WorldWideScience

Sample records for thin cirrus cloud

  1. The effect of optically thin cirrus clouds on solar radiation in Camagüey, Cuba

    Directory of Open Access Journals (Sweden)

    B. Barja

    2011-08-01

    Full Text Available The effect of optically thin cirrus clouds on solar radiation is analyzed by numerical simulation, using lidar measurements of cirrus conducted at Camagüey, Cuba. Sign and amplitude of the cirrus clouds effect on solar radiation is evaluated. There is a relation between the solar zenith angle and solar cirrus cloud radiative forcing (SCRF present in the diurnal cycle of the SCRF. Maximums of SCRF out of noon located at the cirrus cloud base height are found for the thin and opaque cirrus clouds. The cirrus clouds optical depth (COD threshold for having double SCRF maximum out of noon instead of a single one at noon was 0.083. In contrast, the heating rate shows a maximum at noon in the location of cirrus clouds maximum extinction values. Cirrus clouds have a cooling effect in the solar spectrum at the Top of the Atmosphere (TOA and at the surface (SFC. The daily mean value of SCRF has an average value of −9.1 W m−2 at TOA and −5.6 W m−2 at SFC. The cirrus clouds also have a local heating effect on the atmospheric layer where they are located. Cirrus clouds have mean daily values of heating rates of 0.63 K day−1 with a range between 0.35 K day−1 and 1.24 K day−1. The principal effect is in the near-infrared spectral band of the solar spectrum. There is a linear relation between SCRF and COD, with −30 W m−2 COD−1 and −26 W m−2 COD−1, values for the slopes of the fits at the TOA and SFC, respectively, in the broadband solar spectrum.

  2. Strategies for cloud-top phase determination: differentiation between thin cirrus clouds and snow in manual (ground truth) analyses

    Science.gov (United States)

    Hutchison, Keith D.; Etherton, Brian J.; Topping, Phillip C.

    1996-12-01

    Quantitative assessments on the performance of automated cloud analysis algorithms require the creation of highly accurate, manual cloud, no cloud (CNC) images from multispectral meteorological satellite data. In general, the methodology to create ground truth analyses for the evaluation of cloud detection algorithms is relatively straightforward. However, when focus shifts toward quantifying the performance of automated cloud classification algorithms, the task of creating ground truth images becomes much more complicated since these CNC analyses must differentiate between water and ice cloud tops while ensuring that inaccuracies in automated cloud detection are not propagated into the results of the cloud classification algorithm. The process of creating these ground truth CNC analyses may become particularly difficult when little or no spectral signature is evident between a cloud and its background, as appears to be the case when thin cirrus is present over snow-covered surfaces. In this paper, procedures are described that enhance the researcher's ability to manually interpret and differentiate between thin cirrus clouds and snow-covered surfaces in daytime AVHRR imagery. The methodology uses data in up to six AVHRR spectral bands, including an additional band derived from the daytime 3.7 micron channel, which has proven invaluable for the manual discrimination between thin cirrus clouds and snow. It is concluded that while the 1.6 micron channel remains essential to differentiate between thin ice clouds and snow. However, this capability that may be lost if the 3.7 micron data switches to a nighttime-only transmission with the launch of future NOAA satellites.

  3. Climatology analysis of cirrus cloud in ARM site: South Great Plain

    Science.gov (United States)

    Olayinka, K.

    2017-12-01

    Cirrus cloud play an important role in the atmospheric energy balance and hence in the earth's climate system. The properties of optically thin clouds can be determined from measurements of transmission of the direct solar beam. The accuracy of cloud optical properties determined in this way is compromised by contamination of the direct transmission by light that is scattered into the sensors field of view. With the forward scattering correction method developed by Min et al., (2004), the accuracy of thin cloud retrievals from MFRSR has been improved. Our result shows over 30% of cirrus cloud present in the atmosphere are within optical depth between (1-2). In this study, we do statistics studies on cirrus clouds properties based on multi-years cirrus cloud measurements from MFRSR at ARM site from the South Great Plain (SGP) site due to its relatively easy accessibility, wide variability of climate cloud types and surface flux properties, large seasonal variation in temperature and specific humidity. Through the statistic studies, temporal and spatial variations of cirrus clouds are investigated. Since the presence of cirrus cloud increases the effect of greenhouse gases, we will retrieve the aerosol optical depth in all the cirrus cloud regions using a radiative transfer model for atmospheric correction. Calculate thin clouds optical depth (COD), and aerosol optical depth (AOD) using a radiative transfer model algorithm, e.g.: MODTRAN (MODerate resolution atmospheric TRANsmission)

  4. Radiative-dynamical and microphysical processes of thin cirrus clouds controlling humidity of air entering the stratosphere

    Science.gov (United States)

    Dinh, Tra; Fueglistaler, Stephan

    2016-04-01

    Thin cirrus clouds in the tropical tropopause layer (TTL) are of great interest due to their role in the control of water vapor and temperature in the TTL. Previous research on TTL cirrus clouds has focussed mainly on microphysical processes, specifically the ice nucleation mechanism and dehydration efficiency. Here, we use a cloud resolving model to analyse the sensitivity of TTL cirrus characteristics and impacts with respect to microphysical and radiative processes. A steady-state TTL cirrus cloud field is obtained in the model forced with dynamical conditions typical for the TTL (2-dimensional setup with a Kelvin-wave temperature perturbation). Our model results show that the dehydration efficiency (as given by the domain average relative humidity in the layer of cloud occurrence) is relatively insensitive to the ice nucleation mechanism, i.e. homogeneous versus heterogeneous nucleation. Rather, TTL cirrus affect the water vapor entering the stratosphere via an indirect effect associated with the cloud radiative heating and dynamics. Resolving the cloud radiative heating and the radiatively induced circulations approximately doubles the domain average ice mass. The cloud radiative heating is proportional to the domain average ice mass, and the observed increase in domain average ice mass induces a domain average temperature increase of a few Kelvin. The corresponding increase in water vapor entering the stratosphere is estimated to be about 30 to 40%.

  5. Insights on the Feasibility, Modeling and Field Testing of Cirrus Cloud Thinning from Satellite Remote Sensing

    Science.gov (United States)

    Mitchell, D. L.; Garnier, A.; Mejia, J.; Avery, M. A.; Erfani, E.

    2016-12-01

    To date, it is not clear whether the climate intervention method known as cirrus cloud thinning (CCT) can be viable since it requires cirrus clouds to form through homogeneous ice nucleation (henceforth hom) and some recent GCM studies predict cirrus are formed primarily through heterogeneous ice nucleation (henceforth het). A new CALIPSO infrared retrieval method has been developed for single-layer cirrus cloud that measures the temperature dependence of their layer-averaged number concentration N, effective diameter De and ice water content for optical depths (OD) between 0.3 and 3.0. Based on N, the prevailing ice nucleation mechanism (hom or het) can be estimated as a function of temperature, season, latitude and surface type. These satellite results indicate that seeding cirrus clouds at high latitudes during winter may produce significant global surface cooling. This is because hom often appears to dominate over land during winter north of 30°N latitude while the same appears true for most of the Southern Hemisphere (south of 30°S) during all seasons. Moreover, the sampled cirrus cloud frequency of occurrence in the Arctic is at least twice as large during winter relative to other seasons, while frequency of occurrence in the Antarctic peaks in the spring and is second-highest during winter. During Arctic winter, a combination of frequent hom cirrus, maximum cirrus coverage and an extreme or absent sun angle produces the maximum seasonal cirrus net radiative forcing (warming). Thus a reduction in OD and coverage (via CCT) for these cirrus clouds could yield a significant net cooling effect. From these CALIPSO retrievals, De-T relationships are generated as a function of season, latitude and surface type (land vs. ocean). These will be used in CAM5 to estimate De and the ice fall speed, from which the cirrus radiative forcing will be estimated during winter north of 30°latitude, where hom cirrus are common. Another CAM5 simulation will replace the hom

  6. Investigation of tropical cirrus cloud properties using ground based lidar measurements

    Science.gov (United States)

    Dhaman, Reji K.; Satyanarayana, Malladi; Krishnakumar, V.; Mahadevan Pillai, V. P.; Jayeshlal, G. S.; Raghunath, K.; Venkat Ratnam, M.

    2016-05-01

    Cirrus clouds play a significant role in the Earths radiation budget. Therefore, knowledge of geometrical and optical properties of cirrus cloud is essential for the climate modeling. In this paper, the cirrus clouds microphysical and optical properties are made by using a ground based lidar measurements over an inland tropical station Gadanki (13.5°N, 79.2°E), Andhra Pradesh, India. The variation of cirrus microphysical and optical properties with mid cloud temperature is also studied. The cirrus clouds mean height is generally observed in the range of 9-17km with a peak occurrence at 13- 14km. The cirrus mid cloud temperature ranges from -81°C to -46°C. The cirrus geometrical thickness ranges from 0.9- 4.5km. During the cirrus occurrence days sub-visual, thin and dense cirrus were at 37.5%, 50% and 12.5% respectively. The monthly cirrus optical depth ranges from 0.01-0.47, but most (<80%) of the cirrus have values less than 0.1. Optical depth shows a strong dependence with cirrus geometrical thickness and mid-cloud height. The monthly mean cirrus extinction ranges from 2.8E-06 to 8E-05 and depolarization ratio and lidar ratio varies from 0.13 to 0.77 and 2 to 52 sr respectively. A positive correlation exists for both optical depth and extinction with the mid-cloud temperature. The lidar ratio shows a scattered behavior with mid-cloud temperature.

  7. A microphysics guide to cirrus clouds – Part 1: Cirrus types

    Directory of Open Access Journals (Sweden)

    M. Krämer

    2016-03-01

    Full Text Available The microphysical and radiative properties of cirrus clouds continue to be beyond understanding and thus still represent one of the largest uncertainties in the prediction of the Earth's climate (IPCC, 2013. Our study aims to provide a guide to cirrus microphysics, which is compiled from an extensive set of model simulations, covering the broad range of atmospheric conditions for cirrus formation and evolution. The model results are portrayed in the same parameter space as field measurements, i.e., in the Ice Water Content-Temperature (IWC-T parameter space. We validate this cirrus analysis approach by evaluating cirrus data sets from 17 aircraft campaigns, conducted in the last 15 years, spending about 94 h in cirrus over Europe, Australia, Brazil as well as South and North America. Altogether, the approach of this study is to track cirrus IWC development with temperature by means of model simulations, compare with observations and then assign, to a certain degree, cirrus microphysics to the observations. Indeed, the field observations show characteristics expected from the simulated Cirrus Guide. For example, high (low IWCs are found together with high (low ice crystal concentrations Nice. An important finding from our study is the classification of two types of cirrus with differing formation mechanisms and microphysical properties: the first cirrus type forms directly as ice (in situ origin cirrus and splits in two subclasses, depending on the prevailing strength of the updraft: in slow updrafts these cirrus are rather thin with lower IWCs, while in fast updrafts thicker cirrus with higher IWCs can form. The second type consists predominantly of thick cirrus originating from mixed phase clouds (i.e., via freezing of liquid droplets – liquid origin cirrus, which are completely glaciated while lifting to the cirrus formation temperature region (< 235 K. In the European field campaigns, slow updraft in situ origin cirrus occur frequently in

  8. Macrophysical and optical properties of mid-latitude cirrus clouds over a semi-arid area observed by micro-pulse lidar

    International Nuclear Information System (INIS)

    Wang, Jin; Zhang, Lei; Huang, Jianping; Cao, Xianjie; Liu, Ruijin; Zhou, Bi; Wang, Hongbin; Huang, Zhongwei; Bi, Jianrong; Zhou, Tian; Zhang, Beidou; Wang, Tengjiao

    2013-01-01

    Macrophysical and optical characteristics of cirrus clouds were investigated at the Semi-Arid Climate Observatory and Laboratory (SACOL; 35.95°N, 104.14°E) of Lanzhou University in northwest China during April to December 2007 using micro-pulse lidar data and profiling radiometer measurements. Analysis of the measurements allowed the determination of macrophysical properties such as cirrus cloud height, ambient temperature, and geometrical depth, and optical characteristics were determined in terms of optical depth, extinction coefficient, and lidar ratio. Cirrus clouds were generally observed at heights ranging from 5.8 to 12.7 km, with a mean of 9.0±1.0 km. The mean cloud geometrical depth and optical depth were found to be 2.0±0.6 km and 0.350±0.311, respectively. Optical depth increased linearly with increasing geometrical depth. The results derived from lidar signals showed that cirrus over SACOL consisted of thin cirrus and opaque cirrus which occurred frequently in the height of 8–10 km. The lidar ratio varied from 5 to 70 sr, with a mean value of 26±16 sr, after taking into account multiple scattering effects. The mean lidar ratio of thin cirrus was greater than that of opaque cirrus. The maximum lidar ratio appeared between 0.058 and 0.3 when plotted against optical depth. The lidar ratio increased exponentially as the optical depth increased. The maximum lidar ratio fell between 11 and 12 km when plotted against cloud mid-height. The lidar ratio first increased and then decreased with increasing mid-height. -- Highlights: ► Cirrus clouds over semi-arid area were firstly observed by ground-based lidar. ► Macrophysical and optical characteristics of cirrus clouds were discussed. ► Thin cirrus and opaque cirrus occurred most frequently over SACOL. ► Thin cirrus often occurred above 10 km

  9. Properties of CIRRUS Overlapping Clouds as Deduced from the GOES-12 Imagery Data

    Science.gov (United States)

    Chang, Fu-Lung; Minnis, Patrick; Lin, Bing; Sun-Mack, Sunny; Khaiyer, Mandana

    2006-01-01

    Understanding the impact of cirrus clouds on modifying both the solar reflected and terrestrial emitted radiations is crucial for climate studies. Unlike most boundary layer stratus and stratocumulus clouds that have a net cooling effect on the climate, high-level thin cirrus clouds can have a warming effect on our climate. Many research efforts have been devoted to retrieving cirrus cloud properties due to their ubiquitous presence. However, using satellite observations to detect and/or retrieve cirrus cloud properties faces two major challenges. First, they are often semitransparent at visible to infrared wavelengths; and secondly, they often occur over a lower cloud system. The overlapping of high-level cirrus and low-level stratus cloud poses a difficulty in determining the individual cloud top altitudes and optical properties, especially when the signals from cirrus clouds are overwhelmed by the signals of stratus clouds. Moreover, the operational satellite retrieval algorithms, which often assume only single layer cloud in the development of cloud retrieval techniques, cannot resolve the cloud overlapping situation properly. The new geostationary satellites, starting with the Twelfth Geostationary Operational Environmental Satellite (GOES-12), are providing a new suite of imager bands that have replaced the conventional 12-micron channel with a 13.3-micron CO2 absorption channel. The replacement of the 13.3-micron channel allows for the application of a CO2-slicing retrieval technique (Chahine et al. 1974; Smith and Platt 1978), which is one of the important passive satellite methods for remote sensing the altitudes of mid to high-level clouds. Using the CO2- slicing technique is more effective in detecting semitransparent cirrus clouds than using the conventional infrared-window method.

  10. Characterisation of the artificial neural network CiPS for cirrus cloud remote sensing with MSG/SEVIRI

    Directory of Open Access Journals (Sweden)

    J. Strandgren

    2017-11-01

    Full Text Available Cirrus clouds remain one of the key uncertainties in atmospheric research. To better understand the properties and physical processes of cirrus clouds, accurate large-scale observations from satellites are required. Artificial neural networks (ANNs have proved to be a useful tool for cirrus cloud remote sensing. Since physics is not modelled explicitly in ANNs, a thorough characterisation of the networks is necessary. In this paper the CiPS (Cirrus Properties from SEVIRI algorithm is characterised using the space-borne lidar CALIOP. CiPS is composed of a set of ANNs for the cirrus cloud detection, opacity identification and the corresponding cloud top height, ice optical thickness and ice water path retrieval from the imager SEVIRI aboard the geostationary Meteosat Second Generation satellites. First, the retrieval accuracy is characterised with respect to different land surface types. The retrieval works best over water and vegetated surfaces, whereas a surface covered by permanent snow and ice or barren reduces the cirrus detection ability and increases the retrieval errors for the ice optical thickness and ice water path if the cirrus cloud is thin (optical thickness less than approx. 0.3. Second, the retrieval accuracy is characterised with respect to the vertical arrangement of liquid, ice clouds and aerosol layers as derived from CALIOP lidar data. The CiPS retrievals show little interference from liquid water clouds and aerosol layers below an observed cirrus cloud. A liquid water cloud vertically close or adjacent to the cirrus clearly increases the average retrieval errors for the optical thickness and ice water path, respectively, only for thin cirrus clouds with an optical thickness below 0.3 or ice water path below 5.0 g m−2. For the cloud top height retrieval, only aerosol layers affect the retrieval error, with an increased positive bias when the cirrus is at low altitudes. Third, the CiPS retrieval error is

  11. Measurement errors in cirrus cloud microphysical properties

    Directory of Open Access Journals (Sweden)

    H. Larsen

    Full Text Available The limited accuracy of current cloud microphysics sensors used in cirrus cloud studies imposes limitations on the use of the data to examine the cloud's broadband radiative behaviour, an important element of the global energy balance. We review the limitations of the instruments, PMS probes, most widely used for measuring the microphysical structure of cirrus clouds and show the effect of these limitations on descriptions of the cloud radiative properties. The analysis is applied to measurements made as part of the European Cloud and Radiation Experiment (EUCREX to determine mid-latitude cirrus microphysical and radiative properties.

    Key words. Atmospheric composition and structure (cloud physics and chemistry · Meteorology and atmospheric dynamics · Radiative processes · Instruments and techniques

  12. Aviation effects on already-existing cirrus clouds.

    Science.gov (United States)

    Tesche, Matthias; Achtert, Peggy; Glantz, Paul; Noone, Kevin J

    2016-06-21

    Determining the effects of the formation of contrails within natural cirrus clouds has proven to be challenging. Quantifying any such effects is necessary if we are to properly account for the influence of aviation on climate. Here we quantify the effect of aircraft on the optical thickness of already-existing cirrus clouds by matching actual aircraft flight tracks to satellite lidar measurements. We show that there is a systematic, statistically significant increase in normalized cirrus cloud optical thickness inside mid-latitude flight tracks compared with adjacent areas immediately outside the tracks.

  13. On the distribution of relative humidity in cirrus clouds

    Directory of Open Access Journals (Sweden)

    P. Spichtinger

    2004-01-01

    Full Text Available We have analysed relative humidity statistics from measurements in cirrus clouds taken unintentionally during the Measurement of OZone by Airbus In-service airCraft project (MOZAIC. The shapes of the in-cloud humidity distributions change from nearly symmetric in relatively warm cirrus (warmer than −40°C to considerably positively skew (i.e. towards high humidities in colder clouds. These results are in agreement to findings obtained recently from the INterhemispheric differences in Cirrus properties from Anthropogenic emissions (INCA campaign (Ovarlez et al., 2002. We interprete the temperature dependence of the shapes of the humidity distributions as an effect of the length of time a cirrus cloud needs from formation to a mature equilibrium stage, where the humidity is close to saturation. The duration of this transitional period increases with decreasing temperature. Hence cold cirrus clouds are more often met in the transitional stage than warm clouds.

  14. Cirrus cloud-temperature interactions in the tropical tropopause layer: a case study

    Directory of Open Access Journals (Sweden)

    J. R. Taylor

    2011-10-01

    Full Text Available Thin cirrus clouds in the Tropical Tropopause Layer (TTL have important ramifications for radiative transfer, stratospheric humidity, and vertical transport. A horizontally extensive and vertically thin cirrus cloud in the TTL was detected by the Cloud Aerosol LIDAR and Infrared Pathfinder Satellite Observations (CALIPSO on 27–29 January 2009 in the Tropical Eastern Pacific region, distant from any regions of deep convection. These observations indicate that the cloud is close to 3000 km in length along the CALIPSO orbit track. Measurements over this three day period indicate that the cloud event extended over a region from approximately 15° S to 10° N and 90° W to 150° W and may be one of the most extensive cirrus events ever observed. Coincident temperature observations from the Constellation of Observing Satellites for Meteorology, Ionosphere, and Climate (COSMIC suggest that the cloud formed in-situ as a result of a cold anomaly arising from a midlatitude intrusion. The event appears to last for up to 2 days and the temperature observations do not show any indication of the expected infrared heating. It is hypothesized that the cloud could be maintained by either nucleation of numerous small ice crystals that don't sediment or by multiple localized ice nucleation events driven by temperature variability at scales smaller than the overall cloud field, producing small ice-crystal sizes which have sufficiently long residence times (≈53 h to maintain the cloud. It is possible that the residence times are augmented by vertical motion which could also act to offset the expected infrared heating. Further observations of similar events will be required in order to conclusively explain this curious cloud.

  15. Microphysical parameters of cirrus clouds using lidar at a tropical station, Gadanki, Tirupati (13.5° N, 79.2°E), India

    Science.gov (United States)

    Satyanarayana, M.; Radhakrishnan, S.-R.; Krishnakumar, V.; Mahadevan Pillai, V. P.; Raghunath, K.

    2008-12-01

    Cirrus clouds have been identified as one of the most uncertain component in the atmospheric research. It is known that cirrus clouds modulate the earth's climate through direct and indirect modification of radiation. The role of cirrus clouds depends mainly on their microphysical properties. To understand cirrus clouds better, we must observe and characterize their properties. In-situ observation of such clouds is a challenging experiment, as the clouds are located at high altitudes. Active remote sensing method based on lidar can detect high and thin cirrus clouds with good spatial and temporal resolution. We present the result obtained on the microphysical properties of the cirrus clouds at two Tropical stations namely Gadhanki, Tirupati (13.50 N, 79.20 E), India and Trivandrum (13.50 N, 770 E) Kerala, India from the ground based pulsed Nd: YAG lidar systems installed at the stations. A variant of the widely used Klett's lidar inversion method with range dependent scattering ratio is used for the present study for the retrieval of aerosol extinction and microphysical parameters of cirrus cloud.

  16. Optical and geometrical properties of cirrus clouds in Amazonia derived from 1 year of ground-based lidar measurements

    Science.gov (United States)

    Gouveia, Diego A.; Barja, Boris; Barbosa, Henrique M. J.; Seifert, Patric; Baars, Holger; Pauliquevis, Theotonio; Artaxo, Paulo

    2017-03-01

    Cirrus clouds cover a large fraction of tropical latitudes and play an important role in Earth's radiation budget. Their optical properties, altitude, vertical and horizontal coverage control their radiative forcing, and hence detailed cirrus measurements at different geographical locations are of utmost importance. Studies reporting cirrus properties over tropical rain forests like the Amazon, however, are scarce. Studies with satellite profilers do not give information on the diurnal cycle, and the satellite imagers do not report on the cloud vertical structure. At the same time, ground-based lidar studies are restricted to a few case studies. In this paper, we derive the first comprehensive statistics of optical and geometrical properties of upper-tropospheric cirrus clouds in Amazonia. We used 1 year (July 2011 to June 2012) of ground-based lidar atmospheric observations north of Manaus, Brazil. This dataset was processed by an automatic cloud detection and optical properties retrieval algorithm. Upper-tropospheric cirrus clouds were observed more frequently than reported previously for tropical regions. The frequency of occurrence was found to be as high as 88 % during the wet season and not lower than 50 % during the dry season. The diurnal cycle shows a minimum around local noon and maximum during late afternoon, associated with the diurnal cycle of precipitation. The mean values of cirrus cloud top and base heights, cloud thickness, and cloud optical depth were 14.3 ± 1.9 (SD) km, 12.9 ± 2.2 km, 1.4 ± 1.1 km, and 0.25 ± 0.46, respectively. Cirrus clouds were found at temperatures down to -90 °C. Frequently cirrus were observed within the tropical tropopause layer (TTL), which are likely associated to slow mesoscale uplifting or to the remnants of overshooting convection. The vertical distribution was not uniform, and thin and subvisible cirrus occurred more frequently closer to the tropopause. The mean lidar ratio was 23.3 ± 8.0 sr. However, for

  17. Remote sensing of contrails and aircraft altered cirrus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Palikonda, R.; Nguyen, L.; Garber, D.P.; Smith, W.L. Jr [Analytical Services and Materials, Inc., Hampton, VA (United States); Minnis, P.; Young, D.F. [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center

    1997-12-31

    Analyses of satellite imagery are used to show that contrails can develop into fully extended cirrus cloud systems. Contrails can be advective on great distances, but would appear to observers as natural cirrus clouds. The conversion of simple contrails into cirrus may help explain the apparent increase of cloudiness over populated areas since the beginning of commercial jet air travel. Statistics describing the typical growth, advection, and lifetime of contrail cirrus is needed to evaluate their effects on climate. (author) 4 refs.

  18. Remote sensing of contrails and aircraft altered cirrus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Palikonda, R; Nguyen, L; Garber, D P; Smith, Jr, W L [Analytical Services and Materials, Inc., Hampton, VA (United States); Minnis, P; Young, D F [National Aeronautics and Space Administration, Hampton, VA (United States). Langley Research Center

    1998-12-31

    Analyses of satellite imagery are used to show that contrails can develop into fully extended cirrus cloud systems. Contrails can be advective on great distances, but would appear to observers as natural cirrus clouds. The conversion of simple contrails into cirrus may help explain the apparent increase of cloudiness over populated areas since the beginning of commercial jet air travel. Statistics describing the typical growth, advection, and lifetime of contrail cirrus is needed to evaluate their effects on climate. (author) 4 refs.

  19. Long-term trend analysis and climatology of tropical cirrus clouds using 16 years of lidar data set over Southern India

    Science.gov (United States)

    Pandit, A. K.; Gadhavi, H. S.; Venkat Ratnam, M.; Raghunath, K.; Rao, S. V. B.; Jayaraman, A.

    2015-12-01

    Sixteen-year (1998-2013) climatology of cirrus clouds and their macrophysical (base height, top height and geometrical thickness) and optical properties (cloud optical thickness) observed using a ground-based lidar over Gadanki (13.5° N, 79.2° E), India, is presented. The climatology obtained from the ground-based lidar is compared with the climatology obtained from 7 and a half years (June 2006-December 2013) of Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) observations. A very good agreement is found between the two climatologies in spite of their opposite viewing geometries and the differences in sampling frequencies. Nearly 50-55 % of cirrus clouds were found to possess geometrical thickness less than 2 km. Ground-based lidar is found to detect a higher number of sub-visible clouds than CALIOP which has implications for global warming studies as sub-visible cirrus clouds have significant positive radiative forcing. Cirrus clouds with mid-cloud temperatures between -50 to -70 °C have a mean geometrical thickness greater than 2 km in contrast to the earlier reported value of 1.7 km. Trend analyses reveal a statistically significant increase in the altitude of sub-visible cirrus clouds which is consistent with the recent climate model simulations. The mid-cloud altitude of sub-visible cirrus clouds is found to be increasing at the rate of 41 ± 21 m year-1. Statistically significant decrease in optical thickness of sub-visible and thick cirrus clouds is observed. Also, the fraction of sub-visible cirrus cloud is found to have increased by 9 % in the last 16 years (1998 to 2013). This increase is mainly compensated by a 7 % decrease in thin cirrus cloud fraction. This has implications for the temperature and water vapour budget in the tropical tropopause layer.

  20. Modeling of Cloud/Radiation Processes for Cirrus Cloud Formation

    National Research Council Canada - National Science Library

    Liou, K

    1997-01-01

    This technical report includes five reprints and pre-prints of papers associated with the modeling of cirrus cloud and radiation processes as well as remote sensing of cloud optical and microphysical...

  1. Fractal properties and denoising of lidar signals from cirrus clouds

    NARCIS (Netherlands)

    Heuvel, J.C. van den; Driesenaar, M.L.; Lerou, R.J.L.

    2000-01-01

    Airborne lidar signals of cirrus clouds are analyzed to determine the cloud structure. Climate modeling and numerical weather prediction benefit from accurate modeling of cirrus clouds. Airborne lidar measurements of the European Lidar in Space Technology Experiment (ELITE) campaign were analyzed by

  2. Modification of cirrus clouds to reduce global warming

    International Nuclear Information System (INIS)

    Mitchell, David L; Finnegan, William

    2009-01-01

    Greenhouse gases and cirrus clouds regulate outgoing longwave radiation (OLR) and cirrus cloud coverage is predicted to be sensitive to the ice fall speed which depends on ice crystal size. The higher the cirrus, the greater their impact is on OLR. Thus by changing ice crystal size in the coldest cirrus, OLR and climate might be modified. Fortunately the coldest cirrus have the highest ice supersaturation due to the dominance of homogeneous freezing nucleation. Seeding such cirrus with very efficient heterogeneous ice nuclei should produce larger ice crystals due to vapor competition effects, thus increasing OLR and surface cooling. Preliminary estimates of this global net cloud forcing are more negative than -2.8 W m -2 and could neutralize the radiative forcing due to a CO 2 doubling (3.7 W m -2 ). A potential delivery mechanism for the seeding material is already in place: the airline industry. Since seeding aerosol residence times in the troposphere are relatively short, the climate might return to its normal state within months after stopping the geoengineering experiment. The main known drawback to this approach is that it would not stop ocean acidification. It does not have many of the drawbacks that stratospheric injection of sulfur species has.

  3. Modification of cirrus clouds to reduce global warming

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, David L; Finnegan, William, E-mail: david.mitchell@dri.ed [Desert Research Institute, Reno, NV 89512-1095 (United States)

    2009-10-15

    Greenhouse gases and cirrus clouds regulate outgoing longwave radiation (OLR) and cirrus cloud coverage is predicted to be sensitive to the ice fall speed which depends on ice crystal size. The higher the cirrus, the greater their impact is on OLR. Thus by changing ice crystal size in the coldest cirrus, OLR and climate might be modified. Fortunately the coldest cirrus have the highest ice supersaturation due to the dominance of homogeneous freezing nucleation. Seeding such cirrus with very efficient heterogeneous ice nuclei should produce larger ice crystals due to vapor competition effects, thus increasing OLR and surface cooling. Preliminary estimates of this global net cloud forcing are more negative than -2.8 W m{sup -2} and could neutralize the radiative forcing due to a CO{sub 2} doubling (3.7 W m{sup -2}). A potential delivery mechanism for the seeding material is already in place: the airline industry. Since seeding aerosol residence times in the troposphere are relatively short, the climate might return to its normal state within months after stopping the geoengineering experiment. The main known drawback to this approach is that it would not stop ocean acidification. It does not have many of the drawbacks that stratospheric injection of sulfur species has.

  4. Removal of Thin Cirrus Path Radiances in the 0.4-1.0 micron Spectral Region Using the 1.375-micron Strong Water Vapor Absorption Channel

    Science.gov (United States)

    Gao, Bo-Cai; Kaufman, Yoram J.; Han, Wei; Wiscombe, Warren J.

    1998-01-01

    Through analysis of spectral imaging data acquired with the Airborne Visible Infrared Imaging Spectrometer (AVIRIS) from an ER-2 aircraft at 20 km altitude during several field programs, it was found that narrow channels near the center of the strong 1.38-micron water vapor band are very sensitive in detecting thin cirrus clouds. Based on this observation from AVIRIS data, a channel centered at 1.375 microns with a width of 30 nm was selected for the Moderate Resolution Imaging Spectrometer (MODIS) for remote sensing of cirrus clouds from space. The sensitivity of the 1.375-micron MODIS channel to detect thin cirrus clouds during the day time is expected to be one to two orders of magnitude better than the current infrared emission techniques. As a result, a larger fraction of the satellite data will likely be identified as containing cirrus clouds. In order to make better studies of surface reflectance properties, thin cirrus effects must be removed from satellite images. We have developed an empirical approach for removing/correcting thin cirrus effects in the 0.4 - 1.0 micron region using channels near 1.375 microns. This algorithm will be incorporated into the present MODIS atmospheric correction algorithms for ocean color and land applications and will yield improved MODIS atmospheric aerosol, land surface, and ocean color products.

  5. Validation of POLDER/ADEOS data using a ground-based lidar network: Preliminary results for semi-transparent and cirrus clouds

    Science.gov (United States)

    Chepfer, H.; Sauvage, L.; Flamant, P. H.; Pelon, J.; Goloub, P.; Brogniez, G.; spinhirne, J.; Lavorato, M.; Sugimoto, N.

    1998-01-01

    At mid and tropical latitudes, cirrus clouds are present more than 50% of the time in satellites observations. Due to their large spatial and temporal coverage, and associated low temperatures, cirrus clouds have a major influence on the Earth-Ocean-Atmosphere energy balance through their effects on the incoming solar radiation and outgoing infrared radiation. At present the impact of cirrus clouds on climate is well recognized but remains to be asserted more precisely, for their optical and radiative properties are not very well known. In order to understand the effects of cirrus clouds on climate, their optical and radiative characteristics of these clouds need to be determined accurately at different scales in different locations i.e. latitude. Lidars are well suited to observe cirrus clouds, they can detect very thin and semi-transparent layers, and retrieve the clouds geometrical properties i.e. altitude and multilayers, as well as radiative properties i.e. optical depth, backscattering phase functions of ice crystals. Moreover the linear depolarization ratio can give information on the ice crystal shape. In addition, the data collected with an airborne version of POLDER (POLarization and Directionality of Earth Reflectances) instrument have shown that bidirectional polarized measurements can provide information on cirrus cloud microphysical properties (crystal shapes, preferred orientation in space). The spaceborne version of POLDER-1 has been flown on ADEOS-1 platform during 8 months (October 96 - June 97), and the next POLDER-2 instrument will be launched in 2000 on ADEOS-2. The POLDER-1 cloud inversion algorithms are currently under validation. For cirrus clouds, a validation based on comparisons between cloud properties retrieved from POLDER-1 data and cloud properties inferred from a ground-based lidar network is currently under consideration. We present the first results of the validation.

  6. Cloud-radiation interactions - Effects of cirrus optical thickness feedbacks

    Science.gov (United States)

    Somerville, Richard C. J.; Iacobellis, Sam

    1987-01-01

    The paper is concerned with a cloud-radiation feedback mechanism which may be an important component of the climate changes expected from increased atmospheric concentrations of carbon dioxide and other trace greenhouse gases. A major result of the study is that cirrus cloud optical thickness feedbacks may indeed tend to increase the surface warming due to trace gas increases. However, the positive feedback from cirrus appears to be generally weaker than the negative effects due to lower clouds. The results just confirm those of earlier research indicating that the net effect of cloud optical thickness feedbacks may be a negative feedback which may substantially (by a factor of about 2) reduce the surface warming due to the doubling of CO2, even in the presence of cirrus clouds.

  7. Measurements of Terminal Velocities of Cirrus Clouds in the Upper Trosphere

    Directory of Open Access Journals (Sweden)

    Nee Jan Bai

    2016-01-01

    Full Text Available Cirrus clouds are composed of ice crystals condensed from humidity due to low temperature condition in the upper atmosphere. The microphysics of cirrus clouds including sizes and shapes of ice particles are not well understood but are important in climate modeling. Ice crystal will fall under gravitational sedimentation to reach terminal velocities which depend on the size, mass, and ice habit. We studied here the terminal velocity of cirrus clouds by using lidar observations at Chungli (25N, 121E. The terminal velocities for a few cases of stable cirrus clouds are measured to determine the ice particle sizes and processes in the upper atmosphere.

  8. Characteristics of cirrus clouds and tropical tropopause layer: Seasonal variation and long-term trends

    Science.gov (United States)

    Pandit, Amit Kumar; Gadhavi, Harish; Ratnam, M. Venkat; Jayaraman, A.; Raghunath, K.; Rao, S. Vijaya Bhaskara

    2014-12-01

    In the present study, characteristics of tropical cirrus clouds observed during 1998-2013 using a ground-based lidar located at Gadanki (13.5°N, 79.2°E), India, are presented. Altitude occurrences of cirrus clouds as well as its top and base heights are estimated using the advanced mathematical tool, wavelet covariance transform (WCT). The association of observed cirrus cloud properties with the characteristics of tropical tropopause layer (TTL) is investigated using co-located radiosonde measurements available since 2006. In general, cirrus clouds occurred for about 44% of the total lidar observation time (6246 h). The most probable altitude at which cirrus clouds occurr is 14.5 km. The occurrence of cirrus clouds exhibited a strong seasonal dependence with maximum occurrence during monsoon season (76%) and minimum occurrence during winter season (33%) which is consistent with the results reported recently using space-based lidar measurements. Most of the time, cirrus top was located within the TTL (between cold point and convective outflow level) while cirrus base occurred near the convective outflow level. The geometrical thickness of the cirrus cloud is found to be higher during monsoon season compared to winter and there exists a weak inverse relation with TTL thickness. During the observation period the percentage occurrence of cirrus clouds near the tropopause showed an 8.4% increase at 70% confidence level. In the last 16 years, top and base heights of cirrus cloud increased by 0.56 km and 0.41 km, respectively.

  9. Detecting Super-Thin Clouds With Polarized Light

    Science.gov (United States)

    Sun, Wenbo; Videen, Gorden; Mishchenko, Michael I.

    2014-01-01

    We report a novel method for detecting cloud particles in the atmosphere. Solar radiation backscattered from clouds is studied with both satellite data and a radiative transfer model. A distinct feature is found in the angle of linear polarization of solar radiation that is backscattered from clouds. The dominant backscattered electric field from the clear-sky Earth-atmosphere system is nearly parallel to the Earth surface. However, when clouds are present, this electric field can rotate significantly away from the parallel direction. Model results demonstrate that this polarization feature can be used to detect super-thin cirrus clouds having an optical depth of only 0.06 and super-thin liquid water clouds having an optical depth of only 0.01. Such clouds are too thin to be sensed using any current passive satellite instruments.

  10. A Characterization of Cirrus Cloud Properties That Affect Laser Propagation

    National Research Council Canada - National Science Library

    Norquist, Donald C; Desrochers, Paul R; McNicholl, Patrick J; Roadcap, John R

    2008-01-01

    Future high-altitude laser systems may be affected by cirrus clouds. Laser transmission models were applied to measured and retrieved cirrus properties to determine cirrus impact on power incident on a target or receiver...

  11. What is the role of laminar cirrus cloud on regulating the cross-tropopause water vapor transport?

    Science.gov (United States)

    Wu, D. L.; Gong, J.; Tsai, V.

    2016-12-01

    Laminar cirrus is an extremely thin ice cloud found persistently inhabit in the tropical and subtropical tropopause. Due to its sub-visible optical depth and high formation altitude, knowledge about the characteristics of this special type of cloud is very limited, and debates are ongoing about its role on regulating the cross-tropopause transport of water vapor. The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the CALIPSO satellite has been continuously providing us with unprecedented details of the laminar cirrus since its launch in 2006. In this research, we adapted Winker and Trepte (1998)'s eyeball detection method. A JAVA-based applet and graphical user interface (GUI) is developed to manually select the laminar, which then automatically record the cloud properties, such as spatial location, shape, thickness, tilt angle, and whether its isolated or directly above a deep convective cloud. Monthly statistics of the laminar cirrus are then separately analyzed according to the orbit node, isolated/convective, banded/non-banded, etc. Monthly statistics support a diurnal difference in the occurring frequency and formation height of the laminar cirrus. Also, isolated and convective laminars show diverse behaviors (height, location, distribution, etc.), which strongly implies that their formation mechanisms and their roles on depleting the upper troposphere water vapor are distinct. We further study the relationship between laminar characteristics and collocated and coincident water vapor gradient measurements from Aura Microwave Limb Sounder (MLS) observations below and above the laminars. The identified relationship provides a quantitative answer to the role laminar cirrus plays on regulating the water vapor entering the stratosphere.

  12. Dual-wavelength millimeter-wave radar measurements of cirrus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Sekelsky, S.M.; Firda, J.M.; McIntosh, R.E. [Univ. of Massachusetts, Amherst, MA (United States)

    1996-04-01

    In April 1994, the University of Massachusetts` 33-GHz/95-GHz Cloud Profiling Radar System (CPRS) participated in the multi-sensor Remote Cloud Sensing (RCS) Intensive Operation Period (IOP), which was conducted at the Southern Great Plains Cloud and Radiation Testbed (CART). During the 3-week experiment, CPRS measured a variety of cloud types and severe weather. In the context of global warming, the most significant measurements are dual-frequency observations of cirrus clouds, which may eventually be used to estimate ice crystal size and shape. Much of the cirrus data collected with CPRS show differences between 33-GHz and 95-GHz reflectivity measurements that are correlated with Doppler estimates of fall velocity. Because of the small range of reflectivity differences, a precise calibration of the radar is required and differential attenuation must also be removed from the data. Depolarization, which is an indicator of crystal shape, was also observed in several clouds. In this abstract we present examples of Mie scattering from cirrus and estimates of differential attenuation due to water vapor and oxygen that were derived from CART radiosonde measurements.

  13. Monitoring cirrus cloud and tropopause height over Hanoi using a compact lidar system

    International Nuclear Information System (INIS)

    Bui Van Hai; Dinh Van Trung; Nguyen Xuan Tuan; Dao Duy Thang; Nguyen Thanh Binh

    2012-01-01

    Cirrus clouds in the upper troposphere and the lower stratosphere have attracted great attention due to their important role and impact on the atmospheric radioactive balance. Because cirrus clouds are located high in the atmosphere, their study requires a high resolution remote sensing technique not only for detection but also for the characterization of their properties. The lidar technique with its inherent high sensitivity and resolution has become an indispensable tool for studying and improving our understanding of cirrus cloud. Using lidar technique we can simultaneously measure the cloud height, thickness and follow its temporal evolution. In this paper we describe the development of a compact and highly sensitive lidar system with the aim to remotely monitor for the first time the cirrus clouds over Hanoi (2101:42 N, 10551:12 W). From the lidar data collected during the year 2011. We derive the mean cloud height, location of cloud top, the cloud mean thickness and their temporal evolution. We then compare the location of the cloud top with the position of the tropopause determined the radiosonde data and found good that the distance between cloud top and tropopause remains fairly stable, indicating that generally the top of cirrus clouds is the good tracer of the tropopause. We found that the cirrus clouds are generally located at height between 11.2 to 15 km with average height of 13.4 km. Their thickness is between 0.3 and 3.8 km with average value of 1.7 km. We also compare the properties of cirrus cloud with that observed at other locations around the world based on lidar technique. (author)

  14. Influence of cirrus clouds on weather and climate processes A global perspective

    Science.gov (United States)

    Liou, K.-N.

    1986-01-01

    Current understanding and knowledge of the composition and structure of cirrus clouds are reviewed and documented in this paper. In addition, the radiative properties of cirrus clouds as they relate to weather and climate processes are described in detail. To place the relevance and importance of cirrus composition, structure and radiative properties into a global perspective, pertinent results derived from simulation experiments utilizing models with varying degrees of complexity are presented; these have been carried out for the investigation of the influence of cirrus clouds on the thermodynamics and dynamics of the atmosphere. In light of these reviews, suggestions are outlined for cirrus-radiation research activities aimed toward the development and improvement of weather and climate models for a physical understanding of cause and effect relationships and for prediction purposes.

  15. CSIR NLC mobile lidar observation of cirrus cloud

    CSIR Research Space (South Africa)

    Sivakumar, V

    2011-09-01

    Full Text Available In this paper, the authors present a night-time continuous CSIR-NLC mobile observation of highaltitude cirrus cloud. The LIDAR measurements will also elucidate the aerosol concentration, optical depth, cloud position, thickness and other general...

  16. Subtropical and Polar Cirrus Clouds Characterized by Ground-Based Lidars and CALIPSO/CALIOP Observations

    Directory of Open Access Journals (Sweden)

    Córdoba-Jabonero Carmen

    2016-01-01

    Full Text Available Cirrus clouds are product of weather processes, and then their occurrence and macrophysical/optical properties can vary significantly over different regions of the world. Lidars can provide height-resolved measurements with a relatively good both vertical and temporal resolutions, making them the most suitable instrumentation for high-cloud observations. The aim of this work is to show the potential of lidar observations on Cirrus clouds detection in combination with a recently proposed methodology to retrieve the Cirrus clouds macrophysical and optical features. In this sense, a few case studies of cirrus clouds observed at both subtropical and polar latitudes are examined and compared to CALIPSO/CALIOP observations. Lidar measurements are carried out in two stations: the Metropolitan city of Sao Paulo (MSP, Brazil, 23.3°S 46.4°W, located at subtropical latitudes, and the Belgrano II base (BEL, Argentina, 78ºS 35ºW in the Antarctic continent. Optical (COD-cloud optical depth and LR-Lidar Ratio and macrophysical (top/base heights and thickness properties of both the subtropical and polar cirrus clouds are reported. In general, subtropical Cirrus clouds present lower LR values and are found at higher altitudes than those detected at polar latitudes. In general, Cirrus clouds are detected at similar altitudes by CALIOP. However, a poor agreement is achieved in the LR retrieved between ground-based lidars and space-borne CALIOP measurements, likely due to the use of a fixed (or low-variable LR value in CALIOP inversion procedures.

  17. Simulation of idealized warm fronts and life cycles of cirrus clouds

    Science.gov (United States)

    Bense, Vera; Spichtinger, Peter

    2013-04-01

    One of the generally accepted formation mechanisms of cirrus clouds is connected to warm fronts. As the warm air glides over the cold air mass, it cools through adiabatic expansion and reaches ice supersaturation that eventually leads to the formation of ice clouds. Within this work, the EULAG model (see e.g. Prusa et al., 2008) was used to study the formation and life cycles of cirrus clouds in idealized 2-dimensional simulations. The microphysical processes were modelled with the double-moment bulk scheme of Spichtinger and Gierens (2009), which describes homogeneous and heterogeneous nucleation. In order to represent the gradual gliding of the air along the front, a ramp was chosen as topography. The sensibility of cloud formation to different environmental conditions such as wind shear, aerosol distribution and slope of the front was analyzed. In case of cirrus cloud formation its persistence after the front was studied as well as the change in microphysical properties such as ice crystal number concentrations. References: Prusa, J.M., P.K. Smolarkiewicz, A.A. Wyszogrodzki, 2008: EULAG, a computational model for multiscale flows. Computers and Fluids, doi:10.1016/j.compfluid.2007.12.001. Spichtinger, P., K. M. Gierens, 2009: Modelling of cirrus clouds - Part 1a: Model description and validation, Atmos. Chem. Phys., 9, 685-706.

  18. A one year Landsat 8 conterminous United States study of spatial and temporal patterns of cirrus and non-cirrus clouds and implications for the long term Landsat archive.

    Science.gov (United States)

    Kovalskyy, V.; Roy, D. P.

    2014-12-01

    The successful February 2013 launch of the Landsat 8 satellite is continuing the 40+ year legacy of the Landsat mission. The payload includes the Operational Land Imager (OLI) that has a new 1370 mm band designed to monitor cirrus clouds and the Thermal Infrared Sensor (TIRS) that together provide 30m low, medium and high confidence cloud detections and 30m low and high confidence cirrus cloud detections. A year of Landsat 8 data over the Conterminous United States (CONUS), composed of 11,296 acquisitions, was analyzed comparing the spatial and temporal incidence of these cloud and cirrus states. This revealed (i) 36.5% of observations were detected with high confidence cloud with spatio-temporal patterns similar to those observed by previous Landsat 7 cloud analyses, (ii) 29.2% were high confidence cirrus, (iii) 20.9% were both high confidence cloud and high confidence cirrus, (iv) 8.3% were detected as high confidence cirrus but not as high confidence cloud. The results illustrate the value of the cirrus band for improved Landsat 8 terrestrial monitoring but imply that the historical CONUS Landsat archive has a similar 8% of undetected cirrus contaminated pixels. The implications for long term Landsat time series records, including the global Web Enabled Landsat Data (WELD) product record, are discussed.

  19. Revisiting the iris effect of tropical cirrus clouds with TRMM and A-Train satellite data

    Science.gov (United States)

    Choi, Yong-Sang; Kim, WonMoo; Yeh, Sang-Wook; Masunaga, Hirohiko; Kwon, Min-Jae; Jo, Hyun-Su; Huang, Lei

    2017-06-01

    Just as the iris of human eye controls the light influx (iris effect), tropical anvil cirrus clouds may regulate the Earth's surface warming by controlling outgoing longwave radiation. This study examines this possible effect with monthly satellite observations such as Tropical Rainfall Measuring Mission (TRMM) precipitation, Moderate Resolution Imaging Spectroradiometer cirrus fraction, and Clouds and the Earth's Radiant Energy System top-of-the-atmosphere radiative fluxes averaged over different tropical domains from March 2000 to October 2014. To confirm that high-level cirrus is relevant to this study, Cloud-Aerosol Lidar with Orthogonal Polarization high cloud observations were also analyzed from June 2006 to December 2015. Our analysis revealed that the increase in sea surface temperature in the tropical western Pacific tends to concentrate convective cloud systems. This concentration effect very likely induces the significant reduction of both stratiform rain rate and cirrus fraction, without appreciable change in the convective rain rate. This reduction of stratiform rain rate and cirrus fraction cannot be found over its subregion or the tropical eastern Pacific, where the concentration effect of anvil cirrus is weak. Consistently, over the tropical western Pacific, the higher ratio of convective rain rate to total rain rate (i.e., precipitation efficiency) significantly correlates with warmer sea surface temperature and lower cirrus fraction. The reduced cirrus eventually increased outgoing longwave radiation to a greater degree than absorbed solar radiation. Finally, the negative relationship between precipitation efficiency and cirrus fraction tends to correspond to a low global equilibrium climate sensitivity in the models in the Coupled Model Intercomparison Project Phase 5. This suggests that tropical anvil cirrus clouds exert a negative climate feedback in strong association with precipitation efficiency.

  20. Ubiquity and impact of thin mid-level clouds in the tropics

    OpenAIRE

    Bourgeois, Quentin; Ekman, Annica M. L.; Igel, Matthew R.; Krejci, Radovan

    2016-01-01

    Clouds are crucial for Earth's climate and radiation budget. Great attention has been paid to low, high and vertically thick tropospheric clouds such as stratus, cirrus and deep convective clouds. However, much less is known about tropospheric mid-level clouds as these clouds are challenging to observe in situ and difficult to detect by remote sensing techniques. Here we use Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite observations to show that thin mid-level clouds (TM...

  1. Cirrus cloud-temperature interactions over a tropical station, Gadanki from lidar and satellite observations

    International Nuclear Information System (INIS)

    S, Motty G; Satyanarayana, M.; Krishnakumar, V.; Dhaman, Reji k.

    2014-01-01

    The cirrus clouds play an important role in the radiation budget of the earth's atmospheric system and are important to characterize their vertical structure and optical properties. LIDAR measurements are obtained from the tropical station Gadanki (13.5 0 N, 79.2 0 E), India, and meteorological indicators derived from Radiosonde data. Most of the cirrus clouds are observed near to the tropopause, which substantiates the strength of the tropical convective processes. The height and temperature dependencies of cloud height, optical depth, and depolarization ratio were investigated. Cirrus observations made using CALIPSO satellite are compared with lidar data for systematic statistical study of cirrus climatology

  2. Ubiquity and impact of thin mid-level clouds in the tropics.

    Science.gov (United States)

    Bourgeois, Quentin; Ekman, Annica M L; Igel, Matthew R; Krejci, Radovan

    2016-08-17

    Clouds are crucial for Earth's climate and radiation budget. Great attention has been paid to low, high and vertically thick tropospheric clouds such as stratus, cirrus and deep convective clouds. However, much less is known about tropospheric mid-level clouds as these clouds are challenging to observe in situ and difficult to detect by remote sensing techniques. Here we use Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) satellite observations to show that thin mid-level clouds (TMLCs) are ubiquitous in the tropics. Supported by high-resolution regional model simulations, we find that TMLCs are formed by detrainment from convective clouds near the zero-degree isotherm. Calculations using a radiative transfer model indicate that tropical TMLCs have a cooling effect on climate that could be as large in magnitude as the warming effect of cirrus. We conclude that more effort has to be made to understand TMLCs, as their influence on cloud feedbacks, heat and moisture transport, and climate sensitivity could be substantial.

  3. Modification of cirrus clouds to reduce global warming

    Science.gov (United States)

    Mitchell, D. L.

    2009-12-01

    Since both greenhouse gases and cirrus clouds strongly affect outgoing longwave radiation (OLR) with no affect or less affect on solar radiation, respectively, an attempt to delay global warming to buy time for emission reduction strategies to work might naturally target cirrus clouds. Cirrus having optical depths competition effects, thus increasing OLR and surface cooling. Preliminary estimates of this global net cloud forcing via GCM simulations are more negative than -2.8 W m-2 and could neutralize the radiative forcing due to a CO2 doubling (3.7 W m-2). This cirrus engineered net forcing is due to (1) reduced cirrus coverage and (2) reduced upper tropospheric water vapor, due to enhanced ice sedimentation. The implementation of this climate engineering could use the airline industry to disperse the seeding material. Commercial airliners typically fly at temperatures between -40 and -60 deg. C (where homogeneous freezing nucleation dominates). Weather modification research has developed ice nucleating substances that are extremely effective at these cold temperatures, are non-toxic and are relatively inexpensive. The seeding material could be released in both clear and cloudy conditions to build up a background concentration of efficient ice nuclei so that non-contrail cirrus will experience these nuclei and grow larger ice crystals. Flight corridors are denser in the high- and mid-latitudes where global warming is more severe. A risk with any geoengineering experiment is that it could affect climate in unforeseen ways, causing more harm than good. Since seeding aerosol residence times in the troposphere are 1-2 weeks, the climate might return back to its normal state within a few months after stopping the geoengineering. A drawback to this approach is that it would not stop ocean acidification. It may not have many of the draw-backs that stratospheric injection of sulfur species has, such as ozone destruction, decreased solar radiation possibly altering the

  4. The Effect of Cirrus Clouds on Water Vapor Transport in the Upper Troposphere and Lower Stratosphere

    Science.gov (United States)

    Lei, L.; McCormick, M. P.; Anderson, J.

    2017-12-01

    Water vapor plays an important role in the Earth's radiation budget and stratospheric chemistry. It is widely accepted that a large percentage of water vapor entering the stratosphere travels through the tropical tropopause and is dehydrated by the cold tropopause temperature. The vertical transport of water vapor is also affected by the radiative effects of cirrus clouds in the tropical tropopause layer. This latter effect of cirrus clouds was investigated in this research. The work focuses on the tropical and mid-latitude region (50N-50S). Water vapor data from the Microwave Limb Sounder (MLS) and cirrus cloud data from the Cloud-Aerosol Lidar and Infrared pathfinder Satellite Observation (CALIPSO) instruments were used to investigate the relationship between the water vapor and the occurrence of cirrus cloud. A 10-degree in longitude by 10-degree in latitude resolution was chosen to bin the MLS and CALIPSO data. The result shows that the maximum water vapor in the upper troposphere (below 146 hPa) is matched very well with the highest frequency of cirrus cloud occurrences. Maximum water vapor in the lower stratosphere (100 hPa) is partly matched with the maximum cirrus cloud occurrence in the summer time. The National Oceanic and Atmospheric Administration Interpolated Outgoing Longwave Radiation data and NCEP-DOE Reanalysis 2 wind data were used also to investigate the relationship between the water vapor entering the stratosphere, deep convection, and wind. Results show that maximum water vapor at 100 hPa coincides with the northern hemisphere summer-time anticyclone. The effects from both single-layer cirrus clouds and cirrus clouds above the anvil top on the water vapor entering the stratosphere were also studied and will be presented.

  5. High-latitude molecular clouds and infrared cirrus

    International Nuclear Information System (INIS)

    Vries, H.W. de.

    1988-01-01

    The high-latitude infrared cirrus detected by IRAS is identified with atomic and molecular clouds. These clouds are small (usually less than 1 sq. deg.) and show weak CO emission. On the basis of a distance of 100 pc they are characterized by a mass of a few solar masses and a radius of about 1 pc. Thermal radiation by dust as a results of heating by the diffuse interstellar radiation field is the most-plausible origin of the cirrus emission at far-infrared wavelengths. On the basis of plausible assumptions regarding the uniformity of both the gas-to-dust ratio and the heating and cooling of the dust, the flux density at 100 μm from regions with low visual extinction should be a good tracer of the gas column density. Indeed, the data show an approximately linear proportionality between N(HI), obtained from 21-cm observations, and I 100 (HI), the flux density from dust associated with HI. If the ratio of column density to flux density in high-latitude molecular clouds is equal to the corresponding relation in atomic ones, a value for the ratio of H 2 column density to CO velocity-integrated radiation temperature may be obtained. Although low-mass clouds may be large in number, the fraction of the Galactic molecular mass in the form of these clouds is probably no more than 1%

  6. Corona-producing ice clouds: A case study of a cold mid-latitude cirrus layer

    International Nuclear Information System (INIS)

    Sassen, K.; Mace, G.G.; Hallett, J.; Poellot, M.R.

    1998-01-01

    A high (14.0-km), cold (-71.0thinsp degree C) cirrus cloud was studied by ground-based polarization lidar and millimeter radar and aircraft probes on the night of 19 April 1994 from the Cloud and Radiation Testbed site in northern Oklahoma. A rare cirrus cloud lunar corona was generated by this 1 - 2-km-deep cloud, thus providing an opportunity to measure the composition in situ, which had previously been assumed only on the basis of lidar depolarization data and simple diffraction theory for spheres. In this case, corona ring analysis indicated an effective particle diameter of ∼22 μm. A variety of in situ data corroborates the approximate ice-particle size derived from the passive retrieval method, especially near the cloud top, where impacted cloud samples show simple solid crystals. The homogeneous freezing of sulfuric acid droplets of stratospheric origin is assumed to be the dominant ice-particle nucleation mode acting in corona-producing cirrus clouds. It is speculated that this process results in a previously unrecognized mode of acid-contaminated ice-particle growth and that such small-particle cold cirrus clouds are potentially a radiatively distinct type of cloud. copyright 1998 Optical Society of America

  7. Particle backscatter and relative humidity measured across cirrus clouds and comparison with microphysical cirrus modelling

    Directory of Open Access Journals (Sweden)

    M. Brabec

    2012-10-01

    Full Text Available Advanced measurement and modelling techniques are employed to estimate the partitioning of atmospheric water between the gas phase and the condensed phase in and around cirrus clouds, and thus to identify in-cloud and out-of-cloud supersaturations with respect to ice. In November 2008 the newly developed balloon-borne backscatter sonde COBALD (Compact Optical Backscatter and AerosoL Detector was flown 14 times together with a CFH (Cryogenic Frost point Hygrometer from Lindenberg, Germany (52° N, 14° E. The case discussed here in detail shows two cirrus layers with in-cloud relative humidities with respect to ice between 50% and 130%. Global operational analysis data of ECMWF (roughly 1° × 1° horizontal and 1 km vertical resolution, 6-hourly stored fields fail to represent ice water contents and relative humidities. Conversely, regional COSMO-7 forecasts (6.6 km × 6.6 km, 5-min stored fields capture the measured humidities and cloud positions remarkably well. The main difference between ECMWF and COSMO data is the resolution of small-scale vertical features responsible for cirrus formation. Nevertheless, ice water contents in COSMO-7 are still off by factors 2–10, likely reflecting limitations in COSMO's ice phase bulk scheme. Significant improvements can be achieved by comprehensive size-resolved microphysical and optical modelling along backward trajectories based on COSMO-7 wind and temperature fields, which allow accurate computation of humidities, homogeneous ice nucleation, resulting ice particle size distributions and backscatter ratios at the COBALD wavelengths. However, only by superimposing small-scale temperature fluctuations, which remain unresolved by the numerical weather prediction models, can we obtain a satisfying agreement with the observations and reconcile the measured in-cloud non-equilibrium humidities with conventional ice cloud microphysics. Conversely, the model-data comparison provides no evidence that additional

  8. PROPERTIES OF GALACTIC CIRRUS CLOUDS OBSERVED BY BOOMERANG

    International Nuclear Information System (INIS)

    Veneziani, M.; De Bernardis, P.; Masi, S.; Ade, P. A. R.; Mauskopf, P. D.; Bock, J. J.; Crill, B. P.; Lange, A. E.; Boscaleri, A.; De Gasperis, G.; De Troia, G.; Natoli, P.; De Oliveira-Costa, A.; Stefano, G. Di; Ganga, K. M.; Jones, W. C.; Kisner, T. S.; Montroy, T. E.; MacTavish, C. J.; Netterfield, C. B.

    2010-01-01

    The physical properties of galactic cirrus emission are not well characterized. BOOMERANG is a balloon-borne experiment designed to study the cosmic microwave background at high angular resolution in the millimeter range. The BOOMERANG 245 and 345 GHz channels are sensitive to interstellar signals, in a spectral range intermediate between FIR and microwave frequencies. We look for physical characteristics of cirrus structures in a region at high galactic latitudes (b ∼ -40 deg.) where BOOMERANG performed its deepest integration, combining the BOOMERANG data with other available data sets at different wavelengths. We have detected eight emission patches in the 345 GHz map, consistent with cirrus dust in the Infrared Astronomical Satellite maps. The analysis technique we have developed allows us to identify the location and the shape of cirrus clouds, and to extract the flux from observations with different instruments at different wavelengths and angular resolutions. We study the integrated flux emitted from these cirrus clouds using data from Infrared Astronomical Satellite (IRAS), DIRBE, BOOMERANG and Wilkinson Microwave Anisotropy Probe in the frequency range 23-3000 GHz (13 mm-100 μm wavelength). We fit the measured spectral energy distributions with a combination of a gray body and a power-law spectra considering two models for the thermal emission. The temperature of the thermal dust component varies in the 7-20 K range and its emissivity spectral index is in the 1-5 range. We identified a physical relation between temperature and spectral index as had been proposed in previous works. This technique can be proficiently used for the forthcoming Planck and Herschel missions data.

  9. 16-year Climatology of Cirrus cloud properties using ground-based Lidar over Gadanki (13.45˚N, 79.18˚E)

    Science.gov (United States)

    Pandit, Amit Kumar; Raghunath, Karnam; Jayaraman, Achuthan; Venkat Ratnam, Madineni; Gadhavi, Harish

    Cirrus clouds are ubiquitous high level cold clouds predominantly consisting of ice-crystals. With their highest coverage over the tropics, these are one of the most vital and complex components of Tropical Tropopause Layer (TTL) due to their strong radiative feedback and dehydration in upper troposphere and lower stratosphere (UTLS) regions. The continuous changes in their coverage, position, thickness, and ice-crystal size and shape distributions bring uncertainties in the estimates of cirrus cloud radiative forcing. Long-term changes in the distribution of aerosols and water vapour in the TTL can influence cirrus properties. This necessitates long-term studies of tropical cirrus clouds, which are only few. The present study provides 16-year climatology of physical and optical properties of cirrus clouds observed using a ground-based Lidar located at Gadanki (13.45(°) N, 79.18(°) ˚E and 375 m amsl) in south-India. In general, cirrus clouds occurred for about 44% of the total Lidar observation time. Owing to the increased convective activities, the occurrence of cirrus clouds during the southwest-monsoon season is highest while it is lowest during the winter. Altitude distribution of cirrus clouds reveals that the peak occurrence was about 25% at 14.5 km. The most probable base and top height of cirrus clouds are 14 and 15.5 km, respectively. This is also reflected in the bulk extinction coefficient profile (at 532 nm) of cirrus clouds. These results are compared with the CALIPSO observations. Most of the time cirrus clouds are located within the TTL bounded by convective outflow level and cold-point tropopause. Cirrus clouds are thick during the monsoon season as compared to that during winter. An inverse relation between the thickness of cirrus clouds and TTL thickness is found. The occurrence of cirrus clouds at an altitude close to the tropopause (16 km) showed an increase of 8.4% in the last 16 years. Base and top heights of cirrus clouds also showed

  10. UV Raman lidar measurements of relative humidity for the characterization of cirrus cloud microphysical properties

    Directory of Open Access Journals (Sweden)

    G. Masiello

    2009-11-01

    Full Text Available Raman lidar measurements performed in Potenza by the Raman lidar system BASIL in the presence of cirrus clouds are discussed. Measurements were performed on 6 September 2004 in the frame of the Italian phase of the EAQUATE Experiment.

    The major feature of BASIL is represented by its capability to perform high-resolution and accurate measurements of atmospheric temperature and water vapour, and consequently relative humidity, both in daytime and night-time, based on the application of the rotational and vibrational Raman lidar techniques in the UV. BASIL is also capable to provide measurements of the particle backscatter and extinction coefficient, and consequently lidar ratio (at the time of these measurements, only at one wavelength, which are fundamental to infer geometrical and microphysical properties of clouds.

    A case study is discussed in order to assess the capability of Raman lidars to measure humidity in presence of cirrus clouds, both below and inside the cloud. While air inside the cloud layers is observed to be always under-saturated with respect to water, both ice super-saturation and under-saturation conditions are found inside these clouds. Upper tropospheric moistening is observed below the lower cloud layer.

    The synergic use of the data derived from the ground based Raman Lidar and of spectral radiances measured by the NAST-I Airborne Spectrometer allows the determination of the temporal evolution of the atmospheric cooling/heating rates due to the presence of the cirrus cloud.

    Lidar measurements beneath the cirrus cloud layer have been interpreted using a 1-D cirrus cloud model with explicit microphysics. The 1-D simulations indicate that sedimentation-moistening has contributed significantly to the moist anomaly, but other mechanisms are also contributing. This result supports the hypothesis that the observed mid-tropospheric humidification is a real feature which is

  11. On the origin of subvisible cirrus clouds in the tropical upper troposphere

    Directory of Open Access Journals (Sweden)

    M. Reverdy

    2012-12-01

    Full Text Available Spaceborne lidar observations have recently revealed a previously undetected significant population of Subvisible Cirrus (SVC. We show them to be colder than −74 °, with an optical depth below 0.0015 on average. The formation and persistence over time of this new cloud population could be related to several atmospheric phenomena. In this paper, we investigate if these clouds follow the same formation mechanisms as the general tropical cirrus population (including convection and in-situ ice nucleation, or if specific nucleation sites and trace species play a role in their formation. The importance of three scenarios in the formation of the global SVC population is investigated through different approaches that include comparisons with data imaging from several spaceborne instruments and back-trajectories that document the history and behavior of air masses leading to the point in time and space where subvisible cirrus were detected. In order to simplify the study of their formation, we singled out SVC with coherent temperature histories (mean variance lower than 4 K according to back-trajectories along 5, 10 or 15 days (respectively 58, 25 and 11% of SVC. Our results suggest that external processes, including local increases in liquid and hygroscopic aerosol concentration (either through biomass burning or volcanic injection forming sulfate-based aerosols in the troposphere or the stratosphere have very limited short-term or mid-term impact on the SVC population. On the other hand, we find that ~20% of air masses leading to SVC formation interacted with convective activity 5 days before they led to cloud formation and detection, a number that climbs to 60% over 15 days. SVC formation appears especially linked to convection over Africa and Central America, more so during JJA than DJF. These results support the view that the SVC population observed by CALIOP is an extension of the general upper tropospheric ice clouds population with its extreme

  12. Modeled Impact of Cirrus Cloud Increases Along Aircraft Flight Paths

    Science.gov (United States)

    Rind, David; Lonergan, P.; Shah, K.

    1999-01-01

    The potential impact of contrails and alterations in the lifetime of background cirrus due to subsonic airplane water and aerosol emissions has been investigated in a set of experiments using the GISS GCM connected to a q-flux ocean. Cirrus clouds at a height of 12-15km, with an optical thickness of 0.33, were input to the model "x" percentage of clear-sky occasions along subsonic aircraft flight paths, where x is varied from .05% to 6%. Two types of experiments were performed: one with the percentage cirrus cloud increase independent of flight density, as long as a certain minimum density was exceeded; the other with the percentage related to the density of fuel expenditure. The overall climate impact was similar with the two approaches, due to the feedbacks of the climate system. Fifty years were run for eight such experiments, with the following conclusions based on the stable results from years 30-50 for each. The experiments show that adding cirrus to the upper troposphere results in a stabilization of the atmosphere, which leads to some decrease in cloud cover at levels below the insertion altitude. Considering then the total effect on upper level cloud cover (above 5 km altitude), the equilibrium global mean temperature response shows that altering high level clouds by 1% changes the global mean temperature by 0.43C. The response is highly linear (linear correlation coefficient of 0.996) for high cloud cover changes between 0. 1% and 5%. The effect is amplified in the Northern Hemisphere, more so with greater cloud cover change. The temperature effect maximizes around 10 km (at greater than 40C warming with a 4.8% increase in upper level clouds), again more so with greater warming. The high cloud cover change shows the flight path influence most clearly with the smallest warming magnitudes; with greater warming, the model feedbacks introduce a strong tropical response. Similarly, the surface temperature response is dominated by the feedbacks, and shows

  13. Influences of cloud heterogeneity on cirrus optical properties retrieved from the visible and near-infrared channels of MODIS/SEVIRI for flat and optically thick cirrus clouds

    International Nuclear Information System (INIS)

    Zhou, Yongbo; Sun, Xuejin; Zhang, Riwei; Zhang, Chuanliang; Li, Haoran; Zhou, Junhao; Li, Shaohui

    2017-01-01

    The influences of three-dimensional radiative effects and horizontal heterogeneity effects on the retrieval of cloud optical thickness (COT) and effective diameter (De) for cirrus clouds are explored by the SHDOM radiative transfer model. The stochastic cirrus clouds are generated by the Cloudgen model based on the Atmospheric Radiation Measurement program data. Incorporating a new ice cloud spectral model, we evaluate the retrieval errors for two solar zenith angles (SZAs) (30° and 60°), four solar azimuth angles (0°, 45°, 90°, and 180°), and two sensor settings (Moderate Resolution Imaging Spectrometer (MODIS) onboard Aqua and Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard METEOSAT-8). The domain-averaged relative error of COT (μ) ranges from −24.1 % to -1.0 % (SZA = 30°) and from −11.6 % to 3.3 % (SZA = 60°), with the uncertainty within 7.5 % to –12.5 % (SZA = 30°) and 20.0 % - 27.5 % (SZA = 60°). For the SZA of 60° only, the relative error and uncertainty are parameterized by the retrieved COT by linear functions, providing bases to correct the retrieved COT and estimate their uncertainties. Besides, De is overestimated by 0.7–15.0 μm on the domain average, with the corresponding uncertainty within 6.7–26.5 μm. The retrieval errors show no discernible dependence on solar azimuth angle due to the flat tops and full coverage of the cirrus samples. The results are valid only for the two samples and for the specific spatial resolution of the radiative transfer simulations. - Highlights: • The retrieved cloud optical properties for 3-D cirrus clouds are evaluated. • The cloud optical thickness and uncertainty could be corrected and estimated. • On the domain average, the effective diameter of ice crystal is overestimated. • The optical properties show non-obvious dependence on the solar azimuth angle.

  14. Statistics of optical and geometrical properties of cirrus cloud over tibetan plateau measured by lidar and radiosonde

    Directory of Open Access Journals (Sweden)

    Dai Guangyao

    2018-01-01

    Full Text Available Cirrus clouds affect the energy budget and hydrological cycle of the earth’s atmosphere. The Tibetan Plateau (TP plays a significant role in the global and regional climate. Optical and geometrical properties of cirrus clouds in the TP were measured in July-August 2014 by lidar and radiosonde. The statistics and temperature dependences of the corresponding properties are analyzed. The cirrus cloud formations are discussed with respect to temperature deviation and dynamic processes.

  15. Clarifying the dominant sources and mechanisms of cirrus cloud formation.

    Science.gov (United States)

    Cziczo, Daniel J; Froyd, Karl D; Hoose, Corinna; Jensen, Eric J; Diao, Minghui; Zondlo, Mark A; Smith, Jessica B; Twohy, Cynthia H; Murphy, Daniel M

    2013-06-14

    Formation of cirrus clouds depends on the availability of ice nuclei to begin condensation of atmospheric water vapor. Although it is known that only a small fraction of atmospheric aerosols are efficient ice nuclei, the critical ingredients that make those aerosols so effective have not been established. We have determined in situ the composition of the residual particles within cirrus crystals after the ice was sublimated. Our results demonstrate that mineral dust and metallic particles are the dominant source of residual particles, whereas sulfate and organic particles are underrepresented, and elemental carbon and biological materials are essentially absent. Further, composition analysis combined with relative humidity measurements suggests that heterogeneous freezing was the dominant formation mechanism of these clouds.

  16. An automated cirrus classification

    Science.gov (United States)

    Gryspeerdt, Edward; Quaas, Johannes; Goren, Tom; Klocke, Daniel; Brueck, Matthias

    2018-05-01

    Cirrus clouds play an important role in determining the radiation budget of the earth, but many of their properties remain uncertain, particularly their response to aerosol variations and to warming. Part of the reason for this uncertainty is the dependence of cirrus cloud properties on the cloud formation mechanism, which itself is strongly dependent on the local meteorological conditions. In this work, a classification system (Identification and Classification of Cirrus or IC-CIR) is introduced to identify cirrus clouds by the cloud formation mechanism. Using reanalysis and satellite data, cirrus clouds are separated into four main types: orographic, frontal, convective and synoptic. Through a comparison to convection-permitting model simulations and back-trajectory-based analysis, it is shown that these observation-based regimes can provide extra information on the cloud-scale updraughts and the frequency of occurrence of liquid-origin ice, with the convective regime having higher updraughts and a greater occurrence of liquid-origin ice compared to the synoptic regimes. Despite having different cloud formation mechanisms, the radiative properties of the regimes are not distinct, indicating that retrieved cloud properties alone are insufficient to completely describe them. This classification is designed to be easily implemented in GCMs, helping improve future model-observation comparisons and leading to improved parametrisations of cirrus cloud processes.

  17. Comparisons of cirrus cloud microphysical properties between polluted and pristine air

    Science.gov (United States)

    Diao, Minghui; Schumann, Ulrich; Minikin, Andreas; Jensen, Jorgen

    2015-04-01

    Cirrus clouds occur in the upper troposphere at altitudes where atmospheric radiative forcing is most sensitive to perturbations of water vapor concentration and water phase. The formation of cirrus clouds influences the distributions of water in both vapor and ice forms. The radiative properties of cirrus depend strongly on particle sizes. Currently it is still unclear how the formation of cirrus clouds and their microphysical properties are influenced by anthropogenic emissions (e.g., industrial emission and biomass burning). If anthropogenic emissions influence cirrus formation in a significant manner, then one should expect a systematic difference in cirrus properties between pristine (clean) air and polluted air. Because of the pollution contrasts between the Southern (SH) and Northern Hemispheres (NH), cirrus properties could have hemispheric differences as well. Therefore, we study high-resolution (~200 m), in-situ observations from two global flight campaigns: 1) the HIAPER Pole-to-Pole Observations (HIPPO) global campaign in 2009-2011 funded by the US National Science Foundation (NSF), and 2) the Interhemispheric Differences In Cirrus Properties from Anthropogenic Emissions (INCA) campaign in 2000 funded by the European Union and participating research institutions. To investigate the changes of cirrus clouds by anthropogenic emissions, we compare ice crystal distributions in polluted and pristine air, in terms of their frequency occurrence, number concentration (Nc) and mean diameter (i.e., effective-mean Deff and volume-mean Dc). Total aerosol concentration is used to represent the combined influence of natural and anthropogenic aerosols. In addition, measured carbon monoxide (CO) mixing ratio is used to discriminate between polluted and pristine air masses. All analyses are restricted to temperatures ≤ -40°C to exclude mixed-phased clouds. The HIPPO campaign observations were obtained over the North America continent and the central Pacific Ocean

  18. Cirrus Cloud Optical Thickness and Effective Diameter Retrieved by MODIS: Impacts of Single Habit Assumption, 3-D Radiative Effects, and Cloud Inhomogeneity

    Science.gov (United States)

    Zhou, Yongbo; Sun, Xuejin; Mielonen, Tero; Li, Haoran; Zhang, Riwei; Li, Yan; Zhang, Chuanliang

    2018-01-01

    For inhomogeneous cirrus clouds, cloud optical thickness (COT) and effective diameter (De) provided by the Moderate Resolution Imaging Spectrometer (MODIS) Collection 6 cloud products are associated with errors due to the single habit assumption (SHA), independent pixel assumption (IPA), photon absorption effect (PAE), and plane-parallel assumption (PPA). SHA means that every cirrus cloud is assumed to have the same shape habit of ice crystals. IPA errors are caused by three-dimensional (3D) radiative effects. PPA and PAE errors are caused by cloud inhomogeneity. We proposed a method to single out these different errors. These errors were examined using the Spherical Harmonics Discrete Ordinate Method simulations done for the MODIS 0.86 μm and 2.13 μm bands. Four midlatitude and tropical cirrus cases were studied. For the COT retrieval, the impacts of SHA and IPA were especially large for optically thick cirrus cases. SHA errors in COT varied distinctly with scattering angles. For the De retrieval, SHA decreased De under most circumstances. PAE decreased De for optically thick cirrus cases. For the COT and De retrievals, the dominant error source was SHA for overhead sun whereas for oblique sun, it could be any of SHA, IPA, and PAE, varying with cirrus cases and sun-satellite viewing geometries. On the domain average, the SHA errors in COT (De) were within -16.1%-42.6% (-38.7%-2.0%), whereas the 3-D radiative effects- and cloud inhomogeneity-induced errors in COT (De) were within -5.6%-19.6% (-2.9%-8.0%) and -2.6%-0% (-3.7%-9.8%), respectively.

  19. Microphysical properties of contrails and natural cirrus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, B; Wendling, P [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany)

    1998-12-31

    The radiative properties of a condensation trail (contrail) are determined by its microphysical properties. Therefore an understanding of the concentration, size distribution, and shapes of the particles is necessary for an estimation of the climatic impact of contrails. In-situ particle measurements by use of an ice replicator are presented for several contrail and cirrus events. Contrail particles aged about 2 minutes show shapes which are nearly spherical. Typical sizes are 5 to 10 {mu}m. Concentration values reach up to the order of 1000 cm{sup -3}. Aged contrail size distributions are within the variability of those found in natural cirrus clouds. (author) 2 refs.

  20. Microphysical properties of contrails and natural cirrus clouds

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, B.; Wendling, P. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany)

    1997-12-31

    The radiative properties of a condensation trail (contrail) are determined by its microphysical properties. Therefore an understanding of the concentration, size distribution, and shapes of the particles is necessary for an estimation of the climatic impact of contrails. In-situ particle measurements by use of an ice replicator are presented for several contrail and cirrus events. Contrail particles aged about 2 minutes show shapes which are nearly spherical. Typical sizes are 5 to 10 {mu}m. Concentration values reach up to the order of 1000 cm{sup -3}. Aged contrail size distributions are within the variability of those found in natural cirrus clouds. (author) 2 refs.

  1. Climate impact of anthropogenic aerosols on cirrus clouds

    Science.gov (United States)

    Penner, J.; Zhou, C.

    2017-12-01

    Cirrus clouds have a net warming effect on the atmosphere and cover about 30% of the Earth's area. Aerosol particles initiate ice formation in the upper troposphere through modes of action that include homogeneous freezing of solution droplets, heterogeneous nucleation on solid particles immersed in a solution, and deposition nucleation of vapor onto solid particles. However, the efficacy with which particles act to form cirrus particles in a model depends on the representation of updrafts. Here, we use a representation of updrafts based on observations of gravity waves, and follow ice formation/evaporation during both updrafts and downdrafts. We examine the possible change in ice number concentration from anthropogenic soot originating from surface sources of fossil fuel and biomass burning and from aircraft particles that have previously formed ice in contrails. Results show that fossil fuel and biomass burning soot aerosols with this version exert a radiative forcing of -0.15±0.02 Wm-2 while aircraft aerosols that have been pre-activated within contrails exert a forcing of -0.20±0.06 Wm-2, but it is possible to decrease these estimates of forcing if a larger fraction of dust particles act as heterogeneous ice nuclei. In addition aircraft aerosols may warm the climate if a large fraction of these particles act as ice nuclei. The magnitude of the forcing in cirrus clouds can be comparable to the forcing exerted by anthropogenic aerosols on warm clouds. This assessment could therefore support climate models with high sensitivity to greenhouse gas forcing, while still allowing the models to fit the overall historical temperature change.

  2. Cirrus Cloud Optical and Microphysical Property Retrievals from eMAS During SEAC4RS Using Bi-Spectral Reflectance Measurements Within the 1.88 micron Water Vapor Absorption Band

    Science.gov (United States)

    Meyer, K.; Platnick, S.; Arnold, G. T.; Holz, R. E.; Veglio, P.; Yorks, J.; Wang, C.

    2016-01-01

    Previous bi-spectral imager retrievals of cloud optical thickness (COT) and effective particle radius (CER) based on the Nakajima and King (1990) approach, such as those of the operational MODIS cloud optical property retrieval product (MOD06), have typically paired a non-absorbing visible or near-infrared wavelength, sensitive to COT, with an absorbing shortwave or midwave infrared wavelength sensitive to CER. However, in practice it is only necessary to select two spectral channels that exhibit a strong contrast in cloud particle absorption. Here it is shown, using eMAS observations obtained during NASAs SEAC4RS field campaign, that selecting two absorbing wavelength channels within the broader 1.88 micron water vapor absorption band, namely the 1.83 and 1.93 micron channels that have sufficient differences in ice crystal single scattering albedo, can yield COT and CER retrievals for thin to moderately thick single-layer cirrus that are reasonably consistent with other solar and IR imager-based and lidar-based retrievals. A distinct advantage of this channel selection for cirrus cloud retrievals is that the below cloud water vapor absorption minimizes the surface contribution to measured cloudy TOA reflectance, in particular compared to the solar window channels used in heritage retrievals such as MOD06. This reduces retrieval uncertainty resulting from errors in the surface reflectance assumption, as well as reduces the frequency of retrieval failures for thin cirrus clouds.

  3. Retrieval of subvisual cirrus cloud optical thickness from limb-scatter measurements

    Directory of Open Access Journals (Sweden)

    J. T. Wiensz

    2013-01-01

    Full Text Available We present a technique for estimating the optical thickness of subvisual cirrus clouds detected by OSIRIS (Optical Spectrograph and Infrared Imaging System, a limb-viewing satellite instrument that measures scattered radiances from the UV to the near-IR. The measurement set is composed of a ratio of limb radiance profiles at two wavelengths that indicates the presence of cloud-scattering regions. Cross-sections and phase functions from an in situ database are used to simulate scattering by cloud-particles. With appropriate configurations discussed in this paper, the SASKTRAN successive-orders of scatter radiative transfer model is able to simulate accurately the in-cloud radiances from OSIRIS. Configured in this way, the model is used with a multiplicative algebraic reconstruction technique (MART to retrieve the cloud extinction profile for an assumed effective cloud particle size. The sensitivity of these retrievals to key auxiliary model parameters is shown, and it is shown that the retrieved extinction profile, for an assumed effective cloud particle size, models well the measured in-cloud radiances from OSIRIS. The greatest sensitivity of the retrieved optical thickness is to the effective cloud particle size. Since OSIRIS has an 11-yr record of subvisual cirrus cloud detections, the work described in this manuscript provides a very useful method for providing a long-term global record of the properties of these clouds.

  4. 16 year climatology of cirrus clouds over a tropical station in southern India using ground and space-based lidar observations

    Science.gov (United States)

    Pandit, A. K.; Gadhavi, H. S.; Venkat Ratnam, M.; Raghunath, K.; Rao, S. V. B.; Jayaraman, A.

    2015-06-01

    16 year (1998-2013) climatology of cirrus clouds and their macrophysical (base height, top height and geometrical thickness) and optical properties (cloud optical thickness) observed using a ground-based lidar over Gadanki (13.5° N, 79.2° E), India, is presented. The climatology obtained from the ground-based lidar is compared with the climatology obtained from seven and half years (June 2006-December 2013) of Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) observations. A very good agreement is found between the two climatologies in spite of their opposite viewing geometries and difference in sampling frequencies. Nearly 50-55% of cirrus clouds were found to possess geometrical thickness less than 2 km. Ground-based lidar is found to detect more number of sub-visible clouds than CALIOP which has implications for global warming studies as sub-visible cirrus clouds have significant positive radiative forcing. Cirrus clouds with mid-cloud temperatures between -50 to -70 °C have a mean geometrical thickness greater than 2 km in contrast to the earlier reported value of 1.7 km. Trend analyses reveal a statistically significant increase in the altitude of sub-visible cirrus clouds which is consistent with the recent climate model simulations. Also, the fraction of sub-visible cirrus cloud is found to be increasing during the last sixteen years (1998 to 2013) which has implications to the temperature and water vapour budget in the tropical tropopause layer.

  5. Cloud chamber experiments on the origin of ice crystal complexity in cirrus clouds

    Directory of Open Access Journals (Sweden)

    M. Schnaiter

    2016-04-01

    Full Text Available This study reports on the origin of small-scale ice crystal complexity and its influence on the angular light scattering properties of cirrus clouds. Cloud simulation experiments were conducted at the AIDA (Aerosol Interactions and Dynamics in the Atmosphere cloud chamber of the Karlsruhe Institute of Technology (KIT. A new experimental procedure was applied to grow and sublimate ice particles at defined super- and subsaturated ice conditions and for temperatures in the −40 to −60 °C range. The experiments were performed for ice clouds generated via homogeneous and heterogeneous initial nucleation. Small-scale ice crystal complexity was deduced from measurements of spatially resolved single particle light scattering patterns by the latest version of the Small Ice Detector (SID-3. It was found that a high crystal complexity dominates the microphysics of the simulated clouds and the degree of this complexity is dependent on the available water vapor during the crystal growth. Indications were found that the small-scale crystal complexity is influenced by unfrozen H2SO4 / H2O residuals in the case of homogeneous initial ice nucleation. Angular light scattering functions of the simulated ice clouds were measured by the two currently available airborne polar nephelometers: the polar nephelometer (PN probe of Laboratoire de Métérologie et Physique (LaMP and the Particle Habit Imaging and Polar Scattering (PHIPS-HALO probe of KIT. The measured scattering functions are featureless and flat in the side and backward scattering directions. It was found that these functions have a rather low sensitivity to the small-scale crystal complexity for ice clouds that were grown under typical atmospheric conditions. These results have implications for the microphysical properties of cirrus clouds and for the radiative transfer through these clouds.

  6. Variability of cirrus clouds in a convective outflow during the Hibiscus campaign

    Science.gov (United States)

    Fierli, F.; di Donfrancesco, G.; Cairo, F.; Marécal, V.; Zampieri, M.; Orlandi, E.; Durry, G.

    2008-08-01

    Light-weight microlidar and water vapour measurements were taken on-board a stratospheric balloon during the HIBISCUS 2004 campaign, held in Bauru, Brazil (49° W, 22° S). Cirrus clouds were observed throughout the flight between 12 and 15 km height with a high mesoscale variability in optical and microphysical properties. It was found that the cirrus clouds were composed of different layers characterized by marked differences in height, thickness and optical properties. Simultaneous water vapour observations show that the different layers are characterized by different values of the saturation with respect to ice. A mesoscale simulation and a trajectory analysis clearly revealed that the clouds had formed in the outflow of a large and persistent convective region and that the observed variability of the optical properties and of the cloud structure is likely linked to the different residence times of the convectively-processed air in the upper troposphere.

  7. Midlatitude Cirrus Clouds Derived from Hurricane Nora: A Case Study with Implications for Ice Crystal Nucleation and Shape.

    Science.gov (United States)

    Sassen, Kenneth; Arnott, W. Patrick; O'C. Starr, David; Mace, Gerald G.; Wang, Zhien; Poellot, Michael R.

    2003-04-01

    Hurricane Nora traveled up the Baja Peninsula coast in the unusually warm El Niño waters of September 1997 until rapidly decaying as it approached southern California on 24 September. The anvil cirrus blowoff from the final surge of tropical convection became embedded in subtropical flow that advected the cirrus across the western United States, where it was studied from the Facility for Atmospheric Remote Sensing (FARS) in Salt Lake City, Utah, on 25 September. A day later, the cirrus shield remnants were redirected southward by midlatitude circulations into the southern Great Plains, providing a case study opportunity for the research aircraft and ground-based remote sensors assembled at the Clouds and Radiation Testbed (CART) site in northern Oklahoma. Using these comprehensive resources and new remote sensing cloud retrieval algorithms, the microphysical and radiative cloud properties of this unusual cirrus event are uniquely characterized.Importantly, at both the FARS and CART sites the cirrus generated spectacular halos and arcs, which acted as a tracer for the hurricane cirrus, despite the limited lifetimes of individual ice crystals. Lidar depolarization data indicate widespread regions of uniform ice plate orientations, and in situ particle replicator data show a preponderance of pristine, solid hexagonal plates and columns. It is suggested that these unusual aspects are the result of the mode of cirrus particle nucleation, presumably involving the lofting of sea salt nuclei in strong thunderstorm updrafts into the upper troposphere. This created a reservoir of haze particles that continued to produce halide-salt-contaminated ice crystals during the extended period of cirrus cloud maintenance. The inference that marine microbiota are embedded in the replicas of some ice crystals collected over the CART site points to the longevity of marine effects. Various nucleation scenarios proposed for cirrus clouds based on this and other studies, and the

  8. Comparing airborne and satellite retrievals of cloud optical thickness and particle effective radius using a spectral radiance ratio technique: two case studies for cirrus and deep convective clouds

    Science.gov (United States)

    Krisna, Trismono C.; Wendisch, Manfred; Ehrlich, André; Jäkel, Evelyn; Werner, Frank; Weigel, Ralf; Borrmann, Stephan; Mahnke, Christoph; Pöschl, Ulrich; Andreae, Meinrat O.; Voigt, Christiane; Machado, Luiz A. T.

    2018-04-01

    Solar radiation reflected by cirrus and deep convective clouds (DCCs) was measured by the Spectral Modular Airborne Radiation Measurement System (SMART) installed on the German High Altitude and Long Range Research Aircraft (HALO) during the Mid-Latitude Cirrus (ML-CIRRUS) and the Aerosol, Cloud, Precipitation, and Radiation Interaction and Dynamic of Convective Clouds System - Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modelling and to the Global Precipitation Measurement (ACRIDICON-CHUVA) campaigns. On particular flights, HALO performed measurements closely collocated with overpasses of the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard the Aqua satellite. A cirrus cloud located above liquid water clouds and a DCC topped by an anvil cirrus are analyzed in this paper. Based on the nadir spectral upward radiance measured above the two clouds, the optical thickness τ and particle effective radius reff of the cirrus and DCC are retrieved using a radiance ratio technique, which considers the cloud thermodynamic phase, the vertical profile of cloud microphysical properties, the presence of multilayer clouds, and the heterogeneity of the surface albedo. For the cirrus case, the comparison of τ and reff retrieved on the basis of SMART and MODIS measurements yields a normalized mean absolute deviation of up to 1.2 % for τ and 2.1 % for reff. For the DCC case, deviations of up to 3.6 % for τ and 6.2 % for reff are obtained. The larger deviations in the DCC case are mainly attributed to the fast cloud evolution and three-dimensional (3-D) radiative effects. Measurements of spectral upward radiance at near-infrared wavelengths are employed to investigate the vertical profile of reff in the cirrus. The retrieved values of reff are compared with corresponding in situ measurements using a vertical weighting method. Compared to the MODIS observations, measurements of SMART provide more information on the

  9. The influence of cirrus cloud-radiative forcing on climate and climate sensitivity in a general circulation model

    International Nuclear Information System (INIS)

    Lohmann, U.; Roeckner, E.

    1994-01-01

    Six numerical experiments have been performed with a general circulation model (GCM) to study the influence of high-level cirrus clouds and global sea surface temperature (SST) perturbations on climate and climate sensitivity. The GCM used in this investigation is the third-generation ECHAM3 model developed jointly by the Max-Planck-Institute for Meteorology and the University of Hamburg. It is shown that the model is able to reproduce many features of the observed cloud-radiative forcing with considerable skill, such as the annual mean distribution, the response to seasonal forcing and the response to observed SST variations in the equatorial Pacific. In addition to a reference experiment where the cirrus emissivity is computed as a function of the cloud water content, two sensitivity experiments have been performed in which the cirrus emissivity is either set to zero everywhere above 400 hPa ('transparent cirrus') or set to one ('black cirrus'). These three experiments are repeated identically, except for prescribing a globally uniform SST warming of 4 K. (orig.)

  10. Effects of ice crystal surface roughness and air bubble inclusions on cirrus cloud radiative properties from remote sensing perspective

    International Nuclear Information System (INIS)

    Tang, Guanglin; Panetta, R. Lee; Yang, Ping; Kattawar, George W.; Zhai, Peng-Wang

    2017-01-01

    We study the combined effects of surface roughness and inhomogeneity on the optical scattering properties of ice crystals and explore the consequent implications to remote sensing of cirrus cloud properties. Specifically, surface roughness and inhomogeneity are added to the Moderate Resolution Imaging Spectroradiometer (MODIS) collection 6 (MC6) cirrus cloud particle habit model. Light scattering properties of the new habit model are simulated using a modified version of the Improved Geometric Optics Method (IGOM). Both inhomogeneity and surface roughness affect the single scattering properties significantly. In visible bands, inhomogeneity and surface roughness both tend to smooth the phase function and eliminate halos and the backscattering peak. The asymmetry parameter varies with the degree of surface roughness following a U shape - decreases and then increases - with a minimum at around 0.15, whereas it decreases monotonically with the air bubble volume fraction. Air bubble inclusions significantly increase phase matrix element -P_1_2 for scattering angles between 20°–120°, whereas surface roughness has a much weaker effect, increasing -P_1_2 slightly from 60°–120°. Radiative transfer simulations and cirrus cloud property retrievals are conducted by including both the factors. In terms of surface roughness and air bubble volume fraction, retrievals of cirrus cloud optical thickness or the asymmetry parameter using solar bands show similar patterns of variation. Polarimetric simulations using the MC6 cirrus cloud particle habit model are shown to be more consistent with observations when both surface roughness and inhomogeneity are simultaneously considered. - Highlights: • Surface roughness and air bubble inclusions affect optical properties of ice crystals significantly. • Including both factors improves simulations of ice cloud.• Cirrus cloud particle habit model of the MODIS collection 6 achieves better self-consistency and consistency with

  11. Impact of varying lidar measurement and data processing techniques in evaluating cirrus cloud and aerosol direct radiative effects

    Directory of Open Access Journals (Sweden)

    S. Lolli

    2018-03-01

    Full Text Available In the past 2 decades, ground-based lidar networks have drastically increased in scope and relevance, thanks primarily to the advent of lidar observations from space and their need for validation. Lidar observations of aerosol and cloud geometrical, optical and microphysical atmospheric properties are subsequently used to evaluate their direct radiative effects on climate. However, the retrievals are strongly dependent on the lidar instrument measurement technique and subsequent data processing methodologies. In this paper, we evaluate the discrepancies between the use of Raman and elastic lidar measurement techniques and corresponding data processing methods for two aerosol layers in the free troposphere and for two cirrus clouds with different optical depths. Results show that the different lidar techniques are responsible for discrepancies in the model-derived direct radiative effects for biomass burning (0.05 W m−2 at surface and 0.007 W m−2 at top of the atmosphere and dust aerosol layers (0.7 W m−2 at surface and 0.85 W m−2 at top of the atmosphere. Data processing is further responsible for discrepancies in both thin (0.55 W m−2 at surface and 2.7 W m−2 at top of the atmosphere and opaque (7.7 W m−2 at surface and 11.8 W m−2 at top of the atmosphere cirrus clouds. Direct radiative effect discrepancies can be attributed to the larger variability of the lidar ratio for aerosols (20–150 sr than for clouds (20–35 sr. For this reason, the influence of the applied lidar technique plays a more fundamental role in aerosol monitoring because the lidar ratio must be retrieved with relatively high accuracy. In contrast, for cirrus clouds, with the lidar ratio being much less variable, the data processing is critical because smoothing it modifies the aerosol and cloud vertically resolved extinction profile that is used as input to compute direct radiative effect calculations.

  12. Impact of varying lidar measurement and data processing techniques in evaluating cirrus cloud and aerosol direct radiative effects

    Science.gov (United States)

    Lolli, Simone; Madonna, Fabio; Rosoldi, Marco; Campbell, James R.; Welton, Ellsworth J.; Lewis, Jasper R.; Gu, Yu; Pappalardo, Gelsomina

    2018-03-01

    In the past 2 decades, ground-based lidar networks have drastically increased in scope and relevance, thanks primarily to the advent of lidar observations from space and their need for validation. Lidar observations of aerosol and cloud geometrical, optical and microphysical atmospheric properties are subsequently used to evaluate their direct radiative effects on climate. However, the retrievals are strongly dependent on the lidar instrument measurement technique and subsequent data processing methodologies. In this paper, we evaluate the discrepancies between the use of Raman and elastic lidar measurement techniques and corresponding data processing methods for two aerosol layers in the free troposphere and for two cirrus clouds with different optical depths. Results show that the different lidar techniques are responsible for discrepancies in the model-derived direct radiative effects for biomass burning (0.05 W m-2 at surface and 0.007 W m-2 at top of the atmosphere) and dust aerosol layers (0.7 W m-2 at surface and 0.85 W m-2 at top of the atmosphere). Data processing is further responsible for discrepancies in both thin (0.55 W m-2 at surface and 2.7 W m-2 at top of the atmosphere) and opaque (7.7 W m-2 at surface and 11.8 W m-2 at top of the atmosphere) cirrus clouds. Direct radiative effect discrepancies can be attributed to the larger variability of the lidar ratio for aerosols (20-150 sr) than for clouds (20-35 sr). For this reason, the influence of the applied lidar technique plays a more fundamental role in aerosol monitoring because the lidar ratio must be retrieved with relatively high accuracy. In contrast, for cirrus clouds, with the lidar ratio being much less variable, the data processing is critical because smoothing it modifies the aerosol and cloud vertically resolved extinction profile that is used as input to compute direct radiative effect calculations.

  13. Lidar observation and model simulation of a volcanic-ash-induced cirrus cloud during the Eyjafjallajökull eruption

    Directory of Open Access Journals (Sweden)

    C. Rolf

    2012-11-01

    Full Text Available Heterogeneous ice formation induced by volcanic ash from the Eyjafjallajökull volcano eruption in April 2010 is investigated based on the combination of a cirrus cloud observed with a backscatter lidar over Jülich (western Germany and model simulations along backward trajectories. The microphysical properties of the cirrus cloud could only be represented by the microphysical model under the assumption of an enhanced number of efficient ice nuclei originating from the volcanic eruption. The ice nuclei (IN concentration determined by lidar measurements directly before and after cirrus cloud occurrence implies a value of around 0.1 cm−3 (in comparison normal IN conditions: 0.01 cm−3. This leads to a cirrus cloud with rather small ice crystals having a mean radius of 12 μm and a modification of the ice particle number (0.08 cm−3 instead of 3 × 10−4 cm−3 under normal IN conditions. The effectiveness of ice nuclei was estimated by the use of the microphysical model and the backward trajectories based on ECMWF data, establishing a freezing threshold of around 105% relative humidity with respect to ice in a temperature range from −45 to −55 °C . Only with these highly efficient ice nuclei was it possible for the cirrus cloud to be formed in a slightly supersaturated environment.

  14. A case study of formation and maintenance of a lower stratospheric cirrus cloud over the tropics

    Directory of Open Access Journals (Sweden)

    M. Sandhya

    2015-05-01

    Full Text Available A rare occurrence of stratospheric cirrus at 18.6 km height persisting for about 5 days during 3–7 March 2014 is inferred from the ground-based Mie lidar observations over Gadanki (13.5° N, 79.2° E and spaceborne observations. Due to the vertical transport by large updrafts on 3 March in the troposphere, triggered by a potential vorticity intrusion, the water vapour mixing ratio shows an increase around the height of 18.6 km. Relative humidity with respect to ice is ~ 150%, indicating that the cirrus cloud may be formed though homogeneous nucleation of sulfuric acid. The cirrus cloud persists due to the cold anomaly associated with the presence of a 4-day wave.

  15. 3D reconstruction of tropospheric cirrus clouds by stereovision system

    Science.gov (United States)

    Nadjib Kouahla, Mohamed; Moreels, Guy; Seridi, Hamid

    2016-07-01

    A stereo imaging method is applied to measure the altitude of cirrus clouds and provide a 3D map of the altitude of the layer centroid. They are located in the high troposphere and, sometimes in the lower stratosphere, between 6 and 10 km high. Two simultaneous images of the same scene are taken with Canon cameras (400D) in two sites distant of 37 Km. Each image processed in order to invert the perspective effect and provide a satellite-type view of the layer. Pairs of matched points that correspond to a physical emissive point in the common area are identified in calculating a correlation coefficient (ZNCC: Zero mean Normalized Cross-correlation or ZSSD: as Zero mean Sum of Squared Differences). This method is suitable for obtaining 3D representations in the case of low-contrast objects. An observational campaign was conducted in June 2014 in France. The images were taken simultaneously at Marnay (47°17'31.5" N, 5°44'58.8" E; altitude 275 m) 25 km northwest of Besancon and in Mont poupet (46°58'31.5" N, 5°52'22.7" E; altitude 600 m) southwest of Besancon at 43 km. 3D maps of the Natural cirrus clouds and artificial like "aircraft trails" are retrieved. They are compared with pseudo-relief intensity maps of the same region. The mean altitude of the cirrus barycenter is located at 8.5 ± 1km on June 11.

  16. Technical note: Fu-Liou-Gu and Corti-Peter model performance evaluation for radiative retrievals from cirrus clouds

    Science.gov (United States)

    Lolli, Simone; Campbell, James R.; Lewis, Jasper R.; Gu, Yu; Welton, Ellsworth J.

    2017-06-01

    We compare, for the first time, the performance of a simplified atmospheric radiative transfer algorithm package, the Corti-Peter (CP) model, versus the more complex Fu-Liou-Gu (FLG) model, for resolving top-of-the-atmosphere radiative forcing characteristics from single-layer cirrus clouds obtained from the NASA Micro-Pulse Lidar Network database in 2010 and 2011 at Singapore and in Greenbelt, Maryland, USA, in 2012. Specifically, CP simplifies calculation of both clear-sky longwave and shortwave radiation through regression analysis applied to radiative calculations, which contributes significantly to differences between the two. The results of the intercomparison show that differences in annual net top-of-the-atmosphere (TOA) cloud radiative forcing can reach 65 %. This is particularly true when land surface temperatures are warmer than 288 K, where the CP regression analysis becomes less accurate. CP proves useful for first-order estimates of TOA cirrus cloud forcing, but may not be suitable for quantitative accuracy, including the absolute sign of cirrus cloud daytime TOA forcing that can readily oscillate around zero globally.

  17. Comparisons of Satellite-Deduced Overlapping Cloud Properties and CALIPSO CloudSat Data

    Science.gov (United States)

    Chang, Fu-Lung; Minnis, Patrick; Lin, Bing; Sun-Mack, Sunny

    2010-01-01

    Introduction to the overlapped cloud properties derived from polar-orbiting (MODIS) and geostationary (GOES-12, -13, Meteosat-8, -9, etc.) meteorological satellites, which are produced at the NASA Langley Research Center (LaRC) cloud research & development team (NASA lead scientist: Dr. Patrick Minnis). Comparison of the LaRC CERES MODIS Edition-3 overlapped cloud properties to the CALIPSO and the CloudSat active sensing data. High clouds and overlapped clouds occur frequently as deduced by CALIPSO (44 & 25%), CloudSat (25 & 4%), and MODIS (37 & 6%). Large fractions of optically-thin cirrus and overlapped clouds are deduced from CALIPSO, but much smaller fractions are from CloudSat and MODIS. For overlapped clouds, the averaged upper-layer CTHs are about 12.8 (CALIPSO), 10.9 (CloudSat) and 10 km (MODIS), and the averaged lower-layer CTHs are about 3.6 (CALIPSO), 3.2 (CloudSat) and 3.9 km (MODIS). Based on comparisons of upper and lower-layer cloud properties as deduced from the MODIS, CALIPSO and CloudSat data, more enhanced passive satellite methods for retrieving thin cirrus and overlapped cloud properties are needed and are under development.

  18. Ice nucleation and cloud microphysical properties in tropical tropopause layer cirrus

    Directory of Open Access Journals (Sweden)

    E. J. Jensen

    2010-02-01

    Full Text Available In past modeling studies, it has generally been assumed that the predominant mechanism for nucleation of ice in the uppermost troposphere is homogeneous freezing of aqueous aerosols. However, recent in situ and remote-sensing measurements of the properties of cirrus clouds at very low temperatures in the tropical tropopause layer (TTL are broadly inconsistent with theoretial predictions based on the homogeneous freezing assumption. The nearly ubiquitous occurence of gravity waves in the TTL makes the predictions from homogeneous nucleation theory particularly difficult to reconcile with measurements. These measured properties include ice number concentrations, which are much lower than theory predicts; ice crystal size distributions, which are much broader than theory predicts; and cloud extinctions, which are much lower than theory predicts. Although other explanations are possible, one way to limit ice concentrations is to have on the order of 50 L−1 effective ice nuclei (IN that could nucleate ice at relatively low supersaturations. We suggest that ammonium sulfate particles, which would be dry much of the time in the cold TTL, are a potential IN candidate for TTL cirrus. However, this mechanism remains to be fully quantified for the size distribution of ammonium sulfate (possibly internally mixed with organics actually present in the upper troposphere. Possible implications of the observed cloud microphysical properties for ice sedimentation, dehydration, and cloud persistence are also discussed.

  19. Evidence of impact of aviation on cirrus cloud formation

    Directory of Open Access Journals (Sweden)

    C. S. Zerefos

    2003-01-01

    Full Text Available This work examines changes in cirrus cloud cover (CCC in possible association with aviation activities at congested air corridors. The analysis is based on the latest version of the International Satellite Cloud Climatology Project D2 data set and covers the period 1984-1998. Over the studied areas, the effect of large-scale modes of natural climate variability such as ENSO, QBO and NAO as well as the possible influence of the tropopause variability, were first removed from the cloud data set in order to calculate long-term changes of observed cirrus cloudiness. The results show increasing trends in (CCC between 1984 and 1998 over the high air traffic corridors of North America, North Atlantic and Europe. Of these upward trends, only in the summertime over the North Atlantic and only in the wintertime over North America are statistically significant (exceeding +2.0% per decade. Over adjacent locations with low air traffic, the calculated trends are statistically insignificant and in most cases negative both during winter and summer in the regions studied. These negative trends, over low air traffic regions, are consistent with the observed large scale negative trends seen in (CCC over most of the northern middle latitudes and over the tropics. Moreover, further investigation of vertical velocities over high and low air traffic regions provide evidence that the trends of opposite signs in (CCC over these regions, do not seem to be caused by different trends in dynamics. It is also shown that the longitudinal distribution of decadal changes in (CCC along the latitude belt centered at the North Atlantic air corridor, parallels the spatial distribution of fuel consumption from highflying air traffic, providing an independent test of possible impact of aviation on contrail cirrus formation. The correlation between the fuel consumption and the longitudinal variability of (CCC is significant (+0.7 over the middle latitudes but not over the tropics

  20. Inhomogeneities in cirrus clouds and their effects on solar radiative transfer; Inhomogenitaeten in Cirren und ihre Auswirkungen auf den solaren Strahlungstransport

    Energy Technology Data Exchange (ETDEWEB)

    Buschmann, N. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Atmosphaerenphysik

    2001-07-01

    Inhomogeneities in cirrus clouds have an important impact on radiative transfer calculations in climate models. Compared to homogeneous clouds, inhomogeneities within clouds decrease reflectivity and result in an increased transmission of solar radiation through the cloud towards the surface. A quantitative investigation of this effect is still to be done. In-situ and remote sensing data of 11 cirrus clouds are used to investigate horizontal inhomogeneities. The 3-dimensional radiative transfer model GRIMALDI is used to calculate radiative flux densities and absorption for a cloudy atmosphere. Comparisons between homogeneous and heterogeneous calculations show, that the homogeneous assumption can cause relative errors up to {+-} 30% for radiative flux densities and absorption especially for tropical cirrus clouds. Mid-latitude cirrus clouds with mean optical thickness smaller than 5 and minor inhomogeneity result in relative errors smaller than {+-} 10% for radiative flux density and absorption. A correction scheme is developed to account for horizontal inhomogeneity in optically thick cirrus clouds in homogeneous radiative transfer calculations. This way, for a known horizontal distribution of optical thickness, relative errors of radiative properties can be reduced to a maximum of {+-} 10%. (orig.) [German] Inhomogenitaeten in Cirrus-Wolken spielen insbesondere bei Strahlungstransportrechnungen in Klimamodellen eine bedeutende Rolle. Im Vergleich zur homogenen Wolkenbetrachtung verringern Inhomogenitaeten die Reflektivitaet der Wolken und fuehren zu einer hoeheren Transmission solarer Strahlung durch die Wolke zum Erdboden. Eine quantitative Untersuchung dieses Effekts steht allerdings bislang aus. Flugzeugmessungen sowie Fernerkundungsdaten von insgesamt 11 Cirrus-Wolken werden auf ihre horizontale Inhomogenitaet untersucht. Das 3-dimensionale Strahlungstransportmodell GRIMALDI wird fuer die Berechnung solarer Strahlungsflussdichten und Absorption in bewoelkter

  1. Evaluation of cloud-resolving model simulations of midlatitude cirrus with ARM and A-train observations

    Science.gov (United States)

    Muhlbauer, A.; Ackerman, T. P.; Lawson, R. P.; Xie, S.; Zhang, Y.

    2015-07-01

    Cirrus clouds are ubiquitous in the upper troposphere and still constitute one of the largest uncertainties in climate predictions. This paper evaluates cloud-resolving model (CRM) and cloud system-resolving model (CSRM) simulations of a midlatitude cirrus case with comprehensive observations collected under the auspices of the Atmospheric Radiation Measurements (ARM) program and with spaceborne observations from the National Aeronautics and Space Administration A-train satellites. The CRM simulations are driven with periodic boundary conditions and ARM forcing data, whereas the CSRM simulations are driven by the ERA-Interim product. Vertical profiles of temperature, relative humidity, and wind speeds are reasonably well simulated by the CSRM and CRM, but there are remaining biases in the temperature, wind speeds, and relative humidity, which can be mitigated through nudging the model simulations toward the observed radiosonde profiles. Simulated vertical velocities are underestimated in all simulations except in the CRM simulations with grid spacings of 500 m or finer, which suggests that turbulent vertical air motions in cirrus clouds need to be parameterized in general circulation models and in CSRM simulations with horizontal grid spacings on the order of 1 km. The simulated ice water content and ice number concentrations agree with the observations in the CSRM but are underestimated in the CRM simulations. The underestimation of ice number concentrations is consistent with the overestimation of radar reflectivity in the CRM simulations and suggests that the model produces too many large ice particles especially toward the cloud base. Simulated cloud profiles are rather insensitive to perturbations in the initial conditions or the dimensionality of the model domain, but the treatment of the forcing data has a considerable effect on the outcome of the model simulations. Despite considerable progress in observations and microphysical parameterizations, simulating

  2. Daytime Land Surface Temperature Extraction from MODIS Thermal Infrared Data under Cirrus Clouds

    Directory of Open Access Journals (Sweden)

    Xiwei Fan

    2015-04-01

    Full Text Available Simulated data showed that cirrus clouds could lead to a maximum land surface temperature (LST retrieval error of 11.0 K when using the generalized split-window (GSW algorithm with a cirrus optical depth (COD at 0.55 μm of 0.4 and in nadir view. A correction term in the COD linear function was added to the GSW algorithm to extend the GSW algorithm to cirrus cloudy conditions. The COD was acquired by a look up table of the isolated cirrus bidirectional reflectance at 0.55 μm. Additionally, the slope k of the linear function was expressed as a multiple linear model of the top of the atmospheric brightness temperatures of MODIS channels 31–34 and as the difference between split-window channel emissivities. The simulated data showed that the LST error could be reduced from 11.0 to 2.2 K. The sensitivity analysis indicated that the total errors from all the uncertainties of input parameters, extension algorithm accuracy, and GSW algorithm accuracy were less than 2.5 K in nadir view. Finally, the Great Lakes surface water temperatures measured by buoys showed that the retrieval accuracy of the GSW algorithm was improved by at least 1.5 K using the proposed extension algorithm for cirrus skies.

  3. The impact on UT/LS cirrus clouds in the CAM/CARMA model using a new interactive aerosol parameterization.

    Science.gov (United States)

    Maloney, C.; Toon, B.; Bardeen, C.

    2017-12-01

    Recent studies indicate that heterogeneous nucleation may play a large role in cirrus cloud formation in the UT/LS, a region previously thought to be primarily dominated by homogeneous nucleation. As a result, it is beneficial to ensure that general circulation models properly represent heterogeneous nucleation in ice cloud simulations. Our work strives towards addressing this issue in the NSF/DOE Community Earth System Model's atmospheric model, CAM. More specifically we are addressing the role of heterogeneous nucleation in the coupled sectional microphysics cloud model, CARMA. Currently, our CAM/CARMA cirrus model only performs homogenous ice nucleation while ignoring heterogeneous nucleation. In our work, we couple the CAM/CARMA cirrus model with the Modal Aerosol Model (MAM). By combining the aerosol model with CAM/CARMA we can both account for heterogeneous nucleation, as well as directly link the sulfates used for homogeneous nucleation to computed fields instead of the current static field being utilized. Here we present our initial results and compare our findings to observations from the long running CALIPSO and MODIS satellite missions.

  4. MST radar and polarization lidar observations of tropical cirrus

    Directory of Open Access Journals (Sweden)

    Y. Bhavani Kumar

    2001-08-01

    Full Text Available Significant gaps in our understanding of global cirrus effects on the climate system involve the role of frequently occurring tropical cirrus. Much of the cirrus in the atmosphere is largely due to frequent cumulus and convective activity in the tropics. In the Indian sub-tropical region, the deep convective activity is very prominent from April to December, which is a favorable period for the formation of deep cumulus clouds. The fibrous anvils of these clouds, laden with ice crystals, are one of the source mechanisms for much of the cirrus in the atmosphere. In the present study, several passages of tropical cirrus were investigated by simultaneously operating MST radar and a co-located polarization lidar at the National MST Radar Facility (NMRF, Gadanki (13.45° N, 79.18° E, India to understand its structure, the background wind field and the microphysics at the cloud boundaries. The lidar system used is capable of measuring the degree of depolarization in the laser backscatter. It has identified several different cirrus structures with a peak linear depolarization ratio (LDR in the range of 0.1 to 0.32. Simultaneous observations of tropical cirrus by the VHF Doppler radar indicated a clear enhancement of reflectivity detected in the vicinity of the cloud boundaries, as revealed by the lidar and are strongly dependent on observed cloud LDR. An inter-comparison of radar reflectivity observed for vertical and oblique beams reveals that the radar-enhanced reflectivity at the cloud boundaries is also accompanied by significant aspect sensitivity. These observations indicate the presence of anisotropic turbulence at the cloud boundaries. Radar velocity measurements show that boundaries of cirrus are associated with enhanced horizontal winds, significant vertical shear in the horizontal winds and reduced vertical velocity. Therefore, these measurements indicate that a circulation at the cloud boundaries suggest an entrainment taking place close to

  5. MST radar and polarization lidar observations of tropical cirrus

    Directory of Open Access Journals (Sweden)

    Y. Bhavani Kumar

    Full Text Available Significant gaps in our understanding of global cirrus effects on the climate system involve the role of frequently occurring tropical cirrus. Much of the cirrus in the atmosphere is largely due to frequent cumulus and convective activity in the tropics. In the Indian sub-tropical region, the deep convective activity is very prominent from April to December, which is a favorable period for the formation of deep cumulus clouds. The fibrous anvils of these clouds, laden with ice crystals, are one of the source mechanisms for much of the cirrus in the atmosphere. In the present study, several passages of tropical cirrus were investigated by simultaneously operating MST radar and a co-located polarization lidar at the National MST Radar Facility (NMRF, Gadanki (13.45° N, 79.18° E, India to understand its structure, the background wind field and the microphysics at the cloud boundaries. The lidar system used is capable of measuring the degree of depolarization in the laser backscatter. It has identified several different cirrus structures with a peak linear depolarization ratio (LDR in the range of 0.1 to 0.32. Simultaneous observations of tropical cirrus by the VHF Doppler radar indicated a clear enhancement of reflectivity detected in the vicinity of the cloud boundaries, as revealed by the lidar and are strongly dependent on observed cloud LDR. An inter-comparison of radar reflectivity observed for vertical and oblique beams reveals that the radar-enhanced reflectivity at the cloud boundaries is also accompanied by significant aspect sensitivity. These observations indicate the presence of anisotropic turbulence at the cloud boundaries. Radar velocity measurements show that boundaries of cirrus are associated with enhanced horizontal winds, significant vertical shear in the horizontal winds and reduced vertical velocity. Therefore, these measurements indicate that a circulation at the cloud boundaries suggest an entrainment taking place close to

  6. Orographic cirrus in a future climate

    Directory of Open Access Journals (Sweden)

    H. Joos

    2009-10-01

    Full Text Available A cloud resolving model (CRM is used to investigate the formation of orographic cirrus clouds in the current and future climate. The formation of cirrus clouds depends on a variety of dynamical and thermodynamical processes, which act on different scales. First, the capability of the CRM in realistically simulating orographic cirrus clouds has been tested by comparing the simulated results to aircraft measurements of an orographic cirrus cloud. The influence of a warmer climate on the microphysical and optical properties of cirrus clouds has been investigated by initializing the CRM with vertical profiles of horizontal wind, potential temperature and equivalent potential temperature, respectively. The vertical profiles are extracted from IPCC A1B simulations for the current climate and for the period 2090–2099 for two regions representative for North and South America. The influence of additional moisture in a future climate on the propagation of gravity waves and the formation of orographic cirrus could be estimated. In a future climate, the increase in moisture dampens the vertical propagation of gravity waves and the occurring vertical velocities in the moist simulations. Together with higher temperatures fewer ice crystals nucleate homogeneously. Assuming that the relative humidity does not change in a warmer climate the specific humidity in the model is increased. This increase in specific humidity in a warmer climate results in a higher ice water content. The net effect of a reduced ice crystal number concentration and a higher ice water content is an increased optical depth. However, in some moist simulations dynamical changes contribute to changes in the ice water content, ice crystal number concentration and optical depth. For the corresponding dry simulations dynamical changes are more pronounced leading to a decreased optical depth in a future climate in some cases.

  7. Characterization of optical and micro-physical properties of cirrus clouds using a wideband thermal infrared spectrometer

    Science.gov (United States)

    Palchetti, Luca; Di Natale, Gianluca; Bianchini, Giovanni

    2014-05-01

    High-altitude ice clouds such as cirrus clouds play a key role in the Earth's radiation budget since they cover permanently about 20-30% of the surface of the planet, reaching even to 60-70% in the tropics. The modulation of the incoming solar radiation and the outgoing Earth's thermal emission due to cirrus can contribute to heat or to cool the atmosphere, according to their optical properties, which must be characterised with great accuracy and over the whole spectral range involved in the scattering and emission processes. Here we present the infrared measurements over the wide spectral range from 9 to 50 micron performed by the Fourier transform spectrometer REFIR-PAD (Radiation Explorer in Far InfraRed - Prototype for Application and Development) during many field campaigns that have taken place since 2007 from different high-altitude ground-based stations: Testa Grigia Station, Cervinia-Italy, (3480 m asl), Cerro Toco, Atacama-Chile, (5380 m asl), Concordia Base, Dome C-Antarctica (3230 m asl). These measurements show for the first time the spectral effect of cirrus clouds in the long-wave part of the emission spectrum above 15 micron of wavelength. To characterise these measurements over the wide spectral range as a function of the optical properties of ice particles, a model of the radiative transfer, that integrates the well known numerical code LBLRTM, which simulates the radiative transfer in the atmosphere, with a specific code which simulates the propagation of the radiation through the cloud, was developed. The optical properties of clouds have been modelled using the δ-scaled Eddington approximation for a single layer and the Ping Yang's database for the single-scattering properties of ice crystals. The preliminary results of the fit procedure used for the determination of the micro-physical parameters of ice crystals, such as the effective diameter, ice water path, effective temperature and optical thickness will be shown in the presentation. The

  8. Evaluation of cloud resolving model simulations of midlatitude cirrus with ARM and A-Train observations

    Science.gov (United States)

    Muehlbauer, A. D.; Ackerman, T. P.; Lawson, P.; Xie, S.; Zhang, Y.

    2015-12-01

    This paper evaluates cloud resolving model (CRM) and cloud system-resolving model (CSRM) simulations of a midlatitude cirrus case with comprehensive observations collected under the auspices of the Atmospheric Radiation Measurements (ARM) program and with spaceborne observations from the National Aeronautics and Space Administration (NASA) A-train satellites. Vertical profiles of temperature, relative humidity and wind speeds are reasonably well simulated by the CSRM and CRM but there are remaining biases in the temperature, wind speeds and relative humidity, which can be mitigated through nudging the model simulations toward the observed radiosonde profiles. Simulated vertical velocities are underestimated in all simulations except in the CRM simulations with grid spacings of 500m or finer, which suggests that turbulent vertical air motions in cirrus clouds need to be parameterized in GCMs and in CSRM simulations with horizontal grid spacings on the order of 1km. The simulated ice water content and ice number concentrations agree with the observations in the CSRM but are underestimated in the CRM simulations. The underestimation of ice number concentrations is consistent with the overestimation of radar reflectivity in the CRM simulations and suggests that the model produces too many large ice particles especially toward cloud base. Simulated cloud profiles are rather insensitive to perturbations in the initial conditions or the dimensionality of the model domain but the treatment of the forcing data has a considerable effect on the outcome of the model simulations. Despite considerable progress in observations and microphysical parameterizations, simulating the microphysical, macrophysical and radiative properties of cirrus remains challenging. Comparing model simulations with observations from multiple instruments and observational platforms is important for revealing model deficiencies and for providing rigorous benchmarks. However, there still is considerable

  9. Assessment of cirrus cloud and aerosol radiative effect in South-East Asia by ground-based NASA MPLNET lidar network data and CALIPSO satellite measurements

    Science.gov (United States)

    Lolli, Simone; Campbell, James R.; Lewis, Jasper R.; Welton, Ellsworth J.; Di Girolamo, Paolo; Fatkhuroyan, Fatkhuroyan; Gu, Yu; Marquis, Jared W.

    2017-10-01

    Aerosol, together with cirrus clouds, play a fundamental role in the earth-atmosphere system radiation budget, especially at tropical latitudes, where the Earth surface coverage by cirrus cloud can easily reach 70%. In this study we evaluate the combined aerosol and cirrus cloud net radiative effects in a wild and barren region like South East Asia. This part of the world is extremely vulnerable to climate change and it is source of important anthropogenic and natural aerosol emissions. The analysis has been carried out by computing cirrus cloud and aerosol net radiative effects through the Fu-Liou-Gu atmospheric radiative transfer model, adequately adapted to input lidar measurements, at surface and top-of-the atmosphere. The aerosol radiative effects were computed respectively using the retrieved lidar extinction from Cloud-Aerosol Lidar with Orthogonal Polarization in 2011 and 2012 and the lidar on-board of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations for the South East Asia Region (27N-12S, 77E-132E) with 5° x 5° spatial resolution. To assess the cirrus cloud radiative effect, we used the ground-based Micro Pulse Lidar Network measurements at Singapore permanent observational site. Results put in evidence that strong aerosol emission areas are related on average to a net surface cooling. On the contrary, cirrus cloud radiative effect shows a net daytime positive warming of the system earth-atmosphere. This effect is weak over the ocean where the albedo is lower and never counter-balances the net cooling produced by aerosols. The net cooling is stronger in 2011, with an associated reduction in precipitations by the four of the five rain-gauges stations deployed in three regions as Sumatra, Kalimantan and Java with respect to 2012. We can speculate that aerosol emissions may be associated with lower rainfall, however some very important phenomena as El Nino Southern Oscillation , Madden-Julian Oscillation, Monsoon and Indian Dipole are not

  10. Cloud type comparisons of AIRS, CloudSat, and CALIPSO cloud height and amount

    Directory of Open Access Journals (Sweden)

    B. H. Kahn

    2008-03-01

    Full Text Available The precision of the two-layer cloud height fields derived from the Atmospheric Infrared Sounder (AIRS is explored and quantified for a five-day set of observations. Coincident profiles of vertical cloud structure by CloudSat, a 94 GHz profiling radar, and the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO, are compared to AIRS for a wide range of cloud types. Bias and variability in cloud height differences are shown to have dependence on cloud type, height, and amount, as well as whether CloudSat or CALIPSO is used as the comparison standard. The CloudSat-AIRS biases and variability range from −4.3 to 0.5±1.2–3.6 km for all cloud types. Likewise, the CALIPSO-AIRS biases range from 0.6–3.0±1.2–3.6 km (−5.8 to −0.2±0.5–2.7 km for clouds ≥7 km (<7 km. The upper layer of AIRS has the greatest sensitivity to Altocumulus, Altostratus, Cirrus, Cumulonimbus, and Nimbostratus, whereas the lower layer has the greatest sensitivity to Cumulus and Stratocumulus. Although the bias and variability generally decrease with increasing cloud amount, the ability of AIRS to constrain cloud occurrence, height, and amount is demonstrated across all cloud types for many geophysical conditions. In particular, skill is demonstrated for thin Cirrus, as well as some Cumulus and Stratocumulus, cloud types infrared sounders typically struggle to quantify. Furthermore, some improvements in the AIRS Version 5 operational retrieval algorithm are demonstrated. However, limitations in AIRS cloud retrievals are also revealed, including the existence of spurious Cirrus near the tropopause and low cloud layers within Cumulonimbus and Nimbostratus clouds. Likely causes of spurious clouds are identified and the potential for further improvement is discussed.

  11. On the regional climatic impact of contrails: microphysical and radiative properties of contrails and natural cirrus clouds

    Directory of Open Access Journals (Sweden)

    B. Strauss

    Full Text Available The impact of contrail-induced cirrus clouds on regional climate is estimated for mean atmospheric conditions of southern Germany in the months of July and October. This is done by use of a regionalized one-dimensional radiative convective model (RCM. The influence of an increased ice cloud cover is studied by comparing RCM results representing climatological values with a modified case. In order to study the sensitivity of this effect on the radiative characteristics of the ice cloud, two types of additional ice clouds were modelled: cirrus and contrails, the latter cloud type containing a higher number of smaller and less of the larger cloud particles. Ice cloud parameters are calculated on the basis of a particle size distribution which covers the range from 2 to 2000 µm, taking into consideration recent measurements which show a remarkable amount of particles smaller than 20 µm. It turns out that a 10% increase in ice cloud cover leads to a surface temperature increase in the order of 1K, ranging from 1.1 to 1.2K in July and from 0.8 to 0.9K in October depending on the radiative characteristics of the air-traffic-induced ice clouds. Modelling the current contrail cloud cover which is near 0.5% over Europe yields a surface temperature increase in the order of 0.05K.

  12. On the regional climatic impact of contrails: microphysical and radiative properties of contrails and natural cirrus clouds

    Directory of Open Access Journals (Sweden)

    B. Strauss

    1997-11-01

    Full Text Available The impact of contrail-induced cirrus clouds on regional climate is estimated for mean atmospheric conditions of southern Germany in the months of July and October. This is done by use of a regionalized one-dimensional radiative convective model (RCM. The influence of an increased ice cloud cover is studied by comparing RCM results representing climatological values with a modified case. In order to study the sensitivity of this effect on the radiative characteristics of the ice cloud, two types of additional ice clouds were modelled: cirrus and contrails, the latter cloud type containing a higher number of smaller and less of the larger cloud particles. Ice cloud parameters are calculated on the basis of a particle size distribution which covers the range from 2 to 2000 µm, taking into consideration recent measurements which show a remarkable amount of particles smaller than 20 µm. It turns out that a 10% increase in ice cloud cover leads to a surface temperature increase in the order of 1K, ranging from 1.1 to 1.2K in July and from 0.8 to 0.9K in October depending on the radiative characteristics of the air-traffic-induced ice clouds. Modelling the current contrail cloud cover which is near 0.5% over Europe yields a surface temperature increase in the order of 0.05K.

  13. Aerosol-cirrus interactions: a number based phenomenon at all?

    Directory of Open Access Journals (Sweden)

    M. Seifert

    2004-01-01

    Full Text Available In situ measurements of the partitioning of aerosol particles within cirrus clouds were used to investigate aerosol-cloud interactions in ice clouds. The number density of interstitial aerosol particles (non-activated particles in between the cirrus crystals was compared to the number density of cirrus crystal residuals. The data was obtained during the two INCA (Interhemispheric Differences in Cirrus Properties from Anthropogenic Emissions campaigns, performed in the Southern Hemisphere (SH and Northern Hemisphere (NH midlatitudes. Different aerosol-cirrus interactions can be linked to the different stages of the cirrus lifecycle. Cloud formation is linked to positive correlations between the number density of interstitial aerosol (Nint and crystal residuals (Ncvi, whereas the correlations are smaller or even negative in a dissolving cloud. Unlike warm clouds, where the number density of cloud droplets is positively related to the aerosol number density, we observed a rather complex relationship when expressing Ncvi as a function of Nint for forming clouds. The data sets are similar in that they both show local maxima in the Nint range 100 to 200cm, where the SH- maximum is shifted towards the higher value. For lower number densities Nint and Ncvi are positively related. The slopes emerging from the data suggest that a tenfold increase in the aerosol number density corresponds to a 3 to 4 times increase in the crystal number density. As Nint increases beyond the ca. 100 to 200cm, the mean crystal number density decreases at about the same rate for both data sets. For much higher aerosol number densities, only present in the NH data set, the mean Ncvi remains low. The situation for dissolving clouds allows us to offer two possible, but at this point only speculative, alternative interactions between aerosols and cirrus: evaporating clouds might be associated with a source of aerosol particles, or air pollution (high aerosol number density might

  14. Subtropical Cirrus Properties Derived from GSFC Scanning Raman Lidar Measurements during CAMEX 3

    Science.gov (United States)

    Whiteman, D. N.; Wang, Z.; Demoz, B.

    2004-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) was stationed on Andros Island, Bahamas for the third Convection and Moisture Experiment (CAMEX 3) held in August - September, 1998 and acquired an extensive set of water vapor and cirrus cloud measurements (Whiteman et al., 2001). The cirrus data studied here have been segmented by generating mechanism. Distinct differences in the optical properties of the clouds are found when the cirrus are hurricane-induced versus thunderstom-induced. Relationships of cirrus cloud optical depth, mean cloud temperature, and layer mean extinction-to-backscatter ratio (S) are presented and compared with mid-latitude and tropical results. Hurricane-induced cirrus clouds are found to generally possess lower values of S than thunderstorm induced clouds. Comparison of these measurements of S are made with other studies revealing at times large differences in the measurements. Given that S is a required parameter for spacebased retrievals of cloud optical depth using backscatter lidar, these large diffaences in S measurements present difficulties for space-based retrievals of cirrus cloud extinction and optical depth.

  15. A modelling study of the impact of cirrus clouds on the moisture budget of the upper troposphere

    Directory of Open Access Journals (Sweden)

    S. Fueglistaler

    2006-01-01

    Full Text Available We present a modelling study of the effect of cirrus clouds on the moisture budget of the layer wherein the cloud formed. Our framework simplifies many aspects of cloud microphysics and collapses the problem of sedimentation onto a 0-dimensional box model, but retains essential feedbacks between saturation mixing ratio, particle growth, and water removal through particle sedimentation. The water budget is described by two coupled first-order differential equations for dimensionless particle number density and saturation point temperature, where the parameters defining the system (layer depth, reference temperature, amplitude and time scale of temperature perturbation and inital particle number density, which may or may not be a function of reference temperature and cooling rate are encapsulated in a single coefficient. This allows us to scale the results to a broad range of atmospheric conditions, and to test sensitivities. Results of the moisture budget calculations are presented for a range of atmospheric conditions (T: 238–205 K; p: 325–180 hPa and a range of time scales τT of the temperature perturbation that induces the cloud formation. The cirrus clouds are found to efficiently remove water for τT longer than a few hours, with longer perturbations (τT≳10 h required at lower temperatures (T≲210 K. Conversely, we find that temperature perturbations of duration order 1 h and less (a typical timescale for e.g., gravity waves do not efficiently dehydrate over most of the upper troposphere. A consequence is that (for particle densities typical of current cirrus clouds the assumption of complete dehydration to the saturation mixing ratio may yield valid predictions for upper tropospheric moisture distributions if it is based on the large scale temperature field, but this assumption is not necessarily valid if it is based on smaller scale temperature fields.

  16. Investigating Freezing Point Depression and Cirrus Cloud Nucleation Mechanisms Using a Differential Scanning Calorimeter

    Science.gov (United States)

    Bodzewski, Kentaro Y.; Caylor, Ryan L.; Comstock, Ashley M.; Hadley, Austin T.; Imholt, Felisha M.; Kirwan, Kory D.; Oyama, Kira S.; Wise, Matthew E.

    2016-01-01

    A differential scanning calorimeter was used to study homogeneous nucleation of ice from micron-sized aqueous ammonium sulfate aerosol particles. It is important to understand the conditions at which these particles nucleate ice because of their connection to cirrus cloud formation. Additionally, the concept of freezing point depression, a topic…

  17. Effects of stratocumulus, cumulus, and cirrus clouds on the UV-B diffuse to global ratio: Experimental and modeling results

    International Nuclear Information System (INIS)

    López, María Laura; Palancar, Gustavo G.; Toselli, Beatriz M.

    2012-01-01

    Broadband measurements of global and diffuse UV-B irradiance (280-315 nm) together with modeled and measured diffuse to global ratios (DGR) have been used to characterize the influence of different types of clouds on irradiance at the surface. Measurements were carried out during 2000-2001 in Córdoba City, Argentina. The Tropospheric Ultraviolet Visible (TUV) model was used to analyze the behavior of the modeled DGRs for different cloud optical depths and at different altitudes and solar zenith angles (SZA). Different cloud altitudes were also tested, although only the results for a cloud placed at 1.5-2.5 km of altitude are shown. A total of 16 day with stratocumulus, 12 with cumulus, and 16 with cirrus have been studied and compared among them and also against 21 clear sky days. Different behaviors were clearly detected and also differentiated through the analysis of the averages and the standard deviations of the DGRs: 1.02±0.06 for stratocumulus, 0.74±0.18 for cumulus, 0.63±0.12 for cirrus, and 0.60±0.13 for the clear sky days, respectively. Stratocumulus clouds showed a low variability in the DGR values, which were concentrated close to one at all SZAs. DGR values for cumulus clouds presented a large variability at all SZAs, mostly associated with the different optical depths. Finally, the closeness between the DGR values for cirrus clouds and the DGR values for clear days showed that these clouds generally do not strongly affect the UV-B irradiance at the surface at any SZA. In the opposite side, stratocumulus clouds were identified as those with the largest effects, at all SZAs, on the UV-B irradiance at the surface.

  18. Interference phenomena at backscattering by ice crystals of cirrus clouds.

    Science.gov (United States)

    Borovoi, Anatoli; Kustova, Natalia; Konoshonkin, Alexander

    2015-09-21

    It is shown that light backscattering by hexagonal ice crystals of cirrus clouds is formed within the physical-optics approximation by both diffraction and interference phenomena. Diffraction determines the angular width of the backscattering peak and interference produces the interference rings inside the peak. By use of a simple model for distortion of the pristine hexagonal shape, we show that the shape distortion leads to both oscillations of the scattering (Mueller) matrix within the backscattering peak and to a strong increase of the depolarization, color, and lidar ratios needed for interpretation of lidar signals.

  19. Modelling of cirrus clouds – Part 2: Competition of different nucleation mechanisms

    Directory of Open Access Journals (Sweden)

    P. Spichtinger

    2009-04-01

    Full Text Available We study the competition of two different freezing mechanisms (homogeneous and heterogeneous freezing in the same environment for cold cirrus clouds. To this goal we use the recently developed and validated ice microphysics scheme (Spichtinger and Gierens, 2009a which distinguishes between ice classes according to their formation process. We investigate cases with purely homogeneous ice formation and compare them with cases where background ice nuclei in varying concentration heterogeneously form ice prior to homogeneous nucleation. We perform additionally a couple of sensitivity studies regarding threshold humidity for heterogeneous freezing, uplift speed, and ambient temperature, and we study the influence of random motions induced by temperature fluctuations in the clouds. We find three types of cloud evolution, homogeneously dominated, heterogeneously dominated, and a mixed type where neither nucleation process dominates. The latter case is prone to long–lasting in–cloud ice supersaturation of the order 30% and more.

  20. Cirrus and aerosol lidar profilometer - analysis and results

    Energy Technology Data Exchange (ETDEWEB)

    Spinhirne, J.D.; Scott, V.S. [NASA Goddard Space Flight Center, Greenbelt, MD (United States); Reagan, J.A.; Galbraith, A. [Univ. of Arizona, Tucson, AZ (United States)

    1996-04-01

    A cloud and aerosol lidar set from over a year of near continuous operation of a micro pulse lidar (MPL) instrument at the Cloud and Radiation Testbed (CART) site has been established. MPL instruments are to be included in the Ames Research Center (ARC) instrument compliments for the SW Pacific and Arctic ARM sites. Operational processing algorithms are in development for the data sets. The derived products are to be cloud presence and classification, base height, cirrus thickness, cirrus optical thickness, cirrus extinction profile, aerosol optical thickness and profile, and planetary boundary layer (PBL) height. A cloud presence and base height algorithm is in use, and a data set from the CART site is available. The scientific basis for the algorithm development of the higher level data products and plans for implementation are discussed.

  1. The optical properties of equatorial cirrus in the pilot radiation observation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Platt, C.M.R.; Young, S.A.; Manson, P.; Patterson, G.R. [CSIRO, Victoria (Australia)] [and others

    1996-04-01

    The development of a sensitive filter radiometer for the Atmospheric Radiation Measurement (ARM) Program has been reported. The aim was to develop a reliable and fast instrument that could be used alongside a lidar to obtain near realtime optical properties of clouds, particularly high ice clouds, as they drifted over an ARM Cloud and Radiation Testbed (CART) site allowing calculation of the radiation divergence in the atmosphere over the site. Obtaining cloud optical properties by the lidar/radiometer, or LIRAD, method was described by Platt et al.; the latter paper also describes a year`s data on mid-latitude cirrus. The optical properties of equatorial cirrus (i.e., cirrus within a few degrees of the equator) have hardly been studied at all. The same is true of tropical cirrus, although a few observations have been reported by Davis and Platt et al.This paper describes obersvations performed on cirrus clouds, analysis methods used, and results.

  2. Reducing Striping and Near Field Response Influence in the MODIS 1.38um Cirrus Detection Band.

    Science.gov (United States)

    Ackerman, S. A.; Moeller, C. C.; Frey, R. A.; Gumley, L. E.; Menzel, W. P.

    2002-05-01

    Since first light in February 2000, the MODIS L1B data from Terra has exhibited detector striping in the cirrus detection band at 1.38 um (B26). This band's unique characteristic is that it is potentially able to discriminate very thin cirrus (optical depth of 0.1) because water vapor absorption effectively attenuates the upwelling signal from the earth's surface, leaving a flat dark background underneath the thin cirrus. The striping has diminished the power of this band for detecting thin cirrus in the MODIS Cloud Mask (MOD35) over the global environment by imparting a structure on the background. The striping amplitude (valley to peak) is 10 - 15% of the MODIS Ltyp radiance in B26 over land backgrounds, thus exceeding the 5% radiance prelaunch accuracy specification for the band. Also unexpected has been the presence of earth surface reflectance in B26. Forward model calculations indicate that the two-way transmittance of B26 in-band (1% to 1% response) should be water (TPW) exceeds about 12 mm. However, MODIS B26 imagery has routinely shown land surface reflectance, such as Florida, even in very moist (TPW > 30 mm) tropical air masses. MODIS prelaunch test data suggests that a near field response (NFR) at about 1.3 um in the B26 filter may be contributing to this behavior. A destriping and out-of-band correction algorithm has been under development at the University of Wisconsin to address the these issues. The simple linear algorithm is based on tuning detector dependent influence coefficients for B26 as a function of B5 (1.24 um) radiance so that the corrected B26 radiance is near zero for all B26 detectors in moist atmospheric conditions. B5 was chosen as a surrogate to characterize the NFR leak in the B26 filter because of its close spectral proximity to the NFR leak. Real MODIS L1B data is being used to estimate the influence coefficients. The paper will describe the B5 based destriping and NFR correction algorithm and influence coefficient development. It

  3. Properties of subvisible cirrus clouds formed by homogeneous freezing

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2002-01-01

    Full Text Available Number concentrations and mean sizes of ice crystals and derived microphysical and optical properties of subvisible cirrus clouds (SVCs formed by homogeneous freezing of supercooled aerosols are investigated as a function of temperature and updraft speed of adiabatically ascending air parcels. The properties of such clouds are insensitive to variations of the aerosol number and size distribution. Based on criteria constraining the optical extinction, sedimentation time, and existence time of SVCs, longer-lived (>10min clouds, capable of exerting a measurable radiative or chemical impact, are generated within a narrow range of updraft speeds below 1-2cm s-1 at temperatures below about 215K, with concentrations of ice crystals not exceeding 0.1cm-3. The clouds do not reach an equilibrium state because the ice crystals sediment out of the formation layer typically before the supersaturation is removed. Two important conclusions emerge from this work. First, the above characteristics of SVCs may provide an explanation for why SVCs are more common in the cold tropical than in the warmer midlatitude tropopause region. Second, it seems likely that a limited number (-3 of effective heterogeneous freezing nuclei that nucleate ice below the homogeneous freezing threshold can control the formation and properties of SVCs, although homogeneous freezing nuclei are far more abundant.

  4. Classifying stages of cirrus life-cycle evolution

    Science.gov (United States)

    Urbanek, Benedikt; Groß, Silke; Schäfler, Andreas; Wirth, Martin

    2018-04-01

    Airborne lidar backscatter data is used to determine in- and out-of-cloud regions. Lidar measurements of water vapor together with model temperature fields are used to calculate relative humidity over ice (RHi). Based on temperature and RHi we identify different stages of cirrus evolution: homogeneous and heterogeneous freezing, depositional growth, ice sublimation and sedimentation. We will present our classification scheme and first applications on mid-latitude cirrus clouds.

  5. Macrophysical and optical properties of midlatitude cirrus clouds from four ground-based lidars and collocated CALIOP observations

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, Jean-Charles; Haeffelin, M.; Morille, Y.; Noel, V.; Keckhut, P.; Winker, D.; Comstock, Jennifer M.; Chervet, P.; Roblin, A.

    2010-05-27

    Ground-based lidar and CALIOP datasets gathered over four mid-latitude sites, two US and two French sites, are used to evaluate the consistency of cloud macrophysical and optical property climatologies that can be derived by such datasets. The consistency in average cloud height (both base and top height) between the CALIOP and ground datasets ranges from -0.4km to +0.5km. The cloud geometrical thickness distributions vary significantly between the different datasets, due in part to the original vertical resolutions of the lidar profiles. Average cloud geometrical thicknesses vary from 1.2 to 1.9km, i.e. by more than 50%. Cloud optical thickness distributions in subvisible, semi-transparent and moderate intervals differ by more than 50% between ground and space-based datasets. The cirrus clouds with 2 optical thickness below 0.1 (not included in historical cloud climatologies) represent 30-50% of the non-opaque cirrus class. The differences in average cloud base altitude between ground and CALIOP datasets of 0.0-0.1 km, 0.0-0.2 km and 0.0-0.2 km can be attributed to irregular sampling of seasonal variations in the ground-based data, to day-night differences in detection capabilities by CALIOP, and to the restriction to situations without low-level clouds in ground-based data, respectively. The cloud geometrical thicknesses are not affected by irregular sampling of seasonal variations in the ground-based data, while up to 0.0-0.2 km and 0.1-0.3 km differences can be attributed to day-night differences in detection capabilities by CALIOP, and to the restriction to situations without lowlevel clouds in ground-based data, respectively.

  6. Possible influence of anthropogenic aerosols on cirrus clouds and anthropogenic forcing

    Directory of Open Access Journals (Sweden)

    J. E. Penner

    2009-02-01

    Full Text Available Cirrus clouds have a net warming effect on the atmosphere and cover about 30% of the Earth's area. Aerosol particles initiate ice formation in the upper troposphere through modes of action that include homogeneous freezing of solution droplets, heterogeneous nucleation on solid particles immersed in a solution, and deposition nucleation of vapor onto solid particles. Here, we examine the possible change in ice number concentration from anthropogenic soot originating from surface sources of fossil fuel and biomass burning, from anthropogenic sulfate aerosols, and from aircraft that deposit their aerosols directly in the upper troposphere. We use a version of the aerosol model that predicts sulfate number and mass concentrations in 3-modes and includes the formation of sulfate aerosol through homogeneous binary nucleation as well as a version that only predicts sulfate mass. The 3-mode version best represents the Aitken aerosol nuclei number concentrations in the upper troposphere which dominated ice crystal residues in the upper troposphere. Fossil fuel and biomass burning soot aerosols with this version exert a radiative forcing of −0.3 to −0.4 Wm−2 while anthropogenic sulfate aerosols and aircraft aerosols exert a forcing of −0.01 to 0.04 Wm−2 and −0.16 to −0.12 Wm−2, respectively, where the range represents the forcing from two parameterizations for ice nucleation. The sign of the forcing in the mass-only version of the model depends on which ice nucleation parameterization is used and can be either positive or negative. The magnitude of the forcing in cirrus clouds can be comparable to the forcing exerted by anthropogenic aerosols on warm clouds, but this forcing has not been included in past assessments of the total anthropogenic radiative forcing of climate.

  7. Potential of remote sensing of cirrus optical thickness by airborne spectral radiance measurements at different sideward viewing angles

    Science.gov (United States)

    Wolf, Kevin; Ehrlich, André; Hüneke, Tilman; Pfeilsticker, Klaus; Werner, Frank; Wirth, Martin; Wendisch, Manfred

    2017-03-01

    Spectral radiance measurements collected in nadir and sideward viewing directions by two airborne passive solar remote sensing instruments, the Spectral Modular Airborne Radiation measurement sysTem (SMART) and the Differential Optical Absorption Spectrometer (mini-DOAS), are used to compare the remote sensing results of cirrus optical thickness τ. The comparison is based on a sensitivity study using radiative transfer simulations (RTS) and on data obtained during three airborne field campaigns: the North Atlantic Rainfall VALidation (NARVAL) mission, the Mid-Latitude Cirrus Experiment (ML-CIRRUS) and the Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems (ACRIDICON) campaign. Radiative transfer simulations are used to quantify the sensitivity of measured upward radiance I with respect to τ, ice crystal effective radius reff, viewing angle of the sensor θV, spectral surface albedo α, and ice crystal shape. From the calculations it is concluded that sideward viewing measurements are generally better suited than radiance data from the nadir direction to retrieve τ of optically thin cirrus, especially at wavelengths larger than λ = 900 nm. Using sideward instead of nadir-directed spectral radiance measurements significantly improves the sensitivity and accuracy in retrieving τ, in particular for optically thin cirrus of τ ≤ 2. The comparison of retrievals of τ based on nadir and sideward viewing radiance measurements from SMART, mini-DOAS and independent estimates of τ from an additional active remote sensing instrument, the Water Vapor Lidar Experiment in Space (WALES), shows general agreement within the range of measurement uncertainties. For the selected example a mean τ of 0.54 ± 0.2 is derived from SMART, and 0.49 ± 0.2 by mini-DOAS nadir channels, while WALES obtained a mean value of τ = 0.32 ± 0.02 at 532 nm wavelength, respectively. The mean of τ derived from the sideward viewing mini

  8. Comparisons of cirrus cloud properties between polluted and pristine air based on in-situ observations from the NSF HIPPO, EU INCA and NASA ATTREX campaigns

    Science.gov (United States)

    Diao, M.; Schumann, U.; Jensen, J. B.; Minikin, A.

    2015-12-01

    The radiative forcing of cirrus clouds is influenced by microphysical (e.g., ice crystal number concentration and size distribution) and macroscopic properties. Currently it is still unclear how the formation of cirrus clouds and their microphysical properties are influenced by anthropogenic emissions. In this work, we use airborne in-situ observations to compare cirrus cloud properties between polluted and pristine regions. Our dataset includes: the NSF HIAPER Pole-to-Pole Observations (HIPPO) Global campaign (2009-2011), the EU Interhemispheric Differences In Cirrus Properties from Anthropogenic Emissions (INCA) campaign (2000) and the NASA Airborne Tropical Tropopause Experiment (ATTREX) campaign (2014). The combined dataset include observations of both extratropical (HIPPO and INCA) and tropical (ATTREX) cirrus, over the Northern and Southern Hemispheres. We use the in-situ measured carbon monoxide (CO) mixing ratio as a pollution indicator, and compare ice microphysical properties (i.e., ice crystal number concentration (Nc) and number-weighted mean diameter (Dc)) between air masses with higher and lower CO. All analyses are restricted to T ≤ -40°C. By analyzing ice crystals (Fast-2DC, 87.5-1600 µm) in HIPPO, we found that Dc decreases with increasing CO concentration at multiple constant pressure levels. In addition, analysis of INCA data shows that Nc and extinction of small ice particles (FSSP 3-20 µm) increases with increasing CO. Particles < 87.5 µm in Fast-2DC data are not considered due to uncertainty in sample volume, and the FSSP measurements are subject to possible shattering. We further analyze the ice crystals (SPEC FCDP, 1-50 µm) in the tropical tropopause layer in ATTREX. At -70°C to -90°C, we found that the average Nc (Dc) increases (decreases) at higher CO. Overall, our results suggest that extratropical and tropical cirrus are likely to have more numerous small ice particles, when sampled in the more polluted background. Back

  9. Whole Sky Imager Characterization of Sky Obscuration by Clouds for the Starfire Optical Range

    Science.gov (United States)

    2010-01-11

    to the definition of nominal thin clouds, the pyranometer threshold, and the definition of opaque clouds. The last comes from a casual remark that...Comment 1 .794 .23 2 .631 .46 3 .501 .69 .13 – 1.3 .97 - .74 .03 - 0 .3 Nominal thin cirrus 2 – 4 .63 - .40 .46 - .92 Nominal Pyranometer threshold

  10. Optics and geometric characterization of cirrus from Lille lidar measurements over the period 2008-2013

    International Nuclear Information System (INIS)

    Nohra, R.; Parol, F.; Dubuisson

    2015-01-01

    The aim of this work is the detection and characterization of cirrus clouds from ground-based lidar measurements acquired at 532 nm wave length. An inversion method has been developed during this work to realize a climatologyof cirrus clouds over Lille, France (50.65°N, 3.08ºE) from 2008 to 2013. The mid-cloud height is generally observed between 7 and 13 km, and a mean thickness is found to be 1.4 ±0.8 km. Visibleclouds, characterized by anoptical thickness between 0.03 and 0.3, present 68 % of the total observed cirrus clouds. The methodology used in this work andthe retrieved geometrical and optical parameters of cirrus clouds are presented in this article. (author)

  11. Retrieval of Cirrus Cloud Optical Depth under Day and Night Conditions from MODIS Collection 6 Cloud Property Data

    Directory of Open Access Journals (Sweden)

    Andrew K. Heidinger

    2015-06-01

    Full Text Available This paper presents a technique to generate cirrus optical depth and particle effective size estimates from the cloud emissivities at 8.5, 11 and 12 μm contained in the Collection-6 (C6 MYD06 cloud product. This technique employs the latest scattering models and scattering radiative transfer approximations to estimate cloud optical depth and particle effective size using efficient analytical formulae. Two scattering models are tested. The first is the same scattering model as that used in the C6 MYD06 solar reflectance products. The second model is an empirical model derived from radiometric consistency. Both models are shown to generate optical depths that compare well to those from constrained CALIPSO retrievals and MYD06. In terms of effective radius retrievals, the results from the radiometric empirical model agree more closely with MYD06 than those from the C6 model. This analysis is applied to AQUA/MODIS data collocated with CALIPSO/CALIOP during January 2010.

  12. Optical remote measurement of ozone in cirrus clouds; Optische Fernmessung von Ozon in Zirruswolken

    Energy Technology Data Exchange (ETDEWEB)

    Reichardt, J. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Physikalische und Chemische Analytik

    1998-12-31

    The subject of this thesis is theoretical and experimental investigations into the simultaneous optical remote measurement of atmospheric ozone concentration and particle properties. A lidar system was developed that combines the Raman-lidar and the polarization-lidar with the Raman-DIAL technique. An error analysis is given for ozone measurements in clouds. It turns out that the wavelength dependencies of photon multiple scattering and of the particle extinction coefficient necessitate a correction of the measured ozone concentration. To quantify the cloud influence, model calculations based on particle size distributions of spheres are carried out. The most important experimental result of this thesis is the measured evidence of pronounced minima in the ozone distribution in a humid upper troposphere shortly before and during cirrus observation. Good correlation between ozone-depleted altitude ranges and ice clouds is found. This finding is in contrast to ozone profiles measured in a dry and cloud-free troposphere. (orig.) 151 refs.

  13. Retrieving microphysics of cirrus clouds from data measured with raman lidar ramses and a tilted ceilometer

    Science.gov (United States)

    Borovoi, Anatoli; Reichardt, Jens; Görsdorf, Ulrich; Wolf, Veronika; Konoshonkin, Alexander; Shishko, Victor; Kustova, Natalia

    2018-04-01

    To develop a microphysical model of cirrus clouds, data obtained by Raman lidar RAMSES and a tilted ceilometer are studied synergistically. The measurements are interpreted by use of a data archive containing the backscattering matrixes as well as the depolarization, color and lidar ratios of ice crystals of different shapes, sizes and spatial orientations calculated within the physical-optics approximation.

  14. Factors controlling contrail cirrus optical depth

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2009-08-01

    Full Text Available Aircraft contrails develop into contrail cirrus by depositional growth and sedimentation of ice particles and horizontal spreading due to wind shear. Factors controlling this development include temperature, ice supersaturation, thickness of ice-supersaturated layers, and vertical gradients in the horizontal wind field. An analytical microphysical cloud model is presented and validated that captures these processes. Many individual contrail cirrus are simulated that develop differently owing to the variability in the controlling factors, resulting in large samples of cloud properties that are statistically analyzed. Contrail cirrus development is studied over the first four hours past formation, similar to the ages of line-shaped contrails that were tracked in satellite imagery on regional scales. On these time scales, contrail cirrus optical depth and microphysical variables exhibit a marked variability, expressed in terms of broad and skewed probability distribution functions. Simulated mean optical depths at a wavelength of 0.55 μm range from 0.05-0.5 and a substantial fraction 20-50% of contrail cirrus stay subvisible (optical depth <0.02, depending on meteorological conditions.

    A detailed analysis based on an observational case study over the continental USA suggests that previous satellite measurements of line-shaped persistent contrails have missed about 89%, 50%, and 11% of contrails with optical depths 0-0.05, 0.05-0.1, and 0.1-0.2, respectively, amounting to 65% of contrail coverage of all optical depths. When comparing observations with simulations and when estimating the contrail cirrus climate impact, not only mean values but also the variability in optical depth and microphysical properties need to be considered.

  15. Importance of aggregation and small ice crystals in cirrus clouds, based on observations and an ice particle growth model

    Science.gov (United States)

    Mitchell, David L.; Chai, Steven K.; Dong, Yayi; Arnott, W. Patrick; Hallett, John

    1993-01-01

    The 1 November 1986 FIRE I case study was used to test an ice particle growth model which predicts bimodal size spectra in cirrus clouds. The model was developed from an analytically based model which predicts the height evolution of monomodal ice particle size spectra from the measured ice water content (IWC). Size spectra from the monomodal model are represented by a gamma distribution, N(D) = N(sub o)D(exp nu)exp(-lambda D), where D = ice particle maximum dimension. The slope parameter, lambda, and the parameter N(sub o) are predicted from the IWC through the growth processes of vapor diffusion and aggregation. The model formulation is analytical, computationally efficient, and well suited for incorporation into larger models. The monomodal model has been validated against two other cirrus cloud case studies. From the monomodal size spectra, the size distributions which determine concentrations of ice particles less than about 150 mu m are predicted.

  16. Validation of the large-scale Lagrangian cirrus model CLaMS-Ice by in-situ measurements

    Science.gov (United States)

    Costa, Anja; Rolf, Christian; Grooß, Jens-Uwe; Afchine, Armin; Spelten, Nicole; Dreiling, Volker; Zöger, Martin; Krämer, Martina

    2015-04-01

    Cirrus clouds are an element of uncertainty in the climate system and have received increasing attention since the last IPCC reports. The interaction of varying freezing meachanisms, sedimentation rates, temperature and updraft velocity fluctuations and other factors that lead to the formation of those clouds is still not fully understood. During the ML-Cirrus campaign 2014 (Germany), the new cirrus cloud model CLaMS-Ice (see Rolf et al., EGU 2015) has been used for flight planning to direct the research aircraft HALO into interesting cirrus cloud regions. Now, after the campaign, we use our in-situ aircraft measurements to validate and improve this model - with the long-term goal to enable it to simulate cirrus cloud cover globally, with reasonable computing times and sufficient accuracy. CLaMS-Ice consists of a two-moment bulk model established by Spichtinger and Gierens (2009a, 2009b), which simulates cirrus clouds along trajectories that the Lagrangian model CLaMS (McKenna et al., 2002 and Konopka et al. 2007) derived from ECMWF data. The model output covers temperature, pressure, relative humidity, ice water content (IWC), and ice crystal numbers (Nice). These parameters were measured on board of HALO by the following instruments: temperature and pressure by BAHAMAS, total and gas phase water by the hygrometers FISH and SHARC (see Meyer et al 2014, submitted to ACP), and Nice as well as ice crystal size distributions by the cloud spectrometer NIXE-CAPS (see also Krämer et al., EGU 2015). Comparisons of the model results with the measurements yield that cirrus clouds can be successfully simulated by CLaMS-Ice. However, there are sections in which the model's relative humidity and Nice deviate considerably from the measured values. This can be traced back to e.g. the initialization of total water from ECMWF data. The simulations are therefore reinitiated with the total water content measured by FISH. Other possible sources of uncertainties are investigated, as

  17. Comparison of Cloud and Aerosol Detection between CERES Edition 3 Cloud Mask and CALIPSO Version 2 Data Products

    Science.gov (United States)

    Trepte, Qing; Minnis, Patrick; Sun-Mack, Sunny; Trepte, Charles

    Clouds and aerosol play important roles in the global climate system. Accurately detecting their presence, altitude, and properties using satellite radiance measurements is a crucial first step in determining their influence on surface and top-of-atmosphere radiative fluxes. This paper presents a comparison analysis of a new version of the Clouds and Earth's Radiant Energy System (CERES) Edition 3 cloud detection algorithms using Aqua MODIS data with the recently released Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) Version 2 Vertical Feature Mask (VFM). Improvements in CERES Edition 3 cloud mask include dust detection, thin cirrus tests, enhanced low cloud detection at night, and a smoother transition from mid-latitude to polar regions. For the CALIPSO Version 2 data set, changes to the lidar calibration can result in significant improvements to its identification of optically thick aerosol layers. The Aqua and CALIPSO satellites, part of the A-train satellite constellation, provide a unique opportunity for validating passive sensor cloud and aerosol detection using an active sensor. In this paper, individual comparison cases will be discussed for different types of clouds and aerosols over various surfaces, for daytime and nighttime conditions, and for regions ranging from the tropics to the poles. Examples will include an assessment of the CERES detection algorithm for optically thin cirrus, marine stratus, and polar night clouds as well as its ability to characterize Saharan dust plumes off the African coast. With the CALIPSO lidar's unique ability to probe the vertical structure of clouds and aerosol layers, it provides an excellent validation data set for cloud detection algorithms, especially for polar nighttime clouds.

  18. Upper tropospheric cloud systems determined from IR Sounders and their influence on the atmosphere

    Science.gov (United States)

    Stubenrauch, Claudia; Protopapadaki, Sofia; Feofilov, Artem; Velasco, Carola Barrientos

    2017-02-01

    Covering about 30% of the Earth, upper tropospheric clouds play a key role in the climate system by modulating the Earth's energy budget and heat transport. Infrared Sounders reliably identify cirrus down to an IR optical depth of 0.1. Recently LMD has built global cloud climate data records from AIRS and IASI observations, covering the periods from 2003-2015 and 2008-2015, respectively. Upper tropospheric clouds often form mesoscale systems. Their organization and properties are being studied by (1) distinguishing cloud regimes within 2° × 2° regions and (2) applying a spatial composite technique on adjacent cloud pressures, which estimates the horizontal extent of the mesoscale cloud systems. Convective core, cirrus anvil and thin cirrus of these systems are then distinguished by their emissivity. Compared to other studies of tropical mesoscale convective systems our data include also the thinner anvil parts, which make out about 30% of the area of tropical mesoscale convective systems. Once the horizontal and vertical structure of these upper tropospheric cloud systems is known, we can estimate their radiative effects in terms of top of atmosphere and surface radiative fluxes and by computing their heating rates.

  19. Application of a multiple scattering model to estimate optical depth, lidar ratio and ice crystal effective radius of cirrus clouds observed with lidar.

    Science.gov (United States)

    Gouveia, Diego; Baars, Holger; Seifert, Patric; Wandinger, Ulla; Barbosa, Henrique; Barja, Boris; Artaxo, Paulo; Lopes, Fabio; Landulfo, Eduardo; Ansmann, Albert

    2018-04-01

    Lidar measurements of cirrus clouds are highly influenced by multiple scattering (MS). We therefore developed an iterative approach to correct elastic backscatter lidar signals for multiple scattering to obtain best estimates of single-scattering cloud optical depth and lidar ratio as well as of the ice crystal effective radius. The approach is based on the exploration of the effect of MS on the molecular backscatter signal returned from above cloud top.

  20. Analysis of cirrus cloud spectral signatures in the far infrared

    International Nuclear Information System (INIS)

    Maestri, T.; Rizzi, R.; Tosi, E.; Veglio, P.; Palchetti, L.; Bianchini, G.; Di Girolamo, P.; Masiello, G.; Serio, C.; Summa, D.

    2014-01-01

    This paper analyses high spectral resolution downwelling radiance measurements in the far infrared in the presence of cirrus clouds taken by the REFIR-PAD interferometer, deployed at 3500 m above the sea level at the Testa Grigia station (Italy), during the Earth COoling by WAter vapouR emission (ECOWAR) campaign. Atmospheric state and cloud geometry are characterised by the co-located millimeter-wave spectrometer GBMS and by radiosonde profile data, an interferometer (I-BEST) and a Raman lidar system deployed at a nearby location (Cervinia). Cloud optical depth and effective diameter are retrieved from REFIR-PAD data using a limited number of channels in the 820–960 cm −1 interval. The retrieved cloud parameters are the input data for simulations covering the 250–1100 cm −1 band in order to test our ability to reproduce the REFIR-PAD spectra in the presence of ice clouds. Inverse and forward simulations are based on the same radiative transfer code. A priori information concerning cloud ice vertical distribution is used to better constrain the simulation scheme and an analysis of the degree of approximation of the phase function within the radiative transfer codes is performed to define the accuracy of computations. Simulation-data residuals over the REFIR-PAD spectral interval show an excellent agreement in the window region, but values are larger than total measurement uncertainties in the far infrared. Possible causes are investigated. It is shown that the uncertainties related to the water vapour and temperature profiles are of the same order as the sensitivity to the a priori assumption on particle habits for an up-looking configuration. In case of a down-looking configuration, errors due to possible incorrect description of the water vapour profile would be drastically reduced. - Highlights: • We analyze down-welling spectral radiances in the far infrared (FIR) spectrum. • Discuss the scattering in the fir and the ice crystals phase function

  1. Tropical cloud and precipitation regimes as seen from near-simultaneous TRMM, CloudSat, and CALIPSO observations and comparison with ISCCP

    Science.gov (United States)

    Luo, Zhengzhao Johnny; Anderson, Ricardo C.; Rossow, William B.; Takahashi, Hanii

    2017-06-01

    Although Tropical Rainfall Measuring Mission (TRMM) and CloudSat/CALIPSO fly in different orbits, they frequently cross each other so that for the period between 2006 and 2010, a total of 15,986 intersect lines occurred within 20 min of each other from 30°S to 30°N, providing a rare opportunity to study tropical cloud and precipitation regimes and their internal vertical structure from near-simultaneous measurements by these active sensors. A k-means cluster analysis of TRMM and CloudSat matchups identifies three tropical cloud and precipitation regimes: the first two regimes correspond to, respectively, organized deep convection with heavy rain and cirrus anvils with moderate rain; the third regime is a convectively suppressed regime that can be further divided into three subregimes, which correspond to, respectively, stratocumulus clouds with drizzle, cirrus overlying low clouds, and nonprecipitating cumulus. Inclusion of CALIPSO data adds to the dynamic range of cloud properties and identifies one more cluster; subcluster analysis further identifies a thin, midlevel cloud regime associated with tropical mountain ranges. The radar-lidar cloud regimes are compared with the International Satellite Cloud Climatology Project (ISCCP) weather states (WSs) for the extended tropics. Focus is placed on the four convectively active WSs, namely, WS1-WS4. ISCCP WS1 and WS2 are found to be counterparts of Regime 1 and Regime 2 in radar-lidar observations, respectively. ISCCP WS3 and WS4, which are mainly isolated convection and broken, detached cirrus, do not have a strong association with any individual radar and lidar regimes, a likely effect of the different sampling strategies between ISCCP and active sensors and patchy cloudiness of these WSs.

  2. Application of a multiple scattering model to estimate optical depth, lidar ratio and ice crystal effective radius of cirrus clouds observed with lidar.

    Directory of Open Access Journals (Sweden)

    Gouveia Diego

    2018-01-01

    Full Text Available Lidar measurements of cirrus clouds are highly influenced by multiple scattering (MS. We therefore developed an iterative approach to correct elastic backscatter lidar signals for multiple scattering to obtain best estimates of single-scattering cloud optical depth and lidar ratio as well as of the ice crystal effective radius. The approach is based on the exploration of the effect of MS on the molecular backscatter signal returned from above cloud top.

  3. In situ measurements of tropical cloud properties in the West African Monsoon: upper tropospheric ice clouds, Mesoscale Convective System outflow, and subvisual cirrus

    Directory of Open Access Journals (Sweden)

    W. Frey

    2011-06-01

    Full Text Available In situ measurements of ice crystal size distributions in tropical upper troposphere/lower stratosphere (UT/LS clouds were performed during the SCOUT-AMMA campaign over West Africa in August 2006. The cloud properties were measured with a Forward Scattering Spectrometer Probe (FSSP-100 and a Cloud Imaging Probe (CIP operated aboard the Russian high altitude research aircraft M-55 Geophysica with the mission base in Ouagadougou, Burkina Faso. A total of 117 ice particle size distributions were obtained from the measurements in the vicinity of Mesoscale Convective Systems (MCS. Two to four modal lognormal size distributions were fitted to the average size distributions for different potential temperature bins. The measurements showed proportionately more large ice particles compared to former measurements above maritime regions. With the help of trace gas measurements of NO, NOy, CO2, CO, and O3 and satellite images, clouds in young and aged MCS outflow were identified. These events were observed at altitudes of 11.0 km to 14.2 km corresponding to potential temperature levels of 346 K to 356 K. In a young outflow from a developing MCS ice crystal number concentrations of up to (8.3 ± 1.6 cm−3 and rimed ice particles with maximum dimensions exceeding 1.5 mm were found. A maximum ice water content of 0.05 g m−3 was observed and an effective radius of about 90 μm. In contrast the aged outflow events were more diluted and showed a maximum number concentration of 0.03 cm−3, an ice water content of 2.3 × 10−4 g m−3, an effective radius of about 18 μm, while the largest particles had a maximum dimension of 61 μm.

    Close to the tropopause subvisual cirrus were encountered four times at altitudes of 15 km to 16.4 km. The mean ice particle number concentration of these encounters was 0.01 cm−3 with maximum particle sizes of 130

  4. A statistical comparison of cirrus particle size distributions measured using the 2-D stereo probe during the TC4, SPARTICUS, and MACPEX flight campaigns with historical cirrus datasets

    Science.gov (United States)

    Schwartz, M. Christian

    2017-08-01

    This paper addresses two straightforward questions. First, how similar are the statistics of cirrus particle size distribution (PSD) datasets collected using the Two-Dimensional Stereo (2D-S) probe to cirrus PSD datasets collected using older Particle Measuring Systems (PMS) 2-D Cloud (2DC) and 2-D Precipitation (2DP) probes? Second, how similar are the datasets when shatter-correcting post-processing is applied to the 2DC datasets? To answer these questions, a database of measured and parameterized cirrus PSDs - constructed from measurements taken during the Small Particles in Cirrus (SPARTICUS); Mid-latitude Airborne Cirrus Properties Experiment (MACPEX); and Tropical Composition, Cloud, and Climate Coupling (TC4) flight campaigns - is used.Bulk cloud quantities are computed from the 2D-S database in three ways: first, directly from the 2D-S data; second, by applying the 2D-S data to ice PSD parameterizations developed using sets of cirrus measurements collected using the older PMS probes; and third, by applying the 2D-S data to a similar parameterization developed using the 2D-S data themselves. This is done so that measurements of the same cloud volumes by parameterized versions of the 2DC and 2D-S can be compared with one another. It is thereby seen - given the same cloud field and given the same assumptions concerning ice crystal cross-sectional area, density, and radar cross section - that the parameterized 2D-S and the parameterized 2DC predict similar distributions of inferred shortwave extinction coefficient, ice water content, and 94 GHz radar reflectivity. However, the parameterization of the 2DC based on uncorrected data predicts a statistically significantly higher number of total ice crystals and a larger ratio of small ice crystals to large ice crystals than does the parameterized 2D-S. The 2DC parameterization based on shatter-corrected data also predicts statistically different numbers of ice crystals than does the parameterized 2D-S, but the

  5. A statistical comparison of cirrus particle size distributions measured using the 2-D stereo probe during the TC4, SPARTICUS, and MACPEX flight campaigns with historical cirrus datasets

    Directory of Open Access Journals (Sweden)

    M. C. Schwartz

    2017-08-01

    Full Text Available This paper addresses two straightforward questions. First, how similar are the statistics of cirrus particle size distribution (PSD datasets collected using the Two-Dimensional Stereo (2D-S probe to cirrus PSD datasets collected using older Particle Measuring Systems (PMS 2-D Cloud (2DC and 2-D Precipitation (2DP probes? Second, how similar are the datasets when shatter-correcting post-processing is applied to the 2DC datasets? To answer these questions, a database of measured and parameterized cirrus PSDs – constructed from measurements taken during the Small Particles in Cirrus (SPARTICUS; Mid-latitude Airborne Cirrus Properties Experiment (MACPEX; and Tropical Composition, Cloud, and Climate Coupling (TC4 flight campaigns – is used.Bulk cloud quantities are computed from the 2D-S database in three ways: first, directly from the 2D-S data; second, by applying the 2D-S data to ice PSD parameterizations developed using sets of cirrus measurements collected using the older PMS probes; and third, by applying the 2D-S data to a similar parameterization developed using the 2D-S data themselves. This is done so that measurements of the same cloud volumes by parameterized versions of the 2DC and 2D-S can be compared with one another. It is thereby seen – given the same cloud field and given the same assumptions concerning ice crystal cross-sectional area, density, and radar cross section – that the parameterized 2D-S and the parameterized 2DC predict similar distributions of inferred shortwave extinction coefficient, ice water content, and 94 GHz radar reflectivity. However, the parameterization of the 2DC based on uncorrected data predicts a statistically significantly higher number of total ice crystals and a larger ratio of small ice crystals to large ice crystals than does the parameterized 2D-S. The 2DC parameterization based on shatter-corrected data also predicts statistically different numbers of ice crystals than does the

  6. Detection of single and multilayer clouds in an artificial neural network approach

    Science.gov (United States)

    Sun-Mack, Sunny; Minnis, Patrick; Smith, William L.; Hong, Gang; Chen, Yan

    2017-10-01

    Determining whether a scene observed with a satellite imager is composed of a thin cirrus over a water cloud or thick cirrus contiguous with underlying layers of ice and water clouds is often difficult because of similarities in the observed radiance values. In this paper an artificial neural network (ANN) algorithm, employing several Aqua MODIS infrared channels and the retrieved total cloud visible optical depth, is trained to detect multilayer ice-over-water cloud systems as identified by matched April 2009 CloudSat and CALIPSO (CC) data. The CC lidar and radar profiles provide the vertical structure that serves as output truth for a multilayer ANN, or MLANN, algorithm. Applying the trained MLANN to independent July 2008 MODIS data resulted in a combined ML and single layer hit rate of 75% (72%) for nonpolar regions during the day (night). The results are comparable to or more accurate than currently available methods. Areas of improvement are identified and will be addressed in future versions of the MLANN.

  7. An assessment of thin cloud detection by applying bidirectional reflectance distribution function model-based background surface reflectance using Geostationary Ocean Color Imager (GOCI): A case study for South Korea

    Science.gov (United States)

    Kim, Hye-Won; Yeom, Jong-Min; Shin, Daegeun; Choi, Sungwon; Han, Kyung-Soo; Roujean, Jean-Louis

    2017-08-01

    In this study, a new assessment of thin cloud detection with the application of bidirectional reflectance distribution function (BRDF) model-based background surface reflectance was undertaken by interpreting surface spectra characterized using the Geostationary Ocean Color Imager (GOCI) over a land surface area. Unlike cloud detection over the ocean, the detection of cloud over land surfaces is difficult due to the complicated surface scattering characteristics, which vary among land surface types. Furthermore, in the case of thin clouds, in which the surface and cloud radiation are mixed, it is difficult to detect the clouds in both land and atmospheric fields. Therefore, to interpret background surface reflectance, especially underneath cloud, the semiempirical BRDF model was used to simulate surface reflectance by reflecting solar angle-dependent geostationary sensor geometry. For quantitative validation, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data were used to make a comparison with the proposed cloud masking result. As a result, the new cloud masking scheme resulted in a high probability of detection (POD = 0.82) compared with the Moderate Resolution Imaging Spectroradiometer (MODIS) (POD = 0.808) for all cloud cases. In particular, the agreement between the CALIPSO cloud product and new GOCI cloud mask was over 94% when detecting thin cloud (e.g., altostratus and cirrus) from January 2014 to June 2015. This result is relatively high in comparison with the result from the MODIS Collection 6 cloud mask product (MYD35).

  8. Parameterizing the competition between homogeneous and heterogeneous freezing in cirrus cloud formation – monodisperse ice nuclei

    Directory of Open Access Journals (Sweden)

    D. Barahona

    2009-01-01

    Full Text Available We present a parameterization of cirrus cloud formation that computes the ice crystal number and size distribution under the presence of homogeneous and heterogeneous freezing. The parameterization is very simple to apply and is derived from the analytical solution of the cloud parcel equations, assuming that the ice nuclei population is monodisperse and chemically homogeneous. In addition to the ice distribution, an analytical expression is provided for the limiting ice nuclei number concentration that suppresses ice formation from homogeneous freezing. The parameterization is evaluated against a detailed numerical parcel model, and reproduces numerical simulations over a wide range of conditions with an average error of 6±33%. The parameterization also compares favorably against other formulations that require some form of numerical integration.

  9. Single particle measurements of the chemical composition of cirrus ice residue during CRYSTAL-FACE

    Science.gov (United States)

    Cziczo, D. J.; Murphy, D. M.; Hudson, P. K.; Thomson, D. S.

    2004-02-01

    The first real-time, in situ, investigation of the chemical composition of the residue of cirrus ice crystals was performed during July 2002. This study was undertaken on a NASA WB-57F high-altitude research aircraft as part of CRYSTAL-FACE, a field campaign which sought to further our understanding of the relation of clouds, water vapor, and climate by characterizing, among other parameters, anvil cirrus formed about the Florida peninsula. A counter flow virtual impactor (CVI) was used to separate cirrus ice from the unactivated interstitial aerosol particles and evaporate condensed-phase water. Residual material, on a crystal-by-crystal basis, was subsequently analyzed using the NOAA Aeronomy Laboratory's Particle Analysis by Laser Mass Spectrometry (PALMS) instrument. Sampling was performed from 5 to 15 km altitude and from 12° to 28° north latitude within cirrus originating over land and ocean. Chemical composition measurements provided several important results. Sea salt was often incorporated into cirrus, consistent with homogeneous ice formation by aerosol particles from the marine boundary layer. Size measurements showed that large particles preferentially froze over smaller ones. Meteoritic material was found within ice crystals, indicative of a relation between stratospheric aerosol particles and tropospheric clouds. Mineral dust was the dominant residue observed in clouds formed during a dust transport event from the Sahara, consistent with a heterogeneous freezing mechanism. These results show that chemical composition and size are important determinants of which aerosol particles form cirrus ice crystals.

  10. Comparison of cloud optical depth and cloud mask applying BRDF model-based background surface reflectance

    Science.gov (United States)

    Kim, H. W.; Yeom, J. M.; Woo, S. H.

    2017-12-01

    Over the thin cloud region, satellite can simultaneously detect the reflectance from thin clouds and land surface. Since the mixed reflectance is not the exact cloud information, the background surface reflectance should be eliminated to accurately distinguish thin cloud such as cirrus. In the previous research, Kim et al (2017) was developed the cloud masking algorithm using the Geostationary Ocean Color Imager (GOCI), which is one of significant instruments for Communication, Ocean, and Meteorology Satellite (COMS). Although GOCI has 8 spectral channels including visible and near infra-red spectral ranges, the cloud masking has quantitatively reasonable result when comparing with MODIS cloud mask (Collection 6 MYD35). Especially, we noticed that this cloud masking algorithm is more specialized in thin cloud detections through the validation with Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) data. Because this cloud masking method was concentrated on eliminating background surface effects from the top-of-atmosphere (TOA) reflectance. Applying the difference between TOA reflectance and the bi-directional reflectance distribution function (BRDF) model-based background surface reflectance, cloud areas both thick cloud and thin cloud can be discriminated without infra-red channels which were mostly used for detecting clouds. Moreover, when the cloud mask result was utilized as the input data when simulating BRDF model and the optimized BRDF model-based surface reflectance was used for the optimized cloud masking, the probability of detection (POD) has higher value than POD of the original cloud mask. In this study, we examine the correlation between cloud optical depth (COD) and its cloud mask result. Cloud optical depths mostly depend on the cloud thickness, the characteristic of contents, and the size of cloud contents. COD ranges from less than 0.1 for thin clouds to over 1000 for the huge cumulus due to scattering by droplets. With

  11. Lidar inelastic multiple-scattering parameters of cirrus particle ensembles determined with geometrical-optics crystal phase functions.

    Science.gov (United States)

    Reichardt, J; Hess, M; Macke, A

    2000-04-20

    Multiple-scattering correction factors for cirrus particle extinction coefficients measured with Raman and high spectral resolution lidars are calculated with a radiative-transfer model. Cirrus particle-ensemble phase functions are computed from single-crystal phase functions derived in a geometrical-optics approximation. Seven crystal types are considered. In cirrus clouds with height-independent particle extinction coefficients the general pattern of the multiple-scattering parameters has a steep onset at cloud base with values of 0.5-0.7 followed by a gradual and monotonic decrease to 0.1-0.2 at cloud top. The larger the scattering particles are, the more gradual is the rate of decrease. Multiple-scattering parameters of complex crystals and of imperfect hexagonal columns and plates can be well approximated by those of projected-area equivalent ice spheres, whereas perfect hexagonal crystals show values as much as 70% higher than those of spheres. The dependencies of the multiple-scattering parameters on cirrus particle spectrum, base height, and geometric depth and on the lidar parameters laser wavelength and receiver field of view, are discussed, and a set of multiple-scattering parameter profiles for the correction of extinction measurements in homogeneous cirrus is provided.

  12. Cloud and surface textural features in polar regions

    Science.gov (United States)

    Welch, Ronald M.; Kuo, Kwo-Sen; Sengupta, Sailes K.

    1990-01-01

    The study examines the textural signatures of clouds, ice-covered mountains, solid and broken sea ice and floes, and open water. The textural features are computed from sum and difference histogram and gray-level difference vector statistics defined at various pixel displacement distances derived from Landsat multispectral scanner data. Polar cloudiness, snow-covered mountainous regions, solid sea ice, glaciers, and open water have distinguishable texture features. This suggests that textural measures can be successfully applied to the detection of clouds over snow-covered mountains, an ability of considerable importance for the modeling of snow-melt runoff. However, broken stratocumulus cloud decks and thin cirrus over broken sea ice remain difficult to distinguish texturally. It is concluded that even with high spatial resolution imagery, it may not be possible to distinguish broken stratocumulus and thin clouds from sea ice in the marginal ice zone using the visible channel textural features alone.

  13. Cirrus cloud mimic surfaces in the laboratory: organic acids, bases and NOx heterogeneous reactions

    Science.gov (United States)

    Sodeau, J.; Oriordan, B.

    2003-04-01

    CIRRUS CLOUD MIMIC SURFACES IN THE LABORATORY:ORGANIC ACIDS, BASES AND NOX HETEROGENEOUS REACTIONS. B. ORiordan, J. Sodeau Department of Chemistry and Environment Research Institute, University College Cork, Ireland j.sodeau@ucc.ie /Fax: +353-21-4902680 There are a variety of biogenic and anthropogenic sources for the simple carboxylic acids to be found in the troposphere giving rise to levels as high as 45 ppb in certain urban areas. In this regard it is of note that ants of genus Formica produce some 10Tg of formic acid each year; some ten times that produced by industry. The expected sinks are those generally associated with tropospheric chemistry: the major routes studied, to date, being wet and dry deposition. No studies have been carried out hitherto on the role of water-ice surfaces in the atmospheric chemistry of carboxylic acids and the purpose of this paper is to indicate their potential function in the heterogeneous release of atmospheric species such as HONO. The deposition of formic acid on a water-ice surface was studied using FT-RAIR spectroscopy over a range of temperatures between 100 and 165K. In all cases ionization to the formate (and oxonium) ions was observed. The results were confirmed by TPD (Temperature Programmed Desorption) measurements, which indicated that two distinct surface species adsorb to the ice. Potential reactions between the formic acid/formate ion surface and nitrogen dioxide were subsequently investigated by FT-RAIRS. Co-deposition experiments showed that N2O3 and the NO+ ion (associated with water) were formed as products. A mechanism is proposed to explain these results, which involves direct reaction between the organic acid and nitrogen dioxide. Similar experiments involving acetic acid also indicate ionization on a water-ice surface. The results are put into the context of atmospheric chemistry potentially occuring on cirrus cloud surfaces.

  14. Zooming in on cirrus with the Canadian Regional Climate Model

    Science.gov (United States)

    Stefanof, C.; Stefanof, A.; Beaulne, A.; Munoz Alpizar, R.; Szyrmer, W.; Blanchet, J.

    2004-05-01

    The Canadian Regional Climate Model plus a microphysical scheme: two-moments microphysics with three hydrometeor categories (cloud liquid water, pristine ice crystals and larger precipitation crystals) is used to test the simulation in forecast mode using ECMWF data at 0.4 X 0.4 degree. We are zooming in on cirrus at higher resolutions (9, 1.8, 0.36 km). We are currently using the data set measured in APEX-E3, measurements of radar, lidar, passive instruments and interpreted microphysics for some flights (G-II, C404, B200). The radar and lidar data are available for high level cirrus. The south west of Japon is the flight region. The dates are March 20, March 27 and April 2, 2003. We first focus on the March 27 frontal system. We did a rigorous synoptical analysis for the cases. The cirrus at 360 m resolution are simulated. The cloud structure and some similarities between model simulation and observations will be presented.

  15. Alpine cloud climatology using long-term NOAA-AVHRR satellite data

    Energy Technology Data Exchange (ETDEWEB)

    Kaestner, M.; Kriebel, K.T.

    2000-07-01

    Three different climates have been identified by our evaluation of AVHRR (advanced very high resolution radiometer) data using APOLLO (AVHRR processing scheme over land, clouds and ocean) for a five-years cloud climatology of the Alpine region. The cloud cover data from four layers were spatially averaged in boxes of 15 km by 14 km. The study area only comprises 540 km by 560 km, but contains regions with moderate, Alpine and Mediterranean climate. Data from the period July 1989 until December 1996 have been considered. The temporal resolution is one scene per day, the early afternoon pass, yielding monthly means of satellite derived cloud coverages 5% to 10% above the daily mean compared to conventional surface observation. At nonvegetated sites the cloudiness is sometimes significantly overestimated. Averaging high resolution cloud data seems to be superior to low resolution measurements of cloud properties and averaging is favourable in topographical homogeneous regions only. The annual course of cloud cover reveals typical regional features as foehn or temporal singularities as the so-called Christmas thaw. The cloud cover maps in spatially high resolution show local luff/lee features which outline the orography. Less cloud cover is found over the Alps than over the forelands in winter, an accumulation of thick cirrus is found over the High Alps and an accumulation of thin cirrus north of the Alps. (orig.)

  16. Technical note: A new day- and night-time Meteosat Second Generation Cirrus Detection Algorithm MeCiDA

    Directory of Open Access Journals (Sweden)

    W. Krebs

    2007-12-01

    Full Text Available A new cirrus detection algorithm for the Spinning Enhanced Visible and Infra-Red Imager (SEVIRI aboard the geostationary Meteosat Second Generation (MSG, MeCiDA, is presented. The algorithm uses the seven infrared channels of SEVIRI and thus provides a consistent scheme for cirrus detection at day and night. MeCiDA combines morphological and multi-spectral threshold tests and detects optically thick and thin ice clouds. The thresholds were determined by a comprehensive theoretical study using radiative transfer simulations for various atmospheric situations as well as by manually evaluating actual satellite observations. The cirrus detection has been optimized for mid- and high latitudes but it could be adapted to other regions as well. The retrieved cirrus masks have been validated by comparison with the Moderate Resolution Imaging Spectroradiometer (MODIS Cirrus Reflection Flag. To study possible seasonal variations in the performance of the algorithm, one scene per month of the year 2004 was randomly selected and compared with the MODIS flag. 81% of the pixels were classified identically by both algorithms. In a comparison of monthly mean values for Europe and the North-Atlantic MeCiDA detected 29.3% cirrus coverage, while the MODIS SWIR cirrus coverage was 38.1%. A lower detection efficiency is to be expected for MeCiDA, as the spatial resolution of MODIS is considerably better and as we used only the thermal infrared channels in contrast to the MODIS algorithm which uses infrared and visible radiances. The advantage of MeCiDA compared to retrievals for polar orbiting instruments or previous geostationary satellites is that it permits the derivation of quantitative data every 15 min, 24 h a day. This high temporal resolution allows the study of diurnal variations and life cycle aspects. MeCiDA is fast enough for near real-time applications.

  17. On the Nature and Extent of Optically Thin Marine low Clouds

    Science.gov (United States)

    Leahy, L. V.; Wood, R.; Charlson, R. J.; Hostetler, C. A.; Rogers, R. R.; Vaughan, M. A.; Winker, D. M.

    2012-01-01

    Macrophysical properties of optically thin marine low clouds over the nonpolar oceans (60 deg S-60 deg N) are measured using 2 years of full-resolution nighttime data from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP). Optically thin clouds, defined as the subset of marine low clouds that do not fully attenuate the lidar signal, comprise almost half of the low clouds over the marine domain. Regionally, the fraction of low clouds that are optically thin (f(sub thin,cld)) exhibits a strong inverse relationship with the low-cloud cover, with maxima in the tropical trades (f(sub thin,cld) greater than 0.8) and minima in regions of persistent marine stratocumulus and in midlatitudes (f(sub thin,cld) less than 0.3). Domain-wide, a power law fit describes the cloud length distribution, with exponent beta = 2.03 +/- 0.06 (+/-95% confidence interval). On average, the fraction of a cloud that is optically thin decreases from approximately 1 for clouds smaller than 2 km to less than 0.3 for clouds larger than 30 km. This relationship is found to be independent of region, so that geographical variations in the cloud length distribution explain three quarters of the variance in f(sub thin,cld). Comparing collocated trade cumulus observations from CALIOP and the airborne High Spectral Resolution Lidar reveals that clouds with lengths smaller than are resolvable with CALIOP contribute approximately half of the low clouds in the region sampled. A bounded cascade model is constructed to match the observations from the trades. The model shows that the observed optically thin cloud behavior is consistent with a power law scaling of cloud optical depth and suggests that most optically thin clouds only partially fill the CALIOP footprint.

  18. Parameterization of cirrus microphysical and radiative properties in larger-scale models

    International Nuclear Information System (INIS)

    Heymsfield, A.J.; Coen, J.L.

    1994-01-01

    This study exploits measurements in clouds sampled during several field programs to develop and validate parameterizations that represent the physical and radiative properties of convectively generated cirrus clouds in intermediate and large-scale models. The focus is on cirrus anvils because they occur frequently, cover large areas, and play a large role in the radiation budget. Preliminary work focuses on understanding the microphysical, radiative, and dynamical processes that occur in these clouds. A detailed microphysical package has been constructed that considers the growth of the following hydrometer types: water drops, needles, plates, dendrites, columns, bullet rosettes, aggregates, graupel, and hail. Particle growth processes include diffusional and accretional growth, aggregation, sedimentation, and melting. This package is being implemented in a simple dynamical model that tracks the evolution and dispersion of hydrometers in a stratiform anvil cloud. Given the momentum, vapor, and ice fluxes into the stratiform region and the temperature and humidity structure in the anvil's environment, this model will suggest anvil properties and structure

  19. Support for the Harvard University Water Vapor and Total Water Instruments for the 2004 NASA WB57 Middle Latitude Cirrus Experiment

    Science.gov (United States)

    Anderson, James G.

    2005-01-01

    In order to improve our understanding of the role clouds play in the climate system, NASA is investing considerable effort in characterizing clouds with instruments ranging from passive remote sensors on board the EOS platforms, to the forthcoming active remote sensors on Cloudsat and Calipso. These missions, when taken together, have the capacity to advance our understanding of the coupling between various components of the hydrologic cycle and the atmospheric circulation, and hold the additional potential of leading to significant improvements in the characterization of cloud feedbacks in global models. This is especially true considering that several of these platforms will be flown in an identical orbit within several minutes of one another-a constellation of satellites known as the A-Train. The algorithms that are being implemented and developed to convert these new data streams from radiance and reflectivity measurements into geophysical parameters invariably rely on some set of simplifymg assumptions and empirical constants. Uncertainties in these relationships lead to poorly understood random and systematic errors in the retrieved properties. This lack of understanding introduces ambiguity in interpreting the data and in using the global data sets for their intended purposes. In light of this, a series of flights with the W57F was proposed to address certain specific issues related to the basic properties of mid latitude cirrus clouds: the NASA WE357 Middle Latitude Cirrus Experiment ("MidCiX"). The science questions addressed are: 1) Can cloud property retrieval algorithms developed for A-Train active and passive remote sensing measurements accurately characterize the microphysical properties of synoptic and convectively generated cirrus cloud systems? 2) What are the relationships between the cirrus particle mass, projected area, and particle size spectrum in various genre of cirrus clouds? 3) Does the present compliment of state of the art in situ cloud

  20. Simultaneous retrieval of water vapour, temperature and cirrus clouds properties from measurements of far infrared spectral radiance over the Antarctic Plateau

    Science.gov (United States)

    Di Natale, Gianluca; Palchetti, Luca; Bianchini, Giovanni; Del Guasta, Massimo

    2017-03-01

    The possibility separating the contributions of the atmospheric state and ice clouds by using spectral infrared measurements is a fundamental step to quantifying the cloud effect in climate models. A simultaneous retrieval of cloud and atmospheric parameters from infrared wideband spectra will allow the disentanglement of the spectral interference between these variables. In this paper, we describe the development of a code for the simultaneous retrieval of atmospheric state and ice cloud parameters, and its application to the analysis of the spectral measurements acquired by the Radiation Explorer in the Far Infrared - Prototype for Applications and Development (REFIR-PAD) spectroradiometer, which has been in operation at Concordia Station on the Antarctic Plateau since 2012. The code performs the retrieval with a computational time that is comparable with the instrument acquisition time. Water vapour and temperature profiles and the cloud optical and microphysical properties, such as the generalised effective diameter and the ice water path, are retrieved by exploiting the 230-980 cm-1 spectral band. To simulate atmospheric radiative transfer, the Line-By-Line Radiative Transfer Model (LBLRTM) has been integrated with a specifically developed subroutine based on the δ-Eddington two-stream approximation, whereas the single-scattering properties of cirrus clouds have been derived from a database for hexagonal column habits. In order to detect ice clouds, a backscattering and depolarisation lidar, co-located with REFIR-PAD has been used, allowing us to infer the position and the cloud thickness to be used in the retrieval. A climatology of the vertical profiles of water vapour and temperature has been performed by using the daily radiosounding available at the station at 12:00 UTC. The climatology has been used to build an a priori profile correlation to constrain the fitting procedure. An optimal estimation method with the Levenberg-Marquardt approach has been

  1. A combined spectral and object-based approach to transparent cloud removal in an operational setting for Landsat ETM+

    Science.gov (United States)

    Watmough, Gary R.; Atkinson, Peter M.; Hutton, Craig W.

    2011-04-01

    The automated cloud cover assessment (ACCA) algorithm has provided automated estimates of cloud cover for the Landsat ETM+ mission since 2001. However, due to the lack of a band around 1.375 μm, cloud edges and transparent clouds such as cirrus cannot be detected. Use of Landsat ETM+ imagery for terrestrial land analysis is further hampered by the relatively long revisit period due to a nadir only viewing sensor. In this study, the ACCA threshold parameters were altered to minimise omission errors in the cloud masks. Object-based analysis was used to reduce the commission errors from the extended cloud filters. The method resulted in the removal of optically thin cirrus cloud and cloud edges which are often missed by other methods in sub-tropical areas. Although not fully automated, the principles of the method developed here provide an opportunity for using otherwise sub-optimal or completely unusable Landsat ETM+ imagery for operational applications. Where specific images are required for particular research goals the method can be used to remove cloud and transparent cloud helping to reduce bias in subsequent land cover classifications.

  2. Cirrus Susceptibility to Changes in Ice Nuclei: Physical Processes, Model Uncertainties, and Measurement Needs

    Science.gov (United States)

    Jensen, Eric

    2018-01-01

    One of the proposed concepts for mitigating the warming effect of increasing greenhouse gases is seeding cirrus cloud with ice nuclei (IN) in order to reduce the lifetime and coverage of cold cirrus that have a net warming impact on the earth's surface. Global model simulations of the net impact of changing upper tropospheric IN have given widely disparate results, partly as a result of poor understanding of ice nucleation processes in the current atmosphere, and partly as a result of poor representation of these processes in global models. Here, we present detailed process-model simulations of tropical tropopause layer (TTL) transport and cirrus formation with ice nuclei properties based on recent laboratory nucleation experiments and field measurements of aerosol composition. The model is used to assess the sensitivity of TTL cirrus occurrence frequency and microphysical properties to the abundance and efficacy of ice nuclei. The simulated cloud properties compared with recent high-altitude aircraft measurements of TTL cirrus and ice supersaturation. We find that abundant effective IN (either from glassy organic aerosols or crystalline ammonium sulfate with concentrations greater than about 100/L) prevent the occurrences of large ice concentration and large ice supersaturations, both of which are clearly indicated by the in situ observations. We find that concentrations of effective ice nuclei larger than about 50/L can drive significant changes in cirrus microphysical properties and occurrence frequency. However, the cloud occurrence frequency can either increase or decrease, depending on the efficacy and abundance of IN added to the TTL. We suggest that our lack of information about ice nuclei properties in the current atmosphere, as well as uncertainties in ice nucleation processes and their representations in global models, preclude meaningful estimates of climate impacts associated with addition of ice nuclei in the upper troposphere. We will briefly discuss

  3. Effects of high altitude clouds on the earth's infrared radiation flux

    Science.gov (United States)

    Wang, W.-C.; Kaplan, L. D.

    1983-01-01

    Attention is given to the results of a study of cirrus cloud properties which employed the Goddard Laboratory for Atmospheric Sciences' general circulation model and concentrated on the effects of the nonblackness of high clouds on the IR radiation flux. Although the thermal radiation flux is very sensitive to the treatment of cirrus optical properties in the IR, a more realistic assessment will depend on better parameterizations for cirrus cloud formation, persistence, and dissipation.

  4. The 27-28 October 1986 FIRE IFO cirrus case study: Comparison of satellite and aircraft derived particle size

    Science.gov (United States)

    Wielicki, Bruce A.; Suttles, J. T.; Heymsfield, Andrew J.; Welch, Ronald M.; Spinhirne, James D.; Wu, Man-Li C.; Starr, David; Parker, Lindsay; Arduini, Robert F.

    1990-01-01

    Theoretical calculations predict that cloud reflectance in near infrared windows such as those at 1.6 and 2.2 microns should give lower reflectances than at visible wavelengths. The reason for this difference is that ice and liquid water show significant absorption at those wavelengths, in contrast to the nearly conservative scattering at wavelengths shorter than 1 micron. In addition, because the amount of absorption scales with the path length of radiation through the particle, increasing cloud particle size should lead to decreasing reflectances at 1.6 and 2.2 microns. Measurements at these wavelengths to date, however, have often given unpredicted results. Twomey and Cocks found unexpectedly high absorption (factors of 3 to 5) in optically thick liquid water clouds. Curran and Wu found expectedly low absorption in optically thick high clouds, and postulated the existence of supercooled small water droplets in place of the expected large ice particles. The implications of the FIRE data for optically thin cirrus are examined.

  5. Evaluation of Satellite-Based Upper Troposphere Cloud Top Height Retrievals in Multilayer Cloud Conditions During TC4

    Science.gov (United States)

    Chang, Fu-Lung; Minnis, Patrick; Ayers, J. Kirk; McGill, Matthew J.; Palikonda, Rabindra; Spangenberg, Douglas A.; Smith, William L., Jr.; Yost, Christopher R.

    2010-01-01

    Upper troposphere cloud top heights (CTHs), restricted to cloud top pressures (CTPs) less than 500 hPa, inferred using four satellite retrieval methods applied to Twelfth Geostationary Operational Environmental Satellite (GOES-12) data are evaluated using measurements during the July August 2007 Tropical Composition, Cloud and Climate Coupling Experiment (TC4). The four methods are the single-layer CO2-absorption technique (SCO2AT), a modified CO2-absorption technique (MCO2AT) developed for improving both single-layered and multilayered cloud retrievals, a standard version of the Visible Infrared Solar-infrared Split-window Technique (old VISST), and a new version of VISST (new VISST) recently developed to improve cloud property retrievals. They are evaluated by comparing with ER-2 aircraft-based Cloud Physics Lidar (CPL) data taken during 9 days having extensive upper troposphere cirrus, anvil, and convective clouds. Compared to the 89% coverage by upper tropospheric clouds detected by the CPL, the SCO2AT, MCO2AT, old VISST, and new VISST retrieved CTPs less than 500 hPa in 76, 76, 69, and 74% of the matched pixels, respectively. Most of the differences are due to subvisible and optically thin cirrus clouds occurring near the tropopause that were detected only by the CPL. The mean upper tropospheric CTHs for the 9 days are 14.2 (+/- 2.1) km from the CPL and 10.7 (+/- 2.1), 12.1 (+/- 1.6), 9.7 (+/- 2.9), and 11.4 (+/- 2.8) km from the SCO2AT, MCO2AT, old VISST, and new VISST, respectively. Compared to the CPL, the MCO2AT CTHs had the smallest mean biases for semitransparent high clouds in both single-layered and multilayered situations whereas the new VISST CTHs had the smallest mean biases when upper clouds were opaque and optically thick. The biases for all techniques increased with increasing numbers of cloud layers. The transparency of the upper layer clouds tends to increase with the numbers of cloud layers.

  6. Far-infrared Spectral Radiance Observations and Modeling of Arctic Cirrus: Preliminary Results From RHUBC

    Science.gov (United States)

    Humpage, Neil; Green, Paul D.; Harries, John E.

    2009-03-01

    Recent studies have highlighted the important contribution of the far-infrared (electromagnetic radiation with wavelengths greater than 12 μm) to the Earth's radiative energy budget. In a cloud-free atmosphere, a significant fraction of the Earth's cooling to space from the mid- and upper troposphere takes place via the water vapor pure rotational band between 17 and 33 μm. Cirrus clouds also play an important role in the Earth's outgoing longwave radiation. The effect of cirrus on far-infrared radiation is of particular interest, since the refractive index of ice depends strongly on wavelength in this spectral region. The scattering properties of ice crystals are directly related to the refractive index, so consequently the spectral signature of cirrus measured in the FIR is sensitive to the cloud microphysical properties [1, 2]. By examining radiances measured at wavelengths between the strong water vapor absorption lines in the FIR, the understanding of the relationship between cirrus microphysics and the radiative transfer of thermal energy through cirrus may be improved. Until recently, very few observations of FIR spectral radiances had been made. The Tropospheric Airborne Fourier Transform Spectrometer (TAFTS) was developed by Imperial College to address this lack of observational data. TAFTS observes both zenith and nadir radiances at 0.1 cm-1 resolution, between 80 and 600 cm-1. During February and March 2007, TAFTS was involved in RHUBC (the Radiative Heating in Under-explored Bands Campaign), an ARM funded field campaign based at the ACRF-North Slope of Alaska site near Barrow, situated at 71° latitude. Infrared zenith spectral observations were taken by both TAFTS and the AERI-ER (spectral range 400-3300 cm-1) from the ground during both cloud-free and cirrus conditions. A wide range of other instrumentation was also available at the site, including a micropulse lidar, 35 GHz radar and the University of Colorado/NOAA Ground-based Scanning Radiometer

  7. Lidar investigations on the optical and dynamical properties of cirrus clouds in the upper troposphere and lower stratosphere regions at a tropical station, Gadanki, India (13.5°N, 79.2°E)

    Science.gov (United States)

    Krishnakumar, Vasudevannair; Satyanarayana, Malladi; Radhakrishnan, Soman R.; Dhaman, Reji K.; Jayeshlal, Glory Selvan; Motty, Gopinathan Nair S.; Pillai, Vellara P. Mahadevan; Raghunath, Karnam; Ratnam, Madineni Venkat; Rao, Duggirala Ramakrishna; Sudhakar, Pindlodi

    2014-01-01

    High altitude cirrus clouds are composed mainly of ice crystals with a variety of sizes and shapes. They have a large influence on Earth's energy balance and global climate. Recent studies indicate that the formation, dissipation, life time, optical, and micro-physical properties are influenced by the dynamical conditions of the surrounding atmosphere like background aerosol, turbulence, etc. In this work, an attempt has been made to quantify some of these characteristics by using lidar and mesosphere-stratosphere-troposphere (MST) radar. Mie lidar and 53 MHz MST radar measurements made over 41 nights during the period 2009 to 2010 from the tropical station, Gadanki, India (13.5°N, 79.2°E). The optical and microphysical properties along with the structure and dynamics of the cirrus are presented as observed under different atmospheric conditions. The study reveals the manifestation of different forms of cirrus with a preferred altitude of formation in the 13 to 14 km altitude. There are considerable differences in the properties obtained among 2009 and 2010 showing significant anomalous behavior in 2010. The clouds observed during 2010 show relatively high asymmetry and large multiple scattering effects. The anomalies found during 2010 may be attributed to the turbulence noticed in the surrounding atmosphere. The results show a clear correlation between the crystal morphology in the clouds and the dynamical conditions of the prevailing atmosphere during the observational period.

  8. Sensitivity of Cirrus and Mixed-phase Clouds to the Ice Nuclei Spectra in McRAS-AC: Single Column Model Simulations

    Science.gov (United States)

    Betancourt, R. Morales; Lee, D.; Oreopoulos, L.; Sud, Y. C.; Barahona, D.; Nenes, A.

    2012-01-01

    The salient features of mixed-phase and ice clouds in a GCM cloud scheme are examined using the ice formation parameterizations of Liu and Penner (LP) and Barahona and Nenes (BN). The performance of LP and BN ice nucleation parameterizations were assessed in the GEOS-5 AGCM using the McRAS-AC cloud microphysics framework in single column mode. Four dimensional assimilated data from the intensive observation period of ARM TWP-ICE campaign was used to drive the fluxes and lateral forcing. Simulation experiments where established to test the impact of each parameterization in the resulting cloud fields. Three commonly used IN spectra were utilized in the BN parameterization to described the availability of IN for heterogeneous ice nucleation. The results show large similarities in the cirrus cloud regime between all the schemes tested, in which ice crystal concentrations were within a factor of 10 regardless of the parameterization used. In mixed-phase clouds there are some persistent differences in cloud particle number concentration and size, as well as in cloud fraction, ice water mixing ratio, and ice water path. Contact freezing in the simulated mixed-phase clouds contributed to transfer liquid to ice efficiently, so that on average, the clouds were fully glaciated at T approximately 260K, irrespective of the ice nucleation parameterization used. Comparison of simulated ice water path to available satellite derived observations were also performed, finding that all the schemes tested with the BN parameterization predicted 20 average values of IWP within plus or minus 15% of the observations.

  9. Overview of the CERES Edition-4 Multilayer Cloud Property Datasets

    Science.gov (United States)

    Chang, F. L.; Minnis, P.; Sun-Mack, S.; Chen, Y.; Smith, R. A.; Brown, R. R.

    2014-12-01

    Knowledge of the cloud vertical distribution is important for understanding the role of clouds on earth's radiation budget and climate change. Since high-level cirrus clouds with low emission temperatures and small optical depths can provide a positive feedback to a climate system and low-level stratus clouds with high emission temperatures and large optical depths can provide a negative feedback effect, the retrieval of multilayer cloud properties using satellite observations, like Terra and Aqua MODIS, is critically important for a variety of cloud and climate applications. For the objective of the Clouds and the Earth's Radiant Energy System (CERES), new algorithms have been developed using Terra and Aqua MODIS data to allow separate retrievals of cirrus and stratus cloud properties when the two dominant cloud types are simultaneously present in a multilayer system. In this paper, we will present an overview of the new CERES Edition-4 multilayer cloud property datasets derived from Terra as well as Aqua. Assessment of the new CERES multilayer cloud datasets will include high-level cirrus and low-level stratus cloud heights, pressures, and temperatures as well as their optical depths, emissivities, and microphysical properties.

  10. Optical Instruments Synergy in Determination of Optical Depth of Thin Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Vladutescu, Daniela V.; Schwartz, Stephen E.

    2017-06-25

    Optically thin clouds have a strong radiative effect and need to be represented accurately in climate models. Cloud optical depth of thin clouds was retrieved using high resolution digital photography, lidar, and a radiative transfer model. The Doppler Lidar was operated at 1.5 μm, minimizing return from Rayleigh scattering, emphasizing return from aerosols and clouds. This approach examined cloud structure on scales 3 to 5 orders of magnitude finer than satellite products, opening new avenues for examination of cloud structure and evolution.

  11. Overview of MPLNET Version 3 Cloud Detection

    Science.gov (United States)

    Lewis, Jasper R.; Campbell, James; Welton, Ellsworth J.; Stewart, Sebastian A.; Haftings, Phillip

    2016-01-01

    The National Aeronautics and Space Administration Micro Pulse Lidar Network, version 3, cloud detection algorithm is described and differences relative to the previous version are highlighted. Clouds are identified from normalized level 1 signal profiles using two complementary methods. The first method considers vertical signal derivatives for detecting low-level clouds. The second method, which detects high-level clouds like cirrus, is based on signal uncertainties necessitated by the relatively low signal-to-noise ratio exhibited in the upper troposphere by eye-safe network instruments, especially during daytime. Furthermore, a multitemporal averaging scheme is used to improve cloud detection under conditions of a weak signal-to-noise ratio. Diurnal and seasonal cycles of cloud occurrence frequency based on one year of measurements at the Goddard Space Flight Center (Greenbelt, Maryland) site are compared for the new and previous versions. The largest differences, and perceived improvement, in detection occurs for high clouds (above 5 km, above MSL), which increase in occurrence by over 5%. There is also an increase in the detection of multilayered cloud profiles from 9% to 19%. Macrophysical properties and estimates of cloud optical depth are presented for a transparent cirrus dataset. However, the limit to which the cirrus cloud optical depth could be reliably estimated occurs between 0.5 and 0.8. A comparison using collocated CALIPSO measurements at the Goddard Space Flight Center and Singapore Micro Pulse Lidar Network (MPLNET) sites indicates improvements in cloud occurrence frequencies and layer heights.

  12. “Using Statistical Comparisons between SPartICus Cirrus Microphysical Measurements, Detailed Cloud Models, and GCM Cloud Parameterizations to Understand Physical Processes Controlling Cirrus Properties and to Improve the Cloud Parameterizations”

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Sarah [SPEC Inc., Boulder, CO (United States)

    2015-12-01

    The dual objectives of this project were improving our basic understanding of processes that control cirrus microphysical properties and improvement of the representation of these processes in the parameterizations. A major effort in the proposed research was to integrate, calibrate, and better understand the uncertainties in all of these measurements.

  13. Stereoscopic, thermal, and true deep cumulus cloud top heights

    Science.gov (United States)

    Llewellyn-Jones, D. T.; Corlett, G. K.; Lawrence, S. P.; Remedios, J. J.; Sherwood, S. C.; Chae, J.; Minnis, P.; McGill, M.

    2004-05-01

    We compare cloud-top height estimates from several sensors: thermal tops from GOES-8 and MODIS, stereoscopic tops from MISR, and directly measured heights from the Goddard Cloud Physics Lidar on board the ER-2, all collected during the CRYSTAL-FACE field campaign. Comparisons reveal a persistent 1-2 km underestimation of cloud-top heights by thermal imagery, even when the finite optical extinctions near cloud top and in thin overlying cirrus are taken into account. The most severe underestimates occur for the tallest clouds. The MISR "best-sinds" and lidar estimates disagree in very similar ways with thermally estimated tops, which we take as evidence of excellent performance by MISR. Encouraged by this, we use MISR to examine variations in cloud penetration and thermal top height errors in several locations of tropical deep convection over multiple seasons. The goals of this are, first, to learn how cloud penetration depends on the near-tropopause environment; and second, to gain further insight into the mysterious underestimation of tops by thermal imagery.

  14. Factors influencing the parameterization of anvil clouds within GCMs

    International Nuclear Information System (INIS)

    Leone, J.M. Jr.; Chin, Hung-Neng.

    1993-03-01

    The overall goal of this project is to improve the representation of clouds and their effects within global climate models (GCMs). The authors have concentrated on a small portion of the overall goal, the evolution of convectively generated cirrus clouds and their effects on the large-scale environment. Because of the large range of time and length scales involved they have been using a multi-scale attack. For the early time generation and development of the cirrus anvil they are using a cloud-scale model with horizontal resolution of 1--2 kilometers; while for the larger scale transport by the larger scale flow they are using a mesoscale model with a horizontal resolution of 20--60 kilometers. The eventual goal is to use the information obtained from these simulations together with available observations to derive improved cloud parameterizations for use in GCMs. This paper presents results from their cloud-scale studies and describes a new tool, a cirrus generator, that they have developed to aid in their mesoscale studies

  15. Numerical simulations of altocumulus with a cloud resolving model

    Energy Technology Data Exchange (ETDEWEB)

    Liu, S.; Krueger, S.K. [Univ. of Utah, Salt Lake City, UT (United States)

    1996-04-01

    Altocumulus and altostratus clouds together cover approximately 22% of the earth`s surface. They play an important role in the earth`s energy budget through their effect on solar and infrared radiation. However, there has been little altocumulus cloud investigation by either modelers or observational programs. Starr and Cox (SC) (1985a,b) simulated an altostratus case as part of the same study in which they modeled a thin layer of cirrus. Although this calculation was originally described as representing altostratus, it probably better represents altocumulus stratiformis. In this paper, we simulate altocumulus cloud with a cloud resolving model (CRM). We simply describe the CRM first. We calculate the same middle-level cloud case as SC to compare our results with theirs. We will look at the role of cloud-scale processes in response to large-scale forcing. We will also discuss radiative effects by simulating diurnal and nocturnal cases. Finally, we discuss the utility of a 1D model by comparing 1D simulations and 2D simulations.

  16. GEWEX cloud assessment: A review

    Science.gov (United States)

    Stubenrauch, Claudia; Rossow, William B.; Kinne, Stefan; Ackerman, Steve; Cesana, Gregory; Chepfer, Hélène; Di Girolamo, Larry; Getzewich, Brian; Guignard, Anthony; Heidinger, Andy; Maddux, Brent; Menzel, Paul; Minnis, Patrick; Pearl, Cindy; Platnick, Steven; Poulsen, Caroline; Riedi, Jérôme; Sayer, Andrew; Sun-Mack, Sunny; Walther, Andi; Winker, Dave; Zeng, Shen; Zhao, Guangyu

    2013-05-01

    Clouds cover about 70% of the Earth's surface and play a dominant role in the energy and water cycle of our planet. Only satellite observations provide a continuous survey of the state of the atmosphere over the entire globe and across the wide range of spatial and temporal scales that comprise weather and climate variability. Satellite cloud data records now exceed more than 25 years; however, climatologies compiled from different satellite datasets can exhibit systematic biases. Questions therefore arise as to the accuracy and limitations of the various sensors. The Global Energy and Water cycle Experiment (GEWEX) Cloud Assessment, initiated in 2005 by the GEWEX Radiation Panel, provides the first coordinated intercomparison of publicly available, global cloud products (gridded, monthly statistics) retrieved from measurements of multi-spectral imagers (some with multi-angle view and polarization capabilities), IR sounders and lidar. Cloud properties under study include cloud amount, cloud height (in terms of pressure, temperature or altitude), cloud radiative properties (optical depth or emissivity), cloud thermodynamic phase and bulk microphysical properties (effective particle size and water path). Differences in average cloud properties, especially in the amount of high-level clouds, are mostly explained by the inherent instrument measurement capability for detecting and/or identifying optically thin cirrus, especially when overlying low-level clouds. The study of long-term variations with these datasets requires consideration of many factors. The monthly, gridded database presented here facilitates further assessments, climate studies, and the evaluation of climate models.

  17. The DC-8 Submillimeter-Wave Cloud Ice Radiometer

    Science.gov (United States)

    Walter, Steven J.; Batelaan, Paul; Siegel, Peter; Evans, K. Franklin; Evans, Aaron; Balachandra, Balu; Gannon, Jade; Guldalian, John; Raz, Guy; Shea, James

    2000-01-01

    An airborne radiometer is being developed to demonstrate the capability of radiometry at submillimeter-wavelengths to characterize cirrus clouds. At these wavelengths, cirrus clouds scatter upwelling radiation from water vapor in the lower troposphere. Radiometric measurements made at multiple widely spaced frequencies permit flux variations caused by changes in scattering due to crystal size to be distinguished from changes in cloud ice content. Measurements at dual polarizations can also be used to constrain the mean crystal shape. An airborne radiometer measuring the upwelling submillimeter-wave flux should then able to retrieve both bulk and microphysical cloud properties. The radiometer is being designed to make measurements at four frequencies (183 GHz, 325 GHz, 448 GHz, and 643 GHz) with dual-polarization capability at 643 GHz. The instrument is being developed for flight on NASA's DC-8 and will scan cross-track through an aircraft window. Measurements with this radiometer in combination with independent ground-based and airborne measurements will validate the submillimeter-wave radiometer retrieval techniques. The goal of this effort is to develop a technique to enable spaceborne characterization of cirrus, which will meet a key climate measurement need. The development of an airborne radiometer to validate cirrus retrieval techniques is a critical step toward development of spaced-based radiometers to investigate and monitor cirrus on a global scale. The radiometer development is a cooperative effort of the University of Colorado, Colorado State University, Swales Aerospace, and Jet Propulsion Laboratory and is funded by the NASA Instrument Incubator Program.

  18. Contrail Cirrus Forecasts for the ML-CIRRUS Experiment and Some Comparison Results

    Science.gov (United States)

    Schumann, Ulrich; Graf, Kaspar; Bugliaro, Luca; Dörnbrack, Andreas; Giez, Andreas; Jurkat, Tina; Kaufmann, Stefan; Krämer, Martina; Minikin, Andreas; Schäfler, Andreas; Voigt, Christiane; Wirth, Martin; Zahn, Andreas; Ziereis, Helmut

    2015-04-01

    rerun with improved ECMWF-NWP data (at one-hour time resolution). The model results are included in the HALO mission data bank, and the results are available for comparison to in-situ data. The data are useful for identifying aircraft and other sources for measured air properties. The joint analysis of observations and model result has basically just started. Preliminary results from comparisons with lidar-measured extinction profiles, in-situ measured humidity, nitrogen oxides, and aerosol and ice particle concentrations, and with meteorological observations (wind, temperature etc.) illustrate the expected gain in insight. The contrail forecasts have been checked by comparison to available data including satellite data and HALO observations. During the campaign, it became obvious that predicted contrail cirrus cover compared qualitatively mostly well with what was found when HALO reached predicted cirrus regions. From the analysis of the measured data, some examples of significant correlation between model results and observations have been found. However, the quantitative agreement is not uniform. As expected, nature is far more variable than a model can predict. The observed optical properties of cirrus and contrails vary far more in time and space than predicted. Local values were often far higher or lower than mean values. A one-to-one correlation between local observations and model results is not to be expected. This inhomogeneity may have consequences for the climate impact of aviation induced cloud changes.

  19. Thin Cloud Detection Method by Linear Combination Model of Cloud Image

    Science.gov (United States)

    Liu, L.; Li, J.; Wang, Y.; Xiao, Y.; Zhang, W.; Zhang, S.

    2018-04-01

    The existing cloud detection methods in photogrammetry often extract the image features from remote sensing images directly, and then use them to classify images into cloud or other things. But when the cloud is thin and small, these methods will be inaccurate. In this paper, a linear combination model of cloud images is proposed, by using this model, the underlying surface information of remote sensing images can be removed. So the cloud detection result can become more accurate. Firstly, the automatic cloud detection program in this paper uses the linear combination model to split the cloud information and surface information in the transparent cloud images, then uses different image features to recognize the cloud parts. In consideration of the computational efficiency, AdaBoost Classifier was introduced to combine the different features to establish a cloud classifier. AdaBoost Classifier can select the most effective features from many normal features, so the calculation time is largely reduced. Finally, we selected a cloud detection method based on tree structure and a multiple feature detection method using SVM classifier to compare with the proposed method, the experimental data shows that the proposed cloud detection program in this paper has high accuracy and fast calculation speed.

  20. High-Altitude Cirrus Clouds and Climate

    Indian Academy of Sciences (India)

    2002-12-03

    , thunder or lightning, rainbows or halos. A cloud is a visible aggregate of tiny water droplets or ice crystals suspended in the air. Most clouds result from cooling due to lifting of moisture containing air. Those associated with ...

  1. High-Altitude Cirrus Clouds and Climate

    Indian Academy of Sciences (India)

    2002-12-03

    Dec 3, 2002 ... One year later Luke Howard, an English naturalist, developed a ... o to 2 km found below the tropopause. The base of these clouds vary greatly with respect to .... and cirrostratus clouds, generally below the tropopause level,.

  2. An Uneven Illumination Correction Algorithm for Optical Remote Sensing Images Covered with Thin Clouds

    Directory of Open Access Journals (Sweden)

    Xiaole Shen

    2015-09-01

    Full Text Available The uneven illumination phenomenon caused by thin clouds will reduce the quality of remote sensing images, and bring adverse effects to the image interpretation. To remove the effect of thin clouds on images, an uneven illumination correction can be applied. In this paper, an effective uneven illumination correction algorithm is proposed to remove the effect of thin clouds and to restore the ground information of the optical remote sensing image. The imaging model of remote sensing images covered by thin clouds is analyzed. Due to the transmission attenuation, reflection, and scattering, the thin cloud cover usually increases region brightness and reduces saturation and contrast of the image. As a result, a wavelet domain enhancement is performed for the image in Hue-Saturation-Value (HSV color space. We use images with thin clouds in Wuhan area captured by QuickBird and ZiYuan-3 (ZY-3 satellites for experiments. Three traditional uneven illumination correction algorithms, i.e., multi-scale Retinex (MSR algorithm, homomorphic filtering (HF-based algorithm, and wavelet transform-based MASK (WT-MASK algorithm are performed for comparison. Five indicators, i.e., mean value, standard deviation, information entropy, average gradient, and hue deviation index (HDI are used to analyze the effect of the algorithms. The experimental results show that the proposed algorithm can effectively eliminate the influences of thin clouds and restore the real color of ground objects under thin clouds.

  3. Retrieval of Cloud Properties for Partially Cloud-Filled Pixels During CRYSTAL-FACE

    Science.gov (United States)

    Nguyen, L.; Minnis, P.; Smith, W. L.; Khaiyer, M. M.; Heck, P. W.; Sun-Mack, S.; Uttal, T.; Comstock, J.

    2003-12-01

    Partially cloud-filled pixels can be a significant problem for remote sensing of cloud properties. Generally, the optical depth and effective particle sizes are often too small or too large, respectively, when derived from radiances that are assumed to be overcast but contain radiation from both clear and cloud areas within the satellite imager field of view. This study presents a method for reducing the impact of such partially cloud field pixels by estimating the cloud fraction within each pixel using higher resolution visible (VIS, 0.65mm) imager data. Although the nominal resolution for most channels on the Geostationary Operational Environmental Satellite (GOES) imager and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra are 4 and 1 km, respectively, both instruments also take VIS channel data at 1 km and 0.25 km, respectively. Thus, it may be possible to obtain an improved estimate of cloud fraction within the lower resolution pixels by using the information contained in the higher resolution VIS data. GOES and MODIS multi-spectral data, taken during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment (CRYSTAL-FACE), are analyzed with the algorithm used for the Atmospheric Radiation Measurement Program (ARM) and the Clouds and Earth's Radiant Energy System (CERES) to derive cloud amount, temperature, height, phase, effective particle size, optical depth, and water path. Normally, the algorithm assumes that each pixel is either entirely clear or cloudy. In this study, a threshold method is applied to the higher resolution VIS data to estimate the partial cloud fraction within each low-resolution pixel. The cloud properties are then derived from the observed low-resolution radiances using the cloud cover estimate to properly extract the radiances due only to the cloudy part of the scene. This approach is applied to both GOES and MODIS data to estimate the improvement in the retrievals for each

  4. A Comparison of Cloud Microphysical and Optical Properties during TOGA-COARE

    Science.gov (United States)

    Strawa, A. W.; Pueschel, R. F.; Pilewskie, P.; Valero, F. P. J.; Gore, Warren J. (Technical Monitor)

    1996-01-01

    The impact of cirrus clouds on climate is an issue of research interest currently. Whether cirrus clouds heat or cool the Earth-atmosphere system depends on the cloud shortwave albedo and infrared reflectance and absorptance. These in turn are determined by the size distribution, phase, and composition of particles in the clouds. The TOGA-COARE campaign presented an excellent opportunity to study cirrus clouds and their influence on climate. In this campaign, a microphysics instrument package was flown aboard the DC-8 aircraft at medium altitudes in cirrus clouds. This package included a 2D Greyscale Cloud Particle Probe, a Forward Scattering Spectrometer Aerosol Probe, and an ice crystal replicator. At the same time the ER-2 equipped with a radiation measurement system flew coordinated flight tracks above the DC-8 at very high altitude. The radiation measurement made were short and long wave fluxes, as well as narrowband fluxes, both upwelling and downwelling. In addition LIDAR data is available. The existence of these data sets allows for a the comparison of radiation measurement with microphysical measurements. For example, the optical depth and effective radius retrieved from the ER-2 radiation measurements can be compared to the microphysical data. Conversely, the optical properties and fluxes produced by the clouds can be calculated from the microphysical measurements and compared to those measured aboard the ER-2. The assumptions required to make these comparisons are discussed. Typical microphysical results show a prevalence of micron-sized particles, in addition to the cloud particles that exceed 100 mm. The large number of small particles or "haze" cause the effective cloud radii to shift to smaller sizes, leading to changes in optical parameters.

  5. Microphysical and optical properties of contrails and cirrus

    Energy Technology Data Exchange (ETDEWEB)

    Gayet, J F; Febvre, G [Universite Blaise Pascal, Clermont-Ferand (France). Lab. de Meteorologie Physique; Brogniez, G [Universite des Sciences et Techniques de Lille, (France). Lab. d` Optique Atmospherique; Wendling, P [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere; Larsen, H [National Inst. for Water and Atmospheric Research, Wellington (New Zealand)

    1998-12-31

    Aircraft contrails have significantly different properties to natural cirrus clouds. Their local and global climate impact cannot be assessed without consideration of these differences. Microphysical data were obtained from the Merlin aircraft equipped with a PMS FSSP-100 for particle spectrum measurements over the 3 {mu}m to 45 {mu}m diameter range; a PMS 2D-C for particle size spectrum and particle shape over the size range from 25 {mu}m to 800 {mu}m and a Johnson-Williams cloud liquid-water probe. Radiative measurements were obtained from a Do228 aircraft which carried the upward looking ALEX-F Lidar operating at a wavelength of 1.06 {mu}m and a Barnes PRT-5 radiometer aligned parallel to the lidar and with a 9 to 11 {mu}m spectral range. The limitation in accuracy of cloud microphysical sensor used in contrail studies are also discussed with subsequent errors on description of cloud radiative properties. (R.P.) 9 refs.

  6. Microphysical and optical properties of contrails and cirrus

    Energy Technology Data Exchange (ETDEWEB)

    Gayet, J.F.; Febvre, G. [Universite Blaise Pascal, Clermont-Ferand (France). Lab. de Meteorologie Physique; Brogniez, G. [Universite des Sciences et Techniques de Lille, (France). Lab. d`Optique Atmospherique; Wendling, P. [Deutsche Forschungsanstalt fuer Luft- und Raumfahrt e.V. (DLR), Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere; Larsen, H. [National Inst. for Water and Atmospheric Research, Wellington (New Zealand)

    1997-12-31

    Aircraft contrails have significantly different properties to natural cirrus clouds. Their local and global climate impact cannot be assessed without consideration of these differences. Microphysical data were obtained from the Merlin aircraft equipped with a PMS FSSP-100 for particle spectrum measurements over the 3 {mu}m to 45 {mu}m diameter range; a PMS 2D-C for particle size spectrum and particle shape over the size range from 25 {mu}m to 800 {mu}m and a Johnson-Williams cloud liquid-water probe. Radiative measurements were obtained from a Do228 aircraft which carried the upward looking ALEX-F Lidar operating at a wavelength of 1.06 {mu}m and a Barnes PRT-5 radiometer aligned parallel to the lidar and with a 9 to 11 {mu}m spectral range. The limitation in accuracy of cloud microphysical sensor used in contrail studies are also discussed with subsequent errors on description of cloud radiative properties. (R.P.) 9 refs.

  7. Clouds in the Martian Atmosphere

    Science.gov (United States)

    Määttänen, Anni; Montmessin, Franck

    2018-01-01

    Although resembling an extremely dry desert, planet Mars hosts clouds in its atmosphere. Every day somewhere on the planet a part of the tiny amount of water vapor held by the atmosphere can condense as ice crystals to form cirrus-type clouds. The existence of water ice clouds has been known for a long time, and they have been studied for decades, leading to the establishment of a well-known climatology and understanding of their formation and properties. Despite their thinness, they have a clear impact on the atmospheric temperatures, thus affecting the Martian climate. Another, more exotic type of clouds forms as well on Mars. The atmospheric temperatures can plunge to such frigid values that the major gaseous component of the atmosphere, CO2, condenses as ice crystals. These clouds form in the cold polar night where they also contribute to the formation of the CO2 ice polar cap, and also in the mesosphere at very high altitudes, near the edge of space, analogously to the noctilucent clouds on Earth. The mesospheric clouds are a fairly recent discovery and have put our understanding of the Martian atmosphere to a test. On Mars, cloud crystals form on ice nuclei, mostly provided by the omnipresent dust. Thus, the clouds link the three major climatic cycles: those of the two major volatiles, H2O and CO2; and that of dust, which is a major climatic agent itself.

  8. Parameterizing Size Distribution in Ice Clouds

    Energy Technology Data Exchange (ETDEWEB)

    DeSlover, Daniel; Mitchell, David L.

    2009-09-25

    PARAMETERIZING SIZE DISTRIBUTIONS IN ICE CLOUDS David L. Mitchell and Daniel H. DeSlover ABSTRACT An outstanding problem that contributes considerable uncertainty to Global Climate Model (GCM) predictions of future climate is the characterization of ice particle sizes in cirrus clouds. Recent parameterizations of ice cloud effective diameter differ by a factor of three, which, for overcast conditions, often translate to changes in outgoing longwave radiation (OLR) of 55 W m-2 or more. Much of this uncertainty in cirrus particle sizes is related to the problem of ice particle shattering during in situ sampling of the ice particle size distribution (PSD). Ice particles often shatter into many smaller ice fragments upon collision with the rim of the probe inlet tube. These small ice artifacts are counted as real ice crystals, resulting in anomalously high concentrations of small ice crystals (D < 100 µm) and underestimates of the mean and effective size of the PSD. Half of the cirrus cloud optical depth calculated from these in situ measurements can be due to this shattering phenomenon. Another challenge is the determination of ice and liquid water amounts in mixed phase clouds. Mixed phase clouds in the Arctic contain mostly liquid water, and the presence of ice is important for determining their lifecycle. Colder high clouds between -20 and -36 oC may also be mixed phase but in this case their condensate is mostly ice with low levels of liquid water. Rather than affecting their lifecycle, the presence of liquid dramatically affects the cloud optical properties, which affects cloud-climate feedback processes in GCMs. This project has made advancements in solving both of these problems. Regarding the first problem, PSD in ice clouds are uncertain due to the inability to reliably measure the concentrations of the smallest crystals (D < 100 µm), known as the “small mode”. Rather than using in situ probe measurements aboard aircraft, we employed a treatment of ice

  9. Factors influencing the parameterization of anvil clouds within general circulation models

    International Nuclear Information System (INIS)

    Leone, J.M. Jr.; Chin, H.N.

    1994-01-01

    The overall goal of this project is to improve the representation of clouds and their effects within global climate models (GCMs). We have concentrated on a small portion of the overall goal, the evolution of convectively generated cirrus clouds and their effects on the large-scale environment. Because of the large range of time and length scales involved, we have been using a multi-scale attack. For the early time generation and development of the cirrus anvil, we are using a cloud-scale model with horizontal resolution of 1 to 2 kilometers; for the larger scale transport by the larger scale flow, we are using a mesoscale model with a horizontal resolution of 20 to 60 kilometers. The eventual goal is to use the information obtained from these simulations, together with available observations, to derive improved cloud parameterizations for use in GCMs. This paper presents a new tool, a cirrus generator, that we have developed to aid in our mesoscale studies

  10. A review of the light scattering properties of cirrus

    International Nuclear Information System (INIS)

    Baran, Anthony J.

    2009-01-01

    In this review paper the light scattering properties of naturally occurring ice crystals that are found in cirrus are discussed. Cirrus, also referred to as ice crystal clouds, due to their cold temperatures, consist of a variety of non-spherical ice particles which may take on a variety of geometrical forms. These geometrical forms can range from symmetric pristine hexagonal ice columns and plates, single bullets and bullet-rosettes to non-symmetric aggregates of these shapes. These aggregates may also consist of highly complex three-dimensional structures, which may themselves consist of symmetric components. Not only does cirrus consist of a wide variety of shapes but also sizes too, and these sizes can range between <10 μm to over 1 cm. With such a variety of shapes and sizes predicting the light scattering properties from such an ensemble of ice crystals is the current challenge. This challenge is important to overcome since with cirrus being so high in the Earth's atmosphere it has an important influence on the Earth-atmosphere radiation balance and consequently adds to the uncertainty of predicting climate change. This is why it is important to represent as accurately as possible the single-scattering properties of cirrus ice crystals within general circulation models so that uncertainties in climate change predictions can be reduced. In this review paper the current measurements and observations of ice crystal size and shape are discussed and how these observations relate to current ice crystal models is reviewed. The light scattering properties of the current ice crystal models are also discussed and it is shown how space-based instruments may be used to test these models. The need for particular microphysical and space-based measurements is stressed in order to further constrain ice crystal light scattering models.

  11. Scale dependence of cirrus horizontal heterogeneity effects on TOA measurements – Part I: MODIS brightness temperatures in the thermal infrared

    Directory of Open Access Journals (Sweden)

    T. Fauchez

    2017-07-01

    Full Text Available This paper presents a study on the impact of cirrus cloud heterogeneities on MODIS simulated thermal infrared (TIR brightness temperatures (BTs at the top of the atmosphere (TOA as a function of spatial resolution from 50 m to 10 km. A realistic 3-D cirrus field is generated by the 3DCLOUD model (average optical thickness of 1.4, cloud-top and base altitudes at 10 and 12 km, respectively, consisting of aggregate column crystals of Deff = 20 µm, and 3-D thermal infrared radiative transfer (RT is simulated with the 3DMCPOL code. According to previous studies, differences between 3-D BT computed from a heterogenous pixel and 1-D RT computed from a homogeneous pixel are considered dependent at nadir on two effects: (i the optical thickness horizontal heterogeneity leading to the plane-parallel homogeneous bias (PPHB and the (ii horizontal radiative transport (HRT leading to the independent pixel approximation error (IPAE. A single but realistic cirrus case is simulated and, as expected, the PPHB mainly impacts the low-spatial-resolution results (above ∼ 250 m with averaged values of up to 5–7 K, while the IPAE mainly impacts the high-spatial-resolution results (below ∼ 250 m with average values of up to 1–2 K. A sensitivity study has been performed in order to extend these results to various cirrus optical thicknesses and heterogeneities by sampling the cirrus in several ranges of parameters. For four optical thickness classes and four optical heterogeneity classes, we have found that, for nadir observations, the spatial resolution at which the combination of PPHB and HRT effects is the smallest, falls between 100 and 250 m. These spatial resolutions thus appear to be the best choice to retrieve cirrus optical properties with the smallest cloud heterogeneity-related total bias in the thermal infrared. For off-nadir observations, the average total effect is increased and the minimum is shifted to coarser spatial

  12. Interdependence of tropical cirrus properties and their variability

    Directory of Open Access Journals (Sweden)

    S. V. Sunilkumar

    2008-03-01

    Full Text Available The mean properties of tropical cirrus, such as cloud top, cloud base, optic centre, cloud strength/optical depth, asymmetry factor and cloud depolarization, as well as their heterogeneities are examined using lidar observations over 281 nights from a tropical station Gadanki (13.5° N, 79.2° E during the period 1998–2002. This study shows that as the cloud optical depth (τc increases the cloud becomes more asymmetric in its scattering property. The amount of asymmetry is less than 2% for very low values of (τc and increases nonlinearly with an increase in (τc. The physical properties of these clouds also show significant variation with different time scales during the course of each night. On average, while the short-term variations in (τc are in opposite phase with those of the asymmetry factor (ξ and volume depolarization ratio (δ, the long-term variation in (τc extending over a night are found to be in opposite phase with that of ξ and in-phase with that of δ. The short-term variations in δ and (τc were attributed to possible changes in the cloud particle orientation and the long period variations to cloud evolution process. The value of δ shows a pronounced variation along the vertical, with low values near the cloud top and cloud base and high values in the middle, which is attributed to the cloud dynamics.

  13. Cloud field classification based upon high spatial resolution textural features. I - Gray level co-occurrence matrix approach

    Science.gov (United States)

    Welch, R. M.; Sengupta, S. K.; Chen, D. W.

    1988-01-01

    Stratocumulus, cumulus, and cirrus clouds were identified on the basis of cloud textural features which were derived from a single high-resolution Landsat MSS NIR channel using a stepwise linear discriminant analysis. It is shown that, using this method, it is possible to distinguish high cirrus clouds from low clouds with high accuracy on the basis of spatial brightness patterns. The largest probability of misclassification is associated with confusion between the stratocumulus breakup regions and the fair-weather cumulus.

  14. Glassy aerosols with a range of compositions nucleate ice heterogeneously at cirrus temperatures

    Directory of Open Access Journals (Sweden)

    T. W. Wilson

    2012-09-01

    Full Text Available Atmospheric secondary organic aerosol (SOA is likely to exist in a semi-solid or glassy state, particularly at low temperatures and humidities. Previously, it has been shown that glassy aqueous citric acid aerosol is able to nucleate ice heterogeneously under conditions relevant to cirrus in the tropical tropopause layer (TTL. In this study we test if glassy aerosol distributions with a range of chemical compositions heterogeneously nucleate ice under cirrus conditions. Three single component aqueous solution aerosols (raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA and levoglucosan and one multi component aqueous solution aerosol (raffinose mixed with five dicarboxylic acids and ammonium sulphate were studied in both the liquid and glassy states at a large cloud simulation chamber. The investigated organic compounds have similar functionality to oxidised organic material found in atmospheric aerosol and have estimated temperature/humidity induced glass transition thresholds that fall within the range predicted for atmospheric SOA. A small fraction of aerosol particles of all compositions were found to nucleate ice heterogeneously in the deposition mode at temperatures relevant to the TTL (<200 K. Raffinose and HMMA, which form glasses at higher temperatures, nucleated ice heterogeneously at temperatures as high as 214.6 and 218.5 K respectively. We present the calculated ice active surface site density, ns, of the aerosols tested here and also of glassy citric acid aerosol as a function of relative humidity with respect to ice (RHi. We also propose a parameterisation which can be used to estimate heterogeneous ice nucleation by glassy aerosol for use in cirrus cloud models up to ~220 K. Finally, we show that heterogeneous nucleation by glassy aerosol may compete with ice nucleation on mineral dust particles in mid-latitudes cirrus.

  15. Cloud Physics Lidar Measurements During the SAFARI-2000 Field Campaign

    Science.gov (United States)

    McGill, Matthew; Hlavka, Dennis; Hart, William; Spinhirne, James; Scott, Stan; Starr, David OC. (Technical Monitor)

    2001-01-01

    A new remote sensing instrument, the Cloud Physics Lidar (CPL) has been built for use on the ER-2 aircraft. The first deployment for CPL was the SAFARI-2000 field campaign during August-September 2000. The CPL is a three-wavelength lidar designed for studies of cirrus, subvisual cirrus, and boundary layer aerosols. The CPL utilizes a high repetition rate, low pulse energy laser with photon counting detectors. A brief description of the CPL instrument will be given, followed by examples of CPL data products. In particular, examples of aerosol backscatter, including boundary layer smoke and cirrus clouds will be shown. Resulting optical depth estimates derived from the aerosol measurements will be shown. Comparisons of the CPL optical depth and optical depth derived from microPulse Lidar and the AATS-14 sunphotomer will be shown.

  16. Polarized Radiative Transfer of a Cirrus Cloud Consisting of Randomly Oriented Hexagonal Ice Crystals: The 3 x 3 Approximation for Non-Spherical Particles

    Science.gov (United States)

    Stamnes, S.; Ou, S. C.; Lin, Z.; Takano, Y.; Tsay, S. C.; Liou, K.N.; Stamnes, K.

    2016-01-01

    The reflection and transmission of polarized light for a cirrus cloud consisting of randomly oriented hexagonal columns were calculated by two very different vector radiative transfer models. The forward peak of the phase function for the ensemble-averaged ice crystals has a value of order 6 x 10(exp 3) so a truncation procedure was used to help produce numerically efficient yet accurate results. One of these models, the Vectorized Line-by-Line Equivalent model (VLBLE), is based on the doubling- adding principle, while the other is based on a vector discrete ordinates method (VDISORT). A comparison shows that the two models provide very close although not entirely identical results, which can be explained by differences in treatment of single scattering and the representation of the scattering phase matrix. The relative differences in the reflected I and Q Stokes parameters are within 0.5 for I and within 1.5 for Q for all viewing angles. In 1971 Hansen showed that for scattering by spherical particles the 3 x 3 approximation is sufficient to produce accurate results for the reflected radiance I and the degree of polarization (DOP), and he conjectured that these results would hold also for non-spherical particles. Simulations were conducted to test Hansen's conjecture for the cirrus cloud particles considered in this study. It was found that the 3 x 3 approximation also gives accurate results for the transmitted light, and for Q and U in addition to I and DOP. For these non-spherical ice particles the 3 x 3 approximation leads to an absolute error 2 x 10(exp -6) for the reflected and transmitted I, Q and U Stokes parameters. Hence, it appears to be an excellent approximation, which significantly reduces the computational complexity and burden required for multiple scattering calculations.

  17. Ice nucleation in sulfuric acid/organic aerosols: implications for cirrus cloud formation

    Directory of Open Access Journals (Sweden)

    M. R. Beaver

    2006-01-01

    Full Text Available Using an aerosol flow tube apparatus, we have studied the effects of aliphatic aldehydes (C3 to C10 and ketones (C3 and C9 on ice nucleation in sulfuric acid aerosols. Mixed aerosols were prepared by combining an organic vapor flow with a flow of sulfuric acid aerosols over a small mixing time (~60 s at room temperature. No acid-catalyzed reactions were observed under these conditions, and physical uptake was responsible for the organic content of the sulfuric acid aerosols. In these experiments, aerosol organic content, determined by a Mie scattering analysis, was found to vary with the partial pressure of organic, the flow tube temperature, and the identity of the organic compound. The physical properties of the organic compounds (primarily the solubility and melting point were found to play a dominant role in determining the inferred mode of nucleation (homogenous or heterogeneous and the specific freezing temperatures observed. Overall, very soluble, low-melting organics, such as acetone and propanal, caused a decrease in aerosol ice nucleation temperatures when compared with aqueous sulfuric acid aerosol. In contrast, sulfuric acid particles exposed to organic compounds of eight carbons and greater, of much lower solubility and higher melting temperatures, nucleate ice at temperatures above aqueous sulfuric acid aerosols. Organic compounds of intermediate carbon chain length, C4-C7, (of intermediate solubility and melting temperatures nucleated ice at the same temperature as aqueous sulfuric acid aerosols. Interpretations and implications of these results for cirrus cloud formation are discussed.

  18. Lidar and aircraft studies of deep Cirrus systems from the 1986 FIRE IFO

    Science.gov (United States)

    Sassen, Kenneth; Heymsfield, Andrew J.; Knight, Nancy C.

    1990-01-01

    Several NCAR King Air flight missions were conducted during the Wisconsin FIRE IFO experiment in support of the University of Utah polarization lidar observations of deep cirrus cloud systems at the Wausau ground site. Data collected from four cirrus systems are included in this analysis, including those of 22 and 28 October, and 1 and 2 November. Lidar data were generally obtained at 2 min intervals in the zenith direction over observation periods that ranged from approximately 4 to 10 h, bracketing the aircraft missions. The data were processed to yield height-time (HTI) displays of lidar linear depolarization ratio sigma and relative range-normalized return power P. King Air operations consisted of a combination of rapid profiling and Lagrangian spiral descents and stacked racetrack patterns in the vicinity of the field site. From the spiral descents are constructed vertical profiles of ice particle concentration N(sub i) and ice mass content IWC derived from PMS 2-D probe imagery and, when detected, FSSP cloud droplet concentration N(sub W) and liquid water content, LWC. Aircraft flight leg data are presented for the vertical velocity W and the same ice and water cloud content parameters. In addition, aerosol particle concentrations obtained with the ASAS probe are examined, and photographs of ice particles collected in-situ on oil-coated slides are presented to illustrate ice particle habit.

  19. NASA Goddard Earth Sciences Graduate Student Program. [FIRE CIRRUS-II examination of coupling between an upper tropospheric cloud system and synoptic-scale dynamics

    Science.gov (United States)

    Ackerman, Thomas P.

    1994-01-01

    The evolution of synoptic-scale dynamics associated with a middle and upper tropospheric cloud event that occurred on 26 November 1991 is examined. The case under consideration occurred during the FIRE CIRRUS-II Intensive Field Observing Period held in Coffeyville, KS during Nov. and Dec., 1991. Using data from the wind profiler demonstration network and a temporally and spatially augmented radiosonde array, emphasis is given to explaining the evolution of the kinematically-derived ageostrophic vertical circulations and correlating the circulation with the forcing of an extensively sampled cloud field. This is facilitated by decomposing the horizontal divergence into its component parts through a natural coordinate representation of the flow. Ageostrophic vertical circulations are inferred and compared to the circulation forcing arising from geostrophic confluence and shearing deformation derived from the Sawyer-Eliassen Equation. It is found that a thermodynamically indirect vertical circulation existed in association with a jet streak exit region. The circulation was displaced to the cyclonic side of the jet axis due to the orientation of the jet exit between a deepening diffluent trough and building ridge. The cloud line formed in the ascending branch of the vertical circulation with the most concentrated cloud development occurring in conjunction with the maximum large-scale vertical motion. The relationship between the large scale dynamics and the parameterization of middle and upper tropospheric clouds in large-scale models is discussed and an example of ice water contents derived from a parameterization forced by the diagnosed vertical motions and observed water vapor contents is presented.

  20. Thermodynamic phase profiles of optically thin midlatitude cloud and their relation to temperature

    Energy Technology Data Exchange (ETDEWEB)

    Naud, C. M.; Del Genio, Anthony D.; Haeffelin, M.; Morille, Y.; Noel, V.; Dupont, Jean-Charles; Turner, David D.; Lo, Chaomei; Comstock, Jennifer M.

    2010-06-03

    Winter cloud phase and temperature profiles derived from ground-based lidar depolarization and radiosonde measurements are analyzed for two midlatitude locations: the United States Atmospheric Radiation Measurement Program Southern Great Plains (SGP) site and the Site Instrumental de Recherche par Télédétection Atmosphérique (SIRTA) in France. Because lidars are attenuated in optically thick clouds, the dataset only includes optically thin clouds (optical thickness < 3). At SGP, 57% of the clouds observed with the lidar in the temperature range 233-273 K are either completely liquid or completely glaciated, while at SIRTA only 42% of the observed clouds are single phase, based on a depolarization ratio threshold of 11% for differentiating liquid from ice. Most optically thin mixed phase clouds show an ice layer at cloud top, and clouds with liquid at cloud top are less frequent. The relationship between ice phase occurrence and temperature only slightly changes between cloud base and top. At both sites liquid is more prevalent at colder temperatures than has been found previously in aircraft flights through frontal clouds of greater optical thicknesses. Liquid in clouds persists to colder temperatures at SGP than SIRTA. This information on the average temperatures of mixed phase clouds at both locations complements earlier passive satellite remote sensing measurements that sample cloud phase near cloud top and for a wider range of cloud optical thicknesses.

  1. Detection and retrieval of multi-layered cloud properties using satellite data

    Science.gov (United States)

    Minnis, Patrick; Sun-Mack, Sunny; Chen, Yan; Yi, Helen; Huang, Jianping; Nguyen, Louis; Khaiyer, Mandana M.

    2005-10-01

    Four techniques for detecting multilayered clouds and retrieving the cloud properties using satellite data are explored to help address the need for better quantification of cloud vertical structure. A new technique was developed using multispectral imager data with secondary imager products (infrared brightness temperature differences, BTD). The other methods examined here use atmospheric sounding data (CO2-slicing, CO2), BTD, or microwave data. The CO2 and BTD methods are limited to optically thin cirrus over low clouds, while the MWR methods are limited to ocean areas only. This paper explores the use of the BTD and CO2 methods as applied to Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer EOS (AMSR-E) data taken from the Aqua satellite over ocean surfaces. Cloud properties derived from MODIS data for the Clouds and the Earth's Radiant Energy System (CERES) Project are used to classify cloud phase and optical properties. The preliminary results focus on a MODIS image taken off the Uruguayan coast. The combined MW visible infrared (MVI) method is assumed to be the reference for detecting multilayered ice-over-water clouds. The BTD and CO2 techniques accurately match the MVI classifications in only 51 and 41% of the cases, respectively. Much additional study is need to determine the uncertainties in the MVI method and to analyze many more overlapped cloud scenes.

  2. Simulating gas-aerosol-cirrus interactions: Process-oriented microphysical model and applications

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2003-01-01

    Full Text Available This work describes a process-oriented, microphysical-chemical model to simulate the formation and evolution of aerosols and ice crystals under the conditions prevailing in the upper troposphere and lower stratosphere. The model can be run as a box model or along atmospheric trajectories, and considers mixing, gas phase chemistry of aerosol precursors, binary homogeneous aerosol nucleation, homogeneous and heterogeneous ice nucleation, coagulation, condensation and dissolution, gas retention during particle freezing, gas trapping in growing ice crystals, and reverse processes. Chemical equations are solved iteratively using a second order implicit integration method. Gas-particle interactions and coagulation are treated over various size structures, with fully mass conserving and non-iterative numerical solution schemes. Particle types include quinternary aqueous solutions composed of H2SO4, HNO3, HCl, and HBr with and without insoluble components, insoluble aerosol particles, and spherical or columnar ice crystals deriving from each aerosol type separately. Three case studies are discussed in detail to demonstrate the potential of the model to simulate real atmospheric processes and to highlight current research topics concerning aerosol and cirrus formation near the tropopause. Emphasis is placed on how the formation of cirrus clouds and the scavenging of nitric acid in cirrus depends on small-scale temperature fluctuations and the presence of efficient ice nuclei in the tropopause region, corroborating and partly extending the findings of previous studies.

  3. In Situ Balloon-Borne Ice Particle Imaging in High-Latitude Cirrus

    Science.gov (United States)

    Kuhn, Thomas; Heymsfield, Andrew J.

    2016-09-01

    Cirrus clouds reflect incoming solar radiation, creating a cooling effect. At the same time, these clouds absorb the infrared radiation from the Earth, creating a greenhouse effect. The net effect, crucial for radiative transfer, depends on the cirrus microphysical properties, such as particle size distributions and particle shapes. Knowledge of these cloud properties is also needed for calibrating and validating passive and active remote sensors. Ice particles of sizes below 100 µm are inherently difficult to measure with aircraft-mounted probes due to issues with resolution, sizing, and size-dependent sampling volume. Furthermore, artefacts are produced by shattering of particles on the leading surfaces of the aircraft probes when particles several hundred microns or larger are present. Here, we report on a series of balloon-borne in situ measurements that were carried out at a high-latitude location, Kiruna in northern Sweden (68N 21E). The method used here avoids these issues experienced with the aircraft probes. Furthermore, with a balloon-borne instrument, data are collected as vertical profiles, more useful for calibrating or evaluating remote sensing measurements than data collected along horizontal traverses. Particles are collected on an oil-coated film at a sampling speed given directly by the ascending rate of the balloon, 4 m s-1. The collecting film is advanced uniformly inside the instrument so that an always unused section of the film is exposed to ice particles, which are measured by imaging shortly after sampling. The high optical resolution of about 4 µm together with a pixel resolution of 1.65 µm allows particle detection at sizes of 10 µm and larger. For particles that are 20 µm (12 pixel) in size or larger, the shape can be recognized. The sampling volume, 130 cm3 s-1, is well defined and independent of particle size. With the encountered number concentrations of between 4 and 400 L-1, this required about 90- to 4-s sampling times to

  4. CloudSat 2C-ICE product update with a new Ze parameterization in lidar-only region.

    Science.gov (United States)

    Deng, Min; Mace, Gerald G; Wang, Zhien; Berry, Elizabeth

    2015-12-16

    The CloudSat 2C-ICE data product is derived from a synergetic ice cloud retrieval algorithm that takes as input a combination of CloudSat radar reflectivity ( Z e ) and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation lidar attenuated backscatter profiles. The algorithm uses a variational method for retrieving profiles of visible extinction coefficient, ice water content, and ice particle effective radius in ice or mixed-phase clouds. Because of the nature of the measurements and to maintain consistency in the algorithm numerics, we choose to parameterize (with appropriately large specification of uncertainty) Z e and lidar attenuated backscatter in the regions of a cirrus layer where only the lidar provides data and where only the radar provides data, respectively. To improve the Z e parameterization in the lidar-only region, the relations among Z e , extinction, and temperature have been more thoroughly investigated using Atmospheric Radiation Measurement long-term millimeter cloud radar and Raman lidar measurements. This Z e parameterization provides a first-order estimation of Z e as a function extinction and temperature in the lidar-only regions of cirrus layers. The effects of this new parameterization have been evaluated for consistency using radiation closure methods where the radiative fluxes derived from retrieved cirrus profiles compare favorably with Clouds and the Earth's Radiant Energy System measurements. Results will be made publicly available for the entire CloudSat record (since 2006) in the most recent product release known as R05.

  5. Ice Nucleation and Dehydration in the Tropical Tropopause Layer

    Science.gov (United States)

    Jensen, Eric J.; Diskin, Glenn S.; Lawson, R Paul; Lance, Sara; Bui, Thaopaul Van; Hlavka, Dennis L.; Mcgill, Matthew J.; Pfister, Leonhard; Toon, Owen B.; Gao, Rushan

    2013-01-01

    Optically thin cirrus near the tropical tropopause regulate the humidity of air entering the stratosphere, which in turn has a strong influence on the Earth's radiation budget and climate. Recent highaltitude, unmanned aircraft measurements provide evidence for two distinct classes of cirrus formed in the tropical tropopause region: (i) vertically extensive cirrus with low ice number concentrations, low extinctions, and large supersaturations (up to approx. 70%) with respect to ice; and (ii) vertically thin cirrus layers with much higher ice concentrations that effectively deplete the vapor in excess of saturation. The persistent supersaturation in the former class of cirrus is consistent with the long time-scales (several hours or longer) for quenching of vapor in excess of saturation given the low ice concentrations and cold tropical tropopause temperatures. The low-concentration clouds are likely formed on a background population of insoluble particles with concentrations less than 100 L-1 (often less than 20 L-1), whereas the high ice concentration layers (with concentrations up to 10,000 L-1) can only be produced by homogeneous freezing of an abundant population of aqueous aerosols. These measurements, along with past high-altitude aircraft measurements, indicate that the low-concentration cirrus occur frequently in the tropical tropopause region, whereas the high-concentration cirrus occur infrequently. The predominance of the low-concentration clouds means cirrus near the tropical tropopause may typically allow entry of air into the stratosphere with as much as approx. 1.7 times the ice saturation mixing ratio.

  6. Cirrus Airframe Parachute System and Odds of a Fatal Accident in Cirrus Aircraft Crashes.

    Science.gov (United States)

    Alaziz, Mustafa; Stolfi, Adrienne; Olson, Dean M

    2017-06-01

    General aviation (GA) accidents have continued to demonstrate high fatality rates. Recently, ballistic parachute recovery systems (BPRS) have been introduced as a safety feature in some GA aircraft. This study evaluates the effectiveness and associated factors of the Cirrus Airframe Parachute System (CAPS) at reducing the odds of a fatal accident in Cirrus aircraft crashes. Publicly available Cirrus aircraft crash reports were obtained from the National Transportation Safety Board (NTSB) database for the period of January 1, 2001-December 31, 2016. Accident metrics were evaluated through univariate and multivariate analyses regarding odds of a fatal accident and use of the parachute system. Included in the study were 268 accidents. For CAPS nondeployed accidents, 82 of 211 (38.9%) were fatal as compared to 8 of 57 (14.0%) for CAPS deployed accidents. After controlling for all other factors, the adjusted odds ratio for a fatal accident when CAPS was not deployed was 13.1. The substantial increased odds of a fatal accident when CAPS was not deployed demonstrated the effectiveness of CAPS at providing protection of occupants during an accident. Injuries were shifted from fatal to serious or minor with the use of CAPS and postcrash fires were significantly reduced. These results suggest that BPRS could play a significant role in the next major advance in improving GA accident survival.Alaziz M, Stolfi A, Olson DM. Cirrus Airframe Parachute System and odds of a fatal accident in Cirrus aircraft crashes. Aerosp Med Hum Perform. 2017; 88(6):556-564.

  7. Multilayered Clouds Identification and Retrieval for CERES Using MODIS

    Science.gov (United States)

    Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Yi, Yuhong; Huang, Jainping; Lin, Bin; Fan, Alice; Gibson, Sharon; Chang, Fu-Lung

    2006-01-01

    Traditionally, analyses of satellite data have been limited to interpreting the radiances in terms of single layer clouds. Generally, this results in significant errors in the retrieved properties for multilayered cloud systems. Two techniques for detecting overlapped clouds and retrieving the cloud properties using satellite data are explored to help address the need for better quantification of cloud vertical structure. The first technique was developed using multispectral imager data with secondary imager products (infrared brightness temperature differences, BTD). The other method uses microwave (MWR) data. The use of BTD, the 11-12 micrometer brightness temperature difference, in conjunction with tau, the retrieved visible optical depth, was suggested by Kawamoto et al. (2001) and used by Pavlonis et al. (2004) as a means to detect multilayered clouds. Combining visible (VIS; 0.65 micrometer) and infrared (IR) retrievals of cloud properties with microwave (MW) retrievals of cloud water temperature Tw and liquid water path LWP retrieved from satellite microwave imagers appears to be a fruitful approach for detecting and retrieving overlapped clouds (Lin et al., 1998, Ho et al., 2003, Huang et al., 2005). The BTD method is limited to optically thin cirrus over low clouds, while the MWR method is limited to ocean areas only. With the availability of VIS and IR data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and MW data from the Advanced Microwave Scanning Radiometer EOS (AMSR-E), both on Aqua, it is now possible to examine both approaches simultaneously. This paper explores the use of the BTD method as applied to MODIS and AMSR-E data taken from the Aqua satellite over non-polar ocean surfaces.

  8. Measurements of the Ice Water Content of Cirrus in the Tropics and Subtropics. I; Instrument Details and Validation

    Science.gov (United States)

    Weinstock, E. M.; Smith, J. B.; Sayres, D.; Pittman, J. V.; Allen, N.; Demusz, J.; Greenberg, M.; Rivero, M.; Anderson, J. G.

    2003-01-01

    We describe an instrument mounted in a pallet on the NASA WB-57 aircraft that is designed to measure the sum of gas phase and solid phase water, or total water, in cirrus clouds. Using an isokinetic inlet, a 600-watt heater mounted directly in the flow, and Lyman-alpha photofragment fluorescence technique for detection, accurate measurements of total water have been made over almost three orders of magnitude. Isokinetic flow is achieved with an actively controlled roots pump by referencing aircraft pressure, temperature, and true air speed, together with instrument flow velocity, temperature, and pressure. During CRYSTAL FACE, the instrument operated at duct temperatures sufficiently warm to completely evaporate particles up to 150 microns diameter. In flight diagnostics, intercomparison with water measured by absorption in flight, as well as intercomparisons in clear air with water vapor measured by the Harvard water vapor instrument and the JPL infrared tunable diode laser hygrometer validate the detection sensitivity of the instrument and illustrate minimal hysteresis from instrument surfaces. The simultaneous measurement of total water and water vapor in cirrus clouds yields their ice water content.

  9. Relationship between ice water path and downward longwave radiation for clouds optically thin in the infrared: Observations and model calculations

    Science.gov (United States)

    Uttal, Taneil; Matrosov, Sergey Y.; Snider, Jack B.; Kropfli, Robert A.

    1994-01-01

    A vertically pointing 3.2-cm radar is used to observe altostratus and cirrus clouds as they pass overhead. Radar reflectivities are used in combination with an empirical Z(sub i)-IWC (ice water content) relationship developed by Sassen (1987) to parameterize IWC, which is then integrated to obtain estimates of ice water path (IWP). The observed dataset is segregated into all-ice and mixed-phase periods using measurements of integrated liquid water paths (LWP) detected by a collocated, dual-channel microwave radiometer. The IWP values for the all ice periods are compared to measurements of infrared (IR) downward fluxes measured by a collocated narrowband (9.95-11.43 microns) IR radiometer, which results in scattergrams representing the observed dependence of IR fluxes on IWP. A two-stream model is used to calculate the infrared fluxes expected from ice clouds with boundary conditions specified by the actual clouds, and similar curves relating IWP and infrared fluxes are obtained. The model and observational results suggest that IWP is one of the primary controls on infrared thermal fluxes for ice clouds.

  10. The retrieval of cloud microphysical properties using satellite measurements and an in situ database

    Directory of Open Access Journals (Sweden)

    C. Poix

    1996-01-01

    Full Text Available By combining AVHRR data from the NOAA satellites with information from a database of in situ measurements, large-scale maps can be generated of the microphysical parameters most immediately significant for the modelling of global circulation and climate. From the satellite data, the clouds can be classified into cumuliform, stratiform and cirrus classes and then into further sub-classes by cloud top temperature. At the same time a database of in situ measurements made by research aircraft is classified into the same sub-classes and a statistical analysis is used to derive relationships between the sub-classes and the cloud microphysical properties. These two analyses are then linked to give estimates of the microphysical properties of the satellite observed clouds. Examples are given of the application of this technique to derive maps of the probability of occurrence of precipitating clouds and of precipitating water content derived from a case study within the International Cirrus Experiment (ICE held in 1989 over the North Sea.

  11. The retrieval of cloud microphysical properties using satellite measurements and an in situ database

    Directory of Open Access Journals (Sweden)

    Christophe Poix

    Full Text Available By combining AVHRR data from the NOAA satellites with information from a database of in situ measurements, large-scale maps can be generated of the microphysical parameters most immediately significant for the modelling of global circulation and climate. From the satellite data, the clouds can be classified into cumuliform, stratiform and cirrus classes and then into further sub-classes by cloud top temperature. At the same time a database of in situ measurements made by research aircraft is classified into the same sub-classes and a statistical analysis is used to derive relationships between the sub-classes and the cloud microphysical properties. These two analyses are then linked to give estimates of the microphysical properties of the satellite observed clouds. Examples are given of the application of this technique to derive maps of the probability of occurrence of precipitating clouds and of precipitating water content derived from a case study within the International Cirrus Experiment (ICE held in 1989 over the North Sea.

  12. Cirrus clouds properties derived from polarized micro pulse lidar (p-mpl) observations at the atmospheric observatory `el arenosillo' (sw iberian peninsula): a case study for radiative implications

    Science.gov (United States)

    Águila, Ana del; Gómez, Laura; Vilaplana, José Manuel; Sorribas, Mar; Córdoba-Jabonero, Carmen

    2018-04-01

    Cirrus (Ci) clouds are involved in Climate Change concerns since they affect the radiative balance of the atmosphere. Recently, a polarized Micro Pulse Lidar (P-MPL), standard system within NASA/MPLNET has been deployed at the INTA/Atmospheric Observatory `El Arenosillo' (ARN), located in the SW Iberian Peninsula. Hence, the INTA/P-MPL system is used for Ci detection over that station for the first time. Radiative effects of a Ci case observed over ARN are examined, as reference for future long-term Ci observations. Optical and macrophysical properties are retrieved, and used for radiative transfer simulations. Data are compared to the measured surface radiation levels and all-sky images simultaneously performed at the ARN station.

  13. Do detailed simulations with size-resolved microphysics reproduce basic features of observed cirrus ice size distributions?

    Science.gov (United States)

    Fridlind, A. M.; Atlas, R.; van Diedenhoven, B.; Ackerman, A. S.; Rind, D. H.; Harrington, J. Y.; McFarquhar, G. M.; Um, J.; Jackson, R.; Lawson, P.

    2017-12-01

    It has recently been suggested that seeding synoptic cirrus could have desirable characteristics as a geoengineering approach, but surprisingly large uncertainties remain in the fundamental parameters that govern cirrus properties, such as mass accommodation coefficient, ice crystal physical properties, aggregation efficiency, and ice nucleation rate from typical upper tropospheric aerosol. Only one synoptic cirrus model intercomparison study has been published to date, and studies that compare the shapes of observed and simulated ice size distributions remain sparse. Here we amend a recent model intercomparison setup using observations during two 2010 SPARTICUS campaign flights. We take a quasi-Lagrangian column approach and introduce an ensemble of gravity wave scenarios derived from collocated Doppler cloud radar retrievals of vertical wind speed. We use ice crystal properties derived from in situ cloud particle images, for the first time allowing smoothly varying and internally consistent treatments of nonspherical ice capacitance, fall speed, gravitational collection, and optical properties over all particle sizes in our model. We test two new parameterizations for mass accommodation coefficient as a function of size, temperature and water vapor supersaturation, and several ice nucleation scenarios. Comparison of results with in situ ice particle size distribution data, corrected using state-of-the-art algorithms to remove shattering artifacts, indicate that poorly constrained uncertainties in the number concentration of crystals smaller than 100 µm in maximum dimension still prohibit distinguishing which parameter combinations are more realistic. When projected area is concentrated at such sizes, the only parameter combination that reproduces observed size distribution properties uses a fixed mass accommodation coefficient of 0.01, on the low end of recently reported values. No simulations reproduce the observed abundance of such small crystals when the

  14. Cirrus Dopant Nano-Composite Coatings

    Science.gov (United States)

    2014-11-01

    coatings without alteration to the existing plating process. Glen Slater, Cirrus Materials | Stephen Flint, Auckland UniServices Ltd Report...ADDRESS(ES) University of Auckland ,Cirrus Materials, Auckland , New Zealand, 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY...JiA/ g THE UNIVERSITY ’-" OF AUCKLAND NEW ZEALAND Te Whare Wanan a o Thmaki Makaurau ~"""’ • ........,." ... Southwest Pacific Basin . p

  15. Cloud Properties Simulated by a Single-Column Model. Part II: Evaluation of Cumulus Detrainment and Ice-phase Microphysics Using a Cloud Resolving Model

    Science.gov (United States)

    Luo, Yali; Krueger, Steven K.; Xu, Kuan-Man

    2005-01-01

    This paper is the second in a series in which kilometer-scale-resolving observations from the Atmospheric Radiation Measurement program and a cloud-resolving model (CRM) are used to evaluate the single-column model (SCM) version of the National Centers for Environmental Prediction Global Forecast System model. Part I demonstrated that kilometer-scale cirrus properties simulated by the SCM significantly differ from the cloud radar observations while the CRM simulation reproduced most of the cirrus properties as revealed by the observations. The present study describes an evaluation, through a comparison with the CRM, of the SCM's representation of detrainment from deep cumulus and ice-phase microphysics in an effort to better understand the findings of Part I. It is found that detrainment occurs too infrequently at a single level at a time in the SCM, although the detrainment rate averaged over the entire simulation period is somewhat comparable to that of the CRM simulation. Relatively too much detrained ice is sublimated when first detrained. Snow falls over too deep of a layer due to the assumption that snow source and sink terms exactly balance within one time step in the SCM. These characteristics in the SCM parameterizations may explain many of the differences in the cirrus properties between the SCM and the observations (or between the SCM and the CRM). A possible improvement for the SCM consists of the inclusion of multiple cumulus cloud types as in the original Arakawa-Schubert scheme, prognostically determining the stratiform cloud fraction and snow mixing ratio. This would allow better representation of the detrainment from deep convection, better coupling of the volume of detrained air with cloud fraction, and better representation of snow field.

  16. Cloud properties derived from two lidars over the ARM SGP site

    Energy Technology Data Exchange (ETDEWEB)

    Dupont, Jean-Charles; Haeffelin, Martial; Morille, Y.; Comstock, Jennifer M.; Flynn, Connor J.; Long, Charles N.; Sivaraman, Chitra; Newsom, Rob K.

    2011-02-16

    [1] Active remote sensors such as lidars or radars can be used with other data to quantify the cloud properties at regional scale and at global scale (Dupont et al., 2009). Relative to radar, lidar remote sensing is sensitive to very thin and high clouds but has a significant limitation due to signal attenuation in the ability to precisely quantify the properties of clouds with a 20 cloud optical thickness larger than 3. In this study, 10-years of backscatter lidar signal data are analysed by a unique algorithm called STRucture of ATmosphere (STRAT, Morille et al., 2007). We apply the STRAT algorithm to data from both the collocated Micropulse lidar (MPL) and a Raman lidar (RL) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site between 1998 and 2009. Raw backscatter lidar signal is processed and 25 corrections for detector deadtime, afterpulse, and overlap are applied. (Campbell et al.) The cloud properties for all levels of clouds are derived and distributions of cloud base height (CBH), top height (CTH), physical cloud thickness (CT), and optical thickness (COT) from local statistics are compared. The goal of this study is (1) to establish a climatology of macrophysical and optical properties for all levels of clouds observed over the ARM SGP site 30 and (2) to estimate the discrepancies induced by the two remote sensing systems (pulse energy, sampling, resolution, etc.). Our first results tend to show that the MPLs, which are the primary ARM lidars, have a distinctly limited range where all of these cloud properties are detectable, especially cloud top and cloud thickness, but even actual cloud base especially during summer daytime period. According to the comparisons between RL and MPL, almost 50% of situations show a signal to noise ratio too low (smaller than 3) for the MPL in order to detect clouds higher than 7km during daytime period in summer. Consequently, the MPLderived annual cycle of cirrus cloud base (top) altitude is

  17. Ice nucleation and dehydration in the Tropical Tropopause Layer.

    Science.gov (United States)

    Jensen, Eric J; Diskin, Glenn; Lawson, R Paul; Lance, Sara; Bui, T Paul; Hlavka, Dennis; McGill, Matthew; Pfister, Leonhard; Toon, Owen B; Gao, Rushan

    2013-02-05

    Optically thin cirrus near the tropical tropopause regulate the humidity of air entering the stratosphere, which in turn has a strong influence on the Earth's radiation budget and climate. Recent high-altitude, unmanned aircraft measurements provide evidence for two distinct classes of cirrus formed in the tropical tropopause region: (i) vertically extensive cirrus with low ice number concentrations, low extinctions, and large supersaturations (up to ∼70%) with respect to ice; and (ii) vertically thin cirrus layers with much higher ice concentrations that effectively deplete the vapor in excess of saturation. The persistent supersaturation in the former class of cirrus is consistent with the long time-scales (several hours or longer) for quenching of vapor in excess of saturation given the low ice concentrations and cold tropical tropopause temperatures. The low-concentration clouds are likely formed on a background population of insoluble particles with concentrations less than 100 L(-1) (often less than 20 L(-1)), whereas the high ice concentration layers (with concentrations up to 10,000 L(-1)) can only be produced by homogeneous freezing of an abundant population of aqueous aerosols. These measurements, along with past high-altitude aircraft measurements, indicate that the low-concentration cirrus occur frequently in the tropical tropopause region, whereas the high-concentration cirrus occur infrequently. The predominance of the low-concentration clouds means cirrus near the tropical tropopause may typically allow entry of air into the stratosphere with as much as ∼1.7 times the ice saturation mixing ratio.

  18. 77 FR 3585 - Airworthiness Directives; Cirrus Design Corporation Airplanes

    Science.gov (United States)

    2012-01-25

    ... Airworthiness Directives; Cirrus Design Corporation Airplanes AGENCY: Federal Aviation Administration (FAA), DOT... Corporation (Cirrus) Model SR22T airplanes. This AD was prompted by reports of partial loss of engine power.... ADDRESSES: For service information identified in this AD, contact Cirrus Design Corporation, 4515 Taylor...

  19. Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel

    Science.gov (United States)

    Stubenrauch, C. J.; Rossow, W. B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H.; Getzewich, B.; Di Girolamo, L.; Guignard, A.; Heidinger, A.; hide

    2012-01-01

    Clouds cover about 70% of the Earth's surface and play a dominant role in the energy and water cycle of our planet. Only satellite observations provide a continuous survey of the state of the atmosphere over the whole globe and across the wide range of spatial and temporal scales that comprise weather and climate variability. Satellite cloud data records now exceed more than 25 years in length. However, climatologies compiled from different satellite datasets can exhibit systematic biases. Questions therefore arise as to the accuracy and limitations of the various sensors. The Global Energy and Water cycle Experiment (GEWEX) Cloud Assessment, initiated in 2005 by the GEWEX Radiation Panel, provided the first coordinated intercomparison of publically available, standard global cloud products (gridded, monthly statistics) retrieved from measurements of multi-spectral imagers (some with multiangle view and polarization capabilities), IR sounders and lidar. Cloud properties under study include cloud amount, cloud height (in terms of pressure, temperature or altitude), cloud radiative properties (optical depth or emissivity), cloud thermodynamic phase and bulk microphysical properties (effective particle size and water path). Differences in average cloud properties, especially in the amount of high-level clouds, are mostly explained by the inherent instrument measurement capability for detecting and/or identifying optically thin cirrus, especially when overlying low-level clouds. The study of long-term variations with these datasets requires consideration of many factors. A monthly, gridded database, in common format, facilitates further assessments, climate studies and the evaluation of climate models.

  20. Heterogeneous Ice Nucleation Ability of NaCl and Sea Salt Aerosol Particles at Cirrus Temperatures

    Science.gov (United States)

    Wagner, Robert; Kaufmann, Julia; Möhler, Ottmar; Saathoff, Harald; Schnaiter, Martin; Ullrich, Romy; Leisner, Thomas

    2018-03-01

    In situ measurements of the composition of heterogeneous cirrus ice cloud residuals have indicated a substantial contribution of sea salt in sampling regions above the ocean. We have investigated the heterogeneous ice nucleation ability of sodium chloride (NaCl) and sea salt aerosol (SSA) particles at cirrus cloud temperatures between 235 and 200 K in the Aerosol Interaction and Dynamics in the Atmosphere aerosol and cloud chamber. Effloresced NaCl particles were found to act as ice nucleating particles in the deposition nucleation mode at temperatures below about 225 K, with freezing onsets in terms of the ice saturation ratio, Sice, between 1.28 and 1.40. Above 225 K, the crystalline NaCl particles deliquesced and nucleated ice homogeneously. The heterogeneous ice nucleation efficiency was rather similar for the two crystalline forms of NaCl (anhydrous NaCl and NaCl dihydrate). Mixed-phase (solid/liquid) SSA particles were found to act as ice nucleating particles in the immersion freezing mode at temperatures below about 220 K, with freezing onsets in terms of Sice between 1.24 and 1.42. Above 220 K, the SSA particles fully deliquesced and nucleated ice homogeneously. Ice nucleation active surface site densities of the SSA particles were found to be in the range between 1.0 · 1010 and 1.0 · 1011 m-2 at T < 220 K. These values are of the same order of magnitude as ice nucleation active surface site densities recently determined for desert dust, suggesting a potential contribution of SSA particles to low-temperature heterogeneous ice nucleation in the atmosphere.

  1. Comment on "Clouds and the Faint Young Sun Paradox" by Goldblatt and Zahnle (2011

    Directory of Open Access Journals (Sweden)

    R. Rondanelli

    2012-03-01

    Full Text Available Goldblatt and Zahnle (2011 raise a number of issues related to the possibility that cirrus clouds can provide a solution to the faint young sun paradox. Here, we argue that: (1 climates having a lower than present mean surface temperature cannot be discarded as solutions to the faint young sun paradox, (2 the detrainment from deep convective clouds in the tropics is a well-established physical mechanism for the formation of high clouds that have a positive radiative forcing (even if the possible role of these clouds as a negative climate feedback remains controversial and (3 even if some cloud properties are not mutually consistent with observations in radiative transfer parameterizations, the most relevant consistency (for the purpose of hypothesis testing is with observations of the cloud radiative forcing. Therefore, we maintain that cirrus clouds, as observed in the current climate and covering a large region of the tropics, can provide a solution to the faint young sun paradox, or at least ease the amount of CO2 or other greenhouse substances needed to provide temperatures above freezing during the Archean.

  2. Satellite retrieval of cloud condensation nuclei concentrations by using clouds as CCN chambers

    Science.gov (United States)

    Rosenfeld, Daniel; Zheng, Youtong; Hashimshoni, Eyal; Pöhlker, Mira L.; Jefferson, Anne; Pöhlker, Christopher; Yu, Xing; Zhu, Yannian; Liu, Guihua; Yue, Zhiguo; Fischman, Baruch; Li, Zhanqing; Giguzin, David; Goren, Tom; Artaxo, Paulo; Pöschl, Ulrich

    2016-01-01

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Validation against ground-based CCN instruments at Oklahoma, at Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25° restricts the satellite coverage to ∼25% of the world area in a single day. PMID:26944081

  3. Information Recovery Algorithm for Ground Objects in Thin Cloud Images by Fusing Guide Filter and Transfer Learning

    Directory of Open Access Journals (Sweden)

    HU Gensheng

    2018-03-01

    Full Text Available Ground object information of remote sensing images covered with thin clouds is obscure. An information recovery algorithm for ground objects in thin cloud images is proposed by fusing guide filter and transfer learning. Firstly, multi-resolution decomposition of thin cloud target images and cloud-free guidance images is performed by using multi-directional nonsubsampled dual-tree complex wavelet transform. Then the decomposed low frequency subbands are processed by using support vector guided filter and transfer learning respectively. The decomposed high frequency subbands are enhanced by using modified Laine enhancement function. The low frequency subbands output by guided filter and those predicted by transfer learning model are fused by the method of selection and weighting based on regional energy. Finally, the enhanced high frequency subbands and the fused low frequency subbands are reconstructed by using inverse multi-directional nonsubsampled dual-tree complex wavelet transform to obtain the ground object information recovery images. Experimental results of Landsat-8 OLI multispectral images show that, support vector guided filter can effectively preserve the detail information of the target images, domain adaptive transfer learning can effectively extend the range of available multi-source and multi-temporal remote sensing images, and good effects for ground object information recover are obtained by fusing guide filter and transfer learning to remove thin cloud on the remote sensing images.

  4. Cirrus clouds properties derived from polarized micro pulse lidar (p-mpl observations at the atmospheric observatory ‘el arenosillo’ (sw iberian peninsula: a case study for radiative implications

    Directory of Open Access Journals (Sweden)

    Águila Ana del

    2018-01-01

    Full Text Available Cirrus (Ci clouds are involved in Climate Change concerns since they affect the radiative balance of the atmosphere. Recently, a polarized Micro Pulse Lidar (P-MPL, standard system within NASA/MPLNET has been deployed at the INTA/Atmospheric Observatory ‘El Arenosillo’ (ARN, located in the SW Iberian Peninsula. Hence, the INTA/P-MPL system is used for Ci detection over that station for the first time. Radiative effects of a Ci case observed over ARN are examined, as reference for future long-term Ci observations. Optical and macrophysical properties are retrieved, and used for radiative transfer simulations. Data are compared to the measured surface radiation levels and all-sky images simultaneously performed at the ARN station.

  5. Journal of Earth System Science | Indian Academy of Sciences

    Indian Academy of Sciences (India)

    The large enhancements and reductions in TCDs of the above gases are observed in thick cumulonimbus (Cb) clouds and thin high cirrus (Ci) clouds, respectively, compared to clear sky conditions. The enhancements in TCDs of O3 appear to be due to photon diffusion, multiple Mie-scattering and multiple reflections ...

  6. Ice Nucleation in the Tropical Tropopause Layer: Implications for Cirrus Occurrence, Cirrus Microphysical Properties, and Dehydration of Air Entering the Stratosphere

    Science.gov (United States)

    Jensen, Eric; Kaercher, Bernd; Ueyama, Rei; Pfister, Leonhard

    2017-01-01

    Recent laboratory experiments have advanced our understanding of the physical properties and ice nucleating abilities of aerosol particles atlow temperatures. In particular, aerosols containing organics will transition to a glassy state at low temperatures, and these glassy aerosols are moderately effective as ice nuclei. These results have implications for ice nucleation in the cold Tropical Tropopause Layer (TTL; 13-19 km). We have developed a detailed cloud microphysical model that includes heterogeneous nucleation on a variety of aerosol types and homogeneous freezing of aqueous aerosols. This model has been incorporated into one-dimensional simulations of cirrus and water vapor driven by meteorological analysis temperature and wind fields. The model includes scavenging of ice nuclei by sedimenting ice crystals. The model is evaluated by comparing the simulated cloud properties and water vapor concentrations with aircraft and satellite measurements. In this presentation, I will discuss the relative importance of homogeneous and heterogeneous ice nucleation, the impact of ice nuclei scavenging as air slowly ascends through the TTL, and the implications for the final dehydration of air parcels crossing the tropical cold-point tropopause and entering the tropical stratosphere.

  7. Aerosol indirect effects on the nighttime Arctic Ocean surface from thin, predominantly liquid clouds

    Directory of Open Access Journals (Sweden)

    L. M. Zamora

    2017-06-01

    Full Text Available Aerosol indirect effects have potentially large impacts on the Arctic Ocean surface energy budget, but model estimates of regional-scale aerosol indirect effects are highly uncertain and poorly validated by observations. Here we demonstrate a new way to quantitatively estimate aerosol indirect effects on a regional scale from remote sensing observations. In this study, we focus on nighttime, optically thin, predominantly liquid clouds. The method is based on differences in cloud physical and microphysical characteristics in carefully selected clean, average, and aerosol-impacted conditions. The cloud subset of focus covers just ∼ 5 % of cloudy Arctic Ocean regions, warming the Arctic Ocean surface by ∼ 1–1.4 W m−2 regionally during polar night. However, within this cloud subset, aerosol and cloud conditions can be determined with high confidence using CALIPSO and CloudSat data and model output. This cloud subset is generally susceptible to aerosols, with a polar nighttime estimated maximum regionally integrated indirect cooling effect of ∼ −0.11 W m−2 at the Arctic sea ice surface (∼ 8 % of the clean background cloud effect, excluding cloud fraction changes. Aerosol presence is related to reduced precipitation, cloud thickness, and radar reflectivity, and in some cases, an increased likelihood of cloud presence in the liquid phase. These observations are inconsistent with a glaciation indirect effect and are consistent with either a deactivation effect or less-efficient secondary ice formation related to smaller liquid cloud droplets. However, this cloud subset shows large differences in surface and meteorological forcing in shallow and higher-altitude clouds and between sea ice and open-ocean regions. For example, optically thin, predominantly liquid clouds are much more likely to overlay another cloud over the open ocean, which may reduce aerosol indirect effects on the surface. Also, shallow clouds over

  8. Statistical retrieval of thin liquid cloud microphysical properties using ground-based infrared and microwave observations

    Science.gov (United States)

    Marke, Tobias; Ebell, Kerstin; Löhnert, Ulrich; Turner, David D.

    2016-12-01

    In this article, liquid water cloud microphysical properties are retrieved by a combination of microwave and infrared ground-based observations. Clouds containing liquid water are frequently occurring in most climate regimes and play a significant role in terms of interaction with radiation. Small perturbations in the amount of liquid water contained in the cloud can cause large variations in the radiative fluxes. This effect is enhanced for thin clouds (liquid water path, LWP cloud properties crucial. Due to large relative errors in retrieving low LWP values from observations in the microwave domain and a high sensitivity for infrared methods when the LWP is low, a synergistic retrieval based on a neural network approach is built to estimate both LWP and cloud effective radius (reff). These statistical retrievals can be applied without high computational demand but imply constraints like prior information on cloud phase and cloud layering. The neural network retrievals are able to retrieve LWP and reff for thin clouds with a mean relative error of 9% and 17%, respectively. This is demonstrated using synthetic observations of a microwave radiometer (MWR) and a spectrally highly resolved infrared interferometer. The accuracy and robustness of the synergistic retrievals is confirmed by a low bias in a radiative closure study for the downwelling shortwave flux, even for marginally invalid scenes. Also, broadband infrared radiance observations, in combination with the MWR, have the potential to retrieve LWP with a higher accuracy than a MWR-only retrieval.

  9. Depolarization Ratio Profiles Calibration and Observations of Aerosol and Cloud in the Tibetan Plateau Based on Polarization Raman Lidar

    Directory of Open Access Journals (Sweden)

    Guangyao Dai

    2018-03-01

    Full Text Available A brief description of the Water vapor, Cloud and Aerosol Lidar (WACAL system is provided. To calibrate the volume linear depolarization ratio, the concept of “ Δ 90 ° -calibration” is applied in this study. This effective and accurate calibration method is adjusted according to the design of WACAL. Error calculations and analysis of the gain ratio, calibrated volume linear depolarization ratio and particle linear depolarization ratio are provided as well. In this method, the influences of the gain ratio, the rotation angle of the plane of polarization and the polarizing beam splitter are discussed in depth. Two groups of measurements with half wave plate (HWP at angles of (0 ° , 45 ° and (22.5 ° , −22.5 ° are operated to calibrate the volume linear depolarization ratio. Then, the particle linear depolarization ratios measured by WACAL and CALIOP (the Cloud-Aerosol Lidar with Orthogonal Polarization during the simultaneous observations were compared. Good agreements are found. The calibration method was applied in the third Tibetan Plateau Experiment of Atmospheric Sciences (TIPEX III in 2013 and 2014 in China. Vertical profiles of the particle depolarization ratio of clouds and aerosol in the Tibetan Plateau were measured with WACAL in Litang (30.03° N, 100.28° E, 3949 m above sea level (a.s.l. in 2013 and Naqu (31.48° N, 92.06° E, 4508 m a.s.l. in 2014. Then an analysis on the polarizing properties of the aerosol, clouds and cirrus over the Tibetan Plateau is provided. The particle depolarization ratio of cirrus clouds varies from 0.36 to 0.52, with a mean value of 0.44 ± 0.04. Cirrus clouds occurred between 5.2 and 12 km above ground level (a.g.l.. The cloud thickness ranges from 0.12 to 2.55 km with a mean thickness of 1.22 ± 0.70 km. It is found that the particle depolarization ratio of cirrus clouds become larger as the height increases. However, the increase rate of the particle depolarization ratio becomes smaller as

  10. The 27-28 October 1986 FIRE IFO Cirrus case study: Comparison of radiative transfer theory with observations by satellite and aircraft

    Science.gov (United States)

    Wielicki, Bruce A.; Suttles, J. T.; Heymsfield, Andrew J.; Welch, Ronald M.; Spinhirne, James D.; Wu, Man-Li C.; Starr, David OC.; Parker, Lindsay; Arduini, Robert F.

    1989-01-01

    Observations of cirrus and altocumulus clouds during the First International Satellite Cloud Climatology Project Regional Experiment (FIRE) are compared to theoretical models of cloud radiative properties. Three tests are performed. First, LANDSAT radiances are used to compare the relationship between nadir reflectance ot 0.83 micron and beam emittance at 11.5 microns with that predicted for model calculations using spherical and nonspherical phase functions. Good agreement is found between observations and theory when water droplets dominate. Poor agreement is found when ice particles dominate, especially using scattering phase functions for spherical particles. Even when compared to a laboratory measured ice particle phase function, the observations show increased side scattered radiation relative to the theoretical calculations. Second, the anisotropy of conservatively scattered radiation is examined using simultaneous multiple angle views of the cirrus from LANDSAT and ER-2 aircraft radiometers. Observed anisotropy gives good agreement with theoretical calculations using the laboratory measured ice particle phase function and poor agreement with a spherical particle phase function. Third, Landsat radiances at 0.83, 1.65, and 2.21 microns are used to infer particle phase and particle size. For water droplets, good agreement is found with King Air FSSP particle probe measurements in the cloud. For ice particles, the LANDSAT radiance observations predict an effective radius of 60 microns versus aircraft observations of about 200 microns. It is suggested that this descrepancy may be explained by uncertainty in the imaginary index of ice and by inadequate measurements of small ice particles by microphysical probes.

  11. Retrieving cirrus microphysical properties from stellar aureoles

    Science.gov (United States)

    DeVore, J. G.; Kristl, J. A.; Rappaport, S. A.

    2013-06-01

    The aureoles around stars caused by thin cirrus limit nighttime measurement opportunities for ground-based astronomy, but can provide information on high-altitude ice crystals for climate research. In this paper we attempt to demonstrate quantitatively how this works. Aureole profiles can be followed out to ~0.2° from stars and ~0.5° from Jupiter. Interpretation of diffracted starlight is similar to that for sunlight, but emphasizes larger particles. Stellar diffraction profiles are very distinctive, typically being approximately flat out to a critical angle followed by gradually steepening power-law falloff with slope less steep than -3. Using the relationship between the phase function for diffraction and the average Fourier transform of the projected area of complex ice crystals, we show that defining particle size in terms of average projected area normal to the propagation direction of the starlight leads to a simple, analytic approximation representing large-particle diffraction that is nearly independent of crystal habit. A similar analytic approximation for the diffraction aureole allows it to be separated from the point spread function and the sky background. Multiple scattering is deconvolved using the Hankel transform leading to the diffraction phase function. Application of constrained numerical inversion to the phase function then yields a solution for the particle size distribution in the range between ~50 μm and ~400 μm. Stellar aureole measurements can provide one of the very few, as well as least expensive, methods for retrieving cirrus microphysical properties from ground-based observations.

  12. Empirical analysis of aerosol and thin cloud optical depth effects on CO2 retrievals from GOSAT

    Science.gov (United States)

    Saha, A.; O'Neill, N. T.; Strong, K.; Nakajima, T.; Uchino, O.; Shiobara, M.

    2014-12-01

    Ground-based sunphotometer observations of aerosol and cloud optical properties at AEROCAN / AERONET sites co-located with TCCON (Total Carbon Column Observing Network) high resolution Fourier Transform Spectrometers (FTS) were used to investigate the aerosol and cloud influence on column-averaged dry-air mole fraction of carbon dioxide (XCO2) retrieved from the TANSO-FTS (Thermal And Near-infrared Sensor for carbon Observation - FTS) of GOSAT (Greenhouse gases Observing SATellite). This instrument employs high resolution spectra measured in the Short-Wavelength InfraRed (SWIR) band to retrieve XCO2estimates. GOSAT XCO2 retrievals are nominally corrected for the contaminating backscatter influence of aerosols and thin clouds. However if the satellite-retrieved aerosol and thin cloud optical depths applied to the CO2 correction is biased then the correction and the retrieved CO2 values will be biased. We employed independent ground based estimates of both cloud screened and non cloud screened AOD (aerosol optical depth) in the CO2 SWIR channel and compared this with the GOSAT SWIR-channel OD retrievals to see if that bias was related to variations in the (generally negative) CO2 bias (ΔXCO2= XCO2(GOSAT) - XCO2(TCCON)). Results are presented for a number of TCCON validation sites.

  13. A methodology for in-situ and remote sensing of microphysical and radiative properties of contrails as they evolve into cirrus

    Science.gov (United States)

    Jones, H. M.; Haywood, J.; Marenco, F.; O'Sullivan, D.; Meyer, J.; Thorpe, R.; Gallagher, M. W.; Krämer, M.; Bower, K. N.; Rädel, G.; Rap, A.; Woolley, A.; Forster, P.; Coe, H.

    2012-09-01

    Contrails and especially their evolution into cirrus-like clouds are thought to have very important effects on local and global radiation budgets, though are generally not well represented in global climate models. Lack of contrail parameterisations is due to the limited availability of in situ contrail measurements which are difficult to obtain. Here we present a methodology for successful sampling and interpretation of contrail microphysical and radiative data using both in situ and remote sensing instrumentation on board the FAAM BAe146 UK research aircraft as part of the COntrails Spreading Into Cirrus (COSIC) study. Forecast models were utilised to determine flight regions suitable for contrail formation and sampling; regions that were both free of cloud but showed a high probability of occurrence of air mass being supersaturated with respect to ice. The FAAM research aircraft, fitted with cloud microphysics probes and remote sensing instruments, formed a distinctive spiral-shaped contrail in the predicted area by flying in an orbit over the same ground position as the wind advected the contrails to the east. Parts of these contrails were sampled during the completion of four orbits, with sampled contrail regions being between 7 and 30 min old. Lidar measurements were useful for in-flight determination of the location and spatial extent of the contrails, and also to report extinction values that agreed well with those calculated from the microphysical data. A shortwave spectrometer was also able to detect the contrails, though the signal was weak due to the dispersion and evaporation of the contrails. Post-flight the UK Met Office NAME III dispersion model was successfully used as a tool for modelling the dispersion of the persistent contrail; determining its location and age, and determining when there was interference from other measured aircraft contrails or when cirrus encroached on the area later in the flight. The persistent contrails were found to

  14. A methodology for in-situ and remote sensing of microphysical and radiative properties of contrails as they evolve into cirrus

    Directory of Open Access Journals (Sweden)

    H. M. Jones

    2012-09-01

    Full Text Available Contrails and especially their evolution into cirrus-like clouds are thought to have very important effects on local and global radiation budgets, though are generally not well represented in global climate models. Lack of contrail parameterisations is due to the limited availability of in situ contrail measurements which are difficult to obtain. Here we present a methodology for successful sampling and interpretation of contrail microphysical and radiative data using both in situ and remote sensing instrumentation on board the FAAM BAe146 UK research aircraft as part of the COntrails Spreading Into Cirrus (COSIC study.

    Forecast models were utilised to determine flight regions suitable for contrail formation and sampling; regions that were both free of cloud but showed a high probability of occurrence of air mass being supersaturated with respect to ice. The FAAM research aircraft, fitted with cloud microphysics probes and remote sensing instruments, formed a distinctive spiral-shaped contrail in the predicted area by flying in an orbit over the same ground position as the wind advected the contrails to the east. Parts of these contrails were sampled during the completion of four orbits, with sampled contrail regions being between 7 and 30 min old. Lidar measurements were useful for in-flight determination of the location and spatial extent of the contrails, and also to report extinction values that agreed well with those calculated from the microphysical data. A shortwave spectrometer was also able to detect the contrails, though the signal was weak due to the dispersion and evaporation of the contrails. Post-flight the UK Met Office NAME III dispersion model was successfully used as a tool for modelling the dispersion of the persistent contrail; determining its location and age, and determining when there was interference from other measured aircraft contrails or when cirrus encroached on the area later in the flight.

    The

  15. CloudSat observations of cloud-type distribution over the Indian summer monsoon region

    Directory of Open Access Journals (Sweden)

    K. V. Subrahmanyam

    2013-07-01

    Full Text Available The three-dimensional distribution of various cloud types over the Indian summer monsoon (ISM region using five years (2006–2010 of CloudSat observations during June-July-August-September months is discussed for the first time. As the radiative properties, latent heat released and microphysical properties of clouds differ largely depending on the cloud type, it becomes important to know what types of clouds occur over which region. In this regard, the present analysis establishes the three-dimensional distribution of frequency of occurrence of stratus (St, stratocumulus (Sc, nimbostratus (Ns, cumulus (Cu, altocumulus (Ac, altostratus (As, cirrus (Ci and deep convective (DC clouds over the ISM region. The results show that the various cloud types preferentially occur over some regions of the ISM, which are consistent during all the years of observations. It is found that the DC clouds frequently occur over northeast of Bay of Bengal (BoB, Ci clouds over a wide region of south BoB–Indian peninsula–equatorial Indian Ocean, and Sc clouds over the north Arabian Sea. Ac clouds preferentially occur over land, and a large amount of As clouds are found over BoB. The occurrence of both St and Ns clouds over the study region is much lower than all other cloud types.The interannual variability of all these clouds including their vertical distribution is discussed. It is envisaged that the present study opens up possibilities to quantify the feedback of individual cloud type in the maintenance of the ISM through radiative forcing and latent heat release.

  16. 76 FR 67631 - Airworthiness Directives; Cirrus Design Corporation Airplanes

    Science.gov (United States)

    2011-11-02

    ... Corporation, 4515 Taylor Circle, Duluth, Minnesota 55811- 1548, phone: (218) 788-3000; fax: (218) 788-3525... as applicable. (f) Compliance Comply with this AD following Cirrus Design Corporation SR22T Service... this AD, contact Cirrus Design Corporation, 4515 Taylor Circle, Duluth, Minnesota 55811-1548, phone...

  17. A Raman lidar at La Reunion (20.8° S, 55.5° E for monitoring water vapour and cirrus distributions in the subtropical upper troposphere: preliminary analyses and description of a future system

    Directory of Open Access Journals (Sweden)

    C. Hoareau

    2012-06-01

    Full Text Available A ground-based Rayleigh lidar has provided continuous observations of tropospheric water vapour profiles and cirrus cloud using a preliminary Raman channels setup on an existing Rayleigh lidar above La Reunion over the period 2002–2005. With this instrument, we performed a first measurement campaign of 350 independent water vapour profiles. A statistical study of the distribution of water vapour profiles is presented and some investigations concerning the calibration are discussed. Analysis regarding the cirrus clouds is presented and a classification has been performed showing 3 distinct classes. Based on these results, the characteristics and the design of a future lidar system, to be implemented at the new Reunion Island altitude observatory (2200 m for long-term monitoring, is presented and numerical simulations of system performance have been realised to compare both instruments.

  18. Understanding Cirrus Ice Crystal Number Variability for Different Heterogeneous Ice Nucleation Spectra

    Science.gov (United States)

    Sullivan, Sylvia C.; Betancourt, Ricardo Morales; Barahona, Donifan; Nenes, Athanasios

    2016-01-01

    Along with minimizing parameter uncertainty, understanding the cause of temporal and spatial variability of the nucleated ice crystal number, Ni, is key to improving the representation of cirrus clouds in climate models. To this end, sensitivities of Ni to input variables like aerosol number and diameter provide valuable information about nucleation regime and efficiency for a given model formulation. Here we use the adjoint model of the adjoint of a cirrus formation parameterization (Barahona and Nenes, 2009b) to understand Ni variability for various ice-nucleating particle (INP) spectra. Inputs are generated with the Community Atmosphere Model version 5, and simulations are done with a theoretically derived spectrum, an empirical lab-based spectrum and two field-based empirical spectra that differ in the nucleation threshold for black carbon particles and in the active site density for dust. The magnitude and sign of Ni sensitivity to insoluble aerosol number can be directly linked to nucleation regime and efficiency of various INP. The lab-based spectrum calculates much higher INP efficiencies than field-based ones, which reveals a disparity in aerosol surface properties. Ni sensitivity to temperature tends to be low, due to the compensating effects of temperature on INP spectrum parameters; this low temperature sensitivity regime has been experimentally reported before but never deconstructed as done here.

  19. Evaluation of automatic cloud removal method for high elevation areas in Landsat 8 OLI images to improve environmental indexes computation

    Science.gov (United States)

    Alvarez, César I.; Teodoro, Ana; Tierra, Alfonso

    2017-10-01

    Thin clouds in the optical remote sensing data are frequent and in most of the cases don't allow to have a pure surface data in order to calculate some indexes as Normalized Difference Vegetation Index (NDVI). This paper aims to evaluate the Automatic Cloud Removal Method (ACRM) algorithm over a high elevation city like Quito (Ecuador), with an altitude of 2800 meters above sea level, where the clouds are presented all the year. The ACRM is an algorithm that considers a linear regression between each Landsat 8 OLI band and the Cirrus band using the slope obtained with the linear regression established. This algorithm was employed without any reference image or mask to try to remove the clouds. The results of the application of the ACRM algorithm over Quito didn't show a good performance. Therefore, was considered improving this algorithm using a different slope value data (ACMR Improved). After, the NDVI computation was compared with a reference NDVI MODIS data (MOD13Q1). The ACMR Improved algorithm had a successful result when compared with the original ACRM algorithm. In the future, this Improved ACRM algorithm needs to be tested in different regions of the world with different conditions to evaluate if the algorithm works successfully for all conditions.

  20. Validation of Cloud Properties From Multiple Satellites Using CALIOP Data

    Science.gov (United States)

    Yost, Christopher R.; Minnis, Patrick; Bedka, Kristopher M.; Heck, Patrick W.; Palikonda, Rabindra; Sun-Mack, Sunny; Trepte, Qing

    2016-01-01

    The NASA Langley Satellite ClOud and Radiative Property retrieval System (SatCORPS) is routinely applied to multispectral imagery from several geostationary and polar-orbiting imagers to retrieve cloud properties for weather and climate applications. Validation of the retrievals with independent datasets is continuously ongoing in order to understand differences caused by calibration, spatial resolution, viewing geometry, and other factors. The CALIOP instrument provides a decade of detailed cloud observations which can be used to evaluate passive imager retrievals of cloud boundaries, thermodynamic phase, cloud optical depth, and water path on a global scale. This paper focuses on comparisons of CALIOP retrievals to retrievals from MODIS, VIIRS, AVHRR, GOES, SEVIRI, and MTSAT. CALIOP is particularly skilled at detecting weakly-scattering cirrus clouds with optical depths less than approx. 0.5. These clouds are often undetected by passive imagers and the effect this has on the property retrievals is discussed.

  1. Modeling of clouds and radiation for development of parameterizations for general circulation models

    International Nuclear Information System (INIS)

    Westphal, D.; Toon, B.; Jensen, E.; Kinne, S.; Ackerman, A.; Bergstrom, R.; Walker, A.

    1994-01-01

    Atmospheric Radiation Measurement (ARM) Program research at NASA Ames Research Center (ARC) includes radiative transfer modeling, cirrus cloud microphysics, and stratus cloud modeling. These efforts are designed to provide the basis for improving cloud and radiation parameterizations in our main effort: mesoscale cloud modeling. The range of non-convective cloud models used by the ARM modeling community can be crudely categorized based on the number of predicted hydrometers such as cloud water, ice water, rain, snow, graupel, etc. The simplest model has no predicted hydrometers and diagnoses the presence of clouds based on the predicted relative humidity. The vast majority of cloud models have two or more predictive bulk hydrometers and are termed either bulk water (BW) or size-resolving (SR) schemes. This study compares the various cloud models within the same dynamical framework, and compares results with observations rather than climate statistics

  2. Quantifying Uncertainties in Mass-Dimensional Relationships Through a Comparison Between CloudSat and SPartICus Reflectivity Factors

    Science.gov (United States)

    Mascio, J.; Mace, G. G.

    2015-12-01

    CloudSat and CALIPSO, two of the satellites in the A-Train constellation, use algorithms to calculate the scattering properties of small cloud particles, such as the T-matrix method. Ice clouds (i.e. cirrus) cause problems with these cloud property retrieval algorithms because of their variability in ice mass as a function of particle size. Assumptions regarding the microphysical properties, such as mass-dimensional (m-D) relationships, are often necessary in retrieval algorithms for simplification, but these assumptions create uncertainties of their own. Therefore, ice cloud property retrieval uncertainties can be substantial and are often not well known. To investigate these uncertainties, reflectivity factors measured by CloudSat are compared to those calculated from particle size distributions (PSDs) to which different m-D relationships are applied. These PSDs are from data collected in situ during three flights of the Small Particles in Cirrus (SPartICus) campaign. We find that no specific habit emerges as preferred and instead we conclude that the microphysical characteristics of ice crystal populations tend to be distributed over a continuum and, therefore, cannot be categorized easily. To quantify the uncertainties in the mass-dimensional relationships, an optimal estimation inversion was run to retrieve the m-D relationship per SPartICus flight, as well as to calculate uncertainties of the m-D power law.

  3. Modeling single-scattering properties of small cirrus particles by use of a size-shape distribution of ice spheroids and cylinders

    International Nuclear Information System (INIS)

    Liu Li; Mishchenko, Michael I.; Cairns, Brian; Carlson, Barbara E.; Travis, Larry D.

    2006-01-01

    In this study, we model single-scattering properties of small cirrus crystals using mixtures of polydisperse, randomly oriented spheroids and cylinders with varying aspect ratios and with a refractive index representative of water ice at a wavelength of 1.88 μm. The Stokes scattering matrix elements averaged over wide shape distributions of spheroids and cylinders are compared with those computed for polydisperse surface-equivalent spheres. The shape-averaged phase function for a mixture of oblate and prolate spheroids is smooth, featureless, and nearly flat at side-scattering angles and closely resembles those typically measured for cirrus. Compared with the ensemble-averaged phase function for spheroids, that for a shape distribution of cylinders shows a relatively deeper minimum at side-scattering angles. This may indicate that light scattering from realistic cirrus crystals can be better represented by a shape mixture of ice spheroids. Interestingly, the single-scattering properties of shape-averaged oblate and prolate cylinders are very similar to those of compact cylinders with a diameter-to-length ratio of unity. The differences in the optical cross sections, single-scattering albedo, and asymmetry parameter between the spherical and the nonspherical particles studied appear to be relatively small. This may suggest that for a given optical thickness, the influence of particle shape on the radiative forcing caused by a cloud composed of small ice crystals can be negligible

  4. Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES

    Science.gov (United States)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Wang, Tianhe; Yi, Yuhong; Hu, Yongxiang; Sun-Mack, Sunny; Ayers, Kirk

    2006-03-01

    The effects of dust storms on cloud properties and Radiative Forcing (RF) are analyzed over Northwestern China from April 2001 to June 2004 using data collected by the MODerate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Aqua and Terra satellites. On average, ice cloud effective particle diameter, optical depth and ice water path of cirrus clouds under dust polluted conditions are 11%, 32.8%, and 42% less, respectively, than those derived from ice clouds in dust-free atmospheric environments. Due to changes in cloud microphysics, the instantaneous net RF is increased from -161.6 W/m2 for dust-free clouds to -118.6 W/m2 for dust-contaminated clouds.

  5. Vertical microphysical profiles of convective clouds as a tool for obtaining aerosol cloud-mediated climate forcings

    Energy Technology Data Exchange (ETDEWEB)

    Rosenfeld, Daniel [Hebrew Univ. of Jerusalem (Israel)

    2015-12-23

    Quantifying the aerosol/cloud-mediated radiative effect at a global scale requires simultaneous satellite retrievals of cloud condensation nuclei (CCN) concentrations and cloud base updraft velocities (Wb). Hitherto, the inability to do so has been a major cause of high uncertainty regarding anthropogenic aerosol/cloud-mediated radiative forcing. This can be addressed by the emerging capability of estimating CCN and Wb of boundary layer convective clouds from an operational polar orbiting weather satellite. Our methodology uses such clouds as an effective analog for CCN chambers. The cloud base supersaturation (S) is determined by Wb and the satellite-retrieved cloud base drop concentrations (Ndb), which is the same as CCN(S). Developing and validating this methodology was possible thanks to the ASR/ARM measurements of CCN and vertical updraft profiles. Validation against ground-based CCN instruments at the ARM sites in Oklahoma, Manaus, and onboard a ship in the northeast Pacific showed a retrieval accuracy of ±25% to ±30% for individual satellite overpasses. The methodology is presently limited to boundary layer not raining convective clouds of at least 1 km depth that are not obscured by upper layer clouds, including semitransparent cirrus. The limitation for small solar backscattering angles of <25º restricts the satellite coverage to ~25% of the world area in a single day. This methodology will likely allow overcoming the challenge of quantifying the aerosol indirect effect and facilitate a substantial reduction of the uncertainty in anthropogenic climate forcing.

  6. The Dependence of Cirrus Gamma Size Distributions Expressed as Volumes in N(sub 0)-Lambda-Mu Phase Space and Bulk Cloud Properties on Environmental Conditions: Results from the Small Ice Particles in Cirrus Experiment (SPARTICUS)

    Science.gov (United States)

    Jackson, Robert C.; McFarquhar, Greg M.; Fridlind, Ann M.; Atlas, Rachel

    2015-01-01

    The variability of cirrus ice microphysical properties is investigated using observations obtained during the Small Particles in Cirrus (SPARTICUS) campaign. An existing approach that represents a size distribution (SD) as a single gamma function using an ellipsoid of equally realizable solutions in (N(sub 0), lambda, mu) phase space is modified to automatically identify multiple modes in SDs and characterize each mode by such an ellipsoid. The modified approach is applied to ice crystals with maximum dimension D greater than15 micrometers collected by the 2-D stereo and 2-D precipitation probes on the Stratton Park Engineering Company Learjet. The dependencies of N(sub 0), mu, and lambda from each mode, total number concentration, bulk extinction, ice water content (IWC), and mass median maximum dimension D(sub mm) as a function of temperature T and cirrus type are then analyzed. The changes in the observed codependencies between N(sub 0), mu, and lambda, bulk extinction, IWC, and D(sub mm) with environmental conditions indicate that particles were larger at higher T during SPARTICUS. At most two modes were observed in any SD during SPARTICUS, with the average boundary between them at 115 micrometers, similar to past studies not using probes with shatter mitigating tips and artifact removal algorithms. The bimodality of the SDs increased with T. This and the differences in N(sub 0), mu, and lambda between the modes suggest that particles with smaller D nucleated more recently than particles with larger D, which grew via vapor deposition and aggregation. Because smaller crystals, whose concentrations are uncertain, make marginal contributions to higher order moments, the use of higher moments for evaluating model fields is suggested.

  7. Radiative budget and cloud radiative effect over the Atlantic from ship-based observations

    Directory of Open Access Journals (Sweden)

    J. Kalisch

    2012-10-01

    Full Text Available The aim of this study is to determine cloud-type resolved cloud radiative budgets and cloud radiative effects from surface measurements of broadband radiative fluxes over the Atlantic Ocean. Furthermore, based on simultaneous observations of the state of the cloudy atmosphere, a radiative closure study has been performed by means of the ECHAM5 single column model in order to identify the model's ability to realistically reproduce the effects of clouds on the climate system.

    An extensive database of radiative and atmospheric measurements has been established along five meridional cruises of the German research icebreaker Polarstern. Besides pyranometer and pyrgeometer for downward broadband solar and thermal radiative fluxes, a sky imager and a microwave radiometer have been utilized to determine cloud fraction and cloud type on the one hand and temperature and humidity profiles as well as liquid water path for warm non-precipitating clouds on the other hand.

    Averaged over all cruise tracks, we obtain a total net (solar + thermal radiative flux of 144 W m−2 that is dominated by the solar component. In general, the solar contribution is large for cirrus clouds and small for stratus clouds. No significant meridional dependencies were found for the surface radiation budgets and cloud effects. The strongest surface longwave cloud effects were shown in the presence of low level clouds. Clouds with a high optical density induce strong negative solar radiative effects under high solar altitudes. The mean surface net cloud radiative effect is −33 W m−2.

    For the purpose of quickly estimating the mean surface longwave, shortwave and net cloud effects in moderate, subtropical and tropical climate regimes, a new parameterisation was created, considering the total cloud amount and the solar zenith angle.

    The ECHAM5 single column model provides a surface net cloud effect that is more

  8. Effective Ice Particle Densities for Cold Anvil Cirrus

    Science.gov (United States)

    Heymsfield, Andrew J.; Schmitt, Carl G.; Bansemer, Aaron; Baumgardner, Darrel; Weinstock, Elliot M.; Smith, Jessica

    2002-01-01

    This study derives effective ice particle densities from data collected from the NASA WB-57F aircraft near the tops of anvils during the Cirrus Regional Study of Tropical Anvils and Cirrus Layers (CRYSTAL) Florida Area Cirrus Experiment (FACE) in southern Florida in July 2002. The effective density, defined as the ice particle mass divided by the volume of an equivalent diameter liquid sphere, is obtained for particle populations and single sizes containing mixed particle habits using measurements of condensed water content and particle size distributions. The mean effective densities for populations decrease with increasing slopes of the gamma size distributions fitted to the size distributions. The population-mean densities range from near 0.91 g/cu m to 0.15 g/cu m. Effective densities for single sizes obey a power-law with an exponent of about -0.55, somewhat less steep than found from earlier studies. Our interpretations apply to samples where particle sizes are generally below 200-300 microns in maximum dimension because of probe limitations.

  9. Remote Sensing of Cloud Top Height from SEVIRI: Analysis of Eleven Current Retrieval Algorithms

    Science.gov (United States)

    Hamann, U.; Walther, A.; Baum, B.; Bennartz, R.; Bugliaro, L.; Derrien, M.; Francis, P. N.; Heidinger, A.; Joro, S.; Kniffka, A.; hide

    2014-01-01

    The role of clouds remains the largest uncertainty in climate projections. They influence solar and thermal radiative transfer and the earth's water cycle. Therefore, there is an urgent need for accurate cloud observations to validate climate models and to monitor climate change. Passive satellite imagers measuring radiation at visible to thermal infrared (IR) wavelengths provide a wealth of information on cloud properties. Among others, the cloud top height (CTH) - a crucial parameter to estimate the thermal cloud radiative forcing - can be retrieved. In this paper we investigate the skill of ten current retrieval algorithms to estimate the CTH using observations from the Spinning Enhanced Visible and InfraRed Imager (SEVIRI) onboard Meteosat Second Generation (MSG). In the first part we compare ten SEVIRI cloud top pressure (CTP) data sets with each other. The SEVIRI algorithms catch the latitudinal variation of the CTP in a similar way. The agreement is better in the extratropics than in the tropics. In the tropics multi-layer clouds and thin cirrus layers complicate the CTP retrieval, whereas a good agreement among the algorithms is found for trade wind cumulus, marine stratocumulus and the optically thick cores of the deep convective system. In the second part of the paper the SEVIRI retrievals are compared to CTH observations from the Cloud-Aerosol LIdar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR) instruments. It is important to note that the different measurement techniques cause differences in the retrieved CTH data. SEVIRI measures a radiatively effective CTH, while the CTH of the active instruments is derived from the return time of the emitted radar or lidar signal. Therefore, some systematic differences are expected. On average the CTHs detected by the SEVIRI algorithms are 1.0 to 2.5 kilometers lower than CALIOP observations, and the correlation coefficients between the SEVIRI and the CALIOP data sets range between 0.77 and 0

  10. The thin border between cloud and aerosol: Sensitivity of several ground based observation techniques

    Science.gov (United States)

    Calbó, Josep; Long, Charles N.; González, Josep-Abel; Augustine, John; McComiskey, Allison

    2017-11-01

    Cloud and aerosol are two manifestations of what it is essentially the same physical phenomenon: a suspension of particles in the air. The differences between the two come from the different composition (e.g., much higher amount of condensed water in particles constituting a cloud) and/or particle size, and also from the different number of such particles (10-10,000 particles per cubic centimeter depending on conditions). However, there exist situations in which the distinction is far from obvious, and even when broken or scattered clouds are present in the sky, the borders between cloud/not cloud are not always well defined, a transition area that has been coined as the ;twilight zone;. The current paper presents a discussion on the definition of cloud and aerosol, the need for distinguishing or for considering the continuum between the two, and suggests a quantification of the importance and frequency of such ambiguous situations, founded on several ground-based observing techniques. Specifically, sensitivity analyses are applied on sky camera images and broadband and spectral radiometric measurements taken at Girona (Spain) and Boulder (Co, USA). Results indicate that, at these sites, in more than 5% of the daytime hours the sky may be considered cloudless (but containing aerosols) or cloudy (with some kind of optically thin clouds) depending on the observing system and the thresholds applied. Similarly, at least 10% of the time the extension of scattered or broken clouds into clear areas is problematic to establish, and depends on where the limit is put between cloud and aerosol. These findings are relevant to both technical approaches for cloud screening and sky cover categorization algorithms and radiative transfer studies, given the different effect of clouds and aerosols (and the different treatment in models) on the Earth's radiation balance.

  11. Cluster analysis of midlatitude oceanic cloud regimes: mean properties and temperature sensitivity

    Directory of Open Access Journals (Sweden)

    N. D. Gordon

    2010-07-01

    temperature advection in the warm and cold subsets to have near-median values in three layers of the troposphere. Across all of the seven clusters, we find that cloud fraction is smaller and cloud optical thickness is mostly larger for the warm subset. Cloud-top pressure is higher for the three low-level cloud regimes and lower for the cirrus regime. The net upwelling radiation flux at the top of the atmosphere is larger for the warm subset in every cluster except cirrus, and larger when averaged over all clusters. This implies that the direct response of midlatitude oceanic clouds to increasing temperature acts as a negative feedback on the climate system. Note that the cloud response to atmospheric dynamical changes produced by global warming, which we do not consider in this study, may differ, and the total cloud feedback may be positive.

  12. Cloud detection for MIPAS using singular vector decomposition

    Directory of Open Access Journals (Sweden)

    J. Hurley

    2009-09-01

    Full Text Available Satellite-borne high-spectral-resolution limb sounders, such as the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS onboard ENVISAT, provide information on clouds, especially optically thin clouds, which have been difficult to observe in the past. The aim of this work is to develop, implement and test a reliable cloud detection method for infrared spectra measured by MIPAS.

    Current MIPAS cloud detection methods used operationally have been developed to detect cloud effective filling more than 30% of the measurement field-of-view (FOV, under geometric and optical considerations – and hence are limited to detecting fairly thick cloud, or large physical extents of thin cloud. In order to resolve thin clouds, a new detection method using Singular Vector Decomposition (SVD is formulated and tested. This new SVD detection method has been applied to a year's worth of MIPAS data, and qualitatively appears to be more sensitive to thin cloud than the current operational method.

  13. SCIAMACHY WFM-DOAS XCO2: comparison with CarbonTracker XCO2 focusing on aerosols and thin clouds

    Directory of Open Access Journals (Sweden)

    J. P. Burrows

    2012-08-01

    Full Text Available Carbon dioxide (CO2 is the most important greenhouse gas whose atmospheric loading has been significantly increased by anthropogenic activity leading to global warming. Accurate measurements and models are needed in order to reliably predict our future climate. This, however, has challenging requirements. Errors in measurements and models need to be identified and minimised. In this context, we present a comparison between satellite-derived column-averaged dry air mole fractions of CO2, denoted XCO2, retrieved from SCIAMACHY/ENVISAT using the WFM-DOAS (weighting function modified differential optical absorption spectroscopy algorithm, and output from NOAA's global CO2 modelling and assimilation system CarbonTracker. We investigate to what extent differences between these two data sets are influenced by systematic retrieval errors due to aerosols and unaccounted clouds. We analyse seven years of SCIAMACHY WFM-DOAS version 2.1 retrievals (WFMDv2.1 using CarbonTracker version 2010. We investigate to what extent the difference between SCIAMACHY and CarbonTracker XCO2 are temporally and spatially correlated with global aerosol and cloud data sets. For this purpose, we use a global aerosol data set generated within the European GEMS project, which is based on assimilated MODIS satellite data. For clouds, we use a data set derived from CALIOP/CALIPSO. We find significant correlations of the SCIAMACHY minus CarbonTracker XCO2 difference with thin clouds over the Southern Hemisphere. The maximum temporal correlation we find for Darwin, Australia (r2 = 54%. Large temporal correlations with thin clouds are also observed over other regions of the Southern Hemisphere (e.g. 43% for South America and 31% for South Africa. Over the Northern Hemisphere the temporal correlations are typically much lower. An exception is India, where large temporal correlations with clouds and aerosols have also been found. For all other regions the temporal correlations with

  14. Preliminary laboratory studies of the optical scattering properties of the crystal clouds

    Directory of Open Access Journals (Sweden)

    C. Saunders

    Full Text Available Ice crystal clouds have an influence on the radiative budget of the earth; however, the exact size and nature of this influence has yet to be determined. A laboratory cloud chamber experiment has been set up to provide data on the optical scattering behaviour of ice crystals at a visible wavelength in order to gain information which can be used in climate models concerning the radiative characteristics of cirrus clouds. A PMS grey-scale probe is used to monitor simultaneously the cloud microphysical properties in order to correlate these closely with the observed radiative properties. Preliminary results show that ice crystals scatter considerably more at 90° than do water droplets, and that the halo effects are visible in a laboratory-generated cloud when the ice crystal concentration is sufficiently small to prevent masking from multiple scattering.

    Key words. Meteorology and atmosphere dynamics · Climatology · Radiative process · Atmospheric composition and structure · Cloud physics and chemistry

  15. A method for determination of cirrus extinction-to-backscatter ratio from CALIOP data

    Directory of Open Access Journals (Sweden)

    Zhang Jingbin

    2016-01-01

    Full Text Available We are presenting an empirical equation to retrieve cirrus lidar ratio by using CALIOP 532 nm level 1 data for nighttime cases. Retrieval results have non-relationship with cirrus multiple scattering effects and not affected by the error of transmission. The average CALIPSO 532 nm cirrus lidar ratio over Longitude 120+/- 10 and Latitude 25+/-10 for whole year of 2008 are 21.66±0.06sr for the year of 2008 respectively, with the maximum bias of 9.25% for the year 2008, the results is fairly stable and reasonable.

  16. High cloud variations with surface temperature from 2002 to 2015: Contributions to atmospheric radiative cooling rate and precipitation changes

    Science.gov (United States)

    Liu, Run; Liou, Kuo-Nan; Su, Hui; Gu, Yu; Zhao, Bin; Jiang, Jonathan H.; Liu, Shaw Chen

    2017-05-01

    The global mean precipitation is largely constrained by atmospheric radiative cooling rates (Qr), which are sensitive to changes in high cloud fraction. We investigate variations of high cloud fraction with surface temperature (Ts) from July 2002 to June 2015 and compute their radiative effects on Qr using the Fu-Liou-Gu plane-parallel radiation model. We find that the tropical mean (30°S-30°N) high cloud fraction decreases with increasing Ts at a rate of about -1.0 ± 0.34% K-1 from 2002 to 2015, which leads to an enhanced atmospheric cooling around 0.86 W m-2 K-1. On the other hand, the northern midlatitudes (30°N-60°N) high cloud fraction increases with surface warming at a rate of 1.85 ± 0.65% K-1 and the near-global mean (60°S-60°N) high cloud fraction shows a statistically insignificant decreasing trend with increasing Ts over the analysis period. Dividing high clouds into cirrus, cirrostratus, and deep convective clouds, we find that cirrus cloud fraction increases with surface warming at a rate of 0.32 ± 0.11% K-1 (0.01 ± 0.17% K-1) for the near-global mean (tropical mean), while cirrostratus and deep convective clouds decrease with surface warming at a rate of -0.02 ± 0.18% K-1 and -0.33 ± 0.18% K-1 for the near-global mean and -0.64 ± 0.23% K-1 and -0.37 ± 0.13% K-1 for the tropical mean, respectively. High cloud fraction response to feedback to Ts accounts for approximately 1.9 ± 0.7% and 16.0 ± 6.1% of the increase in precipitation per unit surface warming over the period of 2002-2015 for the near-global mean and the tropical mean, respectively.

  17. Statistical properties of the ice particle distribution in stratiform clouds

    Science.gov (United States)

    Delanoe, J.; Tinel, C.; Testud, J.

    2003-04-01

    This paper presents an extensive analysis of several microphysical data bases CEPEX, EUCREX, CLARE and CARL to determine statistical properties of the Particle Size Distribution (PSD). The data base covers different type of stratiform clouds : tropical cirrus (CEPEX), mid-latitude cirrus (EUCREX) and mid-latitude cirrus and stratus (CARL,CLARE) The approach for analysis uses the concept of normalisation of the PSD developed by Testud et al. (2001). The normalization aims at isolating three independent characteristics of the PSD : its "intrinsic" shape, the "average size" of the spectrum and the ice water content IWC, "average size" is meant the mean mass weighted diameter. It is shown that concentration should be normalized by N_0^* proportional to IWC/D_m^4. The "intrinsic" shape is defined as F(Deq/D_m)=N(Deq)/N_0^* where Deq is the equivalent melted diameter. The "intrinsic" shape is found to be very stable in the range 001.5, more scatter is observed, but future analysis should decide if it is representative of real physical variation or statistical "error" due to counting problem. Considering an overall statistics over the full data base, a large scatter of the N_0^* against Dm plot is found. But in the case of a particular event or a particular leg of a flight, the N_0^* vs. Dm plot is much less scattered and shows a systematic trend for decaying of N_0^* when Dm increases. This trend is interpreted as the manifestation of the predominance of the aggregation process. Finally an important point for cloud remote sensing is investigated : the normalised relationships IWC/N_0^* against Z/N_0^* is much less scattered that the classical IWC against Z the radar reflectivity factor.

  18. DOE ASR Final Report on “Use of ARM Observations to Investigate the Role of Tropical Radiative Processes and Cloud Radiative Effects in Climate Simulations”

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Qiang [Univ. of Washington, Seattle, WA (United States). Dept. of Atmospheric Sciences; Comstock, Jennifer [Univ. of Washington, Seattle, WA (United States). Dept. of Atmospheric Sciences

    2018-01-29

    The overall objective of this ASR funded project is to investigate the role of cloud radiative effects, especially those associated with tropical thin cirrus clouds in the tropical tropopause layer, by analyzing the ARM observations combined with numerical models. In particular, we have processed and analyzed the observations from the Raman lidar at the ARM SGP and TWP sites. In the tenure of the project (8/15/2013 – 8/14/2016 and with a no-cost extension to 8/14/2017), we have been concentrating on (i) developing an automated feature detection scheme of clouds and aerosols for the ARM Raman lidar; (ii) developing an automated retrieval of cloud and aerosol extinctions for the ARM Raman lidar; (iii) investigating cloud radiative effects based on the observations on the simulated temperatures in the tropical tropopause layer using a radiative-convective model; and (iv) examining the effect of changes of atmospheric composition on the tropical lower-stratospheric temperatures. In addition, we have examined the biases in the CALIPSO-inferred aerosol direct radiative effects using ground-based Raman lidars at the ARM SGP and TWP sites, and estimated the impact of lidar detection sensitivity on assessing global aerosol direct radiative effects. We have also investigated the diurnal cycle of clouds and precipitation at the ARM site using the cloud radar observations along with simulations from the multiscale modeling framework. The main results of our research efforts are reported in the six referred journal publications that acknowledge the DOE Grant DE-SC0010557.

  19. Cloud condensation nuclei and ice nucleation activity of hydrophobic and hydrophilic soot particles.

    Science.gov (United States)

    Koehler, Kirsten A; DeMott, Paul J; Kreidenweis, Sonia M; Popovicheva, Olga B; Petters, Markus D; Carrico, Christian M; Kireeva, Elena D; Khokhlova, Tatiana D; Shonija, Natalia K

    2009-09-28

    Cloud condensation nuclei (CCN) activity and ice nucleation behavior (for temperaturesnucleation experiments below -40 degrees C, AEC particles nucleated ice near the expected condition for homogeneous freezing of water from aqueous solutions. In contrast, GTS, TS, and TC1 required relative humidity well in excess of water saturation at -40 degrees C for ice formation. GTS particles required water supersaturation conditions for ice activation even at -51 degrees C. At -51 to -57 degrees C, ice formation in particles with electrical mobility diameter of 200 nm occurred in up to 1 in 1000 TS and TC1 particles, and 1 in 100 TOS particles, at relative humidities below those required for homogeneous freezing in aqueous solutions. Our results suggest that heterogeneous ice nucleation is favored in cirrus conditions on oxidized hydrophilic soot of intermediate polarity. Simple considerations suggest that the impact of hydrophilic soot particles on cirrus cloud formation would be most likely in regions of elevated atmospheric soot number concentrations. The ice formation properties of AEC soot are reasonably consistent with present understanding of the conditions required for aircraft contrail formation and the proportion of soot expected to nucleate under such conditions.

  20. Intercomparison study and optical asphericity measurements of small ice particles in the CERN CLOUD experiment

    Science.gov (United States)

    Nichman, Leonid; Järvinen, Emma; Dorsey, James; Connolly, Paul; Duplissy, Jonathan; Fuchs, Claudia; Ignatius, Karoliina; Sengupta, Kamalika; Stratmann, Frank; Möhler, Ottmar; Schnaiter, Martin; Gallagher, Martin

    2017-09-01

    Optical probes are frequently used for the detection of microphysical cloud particle properties such as liquid and ice phase, size and morphology. These properties can eventually influence the angular light scattering properties of cirrus clouds as well as the growth and accretion mechanisms of single cloud particles. In this study we compare four commonly used optical probes to examine their response to small cloud particles of different phase and asphericity. Cloud simulation experiments were conducted at the Cosmics Leaving OUtdoor Droplets (CLOUD) chamber at European Organisation for Nuclear Research (CERN). The chamber was operated in a series of multi-step adiabatic expansions to produce growth and sublimation of ice particles at super- and subsaturated ice conditions and for initial temperatures of -30, -40 and -50 °C. The experiments were performed for ice cloud formation via homogeneous ice nucleation. We report the optical observations of small ice particles in deep convection and in situ cirrus simulations. Ice crystal asphericity deduced from measurements of spatially resolved single particle light scattering patterns by the Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition) were compared with Cloud and Aerosol Spectrometer with Polarisation (CASPOL) measurements and image roundness captured by the 3View Cloud Particle Imager (3V-CPI). Averaged path light scattering properties of the simulated ice clouds were measured using the Scattering Intensity Measurements for the Optical detectioN of icE (SIMONE) and single particle scattering properties were measured by the CASPOL. We show the ambiguity of several optical measurements in ice fraction determination of homogeneously frozen ice in the case where sublimating quasi-spherical ice particles are present. Moreover, most of the instruments have difficulties of producing reliable ice fraction if small aspherical ice particles are present, and all of the instruments cannot separate perfectly

  1. Tracers and traceability: implementing the cirrus parameterisation from LACM in the TOMCAT/SLIMCAT chemistry transport model as an example of the application of quality assurance to legacy models

    Directory of Open Access Journals (Sweden)

    A. M. Horseman

    2010-03-01

    Full Text Available A new modelling tool for the investigation of large-scale behaviour of cirrus clouds has been developed. This combines two existing models, the TOMCAT/SLIMCAT chemistry transport model (nupdate library version 0.80, script mpc346_l and cirrus parameterisation of Ren and MacKenzie (LACM implementation not versioned. The development process employed a subset of best-practice software engineering and quality assurance processes, selected to be viable for small-scale projects whilst maintaining the same traceability objectives. The application of the software engineering and quality control processes during the development has been shown to be not a great overhead, and their use has been of benefit to the developers as well as the end users of the results. We provide a step-by-step guide to the implementation of traceability tailored to the production of geo-scientific research software, as distinct from commercial and operational software. Our recommendations include: maintaining a living "requirements list"; explicit consideration of unit, integration and acceptance testing; and automated revision/configuration control, including control of analysis tool scripts and programs.

    Initial testing of the resulting model against satellite and in-situ measurements has been promising. The model produces representative results for both spatial distribution of the frequency of occurrence of cirrus ice, and the drying of air as it moves across the tropical tropopause. The model is now ready for more rigorous quantitative testing, but will require the addition of a vertical wind velocity downscaling scheme to better represent extra-tropical continental cirrus.

  2. Observations of Subvisual Cirrus Clouds with Optical Particle Counters at Thailand; Comparisons with Observation and Parcel Model Results

    Science.gov (United States)

    Iwasaki, S.; Maruyama, K.; Hayashi, M.; Ogino, S.; Ishimoto, H.

    2006-12-01

    1. Introduction Subvisual cirrus clouds (SVC) generally exist at a height of around 17 km in the tropical tropopause layer (TTL). In order to research SVC, in situ measurements are effective. However, since all in situ measurements are airborne measurements, they are fairly expensive to conduct and are not suitable for measuring the vertical profiles of the particles. Hence, we launched 11 balloon-borne optical particle counters (OPC) from April to June 2003 in Thailand (17.9 °N, 99.5 °E). 2. Optical particle counter Our OPC has 8 channels, of which radii are from 0.15 to 3.5 μm for spherical particles, to measure the accumulated number concentrations. Because ice particles are not spherical, the measurement error is estimated by the finite-difference time domain method (FDTD). The minimum detectable number concentration and the vertical resolution are approximately 1.5 × 104 number/m3 and 50 m at the TTL. 3. Results We launched 11 OPCs and 5 of them measured SVCs in the TTL in Thailand. Comparisons between the averaged particle size distributions in the TTL in the presence and absence of SVCs show the following features: (1) the regression lines of droplet (aerosol) size distributions in the two cases are not significantly different, (2) 5 OPCs detected enhancements in the number of particles as compared with the background aerosol number for the radius of 1.2 μm or 1.7 μm in the presence of SVCs, and (3) 5 OPCs detected the local maximum value at a radius of 1.7 μm. A parcel model whose initial relative humidity with respect to ice and ambient temperature were 120 % and - 80 °C satisfied abovementioned items when the vertical wind velocity was defined as the Brunt-Vaisala frequency, w = 20 cm/s × cos(2πt/7min); hence the comparison suggests ithe frequency is one of the possibility of the SVC generation mechanism.

  3. Raman Lidar Measurements During the International H2O Project. 2; Instrument Comparisons and Case Studies

    Science.gov (United States)

    Whiteman, D. N.; Demoz, B.; DiGirolamo, P.; Corner, J.; Veselovskii, I.; Evans, K.; Wang, Z.; Sabatino, D.; Schwemmer, G.; Gentry, B.

    2005-01-01

    The NASA/GSFC Scanning Raman Lidar (SRL) participated in the International H2O Project (IHOP) that occurred in May and June, 2002 in the midwestern part of the U. S. The SRL system configuration and methods of data analysis were described in part I of this paper. In this second part, comparisons of SRL water vapor measurements and those of chilled mirror radiosonde and LASE airborne water vapor lidar are performed. Two case studies are presented; one for daytime and one for nighttime. The daytime case study is of a convectively driven boundary layer event and is used to characterize the SRL water vapor random error characteristics. The nighttime case study is of a thunderstorm-generated cirrus cloud case that is studied in it s meteorological context. Upper tropospheric humidification due to precipitation from the cirrus cloud is quantified as is the cirrus cloud ice water content and particle depolarization ratio. These detailed cirrus cloud measurements are being used in a cirrus cloud modeling study.

  4. Added Value of Far-Infrared Radiometry for Ice Cloud Remote Sensing

    Science.gov (United States)

    Libois, Q.; Blanchet, J. P.; Ivanescu, L.; S Pelletier, L.; Laurence, C.

    2017-12-01

    Several cloud retrieval algorithms based on satellite observations in the infrared have been developed in the last decades. However, most of these observations only cover the midinfrared (MIR, λ technology, though, now make it possible to consider spaceborne remote sensing in the FIR. Here we show that adding a few FIR channels with realistic radiometric performances to existing spaceborne narrowband radiometers would significantly improve their ability to retrieve ice cloud radiative properties. For clouds encountered in the polar regions and the upper troposphere, where the atmosphere above clouds is sufficiently transparent in the FIR, using FIR channels would reduce by more than 50% the uncertainties on retrieved values of optical thickness, effective particle diameter, and cloud top altitude. This would somehow extend the range of applicability of current infrared retrieval methods to the polar regions and to clouds with large optical thickness, where MIR algorithms perform poorly. The high performance of solar reflection-based algorithms would thus be reached in nighttime conditions. Using FIR observations is a promising venue for studying ice cloud microphysics and precipitation processes, which is highly relevant for cirrus clouds and convective towers, and for investigating the water cycle in the driest regions of the atmosphere.

  5. Added value of far-infrared radiometry for remote sensing of ice clouds

    Science.gov (United States)

    Libois, Quentin; Blanchet, Jean-Pierre

    2017-06-01

    Several cloud retrieval algorithms based on satellite observations in the infrared have been developed in the last decades. However, these observations only cover the midinfrared (MIR, λ transparent in the FIR, using FIR channels would reduce by more than 50% the uncertainties on retrieved values of optical thickness, effective particle diameter, and cloud top altitude. Notably, this would extend the range of applicability of current retrieval methods to the polar regions and to clouds with large optical thickness, where MIR algorithms perform poorly. The high performance of solar reflection-based algorithms would thus be reached in nighttime conditions. Since the sensitivity of ice cloud thermal emission to effective particle diameter is approximately 5 times larger in the FIR than in the MIR, using FIR observations is a promising venue for studying ice cloud microphysics and precipitation processes. This is highly relevant for cirrus clouds and convective towers. This is also essential to study precipitation in the driest regions of the atmosphere, where strong feedbacks are at play between clouds and water vapor. The deployment in the near future of a FIR spaceborne radiometer is technologically feasible and should be strongly supported.

  6. Intercomparison study and optical asphericity measurements of small ice particles in the CERN CLOUD experiment

    Directory of Open Access Journals (Sweden)

    L. Nichman

    2017-09-01

    Full Text Available Optical probes are frequently used for the detection of microphysical cloud particle properties such as liquid and ice phase, size and morphology. These properties can eventually influence the angular light scattering properties of cirrus clouds as well as the growth and accretion mechanisms of single cloud particles. In this study we compare four commonly used optical probes to examine their response to small cloud particles of different phase and asphericity. Cloud simulation experiments were conducted at the Cosmics Leaving OUtdoor Droplets (CLOUD chamber at European Organisation for Nuclear Research (CERN. The chamber was operated in a series of multi-step adiabatic expansions to produce growth and sublimation of ice particles at super- and subsaturated ice conditions and for initial temperatures of −30, −40 and −50 °C. The experiments were performed for ice cloud formation via homogeneous ice nucleation. We report the optical observations of small ice particles in deep convection and in situ cirrus simulations. Ice crystal asphericity deduced from measurements of spatially resolved single particle light scattering patterns by the Particle Phase Discriminator mark 2 (PPD-2K, Karlsruhe edition were compared with Cloud and Aerosol Spectrometer with Polarisation (CASPOL measurements and image roundness captured by the 3View Cloud Particle Imager (3V-CPI. Averaged path light scattering properties of the simulated ice clouds were measured using the Scattering Intensity Measurements for the Optical detectioN of icE (SIMONE and single particle scattering properties were measured by the CASPOL. We show the ambiguity of several optical measurements in ice fraction determination of homogeneously frozen ice in the case where sublimating quasi-spherical ice particles are present. Moreover, most of the instruments have difficulties of producing reliable ice fraction if small aspherical ice particles are present, and all of the instruments cannot

  7. Comparing Gonioscopy With Visante and Cirrus Optical Coherence Tomography for Anterior Chamber Angle Assessment in Glaucoma Patients.

    Science.gov (United States)

    Hu, Cindy X; Mantravadi, Anand; Zangalli, Camila; Ali, Mohsin; Faria, Bruno M; Richman, Jesse; Wizov, Sheryl S; Razeghinejad, M Reza; Moster, Marlene R; Katz, L Jay

    2016-02-01

    The aim of this study was to compare gonioscopy with Visante and Cirrus optical coherence tomography (OCT) for identifying angle structures and the presence of angle closure in patients with glaucoma. A secondary objective was to assess interrater agreement for gonioscopy grading among 3 independent examiners. Gonioscopy grading using Spaeth Classification and determination of angle-closure risk was performed on 1 randomly selected eye for 50 phakic patients. Images of the same eye using both Visante and Cirrus OCT were obtained in both light and dark conditions. Agreement of angle closure among 3 devices and interrater agreement for gonioscopy were determined using Cohen's κ (K) or Kendall's coefficient of concordance (W). Of the 50 patients, 60% were female, 64% were white, and the mean age was 62 years. Angle closure was detected in 18%, 16%, and 48% of quadrants with Visante, Cirrus, and gonioscopy, respectively. The scleral spur was identified in 56% and 50% of quadrants with Visante and Cirrus OCT, respectively. Visante and Cirrus OCT showed moderate agreement in detecting angle closure (K=0.42 light, K=0.53 dark) but slight-to-fair agreement with gonioscopy (Visante K=0.25, Cirrus K=0.15). Gonioscopy demonstrated substantial agreement in angle closure (K=0.65 to 0.68) and angle-closure risk assessment (W=0.83) among 3 examiners. Visante and Cirrus OCT imaging may have limited ability to identify angle closure because of difficulty identifying angle structures. Gonioscopy by well-trained clinicians had remarkably consistent agreement for identifying angle-closure risk.

  8. A SEARCH FOR DUST EMISSION IN THE LEO INTERGALACTIC CLOUD

    International Nuclear Information System (INIS)

    Bot, Caroline; Helou, George; Puget, Jeremie; Latter, William B.; Schneider, Stephen; Terzian, Yervant

    2009-01-01

    We present a search for infrared dust emission associated with the Leo cloud, a large intergalactic cloud in the M96 group. Mid-infrared and far-infrared images were obtained with the InfraRed Array Camera and the Multiband Imaging Photometer for Spitzer on the Spitzer Space Telescope. Our analysis of these maps is done at each wavelength relative to the H I spatial distribution. We observe a probable detection at 8 μm and a marginal detection at 24 μm associated with the highest H I column densities in the cloud. At 70 and 160 μm, upper limits on the dust emission are deduced. The level of the detection is low so that the possibility of a fortuitous cirrus clump or of an overdensity of extragalactic sources along the line of sight cannot be excluded. If this detection is confirmed, the quantities of dust inferred imply a dust-to-gas ratio in the intergalactic cloud up to a few times solar but no less than 1/20 solar. A confirmed detection would therefore exclude the possibility that the intergalactic cloud has a primordial origin. Instead, this large intergalactic cloud could therefore have been formed through interactions between galaxies in the group.

  9. Detection of polar stratospheric clouds with ERS2/GOME data

    International Nuclear Information System (INIS)

    Meerkoetter, R.; Schumann, U.

    1994-01-01

    Based on radiative transfer calculations it is studied whether Polar Stratospheric Clouds (PSCs) can be detected by the new Global Ozone Monitoring Experiment (GOME) onboard the second European Research Satellite (ERS-2) planned to be launched in winter 1994/95. It is proposed to identify PSC covered areas by use of an indicator, the Normalized Radiance Difference (NRD), which relates the difference of two spectral radiances at 0.5 μm and 0.7 μm to one radiance measured in the center of the oxygen A-band at 0.76 μm. The presence of PSCs and under conditions of large solar zenith angles Θ>80 the NRD values are clearly below those derived under conditions of a cloud free stratosphere. In this case the method is successful for PSCs with optical depths greater than 0.03 at 0.55 μm. It is not affected by existing tropospheric clouds and by different tropospheric aerosol loadings or surface albedoes. For solar zenith angles Θ<80 PSCs located above a cloud free troposphere are detectable. PSC detection becomes difficult for Θ<80 when highly reflecting tropospheric clouds like dense cirrus or stratus clouds affect spectral radiances measured at the top of the atmosphere. (orig.)

  10. First correlated measurements of the shape and scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS) probe

    Science.gov (United States)

    Abdelmonem, A.; Schnaiter, M.; Amsler, P.; Hesse, E.; Meyer, J.; Leisner, T.

    2011-05-01

    Studying the radiative impact of cirrus clouds requires the knowledge of the link between their microphysics and the single scattering properties of the cloud particles. Usually, this link is created by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS) designed to measure the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles, simultaneously. Clouds containing particles ranging in size from a few micrometers to about 800 μm diameter can be systematically characterized with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns which were conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced comparable size distributions and images to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF) program. PHIPS is candidate to be a novel air borne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurements instruments.

  11. Lidar studies of extinction in clouds in the ECLIPS project

    International Nuclear Information System (INIS)

    Martin, C.; Platt, R.; Young, S.A.; Patterson, G.P.

    1992-01-01

    The Experimental Cloud Lidar Pilot Study (ECLIPS) project has now had two active phases in 1989 and 1991. A number of laboratories around the world have taken part in the study. The observations have yielded new data on cloud height and structure, and have yielded some useful new information on the retrieval of cloud optical properties, together with the uncertainties involved. Clouds have a major impact on the climate of the earth. They have the effect of reducing the mean surface temperature from 30 C for a cloudless planet to a value of about 15 C for present cloud conditions. However, it is not at all certain how clouds would react to a change in the planetary temperature in the event of climate change due to a radiative forcing from greenhouse gases. Clouds both reflect out sunlight (negative feedback) and enhance the greenhouse effect (positive feedback), but the ultimate sign of cloud feedback is unknown. Because of these uncertainties, campaigns to study clouds intensely were initiated. The International Satellite Cloud Climatology (ISCPP) and the FIRE Campaigns (cirrus and stratocumulus) are examples. The ECLIPS was set up similarly to the above experiments to obtain information specifically on cloud base, but also cloud top (where possible), optical properties, and cloud structure. ECLIPS was designed to allow as many laboratories as possible globally to take part to get the largest range of clouds. It involves observations with elastic backscatter lidar, supported by infrared fluxes at the ground and radiosonde data, as basic instrumentation. More complex experiments using beam filter radiometers, solar pyranometers, and satellite data and often associated with other campaigns were also encouraged to join ECLIPS

  12. Radiative properties of ice clouds

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, D.L.; Koracin, D.; Carter, E. [Desert Research Institute, Reno, NV (United States)

    1996-04-01

    A new treatment of cirrus cloud radiative properties has been developed, based on anomalous diffraction theory (ADT), which does not parameterize size distributions in terms of an effective radius. Rather, is uses the size distribution parameters directly, and explicitly considers the ice particle shapes. There are three fundamental features which characterize this treatment: (1) the ice path radiation experiences as it travels through an ice crystal is parameterized, (2) only determines the amount of radiation scattered and absorbed, and (3) as in other treatments, the projected area of the size distribution is conserved. The first two features are unique to this treatment, since it does not convert the ice particles into equivalent volume or area spheres in order to apply Mie theory.

  13. [Application of single-band brightness variance ratio to the interference dissociation of cloud for satellite data].

    Science.gov (United States)

    Qu, Wei-ping; Liu, Wen-qing; Liu, Jian-guo; Lu, Yi-huai; Zhu, Jun; Qin, Min; Liu, Cheng

    2006-11-01

    In satellite remote-sensing detection, cloud as an interference plays a negative role in data retrieval. How to discern the cloud fields with high fidelity thus comes as a need to the following research. A new method rooting in atmospheric radiation characteristics of cloud layer, in the present paper, presents a sort of solution where single-band brightness variance ratio is used to detect the relative intensity of cloud clutter so as to delineate cloud field rapidly and exactly, and the formulae of brightness variance ratio of satellite image, image reflectance variance ratio, and brightness temperature variance ratio of thermal infrared image are also given to enable cloud elimination to produce data free from cloud interference. According to the variance of the penetrating capability for different spectra bands, an objective evaluation is done on cloud penetration of them with the factors that influence penetration effect. Finally, a multi-band data fusion task is completed using the image data of infrared penetration from cirrus nothus. Image data reconstruction is of good quality and exactitude to show the real data of visible band covered by cloud fields. Statistics indicates the consistency of waveband relativity with image data after the data fusion.

  14. First correlated measurements of the shape and light scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS probe

    Directory of Open Access Journals (Sweden)

    A. Abdelmonem

    2011-10-01

    Full Text Available Studying the radiative impact of cirrus clouds requires knowledge of the relationship between their microphysics and the single scattering properties of cloud particles. Usually, this relationship is obtained by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS designed to measure simultaneously the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles. Clouds containing particles ranging from a few micrometers to about 800 μm diameter in size can be characterized systematically with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10° and 8° for side and backscattering directions (from 18° to 170°. The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced size distributions and images comparable to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF program. PHIPS is a highly promising novel airborne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurement instruments.

  15. First correlated measurements of the shape and light scattering properties of cloud particles using the new Particle Habit Imaging and Polar Scattering (PHIPS) probe

    Science.gov (United States)

    Abdelmonem, A.; Schnaiter, M.; Amsler, P.; Hesse, E.; Meyer, J.; Leisner, T.

    2011-10-01

    Studying the radiative impact of cirrus clouds requires knowledge of the relationship between their microphysics and the single scattering properties of cloud particles. Usually, this relationship is obtained by modeling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. We present here a novel optical sensor (the Particle Habit Imaging and Polar Scattering probe, PHIPS) designed to measure simultaneously the 3-D morphology and the corresponding optical and microphysical parameters of individual cloud particles. Clouds containing particles ranging from a few micrometers to about 800 μm diameter in size can be characterized systematically with an optical resolution power of 2 μm and polar scattering resolution of 1° for forward scattering directions (from 1° to 10°) and 8° for side and backscattering directions (from 18° to 170°). The maximum acquisition rates for scattering phase functions and images are 262 KHz and 10 Hz, respectively. Some preliminary results collected in two ice cloud campaigns conducted in the AIDA cloud simulation chamber are presented. PHIPS showed reliability in operation and produced size distributions and images comparable to those given by other certified cloud particles instruments. A 3-D model of a hexagonal ice plate is constructed and the corresponding scattering phase function is compared to that modeled using the Ray Tracing with Diffraction on Facets (RTDF) program. PHIPS is a highly promising novel airborne optical sensor for studying the radiative impact of cirrus clouds and correlating the particle habit-scattering properties which will serve as a reference for other single, or multi-independent, measurement instruments.

  16. A comparison of shock-cloud and wind-cloud interactions: effect of increased cloud density contrast on cloud evolution

    Science.gov (United States)

    Goldsmith, K. J. A.; Pittard, J. M.

    2018-05-01

    The similarities, or otherwise, of a shock or wind interacting with a cloud of density contrast χ = 10 were explored in a previous paper. Here, we investigate such interactions with clouds of higher density contrast. We compare the adiabatic hydrodynamic interaction of a Mach 10 shock with a spherical cloud of χ = 103 with that of a cloud embedded in a wind with identical parameters to the post-shock flow. We find that initially there are only minor morphological differences between the shock-cloud and wind-cloud interactions, compared to when χ = 10. However, once the transmitted shock exits the cloud, the development of a turbulent wake and fragmentation of the cloud differs between the two simulations. On increasing the wind Mach number, we note the development of a thin, smooth tail of cloud material, which is then disrupted by the fragmentation of the cloud core and subsequent `mass-loading' of the flow. We find that the normalized cloud mixing time (tmix) is shorter at higher χ. However, a strong Mach number dependence on tmix and the normalized cloud drag time, t_{drag}^' }, is not observed. Mach-number-dependent values of tmix and t_{drag}^' } from comparable shock-cloud interactions converge towards the Mach-number-independent time-scales of the wind-cloud simulations. We find that high χ clouds can be accelerated up to 80-90 per cent of the wind velocity and travel large distances before being significantly mixed. However, complete mixing is not achieved in our simulations and at late times the flow remains perturbed.

  17. Comparison and interchangeability of macular thickness measured with Cirrus OCT and Stratus OCT in myopic eyes

    Directory of Open Access Journals (Sweden)

    Geng Wang

    2015-12-01

    Full Text Available AIM: To investigate the difference of macular thickness measurements between stratus optical coherence tomography (OCT and Cirrus OCT (Carl Zeiss Meditec, Dublin, CA, USA in the same myopic patient and to develop a conversion equation to interchange macular thickness obtained with these two OCT devices. METHODS: Eighty-nine healthy Chinese adults with spherical equivalent (SE ranging from -1.13 D to -9.63 D were recruited. The macular thickness was measured by Cirrus OCT and Stratus OCT. The correlation between macular thickness and axial length and the agreement between two OCT measurements were evaluated. A formula was generated to interchange macular thickness obtained with two OCT devices. RESULTS: Average macular thickness measured with Stratus OCT (r=-0.280, P=0.008 and Cirrus OCT (r=-0.224, P=0.034 were found to be negatively correlated with axial length. No statistically significant correlation was found between axial length and central subfield macular thickness (CMT measured with Stratus OCT (r=0.191, P=0.073 and Cirrus OCT (r=0.169, P=0.113. The mean CMT measured with Cirrus OCT was 53.63±7.94 μm thicker than with Stratus OCT. The formula CMTCirrus OCT=78.328+0.874×CMTStratus OCT was generated to interchange macular thickness obtained with two OCT devices. CONCLUSION: Macular thickness measured with Cirrus OCT were thicker than with Stratus OCT in myopic eyes. A formula can be used to interchange macular thickness measured with two OCT devices in myopic eyes. Studies with different OCT devices and larger samples are warranted to enable the comparison of macular values measured with different OCT devices.

  18. The Effect of Asian Dust Aerosols on Cloud Properties and Radiative Forcing from MODIS and CERES

    Science.gov (United States)

    Huang, Jianping; Minnis, Patrick; Lin, Bing; Wang, Tianhe; Yi, Yuhong; Hu, Yongxiang; Sun-Mack, Sunny; Ayers, Kirk

    2005-01-01

    The effects of dust storms on cloud properties and radiative forcing are analyzed over northwestern China from April 2001 to June 2004 using data collected by the Moderate Resolution Imaging Spectroradiometer (MODIS) and Clouds and the Earth's Radiant Energy System (CERES) instruments on the Aqua and Terra satellites. On average, ice cloud effective particle diameter, optical depth and ice water path of the cirrus clouds under dust polluted conditions are 11%, 32.8%, and 42% less, respectively, than those derived from ice clouds in dust-free atmospheric environments. The humidity differences are larger in the dusty region than in the dust-free region, and may be caused by removal of moisture by wet dust precipitation. Due to changes in cloud microphysics, the instantaneous net radiative forcing is reduced from -71.2 W/m2 for dust contaminated clouds to -182.7 W/m2 for dust-free clouds. The reduced cooling effects of dusts may lead to a net warming of 1 W/m2, which, if confirmed, would be the strongest aerosol forcing during later winter and early spring dust storm seasons over the studied region.

  19. Observation of Clouds Using the CSIR Transportable LIDAR: A Case Study over Durban, South Africa

    Directory of Open Access Journals (Sweden)

    Lerato Shikwambana

    2016-01-01

    Full Text Available The Council for Scientific and Industrial Research (CSIR transportable Light Detection And Ranging (LIDAR was used to collect data over Durban (29.9°S, 30.9°E during 20–23 November 2012. Aerosol measurements have been carried out in the past over Durban; however, no cloud measurements using LIDAR have ever been performed. Therefore, this study further motivates the continuation of LIDAR for atmospheric research over Durban. Low level clouds were observed on 20–22 November 2012 and high level clouds were observed on 23 November 2012. The low level cloud could be classified as stratocumulus clouds, whereas the high level clouds could be classified as cirrus clouds. Low level cloud layers showed high extinction coefficients values ranging between 0.0009 and 0.0044 m−1, whereas low extinction coefficients for high level clouds were observed at values ranging between 0.000001 and 0.000002 m−1. Optical depth showed a high variability for 20 and 21 November 2012. This indicates a change in the composition and/or thickness of the cloud. For 22 and 23 November 2012, almost similar values of optical depth were observed. Cloud-Aerosol LIDAR and Infrared Pathfinder Satellite Observations (CALIPSO revealed high level clouds while the CSIR LIDAR could not. However, the two instruments complement each other well to describe the cloudy condition.

  20. Comparasion of Cloud Cover restituted by POLDER and MODIS

    Science.gov (United States)

    Zeng, S.; Parol, F.; Riedi, J.; Cornet, C.; Thieuxleux, F.

    2009-04-01

    of a positive bias in any latitude and in any viewing angle with an order of 10% between the POLDER cloud amount and the so-called MODIS "combined" cloud amount. Nevertheless it is worthy to note that a negative bias of about 10% is obtained between the POLDER cloud amount and the MODIS "day-mean" cloud amount. Main differences between the two MODIS cloud amount values are known to be due to the filtering of remaining aerosols or cloud edges. due to both this high spatial resolution of MODIS and the fact that "combined" cloud amount filters cloud edges, we can also explain why appear the high positive bias regions over subtropical ocean in south hemisphere and over east Africa in summer. Thanks to several channels in the thermal infrared spectral domain, MODIS detects probably much better the thin cirrus especially over land, thus causing a general negative bias for ice clouds. The multi-spectral capability of MODIS also allows for a better detection of low clouds over snow or ice, Hence the (POLDER-MODIS) cloud amount difference is often negative over Greenland, Antarctica, and over the continents at middle-high latitudes in spring and autumn associated to the snow coverage. The multi-spectral capability of MODIS also makes the discrimination possible between the biomass burning aerosols and the fractional clouds over the continents. Thus a positive bias appears in central Africa in summer and autumn associated to important biomass burning events. Over transition region between desert and non-desert, the presence of large negative bias (POLDER-MODIS) of cloud amount maybe partly due to MODIS pixel falsely labeled the desert as cloudy, where MODIS algorithm uses static desert mask. This is clearly highlighted in south of Sahara in spring and summer where we find a bias negative with an order of -0.1. What is more, thanks to its multi-angular capability, POLDER can discriminate the sun-glint region thus minimizing the dependence of cloud amount on view angle. It makes

  1. Cloud vertical profiles derived from CALIPSO and CloudSat and a comparison with MODIS derived clouds

    Science.gov (United States)

    Kato, S.; Sun-Mack, S.; Miller, W. F.; Rose, F. G.; Minnis, P.; Wielicki, B. A.; Winker, D. M.; Stephens, G. L.; Charlock, T. P.; Collins, W. D.; Loeb, N. G.; Stackhouse, P. W.; Xu, K.

    2008-05-01

    CALIPSO and CloudSat from the a-train provide detailed information of vertical distribution of clouds and aerosols. The vertical distribution of cloud occurrence is derived from one month of CALIPSO and CloudSat data as a part of the effort of merging CALIPSO, CloudSat and MODIS with CERES data. This newly derived cloud profile is compared with the distribution of cloud top height derived from MODIS on Aqua from cloud algorithms used in the CERES project. The cloud base from MODIS is also estimated using an empirical formula based on the cloud top height and optical thickness, which is used in CERES processes. While MODIS detects mid and low level clouds over the Arctic in April fairly well when they are the topmost cloud layer, it underestimates high- level clouds. In addition, because the CERES-MODIS cloud algorithm is not able to detect multi-layer clouds and the empirical formula significantly underestimates the depth of high clouds, the occurrence of mid and low-level clouds is underestimated. This comparison does not consider sensitivity difference to thin clouds but we will impose an optical thickness threshold to CALIPSO derived clouds for a further comparison. The effect of such differences in the cloud profile to flux computations will also be discussed. In addition, the effect of cloud cover to the top-of-atmosphere flux over the Arctic using CERES SSF and FLASHFLUX products will be discussed.

  2. Influence of crystal shapes on radiative fluxes in visible wavelength: ice crystals randomly oriented in space

    Directory of Open Access Journals (Sweden)

    P. Chervet

    1996-08-01

    Full Text Available Radiative properties of cirrus clouds are one of the major unsolved problems in climate studies and global radiation budget. These clouds are generally composed of various ice-crystal shapes, so we tried to evaluate effects of the ice-crystal shape on radiative fluxes. We calculated radiative fluxes of cirrus clouds with a constant geometrical depth, composed of ice crystals with different shapes (hexagonal columns, bullets, bullet-rosettes, sizes and various concentrations. We considered ice particles randomly oriented in space (3D case and their scattering phase functions were calculated by a ray-tracing method. We calculated radiative fluxes for cirrus layers for different microphysical characteristics by using a discrete-ordinate radiative code. Results showed that the foremost effect of the ice-crystal shape on radiative properties of cirrus clouds was that on the optical thickness, while the variation of the scattering phase function with the ice shape remained less than 3% for our computations. The ice-water content may be a better choice to parameterize the optical properties of cirrus, but the shape effect must be included.

  3. Aerosol and cloud sensing with the Lidar In-space Technology Experiment (LITE)

    Science.gov (United States)

    Winker, D. M.; McCormick, M. P.

    1994-01-01

    The Lidar In-space Technology Experiment (LITE) is a multi-wavelength backscatter lidar developed by NASA Langley Research Center to fly on the Space Shuttle. The LITE instrument is built around a three-wavelength ND:YAG laser and a 1-meter diameter telescope. The laser operates at 10 Hz and produces about 500 mJ per pulse at 1064 nm and 532 nm, and 150 mJ per pulse at 355 nm. The objective of the LITE program is to develop the engineering processes required for space lidar and to demonstrate applications of space-based lidar to remote sensing of the atmosphere. The LITE instrument was designed to study a wide range of cloud and aerosol phenomena. To this end, a comprehensive program of scientific investigations has been planned for the upcoming mission. Simulations of on-orbit performance show the instrument has sufficient sensitivity to detect even thin cirrus on a single-shot basis. Signal averaging provides the capability of measuring the height and structure of the planetary boundary layer, aerosols in the free troposphere, the stratospheric aerosol layer, and density profiles to an altitude of 40 km. The instrument has successfully completed a ground-test phase and is scheduled to fly on the Space Shuttle Discovery for a 9-day mission in September 1994.

  4. In-situ observations of interstitial aerosol particles and cloud residues found in contrails

    Energy Technology Data Exchange (ETDEWEB)

    Stroem, J. [Stockholm Univ. (Sweden). Dept. of Meteorology

    1997-12-31

    In spring 1994 a series of flights were conducted in cirrus clouds and contrails over southern Germany. One of the aims of this campaign was to study the phase partitioning of aerosols and water in these clouds. To achieve this separation of particles two complementary sampling probes were mounted on the research aircraft Falcon. These are the Counterflow Virtual Impactor (CVI) or super-micrometer inlet, and the interstitial inlet or submicrometer inlet. The CVI is a device that inertially separates cloud elements larger than a certain aerodynamic size from the surrounding atmosphere into a warm, dry and particle free air. Assuming that each cloud element leaves behind only one residue particle, these measurements yield an equivalent number concentration for cloud particles having an aerodynamic diameter larger than the lower cut size of the CVI. The size distribution of the sampled aerosol and residual particles between 0.1 to 3.5 {mu}m diameter was measured by a PMS PCASP (Passive Cavity Aerosol Spectrometer) working alternatively on both inlets. The gas-phase water vapor content was measured by a cryogenic frost point mirror. (R.P.) 4 refs.

  5. In-situ observations of interstitial aerosol particles and cloud residues found in contrails

    Energy Technology Data Exchange (ETDEWEB)

    Stroem, J [Stockholm Univ. (Sweden). Dept. of Meteorology

    1998-12-31

    In spring 1994 a series of flights were conducted in cirrus clouds and contrails over southern Germany. One of the aims of this campaign was to study the phase partitioning of aerosols and water in these clouds. To achieve this separation of particles two complementary sampling probes were mounted on the research aircraft Falcon. These are the Counterflow Virtual Impactor (CVI) or super-micrometer inlet, and the interstitial inlet or submicrometer inlet. The CVI is a device that inertially separates cloud elements larger than a certain aerodynamic size from the surrounding atmosphere into a warm, dry and particle free air. Assuming that each cloud element leaves behind only one residue particle, these measurements yield an equivalent number concentration for cloud particles having an aerodynamic diameter larger than the lower cut size of the CVI. The size distribution of the sampled aerosol and residual particles between 0.1 to 3.5 {mu}m diameter was measured by a PMS PCASP (Passive Cavity Aerosol Spectrometer) working alternatively on both inlets. The gas-phase water vapor content was measured by a cryogenic frost point mirror. (R.P.) 4 refs.

  6. A Statistical Review of CALIOP Version 3 and Version 4 Cloud Aerosol Discrimination

    Science.gov (United States)

    Zeng, S.

    2016-12-01

    The Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission has now delivered a 10-year record of high-resolution profiles of backscatter at 532 nm and 1064 nm and linear depolarization at 532 nm. These long-term active sensor measurements at global scale have led to significant advances in our understanding of the vertical distribution of clouds and aerosols in the atmosphere. In the fall of 2016, the CALIPSO science team is scheduled to release a new version of their cloud and aerosol data products. The new cloud and aerosol discrimination products are derived using updated probability density functions that account for numerous improvements to the CALIOP calibration and the use of the GMAO MERRA-2 meteorological data. Moreover, the CAD algorithm is now applied to all layers detected, thus greatly improving the identification of such features as overshooting convective clouds, stratospheric aerosol layers, and high intensity dust storms. Post-processing modules are added to the standard CAD algorithm to ensure proper identification of (for example) the tenuous edges of cirrus clouds and water clouds lying beneath optically dense smoke layers. This work presents statistical comparisons between the CALIOP version 3 and version 4 data sets. Areas of improvement are highlighted, sources of continuing uncertainty are discussed and a list of best practices for data users is provided.

  7. Application of an automatic cloud tracking technique to Meteosat water vapor and infrared observations

    Science.gov (United States)

    Endlich, R. M.; Wolf, D. E.

    1980-01-01

    The automatic cloud tracking system was applied to METEOSAT 6.7 micrometers water vapor measurements to learn whether the system can track the motions of water vapor patterns. Data for the midlatitudes, subtropics, and tropics were selected from a sequence of METEOSAT pictures for 25 April 1978. Trackable features in the water vapor patterns were identified using a clustering technique and the features were tracked by two different methods. In flat (low contrast) water vapor fields, the automatic motion computations were not reliable, but in areas where the water vapor fields contained small scale structure (such as in the vicinity of active weather phenomena) the computations were successful. Cloud motions were computed using METEOSAT infrared observations (including tropical convective systems and midlatitude jet stream cirrus).

  8. Thermodynamic and cloud parameter retrieval using infrared spectral data

    Science.gov (United States)

    Zhou, Daniel K.; Smith, William L., Sr.; Liu, Xu; Larar, Allen M.; Huang, Hung-Lung A.; Li, Jun; McGill, Matthew J.; Mango, Stephen A.

    2005-01-01

    High-resolution infrared radiance spectra obtained from near nadir observations provide atmospheric, surface, and cloud property information. A fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. The retrieval algorithm is presented along with its application to recent field experiment data from the NPOESS Airborne Sounding Testbed - Interferometer (NAST-I). The retrieval accuracy dependence on cloud properties is discussed. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with an accuracy of approximately 1.0 km. Preliminary NAST-I retrieval results from the recent Atlantic-THORPEX Regional Campaign (ATReC) are presented and compared with coincident observations obtained from dropsondes and the nadir-pointing Cloud Physics Lidar (CPL).

  9. Determining Best Estimates and Uncertainties in Cloud Microphysical Parameters from ARM Field Data: Implications for Models, Retrieval Schemes and Aerosol-Cloud-Radiation Interactions

    Energy Technology Data Exchange (ETDEWEB)

    McFarquhar, Greg [Univ. of Illinois, Urbana, IL (United States)

    2015-12-28

    We proposed to analyze in-situ cloud data collected during ARM/ASR field campaigns to create databases of cloud microphysical properties and their uncertainties as needed for the development of improved cloud parameterizations for models and remote sensing retrievals, and for evaluation of model simulations and retrievals. In particular, we proposed to analyze data collected over the Southern Great Plains (SGP) during the Mid-latitude Continental Convective Clouds Experiment (MC3E), the Storm Peak Laboratory Cloud Property Validation Experiment (STORMVEX), the Small Particles in Cirrus (SPARTICUS) Experiment and the Routine AAF Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign, over the North Slope of Alaska during the Indirect and Semi-Direct Aerosol Campaign (ISDAC) and the Mixed-Phase Arctic Cloud Experiment (M-PACE), and over the Tropical Western Pacific (TWP) during The Tropical Warm Pool International Cloud Experiment (TWP-ICE), to meet the following 3 objectives; derive statistical databases of single ice particle properties (aspect ratio AR, dominant habit, mass, projected area) and distributions of ice crystals (size distributions SDs, mass-dimension m-D, area-dimension A-D relations, mass-weighted fall speeds, single-scattering properties, total concentrations N, ice mass contents IWC), complete with uncertainty estimates; assess processes by which aerosols modulate cloud properties in arctic stratus and mid-latitude cumuli, and quantify aerosol’s influence in context of varying meteorological and surface conditions; and determine how ice cloud microphysical, single-scattering and fall-out properties and contributions of small ice crystals to such properties vary according to location, environment, surface, meteorological and aerosol conditions, and develop parameterizations of such effects.In this report we describe the accomplishments that we made on all 3 research objectives.

  10. Conference on Atmospheric Radiation, 7th, San Francisco, CA, July 23-27, 1990, Preprints

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    The present conference on atmospheric radiation discusses the Cirrus experiment, cloud climatologies, the earth radiation budget, the surface radiation budget, remote sensing, radiative transfer, arctic clouds and aerosols, and clouds and radiation. Attention is given to the results of the FIRE Marine Stratocumulus Observations, cirrus cloud properties derived from satellite radiances during FIRE, the dimension of a cloud's boundary, and satellite observations of cirrus clouds. Topics addressed include the seasonal variation of the diurnal cycles of the earth's radiation budget determined from ERBE, estimation of the outgoing longwave flux from NOAA AVHRR satellite observations, a comparison of observed and modeled longwave radiances, and climate monitoring using radiative entropy from ERB observations. Also discussed are approximations to the diffuse radiative properties of cloud layers, the greenhouse potential of other trace gases relative to CO2, global surface albedos estimated from ERBE data, and the energy exchange in a tropical rain forest

  11. Vertical Cloud Climatology During TC4 Derived from High-Altitude Aircraft Merged Lidar and Radar Profiles

    Science.gov (United States)

    Hlavka, Dennis; Tian, Lin; Hart, William; Li, Lihua; McGill, Matthew; Heymsfield, Gerald

    2009-01-01

    Aircraft lidar works by shooting laser pulses toward the earth and recording the return time and intensity of any of the light returning to the aircraft after scattering off atmospheric particles and/or the Earth s surface. The scattered light signatures can be analyzed to tell the exact location of cloud and aerosol layers and, with the aid of a few optical assumptions, can be analyzed to retrieve estimates of optical properties such as atmospheric transparency. Radar works in a similar fashion except it sends pulses toward earth at a much larger wavelength than lidar. Radar records the return time and intensity of cloud or rain reflection returning to the aircraft. Lidar can measure scatter from optically thin cirrus and aerosol layers whose particles are too small for the radar to detect. Radar can provide reflection profiles through thick cloud layers of larger particles that lidar cannot penetrate. Only after merging the two instrument products can accurate measurements of the locations of all layers in the full atmospheric column be achieved. Accurate knowledge of the vertical distribution of clouds is important information for understanding the Earth/atmosphere radiative balance and for improving weather/climate forecast models. This paper describes one such merged data set developed from the Tropical Composition, Cloud and Climate Coupling (TC4) experiment based in Costa Rica in July-August 2007 using the nadir viewing Cloud Physics Lidar (CPL) and the Cloud Radar System (CRS) on board the NASA ER-2 aircraft. Statistics were developed concerning cloud probability through the atmospheric column and frequency of the number of cloud layers. These statistics were calculated for the full study area, four sub-regions, and over land compared to over ocean across all available flights. The results are valid for the TC4 experiment only, as preferred cloud patterns took priority during mission planning. The TC4 Study Area was a very cloudy region, with cloudy

  12. Final DOE-ASR Report for the Project “Advancing our Understanding and the Remote Sensing of Ice Clouds”

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, David [Desert Research Inst. (DRI), Reno, NV (United States); Erfani, Ehsan [George Mason Univ., Fairfax, VA (United States); Garnier, Anne [Science Systems and Applications, Inc., Hampton, VA (United States); Lawson, Paul [SPEC, Inc., Boulder, CO (United States); Morrison, Hugh [National Center for Atmospheric Research, Boulder, CO (United States); Avery, Melody [NASA Langley Research Center, Hampton, VA (United States)

    2016-12-29

    This project has evolved during its execution, and what follows are the key project findings. This project has arguably provided the first global view of how cirrus cloud (defined as having cloud base temperature T < 235 K) nucleation physics (evaluated through satellite retrievals of ice particle number concentration Ni, effective diameter De and ice water content IWC) evolves with the seasons for a given temperature, latitude zone and surface type (e.g. ocean vs. land), based on a new satellite remote sensing method developed for this project. The retrieval method is unique in that it is very sensitive to the small ice crystals that govern the number concentration Ni, allowing Ni to be retrieved. The method currently samples single-layer cirrus clouds having visible optical depth ranging from about 0.3 to 3.0, using co-located observations from the Infrared Imaging Radiometer (IIR) and from the CALIOP (Cloud and Aerosol Lidar with Orthogonal Polarization) lidar aboard the CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation) polar orbiting satellite, employing IIR channels at 10.6 μm and 12.05 μm. Retrievals of Ni are primarily used to estimate the cirrus cloud formation mechanism; that is, either homo- or heterogeneous ice nucleation (henceforth hom and het). This is possible since, in general, hom produces more than an order of magnitude more ice crystals than does het. Thus the retrievals provide insight on how these mechanisms change with the seasons for a given latitude zone or region, based on the years 2008 and 2013. Using a conservative criterion for hom cirrus, on average, the sampled cirrus clouds formed through hom occur about 43% of the time in the Arctic and 50% of the time in the Antarctic, and during winter at mid-latitudes in the Northern Hemisphere, hom cirrus occur 37% of the time. Elsewhere (and during other seasons in the Northern Hemisphere mid-latitudes), this hom cirrus fraction is lower, and it is lowest in the

  13. Practical Atmospheric Correction Algorithms for a Multi-Spectral Sensor From the Visible Through the Thermal Spectral Regions

    Energy Technology Data Exchange (ETDEWEB)

    Borel, C.C.; Villeneuve, P.V.; Clodium, W.B.; Szymenski, J.J.; Davis, A.B.

    1999-04-04

    Deriving information about the Earth's surface requires atmospheric corrections of the measured top-of-the-atmosphere radiances. One possible path is to use atmospheric radiative transfer codes to predict how the radiance leaving the ground is affected by the scattering and attenuation. In practice the atmosphere is usually not well known and thus it is necessary to use more practical methods. The authors will describe how to find dark surfaces, estimate the atmospheric optical depth, estimate path radiance and identify thick clouds using thresholds on reflectance and NDVI and columnar water vapor. The authors describe a simple method to correct a visible channel contaminated by a thin cirrus clouds.

  14. Kindergarten and Primary School Children's Everyday, Synthetic, and Scientific Concepts of Clouds and Rainfall

    Science.gov (United States)

    Malleus, Elina; Kikas, Eve; Marken, Tiivi

    2017-06-01

    The purpose of this research was to explore children's understandings of everyday, synthetic and scientific concepts to enable a description of how abstract, verbally taught material relates to previous experience-based knowledge and the consistency of understanding about cloud formation. This study examined the conceptual understandings of cloud formation and rain in kindergarten (age 5-7), second (age 8-9) and fourth (age 10-11) grade children, who were questioned on the basis of structured interview technique. In order to represent consistency in children's answers, three different types of clouds were introduced (a cirrus cloud, a cumulus cloud, and a rain cloud). Our results indicate that children in different age groups gave a similarly high amount of synthetic answers, which suggests the need for teachers to understand the formation process of different misconceptions to better support the learning process. Even children in kindergarten may have conceptions that represent different elements of scientific understanding and misconceptions cannot be considered age-specific. Synthetic understanding was also shown to be more consistent (not depending on cloud type) suggesting that gaining scientific understanding requires the reorganisation of existing concepts, that is time-consuming. Our results also show that the appearance of the cloud influences children's answers more in kindergarten where they mostly related rain cloud formation with water. An ability to create abstract connections between different concepts should also be supported at school as a part of learning new scientific information in order to better understand weather-related processes.

  15. A 2-d modeling approach for studying the formation, maintenance, and decay of Tropical Tropopause Layer Cirrus associated with Deep Convection

    Science.gov (United States)

    Henz, D. R.; Hashino, T.; Tripoli, G. J.; Smith, E. A.

    2009-12-01

    This study is being conducted to examine the distribution, variability, and formation-decay processes of TTL cirrus associated with tropical deep convection using the University of Wisconsin Non-Hydrostatic modeling system (NMS). The experimental design is based on Tripoli, Hack and Kiehl (1992) which explicitly simulates the radiative-convective equilibrium of the tropical atmosphere over extended periods of weeks or months using a 2D periodic cloud resolving model. The experiment design includes a radiation parameterization to explicitly simulate radiative transfer through simulated crystals. Advanced Microphysics Prediction System (AMP) will be used to simulate microphysics by employing SHIPS (Spectral Habit Ice Prediction System) for ice, SLiPS (Spectral Liquid Prediction System) for droplets, and SAPS (Spectral Aerosol Prediction System) for aerosols. The ice scheme called SHIPS is unique in that ice particle properties (such as size, particle density, and crystal habitats) are explicitly predicted in a CRM (Hashino and Tripoli, 2007, 2008). The Advanced Microphysics Prediction System (AMPS) technology provides a particularly strong tool that effectively enables the explicit modeling of the TTL cloud microphysics and dynamical processes which has yet to be accomplished by more traditional bulk microphysics approaches.

  16. Investigation of Cloud Properties and Atmospheric Profiles with Modis

    Science.gov (United States)

    Menzel, Paul; Ackerman, Steve; Moeller, Chris; Gumley, Liam; Strabala, Kathy; Frey, Richard; Prins, Elaine; Laporte, Dan; Wolf, Walter

    1997-01-01

    A major milestone was accomplished with the delivery of all five University of Wisconsin MODIS Level 2 science production software packages to the Science Data Support Team (SDST) for integration. These deliveries were the culmination of months of design and testing, with most of the work focused on tasks peripheral to the actual science contained in the code. LTW hosted a MODIS infrared calibration workshop in September. Considerable progress has been made by MCST, with help from LTW, in refining the calibration algorithm, and in identifying and characterization outstanding problems. Work continues on characterizing the effects of non-blackbody earth surfaces on atmospheric profile retrievals and modeling radiative transfer through cirrus clouds.

  17. Discriminating ability of Cirrus and RTVue optical coherence tomography in different stages of glaucoma.

    Science.gov (United States)

    Mittal, Deepti; Dubey, Suneeta; Gandhi, Monica; Pegu, Julie; Bhoot, Madhu; Gupta, Yadunandan Prasad

    2018-05-01

    The aim of this study is to determine which parameter of Cirrus and RTVue optical coherence tomography (OCT) has the highest ability to discriminate between early, moderate, and advanced glaucoma. Simultaneously, to compare the performance of the two OCT devices in terms of their ability to differentiate the three stages of glaucoma. Further, to analyze the macular parameters of both devices and compare them with the conventional retinal nerve fiber layer (RNFL) parameters. One hundred and twenty eyes (30 healthy and 90 glaucomatous [30 mild, 30 moderate, and 30 advanced glaucoma]) of 65 participants (15 healthy, 50 glaucomatous [15 mild, 15 moderate, and 20 advanced glaucoma]) underwent Cirrus and RTVue OCT scanning on a single visit. Average RNFL thickness and superior RNFL thickness of both the devices and inferior (ganglion cell complex [GCC] of RTVue device best differentiated normals from all stage glaucomatous eyes (P > 0.05). Cirrus average RNFL thickness and superior RNFL thickness performed better than other parameters (P device in different severity levels. No significant difference was observed between RNFL and macular parameters in different stages of glaucoma.

  18. Lidar Penetration Depth Observations for Constraining Cloud Longwave Feedbacks

    Science.gov (United States)

    Vaillant de Guelis, T.; Chepfer, H.; Noel, V.; Guzman, R.; Winker, D. M.; Kay, J. E.; Bonazzola, M.

    2017-12-01

    Satellite-borne active remote sensing Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations [CALIPSO; Winker et al., 2010] and CloudSat [Stephens et al., 2002] provide direct measurements of the cloud vertical distribution, with a very high vertical resolution. The penetration depth of the laser of the lidar Z_Opaque is directly linked to the LongWave (LW) Cloud Radiative Effect (CRE) at Top Of Atmosphere (TOA) [Vaillant de Guélis et al., in review]. In addition, this measurement is extremely stable in time making it an excellent observational candidate to verify and constrain the cloud LW feedback mechanism [Chepfer et al., 2014]. In this work, we present a method to decompose the variations of the LW CRE at TOA using cloud properties observed by lidar [GOCCP v3.0; Guzman et al., 2017]. We decompose these variations into contributions due to changes in five cloud properties: opaque cloud cover, opaque cloud altitude, thin cloud cover, thin cloud altitude, and thin cloud emissivity [Vaillant de Guélis et al., in review]. We apply this method, in the real world, to the CRE variations of CALIPSO 2008-2015 record, and, in climate model, to LMDZ6 and CESM simulations of the CRE variations of 2008-2015 period and of the CRE difference between a warm climate and the current climate. In climate model simulations, the same cloud properties as those observed by CALIOP are extracted from the CFMIP Observation Simulator Package (COSP) [Bodas-Salcedo et al., 2011] lidar simulator [Chepfer et al., 2008], which mimics the observations that would be performed by the lidar on board CALIPSO satellite. This method, when applied on multi-model simulations of current and future climate, could reveal the altitude of cloud opacity level observed by lidar as a strong constrain for cloud LW feedback, since the altitude feedback mechanism is physically explainable and the altitude of cloud opacity accurately observed by lidar.

  19. Evaluation of Passive Multilayer Cloud Detection Using Preliminary CloudSat and CALIPSO Cloud Profiles

    Science.gov (United States)

    Minnis, P.; Sun-Mack, S.; Chang, F.; Huang, J.; Nguyen, L.; Ayers, J. K.; Spangenberg, D. A.; Yi, Y.; Trepte, C. R.

    2006-12-01

    During the last few years, several algorithms have been developed to detect and retrieve multilayered clouds using passive satellite data. Assessing these techniques has been difficult due to the need for active sensors such as cloud radars and lidars that can "see" through different layers of clouds. Such sensors have been available only at a few surface sites and on aircraft during field programs. With the launch of the CALIPSO and CloudSat satellites on April 28, 2006, it is now possible to observe multilayered systems all over the globe using collocated cloud radar and lidar data. As part of the A- Train, these new active sensors are also matched in time ad space with passive measurements from the Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Microwave Scanning Radiometer - EOS (AMSR-E). The Clouds and the Earth's Radiant Energy System (CERES) has been developing and testing algorithms to detect ice-over-water overlapping cloud systems and to retrieve the cloud liquid path (LWP) and ice water path (IWP) for those systems. One technique uses a combination of the CERES cloud retrieval algorithm applied to MODIS data and a microwave retrieval method applied to AMSR-E data. The combination of a CO2-slicing cloud retireval technique with the CERES algorithms applied to MODIS data (Chang et al., 2005) is used to detect and analyze such overlapped systems that contain thin ice clouds. A third technique uses brightness temperature differences and the CERES algorithms to detect similar overlapped methods. This paper uses preliminary CloudSat and CALIPSO data to begin a global scale assessment of these different methods. The long-term goals are to assess and refine the algorithms to aid the development of an optimal combination of the techniques to better monitor ice 9and liquid water clouds in overlapped conditions.

  20. Assessing the impact of the Kuroshio Current on vertical cloud structure using CloudSat data

    Directory of Open Access Journals (Sweden)

    A. Yamauchi

    2018-06-01

    Full Text Available This study analyzed CloudSat satellite data to determine how the warm ocean Kuroshio Current affects the vertical structure of clouds. Rainfall intensity around the middle troposphere (6 km in height over the Kuroshio was greater than that over surrounding areas. The drizzle clouds over the Kuroshio have a higher frequency of occurrence of geometrically thin (0.5–3 km clouds and thicker (7–10 km clouds compared to those around the Kuroshio. Moreover, the frequency of occurrence of precipitating clouds with a geometric thickness of 7 to 10 km increased over the Kuroshio. Stronger updrafts over the Kuroshio maintain large droplets higher in the upper part of the cloud layer, and the maximum radar reflectivity within a cloud layer in non-precipitating and drizzle clouds over the Kuroshio is higher than that around the Kuroshio.

  1. Evaluation of the Anterior Segment Angle-to-Angle Scan of Cirrus High-Definition Optical Coherence Tomography and Comparison With Gonioscopy and With the Visante OCT.

    Science.gov (United States)

    Tun, Tin A; Baskaran, Mani; Tan, Shayne S; Perera, Shamira A; Aung, Tin; Husain, Rahat

    2017-01-01

    To evaluate the diagnostic performance of the anterior segment angle-to-angle scan of the Cirrus high-definition optical coherence tomography (HD-OCT) in detecting eyes with closed angles. All subjects underwent dark-room gonioscopy by an ophthalmologist. A technician performed anterior segment imaging with Cirrus (n = 202) and Visante OCT (n = 85) under dark-room conditions. All eyes were categorized by two masked graders as per number of closed quadrants. Each quadrant of anterior chamber angle was categorized as a closed angle if posterior trabecular meshwork could not be seen on gonioscopy or if there was any irido-corneal contact anterior to scleral spur in Cirrus and Visante images. An eye was graded as having a closed angle if two or more quadrants were closed. Agreement and area under the curve (AUC) were performed. There were 50 (24.8%) eyes with closed angles. The agreements of closed-angle diagnosis (by eye) between Cirrus HD-OCT and gonioscopy (k = 0.59; 95% confidence interval (CI) 0.45-0.72; AC1 = 0.76) and between Cirrus and Visante OCT (k = 0.65; 95% CI 0.48-0.82, AC1 = 0.77) were moderate. The AUC for diagnosing the eye with gonioscopic closed angle by Cirrus HD-OCT was good (AUC = 0.86; sensitivity = 83.33; specificity = 77.78). The diagnostic performance of Cirrus HD-OCT in detecting the eyes with closed angles was similar to that of Visante (AUC 0.87 vs. 0.9, respectively; P = 0.51). The anterior segment angle-to-angle scans of Cirrus HD-OCT demonstrated similar diagnostic performance as Visante in detecting gonioscopic closed angles. The agreement between Cirrus and gonioscopy for detecting eyes with closed angles was moderate.

  2. A comparison of radiometric fluxes influenced by parameterization cirrus clouds with observed fluxes at the Southern Great Plains (SGP) cloud and radiation testbed (CART) site

    Energy Technology Data Exchange (ETDEWEB)

    Mace, G.G.; Ackerman, T.P.; George, A.T. [Penn State Univ., University Park, PA (United States)

    1996-04-01

    The data from the Atmospheric Radiation Measurement (ARM) Program`s Southern Great plains Site (SCP) is a valuable resource. We have developed an operational data processing and analysis methodology that allows us to examine continuously the influence of clouds on the radiation field and to test new and existing cloud and radiation parameterizations.

  3. Aerosols, clouds and radiation

    Energy Technology Data Exchange (ETDEWEB)

    Twomey, S [University of Arizona, Tucson, AZ (USA). Inst. of Atmospheric Physics

    1991-01-01

    Most of the so-called 'CO{sub 2} effect' is, in fact, an 'H{sub 2}O effect' brought into play by the climate modeler's assumption that planetary average temperature dictates water-vapor concentration (following Clapeyron-Clausius). That assumption ignores the removal process, which cloud physicists know to be influenced by the aerosol, since the latter primarily controls cloud droplet number and size. Droplet number and size are also influential for shortwave (solar) energy. The reflectance of many thin to moderately thick clouds changes when nuclei concentrations change and make shortwave albedo susceptible to aerosol influence.

  4. Evaluating and constraining ice cloud parameterizations in CAM5 using aircraft measurements from the SPARTICUS campaign

    Directory of Open Access Journals (Sweden)

    K. Zhang

    2013-05-01

    Full Text Available This study uses aircraft measurements of relative humidity and ice crystal size distribution collected during the SPARTICUS (Small PARTicles In CirrUS field campaign to evaluate and constrain ice cloud parameterizations in the Community Atmosphere Model version 5. About 200 h of data were collected during the campaign between January and June 2010, providing the longest aircraft measurements available so far for cirrus clouds in the midlatitudes. The probability density function (PDF of ice crystal number concentration (Ni derived from the high-frequency (1 Hz measurements features a strong dependence on ambient temperature. As temperature decreases from −35 °C to −62 °C, the peak in the PDF shifts from 10–20 L−1 to 200–1000 L−1, while Ni shows a factor of 6–7 increase. Model simulations are performed with two different ice nucleation schemes for pure ice-phase clouds. One of the schemes can reproduce a clear increase of Ni with decreasing temperature by using either an observation-based ice nuclei spectrum or a classical-theory-based spectrum with a relatively low (5–10% maximum freezing ratio for dust aerosols. The simulation with the other scheme, which assumes a high maximum freezing ratio (100%, shows much weaker temperature dependence of Ni. Simulations are also performed to test empirical parameters related to water vapor deposition and the autoconversion of ice crystals to snow. Results show that a value between 0.05 and 0.1 for the water vapor deposition coefficient, and 250 μm for the critical diameter that distinguishes ice crystals from snow, can produce good agreement between model simulation and the SPARTICUS measurements in terms of Ni and effective radius. The climate impact of perturbing these parameters is also discussed.

  5. Classification of Arctic, Mid-Latitude and Tropical Clouds in the Mixed-Phase Temperature Regime

    Science.gov (United States)

    Costa, Anja; Afchine, Armin; Luebke, Anna; Meyer, Jessica; Dorsey, James R.; Gallagher, Martin W.; Ehrlich, André; Wendisch, Manfred; Krämer, Martina

    2016-04-01

    The degree of glaciation and the sizes and habits of ice particles formed in mixed-phase clouds remain not fully understood. However, these properties define the mixed clouds' radiative impact on the Earth's climate and thus a correct representation of this cloud type in global climate models is of importance for an improved certainty of climate predictions. This study focuses on the occurrence and characteristics of two types of clouds in the mixed-phase temperature regime (238-275K): coexistence clouds (Coex), in which both liquid drops and ice crystals exist, and fully glaciated clouds that develop in the Wegener-Bergeron-Findeisen regime (WBF clouds). We present an extensive dataset obtained by the Cloud and Aerosol Particle Spectrometer NIXE-CAPS, covering Arctic, mid-latitude and tropical regions. In total, we spent 45.2 hours within clouds in the mixed-phase temperature regime during five field campaigns (Arctic: VERDI, 2012 and RACEPAC, 2014 - Northern Canada; mid-latitude: COALESC, 2011 - UK and ML-Cirrus, 2014 - central Europe; tropics: ACRIDICON, 2014 - Brazil). We show that WBF and Coex clouds can be identified via cloud particle size distributions. The classified datasets are used to analyse temperature dependences of both cloud types as well as range and frequencies of cloud particle concentrations and sizes. One result is that Coex clouds containing supercooled liquid drops are found down to temperatures of -40 deg C only in tropical mixed clouds, while in the Arctic and mid-latitudes no liquid drops are observed below about -20 deg C. In addition, we show that the cloud particles' aspherical fractions - derived from polarization signatures of particles with diameters between 20 and 50 micrometers - differ significantly between WBF and Coex clouds. In Coex clouds, the aspherical fraction of cloud particles is generally very low, but increases with decreasing temperature. In WBF clouds, where all cloud particles are ice, about 20-40% of the cloud

  6. Quantifying uncertainties in radar forward models through a comparison between CloudSat and SPartICus reflectivity factors

    Science.gov (United States)

    Mascio, Jeana; Mace, Gerald G.

    2017-02-01

    Interpretations of remote sensing measurements collected in sample volumes containing ice-phase hydrometeors are very sensitive to assumptions regarding the distributions of mass with ice crystal dimension, otherwise known as mass-dimensional or m-D relationships. How these microphysical characteristics vary in nature is highly uncertain, resulting in significant uncertainty in algorithms that attempt to derive bulk microphysical properties from remote sensing measurements. This uncertainty extends to radar reflectivity factors forward calculated from model output because the statistics of the actual m-D in nature is not known. To investigate the variability in m-D relationships in cirrus clouds, reflectivity factors measured by CloudSat are combined with particle size distributions (PSDs) collected by coincident in situ aircraft by using an optimal estimation-based (OE) retrieval of the m-D power law. The PSDs were collected by 12 flights of the Stratton Park Engineering Company Learjet during the Small Particles in Cirrus campaign. We find that no specific habit emerges as preferred, and instead, we find that the microphysical characteristics of ice crystal populations tend to be distributed over a continuum-defying simple categorization. With the uncertainties derived from the OE algorithm, the uncertainties in forward-modeled backscatter cross section and, in turn, radar reflectivity is calculated by using a bootstrapping technique, allowing us to infer the uncertainties in forward-modeled radar reflectivity that would be appropriately applied to remote sensing simulator algorithms.

  7. Ice Nucleation of Soot Particles in the Cirrus Regime: Is Pore Condensation and Freezing Relevant for Soot?

    Science.gov (United States)

    Kanji, Z. A.; Mahrt, F.; David, R.; Marcolli, C.; Lohmann, U.; Fahrni, J.; Brühwiler, D.

    2017-12-01

    Heterogeneous ice nucleation (HIN) onto soot particles from previous studies have produced inconsistent results of temperature and relative humidity conditions required for freezing depending on the source of soot particle investigated. The ability of soot to act as HIN depended on the type of soot and size of particle. Often homogenous freezing conditions or water saturation conditions were required to freeze soot particles, rendering HIN irrelevant. Using synthesised mesoporous silica particles, we show pore condensation and freezing works with experiments performed in the Zurich Ice Nucleation Chamber (ZINC). By testing a variety of soot particles in parallel in the Horizontal Ice Nucleation Chamber (HINC), we suggest that previously observed HIN on soot particles is not the responsible mechanism for ice formation. Laboratory generated CAST brown and black soot, commercially available soot and acid treated soot were investigated for their ice nucleation abilities in the mixed-phase and cirrus cloud temperature regimes. No heterogeneous ice nucleation activity is inferred at T > -38 °C (mixed-phase cloud regime), however depending on particle size and soot type, HIN was observed for T nucleation of ice in the pores or cavities that are ubiquitous in soot particles between the primary spherules. The ability of some particles to freeze at lower relative humidity compared to others demonstrates why hydrophobicity plays a role in ice nucleation, i.e. controlling the conditions at which these cavities fill with water. Thus for more hydrophobic particles pore filling occurs at higher relative humidity, and therefore freezing of pore water and ice crystal growth. Future work focusses on testing the cloud processing ability of soot particles and water adsorption isotherms of the different soot samples to support the hydrophobicity inferences from the ice nucleation results.

  8. Effects of cloud condensate vertical alignment on radiative transfer calculations in deep convective regions

    Science.gov (United States)

    Wang, Xiaocong

    2017-04-01

    Effects of cloud condensate vertical alignment on radiative transfer process were investigated using cloud resolving model explicit simulations, which provide a surrogate for subgrid cloud geometry. Diagnostic results showed that the decorrelation length Lcw varies in the vertical dimension, with larger Lcw occurring in convective clouds and smaller Lcw in cirrus clouds. A new parameterization of Lcw is proposed that takes into account such varying features and gives rise to improvements in simulations of cloud radiative forcing (CRF) and radiative heating, i.e., the peak of bias is respectively reduced by 8 W m- 2 for SWCF and 2 W m- 2 for LWCF in comparison with Lcw = 1 km. The role of Lcw in modulating CRFs is twofold. On the one hand, larger Lcw tends to increase the standard deviation of optical depth στ, as dense and tenuous parts of the clouds would be increasingly aligned in the vertical dimension, thereby broadening the probability distribution. On the other hand, larger στ causes a decrease in the solar albedo and thermal emissivity, as implied in their convex functions on τ. As a result, increasing (decreasing) Lcwleads to decreased (increased) CRFs, as revealed by comparisons among Lcw = 0, Lcw = 1 km andLcw = ∞. It also affects the vertical structure of radiative flux and thus influences the radiative heating. A better representation of στ in the vertical dimension yields an improved simulation of radiative heating. Although the importance of vertical alignment of cloud condensate is found to be less than that of cloud cover in regards to their impacts on CRFs, it still has enough of an effect on modulating the cloud radiative transfer process.

  9. Fast cloud parameter retrievals of MIPAS/Envisat

    Directory of Open Access Journals (Sweden)

    R. Spang

    2012-08-01

    and tropospheric clouds similar to that of space- and ground-based lidars, with a tendency for higher cloud top heights and consequently higher sensitivity for some of the MIPAS detection methods. For the high cloud amount (HCA, pressure levels below 440 hPa on global scales the sensitivity of MIPAS is significantly greater than that of passive nadir viewers. This means that the high cloud fraction will be underestimated in the ISCCP dataset compared to the amount of high clouds deduced by MIPAS. Good correspondence in seasonal variability and geographical distribution of cloud occurrence and zonal means of cloud top height is found in a detailed comparison with a climatology for subvisible cirrus clouds from the Stratospheric Aerosol and Gas Experiment II (SAGE II limb sounder. Overall, validation with various sensors shows the need to consider differences in sensitivity, and especially the viewing geometries and field-of-view size, to make the datasets comparable (e.g. applying integration along the limb path through nadir cloud fields. The simulation of the limb path integration will be an important issue for comparisons with cloud-resolving global circulation or chemical transport models.

  10. STAR FORMATION IN TURBULENT MOLECULAR CLOUDS WITH COLLIDING FLOW

    International Nuclear Information System (INIS)

    Matsumoto, Tomoaki; Dobashi, Kazuhito; Shimoikura, Tomomi

    2015-01-01

    Using self-gravitational hydrodynamical numerical simulations, we investigated the evolution of high-density turbulent molecular clouds swept by a colliding flow. The interaction of shock waves due to turbulence produces networks of thin filamentary clouds with a sub-parsec width. The colliding flow accumulates the filamentary clouds into a sheet cloud and promotes active star formation for initially high-density clouds. Clouds with a colliding flow exhibit a finer filamentary network than clouds without a colliding flow. The probability distribution functions (PDFs) for the density and column density can be fitted by lognormal functions for clouds without colliding flow. When the initial turbulence is weak, the column density PDF has a power-law wing at high column densities. The colliding flow considerably deforms the PDF, such that the PDF exhibits a double peak. The stellar mass distributions reproduced here are consistent with the classical initial mass function with a power-law index of –1.35 when the initial clouds have a high density. The distribution of stellar velocities agrees with the gas velocity distribution, which can be fitted by Gaussian functions for clouds without colliding flow. For clouds with colliding flow, the velocity dispersion of gas tends to be larger than the stellar velocity dispersion. The signatures of colliding flows and turbulence appear in channel maps reconstructed from the simulation data. Clouds without colliding flow exhibit a cloud-scale velocity shear due to the turbulence. In contrast, clouds with colliding flow show a prominent anti-correlated distribution of thin filaments between the different velocity channels, suggesting collisions between the filamentary clouds

  11. STAR FORMATION IN TURBULENT MOLECULAR CLOUDS WITH COLLIDING FLOW

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, Tomoaki [Faculty of Humanity and Environment, Hosei University, Fujimi, Chiyoda-ku, Tokyo 102-8160 (Japan); Dobashi, Kazuhito; Shimoikura, Tomomi, E-mail: matsu@hosei.ac.jp [Department of Astronomy and Earth Sciences, Tokyo Gakugei University, Koganei, Tokyo 184-8501 (Japan)

    2015-03-10

    Using self-gravitational hydrodynamical numerical simulations, we investigated the evolution of high-density turbulent molecular clouds swept by a colliding flow. The interaction of shock waves due to turbulence produces networks of thin filamentary clouds with a sub-parsec width. The colliding flow accumulates the filamentary clouds into a sheet cloud and promotes active star formation for initially high-density clouds. Clouds with a colliding flow exhibit a finer filamentary network than clouds without a colliding flow. The probability distribution functions (PDFs) for the density and column density can be fitted by lognormal functions for clouds without colliding flow. When the initial turbulence is weak, the column density PDF has a power-law wing at high column densities. The colliding flow considerably deforms the PDF, such that the PDF exhibits a double peak. The stellar mass distributions reproduced here are consistent with the classical initial mass function with a power-law index of –1.35 when the initial clouds have a high density. The distribution of stellar velocities agrees with the gas velocity distribution, which can be fitted by Gaussian functions for clouds without colliding flow. For clouds with colliding flow, the velocity dispersion of gas tends to be larger than the stellar velocity dispersion. The signatures of colliding flows and turbulence appear in channel maps reconstructed from the simulation data. Clouds without colliding flow exhibit a cloud-scale velocity shear due to the turbulence. In contrast, clouds with colliding flow show a prominent anti-correlated distribution of thin filaments between the different velocity channels, suggesting collisions between the filamentary clouds.

  12. Cloud detection algorithm comparison and validation for operational Landsat data products

    Science.gov (United States)

    Foga, Steven Curtis; Scaramuzza, Pat; Guo, Song; Zhu, Zhe; Dilley, Ronald; Beckmann, Tim; Schmidt, Gail L.; Dwyer, John L.; Hughes, MJ; Laue, Brady

    2017-01-01

    Clouds are a pervasive and unavoidable issue in satellite-borne optical imagery. Accurate, well-documented, and automated cloud detection algorithms are necessary to effectively leverage large collections of remotely sensed data. The Landsat project is uniquely suited for comparative validation of cloud assessment algorithms because the modular architecture of the Landsat ground system allows for quick evaluation of new code, and because Landsat has the most comprehensive manual truth masks of any current satellite data archive. Currently, the Landsat Level-1 Product Generation System (LPGS) uses separate algorithms for determining clouds, cirrus clouds, and snow and/or ice probability on a per-pixel basis. With more bands onboard the Landsat 8 Operational Land Imager (OLI)/Thermal Infrared Sensor (TIRS) satellite, and a greater number of cloud masking algorithms, the U.S. Geological Survey (USGS) is replacing the current cloud masking workflow with a more robust algorithm that is capable of working across multiple Landsat sensors with minimal modification. Because of the inherent error from stray light and intermittent data availability of TIRS, these algorithms need to operate both with and without thermal data. In this study, we created a workflow to evaluate cloud and cloud shadow masking algorithms using cloud validation masks manually derived from both Landsat 7 Enhanced Thematic Mapper Plus (ETM +) and Landsat 8 OLI/TIRS data. We created a new validation dataset consisting of 96 Landsat 8 scenes, representing different biomes and proportions of cloud cover. We evaluated algorithm performance by overall accuracy, omission error, and commission error for both cloud and cloud shadow. We found that CFMask, C code based on the Function of Mask (Fmask) algorithm, and its confidence bands have the best overall accuracy among the many algorithms tested using our validation data. The Artificial Thermal-Automated Cloud Cover Algorithm (AT-ACCA) is the most accurate

  13. Measurement of Optic Disc Cup Surface Depth Using Cirrus HD-OCT.

    Science.gov (United States)

    Kim, Young Kook; Ha, Ahnul; Lee, Won June; Jeoung, Jin Wook; Park, Ki Ho

    2017-12-01

    To introduce the measurement method of optic disc cup surface depth using spectral-domain optical coherence tomography (SD-OCT) and then evaluate the rates of cup surface depression at 3 different stages of glaucoma. We retrospectively identified 52 eyes with preperimetric glaucoma, 56 with mild-or-moderate glaucoma and 50 with severe glaucoma and followed them for at least 48 months. Eyes were imaged using SD-OCT (Cirrus HD-OCT) at 12-month intervals. The mean cup surface depth was calculated using the following formula: Cup volume/(disc area×average cup-to-disc ratio)-200 μm. The rates of mean cup surface depression (μm/y) were significantly greater in mild-or-moderate glaucoma (-7.96±1.03) than in preperimetric (-3.11±0.61) and severe glaucoma (-0.70±0.12; all Pcup surface depression (%/y) were significantly greater than those of average of retinal nerve fiber layer (RNFL) thinning (%/y) in preperimetric glaucoma (-1.64±0.12 vs. -1.11±0.07; Pcup surface depth changed slower than did average RNFL thickness (-0.64±0.06 vs. -0.75±0.08%/y; Pcup surface depth changed faster than did the RNFL thickness. These results signify the possibility that SD-OCT-based estimation of cup surface depth might be useful for monitoring of glaucoma development and progression.

  14. Evaluation of the MiKlip decadal prediction system using satellite based cloud products

    Directory of Open Access Journals (Sweden)

    Thomas Spangehl

    2016-12-01

    Full Text Available The decadal hindcast simulations performed for the Mittelfristige Klimaprognosen (MiKlip project are evaluated using satellite-retrieved cloud parameters from the CM SAF cLoud, Albedo and RAdiation dataset from AVHRR data (CLARA-A1 provided by the EUMETSAT Satellite Application Facility on Climate Monitoring (CM SAF and from the International Satellite Cloud Climatology Project (ISCCP. The forecast quality of two sets of hindcasts, Baseline-1-LR and Baseline-0, which use differing initialisations, is assessed. Basic evaluation focuses on multi-year ensemble mean fields and cloud-type histograms utilizing satellite simulator output. Additionally, ensemble evaluation employing analysis of variance (ANOVA, analysis rank histograms (ARH and a deterministic correlation score is performed. Satellite simulator output is available for a subset of the full hindcast ensembles only. Therefore, the raw model cloud cover is complementary used. The new Baseline-1-LR hindcasts are closer to satellite data with respect to the simulated tropical/subtropical mean cloud cover pattern than the reference hindcasts (Baseline-0 emphasizing improvements of the new MiKlip initialisation procedure. A slightly overestimated occurrence rate of optically thick cloud-types is analysed for different experiments including hindcasts and simulations using realistic sea surface boundaries according to the Atmospheric Model Intercomparison Project (AMIP. By contrast, the evaluation of cirrus and cirrostratus clouds is complicated by observational based uncertainties. Time series of the 3-year mean total cloud cover averaged over the tropical warm pool (TWP region show some correlation with the CLARA-A1 cloud fractional cover. Moreover, ensemble evaluation of the Baseline-1-LR hindcasts reveals potential predictability of the 2–5 lead year averaged total cloud cover for a large part of this region when regarding the full observational period. However, the hindcasts show only

  15. An Adaptive Procedure for Task Scheduling Optimization in Mobile Cloud Computing

    Directory of Open Access Journals (Sweden)

    Pham Phuoc Hung

    2015-01-01

    Full Text Available Nowadays, mobile cloud computing (MCC has emerged as a new paradigm which enables offloading computation-intensive, resource-consuming tasks up to a powerful computing platform in cloud, leaving only simple jobs to the capacity-limited thin client devices such as smartphones, tablets, Apple’s iWatch, and Google Glass. However, it still faces many challenges due to inherent problems of thin clients, especially the slow processing and low network connectivity. So far, a number of research studies have been carried out, trying to eliminate these problems, yet few have been found efficient. In this paper, we present an enhanced architecture, taking advantage of collaboration of thin clients and conventional desktop or laptop computers, known as thick clients, particularly aiming at improving cloud access. Additionally, we introduce an innovative genetic approach for task scheduling such that the processing time is minimized, while considering network contention and cloud cost. Our simulation shows that the proposed approach is more cost-effective and achieves better performance compared with others.

  16. Remote Sensing and In-Situ Observations of Arctic Mixed-Phase and Cirrus Clouds Acquired During Mixed-Phase Arctic Cloud Experiment: Atmospheric Radiation Measurement Uninhabited Aerospace Vehicle Participation

    International Nuclear Information System (INIS)

    McFarquhar, G.M.; Freer, M.; Um, J.; McCoy, R.; Bolton, W.

    2005-01-01

    The Atmospheric Radiation Monitor (ARM) uninhabited aerospace vehicle (UAV) program aims to develop measurement techniques and instruments suitable for a new class of high altitude, long endurance UAVs while supporting the climate community with valuable data sets. Using the Scaled Composites Proteus aircraft, ARM UAV participated in Mixed-Phase Arctic Cloud Experiment (M-PACE), obtaining unique data to help understand the interaction of clouds with solar and infrared radiation. Many measurements obtained using the Proteus were coincident with in-situ observations made by the UND Citation. Data from M-PACE are needed to understand interactions between clouds, the atmosphere and ocean in the Arctic, critical interactions given large-scale models suggest enhanced warming compared to lower latitudes is occurring

  17. Retrieval of macrophysical cloud parameters from MIPAS: algorithm description

    Directory of Open Access Journals (Sweden)

    J. Hurley

    2011-04-01

    Full Text Available The Michelson Interferometer for Passive Atmospheric Sounding (MIPAS onboard ENVISAT has the potential to be particularly useful for studying high, thin clouds, which have been difficult to observe in the past. This paper details the development, implementation and testing of an optimal-estimation-type retrieval for three macrophysical cloud parameters (cloud top height, cloud top temperature and cloud extinction coefficient from infrared spectra measured by MIPAS. A preliminary estimation of a parameterisation of the optical and geometrical filling of the measurement field-of-view by cloud is employed as the first step of the retrieval process to improve the choice of a priori for the macrophysical parameters themselves.

    Preliminary application to single-scattering simulations indicates that the retrieval error stemming from uncertainties introduced by noise and by a priori variances in the retrieval process itself is small – although it should be noted that these retrieval errors do not include the significant errors stemming from the assumption of homogeneity and the non-scattering nature of the forward model. Such errors are preliminarily and qualitatively assessed here, and are likely to be the dominant error sources. The retrieval converges for 99% of input cases, although sometimes fails to converge for vetically-thin (<1 km clouds. The retrieval algorithm is applied to MIPAS data; the results of which are qualitatively compared with CALIPSO cloud top heights and PARASOL cloud opacities. From comparison with CALIPSO cloud products, it must be noted that the cloud detection method used in this algorithm appears to potentially misdetect stratospheric aerosol layers as cloud.

    This algorithm has been adopted by the European Space Agency's "MIPclouds" project.

  18. Enhancing a Simple MODIS Cloud Mask Algorithm for the Landsat Data Continuity Mission

    Science.gov (United States)

    Wilson, Michael J.; Oreopoulos, Lazarous

    2011-01-01

    The presence of clouds in images acquired by the Landsat series of satellites is usually an undesirable, but generally unavoidable fact. With the emphasis of the program being on land imaging, the suspended liquid/ice particles of which clouds are made of fully or partially obscure the desired observational target. Knowing the amount and location of clouds in a Landsat scene is therefore valuable information for scene selection, for making clear-sky composites from multiple scenes, and for scheduling future acquisitions. The two instruments in the upcoming Landsat Data Continuity Mission (LDCM) will include new channels that will enhance our ability to detect high clouds which are often also thin in the sense that a large fraction of solar radiation can pass through them. This work studies the potential impact of these new channels on enhancing LDCM's cloud detection capabilities compared to previous Landsat missions. We revisit a previously published scheme for cloud detection and add new tests to capture more of the thin clouds that are harder to detect with the more limited arsenal channels. Since there are no Landsat data yet that include the new LDCM channels, we resort to data from another instrument, MODIS, which has these bands, as well as the other bands of LDCM, to test the capabilities of our new algorithm. By comparing our revised scheme's performance against the performance of the official MODIS cloud detection scheme, we conclude that the new scheme performs better than the earlier scheme which was not very good at thin cloud detection.

  19. Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed multi-wavelength airborne lidar

    Science.gov (United States)

    Mao, Jianping; Ramanathan, Anand; Abshire, James B.; Kawa, Stephan R.; Riris, Haris; Allan, Graham R.; Rodriguez, Michael; Hasselbrack, William E.; Sun, Xiaoli; Numata, Kenji; Chen, Jeff; Choi, Yonghoon; Yang, Mei Ying Melissa

    2018-01-01

    We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA) lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was ˜ 5 % for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 µs wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90 % of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  20. Measurement of Atmospheric CO2 Column Concentrations to Cloud Tops With a Pulsed Multi-Wavelength Airborne Lidar

    Science.gov (United States)

    Mao, Jianping; Ramanathan, Anand; Abshire, James B.; Kawa, Stephan R.; Riris, Haris; Allan, Graham R.; Rodriguez, Michael R.; Hasselbrack, William E.; Sun, Xiaoli; Numata, Kenji; hide

    2018-01-01

    We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA) lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS) science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was approx. 5% for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 micro-s wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90% of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  1. The MJO Transition from Shallow to Deep Convection in CloudSat/CALIPSO Data and GISS GCM Simulations

    Science.gov (United States)

    DelGenio, Anthony G.; Chen, Yonghua; Kim, Daehyun; Yao, Mao-Sung

    2013-01-01

    The relationship between convective penetration depth and tropospheric humidity is central to recent theories of the Madden-Julian oscillation (MJO). It has been suggested that general circulation models (GCMs) poorly simulate the MJO because they fail to gradually moisten the troposphere by shallow convection and simulate a slow transition to deep convection. CloudSat and Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) data are analyzed to document the variability of convection depth and its relation to water vapor during the MJO transition from shallow to deep convection and to constrain GCM cumulus parameterizations. Composites of cloud occurrence for 10MJO events show the following anticipatedMJO cloud structure: shallow and congestus clouds in advance of the peak, deep clouds near the peak, and upper-level anvils after the peak. Cirrus clouds are also frequent in advance of the peak. The Advanced Microwave Scanning Radiometer for EarthObserving System (EOS) (AMSR-E) columnwater vapor (CWV) increases by;5 mmduring the shallow- deep transition phase, consistent with the idea of moisture preconditioning. Echo-top height of clouds rooted in the boundary layer increases sharply with CWV, with large variability in depth when CWV is between;46 and 68 mm. International Satellite Cloud Climatology Project cloud classifications reproduce these climatological relationships but correctly identify congestus-dominated scenes only about half the time. A version of the Goddard Institute for Space Studies Model E2 (GISS-E2) GCM with strengthened entrainment and rain evaporation that produces MJO-like variability also reproduces the shallow-deep convection transition, including the large variability of cloud-top height at intermediate CWV values. The variability is due to small grid-scale relative humidity and lapse rate anomalies for similar values of CWV. 1.

  2. Subfoveal choroidal thickness measured by Cirrus HD optical coherence tomography in myopia

    Directory of Open Access Journals (Sweden)

    Li-Li Chen

    2014-09-01

    Full Text Available ATM: To measure the subfoveal choroidal thickness(SFCTin myopia using Cirrus HD optical coherence tomography(OCT, and to explore the relationship between the SFCT, axial length and myopic refractive spherical equivalent.METHODS: One-hundred thirty-three eyes of 70 healthy volunteers were recruited, and were divided into emmetropia group, low-degree myopia, middle-degree myopia and high-degree myopia group. SFCT were measured by Cirrus HD OCT, and the relationship between the SFCT, axial length and myopic refractive spherical equivalent were evaluated.RESULTS: 1Average SFCT was(275.91±55.74μm in normals, that in emmetropia group, low-degree myopia, middle-degree myopia and high-degree myopia group were(290.03±34.82μm,(287.64±51.51μm,(274.95±56.83μm,(248.37±67.98μm; 2the SFCT of high-degree myopia group was significant thinner than that of emmetropia group(PPPCONCLUSION: the SFCT is inversely correlated with increasing axial length and myopic refractive error.

  3. Retrievals and Comparisons of Various MODIS-Spectrum Inferred Water Cloud Droplet Effective Radii

    Science.gov (United States)

    Fu-Lung, Chang; Minnis, Patrick; Lin, Bin; Sunny, Sun-Mack; Khaiyer, Mandana M.

    2007-01-01

    Cloud droplet effective radius retrievals from different Aqua MODIS nearinfrared channels (2.1- micrometer, 3.7- micrometer, and 1.6- micrometer) show considerable differences even among most confident QC pixels. Both Collection 004 and Collection 005 MOD06 show smaller mean effective radii at 3.7- micrometer wavelength than at 2.1- micrometer and 1.6- micrometer wavelengths. Differences in effective radius retrievals between Collection 004 and Collection 005 may be affected by cloud top height/temperature differences, which mainly occur for optically thin clouds. Changes in cloud top height and temperature for thin clouds have different impacts on the effective radius retrievals from 2.1- micrometer, 3.7- micrometer, and 1.6- micrometer channels. Independent retrievals (this study) show, on average, more consistency in the three effective radius retrievals. This study is for Aqua MODIS only.

  4. Satellite retrieval of the liquid water fraction in tropical clouds between −20 and −38 °C

    Directory of Open Access Journals (Sweden)

    D. L. Mitchell

    2012-07-01

    Full Text Available This study describes a satellite remote sensing method for directly retrieving the liquid water fraction in mixed phase clouds, and appears unique in this respect. The method uses MODIS split-window channels for retrieving the liquid fraction from cold clouds where the liquid water fraction is less than 50% of the total condensate. This makes use of the observation that clouds only containing ice exhibit effective 12-to-11 μm absorption optical thickness ratios (βeff that are quasi-constant with retrieved cloud temperature T. This observation was made possible by using two CO2 channels to retrieve T and then using the 12 and 11 μm channels to retrieve emissivities and βeff. Thus for T < −40 °C, βeff is constant, but for T > −40 °C, βeff slowly increases due to the presence of liquid water, revealing mean liquid fractions of ~ 10% around −22 °C from tropical clouds identified as cirrus by the cloud mask. However, the uncertainties for these retrievals are large, and extensive in situ measurements are needed to refine and validate these retrievals. Such liquid levels are shown to reduce the cloud effective diameter De such that cloud optical thickness will increase by more than 50% for a given water path, relative to De corresponding to pure ice clouds. Such retrieval information is needed for validation of the cloud microphysics in climate models. Since low levels of liquid water can dominate cloud optical properties, tropical clouds between −25 and −20 °C may be susceptible to the first aerosol indirect effect.

  5. The Diurnal Cycle of the Boundary Layer, Convection, Clouds, and Surface Radiation in a Coastal Monsoon Environment (Darwin Australia)

    Energy Technology Data Exchange (ETDEWEB)

    May, Peter T.; Long, Charles N.; Protat, Alain

    2012-08-01

    The diurnal variation of convection and associated cloud and radiative properties remains a significant issue in global NWP and climate models. This study analyzes observed diurnal variability of convection in a coastal monsoonal environment examining the interaction of convective rain clouds, their associated cloud properties, and the impact on the surface radiation and corresponding boundary layer structure during periods where convection is suppressed or active on the large scale. The analysis uses data from the Tropical Warm Pool International Cloud Experiment (TWP-ICE) as well as routine measurements from the Australian Bureau of Meteorology and the U.S. Department of Energy Atmospheric Radiation Measurement (ARM) program. Both active monsoonal and large-scale suppressed (buildup and break) conditions are examined and demonstrate that the diurnal variation of rainfall is much larger during the break periods and the spatial distribution of rainfall is very different between the monsoon and break regimes. During the active monsoon the total net radiative input to the surface is decreased by more than 3 times the amount than during the break regime - this total radiative cloud forcing is found to be dominated by the shortwave (SW) cloud effects because of the much larger optical thicknesses and persistence of long-lasting anvils and cirrus cloud decks associated with the monsoon regime. These differences in monsoon versus break surface radiative energy contribute to low-level air temperature differences in the boundary layer over the land surfaces.

  6. Longwave indirect effect of mineral dusts on ice clouds

    Directory of Open Access Journals (Sweden)

    Q. Min

    2010-08-01

    Full Text Available In addition to microphysical changes in clouds, changes in nucleation processes of ice cloud due to aerosols would result in substantial changes in cloud top temperature as mildly supercooled clouds are glaciated through heterogenous nucleation processes. Measurements from multiple sensors on multiple observing platforms over the Atlantic Ocean show that the cloud effective temperature increases with mineral dust loading with a slope of +3.06 °C per unit aerosol optical depth. The macrophysical changes in ice cloud top distributions as a consequence of mineral dust-cloud interaction exert a strong cooling effect (up to 16 Wm−2 of thermal infrared radiation on cloud systems. Induced changes of ice particle size by mineral dusts influence cloud emissivity and play a minor role in modulating the outgoing longwave radiation for optically thin ice clouds. Such a strong cooling forcing of thermal infrared radiation would have significant impacts on cloud systems and subsequently on climate.

  7. Physically-Retrieving Cloud and Thermodynamic Parameters from Ultraspectral IR Measurements

    Science.gov (United States)

    Zhou, Daniel K.; Smith, William L., Sr.; Liu, Xu; Larar, Allen M.; Mango, Stephen A.; Huang, Hung-Lung

    2007-01-01

    A physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals can be achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error < 1 km). NPOESS Airborne Sounder Testbed Interferometer (NAST-I) retrievals from the Atlantic-THORPEX Regional Campaign are compared with coincident observations obtained from dropsondes and the nadir-pointing Cloud Physics Lidar (CPL). This work was motivated by the need to obtain solutions for atmospheric soundings from infrared radiances observed for every individual field of view, regardless of cloud cover, from future ultraspectral geostationary satellite sounding instruments, such as the Geosynchronous Imaging Fourier Transform Spectrometer (GIFTS) and the Hyperspectral Environmental Suite (HES). However, this retrieval approach can also be applied to the ultraspectral sounding instruments to fly on Polar satellites, such as the Infrared Atmospheric Sounding Interferometer (IASI) on the European MetOp satellite, the Cross-track Infrared Sounder (CrIS) on the NPOESS Preparatory Project and the following NPOESS series of satellites.

  8. A climatological study of sea breeze clouds in the southeast of the Iberian Peninsula (Alicante, Spain)

    Energy Technology Data Exchange (ETDEWEB)

    Azorin-Molina, C. [Grupo de Climatologia, Universidad de Barcelona, Barcelona, Cataluna (Spain)]. E-mail: cazorin@ceam.es; Sanchez-Lorenzo, A. [Grupo de Climatologia, Universidad de Barcelona, Barcelona, Cataluna (Spain); Calbo, J. [Grupo de Fisica Ambiental, Universidad de Girona, Campus Montilivi, Cataluna (Spain)

    2009-01-15

    Sea breezes blow under anticyclonic weather types, weak surface pressure gradients, intense solar radiation and relatively cloud-free skies. Generally, total cloud cover must be less than 4/8 in order to cause a thermal and pressure difference between land and sea air which allows the development of this local wind circulation. However, many numerical and observational studies have analyzed the ability of sea breezes to generate clouds in the convective internal boundary layer and in the sea breeze convergence zone. Accordingly, the aim of this study is to statistically analyze the impact of sea breezes on cloud types in the convective internal boundary layer and in the sea breeze convergence zone. The study area is located in the southeast of the Iberian Peninsula (province of Alicante, Spain) and the survey corresponds to a 6-yr study period (2000-2005). This climatological study is mainly based on surface cloud observations at the Alicante-Ciudad Jardin station (central coastal plain) and on an extensive cloud observation field campaign at the Villena-Ciudad station (Prebetic mountain ranges) over a 3-yr study period (2003-2005). The results confirm the hypothesis that the effect of sea breezes on cloud genera is to increase the frequency of low (Stratus) and convective (Cumulus) clouds. Sea breezes trigger the formation of thunderstorm clouds (Cumulonimbus) at the sea breeze convergence zone, which also have a secondary impact on high-level (Cirrus, Cirrocumulus, Cirrostratus), medium-level (Altostratus, Altocumulus) and low-level clouds (Stratus, Stratocumulus, Nimbostratus) associated with the Cumulonimbus clouds (e.g., Cumulonimbus anvil). [Spanish] Las brisas marinas soplan bajo tipos de tiempo anticiclonicos, debiles gradientes de presion atmosferica, radiacion solar intensa y cielos practicamente despejados. Por lo general, la cobertura nubosa total debe ser inferior a 4/8 para que se genere un diferencial termico y de presion entre el aire sobre las

  9. Estimating nocturnal opaque ice cloud optical depth from MODIS multispectral infrared radiances using a neural network method

    Science.gov (United States)

    Minnis, Patrick; Hong, Gang; Sun-Mack, Szedung; Smith, William L.; Chen, Yan; Miller, Steven D.

    2016-05-01

    Retrieval of ice cloud properties using IR measurements has a distinct advantage over the visible and near-IR techniques by providing consistent monitoring regardless of solar illumination conditions. Historically, the IR bands at 3.7, 6.7, 11.0, and 12.0 µm have been used to infer ice cloud parameters by various methods, but the reliable retrieval of ice cloud optical depth τ is limited to nonopaque cirrus with τ < 8. The Ice Cloud Optical Depth from Infrared using a Neural network (ICODIN) method is developed in this paper by training Moderate Resolution Imaging Spectroradiometer (MODIS) radiances at 3.7, 6.7, 11.0, and 12.0 µm against CloudSat-estimated τ during the nighttime using 2 months of matched global data from 2007. An independent data set comprising observations from the same 2 months of 2008 was used to validate the ICODIN. One 4-channel and three 3-channel versions of the ICODIN were tested. The training and validation results show that IR channels can be used to estimate ice cloud τ up to 150 with correlations above 78% and 69% for all clouds and only opaque ice clouds, respectively. However, τ for the deepest clouds is still underestimated in many instances. The corresponding RMS differences relative to CloudSat are ~100 and ~72%. If the opaque clouds are properly identified with the IR methods, the RMS differences in the retrieved optical depths are ~62%. The 3.7 µm channel appears to be most sensitive to optical depth changes but is constrained by poor precision at low temperatures. A method for estimating total optical depth is explored for estimation of cloud water path in the future. Factors affecting the uncertainties and potential improvements are discussed. With improved techniques for discriminating between opaque and semitransparent ice clouds, the method can ultimately improve cloud property monitoring over the entire diurnal cycle.

  10. Results from the Two-Year Infrared Cloud Imager Deployment at ARM's NSA Observatory in Barrow, Alaska

    Science.gov (United States)

    Shaw, J. A.; Nugent, P. W.

    2016-12-01

    Ground-based longwave-infrared (LWIR) cloud imaging can provide continuous cloud measurements in the Arctic. This is of particular importance during the Arctic winter when visible wavelength cloud imaging systems cannot operate. This method uses a thermal infrared camera to observe clouds and produce measurements of cloud amount and cloud optical depth. The Montana State University Optical Remote Sensor Laboratory deployed an infrared cloud imager (ICI) at the Atmospheric Radiation Monitoring North Slope of Alaska site at Barrow, AK from July 2012 through July 2014. This study was used to both understand the long-term operation of an ICI in the Arctic and to study the consistency of the ICI data products in relation to co-located active and passive sensors. The ICI was found to have a high correlation (> 0.92) with collocated cloud instruments and to produce an unbiased data product. However, the ICI also detects thin clouds that are not detected by most operational cloud sensors. Comparisons with high-sensitivity actively sensed cloud products confirm the existence of these thin clouds. Infrared cloud imaging systems can serve a critical role in developing our understanding of cloud cover in the Arctic by provided a continuous annual measurement of clouds at sites of interest.

  11. New photoionization models of intergalactic clouds

    Science.gov (United States)

    Donahue, Megan; Shull, J. M.

    1991-01-01

    New photoionization models of optically thin low-density intergalactic gas at constant pressure, photoionized by QSOs, are presented. All ion stages of H, He, C, N, O, Si, and Fe, plus H2 are modeled, and the column density ratios of clouds at specified values of the ionization parameter of n sub gamma/n sub H and cloud metallicity are predicted. If Ly-alpha clouds are much cooler than the previously assumed value, 30,000 K, the ionization parameter must be very low, even with the cooling contribution of a trace component of molecules. If the clouds cool below 6000 K, their final equilibrium must be below 3000 K, owing to the lack of a stable phase between 6000 and 3000 K. If it is assumed that the clouds are being irradiated by an EUV power-law continuum typical of WSOs, with J0 = 10 exp -21 ergs/s sq cm Hz, typical cloud thicknesses along the line of sight that are much smaller than would be expected from shocks, thermal instabilities, or gravitational collapse are derived.

  12. Reconciling Ground-Based and Space-Based Estimates of the Frequency of Occurrence and Radiative Effect of Clouds around Darwin, Australia

    Energy Technology Data Exchange (ETDEWEB)

    Protat, Alain; Young, Stuart; McFarlane, Sally A.; L' Ecuyer, Tristan; Mace, Gerald G.; Comstock, Jennifer M.; Long, Charles N.; Berry, Elizabeth; Delanoe, Julien

    2014-02-01

    The objective of this paper is to investigate whether estimates of the cloud frequency of occurrence and associated cloud radiative forcing as derived from ground-based and satellite active remote sensing and radiative transfer calculations can be reconciled over a well instrumented active remote sensing site located in Darwin, Australia, despite the very different viewing geometry and instrument characteristics. It is found that the ground-based radar-lidar combination at Darwin does not detect most of the cirrus clouds above 10 km (due to limited lidar detection capability and signal obscuration by low-level clouds) and that the CloudSat radar - Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) combination underreports the hydrometeor frequency of occurrence below 2 km height, due to instrument limitations at these heights. The radiative impact associated with these differences in cloud frequency of occurrence is large on the surface downwelling shortwave fluxes (ground and satellite) and the top-of atmosphere upwelling shortwave and longwave fluxes (ground). Good agreement is found for other radiative fluxes. Large differences in radiative heating rate as derived from ground and satellite radar-lidar instruments and RT calculations are also found above 10 km (up to 0.35 Kday-1 for the shortwave and 0.8 Kday-1 for the longwave). Given that the ground-based and satellite estimates of cloud frequency of occurrence and radiative impact cannot be fully reconciled over Darwin, caution should be exercised when evaluating the representation of clouds and cloud-radiation interactions in large-scale models and limitations of each set of instrumentation should be considered when interpreting model-observations differences.

  13. Measurement of atmospheric CO2 column concentrations to cloud tops with a pulsed multi-wavelength airborne lidar

    Directory of Open Access Journals (Sweden)

    J. Mao

    2018-01-01

    Full Text Available We have measured the column-averaged atmospheric CO2 mixing ratio to a variety of cloud tops by using an airborne pulsed multi-wavelength integrated-path differential absorption (IPDA lidar. Airborne measurements were made at altitudes up to 13 km during the 2011, 2013 and 2014 NASA Active Sensing of CO2 Emissions over Nights, Days, and Seasons (ASCENDS science campaigns flown in the United States West and Midwest and were compared to those from an in situ sensor. Analysis of the lidar backscatter profiles shows the average cloud top reflectance was ∼ 5 % for the CO2 measurement at 1572.335 nm except to cirrus clouds, which had lower reflectance. The energies for 1 µs wide laser pulses reflected from cloud tops were sufficient to allow clear identification of CO2 absorption line shape and then to allow retrievals of atmospheric column CO2 from the aircraft to cloud tops more than 90 % of the time. Retrievals from the CO2 measurements to cloud tops had minimal bias but larger standard deviations when compared to those made to the ground, depending on cloud top roughness and reflectance. The measurements show this new capability helps resolve CO2 horizontal and vertical gradients in the atmosphere. When used with nearby full-column measurements to ground, the CO2 measurements to cloud tops can be used to estimate the partial-column CO2 concentration below clouds, which should lead to better estimates of surface carbon sources and sinks. This additional capability of the range-resolved CO2 IPDA lidar technique provides a new benefit for studying the carbon cycle in future airborne and space-based CO2 missions.

  14. Lidar Measurements of Ozone, Aerosols, and Clouds Observed in the Tropics Near Central America During TC4-Costa Rica

    Science.gov (United States)

    Hair, J. W.; Browell, E.; Butler, C.; Fenn, M.; Notari, A.; Simpson, S.; Ismail, S.; Avery, M.

    2007-12-01

    Large-scale measurements of ozone and aerosol distributions were made from the NASA DC-8 aircraft during the TC4 (Tropical Composition, Cloud, and Climate Coupling) field experiment conducted from June 28 - August 10, 2007 based in San Jose, Costa Rica. Remote measurements were made with an airborne lidar to provide ozone and multiple-wavelength aerosol and cloud backscatter profiles from near the surface to above the tropopause along the flight track. Aerosol depolarization measurements were also made for the detection of nonspherical aerosols, such as mineral dust, biomass burning, and recent emissions from South American volcanoes. Long-range transport of Saharan dust with depolarizing aerosols was frequently observed in the lower troposphere both over the Caribbean Sea and Pacific Ocean and within the marine boundary layer. In addition, visible and sub-visible cirrus clouds were observed with the multi-wavelength backscatter and depolarization measurements. Initial distributions of ozone, aerosol, and cloud are presented which will be used to interpret large-scale atmospheric processes. In situ measurements of ozone and aerosols made onboard the DC-8 will be compared to the remote lidar measurements. This paper provides a first look at the characteristics of ozone, aerosol, and cloud distributions that were encountered during this field experiment and provide a unique dataset that will be further related through satellite data, backward trajectories, and chemical transport models (CTM) to sources and sinks of ozone, aerosols, and clouds and to dynamical, chemical, and radiative processes.

  15. A New Approach for Checking and Complementing CALIPSO Lidar Calibration

    Science.gov (United States)

    Josset, Damien B.; Vaughan, Mark A.; Hu, Yongxiang; Avery, Melody A.; Powell, Kathleen A.; Hunt, William H.; Winker, David M.; Pelon, Jacques; Trepte, Charles R.; Lucker, Patricia L.; hide

    2010-01-01

    We have been studying the backscatter ratio of the two CALIPSO wavelengths for 3 different targets. We are showing the ratio of integrate attenuated backscatter coefficient for cirrus clouds, ocean surface and liquid. Water clouds for one month of nightime data (left:July,right:December), Only opaque cirrus classified as randomly oriented ice[1] are used. For ocean and water clouds, only the clearest shots, determined by a threshold on integrated attenuated backscatter are used. Two things can be immediately observed: 1. A similar trend (black dotted line) is visible using all targets, the color ratio shows a tendency to be higher north and lower south for those two months. 2. The water clouds average value is around 15% lower than ocean surface and cirrus clouds. This is due to the different multiple scattering at 532 nm and 1064 nm [2] which strongly impact the water cloud retrieval. Conclusion: Different targets can be used to improve CALIPSO 1064 nm calibration accuracy. All of them show the signature of an instrumental calibration shift. Multiple scattering introduce a bias in liquid water cloud signal but it still compares very well with all other methods and should not be overlooked. The effect of multiple scattering in liquid and ice clouds will be the subject of future research. If there really is a sampling issue. Combining all methods to increase the sampling, mapping the calibration coefficient or trying to reach an orbit per orbit calibration seems an appropriate way.

  16. Using Radar, Lidar, and Radiometer measurements to Classify Cloud Type and Study Middle-Level Cloud Properties

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhien

    2010-06-29

    The project is mainly focused on the characterization of cloud macrophysical and microphysical properties, especially for mixed-phased clouds and middle level ice clouds by combining radar, lidar, and radiometer measurements available from the ACRF sites. First, an advanced mixed-phase cloud retrieval algorithm will be developed to cover all mixed-phase clouds observed at the ACRF NSA site. The algorithm will be applied to the ACRF NSA observations to generate a long-term arctic mixed-phase cloud product for model validations and arctic mixed-phase cloud processes studies. To improve the representation of arctic mixed-phase clouds in GCMs, an advanced understanding of mixed-phase cloud processes is needed. By combining retrieved mixed-phase cloud microphysical properties with in situ data and large-scale meteorological data, the project aim to better understand the generations of ice crystals in supercooled water clouds, the maintenance mechanisms of the arctic mixed-phase clouds, and their connections with large-scale dynamics. The project will try to develop a new retrieval algorithm to study more complex mixed-phase clouds observed at the ACRF SGP site. Compared with optically thin ice clouds, optically thick middle level ice clouds are less studied because of limited available tools. The project will develop a new two wavelength radar technique for optically thick ice cloud study at SGP site by combining the MMCR with the W-band radar measurements. With this new algorithm, the SGP site will have a better capability to study all ice clouds. Another area of the proposal is to generate long-term cloud type classification product for the multiple ACRF sites. The cloud type classification product will not only facilitates the generation of the integrated cloud product by applying different retrieval algorithms to different types of clouds operationally, but will also support other research to better understand cloud properties and to validate model simulations. The

  17. Low density molecular cloud in the vicinity of the Pleiades

    International Nuclear Information System (INIS)

    Federman, S.R.; Wilson, R.F.

    1984-01-01

    The central region of a small, low density molecular cloud, which lies to the south of the Pleiades cluster, has been studied through the use of molecular line observations. Column densities for CH, OH, 12 CO, and 13 CO are derived from the radio data. The CH and OH data yield a visual extinction through the center of the cloud of about 3 mag. The ratio of the antenna temperatures for the OH main lines is consistent with optically thin emission; therefore, the OH results are a good indication of the total extinction through the optically thin emission; therefore, the OH results are a good indication of the total extinction through the cloud. The analysis of the carbon monoxide data produces a relatively high kinetic temperature of at least 20 K, a low total gas density of approx.300-500 cm -3 , and a column density of approx.4 x 10 17 cm -2 for 12 CO. Thus this small molecular cloud is not typical of the molecular material generally studied in Taurus

  18. CRYSTAL-FACE Analysis and Simulations of the July 23rd Extended Anvil Case

    Science.gov (United States)

    Starr, David

    2003-01-01

    A key focus of CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and cirrus Layers - Florida Area Cirrus Experiment) was the generation and subsequent evolution of cirrus outflow from deep convective cloud systems. Present theoretical background and motivations will be discussed. An integrated look at the observations of an extended cirrus anvil cloud system observed on 23 July 2002 will be presented, including lidar and millimeter radar observation; from NASA s ER-2 and in-situ observations from NASA s WB-57 and University of North Dakota Citation. The observations will be compared to results of simulations using 1-D and 2-D high-resolution (100 meter) cloud resolving models. The CRMs explicitly account for cirrus microphysical development by resolving the evolving ice crystal size distribution (bin model) in time and space. Both homogeneous and heterogeneous nucleation are allowed in the model. The CRM simulations are driven using the output of regional simulations using MM5 that produces deep convection similar to what was observed. The MM5 model employs a 2 km inner grid (32 layers) over a 360 km domain, nested within a 6-km grid over a 600-km domain. Initial and boundary conditions for the 36-hour MM5 simulation are taken from NCEP Eta model analysis at 32 km resolution. Key issues to be explored are the settling of the observed anvil versus the model simulations, and comparisons of dynamical properties, such as vertical motions, occurring in the observations and models. The former provides an integrated measure of the validity of the model microphysics (fallspeed) while the latter is the key factor in forcing continued ice generation.

  19. An Improved Cloud Classification Algorithm for China's FY-2C Multi-Channel Images Using Artificial Neural Network.

    Science.gov (United States)

    Liu, Yu; Xia, Jun; Shi, Chun-Xiang; Hong, Yang

    2009-01-01

    The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China's first operational geostationary meteorological satellite FengYun-2C (FY-2C) data. First, the capabilities of six widely-used Artificial Neural Network (ANN) methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA) and a Support Vector Machine (SVM), using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3-11.3 μm; IR2, 11.5-12.5 μm and WV 6.3-7.6 μm) imagery. The result shows that: (1) ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2) among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM) and Probabilistic Neural Network (PNN). Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products.

  20. Disk and circumsolar radiances in the presence of ice clouds

    Directory of Open Access Journals (Sweden)

    P. Haapanala

    2017-06-01

    Full Text Available The impact of ice clouds on solar disk and circumsolar radiances is investigated using a Monte Carlo radiative transfer model. The monochromatic direct and diffuse radiances are simulated at angles of 0 to 8° from the center of the sun. Input data for the model are derived from measurements conducted during the 2010 Small Particles in Cirrus (SPARTICUS campaign together with state-of-the-art databases of optical properties of ice crystals and aerosols. For selected cases, the simulated radiances are compared with ground-based radiance measurements obtained by the Sun and Aureole Measurements (SAM instrument. First, the sensitivity of the radiances to the ice cloud properties and aerosol optical thickness is addressed. The angular dependence of the disk and circumsolar radiances is found to be most sensitive to assumptions about ice crystal roughness (or, more generally, non-ideal features of ice crystals and size distribution, with ice crystal habit playing a somewhat smaller role. Second, in comparisons with SAM data, the ice cloud optical thickness is adjusted for each case so that the simulated radiances agree closely (i.e., within 3 % with the measured disk radiances. Circumsolar radiances at angles larger than ≈ 3° are systematically underestimated when assuming smooth ice crystals, whereas the agreement with the measurements is better when rough ice crystals are assumed. Our results suggest that it may well be possible to infer the particle roughness directly from ground-based SAM measurements. In addition, the results show the necessity of correcting the ground-based measurements of direct radiation for the presence of diffuse radiation in the instrument's field of view, in particular in the presence of ice clouds.

  1. Methodology for cloud-based design of robots

    Science.gov (United States)

    Ogorodnikova, O. M.; Vaganov, K. A.; Putimtsev, I. D.

    2017-09-01

    This paper presents some important results for cloud-based designing a robot arm by a group of students. Methodology for the cloud-based design was developed and used to initiate interdisciplinary project about research and development of a specific manipulator. The whole project data files were hosted by Ural Federal University data center. The 3D (three-dimensional) model of the robot arm was created using Siemens PLM software (Product Lifecycle Management) and structured as a complex mechatronics product by means of Siemens Teamcenter thin client; all processes were performed in the clouds. The robot arm was designed in purpose to load blanks up to 1 kg into the work space of the milling machine for performing student's researches.

  2. An Improved Cloud Classification Algorithm for China’s FY-2C Multi-Channel Images Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    Chun-Xiang Shi

    2009-07-01

    Full Text Available The crowning objective of this research was to identify a better cloud classification method to upgrade the current window-based clustering algorithm used operationally for China’s first operational geostationary meteorological satellite FengYun-2C (FY-2C data. First, the capabilities of six widely-used Artificial Neural Network (ANN methods are analyzed, together with the comparison of two other methods: Principal Component Analysis (PCA and a Support Vector Machine (SVM, using 2864 cloud samples manually collected by meteorologists in June, July, and August in 2007 from three FY-2C channel (IR1, 10.3-11.3 μm; IR2, 11.5-12.5 μm and WV 6.3-7.6 μm imagery. The result shows that: (1 ANN approaches, in general, outperformed the PCA and the SVM given sufficient training samples and (2 among the six ANN networks, higher cloud classification accuracy was obtained with the Self-Organizing Map (SOM and Probabilistic Neural Network (PNN. Second, to compare the ANN methods to the present FY-2C operational algorithm, this study implemented SOM, one of the best ANN network identified from this study, as an automated cloud classification system for the FY-2C multi-channel data. It shows that SOM method has improved the results greatly not only in pixel-level accuracy but also in cloud patch-level classification by more accurately identifying cloud types such as cumulonimbus, cirrus and clouds in high latitude. Findings of this study suggest that the ANN-based classifiers, in particular the SOM, can be potentially used as an improved Automated Cloud Classification Algorithm to upgrade the current window-based clustering method for the FY-2C operational products.

  3. Temperature structure and emergent flux of the Jovian planets

    Science.gov (United States)

    Silvaggio, P.; Sagan, C.

    1978-01-01

    Long path, low temperature, moderate resolution spectra of methane and ammonia, broadened by hydrogen and helium, are used to calculate non-gray model atmospheres for the four Jovian planets. The fundamental and first overtone of hydrogen contributes enough absorption to create a thermal inversion for each of the planets. The suite of emergent spectral fluxes and representative limb darkenings and brightenings are calculated for comparison with the Voyager infrared spectra. The temperature differences between Jovian belts and zones corresponds to a difference in the ammonia cirrus particle radii (1 to 3 micron in zones; 10 micron in belts). The Jovian tropopause is approximately at the 0.1 bar level. A thin ammonia cirrus haze should be distributed throughout the Saturnian troposphere; and NH3 gas must be slightly supersaturated or ammonia ice particles are carried upwards convectively in the upper troposphere of Saturn. Substantial methane clouds exist on both Uranus and Neptune. There is some evidence for almost isothermal structures in the deep atmospheres of these two planets.

  4. Towards a Model Climatology of Relative Humidity in the Upper Troposphere for Estimation of Contrail and Contrail-Induced Cirrus

    Science.gov (United States)

    Selkirk, Henry B.; Manyin, M.; Ott, L.; Oman, L.; Benson, C.; Pawson, S.; Douglass, A. R.; Stolarski, R. S.

    2011-01-01

    The formation of contrails and contrail cirrus is very sensitive to the relative humidity of the upper troposphere. To reduce uncertainty in an estimate of the radiative impact of aviation-induced cirrus, a model must therefore be able to reproduce the observed background moisture fields with reasonable and quantifiable fidelity. Here we present an upper tropospheric moisture climatology from a 26-year ensemble of simulations using the GEOS CCM. We compare this free-running model's moisture fields to those obtained from the MLS and AIRS satellite instruments, our most comprehensive observational databases for upper tropospheric water vapor. Published comparisons have shown a substantial wet bias in GEOS-5 assimilated fields with respect to MLS water vapor and ice water content. This tendency is clear as well in the GEOS CCM simulations. The GEOS-5 moist physics in the GEOS CCM uses a saturation adjustment that prevents supersaturation, which is unrealistic when compared to in situ moisture observations from MOZAIC aircraft and balloon sondes as we will show. Further, the large-scale satellite datasets also consistently underestimate super-saturation when compared to the in-situ observations. We place these results in the context of estimates of contrail and contrail cirrus frequency.

  5. Contrails and their impact on shortwave radiation and photovoltaic power production – a regional model study

    Directory of Open Access Journals (Sweden)

    S. Gruber

    2018-05-01

    Full Text Available A high-resolution regional-scale numerical model was extended by a parameterization that allows for both the generation and the life cycle of contrails and contrail cirrus to be calculated. The life cycle of contrails and contrail cirrus is described by a two-moment cloud microphysical scheme that was extended by a separate contrail ice class for a better representation of the high concentration of small ice crystals that occur in contrails. The basic input data set contains the spatially and temporally highly resolved flight trajectories over Central Europe derived from real-time data. The parameterization provides aircraft-dependent source terms for contrail ice mass and number. A case study was performed to investigate the influence of contrails and contrail cirrus on the shortwave radiative fluxes at the earth's surface. Accounting for contrails produced by aircraft enabled the model to simulate high clouds that were otherwise missing on this day. The effect of these extra clouds was to reduce the incoming shortwave radiation at the surface as well as the production of photovoltaic power by up to 10 %.

  6. 75 FR 20518 - Special Conditions: Cirrus Design Corporation Model SF50 Airplane; Full Authority Digital Engine...

    Science.gov (United States)

    2010-04-20

    ... issuance. Comments Invited Interested persons are invited to submit such written data, views, or arguments... On September 9, 2008, Cirrus Design Corporation applied for a type certificate for their new model... the digital engine control must provide an equivalent reliability to mechanical engine controls. Type...

  7. Ground-based SMART-COMMIT Measurements for Studying Aerosol and Cloud Properties

    Science.gov (United States)

    Tsay, Si-Chee

    2008-01-01

    From radiometric principles, it is expected that the retrieved properties of extensive aerosols and clouds from reflected/emitted measurements by satellite (and/or aircraft) should be consistent with those retrieved from transmitted/emitted radiance observed at the surface. Although space-borne remote sensing observations cover large spatial domain, they are often plagued by contamination of surface signatures. Thus, ground-based in-situ and remote-sensing measurements, where signals come directly from atmospheric constituents, the sun, and/or the Earth-atmosphere interactions, provide additional information content for comparisons that confirm quantitatively the usefulness of the integrated surface, aircraft, and satellite data sets. The development and deployment of SMARTCOMMIT (Surface-sensing Measurements for Atmospheric Radiative Transfer - Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile facilities are aimed for the optimal utilization of collocated ground-based observations as constraints to yield higher fidelity satellite retrievals and to determine any sampling bias due to target conditions. To quantify the energetics of the surface-atmosphere system and the atmospheric processes, SMART-COMMIT instruments fall into three categories: flux radiometer, radiance sensor and in-situ probe. In this paper, we will demonstrate the capability of SMART-COMMIT in recent field campaigns (e.g., CRYSTAL-FACE, UAE 2, BASEASIA, NAMMA) that were designed and executed to study the compelling variability in temporal scale of both anthropogenic and natural aerosols (e.g., biomass-burning smoke, airborne dust) and cirrus clouds. We envision robust approaches in which well-collocated ground-based measurements and space-borne observations will greatly advance our knowledge of extensive aerosols and clouds.

  8. Introducing two Random Forest based methods for cloud detection in remote sensing images

    Science.gov (United States)

    Ghasemian, Nafiseh; Akhoondzadeh, Mehdi

    2018-07-01

    Cloud detection is a necessary phase in satellite images processing to retrieve the atmospheric and lithospheric parameters. Currently, some cloud detection methods based on Random Forest (RF) model have been proposed but they do not consider both spectral and textural characteristics of the image. Furthermore, they have not been tested in the presence of snow/ice. In this paper, we introduce two RF based algorithms, Feature Level Fusion Random Forest (FLFRF) and Decision Level Fusion Random Forest (DLFRF) to incorporate visible, infrared (IR) and thermal spectral and textural features (FLFRF) including Gray Level Co-occurrence Matrix (GLCM) and Robust Extended Local Binary Pattern (RELBP_CI) or visible, IR and thermal classifiers (DLFRF) for highly accurate cloud detection on remote sensing images. FLFRF first fuses visible, IR and thermal features. Thereafter, it uses the RF model to classify pixels to cloud, snow/ice and background or thick cloud, thin cloud and background. DLFRF considers visible, IR and thermal features (both spectral and textural) separately and inserts each set of features to RF model. Then, it holds vote matrix of each run of the model. Finally, it fuses the classifiers using the majority vote method. To demonstrate the effectiveness of the proposed algorithms, 10 Terra MODIS and 15 Landsat 8 OLI/TIRS images with different spatial resolutions are used in this paper. Quantitative analyses are based on manually selected ground truth data. Results show that after adding RELBP_CI to input feature set cloud detection accuracy improves. Also, the average cloud kappa values of FLFRF and DLFRF on MODIS images (1 and 0.99) are higher than other machine learning methods, Linear Discriminate Analysis (LDA), Classification And Regression Tree (CART), K Nearest Neighbor (KNN) and Support Vector Machine (SVM) (0.96). The average snow/ice kappa values of FLFRF and DLFRF on MODIS images (1 and 0.85) are higher than other traditional methods. The

  9. Cloud Motion in the GOCI COMS Ocean Colour Data

    Science.gov (United States)

    Robinson, Wayne D.; Franz, Bryan A.; Mannino, Antonio; Ahn, Jae-Hyun

    2016-01-01

    The Geostationary Ocean Colour Imager (GOCI) instrument, on Koreas Communications, Oceans, and Meteorological Satellite (COMS), can produce a spectral artefact arising from the motion of clouds the cloud is spatially shifted and the amount of shift varies by spectral band. The length of time it takes to acquire all eight GOCI bands for a given slot (portion of a scene) is sucient to require that cloud motion be taken into account to fully mask or correct the eects of clouds in all bands. Inter-band correlations can be used to measure the amount of cloud shift, which can then be used to adjust the cloud mask so that the union of all shifted masks can act as a mask for all bands. This approach reduces the amount of masking required versus a simple expansion of the mask in all directions away from clouds. Cloud motion can also aect regions with unidentied clouds thin or fractional clouds that evade the cloud identication process yielding degraded quality in retrieved ocean colour parameters. Areas with moving and unidentied clouds require more elaborate masking algo-rithms to remove these degraded retrievals. Correction for the eects of moving fractional clouds may also be possible. The cloud shift information can be used to determine cloud motion and thus wind at the cloud levels on sub-minute timescales. The benecial and negative eects of moving clouds should be con-sidered for any ocean colour instrument design and associated data processing plans.

  10. Estimation of radiative forcing and chore length of shallow convective clouds (SCC) based on broadband pyranometer measurement network

    Science.gov (United States)

    Shi, H.

    2017-12-01

    We presented a method to identify and calculate cloud radiative forcing (CRF) and horizontal chore length (L) of shallow convective clouds (SCC) using a network of 9 broadband pyranometers. The analyzing data was collected from the SCC campaign during two years summers (2015 2016) at Baiqi site over Inner Mongolia grassland. The network of pyranometers was operated across a spatial domain covering 42.16-42.30° N and 114.83-114.98° E. The SCC detection method was verified by observer reports and cameras, which showed that the detection method and human observations were in agreement about 75 %. The differences between the SCC detection method and human observations can be responsible for following factors: 1) small or dissipating clouds can be neglected for the value of 1 min of temporal resolution of pyranometer; 2) human observation recorded weather conditions four times every day; 3) SCC was indistinguishable from coexistence of SCC and Cirrus (Ci); 4) the SCC detection method is weighted toward clouds crossing the sun's path, while the human observer can view clouds over the entire sky. The deviation of L can be attributed to two factors: 1) the accuracy of wind speed at height of SCC and the ratio of horizontal and vertical length play a key role in determine values of L; 2) the effect of variance of solar zenith angle can be negligible. The downwelling shortwave CRF of SCC was -134.1 Wm-2. The average value of L of SCC was 1129 m. Besides, the distribution of normalized cloud chore length agreed well with power-law fit.

  11. Development of Two-Moment Cloud Microphysics for Liquid and Ice Within the NASA Goddard Earth Observing System Model (GEOS-5)

    Science.gov (United States)

    Barahona, Donifan; Molod, Andrea M.; Bacmeister, Julio; Nenes, Athanasios; Gettelman, Andrew; Morrison, Hugh; Phillips, Vaughan,; Eichmann, Andrew F.

    2013-01-01

    This work presents the development of a two-moment cloud microphysics scheme within the version 5 of the NASA Goddard Earth Observing System (GEOS-5). The scheme includes the implementation of a comprehensive stratiform microphysics module, a new cloud coverage scheme that allows ice supersaturation and a new microphysics module embedded within the moist convection parameterization of GEOS-5. Comprehensive physically-based descriptions of ice nucleation, including homogeneous and heterogeneous freezing, and liquid droplet activation are implemented to describe the formation of cloud particles in stratiform clouds and convective cumulus. The effect of preexisting ice crystals on the formation of cirrus clouds is also accounted for. A new parameterization of the subgrid scale vertical velocity distribution accounting for turbulence and gravity wave motion is developed. The implementation of the new microphysics significantly improves the representation of liquid water and ice in GEOS-5. Evaluation of the model shows agreement of the simulated droplet and ice crystal effective and volumetric radius with satellite retrievals and in situ observations. The simulated global distribution of supersaturation is also in agreement with observations. It was found that when using the new microphysics the fraction of condensate that remains as liquid follows a sigmoidal increase with temperature which differs from the linear increase assumed in most models and is in better agreement with available observations. The performance of the new microphysics in reproducing the observed total cloud fraction, longwave and shortwave cloud forcing, and total precipitation is similar to the operational version of GEOS-5 and in agreement with satellite retrievals. However the new microphysics tends to underestimate the coverage of persistent low level stratocumulus. Sensitivity studies showed that the simulated cloud properties are robust to moderate variation in cloud microphysical parameters

  12. Final scientific report for DOE award title: Improving the Representation of Ice Sedimentation Rates in Global Climate Models

    Energy Technology Data Exchange (ETDEWEB)

    Mitchell, David L. [Desert Research Institute, Reno, NV (United States)

    2013-09-05

    It is well known that cirrus clouds play a major role in regulating the earth’s climate, but the details of how this works are just beginning to be understood. This project targeted the main property of cirrus clouds that influence climate processes; the ice fall speed. That is, this project improves the representation of the mass-weighted ice particle fall velocity, Vm, in climate models, used to predict future climate on global and regional scales. Prior to 2007, the dominant sizes of ice particles in cirrus clouds were poorly understood, making it virtually impossible to predict how cirrus clouds interact with sunlight and thermal radiation. Due to several studies investigating the performance of optical probes used to measure the ice particle size distribution (PSD), as well as the remote sensing results from our last ARM project, it is now well established that the anomalously high concentrations of small ice crystals often reported prior to 2007 were measurement artifacts. Advances in the design and data processing of optical probes have greatly reduced these ice artifacts that resulted from the shattering of ice particles on the probe tips and/or inlet tube, and PSD measurements from one of these improved probes (the 2-dimensional Stereo or 2D-S probe) are utilized in this project to parameterize Vm for climate models. Our original plan in the proposal was to parameterize the ice PSD (in terms of temperature and ice water content) and ice particle mass and projected area (in terms of mass- and area-dimensional power laws or m-D/A-D expressions) since these are the microphysical properties that determine Vm, and then proceed to calculate Vm from these parameterized properties. But the 2D-S probe directly measures ice particle projected area and indirectly estimates ice particle mass for each size bin. It soon became apparent that the original plan would introduce more uncertainty in the Vm calculations

  13. A cloud shadow detection method combined with cloud height iteration and spectral analysis for Landsat 8 OLI data

    Science.gov (United States)

    Sun, Lin; Liu, Xinyan; Yang, Yikun; Chen, TingTing; Wang, Quan; Zhou, Xueying

    2018-04-01

    Although enhanced over prior Landsat instruments, Landsat 8 OLI can obtain very high cloud detection precisions, but for the detection of cloud shadows, it still faces great challenges. Geometry-based cloud shadow detection methods are considered the most effective and are being improved constantly. The Function of Mask (Fmask) cloud shadow detection method is one of the most representative geometry-based methods that has been used for cloud shadow detection with Landsat 8 OLI. However, the Fmask method estimates cloud height employing fixed temperature rates, which are highly uncertain, and errors of large area cloud shadow detection can be caused by errors in estimations of cloud height. This article improves the geometry-based cloud shadow detection method for Landsat OLI from the following two aspects. (1) Cloud height no longer depends on the brightness temperature of the thermal infrared band but uses a possible dynamic range from 200 m to 12,000 m. In this case, cloud shadow is not a specific location but a possible range. Further analysis was carried out in the possible range based on the spectrum to determine cloud shadow location. This effectively avoids the cloud shadow leakage caused by the error in the height determination of a cloud. (2) Object-based and pixel spectral analyses are combined to detect cloud shadows, which can realize cloud shadow detection from two aspects of target scale and pixel scale. Based on the analysis of the spectral differences between the cloud shadow and typical ground objects, the best cloud shadow detection bands of Landsat 8 OLI were determined. The combined use of spectrum and shape can effectively improve the detection precision of cloud shadows produced by thin clouds. Several cloud shadow detection experiments were carried out, and the results were verified by the results of artificial recognition. The results of these experiments indicated that this method can identify cloud shadows in different regions with correct

  14. EDITORIAL: Aerosol cloud interactions—a challenge for measurements and modeling at the cutting edge of cloud climate interactions

    Science.gov (United States)

    Spichtinger, Peter; Cziczo, Daniel J.

    2008-04-01

    Research in aerosol properties and cloud characteristics have historically been considered two separate disciplines within the field of atmospheric science. As such, it has been uncommon for a single researcher, or even research group, to have considerable expertise in both subject areas. The recent attention paid to global climate change has shown that clouds can have a considerable effect on the Earth's climate and that one of the most uncertain aspects in their formation, persistence, and ultimate dissipation is the role played by aerosols. This highlights the need for researchers in both disciplines to interact more closely than they have in the past. This is the vision behind this focus issue of Environmental Research Letters. Certain interactions between aerosols and clouds are relatively well studied and understood. For example, it is known that an increase in the aerosol concentration will increase the number of droplets in warm clouds, decrease their average size, reduce the rate of precipitation, and extend the lifetime. Other effects are not as well known. For example, persistent ice super-saturated conditions are observed in the upper troposphere that appear to exceed our understanding of the conditions required for cirrus cloud formation. Further, the interplay of dynamics versus effects purely attributed to aerosols remains highly uncertain. The purpose of this focus issue is to consider the current state of knowledge of aerosol/cloud interactions, to define the contemporary uncertainties, and to outline research foci as we strive to better understand the Earth's climate system. This focus issue brings together laboratory experiments, field data, and model studies. The authors address issues associated with warm liquid water, cold ice, and intermediate temperature mixed-phase clouds. The topics include the uncertainty associated with the effect of black carbon and organics, aerosol types of anthropogenic interest, on droplet and ice formation. Phases

  15. An efficient cloud detection method for high resolution remote sensing panchromatic imagery

    Science.gov (United States)

    Li, Chaowei; Lin, Zaiping; Deng, Xinpu

    2018-04-01

    In order to increase the accuracy of cloud detection for remote sensing satellite imagery, we propose an efficient cloud detection method for remote sensing satellite panchromatic images. This method includes three main steps. First, an adaptive intensity threshold value combined with a median filter is adopted to extract the coarse cloud regions. Second, a guided filtering process is conducted to strengthen the textural features difference and then we conduct the detection process of texture via gray-level co-occurrence matrix based on the acquired texture detail image. Finally, the candidate cloud regions are extracted by the intersection of two coarse cloud regions above and we further adopt an adaptive morphological dilation to refine them for thin clouds in boundaries. The experimental results demonstrate the effectiveness of the proposed method.

  16. Usage of Thin-Client/Server Architecture in Computer Aided Education

    Science.gov (United States)

    Cimen, Caghan; Kavurucu, Yusuf; Aydin, Halit

    2014-01-01

    With the advances of technology, thin-client/server architecture has become popular in multi-user/single network environments. Thin-client is a user terminal in which the user can login to a domain and run programs by connecting to a remote server. Recent developments in network and hardware technologies (cloud computing, virtualization, etc.)…

  17. LIDAR Developments at Clermont-Ferrand—France for Atmospheric Observation

    Science.gov (United States)

    Fréville, Patrick; Montoux, Nadège; Baray, Jean-Luc; Chauvigné, Aurélien; Réveret, François; Hervo, Maxime; Dionisi, Davide; Payen, Guillaume; Sellegri, Karine

    2015-01-01

    We present a Rayleigh-Mie-Raman LIDAR system in operation at Clermont-Ferrand (France) since 2008. The system provides continuous vertical tropospheric profiles of aerosols, cirrus optical properties and water vapour mixing ratio. Located in proximity to the high altitude Puy de Dôme station, labelled as the GAW global station PUY since August 2014, it is a useful tool to describe the boundary layer dynamics and hence interpret in situ measurements. This LIDAR has been upgraded with specific hardware/software developments and laboratory calibrations in order to improve the quality of the profiles, calibrate the depolarization ratio, and increase the automation of operation. As a result, we provide a climatological water vapour profile analysis for the 2009–2013 period, showing an annual cycle with a winter minimum and a summer maximum, consistent with in-situ observations at the PUY station. An overview of a preliminary climatology of cirrus clouds frequency shows that in 2014, more than 30% of days present cirrus events. Finally, the backscatter coefficient profile observed on 27 September 2014 shows the capacity of the system to detect cirrus clouds at 13 km altitude, in presence of aerosols below the 5 km altitude. PMID:25643059

  18. Condensed-phase biogenic-anthropogenic interactions with implications for cold cloud formation.

    Science.gov (United States)

    Charnawskas, Joseph C; Alpert, Peter A; Lambe, Andrew T; Berkemeier, Thomas; O'Brien, Rachel E; Massoli, Paola; Onasch, Timothy B; Shiraiwa, Manabu; Moffet, Ryan C; Gilles, Mary K; Davidovits, Paul; Worsnop, Douglas R; Knopf, Daniel A

    2017-08-24

    Anthropogenic and biogenic gas emissions contribute to the formation of secondary organic aerosol (SOA). When present, soot particles from fossil fuel combustion can acquire a coating of SOA. We investigate SOA-soot biogenic-anthropogenic interactions and their impact on ice nucleation in relation to the particles' organic phase state. SOA particles were generated from the OH oxidation of naphthalene, α-pinene, longifolene, or isoprene, with or without the presence of sulfate or soot particles. Corresponding particle glass transition (T g ) and full deliquescence relative humidity (FDRH) were estimated using a numerical diffusion model. Longifolene SOA particles are solid-like and all biogenic SOA sulfate mixtures exhibit a core-shell configuration (i.e. a sulfate-rich core coated with SOA). Biogenic SOA with or without sulfate formed ice at conditions expected for homogeneous ice nucleation, in agreement with respective T g and FDRH. α-pinene SOA coated soot particles nucleated ice above the homogeneous freezing temperature with soot acting as ice nuclei (IN). At lower temperatures the α-pinene SOA coating can be semisolid, inducing ice nucleation. Naphthalene SOA coated soot particles acted as ice nuclei above and below the homogeneous freezing limit, which can be explained by the presence of a highly viscous SOA phase. Our results suggest that biogenic SOA does not play a significant role in mixed-phase cloud formation and the presence of sulfate renders this even less likely. However, anthropogenic SOA may have an enhancing effect on cloud glaciation under mixed-phase and cirrus cloud conditions compared to biogenic SOA that dominate during pre-industrial times or in pristine areas.

  19. The Continuation of Cloud Statistics for NASA Climate Change Studies

    Science.gov (United States)

    Wylie, Donald P.

    2001-01-01

    expected, from 69-86% of the time. Satellite data also indicate frequent stratus, altostratus, and cirrus clouds (occurring 61% of the time) above the expected boundary layer fog and Arctic stratus clouds.

  20. Analysis of satellite data for sensor improvement (detection of severe storms from space)

    Science.gov (United States)

    Fujita, T. T.

    1984-01-01

    Stereo photography of clouds over southeast Asia was obtained using NOAA-7 and the Japanese GMS. Due to the breakdown of GMS2, GMS1, which had been retired, is being used as the replacement satellite. The launch of GMS should permit the US-Japan stereo experiment to be reactivated. The Lear jet experiment based at Grand Island, Nebraska was successful and provided data on the Redwood Falls clouds & Grand Island thunderstorm; an anvil-top cirrus deck; a circular thunderstorm; and jumping cirrus. The IR temperature field of the thunderstorm which induced the Andrews AFB microburst was analyzed with 1 C accuracy. The microburst and severe thunderstorm project is being planned.

  1. Skirt clouds associated with the soufriere eruption of 17 april 1979.

    Science.gov (United States)

    Barr, S

    1982-06-04

    A fortuitous and dramatic photograph of the Soufriere eruption column of 17 April 1979 displays a series of highly structured skirt clouds. The gentle distortion of thin, quasi-horizontal layers of moist air has been documented in meteorological situations. It is proposed that at St. Vincent subhorizontal layers of moist air were intensely deformed by the rapidly rising eruption column and were carried to higher altitudes, where they condensed to form the skirt clouds.

  2. Clouds enhance Greenland ice sheet mass loss

    Science.gov (United States)

    Van Tricht, Kristof; Gorodetskaya, Irina V.; L'Ecuyer, Tristan; Lenaerts, Jan T. M.; Lhermitte, Stef; Noel, Brice; Turner, David D.; van den Broeke, Michiel R.; van Lipzig, Nicole P. M.

    2015-04-01

    Clouds have a profound influence on both the Arctic and global climate, while they still represent one of the key uncertainties in climate models, limiting the fidelity of future climate projections. The potentially important role of thin liquid-containing clouds over Greenland in enhancing ice sheet melt has recently gained interest, yet current research is spatially and temporally limited, focusing on particular events, and their large scale impact on the surface mass balance remains unknown. We used a combination of satellite remote sensing (CloudSat - CALIPSO), ground-based observations and climate model (RACMO) data to show that liquid-containing clouds warm the Greenland ice sheet 94% of the time. High surface reflectivity (albedo) for shortwave radiation reduces the cloud shortwave cooling effect on the absorbed fluxes, while not influencing the absorption of longwave radiation. Cloud warming over the ice sheet therefore dominates year-round. Only when albedo values drop below ~0.6 in the coastal areas during summer, the cooling effect starts to overcome the warming effect. The year-round excess of energy due to the presence of liquid-containing clouds has an extensive influence on the mass balance of the ice sheet. Simulations using the SNOWPACK snow model showed not only a strong influence of these liquid-containing clouds on melt increase, but also on the increased sublimation mass loss. Simulations with the Community Earth System Climate Model for the end of the 21st century (2080-2099) show that Greenland clouds contain more liquid water path and less ice water path. This implies that cloud radiative forcing will be further enhanced in the future. Our results therefore urge the need for improving cloud microphysics in climate models, to improve future projections of ice sheet mass balance and global sea level rise.

  3. Laboratory and Cloud Chamber Studies of Formation Processes and Properties of Atmospheric Ice Particles

    Science.gov (United States)

    Leisner, T.; Abdelmonem, A.; Benz, S.; Brinkmann, M.; Möhler, O.; Rzesanke, D.; Saathoff, H.; Schnaiter, M.; Wagner, R.

    2009-04-01

    The formation of ice in tropospheric clouds controls the evolution of precipitation and thereby influences climate and weather via a complex network of dynamical and microphysical processes. At higher altitudes, ice particles in cirrus clouds or contrails modify the radiative energy budget by direct interaction with the shortwave and longwave radiation. In order to improve the parameterisation of the complex microphysical and dynamical processes leading to and controlling the evolution of tropospheric ice, laboratory experiments are performed at the IMK Karlsruhe both on a single particle level and in the aerosol and cloud chamber AIDA. Single particle experiments in electrodynamic levitation lend themselves to the study of the interaction between cloud droplets and aerosol particles under extremely well characterized and static conditions in order to obtain microphysical parameters as freezing nucleation rates for homogeneous and heterogeneous ice formation. They also allow the observation of the freezing dynamics and of secondary ice formation and multiplication processes under controlled conditions and with very high spatial and temporal resolution. The inherent droplet charge in these experiments can be varied over a wide range in order to assess the influence of the electrical state of the cloud on its microphysics. In the AIDA chamber on the other hand, these processes are observable under the realistic dynamic conditions of an expanding and cooling cloud- parcel with interacting particles and are probed simultaneously by a comprehensive set of analytical instruments. By this means, microphysical processes can be studied in their complex interplay with dynamical processes as for example coagulation or particle evaporation and growth via the Bergeron - Findeisen process. Shortwave scattering and longwave absorption properties of the nucleating and growing ice crystals are probed by in situ polarised laser light scattering measurements and infrared extinction

  4. Jupiter's Multi-level Clouds

    Science.gov (United States)

    1997-01-01

    Clouds and hazes at various altitudes within the dynamic Jovian atmosphere are revealed by multi-color imaging taken by the Near-Infrared Mapping Spectrometer (NIMS) onboard the Galileo spacecraft. These images were taken during the second orbit (G2) on September 5, 1996 from an early-morning vantage point 2.1 million kilometers (1.3 million miles) above Jupiter. They show the planet's appearance as viewed at various near-infrared wavelengths, with distinct differences due primarily to variations in the altitudes and opacities of the cloud systems. The top left and right images, taken at 1.61 microns and 2.73 microns respectively, show relatively clear views of the deep atmosphere, with clouds down to a level about three times the atmospheric pressure at the Earth's surface.By contrast, the middle image in top row, taken at 2.17 microns, shows only the highest altitude clouds and hazes. This wavelength is severely affected by the absorption of light by hydrogen gas, the main constituent of Jupiter's atmosphere. Therefore, only the Great Red Spot, the highest equatorial clouds, a small feature at mid-northern latitudes, and thin, high photochemical polar hazes can be seen. In the lower left image, at 3.01 microns, deeper clouds can be seen dimly against gaseous ammonia and methane absorption. In the lower middle image, at 4.99 microns, the light observed is the planet's own indigenous heat from the deep, warm atmosphere.The false color image (lower right) succinctly shows various cloud and haze levels seen in the Jovian atmosphere. This image indicates the temperature and altitude at which the light being observed is produced. Thermally-rich red areas denote high temperatures from photons in the deep atmosphere leaking through minimal cloud cover; green denotes cool temperatures of the tropospheric clouds; blue denotes cold of the upper troposphere and lower stratosphere. The polar regions appear purplish, because small-particle hazes allow leakage and reflectivity

  5. Observations of temporal change of nighttime cloud cover from Himawari 8 and ground-based sky camera over Chiba, Japan

    Science.gov (United States)

    Lagrosas, N.; Gacal, G. F. B.; Kuze, H.

    2017-12-01

    Detection of nighttime cloud from Himawari 8 is implemented using the difference of digital numbers from bands 13 (10.4µm) and 7 (3.9µm). The digital number difference of -1.39x104 can be used as a threshold to separate clouds from clear sky conditions. To look at observations from the ground over Chiba, a digital camera (Canon Powershot A2300) is used to take images of the sky every 5 minutes at an exposure time of 5s at the Center for Environmental Remote Sensing, Chiba University. From these images, cloud cover values are obtained using threshold algorithm (Gacal, et al, 2016). Ten minute nighttime cloud cover values from these two datasets are compared and analyzed from 29 May to 05 June 2017 (20:00-03:00 JST). When compared with lidar data, the camera can detect thick high level clouds up to 10km. The results show that during clear sky conditions (02-03 June), both camera and satellite cloud cover values show 0% cloud cover. During cloudy conditions (05-06 June), the camera shows almost 100% cloud cover while satellite cloud cover values range from 60 to 100%. These low values can be attributed to the presence of low-level thin clouds ( 2km above the ground) as observed from National Institute for Environmental Studies lidar located inside Chiba University. This difference of cloud cover values shows that the camera can produce accurate cloud cover values of low level clouds that are sometimes not detected by satellites. The opposite occurs when high level clouds are present (01-02 June). Derived satellite cloud cover shows almost 100% during the whole night while ground-based camera shows cloud cover values that range from 10 to 100% during the same time interval. The fluctuating values can be attributed to the presence of thin clouds located at around 6km from the ground and the presence of low level clouds ( 1km). Since the camera relies on the reflected city lights, it is possible that the high level thin clouds are not observed by the camera but is

  6. Processes that generate and deplete liquid water and snow in thin midlevel mixed-phase clouds

    Science.gov (United States)

    Smith, Adam J.; Larson, Vincent E.; Niu, Jianguo; Kankiewicz, J. Adam; Carey, Lawrence D.

    2009-06-01

    This paper uses a numerical model to investigate microphysical, radiative, and dynamical processes in mixed-phase altostratocumulus clouds. Three cloud cases are chosen for study, each of which was observed by aircraft during the fifth or ninth Complex Layered Cloud Experiment (CLEX). These three clouds are numerically modeled using large-eddy simulation (LES). The observed and modeled clouds consist of a mixed-phase layer with a quasi-adiabatic profile of liquid, and a virga layer below that consists of snow. A budget of cloud (liquid) water mixing ratio is constructed from the simulations. It shows that large-scale ascent/descent, radiative cooling/heating, turbulent transport, and microphysical processes are all significant. Liquid is depleted indirectly via depositional growth of snow (the Bergeron-Findeisen process). This process is more influential than depletion of liquid via accretional growth of snow. Also constructed is a budget of snow mixing ratio, which turns out to be somewhat simpler. It shows that snow grows by deposition in and below the liquid (mixed-phase) layer, and sublimates in the remainder of the virga region below. The deposition and sublimation are balanced primarily by sedimentation, which transports the snow from the growth region to the sublimation region below. In our three clouds, the vertical extent of the virga layer is influenced more by the profile of saturation ratio below the liquid (mixed-phase) layer than by the mixing ratio of snow at the top of the virga layer.

  7. Sampling hydrometeors in clouds in-situ - the replicator technique

    Science.gov (United States)

    Wex, Heike; Löffler, Mareike; Griesche, Hannes; Bühl, Johannes; Stratmann, Frank; Schmitt, Carl; Dirksen, Ruud; Reichardt, Jens; Wolf, Veronika; Kuhn, Thomas; Prager, Lutz; Seifert, Patric

    2017-04-01

    particle probe measurements, Atmos. Meas. Tech., 8(2), 761-777, doi:10.5194/amt-8-761-2015. Kuhn, T., and A. J. Heymsfield (2016), In situ balloon-borne ice particle imaging in high-latitude cirrus, Pure Appl. Geophys., 173(9), 3065-3084, doi:10.1007/s00024-016-1324-x. Miloshevich, L. M., and A. J. Heymsfield (1997), A balloon-borne continuous cloud particle replicator for measuring vertical profiles of cloud microphysical properties: Instrument design, performance, and collection efficiency analysis, J. Atmos. Oceanic Technol., 14(4), 753-768, doi:10.1175/1520-0426(1997)0142.0.co;2.

  8. Cloud System Evolution in the Trades—CSET

    Science.gov (United States)

    Albrecht, B. A.; Zuidema, P.; Bretherton, C. S.; Wood, R.; Ghate, V. P.

    2015-12-01

    The Cloud System Evolution in the Trades (CSET) study was designed to describe and explain the evolution of the boundary layer aerosol, cloud, and thermodynamic structures along trajectories within the north-Pacific trade-winds. The observational component of this study centered on 7 round-trips made by the NSF NCAR Gulfstream V (GV) between Sacramento, CA and Kona, Hawaii between 1 July and 15 August 2015. The CSET observing strategy used a Lagrangian approach to sample aerosol, cloud, and boundary layer properties upwind from the transition zone over the North Pacific and to resample these areas two days later. GFS forecast trajectories were used to plan the outbound flight to Hawaii and then updated forecast trajectories helped set the return flight plan two days later. Two key elements of the CSET observing system were the newly developed HIAPER Cloud Radar (HCR) and the HIAPER Spectral Resolution Lidar (HSRL). Together they provided unprecedented characterizations of aerosol, cloud and precipitation structures. A full suite of probes on the aircraft were used for in situ measurements of aerosol, cloud, precipitation, and turbulence properties during the low-level aircraft profiling portions of the flights. A wide range of boundary layer structures and aerosol, cloud, and precipitation conditions were observed during CSET. The cloud systems sampled included solid stratocumulus infused with smoke from Canadian wildfires, mesoscale (100-200 km) cloud-precipitation complexes, and patches of shallow cumuli in environments with accumulation mode aerosol concentrations of less than 50 cm-3. Ultra clean layers (UCLs with accumulation mode concentrations of less than 10 cm-3) were observed frequently near the top of the boundary layer and were often associated with shallow, gray (optically thin) layered clouds—features that are the subject of focused investigations by the CSET science team. The extent of aerosol, cloud, drizzle and boundary layer sampling that was

  9. LOSA-M3: multi-wave polarization scanning lidar for research of the troposphere and cirrus clouds

    Science.gov (United States)

    Kokhanenko, G. P.; Balin, Yu. S.; Klemasheva, M. G.; Penner, I. E.; Nasonov, S. V.; Samoilova, S. V.

    2017-11-01

    Lidar is designed to study the aerosol fields of the troposphere and the polarization characteristics of crystal clouds. Two laser wavelengths are used - 1064 and 532 nm, elastic scattering signals and spontaneous Raman scattering of nitrogen (607 nm) are recorded. Lidar is made in a mobile version, allowing its transportation by road and working under expeditionary conditions. The lidar transceiver is placed on a scanning column, which allows to change the direction of sounding within the upper hemisphere at a speed of 1 degree per second. The polarization characteristics of the transmitter and receiver can be changed by rotating the phase plates synchronously with the the laser pulses. In combination with conical scanning of the lidar, this makes it possible to detect the anisotropy of scattering and the possible azimuthal orientation of the crystal particles.

  10. Multilayer Perceptron Neural Networks Model for Meteosat Second Generation SEVIRI Daytime Cloud Masking

    Directory of Open Access Journals (Sweden)

    Alireza Taravat

    2015-02-01

    Full Text Available A multilayer perceptron neural network cloud mask for Meteosat Second Generation SEVIRI (Spinning Enhanced Visible and Infrared Imager images is introduced and evaluated. The model is trained for cloud detection on MSG SEVIRI daytime data. It consists of a multi-layer perceptron with one hidden sigmoid layer, trained with the error back-propagation algorithm. The model is fed by six bands of MSG data (0.6, 0.8, 1.6, 3.9, 6.2 and 10.8 μm with 10 hidden nodes. The multiple-layer perceptrons lead to a cloud detection accuracy of 88.96%, when trained to map two predefined values that classify cloud and clear sky. The network was further evaluated using sixty MSG images taken at different dates. The network detected not only bright thick clouds but also thin or less bright clouds. The analysis demonstrated the feasibility of using machine learning models of cloud detection in MSG SEVIRI imagery.

  11. Influence of inland aerosol loading on the monsoon over Indian subcontinent

    Science.gov (United States)

    Satyanarayana, M.; Krishnakumar, V.; Mahadevan Pillai, V. P.; Radhakrishnan, S. R.; Raghunath, K.

    2008-12-01

    The monsoon water cycle is the lifeline to over 60% of the world's population. The study on the behavioral change of Indian monsoon due to aerosol loading will help for the better understanding of Indian Monsoon. Aerosol system influences the atmosphere in two ways; it affects directly the radiation budget and indirectly provides condensation nuclei required for the clouds. The precipitation of the clouds in the monsoon season depends on the microphysical properties of the clouds. The effect of aerosol on cirrus clouds is being looked into through this work as an effort to study the role of aerosol on Indian Monsoon. The microphysical properties of high altitude clouds were obtained from the ground based lidar experiments at a low latitude station in the Indian subcontinent. Measurements during the Indian monsoon period from the inland station National Atmospheric Research Laboratory (NARL) Gadanki (13.5_ N, 79.2_ E), Tirupati, India were used for the investigation. The depolarization characteristics of the cirrus clouds were measured and the correlation between the depolarization and the precipitation characteristics were studied. The results obtained over a period of one year from January 1998 to December 1998 were presented.

  12. Air blast effects on nuclear power plants from vapor cloud explosions

    International Nuclear Information System (INIS)

    Wiedermann, A.H.; Eichler, T.V.; Kot, C.A.

    1981-01-01

    To assess the hazards arising from the explosion of a large flammable vapor cloud a method was developed for estimating the air blast field assuming a detonation wave is established. The actual 'pancake' like geometry typical for negatively buoyant vapor clouds is taken into account. The cloud height and other characteristics are generated by a global cloud dynamics model for negatively buoyant clouds. This model provides the cloud height as a function of fuel vapor concentration and other pertinent variables. A two-dimensional Eulerian shock hydrodynamic computer code is utilized to compute the blast environment in the neighborhood of the end of the cloud. The initial field is taken to be a quasi-steady explosion field calculated by the method of characteristics for a thin Prandtl-Meyer expansion wave, and the upward driven air shock representing the combustion and pressure relief processes inherent in the pancake geometry. This initial fields is established in the 2-D hydrocode at a time corresponding to the arrival of the detonation front at the cloud edge. It is to be noted that the local blast environment scales with respect to the cloud height. The computational results indicate that it is essential to include the influence of cloud geometry for the realistic prediction of the air blast hazard arising from the explosion of a negatively buoyant vapor cloud. (orig./HP)

  13. The Umov effect in application to an optically thin two-component cloud of cosmic dust

    Science.gov (United States)

    Zubko, Evgenij; Videen, Gorden; Zubko, Nataliya; Shkuratov, Yuriy

    2018-04-01

    The Umov effect is an inverse correlation between linear polarization of the sunlight scattered by an object and its geometric albedo. The Umov effect has been observed in particulate surfaces, such as planetary regoliths, and recently it also was found in single-scattering small dust particles. Using numerical modeling, we study the Umov effect in a two-component mixture of small irregularly shaped particles. Such a complex chemical composition is suggested in cometary comae and other types of optically thin clouds of cosmic dust. We find that the two-component mixtures of small particles also reveal the Umov effect regardless of the chemical composition of their end-member components. The interrelation between log(Pmax) and log(A) in a two-component mixture of small irregularly shaped particles appears either in a straight linear form or in a slightly curved form. This curvature tends to decrease while the index n in a power-law size distribution r-n grows; at n > 2.5, the log(Pmax)-log(A) diagrams are almost straight linear in appearance. The curvature also noticeably decreases with the packing density of constituent material in irregularly shaped particles forming the mixture. That such a relation exists suggest the Umov effect may also be observed in more complex mixtures.

  14. EVIDENCE FOR CLOUD-CLOUD COLLISION AND PARSEC-SCALE STELLAR FEEDBACK WITHIN THE L1641-N REGION

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, Fumitaka [National Astronomical Observatory, Mitaka, Tokyo 181-8588 (Japan); Miura, Tomoya; Nishi, Ryoichi [Department of Physics, Niigata University, 8050 Ikarashi-2, Niigata 950-2181 (Japan); Kitamura, Yoshimi; Akashi, Toshiya; Ikeda, Norio [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Sagamihara, Kanagawa 229-8510 (Japan); Shimajiri, Yoshito; Kawabe, Ryohei [Nobeyama Radio Observatory, Nobeyama, Minamimaki, Minamisaku, Nagano 384-1305 (Japan); Tsukagoshi, Takashi [Department of Astronomy, School of Science, University of Tokyo, Bunkyo, Tokyo 113-0033 (Japan); Momose, Munetake [Institute of Astrophysics and Planetary Sciences, Ibaraki University, Bunkyo 2-1-1, Mito 310-8512 (Japan); Li Zhiyun, E-mail: fumitaka.nakamura@nao.ac.jp [Department of Astronomy, University of Virginia, P.O. Box 400325, Charlottesville, VA 22904 (United States)

    2012-02-10

    We present high spatial resolution {sup 12}CO (J = 1-0) images taken by the Nobeyama 45 m telescope toward a 48' Multiplication-Sign 48' area, including the L1641-N cluster. The effective spatial resolution of the maps is 21'', corresponding to 0.04 pc at a distance of 400 pc. A recent 1.1 mm dust continuum map reveals that the dense gas is concentrated in several thin filaments. We find that a few dust filaments are located at the parts where {sup 12}CO (J = 1-0) emission drops sharply. Furthermore, the filaments have two components with different velocities. The velocity difference between the two components is about 3 km s{sup -1}, corresponding to a Mach number of 10, significantly larger than the local turbulent velocity in the cloud. These facts imply that the collision of the two components (hereafter, the cloud-cloud collision) possibly contributed to the formation of these filaments. Since the two components appear to overlap toward the filaments on the plane of the sky, the collision may have occurred almost along the line of sight. Star formation in the L1641-N cluster was probably triggered by such a collision. We also find several parsec-scale CO shells whose centers are close to either the L1641-N cluster or the V 380 Ori cluster. We propose that these shells were created by multiple winds and/or outflows from cluster young stellar objects, i.e., 'protocluster winds'. One exceptional dust filament located at the western cloud edge lies along a shell; it is presumably part of the expanding shell. Both the cloud-cloud collision and protocluster winds are likely to influence the cloud structure and kinematics in this region.

  15. Forty-year (1971-2010) semiquantitative observations of visibility-cloud-precipitation in Korea and its implication for aerosol effects on regional climate.

    Science.gov (United States)

    Lee, Hyo-Jung; Kang, Jeong-Eon; Kim, Cheol-Hee

    2015-07-01

    Forty-year (1971-2010) observations of cloud cover and types have been analyzed, and implications on the effects of aerosol-cloud feedback were explored. Cloud cover and types have been observed over Korea on the basis of visible (human-eye) attributes without any change in official observing instructions. Visibility has been used as an ongoing proxy measure of aerosol concentrations, and observed meteorological variables such as sunshine duration and precipitation have been employed to analyze aerosol causes and implications for urban and regional climate. The analysis revealed persistent decade-long patterns in Korea: steadily reduced visibility (-0.37 km/yr), consistently decreasing sunshine duration (-0.06 %/hr), and declining occurrence of light precipitation. Spatial distributions of sunshine duration and visibility exhibited more localized variations in the early period (1971-1990), and tended to be more uniform throughout Korea over more recent years (1991-2010), implying the recent regional-scale impact of cloud change over northeast Asia. Cloud analysis results showed that the five most common types were stratocumulus (Sc), cirrus (Ci), altostratus (As), stratus (St), and nimbostratus (Ns), with occurrences of 33%, 17%, 17%, 9%, and 8%, respectively. Occurrence of rarely precipitating or nonprecipitating low-level Sc clouds showed an increasing (+0.34%/yr), but no (or only minor) effects of aerosols on heavy precipitation such as cumulus cloud types were found. Cloud cover in the range of 6/10 to 8/10 units has increased by 31.5±6.5%, and occurrences of both cloud-free (~2/10 units) and overcast (~8/10 units) conditions have decreased. Aerosol-cloud-precipitations interaction is highly nonlinear due to feedback mechanisms. One reason for our poor understanding of the aerosol-cloud feedback study is the variety of cloud types with their complicated responses to variations of the aerosol. Our study on the response of precipitation-cloud to long

  16. External Fuel Tank, Clouds and Earth Limb

    Science.gov (United States)

    1991-01-01

    It's fuel consumed, the expendable external fuel tank was jettisoned moments earlier from the Space Shuttle Atlantis and now begins its plunge back to Earth (20.5N, 36.0W). Backdropped against the void of space and the thin blue line of the Earth's airglow above the Earth Limb, the harshness of the blackness of space is softened by the fleeciness of Earth's cloud cover below.

  17. Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band

    Science.gov (United States)

    Wind, Galina; Platnick, Steven; King, Michael D.; Hubanks, Paul A,; Pavolonis, Michael J.; Heidinger, Andrew K.; Yang, Ping; Baum, Bryan A.

    2009-01-01

    Data Collection 5 processing for the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the NASA Earth Observing System EOS Terra and Aqua spacecraft includes an algorithm for detecting multilayered clouds in daytime. The main objective of this algorithm is to detect multilayered cloud scenes, specifically optically thin ice cloud overlying a lower-level water cloud, that presents difficulties for retrieving cloud effective radius using single layer plane-parallel cloud models. The algorithm uses the MODIS 0.94 micron water vapor band along with CO2 bands to obtain two above-cloud precipitable water retrievals, the difference of which, in conjunction with additional tests, provides a map of where multilayered clouds might potentially exist. The presence of a multilayered cloud results in a large difference in retrievals of above-cloud properties between the CO2 and the 0.94 micron methods. In this paper the MODIS multilayered cloud algorithm is described, results of using the algorithm over example scenes are shown, and global statistics for multilayered clouds as observed by MODIS are discussed. A theoretical study of the algorithm behavior for simulated multilayered clouds is also given. Results are compared to two other comparable passive imager methods. A set of standard cloudy atmospheric profiles developed during the course of this investigation is also presented. The results lead to the conclusion that the MODIS multilayer cloud detection algorithm has some skill in identifying multilayered clouds with different thermodynamic phases

  18. Leading and Trailing Anvil Clouds of West African Squall Lines

    Science.gov (United States)

    Centrone, Jasmine; Houze, Robert A.

    2011-01-01

    The anvil clouds of tropical squall-line systems over West Africa have been examined using cloud radar data and divided into those that appear ahead of the leading convective line and those on the trailing side of the system. The leading anvils are generally higher in altitude than the trailing anvil, likely because the hydrometeors in the leading anvil are directly connected to the convective updraft, while the trailing anvil generally extends out of the lower-topped stratiform precipitation region. When the anvils are subdivided into thick, medium, and thin portions, the thick leading anvil is seen to have systematically higher reflectivity than the thick trailing anvil, suggesting that the leading anvil contains numerous larger ice particles owing to its direct connection to the convective region. As the leading anvil ages and thins, it retains its top. The leading anvil appears to add hydrometeors at the highest altitudes, while the trailing anvil is able to moisten a deep layer of the atmosphere.

  19. Development and Testing of a Life Cycle Model and a Parameterization of Thin Mid-level Stratiform Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, Steven K.

    2008-03-03

    We used a cloud-resolving model (a detailed computer model of cloud systems) to evaluate and improve the representation of clouds in global atmospheric models used for numerical weather prediction and climate modeling. We also used observations of the atmospheric state, including clouds, made at DOE's Atmospheric Radiation Measurement (ARM) Program's Climate Research Facility located in the Southern Great Plains (Kansas and Oklahoma) during Intensive Observation Periods to evaluate our detailed computer model as well as a single-column version of a global atmospheric model used for numerical weather prediction (the Global Forecast System of the NOAA National Centers for Environmental Prediction). This so-called Single-Column Modeling approach has proved to be a very effective method for testing the representation of clouds in global atmospheric models. The method relies on detailed observations of the atmospheric state, including clouds, in an atmospheric column comparable in size to a grid column used in a global atmospheric model. The required observations are made by a combination of in situ and remote sensing instruments. One of the greatest problems facing mankind at the present is climate change. Part of the problem is our limited ability to predict the regional patterns of climate change. In order to increase this ability, uncertainties in climate models must be reduced. One of the greatest of these uncertainties is the representation of clouds and cloud processes. This project, and ARM taken as a whole, has helped to improve the representation of clouds in global atmospheric models.

  20. Cloud Infrastructure & Applications - CloudIA

    Science.gov (United States)

    Sulistio, Anthony; Reich, Christoph; Doelitzscher, Frank

    The idea behind Cloud Computing is to deliver Infrastructure-as-a-Services and Software-as-a-Service over the Internet on an easy pay-per-use business model. To harness the potentials of Cloud Computing for e-Learning and research purposes, and to small- and medium-sized enterprises, the Hochschule Furtwangen University establishes a new project, called Cloud Infrastructure & Applications (CloudIA). The CloudIA project is a market-oriented cloud infrastructure that leverages different virtualization technologies, by supporting Service-Level Agreements for various service offerings. This paper describes the CloudIA project in details and mentions our early experiences in building a private cloud using an existing infrastructure.

  1. Single-Column Model Simulations of Subtropical Marine Boundary-Layer Cloud Transitions Under Weakening Inversions: SCM SIMULATIONS OF CLOUD TRANSITIONS

    Energy Technology Data Exchange (ETDEWEB)

    Neggers, R. A. J. [Institute for Geophysics and Meteorology, Department of Geosciences, University of Cologne, Cologne Germany; Royal Netherlands Meteorological Institute, De Bilt The Netherlands; Ackerman, A. S. [NASA Goddard Institute for Space Studies, New York NY USA; Angevine, W. M. [CIRES, University of Colorado, Boulder CO USA; NOAA Earth System Research Laboratory, Boulder CO USA; Bazile, E. [Météo France/CNRM, Toulouse France; Beau, I. [Météo France/ENM, Toulouse France; Blossey, P. N. [Department of Atmospheric Sciences, University of Washington, Seattle WA USA; Boutle, I. A. [Met Office, Exeter UK; de Bruijn, C. [Royal Netherlands Meteorological Institute, De Bilt The Netherlands; Cheng, A. [NOAA Center for Weather and Climate Prediction, Environmental Modeling Center, College Park MD USA; van der Dussen, J. [Department of Geoscience and Remote Sensing, Delft University of Technology, Delft The Netherlands; Fletcher, J. [Department of Atmospheric Sciences, University of Washington, Seattle WA USA; University of Leeds, Leeds UK; Dal Gesso, S. [Institute for Geophysics and Meteorology, Department of Geosciences, University of Cologne, Cologne Germany; Royal Netherlands Meteorological Institute, De Bilt The Netherlands; Jam, A. [Météo-France/CNRM & CNRS/IPSL/LMD, Toulouse France; Kawai, H. [Meteorological Research Institute, Climate Research Department, Japan Meteorological Agency, Tsukuba Japan; Cheedela, S. K. [Department of Atmosphere in the Earth System, Max-Planck Institut für Meteorologie, Hamburg Germany; Larson, V. E. [Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee WI USA; Lefebvre, M. -P. [Météo-France/CNRM & CNRS/IPSL/LMD, Toulouse France; Lock, A. P. [Met Office, Exeter UK; Meyer, N. R. [Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee WI USA; de Roode, S. R. [Department of Geoscience and Remote Sensing, Delft University of Technology, Delft The Netherlands; de Rooy, W. [Royal Netherlands Meteorological Institute, De Bilt The Netherlands; Sandu, I. [Section of Physical Aspects, European Centre for Medium-Range Weather Forecasts, Reading UK; Xiao, H. [University of California at Los Angeles, Los Angeles CA USA; Pacific Northwest National Laboratory, Richland WA USA; Xu, K. -M. [NASA Langley Research Centre, Hampton VI USA

    2017-10-01

    Results are presented of the GASS/EUCLIPSE single-column model inter-comparison study on the subtropical marine low-level cloud transition. A central goal is to establish the performance of state-of-the-art boundary-layer schemes for weather and climate mod- els for this cloud regime, using large-eddy simulations of the same scenes as a reference. A novelty is that the comparison covers four different cases instead of one, in order to broaden the covered parameter space. Three cases are situated in the North-Eastern Pa- cific, while one reflects conditions in the North-Eastern Atlantic. A set of variables is considered that reflects key aspects of the transition process, making use of simple met- rics to establish the model performance. Using this method some longstanding problems in low level cloud representation are identified. Considerable spread exists among models concerning the cloud amount, its vertical structure and the associated impact on radia- tive transfer. The sign and amplitude of these biases differ somewhat per case, depending on how far the transition has progressed. After cloud breakup the ensemble median ex- hibits the well-known “too few too bright” problem. The boundary layer deepening rate and its state of decoupling are both underestimated, while the representation of the thin capping cloud layer appears complicated by a lack of vertical resolution. Encouragingly, some models are successful in representing the full set of variables, in particular the verti- cal structure and diurnal cycle of the cloud layer in transition. An intriguing result is that the median of the model ensemble performs best, inspiring a new approach in subgrid pa- rameterization.

  2. Plasma cloud expansion in the ionosphere: Three-dimensional simulation

    International Nuclear Information System (INIS)

    Ma, T.Z.; Schunk, R.W.

    1991-01-01

    A three-dimensional time-dependent model was developed to study the characteristics of a plasma cloud expansion in the ionosphere. The electrostatic potential is solved in three dimensions taking into account the large parallel-to-perpendicular conductivity ratio. Three sample simulations are presented: a plasma expansion of a nearly spherical 1 km Ba + cloud, both with and without a background neutral wind, and a long thin Ba + cloudlet. With or without the neutral wind the effective potential, which is different from the electrostatic potential if the electron temperature is included, is constant along the magnetic field for typical cloud sizes. The expanding plasma clouds become elongated in the magnetic field direction. The released Ba + ions push the background O + ions away along the magnetic field as they expand. Consequently, a hole develops in the background O + distribution at the cloud location and on the two sides of the cloud O + bumps form. The entire three-dimensional structure, composed of the plasma cloud and the background plasma embedded in the cloud, slowly rotates about the magnetic field, with the ions and electrons rotating in opposite directions. The cloud configuration takes the shape of a rotating ellipsoid with a major axis that expands with time. Perpendicular to the magnetic field, in the absence of the neutral wind the motion is insignificant compared to the parallel motion. With a neutral wind the motion along the magnetic field and the rotational motion are qualitatively unchanged, but the cloud and the perturbed background structure move in the direction of the wind, with a speed less than the wind speed. Perpendicular to the magnetic field the deformation of the cloud indiced by the wind is characterized by steepening of the backside

  3. Factors controlling upper tropospheric relative humidity

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2004-03-01

    Full Text Available Factors controlling the distribution of relative humidity in the absence of clouds are examined, with special emphasis on relative humidity over ice (RHI under upper tropospheric and lower stratospheric conditions. Variations of temperature are the key determinant for the distribution of RHI, followed by variations of the water vapor mixing ratio. Multiple humidity modes, generated by mixing of different air masses, may contribute to the overall distribution of RHI, in particular below ice saturation. The fraction of air that is supersaturated with respect to ice is mainly determined by the distribution of temperature. The nucleation of ice in cirrus clouds determines the highest relative humdity that can be measured outside of cirrus clouds. While vertical air motion and ice microphysics determine the slope of the distributions of RHI, as shown in a separate study companion (Haag et al., 2003, clouds are not required to explain the main features of the distributions of RHI below the ice nucleation threshold. Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere – composition and chemistry; general or miscellaneous

  4. Factors controlling upper tropospheric relative humidity

    Directory of Open Access Journals (Sweden)

    B. Kärcher

    2004-03-01

    Full Text Available Factors controlling the distribution of relative humidity in the absence of clouds are examined, with special emphasis on relative humidity over ice (RHI under upper tropospheric and lower stratospheric conditions. Variations of temperature are the key determinant for the distribution of RHI, followed by variations of the water vapor mixing ratio. Multiple humidity modes, generated by mixing of different air masses, may contribute to the overall distribution of RHI, in particular below ice saturation. The fraction of air that is supersaturated with respect to ice is mainly determined by the distribution of temperature. The nucleation of ice in cirrus clouds determines the highest relative humdity that can be measured outside of cirrus clouds. While vertical air motion and ice microphysics determine the slope of the distributions of RHI, as shown in a separate study companion (Haag et al., 2003, clouds are not required to explain the main features of the distributions of RHI below the ice nucleation threshold.

    Key words. Atmospheric composition and structure (pressure, density and temperature; troposphere – composition and chemistry; general or miscellaneous

  5. Dusty Cloud Acceleration by Radiation Pressure in Rapidly Star-forming Galaxies

    Science.gov (United States)

    Zhang, Dong; Davis, Shane W.; Jiang, Yan-Fei; Stone, James M.

    2018-02-01

    We perform two-dimensional and three-dimensional radiation hydrodynamic simulations to study cold clouds accelerated by radiation pressure on dust in the environment of rapidly star-forming galaxies dominated by infrared flux. We utilize the reduced speed of light approximation to solve the frequency-averaged, time-dependent radiative transfer equation. We find that radiation pressure is capable of accelerating the clouds to hundreds of kilometers per second while remaining dense and cold, consistent with observations. We compare these results to simulations where acceleration is provided by entrainment in a hot wind, where the momentum injection of the hot flow is comparable to the momentum in the radiation field. We find that the survival time of the cloud accelerated by the radiation field is significantly longer than that of a cloud entrained in a hot outflow. We show that the dynamics of the irradiated cloud depends on the initial optical depth, temperature of the cloud, and intensity of the flux. Additionally, gas pressure from the background may limit cloud acceleration if the density ratio between the cloud and background is ≲ {10}2. In general, a 10 pc-scale optically thin cloud forms a pancake structure elongated perpendicular to the direction of motion, while optically thick clouds form a filamentary structure elongated parallel to the direction of motion. The details of accelerated cloud morphology and geometry can also be affected by other factors, such as the cloud lengthscale, reduced speed of light approximation, spatial resolution, initial cloud structure, and dimensionality of the run, but these have relatively little affect on the cloud velocity or survival time.

  6. Low Secondary Electron Yield Carbon Coatings for Electron Cloud Mitigation in Modern Particle Accelerators

    CERN Document Server

    Yin Vallgren, Christina; Taborelli, Mauro

    2011-01-01

    In order to upgrade the Large Hadron Collider (LHC) performance to be oriented towards higher energies and higher intensities in the future, a series of improvements of the existing LHC injectors is planned to take place over the next few years. Electron cloud effects are expected to be enhanced and play a central role in limiting the performance of the machines of the CERN complex. Electron cloud phenomena in beam pipes are based on electron multiplication and can be sufficiently suppressed if the Secondary Electron Yield (SEY) of the surface of the beam pipes is lower than unity. The goal of this work is to find and study a thin film coating with reliably low initial Secondary Electron Yield (SEY), which does not require bake-out or conditioning in situ with photons, is robust again air exposure and can easily be applied in the beam pipes of accelerators. In this work, amorphous carbon (a-C) thin films have been prepared by DC magnetron sputtering for electron cloud mitigation and antimultipactor applicatio...

  7. Formation of Massive Molecular Cloud Cores by Cloud-cloud Collision

    OpenAIRE

    Inoue, Tsuyoshi; Fukui, Yasuo

    2013-01-01

    Recent observations of molecular clouds around rich massive star clusters including NGC3603, Westerlund 2, and M20 revealed that the formation of massive stars could be triggered by a cloud-cloud collision. By using three-dimensional, isothermal, magnetohydrodynamics simulations with the effect of self-gravity, we demonstrate that massive, gravitationally unstable, molecular cloud cores are formed behind the strong shock waves induced by the cloud-cloud collision. We find that the massive mol...

  8. Small-scale variability in tropical tropopause layer humidity

    Science.gov (United States)

    Jensen, E. J.; Ueyama, R.; Pfister, L.; Karcher, B.; Podglajen, A.; Diskin, G. S.; DiGangi, J. P.; Thornberry, T. D.; Rollins, A. W.; Bui, T. V.; Woods, S.; Lawson, P.

    2016-12-01

    Recent advances in statistical parameterizations of cirrus cloud processes for use in global models are highlighting the need for information about small-scale fluctuations in upper tropospheric humidity and the physical processes that control the humidity variability. To address these issues, we have analyzed high-resolution airborne water vapor measurements obtained in the Airborne Tropical TRopopause EXperiment over the tropical Pacific between 14 and 20 km. Using accurate and precise 1-Hz water vapor measurements along approximately-level aircraft flight legs, we calculate structure functions spanning horizontal scales ranging from about 0.2 to 50 km, and we compare the water vapor variability in the lower (about 14 km) and upper (16-19 km) Tropical Tropopause Layer (TTL). We also compare the magnitudes and scales of variability inside TTL cirrus versus in clear-sky regions. The measurements show that in the upper TTL, water vapor concentration variance is stronger inside cirrus than in clear-sky regions. Using simulations of TTL cirrus formation, we show that small variability in clear-sky humidity is amplified by the strong sensitivity of ice nucleation rate to supersaturation, which results in highly-structured clouds that subsequently drive variability in the water vapor field. In the lower TTL, humidity variability is correlated with recent detrainment from deep convection. The structure functions indicate approximately power-law scaling with spectral slopes ranging from about -5/3 to -2.

  9. The Role of Emissivity in the Detection of Arctic Night Clouds

    Directory of Open Access Journals (Sweden)

    Filomena Romano

    2017-04-01

    Full Text Available Detection of clouds over polar areas from satellite radiometric measurements in the visible and IR atmospheric window region is rather difficult because of the high albedo of snow, possible ice covered surfaces, very low humidity, and the usual presence of atmospheric temperature inversion. Cold and highly reflective polar surfaces provide little thermal and visible contrast between clouds and the background surface. Moreover, due to the presence of temperature inversion, clouds are not always identifiable as being colder than the background. In addition, low humidity often causes polar clouds to be optically thin. Finally, polar clouds are usually composed of a mixture of ice and water, which leads to an unclear spectral signature. Single and bi-spectral threshold methods are sometimes inappropriate due to a large variability of surface emissivity and cloud conditions. The objective of this study is to demonstrate the crucial role played by surface emissivity in the detection of polar winter clouds and the potential improvement offered by infrared hyperspectral observations, such as from the Infrared Atmospheric Sounding Interferometer (IASI. In this paper a new approach for cloud detection is proposed and validated exploiting active measurements from satellite sensors, i.e., the CloudSat cloud profiling radar (CPR and the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP on board the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO. For a homogenous IASI field of view (FOVs, the proposed cloud detection scheme tallies with the combined CPR and CALIOP product in classifying 98.11% of the FOVs as cloudy and also classifies 97.54% of the FOVs as clear. The Hansen Kuipers discriminant reaches 0.95.

  10. Surface-potential undulation of Alq3 thin films prepared on ITO, Au, and n-Si.

    Science.gov (United States)

    Ozasa, Kazunari; Ito, Hiromi; Maeda, Mizuo; Hara, Masahiko

    2012-01-01

    The surface potential (SP) morphology on thin films of tris(8-hydroxyquinolinato) aluminum (Alq3) was investigated with Kelvin probe force microscopy. Thin Alq3 films of 100 nm were prepared on ITO/glass substrates, Au/mica substrates, and n-Si substrates. Cloud-like morphologies of the SP undulation with 200-400 nm in lateral size were observed for all three types of the substrates. New larger peaks were observed in the cloud-like morphologies when the surfaces were exposed shortly to a light, while the SP average was reduced monotonically. The nonuniform distribution of charged traps and mobility was deduced from the SP undulation morphology and its photoexposure dependences.

  11. Relationship between cloud radiative forcing, cloud fraction and cloud albedo, and new surface-based approach for determining cloud albedo

    OpenAIRE

    Y. Liu; W. Wu; M. P. Jensen; T. Toto

    2011-01-01

    This paper focuses on three interconnected topics: (1) quantitative relationship between surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo; (2) surfaced-based approach for measuring cloud albedo; (3) multiscale (diurnal, annual and inter-annual) variations and covariations of surface shortwave cloud radiative forcing, cloud fraction, and cloud albedo. An analytical expression is first derived to quantify the relationship between cloud radiative forcing, cloud fractio...

  12. Wireless Cloud Computing on Guided Missile Destroyers: A Business Case Analysis

    Science.gov (United States)

    2013-06-01

    Cloud Computing Network (WCCN) onboard Guided Missile Destroyers (DDGs) utilizing tablet computers. It compares the life cycle costs of WCCNs utilizing tablet computers over a mixed network of thin clients and desktop computers. Currently, the Consolidated Afloat Networks and Enterprise Services (CANES) program will install both thin clients and desktops on board new and old DDGs to implement the unclassified portion of its network. The main cost benefits of tablets will be realized through energy savings and an increase in productivity. The net present value of tablets is

  13. Aerosol-Induced Changes of Convective Cloud Anvils Produce Strong Climate Warming

    Science.gov (United States)

    Koren, I.; Remer, L. A.; Altaratz, O.; Martins, J. V.; Davidi, A.

    2010-01-01

    The effect of aerosol on clouds poses one of the largest uncertainties in estimating the anthropogenic contribution to climate change. Small human-induced perturbations to cloud characteristics via aerosol pathways can create a change in the top-of-atmosphere radiative forcing of hundreds of Wm(exp-2) . Here we focus on links between aerosol and deep convective clouds of the Atlantic and Pacific Intertropical Convergence Zones, noting that the aerosol environment in each region is entirely different. The tops of these vertically developed clouds consisting of mostly ice can reach high levels of the atmosphere, overshooting the lower stratosphere and reaching altitudes greater than 16 km. We show a link between aerosol, clouds and the free atmosphere wind profile that can change the magnitude and sign of the overall climate radiative forcing. We find that increased aerosol loading is associated with taller cloud towers and anvils. The taller clouds reach levels of enhanced wind speeds that act to spread and thin the anvi1 clouds, increasing areal coverage and decreasing cloud optical depth. The radiative effect of this transition is to create a positive radiative forcing (warming) at top-of-atmosphere. Furthermore we introduce the cloud optical depth (r), cloud height (Z) forcing space and show that underestimation of radiative forcing is likely to occur in cases of non homogenous clouds. Specifically, the mean radiative forcing of towers and anvils in the same scene can be several times greater than simply calculating the forcing from the mean cloud optical depth in the scene. Limitations of the method are discussed, alternative sources of aerosol loading are tested and meteorological variance is restricted, but the trend of taller clouds; increased and thinner anvils associated with increased aerosol loading remains robust through all the different tests and perturbations.

  14. Aerosol-induced changes of convective cloud anvils produce strong climate warming

    Directory of Open Access Journals (Sweden)

    I. Koren

    2010-05-01

    Full Text Available The effect of aerosol on clouds poses one of the largest uncertainties in estimating the anthropogenic contribution to climate change. Small human-induced perturbations to cloud characteristics via aerosol pathways can create a change in the top-of-atmosphere radiative forcing of hundreds of Wm−2. Here we focus on links between aerosol and deep convective clouds of the Atlantic and Pacific Intertropical Convergence Zones, noting that the aerosol environment in each region is entirely different. The tops of these vertically developed clouds consisting of mostly ice can reach high levels of the atmosphere, overshooting the lower stratosphere and reaching altitudes greater than 16 km. We show a link between aerosol, clouds and the free atmosphere wind profile that can change the magnitude and sign of the overall climate radiative forcing.

    We find that increased aerosol loading is associated with taller cloud towers and anvils. The taller clouds reach levels of enhanced wind speeds that act to spread and thin the anvil clouds, increasing areal coverage and decreasing cloud optical depth. The radiative effect of this transition is to create a positive radiative forcing (warming at top-of-atmosphere.

    Furthermore we introduce the cloud optical depth (τ, cloud height (Z forcing space and show that underestimation of radiative forcing is likely to occur in cases of non homogenous clouds. Specifically, the mean radiative forcing of towers and anvils in the same scene can be several times greater than simply calculating the forcing from the mean cloud optical depth in the scene.

    Limitations of the method are discussed, alternative sources of aerosol loading are tested and meteorological variance is restricted, but the trend of taller clouds, increased and thinner anvils associated with increased aerosol loading remains robust through all the different tests and perturbations.

  15. On the observation of unusual high concentration of small chain-like aggregate ice crystals and large ice water contents near the top of a deep convective cloud during the CIRCLE-2 experiment

    Directory of Open Access Journals (Sweden)

    J.-F. Gayet

    2012-01-01

    Full Text Available During the CIRCLE-2 experiment carried out over Western Europe in May 2007, combined in situ and remote sensing observations allowed to describe microphysical and optical properties near-top of an overshooting convective cloud (11 080 m/−58 °C. The airborne measurements were performed with the DLR Falcon aircraft specially equipped with a unique set of instruments for the extensive in situ cloud measurements of microphysical and optical properties (Polar Nephelometer, FSSP-300, Cloud Particle Imager and PMS 2-D-C and nadir looking remote sensing observations (DLR WALES Lidar. Quasi-simultaneous space observations from MSG/SEVIRI, CALIPSO/CALIOP-WFC-IIR and CloudSat/CPR combined with airborne RASTA radar reflectivity from the French Falcon aircraft flying above the DLR Falcon depict very well convective cells which overshoot by up to 600 m the tropopause level. Unusual high values of the concentration of small ice particles, extinction, ice water content (up to 70 cm−3, 30 km−1 and 0.5 g m−3, respectively are experienced. The mean effective diameter and the maximum particle size are 43 μm and about 300 μm, respectively. This very dense cloud causes a strong attenuation of the WALES and CALIOP lidar returns. The SEVIRI retrieved parameters confirm the occurrence of small ice crystals at the top of the convective cell. Smooth and featureless phase functions with asymmetry factors of 0.776 indicate fairly uniform optical properties. Due to small ice crystals the power-law relationship between ice water content (IWC and radar reflectivity appears to be very different from those usually found in cirrus and anvil clouds. For a given equivalent reflectivity factor, IWCs are significantly larger for the overshooting cell than for the cirrus. Assuming the same prevalent microphysical properties over the depth of the overshooting cell, RASTA reflectivity profiles scaled into ice water content show that retrieved

  16. On the observation of unusual high concentration of small chain-like aggregate ice crystals and large ice water contents near the top of a deep convective cloud during the CIRCLE-2 experiment

    Science.gov (United States)

    Gayet, J.-F.; Mioche, G.; Bugliaro, L.; Protat, A.; Minikin, A.; Wirth, M.; Dörnbrack, A.; Shcherbakov, V.; Mayer, B.; Garnier, A.; Gourbeyre, C.

    2012-01-01

    During the CIRCLE-2 experiment carried out over Western Europe in May 2007, combined in situ and remote sensing observations allowed to describe microphysical and optical properties near-top of an overshooting convective cloud (11 080 m/-58 °C). The airborne measurements were performed with the DLR Falcon aircraft specially equipped with a unique set of instruments for the extensive in situ cloud measurements of microphysical and optical properties (Polar Nephelometer, FSSP-300, Cloud Particle Imager and PMS 2-D-C) and nadir looking remote sensing observations (DLR WALES Lidar). Quasi-simultaneous space observations from MSG/SEVIRI, CALIPSO/CALIOP-WFC-IIR and CloudSat/CPR combined with airborne RASTA radar reflectivity from the French Falcon aircraft flying above the DLR Falcon depict very well convective cells which overshoot by up to 600 m the tropopause level. Unusual high values of the concentration of small ice particles, extinction, ice water content (up to 70 cm-3, 30 km-1 and 0.5 g m-3, respectively) are experienced. The mean effective diameter and the maximum particle size are 43 μm and about 300 μm, respectively. This very dense cloud causes a strong attenuation of the WALES and CALIOP lidar returns. The SEVIRI retrieved parameters confirm the occurrence of small ice crystals at the top of the convective cell. Smooth and featureless phase functions with asymmetry factors of 0.776 indicate fairly uniform optical properties. Due to small ice crystals the power-law relationship between ice water content (IWC) and radar reflectivity appears to be very different from those usually found in cirrus and anvil clouds. For a given equivalent reflectivity factor, IWCs are significantly larger for the overshooting cell than for the cirrus. Assuming the same prevalent microphysical properties over the depth of the overshooting cell, RASTA reflectivity profiles scaled into ice water content show that retrieved IWC up to 1 g m-3 may be observed near the cloud top

  17. Real-Time Very High-Resolution Regional 4D Assimilation in Supporting CRYSTAL-FACE Experiment

    Science.gov (United States)

    Wang, Donghai; Minnis, Patrick

    2004-01-01

    To better understand tropical cirrus cloud physical properties and formation processes with a view toward the successful modeling of the Earth's climate, the CRYSTAL-FACE (Cirrus Regional Study of Tropical Anvils and Cirrus Layers - Florida Area Cirrus Experiment) field experiment took place over southern Florida from 1 July to 29 July 2002. During the entire field campaign, a very high-resolution numerical weather prediction (NWP) and assimilation system was performed in support of the mission with supercomputing resources provided by NASA Center for Computational Sciences (NCCS). By using NOAA NCEP Eta forecast for boundary conditions and as a first guess for initial conditions assimilated with all available observations, two nested 15/3 km grids are employed over the CRYSTAL-FACE experiment area. The 15-km grid covers the southeast US domain, and is run two times daily for a 36-hour forecast starting at 0000 UTC and 1200 UTC. The nested 3-km grid covering only southern Florida is used for 9-hour and 18-hour forecasts starting at 1500 and 0600 UTC, respectively. The forecasting system provided more accurate and higher spatial and temporal resolution forecasts of 4-D atmospheric fields over the experiment area than available from standard weather forecast models. These forecasts were essential for flight planning during both the afternoon prior to a flight day and the morning of a flight day. The forecasts were used to help decide takeoff times and the most optimal flight areas for accomplishing the mission objectives. See more detailed products on the web site http://asd-www.larc.nasa.gov/mode/crystal. The model/assimilation output gridded data are archived on the NASA Center for Computational Sciences (NCCS) UniTree system in the HDF format at 30-min intervals for real-time forecasts or 5-min intervals for the post-mission case studies. Particularly, the data set includes the 3-D cloud fields (cloud liquid water, rain water, cloud ice, snow and graupe/hail).

  18. The time-dependence of the defective nature of ice Ic (cubic ice) and its implications for atmospheric science

    Science.gov (United States)

    Sippel, Christian; Koza, Michael M.; Hansen, Thomas C.; Kuhs, Werner F.

    2010-05-01

    The possible atmospheric implication of ice Ic (cubic ice) has already been suggested some time ago in the context of snow crystal formation [1]. New findings from air-borne measurements in cirrus clouds and contrails have put ice Ic into the focus of interest to understand the so-called "supersaturation puzzle" [2,3,4]. Our recent microstructural work on ice Ic [5,6] appears to be highly relevant in this context. We have found that ice Ic is characterized by a complex stacking fault pattern, which changes as a function of temperature as well as time. Indeed, from our own [7] and other group's work [8] one knows that (in contrast to earlier believe) ice Ic can form up to temperatures at least as high as 240K - thus in the relevant range for cirrus clouds. We have good preliminary evidence that the "cubicity" (which can be related to stacking fault probabilities) as well as the particle size of ice Ic are the relevant parameters for this correlation. The "cubicity" of stacking faulty ice Ic (established by diffraction) correlates nicely with the increased supersaturation at decreasing temperatures observed in cirrus clouds and contrails, a fact, which may be considered as further evidence for the presence of ice Ic. Recently, we have studied the time-dependency of the changes in both "cubicity" and particle size at various temperatures of relevance for cirrus clouds and contrails by in-situ neutron powder diffraction. The timescales over which changes occur (several to many hours) are similar to the life-time of cirrus clouds and contrails and suggest that the supersaturation situation may change within this time span in the natural environment too. Some accompanying results obtained by cryo-SEM (scanning electron microscopy) work will also be presented and suggest that stacking-faulty ice Ic has kinky surfaces providing many more active centres for heterogeneous reactions on the surface than in the usually assumed stable hexagonal form of ice Ih with its rather

  19. Tropical sea surface temperatures and the earth's orbital eccentricity cycles

    Digital Repository Service at National Institute of Oceanography (India)

    Gupta, S.M.; Fernandes, A.A.; Mohan, R.

    The tropical oceanic warm pools are climatologically important regions because their sea surface temperatures (SSTs) are positively related to atmospheric greenhouse effect and the cumulonimbus-cirrus cloud anvil. Such a warm pool is also present...

  20. A Climatology of Midlatitude Continental Clouds from the ARM SGP Site. Part I; Low-Level Cloud Macrophysical, Microphysical, and Radiative Properties

    Science.gov (United States)

    Dong, Xiquan; Minnis, Patrick; Xi, Baike

    2005-01-01

    . The low stratus cloud amount monotonically increases from midnight to early morning (0930 LT), and remains large until around local noon, then declines until 1930 LT when it levels off for the remainder of the night. In the morning, the stratus cloud layer is low, warm, and thick with less LWC, while in the afternoon it is high, cold, and thin with more LWC. Future parts of this series will consider other cloud types and cloud radiative forcing at the ARM SCF.

  1. Cloud-Top Entrainment in Stratocumulus Clouds

    Science.gov (United States)

    Mellado, Juan Pedro

    2017-01-01

    Cloud entrainment, the mixing between cloudy and clear air at the boundary of clouds, constitutes one paradigm for the relevance of small scales in the Earth system: By regulating cloud lifetimes, meter- and submeter-scale processes at cloud boundaries can influence planetary-scale properties. Understanding cloud entrainment is difficult given the complexity and diversity of the associated phenomena, which include turbulence entrainment within a stratified medium, convective instabilities driven by radiative and evaporative cooling, shear instabilities, and cloud microphysics. Obtaining accurate data at the required small scales is also challenging, for both simulations and measurements. During the past few decades, however, high-resolution simulations and measurements have greatly advanced our understanding of the main mechanisms controlling cloud entrainment. This article reviews some of these advances, focusing on stratocumulus clouds, and indicates remaining challenges.

  2. The effect of cloud screening on MAX-DOAS aerosol retrievals.

    Science.gov (United States)

    Gielen, Clio; Van Roozendael, Michel; Hendrik, Francois; Fayt, Caroline; Hermans, Christian; Pinardi, Gaia; De Backer, Hugo; De Bock, Veerle; Laffineur, Quentin; Vlemmix, Tim

    2014-05-01

    In recent years, ground-based multi-axis differential absorption spectroscopy (MAX-DOAS) has shown to be ideally suited for the retrieval of tropospheric trace gases and deriving information on the aerosol properties. These measurements are invaluable to our understanding of the physics and chemistry of the atmospheric system, and the impact on the Earth's climate. Unfortunately, MAX-DOAS measurements are often performed under strong non-clear-sky conditions, causing strong data quality degradation and uncertainties on the retrievals. Here we present the result of our cloud-screening method, using the colour index (CI), on aerosol retrievals from MAX-DOAS measurements (AOD and vertical profiles). We focus on two large data sets, from the Brussels and Beijing area. Using the CI we define 3 different sky conditions: bad (=full thick cloud cover/extreme aerosols), mediocre (=thin clouds/aerosols) and good (=clear sky). We also flag the presence of broken/scattered clouds. We further compare our cloud-screening method with results from cloud-cover fractions derived from thermic infrared measurements. In general, our method shows good results to qualify the sky and cloud conditions of MAX-DOAS measurements, without the need for other external cloud-detection systems. Removing data under bad-sky and broken-cloud conditions results in a strongly improved agreement, in both correlation and slope, between the MAX-DOAS aerosol retrievals and data from other instruments (e.g. AERONET, Brewer). With the improved AOD retrievals, the seasonal and diurnal variations of the aerosol content and vertical distribution at both sites can be investigated in further detail. By combining with additional information derived by other instruments (Brewer, lidar, ...) operated at the stations, we will further study the observed aerosol characteristics, and their influence on and by meteorological conditions such as clouds and/or the boundary layer height.

  3. Potential of remote sensing of cirrus optical thickness by airborne spectral radiance measurements at different sideward viewing angles

    OpenAIRE

    Wolf, Kevin; Ehrlich, André; Hüneke, Tilman; Pfeilsticker, Klaus; Werner, Frank; Wirth, Martin; Wendisch, Manfred

    2017-01-01

    Spectral radiance measurements collected in nadir and sideward viewing directions by two airborne passive solar remote sensing instruments, the Spectral Modular Airborne Radiation measurement sysTem (SMART) and the Differential Optical Absorption Spectrometer (mini-DOAS), are used to compare the remote sensing results of cirrus optical thickness τ. The comparison is based on a sensitivity study using radiative transfer simulations (RTS) and on data obtained during three airb...

  4. Icecube: Spaceflight Validation of an 874-GHz Submillimeter Wave Radiometer for Ice Cloud Remote Sensing

    Science.gov (United States)

    Wu, D. L.; Esper, J.; Ehsan, N.; Piepmeier, J. R.; Racette, P.

    2014-12-01

    Ice clouds play a key role in the Earth's radiation budget, mostly through their strong regulation of infrared radiation exchange. Submillimeter wave remote sensing offers a unique capability to improve cloud ice measurements from space. At 874 GHz cloud scattering produces a larger brightness temperature depression from cirrus than lower frequencies, which can be used to retrieve vertically-integrated cloud ice water path (IWP) and ice particle size. The objective of the IceCube project is to retire risks of 874-GHz receiver technology by raising its TRL from 5 to 7. The project will demonstrate, on a 3-U CubeSat in a low Earth orbit (LEO) environment, the 874-GHz receiver system with noise equivalent differential temperature (NEDT) of ~0.2 K for 1-second integration and calibration error of 2.0 K or less as measured from deep-space observations. The Goddard Space Flight Center (GSFC) is partnering with Virginia Diodes, Inc (VDI) to qualify commercially available 874-GHz receiver technology for spaceflight, and demonstrate the radiometer performance. The instrument (submm-wave cloud radiometer, or SCR), along with the CubeSat system developed and integrated by GSFC, will be ready for launch in two years. The instrument subsystem includes a reflector antenna, sub-millimeter wave mixer, frequency multipliers and stable local oscillator, an intermediate frequency (IF) circuit with noise injection, and data-power boards. The mixer and frequency multipliers are procured from VDI with GSFC insight into fabrication and testing processes to ensure scalability to spaceflight beyond TRL 7. The remaining components are a combination of GSFC-designed and commercial off-the-shelf (COTS) at TRLs of 5 or higher. The spacecraft system is specified by GSFC and comprises COTS components including three-axis stabilizer and sun sensor, GPS receiver, deployable solar arrays, UHF radio, and 2 GB of on-board storage. The spacecraft and instrument are integrated and flight qualified

  5. Cloud Computing, Tieto Cloud Server Model

    OpenAIRE

    Suikkanen, Saara

    2013-01-01

    The purpose of this study is to find out what is cloud computing. To be able to make wise decisions when moving to cloud or considering it, companies need to understand what cloud is consists of. Which model suits best to they company, what should be taken into account before moving to cloud, what is the cloud broker role and also SWOT analysis of cloud? To be able to answer customer requirements and business demands, IT companies should develop and produce new service models. IT house T...

  6. Improving Estimates of Cloud Radiative Forcing over Greenland

    Science.gov (United States)

    Wang, W.; Zender, C. S.

    2014-12-01

    Multiple driving mechanisms conspire to increase melt extent and extreme melt events frequency in the Arctic: changing heat transport, shortwave radiation (SW), and longwave radiation (LW). Cloud Radiative Forcing (CRF) of Greenland's surface is amplified by a dry atmosphere and by albedo feedback, making its contribution to surface melt even more variable in time and space. Unfortunately accurate cloud observations and thus CRF estimates are hindered by Greenland's remoteness, harsh conditions, and low contrast between surface and cloud reflectance. In this study, cloud observations from satellites and reanalyses are ingested into and evaluated within a column radiative transfer model. An improved CRF dataset is obtained by correcting systematic discrepancies derived from sensitivity experiments. First, we compare the surface radiation budgets from the Column Radiation Model (CRM) driven by different cloud datasets, with surface observations from Greenland Climate Network (GC-Net). In clear skies, CRM-estimated surface radiation driven by water vapor profiles from both AIRS and MODIS during May-Sept 2010-2012 are similar, stable, and reliable. For example, although AIRS water vapor path exceeds MODIS by 1.4 kg/m2 on a daily average, the overall absolute difference in downwelling SW is CRM estimates are within 20 W/m2 range of GC-Net downwelling SW. After calibrating CRM in clear skies, the remaining differences between CRM and observed surface radiation are primarily attributable to differences in cloud observations. We estimate CRF using cloud products from MODIS and from MERRA. The SW radiative forcing of thin clouds is mainly controlled by cloud water path (CWP). As CWP increases from near 0 to 200 g/m2, the net surface SW drops from over 100 W/m2 to 30 W/m2 almost linearly, beyond which it becomes relatively insensitive to CWP. The LW is dominated by cloud height. For clouds at all altitudes, the lower the clouds, the greater the LW forcing. By applying

  7. The Role of Gravity Waves in the Formation and Organization of Clouds during TWPICE

    Energy Technology Data Exchange (ETDEWEB)

    Reeder, Michael J. [Monash University; Lane, Todd P. [University of Melbourne; Hankinson, Mai Chi Nguyen [Monash University

    2013-09-27

    All convective clouds emit gravity waves. While it is certain that convectively-generated waves play important parts in determining the climate, their precise roles remain uncertain and their effects are not (generally) represented in climate models. The work described here focuses mostly on observations and modeling of convectively-generated gravity waves, using the intensive observations from the DoE-sponsored Tropical Warm Pool International Cloud Experiment (TWP-ICE), which took place in Darwin, from 17 January to 13 February 2006. Among other things, the research has implications the part played by convectively-generated gravity waves in the formation of cirrus, in the initiation and organization of further convection, and in the subgrid-scale momentum transport and associated large-scale stresses imposed on the troposphere and stratosphere. The analysis shows two groups of inertia-gravity waves are detected: group L in the middle stratosphere during the suppressed monsoon period, and group S in the lower stratosphere during the monsoon break period. Waves belonging to group L propagate to the south-east with a mean intrinsic period of 35 h, and have vertical and horizontal wavelengths of about 5-6 km and 3000-6000 km, respectively. Ray tracing calculations indicate that these waves originate from a deep convective region near Indonesia. Waves belonging to group S propagate to the south-south-east with an intrinsic period, vertical wavelength and horizontal wavelength of about 45 h, 2 km and 2000-4000 km, respectively. These waves are shown to be associated with shallow convection in the oceanic area within about 1000 km of Darwin. The intrinsic periods of high-frequency waves are estimated to be between 20-40 minutes. The high-frequency wave activity in the stratosphere, defined by mass-weighted variance of the vertical motion of the sonde, has a maximum following the afternoon local convection indicating that these waves are generated by local convection

  8. Remote Sensing of Cloud Top Heights Using the Research Scanning Polarimeter

    Science.gov (United States)

    Sinclair, Kenneth; van Diedenhoven, Bastiaan; Cairns, Brian; Yorks, John; Wasilewski, Andrzej

    2015-01-01

    Clouds cover roughly two thirds of the globe and act as an important regulator of Earth's radiation budget. Of these, multilayered clouds occur about half of the time and are predominantly two-layered. Changes in cloud top height (CTH) have been predicted by models to have a globally averaged positive feedback, however observational changes in CTH have shown uncertain results. Additional CTH observations are necessary to better and quantify the effect. Improved CTH observations will also allow for improved sub-grid parameterizations in large-scale models and accurate CTH information is important when studying variations in freezing point and cloud microphysics. NASA's airborne Research Scanning Polarimeter (RSP) is able to measure cloud top height using a novel multi-angular contrast approach. RSP scans along the aircraft track and obtains measurements at 152 viewing angles at any aircraft location. The approach presented here aggregates measurements from multiple scans to a single location at cloud altitude using a correlation function designed to identify the location-distinct features in each scan. During NASAs SEAC4RS air campaign, the RSP was mounted on the ER-2 aircraft along with the Cloud Physics Lidar (CPL), which made simultaneous measurements of CTH. The RSPs unique method of determining CTH is presented. The capabilities of using single and combinations of channels within the approach are investigated. A detailed comparison of RSP retrieved CTHs with those of CPL reveal the accuracy of the approach. Results indicate a strong ability for the RSP to accurately identify cloud heights. Interestingly, the analysis reveals an ability for the approach to identify multiple cloud layers in a single scene and estimate the CTH of each layer. Capabilities and limitations of identifying single and multiple cloud layers heights are explored. Special focus is given to sources of error in the method including optically thin clouds, physically thick clouds, multi

  9. A CLOUD BOUNDARY DETECTION SCHEME COMBINED WITH ASLIC AND CNN USING ZY-3, GF-1/2 SATELLITE IMAGERY

    Directory of Open Access Journals (Sweden)

    Z. Guo

    2018-04-01

    Full Text Available Remote sensing optical image cloud detection is one of the most important problems in remote sensing data processing. Aiming at the information loss caused by cloud cover, a cloud detection method based on convolution neural network (CNN is presented in this paper. Firstly, a deep CNN network is used to extract the multi-level feature generation model of cloud from the training samples. Secondly, the adaptive simple linear iterative clustering (ASLIC method is used to divide the detected images into superpixels. Finally, the probability of each superpixel belonging to the cloud region is predicted by the trained network model, thereby generating a cloud probability map. The typical region of GF-1/2 and ZY-3 were selected to carry out the cloud detection test, and compared with the traditional SLIC method. The experiment results show that the average accuracy of cloud detection is increased by more than 5 %, and it can detected thin-thick cloud and the whole cloud boundary well on different imaging platforms.

  10. Explicit prediction of ice clouds in general circulation models

    Science.gov (United States)

    Kohler, Martin

    1999-11-01

    Although clouds play extremely important roles in the radiation budget and hydrological cycle of the Earth, there are large quantitative uncertainties in our understanding of their generation, maintenance and decay mechanisms, representing major obstacles in the development of reliable prognostic cloud water schemes for General Circulation Models (GCMs). Recognizing their relative neglect in the past, both observationally and theoretically, this work places special focus on ice clouds. A recent version of the UCLA - University of Utah Cloud Resolving Model (CRM) that includes interactive radiation is used to perform idealized experiments to study ice cloud maintenance and decay mechanisms under various conditions in term of: (1) background static stability, (2) background relative humidity, (3) rate of cloud ice addition over a fixed initial time-period and (4) radiation: daytime, nighttime and no-radiation. Radiation is found to have major effects on the life-time of layer-clouds. Optically thick ice clouds decay significantly slower than expected from pure microphysical crystal fall-out (taucld = 0.9--1.4 h as opposed to no-motion taumicro = 0.5--0.7 h). This is explained by the upward turbulent fluxes of water induced by IR destabilization, which partially balance the downward transport of water by snowfall. Solar radiation further slows the ice-water decay by destruction of the inversion above cloud-top and the resulting upward transport of water. Optically thin ice clouds, on the other hand, may exhibit even longer life-times (>1 day) in the presence of radiational cooling. The resulting saturation mixing ratio reduction provides for a constant cloud ice source. These CRM results are used to develop a prognostic cloud water scheme for the UCLA-GCM. The framework is based on the bulk water phase model of Ose (1993). The model predicts cloud liquid water and cloud ice separately, and which is extended to split the ice phase into suspended cloud ice (predicted

  11. Evaluating Global Aerosol Models and Aerosol and Water Vapor Properties Near Clouds

    Energy Technology Data Exchange (ETDEWEB)

    Richard A. Ferrare; David D. Turner

    2011-09-01

    Project goals: (1) Use the routine surface and airborne measurements at the ARM SGP site, and the routine surface measurements at the NSA site, to continue our evaluations of model aerosol simulations; (2) Determine the degree to which the Raman lidar measurements of water vapor and aerosol scattering and extinction can be used to remotely characterize the aerosol humidification factor; (3) Use the high temporal resolution CARL data to examine how aerosol properties vary near clouds; and (4) Use the high temporal resolution CARL and Atmospheric Emitted Radiance Interferometer (AERI) data to quantify entrainment in optically thin continental cumulus clouds.

  12. +Cloud: An Agent-Based Cloud Computing Platform

    OpenAIRE

    González, Roberto; Hernández de la Iglesia, Daniel; de la Prieta Pintado, Fernando; Gil González, Ana Belén

    2017-01-01

    Cloud computing is revolutionizing the services provided through the Internet, and is continually adapting itself in order to maintain the quality of its services. This study presents the platform +Cloud, which proposes a cloud environment for storing information and files by following the cloud paradigm. This study also presents Warehouse 3.0, a cloud-based application that has been developed to validate the services provided by +Cloud.

  13. Silicon Photonics Cloud (SiCloud)

    DEFF Research Database (Denmark)

    DeVore, P. T. S.; Jiang, Y.; Lynch, M.

    2015-01-01

    Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths.......Silicon Photonics Cloud (SiCloud.org) is the first silicon photonics interactive web tool. Here we report new features of this tool including mode propagation parameters and mode distribution galleries for user specified waveguide dimensions and wavelengths....

  14. Uncertainty in stratiform cloud optical thickness inferred from pyranometer measurements at the sea surface

    Directory of Open Access Journals (Sweden)

    Anna Rozwadowska

    2004-06-01

    Full Text Available The relative "plane-parallel" error in a mean cloud optical thickness retrieved from ground-based pyranometer measurements is estimated. The plane-parallel error is defined as the bias introduced by the assumption in the radiative transfer model used in cloud optical thickness retrievals that the atmosphere, including clouds, is horizontally homogeneous on the scale of an individual retrieval. The error is estimated for the optical thickness averaged over the whole domain, which simulates the mean cloud optical thickness obtained from a time series of irradiance measurements. The study is based on 3D Monte Carlo radiative transfer simulations for non-absorbing, all-liquid, layer clouds. Liquid water path distributions in the clouds are simulated by a bounded cascade fractal model. The sensitivity of the error is studied with respect to the following factors: averaging time of irradiance used in an individual retrieval, mean cloud optical thickness, cloud variability, cloud base height and solar zenith angle. In the simulations presented in this paper, the relative bias in the domain averaged cloud optical thickness retrieved from pyranometer measurements varies from +1% for optically thin clouds to nearly -20%. The highest absolute value of the relative bias is expected for thick and variable clouds with high bases (e.g. 1 km and retrievals based on long-term mean irradiances (averaging time of the order of several tens of minutes or hours. The bias can be diminished by using short-term irradiance averages, e.g. of one minute, and by limiting retrievals to low-level clouds.

  15. Cloud Processed CCN Suppress Stratus Cloud Drizzle

    Science.gov (United States)

    Hudson, J. G.; Noble, S. R., Jr.

    2017-12-01

    Conversion of sulfur dioxide to sulfate within cloud droplets increases the sizes and decreases the critical supersaturation, Sc, of cloud residual particles that had nucleated the droplets. Since other particles remain at the same sizes and Sc a size and Sc gap is often observed. Hudson et al. (2015) showed higher cloud droplet concentrations (Nc) in stratus clouds associated with bimodal high-resolution CCN spectra from the DRI CCN spectrometer compared to clouds associated with unimodal CCN spectra (not cloud processed). Here we show that CCN spectral shape (bimodal or unimodal) affects all aspects of stratus cloud microphysics and drizzle. Panel A shows mean differential cloud droplet spectra that have been divided according to traditional slopes, k, of the 131 measured CCN spectra in the Marine Stratus/Stratocumulus Experiment (MASE) off the Central California coast. K is generally high within the supersaturation, S, range of stratus clouds (< 0.5%). Because cloud processing decreases Sc of some particles, it reduces k. Panel A shows higher concentrations of small cloud droplets apparently grown on lower k CCN than clouds grown on higher k CCN. At small droplet sizes the concentrations follow the k order of the legend, black, red, green, blue (lowest to highest k). Above 13 µm diameter the lines cross and the hierarchy reverses so that blue (highest k) has the highest concentrations followed by green, red and black (lowest k). This reversed hierarchy continues into the drizzle size range (panel B) where the most drizzle drops, Nd, are in clouds grown on the least cloud-processed CCN (blue), while clouds grown on the most processed CCN (black) have the lowest Nd. Suppression of stratus cloud drizzle by cloud processing is an additional 2nd indirect aerosol effect (IAE) that along with the enhancement of 1st IAE by higher Nc (panel A) are above and beyond original IAE. However, further similar analysis is needed in other cloud regimes to determine if MASE was

  16. Simulating electron clouds in heavy-ion accelerators

    International Nuclear Information System (INIS)

    Cohen, R.H.; Friedman, A.; Covo, M. Kireeff; Lund, S.M.; Molvik, A.W.; Bieniosek, F.M.; Seidl, P.A.; Vay, J.-L.; Stoltz, P.; Veitzer, S.

    2005-01-01

    Contaminating clouds of electrons are a concern for most accelerators of positively charged particles, but there are some unique aspects of heavy-ion accelerators for fusion and high-energy density physics which make modeling such clouds especially challenging. In particular, self-consistent electron and ion simulation is required, including a particle advance scheme which can follow electrons in regions where electrons are strongly magnetized, weakly magnetized, and unmagnetized. The approach to such self-consistency is described, and in particular a scheme for interpolating between full-orbit (Boris) and drift-kinetic particle pushes that enables electron time steps long compared to the typical gyroperiod in the magnets. Tests and applications are presented: simulation of electron clouds produced by three different kinds of sources indicates the sensitivity of the cloud shape to the nature of the source; first-of-a-kind self-consistent simulation of electron-cloud experiments on the high-current experiment [L. R. Prost, P. A. Seidl, F. M. Bieniosek, C. M. Celata, A. Faltens, D. Baca, E. Henestroza, J. W. Kwan, M. Leitner, W. L. Waldron, R. Cohen, A. Friedman, D. Grote, S. M. Lund, A. W. Molvik, and E. Morse, 'High current transport experiment for heavy ion inertial fusion', Physical Review Special Topics, Accelerators and Beams 8, 020101 (2005)], at Lawrence Berkeley National Laboratory, in which the machine can be flooded with electrons released by impact of the ion beam on an end plate, demonstrate the ability to reproduce key features of the ion-beam phase space; and simulation of a two-stream instability of thin beams in a magnetic field demonstrates the ability of the large-time-step mover to accurately calculate the instability

  17. Uncertainties in cloud phase and optical thickness retrievals from the Earth Polychromatic Imaging Camera (EPIC)

    Science.gov (United States)

    Meyer, Kerry; Yang, Yuekui; Platnick, Steven

    2018-01-01

    This paper presents an investigation of the expected uncertainties of a single channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud temperature threshold based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODIS daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single channel COT retrieval is feasible for EPIC. For ice clouds, single channel retrieval errors are minimal (clouds the error is mostly limited to within 10%, although for thin clouds (COT cloud masking and cloud temperature retrievals are not considered in this study. PMID:29619116

  18. Observations and Measurements on Unsteady Cloud Cavitation Flow Structures

    International Nuclear Information System (INIS)

    Gu, L X; Yan, G J; Huang, B

    2015-01-01

    The objectives of this paper are to investigate the unsteady structures and hydrodynamics of cavitating flows. Experimental results are presented for a Clark-Y hydrofoil, which is fixed at α=0°, 5° and 8°. The high-speed video camera and Particle Image Velocimetry (PIV) are applied to investigate the transient flow structures. The dynamic measurement system is used to record the dynamic characteristics. The cloud cavitation exhibits noticeable unsteady characteristics. For the case of α=0°, there exit strong interactions between the attached cavity and the re-entrant flow. While for the case of α=8°, the re-entrant flow is relatively thin and the interaction between the cavity and re-entrant flow is limited. The results also present that the periodic collapse and shedding of the large-scale cloud cavitation, which leads to substantial increase of turbulent velocity fluctuations in the cavity region. Experimental evidence indicates that the hydrodynamics are clearly affected by the cavitating flow structures, the amplitude of load fluctuation are much higher for the cloud cavitating cases. (paper)

  19. Observations and Measurements on Unsteady Cloud Cavitation Flow Structures

    Science.gov (United States)

    Gu, L. X.; Yan, G. J.; Huang, B.

    2015-12-01

    The objectives of this paper are to investigate the unsteady structures and hydrodynamics of cavitating flows. Experimental results are presented for a Clark-Y hydrofoil, which is fixed at α=0°, 5° and 8°. The high-speed video camera and Particle Image Velocimetry (PIV) are applied to investigate the transient flow structures. The dynamic measurement system is used to record the dynamic characteristics. The cloud cavitation exhibits noticeable unsteady characteristics. For the case of α=0°, there exit strong interactions between the attached cavity and the re-entrant flow. While for the case of α=8°, the re-entrant flow is relatively thin and the interaction between the cavity and re-entrant flow is limited. The results also present that the periodic collapse and shedding of the large-scale cloud cavitation, which leads to substantial increase of turbulent velocity fluctuations in the cavity region. Experimental evidence indicates that the hydrodynamics are clearly affected by the cavitating flow structures, the amplitude of load fluctuation are much higher for the cloud cavitating cases.

  20. New Electron Cloud Detectors for the PS Main Magnets

    CERN Document Server

    Yin Vallgren, Ch; Gilardoni, S; Taborelli, M; Neupert, H; Ferreira Somoza, J

    2014-01-01

    Electron cloud (EC) has already been observed during normal operation of the PS, therefore it is necessary to study its in fluence on any beam instability for the future LHC Injector Upgrade (LIU). Two new electron cloud detectors have been discussed, developed and installed during the Long Shutdown (LS1) in one of the PS main magnets. The first measurement method is based on current measurement by using a shielded button-type pick-up. Due to the geometry and space limitation in the PS magnet, the button-type pick-up made of a 96%Al2O3 block coated with a thin layer of solvent-based Ag painting, placed 30 degrees to the bottom part of the vacuum chamber was installed in the horizontal direction where the only opening of the magnet coil is. The other newly developed measurement method is based on detection of photons emitted by the electrons from the electron cloud impinging on the vacuum chamber walls. The emitted photons are reected to a quartz window. A MCP-PMT (Micro-Channel Plate Photomultiplier Tube) wit...

  1. Fibromyalgia Is Correlated with Retinal Nerve Fiber Layer Thinning.

    Science.gov (United States)

    Garcia-Martin, Elena; Garcia-Campayo, Javier; Puebla-Guedea, Marta; Ascaso, Francisco J; Roca, Miguel; Gutierrez-Ruiz, Fernando; Vilades, Elisa; Polo, Vicente; Larrosa, Jose M; Pablo, Luis E; Satue, Maria

    2016-01-01

    To investigate whether fibromyalgia induces axonal damage in the optic nerve that can be detected using optical coherence tomography (OCT), as the retinal nerve fiber layer (RNFL) is atrophied in patients with fibromyalgia compared with controls. Fibromyalgia patients (n = 116) and age-matched healthy controls (n = 144) were included in this observational and prospective cohort study. All subjects underwent visual acuity measurement and structural analysis of the RNFL using two OCT devices (Cirrus and Spectralis). Fibromyalgia patients were evaluated according to Giesecke's fibromyalgia subgroups, the Fibromyalgia Impact Questionnaire (FIQ), and the European Quality of Life-5 Dimensions (EQ5D) scale. We compared the differences between fibromyalgia patients and controls, and analyzed the correlations between OCT measurements, disease duration, fibromyalgia subgroups, severity, and quality of life. The impact on quality of life in fibromyalgia subgroups and in patients with different disease severity was also analyzed. A significant decrease in the RNFL was detected in fibromyalgia patients compared with controls using the two OCT devices: Cirrus OCT ganglion cell layer analysis registered a significant decrease in the minimum thickness of the inner plexiform layer (74.99±16.63 vs 79.36±3.38 μm, respectively; p = 0.023), nasal inferior, temporal inferior and temporal superior sectors (p = 0.040; 0.011 and 0.046 respectively). The Glaucoma application of the Spectralis OCT revealed thinning in the nasal, temporal inferior and temporal superior sectors (p = 0.009, 0.006, and 0.002 respectively) of fibromyalgia patients and the Axonal application in all sectors, except the nasal superior and temporal sectors. The odds ratio (OR) to estimate the size effect of FM in RNFL thickness was 1.39. RNFL atrophy was detected in patients with FIQ scores fibromyalgia (FIQ≥60) compared with patients with mild fibromyalgia (FIQfibromyalgia exhibited significant thinning in the

  2. Contrasting the co-variability of daytime cloud and precipitation over tropical land and ocean

    Science.gov (United States)

    Jin, Daeho; Oreopoulos, Lazaros; Lee, Dongmin; Cho, Nayeong; Tan, Jackson

    2018-03-01

    The co-variability of cloud and precipitation in the extended tropics (35° N-35° S) is investigated using contemporaneous data sets for a 13-year period. The goal is to quantify potential relationships between cloud type fractions and precipitation events of particular strength. Particular attention is paid to whether the relationships exhibit different characteristics over tropical land and ocean. A primary analysis metric is the correlation coefficient between fractions of individual cloud types and frequencies within precipitation histogram bins that have been matched in time and space. The cloud type fractions are derived from Moderate Resolution Imaging Spectroradiometer (MODIS) joint histograms of cloud top pressure and cloud optical thickness in 1° grid cells, and the precipitation frequencies come from the Tropical Rainfall Measuring Mission (TRMM) Multi-satellite Precipitation Analysis (TMPA) data set aggregated to the same grid.It is found that the strongest coupling (positive correlation) between clouds and precipitation occurs over ocean for cumulonimbus clouds and the heaviest rainfall. While the same cloud type and rainfall bin are also best correlated over land compared to other combinations, the correlation magnitude is weaker than over ocean. The difference is attributed to the greater size of convective systems over ocean. It is also found that both over ocean and land the anti-correlation of strong precipitation with weak (i.e., thin and/or low) cloud types is of greater absolute strength than positive correlations between weak cloud types and weak precipitation. Cloud type co-occurrence relationships explain some of the cloud-precipitation anti-correlations. Weak correlations between weaker rainfall and clouds indicate poor predictability for precipitation when cloud types are known, and this is even more true over land than over ocean.

  3. Characterization of AVHRR global cloud detection sensitivity based on CALIPSO-CALIOP cloud optical thickness information: demonstration of results based on the CM SAF CLARA-A2 climate data record

    Science.gov (United States)

    Karlsson, Karl-Göran; Håkansson, Nina

    2018-02-01

    The sensitivity in detecting thin clouds of the cloud screening method being used in the CM SAF cloud, albedo and surface radiation data set from AVHRR data (CLARA-A2) cloud climate data record (CDR) has been evaluated using cloud information from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) onboard the CALIPSO satellite. The sensitivity, including its global variation, has been studied based on collocations of Advanced Very High Resolution Radiometer (AVHRR) and CALIOP measurements over a 10-year period (2006-2015). The cloud detection sensitivity has been defined as the minimum cloud optical thickness for which 50 % of clouds could be detected, with the global average sensitivity estimated to be 0.225. After using this value to reduce the CALIOP cloud mask (i.e. clouds with optical thickness below this threshold were interpreted as cloud-free cases), cloudiness results were found to be basically unbiased over most of the globe except over the polar regions where a considerable underestimation of cloudiness could be seen during the polar winter. The overall probability of detecting clouds in the polar winter could be as low as 50 % over the highest and coldest parts of Greenland and Antarctica, showing that a large fraction of optically thick clouds also remains undetected here. The study included an in-depth analysis of the probability of detecting a cloud as a function of the vertically integrated cloud optical thickness as well as of the cloud's geographical position. Best results were achieved over oceanic surfaces at mid- to high latitudes where at least 50 % of all clouds with an optical thickness down to a value of 0.075 were detected. Corresponding cloud detection sensitivities over land surfaces outside of the polar regions were generally larger than 0.2 with maximum values of approximately 0.5 over the Sahara and the Arabian Peninsula. For polar land surfaces the values were close to 1 or higher with maximum values of 4.5 for the parts

  4. Radiation transport and the kinematics of molecular clouds

    International Nuclear Information System (INIS)

    Kwan, J.

    1978-01-01

    We compare line profiles calculated under either the systematic mottion interpretation or the turbulent motion interpretation of the molecular line widths, with the stipulation that both the density and temperature distributions be decreasing functions of radius. In systematic motion of the form V (r) proportional/sup -alpha/, α>0, optically thin lines observed toward the center are flat-topped or double-peaked, and optically thick lines are asymmetric. In a constant collapes or outflow velocity, optically thin lines observed toward the center are double-peaked, and optically thick lines arfe flat-topped. In systematic motion of the form V (r) proportionalr/sup α/,α>0, both optically thin and optically thick lines are centrally peaked. The distinguishing feature in this case is that the width (FWHM) of the CS 3→ 2 line is considerably smaller that that of the 13 CO 1 → 0 line. In turbulent motion, the CO 1 → 0, 2 → 1, and 3 → 2 lines are marked by progressively more pronounced self-absorptions.The observations at M17 SW and the Kleinmann-Low (KL) nebula are studied. At M17 SW, they are best accounted for by a model in which turbulence dominates the central part of the molecular region but collapse prevails at the outer part. At KL, the present observations can be equally well explained by one of two models. The first model postulates that KL is at the front face of the molecular cloud and that the temperature is highest at the surface. Turbulence gives rise to the line broadening. The second model postulates that KL is deep within the molecular cloud. Systematic motion about KL accounts for the CO and 13 CO line widths, but high-density fragments at KL are required to provide excitations in other molecular lines with considerably larger spontaneous emission rates

  5. The potential influence of Asian and African mineral dust on ice, mixed-phase and liquid water clouds

    Directory of Open Access Journals (Sweden)

    A. Wiacek

    2010-09-01

    clouds" and the general influence of dust in the mixed-phase cloud region are highly uncertain due to both a considerable scatter in recent laboratory data from ice nucleation experiments, which we briefly review in this work, and due to uncertainties in sub-grid scale vertical transport processes unresolved by the present trajectory analysis. For "classical" cirrus-forming temperatures (T≲−40 °C, our results show that only mineral dust ice nuclei that underwent mixed-phase cloud-processing, most likely acquiring coatings of organic or inorganic material, are likely to be relevant. While the potential paucity of deposition ice nuclei shown in this work dimishes the possibility of deposition nucleation, the absence of liquid water droplets at T≲−40 °C makes the less explored contact freezing mechanism (involving droplet collisions with bare ice nuclei highly inefficient. These factors together indicate the necessity of further systematic studies of immersion mode ice nucleation on mineral dust suspended in atmospherically relevant coatings.

  6. Convergence on the Prediction of Ice Particle Mass and Projected Area in Ice Clouds

    Science.gov (United States)

    Mitchell, D. L.

    2013-12-01

    are extracted from Method 3 for a given ice particle number concentration N and IWC, appropriate for the relevant size range inferred from N and IWC. The resulting m-D/A-D power laws are based on the same data set comprised of 24 flights in ice clouds during a 6-month field campaign. Standard deviations for these power law constants are determined, which are much needed for cloud property remote sensing algorithms. Comparison of Method 3 (curve fit) with Method 1 (red std. deviations from measurements of ice particles found in cirrus clouds) and Method 2 (Cotton et al. and Heymsfield et al.).

  7. Influence of Meteorological Regimes on Cloud Microphysics Over Ross Island, Antarctica

    Science.gov (United States)

    Glennon, C.; Wang, S. H.; Scott, R. C.; Bromwich, D. H.; Lubin, D.

    2017-12-01

    thin liquid water clouds from the Southern Ocean. Low pressure systems over the Bellingshausen Sea produce outflow of cold, dry continental polar air, yielding predominantly tenuous ice cloud at Ross Island.

  8. Stratocumulus Cloud Top Radiative Cooling and Cloud Base Updraft Speeds

    Science.gov (United States)

    Kazil, J.; Feingold, G.; Balsells, J.; Klinger, C.

    2017-12-01

    Cloud top radiative cooling is a primary driver of turbulence in the stratocumulus-topped marine boundary. A functional relationship between cloud top cooling and cloud base updraft speeds may therefore exist. A correlation of cloud top radiative cooling and cloud base updraft speeds has been recently identified empirically, providing a basis for satellite retrieval of cloud base updraft speeds. Such retrievals may enable analysis of aerosol-cloud interactions using satellite observations: Updraft speeds at cloud base co-determine supersaturation and therefore the activation of cloud condensation nuclei, which in turn co-determine cloud properties and precipitation formation. We use large eddy simulation and an off-line radiative transfer model to explore the relationship between cloud-top radiative cooling and cloud base updraft speeds in a marine stratocumulus cloud over the course of the diurnal cycle. We find that during daytime, at low cloud water path (CWP correlated, in agreement with the reported empirical relationship. During the night, in the absence of short-wave heating, CWP builds up (CWP > 50 g m-2) and long-wave emissions from cloud top saturate, while cloud base heating increases. In combination, cloud top cooling and cloud base updrafts become weakly anti-correlated. A functional relationship between cloud top cooling and cloud base updraft speed can hence be expected for stratocumulus clouds with a sufficiently low CWP and sub-saturated long-wave emissions, in particular during daytime. At higher CWPs, in particular at night, the relationship breaks down due to saturation of long-wave emissions from cloud top.

  9. Cloud networking understanding cloud-based data center networks

    CERN Document Server

    Lee, Gary

    2014-01-01

    Cloud Networking: Understanding Cloud-Based Data Center Networks explains the evolution of established networking technologies into distributed, cloud-based networks. Starting with an overview of cloud technologies, the book explains how cloud data center networks leverage distributed systems for network virtualization, storage networking, and software-defined networking. The author offers insider perspective to key components that make a cloud network possible such as switch fabric technology and data center networking standards. The final chapters look ahead to developments in architectures

  10. Cloud retrievals from satellite data using optimal estimation: evaluation and application to ATSR

    Directory of Open Access Journals (Sweden)

    C. A. Poulsen

    2012-08-01

    Full Text Available Clouds play an important role in balancing the Earth's radiation budget. Hence, it is vital that cloud climatologies are produced that quantify cloud macro and micro physical parameters and the associated uncertainty. In this paper, we present an algorithm ORAC (Oxford-RAL retrieval of Aerosol and Cloud which is based on fitting a physically consistent cloud model to satellite observations simultaneously from the visible to the mid-infrared, thereby ensuring that the resulting cloud properties provide both a good representation of the short-wave and long-wave radiative effects of the observed cloud. The advantages of the optimal estimation method are that it enables rigorous error propagation and the inclusion of all measurements and any a priori information and associated errors in a rigorous mathematical framework. The algorithm provides a measure of the consistency between retrieval representation of cloud and satellite radiances. The cloud parameters retrieved are the cloud top pressure, cloud optical depth, cloud effective radius, cloud fraction and cloud phase.

    The algorithm can be applied to most visible/infrared satellite instruments. In this paper, we demonstrate the applicability to the Along-Track Scanning Radiometers ATSR-2 and AATSR. Examples of applying the algorithm to ATSR-2 flight data are presented and the sensitivity of the retrievals assessed, in particular the algorithm is evaluated for a number of simulated single-layer and multi-layer conditions. The algorithm was found to perform well for single-layer cloud except when the cloud was very thin; i.e., less than 1 optical depths. For the multi-layer cloud, the algorithm was robust except when the upper ice cloud layer is less than five optical depths. In these cases the retrieved cloud top pressure and cloud effective radius become a weighted average of the 2 layers. The sum of optical depth of multi-layer cloud is retrieved well until the cloud becomes thick

  11. Formation of giant molecular clouds in global spiral structures: the role of orbital dynamics and cloud-cloud collisions

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Stewart, G.R.

    1987-01-01

    The different roles played by orbital dynamics and dissipative cloud-cloud collisions in the formation of giant molecular clouds (GMCs) in a global spiral structure are investigated. The interstellar medium (ISM) is simulated by a system of particles, representing clouds, which orbit in a spiral-perturbed, galactic gravitational field. The overall magnitude and width of the global cloud density distribution in spiral arms is very similar in the collisional and collisionless simulations. The results suggest that the assumed number density and size distribution of clouds and the details of individual cloud-cloud collisions have relatively little effect on these features. Dissipative cloud-cloud collisions play an important steadying role for the cloud system's global spiral structure. Dissipative cloud-cloud collisions also damp the relative velocity dispersion of clouds in massive associations and thereby aid in the effective assembling of GMC-like complexes

  12. Ozone mixing ratios inside tropical deep convective clouds from OMI satellite measurements

    Directory of Open Access Journals (Sweden)

    J. R. Ziemke

    2009-01-01

    Full Text Available We have developed a new technique for estimating ozone mixing ratio inside deep convective clouds. The technique uses the concept of an optical centroid cloud pressure that is indicative of the photon path inside clouds. Radiative transfer calculations based on realistic cloud vertical structure as provided by CloudSat radar data show that because deep convective clouds are optically thin near the top, photons can penetrate significantly inside the cloud. This photon penetration coupled with in-cloud scattering produces optical centroid pressures that are hundreds of hPa inside the cloud. We combine measured column ozone and the optical centroid cloud pressure derived using the effects of rotational-Raman scattering to estimate O3 mixing ratio in the upper regions of deep convective clouds. The data are obtained from the Ozone Monitoring Instrument (OMI onboard NASA's Aura satellite. Our results show that low O3 concentrations in these clouds are a common occurrence throughout much of the tropical Pacific. Ozonesonde measurements in the tropics following convective activity also show very low concentrations of O3 in the upper troposphere. These low amounts are attributed to vertical injection of ozone poor oceanic boundary layer air during convection into the upper troposphere followed by convective outflow. Over South America and Africa, O3 mixing ratios inside deep convective clouds often exceed 50 ppbv which are comparable to mean background (cloud-free amounts and are consistent with higher concentrations of injected boundary layer/lower tropospheric O3 relative to the remote Pacific. The Atlantic region in general also consists of higher amounts of O3 precursors due to both biomass burning and lightning. Assuming that O3 is well mixed (i.e., constant mixing ratio with height up to the tropopause, we can estimate the stratospheric column O3 over

  13. MODIS Snow Cover Mapping Decision Tree Technique: Snow and Cloud Discrimination

    Science.gov (United States)

    Riggs, George A.; Hall, Dorothy K.

    2010-01-01

    Accurate mapping of snow cover continues to challenge cryospheric scientists and modelers. The Moderate-Resolution Imaging Spectroradiometer (MODIS) snow data products have been used since 2000 by many investigators to map and monitor snow cover extent for various applications. Users have reported on the utility of the products and also on problems encountered. Three problems or hindrances in the use of the MODIS snow data products that have been reported in the literature are: cloud obscuration, snow/cloud confusion, and snow omission errors in thin or sparse snow cover conditions. Implementation of the MODIS snow algorithm in a decision tree technique using surface reflectance input to mitigate those problems is being investigated. The objective of this work is to use a decision tree structure for the snow algorithm. This should alleviate snow/cloud confusion and omission errors and provide a snow map with classes that convey information on how snow was detected, e.g. snow under clear sky, snow tinder cloud, to enable users' flexibility in interpreting and deriving a snow map. Results of a snow cover decision tree algorithm are compared to the standard MODIS snow map and found to exhibit improved ability to alleviate snow/cloud confusion in some situations allowing up to about 5% increase in mapped snow cover extent, thus accuracy, in some scenes.

  14. Cloud Computing Fundamentals

    Science.gov (United States)

    Furht, Borko

    In the introductory chapter we define the concept of cloud computing and cloud services, and we introduce layers and types of cloud computing. We discuss the differences between cloud computing and cloud services. New technologies that enabled cloud computing are presented next. We also discuss cloud computing features, standards, and security issues. We introduce the key cloud computing platforms, their vendors, and their offerings. We discuss cloud computing challenges and the future of cloud computing.

  15. Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles

    Science.gov (United States)

    Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.

    2010-01-01

    A cloud frequency of occurrence matrix is generated using merged cloud vertical profiles derived from the satellite-borne Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and cloud profiling radar. The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical profiles can be related by a cloud overlap matrix when the correlation length of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches random overlap with increasing distance separating cloud layers and that the probability of deviating from random overlap decreases exponentially with distance. One month of Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) and CloudSat data (July 2006) support these assumptions, although the correlation length sometimes increases with separation distance when the cloud top height is large. The data also show that the correlation length depends on cloud top hight and the maximum occurs when the cloud top height is 8 to 10 km. The cloud correlation length is equivalent to the decorrelation distance introduced by Hogan and Illingworth (2000) when cloud fractions of both layers in a two-cloud layer system are the same. The simple relationships derived in this study can be used to estimate the top-of-atmosphere irradiance difference caused by cloud fraction, uppermost cloud top, and cloud thickness vertical profile differences.

  16. Sensitivity of surface temperature to radiative forcing by contrail cirrus in a radiative-mixing model

    Directory of Open Access Journals (Sweden)

    U. Schumann

    2017-11-01

    Full Text Available Earth's surface temperature sensitivity to radiative forcing (RF by contrail cirrus and the related RF efficacy relative to CO2 are investigated in a one-dimensional idealized model of the atmosphere. The model includes energy transport by shortwave (SW and longwave (LW radiation and by mixing in an otherwise fixed reference atmosphere (no other feedbacks. Mixing includes convective adjustment and turbulent diffusion, where the latter is related to the vertical component of mixing by large-scale eddies. The conceptual study shows that the surface temperature sensitivity to given contrail RF depends strongly on the timescales of energy transport by mixing and radiation. The timescales are derived for steady layered heating (ghost forcing and for a transient contrail cirrus case. The radiative timescales are shortest at the surface and shorter in the troposphere than in the mid-stratosphere. Without mixing, a large part of the energy induced into the upper troposphere by radiation due to contrails or similar disturbances gets lost to space before it can contribute to surface warming. Because of the different radiative forcing at the surface and at top of atmosphere (TOA and different radiative heating rate profiles in the troposphere, the local surface temperature sensitivity to stratosphere-adjusted RF is larger for SW than for LW contrail forcing. Without mixing, the surface energy budget is more important for surface warming than the TOA budget. Hence, surface warming by contrails is smaller than suggested by the net RF at TOA. For zero mixing, cooling by contrails cannot be excluded. This may in part explain low efficacy values for contrails found in previous global circulation model studies. Possible implications of this study are discussed. Since the results of this study are model dependent, they should be tested with a comprehensive climate model in the future.

  17. Clustering, randomness, and regularity in cloud fields: 2. Cumulus cloud fields

    Science.gov (United States)

    Zhu, T.; Lee, J.; Weger, R. C.; Welch, R. M.

    1992-12-01

    During the last decade a major controversy has been brewing concerning the proper characterization of cumulus convection. The prevailing view has been that cumulus clouds form in clusters, in which cloud spacing is closer than that found for the overall cloud field and which maintains its identity over many cloud lifetimes. This "mutual protection hypothesis" of Randall and Huffman (1980) has been challenged by the "inhibition hypothesis" of Ramirez et al. (1990) which strongly suggests that the spatial distribution of cumuli must tend toward a regular distribution. A dilemma has resulted because observations have been reported to support both hypotheses. The present work reports a detailed analysis of cumulus cloud field spatial distributions based upon Landsat, Advanced Very High Resolution Radiometer, and Skylab data. Both nearest-neighbor and point-to-cloud cumulative distribution function statistics are investigated. The results show unequivocally that when both large and small clouds are included in the cloud field distribution, the cloud field always has a strong clustering signal. The strength of clustering is largest at cloud diameters of about 200-300 m, diminishing with increasing cloud diameter. In many cases, clusters of small clouds are found which are not closely associated with large clouds. As the small clouds are eliminated from consideration, the cloud field typically tends towards regularity. Thus it would appear that the "inhibition hypothesis" of Ramirez and Bras (1990) has been verified for the large clouds. However, these results are based upon the analysis of point processes. A more exact analysis also is made which takes into account the cloud size distributions. Since distinct clouds are by definition nonoverlapping, cloud size effects place a restriction upon the possible locations of clouds in the cloud field. The net effect of this analysis is that the large clouds appear to be randomly distributed, with only weak tendencies towards

  18. Uncertainties in cloud phase and optical thickness retrievals from the Earth Polychromatic Imaging Camera (EPIC).

    Science.gov (United States)

    Meyer, Kerry; Yang, Yuekui; Platnick, Steven

    2016-01-01

    This paper presents an investigation of the expected uncertainties of a single channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud temperature threshold based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODIS daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single channel COT retrieval is feasible for EPIC. For ice clouds, single channel retrieval errors are minimal (< 2%) due to the particle size insensitivity of the assumed ice crystal (i.e., severely roughened aggregate of hexagonal columns) scattering properties at visible wavelengths, while for liquid clouds the error is mostly limited to within 10%, although for thin clouds (COT < 2) the error can be higher. Potential uncertainties in EPIC cloud masking and cloud temperature retrievals are not considered in this study.

  19. The ARM Cloud Radar Simulator for Global Climate Models: Bridging Field Data and Climate Models

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yuying [Lawrence Livermore National Laboratory, Livermore, California; Xie, Shaocheng [Lawrence Livermore National Laboratory, Livermore, California; Klein, Stephen A. [Lawrence Livermore National Laboratory, Livermore, California; Marchand, Roger [University of Washington, Seattle, Washington; Kollias, Pavlos [Stony Brook University, Stony Brook, New York; Clothiaux, Eugene E. [The Pennsylvania State University, University Park, Pennsylvania; Lin, Wuyin [Brookhaven National Laboratory, Upton, New York; Johnson, Karen [Brookhaven National Laboratory, Upton, New York; Swales, Dustin [CIRES and NOAA/Earth System Research Laboratory, Boulder, Colorado; Bodas-Salcedo, Alejandro [Met Office Hadley Centre, Exeter, United Kingdom; Tang, Shuaiqi [Lawrence Livermore National Laboratory, Livermore, California; Haynes, John M. [Cooperative Institute for Research in the Atmosphere/Colorado State University, Fort Collins, Colorado; Collis, Scott [Argonne National Laboratory, Argonne, Illinois; Jensen, Michael [Brookhaven National Laboratory, Upton, New York; Bharadwaj, Nitin [Pacific Northwest National Laboratory, Richland, Washington; Hardin, Joseph [Pacific Northwest National Laboratory, Richland, Washington; Isom, Bradley [Pacific Northwest National Laboratory, Richland, Washington

    2018-01-01

    Clouds play an important role in Earth’s radiation budget and hydrological cycle. However, current global climate models (GCMs) have had difficulties in accurately simulating clouds and precipitation. To improve the representation of clouds in climate models, it is crucial to identify where simulated clouds differ from real world observations of them. This can be difficult, since significant differences exist between how a climate model represents clouds and what instruments observe, both in terms of spatial scale and the properties of the hydrometeors which are either modeled or observed. To address these issues and minimize impacts of instrument limitations, the concept of instrument “simulators”, which convert model variables into pseudo-instrument observations, has evolved with the goal to improve and to facilitate the comparison of modeled clouds with observations. Many simulators have (and continue to be developed) for a variety of instruments and purposes. A community satellite simulator package, the Cloud Feedback Model Intercomparison Project (CFMIP) Observation Simulator Package (COSP; Bodas-Salcedo et al. 2011), contains several independent satellite simulators and is being widely used in the global climate modeling community to exploit satellite observations for model cloud evaluation (e.g., Klein et al. 2013; Zhang et al. 2010). This article introduces a ground-based cloud radar simulator developed by the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) program for comparing climate model clouds with ARM observations from its vertically pointing 35-GHz radars. As compared to CloudSat radar observations, ARM radar measurements occur with higher temporal resolution and finer vertical resolution. This enables users to investigate more fully the detailed vertical structures within clouds, resolve thin clouds, and quantify the diurnal variability of clouds. Particularly, ARM radars are sensitive to low-level clouds, which are

  20. Cloud occurrences and cloud radiative effects (CREs) from CERES-CALIPSO-CloudSat-MODIS (CCCM) and CloudSat radar-lidar (RL) products

    Science.gov (United States)

    Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.; Winker, David; L'Ecuyer, Tristan; Mace, Gerald G.; Painemal, David; Sun-Mack, Sunny; Chen, Yan; Miller, Walter F.

    2017-08-01

    Two kinds of cloud products obtained from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO), CloudSat, and Moderate Resolution Imaging Spectroradiometer (MODIS) are compared and analyzed in this study: Clouds and the Earth's Radiant Energy System (CERES)-CALIPSO-CloudSat-MODIS (CCCM) product and CloudSat radar-lidar products such as GEOPROF-LIDAR and FLXHR-LIDAR. Compared to GEOPROF-LIDAR, low-level (40°). The difference occurs when hydrometeors are detected by CALIPSO lidar but are undetected by CloudSat radar. In the comparison of cloud radiative effects (CREs), global mean differences between CCCM and FLXHR-LIDAR are mostly smaller than 5 W m-2, while noticeable regional differences are found. For example, CCCM shortwave (SW) and longwave (LW) CREs are larger than FXLHR-LIDAR along the west coasts of Africa and America because the GEOPROF-LIDAR algorithm misses shallow marine boundary layer clouds. In addition, FLXHR-LIDAR SW CREs are larger than the CCCM counterpart over tropical oceans away from the west coasts of America. Over midlatitude storm-track regions, CCCM SW and LW CREs are larger than the FLXHR-LIDAR counterpart.

  1. A Variational Method to Retrieve the Extinction Profile in Liquid Clouds Using Multiple Field-of-View Lidar

    Science.gov (United States)

    Pounder, Nicola L.; Hogan, Robin J.; Varnai, Tamas; Battaglia, Alessandro; Cahalan, Robert F.

    2011-01-01

    While liquid clouds playa very important role in the global radiation budget, it's been very difficult to remotely determine their internal cloud structure. Ordinary lidar instruments (similar to radars but using visible light pulses) receive strong signals from such clouds, but the information is limited to a thin layer near the cloud boundary. Multiple field-of-view (FOV) lidars offer some new hope as they are able to isolate photons that were scattered many times by cloud droplets and penetrated deep into a cloud before returning to the instrument. Their data contains new information on cloud structure, although the lack of fast simulation methods made it challenging to interpret the observations. This paper describes a fast new technique that can simulate multiple-FOV lidar signals and can even estimate the way the signals would change in response to changes in cloud properties-an ability that allows quick refinements in our initial guesses of cloud structure. Results for a hypothetical airborne three-FOV lidar suggest that this approach can help determine cloud structure for a deeper layer in clouds, and can reliably determine the optical thickness of even fairly thick liquid clouds. The algorithm is also applied to stratocumulus observations by the 8-FOV airborne "THOR" lidar. These tests demonstrate that the new method can determine the depth to which a lidar provides useful information on vertical cloud structure. This work opens the way to exploit data from spaceborne lidar and radar more rigorously than has been possible up to now.

  2. Relation of Cloud Occurrence Frequency, Overlap, and Effective Thickness Derived from CALIPSO and CloudSat Merged Cloud Vertical Profiles

    Science.gov (United States)

    Kato, Seiji; Sun-Mack, Sunny; Miller, Walter F.; Rose, Fred G.; Chen, Yan; Minnis, Patrick; Wielicki, Bruce A.

    2009-01-01

    A cloud frequency of occurrence matrix is generated using merged cloud vertical profile derived from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) and Cloud Profiling Radar (CPR). The matrix contains vertical profiles of cloud occurrence frequency as a function of the uppermost cloud top. It is shown that the cloud fraction and uppermost cloud top vertical pro les can be related by a set of equations when the correlation distance of cloud occurrence, which is interpreted as an effective cloud thickness, is introduced. The underlying assumption in establishing the above relation is that cloud overlap approaches the random overlap with increasing distance separating cloud layers and that the probability of deviating from the random overlap decreases exponentially with distance. One month of CALIPSO and CloudSat data support these assumptions. However, the correlation distance sometimes becomes large, which might be an indication of precipitation. The cloud correlation distance is equivalent to the de-correlation distance introduced by Hogan and Illingworth [2000] when cloud fractions of both layers in a two-cloud layer system are the same.

  3. On the composition and optical extinction of particles in the tropopause region

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, B. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Wessling (Germany). Inst. fuer Physik der Atmosphaere; Solomon, S. [National Oceanic and Atmospheric Administration, Boulder, CO (United States). Aeronomy Lab.

    1999-06-01

    Liquid aerosol particles and ice crystals in subvisible cirrus clouds in the tropopause region are characterized in terms of size distributions, chemical composition, and optical extinction. These particle properties are studied by means of simple models and are related to satellite extinction measurements, particularly for midlatitudes. Sulfuric acid aerosols can take up nitric acid near the ice frost point, just before ice nucleation. Aerosols in the tropopause region may show a larger spread of extinction and extinction ratios at different wavelengths than background stratospheric aerosols. The high surface areas and low extinction ratios of subvisible cirrus deduced from satellite observations are unlikely to be due purely to aerosols, except for high sulfate loadings. It is shown that mixtures of liquid aerosols and ice particles can more readily explain these data with only small cloud fractions along the line of sight of the optical sensors. The efficiency of heterogeneous chlorine activation in aerosol/cloud mixtures, the availability of water vapor, sulfate, and nitrate, and the effects of temperature, ammonium, ice nuclei and aircraft emissions on the properties of particles in the tropopause region are explored. (orig.)

  4. Contrasting Cloud Composition Between Coupled and Decoupled Marine Boundary Layer Clouds

    Science.gov (United States)

    WANG, Z.; Mora, M.; Dadashazar, H.; MacDonald, A.; Crosbie, E.; Bates, K. H.; Coggon, M. M.; Craven, J. S.; Xian, P.; Campbell, J. R.; AzadiAghdam, M.; Woods, R. K.; Jonsson, H.; Flagan, R. C.; Seinfeld, J.; Sorooshian, A.

    2016-12-01

    Marine stratocumulus clouds often become decoupled from the vertical layer immediately above the ocean surface. This study contrasts cloud chemical composition between coupled and decoupled marine stratocumulus clouds. Cloud water and droplet residual particle composition were measured in clouds off the California coast during three airborne experiments in July-August of separate years (E-PEACE 2011, NiCE 2013, BOAS 2015). Decoupled clouds exhibited significantly lower overall mass concentrations in both cloud water and droplet residual particles, consistent with reduced cloud droplet number concentration and sub-cloud aerosol (Dp > 100 nm) number concentration, owing to detachment from surface sources. Non-refractory sub-micrometer aerosol measurements show that coupled clouds exhibit higher sulfate mass fractions in droplet residual particles, owing to more abundant precursor emissions from the ocean and ships. Consequently, decoupled clouds exhibited higher mass fractions of organics, nitrate, and ammonium in droplet residual particles, owing to effects of long-range transport from more distant sources. Total cloud water mass concentration in coupled clouds was dominated by sodium and chloride, and their mass fractions and concentrations exceeded those in decoupled clouds. Conversely, with the exception of sea salt constituents (e.g., Cl, Na, Mg, K), cloud water mass fractions of all species examined were higher in decoupled clouds relative to coupled clouds. These results suggest that an important variable is the extent to which clouds are coupled to the surface layer when interpreting microphysical data relevant to clouds and aerosol particles.

  5. Stirring up the dust: a dynamical model for halo-like dust clouds in transitional disks

    NARCIS (Netherlands)

    Krijt, S.; Dominik, C.

    2011-01-01

    Context. A small number of young stellar objects show signs of a halo-like structure of optically thin dust, in addition to a circumstellar disk. This halo or torus is located within a few AU of the star, but its origin has not yet been understood. Aims. A dynamically excited cloud of planetesimals

  6. Recent Experimental Results on Amorphous Carbon Coatings for Electron Cloud Mitigation

    CERN Document Server

    Yin Vallgren, C; Chiggiato, P; Costa Pinto, P; Neupert, H; Taborelli, M; Rumolo, G; Shaposhnikova, E; Vollenberg, W

    2011-01-01

    Amorphous carbon (a-C) thin films, produced in different coating configurations by using DC magnetron sputtering, have been investigated in laboratory for low secondary electron yield (SEY) applications. After the coatings had shown a reliable low initial SEY, the a-C thin films have been applied in the CERN Super Proton Synchrotron (SPS) and tested with Large Hadron Collider (LHC) type beams.Currently, we have used a-C thin film coated in so-called liner configuration for the electron cloud monitors. In addition the vacuum chambers of three dipole magnets have been coated and inserted into the machine. After describing the different configurations used for the coatings, results of the tests in the machine and a summary of the analyses after extraction will be presented. Based on comparison between different coating configurations, a new series of coatings has been applied on three further dipole magnet vacuum chambers. They have been installed and will be tested in coming machine development runs.

  7. Context-aware distributed cloud computing using CloudScheduler

    Science.gov (United States)

    Seuster, R.; Leavett-Brown, CR; Casteels, K.; Driemel, C.; Paterson, M.; Ring, D.; Sobie, RJ; Taylor, RP; Weldon, J.

    2017-10-01

    The distributed cloud using the CloudScheduler VM provisioning service is one of the longest running systems for HEP workloads. It has run millions of jobs for ATLAS and Belle II over the past few years using private and commercial clouds around the world. Our goal is to scale the distributed cloud to the 10,000-core level, with the ability to run any type of application (low I/O, high I/O and high memory) on any cloud. To achieve this goal, we have been implementing changes that utilize context-aware computing designs that are currently employed in the mobile communication industry. Context-awareness makes use of real-time and archived data to respond to user or system requirements. In our distributed cloud, we have many opportunistic clouds with no local HEP services, software or storage repositories. A context-aware design significantly improves the reliability and performance of our system by locating the nearest location of the required services. We describe how we are collecting and managing contextual information from our workload management systems, the clouds, the virtual machines and our services. This information is used not only to monitor the system but also to carry out automated corrective actions. We are incrementally adding new alerting and response services to our distributed cloud. This will enable us to scale the number of clouds and virtual machines. Further, a context-aware design will enable us to run analysis or high I/O application on opportunistic clouds. We envisage an open-source HTTP data federation (for example, the DynaFed system at CERN) as a service that would provide us access to existing storage elements used by the HEP experiments.

  8. AceCloud: Molecular Dynamics Simulations in the Cloud.

    Science.gov (United States)

    Harvey, M J; De Fabritiis, G

    2015-05-26

    We present AceCloud, an on-demand service for molecular dynamics simulations. AceCloud is designed to facilitate the secure execution of large ensembles of simulations on an external cloud computing service (currently Amazon Web Services). The AceCloud client, integrated into the ACEMD molecular dynamics package, provides an easy-to-use interface that abstracts all aspects of interaction with the cloud services. This gives the user the experience that all simulations are running on their local machine, minimizing the learning curve typically associated with the transition to using high performance computing services.

  9. VMware private cloud computing with vCloud director

    CERN Document Server

    Gallagher, Simon

    2013-01-01

    It's All About Delivering Service with vCloud Director Empowered by virtualization, companies are not just moving into the cloud, they're moving into private clouds for greater security, flexibility, and cost savings. However, this move involves more than just infrastructure. It also represents a different business model and a new way to provide services. In this detailed book, VMware vExpert Simon Gallagher makes sense of private cloud computing for IT administrators. From basic cloud theory and strategies for adoption to practical implementation, he covers all the issues. You'll lea

  10. A measurement of the turbulence-driven density distribution in a non-star-forming molecular cloud

    Energy Technology Data Exchange (ETDEWEB)

    Ginsburg, Adam; Darling, Jeremy [CASA, University of Colorado, 389-UCB, Boulder, CO 80309 (United States); Federrath, Christoph, E-mail: Adam.G.Ginsburg@gmail.com [Monash Centre for Astrophysics, School of Mathematical Sciences, Monash University, Vic 3800 (Australia)

    2013-12-10

    Molecular clouds are supersonically turbulent. This turbulence governs the initial mass function and the star formation rate. In order to understand the details of star formation, it is therefore essential to understand the properties of turbulence, in particular the probability distribution of density in turbulent clouds. We present H{sub 2}CO volume density measurements of a non-star-forming cloud along the line of sight toward W49A. We use these measurements in conjunction with total mass estimates from {sup 13}CO to infer the shape of the density probability distribution function. This method is complementary to measurements of turbulence via the column density distribution and should be applicable to any molecular cloud with detected CO. We show that turbulence in this cloud is probably compressively driven, with a compressive-to-total Mach number ratio b=M{sub C}/M>0.4. We measure the standard deviation of the density distribution, constraining it to the range 1.5 < σ {sub s} < 1.9, assuming that the density is lognormally distributed. This measurement represents an essential input into star formation laws. The method of averaging over different excitation conditions to produce a model of emission from a turbulent cloud is generally applicable to optically thin line observations.

  11. Creating cloud-free Landsat ETM+ data sets in tropical landscapes: cloud and cloud-shadow removal

    Science.gov (United States)

    Sebastián Martinuzzi; William A. Gould; Olga M. Ramos Gonzalez

    2007-01-01

    Clouds and cloud shadows are common features of visible and infrared remotelysensed images collected from many parts of the world, particularly in humid and tropical regions. We have developed a simple and semiautomated method to mask clouds and shadows in Landsat ETM+ imagery, and have developed a recent cloud-free composite of multitemporal images for Puerto Rico and...

  12. Fibromyalgia Is Correlated with Retinal Nerve Fiber Layer Thinning.

    Directory of Open Access Journals (Sweden)

    Elena Garcia-Martin

    Full Text Available To investigate whether fibromyalgia induces axonal damage in the optic nerve that can be detected using optical coherence tomography (OCT, as the retinal nerve fiber layer (RNFL is atrophied in patients with fibromyalgia compared with controls.Fibromyalgia patients (n = 116 and age-matched healthy controls (n = 144 were included in this observational and prospective cohort study. All subjects underwent visual acuity measurement and structural analysis of the RNFL using two OCT devices (Cirrus and Spectralis. Fibromyalgia patients were evaluated according to Giesecke's fibromyalgia subgroups, the Fibromyalgia Impact Questionnaire (FIQ, and the European Quality of Life-5 Dimensions (EQ5D scale. We compared the differences between fibromyalgia patients and controls, and analyzed the correlations between OCT measurements, disease duration, fibromyalgia subgroups, severity, and quality of life. The impact on quality of life in fibromyalgia subgroups and in patients with different disease severity was also analyzed.A significant decrease in the RNFL was detected in fibromyalgia patients compared with controls using the two OCT devices: Cirrus OCT ganglion cell layer analysis registered a significant decrease in the minimum thickness of the inner plexiform layer (74.99±16.63 vs 79.36±3.38 μm, respectively; p = 0.023, nasal inferior, temporal inferior and temporal superior sectors (p = 0.040; 0.011 and 0.046 respectively. The Glaucoma application of the Spectralis OCT revealed thinning in the nasal, temporal inferior and temporal superior sectors (p = 0.009, 0.006, and 0.002 respectively of fibromyalgia patients and the Axonal application in all sectors, except the nasal superior and temporal sectors. The odds ratio (OR to estimate the size effect of FM in RNFL thickness was 1.39. RNFL atrophy was detected in patients with FIQ scores <60 (patients in early disease stages compared with controls in the temporal inferior sector (78.74±17.75 vs 81.65±3

  13. TRIGGERING COLLAPSE OF THE PRESOLAR DENSE CLOUD CORE AND INJECTING SHORT-LIVED RADIOISOTOPES WITH A SHOCK WAVE. II. VARIED SHOCK WAVE AND CLOUD CORE PARAMETERS

    Energy Technology Data Exchange (ETDEWEB)

    Boss, Alan P.; Keiser, Sandra A., E-mail: boss@dtm.ciw.edu, E-mail: keiser@dtm.ciw.edu [Department of Terrestrial Magnetism, Carnegie Institution, 5241 Broad Branch Road, NW, Washington, DC 20015-1305 (United States)

    2013-06-10

    A variety of stellar sources have been proposed for the origin of the short-lived radioisotopes that existed at the time of the formation of the earliest solar system solids, including Type II supernovae (SNe), asymptotic giant branch (AGB) and super-AGB stars, and Wolf-Rayet star winds. Our previous adaptive mesh hydrodynamics models with the FLASH2.5 code have shown which combinations of shock wave parameters are able to simultaneously trigger the gravitational collapse of a target dense cloud core and inject significant amounts of shock wave gas and dust, showing that thin SN shocks may be uniquely suited for the task. However, recent meteoritical studies have weakened the case for a direct SN injection to the presolar cloud, motivating us to re-examine a wider range of shock wave and cloud core parameters, including rotation, in order to better estimate the injection efficiencies for a variety of stellar sources. We find that SN shocks remain as the most promising stellar source, though planetary nebulae resulting from AGB star evolution cannot be conclusively ruled out. Wolf-Rayet (WR) star winds, however, are likely to lead to cloud core shredding, rather than to collapse. Injection efficiencies can be increased when the cloud is rotating about an axis aligned with the direction of the shock wave, by as much as a factor of {approx}10. The amount of gas and dust accreted from the post-shock wind can exceed that injected from the shock wave, with implications for the isotopic abundances expected for a SN source.

  14. Zen of cloud learning cloud computing by examples on Microsoft Azure

    CERN Document Server

    Bai, Haishi

    2014-01-01

    Zen of Cloud: Learning Cloud Computing by Examples on Microsoft Azure provides comprehensive coverage of the essential theories behind cloud computing and the Windows Azure cloud platform. Sharing the author's insights gained while working at Microsoft's headquarters, it presents nearly 70 end-to-end examples with step-by-step guidance on implementing typical cloud-based scenarios.The book is organized into four sections: cloud service fundamentals, cloud solutions, devices and cloud, and system integration and project management. Each chapter contains detailed exercises that provide readers w

  15. TURBULENCE DECAY AND CLOUD CORE RELAXATION IN MOLECULAR CLOUDS

    International Nuclear Information System (INIS)

    Gao, Yang; Law, Chung K.; Xu, Haitao

    2015-01-01

    The turbulent motion within molecular clouds is a key factor controlling star formation. Turbulence supports molecular cloud cores from evolving to gravitational collapse and hence sets a lower bound on the size of molecular cloud cores in which star formation can occur. On the other hand, without a continuous external energy source maintaining the turbulence, such as in molecular clouds, the turbulence decays with an energy dissipation time comparable to the dynamic timescale of clouds, which could change the size limits obtained from Jean's criterion by assuming constant turbulence intensities. Here we adopt scaling relations of physical variables in decaying turbulence to analyze its specific effects on the formation of stars. We find that the decay of turbulence provides an additional approach for Jeans' criterion to be achieved, after which gravitational infall governs the motion of the cloud core. This epoch of turbulence decay is defined as cloud core relaxation. The existence of cloud core relaxation provides a more complete understanding of the effect of the competition between turbulence and gravity on the dynamics of molecular cloud cores and star formation

  16. COMPARATIVE STUDY OF CLOUD COMPUTING AND MOBILE CLOUD COMPUTING

    OpenAIRE

    Nidhi Rajak*, Diwakar Shukla

    2018-01-01

    Present era is of Information and Communication Technology (ICT) and there are number of researches are going on Cloud Computing and Mobile Cloud Computing such security issues, data management, load balancing and so on. Cloud computing provides the services to the end user over Internet and the primary objectives of this computing are resource sharing and pooling among the end users. Mobile Cloud Computing is a combination of Cloud Computing and Mobile Computing. Here, data is stored in...

  17. Monstrous Ice Cloud System in Titan's Present South Polar Stratosphere

    Science.gov (United States)

    Anderson, Carrie; Samuelson, Robert; McLain, Jason; Achterberg, Richard; Flasar, F. Michael; Milam, Stefanie

    2015-11-01

    During southern autumn when sunlight was still available, Cassini's Imaging Science Subsystem discovered a cloud around 300 km near Titan's south pole (West, R. A. et al., AAS/DPS Abstracts, 45, #305.03, 2013); the cloud was later determined by Cassini's Visible and InfraRed Mapping Spectrometer to contain HCN ice (de Kok et al., Nature, 514, pp 65-67, 2014). This cloud has proven to be only the tip of an extensive ice cloud system contained in Titan's south polar stratosphere, as seen through the night-vision goggles of Cassini's Composite InfraRed Spectrometer (CIRS). As the sun sets and the gloom of southern winter approaches, evidence is beginning to accumulate from CIRS far-IR spectra that a massive system of nitrile ice clouds is developing in Titan's south polar stratosphere. Even during the depths of northern winter, nothing like the strength of this southern system was evident in corresponding north polar regions.From the long slant paths that are available from limb-viewing CIRS far-IR spectra, we have the first definitive detection of the ν6 band of cyanoacetylene (HC3N) ice in Titan’s south polar stratosphere. In addition, we also see a strong blend of nitrile ice lattice vibration features around 160 cm-1. From these data we are able to derive ice abundances. The most prominent (and still chemically unidentified) ice emission feature, the Haystack, (at 220 cm-1) is also observed. We establish the vertical distributions of the ice cloud systems associated with both the 160 cm-1 feature and the Haystack. The ultimate aim is to refine the physical and possibly the chemical relationships between the two. Transmittance thin film spectra of nitrile ice mixtures obtained in our Spectroscopy for Planetary ICes Environments (SPICE) laboratory are used to support these analyses.

  18. Review of Cloud Computing and existing Frameworks for Cloud adoption

    OpenAIRE

    Chang, Victor; Walters, Robert John; Wills, Gary

    2014-01-01

    This paper presents a selected review for Cloud Computing and explains the benefits and risks of adopting Cloud Computing in a business environment. Although all the risks identified may be associated with two major Cloud adoption challenges, a framework is required to support organisations as they begin to use Cloud and minimise risks of Cloud adoption. Eleven Cloud Computing frameworks are investigated and a comparison of their strengths and limitations is made; the result of the comparison...

  19. Isotope cloud linked to failed neutrino source

    Science.gov (United States)

    Cartlidge, Edwin

    2018-02-01

    For 2 weeks in the fall of 2017, traces of the isotope ruthenium-106 wafted across Europe. The radioactive cloud was too thin to be dangerous, but it posed a mystery to scientists. Now, researchers at the French Institute of Radioprotection and Nuclear Security say the isotope may have been released from the Mayak nuclear facility in southern Russia. They argue the leak may have happened when technicians botched the fabrication of a cerium-144 source needed in the search for sterile neutrinos at the Gran Sasso National Laboratory in L'Aquila, Italy. The Russian government has vehemently denied that an accident took place, however.

  20. Improvements in AVHRR Daytime Cloud Detection Over the ARM NSA Site

    Science.gov (United States)

    Chakrapani, V.; Spangenberg, D. A.; Doelling, D. R.; Minnis, P.; Trepte, Q. Z.; Arduini, R. F.

    2001-01-01

    Clouds play an important role in the radiation budget over Arctic and Antarctic. Because of limited surface observing capabilities, it is necessary to detect clouds over large areas using satellite imagery. At low and mid-latitudes, satellite-observed visible (VIS; 0.65 micrometers) and infrared (IR; 11 micrometers) radiance data are used to derive cloud fraction, temperature, and optical depth. However, the extreme variability in the VIS surface albedo makes the detection of clouds from satellite a difficult process in polar regions. The IR data often show that the surface is nearly the same temperature or even colder than clouds, further complicating cloud detection. Also, the boundary layer can have large areas of haze, thin fog, or diamond dust that are not seen in standard satellite imagery. Other spectral radiances measured by satellite imagers provide additional information that can be used to more accurately discriminate clouds from snow and ice. Most techniques currently use a fixed reflectance or temperature threshold to decide between clouds and clear snow. Using a subjective approach, Minnis et al. (2001) found that the clear snow radiance signatures vary as a function of viewing and illumination conditions as well as snow condition. To routinely process satellite imagery over polar regions with an automated algorithm, it is necessary to account for this angular variability and the change in the background reflectance as snow melts, vegetation grows over land, and melt ponds form on pack ice. This paper documents the initial satellite-based cloud product over the Atmospheric Radiation Measurement (ARM) North Slope of Alaska (NSA) site at Barrow for use by the modeling community. Cloud amount and height are determined subjectively using an adaptation of the methodology of Minnis et al. (2001) and the radiation fields arc determined following the methods of Doelling et al. (2001) as applied to data taken during the Surface Heat and Energy Budget of the

  1. Cloud CCN feedback

    International Nuclear Information System (INIS)

    Hudson, J.G.

    1992-01-01

    Cloud microphysics affects cloud albedo precipitation efficiency and the extent of cloud feedback in response to global warming. Compared to other cloud parameters, microphysics is unique in its large range of variability and the fact that much of the variability is anthropogenic. Probably the most important determinant of cloud microphysics is the spectra of cloud condensation nuclei (CCN) which display considerable variability and have a large anthropogenic component. When analyzed in combination three field observation projects display the interrelationship between CCN and cloud microphysics. CCN were measured with the Desert Research Institute (DRI) instantaneous CCN spectrometer. Cloud microphysical measurements were obtained with the National Center for Atmospheric Research Lockheed Electra. Since CCN and cloud microphysics each affect the other a positive feedback mechanism can result

  2. Cloud Governance

    DEFF Research Database (Denmark)

    Berthing, Hans Henrik

    Denne præsentation beskriver fordele og værdier ved anvendelse af Cloud Computing. Endvidere inddrager resultater fra en række internationale analyser fra ISACA om Cloud Computing.......Denne præsentation beskriver fordele og værdier ved anvendelse af Cloud Computing. Endvidere inddrager resultater fra en række internationale analyser fra ISACA om Cloud Computing....

  3. Securing the Cloud Cloud Computer Security Techniques and Tactics

    CERN Document Server

    Winkler, Vic (JR)

    2011-01-01

    As companies turn to cloud computing technology to streamline and save money, security is a fundamental concern. Loss of certain control and lack of trust make this transition difficult unless you know how to handle it. Securing the Cloud discusses making the move to the cloud while securing your peice of it! The cloud offers felxibility, adaptability, scalability, and in the case of security-resilience. This book details the strengths and weaknesses of securing your company's information with different cloud approaches. Attacks can focus on your infrastructure, communications network, data, o

  4. Cloud management and security

    CERN Document Server

    Abbadi, Imad M

    2014-01-01

    Written by an expert with over 15 years' experience in the field, this book establishes the foundations of Cloud computing, building an in-depth and diverse understanding of the technologies behind Cloud computing. In this book, the author begins with an introduction to Cloud computing, presenting fundamental concepts such as analyzing Cloud definitions, Cloud evolution, Cloud services, Cloud deployment types and highlighting the main challenges. Following on from the introduction, the book is divided into three parts: Cloud management, Cloud security, and practical examples. Part one presents the main components constituting the Cloud and federated Cloud infrastructure(e.g., interactions and deployment), discusses management platforms (resources and services), identifies and analyzes the main properties of the Cloud infrastructure, and presents Cloud automated management services: virtual and application resource management services. Part two analyzes the problem of establishing trustworthy Cloud, discuss...

  5. Determination of the chemical properties of residues retained in individual cloud droplets by XRF microprobe at SPring-8

    International Nuclear Information System (INIS)

    Ma, C.-J.; Tohno, S.; Kasahara, M.; Hayakawa, S.

    2004-01-01

    To determine the chemical properties of residue retained in individual cloud droplets is primarily important for the understanding of rainout mechanism and aerosol modification in droplet. The sampling of individual cloud droplets were carried out on the summit of Mt. Taiko located in Tango peninsula, Kyoto prefecture, during Asian dust storm event in March of 2002. XRF microprobe system equipped at SPring-8, BL-37XU was applied to the subsequent quantification analysis of ultra trace elements in residues of individual cloud droplets. It was possible to form the replicas of separated individual cloud droplets on the thin collodion film. The two dimensional XRF maps for the residues in individual cloud droplets were clearly drawn by scanning of micro-beam. Also, XRF spectra of trace elements in residues were well resolved. From the XRF spectra for individual residues, the chemical mixed state of residues could be assumed. The chemical forms of Fe (Fe +++ ) and Zn (Zn + ) could be clearly characterized by their K-edge micro-XANES spectra. By comparison of Z/Si mass ratios of residues in cloud droplets and those of the original sands collected in desert areas in China, the aging of ambient dust particles and their in cloud modification were indirectly assumed

  6. Cloud computing patterns fundamentals to design, build, and manage cloud applications

    CERN Document Server

    Fehling, Christoph; Retter, Ralph; Schupeck, Walter; Arbitter, Peter

    2014-01-01

    The current work provides CIOs, software architects, project managers, developers, and cloud strategy initiatives with a set of architectural patterns that offer nuggets of advice on how to achieve common cloud computing-related goals. The cloud computing patterns capture knowledge and experience in an abstract format that is independent of concrete vendor products. Readers are provided with a toolbox to structure cloud computing strategies and design cloud application architectures. By using this book cloud-native applications can be implemented and best suited cloud vendors and tooling for i

  7. Military clouds: utilization of cloud computing systems at the battlefield

    Science.gov (United States)

    Süleyman, Sarıkürk; Volkan, Karaca; İbrahim, Kocaman; Ahmet, Şirzai

    2012-05-01

    Cloud computing is known as a novel information technology (IT) concept, which involves facilitated and rapid access to networks, servers, data saving media, applications and services via Internet with minimum hardware requirements. Use of information systems and technologies at the battlefield is not new. Information superiority is a force multiplier and is crucial to mission success. Recent advances in information systems and technologies provide new means to decision makers and users in order to gain information superiority. These developments in information technologies lead to a new term, which is known as network centric capability. Similar to network centric capable systems, cloud computing systems are operational today. In the near future extensive use of military clouds at the battlefield is predicted. Integrating cloud computing logic to network centric applications will increase the flexibility, cost-effectiveness, efficiency and accessibility of network-centric capabilities. In this paper, cloud computing and network centric capability concepts are defined. Some commercial cloud computing products and applications are mentioned. Network centric capable applications are covered. Cloud computing supported battlefield applications are analyzed. The effects of cloud computing systems on network centric capability and on the information domain in future warfare are discussed. Battlefield opportunities and novelties which might be introduced to network centric capability by cloud computing systems are researched. The role of military clouds in future warfare is proposed in this paper. It was concluded that military clouds will be indispensible components of the future battlefield. Military clouds have the potential of improving network centric capabilities, increasing situational awareness at the battlefield and facilitating the settlement of information superiority.

  8. Clustering, randomness, and regularity in cloud fields. 4: Stratocumulus cloud fields

    Science.gov (United States)

    Lee, J.; Chou, J.; Weger, R. C.; Welch, R. M.

    1994-01-01

    To complete the analysis of the spatial distribution of boundary layer cloudiness, the present study focuses on nine stratocumulus Landsat scenes. The results indicate many similarities between stratocumulus and cumulus spatial distributions. Most notably, at full spatial resolution all scenes exhibit a decidedly clustered distribution. The strength of the clustering signal decreases with increasing cloud size; the clusters themselves consist of a few clouds (less than 10), occupy a small percentage of the cloud field area (less than 5%), contain between 20% and 60% of the cloud field population, and are randomly located within the scene. In contrast, stratocumulus in almost every respect are more strongly clustered than are cumulus cloud fields. For instance, stratocumulus clusters contain more clouds per cluster, occupy a larger percentage of the total area, and have a larger percentage of clouds participating in clusters than the corresponding cumulus examples. To investigate clustering at intermediate spatial scales, the local dimensionality statistic is introduced. Results obtained from this statistic provide the first direct evidence for regularity among large (more than 900 m in diameter) clouds in stratocumulus and cumulus cloud fields, in support of the inhibition hypothesis of Ramirez and Bras (1990). Also, the size compensated point-to-cloud cumulative distribution function statistic is found to be necessary to obtain a consistent description of stratocumulus cloud distributions. A hypothesis regarding the underlying physical mechanisms responsible for cloud clustering is presented. It is suggested that cloud clusters often arise from 4 to 10 triggering events localized within regions less than 2 km in diameter and randomly distributed within the cloud field. As the size of the cloud surpasses the scale of the triggering region, the clustering signal weakens and the larger cloud locations become more random.

  9. Clustering, randomness, and regularity in cloud fields. 4. Stratocumulus cloud fields

    Science.gov (United States)

    Lee, J.; Chou, J.; Weger, R. C.; Welch, R. M.

    1994-07-01

    To complete the analysis of the spatial distribution of boundary layer cloudiness, the present study focuses on nine stratocumulus Landsat scenes. The results indicate many similarities between stratocumulus and cumulus spatial distributions. Most notably, at full spatial resolution all scenes exhibit a decidedly clustered distribution. The strength of the clustering signal decreases with increasing cloud size; the clusters themselves consist of a few clouds (less than 10), occupy a small percentage of the cloud field area (less than 5%), contain between 20% and 60% of the cloud field population, and are randomly located within the scene. In contrast, stratocumulus in almost every respect are more strongly clustered than are cumulus cloud fields. For instance, stratocumulus clusters contain more clouds per cluster, occupy a larger percentage of the total area, and have a larger percentage of clouds participating in clusters than the corresponding cumulus examples. To investigate clustering at intermediate spatial scales, the local dimensionality statistic is introduced. Results obtained from this statistic provide the first direct evidence for regularity among large (>900 m in diameter) clouds in stratocumulus and cumulus cloud fields, in support of the inhibition hypothesis of Ramirez and Bras (1990). Also, the size compensated point-to-cloud cumulative distribution function statistic is found to be necessary to obtain a consistent description of stratocumulus cloud distributions. A hypothesis regarding the underlying physical mechanisms responsible for cloud clustering is presented. It is suggested that cloud clusters often arise from 4 to 10 triggering events localized within regions less than 2 km in diameter and randomly distributed within the cloud field. As the size of the cloud surpasses the scale of the triggering region, the clustering signal weakens and the larger cloud locations become more random.

  10. Cloud blueprints for integrating and managing cloud federations

    NARCIS (Netherlands)

    Papazoglou, M.; Heisel, M.

    2012-01-01

    Contemporary cloud technologies face insurmountable obstacles. They follow a pull-based, producer-centric trajectory to development where cloud consumers have to ‘squeeze and bolt’ applications onto cloud APIs. They also introduce a monolithic SaaS/PaaS/IaaS stack where a one-size-fits-all mentality

  11. Galaxy CloudMan: delivering cloud compute clusters.

    Science.gov (United States)

    Afgan, Enis; Baker, Dannon; Coraor, Nate; Chapman, Brad; Nekrutenko, Anton; Taylor, James

    2010-12-21

    Widespread adoption of high-throughput sequencing has greatly increased the scale and sophistication of computational infrastructure needed to perform genomic research. An alternative to building and maintaining local infrastructure is "cloud computing", which, in principle, offers on demand access to flexible computational infrastructure. However, cloud computing resources are not yet suitable for immediate "as is" use by experimental biologists. We present a cloud resource management system that makes it possible for individual researchers to compose and control an arbitrarily sized compute cluster on Amazon's EC2 cloud infrastructure without any informatics requirements. Within this system, an entire suite of biological tools packaged by the NERC Bio-Linux team (http://nebc.nerc.ac.uk/tools/bio-linux) is available for immediate consumption. The provided solution makes it possible, using only a web browser, to create a completely configured compute cluster ready to perform analysis in less than five minutes. Moreover, we provide an automated method for building custom deployments of cloud resources. This approach promotes reproducibility of results and, if desired, allows individuals and labs to add or customize an otherwise available cloud system to better meet their needs. The expected knowledge and associated effort with deploying a compute cluster in the Amazon EC2 cloud is not trivial. The solution presented in this paper eliminates these barriers, making it possible for researchers to deploy exactly the amount of computing power they need, combined with a wealth of existing analysis software, to handle the ongoing data deluge.

  12. Cloud blueprint : A model-driven approach to configuring federated clouds

    NARCIS (Netherlands)

    Papazoglou, M.; Abello, A.; Bellatreche, L.; Benatallah, B.

    2012-01-01

    Current cloud solutions are fraught with problems. They introduce a monolithic cloud stack that imposes vendor lock-in and donot permit developers to mix and match services freely from diverse cloud service tiers and configure them dynamically to address application needs. Cloud blueprinting is a

  13. Engaging observers to look at clouds from both sides: connecting NASA mission science with authentic STEM experiences

    Science.gov (United States)

    Chambers, L. H.; Taylor, J.; Ellis, T. D.; McCrea, S.; Rogerson, T. M.; Falcon, P.

    2016-12-01

    In 1997, NASA's Clouds and the Earth's Radiant Energy System (CERES) team began engaging K-12 schools as ground truth observers of clouds. CERES seeks to understand cloud effects on Earth's energy budget; thus accurate detection and characterization of clouds is key. While satellite remote sensing provides global information about clouds, it is limited in time and resolution. Ground observers, on the other hand, can observe clouds at any time of day (and sometimes night), and can see small and thin clouds that are challenging to detect from space. In 2006, two active sensing satellites, CloudSat and CALIPSO, were launched into the A-Train, which already contained 2 CERES instruments on the Aqua spacecraft. The CloudSat team also engaged K-12 schools to observe clouds, through The GLOBE Program, with a specialized observation protocol customized for the narrow radar swath. While providing valuable data for satellite assessment, these activities also engage participants in accessible, authentic science that gets people outdoors, helps them develop observation skills, and is friendly to all ages. The effort has evolved substantially since 1997, adopting new technology to provide a more compelling experience to citizen observers. Those who report within 15 minutes of the passage of a wide range of satellites (Terra, Aqua, CloudSat, CALIPSO, NPP, as well as a number of geostationary satellites) are sent a satellite image centered on their location and are invited to extend the experience beyond simple observation to include analysis of the two different viewpoints. Over the years these projects have collected large amounts of cloud observations from every continent and ocean basin on Earth. A number of studies have been conducted comparing the ground observations to the satellite results. This presentation will provide an overview of those results and also describe plans for a coordinated, thematic cloud observation and data analysis activity going forward.

  14. The Impact of Cloud Properties on Young Sea Ice during Three Winter Storms at N-ICE2015

    Science.gov (United States)

    Murphy, S. Y.; Walden, V. P.; Cohen, L.; Hudson, S. R.

    2017-12-01

    The impact of clouds on sea ice varies significantly as cloud properties change. Instruments deployed during the Norwegian Young Sea Ice field campaign (N-ICE2015) are used to study how differing cloud properties influence the cloud radiative forcing at the sea ice surface. N-ICE2015 was the first campaign in the Arctic winter since SHEBA (1997/1998) to study the surface energy budget of sea ice and the associated effects of cloud properties. Cloud characteristics, surface radiative and turbulent fluxes, and meteorological properties were measured throughout the field campaign. Here we explore how cloud macrophysical and microphysical properties affect young, thin sea ice during three winter storms from 31 January to 15 February 2015. This time period is of interest due to the varying surface and atmospheric conditions, which showcase the variety of conditions the newly-formed sea ice can experience during the winter. This period was characterized by large variations in the ice surface and near-surface air temperatures, with highs near 0°C when warm, moist air was advected into the area and lows reaching -40°C during clear, calm periods between storms. The advection of warm, moist air into the area influenced the cloud properties and enhanced the downwelling longwave flux. For most of the period, downwelling longwave flux correlates closely with the air temperature. However, at the end of the first storm, a drop in downwelling longwave flux of about 50 Wm-2 was observed, independent of any change in surface or air temperature or cloud fraction, indicating a change in cloud properties. Lidar data show an increase in cloud height during this period and a potential shift in cloud phase from ice to mixed-phase. This study will describe the cloud properties during the three winter storms and discuss their impacts on surface energy budget.

  15. Development of a cloud-screening method for MAX-DOAS measurements

    Science.gov (United States)

    Gielen, Clio; Van Roozendael, Michel; Hendrik, Francois; Fayt, Caroline; Hermans, Christian; Pinardi, Gaia; Vlemmix, Tim

    2013-04-01

    In recent years, ground-based multi-axis differential absorption spectroscopy (MAX-DOAS) has shown to be ideally suited for the retrieval of tropospheric trace gases and deriving information on the aerosol properties. These measurements are invaluable to our understanding of the physics and chemistry of the atmospheric system, and the impact on the Earth's climate. Unfortunately, MAX-DOAS measurements are often performed under (partially) cloudy conditions, causing data quality degradation and higher uncertainties on the retrievals. A high aerosol load and/or a strong cloud cover can introduce additional photon absorption or multiple scattering. The first effect strongly impacts the retrieved differential slant columns (DSCDs) of the trace gases, leading to an underestimation of the atmospheric column density. Multiple scattering, on the other hand, becomes important for low clouds with a high optical depth, and cause a strong increase in the retrieved trace gas DSCDs. The presence of thin clouds can furthermore introduce a degeneracy in the retrieved aerosol optical depth, since they will have similar effect on the MAX-DOAS measurements. In this case, only information on the trace gas DSCDs can be successfully retrieved. If the cloud cover consists of broken or scattered clouds, the MAX-DOAS method becomes very unstable, since the different elevation angels will probe regions of the sky with strongly deviating properties. Here we present a method to qualify the sky and cloud conditions, using the colour index and O4 DSCDs, as derived from the MAX-DOAS measurements. The colour index is defined as the ratio of the intensities at the short- and long-wavelength part of the visible spectral range, typically at 400 nm and 670 nm. For increasing optical thickness due to clouds or aerosols, the colour index values decrease and values for different elevation angles converge. In the case of broken clouds, the colour index shows a strong and rapid temporal variation, which

  16. Essentials of cloud computing

    CERN Document Server

    Chandrasekaran, K

    2014-01-01

    ForewordPrefaceComputing ParadigmsLearning ObjectivesPreambleHigh-Performance ComputingParallel ComputingDistributed ComputingCluster ComputingGrid ComputingCloud ComputingBiocomputingMobile ComputingQuantum ComputingOptical ComputingNanocomputingNetwork ComputingSummaryReview PointsReview QuestionsFurther ReadingCloud Computing FundamentalsLearning ObjectivesPreambleMotivation for Cloud ComputingThe Need for Cloud ComputingDefining Cloud ComputingNIST Definition of Cloud ComputingCloud Computing Is a ServiceCloud Computing Is a Platform5-4-3 Principles of Cloud computingFive Essential Charact

  17. CLOUD PARAMETERIZATIONS, CLOUD PHYSICS, AND THEIR CONNECTIONS: AN OVERVIEW

    International Nuclear Information System (INIS)

    LIU, Y.; DAUM, P.H.; CHAI, S.K.; LIU, F.

    2002-01-01

    This paper consists of three parts. The first part is concerned with the parameterization of cloud microphysics in climate models. We demonstrate the crucial importance of spectral dispersion of the cloud droplet size distribution in determining radiative properties of clouds (e.g., effective radius), and underline the necessity of specifying spectral dispersion in the parameterization of cloud microphysics. It is argued that the inclusion of spectral dispersion makes the issue of cloud parameterization essentially equivalent to that of the droplet size distribution function, bringing cloud parameterization to the forefront of cloud physics. The second part is concerned with theoretical investigations into the spectral shape of droplet size distributions in cloud physics. After briefly reviewing the mainstream theories (including entrainment and mixing theories, and stochastic theories), we discuss their deficiencies and the need for a paradigm shift from reductionist approaches to systems approaches. A systems theory that has recently been formulated by utilizing ideas from statistical physics and information theory is discussed, along with the major results derived from it. It is shown that the systems formalism not only easily explains many puzzles that have been frustrating the mainstream theories, but also reveals such new phenomena as scale-dependence of cloud droplet size distributions. The third part is concerned with the potential applications of the systems theory to the specification of spectral dispersion in terms of predictable variables and scale-dependence under different fluctuating environments

  18. Resonance – Journal of Science Education | Indian Academy of ...

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 9; Issue 3. High-Altitude Cirrus Clouds and Climate. S Veerabuthiran. General Article Volume 9 Issue 3 March 2004 pp 23-32. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/009/03/0023-0032. Keywords.

  19. Correlations and linkages between the sun and the earth's atmosphere: Needed measurements and observations

    Science.gov (United States)

    Kellogg, W. W.

    1975-01-01

    A study was conducted to identify the sequence of processes that lead from some change in solar input to the earth to a change in tropospheric circulation and weather. Topics discussed include: inputs from the sun, the solar wind, and the magnetosphere; bremsstrahlung, ionizing radiation, cirrus clouds, thunderstorms, wave propagation, and gravity waves.

  20. SkyProbeBV: dual-color absolute sky transparency monitor to optimize science operations

    Science.gov (United States)

    Cuillandre, Jean-Charles; Magnier, Eugene; Sabin, Dan; Mahoney, Billy

    2008-07-01

    Mauna Kea (4200 m elevation, Hawaii) is known for its pristine seeing conditions, but sky transparency can be an issue for science operations: 25% of the nights are not photometric, a cloud coverage mostly due to high-altitude thin cirrus. The Canada-France-Hawaii Telescope (CFHT) is upgrading its real-time sky transparency monitor in the optical domain (V-band) into a dual-color system by adding a B-band channel and redesigning the entire optical and mechanical assembly. Since 2000, the original single-channel SkyProbe has gathered one exposure every minute during each observing night using a small CCD camera with a very wide field of view (35 sq. deg.) encompassing the region pointed by the telescope for science operations, and exposures long enough (30 seconds) to capture at least 100 stars of Hipparcos' Tychos catalog at high galactic latitudes (and up to 600 stars at low galactic latitudes). A key advantage of SkyProbe over direct thermal infrared imaging detection of clouds, is that it allows an accurate absolute measurement, within 5%, of the true atmospheric absorption by clouds affecting the data being gathered by the telescope's main science instrument. This system has proven crucial for decision making in the CFHT queued service observing (QSO), representing today 95% of the telescope time: science exposures taken in non-photometric conditions are automatically registered for being re-observed later on (at 1/10th of the original exposure time per pointing in the observed filters) to ensure a proper final absolute photometric calibration. If the absorption is too high, exposures can be repeated, or the observing can be done for a lower ranked science program. The new dual color system (simultaneous B & V bands) will allow a better characterization of the sky properties above Mauna Kea and should enable a better detection of the thinner cirrus (absorption down to 0.02 mag., i.e. 2%). SkyProbe is operated within the Elixir pipeline, a collection of tools

  1. Secure cloud computing

    CERN Document Server

    Jajodia, Sushil; Samarati, Pierangela; Singhal, Anoop; Swarup, Vipin; Wang, Cliff

    2014-01-01

    This book presents a range of cloud computing security challenges and promising solution paths. The first two chapters focus on practical considerations of cloud computing. In Chapter 1, Chandramouli, Iorga, and Chokani describe the evolution of cloud computing and the current state of practice, followed by the challenges of cryptographic key management in the cloud. In Chapter 2, Chen and Sion present a dollar cost model of cloud computing and explore the economic viability of cloud computing with and without security mechanisms involving cryptographic mechanisms. The next two chapters addres

  2. Comparison of Cloud Properties from CALIPSO-CloudSat and Geostationary Satellite Data

    Science.gov (United States)

    Nguyen, L.; Minnis, P.; Chang, F.; Winker, D.; Sun-Mack, S.; Spangenberg, D.; Austin, R.

    2007-01-01

    Cloud properties are being derived in near-real time from geostationary satellite imager data for a variety of weather and climate applications and research. Assessment of the uncertainties in each of the derived cloud parameters is essential for confident use of the products. Determination of cloud amount, cloud top height, and cloud layering is especially important for using these real -time products for applications such as aircraft icing condition diagnosis and numerical weather prediction model assimilation. Furthermore, the distribution of clouds as a function of altitude has become a central component of efforts to evaluate climate model cloud simulations. Validation of those parameters has been difficult except over limited areas where ground-based active sensors, such as cloud radars or lidars, have been available on a regular basis. Retrievals of cloud properties are sensitive to the surface background, time of day, and the clouds themselves. Thus, it is essential to assess the geostationary satellite retrievals over a variety of locations. The availability of cloud radar data from CloudSat and lidar data from CALIPSO make it possible to perform those assessments over each geostationary domain at 0130 and 1330 LT. In this paper, CloudSat and CALIPSO data are matched with contemporaneous Geostationary Operational Environmental Satellite (GOES), Multi-functional Transport Satellite (MTSAT), and Meteosat-8 data. Unlike comparisons with cloud products derived from A-Train imagers, this study considers comparisons of nadir active sensor data with off-nadir retrievals. These matched data are used to determine the uncertainties in cloud-top heights and cloud amounts derived from the geostationary satellite data using the Clouds and the Earth s Radiant Energy System (CERES) cloud retrieval algorithms. The CERES multi-layer cloud detection method is also evaluated to determine its accuracy and limitations in the off-nadir mode. The results will be useful for

  3. Role of orbital dynamics and cloud-cloud collisions in the formation of giant molecular clouds in global spiral structures

    International Nuclear Information System (INIS)

    Roberts, W.W. Jr.; Stewart, G.R.

    1987-01-01

    The role of orbit crowding and cloud-cloud collisions in the formation of GMCs and their organization in global spiral structure is investigated. Both N-body simulations of the cloud system and a detailed analysis of individual particle orbits are used to develop a conceptual understanding of how individual clouds participate in the collective density response. Detailed comparisons are made between a representative cloud-particle simulation in which the cloud particles collide inelastically with one another and give birth to and subsequently interact with young star associations and stripped down simulations in which the cloud particles are allowed to follow ballistic orbits in the absence of cloud-cloud collisions or any star formation processes. Orbit crowding is then related to the behavior of individual particle trajectories in the galactic potential field. The conceptual picture of how GMCs are formed in the clumpy ISMs of spiral galaxies is formulated, and the results are compared in detail with those published by other authors. 68 references

  4. CLOUD COMPUTING SECURITY

    Directory of Open Access Journals (Sweden)

    Ştefan IOVAN

    2016-05-01

    Full Text Available Cloud computing reprentes the software applications offered as a service online, but also the software and hardware components from the data center.In the case of wide offerd services for any type of client, we are dealing with a public cloud. In the other case, in wich a cloud is exclusively available for an organization and is not available to the open public, this is consider a private cloud [1]. There is also a third type, called hibrid in which case an user or an organization might use both services available in the public and private cloud. One of the main challenges of cloud computing are to build the trust and ofer information privacy in every aspect of service offerd by cloud computingle. The variety of existing standards, just like the lack of clarity in sustenability certificationis not a real help in building trust. Also appear some questions marks regarding the efficiency of traditionsecurity means that are applied in the cloud domain. Beside the economic and technology advantages offered by cloud, also are some advantages in security area if the information is migrated to cloud. Shared resources available in cloud includes the survey, use of the "best practices" and technology for advance security level, above all the solutions offered by the majority of medium and small businesses, big companies and even some guvermental organizations [2].

  5. Spectral shifting strongly constrains molecular cloud disruption by radiation pressure on dust

    Science.gov (United States)

    Reissl, Stefan; Klessen, Ralf S.; Mac Low, Mordecai-Mark; Pellegrini, Eric W.

    2018-03-01

    Aim. We aim to test the hypothesis that radiation pressure from young star clusters acting on dust is the dominant feedback agent disrupting the largest star-forming molecular clouds and thus regulating the star-formation process. Methods: We performed multi-frequency, 3D, radiative transfer calculations including both scattering and absorption and re-emission to longer wavelengths for model clouds with masses of 104-107 M⊙, containing embedded clusters with star formation efficiencies of 0.009-91%, and varying maximum grain sizes up to 200 μm. We calculated the ratio between radiative and gravitational forces to determine whether radiation pressure can disrupt clouds. Results: We find that radiation pressure acting on dust almost never disrupts star-forming clouds. Ultraviolet and optical photons from young stars to which the cloud is optically thick do not scatter much. Instead, they quickly get absorbed and re-emitted by the dust at thermal wavelengths. As the cloud is typically optically thin to far-infrared radiation, it promptly escapes, depositing little momentum in the cloud. The resulting spectrum is more narrowly peaked than the corresponding Planck function, and exhibits an extended tail at longer wavelengths. As the opacity drops significantly across the sub-mm and mm wavelength regime, the resulting radiative force is even smaller than for the corresponding single-temperature blackbody. We find that the force from radiation pressure falls below the strength of gravitational attraction by an order of magnitude or more for either Milky Way or moderate starbust conditions. Only for unrealistically large maximum grain sizes, and star formation efficiencies far exceeding 50% do we find that the strength of radiation pressure can exceed gravity. Conclusions: We conclude that radiation pressure acting on dust does not disrupt star-forming molecular clouds in any Local Group galaxies. Radiation pressure thus appears unlikely to regulate the star

  6. Formation of massive, dense cores by cloud-cloud collisions

    Science.gov (United States)

    Takahira, Ken; Shima, Kazuhiro; Habe, Asao; Tasker, Elizabeth J.

    2018-05-01

    We performed sub-parsec (˜ 0.014 pc) scale simulations of cloud-cloud collisions of two idealized turbulent molecular clouds (MCs) with different masses in the range of (0.76-2.67) × 104 M_{⊙} and with collision speeds of 5-30 km s-1. Those parameters are larger than in Takahira, Tasker, and Habe (2014, ApJ, 792, 63), in which study the colliding system showed a partial gaseous arc morphology that supports the NANTEN observations of objects indicated to be colliding MCs using numerical simulations. Gas clumps with density greater than 10-20 g cm-3 were identified as pre-stellar cores and tracked through the simulation to investigate the effects of the mass of colliding clouds and the collision speeds on the resulting core population. Our results demonstrate that the smaller cloud property is more important for the results of cloud-cloud collisions. The mass function of formed cores can be approximated by a power-law relation with an index γ = -1.6 in slower cloud-cloud collisions (v ˜ 5 km s-1), and is in good agreement with observation of MCs. A faster relative speed increases the number of cores formed in the early stage of collisions and shortens the gas accretion phase of cores in the shocked region, leading to the suppression of core growth. The bending point appears in the high-mass part of the core mass function and the bending point mass decreases with increase in collision speed for the same combination of colliding clouds. The higher-mass part of the core mass function than the bending point mass can be approximated by a power law with γ = -2-3 that is similar to the power index of the massive part of the observed stellar initial mass function. We discuss implications of our results for the massive-star formation in our Galaxy.

  7. Cloud Collaboration: Cloud-Based Instruction for Business Writing Class

    Science.gov (United States)

    Lin, Charlie; Yu, Wei-Chieh Wayne; Wang, Jenny

    2014-01-01

    Cloud computing technologies, such as Google Docs, Adobe Creative Cloud, Dropbox, and Microsoft Windows Live, have become increasingly appreciated to the next generation digital learning tools. Cloud computing technologies encourage students' active engagement, collaboration, and participation in their learning, facilitate group work, and support…

  8. Comparison Between CCCM and CloudSat Radar-Lidar (RL) Cloud and Radiation Products

    Science.gov (United States)

    Ham, Seung-Hee; Kato, Seiji; Rose, Fred G.; Sun-Mack, Sunny

    2015-01-01

    To enhance cloud properties, LaRC and CIRA developed each combination algorithm for obtained properties from passive, active and imager in A-satellite constellation. When comparing global cloud fraction each other, LaRC-produced CERES-CALIPSO-CloudSat-MODIS (CCCM) products larger low-level cloud fraction over tropic ocean, while CIRA-produced Radar-Lidar (RL) shows larger mid-level cloud fraction for high latitude region. The reason for different low-level cloud fraction is due to different filtering method of lidar-detected cloud layers. Meanwhile difference in mid-level clouds is occurred due to different priority of cloud boundaries from lidar and radar.

  9. Continuous growth of cloud droplets in cumulus cloud

    International Nuclear Information System (INIS)

    Gotoh, Toshiyuki; Suehiro, Tamotsu; Saito, Izumi

    2016-01-01

    A new method to seamlessly simulate the continuous growth of droplets advected by turbulent flow inside a cumulus cloud was developed from first principle. A cubic box ascending with a mean updraft inside a cumulus cloud was introduced and the updraft velocity was self-consistently determined in such a way that the mean turbulent velocity within the box vanished. All the degrees of freedom of the cloud droplets and turbulence fields were numerically integrated. The box ascended quickly inside the cumulus cloud due to the updraft and the mean radius of the droplets grew from 10 to 24 μ m for about 10 min. The turbulent flow tended to slow down the time evolutions of the updraft velocity, the box altitude and the mean cloud droplet radius. The size distribution of the cloud droplets in the updraft case was narrower than in the absence of the updraft. It was also found that the wavenumeber spectra of the variances of the temperature and water vapor mixing ratio were nearly constant in the low wavenumber range. The future development of the new method was argued. (paper)

  10. 3D MODELING OF GJ1214b's ATMOSPHERE: FORMATION OF INHOMOGENEOUS HIGH CLOUDS AND OBSERVATIONAL IMPLICATIONS

    Energy Technology Data Exchange (ETDEWEB)

    Charnay, B.; Meadows, V.; Misra, A.; Arney, G. [Astronomy Department, University of Washington, Seattle, WA 98125 (United States); Leconte, J., E-mail: bcharnay@uw.edu [Canadian Institute for Theoretical Astrophysics, 60 St George Street, University of Toronto, Toronto, ON M5S 3H8 (Canada)

    2015-11-01

    The warm sub-Neptune GJ1214b has a featureless transit spectrum that may be due to the presence of high and thick clouds or haze. Here, we simulate the atmosphere of GJ1214b with a 3D General Circulation Model for cloudy hydrogen-dominated atmospheres, including cloud radiative effects. We show that the atmospheric circulation is strong enough to transport micrometric cloud particles to the upper atmosphere and generally leads to a minimum of cloud at the equator. By scattering stellar light, clouds increase the planetary albedo to 0.4–0.6 and cool the atmosphere below 1 mbar. However, the heating by ZnS clouds leads to the formation of a stratospheric thermal inversion above 10 mbar, with temperatures potentially high enough on the dayside to evaporate KCl clouds. We show that flat transit spectra consistent with Hubble Space Telescope observations are possible if cloud particle radii are around 0.5 μm, and that such clouds should be optically thin at wavelengths >3 μm. Using simulated cloudy atmospheres that fit the observed spectra we generate transit, emission, and reflection spectra and phase curves for GJ1214b. We show that a stratospheric thermal inversion would be readily accessible in near- and mid-infrared atmospheric spectral windows. We find that the amplitude of the thermal phase curves is strongly dependent on metallicity, but only slightly impacted by clouds. Our results suggest that primary and secondary eclipses and phase curves observed by the James Webb Space Telescope in the near- to mid-infrared should provide strong constraints on the nature of GJ1214b's atmosphere and clouds.

  11. Hidden in the Clouds: New Ideas in Cloud Computing

    CERN Multimedia

    CERN. Geneva

    2013-01-01

    Abstract: Cloud computing has become a hot topic. But 'cloud' is no newer in 2013 than MapReduce was in 2005: We've been doing both for years. So why is cloud more relevant today than it ever has been? In this presentation, we will introduce the (current) central thesis of cloud computing, and explore how and why (or even whether) the concept has evolved. While we will cover a little light background, our primary focus will be on the consequences, corollaries and techniques introduced by some of the leading cloud developers and organizations. We each have a different deployment model, different applications and workloads, and many of us are still learning to efficiently exploit the platform services offered by a modern implementation. The discussion will offer the opportunity to share these experiences and help us all to realize the benefits of cloud computing to the fullest degree. Please bring questions and opinions, and be ready to share both!   Bio: S...

  12. Cloud Computing

    CERN Document Server

    Antonopoulos, Nick

    2010-01-01

    Cloud computing has recently emerged as a subject of substantial industrial and academic interest, though its meaning and scope is hotly debated. For some researchers, clouds are a natural evolution towards the full commercialisation of grid systems, while others dismiss the term as a mere re-branding of existing pay-per-use technologies. From either perspective, 'cloud' is now the label of choice for accountable pay-per-use access to third party applications and computational resources on a massive scale. Clouds support patterns of less predictable resource use for applications and services a

  13. The CLOUD experiment

    CERN Multimedia

    Maximilien Brice

    2006-01-01

    The Cosmics Leaving Outdoor Droplets (CLOUD) experiment as shown by Jasper Kirkby (spokesperson). Kirkby shows a sketch to illustrate the possible link between galactic cosmic rays and cloud formations. The CLOUD experiment uses beams from the PS accelerator at CERN to simulate the effect of cosmic rays on cloud formations in the Earth's atmosphere. It is thought that cosmic ray intensity is linked to the amount of low cloud cover due to the formation of aerosols, which induce condensation.

  14. Clouds of Venus

    Energy Technology Data Exchange (ETDEWEB)

    Knollenberg, R G [Particle Measuring Systems, Inc., 1855 South 57th Court, Boulder, Colorado 80301, U.S.A.; Hansen, J [National Aeronautics and Space Administration, New York (USA). Goddard Inst. for Space Studies; Ragent, B [National Aeronautics and Space Administration, Moffett Field, Calif. (USA). Ames Research Center; Martonchik, J [Jet Propulsion Lab., Pasadena, Calif. (USA); Tomasko, M [Arizona Univ., Tucson (USA)

    1977-05-01

    The current state of knowledge of the Venusian clouds is reviewed. The visible clouds of Venus are shown to be quite similar to low level terrestrial hazes of strong anthropogenic influence. Possible nucleation and particle growth mechanisms are presented. The Pioneer Venus experiments that emphasize cloud measurements are described and their expected findings are discussed in detail. The results of these experiments should define the cloud particle composition, microphysics, thermal and radiative heat budget, rough dynamical features and horizontal and vertical variations in these and other parameters. This information should be sufficient to initialize cloud models which can be used to explain the cloud formation, decay, and particle life cycle.

  15. On the climatic impact of contrails

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, B.; Meerkoetter, R.; Wissinger, B.; Wendling, P. [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1997-12-31

    The impact of contrail induced cirrus clouds on regional climate is estimated for atmospheric conditions of Southern Germany that are typical for the months of July and October. This is done by the use of a regionalized one-dimensional radiative convective model (RCM). The influence of an increased ice cloud cover is studied by comparing RCM results using averaged climatological values of cloudiness with those of a case with modified cloudiness. It turns out that a 10% increase in ice cloud cover leads to a surface temperature increase of 1.4 K and 1.2 K for the months of July and October, respectively. (author) 14 refs.

  16. On the climatic impact of contrails

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, B; Meerkoetter, R; Wissinger, B; Wendling, P [Deutsche Forschungs- und Versuchsanstalt fuer Luft- und Raumfahrt e.V., Oberpfaffenhofen (Germany). Inst. fuer Physik der Atmosphaere

    1998-12-31

    The impact of contrail induced cirrus clouds on regional climate is estimated for atmospheric conditions of Southern Germany that are typical for the months of July and October. This is done by the use of a regionalized one-dimensional radiative convective model (RCM). The influence of an increased ice cloud cover is studied by comparing RCM results using averaged climatological values of cloudiness with those of a case with modified cloudiness. It turns out that a 10% increase in ice cloud cover leads to a surface temperature increase of 1.4 K and 1.2 K for the months of July and October, respectively. (author) 14 refs.

  17. PHIPS-HALO: the airborne particle habit imaging and polar scattering probe - Part 2: Characterization and first results

    Science.gov (United States)

    Schnaiter, Martin; Järvinen, Emma; Abdelmonem, Ahmed; Leisner, Thomas

    2018-01-01

    The novel aircraft optical cloud probe PHIPS-HALO has been developed to establish clarity regarding the fundamental link between the microphysical properties of single atmospheric ice particles and their appropriated angular light scattering function. After final improvements were implemented in the polar nephelometer part and the acquisition software of PHIPS-HALO, the instrument was comprehensively characterized in the laboratory and was deployed in two aircraft missions targeting cirrus and Arctic mixed-phase clouds. This work demonstrates the proper function of the instrument under aircraft conditions and highlights the uniqueness, quality, and limitations of the data that can be expected from PHIPS-HALO in cloud-related aircraft missions.

  18. ASTER cloud coverage reassessment using MODIS cloud mask products

    Science.gov (United States)

    Tonooka, Hideyuki; Omagari, Kunjuro; Yamamoto, Hirokazu; Tachikawa, Tetsushi; Fujita, Masaru; Paitaer, Zaoreguli

    2010-10-01

    In the Advanced Spaceborne Thermal Emission and Reflection radiometer (ASTER) Project, two kinds of algorithms are used for cloud assessment in Level-1 processing. The first algorithm based on the LANDSAT-5 TM Automatic Cloud Cover Assessment (ACCA) algorithm is used for a part of daytime scenes observed with only VNIR bands and all nighttime scenes, and the second algorithm based on the LANDSAT-7 ETM+ ACCA algorithm is used for most of daytime scenes observed with all spectral bands. However, the first algorithm does not work well for lack of some spectral bands sensitive to cloud detection, and the two algorithms have been less accurate over snow/ice covered areas since April 2008 when the SWIR subsystem developed troubles. In addition, they perform less well for some combinations of surface type and sun elevation angle. We, therefore, have developed the ASTER cloud coverage reassessment system using MODIS cloud mask (MOD35) products, and have reassessed cloud coverage for all ASTER archived scenes (>1.7 million scenes). All of the new cloud coverage data are included in Image Management System (IMS) databases of the ASTER Ground Data System (GDS) and NASA's Land Process Data Active Archive Center (LP DAAC) and used for ASTER product search by users, and cloud mask images are distributed to users through Internet. Daily upcoming scenes (about 400 scenes per day) are reassessed and inserted into the IMS databases in 5 to 7 days after each scene observation date. Some validation studies for the new cloud coverage data and some mission-related analyses using those data are also demonstrated in the present paper.

  19. Moving HammerCloud to CERN's private cloud

    CERN Document Server

    Barrand, Quentin

    2013-01-01

    HammerCloud is a testing framework for the Worldwide LHC Computing Grid. Currently deployed on about 20 hand-managed machines, it was desirable to move it to the Agile Infrastructure, CERN's OpenStack-based private cloud.

  20. Mie lidar and radiosonde observations at Gadanki (13.5°N, 79.2°E) during sudden stratospheric warming of 2009

    Science.gov (United States)

    Sridharan, S.; Raghunath, K.; Sathishkumar, S.; Nath, D.

    2011-03-01

    During a major sudden stratospheric warming event (21-27 January 2009), Mie-lidar observations at Gadanki (13.5°N, 79.2°E) show persistent occurrence of cirrus clouds. Outgoing long-wave radiation averaged for 70°E-90°E, decreases to a low value (170 W/m2) on 27 January 2009 over equator indicating deep convection. The zonal mean ERA-Interim data reveal large northward and upward circulation over equatorial upper troposphere. The latitude-longitude map of ERA-Interim zonal mean potential vorticity (PV) indicates two tongues of high PV emanating from polar latitudes and extending further down to equator. Radiosonde observations at Gadanki show the presence of ∼40% relative humidity at 11-13 km and lower tropopause temperature. It is inferred that the tropical circulation change due to PV intrusion leads to deep convection, which along with high humidity and low tropopause temperature leading to the formation of persistent cirrus clouds, the occurrence frequency of which is normally less during winter season over Gadanki.

  1. Cloud Robotics Platforms

    Directory of Open Access Journals (Sweden)

    Busra Koken

    2015-01-01

    Full Text Available Cloud robotics is a rapidly evolving field that allows robots to offload computation-intensive and storage-intensive jobs into the cloud. Robots are limited in terms of computational capacity, memory and storage. Cloud provides unlimited computation power, memory, storage and especially collaboration opportunity. Cloud-enabled robots are divided into two categories as standalone and networked robots. This article surveys cloud robotic platforms, standalone and networked robotic works such as grasping, simultaneous localization and mapping (SLAM and monitoring.

  2. Cloud ERP and Cloud Accounting Software in Romania

    Directory of Open Access Journals (Sweden)

    Gianina MIHAI

    2015-05-01

    Full Text Available Nowadays, Cloud Computing becomes a more and more fashionable concept in the IT environment. There is no unanimous opinion on the definition of this concept, as it covers several versions of the newly emerged stage in the IT. But in fact, Cloud Computing should not suggest anything else than simplicity. Thus, in short, simple terms, Cloud Computing can be defined as a solution to use external IT resources (servers, storage media, applications and services, via Internet. Cloud computing is nothing more than the promise of an easy accessible technology. If the promise will eventually turn into something certain yet remains to be seen. In our opinion it is too early to make an assertion. In this article, our purpose is to find out what is the Romanian offer of ERP and Accounting software applications in Cloud and / or as services in SaaS version. Thus, we conducted an extensive study whose results we’ll present in the following.

  3. Security prospects through cloud computing by adopting multiple clouds

    DEFF Research Database (Denmark)

    Jensen, Meiko; Schwenk, Jörg; Bohli, Jens Matthias

    2011-01-01

    Clouds impose new security challenges, which are amongst the biggest obstacles when considering the usage of cloud services. This triggered a lot of research activities in this direction, resulting in a quantity of proposals targeting the various security threats. Besides the security issues coming...... with the cloud paradigm, it can also provide a new set of unique features which open the path towards novel security approaches, techniques and architectures. This paper initiates this discussion by contributing a concept which achieves security merits by making use of multiple distinct clouds at the same time....

  4. Radiative properties of clouds

    International Nuclear Information System (INIS)

    Twomey, S.

    1993-01-01

    The climatic effects of condensation nuclei in the formation of cloud droplets and the subsequent role of the cloud droplets as contributors to the planetary short-wave albedo is emphasized. Microphysical properties of clouds, which can be greatly modified by the degree of mixing with cloud-free air from outside, are discussed. The effect of clouds on visible radiation is assessed through multiple scattering of the radiation. Cloudwater or ice absorbs more with increasing wavelength in the near-infrared region, with water vapor providing the stronger absorption over narrower wavelength bands. Cloud thermal infrared absorption can be solely related to liquid water content at least for shallow clouds and clouds in the early development state. Three-dimensional general circulation models have been used to study the climatic effect of clouds. It was found for such studies (which did not consider variations in cloud albedo) that the cooling effects due to the increase in planetary short-wave albedo from clouds were offset by heating effects due to thermal infrared absorption by the cloud. Two permanent direct effects of increased pollution are discussed in this chapter: (a) an increase of absorption in the visible and near infrared because of increased amounts of elemental carbon, which gives rise to a warming effect climatically, and (b) an increased optical thickness of clouds due to increasing cloud droplet number concentration caused by increasing cloud condensation nuclei number concentration, which gives rise to a cooling effect climatically. An increase in cloud albedo from 0.7 to 0.87 produces an appreciable climatic perturbation of cooling up to 2.5 K at the ground, using a hemispheric general circulation model. Effects of pollution on cloud thermal infrared absorption are negligible

  5. CLOUD STORAGE SERVICES

    OpenAIRE

    Yan, Cheng

    2017-01-01

    Cloud computing is a hot topic in recent research and applications. Because it is widely used in various fields. Up to now, Google, Microsoft, IBM, Amazon and other famous co partnership have proposed their cloud computing application. Look upon cloud computing as one of the most important strategy in the future. Cloud storage is the lower layer of cloud computing system which supports the service of the other layers above it. At the same time, it is an effective way to store and manage heavy...

  6. VMware vCloud security

    CERN Document Server

    Sarkar, Prasenjit

    2013-01-01

    VMware vCloud Security provides the reader with in depth knowledge and practical exercises sufficient to implement a secured private cloud using VMware vCloud Director and vCloud Networking and Security.This book is primarily for technical professionals with system administration and security administration skills with significant VMware vCloud experience who want to learn about advanced concepts of vCloud security and compliance.

  7. Cloud-Based RFID Mutual Authentication Protocol without Leaking Location Privacy to the Cloud

    OpenAIRE

    Dong, Qingkuan; Tong, Jiaqing; Chen, Yuan

    2015-01-01

    With the rapid developments of the IoT (Internet of Things) and the cloud computing, cloud-based RFID systems attract more attention. Users can reduce their cost of deploying and maintaining the RFID system by purchasing cloud services. However, the security threats of cloud-based RFID systems are more serious than those of traditional RFID systems. In cloud-based RFID systems, the connection between the reader and the cloud database is not secure and cloud service provider is not trusted. Th...

  8. Cloud Computing Bible

    CERN Document Server

    Sosinsky, Barrie

    2010-01-01

    The complete reference guide to the hot technology of cloud computingIts potential for lowering IT costs makes cloud computing a major force for both IT vendors and users; it is expected to gain momentum rapidly with the launch of Office Web Apps later this year. Because cloud computing involves various technologies, protocols, platforms, and infrastructure elements, this comprehensive reference is just what you need if you'll be using or implementing cloud computing.Cloud computing offers significant cost savings by eliminating upfront expenses for hardware and software; its growing popularit

  9. Integrated cloud-aerosol-radiation product using CERES, MODIS, CALIPSO, and CloudSat data

    Science.gov (United States)

    Sun-Mack, Sunny; Minnis, Patrick; Chen, Yan; Gibson, Sharon; Yi, Yuhong; Trepte, Qing; Wielicki, Bruce; Kato, Seiji; Winker, Dave; Stephens, Graeme; Partain, Philip

    2007-10-01

    This paper documents the development of the first integrated data set of global vertical profiles of clouds, aerosols, and radiation using the combined NASA A-Train data from the Aqua Clouds and Earth's Radiant Energy System (CERES) and Moderate Resolution Imaging Spectroradiometer (MODIS), Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO), and CloudSat. As part of this effort, cloud data from the CALIPSO lidar and the CloudSat radar are merged with the integrated column cloud properties from the CERES-MODIS analyses. The active and passive datasets are compared to determine commonalities and differences in order to facilitate the development of a 3-dimensional cloud and aerosol dataset that will then be integrated into the CERES broadband radiance footprint. Preliminary results from the comparisons for April 2007 reveal that the CERES-MODIS global cloud amounts are, on average, 0.14 less and 0.15 greater than those from CALIPSO and CloudSat, respectively. These new data will provide unprecedented ability to test and improve global cloud and aerosol models, to investigate aerosol direct and indirect radiative forcing, and to validate the accuracy of global aerosol, cloud, and radiation data sets especially in polar regions and for multi-layered cloud conditions.

  10. IBM SmartCloud essentials

    CERN Document Server

    Schouten, Edwin

    2013-01-01

    A practical, user-friendly guide that provides an introduction to cloud computing using IBM SmartCloud, along with a thorough understanding of resource management in a cloud environment.This book is great for anyone who wants to get a grasp of what cloud computing is and what IBM SmartCloud has to offer. If you are an IT specialist, IT architect, system administrator, or a developer who wants to thoroughly understand the cloud computing resource model, this book is ideal for you. No prior knowledge of cloud computing is expected.

  11. Cloud Computing Governance Lifecycle

    Directory of Open Access Journals (Sweden)

    Soňa Karkošková

    2016-06-01

    Full Text Available Externally provisioned cloud services enable flexible and on-demand sourcing of IT resources. Cloud computing introduces new challenges such as need of business process redefinition, establishment of specialized governance and management, organizational structures and relationships with external providers and managing new types of risk arising from dependency on external providers. There is a general consensus that cloud computing in addition to challenges brings many benefits but it is unclear how to achieve them. Cloud computing governance helps to create business value through obtain benefits from use of cloud computing services while optimizing investment and risk. Challenge, which organizations are facing in relation to governing of cloud services, is how to design and implement cloud computing governance to gain expected benefits. This paper aims to provide guidance on implementation activities of proposed Cloud computing governance lifecycle from cloud consumer perspective. Proposed model is based on SOA Governance Framework and consists of lifecycle for implementation and continuous improvement of cloud computing governance model.

  12. The Radiative Role of Free Tropospheric Aerosols and Marine Clouds over the Central North Atlantic

    Energy Technology Data Exchange (ETDEWEB)

    Mazzoleni, Claudio [Michigan Technological Univ., Houghton, MI (United States); Kumar, Sumit [Michigan Technological Univ., Houghton, MI (United States); Wright, Kendra [Michigan Technological Univ., Houghton, MI (United States); Kramer, Louisa [Michigan Technological Univ., Houghton, MI (United States); Mazzoleni, Lynn [Michigan Technological Univ., Houghton, MI (United States); Owen, Robert [Michigan Technological Univ., Houghton, MI (United States); Helmig, Detlev [Univ. of Colorado, Boulder, CO (United States)

    2014-12-09

    microscope – were often very compacted, suggesting cloud processing and exhibiting different optical properties from fresh emissions. In addition, black carbon was found to be sometimes mixed with mineral dust, affecting its optical properties and potential forcing. c) Some aerosols collected at PMO acted as ice nuclei, potentially contributing to cirrus cloud formation during their transport in the upper free troposphere. Identified good ice nuclei were often mineral dust particles. d) The free tropospheric aerosols studied at PMO have relevance to low level marine clouds due, for example, to synoptic subsidence entraining free tropospheric aerosols into the marine boundary layer. This has potentially large consequences on cloud condensation nuclei concentrations and compositions in the marine boundary layer; therefore, having an effect on the marine stratus clouds, with potentially important repercussions on the radiative forcing. The scientific products of this project currently include contributions to two papers published in the Nature Publishing group (Nature Communications and Scientific Reports), one paper under revision for Atmospheric Chemistry and Physics, one in review in Geophysical Research Letters and one recently submitted to Atmospheric Chemistry and Physics Discussion. In addition, four manuscripts are in advanced state of preparation. Finally, twenty-eight presentations were given at international conferences, workshops and seminars.

  13. Continued rise of the cloud advances and trends in cloud computing

    CERN Document Server

    Mahmood, Zaigham

    2014-01-01

    Cloud computing is no-longer a novel paradigm, but instead an increasingly robust and established technology, yet new developments continue to emerge in this area. Continued Rise of the Cloud: Advances and Trends in Cloud Computing captures the state of the art in cloud technologies, infrastructures, and service delivery and deployment models. The book provides guidance and case studies on the development of cloud-based services and infrastructures from an international selection of expert researchers and practitioners. A careful analysis is provided of relevant theoretical frameworks, prac

  14. Microscopic dust in the infrared sky

    International Nuclear Information System (INIS)

    Leene, A.; Wesselius, P.

    1985-01-01

    After ten months of observation IRAS (InfraRed Astronomical Satellite) revealed for the first time an infrared sky map. One of its major discovery has been the display of new constituents in Universe: the infrared cirrus which are interstellar clouds constituted of microparticles abounding in carbon. Results and first hypothesis are presented in this article [fr

  15. Uncover the Cloud for Geospatial Sciences and Applications to Adopt Cloud Computing

    Science.gov (United States)

    Yang, C.; Huang, Q.; Xia, J.; Liu, K.; Li, J.; Xu, C.; Sun, M.; Bambacus, M.; Xu, Y.; Fay, D.

    2012-12-01

    Cloud computing is emerging as the future infrastructure for providing computing resources to support and enable scientific research, engineering development, and application construction, as well as work force education. On the other hand, there is a lot of doubt about the readiness of cloud computing to support a variety of scientific research, development and educations. This research is a project funded by NASA SMD to investigate through holistic studies how ready is the cloud computing to support geosciences. Four applications with different computing characteristics including data, computing, concurrent, and spatiotemporal intensities are taken to test the readiness of cloud computing to support geosciences. Three popular and representative cloud platforms including Amazon EC2, Microsoft Azure, and NASA Nebula as well as a traditional cluster are utilized in the study. Results illustrates that cloud is ready to some degree but more research needs to be done to fully implemented the cloud benefit as advertised by many vendors and defined by NIST. Specifically, 1) most cloud platform could help stand up new computing instances, a new computer, in a few minutes as envisioned, therefore, is ready to support most computing needs in an on demand fashion; 2) the load balance and elasticity, a defining characteristic, is ready in some cloud platforms, such as Amazon EC2, to support bigger jobs, e.g., needs response in minutes, while some are not ready to support the elasticity and load balance well. All cloud platform needs further research and development to support real time application at subminute level; 3) the user interface and functionality of cloud platforms vary a lot and some of them are very professional and well supported/documented, such as Amazon EC2, some of them needs significant improvement for the general public to adopt cloud computing without professional training or knowledge about computing infrastructure; 4) the security is a big concern in

  16. Community Cloud Computing

    Science.gov (United States)

    Marinos, Alexandros; Briscoe, Gerard

    Cloud Computing is rising fast, with its data centres growing at an unprecedented rate. However, this has come with concerns over privacy, efficiency at the expense of resilience, and environmental sustainability, because of the dependence on Cloud vendors such as Google, Amazon and Microsoft. Our response is an alternative model for the Cloud conceptualisation, providing a paradigm for Clouds in the community, utilising networked personal computers for liberation from the centralised vendor model. Community Cloud Computing (C3) offers an alternative architecture, created by combing the Cloud with paradigms from Grid Computing, principles from Digital Ecosystems, and sustainability from Green Computing, while remaining true to the original vision of the Internet. It is more technically challenging than Cloud Computing, having to deal with distributed computing issues, including heterogeneous nodes, varying quality of service, and additional security constraints. However, these are not insurmountable challenges, and with the need to retain control over our digital lives and the potential environmental consequences, it is a challenge we must pursue.

  17. Cloud Computing Law

    CERN Document Server

    Millard, Christopher

    2013-01-01

    This book is about the legal implications of cloud computing. In essence, ‘the cloud’ is a way of delivering computing resources as a utility service via the internet. It is evolving very rapidly with substantial investments being made in infrastructure, platforms and applications, all delivered ‘as a service’. The demand for cloud resources is enormous, driven by such developments as the deployment on a vast scale of mobile apps and the rapid emergence of ‘Big Data’. Part I of this book explains what cloud computing is and how it works. Part II analyses contractual relationships between cloud service providers and their customers, as well as the complex roles of intermediaries. Drawing on primary research conducted by the Cloud Legal Project at Queen Mary University of London, cloud contracts are analysed in detail, including the appropriateness and enforceability of ‘take it or leave it’ terms of service, as well as the scope for negotiating cloud deals. Specific arrangements for public sect...

  18. Tropical High Cloud Fraction Controlled by Cloud Lifetime Rather Than Clear-sky Convergence

    Science.gov (United States)

    Seeley, J.; Jeevanjee, N.; Romps, D. M.

    2016-12-01

    Observations and simulations show a peak in cloud fraction below the tropopause. This peak is usually attributed to a roughly co-located peak in radiatively-driven clear-sky convergence, which is presumed to force convective detrainment and thus promote large cloud fraction. Using simulations of radiative-convective equilibrium forced by various radiative cooling profiles, we refute this mechanism by showing that an upper-tropospheric peak in cloud fraction persists even in simulations with no peak in clear-sky convergence. Instead, cloud fraction profiles seem to be controlled by cloud lifetimes — i.e., how long it takes for clouds to dissipate after they have detrained. A simple model of cloud evaporation shows that the small saturation deficit in the upper troposphere greatly extends cloud lifetimes there, while the large saturation deficit in the lower troposphere causes condensate to evaporate quickly. Since cloud mass flux must go to zero at the tropopause, a peak in cloud fraction emerges at a "sweet spot" below the tropopause where cloud lifetimes are long and there is still sufficient mass flux to be detrained.

  19. Cloud Computing: A study of cloud architecture and its patterns

    OpenAIRE

    Mandeep Handa,; Shriya Sharma

    2015-01-01

    Cloud computing is a general term for anything that involves delivering hosted services over the Internet. Cloud computing is a paradigm shift following the shift from mainframe to client–server in the early 1980s. Cloud computing can be defined as accessing third party software and services on web and paying as per usage. It facilitates scalability and virtualized resources over Internet as a service providing cost effective and scalable solution to customers. Cloud computing has...

  20. Quantifying Diurnal Cloud Radiative Effects by Cloud Type in the Tropical Western Pacific

    Energy Technology Data Exchange (ETDEWEB)

    Burleyson, Casey D.; Long, Charles N.; Comstock, Jennifer M.

    2015-06-01

    Cloud radiative effects are examined using long-term datasets collected at the three Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facilities in the tropical western Pacific. We quantify the surface radiation budget, cloud populations, and cloud radiative effects by partitioning the data by cloud type, time of day, and as a function of large scale modes of variability such as El Niño Southern Oscillation (ENSO) phase and wet/dry seasons at Darwin. The novel facet of our analysis is that we break aggregate cloud radiative effects down by cloud type across the diurnal cycle. The Nauru cloud populations and subsequently the surface radiation budget are strongly impacted by ENSO variability whereas the cloud populations over Manus only shift slightly in response to changes in ENSO phase. The Darwin site exhibits large seasonal monsoon related variations. We show that while deeper convective clouds have a strong conditional influence on the radiation reaching the surface, their limited frequency reduces their aggregate radiative impact. The largest source of shortwave cloud radiative effects at all three sites comes from low clouds. We use the observations to demonstrate that potential model biases in the amplitude of the diurnal cycle and mean cloud frequency would lead to larger errors in the surface energy budget compared to biases in the timing of the diurnal cycle of cloud frequency. Our results provide solid benchmarks to evaluate model simulations of cloud radiative effects in the tropics.