Heusler Alloy Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Soni, S. [Department of Pure & Applied Physics, University of Kota, Kota 324007 (India); Dalela, S., E-mail: sdphysics@rediffmail.com [Department of Pure & Applied Physics, University of Kota, Kota 324007 (India); Sharma, S.S. [Department of Physics, Govt. Women Engineering College, Ajmer (India); Liu, E.K.; Wang, W.H.; Wu, G.H. [State Key Laboratory for Magnetism, Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Kumar, M. [Department of Physics, Malviya National Institute of Technology, Jaipur-302017 (India); Garg, K.B. [Department of Physics, University of Rajasthan, Jaipur-302004 (India)

    2016-07-25

    This work reports the magnetic and electronic characterization of plane magnetized buried Heusler Co{sub 2}FeAl nano thin films of different thickness by X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD) measurements. . The spectra on both Fe- and Co L{sub 2,3} edges show a pronounced magnetic dichroic signal in remanence, corresponding to a ferromagnetically-aligned moments on Fe and Co atoms conditioning the peculiar characteristics of the Co{sub 2}FeAl Heusler compound (a half-metallic ferromagnet). The detailed knowledge of the related magnetic and electronic properties of these samples over a wide range of thickness of films are indispensable for achieving a higher tunnel magnetoresistance ratio, and thus for spintronics device applications. - Highlights: • Electronic structure and Magnetic Properties of Epitaxial Co{sub 2}FeAl Heusler Films. • X-ray absorption spectroscopy (XAS) and X-ray magnetic circular dichroism (XMCD). • Fe- and Co L{sub 2,3} edges show a pronounced magnetic dichroic signal in remanence. • Calculated Orbital, Spin and total magnetic moments of Fe and Co for 30 nm Co{sub 2}FeAl thin film. • The total magnetic moment of Fe at L{sub 2,3} edges increases with the thickness of the Co2FeAl films.

  4. Epitaxial growth and magnetic properties of Fe4-xMnxN thin films grown on MgO(0 0 1) substrates by molecular beam epitaxy

    Science.gov (United States)

    Anzai, Akihito; Takata, Fumiya; Gushi, Toshiki; Toko, Kaoru; Suemasu, Takashi

    2018-05-01

    Epitaxial Fe4-xMnxN (x = 0, 1, 2, 3, and 4) thin films were successfully grown on MgO(0 0 1) single-crystal substrates by molecular beam epitaxy, and their crystalline qualities and magnetic properties were investigated. It was found that the lattice constants of Fe4-xMnxN obtained from X-ray diffraction measurement increased with the Mn content. The ratio of the perpendicular lattice constant c to the in-plane lattice constant a of Fe4-xMnxN was found to be about 0.99 at x ⩾ 2. The magnetic properties evaluated using a vibrating sample magnetometer at room temperature revealed that all of the Fe4-xMnxN films exhibited ferromagnetic behavior regardless of the value of x. In addition, the saturation magnetization decreased non-linearly as the Mn content increased. Finally, FeMn3N and Mn4N exhibited perpendicular anisotropy and their uniaxial magnetic anisotropy energies were 2.2 × 105 and 7.5 × 105 erg/cm3, respectively.

  5. Nano-sized magnetic instabilities in Fe/NiO/Fe(001) epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Brambilla, A [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy); Biagioni, P [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy); Rougemaille, N [National Center for Electron Microscopy, Lawrence Berkeley National Lab, Berkeley, CA 94720 (United States); Schmid, A K [National Center for Electron Microscopy, Lawrence Berkeley National Lab, Berkeley, CA 94720 (United States); Lanzara, A [Department of Physics, University of California at Berkeley, Berkeley, CA 94720 (United States); Duo, L [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy); Ciccacci, F [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy); Finazzi, M [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy)

    2006-10-25

    We report on a magnetic imaging study of the Fe/NiO/Fe(001) trilayer structure, by means of X-ray photoemission electron microscopy (XPEEM) and spin-polarised low-energy electron microscopy (SPLEEM). Two different magnetic couplings between the Fe layers are observed depending on the NiO thickness being greater or smaller than a critical value. Very small magnetic domains and domain walls are observed in the top Fe layer. They are dramatically smaller than those observed in the Fe substrate, and have a convoluted topology. Furthermore they seem to be unstable with respect to an applied magnetic field for any NiO thickness except that corresponding to the transition between the different coupling regimes. The phenomenology of such magnetic nano-structures and the dependence of the magnetic behaviour of the layered structure on the NiO spacer thickness are discussed on the basis of the experimental results and of state-of-the-art theoretical models.

  6. Nano-sized magnetic instabilities in Fe/NiO/Fe(001) epitaxial thin films

    International Nuclear Information System (INIS)

    Brambilla, A.; Biagioni, P.; Rougemaille, N.; Schmid, A.K.; Lanzara, A.; Duo, L.; Ciccacci, F.; Finazzi, M.

    2006-01-01

    We report on a magnetic imaging study of the Fe/NiO/Fe(001) trilayer structure, by means of X-ray photoemission electron microscopy (XPEEM) and spin-polarised low-energy electron microscopy (SPLEEM). Two different magnetic couplings between the Fe layers are observed depending on the NiO thickness being greater or smaller than a critical value. Very small magnetic domains and domain walls are observed in the top Fe layer. They are dramatically smaller than those observed in the Fe substrate, and have a convoluted topology. Furthermore they seem to be unstable with respect to an applied magnetic field for any NiO thickness except that corresponding to the transition between the different coupling regimes. The phenomenology of such magnetic nano-structures and the dependence of the magnetic behaviour of the layered structure on the NiO spacer thickness are discussed on the basis of the experimental results and of state-of-the-art theoretical models

  7. Dynamic Atomic Reconstruction: How Fe_{3}O_{4} Thin Films Evade Polar Catastrophe for Epitaxy

    Directory of Open Access Journals (Sweden)

    C. F. Chang

    2016-10-01

    Full Text Available Polar catastrophe at the interface of oxide materials with strongly correlated electrons has triggered a flurry of new research activities. The expectations are that the design of such advanced interfaces will become a powerful route to engineer devices with novel functionalities. Here, we investigate the initial stages of growth and the electronic structure of the spintronic Fe_{3}O_{4}/MgO(001 interface. Using soft x-ray absorption spectroscopy, we have discovered that the so-called A-sites are completely missing in the first Fe_{3}O_{4} monolayer. This discovery allows us to develop an unexpected but elegant growth principle in which, during deposition, the Fe atoms are constantly on the move to solve the divergent electrostatic potential problem, thereby ensuring epitaxy and stoichiometry at the same time. This growth principle provides a new perspective for the design of interfaces.

  8. Epitaxial growth and structural characterization of Pb(Fe1/2Nb1/2)O3 thin films

    International Nuclear Information System (INIS)

    Peng, W.; Lemee, N.; Holc, J.; Kosec, M.; Blinc, R.; Karkut, M.G.

    2009-01-01

    We have grown lead iron niobate thin films with composition Pb(Fe 1/2 Nb 1/2 )O 3 (PFN) on (0 0 1) SrTiO 3 substrates by pulsed laser deposition. The influence of the deposition conditions on the phase purity was studied. Due to similar thermodynamic stability spaces, a pyrochlore phase often coexists with the PFN perovskite phase. By optimizing the kinetic parameters, we succeeded in identifying a deposition window which resulted in epitaxial perovskite-phase PFN thin films with no identifiable trace of impurity phases appearing in the X-ray diffractograms. PFN films having thicknesses between 20 and 200 nm were smooth and epitaxially oriented with the substrate and as demonstrated by RHEED streaks which were aligned with the substrate axes. X-ray diffraction showed that the films were completely c-axis oriented and of excellent crystalline quality with low mosaicity (X-ray rocking curve FWHM≤0.09 deg.). The surface roughness of thin films was also investigated by atomic force microscopy. The root-mean-square roughness varies between 0.9 nm for 50-nm-thick films to 16 nm for 100-nm-thick films. We also observe a correlation between grain size, surface roughness and film thickness.

  9. Epitaxial Bi2 FeCrO6 Multiferroic Thin Film as a New Visible Light Absorbing Photocathode Material.

    Science.gov (United States)

    Li, Shun; AlOtaibi, Bandar; Huang, Wei; Mi, Zetian; Serpone, Nick; Nechache, Riad; Rosei, Federico

    2015-08-26

    Ferroelectric materials have been studied increasingly for solar energy conversion technologies due to the efficient charge separation driven by the polarization induced internal electric field. However, their insufficient conversion efficiency is still a major challenge. Here, a photocathode material of epitaxial double perovskite Bi(2) FeCrO(6) multiferroic thin film is reported with a suitable conduction band position and small bandgap (1.9-2.1 eV), for visible-light-driven reduction of water to hydrogen. Photoelectrochemical measurements show that the highest photocurrent density up to -1.02 mA cm(-2) at a potential of -0.97 V versus reversible hydrogen electrode is obtained in p-type Bi(2) FeCrO(6) thin film photocathode grown on SrTiO(3) substrate under AM 1.5G simulated sunlight. In addition, a twofold enhancement of photocurrent density is obtained after negatively poling the Bi(2) FeCrO(6) thin film, as a result of modulation of the band structure by suitable control of the internal electric field gradient originating from the ferroelectric polarization in the Bi(2) FeCrO(6) films. The findings validate the use of multiferroic Bi(2) FeCrO(6) thin films as photocathode materials, and also prove that the manipulation of internal fields through polarization in ferroelectric materials is a promising strategy for the design of improved photoelectrodes and smart devices for solar energy conversion. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Microstructure and Magnetic Properties of Fe and Fe-alloy Thin Films Epitaxially Grown on MgO(100) Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Matsubara, Katsuki; Ohtake, Mitsuru; Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi, E-mail: matsubara@futamoto.elect.chuo-u.ac.jp [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan)

    2011-07-06

    Fe, Fe{sub 50}Co{sub 50}, and Fe{sub 80}Ni{sub 20} (at. %) single-crystal films with the (100){sub bcc} plane parallel to the substrate surface were prepared on MgO(100) single-crystals heated at 300 {sup 0}C by ultra high vacuum molecular beam epitaxy. The film growth mechanism, the film structure, and the magnetic properties were investigated. In-situ reflection high energy electron diffraction and X-ray diffraction analyses indicate that the strains in the films are very small though there are fairly large mismatches of -3.7{approx}-4.3% at the film/substrate interface. Cross-sectional high-resolution transmission electron microscopy shows that misfit dislocations are introduced in the film at the interface. Dislocations are also observed in the film up to around 10{approx}20 nm distance from the interface. The presence of such dislocation relieves the strain caused by the lattice mismatch. The in-plane magnetization properties of these films reflect the magnetocrystalline anisotropies of respective bulk Fe, Fe{sub 50}Co{sub 50}, and Fe{sub 80}Ni{sub 20} crystals.

  11. Microstructure and Magnetic Properties of Fe and Fe-alloy Thin Films Epitaxially Grown on MgO(100) Substrates

    International Nuclear Information System (INIS)

    Matsubara, Katsuki; Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi

    2011-01-01

    Fe, Fe 50 Co 50 , and Fe 80 Ni 20 (at. %) single-crystal films with the (100) bcc plane parallel to the substrate surface were prepared on MgO(100) single-crystals heated at 300 0 C by ultra high vacuum molecular beam epitaxy. The film growth mechanism, the film structure, and the magnetic properties were investigated. In-situ reflection high energy electron diffraction and X-ray diffraction analyses indicate that the strains in the films are very small though there are fairly large mismatches of -3.7∼-4.3% at the film/substrate interface. Cross-sectional high-resolution transmission electron microscopy shows that misfit dislocations are introduced in the film at the interface. Dislocations are also observed in the film up to around 10∼20 nm distance from the interface. The presence of such dislocation relieves the strain caused by the lattice mismatch. The in-plane magnetization properties of these films reflect the magnetocrystalline anisotropies of respective bulk Fe, Fe 50 Co 50 , and Fe 80 Ni 20 crystals.

  12. Magneto-transport and thermoelectric properties of epitaxial FeSb{sub 2} thin film on MgO substrate

    Energy Technology Data Exchange (ETDEWEB)

    Duong, Anh Tuan; Rhim, S. H., E-mail: sonny@ulsan.ac.kr; Shin, Yooleemi; Nguyen, Van Quang; Cho, Sunglae, E-mail: slcho@ulsan.ac.kr [Department of Physics and Energy Harvest-Storage Research Center, University of Ulsan, Ulsan 680-749 (Korea, Republic of)

    2015-01-19

    We report magneto-transport and thermoelectric properties of FeSb{sub 2} thin film epitaxially grown on the MgO substrate using molecular beam epitaxy. The film exhibits compressive strain of 1.74% owing to large lattice mismatch, whose physical consequences are nontrivial. Magnetic phase has been changed from diamagnetic in bulk, as evidenced by anomalous Hall effect (AHE) and negative magneto-resistance (MR). The FeSb{sub 2} film is semiconducting without any metallic transition unlike the bulk counterpart. In particular, hysteresis in MR with distinct feature of AHE is evident with coercive field of 500 and 110 Oe for T = 20 and 50 K, respectively. Furthermore, from the Seebeck coefficients and temperature dependence of the resistivity, it is evident that the film is semiconducting with small band gap: 3.76 meV for T < 40 K and 13.48 meV for T > 40 K, respectively, where maximum thermoelectric power factor of 12 μV/cm·K at T = 50 K.

  13. Epitaxy, thin films and superlattices

    International Nuclear Information System (INIS)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au)

  14. Epitaxy, thin films and superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Jagd Christensen, Morten

    1997-05-01

    This report is the result of structural investigations of 3d transition metal superlattices consisting of Fe/V, Cr/Mn, V/Mn and Fe/Mn, and a structural and magnetic study of a series of Ho/Pr alloys. The work includes preparation and characterization of substrates as well as growth of thin films and Fe/V superlattices by molecular beam epitaxy, including in-situ characterization by reflection high energy electron diffraction and Auger electron spectroscopy. Structural characterization has been done by x-ray diffraction and neutron diffraction. The x-ray diffraction experiments have been performed on the rotating copper anode at Risoe, and at synchrotron facilities in Hamburg and Brookhaven, and the neutron scattering was done at the Danish research reactor DR3 at Risoe. In addition to longitudinal scans, giving information about the structural parameters in the modulation direction, non-specular scans were also performed. This type of scans gives information about in-plane orientation and lattice parameters. From the analysis, structural information is obtained about lattice parameters, epitaxial strain, coherence lengths and crystallographic orientation for the superlattice systems, except Fe/Mn superlattices, which could not be modelled. For the Ho/Pr alloys, x-ray magnetic scattering was performed, and the crystal and magnetic structure was investigated. (au) 14 tabs.; 58 ills., 96 refs.

  15. Effect of epitaxial strain and lattice mismatch on magnetic and transport behaviors in metamagnetic FeRh thin films

    Science.gov (United States)

    Xie, Yali; Zhan, Qingfeng; Shang, Tian; Yang, Huali; Wang, Baomin; Tang, Jin; Li, Run-Wei

    2017-05-01

    We grew 80 nm FeRh films on different single crystals with various lattice constants. FeRh films on SrTiO3 (STO) and MgO substrates exhibit an epitaxial growth of 45° in-plane structure rotation. In contrast, FeRh on LaAlO3 (LAO) displays a mixed epitaxial growth of both 45° in-plane structure rotation and cube-on-cube relationships. Due to the different epitaxial growth strains and lattice mismatch values, the critical temperature for the magnetic phase transition of FeRh can be changed between 405 and 360 K. In addition, the external magnetic field can shift this critical temperature to low temperature in different rates for FeRh films grown on different substrates. The magnetoresistance appears a maximum value at different temperatures between 320 and 380 K for FeRh films grown on different substrates.

  16. Effect of epitaxial strain and lattice mismatch on magnetic and transport behaviors in metamagnetic FeRh thin films

    Directory of Open Access Journals (Sweden)

    Yali Xie

    2017-05-01

    Full Text Available We grew 80 nm FeRh films on different single crystals with various lattice constants. FeRh films on SrTiO3 (STO and MgO substrates exhibit an epitaxial growth of 45° in-plane structure rotation. In contrast, FeRh on LaAlO3 (LAO displays a mixed epitaxial growth of both 45° in-plane structure rotation and cube-on-cube relationships. Due to the different epitaxial growth strains and lattice mismatch values, the critical temperature for the magnetic phase transition of FeRh can be changed between 405 and 360 K. In addition, the external magnetic field can shift this critical temperature to low temperature in different rates for FeRh films grown on different substrates. The magnetoresistance appears a maximum value at different temperatures between 320 and 380 K for FeRh films grown on different substrates.

  17. Epitaxial integration of CoFe2O4 thin films on Si (001) surfaces using TiN buffer layers

    Science.gov (United States)

    Prieto, Pilar; Marco, José F.; Prieto, José E.; Ruiz-Gomez, Sandra; Perez, Lucas; del Real, Rafael P.; Vázquez, Manuel; de la Figuera, Juan

    2018-04-01

    Epitaxial cobalt ferrite thin films with strong in-plane magnetic anisotropy have been grown on Si (001) substrates using a TiN buffer layer. The epitaxial films have been grown by ion beam sputtering using either metallic, CoFe2, or ceramic, CoFe2O4, targets. X-ray diffraction (XRD) and Rutherford spectrometry (RBS) in random and channeling configuration have been used to determine the epitaxial relationship CoFe2O4 [100]/TiN [100]/Si [100]. Mössbauer spectroscopy, in combination with XRD and RBS, has been used to determine the composition and structure of the cobalt ferrite thin films. The TiN buffer layer induces a compressive strain in the cobalt ferrite thin films giving rise to an in-plane magnetic anisotropy. The degree of in-plane anisotropy depends on the lattice mismatch between CoFe2O4 and TiN, which is larger for CoFe2O4 thin films grown on the reactive sputtering process with ceramic targets.

  18. Interplay of uniaxial and cubic anisotropy in epitaxial Fe thin films on MgO (001 substrate

    Directory of Open Access Journals (Sweden)

    Srijani Mallik

    2014-09-01

    Full Text Available Epitaxial Fe thin films were grown on annealed MgO(001 substrates at oblique incidence by DC magnetron sputtering. Due to the oblique growth configuration, uniaxial anisotropy was found to be superimposed on the expected four-fold cubic anisotropy. A detailed study of in-plane magnetic hysteresis for Fe on MgO thin films has been performed by Magneto Optic Kerr Effect (MOKE magnetometer. Both single step and double step loops have been observed depending on the angle between the applied field and easy axis i.e. along ⟨100⟩ direction. Domain images during magnetization reversal were captured by Kerr microscope. Domain images clearly evidence two successive and separate 90° domain wall (DW nucleation and motion along cubic easy cum uniaxial easy axis and cubic easy cum uniaxial hard axis, respectively. However, along cubic hard axis two 180° domain wall motion dominate the magnetization reversal process. In spite of having four-fold anisotropy it is essential to explain magnetization reversal mechanism in 0°< ϕ < 90° span as uniaxial anisotropy plays a major role in this system. Also it is shown that substrate rotation can suppress the effect of uniaxial anisotropy superimposed on four-fold anisotropy.

  19. Magnetic surface domain imaging of uncapped epitaxial FeRh(001) thin films across the temperature-induced metamagnetic transition

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xianzhong; Matthes, Frank; Bürgler, Daniel E., E-mail: d.buergler@fz-juelich.de; Schneider, Claus M. [Peter Grünberg Institut, Electronic Properties (PGI-6) and Jülich-Aachen Research Alliance, Fundamentals of Future Information Technology (JARA-FIT), Forschungszentrum Jülich, D-52425 Jülich (Germany)

    2016-01-15

    The surface magnetic domain structure of uncapped epitaxial FeRh/MgO(001) thin films was imaged by in-situ scanning electron microscopy with polarization analysis (SEMPA) at various temperatures between 122 and 450 K. This temperature range covers the temperature-driven antiferromagnetic-to-ferromagnetic phase transition in the body of the films that was observed in-situ by means of the more depth-sensitive magneto-optical Kerr effect. The SEMPA images confirm that the interfacial ferromagnetism coexisting with the antiferromagnetic phase inside the film is an intrinsic property of the FeRh(001) surface. Furthermore, the SEMPA data display a reduction of the in-plane magnetization occuring well above the phase transition temperature which, thus, is not related to the volume expansion at the phase transition. This observation is interpreted as a spin reorientation of the surface magnetization for which we propose a possible mechanism based on temperature-dependent tetragonal distortion due to different thermal expansion coefficients of MgO and FeRh.

  20. Superconducting spin valves based on epitaxial Fe/V-hybrid thin film heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Nowak, Gregor

    2010-12-10

    This study presents a systematic investigation of the SSV effect in FM/SC/FM and FM/N/FM/SC heterostructures. Before investigating the actual SSV effect, we first pre-analyzed structural, magnetic and superconducting properties of the Fe/V system. In these preliminary studies we demonstrated, that epitaxial Fe/V heterostructures of superior crystalline quality can be grown by DC sputter deposition. With a Fe/V interface thickness of only one monolayer, the chemical separation of the Fe and V layers is extremely sharp. Moreover, the magnetic investigation showed that from thicknesses of two Fe(001) monolayers on the Fe layers in the superlattice possess a magnetic moment. Furthermore, we demonstrated the interlayer exchange coupling as oscillatory function of the V interlayer thickness. The investigations of the superconducting parameters of the Fe/V system revealed a non-monotonic T{sub S} vs. d{sub Fe} dependence in sample series (1). This observation proves the presence of the FM/SC proximity effect. The studies of various heterostructures of the design AFM/FM/SC/FM revealed a strong counteracting influence on the SSV effect, the stray field effect. The sample containing Fe{sub 25}V{sub 75} alloy layers, has the highest ratio of Cooper pair coherence length and superconductor thickness (ξ{sub S})/(d{sub S}), and its superconducting transition temperature is comparable to the sample with Fe{sub 35}V{sub 65} alloy layers. Nevertheless, the SSV effect in sample Fe{sub 25}V{sub 75} with alloy layers is much smaller than in sample with Fe{sub 35}V{sub 65} alloy layers. For a high-performance superconducting spin valve based on a FM1/SC/FM2 heterostructure at least four parameters have to be optimized simultaneously. 1. The magnetic domain size in FM1 and FM2 has to be as large as possible in order to reduce the stray field effect resulting from magnetization components in the FM domain walls perpendicular to the SC layer. 2. When using ferromagnetic alloys as

  1. Preparation and structural characterization of FeCo epitaxial thin films on insulating single-crystal substrates

    International Nuclear Information System (INIS)

    Nishiyama, Tsutomu; Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-01-01

    FeCo epitaxial films were prepared on MgO(111), SrTiO 3 (111), and Al 2 O 3 (0001) single-crystal substrates by ultrahigh vacuum molecular beam epitaxy. The effects of insulating substrate material on the film growth process and the structures were investigated. FeCo(110) bcc films grow on MgO substrates with two type domains, Nishiyama-Wassermann (NW) and Kurdjumov-Sachs (KS) relationships. On the contrary, FeCo films grown on SrTiO 3 and Al 2 O 3 substrates include FeCo(111) bcc crystal in addition to the FeCo(110) bcc crystals with NW and KS relationships. The FeCo(111) bcc crystal consists of two type domains whose orientations are rotated around the film normal by 180 deg. each other. The out-of-plane and the in-plane lattice spacings of FeCo(110) bcc and FeCo(111) bcc crystals formed on the insulating substrates are in agreement with those of the bulk Fe 50 Co 50 (at. %) crystal with small errors ranging between +0.2% and +0.4%, showing that the strains in the epitaxial films are very small.

  2. Epitaxial growth of bcc-Fe{sub x}Co{sub 100-x} thin films on MgO(1 1 0) single-crystal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Mitsuru, E-mail: ohtake@futamoto.elect.chuo-u.ac.j [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Nishiyama, Tsutomu; Shikada, Kouhei [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan); Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan)

    2010-07-15

    Fe{sub x}Co{sub 100-x} (x=100, 65, 50 at%) epitaxial thin films were prepared on MgO(1 1 0) single-crystal substrates heated at 300 deg. C by ultra-high vacuum molecular beam epitaxy. The film structure and the growth mechanism are discussed. FeCo(2 1 1) films with bcc structure grow epitaxially on MgO(1 1 0) substrates with two types of variants whose orientations are rotated around the film normal by 180 deg. each other for all compositions. Fe{sub x}Co{sub 100-x} film growth follows the Volmer Weber mode. X-ray diffraction analysis indicates the out-of-plane and the in-plane lattice spacings are in agreement with the values of respective bulk Fe{sub x}Co{sub 100-x} crystals with very small errors less than +-0.4%, suggesting the strains in the films are very small. High-resolution cross-sectional transmission electron microscopy shows that periodical misfit dislocations are preferentially introduced in the film at the Fe{sub 50}Co{sub 50}/MgO interface along the MgO[1 1-bar 0] direction. The presence of such periodical dislocations decreases the large lattice mismatch of about -17% existing at the FeCo/MgO interface along the MgO[1 1-bar 0] direction.

  3. Structural and superconducting properties of epitaxial Fe{sub 1+y}Se{sub 1-x}Te{sub x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Stefan; Yuan, Feifei; Grinenko, Vadim; Huehne, Ruben [Institute for Metallic Materials, IFW Dresden (Germany); Sala, Alberto; Putti, Marina [Dipartimento di Fisica, Universita di Genova (Italy)

    2015-07-01

    The iron based superconductor Fe(Se,Te) is in the center of much ongoing research. The reason for this is on the one hand its simple crystal structure, that consists only of stacked Fe(Se,Te) layers so that structural and superconducting properties can be connected more easily, on the other hand FeSe itself shows a high sensibility for strain and changes in stoichiometry and can have potentially very high critical temperatures under hydrostatic pressure or in monolayers. We investigate epitaxial thin films of Fe{sub 1+y}Se{sub 1-x}Te{sub x} grown by pulsed laser deposition on different single crystalline substrates. A high crystalline quality and a superconducting transition of up to about 20 K can be achieved using optimized deposition parameters. The influence of growth conditions, Te-doping, film thickness and post growth oxygen treatment on the structural and superconducting properties on these films will be presented in detail.

  4. Investigation of electronic states of infinite-layer SrFeO2 epitaxial thin films by X-ray photoemission and absorption spectroscopies

    International Nuclear Information System (INIS)

    Chikamatsu, Akira; Matsuyama, Toshiya; Hirose, Yasushi; Kumigashira, Hiroshi; Oshima, Masaharu; Hasegawa, Tetsuya

    2012-01-01

    Highlights: ► Electronic states of infinite-layer SrFeO 2 films have been experimentally observed. ► Fe 3d states have higher densities of states in the valence-band region. ► Three peaks derived from Fe 3d states were observed in the conduction-band region. ► Indirect bandgap value was determined to be 1.3 eV. - Abstract: We investigated the electronic states of a single-crystal SrFeO 2 epitaxial thin film in the valence-band and conduction-band regions using synchrotron-radiation X-ray photoemission and absorption spectroscopies. Fe 2p–3d resonant photoemission measurements revealed that the Fe 3d states have higher densities of states at binding energies of 3–5 eV and 5–8.5 eV in the valence-band region. The O K-edge X-ray absorption spectrum exhibited three peaks in the Fe 3d-derived conduction band hybridized with O 2p states; these can be assigned to Fe 3d xy , 3d xz + 3d yz , and 3d x 2 –y 2 . In addition, the indirect bandgap value of the SrFeO 2 film was determined to be 1.3 eV by transmission and absorption spectroscopies.

  5. Investigation of electronic states of infinite-layer SrFeO{sub 2} epitaxial thin films by X-ray photoemission and absorption spectroscopies

    Energy Technology Data Exchange (ETDEWEB)

    Chikamatsu, Akira, E-mail: chikamatsu@chem.s.u-tokyo.ac.jp [Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan); Matsuyama, Toshiya [Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan); Hirose, Yasushi [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan); Kumigashira, Hiroshi; Oshima, Masaharu [Department of Applied Chemistry, University of Tokyo, Tokyo 113-8656 (Japan); Hasegawa, Tetsuya [Department of Chemistry, University of Tokyo, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Electronic states of infinite-layer SrFeO{sub 2} films have been experimentally observed. Black-Right-Pointing-Pointer Fe 3d states have higher densities of states in the valence-band region. Black-Right-Pointing-Pointer Three peaks derived from Fe 3d states were observed in the conduction-band region. Black-Right-Pointing-Pointer Indirect bandgap value was determined to be 1.3 eV. - Abstract: We investigated the electronic states of a single-crystal SrFeO{sub 2} epitaxial thin film in the valence-band and conduction-band regions using synchrotron-radiation X-ray photoemission and absorption spectroscopies. Fe 2p-3d resonant photoemission measurements revealed that the Fe 3d states have higher densities of states at binding energies of 3-5 eV and 5-8.5 eV in the valence-band region. The O K-edge X-ray absorption spectrum exhibited three peaks in the Fe 3d-derived conduction band hybridized with O 2p states; these can be assigned to Fe 3d{sub xy}, 3d{sub xz} + 3d{sub yz}, and 3d{sub x}{sup 2}{sub -y}{sup 2}. In addition, the indirect bandgap value of the SrFeO{sub 2} film was determined to be 1.3 eV by transmission and absorption spectroscopies.

  6. Structural and magnetic properties of epitaxial delafossite CuFeO{sub 2} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Joshi, Toyanath; Senty, Tess R.; Trappen, Robbyn; Zhou, Jinling; Borisov, Pavel; Holcomb, Mikel B.; Bristow, Alan D.; Lederman, David [Department of Physics and Astronomy, West Virginia University, Morgantown, West Virginia 26506-6315 (United States); Chen, Song; Song, Xueyan [Department of Mechanical and Aerospace Engineering, West Virginia University, Morgantown, West Virginia 26506-6070 (United States); Ferrari, Piero; Cabrera, Alejandro L. [Pontificia Universidad Catolica, Instituto de Física, Santiago (Chile)

    2015-01-07

    Growth of pure phase delafossite CuFeO{sub 2} thin films on Al{sub 2}O{sub 3} (00.1) substrates by pulsed laser deposition was systematically investigated as a function of growth temperature and oxygen pressure. X-ray diffraction, transmission electron microscopy, Raman scattering, and x-ray absorption spectroscopy confirmed the existence of the delafossite phase. Infrared reflectivity spectra determined a band edge at 1.15 eV, in agreement with the bulk delafossite data. Magnetization measurements on CuFeO{sub 2} films demonstrated a phase transition at T{sub C} ≈ 15 ± 1 K, which agrees with the first antiferromagnetic transition at 14 K in the bulk CuFeO{sub 2}. Low temperature magnetic phase is best described by commensurate, weak ferromagnetic spin ordering along the c-axis.

  7. Structural and magnetic anisotropy in the epitaxial FeV2O4 (110) spinel thin films

    Science.gov (United States)

    Shi, Xiaolan; Wang, Yuhang; Zhao, Kehan; Liu, Na; Sun, Gaofeng; Zhang, Liuwan

    2015-11-01

    The epitaxial 200-nm-thick FeV2O4(110) films on (110)-oriented SrTiO3, LaAlO3 and MgAl2O4 substrates were fabricated for the first time by pulsed laser deposition, and the structural, magnetic, and magnetoresistance anisotropy were investigated systematically. All the films are monoclinic, whereas its bulk is cubic. Compared to FeV2O4 single crystals, films on SrTiO3 and MgAl2O4 are strongly compressively strained in [001] direction, while slightly tensily strained along normal [110] and in-plane [ 1 1 ¯ 0 ] directions. In contrast, films on LaAlO3 are only slightly distorted from cubic. The magnetic hard axis is in direction, while the easier axis is along normal [110] direction for films on SrTiO3 and MgAl2O4, and in-plane [ 1 1 ¯ 0 ] direction for films on LaAlO3. Magnetoresistance anisotropy follows the magnetization. The magnetic anisotropy is dominated by the magnetocrystalline energy, and tuned by the magneto-elastic coupling.

  8. Magnetron-sputter epitaxy of β-FeSi2(220)/Si(111) and β-FeSi2(431)/Si(001) thin films at elevated temperatures

    International Nuclear Information System (INIS)

    Liu Hongfei; Tan Chengcheh; Chi Dongzhi

    2012-01-01

    β-FeSi 2 thin films have been grown on Si(111) and Si(001) substrates by magnetron-sputter epitaxy at 700 °C. On Si(111), the growth is consistent with the commonly observed orientation of [001]β-FeSi 2 (220)//[1-10]Si(111) having three variants, in-plane rotated 120° with respect to one another. However, on Si(001), under the same growth conditions, the growth is dominated by [-111]β-FeSi 2 (431)//[110]Si(001) with four variants, which is hitherto unknown for growing β-FeSi 2 . Photoelectron spectra reveal negligible differences in the valance-band and Fe2p core-level between β-FeSi 2 grown on Si(111) and Si(001) but an apparent increased Si-oxidization on the surface of β-FeSi 2 /Si(001). This phenomenon is discussed and attributed to the Si-surface termination effect, which also suggests that the Si/Fe ratio on the surface of β-FeSi 2 (431)/Si(001) is larger than that on the surface of β-FeSi 2 (220)/Si(111).

  9. Electronic structure of Fe1.08Te bulk crystals and epitaxial FeTe thin films on Bi2Te3

    Science.gov (United States)

    Arnold, Fabian; Warmuth, Jonas; Michiardi, Matteo; Fikáček, Jan; Bianchi, Marco; Hu, Jin; Mao, Zhiqiang; Miwa, Jill; Singh, Udai Raj; Bremholm, Martin; Wiesendanger, Roland; Honolka, Jan; Wehling, Tim; Wiebe, Jens; Hofmann, Philip

    2018-02-01

    The electronic structure of thin films of FeTe grown on Bi2Te3 is investigated using angle-resolved photoemission spectroscopy, scanning tunneling microscopy and first principles calculations. As a comparison, data from cleaved bulk Fe1.08Te taken under the same experimental conditions is also presented. Due to the substrate and thin film symmetry, FeTe thin films grow on Bi2Te3 in three domains, rotated by 0°, 120°, and 240°. This results in a superposition of photoemission intensity from the domains, complicating the analysis. However, by combining bulk and thin film data, it is possible to partly disentangle the contributions from three domains. We find a close similarity between thin film and bulk electronic structure and an overall good agreement with first principles calculations, assuming a p-doping shift of 65 meV for the bulk and a renormalization factor of around two. By tracking the change of substrate electronic structure upon film growth, we find indications of an electron transfer from the FeTe film to the substrate. No significant change of the film’s electronic structure or doping is observed when alkali atoms are dosed onto the surface. This is ascribed to the film’s high density of states at the Fermi energy. This behavior is also supported by the ab initio calculations.

  10. Highly Sensitive Switchable Heterojunction Photodiode Based on Epitaxial Bi2FeCrO6 Multiferroic Thin Films.

    Science.gov (United States)

    Huang, Wei; Chakrabartty, Joyprokash; Harnagea, Catalin; Gedamu, Dawit; Ka, Ibrahima; Chaker, Mohamed; Rosei, Federico; Nechache, Riad

    2018-04-18

    Perovskite multiferroic oxides are promising materials for the realization of sensitive and switchable photodiodes because of their favorable band gap (heterojunction was fabricated by pulsed laser deposition. The heterojunction photodiode exhibits a large ideality factor ( n = ∼5.0) and a response time as fast as 68 ms, thanks to the effective charge carrier transport and collection at the BFCO/SRO interface. The diode can switch direction when the electric polarization is reversed by an external voltage pulse. The time-resolved photoluminescence decay of the device measured at ∼500 nm demonstrates an ultrafast charge transfer (lifetime = ∼6.4 ns) in BFCO/SRO heteroepitaxial structures. The estimated responsivity value at 500 nm and zero bias is 0.38 mA W -1 , which is so far the highest reported for any FE thin film photodiode. Our work highlights the huge potential for using multiferroic oxides to fabricate highly sensitive and switchable photodiodes.

  11. Structural features of epitaxial NiFe2O4 thin films grown on different substrates by direct liquid injection chemical vapor deposition

    Science.gov (United States)

    Datta, R.; Loukya, B.; Li, N.; Gupta, A.

    2012-04-01

    NiFe2O4 (NFO) thin films are grown on four different substrates, i.e., Lead Zinc Niobate-Lead Titanate (PZN-PT), Lead Magnesium Niobate-Lead Titanate (PMN-PT), MgAl2O4 (MAO) and SrTiO3 (STO), by a direct liquid injection chemical vapor deposition technique (DLI-CVD) under optimum growth conditions where relatively high growth rate (˜20 nm/min), smooth surface morphology and high saturation magnetization values in the range of 260-290 emu/ cm3 are obtained. The NFO films with correct stoichiometry (Ni:Fe=1:2) grow epitaxially on all four substrates, as confirmed by energy dispersive X-ray spectroscopy, transmission electron microscopy and x-ray diffraction. While the films on PMN-PT and PZN-PT substrates are partially strained, essentially complete strain relaxation occurs for films grown on MAO and STO. The formations of threading dislocations along with dark diffused contrast areas related to antiphase domains having a different cation ordering are observed on all four substrates. These crystal defects are correlated with lattice mismatch between the film and substrate and result in changes in magnetic properties of the films. Atomic resolution HAADF imaging and EDX line profiles show formation of a sharp interface between the film and the substrate with no inter-diffusion of Pb or other elements across the interface. Antiphase domains are observed to originate at the film-substrate interface.

  12. Ferroelectricity down to at least 2 nm in multiferroic BiFeO3 epitaxial thin films

    International Nuclear Information System (INIS)

    Bea, H.; Fusil, S.; Bouzehouane, K.; Sirena, M.; Herranz, G.; Jacquet, E.; Contour, J.-P.; Barthelemy, A.; Bibes, M.

    2006-01-01

    We report here on the preservation of ferroelectricity down to 2 nm in BiFeO 3 ultrathin films. The electric polarization can be switched reversibly and is stable over several days. Our findings insight on the fundamental problem of ferroelectricity at low thickness and confirm the potential of BiFeO 3 as a lead-free ferroelectric and multiferroic material for nanoscale devices. (author)

  13. On the Relationship of Magnetocrystalline Anisotropy and Stoichiometry in Epitaxial L1{sub 0} CoPt(001) and FePt(001) Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Barmak, K

    2004-08-10

    Two series of epitaxial CoPt and FePt films, with nominal thicknesses of 42 or 50 nm, were prepared by sputtering onto single crystal MgO(001) substrates in order to investigate the chemical ordering and the resultant magnetic properties as a function of alloy composition. In the first series, the film composition was kept constant, while the substrate temperature was increased from 144 to 704 C. In the second series the substrate temperature was kept constant at 704 C for CoPt and 620 C for FePt, while the alloy stoichiometry was varied in the nominalrange of 40-60 at% Co(Fe). Film compositions and thicknesses were measured via Rutherford backscattering spectrometry. The lattice and long-range order parameter for the L1{sub 0} phase were obtained for both sets of films using x-ray diffraction. The room-temperature magnetocrystalline anisotropy constants were determined for a subset of the films using torque magnetometry. The order parameter was found to increase with increasing temperature, with ordering occurring more readily in FePt when compared with CoPt. A perpendicular anisotropy developed in CoPt for substrate temperatures above 534 C and in FePt above 321 C. The structure and width of the magnetic domains in CoPt and FePt, as seen by magnetic force microscopy, also demonstrated an increase in magnetic anisotropy with increasing temperature. For the films deposited at the highest temperatures (704 C for CoPt and 620 C for FePt), the order parameter reached a maximum near the equiatomic composition, whereas the magnetocrystalline anisotropy increased as the concentration of Co or Fe was increased from below to slightly above the equiatomic composition. It is concluded that non-stoichiometric L1{sub 0} CoPt and FePt, with a slight excess of Co or Fe, are preferable for applications requiring the highest anisotropies.

  14. Magnetic anisotropies in epitaxial Fe3O4/GaAs(100) patterned structures

    International Nuclear Information System (INIS)

    Zhang, W.; Zhang, D.; Yuan, S. J.; Huang, Z. C.; Zhai, Y.; Wong, P. K. J.; Wu, J.; Xu, Y. B.

    2014-01-01

    Previous studies on epitaxial Fe 3 O 4 rings in the context of spin-transfer torque effect have revealed complicated and undesirable domain structures, attributed to the intrinsic fourfold magnetocrystalline anisotropy in the ferrite. In this Letter, we report a viable solution to this problem, utilizing a 6-nm-thick epitaxial Fe 3 O 4 thin film on GaAs(100), where the fourfold magnetocrystalline anisotropy is negligible. We demonstrate that in the Fe 3 O 4 planar wires patterned from our thin film, such a unique magnetic anisotropy system has been preserved, and relatively simple magnetic domain configurations compared to those previous reports can be obtained

  15. Synthesis and Characterization of BaFeO3, (Ba,Bi)FeO3, and Related Epitaxial Thin Films and Nanostructures

    Science.gov (United States)

    2009-01-01

    targets were synthesized from BaCO3 (99.997%) and Fe2O3 (99.998%) powders that are crushed and dry-mixed in a high density alumina mortar and pestle set...30 minutes, or dry-mixed a second time with alumina mortar and pestle set. Then the mixed powders were cold pressed into a 1” diameter pellet with...Society of Japan 28, 44 (1970). 19 F. Iga, Y. Nishihara, T. Katayama, K. Murata, and Y. Takeda, Journal of Magnetism and Magnetic Materials 104-07, 1973

  16. Ion beam deposited epitaxial thin silicon films

    International Nuclear Information System (INIS)

    Orrman-Rossiter, K.G.; Al-Bayati, A.H.; Armour, D.G.; Donnelly, S.E.; Berg, J.A. van den

    1991-01-01

    Deposition of thin films using low energy, mass-separated ion beams is a potentially important low temperature method of producing epitaxial layers. In these experiments silicon films were grown on Si (001) substrates using 10-200 eV 28 Si + and 30 Si + ions at substrate temperatures in the range 273-1073 K, under ultrahigh-vacuum conditions (deposition pressure -7 Pa). The film crystallinity was assessed in situ using medium energy ion scattering (MEIS). Films of crystallinity comparable to bulk samples were grown using 10-40 eV 28 Si + and 30 Si + ions at deposition temperatures in the range 623-823 K. These experiments confirmed the role of key experimental parameters such as ion energy, substrate temperature during deposition, and the surface treatment prior to deposition. It was found that a high temperature in situ anneal (1350-1450 K) gave the best results for epitaxial nucleation, whereas low energy (20-40 eV) Cl + ion bombardment resulted in amorphous film growth. The deposition energy for good epitaxial growth indicates that it is necessary to provide enough energy to induce local mobility but not to cause atomic displacements leading to the buildup of stable defects, e.g. divacancies, below the surface layer of the growing film. (orig.)

  17. The bimodal distribution spin Seebeck effect enhancement in epitaxial Ni0.65Zn0.35Al0.8Fe1.2O4 thin film

    Science.gov (United States)

    Wang, Hua; Hou, Dazhi; Kikkawa, Takashi; Ramos, Rafael; Shen, Ka; Qiu, Zhiyong; Chen, Yao; Umeda, Maki; Shiomi, Yuki; Jin, Xiaofeng; Saitoh, Eiji

    2018-04-01

    The temperature dependence of the spin Seebeck effect (SSE) in epitaxial Ni0.65Zn0.35Al0.8Fe1.2O4 (NZA ferrite) thin film has been investigated systematically. The SSE at high fields shows a bimodal distribution enhancement from 3 K to 300 K and is well fitted with a double-peak Lorentzian function. We speculate the symmetric SSE enhancement in Pt/NZA ferrite bilayer, which is different from the magnon polarons induced asymmetric spikes in the SSE of Pt/YIG [T. Kikkawa et al. Phys. Rev. Lett. 117, 207203 (2016)], may result from the magnon-phonon interactions occurring at the intersections of the quantized magnon and phonon dispersions. The SSE results are helpful for the investigation of the magnon-phonon interaction in the magnetic ultrathin films.

  18. Strain quantification in epitaxial thin films

    International Nuclear Information System (INIS)

    Cushley, M

    2008-01-01

    Strain arising in epitaxial thin films can be beneficial in some cases but devastating in others. By altering the lattice parameters, strain may give a thin film properties hitherto unseen in the bulk material. On the other hand, heavily strained systems are prone to develop lattice defects in order to relieve the strain, which can cause device failure or, at least, a decrease in functionality. Using convergent beam electron diffraction (CBED) and high-resolution transmission electron microscopy (HRTEM), it is possible to determine local strains within a material. By comparing the results from CBED and HRTEM experiments, it is possible to gain a complete view of a material, including the strain and any lattice defects present. As well as looking at how the two experimental techniques differ from each other, I will also look at how results from different image analysis algorithms compare. Strain in Si/SiGe samples and BST/SRO/MgO capacitor structures will be discussed.

  19. Epitaxial stabilization of ordered Pd–Fe structures on perovskite substrates

    Energy Technology Data Exchange (ETDEWEB)

    Harton, Renee M., E-mail: reneehar@umich.edu [Department of Physics, University of Michigan, 450 Church St., Ann Arbor, MI 48109 (United States); Stoica, Vladimir A. [Department of Materials Science and Engineering, Pennsylvania State University, 201 Old Main, University Park, PA 16802 (United States); Clarke, Roy [Department of Physics, University of Michigan, 450 Church St., Ann Arbor, MI 48109 (United States)

    2017-05-01

    We report the fabrication of epitaxial ferromagnetic Pd{sub 3}Fe thin films on SrTiO{sub 3}(001) substrates by promoting the interdiffusion of an Fe/Pd multilayer heterostructure using thermal annealing. Prior to annealing, the results of in-situ Reflection High-Energy Electron Diffraction characterization suggest that each Fe and Pd layer exhibited an in-plane epitaxial relationship with the SrTiO{sub 3}(001) substrate. X-Ray diffraction and magneto-optic Kerr effect characterization, conducted post-annealing, demonstrate that the film composition is majority Pd{sub 3}Fe and exhibits in-plane magnetization reversal with a moderate coercive field of ≈760 Oe. This demonstration of an ordered atomic layer heterostructure grown on a perovskite substrate suggests a route to epitaxial interfacial structures which can achieve strain-assisted magnetic switching.

  20. Growth modes and epitaxy of FeAl thin films on a-cut sapphire prepared by pulsed laser and ion beam assisted deposition

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Xiang; Trautvetter, Moritz; Ziemann, Paul [Institut für Festkörperphysik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm (Germany); Wiedwald, Ulf [Institut für Festkörperphysik, Universität Ulm, Albert-Einstein-Allee 11, 89069 Ulm (Germany); Fakultät für Physik, Universität Duisburg-Essen, Lotharstraße 1, 47057 Duisburg (Germany)

    2014-01-14

    FeAl films around equiatomic composition are grown on a-cut (112{sup ¯}0) sapphire substrates by ion beam assisted deposition (IBAD) and pulsed laser deposition (PLD) at ambient temperature. Subsequent successive annealing is used to establish chemical order and crystallographic orientation of the films with respect to the substrate. We find a strongly [110]-textured growth for both deposition techniques. Pole figures prove the successful preparation of high quality epitaxial films by PLD with a single in-plane orientation. IBAD-grown films, however, exhibit three in-plane orientations, all of them with broad angular distributions. The difference of the two growth modes is attributed to the existence of a metastable intermediate crystalline orientation as concluded from nonassisted sputter depositions at different substrate temperatures. The formation of the chemically ordered crystalline B2 phase is accompanied by the expected transition from ferromagnetic to paramagnetic behavior of the films. In accordance with the different thermally induced structural recovery, we find a step-like magnetic transition to paramagnetic behavior after annealing for 1 h at T{sub A} = 300 °C for IBAD deposition, while PLD-grown films show a gradual decrease of ferromagnetic signals with rising annealing temperatures.

  1. Oxygen pressure-tuned epitaxy and magnetic properties of magnetite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Junran [Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Jiangsu Provincial Key Laboratory for Nanotechnology, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Liu, Wenqing [York-Nanjing Joint Centre (YNJC) for Spintronics and Nanoengineering, Department of Electronics, The University of York, YO10 3DD (United Kingdom); Zhang, Minhao; Zhang, Xiaoqian; Niu, Wei; Gao, Ming [Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Jiangsu Provincial Key Laboratory for Nanotechnology, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Wang, Xuefeng, E-mail: xfwang@nju.edu.cn [Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Jiangsu Provincial Key Laboratory for Nanotechnology, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Du, Jun [School of Physics, Nanjing University, Nanjing 210093 (China); Zhang, Rong [Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Jiangsu Provincial Key Laboratory for Nanotechnology, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); Xu, Yongbing, E-mail: ybxu@nju.edu.cn [Jiangsu Provincial Key Laboratory of Advanced Photonic and Electronic Materials, Jiangsu Provincial Key Laboratory for Nanotechnology, Collaborative Innovation Center of Advanced Microstructures, School of Electronic Science and Engineering, Nanjing University, Nanjing 210093 (China); York-Nanjing Joint Centre (YNJC) for Spintronics and Nanoengineering, Department of Electronics, The University of York, YO10 3DD (United Kingdom)

    2017-06-15

    Highlights: • Quasi-2D Fe{sub 3}O{sub 4} films were obtained by PLD. • RHEED under different oxygen pressure were observed. • Influence of oxygen pressure on Fe{sub 3}O{sub 4} films were investigated. • Epitaxy and magnetic properties were tuned by oxygen pressure. • The ratio of Fe{sup 2+}/Fe{sup 3+} fitted by XPS is the tuned factor of M{sub s}. - Abstract: Quasi-two-dimensional magnetite epitaxial thin films have been synthesized by pulsed laser deposition technique at various oxygen pressures. The saturation magnetizations of the magnetite films were found to decrease from 425 emu/cm{sup 3}, which is close to the bulk value, to 175 emu/cm{sup 3} as the growth atmospheres varying from high vacuum (∼1 × 10{sup −8} mbar) to oxygen pressure of 1 × 10{sup −3} mbar. The ratio of the Fe{sup 3+} to Fe{sup 2+} increases from 2 to 2.7 as oxygen pressure increasing shown by XPS fitting, which weakens the net magnetic moment generated by Fe{sup 2+} at octahedral sites as the spins of the Fe{sup 3+} ions at octahedral and tetrahedral sites are aligned in antiparallel. The results offer direct experimental evidence of the influence to the Fe{sup 3+}/Fe{sup 2+} ratio and the magnetic moment in magnetite epitaxy films by oxygen pressure, which is significant for spintronic applications.

  2. Deposition and characterisation of epitaxial oxide thin films for SOFCs

    KAUST Repository

    Santiso, José ; Burriel, Mó nica

    2010-01-01

    This paper reviews the recent advances in the use of thin films, mostly epitaxial, for fundamental studies of materials for solid oxide fuel cell (SOFC) applications. These studies include the influence of film microstructure, crystal orientation

  3. Experimental and theoretical investigation of electronic structure of SrFeO3-xFx epitaxial thin films prepared via topotactic reaction

    Science.gov (United States)

    Katayama, Tsukasa; Chikamatsu, Akira; Kamisaka, Hideyuki; Kumigashira, Hiroshi; Hasegawa, Tetsuya

    2016-02-01

    We investigated the electronic structure of perovskite SrFeO3-xFx (0.6 ≤ x ≤ 1) films by optical absorption, photoemission, and X-ray absorption spectroscopies, as well as density functional theory (DFT)-based calculations. The optical bandgap expanded with x, yielding a wider direct bandgap for the SrFeO2F film than for the LaFeO3 film. The DFT calculations suggested that the majority of FeO4F2 octahedra in the SrFeO2F film had cis configurations and that the enlarged bandgap mainly originated from bond bending in the O-Fe-O chains. We experimentally observed the valence and conduction bands of the SrFeO2F film, and found them to be qualitatively consistent with the results of DFT-based calculations.

  4. Electrical properties of epitaxially grown VOx thin films

    NARCIS (Netherlands)

    Rata, A.D.; Chezan, A.R; Presura, C.N.; Hibma, T

    2003-01-01

    High quality VOx thin films on MgO(100) substrates were prepared and studied from the structural and electronic point of view. Epitaxial growth was confirmed by RHEED and XRD techniques. The oxygen content of VOx thin films as a function of oxygen flux was determined using RBS. The upper and lower

  5. Thin film phase diagram of iron nitrides grown by molecular beam epitaxy

    Science.gov (United States)

    Gölden, D.; Hildebrandt, E.; Alff, L.

    2017-01-01

    A low-temperature thin film phase diagram of the iron nitride system is established for the case of thin films grown by molecular beam epitaxy and nitrided by a nitrogen radical source. A fine-tuning of the nitridation conditions allows for growth of α ‧ -Fe8Nx with increasing c / a -ratio and magnetic anisotropy with increasing x until almost phase pure α ‧ -Fe8N1 thin films are obtained. A further increase of nitrogen content below the phase decomposition temperature of α ‧ -Fe8N (180 °C) leads to a mixture of several phases that is also affected by the choice of substrate material and symmetry. At higher temperatures (350 °C), phase pure γ ‧ -Fe4N is the most stable phase.

  6. Epitaxial patterning of thin-films: conventional lithographies and beyond

    International Nuclear Information System (INIS)

    Zhang, Wei; Krishnan, Kannan M

    2014-01-01

    Thin-film based novel magnetic and electronic devices have entered a new era in which the film crystallography, structural coherence, and epitaxy play important roles in determining their functional properties. The capabilities of controlling such structural and functional properties are being continuously developed by various physical deposition technologies. Epitaxial patterning strategies further allow the miniaturization of such novel devices, which incorporates thin-film components into nanoscale architectures while keeping their functional properties unmodified from their ideal single-crystal values. In the past decade, epitaxial patterning methods on the laboratory scale have been reported to meet distinct scientific inquires, in which the techniques and processes used differ from one to the other. In this review we summarize many of these pioneering endeavors in epitaxial patterning of thin-film devices that use both conventional and novel lithography techniques. These methods demonstrate epitaxial patterning for a broad range of materials (metals, oxides, and semiconductors) and cover common device length scales from micrometer to sub-hundred nanometer. Whilst we have been motivated by magnetic materials and devices, we present our outlook on developing systematic-strategies for epitaxial patterning of functional materials which will pave the road for the design, discovery and industrialization of next-generation advanced magnetic and electronic nano-devices. (topical review)

  7. Joining Chemical Pressure and Epitaxial Strain to Yield Y-doped BiFeO3 Thin Films with High Dielectric Response

    Science.gov (United States)

    Scarisoreanu, N. D.; Craciun, F.; Birjega, R.; Ion, V.; Teodorescu, V. S.; Ghica, C.; Negrea, R.; Dinescu, M.

    2016-05-01

    BiFeO3 is one of the most promising multiferroic materials but undergoes two major drawbacks: low dielectric susceptibility and high dielectric loss. Here we report high in-plane dielectric permittivity (ε’ ∼2500) and low dielectric loss (tan δ priced target.

  8. Removable polytetrafluoroethylene template based epitaxy of ferroelectric copolymer thin films

    Science.gov (United States)

    Xia, Wei; Chen, Qiusong; Zhang, Jian; Wang, Hui; Cheng, Qian; Jiang, Yulong; Zhu, Guodong

    2018-04-01

    In recent years ferroelectric polymers have shown their great potentials in organic and flexible electronics. To meet the requirements of high-performance and low energy consumption of novel electronic devices and systems, structural and electrical properties of ferroelectric polymer thin films are expected to be further optimized. One possible way is to realize epitaxial growth of ferroelectric thin films via removable high-ordered polytetrafluoroethylene (PTFE) templates. Here two key parameters in epitaxy process, annealing temperature and applied pressure, are systematically studied and thus optimized through structural and electrical measurements of ferroelectric copolymer thin films. Experimental results indicate that controlled epitaxial growth is realized via suitable combination of both parameters. Annealing temperature above the melting point of ferroelectric copolymer films is required, and simultaneously moderate pressure (around 2.0 MPa here) should be applied. Over-low pressure (around 1.0 MPa here) usually results in the failure of epitaxy process, while over-high pressure (around 3.0 MPa here) often results in residual of PTFE templates on ferroelectric thin films.

  9. Strain-induced properties of epitaxial VOx thin films

    NARCIS (Netherlands)

    Rata, AD; Hibma, T

    We have grown VOx thin films on different substrates in order to investigate the influence of epitaxial strain on the transport properties. We found that the electric conductivity is much larger for films grown under compressive strain on SrTiO3 substrates, as compared to bulk material and VOx films

  10. Liquid phase epitaxial growth of heterostructured hierarchical MOF thin films

    KAUST Repository

    Chernikova, Valeriya; Shekhah, Osama; Spanopoulos, Ioannis; Trikalitis, Pantelis N.; Eddaoudi, Mohamed

    2017-01-01

    Precise control of epitaxial growth of MOF-on-MOF thin films, for ordered hierarchical tbo-type structures is demonstrated. The heterostructured MOF thin film was fabricated by successful sequential deposition of layers from two different MOFs. The 2-periodic layers, edge-transitive 4,4-square lattices regarded as supermolecular building layers, were commendably cross-linked using a combination of inorganic/organic and organic pillars.

  11. Liquid phase epitaxial growth of heterostructured hierarchical MOF thin films

    KAUST Repository

    Chernikova, Valeriya

    2017-05-10

    Precise control of epitaxial growth of MOF-on-MOF thin films, for ordered hierarchical tbo-type structures is demonstrated. The heterostructured MOF thin film was fabricated by successful sequential deposition of layers from two different MOFs. The 2-periodic layers, edge-transitive 4,4-square lattices regarded as supermolecular building layers, were commendably cross-linked using a combination of inorganic/organic and organic pillars.

  12. From epitaxial growth of ferrite thin films to spin-polarized tunnelling

    International Nuclear Information System (INIS)

    Moussy, Jean-Baptiste

    2013-01-01

    This paper presents a review of the research which is focused on ferrite thin films for spintronics. First, I will describe the potential of ferrite layers for the generation of spin-polarized currents. In the second step, the structural and chemical properties of epitaxial thin films and ferrite-based tunnel junctions will be presented. Particular attention will be given to ferrite systems grown by oxygen-assisted molecular beam epitaxy. The analysis of the structure and chemistry close to the interfaces, a key-point for understanding the spin-polarized tunnelling measurements, will be detailed. In the third part, the magnetic and magneto-transport properties of magnetite (Fe 3 O 4 ) thin films as a function of structural defects such as the antiphase boundaries will be explained. The spin-polarization measurements (spin-resolved photoemission, tunnel magnetoresistance) on this oxide predicted to be half-metallic will be discussed. Fourth, the potential of magnetic tunnel barriers, such as CoFe 2 O 4 , NiFe 2 O 4 or MnFe 2 O 4 , whose insulating behaviour and the high Curie temperatures make it exciting candidates for spin filtering at room temperature will be described. Spin-polarized tunnelling experiments, involving either Meservey–Tedrow or tunnel magnetoresistance measurements, will reveal significant spin-polarizations of the tunnelling current at low temperatures but also at room temperatures. Finally, I will mention a few perspectives with ferrite-based heterostructures. (topical review)

  13. Deposition and characterisation of epitaxial oxide thin films for SOFCs

    KAUST Repository

    Santiso, José

    2010-10-24

    This paper reviews the recent advances in the use of thin films, mostly epitaxial, for fundamental studies of materials for solid oxide fuel cell (SOFC) applications. These studies include the influence of film microstructure, crystal orientation and strain in oxide ionic conducting materials used as electrolytes, such as fluorites, and in mixed ionic and electronic conducting materials used as electrodes, typically oxides with perovskite or perovskite-related layered structures. The recent effort towards the enhancement of the electrochemical performance of SOFC materials through the deposition of artificial film heterostructures is also presented. These thin films have been engineered at a nanoscale level, such as the case of epitaxial multilayers or nanocomposite cermet materials. The recent progress in the implementation of thin films in SOFC devices is also reported. © 2010 Springer-Verlag.

  14. Fe3O4 epitaxial films

    KAUST Repository

    Liu, Xiang; Mi, Wenbo; Zhang, Qiang; Zhang, Xixiang

    2017-01-01

    fast charge ordering process and a continuous formation process of trimeron, which is comfirmed by the temperature-dependent Raman spectra. Just below T-V, the twofold AMR in Fe3O4(100) film originates from uniaxial magnetic anisotropy. The fourfold AMR

  15. Growth of Ferromagnetic Epitaxial Film of Hexagonal FeGe on (111) Ge Surface

    Science.gov (United States)

    Kumar, Dushyant; Joshi, P. C.; Hossain, Z.; Budhani, R. C.

    2014-03-01

    The realization of semiconductors showing ferromagnetic order at easily accessible temperatures has been of interest due to their potential use in spintronic devices where long spin life times are of key interest. We have realized the growth of FeGe thin films on Ge (111) wafers using pulsed laser deposition (PLD). The stoichiometric and single phase FeGe target used in PLD chamber has been made by arc melting. A typical θ-2 θ diffraction spectra performed on 40 nm thick FeGe film suggests the stabilization of β-Ni2In (B82-type) hexagonal phase with an epitaxial orientation of (0001)FeGe ||(111)Ge and [11-20]FeGe ||[-110]Ge. SEM images shows a granular structure with the formation of very large grains of about 100 to 500 nm in lateral dimension. The magnetization vs. temperature data taken from SQUID reveal the TC of ~ 270K. Since, PLD technique makes it easier to stabilize the B82 (Ni2In) hexagonal phase in thin FeGe films, this work opens opportunities to reinvestigate many conflicting results on various properties of the FeGe system.

  16. Epitaxial growth and multiferroic properties of cation-engineered (Bi{sub 0.45}La{sub 0.05}Ba{sub 0.5})(Fe{sub 0.75}Nb{sub 0.25})O{sub 3} thin film on Ir-buffered (0 0 1) MgO substrate

    Energy Technology Data Exchange (ETDEWEB)

    Paik, Hanjong [Department of Materials Science and Engineering, Cornell University, Ithaca NY 14853 (United States); Kim, Hyun-Suk [Department of Materials Engineering, Chungnam University, Daejeon 305-764 (Korea, Republic of); Hong, Jongin, E-mail: hongj@cau.ac.kr [Department of Chemistry, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul 156-756 (Korea, Republic of)

    2015-04-15

    Highlights: • Epitaxial (Bi{sub 0.45}La{sub 0.05}Ba{sub 0.5})(Fe{sub 0.75}Nb{sub 0.25})O{sub 3} thin film was grown on the Ir-buffered (0 0 1) MgO substrate by pulsed laser deposition. • Its ferroelectric polarization switching was investigated by piezoresponse force microscopy. • Its ferromagnetic hysteresis at room temperature and ferrimagnetic–ferromagnetic transition at low temperature were evaluated. • Artificial A- and B-site cation engineering would result in stable multiferroic properties at room temperature. - Abstract: An epitaxial (Bi{sub 0.45}La{sub 0.05}Ba{sub 0.5})(Fe{sub 0.75}Nb{sub 0.25})O{sub 3} (BLB-FNO) thin film was successfully grown on an Ir-buffered (0 0 1) MgO substrate by pulsed laser deposition (PLD). The “cube-on-cube” epitaxial relation, (0 0 1)[1 0 0] BLB-FNO//(0 0 1)[1 0 0] Ir//(0 0 1)[1 0 0] MgO, was confirmed by X-ray diffraction (XRD) pole figures and cross-sectional high-resolution transmission electron microscopy (HRTEM). The ferroelectric polarization switching of the BLB-FNO thin film was investigated by piezoresponse force microscopy (PFM). Its magnetic properties, such as ferromagnetic hysteresis at room temperature and possible magnetic transition at low temperature, were also evaluated. Accordingly, we successfully demonstrated that artificial A- and B-site cation engineering would allow for stable multiferroic properties at room temperature.

  17. All-epitaxial Co{sub 2}FeSi/Ge/Co{sub 2}FeSi trilayers fabricated by Sn-induced low-temperature epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Kawano, M.; Ikawa, M.; Arima, K.; Yamada, S.; Kanashima, T.; Hamaya, K., E-mail: hamaya@ee.es.osaka-u.ac.jp [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka 560-8531 (Japan)

    2016-01-28

    We demonstrate low-temperature growth of all-epitaxial Co{sub 2}FeSi/Ge/Co{sub 2}FeSi trilayer structures by developing Sn-induced surfactant-mediated molecular beam epitaxy (SMBE) of Ge on Co{sub 2}FeSi. Despite the growth of a semiconductor on a metal, we verify that the inserted Sn monolayers between Ge and Co{sub 2}FeSi enable to promote the 2D epitaxial growth of Ge up to 5 nm at a T{sub G} of 250 °C. An understanding of the mechanism of the Sn-induced SMBE leads to the achievement of all-epitaxial Co{sub 2}FeSi/Ge/Co{sub 2}FeSi trilayer structures with spin-valve-like magnetization reversals. This study will open a way for vertical-type and high-performance Ge-based spintronics devices.

  18. Magnetic Field Enhanced Superconductivity in Epitaxial Thin Film WTe2.

    Science.gov (United States)

    Asaba, Tomoya; Wang, Yongjie; Li, Gang; Xiang, Ziji; Tinsman, Colin; Chen, Lu; Zhou, Shangnan; Zhao, Songrui; Laleyan, David; Li, Yi; Mi, Zetian; Li, Lu

    2018-04-25

    In conventional superconductors an external magnetic field generally suppresses superconductivity. This results from a simple thermodynamic competition of the superconducting and magnetic free energies. In this study, we report the unconventional features in the superconducting epitaxial thin film tungsten telluride (WTe 2 ). Measuring the electrical transport properties of Molecular Beam Epitaxy (MBE) grown WTe 2 thin films with a high precision rotation stage, we map the upper critical field H c2 at different temperatures T. We observe the superconducting transition temperature T c is enhanced by in-plane magnetic fields. The upper critical field H c2 is observed to establish an unconventional non-monotonic dependence on temperature. We suggest that this unconventional feature is due to the lifting of inversion symmetry, which leads to the enhancement of H c2 in Ising superconductors.

  19. Tailoring of magnetic properties of ultrathin epitaxial Fe films by Dy doping

    Directory of Open Access Journals (Sweden)

    A. A. Baker

    2015-07-01

    Full Text Available We report on the controlled modification of relaxation parameters and magnetic moments of epitaxial Fe thin films through Dy doping. Ferromagnetic resonance measurements show that an increase of Dy doping from 0.1% to 5% gives a tripling in Gilbert damping, and more importantly a strongly enhanced anisotropic damping that can be qualitatively understood through the slow-relaxing impurity model. X-ray magnetic circular dichroism measurements show a pronounced suppression of the orbital moment of the Fe with Dy doping, leading to an almost threefold drop in the orbital to spin moment ratio, ml/ms. Doping with Dy can therefore be used to control both dynamic and static properties of thin ferromagnetic films for improved performance in spintronics device applications, mediated through the antiferromagnetic interaction of the 4f and 3d states.

  20. Tailoring of magnetic properties of ultrathin epitaxial Fe films by Dy doping

    Energy Technology Data Exchange (ETDEWEB)

    Baker, A. A. [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, OX1 3PU (United Kingdom); Magnetic Spectroscopy Group, Diamond Light Source, Didcot, OX11 0DE (United Kingdom); Figueroa, A. I.; Laan, G. van der [Magnetic Spectroscopy Group, Diamond Light Source, Didcot, OX11 0DE (United Kingdom); Hesjedal, T. [Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, OX1 3PU (United Kingdom)

    2015-07-15

    We report on the controlled modification of relaxation parameters and magnetic moments of epitaxial Fe thin films through Dy doping. Ferromagnetic resonance measurements show that an increase of Dy doping from 0.1% to 5% gives a tripling in Gilbert damping, and more importantly a strongly enhanced anisotropic damping that can be qualitatively understood through the slow-relaxing impurity model. X-ray magnetic circular dichroism measurements show a pronounced suppression of the orbital moment of the Fe with Dy doping, leading to an almost threefold drop in the orbital to spin moment ratio, m{sub l}/m{sub s}. Doping with Dy can therefore be used to control both dynamic and static properties of thin ferromagnetic films for improved performance in spintronics device applications, mediated through the antiferromagnetic interaction of the 4f and 3d states.

  1. Squid measurement of the Verwey transition on epitaxial (1 0 0) magnetite thin films

    International Nuclear Information System (INIS)

    Dediu, V.; Arisi, E.; Bergenti, I.; Riminucci, A.; Solzi, M.; Pernechele, C.; Natali, M.

    2007-01-01

    We report results on epitaxial magnetite (Fe 3 O 4 ) thin films grown by electron beam ablation on (1 0 0) MgAl 2 O 4 substrates. At 120 K magnetite undergoes a structural and electronic transition, the so-called Verwey transition, at which magnetic and conducting properties of the material change. We observed the Verwey transition on epitaxial films with a thickness of 50 nm by comparing zero-field cooling (ZFC) and field cooling (FC) curves measured with a superconducting quantum interference device (SQUID) magnetometer. Observation of the Verwey transition by SQUID measurements in the films is sign of their high crystalline quality. Room temperature ferromagnetism has also been found by magneto-optical Kerr rotation (MOKE) and confirmed by SQUID measurements, with a hysteresis loop showing a coercive field of hundreds of Oe

  2. Synchrotron X-ray studies of epitaxial ferroelectric thin films and nanostructures

    Science.gov (United States)

    Klug, Jeffrey A.

    The study of ferroelectric thin films is a field of considerable scientific and technological interest. In this dissertation synchrotron x-ray techniques were applied to examine the effects of lateral confinement and epitaxial strain in ferroelectric thin films and nanostructures. Three materials systems were investigated: laterally confined epitaxial BiFeO3 nanostructures on SrTiO3 (001), ultra-thin commensurate SrTiO 3 films on Si (001), and coherently strained films of BaTiO3 on DyScO3 (110). Epitaxial films of BiFeO3 were deposited by radio frequency magnetron sputtering on SrRuO3 coated SrTiO 3 (001) substrates. Laterally confined nanostructures were fabricated using focused ion-beam processing and subsequently characterized with focused beam x-ray nanodiffraction measurements with unprecedented spatial resolution. Results from a series of rectangular nanostructures with lateral dimensions between 500 nm and 1 mum and a comparably-sized region of the unpatterned BiFeO3 film revealed qualitatively similar distributions of local strain and lattice rotation with a 2-3 times larger magnitude of variation observed in those of the nanostructures compared to the unpatterned film. This indicates that lateral confinement leads to enhanced variation in the local strain and lattice rotation fields in epitaxial BiFeO3 nanostructures. A commensurate 2 nm thick film of SrTiO3 on Si was characterized by the x-ray standing wave (XSW) technique to determine the Sr and Ti cation positions in the strained unit cell in order to verify strain-induced ferroelectricity in SrTiO3/Si. A Si (004) XSW measurement at 10°C indicated that the average Ti displacement from the midpoint between Sr planes was consistent in magnitude to that predicted by a density functional theory (DFT) calculated ferroelectric structure. The Ti displacement determined from a 35°C measurement better matched a DFT-predicted nonpolar structure. The thin film extension of the XSW technique was employed to

  3. Single-domain epitaxial silicene on diboride thin films

    Energy Technology Data Exchange (ETDEWEB)

    Fleurence, A., E-mail: antoine@jaist.ac.jp; Friedlein, R.; Aoyagi, K.; Yamada-Takamura, Y. [School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); Gill, T. G. [School of Materials Science, Japan Advanced Institute of Science and Technology (JAIST), 1-1 Asahidai, Nomi, Ishikawa 923-1292 (Japan); London Centre for Nanotechnology, University College London (UCL), London WC1H 0AH (United Kingdom); Department of Chemistry, UCL, London WC1H 0AJ (United Kingdom); Sadowski, J. T. [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973 (United States); Copel, M.; Tromp, R. M. [IBM Research Division, Thomas J. Watson Research Center, Yorktown Heights, New York 10598 (United States); Hirjibehedin, C. F. [London Centre for Nanotechnology, University College London (UCL), London WC1H 0AH (United Kingdom); Department of Chemistry, UCL, London WC1H 0AJ (United Kingdom); Department of Physics and Astronomy, UCL, London WC1E 6BT (United Kingdom)

    2016-04-11

    Epitaxial silicene, which forms spontaneously on ZrB{sub 2}(0001) thin films grown on Si(111) wafers, has a periodic stripe domain structure. By adsorbing additional Si atoms on this surface, we find that the domain boundaries vanish, and a single-domain silicene sheet can be prepared without altering its buckled honeycomb structure. The amount of Si required to induce this change suggests that the domain boundaries are made of a local distortion of the silicene honeycomb lattice. The realization of a single domain sheet with structural and electronic properties close to those of the original striped state demonstrates the high structural flexibility of silicene.

  4. Probing the bulk ionic conductivity by thin film hetero-epitaxial engineering

    KAUST Repository

    Pergolesi, Daniele; Roddatis, Vladimir; Fabbri, Emiliana; Schneider, Christof W; Lippert, Thomas; Traversa, Enrico; Kilner, John A

    2015-01-01

    Highly textured thin films with small grain boundary regions can be used as model systems to directly measure the bulk conductivity of oxygen ion conducting oxides. Ionic conducting thin films and epitaxial heterostructures are also widely used

  5. Epitaxial Growth of Permalloy Thin Films on MgO Single-Crystal Substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Tanaka, Takahiro; Matsubara, Katsuki; Futamoto, Masaaki; Kirino, Fumiyoshi

    2011-01-01

    Permalloy (Py: Ni - 20 at. % Fe) thin films were prepared on MgO single-crystal substrates of (100), (110), and (111) orientations by molecular beam epitaxy. Py crystals consisting of fcc(100) and hcp(112-bar 0) orientations epitaxially nucleate on MgO(100) substrates. With increasing the substrate temperature, the volume ratio of fcc(100) to hcp(112-bar 0) crystal increases. The metastable hcp(112-bar 0) structure transforms into more stable fcc(110) structure with increasing the film thickness. Py(110) fcc single-crystal films are obtained on MgO(110) substrates, whereas Py films epitaxially grow on MgO(111) substrates with two types of fcc(111) variants whose orientations are rotated around the film normal by 180 deg. each other. X-ray diffraction analysis indicates that the out-of-plane and the in-plane lattice spacings of these fcc-Py films agree within ±0.4% with the values of bulk fcc-Py crystal, suggesting that the strains in the films are very small. High-resolution transmission electron microscopy shows that periodical misfit dislocations are preferentially introduced in the films around the Py/MgO(100) and the Py/MgO(110) interfaces to reduce the lattice mismatches. The magnetic properties are considered to be reflecting the magnetocrystalline anisotropies of bulk fcc-Py and/or metastable hcp-Py crystals and the shape anisotropy caused by the surface undulations.

  6. Epitaxial Growth of Permalloy Thin Films on MgO Single-Crystal Substrates

    Energy Technology Data Exchange (ETDEWEB)

    Ohtake, Mitsuru; Tanaka, Takahiro; Matsubara, Katsuki; Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi, E-mail: ohtake@futamoto.elect.chuo-u.ac.jp [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan)

    2011-07-06

    Permalloy (Py: Ni - 20 at. % Fe) thin films were prepared on MgO single-crystal substrates of (100), (110), and (111) orientations by molecular beam epitaxy. Py crystals consisting of fcc(100) and hcp(112-bar 0) orientations epitaxially nucleate on MgO(100) substrates. With increasing the substrate temperature, the volume ratio of fcc(100) to hcp(112-bar 0) crystal increases. The metastable hcp(112-bar 0) structure transforms into more stable fcc(110) structure with increasing the film thickness. Py(110){sub fcc} single-crystal films are obtained on MgO(110) substrates, whereas Py films epitaxially grow on MgO(111) substrates with two types of fcc(111) variants whose orientations are rotated around the film normal by 180 deg. each other. X-ray diffraction analysis indicates that the out-of-plane and the in-plane lattice spacings of these fcc-Py films agree within {+-}0.4% with the values of bulk fcc-Py crystal, suggesting that the strains in the films are very small. High-resolution transmission electron microscopy shows that periodical misfit dislocations are preferentially introduced in the films around the Py/MgO(100) and the Py/MgO(110) interfaces to reduce the lattice mismatches. The magnetic properties are considered to be reflecting the magnetocrystalline anisotropies of bulk fcc-Py and/or metastable hcp-Py crystals and the shape anisotropy caused by the surface undulations.

  7. The influence of Fe doping on the surface topography of GaN epitaxial material

    International Nuclear Information System (INIS)

    Cui Lei; Yin Haibo; Jiang Lijuan; Wang Quan; Feng Chun; Xiao Hongling; Wang Cuimei; Wang Xiaoliang; Gong Jiamin; Zhang Bo; Li Baiquan; Wang Zhanguo

    2015-01-01

    Fe doping is an effective method to obtain high resistivity GaN epitaxial material. But in some cases, Fe doping could result in serious deterioration of the GaN material surface topography, which will affect the electrical properties of two dimensional electron gas (2DEG) in HEMT device. In this paper, the influence of Fe doping on the surface topography of GaN epitaxial material is studied. The results of experiments indicate that the surface topography of Fe-doped GaN epitaxial material can be effectively improved and the resistivity could be increased after increasing the growth rate of GaN materials. The GaN material with good surface topography can be manufactured when the Fe doping concentration is 9 × 10 19 cm −3 . High resistivity GaN epitaxial material which is 1 × 10 9 Ω·cm is achieved. (paper)

  8. Room-Temperature Multiferroics and Thermal Conductivity of 0.85BiFe1-2xTixMgxO3-0.15CaTiO3 Epitaxial Thin Films (x = 0.1 and 0.2).

    Science.gov (United States)

    Zhang, Ji; Sun, Wei; Zhao, Jiangtao; Sun, Lei; Li, Lei; Yan, Xue-Jun; Wang, Ke; Gu, Zheng-Bin; Luo, Zhen-Lin; Chen, Yanbin; Yuan, Guo-Liang; Lu, Ming-Hui; Zhang, Shan-Tao

    2017-08-02

    Thin films of 0.85BiFe 1-2x Ti x Mg x O 3 -0.15CaTiO 3 (x = 0.1 and 0.2, abbreviated to C-1 and C-2, respectively) have been fabricated on (001) SrTiO 3 substrate with and without a conductive La 0.7 Sr 0.3 MnO 3 buffer layer. The X-ray θ-2θ and ϕ scans, atomic force microscopy, and cross-sectional transmission electron microscopy confirm the (001) epitaxial nature of the thin films with very high growth quality. Both the C-1 and C-2 thin films show well-shaped magnetization-magnetic field hysteresis at room temperature, with enhanced switchable magnetization values of 145.3 and 42.5 emu/cm 3 , respectively. The polarization-electric loops and piezoresponse force microscopy measurements confirm the room-temperature ferroelectric nature of both films. However, the C-1 films illustrate a relatively weak ferroelectric behavior and the poled states are easy to relax, whereas the C-2 films show a relatively better ferroelectric behavior with stable poled states. More interestingly, the room-temperature thermal conductivity of C-1 and C-2 films are measured to be 1.10 and 0.77 W/(m·K), respectively. These self-consistent multiferroic properties and thermal conductivities are discussed by considering the composition-dependent content and migration of Fe-induced electrons and/or charged point defects. This study not only provides multifunctional materials with excellent room-temperature magnetic, ferroelectric, and thermal conductivity properties but may also stimulate further work to develop BiFeO 3 -based materials with unusual multifunctional properties.

  9. Chemically stabilized epitaxial wurtzite-BN thin film

    Science.gov (United States)

    Vishal, Badri; Singh, Rajendra; Chaturvedi, Abhishek; Sharma, Ankit; Sreedhara, M. B.; Sahu, Rajib; Bhat, Usha; Ramamurty, Upadrasta; Datta, Ranjan

    2018-03-01

    We report on the chemically stabilized epitaxial w-BN thin film grown on c-plane sapphire by pulsed laser deposition under slow kinetic condition. Traces of no other allotropes such as cubic (c) or hexagonal (h) BN phases are present. Sapphire substrate plays a significant role in stabilizing the metastable w-BN from h-BN target under unusual PLD growth condition involving low temperature and pressure and is explained based on density functional theory calculation. The hardness and the elastic modulus of the w-BN film are 37 & 339 GPa, respectively measured by indentation along direction. The results are extremely promising in advancing the microelectronic and mechanical tooling industry.

  10. Resistance switching in epitaxial SrCoOx thin films

    Science.gov (United States)

    Tambunan, Octolia T.; Parwanta, Kadek J.; Acharya, Susant K.; Lee, Bo Wha; Jung, Chang Uk; Kim, Yeon Soo; Park, Bae Ho; Jeong, Huiseong; Park, Ji-Yong; Cho, Myung Rae; Park, Yun Daniel; Choi, Woo Seok; Kim, Dong-Wook; Jin, Hyunwoo; Lee, Suyoun; Song, Seul Ji; Kang, Sung-Jin; Kim, Miyoung; Hwang, Cheol Seong

    2014-08-01

    We observed bipolar switching behavior from an epitaxial strontium cobaltite film grown on a SrTiO3 (001) substrate. The crystal structure of strontium cobaltite has been known to undergo topotactic phase transformation between two distinct phases: insulating brownmillerite (SrCoO2.5) and conducting perovskite (SrCoO3-δ) depending on the oxygen content. The current-voltage characteristics of the strontium cobaltite film showed that it could have a reversible insulator-to-metal transition triggered by electrical bias voltage. We propose that the resistance switching in the SrCoOx thin film could be related to the topotactic phase transformation and the peculiar structure of SrCoO2.5.

  11. Resistance switching in epitaxial SrCoOx thin films

    International Nuclear Information System (INIS)

    Tambunan, Octolia T.; Parwanta, Kadek J.; Acharya, Susant K.; Lee, Bo Wha; Jung, Chang Uk; Kim, Yeon Soo; Park, Bae Ho; Jeong, Huiseong; Park, Ji-Yong; Cho, Myung Rae; Park, Yun Daniel; Choi, Woo Seok; Kim, Dong-Wook; Jin, Hyunwoo; Lee, Suyoun; Song, Seul Ji; Kang, Sung-Jin; Kim, Miyoung; Hwang, Cheol Seong

    2014-01-01

    We observed bipolar switching behavior from an epitaxial strontium cobaltite film grown on a SrTiO 3 (001) substrate. The crystal structure of strontium cobaltite has been known to undergo topotactic phase transformation between two distinct phases: insulating brownmillerite (SrCoO 2.5 ) and conducting perovskite (SrCoO 3−δ ) depending on the oxygen content. The current–voltage characteristics of the strontium cobaltite film showed that it could have a reversible insulator-to-metal transition triggered by electrical bias voltage. We propose that the resistance switching in the SrCoO x thin film could be related to the topotactic phase transformation and the peculiar structure of SrCoO 2.5

  12. Deposition of yttrium oxysulfide thin films by atomic layer epitaxy

    International Nuclear Information System (INIS)

    Kukli, K.; University of Tartu, Tartu,; Johansson, L-S.; Nykaenen, E.; Peussa, M.; Ninistoe, L.

    1998-01-01

    Full text: Yttrium oxysulfide is a highly interesting material for optoelectronic applications. It is industrially exploited in the form of doped powder in catholuminescent phosphors, e.g. Y 2 O 2 S: Eu 3+ for colour TV. Attempts to grow thin films of Y 2 O 2 S have not been frequent and only partially successful due to the difficulties in obtaining crystalline films at a reasonable temperature. Furthermore, sputtering easily leads to a sulphur deficiency. Evaporation of the elements from a multi-source offers a better control of the stoichiometry resulting in hexagonal (0002) oriented films at 580 deg C. In this paper we present the first successful thin film growth experiments using a chemical process with molecular precursors. Atomic layer epitaxy (ALE) allows the use of a relatively low deposition temperature and thus compatibility with other technologies. Already at 425 deg C the reaction between H 2 S and Y(thd) 3 (thd = 2,2,6,6 - tetramethyl-heptane-3,5- dione) yields a crystalline Y 2 O 2 S thin film which was characterized by XRD, XRF and XPS

  13. Multiferroic fluoride BaCoF4 Thin Films Grown Via Molecular Beam Epitaxy

    Science.gov (United States)

    Borisov, Pavel; Johnson, Trent; García-Castro, Camilo; Kc, Amit; Schrecongost, Dustin; Cen, Cheng; Romero, Aldo; Lederman, David

    Multiferroic materials exhibit exciting physics related to the simultaneous presence of multiple long-range orders, in many cases consisting of antiferromagnetic (AF) and ferroelectric (FE) orderings. In order to provide a new, promising route for fluoride-based multiferroic material engineering, we grew multiferroic fluoride BaCoF4 in thin film form on Al2O3 (0001) substrates by molecular beam epitaxy. The films grow with the orthorhombic b-axis out-of-plane and with three in-plane structural twin domains along the polar c-axis directions. The FE ordering in thin films was verified by FE remanent hysteresis loops measurements at T = 14 K and by room temperature piezoresponse force microscopy (PFM). An AF behavior was found below Neel temperature TN ~ 80 K, which is in agreement with the bulk properties. At lower temperatures two additional magnetic phase transitions at 19 K and 41 K were found. First-principles calculations demonstrated that the growth strain applied to the bulk BaCoF4 indeed favors two canted spin orders, along the b- and a-axes, respectively, in addition to the main AF spin order along the c-axis. Supported by FAME (Contract 2013-MA-2382), WV Research Challenge Grant (HEPC.dsr.12.29), and DMREF-NSF 1434897.

  14. High magnetic field properties of Fe-pnictide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kurth, Fritz

    2015-11-20

    The recent discovery of high-temperature superconductivity in Fe-based materials triggered worldwide efforts to investigate their fundamental properties. Despite a lot of similarities to cuprates and MgB{sub 2}, important differences like near isotropic behaviour in contrast to cuprates and the peculiar pairing symmetry of the order parameter (OP) have been reported. The OP symmetry of Fe-based superconductors (FBS) was theoretically predicted to be of so-called s± state prior to various experimental works. Still, most of the experimental results favour the s± scenario; however, definitive evidence has not yet been reported. Although no clear understanding of the superconducting mechanisms yet exists, potential applications such as high-field magnets and Josephson devices have been explored. Indeed, a lot of reports about FBS tapes, wires, and even SQUIDs have been published to this date. In this thesis, the feasibility of high-field magnet applications of FBS is addressed by studying their transport properties, involving doped BaFe{sub 2}As{sub 2} (Ba-122) and LnFeAs(O,F) [Ln=Sm and Nd]. Particularly, it is important to study physical properties in a sample form (i.e. thin films) that is close to the conditions found in applications. However, the realisation of epitaxial FBS thin films is not an easy undertaking. Recent success in growing epitaxial FBS thin films opens a new avenue to delve into transport critical current measurements. The information obtained through this research will be useful for exploring high-field magnet applications. This thesis consists of 7 chapters: Chapter 1 describes the motivation of this study, the basic background of superconductivity, and a brief summary of the thin film growth of FBS. Chapter 2 describes experimental methods employed in this study. Chapter 3 reports on the fabrication of Co-doped Ba-122 thin films on various substrates. Particular emphasis lies on the discovery of fluoride substrates to be beneficial for

  15. Photoconductivity in BiFeO3 thin films

    Science.gov (United States)

    Basu, S. R.; Martin, L. W.; Chu, Y. H.; Gajek, M.; Ramesh, R.; Rai, R. C.; Xu, X.; Musfeldt, J. L.

    2008-03-01

    The optical properties of epitaxial BiFeO3 thin films have been characterized in the visible range. Variable temperature spectra show an absorption onset near 2.17eV, a direct gap (2.667±0.005eV at 300K), and charge transfer excitations at higher energy. Additionally, we report photoconductivity in BiFeO3 films under illumination from a 100mW /cm2 white light source. A direct correlation is observed between the magnitude of the photoconductivity and postgrowth cooling pressure. Dark conductivities increased by an order of magnitude when comparing films cooled in 760 and 0.1Torr. Large increases in photoconductivity are observed in light.

  16. Epitaxial ternary nitride thin films prepared by a chemical solution method

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Hongmei [Los Alamos National Laboratory; Feldmann, David M [Los Alamos National Laboratory; Wang, Haiyan [TEXAS A& M; Bi, Zhenxing [TEXAS A& M

    2008-01-01

    It is indispensable to use thin films for many technological applications. This is the first report of epitaxial growth of ternary nitride AMN2 films. Epitaxial tetragonal SrTiN2 films have been successfully prepared by a chemical solution approach, polymer-assisted deposition. The structural, electrical, and optical properties of the films are also investigated.

  17. Fabrication of fully epitaxial magnetic tunnel junctions with a Co2MnSi thin film and a MgO tunnel barrier

    International Nuclear Information System (INIS)

    Kijima, H.; Ishikawa, T.; Marukame, T.; Matsuda, K.-I.; Uemura, T.; Yamamoto, M.

    2007-01-01

    Fully epitaxial magnetic tunnel junctions (MTJs) were fabricated with a Co-based full-Heusler alloy Co 2 MnSi (CMS) thin film having the ordered L2 1 structure as a lower electrode, a MgO tunnel barrier, and a Co 50 Fe 50 upper electrode. Reflection high-energy electron diffraction patterns observed in situ for each layer in the MTJ layer structure during fabrication clearly indicated that all layers of the CMS lower electrode, MgO tunnel barrier, and Co 50 Fe 50 upper electrode grew epitaxially. The microfabricated fully epitaxial CMS/MgO/Co 50 Fe 50 MTJs demonstrated relatively high tunnel magnetoresistance ratios of 90% at room temperature and 192% at 4.2 K

  18. Magnetic and magneto-optical properties of FeRh thin films

    International Nuclear Information System (INIS)

    Inoue, Sho; Nam, Nguyen T.; Phuoc, Nguyen N.; Cao Jiangwei; Yu Ko, Hnin Yu; Suzuki, Takao

    2008-01-01

    The magnetic and magneto-optical properties of FeRh thin films epitaxially deposited onto MgO(1 0 0) substrates by RF sputter-deposition system have been investigated in conjunction with the structure. An intriguing virgin effect has been found in the M-T curves of the as-deposited FeRh thin films, which is presumably interpreted in term of a change in structural phase when heating. Also, a (negative) maximum peak of Kerr rotation at around 3.8 eV has been observed when FeRh thin films are in ferromagnetic state. The polar Kerr rotation angle is found to increase at temperatures above 100 deg. C, which corresponds to the antiferromagnet (AF)-ferromagnet (FM) transition of FeRh thin films

  19. Epitaxial growth and magnetic properties of ultraviolet transparent Ga2O3/(Ga1−xFex)2O3 multilayer thin films

    Science.gov (United States)

    Guo, Daoyou; An, Yuehua; Cui, Wei; Zhi, Yusong; Zhao, Xiaolong; Lei, Ming; Li, Linghong; Li, Peigang; Wu, Zhenping; Tang, Weihua

    2016-01-01

    Multilayer thin films based on the ferromagnetic and ultraviolet transparent semiconductors may be interesting because their magnetic/electronic/photonic properties can be manipulated by the high energy photons. Herein, the Ga2O3/(Ga1−xFex)2O3 multilayer epitaxial thin films were obtained by alternating depositing of wide band gap Ga2O3 layer and Fe ultrathin layer due to inter diffusion between two layers at high temperature using the laser molecular beam epitaxy technique. The multilayer films exhibits a preferred growth orientation of crystal plane, and the crystal lattice expands as Fe replaces Ga site. Fe ions with a mixed valence of Fe2+ and Fe3+ are stratified distributed in the film and exhibit obvious agglomerated areas. The multilayer films only show a sharp absorption edge at about 250 nm, indicating a high transparency for ultraviolet light. What’s more, the Ga2O3/(Ga1−xFex)2O3 multilayer epitaxial thin films also exhibits room temperature ferromagnetism deriving from the Fe doping Ga2O3. PMID:27121446

  20. Epitaxial growth and magnetic properties of ultraviolet transparent Ga2O3/(Ga1-xFex)2O3 multilayer thin films.

    Science.gov (United States)

    Guo, Daoyou; An, Yuehua; Cui, Wei; Zhi, Yusong; Zhao, Xiaolong; Lei, Ming; Li, Linghong; Li, Peigang; Wu, Zhenping; Tang, Weihua

    2016-04-28

    Multilayer thin films based on the ferromagnetic and ultraviolet transparent semiconductors may be interesting because their magnetic/electronic/photonic properties can be manipulated by the high energy photons. Herein, the Ga2O3/(Ga1-xFex)2O3 multilayer epitaxial thin films were obtained by alternating depositing of wide band gap Ga2O3 layer and Fe ultrathin layer due to inter diffusion between two layers at high temperature using the laser molecular beam epitaxy technique. The multilayer films exhibits a preferred growth orientation of crystal plane, and the crystal lattice expands as Fe replaces Ga site. Fe ions with a mixed valence of Fe(2+) and Fe(3+) are stratified distributed in the film and exhibit obvious agglomerated areas. The multilayer films only show a sharp absorption edge at about 250 nm, indicating a high transparency for ultraviolet light. What's more, the Ga2O3/(Ga1-xFex)2O3 multilayer epitaxial thin films also exhibits room temperature ferromagnetism deriving from the Fe doping Ga2O3.

  1. Epitaxial growth of SrTiO3 thin film on Si by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Zhou, X. Y.; Miao, J.; Dai, J. Y.; Chan, H. L. W.; Choy, C. L.; Wang, Y.; Li, Q.

    2007-01-01

    SrTiO 3 thin films have been deposited on Si (001) wafers by laser molecular beam epitaxy using an ultrathin Sr layer as the template. X-ray diffraction measurements indicated that SrTiO 3 was well crystallized and epitaxially aligned with Si. Cross-sectional observations in a transmission electron microscope revealed that the SrTiO 3 /Si interface was sharp, smooth, and fully crystallized. The thickness of the Sr template was found to be a critical factor that influenced the quality of SrTiO 3 and the interfacial structure. Electrical measurements revealed that the SrTiO 3 film was highly resistive

  2. Columnar grain growth of FePt(L10) thin films

    International Nuclear Information System (INIS)

    Yang En; Ho Hoan; Laughlin, David E.; Zhu Jiangang

    2012-01-01

    An experimental approach for obtaining perpendicular FePt-SiOx thin films with a large height to diameter ratio FePt(L1 0 ) columnar grains is presented in this work. The microstructure for FePt-SiOx composite thin films as a function of oxide volume fraction, substrate temperature, and film thickness is studied by plan view and cross section TEM. The relations between processing, microstructure, epitaxial texture, and magnetic properties are discussed. By tuning the thickness of the magnetic layer and the volume fraction of oxide in the film at a sputtering temperature of 410 deg. C, a 16 nm thick perpendicular FePt film with ∼8 nm diameter of FePt grains was obtained. The height to diameter ratio of the FePt grains was as large as 2. Ordering at lower temperature can be achieved by introducing a Ag sacrificial layer.

  3. Magnetoresistance at artificial interfaces in epitaxial ferromagnetic thin films

    International Nuclear Information System (INIS)

    Fontcuberta, J.; Bibes, M.; Martinez, B.; Trtik, V.; Ferrater, C.; Sanchez, F.; Varela, M.

    2000-01-01

    Epitaxial La 2/3 Sr 1/3 MnO 3 and SrRuO 3 thin films have been grown by laser ablation on single-crystalline SrTiO 3 substrates. Prior to manganite or ruthenate deposition tracks have been patterned on the SrTiO 3 substrate by using an appropriately focused laser beam. In the experiments here reported linear tracks have been formed. The magnetotransport properties of the films, particularly the magnetoresistance, along paths parallel and perpendicular to the track have been extensively investigated and compared to similar data recorded on films grown on bicrystalline STO substrates. Whereas in LSMO a significant low-field tunnel magnetoresistance develops across the artificial interface, in SRO this tunnel contribution is absent. However, a significant high-field magnetoresistance is observed for both metallic and ferromagnetic systems. The results are analysed and discussed within the framework of the current understanding of double exchange and itinerant ferromagnets. Magnetoresistance data for various configurations of the track array are presented

  4. Epitaxially grown strained pentacene thin film on graphene membrane.

    Science.gov (United States)

    Kim, Kwanpyo; Santos, Elton J G; Lee, Tae Hoon; Nishi, Yoshio; Bao, Zhenan

    2015-05-06

    Organic-graphene system has emerged as a new platform for various applications such as flexible organic photovoltaics and organic light emitting diodes. Due to its important implication in charge transport, the study and reliable control of molecular packing structures at the graphene-molecule interface are of great importance for successful incorporation of graphene in related organic devices. Here, an ideal membrane of suspended graphene as a molecular assembly template is utilized to investigate thin-film epitaxial behaviors. Using transmission electron microscopy, two distinct molecular packing structures of pentacene on graphene are found. One observed packing structure is similar to the well-known bulk-phase, which adapts a face-on molecular orientation on graphene substrate. On the other hand, a rare polymorph of pentacene crystal, which shows significant strain along the c-axis, is identified. In particular, the strained film exhibits a specific molecular orientation and a strong azimuthal correlation with underlying graphene. Through ab initio electronic structure calculations, including van der Waals interactions, the unusual polymorph is attributed to the strong graphene-pentacene interaction. The observed strained organic film growth on graphene demonstrates the possibility to tune molecular packing via graphene-molecule interactions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. X-ray absorption and resonant photoelectron spectroscopy of epitaxial Fe-doped SrTiO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Koehl, Annemarie; Lenser, Christian; Xu, Chencheng; Wicklein, Sebastian; Dittmann, Regina [Peter Gruenberg Institut 7, Forschungszentrum Juelich GmbH (Germany); Kajewski, Dariusz; Kubacki, Jurek; Szade, Jacek [A.Chelkowski Institute of Physics, University of Silesia, Katowic (Poland)

    2012-07-01

    In recent years resistive switching in transition metal oxides received a lot of research interest due to the proposed application as non-volatile data memory. SrTiO{sub 3} serves as a model system for the investigation of resistive switching due to the valency change mechanism. Frequently, slightly Fe doping is used, as it has shown to improve the switching properties. The focus of this study is the effect of Fe-doping of SrTiO{sub 3} in thin epitaxial films. Thin film samples with Fe concentration of 2 at.% and 5 at.% were prepared by pulsed laser deposition at varying substrate temperatures. The surface morphology of the films is studied with AFM. X-ray absorption spectroscopy is performed in total-electron and auger-electron yield offering different probing depths. Significant variations of the Fe-L edge between bulk and interface as well as after annealing are observed and discussed in terms of integration into the lattice and evolution of secondary phases. Resonant photoelectron spectroscopy at the absorption edge of Ti, O and Fe was used to determine the spectral contributions to the valence band. Most noteworthy we find significant spectral weight above the valence band, which can be attributed to Fe-states.

  6. Formation of SmFe5(0001) ordered alloy thin films on Cu(111) single-crystal underlayers

    International Nuclear Information System (INIS)

    Yabuhara, Osamu; Ohtake, Mitsuru; Nukaga, Yuri; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-01-01

    SmFe 5 (0001) single-crystal thin films are prepared by molecular beam epitaxy employing Cu(111) single-crystal underlayers on MgO(111) substrates. The Cu atoms diffuse into the Sm-Fe layer and substitute the Fe sites in SmFe 5 structure forming an alloy compound of Sm(Fe,Cu) 5 . The Sm(Fe,Cu) 5 film is more Cu enriched with increasing the substrate temperature. The Cu underlayer plays an important role in assisting the formation of the ordered phase.

  7. Formation of SmFe{sub 5}(0001) ordered alloy thin films on Cu(111) single-crystal underlayers

    Energy Technology Data Exchange (ETDEWEB)

    Yabuhara, Osamu; Ohtake, Mitsuru; Nukaga, Yuri; Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi, E-mail: yabuhara@futamoto.elect.chuo-u.ac.j [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan)

    2010-01-01

    SmFe{sub 5}(0001) single-crystal thin films are prepared by molecular beam epitaxy employing Cu(111) single-crystal underlayers on MgO(111) substrates. The Cu atoms diffuse into the Sm-Fe layer and substitute the Fe sites in SmFe{sub 5} structure forming an alloy compound of Sm(Fe,Cu){sub 5}. The Sm(Fe,Cu){sub 5} film is more Cu enriched with increasing the substrate temperature. The Cu underlayer plays an important role in assisting the formation of the ordered phase.

  8. Effect of extrapolation length on the phase transformation of epitaxial ferroelectric thin films

    International Nuclear Information System (INIS)

    Hu, Z.S.; Tang, M.H.; Wang, J.B.; Zheng, X.J.; Zhou, Y.C.

    2008-01-01

    Effects of extrapolation length on the phase transformation of epitaxial ferroelectric thin films on dissimilar cubic substrates have been studied on the basis of the mean-field Landau-Ginzburg-Devonshire (LGD) thermodynamic theory by taking an uneven distribution of the interior stress with thickness into account. It was found that the polarization of epitaxial ferroelectric thin films is strongly dependent on the extrapolation length of films. The physical origin of the extrapolation length during the phase transformation from paraelectric to ferroelectric was revealed in the case of ferroelectric thin films

  9. Epitaxial thin film growth and properties of unconventional oxide superconductors. Cuprates and cobaltates

    International Nuclear Information System (INIS)

    Krockenberger, Y.

    2006-01-01

    The discovery of high-temperature superconductors has strongly driven the development of suited thin film fabrication methods of complex oxides. One way is the adaptation of molecular beam epitaxy (MBE) for the growth of oxide materials. Another approach is the use of pulsed laser deposition (PLD) which has the advantage of good stoichiometry transfer from target to the substrate. Both techniques are used within this thesis. Epitaxial thin films of new materials are of course needed for future applications. In addition, the controlled synthesis of thin film matter which can be formed far away from thermal equilibrium allows for the investigation of fundamental physical materials properties. (orig.)

  10. Epitaxial thin film growth and properties of unconventional oxide superconductors. Cuprates and cobaltates

    Energy Technology Data Exchange (ETDEWEB)

    Krockenberger, Y.

    2006-07-01

    The discovery of high-temperature superconductors has strongly driven the development of suited thin film fabrication methods of complex oxides. One way is the adaptation of molecular beam epitaxy (MBE) for the growth of oxide materials. Another approach is the use of pulsed laser deposition (PLD) which has the advantage of good stoichiometry transfer from target to the substrate. Both techniques are used within this thesis. Epitaxial thin films of new materials are of course needed for future applications. In addition, the controlled synthesis of thin film matter which can be formed far away from thermal equilibrium allows for the investigation of fundamental physical materials properties. (orig.)

  11. Anisotropic ferromagnetic behaviors in highly orientated epitaxial NiO-based thin films

    Directory of Open Access Journals (Sweden)

    Yu-Jun Zhang

    2015-07-01

    Full Text Available Antiferromagnetic materials attract a great amount of attention recently for promising antiferromagnet-based spintronics applications. NiO is a conventional antiferromagnetic semiconductor material and can show ferromagnetism by doping other magnetic elements. In this work, we synthesized epitaxial Fe-doped NiO thin films on SrTiO3 substrates with various crystal orientations by pulsed laser deposition. The room-temperature ferromagnetism of these films is anisotropic, including the saturated magnetization and the coercive field. The anisotropic magnetic behaviors of Fe-doped NiO diluted magnetic oxide system should be closely correlated to the magnetic structure of antiferromagnetic NiO base. Within the easy plane of NiO, the coercive field of the films becomes smaller, and larger coercive field while tested out of the easy plane of NiO. The saturated magnetization anisotropy is due to different strain applied by different substrates. These results lead us to more abundant knowledge of the exchange interactions in this conventional antiferromagnetic system.

  12. Local conductivity and the role of vacancies around twin walls of (001)-BiFeO3 thin films

    NARCIS (Netherlands)

    Farokhipoor, S.; Noheda, Beatriz

    2012-01-01

    BiFeO3 thin films epitaxially grown on SrRuO3-buffered (001)-oriented SrTiO3 substrates show orthogonal bundles of twin domains, each of which contains parallel and periodic 71 degrees domain walls. A smaller amount of 109 degrees domain walls are also present at the boundaries between two adjacent

  13. Adsorption induced modification of in-plane magnetic anisotropy in epitaxial Co and Fe/Co films on Fe(110)

    Science.gov (United States)

    Ślezak, M.; Ślezak, T.; Matlak, K.; DróŻdŻ, P.; Korecki, J.

    2018-05-01

    A study of in-plane magnetic anisotropy (MA) in epitaxial bcc Co films and Fe/Co bilayers on a Fe(110) surface is reported. Surface MA of as-deposited Co films and Fe/Co bilayers strongly depends on the Co (dCo) and Fe (dFe) thickness. Adsorption of residual gases drastically modifies in-plane MA of both Co films and Fe/Co bilayers. We present two dimensional MA maps in the (dCo, dFe) space for both as grown and adsorption-modified films. Our results indicate how to precisely engineer in-plane MA that can be controlled by dCo, dFe and is sensitive to the residual gas adsorption.

  14. Growth of epitaxial thin films by pulsed laser ablation

    International Nuclear Information System (INIS)

    Lowndes, D.H.

    1992-01-01

    High-quality, high-temperature superconductor (HTSc) films can be grown by the pulsed laser ablation (PLA) process. This article provides a detailed introduction to the advantages and curent limitations of PLA for epitaxial film growth. Emphasis is placed on experimental methods and on exploitation of PLA to control epitaxial growth at either the unit cell or the atomic-layer level. Examples are taken from recent HTSc film growth. 33 figs, 127 refs

  15. Epitaxial growth of semiconducting β-FeSi2 and its application to light-emitting diodes

    International Nuclear Information System (INIS)

    Suemasu, T.; Takakura, K.; Li, Cheng; Ozawa, Y.; Kumagai, Y.; Hasegawa, F.

    2004-01-01

    In this paper, we review the detailed study of epitaxial growth of β-FeSi 2 films by reactive deposition epitaxy (RDE), multilayer technique and molecular beam epitaxy (MBE). The p- and n-type β-FeSi 2 was formed when it was grown under an Fe-rich and an Si-rich condition, respectively. The maximum electron and hole mobilities of the β-FeSi 2 epitaxial films reached 6900 and 13000 cm 2 /V·s for the n- and p-type β-FeSi 2 , respectively, at around 50 K. Room temperature (RT) 1.6 μm electroluminescence (EL) was realized by optimizing the growth conditions for p-Si/β-FeSi 2 particles/n-Si structures prepared by RDE for β-FeSi 2 and by MBE for Si

  16. Giant Faraday rotation in Bi(x)Ce(3-x)Fe5O12 epitaxial garnet films.

    Science.gov (United States)

    Chandra Sekhar, M; Singh, Mahi R; Basu, Shantanu; Pinnepalli, Sai

    2012-04-23

    Thin films of Bi(x)Ce(3-x)Fe(5)O(12) with x = 0.7 and 0.8 compositions were prepared by using pulsed laser deposition. We investigated the effects of processing parameters used to fabricate these films by measuring various physical properties such as X-ray diffraction, transmittance, magnetization and Faraday rotation. In this study, we propose a phase diagram which provides a suitable window for the deposition of Bi(x)Ce(3-x)Fe(5)O(12) epitaxial films. We have also observed a giant Faraday rotation of 1-1.10 degree/µm in our optimized films. The measured Faraday rotation value is 1.6 and 50 times larger than that of CeYIG and YIG respectively. A theoretical model has been proposed for Faraday rotation based on density matrix method and an excellent agreement between experiment and theory is found. © 2012 Optical Society of America

  17. Nonstoichiometry of Epitaxial FeTiO(3+delta) Films

    Science.gov (United States)

    2003-01-01

    nonstoichiometry of the FeTiO3 +8 films was probably produced by cation vacancies and disarrangement of Fe3+ and Ti4 ions, which randomly occupied both interstitial...and substitutional sites of the FeTiO 3 related structure. INTRODUCTION Solid solutions of ot-Fe20 3- FeTiO3 (hematite-ilmenite) series are known to...tried to confirm preparation conditions of stoichiometric FeTiO 3 films. According to a literature on bulk crystal growth of FeTiO3 [5], very low oxygen

  18. NiFe epitaxial films with hcp and fcc structures prepared on bcc-Cr underlayers

    Energy Technology Data Exchange (ETDEWEB)

    Higuchi, Jumpei, E-mail: higuchi@futamoto.elect.chuo-u.ac.jp [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Ohtake, Mitsuru; Sato, Yoichi [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan); Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan)

    2011-09-30

    NiFe epitaxial films are prepared on Cr(211){sub bcc} and Cr(100){sub bcc} underlayers grown hetero-epitaxially on MgO single-crystal substrates by ultra-high vacuum rf magnetron sputtering. The film growth behavior and the crystallographic properties are studied by reflection high energy electron diffraction and pole figure X-ray diffraction. Metastable hcp-NiFe(11-bar 00) and hcp-NiFe(112-bar 0) crystals respectively nucleate on Cr(211){sub bcc} and Cr(100){sub bcc} underlayers, where the hcp-NiFe crystals are stabilized through hetero-epitaxial growth. The hcp-NiFe(11-bar 00) crystal is a single-crystal with the c-axis parallel to the substrate surface, whereas the hcp-NiFe(112-bar 0) crystal is a bi-crystal with the respective c-axes lying in plane and perpendicular each other. With increasing the film thickness, the hcp structure in the NiFe films starts to transform into more stable fcc structure by atomic displacement parallel to the hcp(0001) close packed plane. The resulting films consist of hcp and fcc crystals.

  19. NiFe epitaxial films with hcp and fcc structures prepared on bcc-Cr underlayers

    International Nuclear Information System (INIS)

    Higuchi, Jumpei; Ohtake, Mitsuru; Sato, Yoichi; Kirino, Fumiyoshi; Futamoto, Masaaki

    2011-01-01

    NiFe epitaxial films are prepared on Cr(211) bcc and Cr(100) bcc underlayers grown hetero-epitaxially on MgO single-crystal substrates by ultra-high vacuum rf magnetron sputtering. The film growth behavior and the crystallographic properties are studied by reflection high energy electron diffraction and pole figure X-ray diffraction. Metastable hcp-NiFe(11-bar 00) and hcp-NiFe(112-bar 0) crystals respectively nucleate on Cr(211) bcc and Cr(100) bcc underlayers, where the hcp-NiFe crystals are stabilized through hetero-epitaxial growth. The hcp-NiFe(11-bar 00) crystal is a single-crystal with the c-axis parallel to the substrate surface, whereas the hcp-NiFe(112-bar 0) crystal is a bi-crystal with the respective c-axes lying in plane and perpendicular each other. With increasing the film thickness, the hcp structure in the NiFe films starts to transform into more stable fcc structure by atomic displacement parallel to the hcp(0001) close packed plane. The resulting films consist of hcp and fcc crystals.

  20. Epitaxial growth of bcc-FexCo100-x thin films on MgO(1 1 0) single-crystal substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Nishiyama, Tsutomu; Shikada, Kouhei; Kirino, Fumiyoshi; Futamoto, Masaaki

    2010-01-01

    Fe x Co 100-x (x=100, 65, 50 at%) epitaxial thin films were prepared on MgO(1 1 0) single-crystal substrates heated at 300 deg. C by ultra-high vacuum molecular beam epitaxy. The film structure and the growth mechanism are discussed. FeCo(2 1 1) films with bcc structure grow epitaxially on MgO(1 1 0) substrates with two types of variants whose orientations are rotated around the film normal by 180 deg. each other for all compositions. Fe x Co 100-x film growth follows the Volmer Weber mode. X-ray diffraction analysis indicates the out-of-plane and the in-plane lattice spacings are in agreement with the values of respective bulk Fe x Co 100-x crystals with very small errors less than ±0.4%, suggesting the strains in the films are very small. High-resolution cross-sectional transmission electron microscopy shows that periodical misfit dislocations are preferentially introduced in the film at the Fe 50 Co 50 /MgO interface along the MgO[1 1-bar 0] direction. The presence of such periodical dislocations decreases the large lattice mismatch of about -17% existing at the FeCo/MgO interface along the MgO[1 1-bar 0] direction.

  1. Direct growth of superconducting NdFeAs(O,F) thin films by MBE

    Energy Technology Data Exchange (ETDEWEB)

    Chihara, Masashi, E-mail: chihara@iku.xtal.nagoya-u.ac.jp [Department of Crystalline Materials Science, Nagoya University, Chikusa-ku, Nagoya 464-8603 (Japan); Sumiya, Naoki; Arai, Kenta [Department of Crystalline Materials Science, Nagoya University, Chikusa-ku, Nagoya 464-8603 (Japan); Ichinose, Ataru; Tsukada, Ichiro [Central Research Institute of Electric Power Industry, Yokosuka-shi, Kanagawa 240-0101 (Japan); Hatano, Takafumi; Iida, Kazumasa; Ikuta, Hiroshi [Department of Crystalline Materials Science, Nagoya University, Chikusa-ku, Nagoya 464-8603 (Japan)

    2015-11-15

    Highlights: • Highly textured NdFeAs(O,F) thin films were obtained by a direct growth method. • Enhancing the migration was crucial to realize the direct growth. • The critical current density exceeded 3 MA/cm{sup 2} at self-field and 1 MA/cm{sup 2} at 9 T. • A two-dimensional growth was confirmed by the observation of surface morphology. - Abstract: We report on the growth of NdFeAs(O,F) superconducting thin films by molecular beam epitaxy without having a NdOF secondary layer that was necessary for fluorine doping in our previous studies. The key to realizing the direct growth of a superconducting film was the enhancement of migration of the raw materials on the substrate, which was accomplished by two steps. Firstly, we increased the growth temperature that improved the crystalline quality of parent NdFeAsO thin films. Secondly, the atmosphere in the chamber during the growth was improved by changing the crucible material of the Fe source cell. Highly textured NdFeAs(O,F) thin films with critical temperatures up to 50 K were obtained, and terraces were observed by atomic force microscope, indicating a two-dimensional growth. However, precipitates were also found on the surface, which suggests that enhancing further the migration is necessary for obtaining a NdFeAs(O,F) thin film with a better quality.

  2. Process for forming epitaxial perovskite thin film layers using halide precursors

    Science.gov (United States)

    Clem, Paul G.; Rodriguez, Mark A.; Voigt, James A.; Ashley, Carol S.

    2001-01-01

    A process for forming an epitaxial perovskite-phase thin film on a substrate. This thin film can act as a buffer layer between a Ni substrate and a YBa.sub.2 Cu.sub.3 O.sub.7-x superconductor layer. The process utilizes alkali or alkaline metal acetates dissolved in halogenated organic acid along with titanium isopropoxide to dip or spin-coat the substrate which is then heated to about 700.degree. C. in an inert gas atmosphere to form the epitaxial film on the substrate. The YBCO superconductor can then be deposited on the layer formed by this invention.

  3. Tunable magnetotransport in Fe/hBN/graphene/hBN/Pt(Fe) epitaxial multilayers

    Science.gov (United States)

    Magnus Ukpong, Aniekan

    2018-03-01

    Theoretical and computational analysis of the magnetotransport properties and spin-transfer torque field-induced switching of magnetization density in vertically-stacked multilayers is presented. Using epitaxially-capped free layers of Pt and Fe, atom-resolved magnetic moments and spin-transfer torques are computed at finite bias. The calculations are performed within linear response approximation to the spin-density reformulation of the van der Waals density functional theory. Dynamical spin excitations are computed as a function of a spin-transfer torque induced magnetic field along the magnetic easy axis, and the corresponding spin polarization perpendicular to the easy axis is obtained. Bias-dependent giant anisotropic magnetoresistance of up to 3200% is obtained in the nonmagnetic-metal-capped Fe/hBN/graphene/hBN/Pt multilayer architecture. Since this specific heterostructure is not yet fabricated and characterized, the predicted high performance has not been demonstrated experimentally. Nevertheless, similar calculations performed on the Fe/hBN/Co stack show that the tunneling magnetoresistance obtained at the Fermi-level is in excellent agreement with results of recent magnetotransport measurements on magnetic tunnel junctions that contain the monolayer hBN tunnel region. The magnitude of the spin-transfer torque is found to increase as the tunneling spin current increases, and this activates the magnetization switching process due to increased charge accumulation. This mechanism causes substantial spin backflow, which manifests as rapid undulations in the bias-dependent tunneling spin currents. The implication of these findings on the design of nanoscale spintronic devices with spin-transfer torque tunable magnetization density is discussed. Insights derived from this study are expected to enhance the prospects for developing and integrating artificially assembled van der Waals multilayer heterostructures as the preferred material platform for efficient

  4. Microstructure of epitaxial YBa2Cu3O7-x thin films grown on LaAlO3 (001)

    International Nuclear Information System (INIS)

    Hsieh, Y.; Siegal, M.P.; Hull, R.; Phillips, J.M.

    1990-01-01

    We report a microstructural investigation of the epitaxial growth of YBa 2 Cu 3 O 7-x (YBCO) thin films on LaAlO 3 (001) substrates using transmission electron microscopy (TEM). Epitaxial films grow with two distinct modes: c epitaxy (YBCO) single crystal with the c (axis normal to the surface and a epitaxy (YBCO) single crystal with the c axis in the interfacial plane), where c epitaxy is the dominant mode grown in all samples 35--200 nm thick. In 35 nm YBCO films annealed at 850 degree C, 97±1% of the surface area is covered by c epitaxy with embedded anisotropic a-epitaxial grains. Quantitative analysis reveals the effect of film thickness and annealing temperature on the density, grain sizes, areal coverages, and anisotropic growth of a epitaxy

  5. Anatase thin film with diverse epitaxial relationship grown on yttrium stabilized zirconia substrate by chemical vapor deposition

    International Nuclear Information System (INIS)

    Miyagi, Takahira; Ogawa, Tomoyuki; Kamei, Masayuki; Wada, Yoshiki; Mitsuhashi, Takefumi; Yamazaki, Atsushi

    2003-01-01

    An anatase epitaxial thin film with diverse epitaxial relationship, YSZ (001) // anatase (001), YSZ (010) // anatase (110), was grown on a single crystalline yttrium stabilized zirconia (YSZ) (001) substrate by metal organic chemical vapor deposition (MOCVD). The full width at half maximum (FWHM) of the (004) reflection of this anatase epitaxial film was 0.4deg, and the photoluminescence of this anatase epitaxial film showed visible emission with broad spectral width and large Stokes shift at room temperature. These results indicate that this anatase epitaxial film possessed almost equal crystalline quality compared with that grown under identical growth conditions on single crystalline SrTiO 3 substrate. (author)

  6. Skyrmions and Novel Spin Textures in FeGe Thin Films and Artificial B20 Heterostructures

    Science.gov (United States)

    Ahmed, Adam Saied

    Skyrmions are magnetic spin textures that have a non-zero topological winding number associated with them. They have attracted much interest recently since they can be as small as 1 nm and could be the next generation of magnetic memory and logic. First, we grow epitaxial films of FeGe by molecular beam epitaxy and characterized the skyrmion properties. This had led us to image skyrmions in real-space with Lorentz transmission electron microscopy for the first time in the United States. Next, from an extensive series of thin and thick films, we have experimentally shown the existence of a magnetic surface state in FeGe and, consequently, any skyrmion material for the first time. Complementary theoretical calculations supported the existence of chiral bobbers--a surface state only predicted in 2015. Next, we fabricated for the first time a new class of skyrmion materials: B20 superlattices. These novel heterostructures of [FeGe/MnGe/CrGe] have now opened the door for tunable skyrmion systems with both Dresselhaus and Rashba Dzyaloshinskii-Moriya interactions. Additionally, we perform resonant soft x-ray scattering to image magnetic spin textures in reciprocal space for FeGe thin films in transmission. We have accomplished the removal of substrate and left an isolated single-crystal FeGe film. Lastly, SrO is grown on graphene as a crystalline, atomically smooth, and pinhole free tunnel barrier for spin injection.

  7. Film-thickness and composition dependence of epitaxial thin-film PZT-based

    NARCIS (Netherlands)

    Nguyen, Duc Minh; Dekkers, Jan M.; Vu, Hung Ngoc; Rijnders, Augustinus J.H.M.

    2013-01-01

    The transverse piezoelectric coefficient e31,f and mass-sensitivity were measured on piezoelectric cantilevers based on epitaxial PZT thin-films with film-thicknesses ranging from 100 to 2000 nm. The highest values of e31,f and mass-sensitivity were observed at a film thickness of 500–750 nm, while

  8. Determination of the Young's modulus of pulsed laser deposited epitaxial PZT thin films

    NARCIS (Netherlands)

    Nazeer, H.; Nguyen, Duc Minh; Woldering, L.A.; Abelmann, Leon; Rijnders, Augustinus J.H.M.; Elwenspoek, Michael Curt

    2011-01-01

    We determined the Young’s modulus of pulsed laser deposited epitaxially grown PbZr0.52Ti0.48O3 (PZT) thin films on microcantilevers by measuring the difference in cantilever resonance frequency before and after deposition. By carefully optimizing the accuracy of this technique, we were able to show

  9. Laser energy tuning of carrier effective mass and thermopower in epitaxial oxide thin films

    KAUST Repository

    Abutaha, Anas I.; Sarath Kumar, S. R.; Alshareef, Husam N.

    2012-01-01

    The effect of the laser fluence on high temperature thermoelectric properties of the La doped SrTiO3 (SLTO) thin films epitaxially grown on LaAlO3 〈100〉 substrates by pulsed laser deposition is clarified. It is shown that oxygen vacancies

  10. Molecular beam epitaxy growth of InSb1−xBix thin films

    DEFF Research Database (Denmark)

    Song, Yuxin; Wang, Shumin; Saha Roy, Ivy

    2013-01-01

    Molecular beam epitaxy growth for InSb1−xBix thin films on (100) GaAs substrates is reported. Successful Bi incorporation for 2% is achieved, and up to 70% of the incorporated Bi atoms are at substitutional sites. The effects of growth parameters on Bi incorporation and surface morphology are stu...

  11. Vapor phase epitaxial growth of FeS sub 2 pyrite and evaluation of the carrier collection in liquid-junction solar cell

    Energy Technology Data Exchange (ETDEWEB)

    Ennaoui, A.; Schlichthoerl, G.; Fiechter, S.; Tributsch, H. (Hahn-Meitner-Inst., Abt. Solare Energetik und Materialforschung, Berlin (Germany))

    1992-01-01

    Photoactive epitaxial layers of FeS{sub 2} were grown using bromine as a transport agent and a simple closed ampoule technique. The substrates used were (100)-oriented slices of natural pyrite 1 mm thick. A vapor-liquid-solid (VLS) growth mechanism was elucidated by means of optical microscopy. Macrosteps, terrace surfaces and protuberances are often accompanied with the presence of liquid FeBr{sub 3} droplets. In the absence of a liquid phase growth hillocks are found. Localized photovoltaic response for the evaluation of carrier collection using a scanning laser spot system has been used to effectively locate and characterize non-uniformities present in the epitaxial thin films. (orig.).

  12. Epitaxial patterning of nanometer-thick Y3Fe5O12 films with low magnetic damping.

    Science.gov (United States)

    Li, Shaozhen; Zhang, Wei; Ding, Junjia; Pearson, John E; Novosad, Valentine; Hoffmann, Axel

    2016-01-07

    Magnetic insulators such as yttrium iron garnet, Y3Fe5O12, with extremely low magnetic damping have opened the door for low power spin-orbitronics due to their low energy dissipation and efficient spin current generation and transmission. We demonstrate here reliable and efficient epitaxial growth and nanopatterning of Y3Fe5O12 thin-film based nanostructures on insulating Gd3Ga5O12 substrates. In particular, our fabrication process is compatible with conventional sputtering and lift-off, and does not require aggressive ion milling which may be detrimental to the oxide thin films. Their structural and magnetic properties indicate good qualities, in particular low magnetic damping of both films and patterned structures. The dynamic magnetic properties of the nanostructures are systematically investigated as a function of the lateral dimension. By comparing with ferromagnetic nanowire structures, a distinct edge mode in addition to the main mode is identified by both experiments and simulations, which also exhibit cross-over with the main mode upon varying the width of the wires. The non-linear evolution of dynamic modes over nanostructural dimensions highlights the important role of size confinement to their material properties in magnetic devices where Y3Fe5O12 nanostructures serve as the key functional component.

  13. Epitaxial growth of "infinite layer” thin films and multilayers by rf magnetron sputtering

    OpenAIRE

    Fàbrega, L.; Koller, E.; Triscone, J. M.; Fischer, Ø.

    2017-01-01

    We report on the preparation and characterization of epitaxial ACuO2 (A = Sr, Ca, Ba) thin films and multilayers with the so- called infinite layer (IL) structure, by rf magnetron sputtering. Films and multilayers without Ba have a remarkable crystal quality, whereas those containing this large ion are often multiphased and unstable. In spite of the excellent crystalline quality of these samples, obtaining thin films having both IL structure and displaying superconducting properties has not s...

  14. High-rate deposition of epitaxial layers for efficient low-temperature thin film epitaxial silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Oberbeck, L.; Schmidt, J.; Wagner, T.A.; Bergmann, R.B. [Stuttgart Univ. (Germany). Inst. of Physical Electronics

    2001-07-01

    Low-temperature deposition of Si for thin-film solar cells has previously been hampered by low deposition rates and low material quality, usually reflected by a low open-circuit voltage of these solar cells. In contrast, ion-assisted deposition produces Si films with a minority-carrier diffusion length of 40 {mu}m, obtained at a record deposition rate of 0.8 {mu}m/min and a deposition temperature of 650{sup o}C with a prebake at 810{sup o}C. A thin-film Si solar cell with a 20-{mu}m-thick epitaxial layer achieves an open-circuit voltage of 622 mV and a conversion efficiency of 12.7% without any light trapping structures and without high-temperature solar cell process steps. (author)

  15. Effect of lithographically-induced strain relaxation on the magnetic domain configuration in microfabricated epitaxially grown Fe81Ga19

    Science.gov (United States)

    Beardsley, R. P.; Parkes, D. E.; Zemen, J.; Bowe, S.; Edmonds, K. W.; Reardon, C.; Maccherozzi, F.; Isakov, I.; Warburton, P. A.; Campion, R. P.; Gallagher, B. L.; Cavill, S. A.; Rushforth, A. W.

    2017-02-01

    We investigate the role of lithographically-induced strain relaxation in a micron-scaled device fabricated from epitaxial thin films of the magnetostrictive alloy Fe81Ga19. The strain relaxation due to lithographic patterning induces a magnetic anisotropy that competes with the magnetocrystalline and shape induced anisotropies to play a crucial role in stabilising a flux-closing domain pattern. We use magnetic imaging, micromagnetic calculations and linear elastic modelling to investigate a region close to the edges of an etched structure. This highly-strained edge region has a significant influence on the magnetic domain configuration due to an induced magnetic anisotropy resulting from the inverse magnetostriction effect. We investigate the competition between the strain-induced and shape-induced anisotropy energies, and the resultant stable domain configurations, as the width of the bar is reduced to the nanoscale range. Understanding this behaviour will be important when designing hybrid magneto-electric spintronic devices based on highly magnetostrictive materials.

  16. Zirconia thin films from aqueous precursors: Processing, microstructural development, and epitaxial growth

    International Nuclear Information System (INIS)

    Miller, K.T.

    1991-01-01

    Thin films of ZrO 2 (Y 2 O 3 ) were prepared from aqueous salt precursors by spin coating. Films were pyrolyzed to produce porous polycrystalline thin films of 5-10 nm grain size. Subsequent microstructural development depends greatly upon the nature of the substrate. Upon randomly oriented sapphire, the films initially sintered to full density; further heat treatment and grain growth causes these films to break into interconnected islands and finally isolated particles. Thermodynamic calculations predict that breakup is energetically favorable when the grain-size film-thickness ratio exceeds a critical value. Upon basal-plane-oriented sapphire, grain growth and breakup prefer the (100) oriented grains, presumably because this orientation is a special interface of low energy. The isolated, oriented grains produced by film breakup act as seeds for the growth of newly deposited material. Upon (100) cubic zirconia, true epitaxial films develop. Epitaxial growth was observed for lattice mismatches up to 1.59%. Growth proceeds from a fine epitaxial layer which is produced during the initial stages of heat treatment, consuming the porous polycrystalline material and producing a dense epitaxial thin film whose misfit is accommodated by a combination of film strain and misfit dislocations

  17. The origin of local strain in highly epitaxial oxide thin films.

    Science.gov (United States)

    Ma, Chunrui; Liu, Ming; Chen, Chonglin; Lin, Yuan; Li, Yanrong; Horwitz, J S; Jiang, Jiechao; Meletis, E I; Zhang, Qingyu

    2013-10-31

    The ability to control the microstructures and physical properties of hetero-epitaxial functional oxide thin films and artificial structures is a long-sought goal in functional materials research. Normally, only the lattice misfit between the film and the substrate is considered to govern the physical properties of the epitaxial films. In fact, the mismatch of film unit cell arrangement and the Surface-Step-Terrace (SST) dimension of the substrate, named as "SST residual matching", is another key factor that significantly influence the properties of the epitaxial film. The nature of strong local strain induced from both lattice mismatch and the SST residual matching on ferroelectric (Ba,Sr)TiO3 and ferromagnetic (La,Ca)MnO3 thin films are systematically investigated and it is demonstrated that this combined effect has a dramatic impact on the physical properties of highly epitaxial oxide thin films. A giant anomalous magnetoresistance effect (~10(10)) was achieved from the as-designed vicinal surfaces.

  18. High quality atomically thin PtSe2 films grown by molecular beam epitaxy

    Science.gov (United States)

    Yan, Mingzhe; Wang, Eryin; Zhou, Xue; Zhang, Guangqi; Zhang, Hongyun; Zhang, Kenan; Yao, Wei; Lu, Nianpeng; Yang, Shuzhen; Wu, Shilong; Yoshikawa, Tomoki; Miyamoto, Koji; Okuda, Taichi; Wu, Yang; Yu, Pu; Duan, Wenhui; Zhou, Shuyun

    2017-12-01

    Atomically thin PtSe2 films have attracted extensive research interests for potential applications in high-speed electronics, spintronics and photodetectors. Obtaining high quality thin films with large size and controlled thickness is critical. Here we report the first successful epitaxial growth of high quality PtSe2 films by molecular beam epitaxy. Atomically thin films from 1 ML to 22 ML have been grown and characterized by low-energy electron diffraction, Raman spectroscopy and x-ray photoemission spectroscopy. Moreover, a systematic thickness dependent study of the electronic structure is revealed by angle-resolved photoemission spectroscopy (ARPES), and helical spin texture is revealed by spin-ARPES. Our work provides new opportunities for growing large size single crystalline films to investigate the physical properties and potential applications of PtSe2.

  19. Ab Initio Guided Low Temperature Synthesis Strategy for Smooth Face–Centred Cubic FeMn Thin Films

    Directory of Open Access Journals (Sweden)

    Friederike Herrig

    2018-05-01

    Full Text Available The sputter deposition of FeMn thin films with thicknesses in the range of hundred nanometres and beyond requires relatively high growth temperatures for the formation of the face-centred cubic (fcc phase, which results in high thin film roughness. A low temperature synthesis strategy, based on local epitaxial growth of a 100 nm thick fcc FeMn film as well as a Cu nucleation layer on an α-Al2O3 substrate at 160 °C, enables roughness values (Ra as low as ~0.6 nm, which is in the same order of magnitude as the pristine substrate (~0.1 nm. The synthesis strategy is guided by ab initio calculations, indicating very strong interfacial bonding of the Cu nucleation layer to an α-Al2O3 substrate (work of separation 5.48 J/m²—which can be understood based on the high Cu coordination at the interface—and between fcc FeMn and Cu (3.45 J/m². Accompanied by small lattice misfits between these structures, the strong interfacial bonding is proposed to enable the local epitaxial growth of a smooth fcc FeMn thin film. Based on the here introduced synthesis strategy, the implementation of fcc FeMn based thin film model systems for materials with interface dominated properties such as FeMn steels containing κ-carbide precipitates or secondary phases appears meaningful.

  20. Ferromagnetic resonance of facing-target sputtered epitaxial γ‧-Fe4N films: the influence of thickness and substrates

    Science.gov (United States)

    Lai, Zhengxun; Li, Zirun; Liu, Xiang; Bai, Lihui; Tian, Yufeng; Mi, Wenbo

    2018-06-01

    The microstructure and high frequency properties of facing-target sputtered epitaxial γ‧-Fe4N films were investigated in detail. It was found that the eddy current in ultrathin γ‧-Fe4N films is too small to influence the ferromagnetic resonance (FMR) linewidth, where the linewidth is mostly determined by intrinsic damping and the two-magnon scattering (TMS) process. In relatively thick films, the TMS process can significantly affect the linewidth due to the roughness on the sample surface. However, the TMS process in a thin film is quite weak because of its smooth surface. The Gilbert damping constant of about 0.0135 in our γ‧-Fe4N films is smaller than the experimental value in the previous work. Moreover, substrates can also influence the FMR linewidth of the γ‧-Fe4N films by the TMS process. Besides, the resonance field of polycrystalline γ‧-Fe4N film is larger than the epitaxial ones because of the lack of a magnetic anisotropic field, but the linewidth of the polycrystalline γ‧-Fe4N film is smaller.

  1. General Top-Down Ion Exchange Process for the Growth of Epitaxial Chalcogenide Thin Films and Devices

    KAUST Repository

    Xia, Chuan; Li, Peng; Li, Jun; Jiang, Qiu; Zhang, Xixiang; Alshareef, Husam N.

    2016-01-01

    ) epitaxial chalcogenide metallic and semiconducting films and (2) free-standing chalcogenide films and (3) completed in situ formation of atomically sharp heterojunctions by selective ion exchange. Epitaxial NiCo2S4 thin films prepared by our process show 115

  2. Laser molecular beam epitaxy of ZnO thin films and heterostructures

    International Nuclear Information System (INIS)

    Opel, Matthias; Geprägs, Stephan; Althammer, Matthias; Brenninger, Thomas; Gross, Rudolf

    2014-01-01

    We report on the growth of epitaxial ZnO thin films and ZnO-based heterostructures on sapphire substrates by laser molecular beam epitaxy (MBE). We first discuss some recent developments in laser-MBE such as flexible ultraviolet laser beam optics, infrared laser heating systems or the use of atomic oxygen and nitrogen sources, and describe the technical realization of our advanced laser-MBE system. Then we describe the optimization of the deposition parameters for ZnO films such as laser fluence and substrate temperature and the use of buffer layers. The detailed structural characterization by x-ray analysis and transmission electron microscopy shows that epitaxial ZnO thin films with high structural quality can be achieved, as demonstrated by a small out-of-plane and in-plane mosaic spread as well as the absence of rotational domains. We also demonstrate the heteroepitaxial growth of ZnO-based multilayers as a prerequisite for spin transport experiments and the realization of spintronic devices. As an example, we show that TiN/Co/ZnO/Ni/Au multilayer stacks can be grown on (0 0 0 1)-oriented sapphire with good structural quality of all layers and well defined in-plane epitaxial relations. (paper)

  3. Quasi-epitaxial barium hexaferrite thin films prepared by a topotactic reactive diffusion process

    Science.gov (United States)

    Meng, Siqin; Yue, Zhenxing; Zhang, Xiaozhi; Li, Longtu

    2014-01-01

    Quasi-epitaxial barium hexaferrite thin films (BaM) with crystallographic c-axis parallel to film normal were prepared through a topotactic reactive diffusion process using two-step solution deposition on c-plane sapphire. The two-step spin coating process involves preparing an epitaxial hematite film, coating the film with barium precursor solution and thermal annealing. The crystal orientation and magnetic anisotropy of BaM thin films were investigated by X-ray diffraction analysis, SEM observation and magnetic measurements. Hysteresis loops showed good magnetic anisotropy and high remanence ratio (RR) Mr/Ms = 0.97. The films fabricated by two-step spin coating process displayed wider rocking curve width but better magnetic anisotropy than one-step spin coating. The possible mechanism of this discrepancy is discussed in this paper.

  4. Quasi-epitaxial barium hexaferrite thin films prepared by a topotactic reactive diffusion process

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Siqin; Yue, Zhenxing, E-mail: yuezhx@tsinghua.edu.cn; Zhang, Xiaozhi; Li, Longtu

    2014-01-30

    Quasi-epitaxial barium hexaferrite thin films (BaM) with crystallographic c-axis parallel to film normal were prepared through a topotactic reactive diffusion process using two-step solution deposition on c-plane sapphire. The two-step spin coating process involves preparing an epitaxial hematite film, coating the film with barium precursor solution and thermal annealing. The crystal orientation and magnetic anisotropy of BaM thin films were investigated by X-ray diffraction analysis, SEM observation and magnetic measurements. Hysteresis loops showed good magnetic anisotropy and high remanence ratio (RR) Mr/Ms = 0.97. The films fabricated by two-step spin coating process displayed wider rocking curve width but better magnetic anisotropy than one-step spin coating. The possible mechanism of this discrepancy is discussed in this paper.

  5. Pulsed laser deposition of air-sensitive hydride epitaxial thin films: LiH

    Energy Technology Data Exchange (ETDEWEB)

    Oguchi, Hiroyuki, E-mail: oguchi@nanosys.mech.tohoku.ac.jp [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan); Micro System Integration Center (muSIC), Tohoku University, Sendai 980-0845 (Japan); Isobe, Shigehito [Creative Research Institution, Hokkaido University, Sapporo 001-0021 (Japan); Graduate School of Engineering, Hokkaido University, Sapporo 060-8628 (Japan); Kuwano, Hiroki [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan); Shiraki, Susumu; Hitosugi, Taro [Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Orimo, Shin-ichi [Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2015-09-01

    We report on the epitaxial thin film growth of an air-sensitive hydride, lithium hydride (LiH), using pulsed laser deposition (PLD). We first synthesized a dense LiH target, which is key for PLD growth of high-quality hydride films. Then, we obtained epitaxial thin films of [100]-oriented LiH on a MgO(100) substrate at 250 °C under a hydrogen pressure of 1.3 × 10{sup −2} Pa. Atomic force microscopy revealed that the film demonstrates a Stranski-Krastanov growth mode and that the film with a thickness of ∼10 nm has a good surface flatness, with root-mean-square roughness R{sub RMS} of ∼0.4 nm.

  6. Optical and electro-optic anisotropy of epitaxial PZT thin films

    Science.gov (United States)

    Zhu, Minmin; Du, Zehui; Jing, Lin; Yoong Tok, Alfred Iing; Tong Teo, Edwin Hang

    2015-07-01

    Strong optical and electro-optic (EO) anisotropy has been investigated in ferroelectric Pb(Zr0.48Ti0.52)O3 thin films epitaxially grown on Nb-SrTiO3 (001), (011), and (111) substrates using magnetron sputtering. The refractive index, electro-optic, and ferroelectric properties of the samples demonstrate the significant dependence on the growth orientation. The linear electro-optic coefficients of the (001), (011), and (111)-oriented PZT thin films were 270.8, 198.8, and 125.7 pm/V, respectively. Such remarkable anisotropic EO behaviors have been explained according to the structure correlation between the orientation dependent distribution, spontaneous polarization, epitaxial strain, and domain pattern.

  7. Fluorination of an epitaxial YBaCuO thin film with controlled oxygen vacancies

    Energy Technology Data Exchange (ETDEWEB)

    Perrin, C. (Lab. de Chimie du Solide et Inorganique Moleculaire, Univ. de Rennes 1, 35 (France)); Pena, O. (Lab. de Chimie du Solide et Inorganique Moleculaire, Univ. de Rennes 1, 35 (France)); Mokhtari, M. (Lab. de Chimie du Solide et Inorganique Moleculaire, Univ. de Rennes 1, 35 (France)); Thivet, C. (Lab. de Chimie du Solide et Inorganique Moleculaire, Univ. de Rennes 1, 35 (France)); Guilloux-Viry, M. (Lab. de Chimie du Solide et Inorganique Moleculaire, Univ. de Rennes 1, 35 (France)); Perrin, A. (Lab. de Chimie du Solide et Inorganique Moleculaire, Univ. de Rennes 1, 35 (France)); Sergent, M. (Lab. de Chimie du Solide et Inorganique Moleculaire, Univ. de Rennes 1, 35 (France))

    1993-05-10

    An intentionally oxygen-deficient thin film, epitaxially grown in-situ on a (100) MgO substrate by laser ablation at 750 C under a low pressure oxygen atmosphere, has been treated under NF[sub 3] diluted in N[sub 2] at temperatures not exceeding 280 C. During the fluorination process the epitaxy of the thin film is maintained; its Tc onset progressively increases from 54 K up to 85.6 K and the width of the inductive transition is narrow at the end of treatment (1.2 K). These results are discussed and compared to those obtained during the fluorination of oxygen-deficient YBa[sub 2]Cu[sub 3]O[sub x] ceramics. (orig.)

  8. Pulsed laser deposition of air-sensitive hydride epitaxial thin films: LiH

    International Nuclear Information System (INIS)

    Oguchi, Hiroyuki; Isobe, Shigehito; Kuwano, Hiroki; Shiraki, Susumu; Hitosugi, Taro; Orimo, Shin-ichi

    2015-01-01

    We report on the epitaxial thin film growth of an air-sensitive hydride, lithium hydride (LiH), using pulsed laser deposition (PLD). We first synthesized a dense LiH target, which is key for PLD growth of high-quality hydride films. Then, we obtained epitaxial thin films of [100]-oriented LiH on a MgO(100) substrate at 250 °C under a hydrogen pressure of 1.3 × 10 −2 Pa. Atomic force microscopy revealed that the film demonstrates a Stranski-Krastanov growth mode and that the film with a thickness of ∼10 nm has a good surface flatness, with root-mean-square roughness R RMS of ∼0.4 nm

  9. Angular dependence of magnetization reversal in epitaxial chromium telluride thin films with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, Tanmoy, E-mail: pramanik.tanmoy@utexas.edu; Roy, Anupam, E-mail: anupam@austin.utexas.edu; Dey, Rik, E-mail: rikdey@utexas.edu; Rai, Amritesh; Guchhait, Samaresh; Movva, Hema C.P.; Hsieh, Cheng-Chih; Banerjee, Sanjay K.

    2017-09-01

    Highlights: • Perpendicular magnetic anisotropy in epitaxial Cr{sub 2}Te{sub 3} has been investigated. • Presence of a relatively strong second order anisotropy contribution is observed. • Magnetization reversal is explained quantitatively using a 1D defect model. • Relative roles of nucleation and pinning in magnetization reversal are discussed. • Domain structures and switching process are visualized by micromagnetic simulation. - Abstract: We investigate magnetic anisotropy and magnetization reversal mechanism in chromium telluride thin films grown by molecular beam epitaxy. We report existence of strong perpendicular magnetic anisotropy in these thin films, along with a relatively strong second order anisotropy contribution. The angular variation of the switching field observed from the magnetoresistance measurement is explained quantitatively using a one-dimensional defect model. The model reveals the relative roles of nucleation and pinning in the magnetization reversal, depending on the applied field orientation. Micromagnetic simulations are performed to visualize the domain structure and switching process.

  10. MFM study of NdFeB and NdFeB/Fe/NdFeB thin films

    International Nuclear Information System (INIS)

    Gouteff, P.C.; Folks, L.; Street, R.

    1998-01-01

    Domain structures of NdFeB thin films, ranging in thickness between 1500 and 29 nm, have been studied qualitatively by magnetic force microscopy (MFM). Samples were prepared using a range of sputtering conditions resulting in differences in properties such as texture, coercivity and magnetic saturation. MFM images of all the films showed extensive interaction domain structures, similar to those observed in nanocrystalline bulk NdFeB. An exchange-coupled NdFeB/Fe/NdFeB trilayer with layer thicknesses 18 nm/15 nm/18 nm, respectively, was also examined using MFM. (orig.)

  11. Double switching hysteresis loop in a single layer Fe3Pt alloy thin films

    International Nuclear Information System (INIS)

    Nahid, M.A.I.; Suzuki, Takao

    2008-01-01

    The Fe 3 Pt alloy thin films were epitaxially grown on MgO(100) substrate by e-beam evaporation. The films were partially ordered at the substrate deposition temperature above 350 deg. C. These partially ordered films exhibit very large biaxial magnetic anisotropy constant in the order of 10 5 J/m 3 and produce double switching in the hysteresis loops. The difference of the switching field of these films can be up to about 3 x 10 5 A/m by tuning the angle of the applied field with respect to the easy axes. This double switching behavior stems from the large biaxial magnetic anisotropy of the films

  12. Domain structure and magnetotransport in epitaxial colossal magnetoresistance thin films

    OpenAIRE

    Suzuki, Yuri; Wu, Yan; Yu, Jun; Rüdiger, Ulrich; Kent, Andrew D.; Nath, Tapan K.; Eom, Chang-Beom

    2000-01-01

    Our studies of compressively strained La0.7 Sr0.3 MnO7 (LSMO) thin films reveal the importance of domain structure and strain effects in the magnetization reversal and magnetotransport. Normal and grazing incidence x-ray diffraction indicate that the compressive strain on these LSMO thin films on (100) LaAlO3 is not completely relaxed up to thicknesses on the order of 1000 Å. The effect of the compressive strain is evident in the shape of the magnetization loops and the magnetotransport measu...

  13. Multiple oxide content media for columnar grain growth in L10 FePt thin films

    International Nuclear Information System (INIS)

    Ho, Hoan; Yang, En; Laughlin, David E.; Zhu, Jian-Gang

    2013-01-01

    An approach to enhance the height-to-diameter ratio of FePt grains in heat-assisted magnetic recording media is proposed. The FePt-SiO x thin films are deposited with a decrease of the SiO x percentage along the film growth direction. When bi-layer and tri-layer media are sputtered at 410 °C, we observe discontinuities in the FePt grains at interfaces between layers, which lead to poor epitaxial growth. Due to increased atomic diffusion, the bi-layer media sputtered at 450 °C is shown to (1) grow into continuous columnar grains with similar size as single-layer media but much higher aspect ratio, (2) have better L1 0 ordering and larger coercivity.

  14. Growth of Sr2CrReO6 epitaxial thin films by pulsed laser deposition

    International Nuclear Information System (INIS)

    Orna, J.; Morellon, L.; Algarabel, P.A.; Pardo, J.A.; Magen, C.; Varela, M.; Pennycook, S.J.; De Teresa, J.M.; Ibarra, M.R.

    2010-01-01

    We report the growth, structural, magnetic, and electrical transport properties of epitaxial Sr 2 CrReO 6 thin films. We have succeeded in depositing films with a high crystallinity and a relatively large cationic order in a narrow window of growth parameters. The epitaxy relationship is Sr 2 CrReO 6 (SCRO) (0 0 1) [1 0 0]-parallel SrTiO 3 (STO) (0 0 1) [1 1 0] as determined by high-resolution X-ray diffraction and scanning transmission electron microscopy (STEM). Typical values of saturation magnetization of M S (300 K)=1 μ B /f.u. and ρ (300 K)=2.8 mΩ cm have been obtained in good agreement with previous published results in sputtered epitaxial thin films. We estimate that the antisite defects concentration in our thin films is of the order of 14%, and the measured Curie temperature is T C =481(2) K. We believe these materials be of interest as electrodes in spintronic devices.

  15. Probing the bulk ionic conductivity by thin film hetero-epitaxial engineering

    KAUST Repository

    Pergolesi, Daniele

    2015-02-01

    Highly textured thin films with small grain boundary regions can be used as model systems to directly measure the bulk conductivity of oxygen ion conducting oxides. Ionic conducting thin films and epitaxial heterostructures are also widely used to probe the effect of strain on the oxygen ion migration in oxide materials. For the purpose of these investigations a good lattice matching between the film and the substrate is required to promote the ordered film growth. Moreover, the substrate should be a good electrical insulator at high temperature to allow a reliable electrical characterization of the deposited film. Here we report the fabrication of an epitaxial heterostructure made with a double buffer layer of BaZrO3 and SrTiO3 grown on MgO substrates that fulfills both requirements. Based on such template platform, highly ordered (001) epitaxially oriented thin films of 15% Sm-doped CeO2 and 8 mol% Y2O3 stabilized ZrO2 are grown. Bulk conductivities as well as activation energies are measured for both materials, confirming the success of the approach. The reported insulating template platform promises potential application also for the electrical characterization of other novel electrolyte materials that still need a thorough understanding of their ionic conductivity.

  16. Preparation of YBa2Cu3O7-δ epitaxial thin films by pulsed ion-beam evaporation

    International Nuclear Information System (INIS)

    Sorasit, S.; Yoshida, G.; Suzuki, T.; Suematsu, H.; Jiang, W.; Yatsui, K.

    2001-01-01

    Thin films of YBa 2 Cu 3 O 7-δ (Y-123) grown epitaxially have been successfully deposited by ion-beam evaporation (IBE). The c-axis oriented YBa 2 Cu 3 O 7-δ thin films were successfully deposited on MgO and SrTiO 3 substrates. The Y-123 thin films which were prepared on the SrTiO 3 substrates were confirmed to be epitaxially grown, by X-ray diffraction analysis. The instantaneous deposition rate of the Y-123 thin films was estimated as high as 4 mm/s. (author)

  17. Quasi van der Waals epitaxy of copper thin film on single-crystal graphene monolayer buffer

    Science.gov (United States)

    Lu, Zonghuan; Sun, Xin; Washington, Morris A.; Lu, Toh-Ming

    2018-03-01

    Quasi van der Waals epitaxial growth of face-centered cubic Cu (~100 nm) thin films on single-crystal monolayer graphene is demonstrated using thermal evaporation at an elevated substrate temperature of 250 °C. The single-crystal graphene was transferred to amorphous (glass) and crystalline (quartz) SiO2 substrates for epitaxy study. Raman analysis showed that the thermal evaporation method had minimal damage to the graphene lattice during the Cu deposition. X-ray diffraction and electron backscatter diffraction analyses revealed that both Cu films are single-crystal with (1 1 1) out-of-plane orientation and in-plane Σ3 twin domains of 60° rotation. The crystallinity of the SiO2 substrates has a negligible effect on the Cu crystal orientation during the epitaxial growth, implying the strong screening effect of graphene. We also demonstrate the epitaxial growth of polycrystalline Cu on a commercial polycrystalline monolayer graphene consisting of two orientation domains offset 30° to each other. It confirms that the crystal orientation of the epitaxial Cu film follows that of graphene, i.e. the Cu film consists of two orientation domains offset 30° to each other when deposited on polycrystalline graphene. Finally, on the contrary to the report in the literature, we show that the direct current and radio frequency flip sputtering method causes significant damage to the graphene lattice during the Cu deposition process, and therefore neither is a suitable method for Cu epitaxial growth on graphene.

  18. Magnetism and deformation of epitaxial Pd and Rh thin films

    Czech Academy of Sciences Publication Activity Database

    Káňa, Tomáš; Hüger, E.; Legut, D.; Čák, M.; Šob, Mojmír

    2016-01-01

    Roč. 93, č. 13 (2016), č. článku Art. number 134422. ISSN 2469-9950 R&D Projects: GA MŠk(CZ) LQ1601; GA ČR(CZ) GA16-24711S Institutional support: RVO:68081723 Keywords : ab initio calculations * magnetism * palladium * rhodium * thin films * deformation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.836, year: 2016

  19. Growth of conductive HfO{sub 2-x} thin films by reactive molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Erwin; Kurian, Jose; Alff, Lambert [Institut fuer Materialwissenschaft, TU Darmstadt (Germany); Kleebe, Hans-Joachim [Institut fuer Angewandte Geowissenschaften, TU Darmstadt (Germany)

    2009-07-01

    Thin films of oxygen deficient hafnium oxide were grown on single crystal c-cut and r-cut sapphire substrates by reactive molecular beam epitaxy. The oxidation conditions during growth were varied within a wide range using RF-activated oxygen. Hafnium oxide thin films were characterized using X-ray diffraction, resistivity measurements ({rho}-T) and transmission electron microscopy (TEM). The results show a dramatic increase in conductivity of the deposited oxygen deficient hafnium oxide thin films with decreasing oxidation conditions during growth. The electrical properties of deficient hafnium oxide thin films varied from insulating over semiconducting to conducting. X-ray diffraction data as well as TEM data rule out the possibility of conductivity due to metallic hafnium.

  20. Preparation of c-axis perpendicularly oriented ultra-thin L10-FePt films on MgO and VN underlayers

    Science.gov (United States)

    Futamoto, Masaaki; Shimizu, Tomoki; Ohtake, Mitsuru

    2018-05-01

    Ultra-thin L10-FePt films of 2 nm average thickness are prepared on (001) oriented MgO and VN underlayers epitaxially grown on base substrate of SrTiO3(001) single crystal. Detailed cross-sectional structures are observed by high-resolution transmission electron microscopy. Continuous L10-FePt(001) thin films with very flat surface are prepared on VN(001) underlayer whereas the films prepared on MgO(001) underlayer consist of isolated L10-FePt(001) crystal islands. Presence of misfit dislocation and lattice bending in L10-FePt material is reducing the effective lattice mismatch with respect to the underlayer to be less than 0.5 %. Formation of very flat and continuous FePt layer on VN underlayer is due to the large surface energy of VN material where de-wetting of FePt material at high temperature annealing process is suppressed under a force balance between the surface and interface energies of FePt and VN materials. An employment of underlayer or substrate material with the lattice constant and the surface energy larger than those of L10-FePt is important for the preparation of very thin FePt epitaxial thin continuous film with the c-axis controlled to be perpendicular to the substrate surface.

  1. Magnetic Properties of Fe(001) Thin Films on GaAs(001) Deposited by RF Magnetron Sputtering

    International Nuclear Information System (INIS)

    Ikeya, Hirokazu; Takahashi, Yutaka; Inaba, Nobuyuki; Kirino, Fumiyoshi; Ohtake, Mitsuru; Futamoto, Masaaki

    2011-01-01

    Fe thin films, down to 6 nm thick, were prepared on GaAs(001) substrates by RF magnetron sputtering. The x-ray diffraction (XRD) analyses show that the epitaxial thin films of Fe(001) were grown with cube-on-cube orientation on GaAs(001). Magnetic properties were investigated by vibrating sample magnetometry (VSM) and ferromagnetic resonance (FMR) spectroscopy. The magnetization curves obtained by applying in-plane magnetic fields indicate that easy (hard) direction is along [100] ([110]) and the saturation magnetization is close to the bulk values. The in-plane magnetic anisotropy measured by FMR shows four-fold symmetry, as expected for bcc Fe. We did not observe the in-plane uniaxial magnetic anisotropy reported on the MBE-grown Fe films on GaAs substrates.

  2. Reversal of lattice, electronic structure, and magnetism in epitaxial SrCoOx thin films

    Science.gov (United States)

    Jeen, H.; Choi, W. S.; Lee, J. H.; Cooper, V. R.; Lee, H. N.; Seo, S. S. A.; Rabe, K. M.

    2014-03-01

    SrCoOx (x = 2.5 - 3.0, SCO) is an ideal material to study the role of oxygen content for electronic structure and magnetism, since SCO has two distinct topotactic phases: the antiferromagnetic insulating brownmillerite SrCoO2.5 and the ferromagnetic metallic perovskite SrCoO3. In this presentation, we report direct observation of a reversible lattice and electronic structure evolution in SrCoOx epitaxial thin films as well as different magnetic and electronic ground states between the topotactic phases.[2] By magnetization measurements, optical absorption, and transport measurements drastically different electronic and magnetic ground states are found in the epitaxially grown SrCoO2.5 and SrCoO3 thin films by pulsed laser epitaxy. First-principles calculations confirm substantial, which originate from the modification in the Co valence states and crystallographic structures. By real-time spectroscopic ellipsometry, the two electronically and magnetically different phases can be reversibly changed by changing the ambient pressure at greatly reduced temperatures. Our finding provides an important pathway to understanding the novel oxygen-content-dependent phase transition uniquely found in multivalent transition metal oxides. The work was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division.

  3. Structural and optical inhomogeneities of Fe doped GaN grown by hydride vapor phase epitaxy

    Science.gov (United States)

    Malguth, E.; Hoffmann, A.; Phillips, M. R.

    2008-12-01

    We present the results of cathodoluminescence experiments on a set of Fe doped GaN samples with Fe concentrations of 5×1017, 1×1018, 1×1019, and 2×1020 cm-3. These specimens were grown by hydride vapor phase epitaxy with different concentrations of Fe. The introduction of Fe is found to promote the formation of structurally inhomogeneous regions of increased donor concentration. We detect a tendency of these regions to form hexagonal pits at the surface. The locally increased carrier concentration leads to enhanced emission from the band edge and the internal T41(G)-A61(S) transition of Fe3+. In these areas, the luminescence forms a finely structured highly symmetric pattern, which is attributed to defect migration along strain-field lines. Fe doping is found to quench the yellow defect luminescence band and to enhance the blue luminescence band due to the lowering of the Fermi level and the formation of point defects, respectively.

  4. Tuning piezoelectric properties through epitaxy of La2Ti2O7 and related thin films.

    Science.gov (United States)

    Kaspar, Tiffany C; Hong, Seungbum; Bowden, Mark E; Varga, Tamas; Yan, Pengfei; Wang, Chongmin; Spurgeon, Steven R; Comes, Ryan B; Ramuhalli, Pradeep; Henager, Charles H

    2018-02-14

    Current piezoelectric sensors and actuators are limited to operating temperatures less than ~200 °C due to the low Curie temperature of the piezoelectric material. Strengthening the piezoelectric coupling of high-temperature piezoelectric materials, such as La 2 Ti 2 O 7 (LTO), would allow sensors to operate across a broad temperature range. The crystalline orientation and piezoelectric coupling direction of LTO thin films can be controlled by epitaxial matching to SrTiO 3 (001), SrTiO 3 (110), and rutile TiO 2 (110) substrates via pulsed laser deposition. The structure and phase purity of the films are investigated by x-ray diffraction and scanning transmission electron microscopy. Piezoresponse force microscopy is used to measure the in-plane and out-of-plane piezoelectric coupling in the films. The strength of the out-of-plane piezoelectric coupling can be increased when the piezoelectric direction is rotated partially out-of-plane via epitaxy. The strongest out-of-plane coupling is observed for LTO/STO(001). Deposition on TiO 2 (110) results in epitaxial La 2/3 TiO 3 , an orthorhombic perovskite of interest as a microwave dielectric material and an ion conductor. La 2/3 TiO 3 can be difficult to stabilize in bulk form, and epitaxial stabilization on TiO 2 (110) is a promising route to realize La 2/3 TiO 3 for both fundamental studies and device applications. Overall, these results confirm that control of the crystalline orientation of epitaxial LTO-based materials can govern the resulting functional properties.

  5. Epitaxially grown polycrystalline silicon thin-film solar cells on solid-phase crystallised seed layers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Wei, E-mail: weili.unsw@gmail.com; Varlamov, Sergey; Xue, Chaowei

    2014-09-30

    Highlights: • Crystallisation kinetic is used to analyse seed layer surface cleanliness. • Simplified RCA cleaning for the seed layer can shorten the epitaxy annealing duration. • RTA for the seed layer can improve the quality for both seed layer and epi-layer. • Epitaxial poly-Si solar cell performance is improved by RTA treated seed layer. - Abstract: This paper presents the fabrication of poly-Si thin film solar cells on glass substrates using seed layer approach. The solid-phase crystallised P-doped seed layer is not only used as the crystalline template for the epitaxial growth but also as the emitter for the solar cell structure. This paper investigates two important factors, surface cleaning and intragrain defects elimination for the seed layer, which can greatly influence the epitaxial grown solar cell performance. Shorter incubation and crystallisation time is observed using a simplified RCA cleaning than the other two wet chemical cleaning methods, indicating a cleaner seed layer surface is achieved. Cross sectional transmission microscope images confirm a crystallographic transferal of information from the simplified RCA cleaned seed layer into the epi-layer. RTA for the SPC seed layer can effectively eliminate the intragrain defects in the seed layer and improve structural quality of both of the seed layer and the epi-layer. Consequently, epitaxial grown poly-Si solar cell on the RTA treated seed layer shows better solar cell efficiency, V{sub oc} and J{sub sc} than the one on the seed layer without RTA treatment.

  6. Superconductivity of Rock-Salt Structure LaO Epitaxial Thin Film.

    Science.gov (United States)

    Kaminaga, Kenichi; Oka, Daichi; Hasegawa, Tetsuya; Fukumura, Tomoteru

    2018-06-06

    We report a superconducting transition in a LaO epitaxial thin film with the superconducting transition onset temperature ( T c ) at around 5 K. This T c is higher than those of other lanthanum monochalcogenides and opposite to their chemical trend: T c = 0.84, 1.02, and 1.48 K for LaX (X = S, Se, Te), respectively. The carrier control resulted in a dome-shaped T c as a function of electron carrier density. In addition, the T c was significantly sensitive to epitaxial strain in spite of the highly symmetric crystal structure. This rock-salt superconducting LaO could be a building block to design novel superlattice superconductors.

  7. The liquid phase epitaxy method for the construction of oriented ZIF-8 thin films with controlled growth on functionalized surfaces

    KAUST Repository

    Shekhah, Osama; Eddaoudi, Mohamed

    2013-01-01

    Highly-oriented ZIF-8 thin films with controllable thickness were grown on an -OH-functionalized Au substrate using the liquid phase epitaxy method at room temperature, as evidenced by SEM and PXRD. The adsorption-desorption properties of the resulting ZIF-8 thin film were investigated for various VOCs using the QCM technique. © The Royal Society of Chemistry 2013.

  8. Epitaxial growth of thin single-crystals and their quality study by Rutherford scattering in channeling conditions

    International Nuclear Information System (INIS)

    Kirsch, Robert.

    1975-01-01

    Some aspects of thin crystalline layers are reminded: vacuum deposition, epitaxial growth, annealing and interdiffusion ion channeling and scattering of 1-2MeV helium ions are used to study the crystalline quality, the annealing effects and in some cases the interdiffusion in epitaxial multilayers of silver, copper gold and nickel. Thin single-crystals of gold and nickel oriented (III) plan parallel to the surface were obtained by successive epitaxial growth from muscovite mica clivages. The mounting techniques of single crystalline, self-supporting, 300 to 1200 Angstroems thick, gold and nickel targets of 3mm diameter are described. The gold single-crystals have dislocation densities of 10 8 cm -2 and the various epitaxial layers are obtained without twinning [fr

  9. YCo5±x thin films with perpendicular anisotropy grown by molecular beam epitaxy

    Science.gov (United States)

    Sharma, S.; Hildebrandt, E.; Sharath, S. U.; Radulov, I.; Alff, L.

    2017-06-01

    The synthesis conditions of buffer-free (00l) oriented YCo5 and Y2Co17 thin films onto Al2O3 (0001) substrates have been explored by molecular beam epitaxy (MBE). The manipulation of the ratio of individual atomic beams of Yttrium, Y and Cobalt, Co, as well as growth rate variations allows establishing a thin film phase diagram. Highly textured YCo5±x thin films were stabilized with saturation magnetization of 517 emu/cm3 (0.517 MA/m), coercivity of 4 kOe (0.4 T), and anisotropy constant, K1, equal to 5.34 ×106 erg/cm3 (0.53 MJ/m3). These magnetic parameters and the perpendicular anisotropy obtained without additional underlayers make the material system interesting for application in magnetic recording devices.

  10. Epitaxial stabilization of ultra thin films of electron doped manganites

    Energy Technology Data Exchange (ETDEWEB)

    Middey, S., E-mail: smiddey@uark.edu; Kareev, M.; Meyers, D.; Liu, X.; Cao, Y.; Tripathi, S.; Chakhalian, J. [Department of Physics, University of Arkansas, Fayetteville, Arkansas 72701 (United States); Yazici, D.; Maple, M. B. [Department of Physics, University of California, San Diego, La Jolla, California 92093 (United States); Ryan, P. J.; Freeland, J. W. [Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439 (United States)

    2014-05-19

    Ultra-thin films of the electron doped manganite La{sub 0.8}Ce{sub 0.2}MnO{sub 3} were grown in a layer-by-layer growth mode on SrTiO{sub 3} (001) substrates by pulsed laser interval deposition. High structural quality and surface morphology were confirmed by a combination of synchrotron based x-ray diffraction and atomic force microscopy. Resonant X-ray absorption spectroscopy measurements confirm the presence of Ce{sup 4+} and Mn{sup 2+} ions. In addition, the electron doping signature was corroborated by Hall effect measurements. All grown films show a ferromagnetic ground state as revealed by both dc magnetization and x-ray magnetic circular dichroism measurements and remain insulating contrary to earlier reports of a metal-insulator transition. Our results hint at the possibility of electron-hole asymmetry in the colossal magnetoresistive manganite phase diagram akin to the high-T{sub c} cuprates.

  11. Molecular beam epitaxy growth of [CrGe/MnGe/FeGe] superlattices: Toward artificial B20 skyrmion materials with tunable interactions

    Science.gov (United States)

    Ahmed, Adam S.; Esser, Bryan D.; Rowland, James; McComb, David W.; Kawakami, Roland K.

    2017-06-01

    Skyrmions are localized magnetic spin textures whose stability has been shown theoretically to depend on material parameters including bulk Dresselhaus spin orbit coupling (SOC), interfacial Rashba SOC, and magnetic anisotropy. Here, we establish the growth of a new class of artificial skyrmion materials, namely B20 superlattices, where these parameters could be systematically tuned. Specifically, we report the successful growth of B20 superlattices comprised of single crystal thin films of FeGe, MnGe, and CrGe on Si(1 1 1) substrates. Thin films and superlattices are grown by molecular beam epitaxy and are characterized through a combination of reflection high energy electron diffraction, X-ray diffraction, and cross-sectional scanning transmission electron microscopy (STEM). X-ray energy dispersive spectroscopy (XEDS) distinguishes layers by elemental mapping and indicates good interface quality with relatively low levels of intermixing in the [CrGe/MnGe/FeGe] superlattice. This demonstration of epitaxial, single-crystalline B20 superlattices is a significant advance toward tunable skyrmion systems for fundamental scientific studies and applications in magnetic storage and logic.

  12. Catalytic Activity Enhancement for Oxygen Reduction on Epitaxial Perovskite Thin Films for Solid-Oxide Fuel Cells

    KAUST Repository

    la O', Gerardo Jose; Ahn, Sung-Jin; Crumlin, Ethan; Orikasa, Yuki; Biegalski, Michael D.; Christen, Hans M.; Shao-Horn, Yang

    2010-01-01

    Figure Presented The active ingredient: La0.8Sr 0.2CoO3-δ (LSC) epitaxial thin films are prepared on (001 )-oriented yttria-stabilized zirconia (YSZ) single crystals with a gadolinium-doped ceria (GDC) buffer layer (see picture). The LSC epitaxial films exhibit better oxygen reduction kinetics than bulk LSC. The enhanced activity is attributed in part to higher oxygen nonstoichiometry. © 2010 Wiley-VCH Verlag GmbH & Co. KCaA, Weinheim.

  13. Catalytic Activity Enhancement for Oxygen Reduction on Epitaxial Perovskite Thin Films for Solid-Oxide Fuel Cells

    KAUST Repository

    la O', Gerardo Jose

    2010-06-22

    Figure Presented The active ingredient: La0.8Sr 0.2CoO3-δ (LSC) epitaxial thin films are prepared on (001 )-oriented yttria-stabilized zirconia (YSZ) single crystals with a gadolinium-doped ceria (GDC) buffer layer (see picture). The LSC epitaxial films exhibit better oxygen reduction kinetics than bulk LSC. The enhanced activity is attributed in part to higher oxygen nonstoichiometry. © 2010 Wiley-VCH Verlag GmbH & Co. KCaA, Weinheim.

  14. Magnetoresistance Versus Oxygen Deficiency in Epi-stabilized SrRu1 - x Fe x O3 - δ Thin Films

    Science.gov (United States)

    Dash, Umasankar; Acharya, Susant Kumar; Lee, Bo Wha; Jung, Chang Uk

    2017-03-01

    Oxygen vacancies have a profound effect on the magnetic, electronic, and transport properties of transition metal oxide materials. Here, we studied the influence of oxygen vacancies on the magnetoresistance (MR) properties of SrRu1 - x Fe x O3 - δ epitaxial thin films ( x = 0.10, 0.20, and 0.30). For this purpose, we synthesized highly strained epitaxial SrRu1 - x Fe x O3 - δ thin films with atomically flat surfaces containing different amounts of oxygen vacancies using pulsed laser deposition. Without an applied magnetic field, the films with x = 0.10 and 0.20 showed a metal-insulator transition, while the x = 0.30 thin film showed insulating behavior over the entire temperature range of 2-300 K. Both Fe doping and the concentration of oxygen vacancies had large effects on the negative MR contributions. For the low Fe doping case of x = 0.10, in which both films exhibited metallic behavior, MR was more prominent in the film with fewer oxygen vacancies or equivalently a more metallic film. For semiconducting films, higher MR was observed for more semiconducting films having more oxygen vacancies. A relatively large negative MR ( 36.4%) was observed for the x = 0.30 thin film with a high concentration of oxygen vacancies ( δ = 0.12). The obtained results were compared with MR studies for a polycrystal of (Sr1 - x La x )(Ru1 - x Fe x )O3. These results highlight the crucial role of oxygen stoichiometry in determining the magneto-transport properties in SrRu1 - x Fe x O3 - δ thin films.

  15. Exchange bias and bistable magneto-resistance states in amorphous TbFeCo thin films

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaopu, E-mail: xl6ba@virginia.edu; Ma, Chung T.; Poon, S. Joseph, E-mail: sjp9x@virginia.edu [Department of Physics, University of Virginia, Charlottesville, Virginia 22904 (United States); Lu, Jiwei [Department of Materials Science and Engineering, University of Virginia, Charlottesville, Virginia 22904 (United States); Devaraj, Arun [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States); Spurgeon, Steven R.; Comes, Ryan B. [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)

    2016-01-04

    Amorphous TbFeCo thin films sputter deposited at room temperature on thermally oxidized Si substrate are found to exhibit strong perpendicular magnetic anisotropy. Atom probe tomography, scanning transmission electron microscopy, and energy dispersive X-ray spectroscopy mapping have revealed two nanoscale amorphous phases with different Tb atomic percentages distributed within the amorphous film. Exchange bias accompanied by bistable magneto-resistance states has been uncovered near room temperature by magnetization and magneto-transport measurements. The exchange anisotropy originates from the exchange interaction between the ferrimagnetic and ferromagnetic components corresponding to the two amorphous phases. This study provides a platform for exchange bias and magneto-resistance switching using single-layer amorphous ferrimagnetic thin films that require no epitaxial growth.

  16. Structure, magnetism, and interface properties of epitactical thin Fe and FePt films on GaAs(001) substrates; Struktur, Magnetismus und Grenzflaecheneigenschaften epitaktischer duenner Fe- und FePt-Filme auf GaAs(001)-Substraten

    Energy Technology Data Exchange (ETDEWEB)

    Schuster, Ellen Ursula

    2007-12-17

    The research in this thesis is focused on the study of the Fe spin structure and interface magnetism of thin epitaxial Fe layers or epitaxial FePt alloy films with chemical L1{sub 0} order on GaAs(001) surfaces. The main method of investigation was isotope-specific conversion electron Moessbauer spectroscopy (CEMS) combined with the {sup 57}Fe probe-layer technique in the temperature range of 4.2-300 K. The film structure was studied using electron diffraction (RHEED) and X-ray diffraction (XRD). The chemical order parameter S determined by XRD was found to increase with rising growth temperature, T{sub S}, to a maximum value of 0.71, until long range order is destroyed at T{sub S}>350 C by alloying with the substrate. As an important result a linear correlation between short-range order (revealed by the relative spectral area of the L1{sub 0} phase) and long-range order S was observed. The observed perpendicular Fe spin texture, characterized by the mean tilting angle left angle {theta} right angle of the Fe spins (relative to the film normal direction), was found to correlate with the L1{sub 0} phase content and with S. Furthermore, epitaxial Fe(001) films on GaAs(001)-(4 x 6) and on GaAs(001)-LED surfaces were grown successfully. In the initial stage of Fe film growth non-monotonous behavior of the in-plane lattice parameter was observed by RHEED. The magnetic hyperfine field distributions P(B{sub hf}) at the Fe/GaAs interface extracted from CEMS spectra for T{sub S}=-140 C or room temperature (RT) were found to be very similar. The observed large mean hyperfine fields of left angle B{sub hf} right angle {approx}25-27 T at the interface indicate the presence of high average Fe moments of 1.7-1.8 {mu}{sub B}. Nonmagnetic interface layers either can be excluded (Fe/GaAs) or are very thin (0.5 ML,Fe/GaAs-LED). Owing to its island structure an ultrathin (1.9 ML thick) uncoated Fe(001) film on GaAs(001)-(4 x 6) shows superparamagnetism with a blocking temperature of

  17. Irradiation induced improvement in crystallinity of epitaxially grown Ag thin films on Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Takahiro, Katsumi; Nagata, Shinji; Yamaguchi, Sadae [Tohoku Univ., Sendai (Japan). Inst. for Materials Research

    1997-03-01

    We report the improvement in crystallinity of epitaxially grown Ag films on Si(100) substrates with ion irradiation. The irradiation of 0.5 MeV Si ions to 2x10{sup 16}/cm{sup 2} at 200degC, for example, reduces the channeling minimum yield from 60% to 6% at Ag surface. The improvement originates from the decrease of mosaic spread in the Ag thin film. In our experiments, ion energy, ion species and irradiation temperature have been varied. The better crystallinity is obtained as the higher concentration of defect is generated. The mechanism involved in the irradiation induced improvement is discussed. (author)

  18. Flexoelectricity induced increase of critical thickness in epitaxial ferroelectric thin films

    International Nuclear Information System (INIS)

    Zhou Hao; Hong Jiawang; Zhang Yihui; Li Faxin; Pei Yongmao; Fang Daining

    2012-01-01

    Flexoelectricity describes the coupling between polarization and strain/stress gradients in insulating crystals. In this paper, using the Landau-Ginsburg-Devonshire phenomenological approach, we found that flexoelectricity could increase the theoretical critical thickness in epitaxial BaTiO 3 thin films, below which the switchable spontaneous polarization vanishes. This increase is remarkable in tensile films while trivial in compressive films due to the electrostriction caused decrease of potential barrier, which can be easily destroyed by the flexoelectricity, between the ferroelectric state and the paraelectric state in tensile films. In addition, the films are still in a uni-polar state even below the critical thickness due to the flexoelectric effect.

  19. Optimized electrode coverage of membrane actuators based on epitaxial PZT thin films

    International Nuclear Information System (INIS)

    Nguyen, M D; Dekkers, M; Blank, D H A; Rijnders, G; Nazeer, H

    2013-01-01

    This research presents an optimization of piezoelectric membrane actuators by maximizing the actuator displacement. Membrane actuators based on epitaxial Pb(Zr,Ti)O 3 thin films grown on all-oxide electrodes and buffer layers using silicon technology were fabricated. Electrode coverage was found to be an important factor in the actuation displacement of the piezoelectric membranes. The optimum electrode coverage for maximum displacement was theoretically determined to be 39%, which is in good agreement with the experimental results. Dependences of membrane displacement and optimum electrode coverage on membrane diameter and PZT-film/Si-device-layer thickness ratio have also been investigated. (paper)

  20. Laser energy tuning of carrier effective mass and thermopower in epitaxial oxide thin films

    KAUST Repository

    Abutaha, Anas I.

    2012-04-18

    The effect of the laser fluence on high temperature thermoelectric properties of the La doped SrTiO3 (SLTO) thin films epitaxially grown on LaAlO3 〈100〉 substrates by pulsed laser deposition is clarified. It is shown that oxygen vacancies that influence the effective mass of carriers in SLTO films can be tuned by varying the laser energy. The highest power factor of 0.433 W K−1 m−1 has been achieved at 636 K for a filmdeposited using the highest laser fluence of 7 J cm−2 pulse−1.

  1. Mechanical properties of metal-organic frameworks: An indentation study on epitaxial thin films

    Science.gov (United States)

    Bundschuh, S.; Kraft, O.; Arslan, H. K.; Gliemann, H.; Weidler, P. G.; Wöll, C.

    2012-09-01

    We have determined the hardness and Young's modulus of a highly porous metal-organic framework (MOF) using a standard nanoindentation technique. Despite the very low density of these films, 1.22 g cm-3, Young's modulus reaches values of almost 10 GPa for HKUST-1, demonstrating that this porous coordination polymer is substantially stiffer than normal polymers. This progress in characterizing mechanical properties of MOFs has been made possible by the use of high quality, oriented thin films grown using liquid phase epitaxy on modified Au substrates.

  2. Growth of HfO{sub x} thin films by reactive molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Erwin; Kurian, Jose; Alff, Lambert [Institut fuer Materialwissenschaft, TU Darmstadt (Germany)

    2008-07-01

    Thin films of hafnium oxide were grown on single crystal r-cut and c-cut sapphire by reactive molecular beam epitaxy. The conditions for the growth of single oriented hafnium oxide thin films have been established. Hafnium oxide thin films were characterized by X-ray diffraction and optical absorption measurements. It was found that hafnium oxide thin films grown on r-cut sapphire were (00l) oriented whereas, on c-cut sapphire, hafnium oxide films showed different orientations depending on the growth temperature and oxidation conditions. The hafnium oxide films grown at higher temperature and under strong oxidation conditions yielded (001) oriented films on c-cut sapphire whereas slightly weaker oxidation condition leads to (111) oriented hafnium oxide films. The bandgap deducted from optical absorption measurement carried out on hafnium oxide films grown under optimized conditions agreed well with the values reported in literature. A range of oxygen deficient thin films of hafnium oxide were also grown on single crystal sapphire substrates in order to investigate the effect of oxygen vacancies on dielectric properties of hafnium oxide. The oxygen deficient thin films of hafnium oxide show a decrease in bandgap with increase in oxygen deficiency.

  3. Ion Beam Assisted Deposition of Thin Epitaxial GaN Films.

    Science.gov (United States)

    Rauschenbach, Bernd; Lotnyk, Andriy; Neumann, Lena; Poppitz, David; Gerlach, Jürgen W

    2017-06-23

    The assistance of thin film deposition with low-energy ion bombardment influences their final properties significantly. Especially, the application of so-called hyperthermal ions (energy GaN thin films on (0001)-oriented 6H-SiC substrates at 700 °C. The films are studied in situ by reflection high energy electron diffraction, ex situ by X-ray diffraction, scanning tunnelling microscopy, and high-resolution transmission electron microscopy. It is demonstrated that the film growth mode can be controlled by varying the ion to atom ratio, where 2D films are characterized by a smooth topography, a high crystalline quality, low biaxial stress, and low defect density. Typical structural defects in the GaN thin films were identified as basal plane stacking faults, low-angle grain boundaries forming between w-GaN and z-GaN and twin boundaries. The misfit strain between the GaN thin films and substrates is relieved by the generation of edge dislocations in the first and second monolayers of GaN thin films and of misfit interfacial dislocations. It can be demonstrated that the low-energy nitrogen ion assisted molecular beam epitaxy is a technique to produce thin GaN films of high crystalline quality.

  4. Growth of β-FeSi2 layers on Si (111) by solid phase and reactive deposition epitaxies

    International Nuclear Information System (INIS)

    Miquita, D.R.; Paniago, R.; Rodrigues, W.N.; Moreira, M.V.B.; Pfannes, H.-D.; Oliveira, A.G. de

    2005-01-01

    Iron silicides were grown on Si (111) substrates by Solid Phase Epitaxy (SPE) and Reactive Deposition Epitaxy (RDE) to identify the optimum conditions to obtain the semiconducting β-FeSi 2 phase. The films were produced under different growth and annealing conditions and analyzed in situ and ex situ by X-ray Photoelectron Spectroscopy, and ex situ by Conversion Electron Moessbauer Spectroscopy. The use of these techniques allowed the investigation of different depth regions of the grown layer. Films of the ε-FeSi and β-FeSi 2 phases were obtained as well as the mixtures Fe 3 Si + ε-FeSi and ε-FeSi + β-FeSi 2 . The sequence Fe 3 Si→ε-FeSi→β-FeSi 2 was found upon annealing, where the phase transformation occurred due to the migration of silicon atoms from the substrate to the surface region of the grown layer. The best conditions for the phase transformation in SPE samples were met after annealing in the range 700 - 800 deg. C. For the RDE samples, the transition to the beta phase occurred between 600 and 700 deg. C, but pure β-FeSi 2 was obtained only after two hours of annealing at 700 deg. C

  5. Epitaxially influenced boundary layer model for size effect in thin metallic films

    International Nuclear Information System (INIS)

    Bazant, Zdenek P.; Guo Zaoyang; Espinosa, Horacio D.; Zhu Yong; Peng Bei

    2005-01-01

    It is shown that the size effect recently observed by Espinosa et al., [J. Mech. Phys. Solids51, 47 (2003)] in pure tension tests on free thin metallic films can be explained by the existence of a boundary layer of fixed thickness, located at the surface of the film that was attached onto the substrate during deposition. The boundary layer is influenced by the epitaxial effects of crystal growth on the dislocation density and texture (manifested by prevalent crystal plane orientations). This influence is assumed to cause significantly elevated yield strength. Furthermore, the observed gradual postpeak softening, along with its size independence, which is observed in short film strips subjected to pure tension, is explained by slip localization, originating at notch-like defects, and by damage, which can propagate in a stable manner when the film strip under pure tension is sufficiently thin and short. For general applications, the present epitaxially influenced boundary layer model may be combined with the classical strain-gradient plasticity proposed by Gao et al., [J. Mech. Phys. Solids 47, 1239 (1999)], and it is shown that this combination is necessary to fit the test data on both pure tension and bending of thin films by one and the same theory. To deal with films having different crystal grain sizes, the Hall-Petch relation for the yield strength dependence on the grain size needs to be incorporated into the combined theory. For very thin films, in which a flattened grain fills the whole film thickness, the Hall-Petch relation needs a cutoff, and the asymptotic increase of yield strength with diminishing film thickness is then described by the extension of Nix's model of misfit dislocations by Zhang and Zhou [J. Adv. Mater. 38, 51 (2002)]. The final result is a proposal of a general theory for strength, size effect, hardening, and softening of thin metallic films

  6. Epitaxially influenced boundary layer model for size effect in thin metallic films

    Science.gov (United States)

    Bažant, Zdeněk P.; Guo, Zaoyang; Espinosa, Horacio D.; Zhu, Yong; Peng, Bei

    2005-04-01

    It is shown that the size effect recently observed by Espinosa et al., [J. Mech. Phys. Solids51, 47 (2003)] in pure tension tests on free thin metallic films can be explained by the existence of a boundary layer of fixed thickness, located at the surface of the film that was attached onto the substrate during deposition. The boundary layer is influenced by the epitaxial effects of crystal growth on the dislocation density and texture (manifested by prevalent crystal plane orientations). This influence is assumed to cause significantly elevated yield strength. Furthermore, the observed gradual postpeak softening, along with its size independence, which is observed in short film strips subjected to pure tension, is explained by slip localization, originating at notch-like defects, and by damage, which can propagate in a stable manner when the film strip under pure tension is sufficiently thin and short. For general applications, the present epitaxially influenced boundary layer model may be combined with the classical strain-gradient plasticity proposed by Gao et al., [J. Mech. Phys. Solids 47, 1239 (1999)], and it is shown that this combination is necessary to fit the test data on both pure tension and bending of thin films by one and the same theory. To deal with films having different crystal grain sizes, the Hall-Petch relation for the yield strength dependence on the grain size needs to be incorporated into the combined theory. For very thin films, in which a flattened grain fills the whole film thickness, the Hall-Petch relation needs a cutoff, and the asymptotic increase of yield strength with diminishing film thickness is then described by the extension of Nix's model of misfit dislocations by Zhang and Zhou [J. Adv. Mater. 38, 51 (2002)]. The final result is a proposal of a general theory for strength, size effect, hardening, and softening of thin metallic films.

  7. Strain dependent microstructural modifications of BiCrO{sub 3} epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kannan, Vijayanandhini, E-mail: kvnandhini@gmail.com [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale) (Germany); CNRS, University of Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Arredondo, Miryam; Johann, Florian; Hesse, Dietrich [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale) (Germany); Labrugere, Christine [CNRS, University of Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); CeCaMA, University of Bordeaux, ICMCB, F-33600 Pessac (France); Maglione, Mario [CNRS, University of Bordeaux, ICMCB, UPR 9048, F-33600 Pessac (France); Vrejoiu, Ionela [Max Planck Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Saale) (Germany)

    2013-10-31

    Strain-dependent microstructural modifications were observed in epitaxial BiCrO{sub 3} (BCO) thin films fabricated on single crystalline substrates, utilizing pulsed laser deposition. The following conditions were employed to modify the epitaxial-strain: (i) in-plane tensile strain, BCO{sub STO} [BCO grown on buffered SrTiO{sub 3} (001)] and in-plane compressive strain, BCO{sub NGO} [BCO grown on buffered NdGaO{sub 3} (110)] and (ii) varying BCO film thickness. A combination of techniques like X-ray diffraction, X-ray photoelectron spectroscopy (XPS) and high resolution transmission electron microscopy (TEM) was used to analyse the epitaxial growth quality and the microstructure of BCO. Our studies revealed that in the case of BCO{sub STO}, a coherent interface with homogeneous orthorhombic phase is obtained only for BCO film with thicknesses, d < 50 nm. All the BCO{sub STO} films with d ≥ 50 nm were found to be strain-relaxed with an orthorhombic phase showing 1/2 <100> and 1/4 <101> satellite reflections, the latter oriented at 45° from orthorhombic diffraction spots. High angle annular dark field scanning TEM of these films strongly suggested that the satellite reflections, 1/2 <100> and 1/4 <101>, originate from the atomic stacking sequence changes (or “modulated structure”) as reported for polytypes, without altering the chemical composition. The unaltered stoichiometry was confirmed by estimating both valency of Bi and Cr cations by surface and in-depth XPS analysis as well as the stoichiometric ratio (1 Bi:1 Cr) using scanning TEM–energy dispersive X-ray analysis. In contrast, compressively strained BCO{sub NGO} films exhibited monoclinic symmetry without any structural modulations or interfacial defects, up to d ∼ 200 nm. Our results indicate that both the substrate-induced in-plane epitaxial strain and the BCO film thickness are the crucial parameters to stabilise a homogeneous BCO phase in an epitaxially grown film. - Highlights: • Phase pure

  8. Enhancement of L10 ordering with the c-axis perpendicular to the substrate in FePt alloy film by using an epitaxial cap-layer

    Directory of Open Access Journals (Sweden)

    Mitsuru Ohtake

    2017-05-01

    Full Text Available FePt alloy thin films with cap-layers of MgO or C are prepared on MgO(001 single-crystal substrates by using a two-step method consisting of low-temperature deposition at 200 °C followed by high-temperature annealing at 600 °C. The FePt film thickness is fixed at 10 nm, whereas the cap-layer thickness is varied from 1 to 10 nm. The influences of cap-layer material and cap-layer thickness on the variant structure and the L10 ordering are investigated. Single-crystal FePt(001 films with disordered fcc structure (A1 grow epitaxially on the substrates at 200 °C. Single-crystal MgO(001 cap-layers grow epitaxially on the FePt films, whereas the structure of C cap-layers is amorphous. The phase transformation from A1 to L10 occurs when the films are annealed at 600 °C. The FePt films with MgO cap-layers thicker than 2 nm consist of L10(001 variant with the c-axis perpendicular to the substrate surface, whereas those with C cap-layers involve small volumes of L10(100 and (010 variants with the c-axis lying in the film plane. The in-plane and the out-of-plane lattices are respectively more expanded and contracted in the continuous-lattice MgO/FePt/MgO structure due to accommodations of misfits of FePt film with respect to not only the MgO substrate but also the MgO cap-layer. The lattice deformation promotes phase transformation along the perpendicular direction and L10 ordering. The FePt films consisting of only L10(001 variant show strong perpendicular magnetic anisotropies and low in-plane coercivities. The present study shows that an introduction of epitaxial cap-layer is effective in controlling the c-axis perpendicular to the substrate surface.

  9. Controllable Photovoltaic Effect of Microarray Derived from Epitaxial Tetragonal BiFeO3 Films.

    Science.gov (United States)

    Lu, Zengxing; Li, Peilian; Wan, Jian-Guo; Huang, Zhifeng; Tian, Guo; Pan, Danfeng; Fan, Zhen; Gao, Xingsen; Liu, Jun-Ming

    2017-08-16

    Recently, the ferroelectric photovoltaic (FePV) effect has attracted great interest due to its potential in developing optoelectronic devices such as solar cell and electric-optical sensors. It is important for actual applications to realize a controllable photovoltaic process in ferroelectric-based materials. In this work, we prepared well-ordered microarrays based on epitaxially tetragonal BiFeO 3 (T-BFO) films by the pulsed laser deposition technique. The polarization-dependent photocurrent image was directly observed by a conductive atomic force microscope under ultraviolet illumination. By choosing a suitable buffer electrode layer and controlling the ferroelectric polarization in the T-BFO layer, we realized the manipulation of the photovoltaic process. Moreover, based on the analysis of the band structure, we revealed the mechanism of manipulating the photovoltaic process and attributed it to the competition between two key factors, i.e., the internal electric field caused by energy band alignments at interfaces and the depolarization field induced by the ferroelectric polarization in T-BFO. This work is very meaningful for deeply understanding the photovoltaic process of BiFeO 3 -based devices at the microscale and provides us a feasible avenue for developing data storage or logic switching microdevices based on the FePV effect.

  10. Anisotropic magnetoresistance across Verwey transition in charge ordered Fe3O4 epitaxial films

    KAUST Repository

    Liu, Xiang

    2017-12-26

    The anisotropic magnetoresistance (AMR) near the Verwey temperature (T-V) is investigated in charge ordered Fe3O4 epitaxial films. When the temperature continuously decreases below T-V, the symmetry of AMR in Fe3O4(100) film evolves from twofold to fourfold at a magnetic field of 50 kOe, where the magnetic field is parallel to the film surface, whereas AMR in Fe3O4(111) film maintains twofold symmetry. By analyzing AMR below T-V, it is found that the Verwey transition contains two steps, including a fast charge ordering process and a continuous formation process of trimeron, which is comfirmed by the temperature-dependent Raman spectra. Just below T-V, the twofold AMR in Fe3O4(100) film originates from uniaxial magnetic anisotropy. The fourfold AMR at a lower temperature can be ascribed to the in-plane trimerons. By comparing the AMR in the films with two orientations, it is found that the trimeron shows a smaller resistivity in a parallel magnetic field. The field-dependent AMR results show that the trimeron-sensitive field has a minimum threshold of about 2 kOe.

  11. Strain Induced Magnetism in SrRuO3 Epitaxial Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Grutter, A.; Wong, F.; Arenholz, E.; Liberati, M.; Suzuki, Y.

    2010-01-10

    Epitaxial SrRuO{sub 3} thin films were grown on SrTiO{sub 3}, (LaAlO{sub 3}){sub 0.3}(SrAlO{sub 3}){sub 0.7} and LaAlO{sub 3} substrates inducing different biaxial compressive strains. Coherently strained SrRuO{sub 3} films exhibit enhanced magnetization compared to previously reported bulk and thin film values of 1.1-1.6 {micro}{sub B} per formula unit. A comparison of (001) and (110) SrRuO{sub 3} films on each substrate indicates that films on (110) oriented have consistently higher saturated moments than corresponding (001) films. These observations indicate the importance of lattice distortions in controlling the magnetic ground state in this transitional metal oxide.

  12. Molecular-Beam Epitaxially Grown MgB2 Thin Films and Superconducting Tunnel Junctions

    Directory of Open Access Journals (Sweden)

    Jean-Baptiste Laloë

    2011-01-01

    Full Text Available Since the discovery of its superconducting properties in 2001, magnesium diboride has generated terrific scientific and engineering research interest around the world. With a of 39 K and two superconducting gaps, MgB2 has great promise from the fundamental point of view, as well as immediate applications. Several techniques for thin film deposition and heterojunction formation have been established, each with its own advantages and drawbacks. Here, we will present a brief overview of research based on MgB2 thin films grown by molecular beam epitaxy coevaporation of Mg and B. The films are smooth and highly crystalline, and the technique allows for virtually any heterostructure to be formed, including all-MgB2 tunnel junctions. Such devices have been characterized, with both quasiparticle and Josephson tunneling reported. MgB2 remains a material of great potential for a multitude of further characterization and exploration research projects and applications.

  13. Modeling the transport properties of epitaxially grown thermoelectric oxide thin films using spectroscopic ellipsometry

    KAUST Repository

    Sarath Kumar, S. R.

    2012-02-01

    The influence of oxygen vacancies on the transport properties of epitaxial thermoelectric (Sr,La)TiO3 thin films is determined using electrical and spectroscopic ellipsometry (SE) measurements. Oxygen vacancy concentration was varied by ex-situ annealing in Ar and Ar/H2. All films exhibited degenerate semiconducting behavior, and electrical conductivity decreased (258–133 S cm−1) with increasing oxygen content. Similar decrease in the Seebeck coefficient is observed and attributed to a decrease in effective mass (7.8–3.2 me ), as determined by SE. Excellent agreement between transport properties deduced from SE and direct electrical measurements suggests that SE is an effective tool for studying oxide thin film thermoelectrics.

  14. MnSi nanostructures obtained from epitaxially grown thin films: magnetotransport and Hall effect

    Science.gov (United States)

    Schroeter, D.; Steinki, N.; Schilling, M.; Fernández Scarioni, A.; Krzysteczko, P.; Dziomba, T.; Schumacher, H. W.; Menzel, D.; Süllow, S.

    2018-06-01

    We present a comparative study of the (magneto)transport properties, including Hall effect, of bulk, epitaxially grown thin film and nanostructured MnSi. In order to set our results in relation to published data we extensively characterize our materials, this way establishing a comparatively good sample quality. Our analysis reveals that in particular for thin film and nanostructured material, there are extrinsic and intrinsic contributions to the electronic transport properties, which by modeling the data we separate out. Finally, we discuss our Hall effect data of nanostructured MnSi under consideration of the extrinsic contributions and with respect to the question of the detection of a topological Hall effect in a skyrmionic lattice.

  15. Tuning of Transport and Magnetic Properties in Epitaxial LaMnO3+δ Thin Films

    Directory of Open Access Journals (Sweden)

    J. Chen

    2014-01-01

    Full Text Available The effect of compressive strain on the transport and magnetic properties of epitaxial LaMnO3+δ thin films has been investigated. It is found that the transport and magnetic properties of the LaMnO3+δ thin films grown on the LaAlO3 substrates can be tuned by the compressive strain through varying film thickness. And the insulator-metal transition, charge/orbital ordering transition, and paramagnetic-ferromagnetic transition are suppressed by the compressive strain. Consequently, the related electronic and magnetic transition temperatures decrease with an increase in the compressive strain. The present results can be explained by the strain-controlled lattice deformation and the consequent orbital occupation. It indicates that the lattice degree of freedom is crucial for understanding the transport and magnetic properties of the strongly correlated LaMnO3+δ.

  16. Modeling the transport properties of epitaxially grown thermoelectric oxide thin films using spectroscopic ellipsometry

    KAUST Repository

    Sarath Kumar, S. R.; Abutaha, Anas I.; Hedhili, Mohamed N.; Alshareef, Husam N.

    2012-01-01

    The influence of oxygen vacancies on the transport properties of epitaxial thermoelectric (Sr,La)TiO3 thin films is determined using electrical and spectroscopic ellipsometry (SE) measurements. Oxygen vacancy concentration was varied by ex-situ annealing in Ar and Ar/H2. All films exhibited degenerate semiconducting behavior, and electrical conductivity decreased (258–133 S cm−1) with increasing oxygen content. Similar decrease in the Seebeck coefficient is observed and attributed to a decrease in effective mass (7.8–3.2 me ), as determined by SE. Excellent agreement between transport properties deduced from SE and direct electrical measurements suggests that SE is an effective tool for studying oxide thin film thermoelectrics.

  17. Diamagnetism to ferromagnetism in Sr-substituted epitaxial BaTiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Singamaneni, Srinivasa Rao, E-mail: ssingam@ncsu.edu; Prater, John T. [Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States); Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Punugupati, Sandhyarani; Narayan, Jagdish [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2016-04-04

    We report on the ferromagnetic-like behavior in otherwise diamagnetic BaTiO{sub 3} (BTO) thin films upon doping with non-magnetic element Sr having the composition Ba{sub 0.4}Sr{sub 0.6}TiO{sub 3} (BST). The epitaxial integration of BST (∼800 nm) thick films on Si (100) substrate was achieved using MgO (40 nm) and TiN (20 nm) as buffer layers to prepare BST/MgO/TiN/Si (100) heterostructure by pulsed laser deposition. The c-axis oriented and cube-on-cube epitaxial BST is formed on Si (100) as evidenced by the in-plane and out-of-plane X-ray diffraction. All the deposited films are relaxed through domain matching epitaxy paradigm as observed from X-ray diffraction pattern and A{sub 1}TO{sub 3} mode (at 521.27 cm{sup −1}) of Raman spectra. As-deposited BST thin films reveal ferromagnetic-like properties, which persist up to 400 K. The magnetization decreases two-fold upon oxygen annealing. In contrast, as-deposited un-doped BTO films show diamagnetism. Electron spin resonance measurements reveal no evidence of external magnetic impurities. XRD and X-ray photoelectron spectroscopy spectra show significant changes influenced by Sr doping in BTO. The ferromagnetic-like behavior in BST could be due to the trapped electron donors from oxygen vacancies resulting from Sr-doping.

  18. Preparation and characterization of epitaxially grown unsupported yttria-stabilized zirconia (YSZ) thin films

    Energy Technology Data Exchange (ETDEWEB)

    Götsch, Thomas; Mayr, Lukas [Institute of Physical Chemistry, Universität Innsbruck, A-6020 Innsbruck (Austria); Stöger-Pollach, Michael [University Service Center for Transmission Electron Microscopy (USTEM), Vienna University of Technology, A-1040 Vienna (Austria); Klötzer, Bernhard [Institute of Physical Chemistry, Universität Innsbruck, A-6020 Innsbruck (Austria); Penner, Simon, E-mail: simon.penner@uibk.ac.at [Institute of Physical Chemistry, Universität Innsbruck, A-6020 Innsbruck (Austria)

    2015-03-15

    Highlights: • Preparation of unsupported yttrium-stabilized zirconia films. • Control of ordering and epitaxy by temperature of deposition template. • Adjustment of film defectivity by deposition and post-oxidation temperature. • Reproducibility of target stoichiometry in the deposited films. • Lateral and vertical chemical homogeneity. - Abstract: Epitaxially grown, chemically homogeneous yttria-stabilized zirconia thin films (“YSZ”, 8 mol% Y{sub 2}O{sub 3}) are prepared by direct-current sputtering onto a single-crystalline NaCl(0 0 1) template at substrate temperatures ≥493 K, resulting in unsupported YSZ films after floating off NaCl in water. A combined methodological approach by dedicated (surface science) analytical characterization tools (transmission electron microscopy and diffraction, atomic force microscopy, angle-resolved X-ray photoelectron spectroscopy) reveals that the film grows mainly in a [0 0 1] zone axis and no Y-enrichment in surface or bulk regions takes place. In fact, the Y-content of the sputter target is preserved in the thin films. Analysis of the plasmon region in EEL spectra indicates a defective nature of the as-deposited films, which can be suppressed by post-deposition oxidation at 1073 K. This, however, induces considerable sintering, as deduced from surface morphology measurements by AFM. In due course, the so-prepared unsupported YSZ films might act as well-defined model systems also for technological applications.

  19. Epitaxial thin film growth of LiH using a liquid-Li atomic template

    Energy Technology Data Exchange (ETDEWEB)

    Oguchi, Hiroyuki, E-mail: oguchi@nanosys.mech.tohoku.ac.jp [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan); Micro System Integration Center (muSIC), Tohoku University, Sendai 980-0845 (Japan); Ikeshoji, Tamio; Orimo, Shin-ichi [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Ohsawa, Takeo; Shiraki, Susumu; Hitosugi, Taro [Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577 (Japan); Kuwano, Hiroki [Department of Nanomechanics, Tohoku University, Sendai 980-8579 (Japan)

    2014-11-24

    We report on the synthesis of lithium hydride (LiH) epitaxial thin films through the hydrogenation of a Li melt, forming abrupt LiH/MgO interface. Experimental and first-principles molecular dynamics studies reveal a comprehensive microscopic picture of the crystallization processes, which sheds light on the fundamental atomistic growth processes that have remained unknown in the vapor-liquid-solid method. We found that the periodic structure that formed, because of the liquid-Li atoms at the film/MgO-substrate interface, serves as an atomic template for the epitaxial growth of LiH crystals. In contrast, films grown on the Al{sub 2}O{sub 3} substrates indicated polycrystalline films with a LiAlO{sub 2} secondary phase. These results and the proposed growth process provide insights into the preparation of other alkaline metal hydride thin films on oxides. Further, our investigations open the way to explore fundamental physics and chemistry of metal hydrides including possible phenomena that emerge at the heterointerfaces of metal hydrides.

  20. Epitaxial thin film growth of LiH using a liquid-Li atomic template

    International Nuclear Information System (INIS)

    Oguchi, Hiroyuki; Ikeshoji, Tamio; Orimo, Shin-ichi; Ohsawa, Takeo; Shiraki, Susumu; Hitosugi, Taro; Kuwano, Hiroki

    2014-01-01

    We report on the synthesis of lithium hydride (LiH) epitaxial thin films through the hydrogenation of a Li melt, forming abrupt LiH/MgO interface. Experimental and first-principles molecular dynamics studies reveal a comprehensive microscopic picture of the crystallization processes, which sheds light on the fundamental atomistic growth processes that have remained unknown in the vapor-liquid-solid method. We found that the periodic structure that formed, because of the liquid-Li atoms at the film/MgO-substrate interface, serves as an atomic template for the epitaxial growth of LiH crystals. In contrast, films grown on the Al 2 O 3 substrates indicated polycrystalline films with a LiAlO 2 secondary phase. These results and the proposed growth process provide insights into the preparation of other alkaline metal hydride thin films on oxides. Further, our investigations open the way to explore fundamental physics and chemistry of metal hydrides including possible phenomena that emerge at the heterointerfaces of metal hydrides

  1. Self-regulated growth of LaVO3 thin films by hybrid molecular beam epitaxy

    International Nuclear Information System (INIS)

    Zhang, Hai-Tian; Engel-Herbert, Roman; Dedon, Liv R.; Martin, Lane W.

    2015-01-01

    LaVO 3 thin films were grown on SrTiO 3 (001) by hybrid molecular beam epitaxy. A volatile metalorganic precursor, vanadium oxytriisopropoxide (VTIP), and elemental La were co-supplied in the presence of a molecular oxygen flux. By keeping the La flux fixed and varying the VTIP flux, stoichiometric LaVO 3 films were obtained for a range of cation flux ratios, indicating the presence of a self-regulated growth window. Films grown under stoichiometric conditions were found to have the largest lattice parameter, which decreased monotonically with increasing amounts of excess La or V. Energy dispersive X-ray spectroscopy and Rutherford backscattering measurements were carried out to confirm film compositions. Stoichiometric growth of complex vanadate thin films independent of cation flux ratios expands upon the previously reported self-regulated growth of perovskite titanates using hybrid molecular beam epitaxy, thus demonstrating the general applicability of this growth approach to other complex oxide materials, where a precise control over film stoichiometry is demanded by the application

  2. Reactively sputtered epitaxial γ′-Fe4N films: Surface morphology, microstructure, magnetic and electrical transport properties

    KAUST Repository

    Mi, Wenbo; Guo, Zaibing; Feng, X. P.; Bai, Haili

    2013-01-01

    Epitaxial γ′-Fe4N films with (1 0 0) and (1 1 0) orientations have been fabricated by reactive sputtering; these films were characterized by X-ray θ-2θ and φ scans, pole figures and high-resolution transmission electron microscopy. The film surface

  3. Ferromagnetism and nonmetallic transport of thin-film α-FeSi(2): a stabilized metastable material.

    Science.gov (United States)

    Cao, Guixin; Singh, D J; Zhang, X-G; Samolyuk, German; Qiao, Liang; Parish, Chad; Jin, Ke; Zhang, Yanwen; Guo, Hangwen; Tang, Siwei; Wang, Wenbin; Yi, Jieyu; Cantoni, Claudia; Siemons, Wolter; Payzant, E Andrew; Biegalski, Michael; Ward, T Z; Mandrus, David; Stocks, G M; Gai, Zheng

    2015-04-10

    A metastable phase α-FeSi_{2} was epitaxially stabilized on a silicon substrate using pulsed laser deposition. Nonmetallic and ferromagnetic behaviors are tailored on α-FeSi_{2} (111) thin films, while the bulk material of α-FeSi_{2} is metallic and nonmagnetic. The transport property of the films renders two different conducting states with a strong crossover at 50 K, which is accompanied by the onset of a ferromagnetic transition as well as a substantial magnetoresistance. These experimental results are discussed in terms of the unusual electronic structure of α-FeSi_{2} obtained within density functional calculations and Boltzmann transport calculations with and without strain. Our finding sheds light on achieving ferromagnetic semiconductors through both their structure and doping tailoring, and provides an example of a tailored material with rich functionalities for both basic research and practical applications.

  4. Permanent magnetic properties of NdFe12Nx sputtered films epitaxially grown on V buffer layer

    Science.gov (United States)

    Sato, T.; Ohsuna, T.; Yano, M.; Kato, A.; Kaneko, Y.

    2017-08-01

    To clarify the magnetic properties of the NdFe12Nx compound, which shows promise as a high-performance permanent magnet material, NdFe12Nx epitaxial films fabricated by using a V underlayer on MgO (100) single-crystalline substrates were investigated. Nd-Fe films deposited on a V underlayer consist of NdFe12 grains, which have a c-axis orientation perpendicular to the film plane, as well as α-Fe and Nd2Fe17 phases. In the Nd-Fe-N film obtained by subsequent nitridation of the Nd-Fe film, NdFe12Nx grains grew as the dominant phase, and the volume fractions of α-Fe phases dropped below 5%. A Nd-Fe-N film with a thickness of 50 nm exhibits a saturation magnetization (Ms) of 1.7 T, an anisotropy field (HA) of ˜60 kOe, a magnetocrystalline anisotropy energy (K1) of ˜4.1 MJ/m3, and a coercivity (Hc) of 1.7 kOe. The Hc of a Nd-Fe-N film with a thickness of 25 nm is 4.3 kOe. These results indicate that NdFe12Nx compounds have a superior Ms compared to Nd-Fe-B magnets, while the enhancement in Hc is indispensable.

  5. Non-Epitaxial Thin-Film Indium Phosphide Photovoltaics: Growth, Devices, and Cost Analysis

    Science.gov (United States)

    Zheng, Maxwell S.

    In recent years, the photovoltaic market has grown significantly as module prices have continued to come down. Continued growth of the field requires higher efficiency modules at lower manufacturing costs. In particular, higher efficiencies reduce the area needed for a given power output, thus reducing the downstream balance of systems costs that scale with area such as mounting frames, installation, and soft costs. Cells and modules made from III-V materials have the highest demonstrated efficiencies to date but are not yet at the cost level of other thin film technologies, which has limited their large-scale deployment. There is a need for new materials growth, processing and fabrication techniques to address this major shortcoming of III-V semiconductors. Chapters 2 and 3 explore growth of InP on non-epitaxial Mo substrates by MOCVD and CSS, respectively. The results from these studies demonstrate that InP optoelectronic quality is maintained even by growth on non-epitaxial metal substrates. Structural characterization by SEM and XRD show stoichiometric InP can be grown in complete thin films on Mo. Photoluminescence measurements show peak energies and widths to be similar to those of reference wafers of similar doping concentrations. In chapter 4 the TF-VLS growth technique is introduced and cells fabricated from InP produced by this technique are characterized. The TF-VLS method results in lateral grain sizes of >500 mum and exhibits superior optoelectronic quality. First generation devices using a n-TiO2 window layer along with p-type TF-VLS grown InP have reached ˜12.1% power conversion efficiency under 1 sun illumination with VOC of 692 mV, JSC of 26.9 mA/cm2, and FF of 65%. The cells are fabricated using all non-epitaxial processing. Optical measurements show the InP in these cells have the potential to support a higher VOC of ˜795 mV, which can be achieved by improved device design. Chapter 5 describes a cost analysis of a manufacturing process using an

  6. Epitaxial properties of ZnO thin films on SrTiO3 substrates grown by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Wei, X. H.; Li, Y. R.; Zhu, J.; Huang, W.; Zhang, Y.; Luo, W. B.; Ji, H.

    2007-01-01

    Epitaxial ZnO thin films with different orientations have been grown by laser molecular beam epitaxy on (001)- (011)-, and (111)-orientated SrTiO 3 single-crystal substrates. The growth behavior was in situ monitored by reflection high-energy electron diffraction, and the epitaxial orientation relations were reconfirmed by ex situ x-ray diffraction measurements. In the case of ZnO on SrTiO 3 (001), four orthogonal domains coexisted in the ZnO epilayer, i.e., ZnO(110) parallel SrTiO 3 (001) and ZnO[-111] parallel SrTiO 3 . For (011)- and (111)-orientated substrates, single-domain epitaxy with c axial orientation was observed, in which the in-plane relationship was ZnO[110] parallel SrTiO 3 [110] irrespective of the substrate orientations. Additionally, the crystalline quality of ZnO on SrTiO 3 (111) was better than that of ZnO on SrTiO 3 (011) because of the same symmetry between the (111) substrates and (001) films. The obtained results can be attributed to the difference of the in-plane crystallographic symmetry. Furthermore, those alignments can be explained by the interface stress between the substrates and the films

  7. In-situ grazing incidence X-ray diffraction measurements of relaxation in Fe/MgO/Fe epitaxial magnetic tunnel junctions during annealing

    Energy Technology Data Exchange (ETDEWEB)

    Eastwood, D.S. [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom); Ali, M.; Hickey, B.J. [Department of Physics and Astronomy, University of Leeds, Leeds LS2 1JT (United Kingdom); Tanner, B.K., E-mail: b.k.tanner@dur.ac.uk [Department of Physics, Durham University, South Road, Durham DH1 3LE (United Kingdom)

    2013-12-15

    The relaxation of Fe/MgO/Fe tunnel junctions grown epitaxially on (001) MgO substrates has been measured by in-situ grazing incidence in-plane X-ray diffraction during the thermal annealing cycle. We find that the Fe layers are fully relaxed and that there are no irreversible changes during annealing. The MgO tunnel barrier is initially strained towards the Fe but on annealing, relaxes and expands towards the bulk MgO value. The strain dispersion is reduced in the MgO by about 40% above 480 K post-annealing. There is no significant change in the “twist” mosaic. Our results indicate that the final annealing stage of device fabrication, crucial to attainment of high TMR, induces substantial strain relaxation at the MgO barrier/lower Fe electrode interface. - Highlights: • Lattice relaxation of Fe/MgO/Fe epitaxial magnetic tunnel junctions measured. • In-plane lattice parameter of Fe equal to bulk value; totally relaxed. • MgO barrier initially strained towards the Fe but relaxes on annealing. • Reduction in strain dispersion in the MgO barrier by 40% above about 470 K. • No change in the in-plane “twist” mosaic throughout the annealing cycle.

  8. Microstructural and domain effects in epitaxial CoFe2O4 films on MgO with perpendicular magnetic anisotropy

    International Nuclear Information System (INIS)

    Comes, Ryan; Gu Man; Khokhlov, Mikhail; Lu Jiwei; Wolf, Stuart A.

    2012-01-01

    CoFe 2 O 4 (CFO) epitaxial thin films of various thicknesses were grown on MgO substrates using the pulsed electron-beam deposition technique. The films have excellent in-plane coherence with the substrate, exhibit layer-by-layer growth and have well-defined thickness fringes in x-ray diffraction measurements. Atomic force microscopy (AFM) measurements indicate that misfit dislocations form in thicker films and the critical thickness for the dislocation formation is estimated. Perpendicular magnetic anisotropy in CFO due to epitaxial in-plane tensile strain from the substrate was found. A stripe-like domain structure in the demagnetized state is demonstrated using magnetic force microscopy (MFM), in agreement with previous predictions. Coercivity increased in thicker films, which is explained by domain wall pinning due to misfit dislocations at the CFO/MgO interface. - Highlights: → X-ray diffraction and rocking curves indicate films are amongst highest quality in the literature. → Domain structure of CoFe 2 O 4 films on MgO was found to be stripe-like using MFM. → Critical thickness for misfit dislocations estimated and agrees with experiment. → Effect of misfit dislocations on surface morphology explained. → Role of dislocations and antiphase boundaries in domain wall formation and motion explained.

  9. Development of thin pixel detectors on epitaxial silicon for HEP experiments

    International Nuclear Information System (INIS)

    Boscardin, Maurizio; Calvo, Daniela; Giacomini, Gabriele; Wheadon, Richard; Ronchin, Sabina; Zorzi, Nicola

    2013-01-01

    The foreseen luminosity of the new experiments in High Energy Physics will require that the innermost layer of vertex detectors will be able to sustain fluencies up to 10 16 n eq /cm 2 . Moreover, in many experiments there is a demand for the minimization of the material budget of the detectors. Therefore, thin pixel devices fabricated on n-type silicon are a natural choice to fulfill these requirements due to their rad-hard performances and low active volume. We present an R and D activity aimed at developing a new thin hybrid pixel device in the framework of PANDA experiments. The detector of this new device is a p-on-n pixel sensor realized starting from epitaxial silicon wafers and back thinned up to 50–100 μm after process completion. We present the main technological steps and some electrical characterization on the fabricated devices before and after back thinning and after bump bonding to the front-end electronics

  10. Development of thin pixel detectors on epitaxial silicon for HEP experiments

    Energy Technology Data Exchange (ETDEWEB)

    Boscardin, Maurizio, E-mail: boscardi@fbk.eu [FBK, CMM, Via Sommarive 18, I-38123 Povo, Trento (Italy); Calvo, Daniela [INFN and Dipartimento di Fisica, Università di Torino, Via Pietro Giuria, I-10125 Torino (Italy); Giacomini, Gabriele [FBK, CMM, Via Sommarive 18, I-38123 Povo, Trento (Italy); Wheadon, Richard [INFN and Dipartimento di Fisica, Università di Torino, Via Pietro Giuria, I-10125 Torino (Italy); Ronchin, Sabina; Zorzi, Nicola [FBK, CMM, Via Sommarive 18, I-38123 Povo, Trento (Italy)

    2013-08-01

    The foreseen luminosity of the new experiments in High Energy Physics will require that the innermost layer of vertex detectors will be able to sustain fluencies up to 10{sup 16} n{sub eq}/cm{sup 2}. Moreover, in many experiments there is a demand for the minimization of the material budget of the detectors. Therefore, thin pixel devices fabricated on n-type silicon are a natural choice to fulfill these requirements due to their rad-hard performances and low active volume. We present an R and D activity aimed at developing a new thin hybrid pixel device in the framework of PANDA experiments. The detector of this new device is a p-on-n pixel sensor realized starting from epitaxial silicon wafers and back thinned up to 50–100 μm after process completion. We present the main technological steps and some electrical characterization on the fabricated devices before and after back thinning and after bump bonding to the front-end electronics.

  11. Optimization studies of HgSe thin film deposition by electrochemical atomic layer epitaxy (EC-ALE)

    CSIR Research Space (South Africa)

    Venkatasamy, V

    2006-06-01

    Full Text Available Studies of the optimization of HgSe thin film deposition using electrochemical atomic layer epitaxy (EC-ALE) are reported. Cyclic voltammetry was used to obtain approximate deposition potentials for each element. These potentials were then coupled...

  12. Molecular beam epitaxy growth of InSb1-xBix thin films

    DEFF Research Database (Denmark)

    Yuxin Song; Shumin Wang; Saha Roy, Ivy

    2013-01-01

    Molecular beam epitaxy growth for InSb1-xBix thin films on (100) GaAs substrates is reported. Successful Bi incorporation for 2% is achieved, and up to 70% of the incorporated Bi atoms are at substitutional sites. The effects of growth parameters on Bi incorporation and surface morphology are stu...

  13. Quantized dissipation and random telegraph voltage noise in epitaxial BiSrCaCuO thin films

    International Nuclear Information System (INIS)

    Jung, G.; Savo, B.; Vecchione, A.

    1993-01-01

    In this paper we report on the observation of correlated multiple-voltage RTN switching in high quality epitaxial BiSrCaCuO thin film. We ascribe the correlated noise to the quantization of flux flow dissipation in the film. (orig.)

  14. Advanced fabrication method for the preparation of MOF thin films: Liquid-phase epitaxy approach meets spin coating method.

    KAUST Repository

    Chernikova, Valeriya; Shekhah, Osama; Eddaoudi, Mohamed

    2016-01-01

    Here we report a new and advanced method for the fabrication of highly oriented/polycrystalline metal-organic framework (MOF) thin films. Building on the attractive features of the liquid-phase epitaxy (LPE) approach, a facile spin coating method

  15. Ultra-smooth epitaxial Ge grown on Si(001) utilizing a thin C-doped Ge buffer layer

    KAUST Repository

    Mantey, J.; Hsu, W.; James, J.; Onyegam, E. U.; Guchhait, S.; Banerjee, S. K.

    2013-01-01

    Here, we present work on epitaxial Ge films grown on a thin buffer layer of C doped Ge (Ge:C). The growth rate of Ge:C is found to slow over time and is thus unsuitable for thick (>20 nm) layers. We demonstrate Ge films from 10 nm to >150 nm

  16. Unit cell determination of epitaxial thin films based on reciprocal space vectors by high-resolution X-ray diffractometry

    OpenAIRE

    Yang, Ping; Liu, Huajun; Chen, Zuhuang; Chen, Lang; Wang, John

    2013-01-01

    A new approach, based on reciprocal space vectors (RSVs), is developed to determine Bravais lattice types and accurate lattice parameters of epitaxial thin films by high-resolution X-ray diffractometry (HR-XRD). The lattice parameters of single crystal substrates are employed as references to correct the systematic experimental errors of RSVs of thin films. The general procedure is summarized, involving correction of RSVs, derivation of raw unit cell, subsequent conversion to the Niggli unit ...

  17. Microstructure evolution in pulsed laser deposited epitaxial Ge-Sb-Te chalcogenide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ross, Ulrich; Lotnyk, Andriy, E-mail: andriy.lotnyk@iom-leipzig.de; Thelander, Erik; Rauschenbach, Bernd

    2016-08-15

    The thin film deposition and structure of highly oriented telluride compounds is of particular interest for phase-change applications in next-generation non-volatile memory such as heterostructure designs, as well as for the investigation of novel optical, thermoelectric and ferroelectric properties in layered telluride compounds. In this work, epitaxial Ge-Sb-Te thin films were successfully produced by pulsed laser deposition on silicon with and without amorphous SiO{sub x} interlayer at elevated process temperatures from a Ge{sub 2}Sb{sub 2}Te{sub 5} target. Aberration-corrected high-resolution scanning transmission electron microscopy (STEM) imaging reveals a distinct interface configuration of the trigonal phase connected by a quasi van der Waals gap (vacancy) to the Sb/Te-passivated single crystalline Si substrate, yet also an intermediate textured growth regime in which the substrate symmetry is only weakly coupled to the thin film orientation, as well as strong deviation of composition at high deposition temperatures. Textured growth of Ge-Sb-Te thin film was also observed on SiO{sub x}/Si substrate with no evidence of an intermediate Sb/Te surface layer on top of an SiO{sub x} layer. In addition, particular defect structures formed by local reorganization of the stacking sequence across the vacancy gap are observed and appear to be intrinsic to these van der Waals-layered compounds. Theoretical image simulations of preferred stacking sequences can be matched to individual building blocks in the Ge-Sb-Te grain. - Highlights: • Atomic-resolution Cs-corrected STEM imaging of PLD deposited Ge-Sb-Te thin films. • Changing of overall composition with increasing deposition temperature. • Direct imaging of surface passivation Sb/Te layer at the Ge-Sb-Te/Si(111) interface. • The Sb/Te passivation layer is not a prerequisite for highly oriented growth of Ge-Sb-Te thin films.

  18. Interfacial Exchange Coupling Induced Anomalous Anisotropic Magnetoresistance in Epitaxial γ′-Fe 4 N/CoN Bilayers

    KAUST Repository

    Li, Zirun; Mi, Wenbo; Wang, Xiaocha; Zhang, Xixiang

    2015-01-01

    Anisotropic magnetoresistance (AMR) of the facing-target reactively sputtered epitaxial γ′-Fe4N/CoN bilayers is investigated. The phase shift and rectangular-like AMR appears at low temperatures, which can be ascribed to the interfacial exchange coupling. The phase shift comes from the exchange bias (EB) that makes the magnetization lag behind a small field. When the γ′-Fe4N thickness increases, the rectangular-like AMR appears. The rectangular-like AMR should be from the combined contributions including the EB-induced unidirectional anisotropy, intrinsic AMR of γ′-Fe4N layer and interfacial spin scattering.

  19. Charge ordering in reactive sputtered (1 0 0) and (1 1 1) oriented epitaxial Fe3O4 films

    KAUST Repository

    Mi, Wenbo

    2013-06-01

    Epitaxial Fe3O4 films with (1 0 0) and (1 1 1) orientations fabricated by reactive sputtering present simultaneous magnetic and electrical transitions at 120 and 124 K, respectively. The symmetry decreases from face-centered cubic to monoclinic structure across the Verwey transition. Extra spots with different brightness at different positions appear in selected-area diffraction patterns at 95 K. The extra spots come from the charge ordering of outer-layer electrons of Fe atoms, and should be related to the charge ordering of octahedral B-site Fe atoms. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  20. Interfacial Exchange Coupling Induced Anomalous Anisotropic Magnetoresistance in Epitaxial γ′-Fe 4 N/CoN Bilayers

    KAUST Repository

    Li, Zirun

    2015-02-02

    Anisotropic magnetoresistance (AMR) of the facing-target reactively sputtered epitaxial γ′-Fe4N/CoN bilayers is investigated. The phase shift and rectangular-like AMR appears at low temperatures, which can be ascribed to the interfacial exchange coupling. The phase shift comes from the exchange bias (EB) that makes the magnetization lag behind a small field. When the γ′-Fe4N thickness increases, the rectangular-like AMR appears. The rectangular-like AMR should be from the combined contributions including the EB-induced unidirectional anisotropy, intrinsic AMR of γ′-Fe4N layer and interfacial spin scattering.

  1. Charge ordering in reactive sputtered (1 0 0) and (1 1 1) oriented epitaxial Fe3O4 films

    KAUST Repository

    Mi, Wenbo; Guo, Zaibing; Wang, Qingxiao; Yang, Yang; Bai, Haili

    2013-01-01

    Epitaxial Fe3O4 films with (1 0 0) and (1 1 1) orientations fabricated by reactive sputtering present simultaneous magnetic and electrical transitions at 120 and 124 K, respectively. The symmetry decreases from face-centered cubic to monoclinic structure across the Verwey transition. Extra spots with different brightness at different positions appear in selected-area diffraction patterns at 95 K. The extra spots come from the charge ordering of outer-layer electrons of Fe atoms, and should be related to the charge ordering of octahedral B-site Fe atoms. © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. In-plane microwave dielectric properties of paraelectric barium strontium titanate thin films with anisotropic epitaxy

    Science.gov (United States)

    Simon, W. K.; Akdogan, E. K.; Safari, A.; Bellotti, J. A.

    2005-08-01

    In-plane dielectric properties of ⟨110⟩ oriented epitaxial (Ba0.60Sr0.40)TiO3 thin films in the thickness range from 25-1200nm have been investigated under the influence of anisotropic epitaxial strains from ⟨100⟩ NdGaO3 substrates. The measured dielectric properties show strong residual strain and in-plane directional dependence. Below 150nm film thickness, there appears to be a phase transition due to the anisotropic nature of the misfit strain relaxation. In-plane relative permittivity is found to vary from as much as 500-150 along [11¯0] and [001] respectively, in 600nm thick films, and from 75 to 500 overall. Tunability was found to vary from as much as 54% to 20% in all films and directions, and in a given film the best tunability is observed along the compressed axis in a mixed strain state, 54% along [11¯0] in the 600nm film for example.

  3. Strain induced room temperature ferromagnetism in epitaxial magnesium oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Zhenghe; Kim, Ki Wook [Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Nori, Sudhakar; Lee, Yi-Fang; Narayan, Jagdish [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Kumar, D. [Department of Mechanical Engineering, North Carolina A & T State University, Greensboro, North Carolina 27411 (United States); Wu, Fan [Princeton Institute for the Science and Technology of Materials (PRISM), Princeton University, Princeton, New Jersey 08540 (United States); Prater, J. T. [Materials Science Division, Army Research Office, Research Triangle Park, North Carolina 27709 (United States)

    2015-10-28

    We report on the epitaxial growth and room-temperature ferromagnetic properties of MgO thin films deposited on hexagonal c-sapphire substrates by pulsed laser deposition. The epitaxial nature of the films has been confirmed by both θ-2θ and φ-scans of X-ray diffraction pattern. Even though bulk MgO is a nonmagnetic insulator, we have found that the MgO films exhibit ferromagnetism and hysteresis loops yielding a maximum saturation magnetization up to 17 emu/cc and large coercivity, H{sub c} = 1200 Oe. We have also found that the saturation magnetization gets enhanced and that the crystallization degraded with decreased growth temperature, suggesting that the origin of our magnetic coupling could be point defects manifested by the strain in the films. X-ray (θ-2θ) diffraction peak shift and strain analysis clearly support the presence of strain in films resulting from the presence of point defects. Based on careful investigations using secondary ion mass spectrometer and X-ray photoelectron spectroscopy studies, we have ruled out the possibility of the presence of any external magnetic impurities. We discuss the critical role of microstructural characteristics and associated strain on the physical properties of the MgO films and establish a correlation between defects and magnetic properties.

  4. Single orientation graphene synthesized on iridium thin films grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Dangwal Pandey, A., E-mail: arti.pandey@desy.de; Grånäs, E.; Shayduk, R.; Noei, H.; Vonk, V. [Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg (Germany); Krausert, K.; Franz, D.; Müller, P.; Keller, T. F.; Stierle, A., E-mail: andreas.stierle@desy.de [Deutsches Elektronen-Synchrotron (DESY), D-22607 Hamburg (Germany); Fachbereich Physik, Universität Hamburg, D-22607 Hamburg (Germany)

    2016-08-21

    Heteroepitaxial iridium thin films were deposited on (0001) sapphire substrates by means of molecular beam epitaxy, and subsequently, one monolayer of graphene was synthesized by chemical vapor deposition. The influence of the growth parameters on the quality of the Ir films, as well as of graphene, was investigated systematically by means of low energy electron diffraction, x-ray reflectivity, x-ray diffraction, Auger electron spectroscopy, scanning electron microscopy, and atomic force microscopy. Our study reveals (111) oriented iridium films with high crystalline quality and extremely low surface roughness, on which the formation of large-area epitaxial graphene is achieved. The presence of defects, like dislocations, twins, and 30° rotated domains in the iridium films is also discussed. The coverage of graphene was found to be influenced by the presence of 30° rotated domains in the Ir films. Low iridium deposition rates suppress these rotated domains and an almost complete coverage of graphene was obtained. This synthesis route yields inexpensive, air-stable, and large-area graphene with a well-defined orientation, making it accessible to a wider community of researchers for numerous experiments or applications, including those which use destructive analysis techniques or irreversible processes. Moreover, this approach can be used to tune the structural quality of graphene, allowing a systematic study of the influence of defects in various processes like intercalation below graphene.

  5. Wet chemical deposition of single crystalline epitaxial manganite thin films with atomically flat surface

    International Nuclear Information System (INIS)

    Mishra, Amita; Dutta, Anirban; Samaddar, Sayanti; Gupta, Anjan K.

    2013-01-01

    We report the wet chemical deposition of single crystalline epitaxial thin films of the colossal magneto-resistive manganite La 0.67 Sr 0.33 MnO 3 on the lattice-matched (001)-face of a La 0.3 Sr 0.7 Al 0.65 Ta 0.35 O 3 substrate. Topographic images of these films taken with a scanning tunneling microscope show atomically flat terraces separated by steps of monatomic height. The resistivity of these films shows an insulator-metal transition at 310 K, nearly coincident with the Curie temperature of 340 K, found from magnetization measurements. The films show a magnetoresistance of 7% at 300 K and 1.2 T. Their saturation magnetization value at low temperatures is consistent with that of the bulk. - Highlights: ► Wet chemical deposition of La 0.67 Sr 0.33 MnO 3 (LSMO) on a lattice-matched substrate. ► Single crystalline epitaxial LSMO films obtained. ► Flat terraces separated by monatomic steps observed by scanning tunneling microscope

  6. Evolution of LiFePO4 thin films interphase with electrolyte

    Science.gov (United States)

    Dupré, N.; Cuisinier, M.; Zheng, Y.; Fernandez, V.; Hamon, J.; Hirayama, M.; Kanno, R.; Guyomard, D.

    2018-04-01

    Many parameters may control the growth and the characteristics of the interphase, such as surface structure and morphology, structural defects, grain boundaries, surface reactions, etc. However, polycrystalline surfaces contain these parameters simultaneously, resulting in a quite complicated system to study. Working with model electrode surfaces using crystallographically oriented crystalline thin films appears as a novel and unique approach to understand contributions of preferential orientation and rugosity of the surface. In order to rebuild the interphase architecture along electrochemical cycling, LiFePO4 epitaxial films offering ideal 2D (100) interfaces are here investigated through the use of non-destructive depth profiling by Angular Resolved X-ray Photoelectron Spectroscopy (ARXPS). The composition and structure of the interphase is then monitored upon cycling for samples stopped at the end of charge and discharge for various numbers of cycles, and discussed in the light of combined XPS and X-ray reflectivity (XRR) measurements. Such an approach allows describing the interphase evolution on a specific model LiFePO4 crystallographic orientation and helps understanding the nature and evolution of the LiFePO4/electrolyte interphase forming on the surface of LiFePO4 poly-crystalline powder.

  7. Growth and surface modification of LaFeO3 thin films induced by reductive annealing

    International Nuclear Information System (INIS)

    Flynn, Brendan T.; Zhang, Kelvin H.L.; Shutthanandan, Vaithiyalingam; Varga, Tamas; Colby, Robert J.; Oleksak, Richard P.; Manandhar, Sandeep; Engelhard, Mark H.; Chambers, Scott A.; Henderson, Michael A.; Herman, Gregory S.; Thevuthasan, Suntharampillai

    2015-01-01

    Highlights: • LaFeO 3 was grown by molecular beam epitaxy on ZrO 2 :Y 2 O 3 . • The film was highly oriented but not single crystalline. • Angle resolved XPS revealed differences between surface and bulk oxygen. • Annealing the film in vacuum resulted in the sequential reduction of Fe cations. • A greater degree of Fe reduction was found at the surface. - Abstract: The mixed electronic and ionic conductivity of perovskite oxides has enabled their use in diverse applications such as automotive exhaust catalysts, solid oxide fuel cell cathodes, and visible light photocatalysts. The redox chemistry at the surface of perovskite oxides is largely dependent on the oxidation state of the metal cations as well as the oxide surface stoichiometry. In this study, LaFeO 3 (LFO) thin films grown on yttria-stabilized zirconia (YSZ) was characterized using both bulk and surface sensitive techniques. A combination of in situ reflection high-energy electron diffraction (RHEED), X-ray diffraction (XRD), and Rutherford backscattering spectrometry (RBS) demonstrated that the film is primarily textured in the [1 0 0] direction and is stoichiometric. High-resolution transmission electron microscopy measurements show regions that are dominated by [1 0 0] oriented LFO grains that are oriented with respect to the substrates lattice. However, selected regions of the film show multiple domains of grains that are not [1 0 0] oriented. The film was annealed in an ultra-high vacuum chamber to simulate reducing conditions and studied by angle-resolved X-ray photoelectron spectroscopy (XPS). Iron was found to exist as Fe(0), Fe(II), and Fe(III) depending on the annealing conditions and the depth within the film. A decrease in the concentration of surface oxygen species was correlated with iron reduction. These results should help guide and enhance the design of LFO materials for catalytic applications

  8. Compliant ferroelastic domains in epitaxial Pb(Zr,Ti)O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Feigl, L.; McGilly, L. J.; Sandu, C. S.; Setter, N. [Ceramics Laboratory, EPFL - Swiss Federal Institute of Technology, Lausanne CH-1015 (Switzerland)

    2014-04-28

    Ordered patterns of highly compliant ferroelastic domains have been created by use of tensile strained epitaxial Pb(Zr,Ti)O{sub 3} thin films, of very low defect density, grown on DyScO{sub 3} substrates. The effect of 180° switching on well-ordered a/c 90° domain patterns is investigated by a combination of transmission electron microscopy, piezoelectric force microscopy, and X-ray diffraction. It is shown that ferroelastic a-domains, having an in-plane polarization, can be created and completely removed on a local level by an out-of-plane electric field. The modifications of the ferroelastic domain pattern can be controlled by varying the parameters used during switching with a piezoresponse force microscope to produce the desired arrangement.

  9. Epitaxial TiN(001) wetting layer for growth of thin single-crystal Cu(001)

    Energy Technology Data Exchange (ETDEWEB)

    Chawla, J. S.; Zhang, X. Y.; Gall, D. [Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2011-08-15

    Single-crystal Cu(001) layers, 4-1400 nm thick, were deposited on MgO(001) with and without a 2.5-nm-thick TiN(001) buffer layer. X-ray diffraction and reflection indicate that the TiN(001) surface suppresses Cu-dewetting, yielding a 4 x lower defect density and a 9 x smaller surface roughness than if grown on MgO(001) at 25 deg. C. In situ and low temperature electron transport measurements indicate that ultra-thin (4 nm) Cu(001) remains continuous and exhibits partial specular scattering at the Cu-vacuum boundary with a Fuchs-Sondheimer specularity parameter p = 0.6 {+-} 0.2, suggesting that the use of epitaxial wetting layers is a promising approach to create low-resistivity single-crystal Cu nanoelectronic interconnects.

  10. CeCo5 thin films with perpendicular anisotropy grown by molecular beam epitaxy

    Science.gov (United States)

    Sharma, S.; Hildebrandt, E.; Major, M.; Komissinskiy, P.; Radulov, I.; Alff, L.

    2018-04-01

    Buffer-free, highly textured (0 0 1) oriented CeCo5 thin films showing perpendicular magnetic anisotropy were synthesized on (0 0 1) Al2O3 substrates by molecular beam epitaxy. Ce exists in a mixture of Ce3+ and Ce4+ valence states as shown by X-ray photoelectron spectroscopy. The first anisotropy constant, K1, as measured by torque magnetometry was 0.82 MJ/m3 (8.2 ×106erg /cm3) . A maximum coercivity of 5.16 kOe with a negative temperature coefficient of -0.304%K-1 and a magnetization of 527.30 emu/cm3 was measured perpendicular to the film plane at 5 K. In addition, a large anisotropy of the magnetic moment of 15.5% was observed. These magnetic parameters make CeCo5 a potential candidate material for spintronic and magnetic recording applications.

  11. The effect of a thin silver layer on the critical current of epitaxial YBCO films

    International Nuclear Information System (INIS)

    Polturak, E.; Koren, G.; Cohen, D.; Cohen, D.; Snapiro, I.

    1992-01-01

    We compare measurements of the critical current density of an epitaxial YBCO film with that of an identical film overlaid by a thin silver layer. We find that the presence of the silver lowers Tc of the film by about 1.5 K, which is two orders of magnitude larger than predicted by the theory of the proximity effect for our experimental conditions. In addition, J c of the Ag/YBCO film near Tc is also significantly lower than that of the bare YBCO film. We propose two alternate interpretations of this effect, one in terms of destabilization of the flux distribution in the film and the other making use of the effect of the silver on the Bean-Livingston surface barrier for the initial penetration of flux. The latter seems the more plausible explanation of our results. (orig.)

  12. Resistance switching in epitaxial SrCoO{sub x} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tambunan, Octolia T.; Parwanta, Kadek J.; Acharya, Susant K.; Lee, Bo Wha; Jung, Chang Uk, E-mail: cu-jung@hufs.ac.kr [Department of Physics, Hankuk University of Foreign Studies, Yongin 449-791 (Korea, Republic of); Kim, Yeon Soo; Park, Bae Ho [Division of Quantum Phases and Devices, Department of Physics, Konkuk University, Seoul 143-791 (Korea, Republic of); Jeong, Huiseong; Park, Ji-Yong [Department of Physics and Division of Energy System Research, Ajou University, Suwon 443-749 (Korea, Republic of); Cho, Myung Rae; Park, Yun Daniel [Department of Physics and Astronomy and Center for Subwavelength Optics, Seoul National University, Seoul 151-747 (Korea, Republic of); Choi, Woo Seok [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, Dong-Wook [Department of Physics, Ewha Womans University, Seoul 120-750 (Korea, Republic of); Jin, Hyunwoo; Lee, Suyoun [Electronic Materials Research Center, Korea Institute of Science and Technology, Seoul 136-791 (Korea, Republic of); Song, Seul Ji; Kang, Sung-Jin; Kim, Miyoung; Hwang, Cheol Seong [Department of Material Science and Engineering, Seoul National University, Seoul 151-747 (Korea, Republic of)

    2014-08-11

    We observed bipolar switching behavior from an epitaxial strontium cobaltite film grown on a SrTiO{sub 3} (001) substrate. The crystal structure of strontium cobaltite has been known to undergo topotactic phase transformation between two distinct phases: insulating brownmillerite (SrCoO{sub 2.5}) and conducting perovskite (SrCoO{sub 3−δ}) depending on the oxygen content. The current–voltage characteristics of the strontium cobaltite film showed that it could have a reversible insulator-to-metal transition triggered by electrical bias voltage. We propose that the resistance switching in the SrCoO{sub x} thin film could be related to the topotactic phase transformation and the peculiar structure of SrCoO{sub 2.5}.

  13. Epitaxial growth and electronic structure of oxyhydride SrVO{sub 2}H thin films

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Tsukasa; Chikamatsu, Akira, E-mail: chikamatsu@chem.s.u-tokyo.ac.jp; Yamada, Keisuke; Onozuka, Tomoya [Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Shigematsu, Kei [Kanagawa Academy of Science and Technology, Kawasaki, Kanagawa 213-0012 (Japan); Minohara, Makoto; Kumigashira, Hiroshi [Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki 305-0801 (Japan); Ikenaga, Eiji [Japan Synchrotron Radiation Research Institute (JASRI)/SPring-8, Mikazuki-cho, Hyogo 679-5198 (Japan); Hasegawa, Tetsuya [Department of Chemistry, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology, Kawasaki, Kanagawa 213-0012 (Japan)

    2016-08-28

    Oxyhydride SrVO{sub 2}H epitaxial thin films were fabricated on SrTiO{sub 3} substrates via topotactic hydridation of oxide SrVO{sub 3} films using CaH{sub 2}. Structural and composition analyses suggested that the SrVO{sub 2}H film possessed one-dimensionally ordered V-H{sup −}-V bonds along the out-of-plane direction. The synthesis temperature could be lowered by reducing the film thickness, and the SrVO{sub 2}H film was reversible to SrVO{sub 3} by oxidation through annealing in air. Photoemission and X-ray absorption spectroscopy measurements revealed the V{sup 3+} valence state in the SrVO{sub 2}H film, indicating that the hydrogen existed as hydride. Furthermore, the electronic density of states was highly suppressed at the Fermi energy, consistent with the prediction that tetragonal distortion induces metal to insulation transition.

  14. Epitaxial growth and electronic structure of oxyhydride SrVO2H thin films

    Science.gov (United States)

    Katayama, Tsukasa; Chikamatsu, Akira; Yamada, Keisuke; Shigematsu, Kei; Onozuka, Tomoya; Minohara, Makoto; Kumigashira, Hiroshi; Ikenaga, Eiji; Hasegawa, Tetsuya

    2016-08-01

    Oxyhydride SrVO2H epitaxial thin films were fabricated on SrTiO3 substrates via topotactic hydridation of oxide SrVO3 films using CaH2. Structural and composition analyses suggested that the SrVO2H film possessed one-dimensionally ordered V-H--V bonds along the out-of-plane direction. The synthesis temperature could be lowered by reducing the film thickness, and the SrVO2H film was reversible to SrVO3 by oxidation through annealing in air. Photoemission and X-ray absorption spectroscopy measurements revealed the V3+ valence state in the SrVO2H film, indicating that the hydrogen existed as hydride. Furthermore, the electronic density of states was highly suppressed at the Fermi energy, consistent with the prediction that tetragonal distortion induces metal to insulation transition.

  15. Flexoelectricity induced increase of critical thickness in epitaxial ferroelectric thin films

    Energy Technology Data Exchange (ETDEWEB)

    Zhou Hao [State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871 (China); Hong Jiawang; Zhang Yihui [Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China); Li Faxin [State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871 (China); Pei Yongmao, E-mail: peiym@pku.edu.cn [State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871 (China); Fang Daining, E-mail: fangdn@pku.edu.cn [State Key Laboratory for Turbulence and Complex Systems, College of Engineering, Peking University, Beijing 100871 (China); Department of Engineering Mechanics, Tsinghua University, Beijing 100084 (China)

    2012-09-01

    Flexoelectricity describes the coupling between polarization and strain/stress gradients in insulating crystals. In this paper, using the Landau-Ginsburg-Devonshire phenomenological approach, we found that flexoelectricity could increase the theoretical critical thickness in epitaxial BaTiO{sub 3} thin films, below which the switchable spontaneous polarization vanishes. This increase is remarkable in tensile films while trivial in compressive films due to the electrostriction caused decrease of potential barrier, which can be easily destroyed by the flexoelectricity, between the ferroelectric state and the paraelectric state in tensile films. In addition, the films are still in a uni-polar state even below the critical thickness due to the flexoelectric effect.

  16. Polarized Raman scattering study of PSN single crystals and epitaxial thin films

    Directory of Open Access Journals (Sweden)

    J. Pokorný

    2015-06-01

    Full Text Available This paper describes a detailed analysis of the dependence of Raman scattering intensity on the polarization of the incident and inelastically scattered light in PbSc0.5Nb0.5O3 (PSN single crystals and epitaxially compressed thin films grown on (100-oriented MgO substrates. It is found that there are significant differences between the properties of the crystals and films, and that these differences can be attributed to the anticipated structural differences between these two forms of the same material. In particular, the scattering characteristics of the oxygen octahedra breathing mode near 810 cm-1 indicate a ferroelectric state for the crystals and a relaxor state for the films, which is consistent with the dielectric behaviors of these materials.

  17. Structural analysis of LaVO3 thin films under epitaxial strain

    Directory of Open Access Journals (Sweden)

    H. Meley

    2018-04-01

    Full Text Available Rare earth vanadate perovskites exhibit a phase diagram in which two different types of structural distortions coexist: the strongest, the rotation of the oxygen octahedra, comes from the small tolerance factor of the perovskite cell (t = 0.88 for LaVO3 and the smaller one comes from inter-site d-orbital interactions manifesting as a cooperative Jahn-Teller effect. Epitaxial strain acts on octahedral rotations and crystal field symmetry to alter this complex lattice-orbit coupling. In this study, LaVO3 thin film structures have been investigated by X-ray diffraction and scanning transmission electron microscopy. The analysis shows two different orientations of octahedral tilt patterns, as well as two distinct temperature behaviors, for compressive and tensile film strain states. Ab initio calculations capture the strain effect on the tilt pattern orientation in agreement with experimental data.

  18. Doping site dependent thermoelectric properties of epitaxial strontium titanate thin films

    KAUST Repository

    Abutaha, Anas I.; Sarath Kumar, S. R.; Mehdizadeh Dehkordi, Arash; Tritt, Terry M.; Alshareef, Husam N.

    2014-01-01

    We demonstrate that the thermoelectric properties of epitaxial strontium titanate (STO) thin films can be improved by additional B-site doping of A-site doped ABO3 type perovskite STO. The additional B-site doping of A-site doped STO results in increased electrical conductivity, but at the expense of Seebeck coefficient. However, doping on both sites of the STO lattice significantly reduces the lattice thermal conductivity of STO by adding more densely and strategically distributed phononic scattering centers that attack wider phonon spectra. The additional B-site doping limits the trade-off relationship between the electrical conductivity and total thermal conductivity of A-site doped STO, leading to an improvement in the room-temperature thermoelectric figure of merit, ZT. The 5% Pr3+ and 20% Nb5+ double-doped STO film exhibits the best ZT of 0.016 at room temperature. This journal is

  19. High efficiency thin film solar cells grown by molecular beam epitaxy (HEFTY)

    Energy Technology Data Exchange (ETDEWEB)

    Mason, N.B.; Barnham, K.W.J.; Ballard, I.M.; Zhang, J. [Imperial College, London (United Kingdom)

    2006-05-04

    The project sought to show the UK as a world leader in the field of thin film crystalline solar cells. A premise was that the cell design be suitable for large-scale manufacturing and provide a basis for industrial exploitation. The study demonstrated (1) that silicon films grown at temperatures suitable for deposition on glass by Gas Phase Molecular Beam Epitaxy gives better PV cells than does Ultra Low Pressure Chemical Vapor Deposition; (2) a conversion energy of 15 per cent was achieved - the project target was 18 per cent and (3) one of the highest reported conversion efficiencies for a 15 micrometre silicon film was achieved. The study was carried out by BP Solar Limited under contract to the DTI.

  20. Epitaxial Pb(Zr,Ti)O3 thin films for a MEMS application

    International Nuclear Information System (INIS)

    Nguyen, Minh D; Vu, Hung N; Blank, Dave H A; Rijnders, Guus

    2011-01-01

    This research presents the deposition and device fabrication of epitaxial Pb(Zr,Ti)O 3 (PZT) thin films for applications in microelectromechanical systems (MEMS). A piezoelectric micro-membrane is described as an example. Using the pulsed laser deposition (PLD) technique and the MEMS microfabrication process, the piezo-membranes with diameters ranging from 200 to 500 μm were obtained. The displacement of piezo-membranes increased from 5.1 to 17.5 nm V −1 with a piezoelectric-membrane diameter in the range of 200–500 μm. Furthermore, the effect of PZT film-thickness on the mechanical properties has been investigated. By using the conductive-oxide SrRuO 3 (SRO) layers as the electrodes, the degradation of both ferroelectric and piezoelectric properties is prevented up to 10 10 switching cycles

  1. Chemical solution synthesis and ferromagnetic resonance of epitaxial thin films of yttrium iron garnet

    Science.gov (United States)

    Lucas, Irene; Jiménez-Cavero, Pilar; Vila-Fungueiriño, J. M.; Magén, Cesar; Sangiao, Soraya; de Teresa, José Maria; Morellón, Luis; Rivadulla, Francisco

    2017-12-01

    We report the fabrication of epitaxial Y3F e5O12 (YIG) thin films on G d3G a5O12 (111) using a chemical solution method. Cubic YIG is a ferrimagnetic material at room temperature, with excellent magneto-optical properties, high electrical resistivity, and a very narrow ferromagnetic resonance, which makes it particularly suitable for applications in filters and resonators at microwave frequencies. But these properties depend on the precise stoichiometry and distribution of F e3 + ions among the octahedral/tetrahedral sites of a complex structure, which hampered the production of high-quality YIG thin films by affordable chemical methods. Here we report the chemical solution synthesis of YIG thin films, with excellent chemical, crystalline, and magnetic homogeneity. The films show a very narrow ferromagnetic resonance (long spin relaxation time), comparable to that obtained from high-vacuum physical deposition methods. These results demonstrate that chemical methods can compete to develop nanometer-thick YIG films with the quality required for spintronic devices and other high-frequency applications.

  2. Structural characterization of metastable hcp-Ni thin films epitaxially grown on Au(100) single-crystal underlayers

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Tanaka, Takahiro; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-01-01

    Ni(1120) epitaxial thin films with hcp structure were prepared on Au(100) single-crystal underlayers at 100 deg. C by ultra high vacuum molecular beam epitaxy. The detailed film structure is studied by in situ reflection high energy electron diffraction, x-ray diffraction, and transmission electron microscopy. The hcp-Ni film consists of two types of variants whose c-axes are rotated around the film normal by 90 deg. each other. An atomically sharp boundary is recognized between the film and the underlayer, where misfit dislocations are introduced. Presence of such dislocations seems to relieve the strain caused by the lattice mismatch between the film and the underlayer.

  3. Interface formation and defect structures in epitaxial La2Zr2O7 thin films on (111) Si

    International Nuclear Information System (INIS)

    Seo, J.W.; Fompeyrine, J.; Guiller, A.; Norga, G.; Marchiori, C.; Siegwart, H.; Locquet, J.-P.

    2003-01-01

    We have studied the growth of epitaxial La 2 Zr 2 O 7 thin films on (111) Si. Although the interface structure can be strongly affected by the Si oxidation during the deposition process, epitaxial growth of La 2 Zr 2 O 7 was obtained. A detailed study by means of transmission electron microscopy reveals two types of structures (pyrochlore and fluorite) with the same average chemical composition but strong differences in reactivity and interface formation. The structural complexity of the ordered pyrochlore structure seems to prevent excess oxygen diffusion and interfacial SiO 2 formation

  4. Epitaxial growth of cubic Gd{sub 2}O{sub 3} thin films on Ge substrates

    Energy Technology Data Exchange (ETDEWEB)

    Molle, A; Wiemer, C; Bhuiyan, M D N K; Tallarida, G; Fanciulli, M [CNR-INFM, Laboratorio Nazionale MDM, via C. Olivetti 2, I-20041 Agrate Brianza (Italy)], E-mail: alessandro.molle@mdm.infm.it

    2008-03-15

    Gd{sub 2}O{sub 3} thin films were grown on Ge (001) substrates by molecular beam epitaxy. The epitaxial character of the film is demonstrated by electron diffraction during the growth. The structural characterization of the films shows that the Gd{sub 2}O{sub 3} forms a bixbyite polymorph with a (110) out-of-plane orientation. The formation of bixbyite structured Gd{sub 2}O{sub 3} is discussed in terms of the atomic arrangement of the oxide planes on the Ge(001) surface.

  5. Combinatorial screening of halide perovskite thin films and solar cells by mask-defined IR laser molecular beam epitaxy

    OpenAIRE

    Kawashima, Kazuhiro; Okamoto, Yuji; Annayev, Orazmuhammet; Toyokura, Nobuo; Takahashi, Ryota; Lippmaa, Mikk; Itaka, Kenji; Suzuki, Yoshikazu; Matsuki, Nobuyuki; Koinuma, Hideomi

    2017-01-01

    Abstract As an extension of combinatorial molecular layer epitaxy via ablation of perovskite oxides by a pulsed excimer laser, we have developed a laser molecular beam epitaxy (MBE) system for parallel integration of nano-scaled thin films of organic?inorganic hybrid materials. A pulsed infrared (IR) semiconductor laser was adopted for thermal evaporation of organic halide (A-site: CH3NH3I) and inorganic halide (B-site: PbI2) powder targets to deposit repeated A/B bilayer films where the thic...

  6. Mechanisms of stress generation and relaxation during pulsed laser deposition of epitaxial Fe-Pd magnetic shape memory alloy films on MgO

    International Nuclear Information System (INIS)

    Edler, Tobias; Mayr, S G; Buschbeck, Joerg; Mickel, Christine; Faehler, Sebastian

    2008-01-01

    Mechanical stress generation during epitaxial growth of Fe-Pd thin films on MgO from pulsed laser deposition is a key parameter for the suitability in shape memory applications. By employing in situ substrate curvature measurements, we determine the stress states as a function of film thickness and composition. Depending on composition, different stress states are observed during initial film growth, which can be attributed to different misfits. Compressive stress generation by atomic peening is observed in the later stages of growth. Comparison with ex situ x-ray based strain measurements allows integral and local stress to be distinguished and yields heterogeneities of the stress state between coherent and incoherent regions. In combination with cross-sectional TEM measurements the relevant stress relaxation mechanism is identified to be stress-induced martensite formation with (111) twinning

  7. Metallic transport and large anomalous Hall effect at room temperature in ferrimagnetic Mn{sub 4}N epitaxial thin film

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Xi; Shigematsu, Kei [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); Chikamatsu, Akira, E-mail: chikamatsu@chem.s.u-tokyo.ac.jp; Fukumura, Tomoteru [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); CREST, Japan Science and Technology Agency (JST), Tokyo 113-0033 (Japan); Hirose, Yasushi; Hasegawa, Tetsuya [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); CREST, Japan Science and Technology Agency (JST), Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan)

    2014-08-18

    We report the electrical transport properties of ferrimagnetic Mn{sub 4}N (001) epitaxial thin films grown by pulsed laser deposition on MgO (001) substrates. The Mn{sub 4}N thin films were tetragonally distorted with a ratio of out-of-plane to in-plane lattice constants of 0.987 and showed perpendicular magnetic anisotropy with an effective magnetic anisotropy constant of 0.16 MJ/m{sup 3}, which is comparable with that of a recently reported molecular-beam-epitaxy-grown film. The thin films exhibited metallic transport with a room temperature resistivity of 125 μΩ cm in addition to a large anomalous Hall effect with a Hall angle tangent of 0.023.

  8. Metallic transport and large anomalous Hall effect at room temperature in ferrimagnetic Mn4N epitaxial thin film

    International Nuclear Information System (INIS)

    Shen, Xi; Shigematsu, Kei; Chikamatsu, Akira; Fukumura, Tomoteru; Hirose, Yasushi; Hasegawa, Tetsuya

    2014-01-01

    We report the electrical transport properties of ferrimagnetic Mn 4 N (001) epitaxial thin films grown by pulsed laser deposition on MgO (001) substrates. The Mn 4 N thin films were tetragonally distorted with a ratio of out-of-plane to in-plane lattice constants of 0.987 and showed perpendicular magnetic anisotropy with an effective magnetic anisotropy constant of 0.16 MJ/m 3 , which is comparable with that of a recently reported molecular-beam-epitaxy-grown film. The thin films exhibited metallic transport with a room temperature resistivity of 125 μΩ cm in addition to a large anomalous Hall effect with a Hall angle tangent of 0.023.

  9. Preparation and structure characterization of SmCo5(0001) epitaxial thin films grown on Cu(111) underlayers

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Nukaga, Yuri; Futamoto, Masaaki; Kirino, Fumiyoshi

    2009-01-01

    SmCo 5 (0001) epitaxial films were prepared on Cu(111) single-crystal underlayers formed on Al 2 O 3 (0001) substrates at 500 deg. C. The nucleation and growth mechanism of (0001)-oriented SmCo 5 crystal on Cu(111) underlayer is investigated and a method to control the nucleation is proposed. The SmCo 5 epitaxial thin film formed directly on Cu underlayer consists of two types of domains whose orientations are rotated around the film normal by 30 deg. each other. By introducing a thin Co seed layer on the Cu underlayer, a SmCo 5 (0001) single-crystal thin film is successfully obtained. Nucleation of SmCo 5 crystal on Cu underlayer seems controllable by varying the interaction between the Cu underlayer and the SmCo 5 layer

  10. Absence of strain-mediated magnetoelectric coupling at fully epitaxial Fe/BaTiO{sub 3} interface (invited)

    Energy Technology Data Exchange (ETDEWEB)

    Radaelli, G., E-mail: greta.radaelli@gmail.com; Petti, D.; Cantoni, M.; Rinaldi, C.; Bertacco, R. [LNESS Center - Dipartimento di Fisica del Politecnico di Milano, Como 22100 (Italy)

    2014-05-07

    Interfacial MagnetoElectric coupling (MEC) at ferroelectric/ferromagnetic interfaces has recently emerged as a promising route to achieve electrical writing of magnetic information in spintronic devices. For the prototypical Fe/BaTiO{sub 3} (BTO) system, various MEC mechanisms have been theoretically predicted. Experimentally, it is well established that using BTO single crystal substrates MEC is dominated by strain-mediated mechanisms. In case of ferromagnetic layers epitaxially grown onto BTO films, instead, no direct evidence for MEC has been provided, apart from the results obtained on tunneling junction sandwiching a BTO tunneling barrier. In this paper, MEC at fully epitaxial Fe/BTO interface is investigated by Magneto-Optical Kerr Effect and magnetoresistance measurements on magnetic tunnel junctions fabricated on BTO. We find no evidence for strain-mediated MEC mechanisms in epitaxial systems, likely due to clamping of BTO to the substrate. Our results indicate that pure electronic MEC is the route of choice to be explored for achieving the electrical writing of information in epitaxial ferromagnet-ferroelectric heterostructures.

  11. Absence of strain-mediated magnetoelectric coupling at fully epitaxial Fe/BaTiO3 interface (invited)

    International Nuclear Information System (INIS)

    Radaelli, G.; Petti, D.; Cantoni, M.; Rinaldi, C.; Bertacco, R.

    2014-01-01

    Interfacial MagnetoElectric coupling (MEC) at ferroelectric/ferromagnetic interfaces has recently emerged as a promising route to achieve electrical writing of magnetic information in spintronic devices. For the prototypical Fe/BaTiO 3 (BTO) system, various MEC mechanisms have been theoretically predicted. Experimentally, it is well established that using BTO single crystal substrates MEC is dominated by strain-mediated mechanisms. In case of ferromagnetic layers epitaxially grown onto BTO films, instead, no direct evidence for MEC has been provided, apart from the results obtained on tunneling junction sandwiching a BTO tunneling barrier. In this paper, MEC at fully epitaxial Fe/BTO interface is investigated by Magneto-Optical Kerr Effect and magnetoresistance measurements on magnetic tunnel junctions fabricated on BTO. We find no evidence for strain-mediated MEC mechanisms in epitaxial systems, likely due to clamping of BTO to the substrate. Our results indicate that pure electronic MEC is the route of choice to be explored for achieving the electrical writing of information in epitaxial ferromagnet-ferroelectric heterostructures

  12. Fabrication of highly spin-polarized Co2FeAl0.5Si0.5 thin-films

    Directory of Open Access Journals (Sweden)

    M. Vahidi

    2014-04-01

    Full Text Available Ferromagnetic Heusler Co2FeAl0.5Si0.5 epitaxial thin-films have been fabricated in the L21 structure with saturation magnetizations over 1200 emu/cm3. Andreev reflection measurements show that the spin polarization is as high as 80% in samples sputtered on unheated MgO (100 substrates and annealed at high temperatures. However, the spin polarization is considerably smaller in samples deposited on heated substrates.

  13. Structure and magnetic properties of L10-FePt thin films on TiN/RuAl underlayers

    International Nuclear Information System (INIS)

    Yang En; Ratanaphan, Sutatch; Zhu Jiangang; Laughlin, David E.

    2011-01-01

    Highly ordered L1 0 FePt-oxide thin films with small grains were prepared by using a RuAl layer as a grain size defining seed layer along with a TiN barrier layer. Different HAMR (Heat Assisted Magnetic Recording) favorable underlayers were studied to encourage perpendicular texture and preferred microstructure. It was found that the epitaxial and small grain growth from the RuAl/TiN underlayer results in small and uniform grains in the FePt layer with perpendicular texture. By introducing the grain size defining underlayers, the FePt grain size can be reduced from 30 to 6 nm with the same volume fraction (9%) of SiO 2 in the film, excellent perpendicular texture, and very high order parameter at 520 deg. C.

  14. General Top-Down Ion Exchange Process for the Growth of Epitaxial Chalcogenide Thin Films and Devices

    KAUST Repository

    Xia, Chuan

    2016-12-30

    We demonstrate a versatile top-down ion exchange process, done at ambient temperature, to form epitaxial chalcogenide films and devices, with nanometer scale thickness control. To demonstrate the versatility of our process we have synthesized (1) epitaxial chalcogenide metallic and semiconducting films and (2) free-standing chalcogenide films and (3) completed in situ formation of atomically sharp heterojunctions by selective ion exchange. Epitaxial NiCo2S4 thin films prepared by our process show 115 times higher mobility than NiCo2S4 pellets (23 vs 0.2 cm(2) V-1 s(-1)) prepared by previous reports. By controlling the ion exchange process time, we made free-standing epitaxial films of NiCo2S4 and transferred them onto different substrates. We also demonstrate in situ formation of atomically sharp, lateral Schottky diodes based on NiCo2O4/NiCo2S4 heterojunction, using a single ion exchange step. Additionally, we show that our approach can be easily extended to other chalcogenide semiconductors. Specifically, we used our process to prepare Cu1.8S thin films with mobility that matches single crystal Cu1.8S (25 cm(2) V-1 s(-1)), which is ca. 28 times higher than the previously reported Cu1.8S thin film mobility (0.58 cm(2) V-1 s(-1)), thus demonstrating the universal nature of our process. This is the first report in which chalcogenide thin films retain the epitaxial nature of the precursor oxide films, an approach that will be useful in many applications.

  15. Multi-jump magnetic switching in ion-beam sputtered amorphous Co20Fe60B20 thin films

    International Nuclear Information System (INIS)

    Raju, M.; Chaudhary, Sujeet; Pandya, D. K.

    2013-01-01

    Unconventional multi-jump magnetization reversal and significant in-plane uniaxial magnetic anisotropy (UMA) in the ion-beam sputtered amorphous Co 20 Fe 60 B 20 (5–75 nm) thin films grown on Si/amorphous SiO 2 are reported. While such multi-jump behavior is observed in CoFeB(10 nm) film when the magnetic field is applied at 10°–20° away from the easy-axis, the same is observed in CoFeB(12.5 nm) film when the magnetic field is 45°–55° away from easy-axis. Unlike the previous reports of multi-jump switching in epitaxial films, their observance in the present case of amorphous CoFeB is remarkable. This multi-jump switching is found to disappear when the films are crystallized by annealing at 420 °C. The deposition geometry and the energy of the sputtered species appear to intrinsically induce a kind of bond orientation anisotropy in the films, which leads to the UMA in the as-grown amorphous CoFeB films. Exploitation of such multi-jump switching in amorphous CoFeB thin films could be of technological significance because of their applications in spintronic devices

  16. Epitaxial ferromagnetic Fe3Si on GaAs(111)A with atomically smooth surface and interface

    International Nuclear Information System (INIS)

    Liu, Y. C.; Hung, H. Y.; Kwo, J.; Chen, Y. W.; Lin, Y. H.; Cheng, C. K.; Hong, M.; Tseng, S. C.; Hsu, C. H.; Chang, M. T.; Lo, S. C.

    2015-01-01

    Single crystal ferromagnetic Fe 3 Si(111) films were grown epitaxially on GaAs(111)A by molecular beam epitaxy. These hetero-structures possess extremely low surface roughness of 1.3 Å and interfacial roughness of 1.9 Å, measured by in-situ scanning tunneling microscope and X-ray reflectivity analyses, respectively, showing superior film quality, comparing to those attained on GaAs(001) in previous publications. The atomically smooth interface was revealed by the atomic-resolution Z (atomic number)-contrast scanning transmission electron microscopy (STEM) images using the correction of spherical aberration (Cs)-corrected electron probe. Excellent crystallinity and perfect lattice match were both confirmed by high resolution x-ray diffraction. Measurements of magnetic property for the Fe 3 Si/GaAs(111) yielded a saturation moment of 990 emu/cm 3 with a small coercive field ≤1 Oe at room temperature

  17. Fe-Vacancy-Induced Ferromagnetism in Tetragonal FeSe Thin Films

    International Nuclear Information System (INIS)

    Yong-Feng, Li; Gui-Bin, Liu; Li-Jie, Shi; Bang-Gui, Liu

    2009-01-01

    Motivated by recent experiments, we investigate structural, electronic, and magnetic properties of tetragonal FeSe with Fe vacancies using the state-of-the-art first-principles method. We show that Fe vacancies tend to stay in the same one of the two sublattices and thus induce ferromagnetism in the ground-state phase. Our calculated net moment is in good agreement with the experimental data available. Therefore, the ferromagnetism observed in tetragonal FeSe thin films is explained. It could be made controllable soon for spintronic applications

  18. Understanding Strain-Induced Phase Transformations in BiFeO3 Thin Films.

    Science.gov (United States)

    Dixit, Hemant; Beekman, Christianne; Schlepütz, Christian M; Siemons, Wolter; Yang, Yongsoo; Senabulya, Nancy; Clarke, Roy; Chi, Miaofang; Christen, Hans M; Cooper, Valentino R

    2015-08-01

    Experiments demonstrate that under large epitaxial strain a coexisting striped phase emerges in BiFeO 3 thin films, which comprises a tetragonal-like ( T ') and an intermediate S ' polymorph. It exhibits a relatively large piezoelectric response when switching between the coexisting phase and a uniform T ' phase. This strain-induced phase transformation is investigated through a synergistic combination of first-principles theory and experiments. The results show that the S ' phase is energetically very close to the T ' phase, but is structurally similar to the bulk rhombohedral ( R ) phase. By fully characterizing the intermediate S ' polymorph, it is demonstrated that the flat energy landscape resulting in the absence of an energy barrier between the T ' and S ' phases fosters the above-mentioned reversible phase transformation. This ability to readily transform between the S ' and T ' polymorphs, which have very different octahedral rotation patterns and c / a ratios, is crucial to the enhanced piezoelectricity in strained BiFeO 3 films. Additionally, a blueshift in the band gap when moving from R to S ' to T ' is observed. These results emphasize the importance of strain engineering for tuning electromechanical responses or, creating unique energy harvesting photonic structures, in oxide thin film architectures.

  19. Spin-dependent transport in epitaxial Fe wires on GaAs(110); Spinabhaengiger Transport in epitaktischen Fe-Leiterbahnen auf GaAs(110)

    Energy Technology Data Exchange (ETDEWEB)

    Hassel, Christoph

    2009-08-11

    In the present thesis, the spin dependent transport in epitaxial Fe wires as well as in perpendicularly magnetized multilayer wires is investigated. The main focus is on the investigation of quantum transport phenomena, the domain wall resistance as well as the current induced domain wall motion. Epitaxial Fe wires are prepared from epitaxial Fe films by means of electron beam lithography. Because of the intrinsic magnetic anisotropy, it is possible to prepare wires with a remanent transversal magnetization. Magnetic force microscopy is used to image the magnetic state of single wires. The magnetization reversal behaviour of these wires is investigated in detail using magnetoresistance measurements. These measurements are dominated by effects of the anisotropic magnetoresistance and can be explained by micromagnetic calculations. For the first time, quantum transport phenomena in epitaxial Fe wires are studied by magnetoresistance measurements for temperatures down to 20 mK. These measurements clearly indicate that, independent of the wire width and orientation, no contribution due to weak electron localization can be observed. The results are quantitatively explained within the framework of enhanced electron-electron interactions. Furthermore, by reducing the wire width the onset of the transition from two-dimensional to one-dimensional behaviour is found. To determine the domain wall resistance, a different number of domain walls is created in various structures, whereby the epitaxial samples allow to investigate different domain wall structures. First, a technique based on the stray field of a magnetic force microscope tip is presented. Furthermore, the influence of the shape anisotropy on the coercive field of single wires is used. Contributions to the observed resistance change due to the anisotropic magnetoresistance are calculated using micromagnetic simulations. A positive intrinsic relative resistance increase of 0.2% within the domain wall is found at

  20. InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Liwen, E-mail: SANG.Liwen@nims.go.jp [International Center for Material Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); JST-PRESTO, The Japan Science and Technology Agency, Tokyo 102-0076 (Japan); Liao, Meiyong; Koide, Yasuo [Wide Bandgap Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Sumiya, Masatomo [Wide Bandgap Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); JST-ALCA, The Japan Science and Technology Agency, Tokyo 102-0076 (Japan)

    2015-03-14

    In{sub x}Ga{sub 1−x}N, with the tunable direct bandgaps from ultraviolet to near infrared region, offers a promising candidate for the high-efficiency next-generation thin-film photovoltaic applications. Although the adoption of thick InGaN film as the active region is desirable to obtain efficient light absorption and carrier collection compared to InGaN/GaN quantum wells structure, the understanding on the effect from structural design is still unclear due to the poor-quality InGaN films with thickness and difficulty of p-type doping. In this paper, we comprehensively investigate the effects from film epitaxy, doping, and device structural design on the performances of the InGaN-based solar cells. The high-quality InGaN thick film is obtained on AlN/sapphire template, and p-In{sub 0.08}Ga{sub 0.92}N is achieved with a high hole concentration of more than 10{sup 18 }cm{sup −3}. The dependence of the photovoltaic performances on different structures, such as active regions and p-type regions is analyzed with respect to the carrier transport mechanism in the dark and under illumination. The strategy of improving the p-i interface by using a super-thin AlN interlayer is provided, which successfully enhances the performance of the solar cells.

  1. InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties

    Science.gov (United States)

    Sang, Liwen; Liao, Meiyong; Koide, Yasuo; Sumiya, Masatomo

    2015-03-01

    InxGa1-xN, with the tunable direct bandgaps from ultraviolet to near infrared region, offers a promising candidate for the high-efficiency next-generation thin-film photovoltaic applications. Although the adoption of thick InGaN film as the active region is desirable to obtain efficient light absorption and carrier collection compared to InGaN/GaN quantum wells structure, the understanding on the effect from structural design is still unclear due to the poor-quality InGaN films with thickness and difficulty of p-type doping. In this paper, we comprehensively investigate the effects from film epitaxy, doping, and device structural design on the performances of the InGaN-based solar cells. The high-quality InGaN thick film is obtained on AlN/sapphire template, and p-In0.08Ga0.92N is achieved with a high hole concentration of more than 1018 cm-3. The dependence of the photovoltaic performances on different structures, such as active regions and p-type regions is analyzed with respect to the carrier transport mechanism in the dark and under illumination. The strategy of improving the p-i interface by using a super-thin AlN interlayer is provided, which successfully enhances the performance of the solar cells.

  2. Persistent semi-metal-like nature of epitaxial perovskite CaIrO3 thin films

    International Nuclear Information System (INIS)

    Biswas, Abhijit; Jeong, Yoon Hee

    2015-01-01

    Strong spin-orbit coupled 5d transition metal based ABO 3 oxides, especially iridates, allow tuning parameters in the phase diagram and may demonstrate important functionalities, for example, by means of strain effects and symmetry-breaking, because of the interplay between the Coulomb interactions and strong spin-orbit coupling. Here, we have epitaxially stabilized high quality thin films of perovskite (Pv) CaIrO 3 . Film on the best lattice-matched substrate shows semi-metal-like characteristics. Intriguingly, imposing tensile or compressive strain on the film by altering the underlying lattice-mismatched substrates still maintains semi-metallicity with minute modification of the effective correlation as tensile (compressive) strain results in tiny increases (decreases) of the electronic bandwidth. In addition, magnetoresistance remains positive with a quadratic field dependence. This persistent semi-metal-like nature of Pv-CaIrO 3 thin films with minute changes in the effective correlation by strain may provide new wisdom into strong spin-orbit coupled 5d based oxide physics

  3. Oxygen engineering of HfO{sub 2-x} thin films grown by reactive molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Erwin; Kurian, Jose; Alff, Lambert [Institut fuer Materialwissenschaft, TU-Darmstadt (Germany); Zaumseil, Peter; Schroeder, Thomas [IHP, Frankfurt, Oder (Germany)

    2010-07-01

    Reactive molecular beam epitaxy (R-MBE) is an ideal tool for tailoring physical properties of thin films to specific needs. For the development of cutting-edge oxides for thin film applications a precise control of oxygen defects is crucial. R-MBE in combination with rf-activated oxygen allows reproducibly growing oxide thin films with precise oxidation conditions enabling oxygen engineering. R-MBE was used to grow Hf and HfO{sub 2{+-}}{sub x} thin films with different oxidation conditions on sapphire single crystal substrates. Structural characterization was carried out using rotating anode x-ray diffraction revealing highly textured to epitaxial thin films on c-cut sapphire. Furthermore, switching of film orientation by varying the oxidation conditions was observed demonstrating the role of oxygen in the growth procedure. The investigation of electrical properties using a four probe measurement setup showed conductivities in the range of 1000 {mu}{omega}cm for oxygen deficient HfO{sub 2-x} thin films. Optical properties were investigated using a photospectrometer and additionally x-ray photoelectron spectroscopy was carried out to study the band gap and valence states. Both techniques were used to monitor the oxygen content in deficient HfO{sub 2-x} thin films. Our results demonstrate the importance of oxygen engineering even in the case of 'simple' oxides.

  4. Moessbauer and XRD study of pulse plated Fe-P and Fe-Ni thin layers

    Energy Technology Data Exchange (ETDEWEB)

    Miko, Annamaria [Bay Zoltan Institute for Material Science (Hungary); Kuzmann, Erno, E-mail: kuzmann@para.chem.elte.hu [Eoetvoes Lorand University, Research Group for Nuclear Methods in Structural Chemistry, Hungarian Academy of Sciences, Department of Nuclear Chemistry (Hungary); Lakatos-Varsanyi, Magda [Bay Zoltan Institute for Material Science (Hungary); Kakay, Attila [Research Institute for Solid State Physics and Optics (Hungary); Nagy, Ferenc [Eoetvoes Lorand University, Research Group for Nuclear Methods in Structural Chemistry, Hungarian Academy of Sciences, Department of Nuclear Chemistry (Hungary); Varga, Lajos Karoly [Research Institute for Solid State Physics and Optics (Hungary)

    2005-09-15

    {sup 57}Fe conversion electron Moessbauer spectroscopy, X-ray diffraction, electrochemical and magnetic measurements were used to study pulse electroplated Fe-P and Ni-Fe coatings. XRD and {sup 57}Fe CEMS measurements revealed the amorphous character of the novel pulse plated Fe-P alloys. CEM spectra indicated significant differences in the short range order and in the magnetic anisotropy between the Fe-P deposits pulse plated at medium long deposition time (t{sub on} = 2 ms), with short relaxation time (t{sub off} = 9 ms) and low current density (I{sub p} = 0.05 Acm{sup -2}) or at short deposition time (t{sub on} = 1 ms) with long relaxation time (t{sub off} = 250 ms) and high current density (I{sub p} = 1.0 Acm{sup -2}). The broad peaks centred around the fcc reflections in XRD of the pulse plated Ni-22 wt.% Fe deposit reflected a microcrystalline Ni-Fe alloy with a very fine, 5-8 nm, grain size. The CEM spectrum of the pulse plated Ni-22 wt.% Fe coating corresponded to a highly disordered solid solution alloy containing a minute amount of ferrihydrite. Extreme favourable soft magnetic properties were observed with these Ni-Fe and Fe-P pulse plated thin layers.

  5. Moessbauer and XRD study of pulse plated Fe-P and Fe-Ni thin layers

    International Nuclear Information System (INIS)

    Miko, Annamaria; Kuzmann, Erno; Lakatos-Varsanyi, Magda; Kakay, Attila; Nagy, Ferenc; Varga, Lajos Karoly

    2005-01-01

    57 Fe conversion electron Moessbauer spectroscopy, X-ray diffraction, electrochemical and magnetic measurements were used to study pulse electroplated Fe-P and Ni-Fe coatings. XRD and 57 Fe CEMS measurements revealed the amorphous character of the novel pulse plated Fe-P alloys. CEM spectra indicated significant differences in the short range order and in the magnetic anisotropy between the Fe-P deposits pulse plated at medium long deposition time (t on = 2 ms), with short relaxation time (t off = 9 ms) and low current density (I p = 0.05 Acm -2 ) or at short deposition time (t on = 1 ms) with long relaxation time (t off = 250 ms) and high current density (I p = 1.0 Acm -2 ). The broad peaks centred around the fcc reflections in XRD of the pulse plated Ni-22 wt.% Fe deposit reflected a microcrystalline Ni-Fe alloy with a very fine, 5-8 nm, grain size. The CEM spectrum of the pulse plated Ni-22 wt.% Fe coating corresponded to a highly disordered solid solution alloy containing a minute amount of ferrihydrite. Extreme favourable soft magnetic properties were observed with these Ni-Fe and Fe-P pulse plated thin layers.

  6. Bi-epitaxial YBa2Cu3Ox Thin Films on Tilted-axes NdGaO3 Substrates with CeO2 Seeding Layer

    International Nuclear Information System (INIS)

    Mozhaev, P B; Mozhaeva, J E; Jacobsen, C S; Hansen, J Bindslev; Bdikin, I K; Luzanov, V A; Kotelyanskii, I M; Zybtsev, S G

    2006-01-01

    Bi-epitaxial YBa 2 Cu 3 O x (YBCO) thin films with out-of-plane tilt angle in the range 18 - 27 0 were manufactured using pulsed laser deposition on NdGaO 3 tilted-axes substrates with CeO 2 seeding layers. The YBCO thin film orientation over the seeding layer depended on deposition conditions. Removal of the seeding layer from part of the substrate surface by ionbeam etching resulted in formation of a bi-epitaxial thin film with different c-axis orientation of two parts of the film. The bi-epitaxial film orientation and structure were studied using X-ray diffraction techniques, and surface morphology was observed with atomic force microscope (AFM). Photolithography and ion-beam etching techniques were used for patterning bi-epitaxial thin films. Electrical characterization of the obtained structures was performed

  7. Stranski-Krastanow islanding initiated on the stochastic rough surfaces of the epitaxially strained thin films

    International Nuclear Information System (INIS)

    Tarik Ogurtani, Omer; Celik, Aytac; Emre Oren, Ersin

    2014-01-01

    Quantum dots (QD) have discrete energy spectrum, which can be adjusted over a wide range by tuning composition, density, size, lattice strain, and morphology. These features make quantum dots attractive for the design and fabrication of novel electronic, magnetic and photonic devices and other functional materials used in cutting-edge applications. The formation of QD on epitaxially strained thin film surfaces, known as Stranski-Krastanow (SK) islands, has attracted great attention due to their unique electronic properties. Here, we present a systematic dynamical simulation study for the spontaneous evolution of the SK islands on the stochastically rough surfaces (nucleationless growth). During the development of SK islands through the mass accumulation at randomly selected regions of the film via surface drift-diffusion (induced by the capillary and mismatch stresses) with and/or without growth, one also observes the formation of an extremely thin wetting layer having a thickness of a few Angstroms. Above a certain threshold level of the mismatch strain and/or the size of the patch, the formation of multiple islands separated by shallow wetting layers is also observed as metastable states such as doublets even multiplets. These islands are converted into a distinct SK islands after long annealing times by coalescence through the long range surface diffusion. Extensive computer simulation studies demonstrated that after an initial transient regime, there is a strong quadratic relationship between the height of the SK singlet and the intensity of the lattice mismatch strain (in a wide range of stresses up to 8.5 GPa for germanium thin crystalline films), with the exception at those critical points where the morphological (shape change with necking) transition takes place.

  8. Mn doping effect on structure and magnetism of epitaxial (FePt)1-xMnx films

    International Nuclear Information System (INIS)

    Huang, J.C.A.; Chang, Y.C.; Yu, C.C.; Yao, Y.D.; Hu, Y.M.; Fu, C.M.

    2003-01-01

    We study the structure and perpendicular magnetism of molecular beam epitaxy grown (FePt) 1-x Mn x films with doping concentration x=0, 1%, 2%, 3%, 4%, and 5%. The (FePt) 1-x Mn x films were made by multilayers growth of [Fe/Pt/Mn]xN at 100 deg. C and annealed at 600 deg. C. X-ray diffraction scans indicate that relatively better L1 0 ordered structure for low Mn doping (x 3%. The perpendicular magnetic anisotropy effect of the (FePt) 1-x Mn x films tends to decrease with the increase of Mn doping for x>1%. However, the x=1% doped films possess slightly better perpendicular magnetic anisotropy effect than the zero doped film. The perpendicular magnetic anisotropy constant are of about 1.3x10 7 and 1.6x10 7 erg/cm 3 for x=0% and x=1%, respectively

  9. Coercivity scaling in antidot lattices in Fe, Ni, and NiFe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gräfe, Joachim, E-mail: graefe@is.mpg.de; Schütz, Gisela; Goering, Eberhard J., E-mail: goering@is.mpg.de

    2016-12-01

    Antidot lattices can be used to artificially engineer magnetic properties in thin films, however, a conclusive model that describes the coercivity enhancement in this class of magnetic nano-structures has so far not been found. We prepared Fe, Ni, and NiFe thin films and patterned each with 21 square antidot lattices with different geometric parameters and measured their hysteretic behavior. On the basis of this extensive dataset we are able to provide a model that can describe both the coercivity scaling over a wide range of geometric lattice parameters and the influence of different materials.

  10. Epitaxial Lift-Off of Centimeter-Scaled Spinel Ferrite Oxide Thin Films for Flexible Electronics.

    Science.gov (United States)

    Shen, Lvkang; Wu, Liang; Sheng, Quan; Ma, Chunrui; Zhang, Yong; Lu, Lu; Ma, Ji; Ma, Jing; Bian, Jihong; Yang, Yaodong; Chen, Aiping; Lu, Xiaoli; Liu, Ming; Wang, Hong; Jia, Chun-Lin

    2017-09-01

    Mechanical flexibility of electronic devices has attracted much attention from research due to the great demand in practical applications and rich commercial value. Integration of functional oxide materials in flexible polymer materials has proven an effective way to achieve flexibility of functional electronic devices. However, the chemical and mechanical incompatibilities at the interfaces of dissimilar materials make it still a big challenge to synthesize high-quality single-crystalline oxide thin film directly on flexible polymer substrates. This study reports an improved method that is employed to successfully transfer a centimeter-scaled single-crystalline LiFe 5 O 8 thin film on polyimide substrate. Structural characterizations show that the transferred films have essentially no difference in comparison with the as-grown films with respect to the microstructure. In particular, the transferred LiFe 5 O 8 films exhibit excellent magnetic properties under various mechanical bending statuses and show excellent fatigue properties during the bending cycle tests. These results demonstrate that the improved transfer method provides an effective way to compose single-crystalline functional oxide thin films onto flexible substrates for applications in flexible and wearable electronics. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Microstructure of Co/X (X=Cu,Ag,Au) epitaxial thin films grown on Al2O3(0001) substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Akita, Yuta; Futamoto, Masaaki; Kirino, Fumiyoshi

    2007-01-01

    Epitaxial thin films of Co/X (X=Cu,Ag,Au) were prepared on Al 2 O 3 (0001) substrates at substrate temperatures of 100 and 300 degree sign C by UHV molecular beam epitaxy. A complicated microstructure was realized for the epitaxial thin films. In-situ reflection high-energy electron diffraction observation has shown that X atoms of the buffer layer segregated to the surface during Co layer deposition, and it yielded a unique epitaxial granular structure. The structure consists of small Co grains buried in the X buffer layer, where both the magnetic small Co grains and the nonmagnetic X layer are epitaxially grown on the single crystal substrate. The structure varied depending on the X element and the substrate temperature. The crystal structure of Co grains is influenced by the buffer layer material and determined to be hcp and fcc structures for the buffer layer materials of Au and Cu, respectively

  12. Magnetoelastic coupling in TbFe2 (110) thin films

    International Nuclear Information System (INIS)

    Ciria, M.; Arnaudas, J.I.; Dufour, C.; Oderno, V.; Dumesnil, K.; del Moral, A.

    1997-01-01

    We have determined the rhombohedral magnetoelastic stress of a Laves phase TbFe 2 (110) single-crystal film, grown by molecular-beam epitaxy. The film thickness was 1300 Angstrom. The magnetoelastic stress was directly measured by using a low-temperature cantilever capacitive method, between 300 and 10 K. The isotherms clearly display the coercive field but, unlike bulk alloy behavior, do not saturate even at the maximum field of 12 T. The determined rhombohedral magnetoelastic parameter of the film is B ε,2 =-0.43 GPa, at 0 K and 12 T, which is 0.67 times the value for bulk TbFe 2 . B ε,2 follows a power m 3 of the reduced magnetization m, indicating a single-ion volume origin for the rhombohedral magnetoelastic stress of this film. Measurements performed in a 300 Angstrom TbFe 2 (110) film deposited onto a YFe 2 buffer show that the coercive field is drastically lowered and that the magnetoelastic distortion is negligible. copyright 1997 American Institute of Physics

  13. Tensile strain induced changes in the optical spectra of SrTiO.sub.3./sub. epitaxial thin films

    Czech Academy of Sciences Publication Activity Database

    Dejneka, Alexandr; Tyunina, M.; Narkilahti, J.; Levoska, J.; Chvostová, Dagmar; Jastrabík, Lubomír; Trepakov, Vladimír

    2010-01-01

    Roč. 52, č. 10 (2010), 2082-2089 ISSN 1063-7834 R&D Projects: GA ČR GA202/08/1009; GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : SrTiO 3 epitaxial thin films * effect of biaxial tensile strains on optical spectra Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.727, year: 2010

  14. Magnetoresistance Versus Oxygen Deficiency in Epi-stabilized SrRu1 - x Fe x O3 - δ Thin Films.

    Science.gov (United States)

    Dash, Umasankar; Acharya, Susant Kumar; Lee, Bo Wha; Jung, Chang Uk

    2017-12-01

    Oxygen vacancies have a profound effect on the magnetic, electronic, and transport properties of transition metal oxide materials. Here, we studied the influence of oxygen vacancies on the magnetoresistance (MR) properties of SrRu 1 - x Fe x O 3 - δ epitaxial thin films (x = 0.10, 0.20, and 0.30). For this purpose, we synthesized highly strained epitaxial SrRu 1 - x Fe x O 3 - δ thin films with atomically flat surfaces containing different amounts of oxygen vacancies using pulsed laser deposition. Without an applied magnetic field, the films with x = 0.10 and 0.20 showed a metal-insulator transition, while the x = 0.30 thin film showed insulating behavior over the entire temperature range of 2-300 K. Both Fe doping and the concentration of oxygen vacancies had large effects on the negative MR contributions. For the low Fe doping case of x = 0.10, in which both films exhibited metallic behavior, MR was more prominent in the film with fewer oxygen vacancies or equivalently a more metallic film. For semiconducting films, higher MR was observed for more semiconducting films having more oxygen vacancies. A relatively large negative MR (~36.4%) was observed for the x = 0.30 thin film with a high concentration of oxygen vacancies (δ = 0.12). The obtained results were compared with MR studies for a polycrystal of (Sr 1 - x La x )(Ru 1 - x Fe x )O 3 . These results highlight the crucial role of oxygen stoichiometry in determining the magneto-transport properties in SrRu 1 - x Fe x O 3 - δ thin films.

  15. Oxygen incorporation effects in annealed epitaxial La(1-x)SrxMnO3 thin films

    International Nuclear Information System (INIS)

    Petrisor, T.; Gabor, M. S.; Tiusan, C.; Boulle, A.; Bellouard, C.; Pana, O.; Petrisor, T.

    2011-01-01

    This paper presents our results regarding oxygen incorporation effects in epitaxial La (1-x) Sr x MnO 3 thin films, deposited on SrTiO 3 (001) single crystal substrates, by annealing in different gas mixtures of argon and oxygen. A particular emphasis is placed on the correlation of structural properties with the magnetic properties of the films, Curie temperature, and coercive field. In this sense, we demonstrate that the evolution of the diffuse part of the ω-scans performed on the films are due to oxygen excess in the film lattice, which creates cationic vacancies within the films. Also, we show that two regimes of oxygen incorporation in the films exist, one in which the films evolve toward a single phase and oxygen stoichiometry is recovered, and a second one dominated by oxygen over-doping effects. In order to support our study, XPS measurements were performed, from which we have evaluated the Mn 3+ /Mn 4+ ionic ratio.

  16. Epitaxial growth and properties of YBaCuO thin films

    International Nuclear Information System (INIS)

    Geerk, J.; Linker, G.; Meyer, O.

    1989-08-01

    The growth quality of YBaCuO thin films deposited by sputtering on different substrates (Al 2 O 3 , MgO, SrTiO 3 , Zr(Y)O 2 ) has been studied by X-ray diffraction and channeling experiments as a function of the deposition temperature. Besides the substrate orientation, the substrate temperature is the parameter determining whether films grow in c-, a-, (110) or mixed directions. Epitaxial growth correlates with high critical current values in the films of up to 5.5x10 6 A/cm 2 at 77 K. Ultrathin films with thicknesses down to 2 nm were grown revealing three-dimensional superconducting behaviour. Films on (100) SrTiO 3 of 9 nm thickness and below are partially strained indicating commensurate growth. From the analysis of the surface disorder 1 displaced Ba atom per Ba 2 Y row was obtained indicating that the disordered layer thickness is about 0.6 nm. Tunnel junctions fabricated on these films reveal gap-like structures near ±16 mV and ±30 mV. (orig.) [de

  17. Microstructure of epitaxial SrRuO 3 thin films on MgO substrates

    Science.gov (United States)

    Ai, Wan Yong; Zhu, Jun; Zhang, Ying; Li, Yan Rong; Liu, Xing Zhao; Wei, Xian Hua; Li, Jin Long; Zheng, Liang; Qin, Wen Feng; Liang, Zhu

    2006-09-01

    SrRuO 3 thin films have been grown on singular (1 0 0) MgO substrates using pulsed laser deposition (PLD) in 30 Pa oxygen ambient and at a temperature of 400-700 °C. Ex situ reflection high-energy electron diffraction (RHEED) as well as X-ray diffraction (XRD) θ/2 θ scan indicated that the films deposited above 650 °C were well crystallized though they had a rough surface as shown by atom force microscopy (AFM). XRD Φ scans revealed that these films were composed of all three different types of orientation domains, which was further confirmed by the RHEED patterns. The heteroepitaxial relationship between SrRuO 3 and MgO was found to be [1 1 0] SRO//[1 0 0] MgO and 45°-rotated cube-on-cube [0 0 1] SRO//[1 0 0] MgO. These domain structures and surface morphology are similar to that of ever-reported SrRuO 3 thin films deposited on the (0 0 1) LaAlO 3 substrates, and different from those deposited on (0 0 1) SrTiO 3 substrates that have an atomically flat surface and are composed of only the [1 1 0]-type domains. The reason for this difference was ascribed to the effect of lattice mismatch across the film/substrate interface. The room temperature resistivity of SrRuO 3 films fabricated at 700 °C was 300 μΩ cm. Therefore, epitaxial SrRuO 3 films on MgO substrate could serve as a promising candidate of electrode materials for the fabrication of ferroelectric or dielectric films.

  18. Magnetization switching behavior with competing anisotropies in epitaxial Co3FeN /MnN exchange-coupled bilayers

    Science.gov (United States)

    Hajiri, T.; Yoshida, T.; Jaiswal, S.; Filianina, M.; Borie, B.; Ando, H.; Asano, H.; Zabel, H.; Kläui, M.

    2016-11-01

    We report unusual magnetization switching processes and angular-dependent exchange bias effects in fully epitaxial Co3FeN /MnN bilayers, where magnetocrystalline anisotropy and exchange coupling compete, probed by longitudinal and transverse magneto-optic Kerr effect (MOKE) magnetometry. The MOKE loops show multistep jumps corresponding to the nucleation and propagation of 90∘ domain walls in as-grown bilayers. By inducing exchange coupling, we confirm changes of the magnetization switching process due to the unidirectional anisotropy field of the exchange coupling. Taking into account the experimentally obtained values of the fourfold magnetocrystalline anisotropy, the unidirectional anisotropy field, the exchange-coupling constant, and the uniaxial anisotropy including its direction, the calculated angular-dependent exchange bias reproduces the experimental results. These results demonstrate the essential role of the competition between magnetocrystalline anisotropy and exchange coupling for understanding and tailoring exchange-coupling phenomena usable for engineering switching in fully epitaxial bilayers made of tailored materials.

  19. Influence of anisotropic strain relaxation on the magnetoresistance properties of epitaxial Fe3O4 (110) films

    Science.gov (United States)

    Sofin, R. G. S.; Wu, Han-Chun; Ramos, R.; Arora, S. K.; Shvets, I. V.

    2015-11-01

    We studied Fe3O4 (110) films grown epitaxially on MgO (110) substrates using oxygen plasma assisted molecular beam epitaxy. The films with thickness of 30-200 nm showed anisotropic in-plane partial strain relaxation. Magneto resistance (MR) measurements with current and magnetic field along ⟨001⟩ direction showed higher MR compared to ⟨1 ¯ 10 ⟩ direction. Maximum value of MR was measured at Verwey transition temperature for both directions. We explain the observed anisotropy in the MR on the basis of the effects of anisotropic misfit strain, and the difference between the density of antiferromagnetically coupled antiphase boundaries formed along ⟨001⟩ and ⟨1 ¯ 10 ⟩ crystallographic directions, suggesting the dependence of spin polarisation on the anisotropic strain relaxation along the said crystallographic directions.

  20. Optical properties of aluminum nitride thin films grown by direct-current magnetron sputtering close to epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Stolz, A. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Soltani, A., E-mail: ali.soltani@iemn.univ-lille1.fr [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Abdallah, B. [Department of Materials Physics, Atomic Energy Commission of Syria, Damascus, P.O. Box 6091 (Syrian Arab Republic); Charrier, J. [Fonctions Optiques pour les Technologies de l' informatiON (FOTON), UMR CNRS 6082, 6, rue de Kerampont CS 80518, 22305 Lannion Cedex (France); Deresmes, D. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France); Jouan, P.-Y.; Djouadi, M.A. [Institut des Matériaux Jean Rouxel – IMN, UMR CNRS 6502, 2, rue de la Houssinère BP 32229, 44322 Nantes (France); Dogheche, E.; De Jaeger, J.-C. [Institut d' Electronique de Microélectronique et de Nanotechnologie (IEMN), UMR CNRS 8520, PRES Lille, Université Nord de France, Avenue Poincaré, 59652 Villeneuve d' Ascq Cedex (France)

    2013-05-01

    Low-temperature Aluminum Nitride (AlN) thin films with a thickness of 3 μm were deposited by Direct-Current magnetron sputtering on sapphire substrate. They present optical properties similar to those of epitaxially grown films. Different characterization methods such as X-Ray Diffraction, Transmission Electron Microscopy and Atomic Force Microscopy were used to determine the structural properties of the films such as its roughness and crystallinity. Newton interferometer was used for stress measurement of the films. Non-destructive prism-coupling technique was used to determine refractive index and thickness homogeneity by a mapping on the whole sample area. Results show that AlN films grown on AlGaN layer have a high crystallinity close to epitaxial films, associated to a low intrinsic stress for low thickness. These results highlight that it is possible to grow thick sample with microstructure and optical properties close to epitaxy, even on a large surface. - Highlights: ► Aluminum Nitride sputtering technique with a low temperature growth process ► Epitaxial quality of two microns sputtered Aluminum Nitride film ► Optics as a non-destructive accurate tool for acoustic wave investigation.

  1. Growth and characterization of III-N ternary thin films by plasma assisted atomic layer epitaxy at low temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Nepal, Neeraj; Anderson, Virginia R.; Hite, Jennifer K.; Eddy, Charles R.

    2015-08-31

    We report the growth and characterization of III-nitride ternary thin films (Al{sub x}Ga{sub 1−x}N, In{sub x}Al{sub 1−x}N and In{sub x}Ga{sub 1−x}N) at ≤ 500 °C by plasma assisted atomic layer epitaxy (PA-ALE) over a wide stoichiometric range including the range where phase separation has been an issue for films grown by molecular beam epitaxy and metal organic chemical vapor deposition. The composition of these ternaries was intentionally varied through alterations in the cycle ratios of the III-nitride binary layers (AlN, GaN, and InN). By this digital alloy growth method, we are able to grow III-nitride ternaries by PA-ALE over nearly the entire stoichiometry range including in the spinodal decomposition region (x = 15–85%). These early efforts suggest great promise of PA-ALE at low temperatures for addressing miscibility gap challenges encountered with conventional growth methods and realizing high performance optoelectronic and electronic devices involving ternary/binary heterojunctions, which are not currently possible. - Highlights: • III-N ternaries grown at ≤ 500 °C by plasma assisted atomic layer epitaxy • Growth of InGaN and AlInN in the spinodal decomposition region (15–85%) • Epitaxial, smooth and uniform III-N film growth at low temperatures.

  2. Growth and characterization of III-N ternary thin films by plasma assisted atomic layer epitaxy at low temperatures

    International Nuclear Information System (INIS)

    Nepal, Neeraj; Anderson, Virginia R.; Hite, Jennifer K.; Eddy, Charles R.

    2015-01-01

    We report the growth and characterization of III-nitride ternary thin films (Al x Ga 1−x N, In x Al 1−x N and In x Ga 1−x N) at ≤ 500 °C by plasma assisted atomic layer epitaxy (PA-ALE) over a wide stoichiometric range including the range where phase separation has been an issue for films grown by molecular beam epitaxy and metal organic chemical vapor deposition. The composition of these ternaries was intentionally varied through alterations in the cycle ratios of the III-nitride binary layers (AlN, GaN, and InN). By this digital alloy growth method, we are able to grow III-nitride ternaries by PA-ALE over nearly the entire stoichiometry range including in the spinodal decomposition region (x = 15–85%). These early efforts suggest great promise of PA-ALE at low temperatures for addressing miscibility gap challenges encountered with conventional growth methods and realizing high performance optoelectronic and electronic devices involving ternary/binary heterojunctions, which are not currently possible. - Highlights: • III-N ternaries grown at ≤ 500 °C by plasma assisted atomic layer epitaxy • Growth of InGaN and AlInN in the spinodal decomposition region (15–85%) • Epitaxial, smooth and uniform III-N film growth at low temperatures

  3. Gilbert damping constant of FePd alloy thin films estimated by broadband ferromagnetic resonance

    Directory of Open Access Journals (Sweden)

    Kawai T.

    2014-07-01

    Full Text Available Magnetic relaxation of FePd alloy epitaxial thin films with very flat surfaces prepared on MgO(001 substrate are measured by in-plane broadband ferromagnetic resonance (FMR. Magnetic relaxation is investigated as Δω for FMR absorption peak by frequency sweep measurements. ΔH is calculated by using the measured Δω. Gilbert damping constant, α, is estimated by employing a straight line fitting of the resonant frequency dependence of ΔH. The α value for an FePd film deposited at 200 ˚C, which shows disordered A1 structure, is 0.010 and ΔH0, which is frequency independent part of ΔH, is 10 Oe. The α value for a film annealed at 400 ˚C, which shows partially L10 ordered structure (S=0.32, is 0.013, which is slightly larger than that for the disorder A1 structure film. However, ΔH0 for the annealed film is 85 Oe, which is much larger than that for the film with disordered structure. The results show that the magnetic relaxation of the 400 ˚C annealed film is mainly dominated by ΔH0, which is related with magnetic in-homogeneity caused by the appearance of perpendicular anisotropy of partially ordered phase.

  4. Effects of Interfaces on the Structure and Novel Physical Properties in Epitaxial Multiferroic BiFeO3 Ultrathin Films

    Directory of Open Access Journals (Sweden)

    Chuanwei Huang

    2014-07-01

    Full Text Available In functional oxide films, different electrical/mechanical boundaries near film surfaces induce rich phase diagrams and exotic phenomena. In this paper, we review some key points which underpin structure, phase transition and related properties in BiFeO3 ultrathin films. Compared with the bulk counterparts, we survey the recent results of epitaxial BiFeO3 ultrathin films to illustrate how the atomic structure and phase are markedly influenced by the interface between the film and the substrate, and to emphasize the roles of misfit strain and depolarization field on determining the domain patterns, phase transformation and associated physical properties of BiFeO3 ultrathin films, such as polarization, piezoelectricity, and magnetism. One of the obvious consequences of the misfit strain on BiFeO3 ultrathin films is the emergence of a sequence of phase transition from tetragonal to mixed tetragonal & rhombohedral, the rhombohedral, mixed rhombohedral & orthorhombic, and finally orthorhombic phases. Other striking features of this system are the stable domain patterns and the crossover of 71° and 109° domains with different electrical boundary conditions on the film surface, which can be controlled and manipulated through the depolarization field. The external field-sensitive enhancements of properties for BiFeO3 ultrathin films, including the polarization, magnetism and morphotropic phase boundary-relevant piezoelectric response, offer us deeper insights into the investigations of the emergent properties and phenomena of epitaxial ultrathin films under various mechanical/electrical constraints. Finally, we briefly summarize the recent progress and list open questions for future study on BiFeO3 ultrathin films.

  5. Determination of the Fe magnetic anisotropies and the CoO frozen spins in epitaxial CoO/Fe/Ag(001)

    Energy Technology Data Exchange (ETDEWEB)

    Meng, J. Li, Y.; Park, J. S.; Jenkins, C. A.; Arenholz, E.; Scholl, A.; Tan, A.; Son, H.; Zhao, H. W.; Hwang, Chanyong; Qiu, Z. Q.

    2011-04-28

    CoO/Fe/Ag(001) films were grown epitaxially and studied by X-ray Magnetic Circular Dichroism (XMCD) and X-ray Magnetic Linear Dichroism (XMLD). After field cooling along the Fe[100] axis to 80 K, exchange bias, uniaxial anisotropy, and 4-fold anisotropy of the films were determined by hysteresis loop and XMCD measurements by rotating the Fe magnetization within the film plane. The CoO frozen spins were determined by XMLD measurement as a function of CoO thickness.We find that among the exchange bias, uniaxial anisotropy, and 4-fold anisotropy, only the uniaxial magnetic anisotropy follows thickness dependence of the CoO frozen spins.

  6. Uniaxial stress influence on electrical conductivity of thin epitaxial lanthanum-strontium manganite films

    Energy Technology Data Exchange (ETDEWEB)

    Stankevič, V., E-mail: wstan@pfi.lt [Center for Physical Sciences and Technology, Semiconductor Physics Institute, A.Gostauto 11, Vilnius (Lithuania); Vilnius Gediminas Technical University, Sauletekio 11, Vilnius (Lithuania); Šimkevičius, Č.; Balevičius, S.; Žurauskienė, N. [Center for Physical Sciences and Technology, Semiconductor Physics Institute, A.Gostauto 11, Vilnius (Lithuania); Vilnius Gediminas Technical University, Sauletekio 11, Vilnius (Lithuania); Cimmperman, P. [Center for Physical Sciences and Technology, Semiconductor Physics Institute, A.Gostauto 11, Vilnius (Lithuania); Abrutis, A. [Vilnius University, Dept. of General and Inorganic Chemistry, Naugarduko 24, Vilnius (Lithuania); Plaušinaitienė, V. [Center for Physical Sciences and Technology, Semiconductor Physics Institute, A.Gostauto 11, Vilnius (Lithuania); Vilnius University, Dept. of General and Inorganic Chemistry, Naugarduko 24, Vilnius (Lithuania)

    2013-07-01

    This is a study of the influence of external uniaxial mechanical strains on the transport properties of thin epitaxial La{sub 0.83}Sr{sub 0.17}MnO{sub 3} (LSMO) films. Our measurements were carried out using standard isosceles triangle-shaped cantilever. Films which were tensed in-plane or compressed or were subjected to both tension and compression strains were grown onto SrTiO{sub 3} (STO), LaAlO{sub 3} (LAO) and (001) NdGaO{sub 3} (NGO) substrates, respectively. It was found that for thin films (less than 100 nm), the uniaxial compression of such films which were initially tensed in-plane (grown onto STO substrates) produces a decrease of their resistance, whereas the compression of initially compressed films (on LAO substrates) produces an increase of the films' resistance. The same results were obtained for LSMO films grown onto (001) NGO substrates when they were compressed along the [010] and [100] directions, respectively. For thicker films (more than 100 nm), the resistance behavior after uniaxial compression was found to be identical to that produced by hydrostatic compression, namely, the resistance decreases irrespective of the substrate. These experiments also reveal an increase of resistance and a shift of metal–insulator transition temperature T{sub m} to lower temperatures corresponding to a decrease of the film thickness. The occurrence of this effect is also independent of the kind of substrate used. Thus it was concluded that the influence of film thickness on its resistance as well as on the behavior of such films while under external uniaxial compression cannot be explained fully by only the presence of residual stress in these films. A possible reason is that the inhomogeneous distribution of the mechanical stresses in the films can lead to the appearance of two conductivity phases, each having a different mechanism. The results which were obtained when these films were subjected to hydrostatic compression were also explained by this

  7. High field properties of superconducting BaFe{sub 2-x}Ni{sub x}As{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Richter, Stefan [Institute for Metallic Materials, IFW Dresden (Germany); Technical University Dresden (Germany); Kurth, Fritz; Grinenko, Vadim; Nielsch, Kornelius; Huehne, Ruben [Institute for Metallic Materials, IFW Dresden (Germany); Iida, Kazumasa [Nagoya University (Japan); Pervakov, Kirill [Russian Academy of Sciences (Russian Federation); Tarantini, Chiara; Jaroszynski, Jan [National High Magnetic Field Laboratory (United States); Pukenas, Aurimas; Skrotzki, Werner [Technical University Dresden (Germany)

    2016-07-01

    Fe based superconductors combine the advantages of cuprates (high upper critical field) with the small Hc{sub 2} anisotropy of classic low temperature superconductors, which makes them suitable candidates for high field applications. The study of Fe-based superconducting thin films is one crucial step to explore this potential in more detail. We present results for epitaxial BaFe{sub 2-x}Ni{sub x}As{sub 2} thin films, which have been successfully grown for the first time using pulsed laser deposition. Superconducting transition temperatures of up to 19 K have been realized in slightly overdoped films, which is in good agreement with results obtained for single crystals. The behavior of the upper critical field and critical current density has been measured in high magnetic fields up to 35 T. The results will be correlated to the observed microstructure and compared to high field data for single crystals with similar composition.

  8. EuO and Gd-doped EuO thin films. Epitaxial growth and properties

    International Nuclear Information System (INIS)

    Sutarto, Ronny

    2009-01-01

    quality of many of the doped EuO samples used in the past bulk studies. The focus of this thesis is on the preparation and the properties of high-quality single-crystalline EuO and Gd-doped EuO thin films. The so-called Eu-distillation-assisted molecular beam epitaxy (MBE) has been employed to achieve full control of the stoichiometry. The films have been epitaxially grown on yttria-stabilized cubic zirconia (YSZ) (001) substrates. By a systematic variation of the oxygen deposition rates, we have been able to observe sustained oscillations in the intensity of the reflection high-electron energy diffraction (RHEED) pattern during growth. We thus have demonstrated that layer-by-layer growth has been achieved for the first time. We also have confirmed that YSZ indeed supplies oxygen during the initial stages of growth, yet the EuO stoichiometry can still be well maintained. In the case of Gd-doped EuO films, the presence of Gd even helps to stabilize the layer-by-layer growth mode. It is important to achieve this growth mode, since it enables the preparation of films with very smooth and at surfaces. This in turn facilitates the capping of the films with a thin Al overlayer in order to protect the films against degradation under ambient conditions. More important, the smoothness of the lm will enable the preparation of high quality device structures. By using ex-situ soft x-ray absorption spectroscopy (XAS) at the Eu and Gd M 4,5 edges, we have confirmed that the films are completely free from Eu 3+ contaminants, and we were able to determine reliably the actual Gd concentration. This actual Gd concentration could in fact significantly deviate from the nominal Gd/Eu evaporation ratio. From magnetization and susceptibility measurements, we found the Curie temperature to increase smoothly as a function of doping from 69 K up to a maximum of 125 K, all with a saturation moment of 7 μB. A threshold behavior was not observed for Gd concentrations as low as 0.2 %. Analysis of the

  9. EuO and Gd-doped EuO thin films. Epitaxial growth and properties

    Energy Technology Data Exchange (ETDEWEB)

    Sutarto, Ronny

    2009-07-06

    this respect the quality of many of the doped EuO samples used in the past bulk studies. The focus of this thesis is on the preparation and the properties of high-quality single-crystalline EuO and Gd-doped EuO thin films. The so-called Eu-distillation-assisted molecular beam epitaxy (MBE) has been employed to achieve full control of the stoichiometry. The films have been epitaxially grown on yttria-stabilized cubic zirconia (YSZ) (001) substrates. By a systematic variation of the oxygen deposition rates, we have been able to observe sustained oscillations in the intensity of the reflection high-electron energy diffraction (RHEED) pattern during growth. We thus have demonstrated that layer-by-layer growth has been achieved for the first time. We also have confirmed that YSZ indeed supplies oxygen during the initial stages of growth, yet the EuO stoichiometry can still be well maintained. In the case of Gd-doped EuO films, the presence of Gd even helps to stabilize the layer-by-layer growth mode. It is important to achieve this growth mode, since it enables the preparation of films with very smooth and at surfaces. This in turn facilitates the capping of the films with a thin Al overlayer in order to protect the films against degradation under ambient conditions. More important, the smoothness of the lm will enable the preparation of high quality device structures. By using ex-situ soft x-ray absorption spectroscopy (XAS) at the Eu and Gd M{sub 4,5} edges, we have confirmed that the films are completely free from Eu{sup 3+} contaminants, and we were able to determine reliably the actual Gd concentration. This actual Gd concentration could in fact significantly deviate from the nominal Gd/Eu evaporation ratio. From magnetization and susceptibility measurements, we found the Curie temperature to increase smoothly as a function of doping from 69 K up to a maximum of 125 K, all with a saturation moment of 7 {mu}B. A threshold behavior was not observed for Gd concentrations

  10. Epitaxial growth of YBa2Cu3O7-δ thin films on LiNbO3 substrates

    International Nuclear Information System (INIS)

    Lee, S.G.; Koren, G.; Gupta, A.; Segmuller, A.; Chi, C.C.

    1989-01-01

    In situ epitaxial growth of YBa 2 Cu 3 O 7-δ thin films on Y-cut LiNbO 3 substrates using a standard laser ablation technique is reported. Resistance of the films shows a normal metallic behavior and a very sharp ( c (R=0) of 92 K. High critical current density of J c (77 K)=2x10 5 A/cm 2 is observed, which is in accordance with epitaxial growth. Film orientation observed from x-ray diffraction spectra indicates that the c axis is normal to the substrate plane and the a axis is at 45 degree to the [11.0] direction of the hexagonal lattice of the substrate with two domains in mirror image to the (110) plane

  11. Resistivity Effects of Cation Ordering in Highly-Doped La2-xSrxCu4 Epitaxial Thin Films

    Science.gov (United States)

    Burquest, Franklin; Marmol, Rodrigo; Cox, Nicholas; Nelson-Cheeseman, Brittany

    Highly-doped La2-xSrxCuO4 (LSCO) films (0.5 causes internal polar electrostatic forces, which have been shown to cause stretching of the apical oxygen bond in analogous epitaxial nickelate films. Thin film samples are grown concurrently to minimize extraneous effects on film structure and properties. Atomic force microscopy and x-ray reflectivity demonstrate that the films are single crystalline, epitaxial, and smooth. X-ray diffraction is used to measure the c-axis of the films as a function of doping and dopant cation ordering. Electrical transport data of the ordered samples is compared with transport data of conventional disordered cation samples. Preliminary data indicates significant differences in resistivity at both 300K and 10K between the cation-ordered and cation-disordered samples. This work indicates that dopant cation ordering within the layered cuprates could significantly modify the conduction mechanisms at play in these materials.

  12. Strain-dependence of the structure and ferroic properties of epitaxial Ni1−xTi1−yO3 thin films grown on sapphire substrates

    International Nuclear Information System (INIS)

    Varga, Tamas; Droubay, Timothy C.; Bowden, Mark E.; Stephens, Sean A.; Manandhar, Sandeep; Shutthanandan, Vaithiyalingam; Colby, Robert J.; Hu, Dehong; Shelton, William A.; Chambers, Scott A.

    2015-01-01

    Polarization-induced weak ferromagnetism has been predicted a few years back in compounds MTiO 3 (M = Fe, Mn, Ni) (Fennie, 2008). We set out to stabilize this metastable, distorted perovskite structure by growing NiTiO 3 epitaxially on sapphire Al 2 O 3 (001) substrate, and to control the polar and magnetic properties via strain. Epitaxial Ni 1−x Ti 1−y O 3 films of different Ni/Ti ratios and thicknesses were deposited on Al 2 O 3 substrates by pulsed laser deposition at different temperatures, and characterized using several techniques. The effect of film thickness, deposition temperature, and film stoichiometry on lattice strain, film structure, and physical properties was investigated. Our structural data from x-ray diffraction, electron microscopy, and x-ray absorption spectroscopy shows that substrate-induced strain has a marked effect on the structure and crystalline quality of the films. Physical property measurements reveal a dependence of the Néel transition and lattice polarization on strain, and highlight our ability to control the ferroic properties in NiTiO 3 thin films by film stoichiometry and thickness. - Highlights: • NiTiO 3 epitaxial thin films with LiNbO 3 -type structure by pulsed laser deposition. • Strain varied by film thickness, stoichiometry, and synthesis temperature. • Systematic study of the effect of strain on film structure and physical properties. • Manipulation of ferroic properties by strain confirmed

  13. Ultra-smooth epitaxial Ge grown on Si(001) utilizing a thin C-doped Ge buffer layer

    KAUST Repository

    Mantey, J.

    2013-01-01

    Here, we present work on epitaxial Ge films grown on a thin buffer layer of C doped Ge (Ge:C). The growth rate of Ge:C is found to slow over time and is thus unsuitable for thick (>20 nm) layers. We demonstrate Ge films from 10 nm to >150 nm are possible by growing pure Ge on a thin Ge:C buffer. It is shown that this stack yields exceedingly low roughness levels (comparable to bulk Si wafers) and contains fewer defects and higher Hall mobility compared to traditional heteroepitaxial Ge. The addition of C at the interface helps reduce strain by its smaller atomic radius and its ability to pin defects within the thin buffer layer that do not thread to the top Ge layer. © 2013 AIP Publishing LLC.

  14. Epitaxial growth and control of the sodium content in Na{sub x}CoO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hildebrandt, Sandra; Komissinskiy, Philipp [Institute for Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Major, Marton [Institute for Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); WIGNER RCP, RMKI, H-1525 Budapest, P.O.B. 49 (Hungary); Donner, Wolfgang [Institute for Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany); Alff, Lambert, E-mail: alff@oxide.tu-darmstadt.de [Institute for Materials Science, Technische Universität Darmstadt, 64287 Darmstadt (Germany)

    2013-10-31

    Single-phase c-axis oriented Na{sub x}CoO{sub 2} thin films were grown on (001) SrTiO{sub 3} single-crystal substrates, using pulsed laser deposition. X-ray diffraction analysis indicates the epitaxial growth of Na{sub x}CoO{sub 2} thin films in two domains, rotated in-plane by 15 and 45 degrees relative to [100] SrTiO{sub 3}. The sodium stoichiometry x of the films can be controlled in a range of 0.38 < x < 0.84 by in-situ post-deposition annealing the Na{sub x}CoO{sub 2} films at 720 – 760 °C in oxygen for 10 – 30 min. γ - Na{sub x}CoO{sub 2} films are obtained with a full width at half maximum of the (002) Na{sub x}CoO{sub 2} rocking curve below 0.2 degrees. The post-deposition annealing can substitute commonly used chemical deintercalation of Na which is typically associated with a loss in crystallinity. - Highlights: • Single phase Na{sub x}CoO{sub 2} thin films grown by pulsed laser deposition • Epitaxial relations of Na{sub x}CoO{sub 2} thin films on (001) SrTiO{sub 3} substrates • Multi-domain thin films • Control of sodium content by in-situ annealing of Na{sub x}CoO{sub 2} thin films.

  15. Electronic structure of Cr doped Fe3O4 thin films by X-ray absorption near-edge structure spectroscopy

    Science.gov (United States)

    Chen, Chi-Liang; Dong, Chung-Li; Asokan, Kandasami; Chern, G.; Chang, C. L.

    2018-04-01

    Present study reports the electronic structures of Cr doped Fe3O4 (Fe3-xCrxO4 (0 ≤ x ≤ 3) grown on MgO (100) substrates in the form of thin films fabricated by a plasma-oxygen assisted Molecular Beam Epitaxy (MBE). X-ray absorption near-edge structure (XANES) spectra at Cr & Fe L-, and O K-edges were used to understand the electronic structure: changes in the bonding nature, valence states, and site occupancies. Cr doping in Fe3O4 results in the change of charge transfer, crystal structure, and selective occupation of ions in octahedral and tetrahedral sites. Such change modifies the electrical and magnetic properties due to the covalency of Cr ions. The physical and chemical properties of ferrites are strongly dependent on the lattice site, ion size of dopant, and magnetic nature present at different structural symmetry of the spinel structure.

  16. Magneto-thermoelectric effects in NiFe thin films

    Energy Technology Data Exchange (ETDEWEB)

    Schmid, Maximilian

    2015-11-01

    In this thesis magneto-thermoelectric effects are investigated in a systematic way to separate the transverse spin Seebeck effect from other parasitic effects like the anomalous Nernst effect. In contrast to the first studies found in the literature, in NiFe thin films a contribution of the transverse spin Seebeck effect can be excluded. This surprising outcome was crosschecked in a variety of different sample layouts and collaborations with other universities to ensure the validity of these results. In general, this thesis solves a long time discussion about the existence of the transverse spin Seebeck effect in NiFe films and supports the importance of control measurements for the scientific community. Even if such ''negative'' results may not be the award winning ones, new discoveries should be treated with constructive criticism and be checked carefully by the scientific community.

  17. Magnetic studies of Fe-Y compositionally modulated thin films

    International Nuclear Information System (INIS)

    Badia, F.; Ferrater, C.; Lousa, A.; Martinez, B.; Labarta, A.; Tejada, J.

    1990-01-01

    Compositionally modulated thin films of Y/Fe have been studied by using SQUID magnetometry. Samples were grown by electron-beam evaporation onto Kapton substrates. In the low applied field regime, the samples show irreversible behavior when they are submitted to ZFC-FC magnetization processes, increasing the irreversibility zone as the thickness of the Fe layers increases. In the high applied magnetic field regime (H≥10 000 Oe), samples show ferromagnetic behavior. The temperature dependence of the saturation magnetization has been studied, and it was found that both spin-wave excitations and Stoner excitations occur at temperatures higher than 40 K, and a marked deviation from the T 3/2 law was noted below 30 K

  18. Pseudomorphic growth of organic semiconductor thin films driven by incommensurate epitaxy

    International Nuclear Information System (INIS)

    Sassella, A.; Campione, M.; Raimondo, L.; Borghesi, A.; Bussetti, G.; Cirilli, S.; Violante, A.; Goletti, C.; Chiaradia, P.

    2009-01-01

    A stable pseudomorphic phase of α-quaterthiophene, a well known organic semiconductor, is obtained by growing films with organic molecular beam epitaxy (OMBE) on a single crystal of another organic semiconductor, namely, tetracene. The structural characteristics of the new phase are investigated by monitoring in situ the OMBE process by reflectance anisotropy spectroscopy; thus assessing that incommensurate epitaxy is in this case, the driving force for tuning the molecular packing in organic molecular films and in turn, their solid state properties

  19. Structural and optical properties of cobalt doped multiferroics BiFeO3 nanostructure thin films

    Science.gov (United States)

    Prasannakumara, R.; Naik, K. Gopalakrishna

    2018-05-01

    Bismuth ferrite (BiFeO3) and Cobalt doped BiFeO3 (BiFe1-XCoXO3) nanostructure thin films were deposited on glass substrates by the sol-gel spin coating method. The X-ray diffraction patterns (XRD) of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films showed distorted rhombohedral structure. The shifting of peaks to higher angles was observed in cobalt doped BiFeO3. The surface morphology of the BiFeO3 and BiFe1-XCoXO3 nanostructure thin films were studied using FESEM, an increase in grain size was observed as Co concentration increases. The thickness of the nanostructure thin films was examined using FESEM cross-section. The EDX studies confirmed the elemental composition of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films. The optical characterizations of the grown nanostructure thin films were carried out using FTIR, it confirms the existence of Fe-O and Bi-O bands and UV-Visible spectroscopy shows the increase in optical band gap of the BiFeO3 nanostructure thin films with Co doping by ploting Tauc plot.

  20. Epitaxial ferromagnetic Fe{sub 3}Si on GaAs(111)A with atomically smooth surface and interface

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Y. C.; Hung, H. Y.; Kwo, J., E-mail: chsu@nsrrc.org.tw, E-mail: raynien@phys.nthu.edu.tw, E-mail: mhong@phys.ntu.edu.tw [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Chen, Y. W.; Lin, Y. H.; Cheng, C. K.; Hong, M., E-mail: chsu@nsrrc.org.tw, E-mail: raynien@phys.nthu.edu.tw, E-mail: mhong@phys.ntu.edu.tw [Graduate Institute of Applied Physics and Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China); Tseng, S. C.; Hsu, C. H., E-mail: chsu@nsrrc.org.tw, E-mail: raynien@phys.nthu.edu.tw, E-mail: mhong@phys.ntu.edu.tw [National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan (China); Chang, M. T.; Lo, S. C. [Material and Chemical Research Laboratories, Industrial Technology Research Institute, Hsinchu 31040, Taiwan (China)

    2015-09-21

    Single crystal ferromagnetic Fe{sub 3}Si(111) films were grown epitaxially on GaAs(111)A by molecular beam epitaxy. These hetero-structures possess extremely low surface roughness of 1.3 Å and interfacial roughness of 1.9 Å, measured by in-situ scanning tunneling microscope and X-ray reflectivity analyses, respectively, showing superior film quality, comparing to those attained on GaAs(001) in previous publications. The atomically smooth interface was revealed by the atomic-resolution Z (atomic number)-contrast scanning transmission electron microscopy (STEM) images using the correction of spherical aberration (Cs)-corrected electron probe. Excellent crystallinity and perfect lattice match were both confirmed by high resolution x-ray diffraction. Measurements of magnetic property for the Fe{sub 3}Si/GaAs(111) yielded a saturation moment of 990 emu/cm{sup 3} with a small coercive field ≤1 Oe at room temperature.

  1. Improving stability of photoluminescence of ZnSe thin films grown by molecular beam epitaxy by incorporating Cl dopant

    International Nuclear Information System (INIS)

    Wang, J. S.; Shen, J. L.; Chen, W. J.; Tsai, Y. H.; Wang, H. H.; Yang, C. S.; Chen, R. H.; Tsai, C. D.

    2011-01-01

    This investigation studies the effect of chlorine (Cl) dopant in ZnSe thin films that were grown by molecular beam epitaxy on their photoluminescence (PL) and the stability thereof. Free excitonic emission was observed at room-temperature in the Cl-doped sample. Photon irradiation with a wavelength of 404 nm and a power density of 9.1 W/cm 2 has a much stronger effect on PL degradation than does thermal heating to a temperature of 150 deg. C. Additionally, this study shows that the generation of nonradiative centers by both photon irradiation and thermal heating can be greatly inhibited by incorporating Cl dopant.

  2. Advanced fabrication method for the preparation of MOF thin films: Liquid-phase epitaxy approach meets spin coating method.

    KAUST Repository

    Chernikova, Valeriya

    2016-07-14

    Here we report a new and advanced method for the fabrication of highly oriented/polycrystalline metal-organic framework (MOF) thin films. Building on the attractive features of the liquid-phase epitaxy (LPE) approach, a facile spin coating method was implemented to generate MOF thin films in a high-throughput fashion. Advantageously, this approach offers a great prospective to cost-effectively construct thin-films with a significantly shortened preparation time and a lessened chemicals and solvents consumption, as compared to the conventional LPE-process. Certainly, this new spin-coating approach has been implemented successfully to construct various MOF thin films, ranging in thickness from a few micrometers down to the nanometer scale, spanning 2-D and 3-D benchmark MOF materials including Cu2(bdc)2•xH2O, Zn2(bdc)2•xH2O, HKUST-1 and ZIF-8. This method was appraised and proved effective on a variety of substrates comprising functionalized gold, silicon, glass, porous stainless steel and aluminum oxide. The facile, high-throughput and cost-effective nature of this approach, coupled with the successful thin film growth and substrate versatility, represents the next generation of methods for MOF thin film fabrication. Thereby paving the way for these unique MOF materials to address a wide range of challenges in the areas of sensing devices and membrane technology.

  3. A novel epitaxially grown LSO-based thin-film scintillator for micro-imaging using hard synchrotron radiation

    Energy Technology Data Exchange (ETDEWEB)

    Douissard, P.A.; Martin, T.; Chevalier, V.; Rack, A. [European Synchrotron Radiat Facil, F-38043 Grenoble, (France); Cecilia, A.; Baumbach, T.; Rack, A. [Karlsruhe Inst Technol ANKA, D-76021 Karlsruhe, (Germany); Couchaud, M. [CEA LETI, F-38054 Grenoble, (France); Dupre, K. [FEE GmbH, D-55743 Idar Oberstein, (Germany); Kuhbacher, M. [Helmholtz Zentrum Berlin Mat and Energie, D-14109 Berlin, (Germany)

    2010-07-01

    The efficiency of high-resolution pixel detectors for hard X-rays is nowadays one of the major criteria which drives the feasibility of imaging experiments and in general the performance of an experimental station for synchrotron-based microtomography and radiography. Here the luminescent screen used for the indirect detection is focused on in order to increase the detective quantum efficiency a novel scintillator based on doped Lu{sub 2}SiO{sub 5} (LSO), epitaxially grown as thin film via the liquid phase epitaxy technique. It is shown that, by using adapted growth and doping parameters as well as a dedicated substrate, the scintillation behaviour of a LSO-based thin crystal together with the high stopping power of the material allows for high-performance indirect X-ray detection. In detail, the conversion efficiency, the radioluminescence spectra, the optical absorption spectra under UV/visible-light and the afterglow are investigated. A set-up to study the effect of the thin-film scintillator's temperature on its conversion efficiency is described as well it delivers knowledge which is important when working with higher photon flux densities and the corresponding high heat load on the material. Additionally, X-ray imaging systems based on different diffraction-limited visible-light optics and CCD cameras using among others LSO-based thin film are compared. Finally, the performance of the LSO thin film is illustrated by imaging a honey bee leg, demonstrating the value of efficient high-resolution computed tomography for life sciences. (authors)

  4. As-free pnictide LaNi{sub 1-x}Sb{sub 2} thin films grown by reactive molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Retzlaff, Reiner; Buckow, Alexander; Kurian, Jose; Alff, Lambert [Institute of Materials Science, Technische Universitaet Darmstadt, Petersenstr. 23, 64287 Darmstadt (Germany)

    2012-07-01

    We use reactive molecular beam epitaxy (RMBE) as synthesis technique for the search of arsenic free pnictide superconductors. Epitaxial thin films of LaNi{sub 1-x}Sb{sub 2} were grown on (100)MgO substrates from elemental sources by simultaneous evaporation of high purity La, Ni and Sb metals by e-gun. The LaNi{sub 1-x}Sb{sub 2} thin films grow epitaxially and are (00l) oriented with high crystalline quality, as evident from RHEED and X-Ray diffraction studies. The Ni deficient LaNi{sub 1-x}Sb{sub 2} thin films show metallic behavior with a room temperature resistivity of 110 {mu}{Omega} cm, while the stoichiometric compound is a semiconductor/insulator. The isostructural compound with Bi as pnictide shows a superconducting transition with a T{sub C}(0) of 3.1 K.

  5. High Temperature Magnetic Properties of Indirect Exchange Spring FePt/M(Cu,C/Fe Trilayer Thin Films

    Directory of Open Access Journals (Sweden)

    Anabil Gayen

    2013-01-01

    Full Text Available We report the investigation of temperature dependent magnetic properties of FePt and FePt(30/M(Cu,C/Fe(5 trilayer thin films prepared by using magnetron sputtering technique at ambient temperature and postannealed at different temperatures. L10 ordering, hard magnetic properties, and thermal stability of FePt films are improved with increasing postannealing temperature. In FePt/M/Fe trilayer, the formation of interlayer exchange coupling between magnetic layers depends on interlayer materials and interface morphology. In FePt/C/Fe trilayer, when the C interlayer thickness was about 0.5 nm, a strong interlayer exchange coupling between hard and soft layers was achieved, and saturation magnetization was enhanced considerably after using interlayer exchange coupling with Fe. In addition, incoherent magnetization reversal process observed in FePt/Fe films changes into coherent switching process in FePt/C/Fe films giving rise to a single hysteresis loop. High temperature magnetic studies up to 573 K reveal that the effective reduction in the coercivity decreases largely from 34 Oe/K for FePt/Fe film to 13 Oe/K for FePt/C(0.5/Fe film demonstrating that the interlayer exchange coupling seems to be a promising approach to improve the stability of hard magnetic properties at high temperatures, which is suitable for high-performance magnets and thermally assisted magnetic recording media.

  6. Atomic layer epitaxy of hematite on indium tin oxide for application in solar energy conversion

    Science.gov (United States)

    Martinson, Alex B.; Riha, Shannon; Guo, Peijun; Emery, Jonathan D.

    2016-07-12

    A method to provide an article of manufacture of iron oxide on indium tin oxide for solar energy conversion. An atomic layer epitaxy method is used to deposit an uncommon bixbytite-phase iron (III) oxide (.beta.-Fe.sub.2O.sub.3) which is deposited at low temperatures to provide 99% phase pure .beta.-Fe.sub.2O.sub.3 thin films on indium tin oxide. Subsequent annealing produces pure .alpha.-Fe.sub.2O.sub.3 with well-defined epitaxy via a topotactic transition. These highly crystalline films in the ultra thin film limit enable high efficiency photoelectrochemical chemical water splitting.

  7. Highly Crystalline C8-BTBT Thin-Film Transistors by Lateral Homo-Epitaxial Growth on Printed Templates.

    Science.gov (United States)

    Janneck, Robby; Pilet, Nicolas; Bommanaboyena, Satya Prakash; Watts, Benjamin; Heremans, Paul; Genoe, Jan; Rolin, Cedric

    2017-11-01

    Highly crystalline thin films of organic semiconductors offer great potential for fundamental material studies as well as for realizing high-performance, low-cost flexible electronics. The fabrication of these films directly on inert substrates is typically done by meniscus-guided coating techniques. The resulting layers show morphological defects that hinder charge transport and induce large device-to-device variability. Here, a double-step method for organic semiconductor layers combining a solution-processed templating layer and a lateral homo-epitaxial growth by a thermal evaporation step is reported. The epitaxial regrowth repairs most of the morphological defects inherent to meniscus-guided coatings. The resulting film is highly crystalline and features a mobility increased by a factor of three and a relative spread in device characteristics improved by almost half an order of magnitude. This method is easily adaptable to other coating techniques and offers a route toward the fabrication of high-performance, large-area electronics based on highly crystalline thin films of organic semiconductors. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Growth of epitaxial Pt thin films on (0 0 1) SrTiO{sub 3} by rf magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Kahsay, A. [Departament de Física Aplicada i Òptica, Universitat de Barcelona, 08028 Barcelona (Spain); Polo, M.C., E-mail: mcpolo@ub.edu [Departament de Física Aplicada i Òptica, Universitat de Barcelona, 08028 Barcelona (Spain); Ferrater, C.; Ventura, J. [Departament de Física Aplicada i Òptica, Universitat de Barcelona, 08028 Barcelona (Spain); Rebled, J.M. [Departament d’Electrònica, Universitat de Barcelona Institut de Nanociència i Nanotecnologia IN 2UB, 08028 Barcelona (Spain); Varela, M. [Departament de Física Aplicada i Òptica, Universitat de Barcelona, 08028 Barcelona (Spain)

    2014-07-01

    The growth of platinum thin film by rf magnetron sputtering on SrTiO{sub 3}(0 0 1) substrates for oxide based devices was investigated. Platinum films grown at temperatures higher than 750 °C were epitaxial ([1 0 0]Pt(0 0 1)//[1 0 0]STO(0 0 1)), whereas at lower temperatures Pt(1 1 1) films were obtained. The surface morphology of the Pt films showed a strong dependence on the deposition temperature as was revealed by atomic force microscopy (AFM). At elevated temperatures there is a three-dimensional (3D) growth of rectangular atomically flat islands with deep boundaries between them. On the other hand, at low deposition temperatures, a two-dimensional (2D) layered growth was observed. The transition from 2D to 3D growth modes was observed that occurs for temperatures around 450 °C. The obtained epitaxial thin films also formed an atomically sharp interface with the SrTiO{sub 3}(0 0 1) substrate as confirmed by HRTEM.

  9. Understanding Electrically Active Interface Formation on Wide Bandgap Semiconductors through Molecular Beam Epitaxy Using Fe3O 4 for Spintronics as a Base Case

    Science.gov (United States)

    Hamedani Golshan, Negar

    Nanoelectronics, complex heterostructures, and engineered 3D matrix materials are quickly advancing from research possibilities to manufacturing challenges for applications ranging from high-power devices to solar cells to any number of novel multifunctional sensors and controllers. Formation of an abrupt and effective interface is one of the basic requirements for integration of functional materials on different types of semiconductors (from silicon to the wide bandgaps) which can significantly impact the functionality of nanoscale electronic devices. To realize the potential of next-generation electronics, the understanding and control of those initial stages of film layer formation must be understood and translated to a process that can control the initial stages of film deposition. Thin film Fe3O4 has attracted much attention as a material for exploring the potential of spintronics in next-generation information technologies. Synthesis of highly spin-polarized material as spin sources, in combination with wide bandgap semiconductors which have a long spin relaxation time in addition to functionality in high-temperature, high-power, and high-frequency environments, would enhance the performance of today's spintronic devices. Spinel ferrite Fe3O4 has a high Curie temperature of 858 K and it is predicted to possess half-metallic properties, i.e. 100% spin polarization at the Fermi level, which can lead to ultrahigh tunneling magnetoresistance at room temperature. However, these properties have been very difficult to realize in thin film form, and device design strategies require high-quality thin films of Fe3O4. The most common reason reported in literature for the failure of the films to achieve theoretical performance is that the growth techniques used today produce films with antiphase boundaries (APB). These APBs have a strong antiferromagnetic coupling that negatively impact the magnetic and transport properties of epitaxial Fe 3O4 films. Therefore, greater

  10. Tailoring the stress-depth profile in thin films; the case of γ'-Fe4N1-x

    International Nuclear Information System (INIS)

    Wohlschloegel, M.; Welzel, U.; Mittemeijer, E.J.

    2011-01-01

    Homogeneous γ'-Fe 4 N 1-x thin films were produced by gas through-nitriding of iron thin films (thickness 800 nm) deposited onto Al 2 O 3 substrates by Molecular Beam Epitaxy. The nitriding parameters were chosen such that the nitrogen concentration within the γ' thin films was considerably lower (x ∼ 0.05) than the stoichiometric value (x = 0). X-ray diffraction stress analysis at constant penetration depths performed after the nitriding step revealed the presence of tensile stress parallel to the surface; the tensile stress was shown to be practically constant over the entire film thickness. For further nitriding treatments, the parameters were adjusted such that nitrogen enrichment occurred near the specimen surface. The depth-dependent nitrogen enrichment could be monitored by evaluating the strain-free lattice parameter of γ' as a function of X-ray penetration depth and relating it to the nitrogen concentration employing a direct relation between lattice parameter and nitrogen concentration. The small compositional variations led to distinct characteristic stress-depth profiles. The stress changes non-monotonously with depth in the film as could be shown by non-destructive X-ray diffraction stress analysis at constant penetration depths. This work demonstrates that by a specific choice of a first and a subsequent nitriding treatment (employing different nitriding potentials and/or different temperatures for both treatments) controlled development of residual stress profiles is possible in thin iron-nitride surface layers.

  11. Interlayer exchange coupling, crystalline and magnetic structure in Fe/CsCl-FeSi multilayers grown by molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Dekoster, J.; Degroote, S.; Meersschaut, J.; Moons, R.; Vantomme, A. [K.U. Leuven, Instituut voor Kern- en Stralingsfysica (Belgium); Bottyan, L.; Deak, L.; Szilagyi, E.; Nagy, D.L. [KFKI Research Institute for Particle and Nuclear Physics (Hungary); Baron, A.Q.R. [European Synchrotron Radiation Facility (France); Langouche, G. [K.U. Leuven, Instituut voor Kern- en Stralingsfysica (Belgium)

    1999-09-15

    Crystalline and magnetic structure as well as the interlayer exchange coupling in MBE grown Fe/FeSi multilayers are investigated. From conversion electron Moessbauer spectroscopy and ion beam channeling measurements the spacer FeSi material is found to be stabilized in a crystalline metastable metallic FeSi phase with the CsCl structure. Strong non-oscillatory interlayer exchange coupling is identified with magnetometry and synchrotron Moessbauer reflectometry. From the fits of the time spectrum and the resonant {phi}-{phi} scans a model for the sublayer magnetization of the multilayer is deduced.

  12. Epitaxial effects in thin films of high-Tc cuprates with the K2NiF4 structure

    Science.gov (United States)

    Naito, Michio; Sato, Hisashi; Tsukada, Akio; Yamamoto, Hideki

    2018-03-01

    La2-xSrxCuO4 (LSCO) and La2-xBaxCuO4 (LBCO) have been recognized as the archetype materials of "hole-doped" high-Tc superconductors. Their crystal structures are relatively simple with a small number of constituent cation elements. In addition, the doping level can be varied by the chemical substitution over a wide range enough to obtain the full spectrum of doping-dependent electronic and magnetic properties. These attractive features have dedicated many researchers to thin-film growth of LSCO and LBCO. The critical temperature (Tc) of LSCO and LBCO is sensitive to strain as manifested by a positive pressure coefficient of Tc in bulk samples. In general, films are strained if they are grown on lattice-mismatched substrates (epitaxial strain). Early attempts (before 1997) at the growth of LSCO and LBCO films resulted in depressed Tc below 30 K as they were grown on a commonly used SrTiO3 substrate (in-plane lattice parameter asub = 3.905 Å): the in-plane lattice parameters of LSCO and LBCO are ≤3.80 Å, and hence tensile epitaxial strain is introduced. The situation was changed by the use of LaSrAlO4 substrates with a slightly shorter in-plane lattice constant (asub = 3.756 Å). On LaSrAlO4 substrates, the Tc reaches 45 K in La1.85Sr0.15CuO4, 47 K in La1.85Ba0.15CuO4, and 56 K in ozone-oxidized La2CuO4+δ films, substantially higher than the Tc's of the bulk compounds. The Tc increase in La1.85Sr0.15CuO4 films on LaSrAlO4 and decrease on SrTiO3 are semi-quantitatively in accord with the phenomenological estimations based on the anisotropic strain coefficients of Tc (dTc/dεi). In this review article, we describe the growth and properties of films of cuprates having the K2NiF4 structure, mainly focusing on the increase/decrease of Tc by epitaxial strain and quasi-stable phase formation by epitaxial stabilization. We further extract the structural and/or physical parameters controlling Tc toward microscopic understanding of the variation of Tc by epitaxial strain.

  13. Unusually high critical current of P-doped BaFe{sub 2}As{sub 2} single crystalline thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kurth, Fritz; Engelmann, Jan; Schultz, Ludwig [IMW, IFW Dresden, Dresden (Germany); TU Dresden, Dresden (Germany); Tarantini, Chiara; Jaroszynski, Jan [ASC, NHMFL, Florida (United States); Grinenko, Vadim; Reich, Elke; Huehne, Ruben [IMW, IFW Dresden, Dresden (Germany); Haenisch, Jens [IMW, IFW Dresden, Dresden (Germany); ITEP, KIT, Karlsruhe (Germany); Mori, Yasohiro; Sakagami, Akihiro; Kawaguchi, Takahiko; Ikuta, Hiroshi [Department of Crystalline Materials Science, Nagoya University, Nagoya (Japan); Holzapfel, Bernhard [ITEP, KIT, Karlsruhe (Germany); Iida, Kazumasa [IMW, IFW Dresden, Dresden (Germany); Department of Crystalline Materials Science, Nagoya University, Nagoya (Japan)

    2015-07-01

    Microstructurally clean, isovalently P-doped BaFe{sub 2}As{sub 2} single crystalline thin films have been prepared by molecular beam epitaxy. These films show a superconducting transition temperature (T{sub c}) of over 30 K and high transport self-field critical current densities (J{sub c}) of over 6 MA/cm{sup 2} at 4.2 K, which are among the highest for Fe based superconductors. In-field J{sub c} exceeds 0.1 MA/cm{sup 2} at μ{sub 0}H = 35 T for H parallel ab and μ{sub 0}H = 18 T for H parallel c, respectively, in spite of moderate upper critical fields compared to other FeSCs with similar T{sub c}. This unusually high J{sub c} makes P-doped Ba-122 very favorable for high-field magnet applications.

  14. All-optical measurement of interlayer exchange coupling in Fe/Pt/FePt thin films

    Science.gov (United States)

    Berk, C.; Ganss, F.; Jaris, M.; Albrecht, M.; Schmidt, H.

    2018-01-01

    Time Resolved Magneto Optic Kerr Effect spectroscopy was used to all-optically study the dynamics in exchange coupled Fe(10 nm)/Pt(x = 0-5 nm)/FePt (10 nm) thin films. As the Pt spacer decreases, the effective magnetization of the layers is seen to evolve towards the strong coupling limit where the two films can be described by a single effective magnetization. The coupling begins at x = 1.5 nm and reaches a maximum exchange coupling constant of 2.89 erg/cm2 at x = 0 nm. The films are ferromagnetically coupled at all Pt thicknesses in the exchange coupled regime (x ≤ 1.5 nm). A procedure for extracting the interlayer exchange constant by measuring the magnetic precession frequencies at multiple applied fields and angles is outlined. The dynamics are well reproduced using micromagnetic simulations.

  15. Tuning piezoelectric properties through epitaxy of La2Ti2O7 and related thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kaspar, Tiffany C.; Hong, Seungbum; Bowden, Mark E.; Varga, Tamas; Yan, Pengfei; Wang, Chongmin; Spurgeon, Steven R.; Comes, Ryan B.; Ramuhalli, Pradeep; Henager, Charles H.

    2018-02-14

    Current piezoelectric sensors and actuators are limited to operating temperatures less than ~200°C due to the low Curie temperature of the piezoelectric material. High temperature piezoelectric materials such as La2Ti2O7 (LTO) would facilitate the development of high-temperature sensors if the piezoelectric coupling coefficient could be maximized. We have deposited epitaxial LTO films on SrTiO3(001), SrTiO3(110), and rutile TiO2(110) substrates by pulsed laser deposition, and show that the crystalline orientation of the LTO film, and thus its piezoelectric coupling direction, can be controlled by epitaxial matching to the substrate. The structure and phase purity of the films were investigated by x-ray diffraction and scanning transmission electron microscopy. To characterize the piezoelectric properties, piezoresponse force microscopy was used to measure the in-plane and out-of-plane piezoelectric coupling in the films. We find that the strength of the out-of-plane piezoelectric coupling can be increased when the piezoelectric crystalline direction is rotated partially out-of-plane via epitaxy. The strongest out-of-plane coupling is observed for LTO/STO(001). Deposition on TiO2(110) results in epitaxial La2/3TiO3, an orthorhombic perovskite of interest as a microwave dielectric material. La2/3TiO3 can be difficult to stabilize in bulk form, and epitaxial deposition has not been previously reported. These results confirm that control of the crystalline orientation of LTO-based materials can increase the out-of-plane strength of its piezoelectric coupling, which can be exploited in piezoelectric devices.

  16. Reactively sputtered epitaxial γ′-Fe4N films: Surface morphology, microstructure, magnetic and electrical transport properties

    KAUST Repository

    Mi, Wenbo

    2013-10-01

    Epitaxial γ′-Fe4N films with (1 0 0) and (1 1 0) orientations have been fabricated by reactive sputtering; these films were characterized by X-ray θ-2θ and φ scans, pole figures and high-resolution transmission electron microscopy. The film surface is very smooth as the film is less than 58 nm thick. The films exhibit soft ferromagnetism, and the saturation magnetization decreases with an increase in temperature, following Bloch\\'s spin wave theory. The films also exhibit a metallic conductance mechanism. Below 30 K, magnetoresistance (MR) is positive and increases linearly with the applied field in the high-field range. In the low-field range, MR increases abruptly. Above 30 K, MR is negative, and its value increases linearly with the applied field.

  17. Influence of deposition field on the magnetic anisotropy in epitaxial Co70Fe30 films on GaAs(001)

    International Nuclear Information System (INIS)

    Hindmarch, A.T.; Arena, D.; Dempsey, K.J.; Henini, M.; Marrows, C.H.

    2010-01-01

    The effect of the application of a magnetic field during deposition of epitaxial Co 70 Fe 30 onto GaAs(001) is shown; we find an initially counterintuitive result. For field applied along the interfacial uniaxial hard axis the relative effective uniaxial magnetic anisotropy is increased by a factor of two in comparison to both field along the uniaxial easy axis, or no field; usually, application of a deposition field results in a uniaxial easy axis parallel to this field direction. We show that the deposition field changes the maximal projection of the atomic orbital magnetic moments onto the easy axis, which corresponds to a deposition field induced shift in the Helmholtz free-energy landscape of the system.

  18. Strain-mediated magnetic and transport properties of epitaxial LuxFe3-xO4 films

    Science.gov (United States)

    Wang, P.; Jin, C.; Zheng, D. X.; Bai, H. L.

    2015-10-01

    Strain mediated structure, magnetic, and transport properties of spinel ferrites were investigated by growing epitaxial LuxFe3-xO4 (LFO, 0 ≤ x ≤ 0.26 ) films on SrTiO3 and MgO substrates with in-plane compressive and tensile strains, respectively. The lattice parameter of LFO films decreases on SrTiO3 substrates, while increases on MgO substrates with the increasing Lu content. The LFO films on SrTiO3 substrates exhibit larger saturation magnetization and smaller exchange bias and coercive field. Phase shift of anisotropic magnetoresistance is also observed in the LFO films on SrTiO3 substrates. In addition, the nonmagnetic Lu3+ ions in spinel ferrites enhance the spin canting, which further increases the exchange bias and coercive field and strengthens the four-fold symmetry of anisotropic magnetoresistance and the two-fold symmetry of planar Hall effect.

  19. Superconducting thin films of As-free pnictide LaPd{sub 1-x}Sb{sub 2} grown by reactive molecular beam epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Retzlaff, Reiner; Buckow, Alexander; Kurian, Jose; Alff, Lambert [Institute of Materials Science, Technische Universitaet Darmstadt, Petersenstr. 23, 64287 Darmstadt (Germany)

    2013-07-01

    We use reactive molecular beam epitaxy as synthesis technique for the search of arsenic free pnictide superconductors. Epitaxial thin films of LaPd{sub 1-x}Sb{sub 2} were grown on (100) MgO substrates from elemental sources by simultaneous evaporation of high purity La, Pd and Sb metals by e-gun. LaPd{sub 1-x}Sb{sub 2} belongs to a novel class of pnictide superconductors with a peculiar pnictide square net layer. Previously, we have reported epitaxial growth of isostructural Bi based compounds. The substitution of Bi by Sb leads to thin films with metallic behavior and room temperature resistivity of about 85 μΩ cm. The highest observed transition temperature T{sub c} inLaPd{sub 1-x}Sb{sub 2} is 3.1 K and does not depend on x. We discuss strategies to increase T{sub c} in this pnictide subfamily.

  20. Thin (111) oriented CoFe{sub 2}O{sub 4} and Co{sub 3}O{sub 4} films prepared by decomposition of layered cobaltates

    Energy Technology Data Exchange (ETDEWEB)

    Buršík, Josef, E-mail: bursik@iic.cas.cz [Institute of Inorganic Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., 250 68 Husinec-Řež 1001 (Czech Republic); Soroka, Miroslav, E-mail: soroka@iic.cas.cz [Institute of Inorganic Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., 250 68 Husinec-Řež 1001 (Czech Republic); Uhrecký, Róbert, E-mail: uhrecky@iic.cas.cz [Institute of Inorganic Chemistry of the Academy of Sciences of the Czech Republic, v.v.i., 250 68 Husinec-Řež 1001 (Czech Republic); Kužel, Radomír, E-mail: kuzel@karlov.mff.cuni.cz [Charles University in Prague, Faculty of Mathematics and Physics, Ke Karlovu 5, 121 16 Praha 2 (Czech Republic); Mika, Filip, E-mail: filip.mika@isibrno.cz [Institute of Scientific Instruments, Academy of Sciences of the Czech Republic, v.v.i., Královopolská 147, 612 64 Brno (Czech Republic); Huber, Štěpán, E-mail: stepan.huber@vscht.cz [University of Chemistry and Technology, Faculty of Chemical Technology, Technická 5, 166 28 Prague 6 (Czech Republic)

    2016-07-15

    Graphical abstract: Pole figures of NaCoO{sub 2} (left) and of CoFe{sub 2}O{sub 4} (right) films formed through the transformation of O3-type NaCoO{sub 2} phase in consequence of sodium deintercalation occurring at 800 °C. Films were prepared by chemical solution deposition on MgO(111) substrate. - Highlights: • Epitaxial Na(CoFe)O{sub 2} thin films by means of chemical solution deposition were prepared. • Oriented spinel films through transformation of Na(CoFe)O{sub 2} were obtained. • Orientation relation to MgO, SrTiO{sub 3} and Zr(Y)O{sub 2} substrates were determined. • Structural aspects of Na(CoFe)O{sub 2} → CoFe{sub 2}O{sub 4} transformation pathway were elucidated. - Abstract: The formation and structural characterization of highly (111)-oriented Co{sub 3}O{sub 4} and CoFe{sub 2}O{sub 4} films prepared by a novel procedure from 00l-oriented NaCoO{sub 2} and Na(CoFe)O{sub 2} is reported. The Na(CoFe)O{sub 2} films were deposited on MgO, SrTiO{sub 3}, LaAlO{sub 3}, and Zr(Y)O{sub 2} single crystals with (100) and (111) orientations by chemical solution deposition method and crystallized at 700 °C. Subsequently they were transformed into (111)-oriented spinel phase during post-growth annealing at 800–1000 °C. Morphology and structure of the films was investigated by means of scanning electron microscopy and X-ray diffraction. While all spinel films exhibit pronounced out-of-plane orientation irrespective of substrate, the rate of in-plane orientation strongly depend on lattice misfit values. Different epitaxial phenomena ranging from true one-to-one epitaxy to the existence of many-to-one epitaxy involving two or more orientations were determined by full 3D texture analysis.

  1. Heterogeneous Two-Phase Pillars in Epitaxial NiFe 2 O 4 -LaFeO 3 Nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Comes, Ryan B. [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA; Department of Physics, Auburn University, Auburn AL 36849 USA; Perea, Daniel E. [Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland WA 99352 USA; Spurgeon, Steven R. [Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland WA 99352 USA

    2017-07-10

    Self-assembled epitaxial oxide nanocomposites have been explored for a wide range of applications, including multiferroic and magnetoelectric properties, plasmonics, and catalysis. These so-called “vertically aligned nanocomposites” form spontaneously during the deposition process when segregation into two phases is energetically favorable as compared to a solid solution. However, there has been surprisingly little work understanding the driving forces that govern the synthesis of these materials, which can include point defect energetics, surface diffusion, and interfacial energies. To explore these factors, La-Ni-Fe-O films have been synthesized by molecular beam epitaxy and it is shown that these phase segregate into spinel-perovskite nanocomposites. Using complementary scanning transmission electron microscopy and atom-probe tomography, the elemental composition of each phase is examined and found that Ni ions are exclusively found in the spinel phase. From correlative analysis, a model for the relative favorability of the Ni2+ and Ni3+ valences under the growth conditions is developed. It is shown that multidimensional characterization techniques provide previously unobserved insight into the growth process and complex driving forces for phase segregation.

  2. Magnetization process in FePd thin films

    International Nuclear Information System (INIS)

    Klein, O.; Samson, Y.; Marty, A.; Guillous, S.; Viret, M.; Fermon, C.; Alloul, H.

    2001-01-01

    A custom made magnetic force microscope is used to study the magnetization process in thin films of FePd throughout the entire hysteresis loop. The 40 nm thick sample has a strong perpendicular anisotropy, which leads to a maze of 80 nm wide stripes of opposite polarity in the remanent state. The growth of M, when H increases, happens through an unwinding of the reversed domain along their axis. Together with the length recession, the reversed domain width also contracts with increasing field. The later effect is estimated by comparison of our images with magneto-optical Kerr measurements. A large disorder in the propagation process of the domain walls is observed. It is also found that the bubble configuration near the saturation field is unstable. [copyright] 2001 American Institute of Physics

  3. Thermomagnetically written domains in TbFeCo thin films

    International Nuclear Information System (INIS)

    Reim, W.; Weller, D.

    1988-01-01

    Characteristic features of thermomagnetically written domains in amorphous Tb x (Fe 90 Co 10 ) 100-x alloy thin films having different magnetic properties are reported. In particular, the writing process in materials with low Tb content chi ≤ 21 dominated by the demagnetizing field is compared to the bias field dominated process in Tb rich samples 22 ≤ chi ≤ 25. Domain wall movement over lateral dimensions of the bit size is found for Tb poor materials while for chi ≥ 22 domain boundaries are primarily determined by the area heated up to the Curie-temperature. The importance of mechanical stress on domain formation and irreversible changes of the storage medium due to overheating in the writing process are reported

  4. Misfit strain-film thickness phase diagrams and related electromechanical properties of epitaxial ultra-thin lead zirconate titanate films

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Q.Y.; Mahjoub, R. [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Alpay, S.P. [Materials Science and Engineering Program and Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States); Nagarajan, V., E-mail: nagarajan@unsw.edu.au [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2010-02-15

    The phase stability of ultra-thin (0 0 1) oriented ferroelectric PbZr{sub 1-x}Ti{sub x}O{sub 3} (PZT) epitaxial thin films as a function of the film composition, film thickness, and the misfit strain is analyzed using a non-linear Landau-Ginzburg-Devonshire thermodynamic model taking into account the electrical and mechanical boundary conditions. The theoretical formalism incorporates the role of the depolarization field as well as the possibility of the relaxation of in-plane strains via the formation of microstructural features such as misfit dislocations at the growth temperature and ferroelastic polydomain patterns below the paraelectric-ferroelectric phase transformation temperature. Film thickness-misfit strain phase diagrams are developed for PZT films with four different compositions (x = 1, 0.9, 0.8 and 0.7) as a function of the film thickness. The results show that the so-called rotational r-phase appears in a very narrow range of misfit strain and thickness of the film. Furthermore, the in-plane and out-of-plane dielectric permittivities {epsilon}{sub 11} and {epsilon}{sub 33}, as well as the out-of-plane piezoelectric coefficients d{sub 33} for the PZT thin films, are computed as a function of misfit strain, taking into account substrate-induced clamping. The model reveals that previously predicted ultrahigh piezoelectric coefficients due to misfit-strain-induced phase transitions are practically achievable only in an extremely narrow range of film thickness, composition and misfit strain parameter space. We also show that the dielectric and piezoelectric properties of epitaxial ferroelectric films can be tailored through strain engineering and microstructural optimization.

  5. Hydrogen absorption in epitaxial W/Nb(001) and polycrystalline Fe/Nb(110) multilayers studied in-situ by X-ray/neutron scattering techniques and X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Klose, F.; Rehm, C.; Fieber-Erdmann, M.; Holub-Krappe, E.; Bleif, H. J.; Sowers, H.; Goyette, R.; Troger, L.; Maletta, H.

    1999-01-01

    Hydrogen can be absorbed in large quantities by 100 A thin Nb layers embedded in epitaxial W/Nb and polycrystalline Fe/Nb multilayers. The solubility and the hydrogen-induced structural changes of the host lattice are explored in-situ by small-angle neutron/X-ray reflectometry and high-angle diffraction. These measurements reveal for both systems that the relative out-of-plane expansion of the Nb layers is considerably larger than the relative increase of the Nb interplanar spacing indicating two distinctly different mechanisms of hydrogen absorption. In Fe/Nb multilayers, hydrogen expands the Nb interplanar spacing in a continuous way as function of the external pressure. In contrast, the Nb lattice expansion is discontinuous in epitaxial W/Nb multilayers: A jump in the Nb(002) Bragg reflection position occurs at a critical hydrogen pressure of 1 mbar. In-situ EXAFS spectroscopy also exhibits an irreversible expansion of the Nb lattice in the film plane for p H2 > 1 mbar. This can be regarded as a structural phase transition from an exclusively out-of-plane to a three-dimensionally expanded state at low and high hydrogen pressures, respectively

  6. Photon confinement in high-efficiency, thin-film III-V solar cells obtained by epitaxial lift-off

    International Nuclear Information System (INIS)

    Schermer, J.J.; Bauhuis, G.J.; Mulder, P.; Haverkamp, E.J.; Deelen, J. van; Niftrik, A.T.J. van; Larsen, P.K.

    2006-01-01

    Using the epitaxial lift-off (ELO) technique, a III-V device structure can be separated from its GaAs substrate by selective wet etching of a thin release layer. The thin-film structures obtained by the ELO process can be cemented or van der Waals bonded on arbitrary smooth surface carriers for further processing. It is shown that the ELO method, initially able to separate millimetre-sized GaAs layers with a lateral etch rate of about 1 mm/h, has been developed to a process capable to free the entire 2-in. epitaxial structures from their substrates with etch rates up to 30 mm/h. With these characteristics the method has a large potential for the production of high efficiency thin-film solar cells. By choosing the right deposition and ELO strategy, the thin-film III-V cells can be adequately processed on both sides allowing for an entire range of new cell structures. In the present work, the performance of semi-transparent bifacial solar cells, produced by the deposition of metal grid contacts on both sides, was evaluated. Reflection of light at the rear side of the bifacial GaAs solar cells was found to result in an enhanced collection probability of the photon-induced carriers compared to that of regular III-V cells on a GaAs substrate. To enhance this effect, thin-film GaAs cells with gold mirror back contacts were prepared. Even in their present premature stage of development, these single-junction thin-film cells reached a record efficiency of 24.5% which is already very close to the 24.9% efficiency that was obtained with a regular GaAs cell on a GaAs substrate. From this it could be concluded that, as a result of the photon confinement, ELO cells require a significantly thinner base layer than regular GaAs cells while at the same time they have the potential to reach a higher efficiency

  7. Enhanced piezoelectric properties of (110)-oriented PbZr1−xTixO3 epitaxial thin films on silicon substrates at shifted morphotropic phase boundary

    NARCIS (Netherlands)

    Wan, X.; Houwman, Evert Pieter; Steenwelle, Ruud Johannes Antonius; van Schaijk, R.; Nguyen, Duc Minh; Dekkers, Jan M.; Rijnders, Augustinus J.H.M.

    2014-01-01

    Piezoelectrical, ferroelectrical, and structural properties of epitaxial pseudocubic (110)pc oriented 500 nm thick PbZr1−xTixO3 thin films, prepared by pulsed laser deposition on (001) silicon substrates, were measured as a function of composition. The dependence of the measurement data on the Ti

  8. High temperature oxidation of thin FeCrAl strips

    International Nuclear Information System (INIS)

    Andrieu, E.; Germidis, A.; Molins, R.

    1997-01-01

    This study concerns the oxidation behaviour between 850 and 1100 C of FeCrAl thin strips. Oxidation kinetics have been continuously recorded on a thermobalance as well as discontinuously in an ''industrial'' furnace. Detailed observations of oxide layers have been performed in transmission electron microscopy on oxidized thin foil cross-sections. Oxide morphologies are correlated with kinetics: Slow kinetics and columnar α alumina grains above 950 C, fast kinetics and transition alumina platelets (γ-alumina) at 850 C and 900 C, followed by small α-alumina grains formation underneath. The weight gains in the industrial furnace displayed significant scatter and were generally greater than those measured in the thermobalance. The effect of extrinsic factors such as specimen size and shape, atmosphere, air flow conditions on the early formation of transition aluminas explains the observed differences. It appears then that in given cases parabolic constant identification from TGA recordings is difficult, or even impossible. This might contribute to explain the differences in the results presented in the literature. (orig.)

  9. Nanoscale Control of Exchange Bias with BiFeO3 Thin Films

    NARCIS (Netherlands)

    Martin, Lane W.; Chu, Ying-Hao; Holcomb, Mikel B.; Huijben, Mark; Yu, Pu; Han, Shu-Jen; Lee, Donkoun; Wang, Shan X.; Ramesh, R.

    2008-01-01

    We demonstrate a direct correlation between the domain structure of multiferroic BiFeO3 thin films and exchange bias of Co0.9Fe0.1/BiFeO3 heterostructures. Two distinct types of interactions − an enhancement of the coercive field (exchange enhancement) and an enhancement of the coercive field

  10. Microstructure of Co(112-bar 0) epitaxial thin films, grown on MgO(100) single-crystal substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nukaga, Yuri; Ohtake, Mitsuru; Futamoto, Masaaki [Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo 112-8551 (Japan); Kirino, Fumiyoshi, E-mail: nukaga@futamoto.elect.chuo-u.ac.j [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, 12-8 Ueno-koen, Taito-ku, Tokyo 110-8714 (Japan)

    2010-01-01

    Co(112-bar 0) epitaxial thin films with hcp structure were prepared on MgO(100) single-crystal substrates heated at 300 {sup 0}C by ultra high vacuum molecular beam epitaxy. The microstructure is investigated by employing X-ray diffraction and high-resolution transmission electron microscopy. The film consists of two types of domains whose c-axes are rotated around the film normal by 90{sup 0} each other. Stacking faults are observed for the film along the Co[0001] direction. An atomically sharp boundary is recognized between the film and the substrate, where some misfit dislocations are introduced in the film at the Co/MgO interface. Dislocations are also observed in the film up to 15 nm thickness from the interface. Presence of such stacking faults and misfit dislocations seem to relieve the strain caused by the lattice mismatch between the film and the substrate. X-ray diffraction analysis indicates that the out-of-plane and the in-plane lattice spacings of the film are in agreement within 0.5% and 0.1%, respectively, with those of the bulk hcp-Co crystal, suggesting the strain in the film is very small.

  11. Epitaxial growth of fcc-CoxNi100-x thin films on MgO(110) single-crystal substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Nukaga, Yuri; Sato, Yoichi; Futamoto, Masaaki; Kirino, Fumiyoshi

    2009-01-01

    Co x Ni 100-x (x=100, 80, 20, 0 at. %) epitaxial thin films were prepared on MgO(110) single-crystal substrates heated at 300 deg. C by ultrahigh vacuum molecular beam epitaxy. The growth mechanism is discussed based on lattice strain and crystallographic defects. CoNi(110) single-crystal films with a fcc structure are obtained for all compositions. Co x Ni 100-x film growth follows the Volmer-Weber mode. X-ray diffraction analysis indicates that the out-of-plane and the in-plane lattice spacings of the Co x Ni 100-x films are in agreement within ±0.5% with the values of the respective bulk Co x Ni 100-x crystals, suggesting that the strain in the film is very small. High-resolution cross-sectional transmission microscopy shows that an atomically sharp boundary is formed between a Co(110) fcc film and a MgO(110) substrate, where periodical misfit dislocations are preferentially introduced in the film at the Co/MgO interface. The presence of such periodical misfit dislocations relieves the strain caused by the lattice mismatch between the film and the substrate.

  12. Microstructure of Co(112-bar 0) epitaxial thin films, grown on MgO(100) single-crystal substrates

    International Nuclear Information System (INIS)

    Nukaga, Yuri; Ohtake, Mitsuru; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-01-01

    Co(112-bar 0) epitaxial thin films with hcp structure were prepared on MgO(100) single-crystal substrates heated at 300 0 C by ultra high vacuum molecular beam epitaxy. The microstructure is investigated by employing X-ray diffraction and high-resolution transmission electron microscopy. The film consists of two types of domains whose c-axes are rotated around the film normal by 90 0 each other. Stacking faults are observed for the film along the Co[0001] direction. An atomically sharp boundary is recognized between the film and the substrate, where some misfit dislocations are introduced in the film at the Co/MgO interface. Dislocations are also observed in the film up to 15 nm thickness from the interface. Presence of such stacking faults and misfit dislocations seem to relieve the strain caused by the lattice mismatch between the film and the substrate. X-ray diffraction analysis indicates that the out-of-plane and the in-plane lattice spacings of the film are in agreement within 0.5% and 0.1%, respectively, with those of the bulk hcp-Co crystal, suggesting the strain in the film is very small.

  13. Oxygen vacancy induced magnetization switching in Fe{sub 3}O{sub 4} epitaxial ultrathin films on GaAs(100)

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Zhaocong, E-mail: zhaocong.huang@gmail.com [Department of Physics, Southeast University, Nanjing 211189 (China); Spintronics and Nanodevice Laboratory, Department of Electronics, University of York, York YO10 5DD (United Kingdom); School of Electronic Science and Engineering, Southeast University, Nanjing 210096 (China); Chen, Qian; Zhai, Ya, E-mail: yazhai@seu.edu.cn, E-mail: jlwang@seu.edu.cn; Wang, Jinlan, E-mail: yazhai@seu.edu.cn, E-mail: jlwang@seu.edu.cn [Department of Physics, Southeast University, Nanjing 211189 (China); Xu, Yongbing [Spintronics and Nanodevice Laboratory, Department of Electronics, University of York, York YO10 5DD (United Kingdom); Wang, Baoping [School of Electronic Science and Engineering, Southeast University, Nanjing 210096 (China)

    2015-05-04

    The magnetic and transport properties of half metallic Fe{sub 3}O{sub 4}, which are sensitive to the stoichiometry, are the key issue for applications in spintronics. An anomalous enlargement of the saturation magnetic moment is found in a relatively thick sample of epitaxial Fe{sub 3}O{sub 4} film by post-growth oxidation method. The investigation of the thickness dependence of magnetic moment suggests that the enhanced magnetism moment may come from the existence of oxygen vacancies. First-principles calculations reveal that with oxygen vacancies in Fe{sub 3}O{sub 4} crystal the spin of Fe ions in the tetrahedron site near the vacancy is much easier to switch parallel to the Fe ions in the octahedron site by temperature disturbance, supported by the temperature dependence of magnetic moment of Fe{sub 3}O{sub 4} films in experiment.

  14. Thin film evolution equations from (evaporating) dewetting liquid layers to epitaxial growth

    International Nuclear Information System (INIS)

    Thiele, U

    2010-01-01

    In the present contribution we review basic mathematical results for three physical systems involving self-organizing solid or liquid films at solid surfaces. The films may undergo a structuring process by dewetting, evaporation/condensation or epitaxial growth, respectively. We highlight similarities and differences of the three systems based on the observation that in certain limits all of them may be described using models of similar form, i.e. time evolution equations for the film thickness profile. Those equations represent gradient dynamics characterized by mobility functions and an underlying energy functional. Two basic steps of mathematical analysis are used to compare the different systems. First, we discuss the linear stability of homogeneous steady states, i.e. flat films, and second the systematics of non-trivial steady states, i.e. drop/hole states for dewetting films and quantum-dot states in epitaxial growth, respectively. Our aim is to illustrate that the underlying solution structure might be very complex as in the case of epitaxial growth but can be better understood when comparing the much simpler results for the dewetting liquid film. We furthermore show that the numerical continuation techniques employed can shed some light on this structure in a more convenient way than time-stepping methods. Finally we discuss that the usage of the employed general formulation does not only relate seemingly unrelated physical systems mathematically, but does allow as well for discussing model extensions in a more unified way.

  15. Controlling plasmonic properties of epitaxial thin films of indium tin oxide in the near-infrared region

    Science.gov (United States)

    Kamakura, R.; Fujita, K.; Murai, S.; Tanaka, K.

    2015-06-01

    Epitaxial thin films of indium tin oxide (ITO) were grown on yttria-stabilized zirconia single-crystal substrates by using a pulsed laser deposition to examine their plasmonic properties. The dielectric function of ITO was characterized by spectroscopic ellipsometry. Through the concentration of SnO2 in the target, the carrier concentration in the films was modified, which directly leads to the tuning of the dielectric function in the near-infrared region. Variable-angle reflectance spectroscopy in the Kretschmann geometry shows the dip in the reflection spectrum of p-polarized light corresponding to the excitation of surface plasmon polaritions (SPPs) in the near-infrared region. The excitation wavelength of the SPPs was shifted with changing the dielectric functions of ITO, which is reproduced by the calculation using transfer matrix method.

  16. Upper-critical fields of YBa2Cu3O7-δ epitaxial thin films with variable oxygen deficiency δ

    International Nuclear Information System (INIS)

    Jones, E.C.; Christen, D.K.; Thompson, J.R.; Ossandon, J.G.; Feenstra, R.; Phillips, J.M.; Siegal, M.P.

    1994-01-01

    Fluctuation analysis in the limit of high magnetic fields was performed on three epitaxial thin films of YBa 2 Cu 3 O 7-δ for various oxygen deficiencies δ c2 (T) slope of -1.7 T/K for H parallel c, consistent with previous observations of transport and magnetic properties. Moreover, the 3D scaling showed better convergence than the 2D scaling, which gave relatively low values of H c2 . In contrast, the transitions were not adequately described by either scaling for T c off the 90-K plateau; it is speculated that this is due to an extrinsic broadening of the transitions, possibly due to the lack of a complete percolation path of the ortho-I phase (δ=0)

  17. Normal-state transport parameters of epitaxial thin films of YBa2Cu3O/sub 7-//sub δ/

    International Nuclear Information System (INIS)

    Stormer, H.L.; Levi, A.F.J.; Baldwin, K.W.; Anzlowar, M.; Boebinger, G.S.

    1988-01-01

    We report on a striking correlation in the electrical transport behavior of very high-quality (j/sub c/∼3.4 x 10 6 A/cm 2 at T = 77 K) epitaxial thin films of high-T/sub c/ Y-Ba-Cu-O in the normal state. With increasing superconducting performance, as characterized by the transition temperature, transition-temperature width, and critical current density, the resistivity rho, and the Hall coefficient R/sub H/, both assume remarkably simple temperature dependences rho = αT and R/sub H//sup -1/ = βT leading to a Hall mobility μ/sub H/proportionalT/sup -2/. The magnetoresistance at 10 T is less than Δrho/rho<10/sup -3/. We discuss an extreme two-carrier model to assess the T dependence of R/sub H/. .AE

  18. Epitaxial growth of high temperature superconductors by cathodic sputtering I: thin films of YBaCuO

    International Nuclear Information System (INIS)

    Navacerrada, M.A.; Sefrioui, Z.; Arias, D.; Varela, M.; Loos, G.; Leon, C.; Lucia, M.L.; Santamaria, J.; Sanchez-Quesada, F.

    1998-01-01

    High quality c-oriented YBa 2 Cu 3 O 7 -x thin films have been grown on SrTiO 3 (100)substrates by high pressure sputtering in pure oxygen atmosphere. Low angle X-ray diffraction and atomic force microscopy were performed on films less than 250 angstrom thick showing a plenitude better than one unit cell. Moreover, the structural characterization by means of X ray φ scans showed that growth is epitaxial. The critical temperature has been measured by different ways and was always in the range 89.5-90.5K. the resistance transition is sharper than 1K and the mutual inductance response always shows magnetic losses peaks narrower than 0.3K. Critical current densities are in excess of 10''''6 angstrom/cm''''2 at 77K. (Author) 8 refs

  19. 45○ sign switching of effective exchange bias due to competing anisotropies in fully epitaxial Co3FeN/MnN bilayers.

    Science.gov (United States)

    Hajiri, Tetsuya; Yoshida, Takuya; Filianina, Mariia; Jaiswal, Samridh; Borie, Benjamin; Asano, H; Zabel, Hartmut; Klaui, Mathias

    2017-11-20

    We report an unusual angular-dependent exchange bias effect in ferromagnet/antiferromagnet bilayers, where both ferromagnet and antiferromagnet are epitaxially grown. Numerical model calculations predict an approximately 45$^\\circ$ period for the sign switching of the exchange-bias field, depending on the ratio between magnetocrystalline anisotropy and exchange-coupling constant. The switching of the sign is indicative of a competition between a fourfold magnetocrystalline anisotropy of the ferromagnet and a unidirectional anisotropy field of the exchange coupling. This predicted unusual angular-dependent exchange bias and its magnetization switching process are confirmed by measurements on fully epitaxial Co$_3$FeN/MnN bilayers by longitudinal and transverse magneto-optic Kerr effect magnetometry. These results provide a deeper understanding of the exchange coupling phenomena in fully epitaxial bilayers with tailored materials and open up a complex switching energy landscape engineering by anisotropies. © 2017 IOP Publishing Ltd.

  20. 45° sign switching of effective exchange bias due to competing anisotropies in fully epitaxial Co3FeN/MnN bilayers

    Science.gov (United States)

    Hajiri, T.; Yoshida, T.; Filianina, M.; Jaiswal, S.; Borie, B.; Asano, H.; Zabel, H.; Kläui, M.

    2018-01-01

    We report an unusual angular-dependent exchange bias effect in ferromagnet/antiferromagnet bilayers, where both ferromagnet and antiferromagnet are epitaxially grown. Numerical model calculations predict an approximately 45° period for the sign switching of the exchange-bias field, depending on the ratio between magnetocrystalline anisotropy and exchange-coupling constant. The switching of the sign is indicative of a competition between a fourfold magnetocrystalline anisotropy of the ferromagnet and a unidirectional anisotropy field of the exchange coupling. This predicted unusual angular-dependent exchange bias and its magnetization switching process are confirmed by measurements on fully epitaxial Co3FeN/MnN bilayers by longitudinal and transverse magneto-optic Kerr effect magnetometry. These results provide a deeper understanding of the exchange coupling phenomena in fully epitaxial bilayers with tailored materials and open up a complex switching energy landscape engineering by anisotropies.

  1. Structure and chemistry of epitaxial ceria thin films on yttria-stabilized zirconia substrates, studied by high resolution electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Sinclair, Robert, E-mail: bobsinc@stanford.edu [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Lee, Sang Chul, E-mail: sclee99@stanford.edu [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Shi, Yezhou; Chueh, William C. [Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305 (United States); Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States)

    2017-05-15

    We have applied aberration-corrected transmission electron microscopy (TEM) imaging and electron energy loss spectroscopy (EELS) to study the structure and chemistry of epitaxial ceria thin films, grown by pulsed laser deposition onto (001) yttria-stabilized zirconia (YSZ) substrates. There are few observable defects apart from the expected mismatch interfacial dislocations and so the films would be expected to have good potential for applications. Under high electron beam dose rate (above about 6000 e{sup -}/Å{sup 2}s) domains of an ordered structure appear and these are interpreted as being created by oxygen vacancy ordering. The ordered structure does not appear at lower lose rates (ca. 2600 e{sup -}/Å{sup 2}s) and can be removed by imaging under 1 mbar oxygen gas in an environmental TEM. EELS confirms that there is both oxygen deficiency and the associated increase in Ce{sup 3+} versus Ce{sup 4+} cations in the ordered domains. In situ high resolution TEM recordings show the formation of the ordered domains as well as atomic migration along the ceria thin film (001) surface. - Highlights: • The local structure and chemistry of ceria can be studied by TEM combined with EELS. • At lower electron, there are no observable changes in the ceria thin films. • At higher dose rates, an ordered phase is created due to oxygen vacancy ordering. • In situ HRTEM shows the oxygen vacancy ordering and the movement of surface atoms.

  2. Investigation of the electronic and magnetic structure of thin layer FeTe on Bi{sub 2}Te{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Cornils, Lasse; Manna, Sujit; Kamlapure, Anand; Haenke, Torben; Wiebe, Jens; Wiesendanger, Roland [Department of Physics, University of Hamburg, Hamburg (Germany); Hu, Jin; Mao, Zhiqiang [Department of Physics, Tulane University, New Orleans (United States); Brummerstedt Iversen, Bo; Hofmann, Philip [Interdisciplinary Nanoscience Center iNANO, Aarhus University (Denmark)

    2016-07-01

    The surprising discovery of Fe based superconductors in 2008 lead to a big effort in finding new materials with very high critical temperatures. One good example are Fe-chalcogenides. Although the parent compound FeTe is not superconducting, the situation changes drastically on interfacing the material with other substrates. Recently He and coworkers found zero resistance at the interface of Bi{sub 2}Te{sub 3} films grown on bulk FeTe, which showed a transition temperature of 12 K. In this talk we present our latest results on our investigation of the electronic and magnetic nature of epitaxially grown FeTe thin films on the topological insulator Bi{sub 2}Te{sub 3} using spin-polarized scanning tunneling microscopy and spectroscopy. Up to several monolayers of FeTe, an antiferromagnetic structure similar to the one observed on its bulk compound FeTe was clearly visible. Surprisingly we found a gap around the Fermi level indicating proximity to superconductivity in coexistence with magnetism on the nanoscale.

  3. Magnetic Properties of FeNi-Based Thin Film Materials with Different Additives

    Directory of Open Access Journals (Sweden)

    Cai Liang

    2014-07-01

    Full Text Available This paper presents a study of FeNi-based thin film materials deposited with Mo, Al and B using a co-sputtering process. The existence of soft magnetic properties in combination with strong magneto-mechanical coupling makes these materials attractive for sensor applications. Our findings show that FeNi deposited with Mo or Al yields magnetically soft materials and that depositing with B further increases the softness. The out-of-plane magnetic anisotropy of FeNi thin films is reduced by depositing with Al and completely removed by depositing with B. The effect of depositing with Mo is dependent on the Mo concentration. The coercivity of FeNiMo and FeNiAl is reduced to less than a half of that of FeNi, and a value as low as 40 A/m is obtained for FeNiB. The surfaces of the obtained FeNiMo, FeNiAl and FeNiB thin films reveal very different morphologies. The surface of FeNiMo shows nano-cracks, while the FeNiAl films show large clusters and fewer nano-cracks. When FeNi is deposited with B, a very smooth morphology is obtained. The crystal structure of FeNiMo strongly depends on the depositant concentration and changes into an amorphous structure at a higher Mo level. FeNiAl thin films remain polycrystalline, even at a very high concentration of Al, and FeNiB films are amorphous, even at a very low concentration of B.

  4. Magnetic properties of FeNi-based thin film materials with different additives

    KAUST Repository

    Liang, C.

    2014-07-04

    This paper presents a study of FeNi-based thin film materials deposited with Mo, Al and B using a co-sputtering process. The existence of soft magnetic properties in combination with strong magneto-mechanical coupling makes these materials attractive for sensor applications. Our findings show that FeNi deposited with Mo or Al yields magnetically soft materials and that depositing with B further increases the softness. The out-of-plane magnetic anisotropy of FeNi thin films is reduced by depositing with Al and completely removed by depositing with B. The effect of depositing with Mo is dependent on the Mo concentration. The coercivity of FeNiMo and FeNiAl is reduced to less than a half of that of FeNi, and a value as low as 40 A/m is obtained for FeNiB. The surfaces of the obtained FeNiMo, FeNiAl and FeNiB thin films reveal very different morphologies. The surface of FeNiMo shows nano-cracks, while the FeNiAl films show large clusters and fewer nano-cracks. When FeNi is deposited with B, a very smooth morphology is obtained. The crystal structure of FeNiMo strongly depends on the depositant concentration and changes into an amorphous structure at a higher Mo level. FeNiAl thin films remain polycrystalline, even at a very high concentration of Al, and FeNiB films are amorphous, even at a very low concentration of B. 2014 by the authors.

  5. Magnetic properties of novel epitaxial films

    International Nuclear Information System (INIS)

    Bader, S.D.; Moog, E.R.

    1986-09-01

    The surface magneto-optic Kerr effect (SMOKE) is used to explore the magnetism of ultra-thin Fe Films extending into the monolayer regime. Both bcc α-Fe and fcc γ-Fe single-crystalline, multilayer films are prepared on the bulk-terminated (1 x 1) structures of Au(100) and Cu(100), respectively. The characterizations of epitaxy and growth mode are performed using low energy electron diffraction and Auger electron spectroscopy. Monolayer-range Fe/Au(100) is ferromagnetic with a lower Curie temperature than bulk α-Fe. The controversial γ-Fe/Cu(100) system exhibits a striking, metastable, surface magnetic phase at temperatures above room temperature, but does not exhibit bulk ferromagnetism

  6. Epitaxial growth of indium oxyfluoride thin films by reactive pulsed laser deposition: Structural change induced by fluorine insertion into vacancy sites in bixbyite structure

    Energy Technology Data Exchange (ETDEWEB)

    Okazaki, Sohei [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Hirose, Yasushi, E-mail: hirose@chem.s.u-tokyo.ac.jp [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nakao, Shoichiro [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Yang, Chang [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Harayama, Isao; Sekiba, Daiichiro [Tandem Accelerator Complex, University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8577 (Japan); Hasegawa, Tetsuya [Kanagawa Academy of Science and Technology (KAST), 3-2-1 Sakado, Takatsu-ku, Kawasaki 213-0012 (Japan); CREST, Japan Science and Technology Agency (JST), 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan)

    2014-05-30

    InO{sub x}F{sub y} thin films were epitaxially grown on Y-stabilized ZrO{sub 2} (111) substrates by reactive pulsed laser deposition. By changing the substrate temperature (T{sub S}), we were able to control the fluorine content of the film. Phase-pure epitaxial thin films with bixbyite-like ordering in the anion-site occupancy were obtained at high T{sub S} (≥ 240 °C), where fluorine was inserted into the vacancy sites in the bixbyite lattice up to y / (x + y) ∼ 0.3. By decreasing T{sub S}, y / (x + y) increased and the bixbyite-like ordering disappeared; simultaneously, fluorine-rich and fluorine-poor subphases emerged. The films grown at T{sub S} ≤ 150 °C were amorphous and exhibited higher optical absorbance and electrical resistivity than the epitaxial films. - Highlights: • InO{sub x}F{sub y} epitaxial thin films with high fluorine concentration were grown on Y:ZrO{sub 2}. • Anion composition and structural, optical and transport properties were studied. • Fluorine is topotactically inserted into the oxygen vacancy sites in bixbyite cell. • Bixbyite-like ordering of the anion site occupancy was conserved in y / (x + y) ≤ ∼ 0.3.

  7. Epitaxial growth of indium oxyfluoride thin films by reactive pulsed laser deposition: Structural change induced by fluorine insertion into vacancy sites in bixbyite structure

    International Nuclear Information System (INIS)

    Okazaki, Sohei; Hirose, Yasushi; Nakao, Shoichiro; Yang, Chang; Harayama, Isao; Sekiba, Daiichiro; Hasegawa, Tetsuya

    2014-01-01

    InO x F y thin films were epitaxially grown on Y-stabilized ZrO 2 (111) substrates by reactive pulsed laser deposition. By changing the substrate temperature (T S ), we were able to control the fluorine content of the film. Phase-pure epitaxial thin films with bixbyite-like ordering in the anion-site occupancy were obtained at high T S (≥ 240 °C), where fluorine was inserted into the vacancy sites in the bixbyite lattice up to y / (x + y) ∼ 0.3. By decreasing T S , y / (x + y) increased and the bixbyite-like ordering disappeared; simultaneously, fluorine-rich and fluorine-poor subphases emerged. The films grown at T S ≤ 150 °C were amorphous and exhibited higher optical absorbance and electrical resistivity than the epitaxial films. - Highlights: • InO x F y epitaxial thin films with high fluorine concentration were grown on Y:ZrO 2 . • Anion composition and structural, optical and transport properties were studied. • Fluorine is topotactically inserted into the oxygen vacancy sites in bixbyite cell. • Bixbyite-like ordering of the anion site occupancy was conserved in y / (x + y) ≤ ∼ 0.3

  8. High-resolution structural characterization and magnetic properties of epitaxial Ce-doped yttrium iron garnet thin films

    Science.gov (United States)

    Li, Zhong; Vikram Singh, Amit; Rastogi, Ankur; Gazquez, Jaume; Borisevich, Albina Y.; Mishra, Rohan; Gupta, Arunava

    2017-07-01

    Thin films of magnetic garnet materials, e.g. yttrium iron garnet (Y3Fe5O12, YIG), are useful for a variety of applications including microwave integrated circuits and spintronics. Substitution of rare earth ions, such as cerium, is known to enhance the magneto-optic Kerr effect (MOKE) as compared to pure YIG. Thin films of Ce0.75Y2.25Fe5O12 (Ce:YIG) have been grown using the pulsed laser deposition (PLD) technique and their crystal structure examined using high resolution scanning transmission electron microscopy. Homogeneous substitution of Ce in YIG, without oxidation to form a separate CeO2 phase, can be realized in a narrow process window with resulting enhancement of the MOKE signal. The thermally generated signal due to spin Seebeck effect for the optimally doped Ce:YIG films has also been investigated.

  9. Epitaxial growth of Co(0 0 0 1)hcp/Fe(1 1 0)bcc magnetic bi-layer films on SrTiO3(1 1 1) substrates

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Shikada, Kouhei; Kirino, Fumiyoshi; Futamoto, Masaaki

    2008-01-01

    Co(0 0 0 1) hcp /Fe(1 1 0) bcc epitaxial magnetic bi-layer films were successfully prepared on SrTiO 3 (1 1 1) substrates. The crystallographic properties of Co/Fe epitaxial magnetic bi-layer films were investigated. Fe(1 1 0) bcc soft magnetic layer grew epitaxially on SrTiO 3 (1 1 1) substrate with two type variants, Nishiyama-Wasserman and Kurdjumov-Sachs relationships. An hcp-Co single-crystal layer is obtained on Ru(0 0 0 1) hcp interlayer, while hcp-Co layer formed on Au(1 1 1) fcc or Ag(1 1 1) fcc interlayer is strained and may involve fcc-Co phase. It has been shown possible to prepare Co/Fe epitaxial magnetic bi-layer films which can be usable for patterned media application

  10. A phase transition close to room temperature in BiFeO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kreisel, J; Jadhav, P; Chaix-Pluchery, O [Laboratoire des Materiaux et du Genie Physique, Grenoble INP, CNRS, Minatec, 3, parvis Louis Neel, 38016 Grenoble (France); Varela, M [Departamento Fisica Aplicada i Optica, Universitat de Barcelona, Carrer MartI i Franques 1. 08028 Campus UAB, Bellaterra 08193 (Spain); Dix, N; Sanchez, F; Fontcuberta, J, E-mail: jens.kreisel@grenoble-inp.fr [Institut de Ciencia de Materials de Barcelona (ICMAB-CSIC), Campus UAB, Bellaterra 08193 (Spain)

    2011-08-31

    BiFeO{sub 3} (BFO) multiferroic oxide has a complex phase diagram that can be mapped by using appropriately substrate-induced strain in epitaxial films. By using Raman spectroscopy, we conclusively show that films of the so-called supertetragonal T-BFO phase, stabilized under compressive strain, display a reversible temperature-induced phase transition at about 100 deg. C, and thus close to room temperature. (fast track communication)

  11. Growth of CrTe thin films by molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Sreenivasan, M.G.; Hou, X.J.; Teo, K.L.; Jalil, M.B.A.; Liew, T.; Chong, T.C.

    2006-01-01

    We report the growth of Cr 1-δ Te films on (100) GaAs substrates using ZnTe buffer layers by solid-source molecular-beam epitaxial technique. RHEED patterns indicate a clear structural change during the initial stages of deposition. Temperature-dependent magnetization results reveal that different NiAs-related phases of Cr 1-δ Te can be obtained at different substrate temperatures. By varying the film thickness, a metastable zinc blende structure of CrTe could be obtained at lower substrate temperature

  12. Lanthanum gallate substrates for epitaxial high-temperature superconducting thin films

    International Nuclear Information System (INIS)

    Sandstrom, R.L.; Giess, E.A.; Gallagher, W.J.; Segmueller, A.; Cooper, E.I.; Chisholm, M.F.; Gupta, A.; Shinde, S.; Laibowitz, R.B.

    1988-01-01

    We demonstrate that lanthanum gallate (LaGaO 3 ) has considerable potential as an electronic substrate material for high-temperature superconducting films. It provides a good lattice and thermal expansion match to YBa 2 Cu 3 O/sub 7-//sub x/, can be grown in large crystal sizes, is compatible with high-temperature film processing, and has a reasonably low dielectric constant (ε≅25) and low dielectric losses. Epitaxial YBa 2 Cu 3 O/sub 7-//sub x/ films grown on LaGaO 3 single-crystal substrates by three techniques have zero resistance between 87 and 91 K

  13. Lanthanum gallate substrates for epitaxial high-temperature superconducting thin films

    Science.gov (United States)

    Sandstrom, R. L.; Giess, E. A.; Gallagher, W. J.; Segmuller, A.; Cooper, E. I.

    1988-11-01

    It is demonstrated that lanthanum gallate (LaGaO3) has considerable potential as an electronic substrate material for high-temperature superconducting films. It provides a good lattice and thermal expansion match to YBa2Cu3O(7-x), can be grown in large crystal sizes, is compatible with high-temperature film processing, and has a reasonably low dielectric constant and low dielectric losses. Epitaxial YBa2Cu3O(7-x) films grown on LaGaO3 single-crystal substrates by three techniques have zero resistance between 87 and 91 K.

  14. Origin of green luminescence in ZnO thin film grown by molecular-beam epitaxy

    International Nuclear Information System (INIS)

    Heo, Y.W.; Norton, D.P.; Pearton, S.J.

    2005-01-01

    The properties of ZnO films grown by molecular-beam epitaxy are reported. The primary focus was on understanding the origin of deep-level luminescence. A shift in deep-level emission from green to yellow is observed with reduced Zn pressure during the growth. Photoluminescence and Hall measurements were employed to study correlations between deep-level/near-band-edge emission and carrier density. With these results, we suggest that the green emission is related to donor-deep acceptor (Zn vacancy V Zn - ) and the yellow to donor-deep acceptor (oxygen vacancy, O i - )

  15. Epitaxial growth of atomically flat gadolinia-doped ceria thin films by pulsed laser deposition

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Pryds, Nini; Schou, Jørgen

    2011-01-01

    Epitaxial growth of Ce0.8Gd0.2O2(CGO) films on (001) TiO2-terminated SrTiO3 substrates by pulsed laser deposition was investigated using in situ reflective high energy electron diffraction. The initial film growth shows a Stransky–Krastanov growth mode. However, this three-dimensional island...... formation is replaced by a two-dimensional island nucleation during further deposition, which results in atomically smooth CGO films. The obtained high-quality CGO films may be attractive for the electrolyte of solid-oxide fuel cells operating at low temperature....

  16. Broadband nanophotonic waveguides and resonators based on epitaxial GaN thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bruch, Alexander W.; Xiong, Chi; Leung, Benjamin; Poot, Menno; Han, Jung; Tang, Hong X., E-mail: hong.tang@yale.edu [Department of Electrical Engineering, Yale University, New Haven, Connecticut 06511 (United States)

    2015-10-05

    We demonstrate broadband, low loss optical waveguiding in single crystalline GaN grown epitaxially on c-plane sapphire wafers through a buffered metal-organic chemical vapor phase deposition process. High Q optical microring resonators are realized in near infrared, infrared, and near visible regimes with intrinsic quality factors exceeding 50 000 at all the wavelengths we studied. TEM analysis of etched waveguide reveals growth and etch-induced defects. Reduction of these defects through improved material and device processing could lead to even lower optical losses and enable a wideband photonic platform based on GaN-on-sapphire material system.

  17. Fe3O4 thin films sputter deposited from iron oxide targets

    International Nuclear Information System (INIS)

    Peng, Yingguo; Park, Chandro; Laughlin, David E.

    2003-01-01

    Fe 3 O 4 thin films have been directly sputter deposited from a target consisting of a mixture of Fe 3 O 4 and Fe 2 O 3 onto Si and glass substrates. The magnetic properties and microstructures of the films have been characterized and correlated. The columnar growth of the Fe 3 O 4 grains was found to be initialized from the substrate surface without any critical thickness. Substrate bias was found to be a very effective means of improving the crystal quality and magnetic properties of the thin films. The crystallographic defects revealed by high resolution transmission electron microscopy seem to be a characteristic of the films prepared by this method

  18. Luminescence properties of Si-capped β-FeSi{sub 2} nanodots epitaxially grown on Si(001) and (111) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Amari, Shogo; Ichikawa, Masakazu [Department of Applied Physics, Graduate School of Engineering, The University of Tokyo, Bunkyo-ku, Tokyo 113-8656 (Japan); Nakamura, Yoshiaki, E-mail: nakamura@ee.es.osaka-u.ac.jp [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama-cho, Toyonaka, Osaka 560-8531 (Japan); PRESTO, JST, 4-1-8 Honcho Kawaguchi, Saitama 332-0012 (Japan)

    2014-02-28

    We studied the luminescence properties of Si-capped β-FeSi{sub 2} nanodots (NDs) epitaxially grown on Si substrates by using photoluminescence (PL) and electroluminescence (EL) spectroscopies. Codepositing Fe and Si on ultrathin SiO{sub 2} films induced the self-assembly of epitaxial β-FeSi{sub 2} NDs. The PL spectra of the Si/β-FeSi{sub 2} NDs/Si structure depended on the crystal orientation of the Si substrate. These structures exhibited a broad PL peak near 0.8 eV on both Si(001) and (111) substrates. The PL intensity depended on the shape of the β-FeSi{sub 2} NDs. For the flat NDs, which exhibited higher PL intensity, we also recorded EL spectra. We explained the luminescence properties of these structures by the presence of nanostructured Si offering radiative electronic states in the Si cap layers, generated by nano-stressors for upper Si layer: the strain-relaxed β-FeSi{sub 2} NDs.

  19. Structural properties of relaxed thin film germanium layers grown by low temperature RF-PECVD epitaxy on Si and Ge (100) substrates

    Energy Technology Data Exchange (ETDEWEB)

    Cariou, R., E-mail: romain.cariou@polytechnique.edu [LPICM-CNRS, Ecole Polytechnique, 91128, Palaiseau (France); III-V lab a joint laboratory between Alcatel-Lucent Bell Labs France, Thales Research and Technology and CEA-LETI, route de Nozay, 91460, Marcoussis, France. (France); Ruggeri, R. [LPICM-CNRS, Ecole Polytechnique, 91128, Palaiseau (France); CNR-IMM, strada VIII n°5, zona industriale, 95121, Catania (Italy); Tan, X.; Nassar, J.; Roca i Cabarrocas, P. [LPICM-CNRS, Ecole Polytechnique, 91128, Palaiseau (France); Mannino, Giovanni [CNR-IMM, strada VIII n°5, zona industriale, 95121, Catania (Italy)

    2014-07-15

    We report on unusual low temperature (175 °C) heteroepitaxial growth of germanium thin films using a standard radio-frequency plasma process. Spectroscopic ellipsometry and transmission electron microscopy (TEM) reveal a perfect crystalline quality of epitaxial germanium layers on (100) c-Ge wafers. In addition direct germanium crystal growth is achieved on (100) c-Si, despite 4.2% lattice mismatch. Defects rising from Ge/Si interface are mostly located within the first tens of nanometers, and threading dislocation density (TDD) values as low as 10{sup 6} cm{sup −2} are obtained. Misfit stress is released fast: residual strain of −0.4% is calculated from Moiré pattern analysis. Moreover we demonstrate a striking feature of low temperature plasma epitaxy, namely the fact that crystalline quality improves with thickness without epitaxy breakdown, as shown by TEM and depth profiling of surface TDD.

  20. Effects of substrate temperature and Cu underlayer thickness on the formation of SmCo5(0001) epitaxial thin films

    International Nuclear Information System (INIS)

    Ohtake, Mitsuru; Nukaga, Yuri; Futamoto, Masaaki; Kirino, Fumiyoshi

    2010-01-01

    SmCo 5 (0001) epitaxial thin films were prepared on Cu(111) underlayers heteroepitaxially grown on Al 2 O 3 (0001) single-crystal substrates by molecular beam epitaxy. The effects of substrate temperature and Cu underlayer thickness on the crystallographic properties of SmCo 5 (0001) epitaxial films were investigated. The Cu atoms of underlayer diffuse into the SmCo 5 film and substitute the Co sites in SmCo 5 structure forming an alloy compound of Sm(Co,Cu) 5 . The ordered phase formation is enhanced with increasing the substrate temperature and with increasing the Cu underlayer thickness. The Cu atom diffusion into the SmCo 5 film is assisting the formation of Sm(Co,Cu) 5 ordered phase.

  1. Photoelectrochemical Performance Observed in Mn-Doped BiFeO3 Heterostructured Thin Films

    Directory of Open Access Journals (Sweden)

    Hao-Min Xu

    2016-11-01

    Full Text Available Pure BiFeO3 and heterostructured BiFeO3/BiFe0.95Mn0.05O3 (5% Mn-doped BiFeO3 thin films have been prepared by a chemical deposition method. The band structures and photosensitive properties of these films have been investigated elaborately. Pure BiFeO3 films showed stable and strong response to photo illumination (open circuit potential kept −0.18 V, short circuit photocurrent density was −0.023 mA·cm−2. By Mn doping, the energy band positions shifted, resulting in a smaller band gap of BiFe0.95Mn0.05O3 layer and an internal field being built in the BiFeO3/BiFe0.95Mn0.05O3 interface. BiFeO3/BiFe0.95Mn0.05O3 and BiFe0.95Mn0.05O3 thin films demonstrated poor photo activity compared with pure BiFeO3 films, which can be explained by the fact that Mn doping brought in a large amount of defects in the BiFe0.95Mn0.05O3 layers, causing higher carrier combination and correspondingly suppressing the photo response, and this negative influence was more considerable than the positive effects provided by the band modulation.

  2. Formation of β-FeSi 2 thin films by partially ionized vapor deposition

    Science.gov (United States)

    Harada, Noriyuki; Takai, Hiroshi

    2003-05-01

    The partially ionized vapor deposition (PIVD) is proposed as a new method to realize low temperature formation of β-FeSi 2 thin films. In this method, Fe is evaporated by E-gun and a few percents of Fe atoms are ionized. We have investigated influences of the ion content and the accelerating voltage of Fe ions on the structural properties of β-FeSi 2 films deposited on Si substrates. It was confirmed that β-FeSi 2 can be formed on Si(1 0 0) substrate by PIVD even at substrate temperature as low as 350, while FeSi by the conventional vacuum deposition. It was concluded that the influence of Fe ions on preferential orientation of β-FeSi 2 depends strongly on the content and the acceleration energy of ions.

  3. Formation of {beta}-FeSi{sub 2} thin films by partially ionized vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Noriyuki; Takai, Hiroshi

    2003-05-01

    The partially ionized vapor deposition (PIVD) is proposed as a new method to realize low temperature formation of {beta}-FeSi{sub 2} thin films. In this method, Fe is evaporated by E-gun and a few percents of Fe atoms are ionized. We have investigated influences of the ion content and the accelerating voltage of Fe ions on the structural properties of {beta}-FeSi{sub 2} films deposited on Si substrates. It was confirmed that {beta}-FeSi{sub 2} can be formed on Si(1 0 0) substrate by PIVD even at substrate temperature as low as 350, while FeSi by the conventional vacuum deposition. It was concluded that the influence of Fe ions on preferential orientation of {beta}-FeSi{sub 2} depends strongly on the content and the acceleration energy of ions.

  4. Solid phase epitaxial growth of high mobility La:BaSnO_3 thin films co-doped with interstitial hydrogen

    International Nuclear Information System (INIS)

    Niedermeier, Christian A.; Rhode, Sneha; Fearn, Sarah; Moram, Michelle A.; Ide, Keisuke; Hiramatsu, Hidenori; Hosono, Hideo; Kamiya, Toshio

    2016-01-01

    This work presents the solid phase epitaxial growth of high mobility La:BaSnO_3 thin films on SrTiO_3 single crystal substrates by crystallization through thermal annealing of nanocrystalline thin films prepared by pulsed laser deposition at room temperature. The La:BaSnO_3 thin films show high epitaxial quality and Hall mobilities up to 26 ± 1 cm"2/Vs. Secondary ion mass spectroscopy is used to determine the La concentration profile in the La:BaSnO_3 thin films, and a 9%–16% La doping activation efficiency is obtained. An investigation of H doping to BaSnO_3 thin films is presented employing H plasma treatment at room temperature. Carrier concentrations in previously insulating BaSnO_3 thin films were increased to 3 × 10"1"9" cm"−"3 and in La:BaSnO_3 thin films from 6 × 10"1"9" cm"−"3 to 1.5 × 10"2"0" cm"−"3, supporting a theoretical prediction that interstitial H serves as an excellent n-type dopant. An analysis of the free electron absorption by infrared spectroscopy yields a small (H,La):BaSnO_3 electron effective mass of 0.27 ± 0.05 m_0 and an optical mobility of 26 ± 7 cm"2/Vs. As compared to La:BaSnO_3 single crystals, the smaller electron mobility in epitaxial thin films grown on SrTiO_3 substrates is ascribed to threading dislocations as observed in high resolution transmission electron micrographs.

  5. Annealing effects on the ferromagnetic resonance linewidths of sputter-deposited Fe{sub 100−x}Co{sub x}(001) thin films (x < 11)

    Energy Technology Data Exchange (ETDEWEB)

    Kusaoka, A.; Kimura, J.; Takahashi, Y., E-mail: takahasy@yz.yamagata-u.ac.jp; Inaba, N. [Graduate School of Science and Engineering, Yamagata University, Yonezawa, Yamagata 992-8510 (Japan); Kirino, F. [Graduate School of Fine Arts, Tokyo National University of Fine Arts and Music, Tokyo 110-8714 (Japan); Ohtake, M.; Futamoto, M. [Faculty of Science and Engineering, Chuo University, Tokyo 112-8551 (Japan)

    2015-05-07

    Effects of post-growth annealing on the magnetic damping of 3d transition alloy thin films were investigated. Fe{sub 100−x}Co{sub x} (x < 11 at. %) thin films were epitaxially deposited on GaAs(001) substrates by rf magnetron sputtering, and some of them were annealed without exposing to atmosphere. Electrical measurement showed that in-plane resistivity was smaller in the annealed films than in the as-deposited ones, indicating that the annealing mitigates crystalline imperfections and leads to reduced electron scattering rates. Magnetic damping was evaluated by the peak widths of ferromagnetic resonance (FMR) spectra obtained by a conventional Q-band spectrometer. Comparison of as-deposited and annealed specimens showed that the damping was decreased by annealing. Combined with the electrical and FMR measurements, these observations are consistent with the theoretical predictions that crystalline imperfections strongly influence the magnetic damping, both in intrinsic and extrinsic origins.

  6. Annealing effects on the ferromagnetic resonance linewidths of sputter-deposited Fe100−xCox(001) thin films (x < 11)

    International Nuclear Information System (INIS)

    Kusaoka, A.; Kimura, J.; Takahashi, Y.; Inaba, N.; Kirino, F.; Ohtake, M.; Futamoto, M.

    2015-01-01

    Effects of post-growth annealing on the magnetic damping of 3d transition alloy thin films were investigated. Fe 100−x Co x (x < 11 at. %) thin films were epitaxially deposited on GaAs(001) substrates by rf magnetron sputtering, and some of them were annealed without exposing to atmosphere. Electrical measurement showed that in-plane resistivity was smaller in the annealed films than in the as-deposited ones, indicating that the annealing mitigates crystalline imperfections and leads to reduced electron scattering rates. Magnetic damping was evaluated by the peak widths of ferromagnetic resonance (FMR) spectra obtained by a conventional Q-band spectrometer. Comparison of as-deposited and annealed specimens showed that the damping was decreased by annealing. Combined with the electrical and FMR measurements, these observations are consistent with the theoretical predictions that crystalline imperfections strongly influence the magnetic damping, both in intrinsic and extrinsic origins

  7. Microstructure of epitaxial thin films of the ferromagnetic shape memory alloy Ni{sub 2}MnGa

    Energy Technology Data Exchange (ETDEWEB)

    Eichhorn, Tobias

    2011-12-09

    This work is concerned with the preparation and detailed characterization of epitaxial thin films of the Heusler compound Ni{sub 2}MnGa. This multiferroic compound is of both technological and scientific interest due to the outstanding magnetic shape memory (MSM) behavior. Huge magnetic-field-induced strains up to 10 % have been observed for single crystals close to a Ni{sub 2}MnGa composition. The effect is based on a redistribution of crystallographic twin variants of tetragonal or orthorhombic symmetry. Under the driving force of the external magnetic field twin boundaries can move through the crystal, which largely affects the macroscopic shape. The unique combination of large reversible strain, high switching frequency and high work output makes the alloy a promising actuator material. Since the MSM effect results from an intrinsic mechanism, MSM devices possess great potential for implementation in microsystems, e.g. microfluidics. So far significant strains, in response to an external magnetic field, have been observed for bulk single crystals and foams solely. In order to take advantage of the effect in applications concepts for miniaturization are needed. The rather direct approach, based on epitaxial thin films, is explored in the course of this work. This involves sample preparation under optimized deposition parameters and fabrication of freestanding single-crystalline films. Different methods to achieve freestanding microstructures such as bridges and cantilevers are presented. The complex crystal structure is extensively studied by means of X-ray diffraction. Thus, the different crystallographic twin variants that are of great importance for the MSM effect are identified. In combination with microscopy the twinning architecture for films of different crystallographic orientation is clarified. Intrinsic blocking effects in samples of (100) orientation are explained on basis of the variant configuration. In contrast, a promising twinning microstructure

  8. The α-particle excited scintillation response of YAG:Ce thin films grown by liquid phase epitaxy

    International Nuclear Information System (INIS)

    Prusa, Petr; Nikl, Martin; Mares, Jiri A.; Nitsch, Karel; Beitlerova, Alena; Kucera, Miroslav

    2009-01-01

    Y 3 Al 5 O 12 :Ce (YAG:Ce) thin films were grown from PbO-,BaO-, and MoO 3 -based fluxes using the liquid phase epitaxy (LPE) method. Photoelectron yield, its time dependence within 0.5-10 μs shaping time, and energy resolution of these samples were measured under α-particle excitation. For comparison a sample of the Czochralski grown bulk YAG:Ce single crystal was measured as well. Photoelectron yield values of samples grown from the BaO-based flux were found superior to other LPE films and comparable with that of the bulk single crystal. The same is valid also for the time dependence of photoelectron yield. Obtained results are discussed taking into account the influence of the flux and technology used. Additionally, α particle energy deposition in very thin films is modelled and discussed. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Nanoscale monoclinic domains in epitaxial SrRuO3 thin films deposited by pulsed laser deposition

    Science.gov (United States)

    Ghica, C.; Negrea, R. F.; Nistor, L. C.; Chirila, C. F.; Pintilie, L.

    2014-07-01

    In this paper, we analyze the structural distortions observed by transmission electron microscopy in thin epitaxial SrRuO3 layers used as bottom electrodes in multiferroic coatings onto SrTiO3 substrates for future multiferroic devices. Regardless of the nature and architecture of the multilayer oxides deposited on the top of the SrRuO3 thin films, selected area electron diffraction patterns systematically revealed the presence of faint diffraction spots appearing in forbidden positions for the SrRuO3 orthorhombic structure. High-resolution transmission electron microscopy (HRTEM) combined with Geometric Phase Analysis (GPA) evidenced the origin of these forbidden diffraction spots in the presence of structurally disordered nanometric domains in the SrRuO3 bottom layers, resulting from a strain-driven phase transformation. The local high compressive strain (-4% ÷ -5%) measured by GPA in the HRTEM images induces a local orthorhombic to monoclinic phase transition by a cooperative rotation of the RuO6 octahedra. A further confirmation of the origin of the forbidden diffraction spots comes from the simulated diffraction patterns obtained from a monoclinic disordered SrRuO3 structure.

  10. Persistent semi-metal-like nature of epitaxial perovskite CaIrO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Biswas, Abhijit; Jeong, Yoon Hee, E-mail: yhj@postech.ac.kr [Department of Physics, POSTECH, Pohang 790-784 (Korea, Republic of)

    2015-05-21

    Strong spin-orbit coupled 5d transition metal based ABO{sub 3} oxides, especially iridates, allow tuning parameters in the phase diagram and may demonstrate important functionalities, for example, by means of strain effects and symmetry-breaking, because of the interplay between the Coulomb interactions and strong spin-orbit coupling. Here, we have epitaxially stabilized high quality thin films of perovskite (Pv) CaIrO{sub 3}. Film on the best lattice-matched substrate shows semi-metal-like characteristics. Intriguingly, imposing tensile or compressive strain on the film by altering the underlying lattice-mismatched substrates still maintains semi-metallicity with minute modification of the effective correlation as tensile (compressive) strain results in tiny increases (decreases) of the electronic bandwidth. In addition, magnetoresistance remains positive with a quadratic field dependence. This persistent semi-metal-like nature of Pv-CaIrO{sub 3} thin films with minute changes in the effective correlation by strain may provide new wisdom into strong spin-orbit coupled 5d based oxide physics.

  11. Polarization-tuned diode behaviour in multiferroic BiFeO3 thin films

    KAUST Repository

    Yao, Yingbang; Zhang, Bei; Chen, Long; Yang, Yang; Wang, Zhihong; Alshareef, Husam N.; Zhang, Xixiang

    2012-01-01

    Asymmetric rectifying I-V behaviour of multiferroic BiFeO3 (BFO) thin films grown on transparent ITO-coated glass was quantitatively studied as a function of ferroelectric polarization. Different polarized states were established by unipolar

  12. Third generation biosensing matrix based on Fe-implanted ZnO thin film

    International Nuclear Information System (INIS)

    Saha, Shibu; Gupta, Vinay; Sreenivas, K.; Tan, H. H.; Jagadish, C.

    2010-01-01

    Third generation biosensor based on Fe-implanted ZnO (Fe-ZnO) thin film has been demonstrated. Implantation of Fe in rf-sputtered ZnO thin film introduces redox center along with shallow donor level and thereby enhance its electron transfer property. Glucose oxidase (GOx), chosen as model enzyme, has been immobilized on the surface of the matrix. Cyclic voltammetry and photometric assay show that the prepared bioelectrode, GOx/Fe-ZnO/ITO/Glass is sensitive to the glucose concentration with enhanced response of 0.326 μA mM -1 cm -2 and low Km of 2.76 mM. The results show promising application of Fe-implanted ZnO thin film as an attractive matrix for third generation biosensing.

  13. Third generation biosensing matrix based on Fe-implanted ZnO thin film

    Science.gov (United States)

    Saha, Shibu; Gupta, Vinay; Sreenivas, K.; Tan, H. H.; Jagadish, C.

    2010-09-01

    Third generation biosensor based on Fe-implanted ZnO (Fe-ZnO) thin film has been demonstrated. Implantation of Fe in rf-sputtered ZnO thin film introduces redox center along with shallow donor level and thereby enhance its electron transfer property. Glucose oxidase (GOx), chosen as model enzyme, has been immobilized on the surface of the matrix. Cyclic voltammetry and photometric assay show that the prepared bioelectrode, GOx/Fe-ZnO/ITO/Glass is sensitive to the glucose concentration with enhanced response of 0.326 μA mM-1 cm-2 and low Km of 2.76 mM. The results show promising application of Fe-implanted ZnO thin film as an attractive matrix for third generation biosensing.

  14. Bi-epitaxial YBa{sub 2}Cu{sub 3}O{sub x} Thin Films on Tilted-axes NdGaO{sub 3} Substrates with CeO{sub 2} Seeding Layer

    Energy Technology Data Exchange (ETDEWEB)

    Mozhaev, P B [Institute of Physics and Technology RAS, 117218, Moscow (Russian Federation); Mozhaeva, J E [Institute of Physics and Technology RAS, 117218, Moscow (Russian Federation); Jacobsen, C S [Technical University of Denmark, Physics Department, Lyngby, DK-2800, Denmark (Denmark); Hansen, J Bindslev [Technical University of Denmark, Physics Department, Lyngby, DK-2800, Denmark (Denmark); Bdikin, I K [CICECO, University of Aveiro, Aveiro, 3810-193 (Portugal); Luzanov, V A [Institute of Radio Engineering and Electronics, Moscow, 125009 (Russian Federation); Kotelyanskii, I M [Institute of Radio Engineering and Electronics, Moscow, 125009 (Russian Federation); Zybtsev, S G [Institute of Radio Engineering and Electronics, Moscow, 125009 (Russian Federation)

    2006-06-01

    Bi-epitaxial YBa{sub 2}Cu{sub 3}O{sub x} (YBCO) thin films with out-of-plane tilt angle in the range 18 - 27{sup 0} were manufactured using pulsed laser deposition on NdGaO{sub 3} tilted-axes substrates with CeO{sub 2} seeding layers. The YBCO thin film orientation over the seeding layer depended on deposition conditions. Removal of the seeding layer from part of the substrate surface by ionbeam etching resulted in formation of a bi-epitaxial thin film with different c-axis orientation of two parts of the film. The bi-epitaxial film orientation and structure were studied using X-ray diffraction techniques, and surface morphology was observed with atomic force microscope (AFM). Photolithography and ion-beam etching techniques were used for patterning bi-epitaxial thin films. Electrical characterization of the obtained structures was performed.

  15. Magnetocrystalline anisotropy in a (110) (Tb0.27Dy0.73)Fe2 thin-film

    International Nuclear Information System (INIS)

    Fuente, C de la; Arnaudas, J I; Benito, L; Ciria, M; Moral, A del; Dufour, C; Dumesnil, K

    2004-01-01

    Magnetic anisotropy measurements performed in a (110) (Tb 0.27 Dy 0.73 )Fe 2 (Terfenol-D) film epitaxially grown on a sapphire substrate are presented. The magnetic torque curves have been determined by using a vectorial vibrating sample magnetometer, which allows us to measure the angular dependence of magnetization components parallel, M parallel , and perpendicular, M perp , to the applied field up to 2 T. The fourfold symmetry associated with the cubic structure within the (110) plane is clearly observed. The analysis of the experimental torque has been carried out considering magnetocrystalline anisotropy up to sixth order and magnetoelastic energy up to second order; so, the magnetocrystalline anisotropy constants in the (110) plane of the film, K 1 and K 2 , have been obtained. This allows us to determine the direction of the magnetization easy axis for (110) Terfenol-D thin-film: it is [1bar12] at RT, passes through [3bar34] at 140 K and then changes to [1bar20] at 40 K. It was completely impossible to explain the angular dependence of the experimental magnetic torque without including shear and tetragonal magnetoelastic stress parameters, b 2 and b 1 , respectively. This confirms the paramount role of the strain in the determination of the magnetic properties in this kind of Terfenol-D thin film

  16. Anisotropic strain relaxation in (Ba0.6Sr0.4)TiO3 epitaxial thin films

    Science.gov (United States)

    Simon, W. K.; Akdogan, E. K.; Safari, A.

    2005-05-01

    We have studied the evolution of anisotropic epitaxial strains in ⟨110⟩-oriented (Ba0.60Sr0.40)TiO3 paraelectric (m3m) thin films grown on orthorhombic (mm2) ⟨100⟩-oriented NdGaO3 by high-resolution x-ray diffractometry. All the six independent components of the three-dimensional strain tensor were measured in films with 25-1200-nm thickness, from which the principal stresses and strains were obtained. Pole figure analysis indicated that the epitaxial relations are [001]m3m‖[001]mm2 and [1¯10]m3m‖[010]mm2 in the plane of the film, and [110]m3m‖[100]mm2 along the growth direction. The dislocation system responsible for strain relief along [001] has been determined to be ∣b ∣(001)=3/4∣b∣. Strain relief along the [1¯10] direction, on the other hand, has been determined to be due to a coupled mechanism given by ∣b∣(1¯10)=∣b∣ and ∣b∣(1¯10)=√3 /4∣b∣. Critical thicknesses, as determined from nonlinear regression using the Matthews-Blakeslee equation, for misfit dislocation formation along [001] and [1¯10] direction were found to be 5 and 7 nm, respectively. The residual strain energy density was calculated as ˜2.9×106J/m3 at 25 nm, which was found to relax an order of magnitude by 200 nm. At 200 nm, the linear dislocation density along [001] and [1¯10] are ˜6.5×105 and ˜6×105cm-1, respectively. For films thicker than 600 nm, additional strain relief occurred through surface undulations, indicating that this secondary strain-relief mechanism is a volume effect that sets in upon cooling from the growth temperature.

  17. The polarized neutron reflectivity and X-ray reflectivity studies of the magnetic profiles of epitaxial Ni80Fe20/Ru multilayers

    International Nuclear Information System (INIS)

    Su, H.-C.; Peir, J.-J.; Lee, C.-H.; Lin, M.-Z.; Wu, P.-T.; Huang, J.C.A.; Tun Zin

    2005-01-01

    The depth profiles of the epitaxial Ni 80 Fe 20 (1 1 1)/Ru(0 0 0 1) multilayers were studied by polarized neutron reflectivity and X-ray reflectivity. At the Ru thickness that the anti-ferromagnetic coupling was found, the magnetic moments between two Ni 80 Fe 20 interlayers show a biquadratic coupling effect with a double unit cell at low applied fields. A magnetic dead layer of about 0.3 nm was also found at the interface boundaries. The maximal polarization effect applied to the Ru layer is less than 0.03μ B

  18. First-principles-based study of transport properties of Fe thin films on Cu surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, Tomoya [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Kasai, Hideaki [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Nakanishi, Hiroshi [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Dino, Wilson Agerico [Department of Applied Physics, Osaka University, Suita, Osaka 565-0871 (Japan); Komori, Fumio [Institute for Solid State Physics, University of Tokyo, Kashiwa, Chiba 277-8587 (Japan)

    2004-12-08

    We investigate the transport properties of Fe thin films on Cu(111) based on first principles calculation. We calculate the electron current through these Fe thin films, which can be observed by using a double-tipped scanning tunnelling microscope. We find that the conductance is majority spin polarized. On the basis of the band structures for this system, we discuss the origin of these interesting transport properties.

  19. First-principles-based study of transport properties of Fe thin films on Cu surfaces

    International Nuclear Information System (INIS)

    Kishi, Tomoya; Kasai, Hideaki; Nakanishi, Hiroshi; Dino, Wilson Agerico; Komori, Fumio

    2004-01-01

    We investigate the transport properties of Fe thin films on Cu(111) based on first principles calculation. We calculate the electron current through these Fe thin films, which can be observed by using a double-tipped scanning tunnelling microscope. We find that the conductance is majority spin polarized. On the basis of the band structures for this system, we discuss the origin of these interesting transport properties

  20. A study of strain in thin epitaxial films of yttrium silicide on Si(111)

    Science.gov (United States)

    Siegal, Michelle F.; Martínez-Miranda, L. J.; Santiago-Avilés, J. J.; Graham, W. R.; Siegal, M. P.

    1994-02-01

    We present the results of an x-ray diffraction analysis of epitaxial yttrium silicide films grown on Si(111), with thicknesses ranging from 14 to 100 Å. The macroscopic strain along the out-of-plane direction for films containing pits or pinholes follows the trend observed previously in films of thicknesses up to 510 Å. The out-of-plane lattice parameter decreases linearly with film thickness. We show preliminary evidence that pinhole-free films do not follow the above trend, and that strain in these films has the opposite sign than in films with pinholes. Finally, our results also indicate that the mode of growth, coupled to the interfacial thermal properties of the films, affects the observed value for the strain in the films.

  1. A study of strain in thin epitaxial films of yttrium silicide on Si(111)

    International Nuclear Information System (INIS)

    Siegal, M.F.; Martinez-Miranda, L.J.; Santiago-Aviles, J.J.; Graham, W.R.; Siegal, M.P.

    1994-01-01

    We present the results of an x-ray diffraction analysis of epitaxial yttrium silicide films grown on Si(111), with thicknesses ranging from 14 to 100 A. The macroscopic strain along the out-of-plane direction for films containing pits or pinholes follows the trend observed previously in films of thicknesses up to 510 A. The out-of-plane lattice parameter decreases linearly with film thickness. We show preliminary evidence that pinhole-free films do not follow the above trend, and that strain in these films has the opposite sign than in films with pinholes. Finally, our results also indicate that the mode of growth, coupled to the interfacial thermal properties of the films, affects the observed value for the strain in the films

  2. Hydrogen reduction in GaAsN thin films by flow rate modulated chemical beam epitaxy

    International Nuclear Information System (INIS)

    Saito, K.; Nishimura, K.; Suzuki, H.; Ohshita, Y.; Yamaguchi, M.

    2008-01-01

    The amount of residual H in the GaAsN film grown by chemical beam epitaxy (CBE) can be decreased by flow rate modulation growth. Many H atoms in the films grown by CBE exist as N-H or N-H 2 structures. Although a higher growth temperature was required for decreasing the H concentration ([H]), it caused a decrease in the N concentration ([N]). A reduction in [H] while keeping [N] constant was necessary. By providing an intermittent supply of Ga source while continuously supplying As and N sources, [H] effectively decreased in comparison with the [H] value in the film grown at the same temperature by conventional CBE without reducing [N

  3. Tailoring the physical properties of manganite thin films by tuning the epitaxial strain

    International Nuclear Information System (INIS)

    Zhang, P.X.; Zhang, H.; Cha, L.M.; Habermeier, H.-U.

    2003-01-01

    Through a proper choice of the mismatch between substrate and films, the physical properties of manganite thin films can be tailored We show that two types of manganite thin films of the Ruddlesden-Popper family, n=∞ and n=2, demonstrate a dramatic variation of their physical properties. It is proved that the property variation can be tuned precisely by controlling the lattice mismatch and/or the film thickness

  4. Vacancy defects in epitaxial La0.7Sr0.3MnO3 thin films probed by a slow positron beam

    International Nuclear Information System (INIS)

    Jin, S W; Zhou, X Y; Wu, W B; Zhu, C F; Weng, H M; Wang, H Y; Zhang, X F; Ye, B J; Han, R D

    2004-01-01

    Vacancy defects in epitaxial La 0.7 Sr 0.3 MnO 3 (LSMO) thin films on LaAlO 3 substrates were detected using a variable energy positron beam. The line-shape S parameter of the epitaxial thin films deposited at different oxygen pressures was measured as a function of the implanting positron energy E. Our results show that the S parameter of the films changes non-monotonically with their deposition oxygen pressures. For the films deposited at lower oxygen pressures, the increase in S value in the films is attributed to the increase in oxygen vacancies and/or related defect-V O complexes, and for those deposited at higher oxygen pressures, the larger S parameter of the films is caused by the grain boundaries and/or metallic ion vacancies. The surface morphology of the films was also characterized to analyse the open volume defects in the LSMO films

  5. Formation of defect-fluorite structured NdNiOxHy epitaxial thin films via a soft chemical route from NdNiO3 precursors.

    Science.gov (United States)

    Onozuka, T; Chikamatsu, A; Katayama, T; Fukumura, T; Hasegawa, T

    2016-07-26

    A new phase of oxyhydride NdNiOxHy with a defect-fluorite structure was obtained by a soft chemical reaction of NdNiO3 epitaxial thin films on a substrate of SrTiO3 (100) with CaH2. The epitaxial relationship of this phase relative to SrTiO3 could be controlled by changing the reaction temperature. At 240 °C, NdNiOxHy grew with a [001] orientation, forming a thin layer of infinite-layer NdNiO2 at the interface between the NdNiOxHy and the substrate. Meanwhile, a high-temperature reaction at 400 °C formed [110]-oriented NdNiOxHy without NdNiO2.

  6. Unsaturated magnetoconductance of epitaxial La0.7Sr0.3MnO3 thin films in pulsed magnetic fields up to 60 T

    Directory of Open Access Journals (Sweden)

    Wei Niu

    2017-05-01

    Full Text Available We report on the temperature and field dependence of resistance of La0.7Sr0.3MnO3 thin films over a wide temperature range and in pulsed magnetic fields up to 60 T. The epitaxial La0.7Sr0.3MnO3 thin films were deposited by laser molecular beam epitaxy. High magnetic field magnetoresistance curves were fitted by the Brillouin function, which indicated the existence of magnetically polarized regions and the underlying hopping mechanism. The unsaturated magnetoconductance was the most striking finding observed in pulsed magnetic fields up to 60 T. These observations can deepen the fundamental understanding of the colossal magnetoresistance in manganites with strong correlation of transport properties and magnetic ordering.

  7. Misfit strain dependence of ferroelectric and piezoelectric properties of clamped (001) epitaxial Pb(Zr0.52,Ti0.48)O3 thin films

    Science.gov (United States)

    Nguyen, Minh D.; Dekkers, Matthijn; Houwman, Evert; Steenwelle, Ruud; Wan, Xin; Roelofs, Andreas; Schmitz-Kempen, Thorsten; Rijnders, Guus

    2011-12-01

    A study on the effects of the residual strain in Pb(Zr0.52Ti0.48)O3 (PZT) thin films on the ferroelectric and piezoelectric properties is presented. Epitaxial (001)-oriented PZT thin film capacitors are sandwiched between SrRuO3 electrodes. The thin film stacks are grown on different substrate-buffer-layer combinations by pulsed laser deposition. Compressive or tensile strain caused by the difference in thermal expansion of the PZT film and substrate influences the ferroelectric and piezoelectric properties. All the PZT stacks show ferroelectric and piezoelectric behavior that is consistent with the theoretical model for strained thin films in the ferroelectric r-phase. We conclude that clamped (001) oriented Pb(Zr0.52Ti0.48)O3 thin films strained by the substrate always show rotation of the polarization vector.

  8. Magnetic properties of electroplated nano/microgranular NiFe thin films for rf application

    NARCIS (Netherlands)

    Zhuang, Y.; Vroubel, M.; Rejaei, B.; Burghartz, J.N.; Attenborough, K.

    2005-01-01

    A granular NiFe thin film with large in-plane magnetic anisotropy and high ferromagnetic-resonance frequency developed for radio-frequency integrated circuit (IC) applications is presented. During the deposition, three-dimensional (3D) growth occurs, yielding NiFe grains (? ? 1.0??m). Nanonuclei (?

  9. Angle-resolved photoemission spectroscopy of strontium lanthanum copper oxide thin films grown by molecular-beam epitaxy

    Science.gov (United States)

    Harter, John Wallace

    Among the multitude of known cuprate material families and associated structures, the archetype is "infinite-layer" ACuO2, where perfectly square and flat CuO2 planes are separated by layers of alkaline earth atoms. The infinite-layer structure is free of magnetic rare earth ions, oxygen chains, orthorhombic distortions, incommensurate superstructures, ordered vacancies, and other complications that abound among the other material families. Furthermore, it is the only cuprate that can be made superconducting by both electron and hole doping, making it a potential platform for decoding the complex many-body interactions responsible for high-temperature superconductivity. Research on the infinite-layer compound has been severely hindered by the inability to synthesize bulk single crystals, but recent progress has led to high-quality superconducting thin film samples. Here we report in situ angle-resolved photoemission spectroscopy measurements of epitaxially-stabilized Sr1-chiLa chiCuO2 thin films grown by molecular-beam epitaxy. At low doping, the material exhibits a dispersive lower Hubbard band typical of other cuprate parent compounds. As carriers are added to the system, a continuous evolution from Mott insulator to superconducting metal is observed as a coherent low-energy band develops on top of a concomitant remnant lower Hubbard band, gradually filling in the Mott gap. For chi = 0.10, our results reveal a strong coupling between electrons and (pi,pi) anti-ferromagnetism, inducing a Fermi surface reconstruction that pushes the nodal states below the Fermi level and realizing nodeless superconductivity. Electron diffraction measurements indicate the presence of a surface reconstruction that is consistent with the polar nature of Sr1-chiLachiCuO2. Most knowledge about the electron-doped side of the cuprate phase diagram has been deduced by generalizing from a single material family, Re2-chi CechiCuO4, where robust antiferromagnetism has been observed past chi

  10. Ultrahigh vacuum dc magnetron sputter-deposition of epitaxial Pd(111)/Al2O3(0001) thin films.

    Science.gov (United States)

    Aleman, Angel; Li, Chao; Zaid, Hicham; Kindlund, Hanna; Fankhauser, Joshua; Prikhodko, Sergey V; Goorsky, Mark S; Kodambaka, Suneel

    2018-05-01

    Pd(111) thin films, ∼245 nm thick, are deposited on Al 2 O 3 (0001) substrates at ≈0.5 T m , where T m is the Pd melting point, by ultrahigh vacuum dc magnetron sputtering of Pd target in pure Ar discharges. Auger electron spectra and low-energy electron diffraction patterns acquired in situ from the as-deposited samples reveal that the surfaces are compositionally pure 111-oriented Pd. Double-axis x-ray diffraction (XRD) ω-2θ scans show only the set of Pd 111 peaks from the film. In triple-axis high-resolution XRD, the full width at half maximum intensity Γ ω of the Pd 111 ω-rocking curve is 630 arc sec. XRD 111 pole figure obtained from the sample revealed six peaks 60°-apart at a tilt angles corresponding to Pd 111 reflections. XRD ϕ scans show six 60°-rotated 111 peaks of Pd at the same ϕ angles for 11[Formula: see text]3 of Al 2 O 3 based on which the epitaxial crystallographic relationships between the film and the substrate are determined as [Formula: see text]ǁ[Formula: see text] with two in-plane orientations of [Formula: see text]ǁ[Formula: see text] and [Formula: see text]ǁ[Formula: see text]. Using triple axis symmetric and asymmetric reciprocal space maps, interplanar spacings of out-of-plane (111) and in-plane (11[Formula: see text]) are found to be 0.2242 ± 0.0003 and 0.1591 ± 0.0003 nm, respectively. These values are 0.18% lower than 0.2246 nm for (111) and the same, within the measurement uncertainties, as 0.1588 nm for (11[Formula: see text]) calculated from the bulk Pd lattice parameter, suggesting a small out-of-plane compressive strain and an in-plane tensile strain related to the thermal strain upon cooling the sample from the deposition temperature to room temperature. High-resolution cross-sectional transmission electron microscopy coupled with energy dispersive x-ray spectra obtained from the Pd(111)/Al 2 O 3 (0001) samples indicate that the Pd-Al 2 O 3 interfaces are essentially atomically abrupt and

  11. Near-surface effects of transient oxidation and reduction on Nb-doped SrTiO3 epitaxial thin films

    Science.gov (United States)

    Chang, C. F.; Chen, Q. Y.; Wadekar, P. V.; Lozano, O.; Wong, M. S.; Hsieh, W. C.; Lin, W. Y.; Ko, H. H.; Lin, Q. J.; Huang, H. C.; Ho, N. J.; Tu, L. W.; Liao, H. H.; Chinta, P. V.; Chu, W. K.; Seo, H. W.

    2014-03-01

    We studied the effects of transient oxidation and reduction of Nb-doped epitaxial thin films through variations of PAr and PO2. The samples were prepared by co-sputtering of Nb and SrTiO3 on LaAlO3 substrates. The Nb-content were varied from 0-33.7%, as determined by PIXE. Contact resistance, sheet resistance, and optical properties are used to discriminate the effects.

  12. Low-temperature liquid-phase epitaxy and optical waveguiding of rare-earth-ion-doped KY(WO4)2 thin layers

    NARCIS (Netherlands)

    Romanyuk, Y.E.; Utke, I.; Ehrentraut, D.; Apostolopoulos, V.; Pollnau, Markus; Garcia-Revilla, S.; Valiente, B.

    2004-01-01

    Crystalline $KY(WO_{4})_{2}$ thin layers doped with different rare-earth ions were grown on b-oriented, undoped $KY(WO_{4})_{2}$ substrates by liquid-phase epitaxy employing a low-temperature flux. The ternary chloride mixture of NaCl, KCl, and CsCl with a melting point of 480°C was used as a

  13. Residual stress change by thermal annealing in amorphous Sm-Fe-B thin films

    International Nuclear Information System (INIS)

    Na, S.M.; Suh, S.J.; Kim, H.J.; Lim, S.H.

    2002-01-01

    The change in the residual stress and its effect on mechanical bending and magnetic properties of sputtered amorphous Sm-Fe-B thin films are investigated as a function of annealing temperature. Two stress components of intrinsic compressive stress and tensile stress due to the difference of the thermal expansion coefficients between the substrate and thin film are used to explain the stress state in as-deposited thin films, and the annealing temperature dependence of residual stress, mechanical bending and magnetic properties

  14. On the Novel Biaxial Strain Relaxation Mechanism in Epitaxial Composition Graded La1−xSrxMnO3 Thin Film Synthesized by RF Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Yishu Wang

    2015-11-01

    Full Text Available We report on a novel method to fabricate composition gradient, epitaxial La1−xSrxMnO3 thin films with the objective to alleviate biaxial film strain. In this work, epitaxial, composition gradient La1−xSrxMnO3, and pure LaMnO3 and La0.67Sr0.33MnO3 thin films were deposited by radio frequency (RF magnetron sputtering. The crystalline and epitaxy of all films were first studied by symmetric θ–2θ X-ray diffraction (XRD and low angle XRD experiments. Detailed microstructural characterization across the film thickness was conducted by high-resolution transmission electron microscopy and electron diffraction. Four compositional gradient domains were observed in the La1−xSrxMnO3 film ranging from LaMnO3 rich to La0.67Sr0.33MnO3 at the surface. A continuous reduction in the lattice parameter was observed accompanied by a significant reduction in the out-of-plane strain in the film. Fabrication of the composition gradient La1−xSrxMnO3 thin film was found to be a powerful method to relieve biaxial strain under critical thickness. Besides, the coexistence of domains with a composition variance is opening up various new possibilities of designing new nanoscale structures with unusual cross coupled properties.

  15. Epitaxial growth of Sb-doped nonpolar a-plane ZnO thin films on r-plane sapphire substrates by RF magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hou-Guang, E-mail: houguang@isu.edu.tw [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China); Hung, Sung-Po [Department of Materials Science and Engineering, I-Shou University, Kaohsiung 840, Taiwan (China)

    2014-02-15

    Highlights: ► Sb-doped nonpolar a-plane ZnO layers were epitaxially grown on sapphire substrates. ► Crystallinity and electrical properties were studied upon growth condition and doping concentration. ► The out-of-plane lattice spacing of ZnO films reduces monotonically with increasing Sb doping level. ► The p-type conductivity of ZnO:Sb film is closely correlated with annealing condition and Sb doping level. -- Abstract: In this study, the epitaxial growth of Sb-doped nonpolar a-plane (112{sup ¯}0) ZnO thin films on r-plane (11{sup ¯}02) sapphire substrates was performed by radio-frequency magnetron sputtering. The influence of the sputter deposition conditions and Sb doping concentration on the microstructural and electrical properties of Sb-doped ZnO epitaxial films was investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM) and the Hall-effect measurement. The measurement of the XRD phi-scan indicated that the epitaxial relationship between the ZnO:Sb layer and sapphire substrate was (112{sup ¯}0){sub ZnO}//(11{sup ¯}02){sub Al{sub 2O{sub 3}}} and [11{sup ¯}00]{sub ZnO}//[112{sup ¯}0]{sub Al{sub 2O{sub 3}}}. The out-of-plane a-axis lattice parameter of ZnO films was reduced monotonically with the increasing Sb doping level. The cross-sectional transmission electron microscopy (XTEM) observation confirmed the absence of any significant antimony oxide phase segregation across the thickness of the Sb-doped ZnO epitaxial film. However, the epitaxial quality of the films deteriorated as the level of Sb dopant increased. The electrical properties of ZnO:Sb film are closely correlated with post-annealing conditions and Sb doping concentrations.

  16. Low-temperature technique of thin silicon ion implanted epitaxial detectors

    Energy Technology Data Exchange (ETDEWEB)

    Kordyasz, A.J.; Bednarek, A. [Warsaw University, Heavy Ion Laboratory, Warsaw (Poland); Le Neindre, N.; Bougault, R.; Lopez, O.; Merrer, Y.; Vient, E. [Universite de Caen, LPC, IN2P3-CNRS, ENSICAEN, Caen-Cedex (France); Parlog, M. [Universite de Caen, LPC, IN2P3-CNRS, ENSICAEN, Caen-Cedex (France); ' ' Horia Hulubei' ' National Institute of Physics and Nuclear Engineering (IFIN-HH), Bucharest Magurele (Romania); Casini, G.; Poggi, G.; Bini, M.; Valdre, S.; Scarlini, E.; Pasquali, G.; Pastore, G.; Piantelli, S.; Stefanini, A.; Olmi, A.; Barlini, S. [INFN Firenze, Sesto Fiorentino (Italy); Universita di Firenze, Sesto Fiorentino (Firenze) (Italy); Kowalczyk, M. [Warsaw University, Heavy Ion Laboratory, Warsaw (Poland); University of Warsaw, Institute of Experimental Physics, Warsaw (Poland); Frankland, J.D.; Bonnet, E.; Chbihi, A.; Gruyer, D. [CEA et IN2P3-CNRS, GANIL, Caen-Cedex 05 (France); Borderie, B.; Ademard, G.; Edelbruck, P.; Rivet, M.F.; Salomon, F. [IN2P3-CNRS, Institut de Physique Nucleaire, Orsay-Cedex (France); Boiano, A.; Rosato, E.; Meoli, A.; Ordine, A.; Spadaccini, G.; Tortone, G.; Vigilante, M.; Vanzanella, E. [Universita di Napoli ' ' Federico II' ' , Dipartimento di Scienze Fisiche, Napoli (Italy); INFN, Napoli (Italy); Bruno, M.; Serra, S.; Morelli, L.; Guerzoni, M. [INFN, Bologna (Italy); Universita di Bologna, Bologna (Italy); Alba, R.; Santonocito, D.; Maiolino, C. [INFN, Catania (Italy); Universita di Catania, LNS, Catania (Italy); Cinausero, M.; Gramegna, F.; Marchi, T. [INFN LNL Legnaro, Legnaro (Padova) (Italy); Kozik, T.; Kulig, P.; Twarog, T.; Sosin, Z. [Jagiellonian University, Cracow (Poland); Gasior, K.; Grzeszczuk, A.; Zipper, W. [University of Silesia, Silesian University, Katowice (Poland); Sarnecki, J.; Lipinski, D.; Wodzinska, H.; Brzozowski, A.; Teodorczyk, M.; Gajewski, M.; Zagojski, A.; Krzyzak, K. [Institute of Electronic Materials Technology, Warsaw (Poland); Tarasiuk, K.J. [University of Warsaw, Institute of Experimental Physics, Warsaw (Poland); Khabanowa, Z. [Faculty of Physics, Warsaw University of Technology, Warsaw (Poland); Kordyasz, L. [Warsaw University of Technology, Faculty of Mechatronics, Institute of Mikromechanics and Photonics, Department of Design of Precision Devices, Warsaw (Poland)

    2015-02-01

    A new technique of large-area thin ion implanted silicon detectors has been developed within the R and D performed by the FAZIA Collaboration. The essence of the technique is the application of a low-temperature baking process instead of high-temperature annealing. This thermal treatment is performed after B{sup +} ion implantation and Al evaporation of detector contacts, made by using a single adjusted Al mask. Extremely thin silicon pads can be therefore obtained. The thickness distribution along the X and Y directions was measured for a prototype chip by the energy loss of α-particles from {sup 241}Am (left angle E{sub α} right angle = 5.5 MeV). Preliminary tests on the first thin detector (area ∼ 20 x 20 mm{sup 2}) were performed at the INFN-LNS cyclotron in Catania (Italy) using products emitted in the heavy-ion reaction {sup 84}Kr (E = 35 A MeV) + {sup 112}Sn. The ΔE - E ion identification plot was obtained using a telescope consisting of our thin ΔE detector (21 μm thick) followed by a typical FAZIA 510 μm E detector of the same active area. The charge distribution of measured ions is presented together with a quantitative evaluation of the quality of the Z resolution. The threshold is lower than 2 A MeV depending on the ion charge. (orig.)

  17. Planar Hall effect and magnetic anisotropy in epitaxially strained chromium dioxide thin films

    NARCIS (Netherlands)

    Goennenwein, S.T.B.; Keizer, R.S.; Schink, S.W.; Van Dijk, I.; Klapwijk, T.M.; Miao, G.X.; Xiao, G.; Gupta, A.

    2007-01-01

    We have measured the in-plane anisotropic magnetoresistance of 100?nm thick CrO2 thin films at liquid He temperatures. In low magnetic fields H, both the longitudinal and the transverse (planar Hall) resistance show abrupt switches, which characteristically depend on the orientation of H. All the

  18. Magnetic properties of epitaxial MnAs thin films on GaAs (001)

    CERN Document Server

    Park, Y S

    2000-01-01

    The magnetic properties of two types of epitaxial MnAs films on GaAs (001) substrates in the thickness range of 20 approx 200 nm were studied. Using longitudinal a magneto-optical Kerr-effect(MOKE) apparatus at lambda=632.8 nm, we determined the Curie temperatures of the 100-nm thick films to be 54.0+-0.5 .deg. C and 63.7+-0.5 .deg. C for type A films and type B films, respectively. The observed Curie temperatures corresponded to increases of 36.8 .deg. C and 33.9 .deg. C per one percent increase in the unit cell volume for type A and B, respectively. The normalized maximum MOKE signal from the type A film exhibited a first-order-like magnetic transition while that of type B underwent a second-order-like transition. These different behaviors between types A and B stem from different residual stresses being exerted on the hexagonal phase. Utilizing a Foner-type vibrating sample magnetometer at room temperature, we examined the thickness dependence of the coercive force and the saturation magnetization of the f...

  19. STM studies of GeSi thin layers epitaxially grown on Si(111)

    Science.gov (United States)

    Motta, N.; Sgarlata, A.; De Crescenzi, M.; Derrien, J.

    1996-08-01

    Ge/Si alloys were prepared in UHV by solid phase epitaxy on Si(111) substrates. The alloy formation, as a function of the evaporation rate and the Ge layer thickness has been followed in situ by RHEED and scanning tunneling microscopy. The 5 × 5 surface reconstruction appeared after annealing at 450°C Ge layers (up to 10 Å thick), obtained from a low rate Knudsen cell evaporator. In this case a nearly flat and uniform layer of reconstructed alloy was observed. When using an e-gun high rate evaporator we needed to anneal the Ge layer up to 780°C to obtain a 5 × 5 reconstruction. The grown layer was not flat, with many steps and Ge clusters; at high coverages (10 Å and more) large Ge islands appeared. Moreover, we then succeeded in visualizing at atomic resolution the top of some of these Ge islands which displayed a 2 × 1 reconstruction, probably induced from the high compressive strain due to the lattice mismatch with the substrate. We suggest that this unusual behavior could be connected to the high evaporation rate, which helped the direct formation of Ge microcrystals on the Si substrate during the deposition process.

  20. Thin film epitaxy and structure property correlations for non-polar ZnO films

    International Nuclear Information System (INIS)

    Pant, P.; Budai, J.D.; Aggarwal, R.; Narayan, Roger J.; Narayan, J.

    2009-01-01

    Heteroepitaxial growth and strain relaxation were investigated in non-polar a-plane (1 1 -2 0)ZnO films grown on r-plane (1 0 -1 2)sapphire substrates in the temperature range 200-700 deg. C by pulsed laser deposition. The lattice misfit in the plane of the film for this orientation varied from -1.26% in [0 0 0 1] to -18.52% in the [-1 1 0 0] direction. The alignment of (1 1 -2 0)ZnO planes parallel to (1 0 -1 2)sapphire planes was confirmed by X-ray diffraction θ-2θ scans over the entire temperature range. X-ray φ-scans revealed the epitaxial relationship:[0 0 0 1]ZnO-parallel [-1 1 0 1]sap; [-1 1 0 0]ZnO-parallel [-1 -1 2 0]sap. Depending on the growth temperature, variations in the structural, optical and electrical properties were observed in the grown films. Room temperature photoluminescence for films grown at 700 deg. C shows a strong band-edge emission. The ratio of the band-edge emission to green band emission is 135:1, indicating reduced defects and excellent optical quality of the films. The resistivity data for the films grown at 700 deg. C shows semiconducting behavior with room temperature resistivity of 2.2 x 10 -3 Ω-cm.

  1. Photoluminescence study of epitaxially grown ZnSnAs2:Mn thin films

    International Nuclear Information System (INIS)

    Mammadov, E; Haneta, M; Toyota, H; Uchitomi, N

    2011-01-01

    The photoluminescence (PL) properties of heavily Mn-doped ZnSnAs 2 layers epitaxially grown on nearly lattice-matched semi-insulating InP substrates are studied. PL spectra are obtained for samples with Mn concentrations of 5, 12 and 24 mol% relative to the combined concentrations of Zn and Sn. A broad emission band centered at ∼ 1 eV is detected for Mn-doped layers at room temperature. The emission is a intense broad asymmetric line at low temperatures. The line is reconstructed by superposition of two bands with peak energies of ∼ 0.99 and 1.07 eV, similar to those reported for InP. These bands are superimposed onto a 1.14 eV band with well-resolved phonon structure for the layer doped with 12 % Mn. Recombination mechanism involving the split-off band of the ZnSnAs 2 is suggested. Temperature dependence of integrated intensities of the PL bands indicates to thermally activated emission with activation energies somewhat different from those found for InP. Mn substitution at cationic sites increases the concentration of holes which may act as recombination centers. Recombination to the holes bound to Mn ions with the ground state located below the top of the valence band has been proposed as a possible PL mechanism.

  2. Structural, mechanical and magnetic study on galvanostatic electroplated nanocrystalline NiFeP thin films

    Science.gov (United States)

    Kalaivani, A.; Senguttuvan, G.; Kannan, R.

    2018-03-01

    Nickel based alloys has a huge applications in microelectronics and micro electromechanical systems owing to its superior soft magnetic properties. With the advantages of simplicity, cost-effectiveness and controllable patterning, electroplating processes has been chosen to fabricate thin films in our work. The soft magnetic NiFeP thin film was successfully deposited over the surface of copper plate through galvanostatic electroplating method by applying constant current density of 10 mA cm-2 for a deposition rate for half an hour. The properties of the deposited NiFeP thin films were analyzed by subjecting it into different physio-chemical characterization such as XRD, SEM, EDAX, AFM and VSM. XRD pattern confirms the formation of NiFeP particles and the structural analysis reveals that the NiFeP particles were uniformly deposited over the surface of copper substrate. The surface roughness analysis of the NiFeP films was done using AFM analysis. The magnetic studies and the hardness of the thin film were evaluated from the VSM and hardness test. The NiFeP thin films possess lower coercivity with higher magnetization value of 69. 36 × 10-3 and 431.92 Gauss.

  3. Nanocrystalline Pd:NiFe2O4 thin films: A selective ethanol gas sensor

    International Nuclear Information System (INIS)

    Rao, Pratibha; Godbole, R.V.; Bhagwat, Sunita

    2016-01-01

    In this work, Pd:NiFe 2 O 4 thin films were investigated for the detection of reducing gases. These films were fabricated using spray pyrolysis technique and characterized using X-ray diffraction (XRD) to confirm the crystal structure. The surface morphology was studied using scanning electron microscopy (SEM). Magnetization measurements were carried out using SQUID VSM, which shows ferrimagnetic behavior of the samples. These thin film sensors were tested against methanol, ethanol, hydrogen sulfide and liquid petroleum gas, where they were found to be more selective to ethanol. The fabricated thin film sensors exhibited linear response signal for all the gases with concentrations up to 5 w/o Pd. Reduction in optimum operating temperature and enhancement in response was also observed. Pd:NiFe 2 O 4 thin films exhibited faster response and recovery characteristic. These sensors have potential for industrial applications because of their long-term stability, low power requirement and low production cost. - Highlights: • Ethanol gas sensors based on Pd:NiFe 2 O 4 nanoparticle thin film were fabricated. • Pd incorporation in NiFe 2 O 4 matrix inhibits grain growth. • The sensors were more selective to ethanol gas. • Sensors exhibited fast response and recovery when doped with palladium. • Pd:NiFe 2 O 4 thin film sensor displays excellent long–term stability.

  4. Co2FeAl Heusler thin films grown on Si and MgO substrates: Annealing temperature effect

    International Nuclear Information System (INIS)

    Belmeguenai, M.; Tuzcuoglu, H.; Zighem, F.; Chérif, S. M.; Moch, P.; Gabor, M. S.; Petrisor, T.; Tiusan, C.

    2014-01-01

    10 nm and 50 nm Co 2 FeAl (CFA) thin films have been deposited on MgO(001) and Si(001) substrates by magnetron sputtering and annealed at different temperatures. X-rays diffraction revealed polycrystalline or epitaxial growth (according to CFA(001)[110]//MgO(001)[100] epitaxial relation) for CFA films grown on a Si and on a MgO substrate, respectively. For these later, the chemical order varies from the A2 phase to the B2 phase when increasing the annealing temperature (T a ), while only the A2 disorder type has been observed for CFA grown on Si. Microstrip ferromagnetic resonance (MS-FMR) measurements revealed that the in-plane anisotropy results from the superposition of a uniaxial and a fourfold symmetry term for CFA grown on MgO substrates. This fourfold anisotropy, which disappears completely for samples grown on Si, is in accord with the crystal structure of the samples. The fourfold anisotropy field decreases when increasing T a , while the uniaxial anisotropy field is nearly unaffected by T a within the investigated range. The MS-FMR data also allow for concluding that the gyromagnetic factor remains constant and that the exchange stiffness constant increases with T a . Finally, the FMR linewidth decreases when increasing T a , due to the enhancement of the chemical order. We derive a very low intrinsic damping parameter (1.1×10 −3 and 1.3×10 −3 for films of 50 nm thickness annealed at 615 °C grown on MgO and on Si, respectively)

  5. Direct observation of fatigue in epitaxially grown Pb(Zr,Ti)O3 thin films using second harmonic piezoresponse force microscopy

    Science.gov (United States)

    Murari, Nishit M.; Hong, Seungbum; Lee, Ho Nyung; Katiyar, Ram. S.

    2011-08-01

    Here, we present a direct observation of fatigue phenomena in epitaxially grown Pb(Zr0.2Ti0.8)O3 (PZT) thin films using second harmonic piezoresponse force microscopy (SH-PFM). We observed strong correlation between the SH-PFM amplitude and phase signals with the remnant piezoresponse at different switching cycles. The SH-PFM results indicate that the average fraction of switchable domains decreases globally and the phase delays of polarization switching differ locally. In addition, we found that the fatigue developed uniformly over the whole area without developing region-by-region suppression of switchable polarization as in polycrystalline PZT thin films.

  6. Direct Demonstration of the Emergent Magnetism Resulting from the Multivalence Mn in a LaMnO3 Epitaxial Thin Film System

    DEFF Research Database (Denmark)

    Niu, Wei; Liu, Wenqing; Gu, Min

    2018-01-01

    that play a decisive role in the emergence of ferromagnetism in the otherwise antiferromagnetic LaMnO3 thin films are found. Combining spatially resolved electron energy‐loss spectroscopy, X‐ray absorption spectroscopy, and X‐ray magnetic circular dichroism techniques, it is determined unambiguously...... provide a hitherto‐unexplored multivalence state of Mn on the emergent magnetism in undoped manganite epitaxial thin films, such as LaMnO3 and BiMnO3, and shed new light on all‐oxide spintronic devices....

  7. Orientation control and domain structure analysis of {100}-oriented epitaxial ferroelectric orthorhombic HfO{sub 2}-based thin films

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Kiliha [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Shimizu, Takao [Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan); Sakata, Osami [Synchrotron X-ray Station at SPring-8, National Institute for Materials Science (NIMS), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo 679-5148 (Japan); Shiraishi, Takahisa; Nakamura, Shogo; Kiguchi, Takanori; Akama, Akihiro; Konno, Toyohiko J. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan); Uchida, Hiroshi [Department of Materials and Life Sciences, Sophia University, Chiyoda, Tokyo 102-8554 (Japan); Funakubo, Hiroshi, E-mail: funakubo.h.aa@m.titech.ac.jp [Department of Innovative and Engineered Materials, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8502 (Japan); Materials Research Center for Element Strategy, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503 (Japan)

    2016-04-07

    Orientation control of {100}-oriented epitaxial orthorhombic 0.07YO{sub 1.5}-0.93HfO{sub 2} films grown by pulsed laser deposition was investigated. To achieve in-plane lattice matching, indium tin oxide (ITO) and yttria-stabilized zirconia (YSZ) were selected as underlying layers. We obtained (100)- and (001)/(010)-oriented films on ITO and YSZ, respectively. Ferroelastic domain formation was confirmed for both films by X-ray diffraction using the superlattice diffraction that appeared only for the orthorhombic symmetry. The formation of ferroelastic domains is believed to be induced by the tetragonal–orthorhombic phase transition upon cooling the films after deposition. The present results demonstrate that the orientation of HfO{sub 2}-based ferroelectric films can be controlled in the same manner as that of ferroelectric films composed of conventional perovskite-type material such as Pb(Zr, Ti)O{sub 3} and BiFeO{sub 3}.

  8. Optimization of L1{sub 0} FePt/Fe{sub 45}Co{sub 55} thin films for rare earth free permanent magnet applications

    Energy Technology Data Exchange (ETDEWEB)

    Giannopoulos, G., E-mail: g.giannopoulos@inn.demokritos.gr; Psycharis, V.; Niarchos, D. [INN, NCSR Demokritos, Athens 15310 (Greece); Reichel, L. [IFW Dresden, P.O. Box 270116, 01171 Dresden (Germany); TU Dresden, Institute for Materials Science, 01062 Dresden (Germany); Markou, A.; Panagiotopoulos, I. [Department of Materials Science and Engineering, University of Ioannina, Ioannina 45110 (Greece); Damm, C.; Fähler, S. [IFW Dresden, P.O. Box 270116, 01171 Dresden (Germany); Khan, Imran; Hong, Jisang [Department of Physics, Pukyong National University, Busan 608-737 (Korea, Republic of)

    2015-06-14

    The magnetic properties of magnetron sputtered bilayers consisting of Fe{sub 45}Co{sub 55} ultrathin layers on top of L1{sub 0} FePt films epitaxially grown on MgO substrates are studied in view of their possible application as rare earth free permanent magnets. It is found that FePt layers induce a tetragonal distortion to the Fe-Co layers which leads to increased anisotropy. This allows to take advantage of the Fe-Co high magnetic moment with less significant loss of the coercivity compared to a typical hard/soft exchange spring system. A maximum energy product approaching 50 MGOe is obtained for a FePt(7 ML)/FeCo/(5 ML) sample. The results are in accordance with first-principles computational methods, which predict that even higher energy products are possible for micromagnetically optimized microstructures.

  9. Electrosynthesis and characterization of Fe doped CdSe thin films from ethylene glycol bath

    International Nuclear Information System (INIS)

    Pawar, S.M.; Moholkar, A.V.; Rajpure, K.Y.; Bhosale, C.H.

    2007-01-01

    The CdSe and Fe doped CdSe (Fe:CdSe) thin films have been electrodeposited potentiostatically onto the stainless steel and fluorine doped tin oxide (FTO) glass substrates, from ethylene glycol bath containing (CH 3 COO) 2 .Cd.2H 2 O, SeO 2 , and FeCl 3 at room temperature. The doping concentration of Fe is optimized by using (photo) electrochemical (PEC) characterization technique. The deposition mechanism and Fe incorporation are studied by cyclic voltammetry. The structural, surface morphological and optical properties of the deposited CdSe and Fe:CdSe thin films have been studied by X-ray diffraction, scanning electron microscopy (SEM) and optical absorption techniques respectively. The PEC study shows that Fe:CdSe thin films are more photosensitive than that of undoped CdSe thin films. The X-ray diffraction analysis shows that the films are polycrystalline with hexagonal crystal structure. SEM studies reveal that the films with uniformly distributed grains over the entire surface of the substrate. The complete surface morphology has been changed after doping. Optical absorption study shows the presence of direct transition and a considerable decrease in bandgap, E g from 1.95 to 1.65 eV

  10. Soft Magnetic Properties of High-Entropy Fe-Co-Ni-Cr-Al-Si Thin Films

    Directory of Open Access Journals (Sweden)

    Pei-Chung Lin

    2016-08-01

    Full Text Available Soft magnetic properties of Fe-Co-Ni-Al-Cr-Si thin films were studied. As-deposited Fe-Co-Ni-Al-Cr-Si nano-grained thin films showing no magnetic anisotropy were subjected to field-annealing at different temperatures to induce magnetic anisotropy. Optimized magnetic and electrical properties of Fe-Co-Ni-Al-Cr-Si films annealed at 200 °C are saturation magnetization 9.13 × 105 A/m, coercivity 79.6 A/m, out-of-plane uniaxial anisotropy field 1.59 × 103 A/m, and electrical resistivity 3.75 μΩ·m. Based on these excellent properties, we employed such films to fabricate magnetic thin film inductor. The performance of the high entropy alloy thin film inductors is superior to that of air core inductor.

  11. Influences of annealing temperature on sprayed CuFeO2 thin films

    Science.gov (United States)

    Abdelwahab, H. M.; Ratep, A.; Abo Elsoud, A. M.; Boshta, M.; Osman, M. B. S.

    2018-06-01

    Delafossite CuFeO2 thin films were successfully prepared onto quartz substrates using simple spray pyrolysis technique. Post annealing under nitrogen atmosphere for 2 h was necessary to form delafossite CuFeO2 phase. The effect of alteration in annealing temperature (TA) 800, 850 and 900 °C was study on structural, morphology and optical properties. The XRD results for thin film annealed at TA = 850 °C show single phase CuFeO2 with rhombohedral crystal system and R 3 bar m space group with preferred orientation along (0 1 2). The prepared copper iron oxide thin films have an optical transmission ranged ∼40% in the visible region. The optical direct optical band gap of the prepared thin films was ranged ∼2.9 eV.

  12. Theoretical investigation of electronic, magnetic and optical properties of Fe doped GaN thin films

    International Nuclear Information System (INIS)

    Salmani, E.; Mounkachi, O.; Ez-Zahraouy, H.; Benyoussef, A.; Hamedoun, M.; Hlil, E.K.

    2013-01-01

    Highlights: •Magnetic and optical properties Fe-doped GaN thin films are studied using DFT. •The band gaps of GaN thin films are larger than the one of the bulk. •The layer thickness and acceptor defect can switch the magnetic ordering. -- Abstract: Using first principles calculations based on spin-polarized density functional theory, the magnetic and optical properties of GaN and Fe-doped GaN thin films with and without acceptor defect is studied. The band structure calculations show that the band gaps of GaN thin films with 2, 4 and 6 layers are larger than the one of the bulk with wurtzite structure and decreases with increasing the film thickness. In Fe doped GaN thin films, we show that layer of thickness and acceptor defect can switch the magnetic ordering from disorder local moment (DLM) to ferromagnetic (FM) order. Without acceptor defect Fe doped GaN exhibits spin glass phase in 4 layers form and ferromagnetic state for 2 layers form of the thin films, while it exhibits ferromagnetic phase with acceptor defect such as vacancies defect for 2 and 4 layers. In the FM ordering, the thin films is half-metallic and is therefore ideal for spin application. The different energy between ferromagnetic state and disorder local moment state was evaluated. Moreover, the optical absorption spectra obtained by ab initio calculations confirm the ferromagnetic stability based on the charge state of magnetic impurities

  13. Damage evolution of ion irradiated defected-fluorite La 2 Zr 2 O 7 epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kaspar, Tiffany C.; Gigax, Jonathan G.; Shao, Lin; Bowden, Mark E.; Varga, Tamas; Shutthanandan, Vaithiyalingam; Spurgeon, Steven R.; Yan, Pengfei; Wang, Chongmin; Ramuhalli, Pradeep; Henager, Charles H.

    2017-05-01

    Pyrochlore-structure oxides, A2B2O7, may exhibit remarkable radiation tolerance due to the ease with which they can accommodate disorder by transitioning to a defected fluorite structure. The mechanism of defect formation was explored by evaluating the radiation damage behavior of high quality epitaxial La2Zr2O7 thin films with the defected fluorite structure, irradiated with 1 MeV Zr+ at doses up to 10 displacements per atom (dpa). The level of film damage was evaluated as a function of dose by Rutherford backscattering spectrometry in the channeling geometry (RBS/c) and scanning transmission electron microscopy (STEM). At lower doses, the surface of the La2Zr2O7 film amorphized, and the amorphous fraction as a function of dose fit well to a stimulated amorphization model. As the dose increased, the surface amorphization slowed, and amorphization appeared at the interface. Even at a dose of 10 dpa, the core of the film remained crystalline, despite the prediction of amorphization from the model. To inform future ab initio simulations of La2Zr2O7, the bandgap of a thick La2Zr2O7 film was measured to be indirect at 4.96 eV, with a direct transition at 5.60 eV.

  14. Dynamics of ferroelectric nanodomains in BaTiO3 epitaxial thin films via piezoresponse force microscopy

    International Nuclear Information System (INIS)

    Pertsev, N A; Petraru, A; Kohlstedt, H; Waser, R; Bdikin, I K; Kiselev, D; Kholkin, A L

    2008-01-01

    Ferroelectric nanodomains were created in BaTiO 3 thin films by applying a voltage to a sharp conducting tip of a scanning force microscope (SFM). The films were epitaxially grown on SrRuO 3 -covered (001)-oriented SrTiO 3 substrates by a high-pressure sputtering. They appeared to be single-crystalline with the (001) crystallographic orientation relative to the substrate. Using the piezoresponse mode of the SFM to detect the out-of-plane film polarization, the domain sizes were measured as a function of the applied writing voltage and the pulse time. It was found that the time dependence of the domain diameter in a 60 nm thick BaTiO 3 film deviates significantly from the logarithmic law observed earlier in Pb(Zr 0.2 Ti 0.8 )O 3 (PZT) films. At a given writing time, the domain size increases nonlinearly with increasing applied voltage, in contrast to the linear behavior reported earlier for PZT films and LiNbO 3 single crystals. The dynamics of domain growth is analyzed theoretically taking into account the strong inhomogeneity of the external electric field in the film and the influence of the bottom electrode. It is shown that the observed writing time and voltage dependences of the domain size can be explained by the domain-wall creep in the presence of random-bond disorder

  15. Frequency response improvement of a two-port surface acoustic wave device based on epitaxial AlN thin film

    Science.gov (United States)

    Gao, Junning; Hao, Zhibiao; Luo, Yi; Li, Guoqiang

    2018-01-01

    This paper presents an exploration on improving the frequency response of the symmetrical two-port AlN surface acoustic wave (SAW) device, using epitaxial AlN thin film on (0001) sapphire as the piezoelectric substrate. The devices were fabricated by lift-off processes with Ti/Al composite electrodes as interleaved digital transducers (IDT). The impact of DL and the number of the IDT finger pairs on the frequency response was carefully investigated. The overall properties of the device are found to be greatly improved with DL elongation, indicated by the reduced pass band ripple and increased stop band rejection ratio. The rejection increases by 8.3 dB when DL elongates from 15.5λ to 55.5λ and 4.4 dB further accompanying another 50λ elongation. This is because larger DL repels the stray acoustic energy out of the propagation path and provides a cleaner traveling channel for functional SAW, and at the same time restrains electromagnetic feedthrough. It is also found that proper addition of the IDT finger pairs is beneficial for the device response, indicated by the ripple reduction and the insertion loss drop.

  16. Avoiding polar catastrophe in the growth of polarly orientated nickel perovskite thin films by reactive oxide molecular beam epitaxy

    International Nuclear Information System (INIS)

    Yang, H. F.; Liu, Z. T.; Fan, C. C.; Xiang, P.; Zhang, K. L.; Li, M. Y.; Liu, J. S.; Yao, Q.; Shen, D. W.

    2016-01-01

    By means of the state-of-the-art reactive oxide molecular beam epitaxy, we synthesized (001)- and (111)-orientated polar LaNiO 3 thin films. In order to avoid the interfacial reconstructions induced by polar catastrophe, screening metallic Nb-doped SrTiO 3 and iso-polarity LaAlO 3 substrates were chosen to achieve high-quality (001)-orientated films in a layer-by-layer growth mode. For largely polar (111)-orientated films, we showed that iso-polarity LaAlO 3 (111) substrate was more suitable than Nb-doped SrTiO 3 . In situ reflection high-energy electron diffraction, ex situ high-resolution X-ray diffraction, and atomic force microscopy were used to characterize these films. Our results show that special attentions need to be paid to grow high-quality oxide films with polar orientations, which can prompt the explorations of all-oxide electronics and artificial interfacial engineering to pursue intriguing emergent physics like proposed interfacial superconductivity and topological phases in LaNiO 3 based superlattices.

  17. Synthesis and electronic properties of Ruddlesden-Popper strontium iridate epitaxial thin films stabilized by control of growth kinetics

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xiaoran; Cao, Yanwei; Pal, B.; Middey, S.; Kareev, M.; Choi, Y.; Shafer, P.; Haskel, D.; Arenholz, E.; Chakhalian, J.

    2017-12-01

    We report on the selective fabrication of high-quality Sr2IrO4 and SrIrO3 epitaxial thin films from a single polycrystalline Sr2IrO4 target by pulsed laser deposition. Using a combination of x-ray diffraction and photoemission spectroscopy characterizations, we discover that within a relatively narrow range of substrate temperature, the oxygen partial pressure plays a critical role in the cation stoichiometric ratio of the films, and triggers the stabilization of different Ruddlesden-Popper (RP) phases. Resonant x-ray absorption spectroscopy measurements taken at the Ir L edge and the O K edge demonstrate the presence of strong spin-orbit coupling, and reveal the electronic and orbital structures of both compounds. These results suggest that in addition to the conventional thermodynamics consideration, higher members of the Srn+1IrnO3n+1 series can possibly be achieved by kinetic control away from the thermodynamic limit. These findings offer an approach to the synthesis of ultrathin films of the RP series of iridates and can be extended to other complex oxides with layered structure.

  18. Structural sensitivity of x-ray Bragg projection ptychography to domain patterns in epitaxial thin films

    International Nuclear Information System (INIS)

    Hruszkewycz, S. O.; Zhang, Q.; Holt, M. V.; Highland, M. J.

    2016-01-01

    Bragg projection ptychography (BPP) is a coherent diffraction imaging technique capable of mapping the spatial distribution of the Bragg structure factor in nanostructured thin films. Here, we show that, because these images are projections, the structural sensitivity of the resulting images depends on the film thickness and the aspect ratio and orientation of the features of interest and that image interpretation depends on these factors. Lastly, we model changes in contrast in the BPP reconstructions of simulated PbTiO_3 ferroelectric thin films with meandering 180° stripe domains as a function of film thickness, discuss their origin, and comment on the implication of these factors on the design of BPP experiments of general nanostructured films.

  19. Studies on electrodeposited Cd1-xFe xS thin films

    International Nuclear Information System (INIS)

    Deshmukh, S.K.; Kokate, A.V.; Sathe, D.J.

    2005-01-01

    Thin films of Cd 1-x Fe x S have been prepared on stainless steel and fluorine doped tin oxide (FTO) coated glass substrates using electrodeposition technique. Double distilled water containing precursors of Cd, Fe and S are used with ethylene diamine tetra-acetic acid (EDTA) disodium salt as a complexing agent to obtain good quality deposits by controlling the rate of reactions. The different preparative parameters like concentration of bath, deposition time, pH of the bath and Fe content in the bath have been optimized by photoelectrochemical (PEC) technique in order to get good quality thin films. Different techniques have been used to characterize electrodeposited Cd 1-x Fe x S thin films. The X-ray diffraction (XRD) analysis reveals that the films Cd 1-x Fe x S are polycrystalline in nature with crystallite size 282 A for the films deposited with optimized preparative parameters. Scanning electron microscopy (SEM) study for the sample deposited at optimized preparative parameters reveals that all grains uniformly distributed over the surface of stainless steel substrate indicates well defined growth of polycrystalline Cd-Fe-S material. Optical absorption shows the presence of direct transition and band gap energy decreases from 2.43 to 0.81 eV with the increase of Fe content from 0 to 1. PEC study shows the films of Cd 1-x Fe x S with x = 0.2 are more photosensitive than other compositions

  20. Theoretical studies of epitaxially grown Co and Ni thin films on (111) metallic substrates

    Czech Academy of Sciences Publication Activity Database

    Zelený, Martin; Šob, Mojmír

    2008-01-01

    Roč. 77, č. 15 (2008), 155435/1-155435/6 ISSN 1098-0121 R&D Projects: GA AV ČR IAA1041302; GA ČR GD106/05/H008; GA MŠk OC 147 Institutional research plan: CEZ:AV0Z20410507 Keywords : Thin metallic films * Ab initio calculations * Electronic structure Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.322, year: 2008

  1. BiFeO3 thin films: Novel effects

    Indian Academy of Sciences (India)

    photolithography followed by etching of the silver film. Saturation ... Fe in +3 state. Films thus obtained are therefore highly resistive (ρ ∼ 108–109 cm) and hence exhibit saturated ferroelectric hysteresis loop (figure 3). Anomaly in ... BiFeO3 bulk sample by Rogniskaya et al [4] had indicated abrupt change in lattice parame-.

  2. Structural and electrical properties of c-axis epitaxial and polycrystalline Sr sub 3 Bi sub 4 Ti sub 6 O sub 2 sub 1 thin films

    CERN Document Server

    Zhang, S T; Sun, H P; Pan Xiao Qing; Tan, W S; Liu, Z G; Ming, N B

    2003-01-01

    c-axis epitaxial and polycrystalline Sr sub 3 Bi sub 4 Ti sub 6 O sub 2 sub 1 (SBTi) thin films were fabricated on (001)SrTiO sub 3 (STO) single-crystal substrates and Pt/Ti sub 2 /SiO sub 2 /Si substrates respectively, by pulsed laser deposition (PLD). Structures of the films were systematically characterized by x-ray diffraction (XRD), including theta-2 theta-scans, rocking curve scans and phi-scans, atomic force microscopy and transmission electron microscopy (TEM). The epitaxial orientation relation of the SBTi films on STO is established by selected-area electron diffraction and XRD phi-scans to be (001)SBTi || (001)STO, [11-bar 0]SBTi || [010]STO. Cross-sectional high-resolution TEM studies on the epitaxial SBTi film revealed that SBTi is a single-phase material. A special kind of irrational atomic shift along the [001] direction was observed and is discussed in detail. By using an evanescent microwave probe (EMP), the room-temperature dielectric constant of the epitaxial SBTi film was measured to be 21...

  3. Epitaxial Oxide Thin Films Grown by Solid Source Metal-Organic Chemical Vapor Deposition.

    Science.gov (United States)

    Lu, Zihong

    1995-01-01

    The conventional liquid source metal-organic chemical vapor deposition (MOCVD) technique is capable of producing large area, high quality, single crystal semiconductor films. However, the growth of complex oxide films by this method has been hampered by a lack of suitable source materials. While chemists have been actively searching for new source materials, the research work reported here has demonstrated the successful application of solid metal-organic sources (based on tetramethylheptanedionate) to the growth of high quality thin films of binary compound cerium dioxide (CeO_2), and two more complex materials, the ternary compound lithium niobate (LiNbO_3), with two cations, and the quaternary compound strontium barium niobate (SBN), with three cations. The growth of CeO_2 thin films on (1012)Al_2O_3 substrates has been used as a model to study the general growth behavior of oxides. Factors affecting deposition rate, surface morphology, out-of-plane mosaic structure, and film orientation have been carefully investigated. A kinetic model based on gas phase prereaction is proposed to account for the substrate temperature dependence of film orientation found in this system. Atomically smooth, single crystal quality cerium dioxide thin films have been obtained. Superconducting YBCO films sputtered on top of solid source MOCVD grown thin cerium dioxide buffer layers on sapphire have been shown to have physical properties as good as those of YBCO films grown on single crystal MgO substrates. The thin film growth of LiNbO_3 and Sr_{1-x}Ba _{x}Nb_2 O_6 (SBN) was more complex and challenging. Phase purity, transparency, in-plane orientation, and the ferroelectric polarity of LiNbO _3 films grown on sapphire substrates was investigated. The first optical quality, MOCVD grown LiNbO _3 films, having waveguiding losses of less than 2 dB/cm, were prepared. An important aspect of the SBN film growth studies involved finding a suitable single crystal substrate material. Mg

  4. Structure and cation distribution of (Mn0.5Zn0.5)Fe2O4 thin films on SrTiO3(001)

    Science.gov (United States)

    Welke, M.; Brachwitz, K.; Lorenz, M.; Grundmann, M.; Schindler, K.-M.; Chassé, A.; Denecke, R.

    2017-06-01

    A comprehensive study on growth of ferrimagnetic manganese zinc ferrite (Mn0.5Zn0.5Fe2O4) films on single crystalline strontium titanate(001) (SrTiO3) substrates was carried out. Under the optimized conditions, a thin film with a layer thickness of 200 nm was deposited, and the structural properties were investigated. Contrary to data published in literature, no buffer layer was necessary to achieve epitaxial growth of a poorly lattice-matched layer. This was confirmed for Mn0.5Zn0.5Fe2O4(001) on SrTiO3(001) by x-ray diffraction and the adjoined phi scans, which also revealed a lattice compression of 1.2% of the manganese zinc ferrite film in the out-of-plane direction. Using x-ray photoelectron spectroscopy, the near surface stoichiometry of the film could be shown to agree with the intended one within the uncertainty of the method. X-ray absorption spectroscopy showed an electronic structure close to that published for bulk samples. Additional x-ray magnetic circular dichroism investigations were performed to answer detailed structural questions by a comparison of experimental data with the calculated ones. The calculations took into account ion sites (tetrahedral vs. octahedral coordination) as well as the charge of Fe ions (Fe2+ vs. Fe3+). Contrary to the expectation for a perfect normal spinel that only Fe3+ ions are present in octahedral sites, hints regarding the presence of additional Fe2+ in octahedral sites as well as Fe3+ ions in tetrahedral sites have been obtained. Altogether, the layer could be shown to be mostly in a normal spinel configuration.

  5. Epitaxial Fe{sub 3-x}Ti{sub x}O{sub 4} films from magnetite to ulvöspinel by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Droubay, T.C.; Pearce, C.I.; Ilton, E.S.; Engelhard, M.H.; Engelhard, M.H.; Heald, S.M.; Arenholz, E.; Rosso, K.M.

    2011-07-21

    Epitaxial films along the Fe{sub 3-x}Ti{sub x}O{sub 4} (titanomagnetite) compositional series from pure end-members magnetite (Fe{sub 3}O{sub 4}) to ulvöspinel (Fe{sub 2}TiO{sub 4}) were successfully grown by pulsed laser deposition on MgO(100) substrates. Spectroscopic characterization including high resolution x-ray diffraction, x-ray photoelectron spectroscopy, and synchrotron-based x-ray absorption and magnetic circular dichroism consistently shows that Ti(IV) substitutes for Fe(III) in the inverse spinel lattice with a proportional increase in lattice Fe(II) concentration. No evidence of Ti interstitials, spinodal decomposition, or secondary phases was found in the bulk of the grown films. At the uppermost few nanometers of the Ti-bearing film surfaces, evidence suggests that Fe(II) is susceptible to facile oxidation, and that an associated lower Fe/Ti ratio in this region is consistent with surface compositional incompleteness or alteration to a titanomaghemite-like composition and structure. The surface of these films nonetheless appear to remain highly ordered and commensurate with the underlying structure despite facile oxidation, a surface condition that is found to be reversible to some extent by heating in low oxygen environments.

  6. ''Cube-on-hexagon'' orientation relationship for Fe on GaN(0001): The missing link in bcc/hcp epitaxy

    International Nuclear Information System (INIS)

    Gao Cunxu; Brandt, Oliver; Laehnemann, Jonas; Jahn, Uwe; Jenichen, Bernd; Schoenherr, Hans-Peter; Erwin, Steven C.

    2010-01-01

    We investigate, experimentally and theoretically, the epitaxy of body-centered-cubic Fe on hexagonal GaN. For growth on the Ga-polar GaN(0001) surface we find the well-known Pitsch-Schrader orientation relationship between Fe and GaN. On the N-polar GaN(0001) surface we observe coexistence between the familiar Burgers orientation and a new orientation in which the Fe(001) plane is parallel to GaN(0001). This 'cube-on-hexagon' orientation constitutes the high-symmetry link required for constructing a symmetry diagram for bcc/hcp systems in which all orientation relationships are connected by simple rotations.

  7. Inversion of exchange bias and complex magnetization reversal in full-nitride epitaxial γ′-Fe{sub 4}N/CoN bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Z.R. [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Institute of Advanced Materials Physics, Faculty of Science, Tianjin University, Tianjin 300072 (China); Mi, W.B., E-mail: miwenbo@tju.edu.cn [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Institute of Advanced Materials Physics, Faculty of Science, Tianjin University, Tianjin 300072 (China); Wang, X.C. [Tianjin Key Laboratory of Film Electronic & Communicate Devices, School of Electronics Information Engineering, Tianjin University of Technology, Tianjin 300384, China (China); Bai, H.L. [Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparation Technology, Institute of Advanced Materials Physics, Faculty of Science, Tianjin University, Tianjin 300072 (China)

    2015-04-01

    Exchange bias has been observed in the full-nitride epitaxial γ′-Fe{sub 4}N/CoN bilayers. With the increase of temperature, the sign of exchange bias (EB) is inverse, which is independent on the cooling field and training effect. This novel behavior appears in the bilayers with different CoN and γ′-Fe{sub 4}N thicknesses. The inversion of EB sign not only occurs at low temperatures, but also takes place even at 200 K for the 10 and 12 nm thick CoN layer. With the decreased γ′-Fe{sub 4}N layer thickness, the inversion temperature of EB sign shows a roughly increased tendency. For the bilayer with a 4 nm-thick γ′-Fe{sub 4}N, the interfacial magnetization reversal presents a complex trend, which is considered as the combined actions of the disordered ferromagnetic spins and various competed magnetic structures. This new manifestation of EB has been discussed in terms of the complicated interfacial spin structures and frustration effects due to the competition between the ferromagnetic and antiferromagnetic exchange interactions at the interface. - Highlights: • Exchange bias (EB) sign reverses from negative to positive with increasing temperature in epitaxial γ′-Fe{sub 4}N/CoN bilayers. • The positive EB can be attributed to the antiferromagnetic interfacial coupling and frustrated interfacial spin structures. • The EB transition temperature is not monotonically dependent on CoN thickness t{sub CoN}. • For a 4-nm γ′-Fe{sub 4}N, the unusual hysteresis loops are observed.

  8. Topotactic Metal-Insulator Transition in Epitaxial SrFeO x Thin Films

    International Nuclear Information System (INIS)

    Khare, Amit; Shin, Dongwon; Yoo, Tae Sup; Kim, Minu; Kang, Tae Dong

    2017-01-01

    Multivalent transition metal oxides provide fascinating and rich physics related to oxygen stoichiometry. In particular, the adoptability of various valence states of transition metals enables perovskite oxides to display mixed (oxygen) ionic and electronic conduction and catalytic activity useful in many practical applications, including solid-oxide fuel cells (SOFCs), rechargeable batteries, gas sensors, and memristive devices. For proper realization of the ionic conduction and catalytic activity, it is essential to understand the reversible oxidation and reduction process, which is governed by oxygen storage/release steps in oxides. Topotactic phase transformation facilitates the redox process in perovskites with specific oxygen vacancy ordering by largely varying the oxygen concentration of a material without losing the lattice framework. The concentration and diffusion of oxide ions (O 2– ), the valence state of the transition metal cations, and the thermodynamic structural integrity together provide fundamental understanding and ways to explicitly control the redox reaction.[6] In addition, it offers an attractive route for tuning the emergent physical properties of transition metal oxides, via strong coupling between the crystal lattice and electronic structure.

  9. Synthesis and characterization of Fe doped cadmium selenide thin films by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Yadav, Abhijit A., E-mail: aay_physics@yahoo.co.in [Thin Film Physics Laboratory, Department of Physics, Electronics and Photonics, Rajarshi Shahu Mahavidyalaya, Latur 413 512, Maharashtra (India)

    2012-12-05

    Highlights: Black-Right-Pointing-Pointer Simple and inexpensive method to dope trivalent Fe in CdSe thin films. Black-Right-Pointing-Pointer Fe doped CdSe thin films are highly photosensitive. Black-Right-Pointing-Pointer AFM analysis shows uniform deposition of film over the entire substrate surface. Black-Right-Pointing-Pointer The band gap energy decreases from 1.74 to 1.65 eV with Fe doping. Black-Right-Pointing-Pointer Film resistivity decreases to 6.76 Multiplication-Sign 10{sup 4} {Omega}-cm with Fe doping in CdSe thin films. - Abstract: Undoped and Fe doped CdSe thin films have been deposited onto the amorphous and fluorine doped tin oxide coated glass substrates by spray pyrolysis. The Fe doping concentration has been optimized by photoelectrochemical (PEC) characterization technique. The structural, surface morphological, compositional, optical and electrical properties of undoped and Fe doped CdSe thin films have been studied. X-ray diffraction study reveals that the as deposited CdSe films possess hexagonal crystal structure with preferential orientation along (1 0 0) plane. AFM analysis shows uniform deposition of the film over the entire substrate surface with minimum surface roughness of 7.90 nm. Direct allowed type of transition with band gap decreasing from 1.74 to 1.65 eV with Fe doping has been observed. The activation energy of the films has been found to be in the range of 0.14-0.19 eV at low temperature and 0.27-0.44 eV at high temperature. Semi-conducting behavior has been observed from resistivity measurements. The thermoelectric power measurements reveal that the films are of n type.

  10. Dielectric and ferroelectric properties of strain-relieved epitaxial lead-free KNN-LT-LS ferroelectric thin films on SrTiO3 substrates

    Science.gov (United States)

    Abazari, M.; Akdoǧan, E. K.; Safari, A.

    2008-05-01

    We report the growth of single-phase (K0.44,Na0.52,Li0.04)(Nb0.84,Ta0.10,Sb0.06)O3 thin films on SrRuO3 coated ⟨001⟩ oriented SrTiO3 substrates by using pulsed laser deposition. Films grown at 600°C under low laser fluence exhibit a ⟨001⟩ textured columnar grained nanostructure, which coalesce with increasing deposition temperature, leading to a uniform fully epitaxial highly stoichiometric film at 750°C. However, films deposited at lower temperatures exhibit compositional fluctuations as verified by Rutherford backscattering spectroscopy. The epitaxial films of 400-600nm thickness have a room temperature relative permittivity of ˜750 and a loss tangent of ˜6% at 1kHz. The room temperature remnant polarization of the films is 4μC /cm2, while the saturation polarization is 7.1μC/cm2 at 24kV/cm and the coercive field is ˜7.3kV/cm. The results indicate that approximately 50% of the bulk permittivity and 20% of bulk spontaneous polarization can be retained in submicron epitaxial KNN-LT-LS thin film, respectively. The conductivity of the films remains to be a challenge as evidenced by the high loss tangent, leakage currents, and broad hysteresis loops.

  11. Ambiguous Role of Growth-Induced Defects on the Semiconductor-to-Metal Characteristics in Epitaxial VO2/TiO2 Thin Films.

    Science.gov (United States)

    Mihailescu, Cristian N; Symeou, Elli; Svoukis, Efthymios; Negrea, Raluca F; Ghica, Corneliu; Teodorescu, Valentin; Tanase, Liviu C; Negrila, Catalin; Giapintzakis, John

    2018-04-25

    Controlling the semiconductor-to-metal transition temperature in epitaxial VO 2 thin films remains an unresolved question both at the fundamental as well as the application level. Within the scope of this work, the effects of growth temperature on the structure, chemical composition, interface coherency and electrical characteristics of rutile VO 2 epitaxial thin films grown on TiO 2 substrates are investigated. It is hereby deduced that the transition temperature is lower than the bulk value of 340 K. However, it is found to approach this value as a function of increased growth temperature even though it is accompanied by a contraction along the V 4+ -V 4+ bond direction, the crystallographic c-axis lattice parameter. Additionally, it is demonstrated that films grown at low substrate temperatures exhibit a relaxed state and a strongly reduced transition temperature. It is suggested that, besides thermal and epitaxial strain, growth-induced defects may strongly affect the electronic phase transition. The results of this work reveal the difficulty in extracting the intrinsic material response to strain, when the exact contribution of all strain sources cannot be effectively determined. The findings also bear implications on the limitations in obtaining the recently predicted novel semi-Dirac point phase in VO 2 /TiO 2 multilayer structures.

  12. Spin injection from epitaxial Heusler alloy thin films into InGaAs/GaAs quantum wells

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad

    2006-01-01

    -stoichiometric crystals and crystals with site swapping defects. Significant decrease in the spin polarization has been predicted for disorder defects involving especially Co on Mn or Ga sites. From an estimate based on the calculated defect formation energies it is found that Mn on Co-sites are likely to exist...... no anisotropy is seen for near stoichiometry thin films on an ordinary GaAs surface. Typically thin films grown on GaAs show lower saturation magnetization than expected from bulk properties. The electrical characterizations have revealed resistivities around ρ = 350μΩcm at 300 K. Generally, the near...... to typically 0.02-0.1 Ωmm2 for Fe and Co contacts but two orders of magnitude higher for the Co2MnGa contacts. Point contact Andreev reflection measurements on an off-stoichiometric thin film (Co2.4Mn1.6Ga) show a spin polarization of P ≈ 50 %. Furthermore spin injection into a InGaAs/GaAs quantum well have...

  13. Nanolaminated FeCoB/FeCo and FeCoB/NiFe soft magnetic thin films with tailored magnetic properties deposited by magnetron sputtering

    Science.gov (United States)

    Hida, Rachid; Falub, Claudiu V.; Perraudeau, Sandrine; Morin, Christine; Favier, Sylvie; Mazel, Yann; Saghi, Zineb; Michel, Jean-Philippe

    2018-05-01

    Thin films based on layers of Fe52Co28B20 (at%), Fe65Co35 (at%), and Ni80Fe20 (at%) were deposited by sputtering on 8″ bare Si and Si/200 nm-thermal-SiO2 wafers by simultaneous use of two or more cathodes. Due to the continuous rotation of the substrate cage, such that the substrates faced different targets alternately, the multilayers consisted of stacks of alternating, nanometer-thick regular layers. The composition of the films was determined by Rutherford Backscattering Spectrometry (RBS) and Nuclear Reactive Analysis (NRA), whereas Plasma Profiling Time of Flight Mass Spectrometry (PP-TOFMS) analysis gave depth profile information about the chemical elements. The structural and magnetic properties of the films were investigated by X-ray Diffraction and by TEM analysis, B-H loop tracer and high frequency single coil technique permeametry, respectively. The linear dependence of the coercivity of these thin films versus the grain size can be explained by the random anisotropy model. These novel, composite soft magnetic multilayers, with tunable in-plane anisotropy, allow operation at tunable frequencies, as shown by broadband (between 100 MHz and 10 GHz) RF measurements that exhibit a classical Landau-Lifschitz-Gilbert (LLG) behavior and, combine the magnetic properties of the individual materials in an advantageous way. This article presents a method to produce nanostructured soft magnetic multilayers, the properties of which can easily be tuned by choosing the ratio of the individual nanolayers. In this way it's possible to combine soft magnetic materials with complementary properties, e.g. high saturation magnetization, low coercivity, high specific resistivity and low magnetostriction

  14. Buffer-layer enhanced crystal growth of BaB6 (1 0 0) thin films on MgO (1 0 0) substrates by laser molecular beam epitaxy

    International Nuclear Information System (INIS)

    Kato, Yushi; Yamauchi, Ryosuke; Arai, Hideki; Tan, Geng; Tsuchimine, Nobuo; Kobayashi, Susumu; Saeki, Kazuhiko; Takezawa, Nobutaka; Mitsuhashi, Masahiko; Kaneko, Satoru; Yoshimoto, Mamoru

    2012-01-01

    Crystalline BaB 6 (1 0 0) thin films can be fabricated on MgO (1 0 0) substrates by inserting a 2-3 nm-thick epitaxial SrB 6 (1 0 0) buffer layer by pulsed laser deposition (PLD) in ultra-high vacuum (i.e., laser molecular beam epitaxy). Reflection high-energy electron diffraction and X-ray diffraction measurements indicated the heteroepitaxial structure of BaB 6 (1 0 0)/SrB 6 (1 0 0)/MgO (1 0 0) with the single domain of the epitaxial relationship. Conversely, BaB 6 thin films without the buffer layer were not epitaxial instead they developed as polycrystalline films with a random in-plane configuration and some impurity phases. As a result, the buffer layer is considered to greatly affect the initial growth of epitaxial BaB 6 thin films; therefore, in this study, buffering effects have been discussed. From the conventional four-probe measurement, it was observed that BaB 6 epitaxial thin films exhibit n-type semiconducting behavior with a resistivity of 2.90 × 10 -1 Ω cm at room temperature.

  15. Epitaxial growth of YBa sub 2 Cu sub 3 O sub 7 minus. delta. thin films on LiNbO sub 3 substrates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, S.G.; Koren, G.; Gupta, A.; Segmuller, A.; Chi, C.C. (IBM Thomas J. Watson Research Center, P.O. Box 218, Yorktown Heights, New York 10598 (US))

    1989-09-18

    {ital In} {ital situ} epitaxial growth of YBa{sub 2}Cu{sub 3}O{sub 7{minus}{delta}} thin films on {ital Y}-cut LiNbO{sub 3} substrates using a standard laser ablation technique is reported. Resistance of the films shows a normal metallic behavior and a very sharp ({lt}1 K) superconducting transition with {ital T}{sub {ital c}}({ital R}=0) of 92 K. High critical current density of {ital J}{sub {ital c}}(77 K)=2{times}10{sup 5} A/cm{sup 2} is observed, which is in accordance with epitaxial growth. Film orientation observed from x-ray diffraction spectra indicates that the {ital c} axis is normal to the substrate plane and the {ital a} axis is at 45{degree} to the (11.0) direction of the hexagonal lattice of the substrate with two domains in mirror image to the (110) plane.

  16. High quality β-FeSi2 thin films prepared on silicon (100) by using pulsed laser ablation of Fe target

    International Nuclear Information System (INIS)

    Xu, S.C.; Yang, C.; Liu, M.; Jiang, S.Z.; Ma, Y.Y.; Chen, C.S.; Gao, X.G.; Sun, Z.C.; Hu, B.; Wang, C.C.; Man, B.Y.

    2012-01-01

    High quality β-FeSi 2 thin films have been fabricated on silicon (100) substrate by the pulsed laser deposition (PLD) technique with the Fe and sintered FeSi 2 targets. The crystalline quality and surface morphology of the samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared (FTIR) spectroscopy. These results indicate that the samples prepared with a Fe target can acquire a better crystalline quality and a smoother surface than those with a sintered FeSi 2 target. The reasons were discussed with subsurface superheating mechanism. The intrinsic PL spectrum attributed to the interband transition of β-FeSi 2 for all the samples was compared, showing that the film prepared with Fe target can acquire a good PL property by optimizing experimental parameters. It is suggested that sputtering Fe on Si substrate by the pulsed laser offers a cheap and convenient way to prepare the β-FeSi 2 thin films. -- Highlights: ► β-FeSi 2 films were fabricated by PLD technique with the Fe and FeSi 2 targets. ► The films prepared with Fe target have good crystalline quality and smooth surface. ► The Fe target prepared film acquired a high PL intensity. ► Sputtering Fe on Si substrate offers a convenient way to prepare the β-FeSi 2 films.

  17. L1{sub 0} phase transition in FePt thin films via direct interface reaction

    Energy Technology Data Exchange (ETDEWEB)

    Li Xiaohong; Sun Hongyu; Wang Fengqing; Li Wei; Zhang Xiangyi [State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, 066004 Qinhuangdao (China); Liu Baoting; Guo Jianxin [College of Physics Science and Technology, Hebei University, 071002 Baoding (China)], E-mail: xyzh66@ysu.edu.cn

    2008-12-07

    Lowering the L1{sub 0} ordering temperature of FePt films is of great significance for their application as an ultrahigh density magnetic recording medium. In this study, the L1{sub 0} ordering process of FePt thin films deposited directly on Si substrates has been significantly accelerated by the interface reaction between the thin film and the Si substrate, and thus the thin films show a low L1{sub 0} ordering temperature of T = 310 deg. C as compared with those deposited on Si/SiO{sub 2} substrates. The accelerated L1{sub 0} ordering transition is predominantly dependent on the rapid growth of the ordered domains during the interface reaction. The film thickness has an important effect on the interface reaction and thus can be used to tune the L1{sub 0} ordering process of the FePt films.

  18. L10 phase transition in FePt thin films via direct interface reaction

    International Nuclear Information System (INIS)

    Li Xiaohong; Sun Hongyu; Wang Fengqing; Li Wei; Zhang Xiangyi; Liu Baoting; Guo Jianxin

    2008-01-01

    Lowering the L1 0 ordering temperature of FePt films is of great significance for their application as an ultrahigh density magnetic recording medium. In this study, the L1 0 ordering process of FePt thin films deposited directly on Si substrates has been significantly accelerated by the interface reaction between the thin film and the Si substrate, and thus the thin films show a low L1 0 ordering temperature of T = 310 deg. C as compared with those deposited on Si/SiO 2 substrates. The accelerated L1 0 ordering transition is predominantly dependent on the rapid growth of the ordered domains during the interface reaction. The film thickness has an important effect on the interface reaction and thus can be used to tune the L1 0 ordering process of the FePt films.

  19. Ferromagnetic resonance linewidth and two-magnon scattering in Fe1-xGdx thin films

    Directory of Open Access Journals (Sweden)

    Sheng Jiang

    2017-05-01

    Full Text Available Magnetization dynamics of Fe1-xGdx thin films (0 ≤ x ≤ 22% has been investigated by ferromagnetic resonance (FMR. Out-of-plane magnetic field orientation dependence of resonance field and linewidth has been measured. Resonance field and FMR linewidth have been fitted by the free energy of our system and Landau-Lifshitz-Gilbert (LLG equation. It is found that FMR linewidth contains huge extrinsic components including two-magnon scattering contribution and inhomogeneous broadening for FeGd alloy thin films. In addition, the intrinsic linewidth and real damping constants have been obtained by extracting the extrinsic linewidth. The damping constant enhanced from 0.011 to 0.038 as Gd dopants increase from 0 to 22% which originates from the enhancement of L-S coupling in FeGd thin films. Besides, gyromagnetic ratio, Landé factor g and magnetic anisotropy of our films have also been determined.

  20. Magnetic properties and microstructure of low ordering temperature L10 FePt thin films

    International Nuclear Information System (INIS)

    Sun, A.C.; Kuo, P.C.; Chen, S.C.; Chou, C.Y.; Huang, H.L.; Hsu, J.H.

    2004-01-01

    Polycrystalline Fe 52 Pt 48 alloy thin films were prepared by dc magnetron sputtering on preheated natural-oxidized silicon wafer substrates. The film thickness was varied from 10 to 100 nm. The as-deposited film was encapsulated in a quartz tube and postannealed in vacuum at various temperatures for 1 h, then furnace cooled. It is found that the ordering temperature from as-deposited soft magnetic fcc FePt phase to hard magnetic fct L1 0 FePt phase could be reduced to about 350 deg. C by preheating substrate and furnace cooling treatment. The magnetic properties measurements indicated that the in-plane coercivity of the films was increased rapidly as annealing temperature is increased from 300 to 400 deg. C, but it decreased when the annealing temperature is higher than 400 deg. C. X-ray diffraction analysis shown that the as-deposited FePt thin film was a disorder fcc FePt phase. The magnetic measurement indicated that the transformation of disorder fcc FePt to fct L1 0 FePt phase was started at about 350 deg. C, which is consistent with the analysis of x-ray diffraction patterns. From scanning electron microscopy observation and selected area energy disperse spectrum analysis, the distributions of Fe and Pt elements in the films became nonuniform when the annealing temperature was higher than 500 deg. C due to the formation of the Fe 3 Pt phase. After annealing at 400 deg. C, the in plane coercivity of Fe 52 Pt 48 thin film with film thickness of 100 nm is 10 kOe, M s is 580 emu/cm3, and grain size is about 12 nm

  1. Formation of ferromagnetic interface between β-FeSi2 and Si(111) substrate

    International Nuclear Information System (INIS)

    Hattori, Azusa N.; Hattori, Ken; Kodama, Kenji; Hosoito, Nobuyoshi; Daimon, Hiroshi

    2007-01-01

    Epitaxial β-FeSi 2 thin films were grown on Si(111)7x7 clean surfaces by solid phase epitaxy in ultrahigh vacuum: iron deposition at low temperature and subsequent annealing. We found that a ferromagnetic interface layer of iron-rich silicides forms between a β-FeSi 2 surface layer and a Si(111) substrate spontaneously from transmission electron microscopy observations and magnetization measurements

  2. Zn Thin Film Deposition for Fe Layer Shielding Use the Sputtering Technique on Cylindrical Form

    International Nuclear Information System (INIS)

    Yunanto; Tjipto Sujitno, BA; Suprapto; Simbolon, Sahat

    2002-01-01

    Deposition of thin film on Fe substrate use sputtering technique on cylindrical form was carried out. The purpose of this research is to protect Fe due to the corrosion with Zn thin film. Sputtering method was proposed to protect a component of complex form. Substrate has functioned as anode, meanwhile target in cylindrical form as a cathode. Argon ion from anode bombard Zn with enough energy for releasing Zn. Zn atom would scatter and some of then was focused on the anode. For testing Zn atom on Fe by using XRF and corrosion rate with potentiostat. It was found that corrosion rate was decreased from 0.051 mpy to 0.031 mpy on 0.63 % of Fe substrate. (author)

  3. Thin films of NdFeB deposited by PLD technique

    International Nuclear Information System (INIS)

    Constantinescu, C.; Scarisoreanu, N.; Moldovan, A.; Dinescu, M.; Petrescu, L.; Epureanu, G.

    2007-01-01

    Neodymium-iron-boron (NdFeB) is a material with important magnetic properties, mostly used in permanent magnet fabrication. Thin layers of NdFeB are needed for miniaturization in electrical engineering, electronics and for high-tech devices. In this paper we applied pulsed lased deposition (PLD) in vacuum for obtaining thin films of NdFeB from stoichiometric targets. The influence of different buffer layers and of the laser parameters (wavelength and fluence) on the NdFeB structures, composition and magnetic properties have been investigated. The obtained structures were characterized by atomic force microscopy (AFM) and optical microscopy. Vibrating sample magnetometry (VSM) has been performed for specific magnetic characterization

  4. Thin films of NdFeB deposited by PLD technique

    Energy Technology Data Exchange (ETDEWEB)

    Constantinescu, C. [National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG 16, RO-077125 Magurele, Bucharest (Romania); Scarisoreanu, N. [National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG 16, RO-077125 Magurele, Bucharest (Romania); Moldovan, A. [National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG 16, RO-077125 Magurele, Bucharest (Romania); Dinescu, M. [National Institute for Laser, Plasma and Radiation Physics, P.O. Box MG 16, RO-077125 Magurele, Bucharest (Romania)]. E-mail: dinescum@ifin.nipne.ro; Petrescu, L. [Department of Electrical Engineering, ' Politehnica' University of Bucharest, 313 Spl. Independentei, 060042 Bucharest (Romania); Epureanu, G. [Department of Electrical Engineering, ' Politehnica' University of Bucharest, 313 Spl. Independentei, 060042 Bucharest (Romania)

    2007-07-31

    Neodymium-iron-boron (NdFeB) is a material with important magnetic properties, mostly used in permanent magnet fabrication. Thin layers of NdFeB are needed for miniaturization in electrical engineering, electronics and for high-tech devices. In this paper we applied pulsed lased deposition (PLD) in vacuum for obtaining thin films of NdFeB from stoichiometric targets. The influence of different buffer layers and of the laser parameters (wavelength and fluence) on the NdFeB structures, composition and magnetic properties have been investigated. The obtained structures were characterized by atomic force microscopy (AFM) and optical microscopy. Vibrating sample magnetometry (VSM) has been performed for specific magnetic characterization.

  5. Growth of Pb(Ti,Zr)O 3 thin films by metal-organic molecular beam epitaxy

    Science.gov (United States)

    Avrutin, V.; Liu, H. Y.; Izyumskaya, N.; Xiao, B.; Özgür, Ü.; Morkoç, H.

    2009-02-01

    Single-crystal Pb(Zr xTi 1-x)O 3 thin films have been grown on (0 0 1) SrTiO 3 and SrTiO 3:Nb substrates by molecular beam epitaxy using metal-organic source of Zr and two different sources of reactive oxygen—RF plasma and hydrogen-peroxide sources. The same growth modes and comparable structural properties were observed for the films grown with both oxygen sources, while the plasma source allowed higher growth rates. The films with x up to 0.4 were single phase, while attempts to increase x beyond gave rise to the ZrO 2 second phase. The effects of growth conditions on growth modes, Zr incorporation, and phase composition of the Pb(Zr xTi 1-x)O 3 films are discussed. Electrical and ferroelectric properties of the Pb(Zr xTi 1-x)O 3 films of ~100 nm in thickness grown on SrTiO 3:Nb were studied using current-voltage, capacitance-voltage, and polarization-field measurements. The single-phase films show low leakage currents and large breakdown fields, while the values of remanent polarization are low (around 5 μC/cm 2). It was found that, at high sweep fields, the contribution of the leakage current to the apparent values of remanent polarization can be large, even for the films with large electrical resistivity (˜10 8-10 9 Ω cm at an electric filed of 1 MV/cm). The measured dielectric constant ranges from 410 to 260 for Pb(Zr 0.33Ti 0.67)O 3 and from 313 to 213 for Pb(Zr 0.2Ti 0.8)O 3 in the frequency range from 100 to 1 MHz.

  6. Aspects of 'low field' magnetotransport in epitaxial thin films of the ferromagnetic metallic oxide SrRuO3

    International Nuclear Information System (INIS)

    Moran, O.; Saldarriaga, W.; Baca, E.

    2007-01-01

    Epitaxial thin films of the conductive ferromagnetic oxide SrRuO 3 were grown on an (001) SrTiO 3 (STO) substrate by using DC sputtering technique. The magnetic and magnetoresistive properties of the films were measured by applying the magnetic field both perpendicular (out-of-plane) and parallel (in-plane) to the film plane and ever maintaining the direction of the applied field perpendicular to that of the transport current. The films grown on an (001) STO substrate showed identical magnetization properties in two orthogonal crystallographic directions of the substrate, [100] S and [001] S (in-plane and out-of-plane geometry), which suggests the presence of a multi domain structure within the plane of the film. For such samples, no anisotropic field (hard axis) along de [001]s direction, i.e., perpendicular to the film-plane could be detected. Nevertheless, a distinguishable temperature dependent out-of-plane anisotropic magnetoresistance (MR) along with strong temperature dependent low field hysteretic MR(H) behavior was detected for the studied films. A negative MR ratio MR(T)=[ρ(μ 0 H=9T; T)-ρ( μ 0 H=0T; T)]/ρ( μ 0 H=0T; T) on the order of a few percent, with maximums of ∼6% and ∼4% (right at the Curie temperature, T C ∼160K) was calculated for an in-plane and out-of plane measuring geometry, respectively. In addition there is an equally strong MR effect at low temperatures, which might be related to the temperature dependence of the magnetocrystalline anisotropy together with a magnetization rotation. Both the MR(T) behavior and the achieved values (except for T 3 films grown on 2 o miscut (001) STO substrates with the current parallel to the field and parallel to the [1-bar11] direction, which was identified as the easier axis for magnetization

  7. Fabrication and properties of SmFe2-PZT magnetoelectric thin films

    KAUST Repository

    Giouroudi, Ioanna

    2013-05-17

    Magnetoelectric (ME) thin film composites are attracting a continually increasing interest due to their unique features and potential applications in multifunctional microdevices and integrated units such as sensors, actuators and energy harvesting modules. By combining piezoelectric and highly magnetostrictive thin films, the potentialities of these materials increase. In this paper we report the fabrication of SmFe2 and PZT thin films and the investigation of their properties. First of all, a ~ 400 nm thin SmFe film was deposited on top of Si/SiO2 substrate by magnetron sputter deposition. Afterwards, a 140 nm Pt bottom electrode was sputtered on top of the SmFe film forming a bottom electrode. Spin coating was employed for the deposition of the 150 nm thin PZT layer. A PZT solution with 10 %Pb excess was utilized for this fabrication step. Finally, circular Pt top electrodes were sputtered as top electrodes. This paper focuses on the microstructure of the individual films characterized by X-Ray diffractometer (XRD) and scanning electron microscopy (SEM). A piezoelectric evaluation system, aixPES, with TF2000E analyzer component was used for the electric hysteresis measurements of PZT thin films and a vibrating sample magnetometer (VSM) was employed for the magnetic characterization of the SmFe. The developed thin films and the fabricated double layer SmFe-PZT exhibit both good ferromagnetic and piezoelectric responses which predict a promising ME composite structure. The quantitative chemical composition of the samples was confirmed by energy dispersive spectroscopy (EDX). © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  8. Fabrication and properties of SmFe2-PZT magnetoelectric thin films

    KAUST Repository

    Giouroudi, Ioanna; Alnassar, Mohammed; Kosel, Jü rgen

    2013-01-01

    Magnetoelectric (ME) thin film composites are attracting a continually increasing interest due to their unique features and potential applications in multifunctional microdevices and integrated units such as sensors, actuators and energy harvesting modules. By combining piezoelectric and highly magnetostrictive thin films, the potentialities of these materials increase. In this paper we report the fabrication of SmFe2 and PZT thin films and the investigation of their properties. First of all, a ~ 400 nm thin SmFe film was deposited on top of Si/SiO2 substrate by magnetron sputter deposition. Afterwards, a 140 nm Pt bottom electrode was sputtered on top of the SmFe film forming a bottom electrode. Spin coating was employed for the deposition of the 150 nm thin PZT layer. A PZT solution with 10 %Pb excess was utilized for this fabrication step. Finally, circular Pt top electrodes were sputtered as top electrodes. This paper focuses on the microstructure of the individual films characterized by X-Ray diffractometer (XRD) and scanning electron microscopy (SEM). A piezoelectric evaluation system, aixPES, with TF2000E analyzer component was used for the electric hysteresis measurements of PZT thin films and a vibrating sample magnetometer (VSM) was employed for the magnetic characterization of the SmFe. The developed thin films and the fabricated double layer SmFe-PZT exhibit both good ferromagnetic and piezoelectric responses which predict a promising ME composite structure. The quantitative chemical composition of the samples was confirmed by energy dispersive spectroscopy (EDX). © (2013) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  9. Nanocrystalline Pd:NiFe2O4 thin films: A selective ethanol gas sensor

    Science.gov (United States)

    Rao, Pratibha; Godbole, R. V.; Bhagwat, Sunita

    2016-10-01

    In this work, Pd:NiFe2O4 thin films were investigated for the detection of reducing gases. These films were fabricated using spray pyrolysis technique and characterized using X-ray diffraction (XRD) to confirm the crystal structure. The surface morphology was studied using scanning electron microscopy (SEM). Magnetization measurements were carried out using SQUID VSM, which shows ferrimagnetic behavior of the samples. These thin film sensors were tested against methanol, ethanol, hydrogen sulfide and liquid petroleum gas, where they were found to be more selective to ethanol. The fabricated thin film sensors exhibited linear response signal for all the gases with concentrations up to 5 w/o Pd. Reduction in optimum operating temperature and enhancement in response was also observed. Pd:NiFe2O4 thin films exhibited faster response and recovery characteristic. These sensors have potential for industrial applications because of their long-term stability, low power requirement and low production cost.

  10. Optical fiber magnetic field sensors with TbDyFe magnetostrictive thin films as sensing materials.

    Science.gov (United States)

    Yang, Minghong; Dai, Jixiang; Zhou, Ciming; Jiang, Desheng

    2009-11-09

    Different from usually-used bulk magnetostrictive materials, magnetostrictive TbDyFe thin films were firstly proposed as sensing materials for fiber-optic magnetic field sensing characterization. By magnetron sputtering process, TbDyFe thin films were deposited on etched side circle of a fiber Bragg Grating (FBG) as sensing element. There exists more than 45pm change of FBG wavelength when magnet field increase up to 50 mT. The response to magnetic field is reversible, and could be applicable for magnetic and current sensing.

  11. EXAFS study of the stability of amorphous TbFe thin films

    International Nuclear Information System (INIS)

    Samant, M.G.; Marinero, E.E.; Robinson, C.; Cargill, G.S.

    1989-01-01

    This paper discusses the measurement of the local atomic structure of Fe in Au doped Tb-Fe thin film alloys by the use of EXAFS. The as deposited sample shows structural features which are essentially identical to those of the undoped films. Au additions stabilizes the amorphous structure against recrystallization, however, the loss of magnetic anisotropy under thermal annealing is not reduced. This demonstrates that magnetic relaxation in these alloys does not involve crystallization of the amorphous structure

  12. The anisotropy field of FePt L10 nanoparticles controlled by very thin Pt layer

    International Nuclear Information System (INIS)

    Okamoto, Satoshi; Kitakami, Osamu; Kikuchi, Nobuaki; Miyazaki, Takamichi; Shimada, Yutaka; Chiang, Te-Hsuan

    2004-01-01

    We have prepared epitaxial FePt L1 0 (001) nanoparticles covered with Pt [d Pt nm]/Ag[(4-d Pt ) nm] overlayers. The particles are oblate spheroids approximately 10 nm in diameter and 2 nm in height. The anisotropy field H k at 0 K, which is evaluated from the temperature dependences of coercivity H c , decreases from 90 to 60 kOe on increasing the Pt thickness from d Pt 0 to 1.5 nm, while the energy barrier at zero field remains unchanged. The significant reduction of H k due to the presence of the adjacent Pt layer can be attributed to an enhanced magnetic moment caused by the ferromagnetic polarization of Pt atoms at the interface. This finding suggests an effective method of controlling the switching field of FePt L1 0 nanoparticles

  13. Atomic structure of Fe thin-films on Cu(0 0 1) studied with stereoscopic photography

    International Nuclear Information System (INIS)

    Hattori, Azusa N.; Fujikado, M.; Uchida, T.; Okamoto, S.; Fukumoto, K.; Guo, F.Z.; Matsui, F.; Nakatani, K.; Matsushita, T.; Hattori, K.; Daimon, H.

    2004-01-01

    The complex magnetic properties of Fe films epitaxially grown on Cu(0 0 1) have been discussed in relation to their atomic structure. We have studied the Fe films on Cu(0 0 1) by a new direct method for three-dimensional (3D) atomic structure analysis, so-called 'stereoscopic photography'. The forward-focusing peaks in the photoelectron angular distribution pattern excited by the circularly polarized light rotate around the light axis in either clockwise or counterclockwise direction depending on the light helicity. By using a display-type spherical mirror analyzer for this phenomenon, we can obtain stereoscopic photographs of atomic structure. The photographs revealed that the iron structure changes from bcc to fcc and almost bcc structure with increasing iron film thickness

  14. Scintillation efficiency and X-ray imaging with the RE-Doped LuAG thin films grown by liquid phase epitaxy

    International Nuclear Information System (INIS)

    Tous, Jan; Blazek, Karel; Kucera, Miroslav; Nikl, Martin; Mares, Jiri A.

    2012-01-01

    Very thin scintillator imaging plates have recently become of great interest. In high resolution X-ray radiography, very thin scintillator layers of about 5–20 μm are used to achieve 2D-spatial resolutions below 1 μm. Thin screens can be prepared by mechanical polishing from single crystals or by epitaxial growth on single-crystal substrates using the Liquid Phase Epitaxy technique (LPE). Other types of screens (e.g. deposited powder) do no reach required spatial resolutions. This work compares LPE-grown YAG and LuAG scintillator films doped with different rare earth ions (Cerium, Terbium and Europium). Two different fluxes were used in the LPE growth procedure. These LPE films are compared to YAG:Ce and LuAG:Ce screens made from bulk single crystals. Relative light yield was detected by a highly sensitive CCD camera. Scintillator screens were excited by a micro-focus X-ray source and the generated light was gathered by the CCD camera’s optical system. Scintillator 2D-homogeneity is examined in an X-ray imaging setup also using the CCD camera.

  15. Temperature-dependent magnetism of Fe thin films on ZnSe(0 0 1)

    International Nuclear Information System (INIS)

    Cantoni, M.; Bertacco, R.; Ciccacci, F.; Puppin, E.; Pinotti, E.; Brenna, M.; Marangolo, M.; Eddrieff, M.; Torelli, P.; Maccherozzi, F.; Fujii, J.; Panaccione, G.

    2007-01-01

    We present X-ray magnetic circular dichroism (XMCD) and magneto-optical Kerr effect (MOKE) data on the magnetic properties of Fe/ZnSe(0 0 1) thin films at increasing Fe coverage. The magnetic behaviour of the Fe overlayer is superparamagnetic for a coverage up to 6 monolayers whereas, above this threshold, a truly ferromagnetic phase shows up. XMCD and MOKE data show that this behaviour is substantially unchanged in the temperature range 10-300 K for all the investigated coverages: these findings imply that the blocking temperature is definitely below 10 K

  16. In-situ investigation of the icosahedral Al-Cu-Fe phase formation in thin films

    Energy Technology Data Exchange (ETDEWEB)

    Haidara, F., E-mail: fanta.haidara@im2np.fr [IM2NP, UMR 6242 CNRS - Universite Aix-Marseille, Av. Escadrille Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France); Duployer, B. [Universite Paul Sabatier CIRIMAT-LCMIE 2R1, 118, Route de Narbonne, 31062 Toulouse Cedex 09 (France); Mangelinck, D.; Record, M.-C. [IM2NP, UMR 6242 CNRS - Universite Aix-Marseille, Av. Escadrille Normandie-Niemen, Case 142, 13397 Marseille Cedex 20 (France)

    2012-09-05

    Highlights: Black-Right-Pointing-Pointer We investigated the phase formation of i-Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} in thin films. Black-Right-Pointing-Pointer We characterized the samples by DSC and in-situ XRD and resistance measurements. Black-Right-Pointing-Pointer The resistivity value for i-Al{sub 62.5}Cu{sub 25}Fe{sub 12.5} was determined. - Abstract: This work is an investigation of the formation by reactive diffusion at high temperatures of the icosahedral phase, i-Al{sub 62.5}Cu{sub 25}Fe{sub 12.5}, in thin films. The samples were prepared by sputtering at room temperature. The elements Al, Cu and Fe were sequentially deposited onto oxidized silicon substrates. The two following stacking sequences, Al/Cu/Fe and Al/Fe/Cu, were investigated. The phase formation was studied using in situ resistivity, in situ X-ray Diffraction and Differential Scanning Calorimetry measurements. Whatever the stacking sequence, the sequences of phase formation evidenced during the heating treatment are similar. However the temperatures of formation for the first phases that are formed are different; they are higher in the case of the Al/Fe/Cu stacking sequence.

  17. Molecular and electronic structure of thin films of protoporphyrin(IX)Fe(III)Cl

    Science.gov (United States)

    Snyder, Shelly R.; White, Henry S.

    1991-11-01

    Electrochemical, scanning tunneling microscopy (STM), and tunneling spectroscopy studies of the molecular and electronic properties of thin films of protoporphyrin(IX)Fe(III)Cl (abbreviated as PP(IX)Fe(III)Cl) on highly oriented pyrolytic graphite (HOPG) electrodes are reported. PP(IX)Fe(III)Cl films are prepared by two different methods: (1) adsorption, yielding an electrochemically-active film, and (2) irreversible electrooxidative polymerization, yielding an electrochemically-inactive film. STM images, in conjunction with electro-chemical results, indicate that adsorption of PP(IX)Fe(III)Cl from aqueous solutions onto freshly cleaved HOPG results in a film comprised of molecular aggregates. In contrast, films prepared by irreversible electrooxidative polymerization of PP(IX)Fe(III)Cl have a denser, highly structured morphology, including what appear to be small pinholes (approx. 50A diameter) in an otherwise continuous film.

  18. X-ray magnetic absorption in Fe-Tb amorphous thin films

    CERN Document Server

    Kim, Chan Wook; Watanabe, Yasuhiro

    1999-01-01

    In order to investigate the magnetic structure of Fe-Tb amorphous thin films, we have performed magnetic circular dichroism (MCD) measurements by using the circularly polarized X-ray at the Fe K- and the Tb L2,3-edges in Fe sub 8 sub 8 Tb sub 1 sub 2 , Fe sub 8 sub 0 Tb sub 2 sub 0 , and Fe sub 6 sub 2 Tb sub 3 sub 8. In all samples, the spin-dependent absorption effects, DELTA mu t, were observed. Also, elementary information was obtained on the spin polarizations of the p- and the d-projected electrons lying in the unoccupied states near the Fermi levels in the samples.

  19. Interdiffusion in epitaxial, single-crystalline Au/Ag thin films studied by Auger electron spectroscopy sputter-depth profiling and positron annihilation

    International Nuclear Information System (INIS)

    Noah, Martin A.; Flötotto, David; Wang, Zumin; Reiner, Markus; Hugenschmidt, Christoph; Mittemeijer, Eric J.

    2016-01-01

    Interdiffusion in epitaxial, single-crystalline Au/Ag bilayered thin films on Si (001) substrates was investigated by Auger electron spectroscopy (AES) sputter-depth profiling and by in-situ positron annihilation Doppler broadening spectroscopy (DBS). By the combination of these techniques identification of the role of vacancy sources and sinks on interdiffusion in the Au/Ag films was possible. It was found that with precise knowledge of the concentration-dependent self-diffusion and impurity diffusion coefficients a distinction between the Darken-Manning treatment and Nernst-Planck treatment can be made, which is not possible on the basis of the determined concentration-depth profiles alone.

  20. Reversible pyroelectric and photogalvanic current in epitaxial Pb(Zr0.52Ti0.48)O3 thin films

    Science.gov (United States)

    Lee, J.; Esayan, S.; Prohaska, J.; Safari, A.

    1994-01-01

    The pyroelectric and photogalvanic effects have been studied in epitaxial Pb(Zr0.52Ti0.48)O3 (PZT) thin films. Photoinduced currents, which were completely reversible by electrical voltage, were observed. The photoinduced currents exhibited transient and steady state components. The transient component, in turn, consisted of two components with fast (<1 s) and slow (˜hours) relaxation times. The mechanisms of the photoinduced currents in PZT films and their possible applications in nondestructive readout ferroelectric memory are discussed.

  1. Reversal of the lattice structure in SrCoOx epitaxial thin films studied by real-time optical spectroscopy and first-principles calculations

    OpenAIRE

    Choi, Woo Seok; Jeen, Hyoungjeen; Lee, Jun Hee; Seo, S. S. Ambrose; Cooper, Valentino R.; Rabe, Karin M.; Lee, Ho Nyung

    2013-01-01

    Using real-time spectroscopic ellipsometry, we directly observed a reversible lattice and electronic structure evolution in SrCoOx (x = 2.5 - 3) epitaxial thin films. Drastically different electronic ground states, which are extremely susceptible to the oxygen content x, are found in the two topotactic phases, i.e. the brownmillerite SrCoO2.5 and the perovskite SrCoO3. First principles calculations confirmed substantial differences in the electronic structure, including a metal-insulator tran...

  2. Helical magnetic structure and the anomalous and topological Hall effects in epitaxial B20 Fe1 -yCoyGe films

    Science.gov (United States)

    Spencer, Charles S.; Gayles, Jacob; Porter, Nicholas A.; Sugimoto, Satoshi; Aslam, Zabeada; Kinane, Christian J.; Charlton, Timothy R.; Freimuth, Frank; Chadov, Stanislav; Langridge, Sean; Sinova, Jairo; Felser, Claudia; Blügel, Stefan; Mokrousov, Yuriy; Marrows, Christopher H.

    2018-06-01

    Epitaxial films of the B20-structure compound Fe1 -yCoyGe were grown by molecular beam epitaxy on Si (111) substrates. The magnetization varied smoothly from the bulklike values of one Bohr magneton per Fe atom for FeGe to zero for nonmagnetic CoGe. The chiral lattice structure leads to a Dzyaloshinskii-Moriya interaction (DMI), and the films' helical magnetic ground state was confirmed using polarized neutron reflectometry measurements. The pitch of the spin helix, measured by this method, varies with Co content y and diverges at y ˜0.45 . This indicates a zero crossing of the DMI, which we reproduced in calculations using first-principles methods. We also measured the longitudinal and Hall resistivity of our films as a function of magnetic field, temperature, and Co content y . The Hall resistivity is expected to contain contributions from the ordinary, anomalous, and topological Hall effects. Both the anomalous and topological Hall resistivities show peaks around y ˜0.5 . Our first-principles calculations show a peak in the topological Hall constant at this value of y , related to the strong spin polarization predicted for intermediate values of y . Our calculations predict half-metallicity for y =0.6 , consistent with the experimentally observed linear magnetoresistance at this composition, and potentially related to the other unusual transport properties for intermediate value of y . While it is possible to reconcile theory with experiment for the various Hall effects for FeGe, the large topological Hall resistivities for y ˜0.5 are much larger than expected when the very small emergent fields associated with the divergence in the DMI are taken into account.

  3. TiFeCoNi oxide thin film - A new composition with extremely low electrical resistivity at room temperature

    International Nuclear Information System (INIS)

    Yang, Ya-Chu; Tsau, Chun-Huei; Yeh, Jien-Wei

    2011-01-01

    We show the electrical resistivity of a TiFeCoNi oxide thin film. The electrical resistivity of the TiFeCoNi thin film decreased sharply after a suitable period of oxidation at high temperature. The lowest resistivity of the TiFeCoNi oxide film was 35 ± 3 μΩ-cm. The low electrical resistivity of the TiFeCoNi oxide thin film was attributed to Ti, which is more reactive than the other elements, reacting with oxygen at the initial stage of annealing. The low resistivity is caused by the remaining electrons.

  4. Development of FeNiMoB thin film materials for microfabricated magnetoelastic sensors

    KAUST Repository

    Liang, Cai; Gooneratne, Chinthaka; Cha, Dong Kyu; Chen, Long; Gianchandani, Yogesh; Kosel, Jü rgen

    2012-01-01

    MetglasTM 2826MB foils of 25–30 μm thickness with the composition of Fe40Ni38Mo4B18 have been used for magnetoelastic sensors in various applications over many years. This work is directed at the investigation of ∼3 μm thick iron-nickel-molybdenum-boron (FeNiMoB) thin films that are intended for integrated microsystems. The films are deposited on Si substrate by co-sputtering of iron-nickel (FeNi), molybdenum(Mo), and boron (B) targets. The results show that dopants of Mo and B can significantly change the microstructure and magnetic properties of FeNi materials. When FeNi is doped with only Mo its crystal structure changes from polycrystalline to amorphous with the increase of dopant concentration; the transition point is found at about 10 at. % of Mo content. A significant change in anisotropic magneticproperties of FeNi is also observed as the Modopant level increases. The coercivity of FeNi filmsdoped with Mo decreases to a value less than one third of the value without dopant.Doping the FeNi with B together with Mo considerably decreases the value of coercivity and the out-of-plane magnetic anisotropyproperties, and it also greatly changes the microstructure of the material. In addition, doping B to FeNiMo remarkably reduces the remanence of the material. The filmmaterial that is fabricated using an optimized process is magnetically as soft as amorphous MetglasTM 2826MB with a coercivity of less than 40 Am−1. The findings of this study provide us a better understanding of the effects of the compositions and microstructure of FeNiMoB thin filmmaterials on their magnetic properties.

  5. Development of FeNiMoB thin film materials for microfabricated magnetoelastic sensors

    KAUST Repository

    Liang, Cai

    2012-12-07

    MetglasTM 2826MB foils of 25–30 μm thickness with the composition of Fe40Ni38Mo4B18 have been used for magnetoelastic sensors in various applications over many years. This work is directed at the investigation of ∼3 μm thick iron-nickel-molybdenum-boron (FeNiMoB) thin films that are intended for integrated microsystems. The films are deposited on Si substrate by co-sputtering of iron-nickel (FeNi), molybdenum(Mo), and boron (B) targets. The results show that dopants of Mo and B can significantly change the microstructure and magnetic properties of FeNi materials. When FeNi is doped with only Mo its crystal structure changes from polycrystalline to amorphous with the increase of dopant concentration; the transition point is found at about 10 at. % of Mo content. A significant change in anisotropic magneticproperties of FeNi is also observed as the Modopant level increases. The coercivity of FeNi filmsdoped with Mo decreases to a value less than one third of the value without dopant.Doping the FeNi with B together with Mo considerably decreases the value of coercivity and the out-of-plane magnetic anisotropyproperties, and it also greatly changes the microstructure of the material. In addition, doping B to FeNiMo remarkably reduces the remanence of the material. The filmmaterial that is fabricated using an optimized process is magnetically as soft as amorphous MetglasTM 2826MB with a coercivity of less than 40 Am−1. The findings of this study provide us a better understanding of the effects of the compositions and microstructure of FeNiMoB thin filmmaterials on their magnetic properties.

  6. Growth and characterization of epitaxial ultra-thin NbN films on 3C-SiC/Si substrate for terahertz applications

    International Nuclear Information System (INIS)

    Dochev, D; Desmaris, V; Pavolotsky, A; Meledin, D; Belitsky, V; Lai, Z; Henry, A; Janzen, E; Pippel, E; Woltersdorf, J

    2011-01-01

    We report on electrical properties and microstructure of epitaxial thin NbN films grown on 3C-SiC/Si substrates by means of reactive magnetron sputtering. A complete epitaxial growth at the NbN/3C-SiC interface has been confirmed by means of high resolution transmission electron microscopy (HRTEM) along with x-ray diffractometry (XRD). Resistivity measurements of the films have shown that the superconducting transition onset temperature (T C ) for the best specimen is 11.8 K. Using these epitaxial NbN films, we have fabricated submicron-size hot-electron bolometer (HEB) devices on 3C-SiC/Si substrate and performed their complete DC characterization. The observed critical temperature T C = 11.3 K and critical current density of about 2.5 MA cm -2 at 4.2 K of the submicron-size bridges were uniform across the sample. This suggests that the deposited NbN films possess the necessary homogeneity to sustain reliable hot-electron bolometer device fabrication for THz mixer applications.

  7. Growth and characterization of epitaxial ultra-thin NbN films on 3C-SiC/Si substrate for terahertz applications

    Energy Technology Data Exchange (ETDEWEB)

    Dochev, D; Desmaris, V; Pavolotsky, A; Meledin, D; Belitsky, V [Group for Advanced Receiver Development, Department of Earth and Space Sciences, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Lai, Z [Nanofabrication Laboratory, Department of Microtechnology and Nanoscience, Chalmers University of Technology, SE-412 96 Gothenburg (Sweden); Henry, A; Janzen, E [Department of Physics, Chemistry and Biology, Linkoeping University, SE-581 83 Linkoeping (Sweden); Pippel, E; Woltersdorf, J, E-mail: dimitar.dochev@chalmers.se [Max-Planck-Institute of Microstructure Physics, Weinberg 2, D-06120 Halle (Germany)

    2011-03-15

    We report on electrical properties and microstructure of epitaxial thin NbN films grown on 3C-SiC/Si substrates by means of reactive magnetron sputtering. A complete epitaxial growth at the NbN/3C-SiC interface has been confirmed by means of high resolution transmission electron microscopy (HRTEM) along with x-ray diffractometry (XRD). Resistivity measurements of the films have shown that the superconducting transition onset temperature (T{sub C}) for the best specimen is 11.8 K. Using these epitaxial NbN films, we have fabricated submicron-size hot-electron bolometer (HEB) devices on 3C-SiC/Si substrate and performed their complete DC characterization. The observed critical temperature T{sub C} = 11.3 K and critical current density of about 2.5 MA cm{sup -2} at 4.2 K of the submicron-size bridges were uniform across the sample. This suggests that the deposited NbN films possess the necessary homogeneity to sustain reliable hot-electron bolometer device fabrication for THz mixer applications.

  8. Characterization of reclaimed GaAs substrates and investigation of reuse for thin film InGaAlP LED epitaxial growth

    Energy Technology Data Exchange (ETDEWEB)

    Englhard, M.; Klemp, C.; Behringer, M.; Rudolph, A. [OSRAM Opto Semiconductors GmbH, Leibnizstr. 4, 93055 Regensburg (Germany); Skibitzki, O.; Zaumseil, P. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Schroeder, T. [IHP, Im Technologiepark 25, 15236 Frankfurt (Oder) (Germany); Institute of Physics and Chemistry, BTU Cottbus-Senftenberg, Konrad-Zuse-Str. 1, 03046 Cottbus (Germany)

    2016-07-28

    This study reports a method to reuse GaAs substrates with a batch process for thin film light emitting diode (TF-LED) production. The method is based on an epitaxial lift-off technique. With the developed reclaim process, it is possible to get an epi-ready GaAs surface without additional time-consuming and expensive grinding/polishing processes. The reclaim and regrowth process was investigated with a one layer epitaxial test structure. The GaAs surface was characterized by an atomic force microscope directly after the reclaim process. The crystal structure of the regrown In{sub 0.5}(Ga{sub 0.45}Al{sub 0.55}){sub 0.5}P (Q{sub 55}) layer was investigated by high resolution x-ray diffraction and scanning transmission electron microscopy. In addition, a complete TF-LED grown on reclaimed GaAs substrates was electro-optically characterized on wafer level. The crystal structure of the epitaxial layers and the performance of the TF-LED grown on reclaimed substrates are not influenced by the developed reclaim process. This process would result in reducing costs for LEDs and reducing much arsenic waste for the benefit of a green semiconductor production.

  9. Characterization of structural defects in SnSe2 thin films grown by molecular beam epitaxy on GaAs (111)B substrates

    Science.gov (United States)

    Tracy, Brian D.; Li, Xiang; Liu, Xinyu; Furdyna, Jacek; Dobrowolska, Margaret; Smith, David J.

    2016-11-01

    Tin selenide thin films have been grown by molecular beam epitaxy on GaAs (111)B substrates at a growth temperature of 150 °C, and a microstructural study has been carried out, primarily using the technique of transmission electron microscopy. The Se:Sn flux ratio during growth was systematically varied and found to have a strong impact on the resultant crystal structure and quality. Low flux ratios (Se:Sn=3:1) led to defective films consisting primarily of SnSe, whereas high flux ratios (Se:Sn>10:1) gave higher quality, single-phase SnSe2. The structure of the monoselenide films was found to be consistent with the Space Group Pnma with the epitaxial growth relationship of [011]SnSe// [ 1 1 bar 0 ] GaAs, while the diselenide films were consistent with the Space Group P 3 bar m1 , and had the epitaxial growth relationship [ 2 1 bar 1 bar 0 ]SnSe2// [ 1 1 bar 0 ] GaAs.

  10. Epitaxy physical principles and technical implementation

    CERN Document Server

    Herman, Marian A; Sitter, Helmut

    2004-01-01

    Epitaxy provides readers with a comprehensive treatment of the modern models and modifications of epitaxy, together with the relevant experimental and technological framework. This advanced textbook describes all important aspects of the epitaxial growth processes of solid films on crystalline substrates, including a section on heteroepitaxy. It covers and discusses in details the most important epitaxial growth techniques, which are currently widely used in basic research as well as in manufacturing processes of devices, namely solid-phase epitaxy, liquid-phase epitaxy, vapor-phase epitaxy, including metal-organic vapor-phase epitaxy and molecular-beam epitaxy. Epitaxy’s coverage of science and texhnology thin-film is intended to fill the need for a comprehensive reference and text examining the variety of problems related to the physical foundations and technical implementation of epitaxial crystallization. It is intended for undergraduate students, PhD students, research scientists, lecturers and practic...

  11. Magnetoresistance anomaly in DyFeCo thin films

    International Nuclear Information System (INIS)

    Wu, J. C.; Wu, C. S.; Wu, Te-ho; Chen, Bing-Mau; Shieh, Han-Ping D.

    2001-01-01

    Microstructured rare-earth - transition-metal DyFeCo films have been investigated using magnetoresistance and extraordinary Hall-effect measurements. The Hall loops reveal variation of coercive fields depending on the linewidth and the composition of the films. The magnetoresistance curves, with changes up to as high as 1.3%, show positive/negative magnetoresistance peaks centered on the coercive fields depending on the linewidth of the films only. The variation of the coercivity can be attributed to the magnetic moment canting between the Dy and FeCo subcomponents and the existence of the diverged magnetization on the edges, and the anomalous magnetoresistance peaks observed are discussed with the existing theories. [copyright] 2001 American Institute of Physics

  12. On the frequency dependence of the magnetic permeability of FeHfO thin films

    NARCIS (Netherlands)

    Bloemen, P.J.H.; Rulkens, B.

    1998-01-01

    The frequency dependence of the magnetic permeability as well as of the electrical impedance have been investigated for soft-magnetic granular FeHfO thin films. The impedance measurements indicate that capacitive effects resulting from the inhomogeneous structure of the layers are of no importance

  13. Engineering Gilbert damping by dilute Gd doping in soft magnetic Fe thin Films

    NARCIS (Netherlands)

    Zhang, W.; Jiang, S.; Wong, P.K.J.; Sun, Li; Wang, Y.K.; Wang, Kai; de Jong, Machiel Pieter; van der Wiel, Wilfred Gerard; van der Laan, G.; Zhai, Y.

    2014-01-01

    By analyzing the ferromagnetic resonance linewidth, we show that the Gilbert damping constant in soft magnetic Fe thin films can be enhanced by ∼6 times with Gd doping of up to 20%. At the same time, the magnetic easy axis remains in the film plane while the coercivity is strongly reduced after Gd

  14. Formation dynamics of FeN thin films on Cu(100)

    KAUST Repository

    Heryadi, Dodi; Schwingenschlö gl, Udo

    2012-01-01

    To investigate the structural and magnetic properties of thin films of FeN we have performed ab initio molecular dynamics simulations of their formation on Cu(100) substrates. The iron nitride layers exhibit a p4gm(2 × 2) reconstruction and order

  15. Magnetic properties of FeNi-based thin film materials with different additives

    KAUST Repository

    Liang, C.; Gooneratne, C.P.; Wang, Q.X.; Liu, Y.; Gianchandani, Y.; Kosel, Jü rgen

    2014-01-01

    This paper presents a study of FeNi-based thin film materials deposited with Mo, Al and B using a co-sputtering process. The existence of soft magnetic properties in combination with strong magneto-mechanical coupling makes these materials

  16. Optical Properties and Electrochemical Performance of LiFePO4 Thin Films Deposited on Transparent Current Collectors.

    Science.gov (United States)

    Lee, HyunSeok; Yim, Haena; Kim, Kwang-Bum; Choi, Ji-Won

    2015-11-01

    LiFePO4 thin film cathodes are deposited on various transparent conducting oxide thin films on glass, which are used as cathode current collectors. The XRD patterns show that the thin films have the phase of LiFePO4 with an ordered olivine structure indexed to the orthorhombic Pmna space group. LiFePO4 thin film deposited on various TCO glass substrates exhibits transmittance of about 53%. The initial specific discharge capacities of LiFePO4 thin films are 25.0 μAh/cm2 x μm on FTO, 33.0 μAh/cm2 x μm on ITO, and 13.0 μAh/cm2 x μm on AZO coated glass substrates. Interestingly, the retention capacities of LiFePO4 thin films are 76.0% on FTO, 31.2% on ITO, and 37.7% on AZO coated glass substrates at 20th cycle. The initial specific discharge capacity of the LiFePO4/FTO electrode is slightly lower, but the discharge capacities of the LiFePO4/FTO electrode relatively decrease less than those of the others such as LiFePO4/ITO and LiFePO4/AZO with cycling. The results reported here provide the high transparency of LiFePO4 thin films cathode materials and the good candidate as FTO current collector of the LiFePO4 thin film cathode of transparent thin film rechargeable batteries due to its high transparency and cyclic retention.

  17. Low-field tunnel-type magnetoresistance properties of polycrystalline and epitaxial La sub 0 sub . sub 6 sub 7 Sr sub 0 sub . sub 3 sub 3 MnO sub 3 thin films

    CERN Document Server

    Shim, I B; Choi, S Y

    2000-01-01

    The low-field tunnel-type magnetoresistance (TMB) properties of sol-gel derived polycrystalline and epitaxial La sub 0 sub . sub 6 sub 7 Sr sub 0 sub . sub 3 sub 3 MnO sub 3 (LSMO) thin films were investigated. The polycrystalline thin films were fabricated on Si (100) with a thermally oxidized SiO sub 2 layer while the epitaxial thin films were grown on LaAlO sub 3 (001) single-crystal substrates. The epitaxial thin films displayed both typical intrinsic colossal magnetoresistance (CMR) and abnormal extrinsic tunnel-type magnetoresistance behaviors. Tunnel-type MR ratio as high as 0.4% were observed in the polycrystalline thin films at a field of 120 Oe at room temperature (300 K) whereas the ratios were less than 0.1% for the epitaxial films in the same field range. The low-field tunnel-type MR of polycrystalline LSMO/SiO sub 2 ?Si (100) thin films originated from the behaviors of the grain-boundary properties.

  18. Magnetic domain observation of FeCo thin films fabricated by alternate monoatomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Ohtsuki, T., E-mail: ohtsuki@spring8.or.jp; Kotsugi, M.; Ohkochi, T. [Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Koto, Sayo-cho, Sayo-gun, Hyogo 679-5198 (Japan); Kojima, T.; Mizuguchi, M.; Takanashi, K. [Institute for Materials Research, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577 (Japan)

    2014-01-28

    FeCo thin films are fabricated by alternate monoatomic layer deposition method on a Cu{sub 3}Au buffer layer, which in-plane lattice constant is very close to the predicted value to obtain a large magnetic anisotropy constant. The variation of the in-plane lattice constant during the deposition process is investigated by reflection high-energy electron diffraction. The magnetic domain images are also observed by a photoelectron emission microscope in order to microscopically understand the magnetic structure. As a result, element-specific magnetic domain images show that Fe and Co magnetic moments align parallel. A series of images obtained with various azimuth reveal that the FeCo thin films show fourfold in-plane magnetic anisotropy along 〈110〉 direction, and that the magnetic domain structure is composed only of 90∘ wall.

  19. Effect of Ti seed and spacer layers on structure and magnetic properties of FeNi thin films and FeNi-based multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Svalov, A.V., E-mail: andrey.svalov@ehu.es [Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain); Department of Magnetism and Magnetic Nanomaterials, Ural Federal University, 620002 Ekaterinburg (Russian Federation); Larrañaga, A. [SGIker, Servicios Generales de Investigación, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain); Kurlyandskaya, G.V. [Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), 48080 Bilbao (Spain); Department of Magnetism and Magnetic Nanomaterials, Ural Federal University, 620002 Ekaterinburg (Russian Federation)

    2014-10-15

    Highlights: • Fe{sub 19}Ni{sub 81} films and FeNi-based multilayers were prepared by magnetron sputtering. • The samples were deposited onto glass substrates at room temperature. • Ti/FeNi films exhibit good (1 1 1) texture and crystallinity. • The thick Cu seed increases the coercive force of the magnetic layer. • The thin Ti spacer restores the magnetic softness of the Cu/Ti/FeNi multilayers. - Abstract: The microstructure and magnetic properties of sputtered permalloy films and FeNi-based multilayers prepared by magnetron sputtering have been studied. X-ray diffraction measurements indicate that Ti/FeNi films exhibit good (1 1 1) texture and crystallinity. Ti/FeNi bilayers with high crystallographic quality have relatively low resistivity. The Ti seed layer does not influence the magnetic properties of FeNi film in Ti/FeNi bilayers, but the thick Cu seed layer leads to an increase of the coercive force of the magnetic layer. For the FeNi films deposited on thick Cu seed layer, the (0 1 0) and (0 0 2) diffraction peaks of hcp nickel were clearly observed. The thin Ti spacer between Cu and FeNi layers prevents the formation of the nickel phase and restores the magnetic softness of the FeNi layer in the Cu/Ti/FeNi sample. Obtained results can be important for the development of multilayer sensitive elements for giant magnetoimpedance or magnetoresistance detectors.

  20. High-coercivity FePt nanoparticle assemblies embedded in silica thin films

    International Nuclear Information System (INIS)

    Yan, Q; Purkayastha, A; Singh, A P; Li, H; Ramanath, G; Li, A; Ramanujan, R V

    2009-01-01

    The ability to process assemblies using thin film techniques in a scalable fashion would be a key to transmuting the assemblies into manufacturable devices. Here, we embed FePt nanoparticle assemblies into a silica thin film by sol-gel processing. Annealing the thin film composite at 650 deg. C transforms the chemically disordered fcc FePt phase into the fct phase, yielding magnetic coercivity values H c >630 mT. The positional order of the particles is retained due to the protection offered by the silica host. Such films with assemblies of high-coercivity magnetic particles are attractive for realizing new types of ultra-high-density data storage devices and magneto-composites.

  1. Inhomogeneous nucleation and domain wall motion with Barkhausen avalanches in epitaxial PbZr0.4Ti0.6O3 thin films

    International Nuclear Information System (INIS)

    Yang, Sang Mo; Kim, Hun Ho; Kim, Tae Heon; Kim, Ik Joo; Yoon, Jong Gul

    2012-01-01

    We investigated the ferroelectric (FE) domain nucleation and domain wall motion in epitaxial PbZr 0.4 Ti 0.6 O 3 capacitors by using modified piezoresponse force microscopy with the domain-tracing method. From time-dependent FE domain evolution images, we observed that defect-mediated inhomogeneous nucleation occurred with a stochastic nature. In addition, we found that the number of nuclei N(t) was linearly proportional to log t, where t is the accumulated time of the applied pulse fields. The time-dependence of N(t) suggests a distribution of energy barriers for nucleation, which may determine the stochastic nature of domain nucleation. We also observed that the domain grew with consecutive Barkhausen avalanches and that the growth direction became anisotropic when the domain radius was larger than a critical radius of about 100 nm.

  2. Magnetoelectric coupling effect in transition metal modified polycrystalline BiFeO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sreenivas Puli, Venkata, E-mail: pvsri123@gmail.com [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118 (United States); Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 (United States); Kumar Pradhan, Dhiren [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 (United States); Gollapudi, Sreenivasulu [Department of Physics, Oakland University, Rochester, MI 48309-4401 (United States); Coondoo, Indrani [Department of Materials and Ceramic and CICECO, University of Aveiro, 3810-193 Aveiro (Portugal); Panwar, Neeraj [Department of Physics, Central University of Rajasthan, Bandar Sindri, Kishangarh 305801, Rajasthan (India); Adireddy, Shiva; Chrisey, Douglas B. [Department of Physics and Engineering Physics, Tulane University, New Orleans, LA 70118 (United States); Katiyar, Ram S. [Department of Physics and Institute of Functional Nanomaterials, University of Puerto Rico, San Juan, PR 00936 (United States)

    2014-11-15

    Rare-earth (Sm) and transition metal (Co) modified polycrystalline BiFeO{sub 3} (BFO) thin films have been deposited on Pt/TiO{sub 2}/SiO{sub 2}/Si substrate successfully through pulsed laser deposition (PLD) technique. Piezoelectric, leakage current and temperature dependent dielectric and magnetic behaviour were investigated for the films. Typical “butterfly-shaped” loop were observed in BSFCO films with an effective piezoelectric constant (d{sub 33}) ∼94 pm/V at 0.6 MV/cm. High dielectric constant ∼900 and low dielectric loss ∼0.25 were observed at room temperature. M–H loops have shown relatively high saturation magnetization ∼35 emu/cm{sup 3} at a maximum field of H ∼20 kOe. Enhanced magnetoelectric coupling response is observed under applied magnetic field. The multiferroic, piezoelectric, leakage current behaviours were explored. Such studies should be helpful in designing multiferroic materials based on BSFCO films. - Highlights: • Transition metal modified polycrystalline BiFeO{sub 3} thin films prepared using PLD. • High ME-coupling response was observed in co-substituted BiFeO{sub 3} thin films. • High magnetization ∼35 emu/cm{sup 3} at a maximum field of H ∼20 kOe. • Low leakage current might be due to co-substitution in BiFeO{sub 3} thin films. • A notable piezoelectric constant d{sub 33} ∼94 pm/V was found in BiFeO{sub 3} thin films.

  3. Magnetoelectric coupling effect in transition metal modified polycrystalline BiFeO3 thin films

    International Nuclear Information System (INIS)

    Sreenivas Puli, Venkata; Kumar Pradhan, Dhiren; Gollapudi, Sreenivasulu; Coondoo, Indrani; Panwar, Neeraj; Adireddy, Shiva; Chrisey, Douglas B.; Katiyar, Ram S.

    2014-01-01

    Rare-earth (Sm) and transition metal (Co) modified polycrystalline BiFeO 3 (BFO) thin films have been deposited on Pt/TiO 2 /SiO 2 /Si substrate successfully through pulsed laser deposition (PLD) technique. Piezoelectric, leakage current and temperature dependent dielectric and magnetic behaviour were investigated for the films. Typical “butterfly-shaped” loop were observed in BSFCO films with an effective piezoelectric constant (d 33 ) ∼94 pm/V at 0.6 MV/cm. High dielectric constant ∼900 and low dielectric loss ∼0.25 were observed at room temperature. M–H loops have shown relatively high saturation magnetization ∼35 emu/cm 3 at a maximum field of H ∼20 kOe. Enhanced magnetoelectric coupling response is observed under applied magnetic field. The multiferroic, piezoelectric, leakage current behaviours were explored. Such studies should be helpful in designing multiferroic materials based on BSFCO films. - Highlights: • Transition metal modified polycrystalline BiFeO 3 thin films prepared using PLD. • High ME-coupling response was observed in co-substituted BiFeO 3 thin films. • High magnetization ∼35 emu/cm 3 at a maximum field of H ∼20 kOe. • Low leakage current might be due to co-substitution in BiFeO 3 thin films. • A notable piezoelectric constant d 33 ∼94 pm/V was found in BiFeO 3 thin films

  4. Kinetics and intermediate phases in epitaxial growth of Fe{sub 3}O{sub 4} films from deposition and thermal reduction

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xiaozhe [School of Science, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049, ShaanXi (China); Department of Physics and Astronomy, Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States); Yang, Sen; Yang, Zhimao, E-mail: zmyang@xjtu.edu.cn, E-mail: xiaoshan.xu@unl.edu [School of Science, MOE Key Laboratory for Non-Equilibrium Synthesis and Modulation of Condensed Matter, Xi' an Jiaotong University, Xi' an 710049, ShaanXi (China); Xu, Xiaoshan, E-mail: zmyang@xjtu.edu.cn, E-mail: xiaoshan.xu@unl.edu [Department of Physics and Astronomy, Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, Nebraska 68588 (United States)

    2016-08-28

    We have studied the kinetics of the transitions between the Fe{sub 2}O{sub 3} and Fe{sub 3}O{sub 4} phases as thin epilayers (∼2.5 nm) on Al{sub 2}O{sub 3} (001) substrates using time-resolved reflection high energy electron diffraction. The different iron oxide phases were identified using a combination of in-situ and ex-situ characterizations. The transition from an α-Fe{sub 2}O{sub 3} (001) epilayer to a Fe{sub 3}O{sub 4} (111) epilayer through thermal reduction was found to be determined by the Fe-O bonding energy, resulting in a long time scale. The oxidation at high temperature converts a Fe{sub 3}O{sub 4} (111) epilayer to an α-Fe{sub 2}O{sub 3} (001) epilayer quickly; at low temperature, a γ-Fe{sub 2}O{sub 3} (111) epilayer was slowly generated instead. By repeating the deposition/thermal reduction processes, a thicker Fe{sub 3}O{sub 4} (111) film was obtained, which exhibit high crystallinity and moderate magnetic coercivity.

  5. Rapid thermal annealing of FePt and FePt/Cu thin films

    Energy Technology Data Exchange (ETDEWEB)

    Brombacher, Christoph

    2011-01-10

    Chemically ordered FePt is one of the most promising materials to reach the ultimate limitations in storage density of future magnetic recording devices due to its high uniaxial magnetocrystalline anisotropy and a corrosion resistance superior to rare-earth based magnets. In this study, FePt and FePt/Cu bilayers have been sputter deposited at room temperature onto thermally oxidized silicon wafers, glass substrates and self-assembled arrays of spherical SiO{sub 2} particles with diameters down to 10 nm. Millisecond flash lamp annealing, as well as conventional rapid thermal annealing was employed to induce the phase transformation from the chemically disordered A1 phase into the chemically ordered L1{sub 0} phase. The influence of the annealing temperature, annealing time and the film thickness on the ordering transformation and (001) texture evolution of FePt films with near equiatomic composition was studied. Whereas flash lamp annealed FePt films exhibit a polycrystalline morphology with high chemical L1{sub 0} order, rapid thermal annealing can lead to the formation of chemically ordered FePt films with (001) texture on amorphous SiO{sub 2}/Si substrates. The resultant high perpendicular magnetic anisotropy and large coercivities up to 40 kOe are demonstrated. Simultaneously to the ordering transformation, rapid thermal annealing to temperatures exceeding 600 C leads to a break up of the continuous FePt film into separated islands. This dewetting behavior was utilized to create regular arrays of FePt nanostructures on SiO{sub 2} particle templates with periods down to 50 nm. The addition of Cu improves the (001) texture formation and chemical ordering for annealing temperatures T{sub a} {<=}600 C. In addition, the magnetic anisotropy and the coercivity of the ternary FePtCu alloy can be effectively tailored by adjusting the Cu content. The prospects of FePtCu based exchange spring media, as well as the magnetic properties of FePtCu nanostructures fabricated

  6. Magnetic properties of amorphous Tb-Fe thin films with an artificially layered structure

    International Nuclear Information System (INIS)

    Sato, N.

    1986-01-01

    An alternating terbium-iron (Tb-Fe) multilayer structure artificially made in amorphous Tb-Fe thin films gives rise to excellent magnetic properties of large perpendicular uniaxial anisotropy, large saturation magnetization, and large coercivity over a wide range of Tb composition in the films. The films are superior to amorphous Tb-Fe alloy thin films, especially when they are piled up with a monatomic layer of Tb and several atomic layers of Fe in an alternating fashion. Small-angle x-ray diffraction analysis confirmed the layering of monatomic layers of Tb and Fe, where the periodicity of the layers was found to be about 5.9 A. Direct evidence for an artificially layered structure was obtained by transmission electron microscopic and Auger electron spectroscopic observations. Together with magnetic measurements of hysteresis loops and torque curves, it has been concluded that the most important origin of the large magnetic uniaxial anisotropy can be attributed to the Tb-Fe pairs aligned perpendicular to the films

  7. Chemical synthesis of Fe{sub 2}O{sub 3} thin films for supercapacitor application

    Energy Technology Data Exchange (ETDEWEB)

    Kulal, P.M.; Dubal, D.P.; Lokhande, C.D. [Holography and Material Research Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India); Fulari, V.J., E-mail: vijayfulari@gmail.com [Holography and Material Research Laboratory, Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India)

    2011-02-03

    Research highlights: > Simple chemical synthesis of Fe{sub 2}O{sub 3}. > Formation of amorphous and hydrous Fe{sub 2}O{sub 3}. > Potential candidate for supercapacitors. - Abstract: Fe{sub 2}O{sub 3} thin films have been prepared by novel chemical successive ionic layer adsorption and reaction (SILAR) method. Further these films were characterized for their structural, morphological and optical properties by means of X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectrum, scanning electron microscopy (SEM), wettability test and optical absorption studies. The XRD pattern showed that the Fe{sub 2}O{sub 3} films exhibit amorphous in nature. Formation of iron oxide compound was confirmed from FTIR studies. The optical absorption showed existence of direct optical band gap of energy 2.2 eV. Fe{sub 2}O{sub 3} film surface showed superhydrophilic nature with water contact angle less than 10{sup o}. The supercapacitive properties of Fe{sub 2}O{sub 3} thin film investigated in 1 M NaOH electrolyte showed supercapacitance of 178 F g{sup -1} at scan rate 5 mV/s.

  8. Effects of strain on the magnetic and transport properties of the epitaxial La0.5Ca0.5MnO3 thin films

    International Nuclear Information System (INIS)

    Zarifi, M.; Kameli, P.; Ehsani, M.H.; Ahmadvand, H.; Salamati, H.

    2016-01-01

    The epitaxial strain can considerably modify the physical properties of thin films compared to the bulk. This paper reports the effects of substrate-induced strain on La 0.5 Ca 0.5 MnO 3 (LCMO) thin films, grown on (100) SrTiO 3 (STO) and LaAlO 3 (LAO) substrates by pulsed laser deposition technique. Transport and magnetic properties were found to be strongly dependent on strain type. It is also shown that compressive (tensile) strain leads to the increase (decrease) in the magnetization of the films. Moreover, it was observed that all LCMO films deposited on both LAO and STO substrates behave as an insulator, but LCMO/LAO thin films with compressive strain have lower resistivity than LCMO/STO thin films with tensile strain. Applying magnetic field to LCMO/STO thin films with thickness of 25 and 50 nm leads to very small change in the resistivity, while the effects of magnetic field on the sample with thickness of 125 nm leads to an insulator–metal transition. For LCMO/LAO thin films, the magnetic field has a strong impact on the resistivity of samples. The results show that the magnetoresistance (MR) is enhanced by increasing film thickness for LCMO/LAO samples, due to the relatively stronger phase separation. For LCMO/STO thin films MR is drastically decreased by reduction of film thickness, which is attributed to the enhancement of the charge–orbital order (CO–O) accompanying the complex spin order (the so-called CE type). The changes of the antiferromagnetic structure from the CE to C type and the enhancement of the CE type could be attributed to the in-plane compressive and tensile strain, respectively. - Highlights: • Epitaxial La 0.5 Ca 0.5 MnO 3 thin films, grown on (100) SrTiO 3 and LaAlO 3 substrates. • The compressive strain leads to the increase in the magnetization of the films. • The tensile strain leads to the decrease in the magnetization of the films. • The magnetoresistance is enhanced by increasing film thickness.

  9. X-ray characterization of CdO thin films grown on a-, c-, r- and m-plane sapphire by metalorganic vapour phase-epitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Zuniga-Perez, J.; Martinez-Tomas, C.; Munoz-Sanjose, V. [Departamento de Fisica Aplicada y Electromagnetismo, Universitat de Valencia, C/Dr. Moliner 50, 46100 Burjassot (Spain)

    2005-02-01

    CdO thin films have been grown on a-plane (11 anti 20), c-plane (0001), r-plane (01 anti 12) and m-plane (10 anti 10) sapphire substrates by metalorganic vapour-phase epitaxy (MOVPE). The effects of different substrate orientations on the structural properties of the films have been analyzed by means of X-ray diffraction, including {theta}-2{theta} scans, pole figures and rocking curves. (111), (001) and (110) orientations are found on a-, r-, and m-sapphire respectively, while films deposited on c-plane exhibit an orientation in which no low-index crystal plane is parallel to the sample surface. The recorded pole figures have allowed determining the epitaxial relationships between films and substrates, as well as the presence or absence of extended defects. The rocking curves indicate that high quality thin films, in terms of tilt and twist, can be obtained on r-, c- and m-plane sapphire, while further improvement is needed over the a-orientation. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  10. X-ray characterization of CdO thin films grown on a-, c-, r- and m-plane sapphire by metalorganic vapour phase-epitaxy

    International Nuclear Information System (INIS)

    Zuniga-Perez, J.; Martinez-Tomas, C.; Munoz-Sanjose, V.

    2005-01-01

    CdO thin films have been grown on a-plane (11 anti 20), c-plane (0001), r-plane (01 anti 12) and m-plane (10 anti 10) sapphire substrates by metalorganic vapour-phase epitaxy (MOVPE). The effects of different substrate orientations on the structural properties of the films have been analyzed by means of X-ray diffraction, including θ-2θ scans, pole figures and rocking curves. (111), (001) and (110) orientations are found on a-, r-, and m-sapphire respectively, while films deposited on c-plane exhibit an orientation in which no low-index crystal plane is parallel to the sample surface. The recorded pole figures have allowed determining the epitaxial relationships between films and substrates, as well as the presence or absence of extended defects. The rocking curves indicate that high quality thin films, in terms of tilt and twist, can be obtained on r-, c- and m-plane sapphire, while further improvement is needed over the a-orientation. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  11. Optimization of excess Bi doping to enhance ferroic orders of spin casted BiFeO3 thin film

    International Nuclear Information System (INIS)

    Gupta, Surbhi; Gupta, Vinay; Tomar, Monika; James, A. R.; Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar

    2014-01-01

    Multiferroic Bismuth Ferrite (BiFeO 3 ) thin films with varying excess bismuth (Bi) concentration were grown by chemical solution deposition technique. Room temperature multiferroic properties (ferromagnetism, ferroelectricity, and piezoelectricity) of the deposited BiFeO 3 thin films have been studied. High resolution X-ray diffraction and Raman spectroscopy studies reveal that the dominant phases formed in the prepared samples change continuously from a mixture of BiFeO 3 and Fe 2 O 3 to pure BiFeO 3 phase and, subsequently, to a mixture of BiFeO 3 and Bi 2 O 3 with increase in the concentration of excess Bi from 0% to 15%. BiFeO 3 thin films having low content (0% and 2%) of excess Bi showed the traces of ferromagnetic phase (γ-Fe 2 O 3 ). Deterioration in ferroic properties of BiFeO 3 thin films is also observed when prepared with higher content (15%) of excess Bi. Single-phased BiFeO 3 thin film prepared with 5% excess Bi concentration exhibited the soft ferromagnetic hysteresis loops and ferroelectric characteristics with remnant polarization 4.2 μC/cm 2 and saturation magnetization 11.66 emu/g. The switching of fine spontaneous domains with applied dc bias has been observed using piezoresponse force microscopy in BiFeO 3 thin films having 5% excess Bi. The results are important to identify optimum excess Bi concentration needed for the formation of single phase BiFeO 3 thin films exhibiting the improved multiferroic properties.

  12. Optimization of excess Bi doping to enhance ferroic orders of spin casted BiFeO{sub 3} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Surbhi; Gupta, Vinay, E-mail: drguptavinay@gmail.com [Department of Physics and Astrophysics, University of Delhi, Delhi (India); Tomar, Monika [Department of Physics, Miranda Housea, University of Delhi, Delhi (India); James, A. R. [Defence Metallurgical Research Laboratory, Hyderabad (India); Pal, Madhuparna; Guo, Ruyan; Bhalla, Amar [Department of Electrical and Computer Engineering, College of Engineering, University of Texas at SanAntonio, San Antonio 78249 (United States)

    2014-06-21

    Multiferroic Bismuth Ferrite (BiFeO{sub 3}) thin films with varying excess bismuth (Bi) concentration were grown by chemical solution deposition technique. Room temperature multiferroic properties (ferromagnetism, ferroelectricity, and piezoelectricity) of the deposited BiFeO{sub 3} thin films have been studied. High resolution X-ray diffraction and Raman spectroscopy studies reveal that the dominant phases formed in the prepared samples change continuously from a mixture of BiFeO{sub 3} and Fe{sub 2}O{sub 3} to pure BiFeO{sub 3} phase and, subsequently, to a mixture of BiFeO{sub 3} and Bi{sub 2}O{sub 3} with increase in the concentration of excess Bi from 0% to 15%. BiFeO{sub 3} thin films having low content (0% and 2%) of excess Bi showed the traces of ferromagnetic phase (γ-Fe{sub 2}O{sub 3}). Deterioration in ferroic properties of BiFeO{sub 3} thin films is also observed when prepared with higher content (15%) of excess Bi. Single-phased BiFeO{sub 3} thin film prepared with 5% excess Bi concentration exhibited the soft ferromagnetic hysteresis loops and ferroelectric characteristics with remnant polarization 4.2 μC/cm{sup 2} and saturation magnetization 11.66 emu/g. The switching of fine spontaneous domains with applied dc bias has been observed using piezoresponse force microscopy in BiFeO{sub 3} thin films having 5% excess Bi. The results are important to identify optimum excess Bi concentration needed for the formation of single phase BiFeO{sub 3} thin films exhibiting the improved multiferroic properties.

  13. Multiple collinear magnetic arrangements in thin Mn films supported on Fe(001). Antiferromagnetic versus ferromagnetic behavior

    International Nuclear Information System (INIS)

    Martinez, E.; Vega, A.; Robles, R.; Vazquez de Parga, A.L.

    2005-01-01

    We present a theoretical study of the magnetic properties of thin Mn films of 6 and 7 monolayers supported on Fe(001). The ab-initio tight binding linear muffin tin orbital (TB-LMTO) method was used to investigate the competition between ferromagnetic (F) and antiferromagnetic (AF) couplings within the system. We found several collinear magnetic solutions that may coexist at room temperature. The most stable configurations are characterized by AF coupling between the surface and subsurface Mn layers together with F coupling between Mn and Fe at the interface. The ground state arrangements for the 6 and 7 Mn films display opposite sign of the surface magnetic moment relative to the Fe substrate. The implications of these results in the possible onset of non-collinear magnetism when a step is present at the interface are discussed in comparison with Cr/Fe systems where non-collinear magnetism has been recently reported

  14. Adsorption-controlled growth of BiFeO3 by MBE and integration with wide band gap semiconductors.

    Science.gov (United States)

    Ihlefeld, Jon F; Tian, Wei; Liu, Zi-Kui; Doolittle, W Alan; Bernhagen, Margitta; Reiche, Peter; Uecker, Reinhard; Ramesh, Ramamoorthy; Schlom, Darrell G

    2009-08-01

    BiFeO3 thin films have been deposited on (001) SrTiO3, (101) DyScO3, (011) DyScO3, (0001) AlGaN/GaN, and (0001) 6H-SiC single crystal substrates by reactive molecular beam epitaxy in an adsorption-controlled growth regime. This is achieved by supplying a bismuth over-pressure and utilizing the differential vapor pressures between bismuth oxides and BiFeO3 to control stoichiometry in accordance with thermodynamic calculations. Four-circle x-ray diffraction and transmission electron microscopy reveal phase-pure, epitaxial films with rocking curve full width at half maximum values as narrow as 7.2 arc seconds (0.002 degrees). Epitaxial growth of (0001)-oriented BiFeO3 thin films on (0001) GaN, including AlGaN HEMT structures, and (0001) SiC has been realized using intervening epitaxial (111) SrTiO3 / (100) TiO2 buffer layers. The epitaxial BiFeO3 thin films have 2 in-plane orientations: [1120] BiFeO3 || [1120] GaN (SiC) plus a twin variant related by a 180 degrees in-plane rotation. This epitaxial integration of the ferroelectric with the highest known polarization, BiFeO3, with high bandgap semiconductors is an important step toward novel field-effect devices.

  15. Perpendicular magnetic tunnel junction with thin CoFeB/Ta/Co/Pd/Co reference layer

    Energy Technology Data Exchange (ETDEWEB)

    Gan, Huadong, E-mail: huadong@avalanche-technology.com; Malmhall, Roger; Wang, Zihui; Yen, Bing K; Zhang, Jing; Wang, Xiaobin; Zhou, Yuchen; Hao, Xiaojie; Jung, Dongha; Satoh, Kimihiro; Huai, Yiming [Avalanche Technology, 46600 Landing Parkway, Fremont, California 94538 (United States)

    2014-11-10

    Integration of high density spin transfer torque magnetoresistance random access memory requires a thin stack (less than 15 nm) of perpendicular magnetic tunnel junction (p-MTJ). We propose an innovative approach to solve this challenging problem by reducing the thickness and/or moment of the reference layer. A thin reference layer structure of CoFeB/Ta/Co/Pd/Co has 60% magnetic moment of the conventional thick structure including [Co/Pd] multilayers. We demonstrate that the perpendicular magnetization of the CoFeB/Ta/Co/Pd/Co structure can be realized by anti-ferromagnetically coupling to a pinned layer with strong perpendicular anisotropy via Ruderman-Kittel-Kasuya-Yosida exchange interaction. The pMTJ with thin CoFeB/Ta/Co/Pd/Co reference layer has a comparable TMR ratio (near 80%) as that with thick reference layer after annealing at 280 °C. The pMTJ with thin reference layer has a total thickness less than 15 nm, thereby significantly increasing the etching margin required for integration of high density pMTJ array on wafers with form factor of 300 mm and beyond.

  16. The temperature dependence of magnetic anisotropy of Nd-Fe-B thin films

    Science.gov (United States)

    Sato, Takuya; Hashimoto, Ryuji; Tanaka, Yoshitomo; Suzuki, Kenichi; Enokido, Yasushi; Choi, Kyung-Ku; Suzuki, Takao

    2018-05-01

    The magnetic properties of Nd-Fe-B thin films with the three different compositions (#1: Nd12.6Fe81.5B5.9, #2: Nd14.6Fe78.1B7.4 and #3: Nd22.6Fe66.2B11.2) are discussed. With increasing Nd content, the c-axis orientation along the film normal is enhanced. It is found that sample #2 possesses the saturation magnetization Ms very close to that for Nd2Fe14B over a temperature range from 100 to about 300K. The magnetic anisotropy constant Ku2 for sample #2 is the highest among those samples, but smaller by about 20%, as compared to that for Nd2Fe14B. It is of interest to note that the temperature TR at which Ku1 changes its sign is lower by about 30K as compared to that previously reported for Nd2Fe14B. The reason for this discrepancy is not clear, but could be due to the presence of the minority phases of Nd-rich compounds and also a possible contribution of the magneto-elastic effect to the net magnetic anisotropy.

  17. Effects of strain on the magnetic and transport properties of the epitaxial La0.5Ca0.5MnO3 thin films

    Science.gov (United States)

    Zarifi, M.; Kameli, P.; Ehsani, M. H.; Ahmadvand, H.; Salamati, H.

    2016-12-01

    The epitaxial strain can considerably modify the physical properties of thin films compared to the bulk. This paper reports the effects of substrate-induced strain on La0.5Ca0.5MnO3 (LCMO) thin films, grown on (100) SrTiO3 (STO) and LaAlO3 (LAO) substrates by pulsed laser deposition technique. Transport and magnetic properties were found to be strongly dependent on strain type. It is also shown that compressive (tensile) strain leads to the increase (decrease) in the magnetization of the films. Moreover, it was observed that all LCMO films deposited on both LAO and STO substrates behave as an insulator, but LCMO/LAO thin films with compressive strain have lower resistivity than LCMO/STO thin films with tensile strain. Applying magnetic field to LCMO/STO thin films with thickness of 25 and 50 nm leads to very small change in the resistivity, while the effects of magnetic field on the sample with thickness of 125 nm leads to an insulator-metal transition. For LCMO/LAO thin films, the magnetic field has a strong impact on the resistivity of samples. The results show that the magnetoresistance (MR) is enhanced by increasing film thickness for LCMO/LAO samples, due to the relatively stronger phase separation. For LCMO/STO thin films MR is drastically decreased by reduction of film thickness, which is attributed to the enhancement of the charge-orbital order (CO-O) accompanying the complex spin order (the so-called CE type). The changes of the antiferromagnetic structure from the CE to C type and the enhancement of the CE type could be attributed to the in-plane compressive and tensile strain, respectively.

  18. Oxygen-induced immediate onset of the antiferromagnetic stacking in thin Cr films on Fe(001)

    Energy Technology Data Exchange (ETDEWEB)

    Berti, Giulia, E-mail: giulia.berti@polimi.it; Brambilla, Alberto; Calloni, Alberto; Bussetti, Gianlorenzo; Finazzi, Marco; Duò, Lamberto; Ciccacci, Franco [Dipartimento di Fisica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133 Milano (Italy)

    2015-04-20

    We investigated the magnetic coupling of ultra-thin Cr films grown at 600 K on a Fe(001)-p(1 × 1)O substrate by means of spin-polarized photoemission spectroscopy. Our findings show that the expected antiferromagnetic stacking of the magnetization in Cr(001) layers occurs right from the first atomic layer at the Cr/Fe interface. This is at variance with all previous observations in similar systems, prepared in oxygen-free conditions, which always reported on a delayed onset of the magnetic oscillations due to the occurrence of significant chemical alloying at the interface, which is substantially absent in our preparation.

  19. High-Performance Flexible Thin-Film Transistors Based on Single-Crystal-like Silicon Epitaxially Grown on Metal Tape by Roll-to-Roll Continuous Deposition Process.

    Science.gov (United States)

    Gao, Ying; Asadirad, Mojtaba; Yao, Yao; Dutta, Pavel; Galstyan, Eduard; Shervin, Shahab; Lee, Keon-Hwa; Pouladi, Sara; Sun, Sicong; Li, Yongkuan; Rathi, Monika; Ryou, Jae-Hyun; Selvamanickam, Venkat

    2016-11-02

    Single-crystal-like silicon (Si) thin films on bendable and scalable substrates via direct deposition are a promising material platform for high-performance and cost-effective devices of flexible electronics. However, due to the thick and unintentionally highly doped semiconductor layer, the operation of transistors has been hampered. We report the first demonstration of high-performance flexible thin-film transistors (TFTs) using single-crystal-like Si thin films with a field-effect mobility of ∼200 cm 2 /V·s and saturation current, I/l W > 50 μA/μm, which are orders-of-magnitude higher than the device characteristics of conventional flexible TFTs. The Si thin films with a (001) plane grown on a metal tape by a "seed and epitaxy" technique show nearly single-crystalline properties characterized by X-ray diffraction, Raman spectroscopy, reflection high-energy electron diffraction, and transmission electron microscopy. The realization of flexible and high-performance Si TFTs can establish a new pathway for extended applications of flexible electronics such as amplification and digital circuits, more than currently dominant display switches.

  20. Epitaxial growth of branched {alpha}-Fe{sub 2}O{sub 3}/SnO{sub 2} nano-heterostructures with improved lithium-ion battery performance

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Weiwei; Cheng, Chuanwei; Jia, Xingtao; Yu, Ting; Fan, Hong Jin [Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371 (Singapore); Liu, Jinping; Jiang, Jian [Institute of Nanoscience and Nanotechnology, Department of Physics, Huazhong Normal University, Wuhan 430079 (China); Tay, Yee Yan; Hng, Huey Hoon [School of Materials Science and Engineering, Nanyang Technological University, 639798 (Singapore); Zhang, Jixuan; Gong, Hao [Department of Materials Science and Engineering, National University of Singapore, 117576 (Singapore)

    2011-07-08

    We report the synthesis of a novel branched nano-heterostructure composed of SnO{sub 2} nanowire stem and {alpha}-Fe{sub 2}O{sub 3} nanorod branches by combining a vapour transport deposition and a facile hydrothermal method. The epitaxial relationship between the branch and stem is investigated by high resolution transmission electron microscopy (HRTEM). The SnO{sub 2} nanowire is determined to grow along the [101] direction, enclosed by four side surfaces. The results indicate that distinct crystallographic planes of SnO{sub 2} stem can induce different preferential growth directions of secondary nanorod branches, leading to six-fold symmetry rather than four-fold symmetry. Moreover, as a proof-of-concept demonstration of the function, such {alpha}-Fe{sub 2}O{sub 3}/SnO{sub 2} composite material is used as a lithium-ion batteries (LIBs) anode material. Low initial irreversible loss and high reversible capacity are demonstrated, in comparison to both single components. The synergetic effect exerted by SnO{sub 2} and {alpha}-Fe{sub 2}O{sub 3} as well as the unique branched structure are probably responsible for the enhanced performance. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)