WorldWideScience

Sample records for thin anatomical structures

  1. ANATOMIC STRUCTURE OF CAMPANULA ROTUNDIFOLIA L. GRASS

    Directory of Open Access Journals (Sweden)

    V. N. Bubenchikova

    2017-01-01

    Full Text Available The article present results of the study for a anatomic structure of Campanula rotundifolia grass from Campanulaceae family. Despite its dispersion and application in folk medicine, there are no data about its anatomic structure, therefore to estimate the indices of authenticity and quality of raw materials it is necessary to develop microdiagnostical features in the first place, which could help introducing of thisplant in a medical practice. The purpose of this work is to study anatomical structureof Campanula rotundifolia grass to determine its diagnostic features. Methods. Thestudy for anatomic structure was carried out in accordance with the requirements of State Pharmacopoeia, edition XIII. Micromed laboratory microscope with digital adjutage was used to create microphotoes, Photoshop CC was used for their processing. Result. We have established that stalk epidermis is prosenchymal, slightly winding with straight of splayed end cells. After study for the epidermis cells we established that upper epidermis cells had straight walls and are slightly winding. The cells of lower epidermishave more winding walls with prolong wrinkled cuticule. Presence of simple one-cell, thin wall, rough papillose hair on leaf and stalk epidermis. Cells of epidermis in fauces of corolla are prosenchymal, with winding walls, straight or winding walls in a cup. Papillary excrescences can be found along the cup edges. Stomatal apparatus is anomocytic. Conclusion. As the result of the study we have carried out the research for Campanula rotundifolia grass anatomic structure, and determined microdiagnostic features for determination of raw materials authenticity, which included presence of simple, one-cell, thin-walled, rough papillose hair on both epidermises of a leaf, along the veins, leaf edge, and stalk epidermis, as well as the presence of epidermis cells with papillary excrescences along the edges of leaves and cups. Intercellular canals are situatedalong the

  2. Anatomical Thin Titanium Mesh Plate Structural Optimization for Zygomatic-Maxillary Complex Fracture under Fatigue Testing

    Directory of Open Access Journals (Sweden)

    Yu-Tzu Wang

    2018-01-01

    Full Text Available This study performs a structural optimization of anatomical thin titanium mesh (ATTM plate and optimal designed ATTM plate fabricated using additive manufacturing (AM to verify its stabilization under fatigue testing. Finite element (FE analysis was used to simulate the structural bending resistance of a regular ATTM plate. The Taguchi method was employed to identify the significance of each design factor in controlling the deflection and determine an optimal combination of designed factors. The optimal designed ATTM plate with patient-matched facial contour was fabricated using AM and applied to a ZMC comminuted fracture to evaluate the resting maxillary micromotion/strain under fatigue testing. The Taguchi analysis found that the ATTM plate required a designed internal hole distance to be 0.9 mm, internal hole diameter to be 1 mm, plate thickness to be 0.8 mm, and plate height to be 10 mm. The designed plate thickness factor primarily dominated the bending resistance up to 78% importance. The averaged micromotion (displacement and strain of the maxillary bone showed that ZMC fracture fixation using the miniplate was significantly higher than those using the AM optimal designed ATTM plate. This study concluded that the optimal designed ATTM plate with enough strength to resist the bending effect can be obtained by combining FE and Taguchi analyses. The optimal designed ATTM plate with patient-matched facial contour fabricated using AM provides superior stabilization for ZMC comminuted fractured bone segments.

  3. Detection of the anatomic structure and pathology in animal lung specimens: comparison of micro CT and multi-detector row CT

    International Nuclear Information System (INIS)

    Lim, Kun Young; Lee, Hyun Ju; Lee, Chang Hyun; Son, Kyu Ri; Goo, Jin Mo; Im, Jung Gi; Seo, Joon Beom

    2006-01-01

    We wanted to compare the capability of micro CT and the clinically available thin-slice multi-detector row CT (MDCT) for demonstrating fine anatomic structures and pathological lesions in formalin-fixed lung specimens. The porcine lung with shark liver oil-induced lipoid pneumonia and the canine lung with pulmonary paragonimiasis were fixed by ventilating them with formalin vapor, and they were then sliced into one-centimeter thick sections. Micro CT (section thickness, 18 micrometer) and MDCT (section thickness, 0.75 mm) images were acquired in four of the lung slices of the lipoid pneumonia specimen and in five of the lung slices of the paragonimiasis specimen. On 62 pairs of micro CT and MDCT images, 169 pairs of rectangular ROIs were manually drawn in the corresponding locations. Two chest radiologists recorded the detectability of three kinds of anatomic structures (lobular core structure, interlobular septum and small bronchiolar lumen) and two kinds of pathological lesions (ground-glass opacity and consolidation) with using a five-point scale. The statistical comparison was performed by using the Wilcoxon signed rank test. Interobserver agreement was evaluated with kappa statistics. For all observers, all the kinds of anatomic structures and pathological lesions were detected better on the micro CT images than on the MDCT images (ρ < 0.01). Agreement was fair between two observers (κ = 0.38, ρ < 0.001). The fine anatomic structures and pathological lesions of the lung were more accurately demonstrated on micro CT than on thin-slice MDCT in the inflated and fixed lung specimens

  4. Detection of the anatomic structure and pathology in animal lung specimens: comparison of micro CT and multi-detector row CT

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Kun Young [National Cancer Center, Goyang (Korea, Republic of); Lee, Hyun Ju; Lee, Chang Hyun; Son, Kyu Ri; Goo, Jin Mo; Im, Jung Gi [Seoul National University Hospital and the Institute of Radiation Medicine, Seoul (Korea, Republic of); Seo, Joon Beom [Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of)

    2006-05-15

    We wanted to compare the capability of micro CT and the clinically available thin-slice multi-detector row CT (MDCT) for demonstrating fine anatomic structures and pathological lesions in formalin-fixed lung specimens. The porcine lung with shark liver oil-induced lipoid pneumonia and the canine lung with pulmonary paragonimiasis were fixed by ventilating them with formalin vapor, and they were then sliced into one-centimeter thick sections. Micro CT (section thickness, 18 micrometer) and MDCT (section thickness, 0.75 mm) images were acquired in four of the lung slices of the lipoid pneumonia specimen and in five of the lung slices of the paragonimiasis specimen. On 62 pairs of micro CT and MDCT images, 169 pairs of rectangular ROIs were manually drawn in the corresponding locations. Two chest radiologists recorded the detectability of three kinds of anatomic structures (lobular core structure, interlobular septum and small bronchiolar lumen) and two kinds of pathological lesions (ground-glass opacity and consolidation) with using a five-point scale. The statistical comparison was performed by using the Wilcoxon signed rank test. Interobserver agreement was evaluated with kappa statistics. For all observers, all the kinds of anatomic structures and pathological lesions were detected better on the micro CT images than on the MDCT images ({rho} < 0.01). Agreement was fair between two observers ({kappa} = 0.38, {rho} < 0.001). The fine anatomic structures and pathological lesions of the lung were more accurately demonstrated on micro CT than on thin-slice MDCT in the inflated and fixed lung specimens.

  5. Probabilistic anatomical labeling of brain structures using statistical probabilistic anatomical maps

    International Nuclear Information System (INIS)

    Kim, Jin Su; Lee, Dong Soo; Lee, Byung Il; Lee, Jae Sung; Shin, Hee Won; Chung, June Key; Lee, Myung Chul

    2002-01-01

    The use of statistical parametric mapping (SPM) program has increased for the analysis of brain PET and SPECT images. Montreal neurological institute (MNI) coordinate is used in SPM program as a standard anatomical framework. While the most researchers look up Talairach atlas to report the localization of the activations detected in SPM program, there is significant disparity between MNI templates and Talairach atlas. That disparity between Talairach and MNI coordinates makes the interpretation of SPM result time consuming, subjective and inaccurate. The purpose of this study was to develop a program to provide objective anatomical information of each x-y-z position in ICBM coordinate. Program was designed to provide the anatomical information for the given x-y-z position in MNI coordinate based on the statistical probabilistic anatomical map (SPAM) images of ICBM. When x-y-z position was given to the program, names of the anatomical structures with non-zero probability and the probabilities that the given position belongs to the structures were tabulated. The program was coded using IDL and JAVA language for the easy transplantation to any operating system or platform. Utility of this program was shown by comparing the results of this program to those of SPM program. Preliminary validation study was performed by applying this program to the analysis of PET brain activation study of human memory in which the anatomical information on the activated areas are previously known. Real time retrieval of probabilistic information with 1 mm spatial resolution was archived using the programs. Validation study showed the relevance of this program: probability that the activated area for memory belonged to hippocampal formation was more than 80%. These programs will be useful for the result interpretation of the image analysis performed on MNI coordinate, as done in SPM program

  6. Posterolateral supporting structures of the knee: findings on anatomic dissection, anatomic slices and MR images

    Energy Technology Data Exchange (ETDEWEB)

    Maeseneer, M. de; Shahabpour, M.; Vanderdood, K.; Ridder, F. de; Osteaux, M. [Dept. of Radiology, Free Univ. Brussels (Belgium); Roy, F. van [Dept. of Experimental Anatomy, Free Univ. Brussels (Belgium)

    2001-11-01

    In this article we study the ligaments and tendons of the posterolateral corner of the knee by anatomic dissection, MR-anatomic correlation, and MR imaging. The posterolateral aspect of two fresh cadaveric knee specimens was dissected. The MR-anatomic correlation was performed in three other specimens. The MR images of 122 patients were reviewed and assessed for the visualization of different posterolateral structures. Anatomic dissection and MR-anatomic correlation demonstrated the lateral collateral, fabellofibular, and arcuate ligaments, as well as the biceps and popliteus tendons. On MR images of patients the lateral collateral ligament was depicted in all cases. The fabellofibular, arcuate, and popliteofibular ligaments were visualized in 33, 25, and 38% of patients, respectively. Magnetic resonance imaging allows a detailed appreciation of the posterolateral corner of the knee. (orig.)

  7. Morphological peculiarity of the renal parenchyma on S10 thin plastinated pig kidneys

    Directory of Open Access Journals (Sweden)

    Pendovski Lazo

    2008-11-01

    Full Text Available The aim of this study is to investigate the morphological structures on the renal parenchyma on the pig kidneys, prepared in thin slices by S10 sheet plastination method. A total number of 60 kidneys taken form two adult breeds are plastinated in 2mm sagital thin sections. The morphological structure on thin kidney slices is analyzed and their anatomic-topographical relationship is investigated. The prepared thin kidney slices are permanent, flexible, dry, and odorless with smooth surfaces anatomical models with clear distinction between renal medulla and renal cortex. In cross-bread landras/yorkshire, the number of renal pyramids is ranged between 8-14 (average 10.63 while in breed dalland the number is ranged between 8- 13(average 9.94(p>0.05. Three morphological forms are found in pig kidneys based of the variation of adhesion of renal pyramids and derange of their renal papilla into renal pelvis. According the results can be concluded that the S10 sheet plastination method could be used for preparing of thin anatomical models that are suitable for education and research purposes enabling three-dimensional plan view of anatomical structures inside of kidneys.

  8. Deformable meshes for medical image segmentation accurate automatic segmentation of anatomical structures

    CERN Document Server

    Kainmueller, Dagmar

    2014-01-01

    ? Segmentation of anatomical structures in medical image data is an essential task in clinical practice. Dagmar Kainmueller introduces methods for accurate fully automatic segmentation of anatomical structures in 3D medical image data. The author's core methodological contribution is a novel deformation model that overcomes limitations of state-of-the-art Deformable Surface approaches, hence allowing for accurate segmentation of tip- and ridge-shaped features of anatomical structures. As for practical contributions, she proposes application-specific segmentation pipelines for a range of anatom

  9. Environmental impact on morphological and anatomical structure of ...

    African Journals Online (AJOL)

    Morphological and anatomical structure of Tansy (Tanacetum vulgare L.) from two specific locations in one town, depending on environmental conditions, were carried out: anthropogenic Ada Huja (polluted zone) and non anthropogenic Topcider park (unpolluted). Study included the diferences in the structure of leaves, ...

  10. Dissimilarity-based classification of anatomical tree structures

    DEFF Research Database (Denmark)

    Sørensen, Lauge; Lo, Pechin Chien Pau; Dirksen, Asger

    2011-01-01

    A novel method for classification of abnormality in anatomical tree structures is presented. A tree is classified based on direct comparisons with other trees in a dissimilarity-based classification scheme. The pair-wise dissimilarity measure between two trees is based on a linear assignment betw...

  11. Dissimilarity-based classification of anatomical tree structures

    DEFF Research Database (Denmark)

    Sørensen, Lauge Emil Borch Laurs; Lo, Pechin Chien Pau; Dirksen, Asger

    2011-01-01

    A novel method for classification of abnormality in anatomical tree structures is presented. A tree is classified based on direct comparisons with other trees in a dissimilarity-based classification scheme. The pair-wise dissimilarity measure between two trees is based on a linear assignment...

  12. Proximity of arthroscopic ankle stabilization procedures to surrounding structures: an anatomic study.

    Science.gov (United States)

    Drakos, Mark; Behrens, Steve B; Mulcahey, Mary K; Paller, David; Hoffman, Eve; DiGiovanni, Christopher W

    2013-06-01

    To examine the anatomy of the lateral ankle after arthroscopic repair of the lateral ligament complex (anterior talofibular ligament [ATFL] and calcaneofibular ligament [CFL]) with regard to structures at risk. Ten lower extremity cadaveric specimens were obtained and were screened for gross anatomic defects and pre-existing ankle laxity. The ATFL and CFL were sectioned from the fibula by an open technique. Standard anterolateral and anteromedial arthroscopy portals were made. An additional portal was created 2 cm distal to the anterolateral portal. The articular surface of the fibula was identified, and the ATFL and CFL were freed from the superficial and deeper tissues. Suture anchors were placed in the fibula at the ATFL and CFL origins and were used to repair the origin of the lateral collateral structures. The distance from the suture knot to several local anatomic structures was measured. Measurements were taken by 2 separate observers, and the results were averaged. Several anatomic structures lie in close proximity to the ATFL and CFL sutures. The ATFL sutures entrapped 9 of 55 structures, and no anatomic structures were inadvertently entrapped by the CFL sutures. The proximity of the peroneus tertius and the extensor tendons to the ATFL makes them at highest risk of entrapment, but the proximity of the intermediate branch of the superficial peroneal nerve (when present) is a risk with significant morbidity. Our results indicate that the peroneus tertius and extensor tendons have the highest risk for entrapment and show the smallest mean distances from the anchor knot to the identified structure. Careful attention to these structures, as well as the superficial peroneal nerve, is mandatory to prevent entrapment of tendons and nerves when one is attempting arthroscopic lateral ankle ligament reconstruction. Defining the anatomic location and proximity of the intervening structures adjacent to the lateral ligament complex of the ankle may help clarify the

  13. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy.

    Science.gov (United States)

    Wognum, S; Bondar, L; Zolnay, A G; Chai, X; Hulshof, M C C M; Hoogeman, M S; Bel, A

    2013-02-01

    Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumor and the lack of visible anatomical landmarks for validation. The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight parameters were determined

  14. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy

    International Nuclear Information System (INIS)

    Wognum, S.; Chai, X.; Hulshof, M. C. C. M.; Bel, A.; Bondar, L.; Zolnay, A. G.; Hoogeman, M. S.

    2013-01-01

    Purpose: Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors’ unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumor and the lack of visible anatomical landmarks for validation. Methods: The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight

  15. Control over structure-specific flexibility improves anatomical accuracy for point-based deformable registration in bladder cancer radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Wognum, S.; Chai, X.; Hulshof, M. C. C. M.; Bel, A. [Department of Radiotherapy, Academic Medical Center, Meiberdreef 9, 1105 AZ Amsterdam (Netherlands); Bondar, L.; Zolnay, A. G.; Hoogeman, M. S. [Department of Radiation Oncology, Daniel den Hoed Cancer Center, Erasmus Medical Center, Groene Hilledijk 301, 3075 EA Rotterdam (Netherlands)

    2013-02-15

    Purpose: Future developments in image guided adaptive radiotherapy (IGART) for bladder cancer require accurate deformable image registration techniques for the precise assessment of tumor and bladder motion and deformation that occur as a result of large bladder volume changes during the course of radiotherapy treatment. The aim was to employ an extended version of a point-based deformable registration algorithm that allows control over tissue-specific flexibility in combination with the authors' unique patient dataset, in order to overcome two major challenges of bladder cancer registration, i.e., the difficulty in accounting for the difference in flexibility between the bladder wall and tumor and the lack of visible anatomical landmarks for validation. Methods: The registration algorithm used in the current study is an extension of the symmetric-thin plate splines-robust point matching (S-TPS-RPM) algorithm, a symmetric feature-based registration method. The S-TPS-RPM algorithm has been previously extended to allow control over the degree of flexibility of different structures via a weight parameter. The extended weighted S-TPS-RPM algorithm was tested and validated on CT data (planning- and four to five repeat-CTs) of five urinary bladder cancer patients who received lipiodol injections before radiotherapy. The performance of the weighted S-TPS-RPM method, applied to bladder and tumor structures simultaneously, was compared with a previous version of the S-TPS-RPM algorithm applied to bladder wall structure alone and with a simultaneous nonweighted S-TPS-RPM registration of the bladder and tumor structures. Performance was assessed in terms of anatomical and geometric accuracy. The anatomical accuracy was calculated as the residual distance error (RDE) of the lipiodol markers and the geometric accuracy was determined by the surface distance, surface coverage, and inverse consistency errors. Optimal parameter values for the flexibility and bladder weight

  16. An interactive three-dimensional virtual body structures system for anatomical training over the internet.

    Science.gov (United States)

    Temkin, Bharti; Acosta, Eric; Malvankar, Ameya; Vaidyanath, Sreeram

    2006-04-01

    The Visible Human digital datasets make it possible to develop computer-based anatomical training systems that use virtual anatomical models (virtual body structures-VBS). Medical schools are combining these virtual training systems and classical anatomy teaching methods that use labeled images and cadaver dissection. In this paper we present a customizable web-based three-dimensional anatomy training system, W3D-VBS. W3D-VBS uses National Library of Medicine's (NLM) Visible Human Male datasets to interactively locate, explore, select, extract, highlight, label, and visualize, realistic 2D (using axial, coronal, and sagittal views) and 3D virtual structures. A real-time self-guided virtual tour of the entire body is designed to provide detailed anatomical information about structures, substructures, and proximal structures. The system thus facilitates learning of visuospatial relationships at a level of detail that may not be possible by any other means. The use of volumetric structures allows for repeated real-time virtual dissections, from any angle, at the convenience of the user. Volumetric (3D) virtual dissections are performed by adding, removing, highlighting, and labeling individual structures (and/or entire anatomical systems). The resultant virtual explorations (consisting of anatomical 2D/3D illustrations and animations), with user selected highlighting colors and label positions, can be saved and used for generating lesson plans and evaluation systems. Tracking users' progress using the evaluation system helps customize the curriculum, making W3D-VBS a powerful learning tool. Our plan is to incorporate other Visible Human segmented datasets, especially datasets with higher resolutions, that make it possible to include finer anatomical structures such as nerves and small vessels. (c) 2006 Wiley-Liss, Inc.

  17. Salt effect on physiological, biochemical and anatomical structures ...

    African Journals Online (AJOL)

    In this study, we evaluated the salt concentration effect on plant growth, mineral composition, antioxidant responses and anatomical structure of two varieties of Origanum majorana after exposure to NaCl treatment. Our results show an inclusive behaviour of the two varieties, since the majority of sodium was exported and ...

  18. Gross anatomical syringeal structures of goose (Anser anser domesticus

    Directory of Open Access Journals (Sweden)

    Reda Mohamed

    2017-12-01

    Conclusion: There were some similarities and some differences of the anatomical structures of the syrinx of goose and that of other bird species. No differences between male and female syrinx were observed. [J Adv Vet Anim Res 2017; 4(4.000: 343-347

  19. SU-C-207B-02: Maximal Noise Reduction Filter with Anatomical Structures Preservation

    Energy Technology Data Exchange (ETDEWEB)

    Maitree, R; Guzman, G; Chundury, A; Roach, M; Yang, D [Washington University School of Medicine, St Louis, MO (United States)

    2016-06-15

    Purpose: All medical images contain noise, which can result in an undesirable appearance and can reduce the visibility of anatomical details. There are varieties of techniques utilized to reduce noise such as increasing the image acquisition time and using post-processing noise reduction algorithms. However, these techniques are increasing the imaging time and cost or reducing tissue contrast and effective spatial resolution which are useful diagnosis information. The three main focuses in this study are: 1) to develop a novel approach that can adaptively and maximally reduce noise while preserving valuable details of anatomical structures, 2) to evaluate the effectiveness of available noise reduction algorithms in comparison to the proposed algorithm, and 3) to demonstrate that the proposed noise reduction approach can be used clinically. Methods: To achieve a maximal noise reduction without destroying the anatomical details, the proposed approach automatically estimated the local image noise strength levels and detected the anatomical structures, i.e. tissue boundaries. Such information was used to adaptively adjust strength of the noise reduction filter. The proposed algorithm was tested on 34 repeating swine head datasets and 54 patients MRI and CT images. The performance was quantitatively evaluated by image quality metrics and manually validated for clinical usages by two radiation oncologists and one radiologist. Results: Qualitative measurements on repeated swine head images demonstrated that the proposed algorithm efficiently removed noise while preserving the structures and tissues boundaries. In comparisons, the proposed algorithm obtained competitive noise reduction performance and outperformed other filters in preserving anatomical structures. Assessments from the manual validation indicate that the proposed noise reduction algorithm is quite adequate for some clinical usages. Conclusion: According to both clinical evaluation (human expert ranking) and

  20. SU-C-207B-02: Maximal Noise Reduction Filter with Anatomical Structures Preservation

    International Nuclear Information System (INIS)

    Maitree, R; Guzman, G; Chundury, A; Roach, M; Yang, D

    2016-01-01

    Purpose: All medical images contain noise, which can result in an undesirable appearance and can reduce the visibility of anatomical details. There are varieties of techniques utilized to reduce noise such as increasing the image acquisition time and using post-processing noise reduction algorithms. However, these techniques are increasing the imaging time and cost or reducing tissue contrast and effective spatial resolution which are useful diagnosis information. The three main focuses in this study are: 1) to develop a novel approach that can adaptively and maximally reduce noise while preserving valuable details of anatomical structures, 2) to evaluate the effectiveness of available noise reduction algorithms in comparison to the proposed algorithm, and 3) to demonstrate that the proposed noise reduction approach can be used clinically. Methods: To achieve a maximal noise reduction without destroying the anatomical details, the proposed approach automatically estimated the local image noise strength levels and detected the anatomical structures, i.e. tissue boundaries. Such information was used to adaptively adjust strength of the noise reduction filter. The proposed algorithm was tested on 34 repeating swine head datasets and 54 patients MRI and CT images. The performance was quantitatively evaluated by image quality metrics and manually validated for clinical usages by two radiation oncologists and one radiologist. Results: Qualitative measurements on repeated swine head images demonstrated that the proposed algorithm efficiently removed noise while preserving the structures and tissues boundaries. In comparisons, the proposed algorithm obtained competitive noise reduction performance and outperformed other filters in preserving anatomical structures. Assessments from the manual validation indicate that the proposed noise reduction algorithm is quite adequate for some clinical usages. Conclusion: According to both clinical evaluation (human expert ranking) and

  1. Marginal space learning for medical image analysis efficient detection and segmentation of anatomical structures

    CERN Document Server

    Zheng, Yefeng

    2014-01-01

    Presents an award winning image analysis technology (Thomas Edison Patent Award, MICCAI Young Investigator Award) that achieves object detection and segmentation with state-of-the-art accuracy and efficiency Flexible, machine learning-based framework, applicable across multiple anatomical structures and imaging modalities Thirty five clinical applications on detecting and segmenting anatomical structures such as heart chambers and valves, blood vessels, liver, kidney, prostate, lymph nodes, and sub-cortical brain structures, in CT, MRI, X-Ray and Ultrasound.

  2. Cloud-Based Evaluation of Anatomical Structure Segmentation and Landmark Detection Algorithms : VISCERAL Anatomy Benchmarks

    OpenAIRE

    Jimenez-del-Toro, Oscar; Muller, Henning; Krenn, Markus; Gruenberg, Katharina; Taha, Abdel Aziz; Winterstein, Marianne; Eggel, Ivan; Foncubierta-Rodriguez, Antonio; Goksel, Orcun; Jakab, Andres; Kontokotsios, Georgios; Langs, Georg; Menze, Bjoern H.; Fernandez, Tomas Salas; Schaer, Roger

    2016-01-01

    Variations in the shape and appearance of anatomical structures in medical images are often relevant radiological signs of disease. Automatic tools can help automate parts of this manual process. A cloud-based evaluation framework is presented in this paper including results of benchmarking current state-of-the-art medical imaging algorithms for anatomical structure segmentation and landmark detection: the VISCERAL Anatomy benchmarks. The algorithms are implemented in virtual machines in the ...

  3. The "G-Spot" Is Not a Structure Evident on Macroscopic Anatomic Dissection of the Vaginal Wall.

    Science.gov (United States)

    Hoag, Nathan; Keast, Janet R; O'Connell, Helen E

    2017-12-01

    Controversy exists in the literature regarding the presence or absence of an anatomic "G-spot." However, few studies have examined the detailed topographic or histologic anatomy of the putative G-spot location. To determine the anatomy of the anterior vaginal wall and present detailed, systematic, accessible findings from female cadaveric dissections to provide anatomic clarity with respect to this location. Systematic anatomic dissections were performed on 13 female cadavers (32-97 years old, 8 fixed and 5 fresh) to characterize the gross anatomy of the anterior vaginal wall. Digital photography was used to document dissections. Dissection preserved the anterior vaginal wall, urethra, and clitoris. In 9 cadavers, the vaginal epithelial layer was reflected to expose the underlying urethral wall and associated tissues. In 4 cadavers, the vaginal wall was left intact before preservation. Once photographed, 8 specimens were transversely sectioned for macroscopic inspection and histologic examination. The presence or absence of a macroscopic anatomic structure at detailed cadaveric pelvis dissection that corresponds to the previously described G-spot and gross anatomic description of the anterior vaginal wall. Deep to the lining epithelium of the anterior vaginal wall is the urethra. There is no macroscopic structure other than the urethra and vaginal wall lining in the location of the putative G-spot. Specifically, there is no apparent erectile or "spongy" tissue in the anterior vaginal wall, except where the urethra abuts the clitoris distally. The absence of an anatomic structure corresponding to the putative G-spot helps clarify the controversy on this subject. Limitations to this study include limited access to specimens immediately after death and potential for observational bias. In addition, age, medical history, and cause of death are not publishable for privacy reasons. However, it is one of the most thorough and complete anatomic evaluations documenting the

  4. Anatomic structural study of cerebellopontine angle via endoscope

    Institute of Scientific and Technical Information of China (English)

    XIA Yin; LI Xi-ping; HAN De-min; ZHENG Jun; LONG Hai-shan; SHI Jin-feng

    2007-01-01

    Background Minimally invasive surgery in skull base relying on searching for possible anatomic basis for endoscopic technology is controversial. The objective of this study was to observe the spatial relationships between main blood vessels and nerves in the cerebellopontine angle area and provide anatomic basis for lateral and posterior skull base minimally invasive surgery via endoscopic retrosigmoid keyhole approach.Methods This study was conducted on thirty dried adult skulls to measure the spatial relationships among the surface bony marks of posterior cranial fossa, and to locate the most appropriate drilling area for retrosigmoid keyhole approach.In addition, we used 10 formaldehyde-fixed adult cadaver specimens for simulating endoscopic retrosigmoid approach to determine the visible scope.Results The midpoint between the mastoid tip and the asterion was the best drilling point for retrosigmoid approach. A hole centered on this point with the 2.0 cm in diameter was suitable for exposing the related structures in the cerebellopontine angle. Retrosigmoid keyhole approach can decrease the pressure on the cerebellum and expose the related structures effectively which include facial nerve, vestibulocochlear nerve, trigeminal nerve, glossopharyngeal nerve, vagus nerve, accessory nerve, hypoglossal nerve, anterior inferior cerebellar artery, posterior inferior cerebellar artery and labyrinthine artery, etc.Conclusions Exact location on endoscope retrosigmoid approach can avoid dragging cerebellum during the minimally invasive surgery. The application of retrosigmoid keyhole approach will extend the application of endoscopic technology.

  5. The ligament of Parks as a key anatomical structure for safer hemorrhoidectomy: Anatomic study and a simple surgical note

    Directory of Open Access Journals (Sweden)

    Menelaos Zoulamoglou

    2017-12-01

    Full Text Available Hemorrhoids are a common anal disorder which affects both men and women of all ages. One out of ten patients with hemorrhoidal disease, requires surgical treatment. Unfortunately though, hemorrhoidectomy is closely related to complications that can be present early or late postoperatively. In the present manuscript, the safe surgical technique which emphasizes to the identification of the key anatomical structure of the ligament of Parks (Trietz's muscle is adequately described. A total of 200 patients with grades III and IV hemorrhoids, underwent Milligan-Morgan or Ferguson's hemorrhoidectomy. The mucosal ligament of Parks was identified to all patients and was used as a key anatomical structure through the excision of the hemorrhoids. Its identification guides surgeons during the operation and reduces the major problem of postoperative complications. Finally, since the mucosal ligament of Parks represents a constantly identifiable landmark, it allows simple and reliable identification of the internal sphincter muscle and minimizes the probability of postoperative complications.

  6. Methods of fixation of intraocular lenses according to the anatomical structures in trauma eyes.

    Science.gov (United States)

    Fiorentzis, Miltiadis; Viestenz, Anja; Heichel, Jens; Seitz, Berthold; Hammer, Thomas; Viestenz, Arne

    2018-01-01

    Ocular trauma can lead to severe visual impairment and morbidity, depending on the anatomical structures affected. The main causes of ocular trauma include foreign bodies, impact by an object, falls, and chemicals. Most ocular traumas occur in children or young male adults. A meticulous slit lamp examination is crucial for assessing all anatomical structures. Trauma to the crystalline lens can result in dislocation, an intralenticular foreign body, cataract, fragmentation, and capsular breach. An intraocular lens (IOL) can endure subluxation or luxation under the conjunctiva, into the anterior chamber or the vitreous, or can be extruded. The surgical approach depends on the condition and morphology of the lens and the anatomical structures surrounding it. If there is capsular bag support, a secondary IOL can be placed in the sulcus using remnants of the damaged capsule. If there is no capsular bag support, a secondary IOL can be fixated to the anterior chamber angle, to the iris, or to the sclera. A detailed history of injury cannot always be obtained in trauma settings. Proper education, supervision, and certified safety eye protectors could prevent up to 90% of ocular injuries. Lens trauma can be treated with various surgical procedures and fixation techniques, which nevertheless require advanced surgical skills owing to the fine anatomical structure of the anterior segment. A careful surgical strategy should be established for a globe reconstruction after trauma with secondary lens implantation. Clin. Anat. 31:6-15, 2018. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  7. Ion beam-based characterization of multicomponent oxide thin films and thin film layered structures

    International Nuclear Information System (INIS)

    Krauss, A.R.; Rangaswamy, M.; Lin, Yuping; Gruen, D.M.; Schultz, J.A.; Schmidt, H.K.; Chang, R.P.H.

    1992-01-01

    Fabrication of thin film layered structures of multi-component materials such as high temperature superconductors, ferroelectric and electro-optic materials, and alloy semiconductors, and the development of hybrid materials requires understanding of film growth and interface properties. For High Temperature Superconductors, the superconducting coherence length is extremely short (5--15 Angstrom), and fabrication of reliable devices will require control of film properties at extremely sharp interfaces; it will be necessary to verify the integrity of thin layers and layered structure devices over thicknesses comparable to the atomic layer spacing. Analytical techniques which probe the first 1--2 atomic layers are therefore necessary for in-situ characterization of relevant thin film growth processes. However, most surface-analytical techniques are sensitive to a region within 10--40 Angstrom of the surface and are physically incompatible with thin film deposition and are typically restricted to ultra high vacuum conditions. A review of ion beam-based analytical methods for the characterization of thin film and multi-layered thin film structures incorporating layers of multicomponent oxides is presented. Particular attention will be paid to the use of time-of-flight techniques based on the use of 1- 15 key ion beams which show potential for use as nondestructive, real-time, in-situ surface diagnostics for the growth of multicomponent metal and metal oxide thin films

  8. Development of a patient-specific anatomical foot model from structured light scan data.

    Science.gov (United States)

    Lochner, Samuel J; Huissoon, Jan P; Bedi, Sanjeev S

    2014-01-01

    The use of anatomically accurate finite element (FE) models of the human foot in research studies has increased rapidly in recent years. Uses for FE foot models include advancing knowledge of orthotic design, shoe design, ankle-foot orthoses, pathomechanics, locomotion, plantar pressure, tissue mechanics, plantar fasciitis, joint stress and surgical interventions. Similar applications but for clinical use on a per-patient basis would also be on the rise if it were not for the high costs associated with developing patient-specific anatomical foot models. High costs arise primarily from the expense and challenges of acquiring anatomical data via magnetic resonance imaging (MRI) or computed tomography (CT) and reconstructing the three-dimensional models. The proposed solution morphs detailed anatomy from skin surface geometry and anatomical landmarks of a generic foot model (developed from CT or MRI) to surface geometry and anatomical landmarks acquired from an inexpensive structured light scan of a foot. The method yields a patient-specific anatomical foot model at a fraction of the cost of standard methods. Average error for bone surfaces was 2.53 mm for the six experiments completed. Highest accuracy occurred in the mid-foot and lowest in the forefoot due to the small, irregular bones of the toes. The method must be validated in the intended application to determine if the resulting errors are acceptable.

  9. ROOT ANATOMICAL PLASTICITY IN RESPONSE TO SALT STRESS UNDER REAL AND FULL-SEASON FIELD CONDITIONS AND DETERMINATION OF NEW ANATOMIC SELECTION CHARACTERS FOR BREEDING SALT-RESISTANT RICE (Oryza sativa L.

    Directory of Open Access Journals (Sweden)

    Mehmet AYBEKE

    2016-12-01

    Full Text Available Specific understanding of root anatomy plasticity under salt stress is lacking and requires creation of efficient screening techniques for stress condition s. To fill this gap, this study aimed to determine the anatomical plasticity in root chracteristics of 31 different rice cultivars (from ‘Best’ to ‘Low’ yielding grown under real field conditions (saline and non-saline from planting to harvesting and to reveal detailed root anatomical parameters that can be used to select and breed salt-tolerant rice. Anatomical and histochemical features of all cultivars and thin structures of the apoplastic barriers were investigated. The amount of silica (Si, 35 different anatomical characteristics, anatomical plasticity characteristics, plasticity rates, plasticity trends and changes and strategies of each group under saline and non-saline conditions were compared. The results showed that protective anatomical characters improved/remained equal to, and worsened/remained equal to those of the controls, in the ‘Best’ and other groups, respectively, from non-saline to saline conditions. Anatomical plasticity is essentially directly related to apoplastic barrier features. High genotypic variation was observed in root anatomy in all cultivars, but foremost traits were as follows: (1 cell size, (2 Si presence, (3 Si accumulation shape, (4 Si distribution towards root stele, (5 xylem arch features, (6 lignification-suberization properties in apoplastic barriers and their degrees, (7 presence/absence of idioblast cells filled with gummic and phenolic substances and (8 moderate anatomical plasticity. Cultivars with the most stabile anatomy under saline and non-saline conditions should be used to select and breed salt-resistant rice.

  10. The morpho-anatomical structure of the leaves of artichoke (Cynara scolymus L. grown in the Republic of Moldova

    Directory of Open Access Journals (Sweden)

    Cristina C. Ciobanu

    2012-03-01

    Full Text Available Artichoke ( Cynara scolymus L. was introduced in the collection of medicinal plants of the Centre for the cultivation of medicinal plants of The State Medical and Pharmaceutical University «Nicolae Testemiţanu» in 2002 ( Bodrug 2005 . We carried out morphological and anatomical study of leaves of the artichoke with a view to determining the adaptive anatomical structures of the leaf to the climatic conditions of the Republic of Moldova, as well as to elucidate specific anatomical structures to identify the medicinal drug and medicinal plant.

  11. The Dynamic Similitude Design Method of Thin Walled Structures and Experimental Validation

    Directory of Open Access Journals (Sweden)

    Zhong Luo

    2016-01-01

    Full Text Available For the applicability of dynamic similitude models of thin walled structures, such as engine blades, turbine discs, and cylindrical shells, the dynamic similitude design of typical thin walled structures is investigated. The governing equation of typical thin walled structures is firstly unified, which guides to establishing dynamic scaling laws of typical thin walled structures. Based on the governing equation, geometrically complete scaling law of the typical thin walled structure is derived. In order to determine accurate distorted scaling laws of typical thin walled structures, three principles are proposed and theoretically proved by combining the sensitivity analysis and governing equation. Taking the thin walled annular plate as an example, geometrically complete and distorted scaling laws can be obtained based on the principles of determining dynamic scaling laws. Furthermore, the previous five orders’ accurate distorted scaling laws of thin walled annular plates are presented and numerically validated. Finally, the effectiveness of the similitude design method is validated by experimental annular plates.

  12. The Study of Anatomical Structure and Karyotype of West Sumatran Dioscorea bulbifora L

    Directory of Open Access Journals (Sweden)

    Sjahridal Dahlan

    2007-04-01

    Full Text Available Had been done from March 2005 to January 2006 in plant Structure and Development Laboratory of Biology Department, Faculty of Mathematic and Natural Science, Andalas University. In present study were used descriptives and quantitatives method by preparing semi-permanent and permanent slide. Anatomycal structures of green aerial stem were consisting of epidermal, cortex with endodermoid cells and sclerechima tissue centripetally. Vascular bundle can be rocognized in three distinct rings with amphycribal type. Transverse section of leave anatomical composed by both a layer epidermal on upper and lower leaf surface, palysade parechima, and spons parenchyma (dorsiventral type. The stomata were anomocytic type on both upper and lower surface of leaf (amphystomatic type. Idioblast of cell raphides crystals and tannin containing founded in leaf structure. In transverse section each of eight individual bundle surrounded by sclerenchyma. The root anatomical structures consist of epidermal, cortex, endodermal (U shape wall thickening, pericycle and pith (with three ring of vascular bundles centripetally. The air tuber lacking of starch grains containing of parenchyma cells. Idioblast cell expected contain of HCN distributed over all of tuber tissue. The somatic cell chromosome were diploid 2n=20 with basic chromosome number were x=10.

  13. Atomic Structure Control of Silica Thin Films on Pt(111)

    KAUST Repository

    Crampton, Andrew S

    2015-05-27

    Metal oxide thin films grown on metal single crystals are commonly used to model heterogeneous catalyst supports. The structure and properties of thin silicon dioxide films grown on metal single crystals have only recently been thoroughly characterized and their spectral properties well established. We report the successful growth of a three- dimensional, vitreous silicon dioxide thin film on the Pt(111) surface and reproduce the closed bilayer structure previously reported. The confirmation of the three dimensional nature of the film is unequivocally shown by the infrared absorption band at 1252 cm−1. Temperature programmed desorption was used to show that this three-dimensional thin film covers the Pt(111) surface to such an extent that its application as a catalyst support for clusters/nanoparticles is possible. The growth of a three-dimensional film was seen to be directly correlated with the amount of oxygen present on the surface after the silicon evaporation process. This excess of oxygen is tentatively attributed to atomic oxygen being generated in the evaporator. The identification of atomic oxygen as a necessary building block for the formation of a three-dimensional thin film opens up new possibilities for thin film growth on metal supports, whereby simply changing the type of oxygen enables thin films with different atomic structures to be synthesized. This is a novel approach to tune the synthesis parameters of thin films to grow a specific structure and expands the options for modeling common amorphous silica supports under ultra high vacuum conditions.

  14. Thin Capitalization Rules and Multinational Firm Capital Structure

    NARCIS (Netherlands)

    Blouin, J.; Huizinga, H.P.; Laeven, L.; Nicodeme, G.

    2014-01-01

    Abstract: This paper examines the impact of thin capitalization rules that limit the tax deductibility of interest on the capital structure of the foreign affiliates of US multinationals. We construct a new data set on thin capitalization rules in 54 countries for the period 1982-2004. Using

  15. Materials science in microelectronics I the relationships between thin film processing and structure

    CERN Document Server

    Machlin, Eugene

    2005-01-01

    Thin films play a key role in the material science of microelectronics, and the subject matter of thin-films divides naturally into two headings: processing / structure relationship, and structure / properties relationship.The first volume of Materials Science in Microelectronics focuses on the first relationship - that between processing and the structure of the thin-film. The state of the thin film's surface during the period that one monolayer exists - before being buried in the next layer - determines the ultimate structure of the thin film, and thus its properties. This

  16. Sonneratiaceae (concluded). Sonneratiaceae and other mangrove-swamp families, anatomical structure and water relations

    NARCIS (Netherlands)

    Reinders-Gouwentak, C.A.

    1948-01-01

    The question whether tidal and non-tidal members of a family have a separate wood anatomical structure would be examined best in such genera as embrace both types. The sequel to this examination, whether any such differences are connected with peculiarities in the water relations of the plants,

  17. Recent advances in standards for collaborative Digital Anatomic Pathology

    Science.gov (United States)

    2011-01-01

    Context Collaborative Digital Anatomic Pathology refers to the use of information technology that supports the creation and sharing or exchange of information, including data and images, during the complex workflow performed in an Anatomic Pathology department from specimen reception to report transmission and exploitation. Collaborative Digital Anatomic Pathology can only be fully achieved using medical informatics standards. The goal of the international integrating the Healthcare Enterprise (IHE) initiative is precisely specifying how medical informatics standards should be implemented to meet specific health care needs and making systems integration more efficient and less expensive. Objective To define the best use of medical informatics standards in order to share and exchange machine-readable structured reports and their evidences (including whole slide images) within hospitals and across healthcare facilities. Methods Specific working groups dedicated to Anatomy Pathology within multiple standards organizations defined standard-based data structures for Anatomic Pathology reports and images as well as informatic transactions in order to integrate Anatomic Pathology information into the electronic healthcare enterprise. Results The DICOM supplements 122 and 145 provide flexible object information definitions dedicated respectively to specimen description and Whole Slide Image acquisition, storage and display. The content profile “Anatomic Pathology Structured Report” (APSR) provides standard templates for structured reports in which textual observations may be bound to digital images or regions of interest. Anatomic Pathology observations are encoded using an international controlled vocabulary defined by the IHE Anatomic Pathology domain that is currently being mapped to SNOMED CT concepts. Conclusion Recent advances in standards for Collaborative Digital Anatomic Pathology are a unique opportunity to share or exchange Anatomic Pathology structured

  18. Effects of Thinning on the Spatial Structure of Larix principis-rupprechtii Plantation

    Directory of Open Access Journals (Sweden)

    Shengxing Ye

    2018-04-01

    Full Text Available Structure-based forest management is a scientific and easy-to-operate method for sustainable forest management. We analyzed the stand spatial structure of Larix principis-rupprechtii plantation under five reserve densities. The results indicated that with the decrease of densities after thinning, the average mingling degree and uniform angle index had an increasing tendency, but the amplitude was small. Most of the trees were in zero mix, and a few of them were in moderate, strong, and relatively strong mix; the horizontal distribution patterns were uniform or near-uniform random. The distribution of neighborhood comparison and opening degree changed with a fluctuant pattern, but thinning decreased the competitive intensities to some extent. A composite structure index (Ci was established, based on the relative importance of the above four indicators, to evaluate the overall effect of thinning on stand structure characteristics. The findings showed that Ci increased with the increase of thinning intensity, that is, the stand spatial structure became more complex. This indicated that Ci may be a simple and rapid indicator to evaluate the overall effect of thinning on stand spatial structure within densities after thinning.

  19. Mathematical modelling of the growth of human fetus anatomical structures.

    Science.gov (United States)

    Dudek, Krzysztof; Kędzia, Wojciech; Kędzia, Emilia; Kędzia, Alicja; Derkowski, Wojciech

    2017-09-01

    The goal of this study was to present a procedure that would enable mathematical analysis of the increase of linear sizes of human anatomical structures, estimate mathematical model parameters and evaluate their adequacy. Section material consisted of 67 foetuses-rectus abdominis muscle and 75 foetuses- biceps femoris muscle. The following methods were incorporated to the study: preparation and anthropologic methods, image digital acquisition, Image J computer system measurements and statistical analysis method. We used an anthropologic method based on age determination with the use of crown-rump length-CRL (V-TUB) by Scammon and Calkins. The choice of mathematical function should be based on a real course of the curve presenting growth of anatomical structure linear size Ύ in subsequent weeks t of pregnancy. Size changes can be described with a segmental-linear model or one-function model with accuracy adequate enough for clinical purposes. The interdependence of size-age is described with many functions. However, the following functions are most often considered: linear, polynomial, spline, logarithmic, power, exponential, power-exponential, log-logistic I and II, Gompertz's I and II and von Bertalanffy's function. With the use of the procedures described above, mathematical models parameters were assessed for V-PL (the total length of body) and CRL body length increases, rectus abdominis total length h, its segments hI, hII, hIII, hIV, as well as biceps femoris length and width of long head (LHL and LHW) and of short head (SHL and SHW). The best adjustments to measurement results were observed in the exponential and Gompertz's models.

  20. In vivo estimation of normal amygdala volume from structural MRI scans with anatomical-based segmentation.

    Science.gov (United States)

    Siozopoulos, Achilleas; Thomaidis, Vasilios; Prassopoulos, Panos; Fiska, Aliki

    2018-02-01

    Literature includes a number of studies using structural MRI (sMRI) to determine the volume of the amygdala, which is modified in various pathologic conditions. The reported values vary widely mainly because of different anatomical approaches to the complex. This study aims at estimating of the normal amygdala volume from sMRI scans using a recent anatomical definition described in a study based on post-mortem material. The amygdala volume has been calculated in 106 healthy subjects, using sMRI and anatomical-based segmentation. The resulting volumes have been analyzed for differences related to hemisphere, sex, and age. The mean amygdalar volume was estimated at 1.42 cm 3 . The mean right amygdala volume has been found larger than the left, but the difference for the raw values was within the limits of the method error. No intersexual differences or age-related alterations have been observed. The study provides a method for determining the boundaries of the amygdala in sMRI scans based on recent anatomical considerations and an estimation of the mean normal amygdala volume from a quite large number of scans for future use in comparative studies.

  1. Extractive and anatomical wood structure effects on mechanical properties of Caoba wood (Swietenia macrophylla King)

    International Nuclear Information System (INIS)

    Arevalo Fuentes Rosven Libardo; Hernandez Roger

    2008-01-01

    The compression tangential to grain of samples of mahogany wood from Peru was examined at different relative humidity levels at 25 Celsius degrade to determine the influence of both extractives and anatomical structure. Matched samples were used to assess the percentage of extractive components by extraction with solvents of increasing polarity: cyclohexane, dichloromethane, acetone, methanol and hot water. Additionally, fourteen anatomical parameters were determined by image analysis. Stepwise regression analysis concluded that mainly anatomical features, such as rays and vessels, rather than extractives, affect the mechanical behaviour of mahogany. These findings are agree with earlier results showing a negative effect of large and multiseriate rays on the mechanical properties of wood when loaded perpendicularly to their long axis. The influence of lumen located extracts soluble in dichloromethane might disallow deformations. Finally, it is postulated that hot water extracts may play a plasticizing role in this species.

  2. Semi-automated measurement of anatomical structures using statistical and morphological priors

    Science.gov (United States)

    Ashton, Edward A.; Du, Tong

    2004-05-01

    Rapid, accurate and reproducible delineation and measurement of arbitrary anatomical structures in medical images is a widely held goal, with important applications in both clinical diagnostics and, perhaps more significantly, pharmaceutical trial evaluation. This process requires the ability first to localize a structure within the body, and then to find a best approximation of the structure"s boundaries within a given scan. Structures that are tortuous and small in cross section, such as the hippocampus in the brain or the abdominal aorta, present a particular challenge. Their apparent shape and position can change significantly from slice to slice, and accurate prior shape models for such structures are often difficult to form. In this work, we have developed a system that makes use of both a user-defined shape model and a statistical maximum likelihood classifier to identify and measure structures of this sort in MRI and CT images. Experiments show that this system can reduce analysis time by 75% or more with respect to manual tracing with no loss of precision or accuracy.

  3. Features of morpho-anatomic structure of vegetative organs of Sedum antiquum Omelcz et Zaverucha (Crassulaceae DC.

    Directory of Open Access Journals (Sweden)

    Valentyna Berezkina

    2015-05-01

    Full Text Available The study results of biological features and morpho-anatomical structure of vegetative organs of Sedum antiquum Omelcz et Zaverucha (Crassulaceae DC. are given. S. antiquum is Eastern Carpathian-Opillia rare endemic species. It is listed in the Red Book of Ukraine and in the European Red List of Animals and Plants and is endangered in world scale. As a result of study of morpho-anatomic structure of leaves and stems of S. antiquum the anisocytic type of stomata and presence of cuticle have been determined. It was ascertained that structure of leaves is adapted to the accumulation of significant water reserves and its further gradual use. Ecological and phytocenotic conditions of growth are studied too. S. antiquum has been determined here as petrophyte, calcephyl, and succulent ephemer. This rare species need protection and control of population state in all natural habitats.

  4. Atomic Structure Control of Silica Thin Films on Pt(111)

    KAUST Repository

    Crampton, Andrew S; Ridge, Claron J.; Rö tzer, Marian David; Zwaschka, Gregor; Braun, Thomas; D'Elia, Valerio; Basset, Jean-Marie; Schweinberger, Florian Frank; Gü nther, Sebastian; Heiz, Ueli

    2015-01-01

    Metal oxide thin films grown on metal single crystals are commonly used to model heterogeneous catalyst supports. The structure and properties of thin silicon dioxide films grown on metal single crystals have only recently been thoroughly

  5. Morpho-anatomical and physicochemical studies of Fumaria indica (Hausskn.) Pugsley

    Institute of Scientific and Technical Information of China (English)

    Prakash Chandra Gupta; Ch V Rao

    2012-01-01

    To study morpho-anatomical characters and physicochemical analysis ofFumaria indica (F. indica) (Hausskn.) Pugsley, (Fumariaceae), an important medicinal plant used extensively for treating a variety of ailments in various system of indigenous medicine.Methods:Evaluation of the different parts of the plant was carried out to determine the morpho-anatomical, physicochemical, phytochemical and HPTLC fingerprinting profile of F. indica and other WHO recommended methods were performed for standardization. Results: Morpho-anatomical studies showed compound and pinnatifid leaf, 4 to 6 cm in length, linear and oblong in shape and anomocytic arrangement of stomata, thin walled parenchymatous cells, scattered, sclerenchymatous, capped vascular bundles and radiating medullary rays. Physicochemical studies showed foreign matter 0.2%, loss on drying 6.8%, total ash 16.77%, alcohol and water soluble extractives 8.92% and 20.26%, respectively, sugar 17.75%, starch 22.97% and tannins 2.37%. Phytochemical evaluation revealed the presence of carbohydrate, alkaloids, flavonoids, saponins, tannins and sterol. Thin layer chromatography was carried out with different solvents and the best solvent system was chloroform and methanol in 80:20 ratio and revealed 12 spots with different Rf value under UV light 366λ. Conclusions: The results of the study can serve as a valuable source of information and provide suitable standards for identification of this plant material for future investigations and applications.

  6. Nanomechanical characterization of multilayered thin film structures for digital micromirror devices

    International Nuclear Information System (INIS)

    Wei Guohua; Bhushan, Bharat; Joshua Jacobs, S.

    2004-01-01

    The digital micromirror device (DMD), used for digital projection displays, comprises a surface-micromachined array of up to 2.07 million aluminum micromirrors (14 μm square and 15 μm pitch), which switch forward and backward thousands of times per second using electrostatic attraction. The nanomechanical properties of the thin-film structures used are important to the performance of the DMD. In this paper, the nanomechanical characterization of the single and multilayered thin film structures, which are of interest in DMDs, is carried out. The hardness, Young's modulus and scratch resistance of TiN/Si, SiO 2 /Si, Al alloy/Si, TiN/Al alloy/Si and SiO 2 /TiN/Al alloy/Si thin-film structures were measured using nanoindentation and nanoscratch techniques, respectively. The residual (internal) stresses developed during the thin film growth were estimated by measuring the radius of curvature of the sample before and after deposition. To better understand the nanomechanical properties of these thin film materials, the surface and interface analysis of the samples were conducted using X-ray photoelectron spectroscopy. The nanomechanical properties of these materials are analyzed and the impact of these properties on micromirror performance is discussed

  7. [Variants of anatomical structure of lower-limb veins as a possible cause of the development of primary varicosity].

    Science.gov (United States)

    Vakhitov, M Kh; Bol'shakov, O P

    2011-01-01

    In order to reveal anatomical prerequisites for the development of primary varicose veins we investigated the structure of the venous system on a total of 53 adult human cadaveric lower extremities. Congenital morphological grounds providing the phlebohaemodynemics of the lower limbs are ambiguous in different individual forms. We revealed a total of 18 variants of the structure of deep veins, reflecting various stages of the embryonic development. In 34.1% of cases we saw the forms characteristic of incomplete reduction and unfinished transformation, with 30.2% of cases showing the utmost degree of reduction and transformation. An inadequate outflow along the deep veins conditioned by their anatomical structure is a prerequisite for the development of valvular insufficiency and venous reflux to the superficial veins followed by varicose transformation thereof

  8. Investigation of phase transformation for ferrite–austenite structure in stainless steel thin films

    Energy Technology Data Exchange (ETDEWEB)

    Merakeb, Noureddine [Laboratory of Physical Metallurgy and Property of Materials (LM2PM), Metallurgy and Materials Engineering Department, Badji Mokhtar University, P.O. Box 12, Annaba 23000 (Algeria); Messai, Amel [Laboratoire d' Ingénierie et Sciences des Matériaux Avancés (ISMA), Institut des Sciences et Technologie, Abbès Laghrour University, Khenchela 40000 (Algeria); Ayesh, Ahmad I., E-mail: ayesh@qu.edu.qa [Department of Mathematics, Statistics and Physics, Qatar University, Doha (Qatar)

    2016-05-01

    In this work we report on phase transformation of 304 stainless steel thin films due to heat treatment. Ex-situ annealing was applied for evaporated 304 stainless steel thin films inside an ultra-high vacuum chamber with a pressure of 3 × 10{sup −7} Pa at temperatures of 500 °C and 600 °C. The structure of thin films was studied by X-ray diffraction (XRD) and conversion electron Mössbauer spectroscopy (CEMS) techniques. The results revealed a transformation from α-phase that exhibits a body-centered cubic structure (BCC) to γ-phase that exhibits a face-centered cubic (FCC) due to annealing. In addition, the percentage of γ-phase structure increased with the increase of annealing temperature. Annealing thin films increased the crystal size of both phases (α and γ), however, the increase was nonlinear. The results also showed that phase transformation was produced by recrystallization of α and γ crystals with a temporal evolution at each annealing temperature. The texture degree of thin films was investigated by XRD rocking curve method, while residual stress was evaluated using curvature method. - Highlights: • Stainless steel thin films were fabricated by thermal evaporation on quartz. • Alpha to gamma phase transformation of thin films was investigated. • Annealing of thin films reduces disruption in crystal lattice. • The stress of as-grown thin films was independent on the thin film thickness. • The stress of the thin films was reduced due to annealing.

  9. Silicon-integrated thin-film structure for electro-optic applications

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick Joseph

    2000-01-01

    A crystalline thin-film structure suited for use in any of an number of electro-optic applications, such as a phase modulator or a component of an interferometer, includes a semiconductor substrate of silicon and a ferroelectric, optically-clear thin film of the perovskite BaTiO.sub.3 overlying the surface of the silicon substrate. The BaTiO.sub.3 thin film is characterized in that substantially all of the dipole moments associated with the ferroelectric film are arranged substantially parallel to the surface of the substrate to enhance the electro-optic qualities of the film.

  10. Analysis of the priority of anatomic structures according to the diagnostic task in cone-beam computed tomographic images

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Jin Woo [Dept. of Oral and Maxillofacial Radiology, Dankook University College of Dentistry, Chunan (Korea, Republic of)

    2016-12-15

    This study was designed to evaluate differences in the required visibility of anatomic structures according to the diagnostic tasks of implant planning and periapical diagnosis. Images of a real skull phantom were acquired under 24 combinations of different exposure conditions in a cone-beam computed tomography scanner (60, 70, 80, 90, 100, and 110 kV and 4, 6, 8, and 10 mA). Five radiologists evaluated the visibility of anatomic structures and the image quality for diagnostic tasks using a 6-point scale. The visibility of the periodontal ligament space showed the closest association with the ability to use an image for periapical diagnosis in both jaws. The visibility of the sinus floor and canal wall showed the closest association with the ability to use an image for implant planning. Variations in tube voltage were associated with significant differences in image quality for all diagnostic tasks. However, tube current did not show significant associations with the ability to use an image for implant planning. The required visibility of anatomic structures varied depending on the diagnostic task. Tube voltage was a more important exposure parameter for image quality than tube current. Different settings should be used for optimization and image quality evaluation depending on the diagnostic task.

  11. Estimation of the 3D positioning of anatomic structures from radiographic projection and volume knowledge

    Energy Technology Data Exchange (ETDEWEB)

    Bifulco, P; Cesarelli, M; Roccasalva Firenze, M; Verso, E; Sansone, M; Bracale, M [University of Naples, Federico II, Electronic Engineering Department, Bioengineering Unit, Via Claudio, 21 - 80125 Naples (Italy)

    1999-12-31

    The aim of this study is to develop a method to estimate the 3D positioning of an anatomic structure using the knowledge of its volume (provided by CT or MRI) combined with a single radiographic projection. This method could be applied in stereotactic surgery or in the study of 3D body joints kinematics. The knowledge of the 3D anatomical structure, available from CT (or in future MRI) is used to estimate the orientation of the projection that better match the actual 2D available projection. For this purpose it was necessary to develop an algorithm to simulate the radiographic projections. The radiographic image formation process has been simulated utilizing the geometrical characteristics of a real radiographic device and the volumetric anatomical data of the patient, obtained by 3D diagnostic CT images. The position of the patient volume respect to the radiological device is estimated comparing the actual radiographic projection with those simulated, maximising a similarity index. To assess the estimation, the 3D positioning of a segmented vertebra has been used as a test volume. The assessment has been carried out only by means of simulation. Estimation errors have been statistically evaluated. Conditions of mispositioning and noise have been also considered. The results relative to the simulation show the feasibility of the method. From the analysis of the errors emerges that the searching procedure results robust respect to the addition of white Gaussian noise. (authors) 13 fers., 4 figs., 1 tabs.

  12. Estimation of the 3D positioning of anatomic structures from radiographic projection and volume knowledge

    International Nuclear Information System (INIS)

    Bifulco, P.; Cesarelli, M.; Roccasalva Firenze, M.; Verso, E.; Sansone, M.; Bracale, M.

    1998-01-01

    The aim of this study is to develop a method to estimate the 3D positioning of an anatomic structure using the knowledge of its volume (provided by CT or MRI) combined with a single radiographic projection. This method could be applied in stereotactic surgery or in the study of 3D body joints kinematics. The knowledge of the 3D anatomical structure, available from CT (or in future MRI) is used to estimate the orientation of the projection that better match the actual 2D available projection. For this purpose it was necessary to develop an algorithm to simulate the radiographic projections. The radiographic image formation process has been simulated utilizing the geometrical characteristics of a real radiographic device and the volumetric anatomical data of the patient, obtained by 3D diagnostic CT images. The position of the patient volume respect to the radiological device is estimated comparing the actual radiographic projection with those simulated, maximising a similarity index. To assess the estimation, the 3D positioning of a segmented vertebra has been used as a test volume. The assessment has been carried out only by means of simulation. Estimation errors have been statistically evaluated. Conditions of mispositioning and noise have been also considered. The results relative to the simulation show the feasibility of the method. From the analysis of the errors emerges that the searching procedure results robust respect to the addition of white Gaussian noise. (authors)

  13. Anatomical eponyms - unloved names in medical terminology.

    Science.gov (United States)

    Burdan, F; Dworzański, W; Cendrowska-Pinkosz, M; Burdan, M; Dworzańska, A

    2016-01-01

    Uniform international terminology is a fundamental issue of medicine. Names of various organs or structures have developed since early human history. The first proper anatomical books were written by Hippocrates, Aristotle and Galen. For this reason the modern terms originated from Latin or Greek. In a modern time the terminology was improved in particular by Vasalius, Fabricius and Harvey. Presently each known structure has internationally approved term that is explained in anatomical or histological terminology. However, some elements received eponyms, terms that incorporate the surname of the people that usually describe them for the first time or studied them (e.g., circle of Willis, follicle of Graff, fossa of Sylvious, foramen of Monro, Adamkiewicz artery). Literature and historical hero also influenced medical vocabulary (e.g. Achilles tendon and Atlas). According to various scientists, all the eponyms bring colour to medicine, embed medical traditions and culture to our history but lack accuracy, lead of confusion, and hamper scientific discussion. The current article presents a wide list of the anatomical eponyms with their proper anatomical term or description according to international anatomical terminology. However, since different eponyms are used in various countries, the list could be expanded.

  14. Early fetal anatomical sonography.

    LENUS (Irish Health Repository)

    Donnelly, Jennifer C

    2012-10-01

    Over the past decade, prenatal screening and diagnosis has moved from the second into the first trimester, with aneuploidy screening becoming both feasible and effective. With vast improvements in ultrasound technology, sonologists can now image the fetus in greater detail at all gestational ages. In the hands of experienced sonographers, anatomic surveys between 11 and 14 weeks can be carried out with good visualisation rates of many structures. It is important to be familiar with the normal development of the embryo and fetus, and to be aware of the major anatomical landmarks whose absence or presence may be deemed normal or abnormal depending on the gestational age. Some structural abnormalities will nearly always be detected, some will never be and some are potentially detectable depending on a number of factors.

  15. Structural characterization of the nickel thin film deposited by glad technique

    Directory of Open Access Journals (Sweden)

    Potočnik J.

    2013-01-01

    Full Text Available In this work, a columnar structure of nickel thin film has been obtained using an advanced deposition technique known as Glancing Angle Deposition. Nickel thin film was deposited on glass sample at the constant emission current of 100 mA. Glass sample was positioned 15 degrees with respect to the nickel vapor flux. The obtained nickel thin film was characterized by Force Modulation Atomic Force Microscopy and by Scanning Electron Microscopy. Analysis indicated that the formation of the columnar structure occurred at the film thickness of 1 μm, which was achieved for the deposition time of 3 hours. [Projekat Ministarstva nauke Republike Srbije, br. III45005

  16. Thin-film magneto-impedance structures with very large sensitivity

    Energy Technology Data Exchange (ETDEWEB)

    García-Arribas, A., E-mail: alf@we.lc.ehu.es [Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), Leioa (Spain); BCMaterials, Universidad del País Vasco (UPV/EHU), Leioa (Spain); Fernández, E. [BCMaterials, Universidad del País Vasco (UPV/EHU), Leioa (Spain); Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA (United States); Svalov, A. [Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), Leioa (Spain); Kurlyandskaya, G.V.; Barandiaran, J.M. [Departamento de Electricidad y Electrónica, Universidad del País Vasco (UPV/EHU), Leioa (Spain); BCMaterials, Universidad del País Vasco (UPV/EHU), Leioa (Spain)

    2016-02-15

    Thin film-based Magneto-Impedance (MI) structures are well suited for developing highly sensitive magnetic microsensors, which can be directly integrated into microelectronic circuits. Permalloy (Py) based structures benefit from well-established preparation procedures and enhanced structural stability over amorphous based sensors. In this work we use Finite Element Method calculations to complement our previous studies on high permeability Py multilayers, in order to determine the combination of magnetic and non-magnetic layers that maximizes the MI performance in sandwiched structures. The results indicate that optimum behavior is expected when the thickness of the non-magnetic layer equals the magnetic ones. The study is performed with an open flux configuration (Py not enclosing the central non-magnetic conductor), which permits the fabrication of the complete stack of layers in a single deposition process. On the outcome of that analysis, samples with a sandwiched multilayer structure defined as [Py(100 nm)/Ti(6 nm)]{sub 4}/Cu(400 nm)/[Ti(6 nm)/Py(100 nm)]{sub 4} have been prepared by magnetron sputtering and photolithography, having different dimensions. They were magnetically characterized by magneto-optical Kerr effect, displaying a well-defined transversal anisotropy, and the MI was measured in a network analyzer using a microstrip test-fixture. The measured MI ratio, defined as (Z-Zmin)/Zmin×100, reaches extraordinary values of 350%, while the sensitivity, calculated as the field derivative of the MI ratio, goes up to 300%/Oe (27 kΩ/T in absolute units). The MI ratio is lower than the best reported previously for amorphous CoSiB/Ag/CoSiB thin-film samples with closed-flux structure, but the sensitivity, which is the key parameter for the performance of sensors, is six times larger. These figures can be compared favorably with the ones obtained in wire-based samples, and definitely opens the way to incorporate thin-film structures in low-field MI

  17. A statistical-thermodynamic model for ordering phenomena in thin film intermetallic structures

    International Nuclear Information System (INIS)

    Semenova, Olga; Krachler, Regina

    2008-01-01

    Ordering phenomena in bcc (110) binary thin film intermetallics are studied by a statistical-thermodynamic model. The system is modeled by an Ising approach that includes only nearest-neighbor chemical interactions and is solved in a mean-field approximation. Vacancies and anti-structure atoms are considered on both sublattices. The model describes long-range ordering and simultaneously short-range ordering in the thin film. It is applied to NiAl thin films with B2 structure. Vacancy concentrations, thermodynamic activity profiles and the virtual critical temperature of order-disorder as a function of film composition and thickness are presented. The results point to an important role of vacancies in near-stoichiometric and Ni-rich NiAl thin films

  18. Materials science in microelectronics II the effects of structure on properties in thin films

    CERN Document Server

    Machlin, Eugene

    2005-01-01

    The subject matter of thin-films - which play a key role in microelectronics - divides naturally into two headings: the processing / structure relationship, and the structure / properties relationship. Part II of 'Materials Science in Microelectronics' focuses on the latter of these relationships, examining the effect of structure on the following: Electrical properties Magnetic properties Optical properties Mechanical properties Mass transport properties Interface and junction properties Defects and properties Captures the importance of thin films to microelectronic development Examines the cause / effect relationship of structure on thin film properties.

  19. Impact effects in thin-walled structures

    International Nuclear Information System (INIS)

    Zukas, J.A.; Gaskill, B.

    1996-01-01

    A key parameter in the design of protective structures is the critical impact velocity, also known as the ballistic limit. This is the velocity below which a striker will fail to penetrate a barrier or some protective device. For strikers with regular shapes, such as cylinders (long and short), spheres and cones, analytical and empirical formulations for the determination of a ballistic limit exist at impact velocities ranging from 250 m/s to 6 km/s or higher. For non-standard shapes, two- and three-dimensional wave propagation codes (hydrocodes) can be valuable adjuncts to experiments in ballistic limit determinations. This is illustrated with the help of the ZeuS code in determining the ballistic limit of a short, tubular projectile striking a thin aluminum barrier and contrasting it to the value of the ballistic limit of a spherical projectile of equal mass against the same target. Several interesting features of the debris cloud generated by a tubular projectile striking a Whipple shield at hypervelocity are also pointed out. The paper concludes with a consideration of hydrodynamic ram effects in fluid-filled thin-walled structures. Where possible, comparisons are made of computed results with experimental data

  20. Neurovascular structures of the mandibular angle and condyle: a comprehensive anatomical review.

    Science.gov (United States)

    Yang, Hun-Mu; Won, Sung-Yoon; Kim, Hee-Jin; Hu, Kyung-Seok

    2015-11-01

    Various surgical interventions including esthetic surgery, salivary gland excision, and open reduction of fracture have been performed in the area around the mandibular angle and condyle. This study aimed to comprehensively review the anatomy of the neurovascular structures on the angle and condyle with recent anatomic and clinical research. We provide detailed information about the branching and distributing patterns of the neurovascular structures at the mandibular angle and condyle, with reported data of measurements and proportions from previous anatomical and clinical research. Our report should serve to help practitioners gain a better understanding of the area in order or reduce potential complications during local procedures. Reckless manipulation during mandibular angle reduction could mutilate arterial branches, not only from the facial artery, but also from the external carotid artery. The transverse facial artery and superficial temporal artery could be damaged during approach and incision in the condylar area. The marginal mandibular branch of the facial nerve can be easily damaged during submandibular gland excision or facial rejuvenation treatment. The main trunk of the facial nerve and its upper and lower distinct divisions have been damaged during parotidectomy, rhytidectomy, and open reductions of condylar fractures. By revisiting the information in the present study, surgeons will be able to more accurately prevent procedure-related complications, such as iatrogenic vascular accidents on the mandibular angle and condyle, complete and partial facial palsy, gustatory sweating (Frey syndrome), and traumatic neuroma after parotidectomy.

  1. Thin-walled reinforcement lattice structure for hollow CMC buckets

    Science.gov (United States)

    de Diego, Peter

    2017-06-27

    A hollow ceramic matrix composite (CMC) turbine bucket with an internal reinforcement lattice structure has improved vibration properties and stiffness. The lattice structure is formed of thin-walled plies made of CMC. The wall structures are arranged and located according to high stress areas within the hollow bucket. After the melt infiltration process, the mandrels melt away, leaving the wall structure to become the internal lattice reinforcement structure of the bucket.

  2. Anatomical and palynological characteristics of Salvia willeana ...

    African Journals Online (AJOL)

    In this study, anatomical and palynological features of the roots, stems, petiole and leaves of Salvia willeana (Holmboe) Hedge and Salvia veneris Hedge, Salvia species endemic to Cyprus, were investigated. In the anatomical characteristics of stem structures, it was found that the chlorenchyma composed of 6 or 7 rows of ...

  3. Chemical synthesis of porous web-structured CdS thin films for photosensor applications

    Energy Technology Data Exchange (ETDEWEB)

    Gosavi, S.R., E-mail: srgosavi.taloda@gmail.com [C. H. C. Arts, S. G. P. Commerce, and B. B. J. P. Science College, Taloda, Dist., Nandurbar 425413, M. S. (India); Nikam, C.P. [B.S.S.P.M.S. Arts, Commerce and Science College, Songir, Dist., Dhule 424309, M. S. (India); Shelke, A.R.; Patil, A.M. [Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India); Ryu, S.-W. [Department of Physics, Chonnam National University, Gwangju 500-757 (Korea, Republic of); Bhat, J.S. [Department of Physics, Karnatak University, Dharwad 580003 (India); Deshpande, N.G., E-mail: nicedeshpande@yahoo.co.in [Department of Physics, Shivaji University, Kolhapur 416004, M.S. (India)

    2015-06-15

    The photo-activity of chemically deposited cadmium sulphide (CdS) thin film has been studied. The simple chemical route nucleates the CdS films with size up to the mean free path of the electron. Growth Kinematics of crystalline hexagonal CdS phase in the thin film form was monitored using X-ray diffraction. The time limitation set for the formation of the amorphous/nano-crystalline material is 40 and 60 min. Thereafter enhancement of the crystalline orientation along the desired plane was identified. Web-like porous structured surface morphology of CdS thin film over the entire area is observed. With decrease in synthesis time, increase of band gap energy i.e., a blue spectral shift was seen. The activation energy of CdS thin film at low and high temperature region was examined. It is considered that this activation energy corresponds to the donor levels associated with shallow traps or surface states of CdS thin film. The photo-electrochemical performance of CdS thin films in polysulphide electrolyte showed diode-like characteristics. Exposure of light on the CdS electrode increases the photocurrent. This suggests the possibility of production of free carriers via excited ions and also the light harvesting mechanism due to porous web-structured morphology. These studies hint that the obtained CdS films can work as a photosensor. - Highlights: • Photoactivity of chemically synthesized cadmium sulphide (CdS) thin films was studied. • Web-like porous structured surface morphology of CdS thin film over the entire area was observed. • Blue spectral shift with lowering of the synthesis time suggests films can act as a window layer over the absorber layer. • Porous web-structured CdS thin films can be useful in light harvesting.

  4. Chemical synthesis of porous web-structured CdS thin films for photosensor applications

    International Nuclear Information System (INIS)

    Gosavi, S.R.; Nikam, C.P.; Shelke, A.R.; Patil, A.M.; Ryu, S.-W.; Bhat, J.S.; Deshpande, N.G.

    2015-01-01

    The photo-activity of chemically deposited cadmium sulphide (CdS) thin film has been studied. The simple chemical route nucleates the CdS films with size up to the mean free path of the electron. Growth Kinematics of crystalline hexagonal CdS phase in the thin film form was monitored using X-ray diffraction. The time limitation set for the formation of the amorphous/nano-crystalline material is 40 and 60 min. Thereafter enhancement of the crystalline orientation along the desired plane was identified. Web-like porous structured surface morphology of CdS thin film over the entire area is observed. With decrease in synthesis time, increase of band gap energy i.e., a blue spectral shift was seen. The activation energy of CdS thin film at low and high temperature region was examined. It is considered that this activation energy corresponds to the donor levels associated with shallow traps or surface states of CdS thin film. The photo-electrochemical performance of CdS thin films in polysulphide electrolyte showed diode-like characteristics. Exposure of light on the CdS electrode increases the photocurrent. This suggests the possibility of production of free carriers via excited ions and also the light harvesting mechanism due to porous web-structured morphology. These studies hint that the obtained CdS films can work as a photosensor. - Highlights: • Photoactivity of chemically synthesized cadmium sulphide (CdS) thin films was studied. • Web-like porous structured surface morphology of CdS thin film over the entire area was observed. • Blue spectral shift with lowering of the synthesis time suggests films can act as a window layer over the absorber layer. • Porous web-structured CdS thin films can be useful in light harvesting

  5. [Cellular subcutaneous tissue. Anatomic observations].

    Science.gov (United States)

    Marquart-Elbaz, C; Varnaison, E; Sick, H; Grosshans, E; Cribier, B

    2001-11-01

    We showed in a companion paper that the definition of the French "subcutaneous cellular tissue" considerably varied from the 18th to the end of the 20th centuries and has not yet reached a consensus. To address the anatomic reality of this "subcutaneous cellular tissue", we investigated the anatomic structures underlying the fat tissue in normal human skin. Sixty specimens were excised from the surface to the deep structures (bone, muscle, cartilage) on different body sites of 3 cadavers from the Institut d'Anatomie Normale de Strasbourg. Samples were paraffin-embedded, stained and analysed with a binocular microscope taking x 1 photographs. Specimens were also excised and fixed after subcutaneous injection of Indian ink, after mechanic tissue splitting and after performing artificial skin folds. The aspects of the deep parts of the skin greatly varied according to their anatomic localisation. Below the adipose tissue, we often found a lamellar fibrous layer which extended from the interlobular septa and contained horizontally distributed fat cells. No specific tissue below the hypodermis was observed. Artificial skin folds concerned either exclusively the dermis, when they were superficial or included the hypodermis, but no specific structure was apparent in the center of the fold. India ink diffused to the adipose tissue, mainly along the septa, but did not localise in a specific subcutaneous compartment. This study shows that the histologic aspects of the deep part of the skin depend mainly on the anatomic localisation. Skin is composed of epidermis, dermis and hypodermis and thus the hypodermis can not be considered as being "subcutaneous". A difficult to individualise, fibrous lamellar structure in continuity with the interlobular septa is often found under the fat lobules. This structure is a cleavage line, as is always the case with loose connective tissues, but belongs to the hypodermis (i.e. fat tissue). No specific tissue nor any virtual space was

  6. Thin film structures and phase stability

    International Nuclear Information System (INIS)

    Clemens, B.M.; Johnson, W.L.

    1990-01-01

    This was a two day symposium, with invited and contributed papers as well as an evening poster session. The first day concentrated on solid state reactions with invited talks by Lindsay Greer from the University of Cambridge, King Tu from IBM Yorktown Heights, and Carl Thompson from MIT. Professor Greer observed that the diffusion of Zr is 10 6 times slower than that of Ni in amorphous NiZr, confirming that Ni is the mobile species in solid state amorphization. King Tu explained the formation of metastable phases in this film diffusion couples by the concept of maximum rate of free energy change. Carl Thompson discussed the formation of amorphous phases in metal silicon systems, and discussed a two stage nucleation and growth process. The contributed papers also generated discussion on topics such as phase segregation, amorphous silicide formation, room temperature oxidation of silicon, and nucleation during ion beam irradiation. There was a lively poster session on Monday evening with papers on a wide variety of topics covering the general area of thin film science. The second day had sessions Epitaxy and Multilayer Structure I and II, with the morning focussing on epitaxial and heteroepitaxial growth of thin films. Robin Farrow of IBM Almaden led off with an invited talk where he reported on some remarkable success he and his co-workers have had in growing single crystal epitaxial thin films and superlattices of silver, iron, cobalt and platinum on GaAs. This was followed by several talks on epitaxial growth and characterization. The afternoon focused on interfaces and structure of multilayered materials. A session on possible stress origins of the supermodulus effect was highlighted by lively interaction from the audience. Most of the papers presented at the symposium are presented in this book

  7. Ultra-thin ZnSe: Anisotropic and flexible crystal structure

    Energy Technology Data Exchange (ETDEWEB)

    Bacaksiz, C., E-mail: cihanbacaksiz@iyte.edu.tr [Department of Physics, Izmir Institute of Technology, 35430 Izmir (Turkey); Senger, R.T. [Department of Physics, Izmir Institute of Technology, 35430 Izmir (Turkey); Sahin, H. [Department of Photonics, Izmir Institute of Technology, 35430 Izmir (Turkey)

    2017-07-01

    Highlights: • Ultra-thin ZnSe is dynamically stable. • Ultra-thin ZnSe is electronically direct-gap semiconductor. • Ultra-thin ZnSe is ultra-flexible. • Ultra-thin ZnSe is mechanically in-plane anisotropic. - Abstract: By performing density functional theory-based calculations, we investigate the structural, electronic, and mechanical properties of the thinnest ever ZnSe crystal . The vibrational spectrum analysis reveals that the monolayer ZnSe is dynamically stable and has flexible nature with its soft phonon modes. In addition, a direct electronic band gap is found at the gamma point for the monolayer structure of ZnSe. We also elucidate that the monolayer ZnSe has angle dependent in-plane elastic parameters. In particular, the in-plane stiffness values are found to be 2.07 and 6.89 N/m for the arm-chair and zig-zag directions, respectively. The angle dependency is also valid for the Poisson ratio of the monolayer ZnSe. More significantly, the in-plane stiffness of the monolayer ZnSe is the one-tenth of Young modulus of bulk zb-ZnSe which indicates that the monolayer ZnSe is a quite flexible single layer crystal. With its flexible nature and in-plane anisotropic mechanical properties, the monolayer ZnSe is a good candidate for nanoscale mechanical applications.

  8. Ultra-thin ZnSe: Anisotropic and flexible crystal structure

    International Nuclear Information System (INIS)

    Bacaksiz, C.; Senger, R.T.; Sahin, H.

    2017-01-01

    Highlights: • Ultra-thin ZnSe is dynamically stable. • Ultra-thin ZnSe is electronically direct-gap semiconductor. • Ultra-thin ZnSe is ultra-flexible. • Ultra-thin ZnSe is mechanically in-plane anisotropic. - Abstract: By performing density functional theory-based calculations, we investigate the structural, electronic, and mechanical properties of the thinnest ever ZnSe crystal . The vibrational spectrum analysis reveals that the monolayer ZnSe is dynamically stable and has flexible nature with its soft phonon modes. In addition, a direct electronic band gap is found at the gamma point for the monolayer structure of ZnSe. We also elucidate that the monolayer ZnSe has angle dependent in-plane elastic parameters. In particular, the in-plane stiffness values are found to be 2.07 and 6.89 N/m for the arm-chair and zig-zag directions, respectively. The angle dependency is also valid for the Poisson ratio of the monolayer ZnSe. More significantly, the in-plane stiffness of the monolayer ZnSe is the one-tenth of Young modulus of bulk zb-ZnSe which indicates that the monolayer ZnSe is a quite flexible single layer crystal. With its flexible nature and in-plane anisotropic mechanical properties, the monolayer ZnSe is a good candidate for nanoscale mechanical applications.

  9. Structures and Elastic Moduli of Polymer Nanocomposite Thin Films

    Science.gov (United States)

    Yuan, Hongyi; Karim, Alamgir; University of Akron Team

    2014-03-01

    Polymeric thin films generally possess unique mechanical and thermal properties due to confinement. In this study we investigated structures and elastic moduli of polymer nanocomposite thin films, which can potentially find wide applications in diverse areas such as in coating, permeation and separation. Conventional thermoplastics (PS, PMMA) and biopolymers (PLA, PCL) were chosen as polymer matrices. Various types of nanoparticles were used including nanoclay, fullerene and functionalized inorganic particles. Samples were prepared by solvent-mixing followed by spin-coating or flow-coating. Film structures were characterized using X-ray scattering and transmission electron microscopy. Elastic moduli were measured by strain-induced elastic buckling instability for mechanical measurements (SIEBIMM), and a strengthening effect was found in certain systems due to strong interaction between polymers and nanoparticles. The effects of polymer structure, nanoparticle addition and film thickness on elastic modulus will be discussed and compared with bulk materials.

  10. Structural and optical investigations of sol–gel derived lithium titanate thin films

    International Nuclear Information System (INIS)

    Łapiński, M.; Kościelska, B.; Sadowski, W.

    2012-01-01

    Highlights: ► Lithium titanate thin films were deposited on glass substrates by sol–gel method. ► After annealing at 550 °C samples had lithium titanate spinel structure. ► Above 80 h of annealing mixture of lithium titanate and titanium oxides was appeared. ► Optical transmittance decreased with increasing of annealing time. - Abstract: In this paper structural and optical studies of lithium titanate (LTO) thin films are presented. Nanocrystalline thin films with 800 nm thickness were prepared by sol–gel method. To examine the influence of the annealing time on as-prepared films crystallization, the coatings were heated at 550 °C for 10, 20 and 80 h. Structure of manufactured thin films was investigated using X-ray diffraction (XRD). The most visible lithium titanate phase was obtained after 20 h annealing. Increasing of annealing time over 20 h revealed appearance of titanium oxides phase. On the basis of transmission characteristic optical properties were calculated. It was found that transmission through the thin films was reduced and position of the fundamental absorption edge was shifted toward a longer wavelength with increasing of annealing time. The optical band gap was calculated for direct allowed and indirect allowed transitions from optical absorption spectra.

  11. Structural and biocompatible characterization of TiC/a:C nanocomposite thin films

    International Nuclear Information System (INIS)

    Balázsi, K.; Vandrovcová, M.; Bačáková, L.; Balázsi, Cs.

    2013-01-01

    In this work, sputtered TiC/amorphous C thin films have been developed in order to be applied as potential barrier coating for interfering of Ti ions from pure Ti or Ti alloy implants. Our experiments were based on magnetron sputtering method, because the vacuum deposition provides great flexibility for manipulating material chemistry and structure, leading to films and coatings with special properties. The films have been deposited on silicon (001) substrates with 300 nm thick oxidized silicon sublayer at 200 °C deposition temperature as model substrate. Transmission electron microscopy has been used for structural investigations. Thin films consisted of ∼ 20 nm TiC columnar crystals embedded by 5 nm thin amorphous carbon matrix. MG63 osteoblast cells have been applied for in vitro study of TiC nanocomposites. The cell culture tests give strong evidence of thin films biocompatibility. Highlights: ► The main goal of this work is the relatively easy preparation of nanocomposite TiC thin films by dc magnetron sputtering. ► TEM and HREM were applied for structural characterization of columnar TiC nanocrystals and amorphous carbon matrix. ► The biocompatibility of films was showed by MG63 human osteoblast like cells during 1, 3 and 7 days seeding

  12. Crystal structure of red lead titanate thin films

    International Nuclear Information System (INIS)

    Bursill, L.A.; Peng, J.L.; Jiang, B.; Li, X.

    1998-01-01

    Orange-red lead titanate thin films are examined by high-resolution transmission electron microscopy and diffraction. It is remarkable that the structure is based on that of tetragonal-tungsten-bronze (TTB) rather than perovskite-type. The chemical basis for this result is examined. It is deduced that the TTB structure is stabilized by inclusion of hydroxyl ions during synthesis by a sol-gel route involving hydrolysis of n-Butyl titanate

  13. Sparing functional anatomical structures during intensity-modulated radiotherapy: an old problem, a new solution.

    Science.gov (United States)

    Tan, Wenyong; Han, Guang; Wei, Shaozhong; Hu, Desheng

    2014-08-01

    During intensity-modulated radiotherapy, an organ is usually assumed to be functionally homogeneous and, generally, its anatomical and spatial heterogeneity with respect to radiation response are not taken into consideration. However, advances in imaging and radiation techniques as well as an improved understanding of the radiobiological response of organs have raised the possibility of sparing the critical functional structures within various organs at risk during intensity-modulated radiotherapy. Here, we discuss these structures, which include the critical brain structure, or neural nuclei, and the nerve fiber tracts in the CNS, head and neck structures related to radiation-induced salivary and swallowing dysfunction, and functional structures in the heart and lung. We suggest that these structures can be used as potential surrogate organs at risk in order to minimize their radiation dose and/or irradiated volume without compromising the dose coverage of the target volume during radiation treatment.

  14. Study of Local and Distortional Stability of Thin-Walled Structures

    Directory of Open Access Journals (Sweden)

    Imene Mahi

    2018-01-01

    Full Text Available Thin-walled structures have an increasingly large and growing field of application in the engineering sector, the goal behind using this type of structure is efficiency in terms of resistance and cost, however the stability of its components (the thin walls remains the first aspect of the behavior, and a primordial factor in the design process. The hot rolled sections are known by a consequent post-buckling reserve, cold-formed steel sections which are thin-walled elements also benefit, in this case, it seems essential to take into account the favorable effects of this reserve in to the verification procedure of the resistance with respect to the three modes of failures of this type of structure. The design method that takes into account this reserve of resistance is inevitably the effective width method. The direct strength method has been developed to improve the speed and efficiency of the design of thin-walled profiles. The latter mainly uses the buckling loads (for Local, Distortional and Global mode obtained from a numerical analysis and the resistance curves calibrated experimentally to predict the ultimate load of the profile. Among those, the behavior of a set of Cshaped profiles (highly industrialized is studied, this type of section is assumed to be very prone to modes of local and distortional instability. The outcome of this investigation revealed very relevant conclusions both scientifically and practically.

  15. Study on effect of mean stress on fatigue life prediction of thin film structure

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Myung Soo [Ahtti Co., Seongnam (Korea, Republic of); Park, Jun Hyu [Tongmyong University, Busan (Korea, Republic of); Kim, Jung Yup [Korea Institute of Machinery and Materials, Daejeon (Korea, Republic of)

    2016-04-15

    This paper describes the effect of mean stress on fatigue life prediction of structure made with thin film. It is well known that the mean stress influences fatigue life prediction of mechanical structure. We investigated a reasonable method for considering mean stress when fatigue strength assessment of micro structure of thin film should be performed. Fatigue tests of smooth specimen of beryllium-copper (BeCu) thin film were performed in ambient air at R = 0.1 with 5 Hz. A micro probe was designed and made with BeCu thin film by the precision press process. Fatigue tests of micro structure were performed with 5 Hz frequency, in ambient air to verify the fatigue life predicted by computer simulation through FE analysis. The fatigue life predicted by the Sa -N curve modified by Goodman method with principal stress through FE analysis shows a more reasonable result than other methods.

  16. Study on effect of mean stress on fatigue life prediction of thin film structure

    International Nuclear Information System (INIS)

    Shin, Myung Soo; Park, Jun Hyu; Kim, Jung Yup

    2016-01-01

    This paper describes the effect of mean stress on fatigue life prediction of structure made with thin film. It is well known that the mean stress influences fatigue life prediction of mechanical structure. We investigated a reasonable method for considering mean stress when fatigue strength assessment of micro structure of thin film should be performed. Fatigue tests of smooth specimen of beryllium-copper (BeCu) thin film were performed in ambient air at R = 0.1 with 5 Hz. A micro probe was designed and made with BeCu thin film by the precision press process. Fatigue tests of micro structure were performed with 5 Hz frequency, in ambient air to verify the fatigue life predicted by computer simulation through FE analysis. The fatigue life predicted by the Sa -N curve modified by Goodman method with principal stress through FE analysis shows a more reasonable result than other methods

  17. Measurement of anatomical structure of jaw bone trabecula with micro-CT and its accuracy evaluation

    International Nuclear Information System (INIS)

    Jin Guangchun; Zhang Xiaoyan; Jiang Ling; Li Xianglin; Zhang Di; Li Weixing; Jin Xizhen; Jin Dongchun

    2011-01-01

    Objective: To measure the anatomic structures of the jaw and to discuss the accuracy of the method. Methods: The mandibular specimens were divided into ankle condylar group (3 specimens, regular trabecular architecture and mandibular body group (5 specimens, irregular trabecular trabecular architecture). Fifteen volumes of interests (VOI) were created in each group and the total of thirty were measured. The mean value and standard deviation of each parameter at each reconstruction voxel size were calculated. Repeated ANOVA test was used to determine whether the significant differences in the values existed between each parameter. Results: The structure model index (SMI) value in mandibular body group had significant difference (P<0.05) at all reconstruction voxel sizes compared with 18 μm group; but in condyle group, the reconstruction voxel size of 36 μm was not significant (P>0.05). The differences of trabecular thickness (Tb. Th), trabecular number (Tb. N) and trabecular separation (Tb. Sp) values between condyle and mandibular body groups were significant at all reconstruction voxel sizes (P<0.05). In condyle group, except for Tb. Th, Tb. N and Tb. Sp, the most parameter values were not significant at reconstruction pixel size of 36μm. In the mandible body group, the differences of all parameter values between different pixel sizes were significant. Conclusion: Micro-CT can reflect the anatomical changes of bone trabecula structure. (authors)

  18. An anatomical and histological study of the structures surrounding the proximal attachment of the hamstring muscles.

    Science.gov (United States)

    Pérez-Bellmunt, Albert; Miguel-Pérez, Maribel; Brugué, Marc Blasi; Cabús, Juan Blasi; Casals, Martí; Martinoli, Carlo; Kuisma, Raija

    2015-06-01

    The proximal attachment of hamstring muscles has a very high incidence of injuries due to a wide number of factors and its morphology may be one of the underlying factors as scientific literature points out. The connective tissue component of the attachment of hamstring muscles is not well known. For this reason the aim of this study is to describe the anatomy and histology surrounding the proximal attachment of the hamstring muscles (PAHM) and its direct anatomic relations. Forty-eight cryopreserved lower limbs have sequentially been studied by means of dissection, anatomical sections and histology. All specimens studied presented an annular connective tissue structure that resembles a retinaculum, which covers and adapts to the attachment of hamstring muscles on the ischial tuberosity. The results show how this retinaculum is continuous with the long head of biceps femoris muscle, however there is a layer of loose connective tissue between the retinaculum and the semitendinosus muscle. Furthermore, this structure receives expansions of the anterior epimysium of the gluteus maximus muscle (GIM). Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. The structural and optical characterizations of tetraphenylporphyrin thin films

    Energy Technology Data Exchange (ETDEWEB)

    Makhlouf, M.M., E-mail: m_makhlof@hotmail.com [Physics Department, Faculty of Applied Medical Science at Turabah branch, Taif University, Turabah, 21995 (Saudi Arabia); Department of Physics, Faculty of Science at New Damietta, Damietta University, New Damietta 34517 (Egypt); El-Denglawey, A. [Physics Department, Faculty of Applied Medical Science at Turabah branch, Taif University, Turabah, 21995 (Saudi Arabia); Physics Department, Faculty of Science, South Valley University, Qena 83523 (Egypt); Zeyada, H.M. [Department of Physics, Faculty of Science at New Damietta, Damietta University, New Damietta 34517 (Egypt); El-Nahass, M.M. [Physics Department, Faculty of Education, Ain Shams University, Cairo (Egypt)

    2014-03-15

    X-rays diffraction and scanning electron microscope were used to investigate the structural properties of tetraphenylporphyrin, TPP, which is polycrystalline in a synthesized condition. It turns to amorphous structure upon thermal deposition. Annealing temperature ranging from 295 to 473 K does not influence the amorphous structure of films. The optical properties of TPP were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence in the wavelength range of 200–2200 nm. The absorption spectra were recorded in UV–visible region of spectra for the as-deposited and annealed samples show different absorption bands, namely four bands labeled as Q-band in visible region of spectra and a more intense band termed as the Soret band in near UV region of spectra. The Soret band shows its splitting (Davydov splitting). Two other bands labeled N and M appear in UV region. The film thickness has no influence on optical properties of films while annealing temperatures have a slight influence on optical properties of TPP films. The type of optical transition in as deposited and annealed conditions of films was found to be indirect allowed band-gap. Both fundamental and onset energy gap decreases upon annealing. -- Highlights: • Tetraphenylporphyrin (TPP) is polycrystalline in powder form, while the as-deposited and annealed TPP thin films have amorphous structure. • The absorption spectra of TPP in UV–visible region consists of Q-bands, Soret band and two other bands labeled N and M. • The optical parameters of TPP thin film were measured. • Thermal annealing influences optical properties of TPP thin films.

  20. The structural and optical characterizations of tetraphenylporphyrin thin films

    International Nuclear Information System (INIS)

    Makhlouf, M.M.; El-Denglawey, A.; Zeyada, H.M.; El-Nahass, M.M.

    2014-01-01

    X-rays diffraction and scanning electron microscope were used to investigate the structural properties of tetraphenylporphyrin, TPP, which is polycrystalline in a synthesized condition. It turns to amorphous structure upon thermal deposition. Annealing temperature ranging from 295 to 473 K does not influence the amorphous structure of films. The optical properties of TPP were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence in the wavelength range of 200–2200 nm. The absorption spectra were recorded in UV–visible region of spectra for the as-deposited and annealed samples show different absorption bands, namely four bands labeled as Q-band in visible region of spectra and a more intense band termed as the Soret band in near UV region of spectra. The Soret band shows its splitting (Davydov splitting). Two other bands labeled N and M appear in UV region. The film thickness has no influence on optical properties of films while annealing temperatures have a slight influence on optical properties of TPP films. The type of optical transition in as deposited and annealed conditions of films was found to be indirect allowed band-gap. Both fundamental and onset energy gap decreases upon annealing. -- Highlights: • Tetraphenylporphyrin (TPP) is polycrystalline in powder form, while the as-deposited and annealed TPP thin films have amorphous structure. • The absorption spectra of TPP in UV–visible region consists of Q-bands, Soret band and two other bands labeled N and M. • The optical parameters of TPP thin film were measured. • Thermal annealing influences optical properties of TPP thin films

  1. Feature-based morphometry: discovering group-related anatomical patterns.

    Science.gov (United States)

    Toews, Matthew; Wells, William; Collins, D Louis; Arbel, Tal

    2010-02-01

    This paper presents feature-based morphometry (FBM), a new fully data-driven technique for discovering patterns of group-related anatomical structure in volumetric imagery. In contrast to most morphometry methods which assume one-to-one correspondence between subjects, FBM explicitly aims to identify distinctive anatomical patterns that may only be present in subsets of subjects, due to disease or anatomical variability. The image is modeled as a collage of generic, localized image features that need not be present in all subjects. Scale-space theory is applied to analyze image features at the characteristic scale of underlying anatomical structures, instead of at arbitrary scales such as global or voxel-level. A probabilistic model describes features in terms of their appearance, geometry, and relationship to subject groups, and is automatically learned from a set of subject images and group labels. Features resulting from learning correspond to group-related anatomical structures that can potentially be used as image biomarkers of disease or as a basis for computer-aided diagnosis. The relationship between features and groups is quantified by the likelihood of feature occurrence within a specific group vs. the rest of the population, and feature significance is quantified in terms of the false discovery rate. Experiments validate FBM clinically in the analysis of normal (NC) and Alzheimer's (AD) brain images using the freely available OASIS database. FBM automatically identifies known structural differences between NC and AD subjects in a fully data-driven fashion, and an equal error classification rate of 0.80 is achieved for subjects aged 60-80 years exhibiting mild AD (CDR=1). Copyright (c) 2009 Elsevier Inc. All rights reserved.

  2. Distortional Mechanics of Thin-Walled Structural Elements

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim

    In several industries such as civil, mechanical, and aerospace, thin-walled structures are often used due to the high strength and effective use of the materials. Because of the increased consumption there has been increasing focus on optimizing and more detailed calculations. However, finely...... number of degrees of freedom. This means that the classical Vlasov thin-walled beam theory for open and closed cross sections is generalized as part of a semi-discretization process by including distortional displacement fields. A novel finite-element-based displacement approach is used in combination...... by discretization of the cross section are now solved analytically and the formulation is valid without special attention and approximation also for closed single or multi-cell cross sections. Furthermore, the found eigenvalues have clear mechanical meaning, since they represent the attenuation of the distortional...

  3. ArthroBroström Lateral Ankle Stabilization Technique: An Anatomic Study.

    Science.gov (United States)

    Acevedo, Jorge I; Ortiz, Cristian; Golano, Pau; Nery, Caio

    2015-10-01

    Arthroscopic ankle lateral ligament repair techniques have recently been developed and biomechanically as well as clinically validated. Although there has been 1 anatomic study relating suture and anchor proximity to anatomic structures, none has evaluated the ArthroBroström procedure. To evaluate the proximity of anatomic structures for the ArthroBroström lateral ankle ligament stabilization technique and to define ideal landmarks and "safe zones" for this repair. Descriptive laboratory study. Ten human cadaveric ankle specimens (5 matched pairs) were screened for the study. All specimens underwent arthroscopic lateral ligament repair according to the previously described ArthroBroström technique with 2 suture anchors in the fibula. Three cadaveric specimens were used to test the protocol, and 7 were dissected to determine the proximity of anatomic structures. Several distances were measured, including those of different anatomic structures to the suture knots, to determine the "safe zones." Measurements were obtained by 2 separate observers, and statistical analysis was performed. None of the specimens revealed entrapment by either of the suture knots of the critical anatomic structures, including the superficial peroneal nerve (SPN), sural nerve, peroneus tertius tendon, peroneus brevis tendon, or peroneus longus tendon. The internervous safe zone between the intermediate branch of the SPN and sural nerve was a mean of 51 mm (range, 39-64 mm). The intertendinous safe zone between the peroneus tertius and peroneus brevis was a mean of 43 mm (range, 37-49 mm). On average, a 20-mm (range, 8-36 mm) safe distance was maintained from the most medial suture to the intermediate branch of the SPN. The amount of inferior extensor retinaculum (IER) grasped by either suture knot varied from 0 to 12 mm, with 86% of repairs including the retinaculum. The results indicate that there is a relatively wide internervous and intertendinous safe zone when performing the Arthro

  4. Construction of a 3-D anatomical model for teaching temporal lobectomy.

    Science.gov (United States)

    de Ribaupierre, Sandrine; Wilson, Timothy D

    2012-06-01

    Although we live and work in 3 dimensional space, most of the anatomical teaching during medical school is done on 2-D (books, TV and computer screens, etc). 3-D spatial abilities are essential for a surgeon but teaching spatial skills in a non-threatening and safe educational environment is a much more difficult pedagogical task. Currently, initial anatomical knowledge formation or specific surgical anatomy techniques, are taught either in the OR itself, or in cadaveric labs; which means that the trainee has only limited exposure. 3-D computer models incorporated into virtual learning environments may provide an intermediate and key step in a blended learning approach for spatially challenging anatomical knowledge formation. Specific anatomical structures and their spatial orientation can be further clinically contextualized through demonstrations of surgical procedures in the 3-D digital environments. Recordings of digital models enable learner reviews, taking as much time as they want, stopping the demonstration, and/or exploring the model to understand the anatomical relation of each structure. We present here how a temporal lobectomy virtual model has been developed to aid residents and fellows conceptualization of the anatomical relationships between different cerebral structures during that procedure. We suggest in comparison to cadaveric dissection, such virtual models represent a cost effective pedagogical methodology providing excellent support for anatomical learning and surgical technique training. Copyright © 2012 Elsevier Ltd. All rights reserved.

  5. Experimental and theoretical investigations of structural and optical properties of CIGS thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chandramohan, M., E-mail: chandramohan59@yahoo.co.in [Department of Physics, Park college of Engineering and Tecknology, Coimbatore-641 659 (India); Velumani, S., E-mail: vels64@yahoo.com [Centro de Investigacion y de Estudios Avanzados del I.P.N.(CINVESTAV), Av. Instituto Politecnico Nacional 2508 Col. San Pedro Zacatenco 07360, Mexico D.F (Mexico); Venkatachalam, T., E-mail: atvenkatachalam@yahoo.com [Department of Physics, Coimbatore Institute of Technology, Coimbatore-14. India (India)

    2010-10-25

    Experimental and theoretical studies of the structural and optical properties of Copper Indium Gallium diSelenide thin films have been performed. Thin films of CIGS were deposited on glass substrates by chemical bath deposition. From the XRD results of the films, it is found that the films are of chalcopyrite type structure. The lattice parameter were determined as a = 5.72 A and c = 11.462 A. The optical properties of the thin films were carried out with the help of spectrophotometer. First principles density functional theory calculations of the band structure, density of states and effective masses of electrons and holes of the CIGS crystals have been done by computer simulations. The experimental data and theoretically calculated data have demonstrated good agreement.

  6. 3D Models of Female Pelvis Structures Reconstructed and Represented in Combination with Anatomical and Radiological Sections.

    Science.gov (United States)

    Asensio Romero, L; Asensio Gómez, M; Prats-Galino, A; Juanes Méndez, J A

    2018-01-15

    We present a computer program designed to visualize and interact with three-dimensional models of the main anatomical structures of the female pelvis. They are reconstructed from serial sections of corpse, from the Visible Human project of the Medical Library of the United States and from serial sections of high-resolution magnetic resonance. It is possible to represent these three-dimensional structures in any spatial orientation, together with sectional images of corpse and magnetic resonance imaging, in the three planes of space (axial, coronal and sagittal) that facilitates the anatomical understanding and the identification of the set of visceral structures of this body region. Actually, there are few studies that analysze in detail the radiological anatomy of the female pelvis using three-dimensional models together with sectional images, making use of open applications for the representation of virtual scenes on low cost Windows® platforms. Our technological development allows the observation of the main female pelvis viscera in three dimensions with a very intuitive graphic interface. This computer application represents an important training tool for both medical students and specialists in gynecology and as a preliminary step in the planning of pelvic floor surgery.

  7. Crystal structure of red lead titanate thin films

    Energy Technology Data Exchange (ETDEWEB)

    Bursill, L.A.; Peng, J.L.; Jiang, B. [Melbourne Univ., Parkville, VIC (Australia). School of Physics; Li, X. [Jilin Univ., Changchun, JL (China). Dept of Chemistry

    1998-09-01

    Orange-red lead titanate thin films are examined by high-resolution transmission electron microscopy and diffraction. It is remarkable that the structure is based on that of tetragonal-tungsten-bronze (TTB) rather than perovskite-type. The chemical basis for this result is examined. It is deduced that the TTB structure is stabilized by inclusion of hydroxyl ions during synthesis by a sol-gel route involving hydrolysis of n-Butyl titanate 7 refs., 1 tab., 4 figs.

  8. Gamma Radiation Dosimetry Using Tellurium Dioxide Thin Film Structures

    Directory of Open Access Journals (Sweden)

    Olga Korostynska

    2002-08-01

    Full Text Available Thin films of Tellurium dioxide (TeO2 were investigated for γ-radiation dosimetry purposes. Samples were fabricated using thin film vapour deposition technique. Thin films of TeO2 were exposed to a 60Co γ-radiation source at a dose rate of 6 Gy/min at room temperature. Absorption spectra for TeO2 films were recorded and the values of the optical band gap and energies of the localized states for as-deposited and γ-irradiated samples were calculated. It was found that the optical band gap values were decreased as the radiation dose was increased. Samples with electrical contacts having a planar structure showed a linear increase in current values with the increase in radiation dose up to a certain dose level. The observed changes in both the optical and the electrical properties suggest that TeO2 thin film may be considered as an effective material for room temperature real time γ-radiation dosimetry.

  9. Anatomical Differences of the Turkish Stuckenia Borner (Potamogetonaceae) and Their Taxonomic Significance

    International Nuclear Information System (INIS)

    Aykurt, C.; Deniz, I. G.

    2016-01-01

    Anatomical studies of the Stuckenia species occurring in Turkey were conducted. The results showed that the presence or absence of interlacunar bundles and the stellar type were the most important in plant anatomical characters of the stem. The leaves of the all investigated species typically had uniseriate epidermis with a thin cuticle, aerenchyma was composed of arm-shaped chlorophyllous cells, similar to those found in the stem and the peduncle. Two lateral vascular bundles and a central vascular bundle are present in the leaves of all investigated species. However, the number of lateral vascular bundles can vary in S. pectina according to leaf width and the fiber bundles are also present in the triquetrous leaves of this species. (author)

  10. Crystal structures of sol-gel deposited zirconia thin films

    International Nuclear Information System (INIS)

    Bell, J.M.; Cheary, R.W.; Rice, M.; Ben-Nissan, B.; Cocking, J.L.; Johnstone, G.R.

    1992-01-01

    The authors reports on the crystal structure of zirconia thin films by high temperature x-ray diffraction. The films were deposited by sol-gel processing onto polished stainless steel substrates, and dried at 200 deg C. X-ray diffraction at temperatures between 400 deg C and 800 deg C was carried out using an APEX diffractometer with a position sensitive detector. Previous results indicated that there was a transformation between the tetragonal phase and the monoclinic phase at approximately 770 deg C. Two experiments have been carried out: temperature runs, where the structure evolution is studied as a function of temperature; and time evolution of the structure at fixed temperatures. The results for both experiments, including structural analysis of the different phases found in the thin zirconia films and an analysis of the kinetics of the phase transformation(s) from the time evolution work are presented. This will include a comparison with theories of nucleation and crystallisation in single element films. Impurity phases introduced by interaction of the zirconia with the substrate have been observed, and the effect of increasing annealing time on the substrate-film interaction will also be discussed. 17 refs., 1 tab., 3 figs

  11. Structural and optical properties of nano-structured CdS thin films prepared by chemical bath deposition

    Energy Technology Data Exchange (ETDEWEB)

    Bai, Rekha, E-mail: rekha.mittal07@gmail.com; Kumar, Dinesh; Chaudhary, Sujeet; Pandya, Dinesh K. [Thin Film Laboratory, Physics Department, Indian Institute of Technology Delhi, New Delhi-110016 (India)

    2016-05-06

    Cadmium sulfide (CdS) thin films have been deposited on conducting glass substrates by chemical bath deposition (CBD) technique. The effect of precursor concentration on the structural, morphological, compositional, and optical properties of the CdS films has been studied. Crystal structure of these CdS films is characterized by X-ray diffraction (XRD) and it reveals polycrystalline structure with mixture of cubic and wurtzite phases with grain size decreasing as precursor concentration is increased. Optical studies reveal that the CdS thin films have high transmittance in visible spectral region reaching 90% and the films possess direct optical band gap that decreases from 2.46 to 2.39 eV with decreasing bath concentration. Our study suggests that growth is nucleation controlled.

  12. Structural and optical properties of nano-structured CdS thin films prepared by chemical bath deposition

    International Nuclear Information System (INIS)

    Bai, Rekha; Kumar, Dinesh; Chaudhary, Sujeet; Pandya, Dinesh K.

    2016-01-01

    Cadmium sulfide (CdS) thin films have been deposited on conducting glass substrates by chemical bath deposition (CBD) technique. The effect of precursor concentration on the structural, morphological, compositional, and optical properties of the CdS films has been studied. Crystal structure of these CdS films is characterized by X-ray diffraction (XRD) and it reveals polycrystalline structure with mixture of cubic and wurtzite phases with grain size decreasing as precursor concentration is increased. Optical studies reveal that the CdS thin films have high transmittance in visible spectral region reaching 90% and the films possess direct optical band gap that decreases from 2.46 to 2.39 eV with decreasing bath concentration. Our study suggests that growth is nucleation controlled.

  13. Anatomic variation of cranial parasympathetic ganglia

    Directory of Open Access Journals (Sweden)

    Selma Siéssere

    2008-06-01

    Full Text Available Having broad knowledge of anatomy is essential for practicing dentistry. Certain anatomical structures call for detailed studies due to their anatomical and functional importance. Nevertheless, some structures are difficult to visualize and identify due to their small volume and complicated access. Such is the case of the parasympathetic ganglia located in the cranial part of the autonomic nervous system, which include: the ciliary ganglion (located deeply in the orbit, laterally to the optic nerve, the pterygopalatine ganglion (located in the pterygopalatine fossa, the submandibular ganglion (located laterally to the hyoglossus muscle, below the lingual nerve, and the otic ganglion (located medially to the mandibular nerve, right beneath the oval foramen. The aim of this study was to present these structures in dissected anatomic specimens and perform a comparative analysis regarding location and morphology. The proximity of the ganglia and associated nerves were also analyzed, as well as the number and volume of fibers connected to them. Human heads were dissected by planes, partially removing the adjacent structures to the point we could reach the parasympathetic ganglia. With this study, we concluded that there was no significant variation regarding the location of the studied ganglia. Morphologically, our observations concur with previous classical descriptions of the parasympathetic ganglia, but we observed variations regarding the proximity of the otic ganglion to the mandibular nerve. We also observed that there were variations regarding the number and volume of fiber bundles connected to the submandibular, otic, and pterygopalatine ganglia.

  14. Highly stable thin film transistors using multilayer channel structure

    KAUST Repository

    Nayak, Pradipta K.; Wang, Zhenwei; Anjum, Dalaver H.; Hedhili, Mohamed N.; Alshareef, Husam N.

    2015-01-01

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured

  15. Structural and electrochemical analysis of chemically synthesized microcubic architectured lead selenide thin films

    Science.gov (United States)

    Bhat, T. S.; Shinde, A. V.; Devan, R. S.; Teli, A. M.; Ma, Y. R.; Kim, J. H.; Patil, P. S.

    2018-01-01

    The present work deals with the synthesis of lead selenide (PbSe) thin films by simple and cost-effective chemical bath deposition method with variation in deposition time. The structural, morphological, and electrochemical properties of as-deposited thin films were examined using characterization techniques such as X-ray diffraction spectroscopy (XRD), field-emission scanning electron microscopy (FE-SEM), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV), galvanostatic charge-discharge and electrochemical impedance spectroscopy. XRD reveals formation of rock salt phase cubic structured PbSe. FE-SEM images show the formation of microcubic structured morphology. The existence of the PbSe is confirmed from the XPS analysis. On the other hand, CV curves show four reaction peaks corresponding to oxidation [PbSe and Pb(OH)2] and reduction (PbO2 and Pb(OH)2) at the surface of PbSe thin films. The PbSe:2 sample deposited for 80 min. shows maximum specific capacitance of 454 ± 5 F g- 1 obtained at 0.25 mA cm- 2 current density. The maximum energy density of 69 Wh kg- 1 was showed by PbSe:2 electrode with a power density of 1077 W kg- 1. Furthermore, electrochemical impedance studies of PbSe:2 thin film show 80 ± 3% cycling stability even after 500 CV cycles. Such results show the importance of microcubic structured PbSe thin film as an anode in supercapacitor devices.

  16. The effect of adaptive statistical iterative reconstruction on the assessment of diagnostic image quality and visualisation of anatomical structures in paediatric cerebral CT examinations

    International Nuclear Information System (INIS)

    Larsson, Joel; Baath, Magnus; Thilander-Klang, Anne; Ledenius, Kerstin

    2016-01-01

    The purpose of this study was to investigate the effect of adaptive statistical iterative reconstruction (ASiR) on the visualisation of anatomical structures and diagnostic image quality in paediatric cerebral computed tomography (CT) examinations. Forty paediatric patients undergoing routine cerebral CT were included in the study. The raw data from CT scans were reconstructed into stacks of 5 mm thick axial images at various levels of ASiR. Three paediatric radiologists rated six questions related to the visualisation of anatomical structures and one question on diagnostic image quality, in a blinded randomised visual grading study. The evaluated anatomical structures demonstrated enhanced visibility with increasing level of ASiR, apart from the cerebrospinal fluid space around the brain. In this study, 60 % ASiR was found to be the optimal level of ASiR for paediatric cerebral CT examinations. This shows that the commonly used 30 % ASiR may not always be the optimal level. (authors)

  17. Anatomic Basis for Penis Transplantation: Cadaveric Microdissection of Penile Structures.

    Science.gov (United States)

    Tiftikcioglu, Yigit Ozer; Erenoglu, Cagil Meric; Lineaweaver, William C; Bilge, Okan; Celik, Servet; Ozek, Cuneyt

    2016-06-01

    We present a cadaveric dissection study to investigate the anatomic feasibility of penile transplantation. Seventeen male cadavers were dissected to reveal detailed anatomy of the dorsal neurovascular structures including dorsal arteries, superficial and deep dorsal veins, and dorsal nerves of the penis. Dorsal artery diameters showed a significant decrease from proximal to distal shaft. Dominance was observed in one side. Deep dorsal vein showed a straight course and less decrease in diameter compared to artery. Dorsal nerves showed proximal branching pattern. In a possible penile transplantation, level of harvest should be determined according to the patient and the defect, where a transgender patient will receive a total allograft and a male patient with a proximal penile defect will receive a partial shaft allograft. We designed an algorithm for different levels of penile defect and described the technique for harvest of partial and total penile transplants.

  18. Clarification of Eponymous Anatomical Terminology: Structures Named After Dr Geoffrey V. Osborne That Compress the Ulnar Nerve at the Elbow.

    Science.gov (United States)

    Wali, Arvin R; Gabel, Brandon; Mitwalli, Madhawi; Tubbs, R Shane; Brown, Justin M

    2017-05-01

    In 1957, Dr Geoffrey Osborne described a structure between the medial epicondyle and the olecranon that placed excessive pressure on the ulnar nerve. Three terms associated with such structures have emerged: Osborne's band, Osborne's ligament, and Osborne's fascia. As anatomical language moves away from eponymous terminology for descriptive, consistent nomenclature, we find discrepancies in the use of anatomic terms. This review clarifies the definitions of the above 3 terms. We conducted an extensive electronic search via PubMed and Google Scholar to identify key anatomical and surgical texts that describe ulnar nerve compression at the elbow. We searched the following terms separately and in combination: "Osborne's band," "Osborne's ligament," and "Osborne's fascia." A total of 36 papers were included from 1957 to 2016. Osborne's band, Osborne's ligament, and Osborne's fascia were found to inconsistently describe the etiology of ulnar neuritis, referring either to the connective tissue between the 2 heads of the flexor carpi ulnaris muscle as described by Dr Osborne or to the anatomically distinct fibrous tissue between the olecranon process of the ulna and the medial epicondyle of the humerus. The use of eponymous terms to describe ulnar pathology of the elbow remains common, and although these terms allude to the rich history of surgical anatomy, these nonspecific descriptions lead to inconsistencies. As Osborne's band, Osborne's ligament, and Osborne's fascia are not used consistently across the literature, this research demonstrates the need for improved terminology to provide reliable interpretation of these terms among surgeons.

  19. Improvement of formability for fabricating thin continuously corrugated structures in sheet metal forming process

    International Nuclear Information System (INIS)

    Choi, Sung Woo; Park, Sang Hu; Park, Seong Hun; Ha, Man Yeong; Jeong, Ho Seung; Cho, Jong Rae

    2012-01-01

    A stamping process is widely used for fabricating various sheet metal parts for vehicles, airplanes, and electronic devices by the merit of low processing cost and high productivity. Recently, the use of thin sheets with a corrugated structure for sheet metal parts has rapidly increased for use in energy management devices, such as heat exchangers, separators in fuel cells, and many others. However, it is not easy to make thin corrugated structures directly using a single step stamping process due to their geometrical complexity and very thin thickness. To solve this problem, a multi step stamping (MSS) process that includes a heat treatment process to improve formability is proposed in this work: the sequential process is the initial stamping, heat treatment, and final shaping. By the proposed method, we achieved successful results in fabricating thin corrugated structures with an average thickness of 75μm and increased formability of about 31% compared to the single step stamping process. Such structures can be used in a plate-type heat exchanger requiring low weight and a compact shape

  20. Optical constants and structural properties of thin gold films

    DEFF Research Database (Denmark)

    Yakubovsky, Dmitry I.; Arsenin, Aleksey V.; Stebunov, Yury V.

    2017-01-01

    We report a comprehensive experimental study of optical and electrical properties of thin polycrystalline gold films in a wide range of film thicknesses (from 20 to 200 nm). Our experimental results are supported by theoretical calculations based on the measured morphology of the fabricated gold...... rules for thin-film plasmonic and nanophotonic devices....... films. We demonstrate that the dielectric function of the metal is determined by its structural morphology. Although the fabrication process can be absolutely the same for different films, the dielectric function can strongly depend on the film thickness. Our studies show that the imaginary part...

  1. Thin NbN film structures on SOI for SNSPD

    Energy Technology Data Exchange (ETDEWEB)

    Il' in, Konstantin; Kurz, Stephan; Henrich, Dagmar; Hofherr, Matthias; Siegel, Michael [IMS, KIT, Karlsruhe (Germany); Semenov, Alexei; Huebers, Heinz-Wilhelm [DLR, Berlin (Germany)

    2012-07-01

    Superconducting Nanowire Single-Photon Detectors (SNSPD) made from ultra-thin NbN films on sapphire demonstrate almost 100% intrinsic detection efficiency (DE). However the system DE values is less than 10% mostly limited by a very low absorptance of NbN films thinner than 5 nm. Integration of SNSPD in Si photonic circuit is a promising way to overcome this problem. We present results on optimization of technology of thin NbN film nanostructures on SOI (Silicon on Insulator) substrate used in Si photonics technology. Superconducting and normal state properties of these structures important for SNSPD development are presented and discussed.

  2. Anatomical alterations of Phaseolus vulgaris L. mature leaves irradiated with X-rays.

    Science.gov (United States)

    De Micco, V; Arena, C; Aronne, G

    2014-01-01

    The cultivation of higher plants in Space involves not only the development of new agro-technologies for the design of ecologically closed Space greenhouses, but also understanding of the effects of Space factors on biological systems. Among Space factors, ionising radiation is one of the main constraints to the growth of organisms. In this paper, we analyse the effect of low-LET radiation on leaf histology and cytology in Phaseolus vulgaris L. plants subjected to increasing doses of X-rays (0.3, 10, 50, 100 Gy). Leaves irradiated at tissue maturity were compared with not-irradiated controls. Semi-thin sections of leaves were analysed through light and epi-fluorescence microscopy. Digital image analysis was applied to quantify anatomical parameters, with a specific focus on the occurrence of signs of structural damage as well as alterations at subcellular level, such as the accumulation of phenolic compounds and chloroplast size. Results showed that even at high levels of radiation, general anatomical structure was not severely perturbed. Slight changes in mesophyll density and cell enlargement were detected at the highest level of radiation. However, at 100 Gy, higher levels of phenolic compounds accumulated along chloroplast membranes: this accompanied an increase in number of chloroplasts. The reduced content of chlorophylls at high levels of radiation was associated with reduced size of the chloroplasts. All data are discussed in terms of the possible role of cellular modifications in the maintenance of high radioresistance and photosynthetic efficiency. © 2013 German Botanical Society and The Royal Botanical Society of the Netherlands.

  3. Vegetative anatomical adaptations of Epidendrum radicans (Epidendroideae, Orchidaceae to epiphytic conditions of growth

    Directory of Open Access Journals (Sweden)

    Muthukumar Thangavelu

    2017-12-01

    Full Text Available The anatomical properties of leaf, stem, and root of Epidendrum radicans Pav. ex Lindl., belonging to the subfamily Epidendroideae (Orchidaceae were investigated for adaptations to stressed habitats. The anatomical investigation revealed that leaves of E. radicans have a thick cuticle (3–4 µm and paracytic type of stomata. Foliar epidermal cells are conical on the adaxial surface and rectangular in the abaxial surface, distinct hypodermis absent, and uniseriate fiber bundles are arranged in both sides of the leaves. The foliar mesophyll is homogenous and starch grains and raphides present. The leaf sheath covering the stem have cuticle restricted to the outer surface and air spaces are present. The stem has a cuticulerized uniseriate epidermis and a uniseriate hypodermis. The cortex and a parenchymatous ground tissue of the stem are separated by a layer of sclerenchymatous band. Vascular bundles are collateral and their size generally increases from the periphery towards the center. A sclerenchymatous patch covers the phloem pole, whereas the xylem is covered by thin-walled parenchymatous cells. The roots possess Epidendrum-type velamen. Cover cells present. Uniseriate dimorphic exodermis consists of U-thickened long cells and thin-walled passage cells. The endodermal cells O-thickened, pericycle sclerenchymatous, xylem 10–14 arched. The pith is sclerenchymatous, but parenchymatous at the center. The anatomical examination of E. radicans revealed adaptations to moisture stress conditions like thick cuticle covering the leaves and stem, water storage cells, multilayered velamen and dimorphic exodermis.

  4. Thermoluminescent properties of nanocrystalline ZnTe thin films: Structural and morphological studies

    Science.gov (United States)

    Rajpal, Shashikant; Kumar, S. R.

    2018-04-01

    Zinc Telluride (ZnTe) is a binary II-VI direct band gap semiconducting material with cubic structure and having potential applications in different opto-electronic devices. Here we investigated the effects of annealing on the thermoluminescence (TL) of ZnTe thin films. A nanocrystalline ZnTe thin film was successfully electrodeposited on nickel substrate and the effect of annealing on structural, morphological, and optical properties were studied. The TL emission spectrum of as deposited sample is weakly emissive in UV region at ∼328 nm. The variation in the annealing temperature results into sharp increase in emission intensity at ∼328 nm along with appearance of a new peak at ∼437 nm in visible region. Thus, the deposited nanocrystalline ZnTe thin films exhibited excellent thermoluminescent properties upon annealing. Furthermore, the influence of annealing (annealed at 400 °C) on the solid state of ZnTe were also studied by XRD, SEM, EDS, AFM. It is observed that ZnTe thin film annealed at 400 °C after deposition provide a smooth and flat texture suited for optoelectronic applications.

  5. Structural and electrical properties of CZTS thin films by electrodeposition

    Science.gov (United States)

    Rao, M. C.; Basha, Sk. Shahenoor

    2018-06-01

    CZTS (Cu2ZnSnS4) thin films were coated on ITO glass substrates by single bath electrodeposition technique. The prepared films were subsequently characterized by XRD, SEM, FTIR, UV-visible spectroscopy and Raman studies. The thickness of the thin films was measured by wedge method. X-ray diffraction studies revealed the formation of polycrystalline phase. The morphological surface of the prepared thin films was examined by SEM and AFM and showed the presence of microcrystals on the surface of the samples. The elemental analysis and their compositional ratios present in the samples were confirmed by the energy dispersive X-ray analysis. Functional groups and the position of band structure involved in the materials were confirmed by FTIR. Optical absorption studies were performed on the prepared thin films in the wavelength ranging from 300 to 1000 nm and the energy bandgap values were found to be in the range from 1.39 to 1.60 eV. Raman spectral peak which was observed at 360 cm-1 correspond to kesterite phase, was formed due to the vibration of the molecules. Electrical measurements confirmed the nature of the thin film depending on the charge concentration present in the samples.

  6. Domain structure and magnetotransport in epitaxial colossal magnetoresistance thin films

    OpenAIRE

    Suzuki, Yuri; Wu, Yan; Yu, Jun; Rüdiger, Ulrich; Kent, Andrew D.; Nath, Tapan K.; Eom, Chang-Beom

    2000-01-01

    Our studies of compressively strained La0.7 Sr0.3 MnO7 (LSMO) thin films reveal the importance of domain structure and strain effects in the magnetization reversal and magnetotransport. Normal and grazing incidence x-ray diffraction indicate that the compressive strain on these LSMO thin films on (100) LaAlO3 is not completely relaxed up to thicknesses on the order of 1000 Å. The effect of the compressive strain is evident in the shape of the magnetization loops and the magnetotransport measu...

  7. P-type CuxS thin films: Integration in a thin film transistor structure

    International Nuclear Information System (INIS)

    Nunes de Carvalho, C.; Parreira, P.; Lavareda, G.; Brogueira, P.; Amaral, A.

    2013-01-01

    Cu x S thin films, 80 nm thick, are deposited by vacuum thermal evaporation of sulfur-rich powder mixture, Cu 2 S:S (50:50 wt.%) with no intentional heating of the substrate. The process of deposition occurs at very low deposition rates (0.1–0.3 nm/s) to avoid the formation of Cu or S-rich films. The evolution of Cu x S films surface properties (morphology/roughness) under post deposition mild annealing in air at 270 °C and their integration in a thin film transistor (TFT) are the main objectives of this study. Accordingly, Scanning Electron Microscopy studies show Cu x S films with different surface morphologies, depending on the post deposition annealing conditions. For the shortest annealing time, the Cu x S films look to be constructed of grains with large dimension at the surface (approximately 100 nm) and consequently, irregular shape. For the longest annealing time, films with a fine-grained surface are found, with some randomly distributed large particles bound to this fine-grained surface. Atomic Force Microscopy results indicate an increase of the root-mean-square roughness of Cu x S surface with annealing time, from 13.6 up to 37.4 nm, for 255 and 345 s, respectively. The preliminary integration of Cu x S films in a TFT bottom-gate type structure allowed the study of the feasibility and compatibility of this material with the remaining stages of a TFT fabrication as well as the determination of the p-type characteristic of the Cu x S material. - Highlights: • Surface properties of annealed Cu x S films. • Variation of conductivity with annealing temperatures of Cu x S films. • Application of evaporated Cu x S films in a thin film transistor (TFT) structure. • Determination of Cu x S p-type characteristic from TFT behaviour

  8. Enhancement in figure-of-merit with superlattices structures for thin-film thermoelectric devices

    Energy Technology Data Exchange (ETDEWEB)

    Venkatasubramanian, R; Colpitts, T

    1997-07-01

    Thin-film superlattice (SL) structures in thermoelectric materials are shown to be a promising approach to obtaining an enhanced figure-of-merit, ZT, compared to conventional, state-of-the-art bulk alloyed materials. In this paper the authors describe experimental results on Bi{sub 2}Te{sub 3}/Sb{sub 2}Te{sub 3} and Si/Ge SL structures, relevant to thermoelectric cooling and power conversion, respectively. The short-period Bi{sub 2}Te{sub 3} and Si/Ge SL structures appear to indicate reduced thermal conductivities compared to alloys of these materials. From the observed behavior of thermal conductivity values in the Bi{sub 2}Te{sub 3}/Sb{sub 2}Te{sub 3} SL structures, a distinction is made where certain types of periodic structures may correspond to an ordered alloy rather than an SL, and therefore, do not offer a significant reduction in thermal conductivity values. The study also indicates that SL structures, with little or weak quantum-confinement, also offer an improvement in thermoelectric power factor over conventional alloys. They present power factor and electrical transport data in the plane of the SL interfaces to provide preliminary support for the arguments on reduced alloy scattering and impurity scattering in Bi{sub 2}Te{sub 3}/Sb{sub 2}Te{sub 3} and Si/Ge SL structures. These results, though tentative due to the possible role of the substrate and the developmental nature of the 3-{omega} method used to determine thermal conductivity values, suggest that the short-period SL structures potentially offer factorial improvements in the three-dimensional figure-of-merit (ZT3D) compared to current state-of-the-art bulk alloys. An approach to a thin-film thermoelectric device called a Bipolarity-Assembled, Series-Inter-Connected Thin-Film Thermoelectric Device (BASIC-TFTD) is introduced to take advantage of these thin-film SL structures.

  9. Tridimensional Regression for Comparing and Mapping 3D Anatomical Structures

    Directory of Open Access Journals (Sweden)

    Kendra K. Schmid

    2012-01-01

    Full Text Available Shape analysis is useful for a wide variety of disciplines and has many applications. There are many approaches to shape analysis, one of which focuses on the analysis of shapes that are represented by the coordinates of predefined landmarks on the object. This paper discusses Tridimensional Regression, a technique that can be used for mapping images and shapes that are represented by sets of three-dimensional landmark coordinates, for comparing and mapping 3D anatomical structures. The degree of similarity between shapes can be quantified using the tridimensional coefficient of determination (2. An experiment was conducted to evaluate the effectiveness of this technique to correctly match the image of a face with another image of the same face. These results were compared to the 2 values obtained when only two dimensions are used and show that using three dimensions increases the ability to correctly match and discriminate between faces.

  10. Structural and optical properties of ITO and Cu doped ITO thin films

    Science.gov (United States)

    Chakraborty, Deepannita; Kaleemulla, S.; Rao, N. Madhusudhana; Subbaravamma, K.; Rao, G. Venugopal

    2018-04-01

    (In0.95Sn0.05)2O3 and (In0.90Cu0.05Sn0.05)2O3 thin films were coated onto glass substrate by electron beam evaporation technique. The structural and optical properties of ITO and Cu doped ITO thin films have been studied by X-ray diffractometer (XRD) and UV-Vis-NIR spectrophotometer. The crystallite size obtained for ITO and Cu doped ITO thin films was in the range of 24 nm to 22 nm. The optical band gap of 4 eV for ITO thin film sample has been observed. The optical band gap decreases to 3.85 eV by doping Cu in ITO.

  11. Fabrication of functional structures on thin silicon nitride membranes

    NARCIS (Netherlands)

    Ekkels, P.; Tjerkstra, R.W.; Krijnen, Gijsbertus J.M.; Berenschot, Johan W.; Brugger, J.P.; Elwenspoek, Michael Curt

    A process to fabricate functional polysilicon structures above large (4×4 mm2) thin (200 nm), very flat LPCVD silicon rich nitride membranes was developed. Key features of this fabrication process are the use of low-stress LPCVD silicon nitride, sacrificial layer etching, and minimization of

  12. Anatomical Basis for the Cardiac Interventional Electrophysiologist

    Directory of Open Access Journals (Sweden)

    Damián Sánchez-Quintana

    2015-01-01

    Full Text Available The establishment of radiofrequency catheter ablation techniques as the mainstay in the treatment of tachycardia has renewed new interest in cardiac anatomy. The interventional arrhythmologist has drawn attention not only to the gross anatomic details of the heart but also to architectural and histological characteristics of various cardiac regions that are relevant to the development or recurrence of tachyarrhythmias and procedural related complications of catheter ablation. In this review, therefore, we discuss some anatomic landmarks commonly used in catheter ablations including the terminal crest, sinus node region, Koch’s triangle, cavotricuspid isthmus, Eustachian ridge and valve, pulmonary venous orifices, venoatrial junctions, and ventricular outflow tracts. We also discuss the anatomical features of important structures in the vicinity of the atria and pulmonary veins, such as the esophagus and phrenic nerves. This paper provides basic anatomic information to improve understanding of the mapping and ablative procedures for cardiac interventional electrophysiologists.

  13. Structural transformations in MoOx thin films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Camacho-Lopez, M.A.; Haro-Poniatowski, E.; Escobar-Alarcon, L.

    2004-01-01

    In this work, laser-induced crystallization in MoO x thin films (1.8≤x≤2.1) is reported. This transformation involves a MoO x oxidation and subsequently a crystallization process from amorphous MoO 3 to crystalline αMoO 3 . For comparison purposes crystallization is induced thermally, in an oven, as well. The crystallization kinetics is monitored by Raman spectroscopy; a threshold in the energy density necessary to induce the phase transformation is determined in the case of photo-crystallization. This threshold depends on the type of substrate on which the film is deposited. For the thin films deposited on glass substrates, the structural transformation is from amorphous MoO x to the thermodynamically stable αMoO 3 crystalline phase. For the thin films deposited on Si(100) the structural transformation is from amorphous MoO x to a mixture of αMoO 3 and the thermodynamically unstable βMoO 3 crystalline phases. The structural transformations are also characterized by scanning electron microscopy and light-transmission experiments. (orig.)

  14. 3D Topography of the Young Adult Anal Sphincter Complex Reconstructed from Undeformed Serial Anatomical Sections

    NARCIS (Netherlands)

    Wu, Yi; Dabhoiwala, Noshir F.; Hagoort, Jaco; Shan, Jin-Lu; Tan, Li-Wen; Fang, Bin-Ji; Zhang, Shao-Xiang; Lamers, Wouter H.

    2015-01-01

    Pelvic-floor anatomy is usually studied by artifact-prone dissection or imaging, which requires prior anatomical knowledge. We used the serial-section approach to settle contentious issues and an interactive 3D-pdf to make the results widely accessible. 3D reconstructions of undeformed thin serial

  15. Unification of Sinonasal Anatomical Terminology

    Directory of Open Access Journals (Sweden)

    Voegels, Richard Louis

    2015-07-01

    Full Text Available The advent of endoscopy and computed tomography at the beginning of the 1980s brought to rhinology a revival of anatomy and physiology study. In 1994, the International Conference of Sinus Disease was conceived because the official “Terminologia Anatomica”[1] had little information on the detailed sinonasal anatomy. In addition, there was a lack of uniformity of terminology and definitions. After 20 years, a new conference has been held. The need to use the same terminology led to the publication by the European Society of Rhinology of the “European Position Paper on the Anatomical Terminology of the Internal Nose and Paranasal Sinuses,” that can be accessed freely at www.rhinologyjournal.com. Professor Valerie Lund et al[2] wrote this document reviewing the anatomical terms, comparing to the “Terminology Anatomica” official order to define the structures without eponyms, while respecting the embryological development and especially universalizing and simplifying the terms. A must-read! The text's purpose lies beyond the review of anatomical terminology to universalize the language used to refer to structures of the nasal and paranasal cavities. Information about the anatomy, based on extensive review of the current literature, is arranged in just over 50 pages, which are direct and to the point. The publication may be pleasant reading for learners and teachers of rhinology. This text can be a starting point and enables searching the universal terminology used in Brazil, seeking to converge with this new European proposal for a nomenclature to help us communicate with our peers in Brazil and the rest of the world. The original text of the European Society of Rhinology provides English terms that avoided the use of Latin, and thus fall beyond several national personal translations. It would be admirable if we created our own cross-cultural adaptation of this new suggested anatomical terminology.

  16. NATO Advanced Research Workshop on Thin Film Growth Techniques for Low-Dimensional Structures

    CERN Document Server

    Parkin, S; Dobson, P; Neave, J; Arrott, A

    1987-01-01

    This work represents the account of a NATO Advanced Research Workshop on "Thin Film Growth Techniques for Low Dimensional Structures", held at the University of Sussex, Brighton, England from 15-19 Sept. 1986. The objective of the workshop was to review the problems of the growth and characterisation of thin semiconductor and metal layers. Recent advances in deposition techniques have made it possible to design new material which is based on ultra-thin layers and this is now posing challenges for scientists, technologists and engineers in the assessment and utilisation of such new material. Molecular beam epitaxy (MBE) has become well established as a method for growing thin single crystal layers of semiconductors. Until recently, MBE was confined to the growth of III-V compounds and alloys, but now it is being used for group IV semiconductors and II-VI compounds. Examples of such work are given in this volume. MBE has one major advantage over other crystal growth techniques in that the structure of the growi...

  17. Structural changes in leaves and roots are anatomical markers of aluminum sensitivity in sunflower

    Directory of Open Access Journals (Sweden)

    Daniel da Silva de Jesus

    2016-12-01

    Full Text Available Aluminum (Al toxicity in plants evidences the importance of genotype evaluation to the identification of tolerance markers. This study aimed at evaluating the effects of aluminum stress on the relative water content, membrane damages and anatomical changes, in Al-tolerant and Al-sensitive sunflower cultivars. Sunflower plants [Catissol (Al-tolerant and IAC-Uruguai (Al-sensitive] were grown in nutrient solution (control or nutrient solution containing 0.15 mM of AlCl3 (Al-stress treatment, in a greenhouse. The experimental design was completely randomized, in a factorial arrangement consisting of four harvest times x two sunflower cultivars x two Al levels, with four replications. The results showed that Al negatively affected the absolute integrity percentage and relative water content only for the IAC-Uruguay cultivar. These results in the stressed leaves of the Al-sensitive cultivar may be due to damage in the xylem structure. In addition, the increase in leaf blade thickness and parenchyma layers, as well as lignification of root tissues, are important traits of IAC-Uruguay plants and may be used as anatomical markers of Al sensitivity in sunflower.

  18. Early Results of Anatomic Double Bundle Anterior Cruciate Ligament Reconstruction

    OpenAIRE

    Demet Pepele

    2014-01-01

    Aim: The goal in anterior cruciate ligament reconstruction (ACLR) is to restore the normal anatomic structure and function of the knee. In the significant proportion of patients after the traditional single-bundle ACLR, complaints of instability still continue. Anatomic double bundle ACLR may provide normal kinematics in knees, much closer to the natural anatomy. The aim of this study is to clinically assess the early outcomes of our anatomical double bundle ACLR. Material and Method: In our ...

  19. Anatomical influences on internally coupled ears in reptiles.

    Science.gov (United States)

    Young, Bruce A

    2016-10-01

    Many reptiles, and other vertebrates, have internally coupled ears in which a patent anatomical connection allows pressure waves generated by the displacement of one tympanic membrane to propagate (internally) through the head and, ultimately, influence the displacement of the contralateral tympanic membrane. The pattern of tympanic displacement caused by this internal coupling can give rise to novel sensory cues. The auditory mechanics of reptiles exhibit more anatomical variation than in any other vertebrate group. This variation includes structural features such as diverticula and septa, as well as coverings of the tympanic membrane. Many of these anatomical features would likely influence the functional significance of the internal coupling between the tympanic membranes. Several of the anatomical components of the reptilian internally coupled ear are under active motor control, suggesting that in some reptiles the auditory system may be more dynamic than previously recognized.

  20. Immediate Direct-To-Implant Breast Reconstruction Using Anatomical Implants

    Directory of Open Access Journals (Sweden)

    Sung-Eun Kim

    2014-09-01

    Full Text Available BackgroundIn 2012, a new anatomic breast implant of form-stable silicone gel was introduced onto the Korean market. The intended use of this implant is in the area of aesthetic breast surgery, and many reports are promising. Thus far, however, there have been no reports on the use of this implant for breast reconstruction in Korea. We used this breast implant in breast reconstruction surgery and report our early experience.MethodsFrom November 2012 to April 2013, the Natrelle Style 410 form-stable anatomically shaped cohesive silicone gel-filled breast implant was used in 31 breasts of 30 patients for implant breast reconstruction with an acellular dermal matrix. Patients were treated with skin-sparing mastectomies followed by immediate breast reconstruction.ResultsThe mean breast resection volume was 240 mL (range, 83-540 mL. The mean size of the breast implants was 217 mL (range, 125-395 mL. Breast shape outcomes were considered acceptable. Infection and skin thinning occurred in one patient each, and hematoma and seroma did not occur. Three cases of wound dehiscence occurred, one requiring surgical intervention, while the others healed with conservative treatment in one month. Rippling did not occur. So far, complications such as capsular contracture and malrotation of breast implant have not yet arisen.ConclusionsBy using anatomic breast implants in breast reconstruction, we achieved satisfactory results with aesthetics better than those obtained with round breast implants. Therefore, we concluded that the anatomical implant is suitable for breast reconstruction.

  1. Film-thickness dependence of structure formation in ultra-thin polymer blend films

    CERN Document Server

    Gutmann, J S; Stamm, M

    2002-01-01

    We investigated the film-thickness dependence of structure formation in ultra-thin polymer blend films prepared from solution. As a model system we used binary blends of statistical poly(styrene-co-p-bromostyrene) copolymers of different degrees of bromination. Ultra-thin-film samples differing in miscibility and film thickness were prepared via spin coating of common toluene solutions onto silicon (100) substrates. The resulting morphologies were investigated with scanning force microscopy, reflectometry and grazing-incidence scattering techniques using both X-rays and neutrons in order to obtain a picture of the sample structure at and below the sample surface. (orig.)

  2. First performance evaluation of software for automatic segmentation, labeling and reformation of anatomical aligned axial images of the thoracolumbar spine at CT

    Energy Technology Data Exchange (ETDEWEB)

    Scholtz, Jan-Erik, E-mail: janerikscholtz@gmail.com; Wichmann, Julian L.; Kaup, Moritz; Fischer, Sebastian; Kerl, J. Matthias; Lehnert, Thomas; Vogl, Thomas J.; Bauer, Ralf W.

    2015-03-15

    Highlights: •Automatic segmentation and labeling of the thoracolumbar spine. •Automatically generated double-angulated and aligned axial images of spine segments. •High grade of accurateness for the symmetric depiction of anatomical structures. •Time-saving and may improve workflow in daily practice. -- Abstract: Objectives: To evaluate software for automatic segmentation, labeling and reformation of anatomical aligned axial images of the thoracolumbar spine on CT in terms of accuracy, potential for time savings and workflow improvement. Material and methods: 77 patients (28 women, 49 men, mean age 65.3 ± 14.4 years) with known or suspected spinal disorders (degenerative spine disease n = 32; disc herniation n = 36; traumatic vertebral fractures n = 9) underwent 64-slice MDCT with thin-slab reconstruction. Time for automatic labeling of the thoracolumbar spine and reconstruction of double-angulated axial images of the pathological vertebrae was compared with manually performed reconstruction of anatomical aligned axial images. Reformatted images of both reconstruction methods were assessed by two observers regarding accuracy of symmetric depiction of anatomical structures. Results: In 33 cases double-angulated axial images were created in 1 vertebra, in 28 cases in 2 vertebrae and in 16 cases in 3 vertebrae. Correct automatic labeling was achieved in 72 of 77 patients (93.5%). Errors could be manually corrected in 4 cases. Automatic labeling required 1 min in average. In cases where anatomical aligned axial images of 1 vertebra were created, reconstructions made by hand were significantly faster (p < 0.05). Automatic reconstruction was time-saving in cases of 2 and more vertebrae (p < 0.05). Both reconstruction methods revealed good image quality with excellent inter-observer agreement. Conclusion: The evaluated software for automatic labeling and anatomically aligned, double-angulated axial image reconstruction of the thoracolumbar spine on CT is time

  3. Rapid fabrication of hierarchically structured supramolecular nanocomposite thin films in one minute

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ting; Kao, Joseph

    2016-11-08

    Functional nanocomposites containing nanoparticles of different chemical compositions may exhibit new properties to meet demands for advanced technology. It is imperative to simultaneously achieve hierarchical structural control and to develop rapid, scalable fabrication to minimize degradation of nanoparticle properties and for compatibility with nanomanufacturing. The assembly kinetics of supramolecular nanocomposite in thin films is governed by the energetic cost arising from defects, the chain mobility, and the activation energy for inter-domain diffusion. By optimizing only one parameter, the solvent fraction in the film, the assembly kinetics can be precisely tailored to produce hierarchically structured thin films of supramolecular nanocomposites in approximately one minute. Moreover, the strong wavelength dependent optical anisotropy in the nanocomposite highlights their potential applications for light manipulation and information transmission. The present invention opens a new avenue in designing manufacture-friendly continuous processing for the fabrication of functional nanocomposite thin films.

  4. Using thin metal layers on composite structures for shielding the electromagnetic pulse caused by nearby lightning

    NARCIS (Netherlands)

    Blaj, M.A.; Buesink, Frederik Johannes Karel; Damstra, G.C.; Leferink, Frank Bernardus Johannes

    2011-01-01

    Electronic systems in composite structures could be vulnerable to the (dominant magnetic) field caused by a lightning strike, because only thin layers of metal can be used on composite structures. Thin layers result in a very low shielding effectiveness against magnetic fields. Many experiments

  5. Neutron diffraction studies of thin film multilayer structures

    International Nuclear Information System (INIS)

    Majkrzak, C.F.

    1985-01-01

    The application of neutron diffraction methods to the study of the microscopic chemical and magnetic structures of thin film multilayers is reviewed. Multilayer diffraction phenomena are described in general and in particular for the case in which one of the materials of a bilayer is ferromagnetic and the neutron beam polarized. Recent neutron diffraction measurements performed on some interesting multilayer systems are discussed. 70 refs., 5 figs

  6. Fabrication of semi-transparent superoleophobic thin film from fabrics and nanoparticle-based hierarchical structure

    Directory of Open Access Journals (Sweden)

    Nishizawa S.

    2013-08-01

    Full Text Available Superoleophobic thin films have many potential applications including fluid transfer, fluid power systems, stain resistant and antifouling materials, and microfluidics among others. Transparency is also desired with superhydrophobicity for their numerous applications; however transparency and oleophobicity are almost incompatible relationship with each other in the point of surface structure. Because oleophobicity required rougher structure at nano-micro scale than hydrophobicity, and these rough structure brings light scattering. So far, there is very few report of the compatible of transparency and superoleophobicity. In this report, we proposed the see-through type fabrics using the nanoparticle-based hierarchical structure thin film for improving both of oleophobicity and transparency. The vacant space between fibrils of fabrics has two important roles: the one is to through the light, another one is to introduce air layer to realize Cassie state of liquid droplet on thin film. To realize the low surface energy and nanoscale rough structure surface on fibrils, we used the spray method with perfluoroalkyl methacrylic copolymer (PMC, silica nano particles and volatile solvent. From the SEM image, the hierarchical structures of nanoparticle were formed uniformly on the fabrics. The transparency of thin film obtained was approximately 61% and the change of transparency between pre-coated fabrics and coated was 11%. From investigation of the surface wettability, the contact angles of oils (rapeseed oil and hexadecane and water droplet on the fabricated film were over 150 degree.

  7. Electrochromism and photocatalysis in dendrite structured Ti:WO3 thin films grown by sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Karuppasamy, A., E-mail: karuppasamy@psnacet.edu.in

    2015-12-30

    Graphical abstract: - Highlights: • Dendrite structured Ti doped WO{sub 3} (WTO) thin films are grown by co-sputtering. • Sputtering condition influences structure and surface morphology of WTO films. • Titanium doping and annealing lead to dendritic surface structures in WTO films. • Structural, optical, electrochromic and photocatalytic properties of WTO films. • Enhanced electrochromism and photocatalysis in dendrite structured WTO thin films. - Abstract: Titanium doped tungsten oxide (Ti:WO{sub 3}) thin films with dendrite surface structures were grown by co-sputtering titanium and tungsten in Ar + O{sub 2} atmosphere. Ti:WO{sub 3} thin films were deposited at oxygen flow rates corresponding to pressures in the range 1.0 × 10{sup −3}–5.0 × 10{sup −3} mbar. Argon flow rate and sputtering power densities for titanium (2 W/cm{sup 2}) and tungsten (3 W/cm{sup 2}) were kept constant. Ti:WO{sub 3} films deposited at an oxygen pressure of 5 × 10{sup −3} mbar are found to be better electrochromic and photocatalytic. They have high optical modulation (80% at λ = 550 nm), coloration efficiency (60 cm{sup 2}/C at λ = 550 nm), electron/ion storage and removal capacity (Qc: −22.01 mC/cm{sup 2}, Qa: 17.72 mC/cm{sup 2}), reversibility (80%) and methylene blue decomposition rate (−1.38 μmol/l d). The combined effects of titanium doping, dendrite surface structures and porosity leads to significant enhancement in the electrochromic and photocatalytic properties of Ti:WO{sub 3} films.

  8. Electrochromism and photocatalysis in dendrite structured Ti:WO3 thin films grown by sputtering

    International Nuclear Information System (INIS)

    Karuppasamy, A.

    2015-01-01

    Graphical abstract: - Highlights: • Dendrite structured Ti doped WO 3 (WTO) thin films are grown by co-sputtering. • Sputtering condition influences structure and surface morphology of WTO films. • Titanium doping and annealing lead to dendritic surface structures in WTO films. • Structural, optical, electrochromic and photocatalytic properties of WTO films. • Enhanced electrochromism and photocatalysis in dendrite structured WTO thin films. - Abstract: Titanium doped tungsten oxide (Ti:WO 3 ) thin films with dendrite surface structures were grown by co-sputtering titanium and tungsten in Ar + O 2 atmosphere. Ti:WO 3 thin films were deposited at oxygen flow rates corresponding to pressures in the range 1.0 × 10 −3 –5.0 × 10 −3 mbar. Argon flow rate and sputtering power densities for titanium (2 W/cm 2 ) and tungsten (3 W/cm 2 ) were kept constant. Ti:WO 3 films deposited at an oxygen pressure of 5 × 10 −3 mbar are found to be better electrochromic and photocatalytic. They have high optical modulation (80% at λ = 550 nm), coloration efficiency (60 cm 2 /C at λ = 550 nm), electron/ion storage and removal capacity (Qc: −22.01 mC/cm 2 , Qa: 17.72 mC/cm 2 ), reversibility (80%) and methylene blue decomposition rate (−1.38 μmol/l d). The combined effects of titanium doping, dendrite surface structures and porosity leads to significant enhancement in the electrochromic and photocatalytic properties of Ti:WO 3 films.

  9. Preparation of BiOBr thin films with micro-nano-structure and their photocatalytic applications

    Energy Technology Data Exchange (ETDEWEB)

    Li, Rui [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Fan, Caimei, E-mail: fancm@163.com [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Xiaochao, E-mail: zhang13598124761@163.com [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, Yawen; Wang, Yunfang [College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Zhang, Hui [Particle Technology Research Centre, Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario N6A 5B9 (Canada)

    2014-07-01

    A series of micro-nano-structure BiOBr thin films were prepared at a low temperature by the alcoholysis-coating method using BiBr{sub 3} as precursor. The as-prepared films were characterized by X-ray powder diffraction, scanning electron microscopy, and Brunauer–Emmett–Teller surface area. The obtained results indicated that micro-nano-structure tetragonal BiOBr films with different intensity ratios of (110) to (102) characteristic peaks could be synthesized through controlling the reaction temperature and the calcination temperatures. Furthermore, the photocatalytic activities of BiOBr thin films with different preparation conditions have been evaluated by the degradation of methyl orange (MO) under UV light irradiation, suggesting that the photocatalytic activity should be closely related to the solvent, the alcoholysis reaction temperature, and the calcining temperature. The best photocatalytic degradation efficiency of MO for BiOBr thin films reaches 98.5% under 2.5 h UV irradiation. The BiOBr thin films display excellent stability and their photocatalytic activity still remains above 90% after being used five times. The main reasons for the higher photocatalytic activity of micro-nano-structure BiOBr microspheres have been investigated. In addition, the possible formation mechanism of BiOBr thin films with micro-nano-structure and excellent photocatalytic activity was proposed and discussed. - Highlights: • The BiOBr film was prepared at low temperature via alcoholysis-coating method. • The optimum process conditions of preparing BiOBr film were discussed. • As-prepared BiOBr films were composed of micro-nano flake structures. • The BiOBr films demonstrated excellent photocatalytic activity. • The formation mechanism of BiOBr films with high activity was proposed.

  10. Nonlinear equilibrium structure of thin currents sheets: influence of electron pressure anisotropy

    Directory of Open Access Journals (Sweden)

    L. M. Zelenyi

    2004-01-01

    Full Text Available Thin current sheets represent important and puzzling sites of magnetic energy storage and subsequent fast release. Such structures are observed in planetary magnetospheres, solar atmosphere and are expected to be widespread in nature. The thin current sheet structure resembles a collapsing MHD solution with a plane singularity. Being potential sites of effective energy accumulation, these structures have received a good deal of attention during the last decade, especially after the launch of the multiprobe CLUSTER mission which is capable of resolving their 3D features. Many theoretical models of thin current sheet dynamics, including the well-known current sheet bifurcation, have been developed recently. A self-consistent 1D analytical model of thin current sheets in which the tension of the magnetic field lines is balanced by the ion inertia rather than by the plasma pressure gradients was developed earlier. The influence of the anisotropic electron population and of the corresponding electrostatic field that acts to restore quasi-neutrality of the plasma is taken into account. It is assumed that the electron motion is fluid-like in the direction perpendicular to the magnetic field and fast enough to support quasi-equilibrium Boltzmann distribution along the field lines. Electrostatic effects lead to an interesting feature of the current density profile inside the current sheet, i.e. a narrow sharp peak of electron current in the very center of the sheet due to fast curvature drift of the particles in this region. The corresponding magnetic field profile becomes much steeper near the neutral plane although the total cross-tail current is in all cases dominated by the ion contribution. The dependence of electrostatic effects on the ion to electron temperature ratio, the curvature of the magnetic field lines, and the average electron magnetic moment is also analyzed. The implications of these effects on the fine structure of thin current sheets

  11. Crystal and electronic structures of pentacene thin films from grazing-incidence x-ray diffraction and first-principles calculations

    International Nuclear Information System (INIS)

    Nabok, Dmitrii; Puschnig, Peter; Ambrosch-Draxl, Claudia; Werzer, Oliver; Resel, Roland; Smilgies, Detlef-M.

    2007-01-01

    Combined experimental and theoretical investigations on thin films of pentacene are performed in order to determine the structure of the pentacene thin film phase. Grazing incidence x-ray diffraction is used for studying a pentacene thin film with a nominal thickness of 180 nm. The crystal structure is found to exhibit the lattice parameters a=0.592 nm, b=0.754 nm, c=1.563 nm, α=81.5 deg. , β=87.2 deg. , and γ=89.9 deg. . These crystallographic unit cell dimensions are used as the only input parameters for ab initio total-energy calculations within the framework of density functional theory revealing the molecular packing within the crystal structure. Moreover, we calculate the electronic band structure of the thin film phase and compare it to that of the bulk phase. We find the intermolecular bandwidths of the thin film phase to be significantly larger compared to the bulk structure, e.g., the valence bandwidth is twice as large. This remarkable effect is traced back to an enhanced intermolecular π-π overlap due to the upright standing molecules in the thin film phase

  12. Experimental validation of tape springs to be used as thin-walled space structures

    Science.gov (United States)

    Oberst, S.; Tuttle, S. L.; Griffin, D.; Lambert, A.; Boyce, R. R.

    2018-04-01

    With the advent of standardised launch geometries and off-the-shelf payloads, space programs utilising nano-satellite platforms are growing worldwide. Thin-walled, flexible and self-deployable structures are commonly used for antennae, instrument booms or solar panels owing to their lightweight, ideal packaging characteristics and near zero energy consumption. However their behaviour in space, in particular in Low Earth Orbits with continually changing environmental conditions, raises many questions. Accurate numerical models, which are often not available due to the difficulty of experimental testing under 1g-conditions, are needed to answer these questions. In this study, we present on-earth experimental validations, as a starting point to study the response of a tape spring as a representative of thin-walled flexible structures under static and vibrational loading. Material parameters of tape springs in a singly (straight, open cylinder) and a doubly curved design, are compared to each other by combining finite element calculations, with experimental laser vibrometry within a single and multi-stage model updating approach. While the determination of the Young's modulus is unproblematic, the damping is found to be inversely proportional to deployment length. With updated material properties the buckling instability margin is calculated using different slenderness ratios. Results indicate a high sensitivity of thin-walled structures to miniscule perturbations, which makes proper experimental testing a key requirement for stability prediction on thin-elastic space structures. The doubly curved tape spring provides closer agreement with experimental results than a straight tape spring design.

  13. Fabrication of Au/graphene oxide/Ag sandwich structure thin film and its tunable energetics and tailorable optical properties

    OpenAIRE

    Ruijin Hong; Jialin Ji; Chunxian Tao; Daohua Zhang; Dawei Zhang

    2017-01-01

    Au/graphene oxide/Ag sandwich structure thin film was fabricated. The effects of graphene oxide (GO) and bimetal on the structure and optical properties of metal silver films were investigated by X-ray diffraction (XRD), optical absorption, and Raman intensity measurements, respectively. Compared to silver thin film, Au/graphene oxide/Ag sandwich structure composite thin films were observed with wider optical absorption peak and enhanced absorption intensity. The Raman signal for Rhodamine B ...

  14. Thin Film Structure of Tetraceno(2,3-B)thiophene Characterized By Grazing Incidence X-Ray Scattering And Near-Edge X-Ray Absorption Fine Structure Analysis

    International Nuclear Information System (INIS)

    Yuan, Q.; Mannsfeld, S.C.B.; Tang, M.L.; Toney, M.F.; Luening, J.; Bao, Z.A.

    2008-01-01

    Understanding the structure-property relationship for organic semiconductors is crucial in rational molecular design and organic thin film process control. Charge carrier transport in organic field-effect transistors predominantly occurs in a few semiconductor layers close to the interface in contact with the dielectric layer, and the transport properties depend sensitively on the precise molecular packing. Therefore, a better understanding of the impact of molecular packing and thin film morphology in the first few monolayers above the dielectric layer on charge transport is needed to improve the transistor performance. In this Article, we show that the detailed molecular packing in thin organic semiconductor films can be solved through a combination of grazing incidence X-ray diffraction (GIXD), near-edge X-ray absorption spectra fine structure (NEXAFS) spectroscopy, energy minimization packing calculations, and structure refinement of the diffraction data. We solve the thin film structure for 2 and 20 nm thick films of tetraceno(2,3-b)thiophene and detect only a single phase for these thicknesses. The GIXD yields accurate unit cell dimensions, while the precise molecular arrangement in the unit cell was found from the energy minimization and structure refinement; the NEXAFS yields a consistent molecular tilt. For the 20 nm film, the unit cell is triclinic with a = 5.96 A, b = 7.71 A, c = 15.16 A, alpha = 97.30 degrees, beta = 95.63 degrees, gamma = 90 degrees; there are two molecules per unit cell with herringbone packing (49-59 degree angle) and tilted about 7 degrees from the substrate normal. The thin film structure is significantly different from the bulk single-crystal structure, indicating the importance of characterizing thin film to correlate with thin film device performance. The results are compared to the corresponding data for the chemically similar and widely used pentacene. Possible effects of the observed thin film structure and morphology on

  15. Synthesis and characterization of DC magnetron sputtered nano structured molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rondiya, S. R.; Rokade, A. V.; Jadhavar, A. A.; Pandharkar, S. M.; Kulkarni, R. R.; Karpe, S. D.; Diwate, K. D. [School of Energy Studies, Savitribai Phule Pune University, Pune 411007 (India); Jadkar, S. R., E-mail: sandesh@physics.unipune.ac.in [Department of Physics, Savitribai Phule Pune University, Pune 411007 (India)

    2016-04-13

    Molybdenum (Mo) thin films were deposited on corning glass (#7059) substrates using DC magnetron sputtering system. The effect of substrate temperature on the structural, morphology and topological properties have been investigated. Films were characterized by variety of techniques such as low angle x-ray diffraction (low angle XRD), field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM). The low angle XRD analysis revealed that the synthesized Mo films are nanocrystalline having cubic crystal structure with (110) preferential orientation. The microstructure of the deposited Mo thin films observed with FE-SEM images indicated that films are homogeneous and uniform with randomly oriented leaf shape morphology. The AFM analysis shows that with increase in substrate temperature the rms roughness of Mo films increases. The obtained results suggest that the synthesized nanostructured Mo thin films have potential application as a back contact material for high efficiency solar cells like CdTe, CIGS, CZTS etc.

  16. Progress in thin-film silicon solar cells based on photonic-crystal structures

    Science.gov (United States)

    Ishizaki, Kenji; De Zoysa, Menaka; Tanaka, Yoshinori; Jeon, Seung-Woo; Noda, Susumu

    2018-06-01

    We review the recent progress in thin-film silicon solar cells with photonic crystals, where absorption enhancement is achieved by using large-area resonant effects in photonic crystals. First, a definitive guideline for enhancing light absorption in a wide wavelength range (600–1100 nm) is introduced, showing that the formation of multiple band edges utilizing higher-order modes confined in the thickness direction and the introduction of photonic superlattice structures enable significant absorption enhancement, exceeding that observed for conventional random scatterers. Subsequently, experimental evidence of this enhancement is demonstrated for a variety of thin-film Si solar cells: ∼500-nm-thick ultrathin microcrystalline silicon cells, few-µm-thick microcrystalline silicon cells, and ∼20-µm-thick thin single-crystalline silicon cells. The high short-circuit current densities and/or efficiencies observed for each cell structure confirm the effectiveness of using multiple band-edge resonant modes of photonic crystals for enhancing broadband absorption in actual solar cells.

  17. Structural and optical properties of Sb65Se35-xGex thin films

    Science.gov (United States)

    Saleh, S. A.; Al-Hajry, A.; Ali, H. M.

    2011-07-01

    Sb65Se35-xGex (x=0-20 at.%) thin films, prepared by the electron beam evaporation technique on ultrasonically cleaned glass substrates at 300 K, were investigated. The amorphous structure of the thin films was confirmed by x-ray diffraction analysis. The structure was deduced from the Raman spectra measured for all germanium contents in the Sb-Se-Ge matrix. The absorption coefficient (α) of the films was determined by optical transmission measurements. The compositional dependence of the optical band gap is discussed in light of topological and chemical ordered network models.

  18. Optical and structural properties of thin films of ZnO at elevated temperature

    International Nuclear Information System (INIS)

    Kayani, Zohra N.; Afzal, Tosif; Riaz, Saira; Naseem, Shahzad

    2014-01-01

    Highlights: • Thin films of ZnO are prepared on glass substrates using dip-coating. • The X-ray diffraction showed that films are crystalline. • Optical measurements show that the film possesses high transmittance in visible region. • The transmission decreased with increased withdrawal speed. • The films has direct band gap in range 3.78-3.48 eV. - Abstract: Zinc oxide (ZnO) thin films were prepared on glass substrate by sol–gel dip-coating method. The paper presents the properties of zinc oxide thin films deposited on soda-lime-glass substrate via dip-coating technique, using zinc acetate dehydrate and ethanol as raw materials. The effect of withdrawal speed on the crystalline structure, surface morphology and optical properties of the thin films has been investigated using XRD, SEM and UV–Vis spectrophotometer. X-ray diffraction study shows that all the films have hexagonal wurtzite structure with preferred orientation in (0 0 2) direction and transmission spectra showed highly transparent films with band gap ranging from 3.78 to 3.48 eV

  19. Emission Characteristics of Organic Light-Emitting Diodes and Organic Thin-Films with Planar and Corrugated Structures

    Directory of Open Access Journals (Sweden)

    Mao-Kuo Wei

    2010-04-01

    Full Text Available In this paper, we review the emission characteristics from organic light-emitting diodes (OLEDs and organic molecular thin films with planar and corrugated structures. In a planar thin film structure, light emission from OLEDs was strongly influenced by the interference effect. With suitable design of microcavity structure and layer thicknesses adjustment, optical characteristics can be engineered to achieve high optical intensity, suitable emission wavelength, and broad viewing angles. To increase the extraction efficiency from OLEDs and organic thin-films, corrugated structure with micro- and nano-scale were applied. Microstructures can effectively redirects the waveguiding light in the substrate outside the device. For nanostructures, it is also possible to couple out the organic and plasmonic modes, not only the substrate mode.

  20. High performance sandwich structured Si thin film anodes with LiPON coating

    Science.gov (United States)

    Luo, Xinyi; Lang, Jialiang; Lv, Shasha; Li, Zhengcao

    2018-04-01

    The sandwich structured silicon thin film anodes with lithium phosphorus oxynitride (LiPON) coating are synthesized via the radio frequency magnetron sputtering method, whereas the thicknesses of both layers are in the nanometer range, i.e. between 50 and 200 nm. In this sandwich structure, the separator simultaneously functions as a flexible substrate, while the LiPON layer is regarded as a protective layer. This sandwich structure combines the advantages of flexible substrate, which can help silicon release the compressive stress, and the LiPON coating, which can provide a stable artificial solidelectrolyte interphase (SEI) film on the electrode. As a result, the silicon anodes are protected well, and the cells exhibit high reversible capacity, excellent cycling stability and good rate capability. All the results demonstrate that this sandwich structure can be a promising option for high performance Si thin film lithium ion batteries.

  1. Collision-Free Structure Using Thin-Film Magnet For Electrostatic Energy Harvester

    International Nuclear Information System (INIS)

    Yoshii, S; Yamaguchi, K; Fujita, T; Kanda, K; Maenaka, K

    2016-01-01

    This paper proposes collision-free structure using NdFeB thin-film magnet for vibration energy harvesters. By using stripe shaped NdFeB magnet array on the Si MEMS structure, we finally obtained 3 mN of magnetic repulsive force on 8 × 8 mm 2 specimen with 40 μm air-gap. (paper)

  2. Collision-Free Structure Using Thin-Film Magnet For Electrostatic Energy Harvester

    Science.gov (United States)

    Yoshii, S.; Yamaguchi, K.; Fujita, T.; Kanda, K.; Maenaka, K.

    2016-11-01

    This paper proposes collision-free structure using NdFeB thin-film magnet for vibration energy harvesters. By using stripe shaped NdFeB magnet array on the Si MEMS structure, we finally obtained 3 mN of magnetic repulsive force on 8 × 8 mm2 specimen with 40 μm air-gap.

  3. Mechanical characterization of auxetic stainless steel thin sheets with reentrant structure

    Science.gov (United States)

    Lekesiz, H.; Bhullar, S. K.; Karaca, A. A.; Jun, M. B. G.

    2017-08-01

    Smart materials in auxetic form present a great potential for various medical applications due to their unique deformation mechanisms along with durable infrastructure. Both analytical and finite element (FE) models are extensively used in literature to characterize mechanical response of auxetic structures but these structures are mostly thick enough to be considered as bulk material and 3D inherently. Auxetic plates in very thin form, a.e. foil, may bring numerous advantages such as very light design and better biodegradability when needed. However, there is a gap in literature on mechanical characterization of auxetic thin plates. In this study, structural analysis of very thin auxetic plates under uniaxial loading is investigated using both FE method and experimental method. 25 μm thick stainless steel (316L) plates are fabricated with reentrant texture for three different unit cell dimensions and tested under uniaxial loading using universal testing machine. 25 and 50 μm thick sheets with same cell dimensions were analyzed using implicit transient FE model including strain hardening and failure behaviors. FE results cover all the deformation schemes seen in actual tests and total deformation level matches with test results. Effect of plate thickness and cell geometry on auxetic behavior is discussed in detail using FE results. Finally, based on FE analysis results, an optimum geometry for prolonged auxetic behavior, high flexibility and high durability is suggested for future potential applications.

  4. First performance evaluation of software for automatic segmentation, labeling and reformation of anatomical aligned axial images of the thoracolumbar spine at CT.

    Science.gov (United States)

    Scholtz, Jan-Erik; Wichmann, Julian L; Kaup, Moritz; Fischer, Sebastian; Kerl, J Matthias; Lehnert, Thomas; Vogl, Thomas J; Bauer, Ralf W

    2015-03-01

    To evaluate software for automatic segmentation, labeling and reformation of anatomical aligned axial images of the thoracolumbar spine on CT in terms of accuracy, potential for time savings and workflow improvement. 77 patients (28 women, 49 men, mean age 65.3±14.4 years) with known or suspected spinal disorders (degenerative spine disease n=32; disc herniation n=36; traumatic vertebral fractures n=9) underwent 64-slice MDCT with thin-slab reconstruction. Time for automatic labeling of the thoracolumbar spine and reconstruction of double-angulated axial images of the pathological vertebrae was compared with manually performed reconstruction of anatomical aligned axial images. Reformatted images of both reconstruction methods were assessed by two observers regarding accuracy of symmetric depiction of anatomical structures. In 33 cases double-angulated axial images were created in 1 vertebra, in 28 cases in 2 vertebrae and in 16 cases in 3 vertebrae. Correct automatic labeling was achieved in 72 of 77 patients (93.5%). Errors could be manually corrected in 4 cases. Automatic labeling required 1min in average. In cases where anatomical aligned axial images of 1 vertebra were created, reconstructions made by hand were significantly faster (pquality with excellent inter-observer agreement. The evaluated software for automatic labeling and anatomically aligned, double-angulated axial image reconstruction of the thoracolumbar spine on CT is time-saving when reconstructions of 2 and more vertebrae are performed. Checking results of automatic labeling is necessary to prevent errors in labeling. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Anatomical variability of the trunk wood and root tissues of ...

    African Journals Online (AJOL)

    The aim of this study was to investigate the anatomical structure of the trunk wood and the roots of A. nitida and R. racemosa, two mangrove trees from Gabon. The anatomical differences between the trunks and the roots were used to understand their bio-remediating differences through heavy metals. It was found that the ...

  6. Visualisation of bony and vascular structures via digital subtraction images upon the amount of anatomic background

    International Nuclear Information System (INIS)

    Hinz, A.; Scholz, A.; Zwicker, C.

    1992-01-01

    We examined the loss of contrast leaving a part of the anatomic background in digital subtraction angiography by visual analysis and densitometry. We observed a greater loss of the quality at the representation of the bone below than above an amount of anatomic background of 60%. The loss of quality at the representation of the vessels decreases more above than below an anatomical background of 45%. We think that, depending on the clinical problem, an anatomical background between 15 and 30% should be left. (orig.) [de

  7. A Lagrangian cylindrical coordinate system for characterizing dynamic surface geometry of tubular anatomic structures.

    Science.gov (United States)

    Lundh, Torbjörn; Suh, Ga-Young; DiGiacomo, Phillip; Cheng, Christopher

    2018-03-03

    Vascular morphology characterization is useful for disease diagnosis, risk stratification, treatment planning, and prediction of treatment durability. To quantify the dynamic surface geometry of tubular-shaped anatomic structures, we propose a simple, rigorous Lagrangian cylindrical coordinate system to monitor well-defined surface points. Specifically, the proposed system enables quantification of surface curvature and cross-sectional eccentricity. Using idealized software phantom examples, we validate the method's ability to accurately quantify longitudinal and circumferential surface curvature, as well as eccentricity and orientation of eccentricity. We then apply the method to several medical imaging data sets of human vascular structures to exemplify the utility of this coordinate system for analyzing morphology and dynamic geometric changes in blood vessels throughout the body. Graphical abstract Pointwise longitudinal curvature of a thoracic aortic endograft surface for systole and diastole, with their absolute difference.

  8. Structural and optical properties of electrodeposited culnSe2 thin films for photovoltaic solar cells

    International Nuclear Information System (INIS)

    Guillen, C.; Herrero, J.; Galiano, F.

    1990-01-01

    Optical an structural properties of electrodeposited copper indium diselenide, CulnSe2, thin films were studied for its application in photovoltaic devices. X-ray diffraction patterns showed that thin films were grown in chalcopyrite phase after suitable treatments. Values of Eg for the CulnSe2 thin films showed a dependence on the deposition potential as determined by optical measurements. (Author) 47 refs

  9. Preparation of Ferroelectric Thin Films of Bismuth Layer Structured Compounds

    Science.gov (United States)

    Watanabe, Hitoshi; Mihara, Takashi; Yoshimori, Hiroyuki; Araujo, Carlos

    1995-09-01

    Ferroelectric thin films of bismuth layer structured compounds, SrBi2Ta2O9, SrBi2Nb2O9, SrBi4Ti4O15 and their solid solutions, were formed onto a sputtered platinum layer on a silicon substrate using spin-on technique and metal-organic decomposition (MOD) method. X-ray diffraction (XRD) analysis and some electrical measurements were performed on the prepared thin films. XRD results of SrBi2(Ta1- x, Nb x)2O9 films (0≤x≤1) showed that niobium ions substitute for tantalum ions in an arbitrary ratio without any change of the layer structure and lattice constants. Furthermore, XRD results of SrBi2 xTa2O9 films (0≤x≤1.5) indicated that the formation of the bismuth layer structure does not always require an accurate bismuth content. The layer structure was formed above 50% of the stoichiometric bismuth content in the general formula. SrBi2(Ta1- x, Nb x)2O9 films with various Ta/Nb ratios have large enough remanent polarization for nonvolatile memory application and have shown high fatigue resistance against 1011 cycles of full switching of the remanent polarization. Mixture films of the three compounds were also investigated.

  10. Study of structural and optical properties of PbS thin films

    Science.gov (United States)

    Homraruen, T.; Sudswasd, Y.; Sorod, R.; Kayunkid, N.; Yindeesuk, W.

    2018-03-01

    This research aimed to synthesize lead sulfide (PbS) thin films on glass slides using the successive ion layer absorption and reaction (SILAR) method. We studied the optical properties and structure of PbS thin films by changing the number of dipping cycles and the concentration of precursor solution. The results of this experiment show that different conditions have a considerable influence on the thickness and absorbance of the films. When the number of dipping cycles and the concentration of the solution are increased, film thickness and absorbance tend to become higher. The xrays diffraction pattern showed all the diffraction peaks which confirmed the face center cubic and the structure of PbS had identified. Grain size computation was used to confirm how much these conditions could be affected.

  11. Computerized Tomographic Study on the Anatomic Variation of the Paranasal Sinus

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Sun Kyung; Lim, Sug Young; Koh, Kwang Joon [Dept. of Oral and Maxillofacial Radiology and Institute of Oral Bio Science, College of Dentistry, Chonbuk National University, Chonju (Korea, Republic of); Park, Mi Ju [Dept. of Prosthodontics, School of Denstistry, Chonbuk National Universty, Chonju (Korea, Republic of)

    1999-08-15

    To evaluate the anatomic variations of the paranasal sinuses on computed tomographs. The author examined the CT images of the paranasal sinuses retrospectively in 500 patients who visited Chonbuk National University Hospital between January 1996 and December 1997. The highest incidence of anatomic variation of the paranasal sinuses in bilateral structures was agger nasi cell (73.2%), followed by concha bullosa (31.1%), Onodi cell (24.0%), Haller cell (19.8%), maxillary sinus septum (13.0%), paradoxical middle turbinate (2.5%), pneumatized uncinate process (2.0%), and bent uncinate process. The highest incidence of anatomic variation in midline structures was nasal septum deviation(53.2%), followed by nasal septumaerated (29.4%), bulla galli (24.7%) asymmetric intersphenoid septum (22.3%), and nasal septum spur (13.8%). The correlation between anatomic variation and paranasal sinusitis was not found. The results of this study will aid in the diagnosis and treatment of paranasal sinus diseases, especially in the treatment planning before functional endoscopic surgery.

  12. Computerized Tomographic Study on the Anatomic Variation of the Paranasal Sinus

    International Nuclear Information System (INIS)

    Choi, Sun Kyung; Lim, Sug Young; Koh, Kwang Joon; Park, Mi Ju

    1999-01-01

    To evaluate the anatomic variations of the paranasal sinuses on computed tomographs. The author examined the CT images of the paranasal sinuses retrospectively in 500 patients who visited Chonbuk National University Hospital between January 1996 and December 1997. The highest incidence of anatomic variation of the paranasal sinuses in bilateral structures was agger nasi cell (73.2%), followed by concha bullosa (31.1%), Onodi cell (24.0%), Haller cell (19.8%), maxillary sinus septum (13.0%), paradoxical middle turbinate (2.5%), pneumatized uncinate process (2.0%), and bent uncinate process. The highest incidence of anatomic variation in midline structures was nasal septum deviation(53.2%), followed by nasal septumaerated (29.4%), bulla galli (24.7%) asymmetric intersphenoid septum (22.3%), and nasal septum spur (13.8%). The correlation between anatomic variation and paranasal sinusitis was not found. The results of this study will aid in the diagnosis and treatment of paranasal sinus diseases, especially in the treatment planning before functional endoscopic surgery.

  13. Improving the surface structure of high quality Sr{sub 2}FeMoO{sub 6} thin films for multilayer structures

    Energy Technology Data Exchange (ETDEWEB)

    Angervo, I., E-mail: ijange@utu.fi [Wihuri Physical Laboratory, Department of Physics and Astronomy, FI-20014 University of Turku (Finland); University of Turku Graduate School (UTUGS), University of Turku, FI-20014 Turku (Finland); Saloaro, M. [Wihuri Physical Laboratory, Department of Physics and Astronomy, FI-20014 University of Turku (Finland); Tikkanen, J. [Wihuri Physical Laboratory, Department of Physics and Astronomy, FI-20014 University of Turku (Finland); University of Turku Graduate School (UTUGS), University of Turku, FI-20014 Turku (Finland); Huhtinen, H.; Paturi, P. [Wihuri Physical Laboratory, Department of Physics and Astronomy, FI-20014 University of Turku (Finland)

    2017-02-28

    Highlights: • The effects of PLD laser fluence and deposition temperature are investigated on SFMO thin films. • We focus on improving the surface structure of the SFMO thin films. • Both the surface structure and the Curie temperature can be improved by fabricating the films at 900 °C. - Abstract: Two sets of Sr{sub 2}FeMoO{sub 6} thin films were prepared with pulsed laser deposition and the effect of the laser fluence and the deposition temperature was investigated. The Sr{sub 2}FeMoO{sub 6} thin films showed clear evidence of impurity phases when the laser fluence was altered. Phase pure films resulted through the whole temperature range between 900 °C and 1050 °C when a proper laser fluence was used. Films fabricated at lower deposition temperatures resulted with smaller surface roughnesses around 5 nm, higher Curie temperatures and with relatively high saturation magnetization values. The Curie temperature was determined from the minimum of the first order derivative and results showed the highest values of 350 K and above. The films with the highest Curie temperature reached zero magnetization above 400 K. The results indicate that both high microstructural and high magnetic quality Sr{sub 2}FeMoO{sub 6} thin films can be obtained with a deposition temperature between 900 °C and 950 °C. This provides better fabrication parameters for the upcoming SFMO multilayer structures.

  14. Arbitrarily thin metamaterial structure for perfect absorption and giant magnification

    DEFF Research Database (Denmark)

    Jin, Yi; Xiao, Sanshui; Mortensen, N. Asger

    2011-01-01

    In our common understanding, for strong absorption or amplification in a slab structure, the desire of reducing the slab thickness seems contradictory to the condition of small loss or gain. In this paper, this common understanding is challenged. It is shown that an arbitrarily thin metamaterial ...

  15. Three dimensional simulation of giant magneto-impedance effect in thin film structures

    KAUST Repository

    Li, Bodong; Kosel, Jü rgen

    2011-01-01

    In this paper, a three dimensional model for the giant magneto-impedance (GMI) effect in thin film structures is developed using the finite element method(FEM) with a GMI permeability model embedded. One-layer, three-layer, and five-layer thin film structures are simulated. The GMI effect and the sensitivity are calculated as a function of the external magnetic field, driving frequency, and the thickness of the magnetic layers. The results show that the five-layer structure has the best performance, which is in accordance with experimental results. The GMI ratio and the sensitivity first improve with the increasing thickness of the magnetic layer but reach saturation at a certain value of the thickness. In a five-layer structure,saturation of the GMI effect becomes effective at about 3 μm thickness of the magnetic layers, where a GMI ratio of 1125% was obtained, with a corresponding sensitivity of 0.37%/A/m (29.6%/Oe).

  16. Three dimensional simulation of giant magneto-impedance effect in thin film structures

    KAUST Repository

    Li, Bodong

    2011-04-04

    In this paper, a three dimensional model for the giant magneto-impedance (GMI) effect in thin film structures is developed using the finite element method(FEM) with a GMI permeability model embedded. One-layer, three-layer, and five-layer thin film structures are simulated. The GMI effect and the sensitivity are calculated as a function of the external magnetic field, driving frequency, and the thickness of the magnetic layers. The results show that the five-layer structure has the best performance, which is in accordance with experimental results. The GMI ratio and the sensitivity first improve with the increasing thickness of the magnetic layer but reach saturation at a certain value of the thickness. In a five-layer structure,saturation of the GMI effect becomes effective at about 3 μm thickness of the magnetic layers, where a GMI ratio of 1125% was obtained, with a corresponding sensitivity of 0.37%/A/m (29.6%/Oe).

  17. The impact of voxel size-based inaccuracies on the mechanical behavior of thin bone structures.

    Science.gov (United States)

    Maloul, Asmaa; Fialkov, Jeffrey; Whyne, Cari

    2011-03-01

    Computed tomography (CT)-based measures of skeletal geometry and material properties have been widely used to develop finite element (FE) models of bony structures. However, in the case of thin bone structures, the ability to develop FE models with accurate geometry derived from clinical CT data presents a challenge due to the thinness of the bone and the limited resolution of the imaging devices. The purpose of this study was to quantify the impact of voxel size on the thickness and intensity values of thin bone structure measurements and to assess the effect of voxel size on strains through FE modeling. Cortical bone thickness and material properties in five thin bone specimens were quantified at voxel sizes ranging from 16.4 to 488 μm. The measurements derived from large voxel size scans showed large increases in cortical thickness (61.9-252.2%) and large decreases in scan intensity (12.9-49.5%). Maximum principal strains from FE models generated using scans at 488 μm were decreased as compared to strains generated at 16.4 μm voxel size (8.6-64.2%). A higher level of significance was found in comparing intensity (p = 0.0001) vs. thickness (p = 0.005) to strain measurements. These findings have implications in developing methods to generate accurate FE models to predict the biomechanical behavior of thin bone structures.

  18. MORPHOLOGICAL AND ANATOMICAL STUDY OF GRANULES WITH SEEDS EPIDERMIS OF PLANTAGO OVATA FORSSK

    Directory of Open Access Journals (Sweden)

    J. V. Daironas

    2017-01-01

    Full Text Available The results of a morphological and anatomical study of granules from the epidermis of Plantago ovata seeds are presented in the article. Morphological and microscopic diagnostic signs are important for establishing the authenticity of medicinal plant material and drugs made from it.The aim is the identification of morphological and microscopic diagnostic characteristics of the seed epidermis of Plantago ovata, minimal and sufficient to establish the authenticity of the granular pieces of the plant’s epidermis.Materials and methods. The study of morphological and anatomical characteristics as well as histochemical study were conducted according to the procedures of the State Pharmacopoeia of the Russian Federation XIII edition. Microscope “Micromed-1” and digital camera MD300 Electronic Eyepiece (Jincheng were used. Photos were edited in Adobe Photoshop CS6.Results and discussion. Morphological signs of the epidermis of Plantago ovata seeds include its light yellow or pinkish-yellow color and a presence of a pigmented spot of pink or light brown color on the epidermis of the convex side of the seeds and along the seed. These signs are applicable for diagnosis and are also found in crushed raw materials. Granules are rough lumps, consisting of stuck together epidermis pieces. They are characterized by a yellowish or light brown color and the presence of a pigmented spot. The microscopic diagnostic signs include the structure of the upper and lower epidermis, the presence of cells with mucus and starch grains. The upper epidermis consists of large polygonal cells with straight thin anticlinal walls. The cells are covered with a smooth cuticle and are filled with mucus. The lower epidermis consists of elongated rectangular cells. Cells with mucus swell rapidly in the radial direction. Biometric characteristics of anatomical diagnostic signs were established.Conclusion. As the result of a morphological and anatomical study the diagnostic signs

  19. Deep learning of the sectional appearances of 3D CT images for anatomical structure segmentation based on an FCN voting method.

    Science.gov (United States)

    Zhou, Xiangrong; Takayama, Ryosuke; Wang, Song; Hara, Takeshi; Fujita, Hiroshi

    2017-10-01

    We propose a single network trained by pixel-to-label deep learning to address the general issue of automatic multiple organ segmentation in three-dimensional (3D) computed tomography (CT) images. Our method can be described as a voxel-wise multiple-class classification scheme for automatically assigning labels to each pixel/voxel in a 2D/3D CT image. We simplify the segmentation algorithms of anatomical structures (including multiple organs) in a CT image (generally in 3D) to a majority voting scheme over the semantic segmentation of multiple 2D slices drawn from different viewpoints with redundancy. The proposed method inherits the spirit of fully convolutional networks (FCNs) that consist of "convolution" and "deconvolution" layers for 2D semantic image segmentation, and expands the core structure with 3D-2D-3D transformations to adapt to 3D CT image segmentation. All parameters in the proposed network are trained pixel-to-label from a small number of CT cases with human annotations as the ground truth. The proposed network naturally fulfills the requirements of multiple organ segmentations in CT cases of different sizes that cover arbitrary scan regions without any adjustment. The proposed network was trained and validated using the simultaneous segmentation of 19 anatomical structures in the human torso, including 17 major organs and two special regions (lumen and content inside of stomach). Some of these structures have never been reported in previous research on CT segmentation. A database consisting of 240 (95% for training and 5% for testing) 3D CT scans, together with their manually annotated ground-truth segmentations, was used in our experiments. The results show that the 19 structures of interest were segmented with acceptable accuracy (88.1% and 87.9% voxels in the training and testing datasets, respectively, were labeled correctly) against the ground truth. We propose a single network based on pixel-to-label deep learning to address the challenging

  20. Uniaxial and biaxial tensioning effects on thin membrane materials. [large space structures

    Science.gov (United States)

    Hinson, W. F.; Goslee, J. W.

    1980-01-01

    Thin laminated membranes are being considered for various surface applications on future large space structural systems. Some of the thin membranes would be stretched across or between structural members with the requirement that the membrane be maintained within specified limits of smoothness which would be dictated by the particular applications such as antenna reflector requirements. The multiaxial tensile force required to maintain the smoothness in the membrane needs to be determined for use in the structure design. Therefore, several types of thicknesses of thin membrane materials have been subjected to varied levels of uniaxial and biaxial tensile loads. During the biaxial tests, deviations of the material surface smoothness were measured by a noncontacting capacitance probe. Basic materials consisted of composites of vacuum deposited aluminum on Mylar and Kapton ranging in thickness from 0.00025 in (0.000635 cm) to 0.002 in (0.00508 cm). Some of the material was reinforced with Kevlar and Nomex scrim. The uniaxial tests determined the material elongation and tensile forces up to ultimate conditions. Biaxial tests indicated that a relatively smooth material surface could be achieved with tensile force of approximately 1 to 15 Newtons per centimeter, depending upon the material thickness and/or reinforcement.

  1. Structural properties of calcogenic thin films and alloys subjected to synchrotron light

    International Nuclear Information System (INIS)

    Moura, P.R.; Almeida, D.P.; Lima, J.C. de; Campos, C.E.M.; Ponciano, C.R.

    2009-01-01

    Results on structural characterization of Sb 50 Te 50 and Te 24 In 38 Sb 38 alloys prepared as powder and after deposited as a thin films are presented. For that x ray diffraction and energy dispersive X-ray fluorescence were used. The nanocrystalline phases Sb 2 Te 2 and Sb 24 Te 9 were nucleated in both Sb 50 Te 50 and Te 24 In 38 Sb 38 alloys, respectively. The thin films of both binary and ternary alloys are mainly amorphous. According to X-ray fluorescence results the chemical composition inside the ultraviolet irradiated region on one of the binary thin film become different than that outside irradiation marks, suggesting Sb migration. (author)

  2. Highly stable thin film transistors using multilayer channel structure

    KAUST Repository

    Nayak, Pradipta K.

    2015-03-09

    We report highly stable gate-bias stress performance of thin film transistors (TFTs) using zinc oxide (ZnO)/hafnium oxide (HfO2) multilayer structure as the channel layer. Positive and negative gate-bias stress stability of the TFTs was measured at room temperature and at 60°C. A tremendous improvement in gate-bias stress stability was obtained in case of the TFT with multiple layers of ZnO embedded between HfO2 layers compared to the TFT with a single layer of ZnO as the semiconductor. The ultra-thin HfO2 layers act as passivation layers, which prevent the adsorption of oxygen and water molecules in the ZnO layer and hence significantly improve the gate-bias stress stability of ZnO TFTs.

  3. Structural and magnetic properties of pure and Cu doped In{sub 2}O{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, N. Sai; Kaleemulla, S., E-mail: skaleemulla@gmail.com; Rao, N. Madhusudhana; Krishnamoorthi, C.; Begam, M. Rigana [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore – 632014 (India); Amarendra, G. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam –603102 (India); UGC-DAE-CSR, Kalpakkam Node, Kokilamedu-603104 (India)

    2015-06-24

    Pure and Cu (7 at.%) doped In{sub 2}O{sub 3} thin films were prepared using an electron beam evaporation technique. A systematic study was carried out on the structural, chemical and magnetic properties of the thin films. X-ray diffraction analysis revealed that all the films were cubic in structure. The pure and Cu doped In{sub 2}O{sub 3} thin films showed ferromagnetism at room temperature. The Cu doped In{sub 2}O{sub 3} thin films showed the saturation magnetization, coercivity and retentivity of 38.71 emu/cm{sup 3}, 245 G and 5.54 emu/cm{sup 3}, respectively.

  4. Measurement of distances between anatomical structures using a translating stage with mounted endoscope

    Science.gov (United States)

    Kahrs, Lueder A.; Blachon, Gregoire S.; Balachandran, Ramya; Fitzpatrick, J. Michael; Labadie, Robert F.

    2012-02-01

    During endoscopic procedures it is often desirable to determine the distance between anatomical features. One such clinical application is percutaneous cochlear implantation (PCI), which is a minimally invasive approach to the cochlea via a single, straight drill path and can be achieved accurately using bone-implanted markers and customized microstereotactic frame. During clinical studies to validate PCI, traditional open-field cochlear implant surgery was performed and prior to completion of the surgery, a customized microstereotactic frame designed to achieve the desired PCI trajectory was attached to the bone-implanted markers. To determine whether this trajectory would have safely achieved the target, a sham drill bit is passed through the frame to ensure that the drill bit would reach the cochlea without damaging vital structures. Because of limited access within the facial recess, the distances from the bit to anatomical features could not be measured with calipers. We hypothesized that an endoscope mounted on a sliding stage that translates only along the trajectory, would provide sufficient triangulation to accurately measure these distances. In this paper, the design, fabrication, and testing of such a system is described. The endoscope is mounted so that its optical axis is approximately aligned with the trajectory. Several images are acquired as the stage is moved, and threedimensional reconstruction of selected points allows determination of distances. This concept also has applicability in a large variety of rigid endoscopic interventions including bronchoscopy, laparoscopy, and sinus endoscopy.

  5. Topotactic synthesis of strontium cobalt oxyhydride thin film with perovskite structure

    Science.gov (United States)

    Katayama, Tsukasa; Chikamatsu, Akira; Kamisaka, Hideyuki; Yokoyama, Yuichi; Hirata, Yasuyuki; Wadati, Hiroki; Fukumura, Tomoteru; Hasegawa, Tetsuya

    2015-10-01

    The substitution of hydride anions (H-) into transition metal oxides has recently become possible through topotactic reactions or high-pressure synthesis methods. However, the fabrication of oxyhydrides is still difficult because of their inherently less-stable frameworks. In this study, we successfully fabricated perovskite SrCoOxHy thin films via the topotactic hydride doping of brownmillerite SrCoO2.5 epitaxial thin films with CaH2. The perovskite-type cation framework was maintained during the topotactic treatment owing to epitaxial stabilization. Structural and chemical analyses accompanied by X-ray absorption spectroscopy measurements revealed that the doped hydride ions form a two-dimensional network of Co-H--Co bonds, in contrast to other reported perovskite oxyhydrides, SrMO3-xHx (M = Cr, Ti, V). The SrCoOxHy thin film exhibited insulating behavior and had a direct band gap of 2.1 eV. Thus, topotactic hydride doping of transition-metal-oxide thin films on suitable substrates is a promising method for the synthesis of new transition metal oxyhydrides.

  6. Topotactic synthesis of strontium cobalt oxyhydride thin film with perovskite structure

    Directory of Open Access Journals (Sweden)

    Tsukasa Katayama

    2015-10-01

    Full Text Available The substitution of hydride anions (H− into transition metal oxides has recently become possible through topotactic reactions or high-pressure synthesis methods. However, the fabrication of oxyhydrides is still difficult because of their inherently less-stable frameworks. In this study, we successfully fabricated perovskite SrCoOxHy thin films via the topotactic hydride doping of brownmillerite SrCoO2.5 epitaxial thin films with CaH2. The perovskite-type cation framework was maintained during the topotactic treatment owing to epitaxial stabilization. Structural and chemical analyses accompanied by X-ray absorption spectroscopy measurements revealed that the doped hydride ions form a two-dimensional network of Co-H−-Co bonds, in contrast to other reported perovskite oxyhydrides, SrMO3−xHx (M = Cr, Ti, V. The SrCoOxHy thin film exhibited insulating behavior and had a direct band gap of 2.1 eV. Thus, topotactic hydride doping of transition-metal-oxide thin films on suitable substrates is a promising method for the synthesis of new transition metal oxyhydrides.

  7. Fluid-structure-interaction analysis for welded pipes with flow-accelerated corrosion wall thinning

    Energy Technology Data Exchange (ETDEWEB)

    Sun, L.; Ding, Y., E-mail: lan.sun@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    The flow-accelerated corrosion (FAC) entrance effect results in enhanced wall thinning immediately downstream of a weld if the weld connects an upstream FAC-resistant material with a downstream less resistant material. The weld regions, especially those with local repairs, are susceptible to cracking due to the high residual stresses induced by fabrication. The combined effects of the FAC entrance effect and high stresses at a weld might compromise the structural integrity of the piping and lead to a failure. Weld degradation by FAC entrance effect has been observed at nuclear and fossil power plants. This paper describes an application using fluid-structure-interaction (FSI) modelling to study the combined effects of FAC wall thinning, weld residual stresses, and in-service loads on welded structures. Simplified cases analyzed were based on CANDU outlet feeder conditions. The analysis includes the flow and mass transfer modelling of the FAC entrance effect using computational fluid dynamics (CFD) and nonlinear structural analyses of the welded structures with wall thinning and an assumed weld residual stress and strain distribution. The FSI analyses were performed using ANSYS Workbench, an integrated platform that enables the coupling of CFD and structural analysis solutions. The obtained results show that the combination of FAC, weld residual stresses, in-service loads (including the internal pressure) and (or) extreme loads could cause high stresses and affect the integrity of the welded pipes. The present work demonstrated that the FSI modelling can be used as an effective approach to assess the integrity of welded structures. (author)

  8. Structure evolution of zinc oxide thin films deposited by unbalance DC magnetron sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Aryanto, Didik, E-mail: didi027@lipi.go.id [Research Center for Physics, Indonesian Institute of Sciences, Serpong 15314, Tangerang Selatan (Indonesia); Materials Research Group, Physics Department, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia); Marwoto, Putut; Sugianto [Physics Department, Faculty of Mathematics and Science, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia); Materials Research Group, Physics Department, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia); Sudiro, Toto [Research Center for Physics, Indonesian Institute of Sciences, Serpong 15314, Tangerang Selatan (Indonesia); Birowosuto, Muhammad D. [Research Center for Physics, Indonesian Institute of Sciences, Serpong 15314, Tangerang Selatan (Indonesia); CINTRA UMI CNRS/NTU/THALES 3288 Research Techno Plaza, 50 Nanyang Drive, Border X Block, level 6, 637553 (Singapore); Sulhadi [Physics Department, Faculty of Mathematics and Science, Universitas Negeri Semarang, Gunungpati, Semarang 50229 Jawa Tengah (Indonesia)

    2016-04-19

    Zinc oxide (ZnO) thin films are deposited on corning glass substrates using unbalanced DC magnetron sputtering. The effect of growth temperature on surface morphology and crystallographic orientation of ZnO thin film is studied using atomic force microscopy (AFM) and X-ray diffraction (XRD) techniques. The surface morphology and crystallographic orientation of ZnO thin film are transformed against the increasing of growth temperature. The mean grain size of film and the surface roughness are inversely and directly proportional towards the growth temperature from room temperature to 300 °C, respectively. The smaller grain size and finer roughness of ZnO thin film are obtained at growth temperature of 400 °C. The result of AFM analysis is in good agreement with the result of XRD analysis. ZnO thin films deposited in a series of growth temperatures have hexagonal wurtzite polycrystalline structures and they exhibit transformations in the crystallographic orientation. The results in this study reveal that the growth temperature strongly influences the surface morphology and crystallographic orientation of ZnO thin film.

  9. Touching my left elbow: the anatomical structure of the body affects the illusion of self-touch.

    Science.gov (United States)

    White, Rebekah C; Aimola Davies, Anne M

    2011-01-01

    A self-touch paradigm is used to create the illusion that one is touching one's own left elbow when one is actually touching the examiner's arm. Our new self-touch illusion is sensitive to the anatomical structure of the body: you can touch your left elbow with your right index finger but not with your left index finger. Illusion onset was faster and illusion ratings were higher when participants administered touch using the plausible right index finger compared with the implausible left index finger.

  10. Structural, optical and electrical properties of ZnO thin films prepared ...

    Indian Academy of Sciences (India)

    Administrator

    of zinc acetate on glass substrates at 450 °C. Effect of precursor concentration on structural and optical pro- perties has ... dependence of photoresponse properties of sprayed ZnO thin films on ... randomly oriented flake-like grains. The grains ...

  11. Structural and electrical transport properties of La2Mo2O9 thin films prepared by pulsed laser deposition

    Science.gov (United States)

    Paul, T.; Ghosh, A.

    2017-04-01

    We have studied the structure and electrical properties of La2Mo2O9 thin films of different thicknesses prepared by the laser deposition technique at different substrate temperatures. The structural properties of the thin films have been investigated using XRD, XPS, AFM, TEM, SEM, and Raman spectroscopy. The electrical transport properties of the thin films have been investigated in wide temperature and frequency ranges. The cubic nature of the thin films has been confirmed from structural analysis. An enhancement of the oxygen ion conductivity of the films up to five orders of magnitude is obtained compared to that of the bulk La2Mo2O9, suggesting usefulness of the thin films as electrolytes in micro-solid oxide fuel cells. The enhanced dc ionic conductivity of the thin films has been interpreted using the rule of the mixture model, while a power law model has been used to investigate the frequency and temperature dependences of the conductivity. The analysis of the results predicts the three-dimensional oxygen ion conduction in the thin films.

  12. Standards to support information systems integration in anatomic pathology.

    Science.gov (United States)

    Daniel, Christel; García Rojo, Marcial; Bourquard, Karima; Henin, Dominique; Schrader, Thomas; Della Mea, Vincenzo; Gilbertson, John; Beckwith, Bruce A

    2009-11-01

    Integrating anatomic pathology information- text and images-into electronic health care records is a key challenge for enhancing clinical information exchange between anatomic pathologists and clinicians. The aim of the Integrating the Healthcare Enterprise (IHE) international initiative is precisely to ensure interoperability of clinical information systems by using existing widespread industry standards such as Digital Imaging and Communication in Medicine (DICOM) and Health Level Seven (HL7). To define standard-based informatics transactions to integrate anatomic pathology information to the Healthcare Enterprise. We used the methodology of the IHE initiative. Working groups from IHE, HL7, and DICOM, with special interest in anatomic pathology, defined consensual technical solutions to provide end-users with improved access to consistent information across multiple information systems. The IHE anatomic pathology technical framework describes a first integration profile, "Anatomic Pathology Workflow," dedicated to the diagnostic process including basic image acquisition and reporting solutions. This integration profile relies on 10 transactions based on HL7 or DICOM standards. A common specimen model was defined to consistently identify and describe specimens in both HL7 and DICOM transactions. The IHE anatomic pathology working group has defined standard-based informatics transactions to support the basic diagnostic workflow in anatomic pathology laboratories. In further stages, the technical framework will be completed to manage whole-slide images and semantically rich structured reports in the diagnostic workflow and to integrate systems used for patient care and those used for research activities (such as tissue bank databases or tissue microarrayers).

  13. Combinatorial experiment in Ni-Ti thin films by laser interference structuring

    International Nuclear Information System (INIS)

    Liu, K.W.; Gachot, C.; Leibenguth, P.; Muecklich, F.

    2005-01-01

    Combinatorial experiments are achieved on periodically structured Ni-Ti thin film composition spreads by laser interference irradiation using a Nd:YAG laser. Continuous Ni-Ti compositional spreads covering almost the whole binary system are prepared by combining sputter mask, shutter and movement of substrate. The continuous compositional spread is subsequently micro-structured into a sample library consisting of well-defined lines of individual samples by laser interference irradiation. The composition and microstructure effects in continuous spread and sample libraries after laser structuring are explored by scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), X-ray diffraction (XRD) and white light interferometry (WLI) microscopy. The sample library consists of individual samples with a distance of about 5 μm and a composition resolution as high as 0.1 at.% in between. Although, there are certain difficulties so far in obtaining the optimized laser fluence for the spread, the laser interference irradiation provides an effective way to prepare thin film libraries with around 200 sample lines within 1 mm

  14. Anatomical differences in the mirror neuron system and social cognition network in autism.

    Science.gov (United States)

    Hadjikhani, Nouchine; Joseph, Robert M; Snyder, Josh; Tager-Flusberg, Helen

    2006-09-01

    Autism spectrum disorder (ASD) is a neurodevelopmental disorder associated with impaired social and emotional skills, the anatomical substrate of which is still unknown. In this study, we compared a group of 14 high-functioning ASD adults with a group of controls matched for sex, age, intelligence quotient, and handedness. We used an automated technique of analysis that accurately measures the thickness of the cerebral cortex and generates cross-subject statistics in a coordinate system based on cortical anatomy. We found local decreases of gray matter in the ASD group in areas belonging to the mirror neuron system (MNS), argued to be the basis of empathic behavior. Cortical thinning of the MNS was correlated with ASD symptom severity. Cortical thinning was also observed in areas involved in emotion recognition and social cognition. These findings suggest that the social and emotional deficits characteristic of autism may reflect abnormal thinning of the MNS and the broader network of cortical areas subserving social cognition.

  15. Chemical bath deposited and dip coating deposited CuS thin films - Structure, Raman spectroscopy and surface study

    Science.gov (United States)

    Tailor, Jiten P.; Khimani, Ankurkumar J.; Chaki, Sunil H.

    2018-05-01

    The crystal structure, Raman spectroscopy and surface microtopography study on as-deposited CuS thin films were carried out. Thin films deposited by two techniques of solution growth were studied. The thin films used in the present study were deposited by chemical bath deposition (CBD) and dip coating deposition techniques. The X-ray diffraction (XRD) analysis of both the as-deposited thin films showed that both the films possess covellite phase of CuS and hexagonal unit cell structure. The determined lattice parameters of both the films are in agreement with the standard JCPDS as well as reported data. The crystallite size determined by Scherrer's equation and Hall-Williamsons relation using XRD data for both the as-deposited thin films showed that the respective values were in agreement with each other. The ambient Raman spectroscopy of both the as-deposited thin films showed major emission peaks at 474 cm-1 and a minor emmision peaks at 265 cm-1. The observed Raman peaks matched with the covellite phase of CuS. The atomic force microscopy of both the as-deposited thin films surfaces showed dip coating thin film to be less rough compared to CBD deposited thin film. All the obtained results are presented and deliberated in details.

  16. Optical and structural properties of natural MnSeO{sub 4} mineral thin film

    Energy Technology Data Exchange (ETDEWEB)

    Kariper, Ishak Afsin, E-mail: akariper@gmail.com [Erciyes University, Education Faculty, Kayseri (Turkey)

    2017-05-15

    Manganese selenite (MnSeO{sub 4}) crystalline thin film has been produced with chemical bath deposition on substrates (commercial glass). Properties of the thin film, such as transmittance, absorption, and optical band gap and refraction index have been investigated via UV/VIS Spectrum. The structural properties of orthorhombic form have been observed in XRD. The structural and optical properties of MnSeO{sub 4} thin films, deposited at different pH levels were analyzed. Some properties of the films have been changed with the change of pH level, which has been deeply investigated. The grain size of MnSeO{sub 4} thin film has reached its highest value at pH 9. The refraction index and extinction coefficient of MnSeO{sub 4} thin films were measured to be 1.53, 2.86, 2.07, 1.53 (refraction index) and 0.005, 0.029, 0.014, 0.005 (extinction coefficient) for grain sizes 21, 13, 26, and 5 nm respectively. The band gaps (Eg) of the films were measured to be 2.06, 2.57, 2.04, and 2.76 eV for the grain sizes mentioned above. The value of dielectric constant at pH 10 was calculated as 1.575. (author)

  17. Optical properties and band structure of atomically thin MoS2

    Science.gov (United States)

    Shan, Jie; Mak, Kin Fai; Lee, Changgu; Hone, James; Heinz, Tony

    2010-03-01

    Atomically thin layers of materials can be expected to exhibit distinct electronic structure and novel properties compared to their bulk counterparts. Layered compounds, for which stable atomically thin samples can be produced, are ideal candidates for such studies. Graphene, a monolayer slice of the graphite crystal, is an illustrative example of both the stability and of the interest and importance of such materials. Here we report a study of thin layers of MoS2, a hexagonal layered bulk semiconductor with an indirect band gap of 1.3 eV. MoS2 samples with layer thickness N down to a monolayer were obtained by mechanical exfoliation. We observed an enhancement of the luminescence quantum yield by more than a factor of 100 in monolayer MoS2 compared to the bulk material. The combination of absorption, photoluminescence, and photoconductivity measurements indicates that a transition to a direct-gap material occurs in the limit of the single MoS2 layer. This result is supported by an earlier first-principles calculation [J. Phys. Chem. C 2007, 111, 16192]. Further, by varying the thickness of the samples, we were able to probe the evolution of the electronic structure for N = 1 -- 6 layers.

  18. Structure and morphology of pentacene thin films - from sub-monolayers to application relevant multilayers

    International Nuclear Information System (INIS)

    Resel, R.; Werzer, O.; Nabok, D.; Puschnig, P.; Ambrosch-Draxl, C.; Smilgies, D.; Haase, A.; Stadlober, B.

    2008-01-01

    Full text: The conjugated molecule pentacene is one of the most prominent material for application in organic thin film transistors. Charge carrier mobilities of about 1 cm 2 /Vs are realized in different device geometries which are used in integrated circuits. The device performance depends on the detailed structure and morphology of the pentacene thin films. This work presents an combined atomic force microscopy / x-ray scattering study on the formation of pentacene thin films starting from sub-monolayer coverage to the first closed monolayer to finally multilayer structures as they are used in device structures. Thin films of pentacene are prepared on oxidized silicon wafer with nominal thicknesses between 0.2 nm up to 180 nm. The films are investigated ex-situ by x-ray reflectivity and grazing incidence diffraction. In the sub-monolayer regime the formation of separated islands with up-right standing molecules are observed. The islands show typically dendritic shape with a separation of 2 μm from each other. With increasing coverage the dendritic islands coalescent until the first monolayer closes. Fitting of the x-ray reflectivity reveals that an additional layer between the substrate and the up-right standing pentacene molecules is present. During the formation of the second monolayer crystalline islands are formed. The crystallites grow in lateral and vertical size with increasing film thickness. The crystal structure of pentacene within the films is a surface induced phase. The crystal structure of this metastable phase could be solved by a combined experimental and theoretical approach. At a nominal film thickness of about 40 nm the equilibrium bulk structure of pentacene appears; both phases remain existent up the thickest films investigated in this study. (author)

  19. Network of anatomical texts (NAnaTex), an open-source project for visualizing the interaction between anatomical terms.

    Science.gov (United States)

    Momota, Ryusuke; Ohtsuka, Aiji

    2018-01-01

    Anatomy is the science and art of understanding the structure of the body and its components in relation to the functions of the whole-body system. Medicine is based on a deep understanding of anatomy, but quite a few introductory-level learners are overwhelmed by the sheer amount of anatomical terminology that must be understood, so they regard anatomy as a dull and dense subject. To help them learn anatomical terms in a more contextual way, we started a new open-source project, the Network of Anatomical Texts (NAnaTex), which visualizes relationships of body components by integrating text-based anatomical information using Cytoscape, a network visualization software platform. Here, we present a network of bones and muscles produced from literature descriptions. As this network is primarily text-based and does not require any programming knowledge, it is easy to implement new functions or provide extra information by making changes to the original text files. To facilitate collaborations, we deposited the source code files for the network into the GitHub repository ( https://github.com/ryusukemomota/nanatex ) so that anybody can participate in the evolution of the network and use it for their own non-profit purposes. This project should help not only introductory-level learners but also professional medical practitioners, who could use it as a quick reference.

  20. Structural transformations in MoO{sub x} thin films grown by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Camacho-Lopez, M.A.; Haro-Poniatowski, E. [Departamento de Fisica, Laboratorio de Optica Cuantica, Universidad Autonoma Metropolitana Iztapalapa, Apdo. Postal 55-534, 09340, Mexico D. F. (Mexico); Escobar-Alarcon, L. [Departamento de Fisica, Instituto Nacional de Investigaciones Nucleares, Apdo. Postal 18-1027, 11801, Mexico D. F. (Mexico)

    2004-01-01

    In this work, laser-induced crystallization in MoO{sub x} thin films (1.8{<=}x{<=}2.1) is reported. This transformation involves a MoO{sub x} oxidation and subsequently a crystallization process from amorphous MoO{sub 3} to crystalline {alpha}MoO{sub 3}. For comparison purposes crystallization is induced thermally, in an oven, as well. The crystallization kinetics is monitored by Raman spectroscopy; a threshold in the energy density necessary to induce the phase transformation is determined in the case of photo-crystallization. This threshold depends on the type of substrate on which the film is deposited. For the thin films deposited on glass substrates, the structural transformation is from amorphous MoO{sub x} to the thermodynamically stable {alpha}MoO{sub 3} crystalline phase. For the thin films deposited on Si(100) the structural transformation is from amorphous MoO{sub x} to a mixture of {alpha}MoO{sub 3} and the thermodynamically unstable {beta}MoO{sub 3} crystalline phases. The structural transformations are also characterized by scanning electron microscopy and light-transmission experiments. (orig.)

  1. Thin-section CT of the skull base

    International Nuclear Information System (INIS)

    Beyer-Enke, S.A.; Goerich, J.; Gamroth, A.; Tiedemann, K.

    1987-01-01

    High-resolution CT-images of the skull base are depicted and anatomical structures are described. A large variety of osseous and soft tissue structures can be differentiated in the temporal bone, nasopharynx and orbita. Knowledge of the anatomical structures is essential for the recognition of pathological changes and also plays an essential role for the diagnostically involved radiologist. (orig.) [de

  2. Structural phototransformation of WO{sub 3} thin films detected by photoacoustic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Pacheco, Argelia Perez, E-mail: ekargy@hotmail.com [Universidad Nacional Autonoma de Mexico, Laboratorio de Fotofisica y Peliculas Delgadas-CCADET, Ciudad Universitaria, Coyoacan, A.P. 70-186, C.P. 04510, Mexico, D.F. (Mexico); Montes de Oca, C. Oliva; Castaneda-Guzman, R.; Garcia, A. Esparza [Universidad Nacional Autonoma de Mexico, Laboratorio de Fotofisica y Peliculas Delgadas-CCADET, Ciudad Universitaria, Coyoacan, A.P. 70-186, C.P. 04510, Mexico, D.F. (Mexico)

    2012-11-15

    Highlights: Black-Right-Pointing-Pointer The phototransformation of WO{sub 3} thin films were studied by photoacoustic technique. Black-Right-Pointing-Pointer The phase transition in WO{sub 3} thin films was induced by laser irradiation fluence. Black-Right-Pointing-Pointer The onset and end of the phototransformation in the thin films was identified. Black-Right-Pointing-Pointer The ablation threshold for each sample was identified. - Abstract: The photoacoustic technique (PA) was used to detect the phase transformation from amorphous to crystalline state of tungsten oxide (WO{sub 3}) thin films induced by UV pulsed laser radiation at low energy (<1.5 mJ). The evolution of photoacoustic signal was studied by a correlation analysis, comparing successive signals at fluences ranging from 0 to 20 mJ/cm{sup 2}. In this interval, it was possible to observe structural changes and the ablation threshold in films due to incident laser fluence effect. Thin films of WO{sub 3} were deposited by DC reactive magnetron sputtering over glass substrates at different deposition times. The results obtained by correlation analysis were compared with Raman spectroscopy data.

  3. Automatic anatomical structures location based on dynamic shape measurement

    Science.gov (United States)

    Witkowski, Marcin; Rapp, Walter; Sitnik, Robert; Kujawinska, Malgorzata; Vander Sloten, Jos; Haex, Bart; Bogaert, Nico; Heitmann, Kjell

    2005-09-01

    New image processing methods and active photonics apparatus have made possible the development of relatively inexpensive optical systems for complex shape and object measurements. We present dynamic 360° scanning method for analysis of human lower body biomechanics, with an emphasis on the analysis of the knee joint. The anatomical structure (of high medical interest) that is possible to scan and analyze, is patella. Tracking of patella position and orientation under dynamic conditions may lead to detect pathological patella movements and help in knee joint disease diagnosis. The processed data is obtained from a dynamic laser triangulation surface measurement system, able to capture slow to normal movements with a scan frequency between 15 and 30 Hz. These frequency rates are enough to capture controlled movements used e.g. for medical examination purposes. The purpose of the work presented is to develop surface analysis methods that may be used as support of diagnosis of motoric abilities of lower limbs. The paper presents algorithms used to process acquired lower limbs surface data in order to find the position and orientation of patella. The algorithms implemented include input data preparation, curvature description methods, knee region discrimination and patella assumed position/orientation calculation. Additionally, a method of 4D (3D + time) medical data visualization is proposed. Also some exemplary results are presented.

  4. Structural and optical properties of electrodeposited molybdenum oxide thin films

    International Nuclear Information System (INIS)

    Patil, R.S.; Uplane, M.D.; Patil, P.S.

    2006-01-01

    Electrosynthesis of Mo(IV) oxide thin films on F-doped SnO 2 conducting glass (10-20/Ω/□) substrates were carried from aqueous alkaline solution of ammonium molybdate at room temperature. The physical characterization of as-deposited films carried by thermogravimetric/differential thermogravimetric analysis (TGA/DTA), infrared spectroscopy and X-ray diffraction (XRD) showed the formation of hydrous and amorphous MoO 2 . Scanning electron microscopy (SEM) revealed a smooth but cracked surface with multi-layered growth. Annealing of these films in dry argon at 450 deg. C for 1 h resulted into polycrystalline MoO 2 with crystallites aligned perpendicular to the substrate. Optical absorption study indicated a direct band gap of 2.83 eV. The band gap variation consistent with Moss rule and band gap narrowing upon crystallization was observed. Structure tailoring of as-deposited thin films by thermal oxidation in ambient air to obtain electrochromic Mo(VI) oxide thin films was exploited for the first time by this novel route. The results of this study will be reported elsewhere

  5. Anatomical and morphological features of seedlings of some Cactoideae Eaton (Cactaceae Juss. species

    Directory of Open Access Journals (Sweden)

    Halyna Kalashnyk

    2016-12-01

    Full Text Available Three-month-old seedlings of 11 species of the subfamily Cactoideae (Melocactus bahiensis, Melocactus curvispinus, Echinopsis eyriesii, E. mirablis, E. peruviana, Oreocereus celsianus, Rebutia flavistyla, Rebutia minuscula, Astrophytum myriostigma, Mamillaria columbiana, and M. prolifera have been studied. These plants exhibit a uniseriate epidermis, covered by a thin cuticle. Except for E. peruviana and A. myriostigma, no hypodermis could be detected. The shoots of all studied specimens consist mainly of cortex parenchyma with large thin-walled cells. The pith parenchyma is composed of much smaller cells. Due to the fact that the cortex parenchyma comprises the largest portion of the cross-sectional area, it can be concluded that it is the main water-storing tissue. The extent of vascular tissue development varies. Collateral vascular bundles are present in the stele. The studied seedlings contain various ergastic substances, in particular inclusions of calcium oxalate (all studied species, starch (Mammillaria prolifera, E. mirabilis, and the genus Melocactus, inulin-like inclusions, and occasionally lipid drops (some Echinopsis species. Thus, it was found that all studied plants have a highly specialized anatomical and morphological structure. At the same time, the epidermis and hypodermis are poorly developed. Accordingly, the adaptation to arid conditions of the examined seedlings involves an increased growth of the water-storing tissue and the production of ergastic substances.

  6. Demonstration of thin film pair distribution function analysis (tfPDF for the study of local structure in amorphous and crystalline thin films

    Directory of Open Access Journals (Sweden)

    Kirsten M. Ø. Jensen

    2015-09-01

    Full Text Available By means of normal-incidence, high-flux and high-energy X-rays, total scattering data for pair distribution function (PDF analysis have been obtained from thin films (tf, suitable for local structure analysis. By using amorphous substrates as support for the films, the standard Rapid Acquisition PDF setup can be applied and the scattering signal from the film can be isolated from the total scattering data through subtraction of an independently measured background signal. No angular corrections to the data are needed, as would be the case for grazing incidence measurements. The `tfPDF' method is illustrated through studies of as-deposited (i.e. amorphous and crystalline FeSb3 films, where the local structure analysis gives insight into the stabilization of the metastable skutterudite FeSb3 phase. The films were prepared by depositing ultra-thin alternating layers of Fe and Sb, which interdiffuse and after annealing crystallize to form the FeSb3 structure. The tfPDF data show that the amorphous precursor phase consists of corner-sharing FeSb6 octahedra with motifs highly resembling the local structure in crystalline FeSb3. Analysis of the amorphous structure allows the prediction of whether the final crystalline product will form the FeSb3 phase with or without excess Sb present. The study thus illustrates how analysis of the local structure in amorphous precursor films can help to understand crystallization processes of metastable phases and opens for a range of new local structure studies of thin films.

  7. Topotactic synthesis of strontium cobalt oxyhydride thin film with perovskite structure

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, Tsukasa [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); Chikamatsu, Akira, E-mail: chikamatsu@chem.s.u-tokyo.ac.jp; Kamisaka, Hideyuki [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); CREST, Japan Science and Technology Agency (JST), Tokyo 113-0033 (Japan); Yokoyama, Yuichi; Hirata, Yasuyuki; Wadati, Hiroki [Institute for Solid State Physics, The University of Tokyo, Chiba 277-8581 (Japan); Fukumura, Tomoteru [CREST, Japan Science and Technology Agency (JST), Tokyo 113-0033 (Japan); Department of Chemistry, Tohoku University, Miyagi 980-8578 (Japan); Hasegawa, Tetsuya [Department of Chemistry, The University of Tokyo, Tokyo 113-0033 (Japan); CREST, Japan Science and Technology Agency (JST), Tokyo 113-0033 (Japan); Kanagawa Academy of Science and Technology (KAST), Kawasaki 213-0012 (Japan)

    2015-10-15

    The substitution of hydride anions (H{sup −}) into transition metal oxides has recently become possible through topotactic reactions or high-pressure synthesis methods. However, the fabrication of oxyhydrides is still difficult because of their inherently less-stable frameworks. In this study, we successfully fabricated perovskite SrCoO{sub x}H{sub y} thin films via the topotactic hydride doping of brownmillerite SrCoO{sub 2.5} epitaxial thin films with CaH{sub 2}. The perovskite-type cation framework was maintained during the topotactic treatment owing to epitaxial stabilization. Structural and chemical analyses accompanied by X-ray absorption spectroscopy measurements revealed that the doped hydride ions form a two-dimensional network of Co-H{sup −}-Co bonds, in contrast to other reported perovskite oxyhydrides, SrMO{sub 3−x}H{sub x} (M = Cr, Ti, V). The SrCoO{sub x}H{sub y} thin film exhibited insulating behavior and had a direct band gap of 2.1 eV. Thus, topotactic hydride doping of transition-metal-oxide thin films on suitable substrates is a promising method for the synthesis of new transition metal oxyhydrides.

  8. Core-Shell Double Gyroid Structure Formed by Linear ABC Terpolymer Thin Films.

    Science.gov (United States)

    Antoine, Ségolène; Aissou, Karim; Mumtaz, Muhammad; Telitel, Siham; Pécastaings, Gilles; Wirotius, Anne-Laure; Brochon, Cyril; Cloutet, Eric; Fleury, Guillaume; Hadziioannou, Georges

    2018-05-01

    The synthesis and self-assembly in thin-film configuration of linear ABC triblock terpolymer chains consisting of polystyrene (PS), poly(2-vinylpyridine) (P2VP), and polyisoprene (PI) are described. For that purpose, a hydroxyl-terminated PS-b-P2VP (45 kg mol -1 ) building block and a carboxyl-terminated PI (9 kg mol -1 ) are first separately prepared by anionic polymerization, and then are coupled via a Steglich esterification reaction. This quantitative and metal-free catalyst synthesis route reveals to be very interesting since functionalization and purification steps are straightforward, and well-defined terpolymers are produced. A solvent vapor annealing (SVA) process is used to promote the self-assembly of frustrated PS-b-P2VP-b-PI chains into a thin-film core-shell double gyroid (Q 230 , space group: Ia3¯d) structure. As terraces are formed within PS-b-P2VP-b-PI thin films during the SVA process under a CHCl 3 vapor, different plane orientations of the Q 230 structure ((211), (110), (111), and (100)) are observed at the polymer-air interface depending on the film thickness. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Anatomical structure of virginal plants of Ikonnikovia kaufmanniana (Regel Lincz.

    Directory of Open Access Journals (Sweden)

    Aygul Аkhmetova

    2014-04-01

    Full Text Available In the paper is represented anatomical characteristic of vegetative organs of the rare, endangered and endemic species – Ikonnikovia kaufmanniana, which has been studied in conditions of three different coenopopulations. As a result, it was established that vegetative organs of these plants are characterized by different stage of development of its tissues dependently from the habitat.

  10. Acute eosinophilic pneumonia: Thin-section CT findings in 29 patients

    International Nuclear Information System (INIS)

    Daimon, Tadahisa; Johkoh, Takeshi; Sumikawa, Hiromitsu; Honda, Osamu; Fujimoto, Kiminori; Koga, Takeharu; Arakawa, Hiroaki; Yanagawa, Masahiro; Inoue, Atsuo; Mihara, Naoki; Tomiyama, Noriyuki

    2008-01-01

    Purpose: To determine thin-section computed tomography (CT) characteristics of acute eosinophilic pneumonia (AEP). Materials and methods: Thin-section CT scans of 29 patients (14 males, 15 females; mean age, 26 ± 15 years; age range, 15-72 years) with AEP were included this retrospective study. The clinical diagnosis of AEP was established by Allen's criteria. Each thin-section CT was reviewed by two observers. Results: Bilateral areas with ground-glass attenuation were observed on thin-section CT in all patients. Areas of air-space consolidation were present in 16 (55%) of 29 patients. Poorly defined centrilobular nodules were present in 9 patients (31%). Interlobular septal thickening was present in 26 patients (90%). Thickening of bronchovascular bundles was present in 19 patients (66%). Pleural effusions were present in 23 patients (79%) (bilateral = 22, right side = 1, left side = 0). The predominant overall anatomic distribution was central in only 2 (7%) of 29 patients, peripheral in 9 patients (31%), and random in 18 patients (62%). The overall zonal predominance was upper in 4 patients (14%), lower in 8 patients (28%), and random in 17 patients (58%). Conclusion: CT findings in AEP patients consisted mainly of bilateral areas of ground-glass attenuation, interlobular septal thickening, thickening of bronchovascular bundles, and the presence of a pleural effusion without cardiomegaly. The most common overall anatomic distribution and zonal predominance of the abnormal CT findings were random

  11. Acute eosinophilic pneumonia: Thin-section CT findings in 29 patients

    Energy Technology Data Exchange (ETDEWEB)

    Daimon, Tadahisa [Department of Radiology, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan); Department of Medicine, Division of Pulmonary Medicine, Jichi Medical University, Yakushiji 3311-1, Shimotsuke, Tochigi 329-0498 (Japan)], E-mail: t-daimon@radiol.med.osaka-u.ac.jp; Johkoh, Takeshi [Department of Radiology, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: johkoh@sahs.med.osaka-u.ac.jp; Sumikawa, Hiromitsu [Department of Radiology, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: h-sumikawa@radiol.med.osaka-u.ac.jp; Honda, Osamu [Department of Radiology, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: ohonda@radiol.med.osaka-u.ac.jp; Fujimoto, Kiminori [Department of Radiology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011 (Japan)], E-mail: kimichan@med.kurume-u.ac.jp; Koga, Takeharu [Department of Medicine, Division of Respirology and Neurology, Kurume University School of Medicine, 67 Asahi-machi, Kurume 830-0011 (Japan)], E-mail: kogat@med.kurume-u.ac.jp; Arakawa, Hiroaki [Department of Radiology, Dokkyo University School of Medicine, 880 Kita-Kobayashi, Mibu, Tochigi 321-0293 (Japan)], E-mail: arakawa@dokkyomed.ac.jp; Yanagawa, Masahiro [Department of Radiology, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: m-yanagawa@radiol.med.osaka-u.ac.jp; Inoue, Atsuo [Department of Radiology, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: ainoue@radiol.med.osaka-u.ac.jp; Mihara, Naoki [Department of Radiology, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: nmihara@radiol.med.osaka-u.ac.jp; Tomiyama, Noriyuki [Department of Radiology, Osaka University Medical School, 2-2 Yamadaoka, Suita, Osaka 565-0871 (Japan)], E-mail: tomiyama@radiol.med.osaka-u.ac.jp (and others)

    2008-03-15

    Purpose: To determine thin-section computed tomography (CT) characteristics of acute eosinophilic pneumonia (AEP). Materials and methods: Thin-section CT scans of 29 patients (14 males, 15 females; mean age, 26 {+-} 15 years; age range, 15-72 years) with AEP were included this retrospective study. The clinical diagnosis of AEP was established by Allen's criteria. Each thin-section CT was reviewed by two observers. Results: Bilateral areas with ground-glass attenuation were observed on thin-section CT in all patients. Areas of air-space consolidation were present in 16 (55%) of 29 patients. Poorly defined centrilobular nodules were present in 9 patients (31%). Interlobular septal thickening was present in 26 patients (90%). Thickening of bronchovascular bundles was present in 19 patients (66%). Pleural effusions were present in 23 patients (79%) (bilateral = 22, right side = 1, left side = 0). The predominant overall anatomic distribution was central in only 2 (7%) of 29 patients, peripheral in 9 patients (31%), and random in 18 patients (62%). The overall zonal predominance was upper in 4 patients (14%), lower in 8 patients (28%), and random in 17 patients (58%). Conclusion: CT findings in AEP patients consisted mainly of bilateral areas of ground-glass attenuation, interlobular septal thickening, thickening of bronchovascular bundles, and the presence of a pleural effusion without cardiomegaly. The most common overall anatomic distribution and zonal predominance of the abnormal CT findings were random.

  12. Femtosecond laser surface structuring of molybdenum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Kotsedi, L., E-mail: Kotsedi@tlabs.ac.za [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Mthunzi, P. [Council for Scientific and Industrial Research (CSIR), Biophotonics Lab: National Laser Centre Pretoria, 0001 (South Africa); Nuru, Z.Y. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Eaton, S.M. [Physics Department, Politecnico di Milano, Piazza Leonardo Da Vinci, 32, 20133 Milano (Italy); Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Pascoli 70/3, 20133 Milano, Itala (Italy); Sechoghela, P.; Mongwaketsi, N. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa); Ramponi, R. [Institute for Photonics and Nanotechnologies (IFN)–CNR, Piazza Leanardo Da Vinci, 32, 20133 Milano (Italy); Maaza, M. [UNESCO-UNISA Africa Chair in Nanosciences-Nanotechnology, College of Graduate Studies, University of South Africa, Muckleneuk ridge, PO Box 392, Pretoria (South Africa); Nanosciences African Network (NANOAFNET), iThemba LABS-National Research Foundation, 1 Old Faure Road, Somerset West 7129, PO Box 722, Somerset West, Western Cape Province (South Africa)

    2015-10-30

    Highlights: • Color change of the molybdenum thin film from shinny to violet–yellowish color after laser irradiation at various laser powers. • Formation of the molybdenum dioxide coating after laser exposure, as confirmed by the X-ray diffraction spectrometry. • Selective solar absorbing nature of the laser exposed films. • Study of the binding energies is presented in this contribution using the XPS spectrometry. - Abstract: This contribution reports on the femtosecond surface structuring of molybdenum thin coatings deposited by electron beam evaporation onto Corning glass substrates. The 1-D type periodic grating lines created by such an ablation showed that the widths of the shallow grooves followed a logarithmic dependence with the laser energy incident on the molybdenum film. The electronic valence “x” of the created oxide surface layer MoO{sub x} was found to be incident laser power dependent via Rutherford backscattering spectrometry, X-ray photoelectron spectroscopy and X-ray diffraction investigations. Such a photo-induced MoO{sub x}–Mo nanocomposite exhibited effective selective solar absorption in the UV–vis–IR spectral range.

  13. Structural and Optical Properties of Ultra-high Pure Hot Water Processed Ga2O3 Thin Film

    Directory of Open Access Journals (Sweden)

    Subramani SHANMUGAN

    2016-05-01

    Full Text Available Thin film based gas sensor is an advanced application of thin film especially Ga2O3 (GO thin film gas sensor is useful for high temperature gas sensor. The effect of moisture or environment on thin film properties has more influence on gas sensing properties. Radio Frequency sputtered Ga2O3 thin film was synthesized and processed in ultra-high pure hot water at 95 °C for different time durations. The structural properties were verified by the Xray Diffraction technique and the observed spectra revealed the formation of hydroxyl compound of Gallium (Gallium Oxide Dueterate – GOD on the surface of the thin film and evidenced for structural defects as an effect of moisture. Decreased crystallite size and increased dislocation density was showed the crystal defects of prepared film. From the Ultra Violet – Visible spectra, decreased optical transmittance was noticed for various processing time. The formation of needle like GOD was confirmed using Field Emission Secondary Electron Microscope (FESEM images.DOI: http://dx.doi.org/10.5755/j01.ms.22.2.7186

  14. Structural, morphological and optical properties of thermal annealed TiO thin films

    International Nuclear Information System (INIS)

    Zribi, M.; Kanzari, M.; Rezig, B.

    2008-01-01

    Structural, morphological and optical properties of TiO thin films grown by single source thermal evaporation method were studied. The films were annealed from 300 to 520 deg. C in air after evaporation. Qualitative film analysis was performed with X-ray diffraction, atomic force microscopy and optical transmittance and reflectance spectra. A correlation was established between the optical properties, surface roughness and growth morphology of the evaporated TiO thin films. The X-ray diffraction spectra indicated the presence of the TiO 2 phase for the annealing temperature above 400 deg. C

  15. Thin films as an emerging platform for drug delivery

    Directory of Open Access Journals (Sweden)

    Sandeep Karki

    2016-10-01

    Full Text Available Pharmaceutical scientists throughout the world are trying to explore thin films as a novel drug delivery tool. Thin films have been identified as an alternative approach to conventional dosage forms. The thin films are considered to be convenient to swallow, self-administrable, and fast dissolving dosage form, all of which make it as a versatile platform for drug delivery. This delivery system has been used for both systemic and local action via several routes such as oral, buccal, sublingual, ocular, and transdermal routes. The design of efficient thin films requires a comprehensive knowledge of the pharmacological and pharmaceutical properties of drugs and polymers along with an appropriate selection of manufacturing processes. Therefore, the aim of this review is to provide an overview of the critical factors affecting the formulation of thin films, including the physico-chemical properties of polymers and drugs, anatomical and physiological constraints, as well as the characterization methods and quality specifications to circumvent the difficulties associated with formulation design. It also highlights the recent trends and perspectives to develop thin film products by various companies.

  16. Solidified structure of thin-walled titanium parts by vertical centrifugal casting

    Directory of Open Access Journals (Sweden)

    Wu Shiping

    2011-05-01

    Full Text Available The solidified structure of the thin-walled and complicated Ti-6Al-4V castings produced by the vertical centrifugal casting process was studied in the present work. The results show that the wall thickness of the section is featured with homogeneously distributed fine equiaxial grains, compared with the microstructure of the thick-walled section. The grain size of the castings has a tendency to decrease gradually with the increasing of the centrifugal radius. The inter-lamellar space in thick-walled casting parts is bigger than that of the thin-walled parts, and the profile of inter-lamellar space is not susceptible to the centrifugal radius.

  17. Fabrication of Au/graphene oxide/Ag sandwich structure thin film and its tunable energetics and tailorable optical properties

    Directory of Open Access Journals (Sweden)

    Ruijin Hong

    2017-01-01

    Full Text Available Au/graphene oxide/Ag sandwich structure thin film was fabricated. The effects of graphene oxide (GO and bimetal on the structure and optical properties of metal silver films were investigated by X-ray diffraction (XRD, optical absorption, and Raman intensity measurements, respectively. Compared to silver thin film, Au/graphene oxide/Ag sandwich structure composite thin films were observed with wider optical absorption peak and enhanced absorption intensity. The Raman signal for Rhodamine B molecules based on the Au/graphene oxide/Ag sandwich nanostructure substrate were obviously enhanced due to the bimetal layer and GO layer with tunable absorption intensity and fluorescence quenching effects.

  18. Dysphagia and aspiration after chemoradiotherapy for head-and-neck cancer: which anatomic structures are affected and can they be spared by IMRT?

    NARCIS (Netherlands)

    Eisbruch, Avraham; Schwartz, Marco; Rasch, Coen; Vineberg, Karen; Damen, Eugene; van As, Corina J.; Marsh, Robin; Pameijer, Frank A.; Balm, Alfons J. M.

    2004-01-01

    PURPOSE: To identify the anatomic structures whose damage or malfunction cause late dysphagia and aspiration after intensive chemotherapy and radiotherapy (RT) for head-and-neck cancer, and to explore whether they can be spared by intensity-modulated RT (IMRT) without compromising target RT. METHODS

  19. Magnetic resonance angiography: infrequent anatomic variants

    International Nuclear Information System (INIS)

    Trejo, Mariano; Meli, Francisco; Lambre, Hector; Blessing, Ricardo; Gigy Traynor, Ignacio; Miguez, Victor

    2002-01-01

    We studied through RM angiography (3D TOF) with high magnetic field equipment (1.5 T) different infrequent intracerebral vascular anatomic variants. For their detection we emphasise the value of post-processed images obtained after conventional angiographic sequences. These post-processed images should be included in routine protocols for evaluation of the intracerebral vascular structures. (author)

  20. Anatomical variations of paranasal sinuses at multislice computed tomography: what to look for

    International Nuclear Information System (INIS)

    Miranda, Christiana Maia Nobre Rocha de; Maranhao, Carol Pontes de Miranda; Padilha, Igor Gomes; Farias, Lucas de Padua Gomes de; Jatoba, Mayara Stephanie de Araujo; Andrade, Anna Carolina Mendonca de; Padilha, Bruno Gomes

    2011-01-01

    Multislice computed tomography is currently the imaging modality of choice for evaluating paranasal sinuses and adjacent structures. Such a method has been increasingly utilized in the assessment of anatomical variations, allowing their accurate identification with high anatomical details. Some anatomical variations may predispose to sinusal diseases, constituting areas of high risk for injuries and complications during surgical procedures. Therefore, the recognition of such variations is critical in the preoperative evaluation for endoscopic surgery. (author)

  1. Anatomical variations of paranasal sinuses at multislice computed tomography: what to look for

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Christiana Maia Nobre Rocha de; Maranhao, Carol Pontes de Miranda [Clinica de Medicina Nuclear e Radiologia de Maceio (Medradius), Maceio, AL (Brazil). Setor de Tomografia Computadorizada; Arraes, Fabiana Maia Nobre Rocha [Clinica Sinus, Maceio, AL (Brazil); Padilha, Igor Gomes; Farias, Lucas de Padua Gomes de; Jatoba, Mayara Stephanie de Araujo; Andrade, Anna Carolina Mendonca de; Padilha, Bruno Gomes [Universidade Federal de Alagoas (UFAL), Maceio, AL (Brazil)

    2011-07-15

    Multislice computed tomography is currently the imaging modality of choice for evaluating paranasal sinuses and adjacent structures. Such a method has been increasingly utilized in the assessment of anatomical variations, allowing their accurate identification with high anatomical details. Some anatomical variations may predispose to sinusal diseases, constituting areas of high risk for injuries and complications during surgical procedures. Therefore, the recognition of such variations is critical in the preoperative evaluation for endoscopic surgery. (author)

  2. Characterization of Novel Thin-Films and Structures for Integrated Circuit and Photovoltaic Applications

    Science.gov (United States)

    Zhao, Zhao

    Thin films have been widely used in various applications. This research focuses on the characterization of novel thin films in the integrated circuits and photovoltaic techniques. The ion implanted layer in silicon can be treated as ion implanted thin film, which plays an essential role in the integrated circuits fabrication. Novel rapid annealing methods, i.e. microwave annealing and laser annealing, are conducted to activate ion dopants and repair the damages, and then are compared with the conventional rapid thermal annealing (RTA). In terms of As+ and P+ implanted Si, the electrical and structural characterization confirms that the microwave and laser annealing can achieve more efficient dopant activation and recrystallization than conventional RTA. The efficient dopant activation in microwave annealing is attributed to ion hopping under microwave field, while the liquid phase growth in laser annealing provides its efficient dopant activation. The characterization of dopants diffusion shows no visible diffusion after microwave annealing, some extent of end range of diffusion after RTA, and significant dopant diffusion after laser annealing. For photovoltaic applications, an indium-free novel three-layer thin-film structure (transparent composited electrode (TCE)) is demonstrated as a promising transparent conductive electrode for solar cells. The characterization of TCE mainly focuses on its optical and electrical properties. Transfer matrix method for optical transmittance calculation is validated and proved to be a desirable method for predicting transmittance of TCE containing continuous metal layer, and can estimate the trend of transmittance as the layer thickness changes. TiO2/Ag/TiO2 (TAgT) electrode for organic solar cells (OSCs) is then designed using numerical simulation and shows much higher Haacke figure of merit than indium tin oxide (ITO). In addition, TAgT based OSC shows better performance than ITO based OSC when compatible hole transfer layer

  3. Effect of oxygen deficiency on electronic properties and local structure of amorphous tantalum oxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Denny, Yus Rama [Department of Physics Education, University of Sultan Ageng Tirtayasa, Banten 42435 (Indonesia); Firmansyah, Teguh [Department of Electrical Engineering, University of Sultan Ageng Tirtayasa, Banten 42435 (Indonesia); Oh, Suhk Kun [Department of Physics, Chungbuk National University, Cheongju 28644 (Korea, Republic of); Kang, Hee Jae, E-mail: hjkang@cbu.ac.kr [Department of Physics, Chungbuk National University, Cheongju 28644 (Korea, Republic of); Yang, Dong-Seok [Department of Physics Education, Chungbuk National University, Cheongju 28644 (Korea, Republic of); Heo, Sung; Chung, JaeGwan; Lee, Jae Cheol [Analytical Engineering Center, Samsung Advanced Institute of Technology, Suwon 16678 (Korea, Republic of)

    2016-10-15

    Highlights: • The effect of oxygen flow rate on electronic properties and local structure of tantalum oxide thin films was studied. • The oxygen deficiency induced the nonstoichiometric state a-TaOx. • A small peak at 1.97 eV above the valence band side appeared on nonstoichiometric Ta{sub 2}O{sub 5} thin films. • The oxygen flow rate can change the local electronic structure of tantalum oxide thin films. - Abstract: The dependence of electronic properties and local structure of tantalum oxide thin film on oxygen deficiency have been investigated by means of X-ray photoelectron spectroscopy (XPS), Reflection Electron Energy Loss Spectroscopy (REELS), and X-ray absorption spectroscopy (XAS). The XPS results showed that the oxygen flow rate change results in the appearance of features in the Ta 4f at the binding energies of 23.2 eV, 24.4 eV, 25.8, and 27.3 eV whose peaks are attributed to Ta{sup 1+}, Ta{sup 2+}, Ta{sup 3+}/Ta{sup 4+}, and Ta{sup 5+}, respectively. The presence of nonstoichiometric state from tantalum oxide (TaOx) thin films could be generated by the oxygen vacancies. In addition, XAS spectra manifested both the increase of coordination number of the first Ta-O shell and a considerable reduction of the Ta-O bond distance with the decrease of oxygen deficiency.

  4. Structural, optical and magnetic properties of nanocrystalline Co-doped ZnO thin films grown by sol-gel

    Energy Technology Data Exchange (ETDEWEB)

    Kayani, Zohra Nazir; Shah, Iqra; Zulfiqar, Bareera; Sabah, Aneeqa [Lahore College for Women Univ., Lahore (Pakistan); Riaz, Saira; Naseem, Shahzad [Univ. of the Punjab, Lahore (Pakistan). Centre of Excellence in Solid State Physics

    2018-04-01

    Cobalt-doped ZnO thin films have been deposited using a sol-gel route by changing the number of coats on the substrate from 6 to 18. This project deals with various film thicknesses by increasing the number of deposited coats. The effect of thickness on structural, magnetic, surface morphology and optical properties of Co-doped ZnO thin film was studied. The crystal structure of the Co-doped ZnO films was investigated by X-ray diffraction. The films have polycrystalline wurtzite hexagonal structures. A Co{sup 2+} ion takes the place of a Zn{sup 2+} ion in the lattice without creating any distortion in its hexagonal wurtzite structure. An examination of the optical transmission spectra showed that the energy band gap of the Co-doped ZnO films increased from 3.87 to 3.97 eV with an increase in the number of coatings on the substrate. Ferromagnetic behaviour was confirmed by measurements using a vibrating sample magnetometer. The surface morphology of thin films was assessed by scanning electron microscope. The grain size on the surface of thin films increased with an increase in the number of coats.

  5. Structural colors of the SiO2/polyethyleneimine thin films on poly(ethylene terephthalate) substrates

    International Nuclear Information System (INIS)

    Jia, Yanrong; Zhang, Yun; Zhou, Qiubao; Fan, Qinguo; Shao, Jianzhong

    2014-01-01

    The SiO 2 /polyethyleneimine (PEI) films with structural colors on poly(ethylene terephthalate) (PET) substrates were fabricated by an electrostatic self-assembly method. The morphology of the films was characterized by Scanning Electron Microscopy. The results showed that there was no distinguishable multilayered structure found of SiO 2 /PEI films. The optical behaviors of the films were investigated through the color photos captured by a digital camera and the color measurement by a multi-angle spectrophotometer. Different hue and brightness were observed at various viewing angles. The structural colors were dependent on the SiO 2 particle size and the number of assembly cycles. The mechanism of the structural colors generated from the assembled films was elucidated. The morphological structures and the optical properties proved that the SiO 2 /PEI film fabricated on PET substrate formed a homogeneous inorganic/organic SiO 2 /PEI composite layer, and the structural colors were originated from single thin film interference. - Highlights: • SiO 2 /PEI thin films were electrostatic self-assembled on PET substrates. • The surface morphology and optical behavior of the film were investigated. • The structural colors varied with various SiO 2 particle sizes and assembly cycles. • Different hue and lightness of SiO 2 /PEI film were observed at various viewing angles. • Structural color of the SiO 2 /PEI film originated from single thin film interference

  6. Fast automatic segmentation of anatomical structures in x-ray computed tomography images to improve fluorescence molecular tomography reconstruction.

    Science.gov (United States)

    Freyer, Marcus; Ale, Angelique; Schulz, Ralf B; Zientkowska, Marta; Ntziachristos, Vasilis; Englmeier, Karl-Hans

    2010-01-01

    The recent development of hybrid imaging scanners that integrate fluorescence molecular tomography (FMT) and x-ray computed tomography (XCT) allows the utilization of x-ray information as image priors for improving optical tomography reconstruction. To fully capitalize on this capacity, we consider a framework for the automatic and fast detection of different anatomic structures in murine XCT images. To accurately differentiate between different structures such as bone, lung, and heart, a combination of image processing steps including thresholding, seed growing, and signal detection are found to offer optimal segmentation performance. The algorithm and its utilization in an inverse FMT scheme that uses priors is demonstrated on mouse images.

  7. Hemispheric Asymmetry of Human Brain Anatomical Network Revealed by Diffusion Tensor Tractography

    Directory of Open Access Journals (Sweden)

    Ni Shu

    2015-01-01

    Full Text Available The topological architecture of the cerebral anatomical network reflects the structural organization of the human brain. Recently, topological measures based on graph theory have provided new approaches for quantifying large-scale anatomical networks. However, few studies have investigated the hemispheric asymmetries of the human brain from the perspective of the network model, and little is known about the asymmetries of the connection patterns of brain regions, which may reflect the functional integration and interaction between different regions. Here, we utilized diffusion tensor imaging to construct binary anatomical networks for 72 right-handed healthy adult subjects. We established the existence of structural connections between any pair of the 90 cortical and subcortical regions using deterministic tractography. To investigate the hemispheric asymmetries of the brain, statistical analyses were performed to reveal the brain regions with significant differences between bilateral topological properties, such as degree of connectivity, characteristic path length, and betweenness centrality. Furthermore, local structural connections were also investigated to examine the local asymmetries of some specific white matter tracts. From the perspective of both the global and local connection patterns, we identified the brain regions with hemispheric asymmetries. Combined with the previous studies, we suggested that the topological asymmetries in the anatomical network may reflect the functional lateralization of the human brain.

  8. Low-temperature growth and electronic structures of ambipolar Yb-doped zinc tin oxide transparent thin films

    Science.gov (United States)

    Oh, Seol Hee; Ferblantier, Gerald; Park, Young Sang; Schmerber, Guy; Dinia, Aziz; Slaoui, Abdelilah; Jo, William

    2018-05-01

    The compositional dependence of the crystal structure, optical transmittance, and surface electric properties of the zinc tin oxide (Zn-Sn-O, shortened ZTO) thin films were investigated. ZTO thin films with different compositional ratios were fabricated on glass and p-silicon wafers using radio frequency magnetron sputtering. The binding energy of amorphous ZTO thin films was examined by a X-ray photoelectron spectroscopy. The optical transmittance over 70% in the visible region for all the ZTO films was observed. The optical band gap of the ZTO films was changed as a result of the competition between the Burstein-Moss effect and renormalization. An electron concentration in the films and surface work function distribution were measured by a Hall measurement and Kelvin probe force microscopy, respectively. The mobility of the n- and p-type ZTO thin films have more than 130 cm2/V s and 15 cm2/V s, respectively. We finally constructed the band structure which contains band gap, work function, and band edges such as valence band maximum and conduction band minimum of ZTO thin films. The present study results suggest that the ZTO thin film is competitive compared with the indium tin oxide, which is a representative material of the transparent conducting oxides, regarding optoelectronic devices applications.

  9. Initial postbuckling analysis of elastoplastic thin-shear structures

    Science.gov (United States)

    Carnoy, E. G.; Panosyan, G.

    1984-01-01

    The design of thin shell structures with respect to elastoplastic buckling requires an extended analysis of the influence of initial imperfections. For conservative design, the most critical defect should be assumed with the maximum allowable magnitude. This defect is closely related to the initial postbuckling behavior. An algorithm is given for the quasi-static analysis of the postbuckling behavior of structures that exhibit multiple buckling points. the algorithm based upon an energy criterion allows the computation of the critical perturbation which will be employed for the definition of the critical defect. For computational efficiency, the algorithm uses the reduced basis technique with automatic update of the modal basis. The method is applied to the axisymmetric buckling of cylindrical shells under axial compression, and conclusions are given for future research.

  10. Effect of Substrate Roughness on Adhesion and Structural Properties of Ti-Ni Shape Memory Alloy Thin Film.

    Science.gov (United States)

    Kim, Donghwan; Lee, Hyunsuk; Bae, Joohyeon; Jeong, Hyomin; Choi, Byeongkeun; Nam, Taehyun; Noh, Jungpil

    2018-09-01

    Ti-Ni shape memory alloy (SMA) thin films are very attractive material for industrial and medical applications such as micro-actuator, micro-sensors, and stents for blood vessels. An important property besides shape memory effect in the application of SMA thin films is the adhesion between the film and the substrate. When using thin films as micro-actuators or micro-sensors in MEMS, the film must be strongly adhered to the substrate. On the other hand, when using SMA thin films in medical devices such as stents, the deposited alloy thin film must be easily separable from the substrate for efficient processing. In this study, we investigated the effect of substrate roughness on the adhesion of Ti-Ni SMA thin films, as well as the structural properties and phase-transformation behavior of the fabricated films. Ti-Ni SMA thin films were deposited onto etched glass substrates with magnetron sputtering. Radio frequency plasma was used for etching the substrate. The adhesion properties were investigated through progressive scratch test. Structural properties of the films were determined via Feld emission scanning electron microscopy, X-ray diffraction measurements (XRD) and Energy-dispersive X-ray spectroscopy analysis. Phase transformation behaviors were observed with differential scanning calorimetry and low temperature-XRD. Ti-Ni SMA thin film deposited onto rough substrate provides higher adhesive strength than smooth substrate. However the roughness of the substrate has no influence on the growth and crystallization of the Ti-Ni SMA thin films.

  11. Growth and structure of a young Aleppo pine planted forest after thinning for diversification and wildfire prevention

    Directory of Open Access Journals (Sweden)

    J. Ruiz-Mirazo

    2013-04-01

    Full Text Available Aim of study: In the Mediterranean, low timber-production forests are frequently thinned to promote biodiversity and reduce wildfire risk, but few studies in the region have addressed such goals. The aim of this research was to compare six thinning regimes applied to create a fuelbreak in a young Aleppo pine (Pinus halepensis Mill. planted forest.Area of study: A semiarid continental high plateau in south-eastern Spain.Material and Methods: Three thinning intensities (Light, Medium and Heavy were combined with two thinning methods: i Random (tree selection, and ii Regular (tree spacing. Tree growth and stand structure measurements were made four years following treatments.Main results: Heavy Random thinning successfully transformed the regular tree plantation pattern into a close-to-random spatial tree distribution. Heavy Regular thinning (followed by the Medium Regular and Heavy Random regimes significantly reduced growth in stand basal area and biomass. Individual tree growth, in contrast, was greater in Heavy and Medium thinnings than in Light ones, which were similar to the Control.Research highlights: Heavy Random thinning seemed the most appropriate in a youngAleppo pine planted forest to reduce fire risk and artificial tree distribution simultaneously. Light Regular thinning avoids understocking the stand and may be the most suitable treatment for creating a fuelbreak when the undergrowth poses a high fire risk.Keywords: Pinus halepensis; Mediterranean; Forest structure; Tree growth; Wildfire risk; Diversity.

  12. Structure analysis of ultra-thin films. STM/AFM. Chousumaku no kozo kaiseki. STM/AFM

    Energy Technology Data Exchange (ETDEWEB)

    Nozoe, H; Yumura, M [National Institute of Materials and Chemical Research, Tsukuba (Japan)

    1994-03-30

    Fullerene (C60) and carbon nanotubes are expected as new carbon structures. This article describes the observation results of C60 and carbon nanotubes by means of STM (scanning tunnel microscope). The STM images of C60 thin films are illustrated, which have been obtained by annealing at 290 centigrade. It was confirmed that C60 monomolecular thin films are formed which conform to the substrate and have high regularity. The step height of C60 monomolecular thin films coincided with the step height of Cu (111) plane, which suggested that the step of films is reflected in that of Cu substrate. For the STM images under bias voltages, various images of C60 with three-fold axis of symmetry were observed. On the other hand, from STM observation of carbon nanotubes with diameter of about 30 nm which were separated and purified from the cathode deposits during the preparation process of C60, it was found that they have concentric multilayer structure. 18 refs., 7 figs.

  13. Comparison of structural properties of thermally evaporated CdTe thin films on different substrates

    International Nuclear Information System (INIS)

    Tariq, G.H.; Anis-ur-Rehman, M.

    2011-01-01

    The direct energy band gap in the range of 1.5 eV and the high absorption coefficient (105 cm/sup -1/) makes Cadmium Telluride (CdTe) a suitable material for fabrication of thin film solar cells. Thin film solar cells based on CdTe (1 cm area) achieved efficiency of 15.6% on a laboratory scale. CdTe thin films were deposited by thermal evaporation technique under vacuum 2 X 10/sup -5/mbar on glass and stainless steel (SS) substrates. During deposition substrates temperature was kept same at 200 deg. C for all samples. The structural properties were determined by the X-ray Diffraction (XRD) patterns. All samples exhibit polycrystalline nature. Dependence of different structural parameters such as lattice parameter, micro strain, and grain size and dislocation density on thickness was studied. Also the influence of the different substrates on these parameters was investigated. The analysis showed that the preferential orientation of films was dependent on the substrate type. (author)

  14. Growth and structure of thermally evaporated Bi{sub 2}Te{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rogacheva, E.I., E-mail: rogacheva@kpi.kharkov.ua [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine); Budnik, A.V. [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine); Dobrotvorskaya, M.V.; Fedorov, A.G.; Krivonogov, S.I.; Mateychenko, P.V. [Institute for Single Crystals of NAS of Ukraine, 60 Lenin Prospect, Kharkov 61001 (Ukraine); Nashchekina, O.N.; Sipatov, A.Yu. [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze St., Kharkov 61002 (Ukraine)

    2016-08-01

    The growth mechanism, microstructure, and crystal structure of the polycrystalline n-Bi{sub 2}Te{sub 3} thin films with thicknesses d = 15–350 nm, prepared by thermal evaporation in vacuum onto glass substrates, were studied. Bismuth telluride with Te excess was used as the initial material for the thin film preparation. The thin film characterization was performed using X-ray diffraction, X-ray photoelectron spectroscopy, energy-dispersive X-ray spectroscopy, scan electron microscopy, and electron force microscopy. It was established that the chemical composition of the prepared films corresponded rather well to the starting material composition and the films did not contain any phases apart from Bi{sub 2}Te{sub 3}. It was shown that the grain size and the film roughness increased with increasing film thickness. The preferential growth direction changed from [00l] to [015] under increasing d. The X-ray photoelectron spectroscopy studies showed that the thickness of the oxidized surface layer did not exceed 1.5–2.0 nm and practically did not change in the process of aging at room temperature, which is in agreement with the results reported earlier for single crystals. The obtained data show that using simple and inexpensive method of thermal evaporation in vacuum and appropriate technological parameters, one can grow n-Bi{sub 2}Te{sub 3} thin films of a sufficiently high quality. - Highlights: • The polycrystalline n-Bi{sub 2}Te{sub 3} thin films were grown thermal evaporation onto glass. • The growth mechanism and film structure were studied by different structure methods. • The grain size and film roughness increased with increasing film thickness. • The growth direction changes from [00l] to [015] under film thickness increasing. • The oxidized layer thickness (1–2 nm) did not change under aging at room temperature.

  15. Synthesis and characterization of porous structured ZnO thin film for dye sensitized solar cell applications

    Energy Technology Data Exchange (ETDEWEB)

    Marimuthu, T.; Anandhan, N., E-mail: anandhan-kn@rediffmail.com; Mummoorthi, M. [School of Physics, Alagappa University, Karaikudi – 630 003 (India); Dharuman, V. [Department of Bioelectronics and Biosensors, Alagappa University, Karaikudi – 630 003 (India)

    2016-05-23

    Zinc oxide (ZnO) and zinc oxide/eosin yellow (ZnO/EY) thin films were potentiostatically deposited onto fluorine doped tin oxide (FTO) glass substrate. Effect of eosin yellow dye on structural, morphological and optical properties was studied. X-ray diffraction patterns, micro Raman spectra and photoluminescence (PL) spectra reveal hexagonal wurtzite structure with less atomic defects in 101 plane orientation of the ZnO/EY film. Scanning electron microscopy (SEM) images show flower for ZnO and porous like structure for ZnO/EY thin film, respectively. DSSC was constructed and evaluated by measuring the current density verses voltage curve.

  16. Vibrational behavior of adaptive aircraft wing structures modelled as composite thin-walled beams

    Science.gov (United States)

    Song, O.; Librescu, L.; Rogers, C. A.

    1992-01-01

    The vibrational behavior of cantilevered aircraft wings modeled as thin-walled beams and incorporating piezoelectric effects is studied. Based on the converse piezoelectric effect, the system of piezoelectric actuators conveniently located on the wing yield the control of its associated vertical and lateral bending eigenfrequencies. The possibility revealed by this study enabling one to increase adaptively the eigenfrequencies of thin-walled cantilevered beams could play a significant role in the control of the dynamic response and flutter of wing and rotor blade structures.

  17. Geometric shape control of thin film ferroelectrics and resulting structures

    Science.gov (United States)

    McKee, Rodney A.; Walker, Frederick J.

    2000-01-01

    A monolithic crystalline structure and a method of making involves a semiconductor substrate, such as silicon, and a ferroelectric film, such as BaTiO.sub.3, overlying the surface of the substrate wherein the atomic layers of the ferroelectric film directly overlie the surface of the substrate. By controlling the geometry of the ferroelectric thin film, either during build-up of the thin film or through appropriate treatment of the thin film adjacent the boundary thereof, the in-plane tensile strain within the ferroelectric film is relieved to the extent necessary to permit the ferroelectric film to be poled out-of-plane, thereby effecting in-plane switching of the polarization of the underlying substrate material. The method of the invention includes the steps involved in effecting a discontinuity of the mechanical restraint at the boundary of the ferroelectric film atop the semiconductor substrate by, for example, either removing material from a ferroelectric film which has already been built upon the substrate, building up a ferroelectric film upon the substrate in a mesa-shaped geometry or inducing the discontinuity at the boundary by ion beam deposition techniques.

  18. Durability of thin-walled concrete structures

    International Nuclear Information System (INIS)

    Salomon, M.; Gallias, J.L.

    1991-01-01

    The aim of the present document is to draw up a survey of knowledge of the problems of ageing of reinforced concrete shell structure atmospheric coolers. The exposure conditions are particularly favourable to the induction and development of degradation which, because of the thinness of the reinforced concrete can compromise the stability and the durability of coolers. The study will be axed on the link between the specific characteristics of coolers from the point of view of operation, design and environment, also the durability of reinforced concrete. The set of factors exerting their influence on the reinforced concrete of the shell structure (condensates, rain water, temperature and humidity gradients, dynamic loads, weathering, etc.) is particularly complex. The principal degradation reactions involved are classified according to the chemical and physical action on concrete and on the reinforcement. Particular emphasis is placed on the analysis of degradation processes and the influence of the characteristics of the materials and of the medium. The aim is to determine the mechanisms which present the greatest risk for coolers. The interaction between the degradation to concrete and the change in mechanical characteristics is also studied [fr

  19. Structural and Electromagnetic Properties of Ni-Mn-Ga Thin Films Deposited on Si Substrates

    Directory of Open Access Journals (Sweden)

    Pereira M. J.

    2014-07-01

    Full Text Available Ni2MnGa thin films raise great interest due to their properties, which provide them with strong potential for technological applications. Ni2MnGa thin films were prepared by r.f. sputtering deposition on Si substrates at low temperature (400 ºC. Film thicknesses in the range 10-120 nm were obtained. A study of the structural, magnetic and electrical properties of the films is presented. We find that the deposited films show some degree of crystallinity, with coexisting cubic and tetragonal structural phases, the first one being preponderant over the latter, particularly in the thinner films. The films possess soft magnetic properties and their coercivity is thickness dependent in the range 15-200 Oe at 300K. Electrical resistivity measurements signal the structural transition and suggest the occurrence of avalanche and return-point memory effects, in temperature cycling through the magnetic/structural transition range.

  20. Determination of the thickness of chemically removed thin layers on GaAs VPE structures

    Energy Technology Data Exchange (ETDEWEB)

    Somogyi, K.; Nemeth-Sallay, M.; Nemcsics, A. (Research Inst. for Technical Physics, Hungarian Academy of Sciences, Budapest (Hungary))

    1991-01-01

    Thinning of epitaxial GaAs layers was studied during the surface etching, with a special attention to submicron epitaxial structures, like MESFET or varactor-type structures. Each chemical treatment influences the crystal surface during the device preparation processes, though the possible thinning of the active layer is small. Therefore a method allowing determination of thicknesses as small as at about 20 nm of the layer removed by chemical etching from GaAs VPE structures was applied. Using special multilayered structures and a continuous electrochemical carrier concentration depth profiling, the influence of the layer thickness inhomogeneity and of some measurement errors can be minimized. Some frequently used etchants and the influence of different - so called - non-etching processes were compared in different combinations. It was shown that besides the direct etching a change of the surface conditions occurs, which influences the etch rate in the succeeding etching procedure. (orig.).

  1. Laryngeal spaces and lymphatics: current anatomic concepts

    International Nuclear Information System (INIS)

    Welsh, L.W.; Welsh, J.J.; Rizzo, T.A. Jr.

    1983-01-01

    This investigation evaluates the anatomic concepts of individual spaces or compartments within the larynx by isotope and dye diffusion. The authors identified continuity of spaces particularly within the submucosal planes and a relative isolation within the fixed structures resulting from the longitudinal pattern of fibroelastic tissues, muscle bands, and perichondrium. The historical data of anatomic resistance are refuted by the radioisotope patterns of dispersion and the histologic evidence of tissue permeability to the carbon particles. There is little clinical application of the compartment concept to the perimeter of growth and the configuration of extensive endolaryngeal cancers. The internal and extralaryngeal lymphatic network is presented and the regional associations are identified. The normal ipsilateral relationship is distorted by dispersion within the endolarynx supervening the anatomic midline. The effects of lymphatic obstruction caused by regional lymphadenectomy, tumor fixation, and irradiation-infection sequelae are illustrated; these result in widespread bilateral lymphatic nodal terminals. Finally, the evidence suggests that the internal network is modified by external interruption to accommodate an outflow system in continuity with the residual patent lymphatic channels

  2. Fully automatic detection of corresponding anatomical landmarks in volume scans of different respiratory state

    International Nuclear Information System (INIS)

    Berlinger, Kajetan; Roth, Michael; Sauer, Otto; Vences, Lucia; Schweikard, Achim

    2006-01-01

    A method is described which provides fully automatic detection of corresponding anatomical landmarks in volume scans taken at different respiratory states. The resulting control points are needed for creating a volumetric deformation model for motion compensation in radiotherapy. Prior to treatment two CT volumes are taken, one scan during inhalation, one during exhalation. These scans and the detected control point pairs are taken as input for creating the four-dimensional model by using thin-plate splines

  3. Crystal structure and phase composition of aluminium thin films with holmium additions

    International Nuclear Information System (INIS)

    Koleshko, V.M.; Belitskij, V.F.; Obukhov, V.E.; Rumak, N.V.; Urban, T.P.

    1984-01-01

    The effect of holmium additions on the crystal structure and phase composition of thin aluminium films has been studied. A regularity in grain size changes in aluminium thin films versus the holmium content in them is established. The holmium introduction is shown to result in the appearance of axial texture in the aluminium films, the texture axis being determined by the quantity of the addition. During heat treatment of the aluminium films, containing holmium additions, in the range of low ( approximately 100-200 deg C) annealing temperatures holmium monohydroxide is formed, and at annealing temperatures 300 deg C 0 3 is formed

  4. Mechanism of polarization switching in wurtzite-structured zinc oxide thin films

    Science.gov (United States)

    Konishi, Ayako; Ogawa, Takafumi; Fisher, Craig A. J.; Kuwabara, Akihide; Shimizu, Takao; Yasui, Shintaro; Itoh, Mitsuru; Moriwake, Hiroki

    2016-09-01

    The properties of a potentially new class of ferroelectric materials based on wurtzite-structured ZnO thin films are examined using the first-principles calculations. Theoretical P-E hysteresis loops were calculated using the fixed-D method for both unstrained and (biaxially) strained single crystals. Ferroelectric polarization switching in ZnO (S.G. P63mc) is shown to occur via an intermediate non-polar structure with centrosymmetric P63/mmc symmetry by displacement of cations relative to anions in the long-axis direction. The calculated coercive electric field (Ec) for polarization switching was estimated to be 7.2 MV/cm for defect-free monocrystalline ZnO. During switching, the short- and long-axis lattice parameters expand and contract, respectively. The large structural distortion required for switching may explain why ferroelectricity in this compound has not been reported experimentally for pure ZnO. Applying an epitaxial tensile strain parallel to the basal plane is shown to be effective in lowering Ec during polarization, with a 5% biaxial expansion resulting in a decrease of Ec to 3.5 MV/cm. Comparison with calculated values for conventional ferroelectric materials suggests that the ferroelectric polarization switching of wurtzite-structured ZnO may be achievable by preparing high-quality ZnO thin films with suitable strain levels and low defect concentrations.

  5. Internuclear ophthalmoplegia: MR imaging and anatomic correlation

    International Nuclear Information System (INIS)

    Atlas, S.W.; Grossman, R.I.; Savino, P.J.

    1986-01-01

    Internuclear ophthalmoplegia is a gaze disorder characterized by impaired adduction of the side of a lesion in the medial longitudinal fasciculus (MLF) with dissociated nystagmus of the abducting eye. Eleven patients with internuclear ophthalmoplegia (nine with multiple sclerosis, two with infarction) were examined with spin-echo MR imaging performed at 1.5 T. Nine of the 11 patients also underwent CT. MR imaging was highly sensitive (10 of 11 cases) and CT was of no value (0 of 9 cases) in detecting clinically suspected MLF lesions. These lesions must be distinguished from ''pseudo-MLF hyperintensity,'' which appears as a thin, strictly midline, linear hyperintensity just interior to the fourth ventricle and aqueduct in healthy subjects. True MLF lesions are nodular, more prominent, and slightly off the midline, corresponding to the paramedian anatomic site of the MLF

  6. The effect of percutaneous transcatheter occlusion of left atrial appendage on left atrium and adjacent anatomic structure in canine

    International Nuclear Information System (INIS)

    Yang Zhihong; Wu Hong; Qin Yongwen; Hu Jianqiang; Ding Zhongru; Liu Zongjun; Liu Biao; Zheng Xing

    2009-01-01

    Objective: To observe the effect of percutaneous transcatheter occlusion of left atrial appendage (LAA) with a new self-manufactured LAA occluder on left atrium and adjacent anatomic structure in canine. Methods: A new self-manufactured LAA occluder was implanted into the LAA through a transseptal catheter in 20 dogs. Before and after the procedure, the experimental dogs were anaesthetized and examined by transthoracic echocardiography (TTE) to measure the diameter and the volume of the left atrium, the left superior pulmonary vein flow velocity and the left atrioventricular valve flow velocity separately. The contrast radiography of the LAA and the left coronary arteriography were performed. Results: The new LAA occluder was implanted successfully in 14 dogs. No obvious changes in the diameter and the volume of the left atrium, in left superior pulmonary vein flow velocity and in left atrioventricular valve flow velocity were found. On arteriography, left circumflex artery was normally displayed after the procedure. No migration of the occluder was seen on TTE and angiography after procedure. Conclusion: Percutaneous transcatheter occlusion of left atrial appendage with a new self-manufactured LAA occluder has no obvious effect on left atrium and adjacent anatomic structure in experimental canine, which indicates that the new-type device is a safe and feasible occluder for LAA. (authors)

  7. Properties of Exchange Coupled All-garnet Magneto-Optic Thin Film Multilayer Structures

    Science.gov (United States)

    Nur-E-Alam, Mohammad; Vasiliev, Mikhail; Kotov, Viacheslav A.; Balabanov, Dmitry; Akimov, Ilya; Alameh, Kamal

    2015-01-01

    The effects of exchange coupling on magnetic switching properties of all-garnet multilayer thin film structures are investigated. All-garnet structures are fabricated by sandwiching a magneto-soft material of composition type Bi1.8Lu1.2Fe3.6Al1.4O12 or Bi3Fe5O12:Dy2O3 in between two magneto-hard garnet material layers of composition type Bi2Dy1Fe4Ga1O12 or Bi2Dy1Fe4Ga1O12:Bi2O3. The fabricated RF magnetron sputtered exchange-coupled all-garnet multilayers demonstrate a very attractive combination of magnetic properties, and are of interest for emerging applications in optical sensors and isolators, ultrafast nanophotonics and magneto-plasmonics. An unconventional type of magnetic hysteresis behavior not observed previously in magnetic garnet thin films is reported and discussed. PMID:28788043

  8. Properties of Exchange Coupled All-garnet Magneto-Optic Thin Film Multilayer Structures

    Directory of Open Access Journals (Sweden)

    Mohammad Nur-E-Alam

    2015-04-01

    Full Text Available The effects of exchange coupling on magnetic switching properties of all-garnet multilayer thin film structures are investigated. All-garnet structures are fabricated by sandwiching a magneto-soft material of composition type Bi1.8Lu1.2Fe3.6Al1.4O12 or Bi3Fe5O12:Dy2O3 in between two magneto-hard garnet material layers of composition type Bi2Dy1Fe4Ga1O12 or Bi2Dy1Fe4Ga1O12:Bi2O3. The fabricated RF magnetron sputtered exchange-coupled all-garnet multilayers demonstrate a very attractive combination of magnetic properties, and are of interest for emerging applications in optical sensors and isolators, ultrafast nanophotonics and magneto-plasmonics. An unconventional type of magnetic hysteresis behavior not observed previously in magnetic garnet thin films is reported and discussed.

  9. Growth process and structure of Er/Si(100) thin film

    International Nuclear Information System (INIS)

    Fujii, S.; Michishita, Y.; Miyamae, N.; Suto, H.; Honda, S.; Okado, H.; Oura, K.; Katayama, M.

    2006-01-01

    The solid-phase reactive epitaxial growth processes and structures of Er/Si(100) thin films were investigated by coaxial impact-collision ion scattering spectroscopy (CAICISS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). The as-deposited Er film grown at room temperature was transformed into crystalline rectangular-shaped islands after annealing at 900 deg. C. These islands have a hexagonal AlB 2 -type structure and the epitaxial relationship is determined to be ErSi 2 (011-bar0)[0001]//Si(100)[011-bar]. It has been revealed that the surface of the Er silicide island is terminated with an Er plane

  10. Structural transformation of CsI thin film photocathodes under exposure to air and UV irradiation

    CERN Document Server

    Tremsin, A S; Siegmund, O H W

    2000-01-01

    Transmission electron microscopy has been employed to study the structure of polycrystalline CsI thin films and its transformation under exposure to humid air and UV irradiation. The catastrophic degradation of CsI thin film photocathode performance is shown to be associated with the film dissolving followed by its re-crystallization. This results in the formation of large lumps of CsI crystal on the substrate surface, so that the film becomes discontinuous and its performance as a photocathode is permanently degraded. No change in the surface morphology and the film crystalline structure was observed after the samples were UV irradiated.

  11. Connecting imaging mass spectrometry and magnetic resonance imaging-based anatomical atlases for automated anatomical interpretation and differential analysis.

    Science.gov (United States)

    Verbeeck, Nico; Spraggins, Jeffrey M; Murphy, Monika J M; Wang, Hui-Dong; Deutch, Ariel Y; Caprioli, Richard M; Van de Plas, Raf

    2017-07-01

    Imaging mass spectrometry (IMS) is a molecular imaging technology that can measure thousands of biomolecules concurrently without prior tagging, making it particularly suitable for exploratory research. However, the data size and dimensionality often makes thorough extraction of relevant information impractical. To help guide and accelerate IMS data analysis, we recently developed a framework that integrates IMS measurements with anatomical atlases, opening up opportunities for anatomy-driven exploration of IMS data. One example is the automated anatomical interpretation of ion images, where empirically measured ion distributions are automatically decomposed into their underlying anatomical structures. While offering significant potential, IMS-atlas integration has thus far been restricted to the Allen Mouse Brain Atlas (AMBA) and mouse brain samples. Here, we expand the applicability of this framework by extending towards new animal species and a new set of anatomical atlases retrieved from the Scalable Brain Atlas (SBA). Furthermore, as many SBA atlases are based on magnetic resonance imaging (MRI) data, a new registration pipeline was developed that enables direct non-rigid IMS-to-MRI registration. These developments are demonstrated on protein-focused FTICR IMS measurements from coronal brain sections of a Parkinson's disease (PD) rat model. The measurements are integrated with an MRI-based rat brain atlas from the SBA. The new rat-focused IMS-atlas integration is used to perform automated anatomical interpretation and to find differential ions between healthy and diseased tissue. IMS-atlas integration can serve as an important accelerator in IMS data exploration, and with these new developments it can now be applied to a wider variety of animal species and modalities. This article is part of a Special Issue entitled: MALDI Imaging, edited by Dr. Corinna Henkel and Prof. Peter Hoffmann. Copyright © 2017. Published by Elsevier B.V.

  12. Anatomical relations of anterior and posterior ankle arthroscopy portals: a cadaveric study.

    Science.gov (United States)

    Oliva, Xavier Martin; Méndez López, José Manuel; Monzo Planella, Mariano; Bravo, Alex; Rodrigues-Pinto, Ricardo

    2015-04-01

    Ankle arthroscopy is an increasingly used technique. Knowledge of the anatomical structures in relation to its portals is paramount to avoid complications. Twenty cadaveric ankles were analysed to assess the distance between relevant neurovascular structures to the anteromedial, anterolateral, posteromedial, and posterolateral arthroscopy portals. The intermediate dorsal branch of the superficial peroneal nerve was the closest structure to any of the portals (4.8 mm from the anterolateral portal), followed by the posterior tibial nerve (7.3 mm from the posteromedial portal). All structures analysed but one (posterior tibial artery) were, at least in one specimen, portals. This study provides information on the anatomical relations of ankle arthroscopy portals and relevant neurovascular structures, confirming previous studies identifying the superficial peroneal nerve as the structure at highest risk of injury, but also highlighting some important variations. Techniques to minimise the injury to these structures are discussed.

  13. Implantable polymer/metal thin film structures for the localized treatment of cancer by Joule heating

    Science.gov (United States)

    Kan-Dapaah, Kwabena; Rahbar, Nima; Theriault, Christian; Soboyejo, Wole

    2015-04-01

    This paper presents an implantable polymer/metal alloy thin film structure for localized post-operative treatment of breast cancer. A combination of experiments and models is used to study the temperature changes due to Joule heating by patterned metallic thin films embedded in poly-dimethylsiloxane. The heat conduction within the device and the surrounding normal/cancerous breast tissue is modeled with three-dimensional finite element method (FEM). The FEM simulations are used to explore the potential effects of device geometry and Joule heating on the temperature distribution and lesion (thermal dose). The FEM model is validated using a gel model that mimics biological media. The predictions are also compared to prior results from in vitro studies and relevant in vivo studies in the literature. The implications of the results are discussed for the potential application of polymer/metal thin film structures in hyperthermic treatment of cancer.

  14. Structure of a zinc oxide ultra-thin film on Rh(100)

    Energy Technology Data Exchange (ETDEWEB)

    Yuhara, J.; Kato, D.; Matsui, T. [Department of Materials, Physics and Energy Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Mizuno, S. [Department of Molecular and Material Sciences, Kyushu University, Kasuga, Fukuoka 816–8580 (Japan)

    2015-11-07

    The structural parameters of ultra-thin zinc oxide films on Rh(100) are investigated using low-energy electron diffraction intensity (LEED I–V) curves, scanning tunneling microscopy (STM), and first-principles density functional theory (DFT) calculations. From the analysis of LEED I–V curves and DFT calculations, two optimized models A and B are determined. Their structures are basically similar to the planer h-BN ZnO(0001) structure, although some oxygen atoms protrude from the surface, associated with an in-plane shift of Zn atoms. From a comparison of experimental STM images and simulated STM images, majority and minority structures observed in the STM images represent the two optimized models A and B, respectively.

  15. Structural and magnetic studies of Cr doped nickel ferrite thin films

    International Nuclear Information System (INIS)

    Panwar, Kalpana; Heda, N. L.; Tiwari, Shailja; Bapna, Komal; Ahuja, B. L.; Choudhary, R. J.; Phase, D. M.

    2016-01-01

    We have studied the structural and magnetic properties of Cr doped nickel ferrite thin films deposited on Si (100) and Si (111) using pulsed laser deposition technique. The films were deposited under vacuum and substrate temperature was kept at 700°C. X-ray diffraction analysis revealed that films on both substrates have single phase cubic spinel structure. However, the film grown on Si (111) shows better crystalline behavior. Fourier transform infrared spectroscopy suggests that films on both substrates have mixed spinel structure. These films show magnetic hysteresis behavior and magnetization value of film on Si (100) is larger than that on Si (111). It turns out that structural and magnetic properties of these two films are correlated.

  16. Retrieving high-resolution images over the Internet from an anatomical image database

    Science.gov (United States)

    Strupp-Adams, Annette; Henderson, Earl

    1999-12-01

    The Visible Human Data set is an important contribution to the national collection of anatomical images. To enhance the availability of these images, the National Library of Medicine has supported the design and development of a prototype object-oriented image database which imports, stores, and distributes high resolution anatomical images in both pixel and voxel formats. One of the key database modules is its client-server Internet interface. This Web interface provides a query engine with retrieval access to high-resolution anatomical images that range in size from 100KB for browser viewable rendered images, to 1GB for anatomical structures in voxel file formats. The Web query and retrieval client-server system is composed of applet GUIs, servlets, and RMI application modules which communicate with each other to allow users to query for specific anatomical structures, and retrieve image data as well as associated anatomical images from the database. Selected images can be downloaded individually as single files via HTTP or downloaded in batch-mode over the Internet to the user's machine through an applet that uses Netscape's Object Signing mechanism. The image database uses ObjectDesign's object-oriented DBMS, ObjectStore that has a Java interface. The query and retrieval systems has been tested with a Java-CDE window system, and on the x86 architecture using Windows NT 4.0. This paper describes the Java applet client search engine that queries the database; the Java client module that enables users to view anatomical images online; the Java application server interface to the database which organizes data returned to the user, and its distribution engine that allow users to download image files individually and/or in batch-mode.

  17. The structure and magnetic properties of β-(Ga0.96Mn0.04)2O3 thin film

    Science.gov (United States)

    Huang, Yuanqi; Chen, Zhengwei; Zhang, Xiao; Wang, Xiaolong; Zhi, Yusong; Wu, Zhenping; Tang, Weihua

    2018-05-01

    High quality epitaxial single phase (Ga0.96Mn0.04)2O3 and Ga2O3 thin films have been prepared on sapphire substrates by using laser molecular beam epitaxy (L-MBE). X-ray diffraction results indicate that the thin films have the monoclinic structure with a ≤ft( {\\bar 201} \\right) preferable orientation. Room temperature (RT) ferromagnetism appears and the magnetic properties of β-(Ga0.96Mn0.04)2O3 thin film are enhanced compared with our previous works. Experiments as well as the first principle method are used to explain the role of Mn dopant on the structure and magnetic properties of the thin films. The ferromagnetic properties are explained based on the concentration of transition element and the defects in the thin films. Project supported by the National Natural Science Foundation of China (Nos. 11404029, 51572033, 51172208) and the Fund of State Key Laboratory of Information Photonics and Optical Communications (BUPT).

  18. Structural study and fabrication of nano-pattern on ultra thin film of Ag grown by magnetron sputtering

    International Nuclear Information System (INIS)

    Banerjee, S.; Mukherjee, S.; Kundu, S.

    2001-01-01

    We present the structural study of ultra thin Ag films using grazing incidence x-ray reflectivity and the modification of these films with the tip of an atomic force microscope. Ag thin films are deposited using dc magnetron sputtering on a Si(001) substrate. Initially, the growth of the film is carpet like and above a certain thickness (∼42 A) the film structure changes to form mounds. This ultra thin film of Ag having carpet-like growth can be modified by the tip of an atomic force microscope, which occurs due to the porous nature of the film. A periodic pattern of nanometer dimensions has been fabricated on this film using the atomic force microscope tip. (author)

  19. Investigation of growth, structural and electronic properties of V2O3 thin films on selected substrates

    International Nuclear Information System (INIS)

    Nateprov, Alexei

    2006-08-01

    The present work is devoted to the experimental study of the MI transition in V 2 O 3 thin films, grown on different substrates. The main goal of the work was to develop a technology of growth of V 2 O 3 thin films on substrates with different electrical and structural properties (diamond and LiNbO 3 ), designed for specific applications. The structural and electrical properties of the obtained films were characterized in detail with a special focus on their potential applications. The MIT of V 2 O 3 was investigated by SAW using first directly deposited V 2 O 3 thin film onto a LiNbO 3 substrate. (orig.)

  20. Pyrolyzed thin film carbon

    Science.gov (United States)

    Tai, Yu-Chong (Inventor); Liger, Matthieu (Inventor); Harder, Theodore (Inventor); Konishi, Satoshi (Inventor); Miserendino, Scott (Inventor)

    2010-01-01

    A method of making carbon thin films comprises depositing a catalyst on a substrate, depositing a hydrocarbon in contact with the catalyst and pyrolyzing the hydrocarbon. A method of controlling a carbon thin film density comprises etching a cavity into a substrate, depositing a hydrocarbon into the cavity, and pyrolyzing the hydrocarbon while in the cavity to form a carbon thin film. Controlling a carbon thin film density is achieved by changing the volume of the cavity. Methods of making carbon containing patterned structures are also provided. Carbon thin films and carbon containing patterned structures can be used in NEMS, MEMS, liquid chromatography, and sensor devices.

  1. The Science and Politics of Naming: Reforming Anatomical Nomenclature, ca. 1886-1955.

    Science.gov (United States)

    Buklijas, Tatjana

    2017-04-01

    Anatomical nomenclature is medicine's official language. Early in their medical studies, students are expected to memorize not only the bodily geography but also the names for all the structures that, by consensus, constitute the anatomical body. The making and uses of visual maps of the body have received considerable historiographical attention, yet the history of production, communication, and reception of anatomical names-a history as long as the history of anatomy itself-has been studied far less. My essay examines the reforms of anatomical naming between the first modern nomenclature, the 1895 Basel Nomina Anatomica (BNA), and the 1955 Nomina Anatomica Parisiensia (NAP, also known as PNA), which is the basis for current anatomical terminology. I focus on the controversial and ultimately failed attempt to reform anatomical nomenclature, known as Jena Nomina Anatomica (INA), of 1935. Discussions around nomenclature reveal not only how anatomical names are made and communicated, but also the relationship of anatomy with the clinic; disciplinary controversies within anatomy; national traditions in science; and the interplay between international and scientific disciplinary politics. I show how the current anatomical nomenclature, a successor to the NAP, is an outcome of both political and disciplinary tensions that reached their peak before 1945. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Exploring the human body space: A geographical information system based anatomical atlas

    Directory of Open Access Journals (Sweden)

    Antonio Barbeito

    2016-06-01

    Full Text Available Anatomical atlases allow mapping the anatomical structures of the human body. Early versions of these systems consisted of analogical representations with informative text and labeled images of the human body. With computer systems, digital versions emerged and the third and fourth dimensions were introduced. Consequently, these systems increased their efficiency, allowing more realistic visualizations with improved interactivity and functionality. The 4D atlases allow modeling changes over time on the structures represented. The anatomical atlases based on geographic information system (GIS environments allow the creation of platforms with a high degree of interactivity and new tools to explore and analyze the human body. In this study we expand the functions of a human body representation system by creating new vector data, topology, functions, and an improved user interface. The new prototype emulates a 3D GIS with a topological model of the human body, replicates the information provided by anatomical atlases, and provides a higher level of functionality and interactivity. At this stage, the developed system is intended to be used as an educational tool and integrates into the same interface the typical representations of surface and sectional atlases.

  3. Structure and magnetization of Co4N thin film

    Science.gov (United States)

    Pandey, Nidhi; Gupta, Mukul; Gupta, Rachana; Rajput, Parasmani; Stahn, Jochen

    2018-02-01

    In this work, we studied the local structure and the magnetization of Co4N thin films deposited by a reactive dc magnetron sputtering process. The interstitial incorporation of N atoms in a fcc Co lattice is expected to expand the structure. This expansion yields interesting magnetic properties e.g. a larger magnetic moment (than Co) and a very high value of spin polarization ratio in Co4N . By optimizing the growth conditions, we prepared Co4N film having lattice parameter close to its theoretically predicted value. The N concentration was measured using secondary ion mass spectroscopy. Detailed magnetization measurements using bulk magnetization method and polarized neutron reflectivity confirm that the magnetic moment of Co in Co4N is higher than that of Co.

  4. Structural features of spin-coated thin films of binary AsxS100−x chalcogenide glass system

    International Nuclear Information System (INIS)

    Cook, J.; Slang, S.; Golovchak, R.; Jain, H.; Vlcek, M.; Kovalskiy, A.

    2015-01-01

    Spin-coating technology offers a convenient method for fabricating photostable chalcogenide glass thin films that are especially attractive for applications in IR optics. In this paper we report the structure of spin-coated As x S 100−x (x = 30, 35, 40) thin films as determined using high resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, especially in relation to composition (i.e. As/S ratio) and preparation process variables. It was observed that As atoms during preparation have a tendency to precipitate out in close to stoichiometric compositions. The mechanism of bonding between the inorganic matrix and organic residuals is discussed based on the experimental data. A weak interaction between S ions and amine-based clusters is proposed as the basis of structural organization of the organic–inorganic interface. - Highlights: • As–S spin-coated chalcogenide thin films with different As/S were fabricated. • XPS measurements support the cluster-like structure of spin-coated films. • As 2 O 3 was confirmed as the composition of precipitate formed during dissolution. • Lack of As–As bonds explains the observed photostability of the thin films

  5. Brain anatomical network and intelligence.

    Directory of Open Access Journals (Sweden)

    Yonghui Li

    2009-05-01

    Full Text Available Intuitively, higher intelligence might be assumed to correspond to more efficient information transfer in the brain, but no direct evidence has been reported from the perspective of brain networks. In this study, we performed extensive analyses to test the hypothesis that individual differences in intelligence are associated with brain structural organization, and in particular that higher scores on intelligence tests are related to greater global efficiency of the brain anatomical network. We constructed binary and weighted brain anatomical networks in each of 79 healthy young adults utilizing diffusion tensor tractography and calculated topological properties of the networks using a graph theoretical method. Based on their IQ test scores, all subjects were divided into general and high intelligence groups and significantly higher global efficiencies were found in the networks of the latter group. Moreover, we showed significant correlations between IQ scores and network properties across all subjects while controlling for age and gender. Specifically, higher intelligence scores corresponded to a shorter characteristic path length and a higher global efficiency of the networks, indicating a more efficient parallel information transfer in the brain. The results were consistently observed not only in the binary but also in the weighted networks, which together provide convergent evidence for our hypothesis. Our findings suggest that the efficiency of brain structural organization may be an important biological basis for intelligence.

  6. Solvent influence upon structure & throughput of poly vinyledene fluoride thin film nano-patterns by imprint lithography

    Science.gov (United States)

    Sankar, M. S. Ravi; Gangineni, R. B.

    2018-04-01

    This work aims at understanding the solvent influence upon the throughput and structure of poly vinyledene fluoride (PVDF)nano-patterned films. The PVDF thin films are deposited by spin coating method using Dimethylsulfoxide (DMSO), Tetrahydrofuran (THF) and 2-butanone solvents. The nano-patterns are realized by imprinting SONY 700 MB CD aluminum constructions on PVDF thin filmsusing imprint lithography technique under ambient annealing temperature and pressure. Surface morphology &imprint pattern transfer quality is evaluated with Atomic force microscopy (AFM). Raman spectroscopy is used for evaluating the structural evolutions with respect to solvent & patterning.

  7. [Analysis of anatomical pieces preservation with polyester resin for human anatomy study].

    Science.gov (United States)

    de Oliveira, Ítalo Martins; Mindêllo, Marcela Maria Aguiar; Martins, Yasmin de Oliveira; da Silva Filho, Antônio Ribeiro

    2013-01-01

    To evaluate the use of polyester resin in preserving anatomical specimens for the study of human anatomy. We used 150 anatomical specimens, comprised of unfixed (fresh), fixed in 10% formalin and vascular casts of organs injected with vinyl acetate and polyester resin. The solution used consisted of polyester resin with the diluent styrene monomer and catalyst (peroxol). After embedding in this solution, models in transparent resin were obtained, allowing full observation of structures and conservation of the specimens used. upon evaluation of the specimens, we observed a high degree of transparency, which promoted a complete visualization of structures with perfect preservation of the anatomy. The average time for the completion of the embedding was 48 hours. Only 14 specimens (9.3%) were lost during the preparation. Polyester resin can be used for preserving anatomical specimens for teaching human anatomy in a practical, aesthetic and durable way.

  8. Synchrotron x-ray methods in studies of thin organic film structure

    International Nuclear Information System (INIS)

    Gentle, I.

    2002-01-01

    Full text: In recent years, the study of the structures of organic films as thin as a single monolayer has been revolutionized by methods that take advantage of the characteristics of synchrotron radiation. In particular, the methods of grazing incidence X-ray diffraction (GIXD) and X-ray reflectivity have led to a number of valuable insights into structural aspects of thin films at molecular resolution. Our group has been studying films formed at the air/water interface as insoluble monolayers and subsequently transferred to solid substrates using either the vertical (Langmuir-Blodgett) or horizontal (Langmuir-Schaeffer) methods. The main aim of these experiments is to exert control over film structure in the direction parallel to the substrate surface. This is highly desirable in order to design devices that exploit the optical and electrooptical properties of functional materials, but is difficult to do. By varying the chemical structure of the film materials and controlling deposition conditions a degree of control is possible, but only using synchrotron methods can it be easily verified. We have also developed a novel method of rapidly collecting data from GIXD measurements by the application of area detection (imaging plates), which has made possible measurements of dynamic processes such as in-situ annealing. Such measurements are not possible using traditional scanning methods. One area of current interest is films composed of porphyrins as functional materials, either alone or as mixed films with fatty acids. We have been investigating ways of assembling porphyrins in such a way as to overcome the tendency to aggregate, and to produce patterning and ordered structures in the plane of the interface. Examples will be given of how film composition and deposition method affects the final structure, and of how X-ray methods can be used to elucidate both the structures and the mechanisms. Copyright (2002) Australian X-ray Analytical Association Inc

  9. Structural characterization of thin films of titanium nitride deposited by laser ablation

    International Nuclear Information System (INIS)

    Castro C, M.A.; Escobar A, L.; Camps C, E.; Mejia H, J.A.

    2004-01-01

    Thin films of titanium nitride were deposited using the technique of laser ablation. It was studied the effect of the density of laser energy used for ablation the target as well as of the pressure of the work gas about the structure and the hardness of the deposited thin films. Depending on the pressure of the work gas films was obtained with preferential orientation in the directions (200) and (111). At a pressure of 1 x 10 -2 Torr only the direction (200) was observed. On the other hand to the pressure of 5 x 10 -3 Torr the deposited material this formed by a mixture of the orientation (200) and (111), being the direction (111) the predominant one. Thin films of Ti N were obtained with hardness of up to 24.0 GPa that makes to these attractive materials for mechanical applications. The hardness showed an approximately linear dependence with the energy density. (Author)

  10. Indium–gallium–zinc oxide thin film transistors with a hybrid-channel structure for defect suppression and mobility improvement

    International Nuclear Information System (INIS)

    Lin, Huang-Kai; Su, Liang-Yu; Hung, Chia-Chin; Huang, JianJang

    2013-01-01

    In this work, we explore an indium gallium zinc oxide (IGZO) thin film transistor structure with a vacuum annealed IGZO thin film inserted between the dielectric and typical channel layers. The device demonstrates a better subthreshold swing and field-effect mobility due to the suppression of defects in the channel and the channel/dielectric interface. The hybrid channel structure also exhibits the flexibility of adjusting the threshold voltage. The superior carrier mobility was then verified from the transient response of the inverter circuit constructed by the devices. - Highlights: • Additional in-situ annealed In–Ga–ZnO film was inserted in thin film transistor (TFT). • Traps are suppressed and field effect mobility is improved in the TFT. • An inverter with the device structure has a better transient response

  11. Indium–gallium–zinc oxide thin film transistors with a hybrid-channel structure for defect suppression and mobility improvement

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Huang-Kai; Su, Liang-Yu; Hung, Chia-Chin [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Huang, JianJang, E-mail: jjhuang@cc.ee.ntu.edu.tw [Graduate Institute of Photonics and Optoelectronics, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China); Department of Electrical Engineering, National Taiwan University, 1, Roosevelt Road, Sec. 4, Taipei 106, Taiwan (China)

    2013-07-01

    In this work, we explore an indium gallium zinc oxide (IGZO) thin film transistor structure with a vacuum annealed IGZO thin film inserted between the dielectric and typical channel layers. The device demonstrates a better subthreshold swing and field-effect mobility due to the suppression of defects in the channel and the channel/dielectric interface. The hybrid channel structure also exhibits the flexibility of adjusting the threshold voltage. The superior carrier mobility was then verified from the transient response of the inverter circuit constructed by the devices. - Highlights: • Additional in-situ annealed In–Ga–ZnO film was inserted in thin film transistor (TFT). • Traps are suppressed and field effect mobility is improved in the TFT. • An inverter with the device structure has a better transient response.

  12. Anatomical characteristics of the ossa sesamoidea phalangis proximalis in cattle (Bos primigenius f. taurus Linné 1758)

    Energy Technology Data Exchange (ETDEWEB)

    Červený, Č. [Vysoka Skola Veterinarni, Brno, Czechoslovakia (Czech Republic)

    1985-06-15

    The anatomical structure and radiography of the sesamoid bones of the proximal phalanges of cattle digits were studied on osteological material and radiograms of 18 cows and 5 bulls. On the basis of detailed anatomical description, a list of new anatomical names for important anatomical formations was proposed in order to complete the anatomical nomenclature and to provide better orientation on the bones as well as a more precise description of the different bones and determine their origin from the respective digits and/or the left or right thoratic or pelvic limbs.

  13. Anatomical characteristics of the ossa sesamoidea phalangis proximalis in cattle (Bos primigenius f. taurus Linné 1758)

    International Nuclear Information System (INIS)

    Červený, Č.

    1985-01-01

    The anatomical structure and radiography of the sesamoid bones of the proximal phalanges of cattle digits were studied on osteological material and radiograms of 18 cows and 5 bulls. On the basis of detailed anatomical description, a list of new anatomical names for important anatomical formations was proposed in order to complete the anatomical nomenclature and to provide better orientation on the bones as well as a more precise description of the different bones and determine their origin from the respective digits and/or the left or right thoratic or pelvic limbs

  14. An eFTD-VP framework for efficiently generating patient-specific anatomically detailed facial soft tissue FE mesh for craniomaxillofacial surgery simulation.

    Science.gov (United States)

    Zhang, Xiaoyan; Kim, Daeseung; Shen, Shunyao; Yuan, Peng; Liu, Siting; Tang, Zhen; Zhang, Guangming; Zhou, Xiaobo; Gateno, Jaime; Liebschner, Michael A K; Xia, James J

    2018-04-01

    Accurate surgical planning and prediction of craniomaxillofacial surgery outcome requires simulation of soft tissue changes following osteotomy. This can only be achieved by using an anatomically detailed facial soft tissue model. The current state-of-the-art of model generation is not appropriate to clinical applications due to the time-intensive nature of manual segmentation and volumetric mesh generation. The conventional patient-specific finite element (FE) mesh generation methods are to deform a template FE mesh to match the shape of a patient based on registration. However, these methods commonly produce element distortion. Additionally, the mesh density for patients depends on that of the template model. It could not be adjusted to conduct mesh density sensitivity analysis. In this study, we propose a new framework of patient-specific facial soft tissue FE mesh generation. The goal of the developed method is to efficiently generate a high-quality patient-specific hexahedral FE mesh with adjustable mesh density while preserving the accuracy in anatomical structure correspondence. Our FE mesh is generated by eFace template deformation followed by volumetric parametrization. First, the patient-specific anatomically detailed facial soft tissue model (including skin, mucosa, and muscles) is generated by deforming an eFace template model. The adaptation of the eFace template model is achieved by using a hybrid landmark-based morphing and dense surface fitting approach followed by a thin-plate spline interpolation. Then, high-quality hexahedral mesh is constructed by using volumetric parameterization. The user can control the resolution of hexahedron mesh to best reflect clinicians' need. Our approach was validated using 30 patient models and 4 visible human datasets. The generated patient-specific FE mesh showed high surface matching accuracy, element quality, and internal structure matching accuracy. They can be directly and effectively used for clinical

  15. Coupled Static and Dynamic Buckling Modelling of Thin-Walled Structures in Elastic Range Review of Selected Problems

    Directory of Open Access Journals (Sweden)

    Kołakowski Zbigniew

    2016-06-01

    Full Text Available A review of papers that investigate the static and dynamic coupled buckling and post-buckling behaviour of thin-walled structures is carried out. The problem of static coupled buckling is sufficiently well-recognized. The analysis of dynamic interactive buckling is limited in practice to columns, single plates and shells. The applications of finite element method (FEM or/and analytical-numerical method (ANM to solve interaction buckling problems are on-going. In Poland, the team of scientists from the Department of Strength of Materials, Lodz University of Technology and co-workers developed the analytical-numerical method. This method allows to determine static buckling stresses, natural frequencies, coefficients of the equation describing the post-buckling equilibrium path and dynamic response of the plate structure subjected to compression load and/or bending moment. Using the dynamic buckling criteria, it is possible to determine the dynamic critical load. They presented a lot of interesting results for problems of the static and dynamic coupled buckling of thin-walled plate structures with complex shapes of cross-sections, including an interaction of component plates. The most important advantage of presented analytical-numerical method is that it enables to describe all buckling modes and the post-buckling behaviours of thin-walled columns made of different materials. Thin isotropic, orthotropic or laminate structures were considered.

  16. Computed tomographic, magnetic resonance imaging, and cross-sectional anatomic features of the manus in a normal American black bear (Ursus americanus).

    Science.gov (United States)

    Ober, C P; Freeman, L E

    2010-06-01

    The purpose of this study was to provide a detailed description of cross-sectional anatomic structures of the manus of a black bear cadaver and correlate anatomic findings with corresponding features in computed tomographic (CT) and magnetic resonance (MR) images. CT, MR imaging, and transverse sectioning were performed on the thoracic limb of a cadaver female black bear which had no evidence of lameness or thoracic limb abnormality prior to death. Features in CT and MR images corresponding to clinically important anatomic structures in anatomic sections were identified. Most of the structures identified in transverse anatomic sections were also identified using CT and MR imaging. Bones, muscles and tendons were generally easily identified with both imaging modalities, although divisions between adjacent muscles were rarely visible with CT and only visible sometimes with MR imaging. Vascular structures could not be identified with either imaging modality.

  17. Effect of substituents on electronic properties, thin film structure and device performance of dithienothiophene-phenylene cooligomers

    International Nuclear Information System (INIS)

    Zhang Shiming; Guo Yunlong; Xi Hongxia; Di Chongan; Yu Jian; Zheng Kai; Liu Ruigang; Zhan Xiaowei; Liu Yunqi

    2009-01-01

    Dithienothiophene-phenylene cooligomers with n-hexyloxy or n-dodecyloxy substituents have been synthesized and compared to the previously reported unsubstituted parent compound. The effect of substituents on the thermal, electronic, optical, thin film structure and field-effect transistor (OFET) properties was investigated. Structural phase transitions from highly-ordered nanocrystalline to liquid crystalline were observed at 241 and 213 deg. C for n-hexyloxy- and n-dodecyloxy-substituted compounds respectively, different from the parent compound. For the alkoxy-substituted compounds, the absorption spectra in thin film blue shift 50 nm, while the fluorescence spectra in thin film red shift 88-100 nm compared to those in solution. The OFET devices based on the alkoxy-substituted compounds exhibit mobilities as high as ca 0.02 cm 2 V -1 s -1 and their performance is sensitive to the alkoxy substituents and substrate temperatures

  18. Anatomical image-guided fluorescence molecular tomography reconstruction using kernel method

    Science.gov (United States)

    Baikejiang, Reheman; Zhao, Yue; Fite, Brett Z.; Ferrara, Katherine W.; Li, Changqing

    2017-01-01

    Abstract. Fluorescence molecular tomography (FMT) is an important in vivo imaging modality to visualize physiological and pathological processes in small animals. However, FMT reconstruction is ill-posed and ill-conditioned due to strong optical scattering in deep tissues, which results in poor spatial resolution. It is well known that FMT image quality can be improved substantially by applying the structural guidance in the FMT reconstruction. An approach to introducing anatomical information into the FMT reconstruction is presented using the kernel method. In contrast to conventional methods that incorporate anatomical information with a Laplacian-type regularization matrix, the proposed method introduces the anatomical guidance into the projection model of FMT. The primary advantage of the proposed method is that it does not require segmentation of targets in the anatomical images. Numerical simulations and phantom experiments have been performed to demonstrate the proposed approach’s feasibility. Numerical simulation results indicate that the proposed kernel method can separate two FMT targets with an edge-to-edge distance of 1 mm and is robust to false-positive guidance and inhomogeneity in the anatomical image. For the phantom experiments with two FMT targets, the kernel method has reconstructed both targets successfully, which further validates the proposed kernel method. PMID:28464120

  19. Anatomical segmentation of the human medial prefrontal cortex

    NARCIS (Netherlands)

    Corcoles-Parada, M.; Müller, N.C.J.; Ubero, M.; Serrano-Del-Pueblo, V.M.; Mansilla, F.; Marcos-Rabal, P.; Artacho-Perula, E.; Dresler, M.; Insausti, R.; Fernandez, G.; Munoz-Lopez, M.

    2017-01-01

    The medial prefrontal areas 32, 24, 14, and 25 (mPFC) form part of the limbic memory system, but little is known about their functional specialization in humans. To add anatomical precision to structural and functional magnetic resonance imaging (MRI) data, we aimed to identify these mPFC subareas

  20. Variscan deformation along the Teisseyre-Tornquist Zone in SE Poland: Thick-skinned structural inheritance or thin-skinned thrusting?

    Science.gov (United States)

    Krzywiec, P.; Gągała, Ł.; Mazur, S.; Słonka, Ł.; Kufrasa, M.; Malinowski, M.; Pietsch, K.; Golonka, J.

    2017-10-01

    Recently acquired seismic reflection data provide better insight in the structural style of extensive sedimentary series overlying the SW slope of the East European Craton (EEC) in Poland. The two main seismic datasets - the POLCRUST-01 profile and PolandSPAN survey - yielded contrasting thick - and thin-skinned structural models for the same structural units in SE Poland. We reattempt an interpretation of the POLCRUST-01 profile using techniques of cross-section balancing and restoration aided by 2D forward seismic modelling. An outcome is the thin-skinned structural model is. This solution relies on a continuous top of the EEC crystalline basement well represented in the seismic data as well as on fragmentary, yet conclusive seismic geometries in shallow depth intervals proving the Ediacaran-Palaeozoic series to be thrust and folded. A Variscan (late Carboniferous) compressional regime is consequently invoked to explain thin-skinned structuring of the pre-Permian sedimentary pile and > 20 km of calculated shortening. We demonstrate an ambiguous nature of the top-basement irregularities previously used as indicators of basement-rooted vertical faulting. The tilt and abrupt increase of the top-basement taper under the thin-skinned belt are attributed to pre-Ordovician tectonic processes operating along the SW margin of the EEC. Post-rift subsidence and/or flexural loading giving rise to a broken foreland plate are invoked.

  1. Segmentation and Visualisation of Human Brain Structures

    Energy Technology Data Exchange (ETDEWEB)

    Hult, Roger

    2003-10-01

    In this thesis the focus is mainly on the development of segmentation techniques for human brain structures and of the visualisation of such structures. The images of the brain are both anatomical images (magnet resonance imaging (MRI) and autoradiography) and functional images that show blood flow (functional magnetic imaging (fMRI), positron emission tomography (PET), and single photon emission tomography (SPECT)). When working with anatomical images, the structures segmented are visible as different parts of the brain, e.g. the brain cortex, the hippocampus, or the amygdala. In functional images, the activity or the blood flow that be seen. Grey-level morphology methods are used in the segmentations to make tissue types in the images more homogenous and minimise difficulties with connections to outside tissue. A method for automatic histogram thresholding is also used. Furthermore, there are binary operations such as logic operation between masks and binary morphology operations. The visualisation of the segmented structures uses either surface rendering or volume rendering. For the visualisation of thin structures, surface rendering is the better choice since otherwise some voxels might be missed. It is possible to display activation from a functional image on the surface of a segmented cortex. A new method for autoradiographic images has been developed, which integrates registration, background compensation, and automatic thresholding to get faster and more reliable results than the standard techniques give.

  2. Segmentation and Visualisation of Human Brain Structures

    International Nuclear Information System (INIS)

    Hult, Roger

    2003-01-01

    In this thesis the focus is mainly on the development of segmentation techniques for human brain structures and of the visualisation of such structures. The images of the brain are both anatomical images (magnet resonance imaging (MRI) and autoradiography) and functional images that show blood flow (functional magnetic imaging (fMRI), positron emission tomography (PET), and single photon emission tomography (SPECT)). When working with anatomical images, the structures segmented are visible as different parts of the brain, e.g. the brain cortex, the hippocampus, or the amygdala. In functional images, the activity or the blood flow that be seen. Grey-level morphology methods are used in the segmentations to make tissue types in the images more homogenous and minimise difficulties with connections to outside tissue. A method for automatic histogram thresholding is also used. Furthermore, there are binary operations such as logic operation between masks and binary morphology operations. The visualisation of the segmented structures uses either surface rendering or volume rendering. For the visualisation of thin structures, surface rendering is the better choice since otherwise some voxels might be missed. It is possible to display activation from a functional image on the surface of a segmented cortex. A new method for autoradiographic images has been developed, which integrates registration, background compensation, and automatic thresholding to get faster and more reliable results than the standard techniques give

  3. A theoretical ovary position in link with the global anatomical ...

    African Journals Online (AJOL)

    anatomical structure of each human female body. Hassen ... pregnancy ovaries become really slightly displaced they would keep the proposed three- ... ovarian ligament, which anchors the ovary to the uterus; and the suspensory ligament,.

  4. Microscopic silicon-based lateral high-aspect-ratio structures for thin film conformality analysis

    International Nuclear Information System (INIS)

    Gao, Feng; Arpiainen, Sanna; Puurunen, Riikka L.

    2015-01-01

    Film conformality is one of the major drivers for the interest in atomic layer deposition (ALD) processes. This work presents new silicon-based microscopic lateral high-aspect-ratio (LHAR) test structures for the analysis of the conformality of thin films deposited by ALD and by other chemical vapor deposition means. The microscopic LHAR structures consist of a lateral cavity inside silicon with a roof supported by pillars. The cavity length (e.g., 20–5000 μm) and cavity height (e.g., 200–1000 nm) can be varied, giving aspect ratios of, e.g., 20:1 to 25 000:1. Film conformality can be analyzed with the microscopic LHAR by several means, as demonstrated for the ALD Al 2 O 3 and TiO 2 processes from Me 3 Al/H 2 O and TiCl 4 /H 2 O. The microscopic LHAR test structures introduced in this work expose a new parameter space for thin film conformality investigations expected to prove useful in the development, tuning and modeling of ALD and other chemical vapor deposition processes

  5. Structural and Magnetic Properties of Co-Mn-Sb Thin films

    Energy Technology Data Exchange (ETDEWEB)

    Meinert, M.; Schmalhorst, J.-M.; Ebke, D.; Liu, N. N.; Thomas, A.; Reiss, G.; Kanak, J.; Stobiecki, T.; Arenholz, E.

    2009-12-17

    Thin Co-Mn-Sb films of different compositions were investigated and utilized as electrodes in alumina based magnetic tunnel junctions with CoFe counterelectrode. The preparation conditions were optimized with respect to magnetic and structural properties. The Co-Mn-Sb/Al-O interface was analyzed by x-ray absorption spectroscopy and magnetic circular dichroism with particular focus on the element-specific magnetic moments. Co-Mn-Sb crystallizes in different complex cubic structures depending on its composition. The magnetic moments of Co and Mn are ferromagnetically coupled in all cases. A tunnel magnetoresistance ratio of up to 24% at 13 K was found and indicates that Co-Mn-Sb is not a ferromagnetic half-metal. These results are compared to recent works on the structure and predictions of the electronic properties.

  6. Toward an equilibrium structure in lamellar diblock copolymer thin films using solvent vapor annealing

    DEFF Research Database (Denmark)

    Sepe, Alessandro; Zhang, Jianqi; Perlich, Jan

    2016-01-01

    Solvent vapor annealing (SVA) is frequently used to improve the ordering in diblock copolymer thin films. An important question is which SVA protocol should be chosen to ensure thermodynamic equilibrium. Here, we investigate two thin films from a low molar-mass, lamellae-forming polystyrene....... SVA cycles were carried out with cyclohexane, and the structural changes were followed in-situ using time-resolved grazing-incidence small-angle X-ray scattering (GISAXS). Before and after SVA, Dlam,par is significantly lower than in the bulk, i.e. the equi-librium value of Dlam,par in thin film...... glassy again, affinely. During the second SVA cycle on the thin film, the scaling behavior of the lamellar thickness is identical to the one during the first drying and to the drying behavior of the thicker film. We conclude that one cycle of solvent vapor treatment with a degree of swelling of ca. 1...

  7. The Structural Changes of the Sn(y)OX Thin Films Under Influence of Heat Treament

    Science.gov (United States)

    Vong, V.

    2001-04-01

    Composite oxide Sn(y) Ox made by thermal oxidation of the Sn(y)-bimetal thin films, in which y is the doped-materials as well as Sb, Ag or Pd. The Sn(y)-bimetal thin films have been made by evaporation in high vacuum onto NaCl-monocrystall and optical glass substrates. In the work the tin and the doped material (y) were put on two different boats and then both the boats were simultaniously heated to evaporate. The Sn(y)Ox thin films were annealed at the differential temperatures. The structural changes of its have been investigated by using X-ray diffraction and transmission electron microscope.

  8. Structural and optical properties of cobalt doped multiferroics BiFeO3 nanostructure thin films

    Science.gov (United States)

    Prasannakumara, R.; Naik, K. Gopalakrishna

    2018-05-01

    Bismuth ferrite (BiFeO3) and Cobalt doped BiFeO3 (BiFe1-XCoXO3) nanostructure thin films were deposited on glass substrates by the sol-gel spin coating method. The X-ray diffraction patterns (XRD) of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films showed distorted rhombohedral structure. The shifting of peaks to higher angles was observed in cobalt doped BiFeO3. The surface morphology of the BiFeO3 and BiFe1-XCoXO3 nanostructure thin films were studied using FESEM, an increase in grain size was observed as Co concentration increases. The thickness of the nanostructure thin films was examined using FESEM cross-section. The EDX studies confirmed the elemental composition of the grown BiFeO3 and BiFe1-XCoXO3 nanostructure thin films. The optical characterizations of the grown nanostructure thin films were carried out using FTIR, it confirms the existence of Fe-O and Bi-O bands and UV-Visible spectroscopy shows the increase in optical band gap of the BiFeO3 nanostructure thin films with Co doping by ploting Tauc plot.

  9. Crystal structure and thin film morphology of BBL ladder polymer

    Energy Technology Data Exchange (ETDEWEB)

    Song, H H [Department of Macromolecular Science, Han Nam University, Taejon (Korea, Republic of); Fratini, A V [Department of Chemistry, University of Dayton, Dayton, OH (United States); Chabinyc, M [Department of Chemistry, University of Dayton, Dayton, OH (United States); Price, G E [University of Dayton Research, Dayton, OH (United States); Agrawal, A K [Systran Corporation, Dayton, OH (United States); Wang, C S [University of Dayton Research, Dayton, OH (United States); Burkette, J [University of Dayton Research, Dayton, OH (United States); Dudis, D S [Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, OH (United States); Arnold, F E [Materials Directorate, Wright Laboratory, Wright-Patterson Air Force Base, OH (United States)

    1995-03-01

    Crystal structure and morphology of poly[7-oxo-7H-benz(d,e)imidazo(4`,5`:5,6)-benzimidazo(2,1-a)isoquinoline-3,4:10,11-tetrayl-10-carbonyl] (BBL) ladder-like polymer were studied. The polymer forms a two-dimensional lattice of nematic liquid crystalline structure. An orthorhombic unit cell with cell parameters of a=7.87 b=3.37 c=11.97A was determined from the fiber diffraction pattern. In thin films, the rigid chains spontaneously form a layered structure across the film thickness, but in a very unusual manner, i.e. the very large molecular plane is standing perpendicularly to the film surface plane. The results are identical to our recent results of poly(p-phenylene benzobisthiazole) (PBT) film [7]. The polymer, however, lost its anisotropic order upon extrusion into a film and resulted in a fiber-like structure. (orig.)

  10. Homogenization models for thin rigid structured surfaces and films.

    Science.gov (United States)

    Marigo, Jean-Jacques; Maurel, Agnès

    2016-07-01

    A homogenization method for thin microstructured surfaces and films is presented. In both cases, sound hard materials are considered, associated with Neumann boundary conditions and the wave equation in the time domain is examined. For a structured surface, a boundary condition is obtained on an equivalent flat wall, which links the acoustic velocity to its normal and tangential derivatives (of the Myers type). For a structured film, jump conditions are obtained for the acoustic pressure and the normal velocity across an equivalent interface (of the Ventcels type). This interface homogenization is based on a matched asymptotic expansion technique, and differs slightly from the classical homogenization, which is known to fail for small structuration thicknesses. In order to get insight into what causes this failure, a two-step homogenization is proposed, mixing classical homogenization and matched asymptotic expansion. Results of the two homogenizations are analyzed in light of the associated elementary problems, which correspond to problems of fluid mechanics, namely, potential flows around rigid obstacles.

  11. Passive vs. active virtual reality learning: the effects on short- and long-term memory of anatomical structures.

    Science.gov (United States)

    Phelps, Andrew; Fritchle, Alicia; Hoffman, Helene

    2004-01-01

    This pilot study compares the differences in learning outcomes when students are presented with either an active (student-centered) or passive (teacher-centered) virtual reality-based anatomy lesson. The "active" lesson used UCSD's Anatomic VisualizeR and enabled students to interact with 3D models and control presentation of learning materials. The "passive" lesson used a digital recording of an anatomical expert's tour of the same VR lesson played back as a QuickTime movie. Subsequent examination of the recall and retention of the studied anatomic objects were comparable in both groups. Issues underlying these results are discussed.

  12. Stress analysis, structure and magnetic properties of sputter deposited Ni-Mn-Ga ferromagnetic shape memory thin films

    Energy Technology Data Exchange (ETDEWEB)

    Annadurai, A. [Department of Physics, PSG College of Technology, Coimbatore 641004 (India); Manivel Raja, M., E-mail: mraja@dmrl.drdo.in [Defense Metallurgical Research Laboratory, Hyderabad 500058 (India); Prabahar, K.; Kumar, Atul [Defense Metallurgical Research Laboratory, Hyderabad 500058 (India); Kannan, M.D.; Jayakumar, S. [Department of Physics, PSG College of Technology, Coimbatore 641004 (India)

    2011-11-15

    The residual stress instituted in Ni-Mn-Ga thin films during deposition is a key parameter influencing their shape memory applications by affecting its structural and magnetic properties. A series of Ni-Mn-Ga thin films were prepared by dc magnetron sputtering on Si(1 0 0) and glass substrates at four different sputtering powers of 25, 45, 75 and 100 W for systematic investigation of the residual stress and its effect on structure and magnetic properties. The residual stresses in thin films were characterized by a laser scanning technique. The as-deposited films were annealed at 600 deg. C for 1 h in vacuum for structural and magnetic ordering. The compressive stresses observed in as-deposited films transformed into tensile stresses upon annealing. The annealed films were found to be crystalline and possess mixed phases of both austenite and martensite, exhibiting good soft magnetic properties. It was found that the increase of sputtering power induced coarsening in thin films. Typical saturation magnetization and coercivity values were found to be 330 emu/cm{sup 3} and 215 Oe, respectively. The films deposited at 75 and 100 W display both structural and magnetic transitions above room temperature. - Highlights: > Compressive stresses observed in as-deposited films transformed into tensile stresses upon annealing. > Annealed films were found to be crystalline and possess mixed phases of both austenite and martensite, exhibiting good soft magnetic properties. > The highest Curie transition in the films was observed at 365 K. > The films deposited at 75 and 100 W display both structural and magnetic transitions above room temperature.

  13. Structural, mechanical and magnetic study on galvanostatic electroplated nanocrystalline NiFeP thin films

    Science.gov (United States)

    Kalaivani, A.; Senguttuvan, G.; Kannan, R.

    2018-03-01

    Nickel based alloys has a huge applications in microelectronics and micro electromechanical systems owing to its superior soft magnetic properties. With the advantages of simplicity, cost-effectiveness and controllable patterning, electroplating processes has been chosen to fabricate thin films in our work. The soft magnetic NiFeP thin film was successfully deposited over the surface of copper plate through galvanostatic electroplating method by applying constant current density of 10 mA cm-2 for a deposition rate for half an hour. The properties of the deposited NiFeP thin films were analyzed by subjecting it into different physio-chemical characterization such as XRD, SEM, EDAX, AFM and VSM. XRD pattern confirms the formation of NiFeP particles and the structural analysis reveals that the NiFeP particles were uniformly deposited over the surface of copper substrate. The surface roughness analysis of the NiFeP films was done using AFM analysis. The magnetic studies and the hardness of the thin film were evaluated from the VSM and hardness test. The NiFeP thin films possess lower coercivity with higher magnetization value of 69. 36 × 10-3 and 431.92 Gauss.

  14. Analysis of anatomical and micromorphological characteristics of Iva xanthifolia nutt.

    Directory of Open Access Journals (Sweden)

    Krstić Lana N.

    2007-01-01

    Full Text Available Iva xanthifolia is a North American weed species, which was introduced and naturalized in Europe. Anatomical and micromorphological characteristics of this species were investigated, in order to get better knowledge of its biology, which could help in development of strategies for prevention of its spreading. Detailed descriptions of lamina, petiole, stem and inflorescence axis anatomical structures were given, together with micromorphological characteristics of epidermis and indumentum of lamina, petiole, stem, inflorescence axis, involucre and fruit. All vegetative organs had mesomorphic structure, with some xeromorphic adaptations. Mechanical tissue was well developed, which gave those plants additional strength and resistance. Trichomes were the most numerous on lamina and in the region of inflorescence, while rare on petiole and stem epidermis and their distribution varied according to plant organ.

  15. Disorder Improves Light Absorption in Thin Film Silicon Solar Cells with Hybrid Light Trapping Structure

    Directory of Open Access Journals (Sweden)

    Yanpeng Shi

    2016-01-01

    Full Text Available We present a systematic simulation study on the impact of disorder in thin film silicon solar cells with hybrid light trapping structure. For the periodical structures introducing certain randomness in some parameters, the nanophotonic light trapping effect is demonstrated to be superior to their periodic counterparts. The nanophotonic light trapping effect can be associated with the increased modes induced by the structural disorders. Our study is a systematic proof that certain disorder is conceptually an advantage for nanophotonic light trapping concepts in thin film solar cells. The result is relevant to the large field of research on nanophotonic light trapping which currently investigates and prototypes a number of new concepts including disordered periodic and quasiperiodic textures. The random effect on the shape of the pattern (position, height, and radius investigated in this paper could be a good approach to estimate the influence of experimental inaccuracies for periodic or quasi-periodic structures.

  16. Electrochemical synthesis, structure and phase composition of nano structured amorphous thin layers of NiW and Ni-Mo

    International Nuclear Information System (INIS)

    Vitina, I.; Lubane, M.; Belmane, V.; Rubene, V.; Krumina, A.

    2006-01-01

    Full text: Nano structured Ni-W thin layers containing W 6-37 wt.% were electrodeposited on a copper substratum. The W content in the layer changes, and it is determined by the electrolyte pH in the range 8.0-9.6 and the cathode current density in the range 1.0-10.0 A/dm 2 . The atomic composition and thermal stability of structure of the electrodeposited thin layers depend for the most part on the conditions of the electrodeposition and less on the W content in the layer. Cracking of the Ni-W layers electrodeposited at the electrolyte pH 8.5 and containing 34-37 wt.% W and 8.5 wt.% W was observed. The cracking increases at heating at 400 deg C for 50 h. On the contrary, no cracking of the Ni-W layer electrodeposited at the electrolyte pH 9.0 and containing 25 wt.% W was observed. The atomic composition of the layer remains practically unchanged at heating at 400 deg C for 50 h. The layer binds oxygen up to 7 wt.%. According to X-ray diffraction, in spite of the W content 35-37 wt.% in the layer, nano structured layers rather than amorphous layers were obtained which at heating at 400 deg C depending on the W content crystallises as Ni or intermetallic compounds Ni x W y if the W content is approx. 25 wt.%. Amorphous Ni-Mo alloys containing 35-52 wt.% Mo was electrodeposited on copper substratum at the cathode current densities of 0.5-1.5 A/dm2 and the electrolyte pH 6.8-8.6. Formation of thin layer (∼1-2μm) of X-ray amorphous Ni-Mo alloy, the Mo content, the characteristics of structure depend on the electrodeposition process, the electrolyte pH, and the cathode current density. The Ni-Mo layer deposited at the electrolyte pH above 8.6 and below average 6.8 had a nanocrystalline structure rather than characteristics of amorphous structure. Ni- W and Ni-Mo alloys were electrodeposited from citrate electrolyte not containing ammonium ions

  17. Anatomic atlas for computed tomography in the mesaticephalic dog: head and neck

    International Nuclear Information System (INIS)

    George, T.F. II; Smallwood, J.E.

    1992-01-01

    The purpose of this study was to produce a comprehensive anatomic atlas of CT anatomy of the dog for use by veterinary radiologists, clinicians, and surgeons. Whole-body CT images of two mature beagle dogs were made with the dogs supported in sternal recumbency and using a slice thickness of 13 mm. The head was scanned using high-resolution imaging with a slice thickness of 8 mm. At the end of the CT session, each dog was euthanized, and while carefully maintaining the same position, the body was placed in a walk-in freezer until completely frozen. The body was then sectioned at 13-mm (head at 8-mm) intervals, with the cuts matched as closely as possible to the CT slices. The forzen sections were cleaned, photographed, and radiographed using xeroradiography. Each CT image was studied and compared with its corresponding xeroradiograph and anatomic section to assist in the accurate identification of specific structures. Intact, sagittally sectioned, and disarticulated dog skulls were used as reference models. Clinically relevant anatomic structures were identified and labeled in the three corresponding photographs (CT image, xeroradiograph, and anatomic section). In this paper, the CT anatomy of the head and neck of the mesaticephalic dog is presented

  18. Structural sensitivity of x-ray Bragg projection ptychography to domain patterns in epitaxial thin films

    International Nuclear Information System (INIS)

    Hruszkewycz, S. O.; Zhang, Q.; Holt, M. V.; Highland, M. J.

    2016-01-01

    Bragg projection ptychography (BPP) is a coherent diffraction imaging technique capable of mapping the spatial distribution of the Bragg structure factor in nanostructured thin films. Here, we show that, because these images are projections, the structural sensitivity of the resulting images depends on the film thickness and the aspect ratio and orientation of the features of interest and that image interpretation depends on these factors. Lastly, we model changes in contrast in the BPP reconstructions of simulated PbTiO_3 ferroelectric thin films with meandering 180° stripe domains as a function of film thickness, discuss their origin, and comment on the implication of these factors on the design of BPP experiments of general nanostructured films.

  19. Characterization of Lateral Structure of the p-i-n Diode for Thin-Film Silicon Solar Cell.

    Science.gov (United States)

    Kiaee, Zohreh; Joo, Seung Ki

    2018-03-01

    The lateral structure of the p-i-n diode was characterized for thin-film silicon solar cell application. The structure can benefit from a wide intrinsic layer, which can improve efficiency without increasing cell thickness. Compared with conventional thin-film p-i-n cells, the p-i-n diode lateral structure exploited direct light irradiation on the absorber layer, one-side contact, and bifacial irradiation. Considering the effect of different carrier lifetimes and recombinations, we calculated efficiency parameters by using a commercially available simulation program as a function of intrinsic layer width, as well as the distance between p/i or n/i junctions to contacts. We then obtained excellent parameter values of 706.52 mV open-circuit voltage, 24.16 mA/Cm2 short-circuit current, 82.66% fill factor, and 14.11% efficiency from a lateral cell (thickness = 3 μm; intrinsic layer width = 53 μm) in monofacial irradiation mode (i.e., only sunlight from the front side was considered). Simulation results of the cell without using rear-side reflector in bifacial irradiation mode showed 11.26% front and 9.72% rear efficiencies. Our findings confirmed that the laterally structured p-i-n cell can be a potentially powerful means for producing highly efficient, thin-film silicon solar cells.

  20. Anatomic atlas for computed tomography in the mesaticephalic dog: caudal abdomen and pelvis

    International Nuclear Information System (INIS)

    Smallwood, J.E.; George, T. II.

    1993-01-01

    The purpose of this study was to produce a comprehensive anatomic atlas of CT anatomy of the dog for use by veterinary radiologists, clinicians, and surgeons. Whole-body CT images of two mature beagle dogs were made with the dogs supported in sternal recumbency and using a slice thickness of 13 mm. At the end of the CT session, each dog was euthanized, and while carefully maintaining the same position, the body was frozen. The body was then sectioned at 13-mm intervals, with the cuts matched as closely as possible to the CT slices. The frozen sections were cleaned, photographed, and radiographed using xeroradiography. Each CT image was studied and compared with its corresponding xeroradiograph and anatomic section to assist in the accurate identification of specific structures. Clinically relevant anatomic structures were identified and labeled in the three corresponding photographs (CT image, xeroradiograph, and anatomic section). In previous papers, the head and neck, and the thorax and cranial abdomen of the mesaticephalic (beagle) dog were presented. In this paper, the caudal part of the abdomen and pelvis of the bitch and male dog are presented

  1. Effects of oxygen partial pressure on structural and gasochromic properties of sputtered VOx thin films

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Wei-Luen [National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan (China); Lu, Yang-Ming [Department of Electrical Engineering, National University of Tainan, Tainan 70005, Taiwan (China); Lu, Ying-Rui [National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan (China); Program for Science and Technology of Accelerator Light Source, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Chen, Chi-Liang [Institute of Physics, Academia Sinica, Taipei 11529, Taiwan (China); Dong, Chung-Li, E-mail: dong.cl@nsrrc.org.tw [National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan (China); Chou, Wu-Ching [Department of Electrophysics, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Chen, Jeng-Lung; Chan, Ting-Shan; Lee, Jyh-Fu; Pao, Chih-Wen [National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan (China); Hwang, Weng-Sing [Department of Materials Science and Engineering, National Cheng Kung University, Tainan 70101, Taiwan (China)

    2013-10-01

    VOx films were deposited by radio-frequency reactive magnetron sputtering from a vanadium target in an Ar–O{sub 2} gas mixture and pure O{sub 2}. For the films deposited in the gas mixture, the Ar flow rate was controlled at 20 sccm and the oxygen flow rate was controlled at 1, 3, and 5 sccm, respectively. A thin (∼ 5 nm) Pt layer was deposited on the VOx thin films as a hydrogen catalyst. The long-range structural order, short-range atom arrangement, and gasochromic properties of the deposited films were studied. The grazing incidence X-ray diffraction (GIXRD) results indicate that the deposited films are amorphous. Lamellar structures were found at oxygen flow rates of 3 sccm and above. The X-ray absorption spectroscopy (XAS) results show that the short-range atom arrangement of the lamellar VOx thin films is similar to that of crystal V{sub 2}O{sub 5}. The GIXRD and XAS results show that the film obtained with the gas mixture and at an oxygen flow rate of 1 sccm did not significantly change after exposure to hydrogen, whereas the other films exhibited decreased interlayer distance, oxidation state, and crystallinity. The color of the films changed from light or deep yellow to gray. The results suggest that the gasochromic properties of the VOx thin films are related to the V{sub 2}O{sub 5}-like atom arrangement and the interlayer distance of the lamellar structure. The films deposited with an oxygen flow rate of 3 sccm and above can be applied to H{sub 2} gas sensors. - Highlights: • Sputtered VOx film capped by Pt have potential for application in hydrogen sensor. • We present the X-ray absorption spectroscopy study of the gasochromic VOx films. • Correlation of gasochromism and electronic structure of VOx film were studied. • Correlation of gasochromism and atomic structure were investigated.

  2. Influence of grain size on structural and optic properties of PbS thin films produced by SILAR method

    International Nuclear Information System (INIS)

    Güneri, E.; Göde, F.; Çevik, S.

    2015-01-01

    In this the paper, we use the successive ion layer adsorption and reaction technique (SILAR) chemical deposition method to fabricate good quality PbS thin films and the effects of grain size on the structural and optical properties of the thin films were determined by varying deposition cases. All of the films obtained in different dipping cycles show cubic rock-salt (NaCl) structure. The preferred orientation changed from the (111) direction to the (200) direction with increasing dipping cycles. Grain size determined from scanning electron microscopy (SEM) increased from 32 nm to 104 nm. Moreover, changing of atomic ratio of the thin films is determined according to the results of energy dispersive X-ray (EDX). The transmission of the thin films was characterized by UV–Vis measurements from 400 nm to 1100 nm. It was determined from the allowed direct graphics that the energy band gaps of the thin films shift from 1.33 eV to 1.92 eV in connection with deposition conditions. The variation in band gap may be attributed to the variation of grain size. Additionally, the refractive index (n), extinction coefficient (k), real (ε 1 ) and imaginary (ε 2 ) dielectric constants varied with increasing immersion cycles. - Highlights: • The effects of grain size on the structural, optical properties of PbS thin films deposited by SILAR were investigated. • The preferred orientation varied from the (111) direction to the (200) direction with changing grain size. • The energy band gaps of the thin films shift from 1.33 eV to 1.92 eV in connection with deposition conditions. • The refractive index, extinction coefficient, real and imaginary dielectric constants varied with increasing dipping cycles

  3. Influence of grain size on structural and optic properties of PbS thin films produced by SILAR method

    Energy Technology Data Exchange (ETDEWEB)

    Güneri, E., E-mail: emineg7@gmail.com [Department of Primary Education, Erciyes University, Kayseri 38039, Turkey. (Turkey); Göde, F.; Çevik, S. [Department of Physics, Mehmet Akif Ersoy University, Burdur 15030, Turkey. (Turkey)

    2015-08-31

    In this the paper, we use the successive ion layer adsorption and reaction technique (SILAR) chemical deposition method to fabricate good quality PbS thin films and the effects of grain size on the structural and optical properties of the thin films were determined by varying deposition cases. All of the films obtained in different dipping cycles show cubic rock-salt (NaCl) structure. The preferred orientation changed from the (111) direction to the (200) direction with increasing dipping cycles. Grain size determined from scanning electron microscopy (SEM) increased from 32 nm to 104 nm. Moreover, changing of atomic ratio of the thin films is determined according to the results of energy dispersive X-ray (EDX). The transmission of the thin films was characterized by UV–Vis measurements from 400 nm to 1100 nm. It was determined from the allowed direct graphics that the energy band gaps of the thin films shift from 1.33 eV to 1.92 eV in connection with deposition conditions. The variation in band gap may be attributed to the variation of grain size. Additionally, the refractive index (n), extinction coefficient (k), real (ε{sub 1}) and imaginary (ε{sub 2}) dielectric constants varied with increasing immersion cycles. - Highlights: • The effects of grain size on the structural, optical properties of PbS thin films deposited by SILAR were investigated. • The preferred orientation varied from the (111) direction to the (200) direction with changing grain size. • The energy band gaps of the thin films shift from 1.33 eV to 1.92 eV in connection with deposition conditions. • The refractive index, extinction coefficient, real and imaginary dielectric constants varied with increasing dipping cycles.

  4. Expandable and retractable self-rolled structures based on metal/polymer thin film for flow sensing

    Science.gov (United States)

    Zhu, Jianzhong; White, Carl; Saadat, Mehdi; Bart-Smith, Hilary

    2015-11-01

    Most aquatic animals such as fish rely heavily on their ability of detect and respond to ambient flows in order to explore and inhabit various habitats or survive predator-prey encounters. Fish utilize neuromasts in their skin surface and lateral lines in their bodies to align themselves while swimming upstream for migration, avoid obstacles, reduce locomotion cost, and detect flow variations caused by potential predators. In this study, a thin film MEMS sensor analogous to a fish neuromast has been designed for flow sensing. Residual stress arises in many thin film materials during processing. Metal and polymer thin film materials with a significant difference in elastic modular were chosen to form a multiple-layer structure. Upon releasing, the structure rolls into a tube due to mechanical property mismatch. The self-rolled tube can expand or retract, depending on the existence of external force such as flow. An embedded strain sensor detects the deformation of the tube and hence senses the ambient flow. Numerical simulations were conducted to optimize the structural design. Experiments were performed in a flow tank to quantify the performance of the sensor. This research is supported by the Office of Naval Research under the MURI Grant N00014-14-1-0533.

  5. Structural, electrical and optical properties of nanostructured ZrO2 thin film deposited by SILAR method

    Science.gov (United States)

    Salodkar, R. V.; Belkhedkar, M. R.; Nemade, S. D.

    2018-05-01

    Successive Ionic Layer Adsorption and Reaction (SILAR) method has been employed to deposit nanocrystalline ZrO2 thin film of thickness 91 nm onto glass substrates using ZrOCl2.8H2O and NaOH as cationic and anionic precursors respectively. The structural and surface morphological characterizations have been carried out by means of X-ray diffraction and field emission scanning electron microscopy confirms the nanocrystalline nature of ZrO2 thin film. The direct optical band gap and activation energy of the ZrO2 thin film are found to be 4.74 and 0.80eV respectively.

  6. Segmentation of medical images using explicit anatomical knowledge

    Science.gov (United States)

    Wilson, Laurie S.; Brown, Stephen; Brown, Matthew S.; Young, Jeanne; Li, Rongxin; Luo, Suhuai; Brandt, Lee

    1999-07-01

    Knowledge-based image segmentation is defined in terms of the separation of image analysis procedures and representation of knowledge. Such architecture is particularly suitable for medical image segmentation, because of the large amount of structured domain knowledge. A general methodology for the application of knowledge-based methods to medical image segmentation is described. This includes frames for knowledge representation, fuzzy logic for anatomical variations, and a strategy for determining the order of segmentation from the modal specification. This method has been applied to three separate problems, 3D thoracic CT, chest X-rays and CT angiography. The application of the same methodology to such a range of applications suggests a major role in medical imaging for segmentation methods incorporating representation of anatomical knowledge.

  7. Stress and stability of sputter deposited A-15 and bcc crystal structure tungsten thin films

    Energy Technology Data Exchange (ETDEWEB)

    O' Keefe, M.J.; Stutz, C.E.

    1997-07-01

    Magnetron sputter deposition was used to fabricate body centered cubic (bcc) and A-15 crystal structure W thin films. Previous work demonstrated that the as-deposited crystal structure of the films was dependent on the deposition parameters and that the formation of a metastable A-15 structure was favored over the thermodynamically stable bcc phase when the films contained a few atomic percent oxygen. However, the A-15 phase was shown to irreversibly transform into the bcc phase between 500 C and 650 C and that a significant decrease in the resistivity of the metallic films was measured after the transformation. The current investigation of 150 nm thick, sputter deposited A-15 and bcc tungsten thin films on silicon wafers consisted of a series of experiments in which the stress, resistivity and crystal structure of the films was measured as a function of temperatures cycles in a Flexus 2900 thin film stress measurement system. The as-deposited film stress was found to be a function of the sputtering pressure and presputter time; under conditions in which the as-deposited stress of the film was {approximately}1.5 GPa compressive delamination of the W film from the substrate was observed. Data from the thermal studies indicated that bcc film stress was not affected by annealing but transformation of the A-15 structure resulted in a large tensile increase in the stress of the film, regardless of the as-deposited stress of the film. In several instances, complete transformation of the A-15 structure into the bcc phase resulted in {ge}1 GPa tensile increase in film stress.

  8. Stress and stability of sputter deposited A-15 and bcc crystal structure tungsten thin films

    International Nuclear Information System (INIS)

    O'Keefe, M.J.; Stutz, C.E.

    1997-01-01

    Magnetron sputter deposition was used to fabricate body centered cubic (bcc) and A-15 crystal structure W thin films. Previous work demonstrated that the as-deposited crystal structure of the films was dependent on the deposition parameters and that the formation of a metastable A-15 structure was favored over the thermodynamically stable bcc phase when the films contained a few atomic percent oxygen. However, the A-15 phase was shown to irreversibly transform into the bcc phase between 500 C and 650 C and that a significant decrease in the resistivity of the metallic films was measured after the transformation. The current investigation of 150 nm thick, sputter deposited A-15 and bcc tungsten thin films on silicon wafers consisted of a series of experiments in which the stress, resistivity and crystal structure of the films was measured as a function of temperatures cycles in a Flexus 2900 thin film stress measurement system. The as-deposited film stress was found to be a function of the sputtering pressure and presputter time; under conditions in which the as-deposited stress of the film was approximately1.5 GPa compressive delamination of the W film from the substrate was observed. Data from the thermal studies indicated that bcc film stress was not affected by annealing but transformation of the A-15 structure resulted in a large tensile increase in the stress of the film, regardless of the as-deposited stress of the film. In several instances, complete transformation of the A-15 structure into the bcc phase resulted in ge1 GPa tensile increase in film stress

  9. X-ray absorption fine structure (XAFS) studies of cobalt silicide thin films

    International Nuclear Information System (INIS)

    Naftel, S.J.; Coulthard, I.; Hu, Y.; Sham, T.K.; Zinke-Allmang, M.

    1998-01-01

    Cobalt silicide thin films, prepared on Si(100) wafers, have been studied by X-ray absorption near edge structures (XANES) at the Si K-, L 2,3 - and Co K-edges utilizing both total electron (TEY) and fluorescence yield (FLY) detection as well as extended X-ray absorption fine structure (EXAFS) at the Co K-edge. Samples made using DC sputter deposition on clean Si surfaces and MBE were studied along with a bulk CoSi 2 sample. XANES and EXAFS provide information about the electronic structure and morphology of the films. It was found that the films studied have essentially the same structure as bulk CoSi 2 . Both the spectroscopy and materials characterization aspects of XAFS (X-ray absorption fine structures) are discussed

  10. Structural, optoelectronic, luminescence and thermal properties of Ga-doped zinc oxide thin films

    International Nuclear Information System (INIS)

    Shinde, S.S.; Shinde, P.S.; Oh, Y.W.; Haranath, D.; Bhosale, C.H.; Rajpure, K.Y.

    2012-01-01

    Highlights: ► The ecofriendly deposition of Ga-doped zinc oxide. ► Influence of Ga doping onto physicochemical properties in aqueous media. ► Electron–phonon coupling by Raman. ► Chemical bonding structure and valence band analysis by XPS. - Abstract: Ga-doped ZnO thin films are synthesized by chemical spray pyrolysis onto corning glass substrates in aqueous media. The influence of gallium doping on to the photoelectrochemical, structural, Raman, XPS, morphological, optical, electrical, photoluminescence and thermal properties have been investigated in order to achieve good quality films. X-ray diffraction study depicts the films are polycrystalline and fit well with hexagonal (wurtzite) crystal structure with strong orientations along the (0 0 2) and (1 0 1) planes. Presence of E 2 high mode in Raman spectra indicates that the gallium doping does not change the wurtzite structure. The coupling strength between electron and LO phonon has experimentally estimated. In order to understand the chemical bonding structure and electronic states of the Ga-doped ZnO thin films XPS analysis have been studied. SEM images shows the films are adherent, compact, densely packed with hexagonal flakes and spherical grains. Optical transmittance and reflectance measurements have been carried out. Room temperature PL spectra depict violet, blue and green emission in deposited films. The specific heat and thermal conductivity study shows the phonon conduction behavior is dominant in these polycrystalline films.

  11. Formation and structure of V-Zr amorphous alloy thin films

    KAUST Repository

    King, Daniel J M

    2015-01-01

    Although the equilibrium phase diagram predicts that alloys in the central part of the V-Zr system should consist of V2Zr Laves phase with partial segregation of one element, it is known that under non-equilibrium conditions these materials can form amorphous structures. Here we examine the structures and stabilities of thin film V-Zr alloys deposited at room temperature by magnetron sputtering. The films were characterized by X-ray diffraction, transmission electron microscopy and computational methods. Atomic-scale modelling was used to investigate the enthalpies of formation of the various competing structures. The calculations confirmed that an amorphous solid solution would be significantly more stable than a random body-centred solid solution of the elements, in agreement with the experimental results. In addition, the modelling effort provided insight into the probable atomic configurations of the amorphous structures allowing predictions of the average distance to the first and second nearest neighbours in the system.

  12. A novel 3D shape descriptor for automatic retrieval of anatomical structures from medical images

    Science.gov (United States)

    Nunes, Fátima L. S.; Bergamasco, Leila C. C.; Delmondes, Pedro H.; Valverde, Miguel A. G.; Jackowski, Marcel P.

    2017-03-01

    Content-based image retrieval (CBIR) aims at retrieving from a database objects that are similar to an object provided by a query, by taking into consideration a set of extracted features. While CBIR has been widely applied in the two-dimensional image domain, the retrieval of3D objects from medical image datasets using CBIR remains to be explored. In this context, the development of descriptors that can capture information specific to organs or structures is desirable. In this work, we focus on the retrieval of two anatomical structures commonly imaged by Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) techniques, the left ventricle of the heart and blood vessels. Towards this aim, we developed the Area-Distance Local Descriptor (ADLD), a novel 3D local shape descriptor that employs mesh geometry information, namely facet area and distance from centroid to surface, to identify shape changes. Because ADLD only considers surface meshes extracted from volumetric medical images, it substantially diminishes the amount of data to be analyzed. A 90% precision rate was obtained when retrieving both convex (left ventricle) and non-convex structures (blood vessels), allowing for detection of abnormalities associated with changes in shape. Thus, ADLD has the potential to aid in the diagnosis of a wide range of vascular and cardiac diseases.

  13. Magnetic and structural properties of ion beam sputtered Fe–Zr–Nb–B–Cu thin films

    International Nuclear Information System (INIS)

    Modak, S.S.; Kane, S.N.; Gupta, A.; Mazaleyrat, F.; LoBue, M.; Coisson, M.; Celegato, F.; Tiberto, P.; Vinai, F.

    2012-01-01

    Magnetic and structural properties of Fe–Zr–Nb–B–Cu thin films, prepared by ion beam sputtering on silicon substrates by using a target made up of amorphous ribbons of nominal composition Fe 84 Zr 3.5 Nb 3.5 B 8 Cu 1 , are reported. As-deposited thin film samples exhibit an in-plane uniaxial anisotropy, which can be ascribed to the preparation technique and the coupling of quenched-in internal stresses. Structural measurements indicate no significant variation of the grain size with thickness and with the annealing temperature. Increase in surface irregularities with annealing temperature and oxidation results in aggregates that would act as pinning centers, affecting the magnetic properties leading to magnetic hardening of the specimens. The role of the magnetic anisotropy is thoroughly discussed with the help of magnetic and ferromagnetic resonance measurements. - Highlights: ►Ion beam sputtered Fe–Zr–Nb–B–Cu thin films of different thickness are prepared. ►Films exhibit in-plane uniaxial anisotropy, which reduces with thermal treatments. ►Increased surface roughness leads to wall pinning, increasing the coercive field.

  14. Temperature dependent structural, luminescent and XPS studies of CdO:Ga thin films deposited by spray pyrolysis

    International Nuclear Information System (INIS)

    Moholkar, A.V.; Agawane, G.L.; Sim, Kyu-Ung; Kwon, Ye-bin; Choi, Doo Sun; Rajpure, K.Y.; Kim, J.H.

    2010-01-01

    Research highlights: → The CdO:Ga thin films seems an alternative to traditional TCO materials used in photovoltaic applications. This work deals the effect of deposition temperature on sprayed CdO:Ga films with respect to the structural, luminescent and XPS studies. → The crystalline quality of the GCO films improves with deposition temperature. → The oxygen vacancies are responsible for n-type conductivity and green emission. → The minimum resistivity, highest carrier concentration and mobility are 1.9 x 10 -4 Ω cm, 11.7 x 10 21 cm -3 and 27.64 cm 2 V -1 s -1 , respectively. - Abstract: The structural, compositional, photoluminescent and XPS properties of CdO:Ga thin films deposited at temperatures ranging from 275 to 350 o C, using spray pyrolysis are reported. X-ray diffraction characterization of as-deposited GCO thin films reveals that films are of cubic structure with a (2 0 0) preferred orientation. The crystalline quality of the GCO films improves and the grain size increases with deposition temperature. The EDS analyses confirm oxygen deficiency present in the film and are responsible for n-type conductivity. The photoluminescence spectra demonstrated that the green emission peaks of CdO thin films are centered at 482 nm. The relative intensity of these peaks is strongly dependent on the deposition temperature. Oxygen vacancies are dominant luminescent centers for green emission in CdO thin films. The XPS measurement shows the presence of Cd, Ga, O and C elements and confirms that CdO:Ga films are cadmium-rich.

  15. Magnetic domain structure of MnAs thin films as a function of temperature

    International Nuclear Information System (INIS)

    Mizuguchi, Masaki; Manago, Takashi; Akinaga, Hiroyuki; Kuramochi, Hiromi; Okabayashi, Jun

    2003-01-01

    We have investigate magnetic domain structures of MnAs thin films grown on GaAs substrates by a magnetic force microscope. We observed, by an atomic force microscope, rectangular defects along GaAs [110] direction which disperse randomly on the surface of MnAs/GaAs(001). The Curie temperature of MnAs is 45degC, and it is successfully confirmed directly by the variable temperature magnetic force microscope observation. We also investigated magnetic domain structures of MnAs/GaAs(111)B, and no apparent relation was observed between the topographic structure and the magnetic domain structure. (author)

  16. Nickel silicide thin films as masking and structural layers for silicon bulk micro-machining by potassium hydroxide wet etching

    International Nuclear Information System (INIS)

    Bhaskaran, M; Sriram, S; Sim, L W

    2008-01-01

    This paper studies the feasibility of using titanium and nickel silicide thin films as mask materials for silicon bulk micro-machining. Thin films of nickel silicide were found to be more resistant to wet etching in potassium hydroxide. The use of nickel silicide as a structural material, by fabricating micro-beams of varying dimensions, is demonstrated. The micro-structures were realized using these thin films with wet etching using potassium hydroxide solution on (1 0 0) and (1 1 0) silicon substrates. These results show that nickel silicide is a suitable alternative to silicon nitride for silicon bulk micro-machining

  17. Utilization management in anatomic pathology.

    Science.gov (United States)

    Lewandrowski, Kent; Black-Schaffer, Steven

    2014-01-01

    There is relatively little published literature concerning utilization management in anatomic pathology. Nonetheless there are many utilization management opportunities that currently exist and are well recognized. Some of these impact only the cost structure within the pathology department itself whereas others reduce charges for third party payers. Utilization management may result in medical legal liabilities for breaching the standard of care. For this reason it will be important for pathology professional societies to develop national utilization guidelines to assist individual practices in implementing a medically sound approach to utilization management. © 2013.

  18. Effects of thickness on the nanocrystalline structure and semiconductor-metal transition characteristics of vanadium dioxide thin films

    International Nuclear Information System (INIS)

    Luo, Zhenfei; Zhou, Xun; Yan, Dawei; Wang, Du; Li, Zeyu; Yang, Cunbang; Jiang, Yadong

    2014-01-01

    Nanocrystalline vanadium dioxide (VO 2 ) thin films were grown on glass substrates by using reactive direct current magnetron sputtering and in situ thermal treatments at low preparation temperatures (≤ 350 °C). The VO 2 thin films were characterized by grazing-incidence X-ray diffraction, field emission scanning electron microscope, transmission electron microscopy and spectroscopic ellipsometry (SE). The semiconductor-metal transition (SMT) characteristics of the films were investigated by four-point probe resistivity measurements and infrared spectrometer equipped with heating pads. The testing results showed that the crystal structure, morphology, grain size and semiconductor-metal transition temperature (T SMT ) significantly changed as the film thickness decreased. Multilayer structures were observed in the particles of thinner films whose average particle size is much larger than the film thickness and average VO 2 grain size. A competition mechanism between the suppression effect of decreased thickness and coalescence of nanograins was proposed to understand the film growth and the formation of multilayer structure. The value of T SMT was found to decrease as average VO 2 grain size became smaller, and SE results showed that small nanograin size significantly affected the electronic structure of VO 2 film. - Highlights: • Nanocrystalline vanadium dioxide thin films were prepared. • Multilayer structures were observed in the films with large particles. • The transition temperature of the film is correlated with its electronic structure

  19. Controlling thin film structure for the dewetting of catalyst nanoparticle arrays for subsequent carbon nanofiber growth

    International Nuclear Information System (INIS)

    Randolph, S J; Fowlkes, J D; Melechko, A V; Klein, K L; III, H M Meyer; Simpson, M L; Rack, P D

    2007-01-01

    Vertically aligned carbon nanofiber (CNF) growth is a catalytic chemical vapor deposition process in which structure and functionality is controlled by the plasma conditions and the properties of the catalyst nanoparticles that template the fiber growth. We have found that the resultant catalyst nanoparticle network that forms by the dewetting of a continuous catalyst thin film is dependent on the initial properties of the thin film. Here we report the ability to tailor the crystallographic texture and composition of the nickel catalyst film and subsequently the nanoparticle template by varying the rf magnetron sputter deposition conditions. After sputtering the Ni catalyst thin films, the films are heated and exposed to an ammonia dc plasma, to chemically reduce the native oxide on the films and induce dewetting of the film to form nanoparticles. Subsequent nanoparticle treatment in an acetylene plasma at high substrate temperature results in CNF growth. Evidence is presented that the texture and composition of the nickel thin film has a significant impact on the structure and composition of the formed nanoparticle, as well as the resultant CNF morphology. Nickel films with a preferred (111) or (100) texture were produced and conditions favoring interfacial silicidation reactions were identified and investigated. Both compositional and structural analysis of the films and nanoparticles indicate that the properties of the as-deposited Ni catalyst film influences the subsequent nanoparticle formation and ultimately the catalytic growth of the carbon nanofibers

  20. Chloroform micro-evaporation induced ordered structures of poly(L-lactide) thin films

    DEFF Research Database (Denmark)

    Huang, Shaoyong; Li, Hongfei; Shang, Yingrui

    2013-01-01

    Self-assembly of poly(L-lactide) (PLLA) in thin films induced by chloroform micro-evaporation was investigated by microscopic techniques and X-ray diffraction studies. A film-thickness dependent on highly ordered structures has been derived from disordered films. Ring-banded spherulitic...... and dendritic morphologies with radial periodic variation of thicknesses were formed in dilute solution driven by micro-evaporation of the solvent. Bunched morphologies stacked with a flat-on lozenge-shaped lamellae were created in thinner films. The formation of the concentric ring banded structures...

  1. Anatomical and Functional Results of Lamellar Macular Holes Surgery.

    Science.gov (United States)

    Papadopoulou, D; Donati, G; Mangioris, G; Pournaras, C J

    2016-04-01

    To determine the long-term surgical findings and outcomes after vitrectomy for symptomatic lamellar macular holes. We studied 28 patients with lamellar macular holes and central visual loss or distortion. All interventions were standard 25 G vitrectomy with membranectomy of the internal limiting membrane (ILM), peeling and gas tamponade with SF6 20 %. Operations were performed by a single experienced surgeon within the last 3 years. Best corrected visual acuity and optical coherence tomography appearance were determined preoperatively and postoperatively. Following the surgical procedure, all macular holes were closed; however, in 3 eyes, significant foveal thinning was associated with changes in the retinal pigment epithelium changes. The mean best-corrected visual acuity improved postoperatively in the majority of the patients (n: 21, mean 0.3 logMAR), stabilised in 4 patients and decreased in 3 patients (mean 0.4 logMAR). Spectral Domain-Optical coherence tomography (SD-OCT) showed resolution of the lamellar lesion and improved macular contour in all cases. We demonstrated improvement in postoperative vision and the anatomical reconstruction of the anatomical contour of the fovea in most eyes with symptomatic lamellar holes. These findings indicate that vitrectomy, membranectomy and ILM peeling with gas tamponade is a beneficial treatment of symptomatic lamellar macular holes. Georg Thieme Verlag KG Stuttgart · New York.

  2. Two-scale homogenization to determine effective parameters of thin metallic-structured films

    Science.gov (United States)

    Marigo, Jean-Jacques

    2016-01-01

    We present a homogenization method based on matched asymptotic expansion technique to derive effective transmission conditions of thin structured films. The method leads unambiguously to effective parameters of the interface which define jump conditions or boundary conditions at an equivalent zero thickness interface. The homogenized interface model is presented in the context of electromagnetic waves for metallic inclusions associated with Neumann or Dirichlet boundary conditions for transverse electric or transverse magnetic wave polarization. By comparison with full-wave simulations, the model is shown to be valid for thin interfaces up to thicknesses close to the wavelength. We also compare our effective conditions with the two-sided impedance conditions obtained in transmission line theory and to the so-called generalized sheet transition conditions. PMID:27616916

  3. Structural, optical and magnetic properties of Mn doped ZnO thin films prepared by pulsed laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Aravind, Arun, E-mail: aruncusat@gmail.com [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Kochi 682 022, Kerala (India); Jayaraj, M.K., E-mail: mkj@cusat.ac.in [Nanophotonic and Optoelectronic Devices Laboratory, Department of Physics, Cochin University of Science and Technology, Kochi 682 022, Kerala (India); Kumar, Mukesh; Chandra, Ramesh [Nano Science Laboratory, Institute Instrumentation Centre, IIT Roorkee, Roorkee 247 667, Uttarakhand (India)

    2012-08-01

    Highlights: Black-Right-Pointing-Pointer Defect induced Raman active modes in Mn doped ZnO thin films. Black-Right-Pointing-Pointer Room temperature ferromagnetism. Black-Right-Pointing-Pointer Morphological variations of ZnO thin films with Mn doping. Black-Right-Pointing-Pointer Variation of refractive index of ZnO thin films with Mn doping. - Abstract: Zn{sub 1-x}Mn{sub x}O thin films were grown by pulsed laser deposition. The phase purity and the structure were confirmed by X-ray diffraction studies. The films have a transmittance more than 80% in the visible region. The refractive index of Zn{sub 0.90}Mn{sub 0.10}O films is found to be 1.77 at 550 nm. The presence of non-polar E{sub 2}{sup high} and E{sub 2}{sup low} Raman modes in thin films indicates that 'Mn' doping does not change the wurtzite structure of ZnO. Apart from the normal modes of ZnO the Zn{sub 1-x}Mn{sub x}O ceramic targets show two additional modes at 332 cm{sup -1} (I{sub 1}) and 524 cm{sup -1} (I{sub 2}). The broad Raman peaks (340-600 cm{sup -1}) observed Zn{sub 0.90}Mn{sub 0.10}O thin films can be deconvoluted into five peaks, denoted as P{sub 1}-P{sub 5}. The possible origins of Raman peaks in Zn{sub 1-x}Mn{sub x}O films are the structural disorder and morphological change caused by the Mn dopant. The B{sub 1}{sup low}, {sup 2}B{sub 1}{sup low}, B{sub 1}{sup high} and A{sub 1}{sup LO} modes as well as the surface phonon mode have been observed in heavily Mn-doped ZnO films. Zn{sub 0.98}Mn{sub 0.02}O thin film shows room temperature ferromagnetism. The saturation magnetic moment of the Zn{sub 0.98}Mn{sub 0.02}O thin film is 0.42{mu}{sub B}/Mn atom. The undoped ZnO film prepared under the same condition shows diamagnetic nature. At higher doping concentrations the formation of Mn clusters suppress the room temperature ferromagnetism in Zn{sub 1-x}Mn{sub x}O thin films and shows paramagnetism. XPS confirms the incorporation of Mn{sup 2+} into the ZnO lattice.

  4. Anatomical curve identification

    Science.gov (United States)

    Bowman, Adrian W.; Katina, Stanislav; Smith, Joanna; Brown, Denise

    2015-01-01

    Methods for capturing images in three dimensions are now widely available, with stereo-photogrammetry and laser scanning being two common approaches. In anatomical studies, a number of landmarks are usually identified manually from each of these images and these form the basis of subsequent statistical analysis. However, landmarks express only a very small proportion of the information available from the images. Anatomically defined curves have the advantage of providing a much richer expression of shape. This is explored in the context of identifying the boundary of breasts from an image of the female torso and the boundary of the lips from a facial image. The curves of interest are characterised by ridges or valleys. Key issues in estimation are the ability to navigate across the anatomical surface in three-dimensions, the ability to recognise the relevant boundary and the need to assess the evidence for the presence of the surface feature of interest. The first issue is addressed by the use of principal curves, as an extension of principal components, the second by suitable assessment of curvature and the third by change-point detection. P-spline smoothing is used as an integral part of the methods but adaptations are made to the specific anatomical features of interest. After estimation of the boundary curves, the intermediate surfaces of the anatomical feature of interest can be characterised by surface interpolation. This allows shape variation to be explored using standard methods such as principal components. These tools are applied to a collection of images of women where one breast has been reconstructed after mastectomy and where interest lies in shape differences between the reconstructed and unreconstructed breasts. They are also applied to a collection of lip images where possible differences in shape between males and females are of interest. PMID:26041943

  5. Electrical and Structural Origin of Self-Healing Phenomena in Pentacene Thin Films.

    Science.gov (United States)

    Kang, Evan S H; Zhang, Hongbin; Donner, Wolfgang; von Seggern, Heinz

    2017-04-01

    Self-healing induced by structural phase transformation is demonstrated using pentacene field-effect transistors. During the self-healing process, the electrical properties at the pentacene interfaces improve due to the phase transformation from monolayer phase to thin-film phase. Enhanced mobility is confirmed by first-principles calculations. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Effects of Odd–Even Side Chain Length of Alkyl-Substituted Diphenylbithiophenes on First Monolayer Thin Film Packing Structure

    KAUST Repository

    Akkerman, Hylke B.

    2013-07-31

    Because of their preferential two-dimensional layer-by-layer growth in thin films, 5,5′bis(4-alkylphenyl)-2,2′-bithiophenes (P2TPs) are model compounds for studying the effects of systematic chemical structure variations on thin-film structure and morphology, which in turn, impact the charge transport in organic field-effect transistors. For the first time, we observed, by grazing incidence X-ray diffraction (GIXD), a strong change in molecular tilt angle in a monolayer of P2TP, depending on whether the alkyl chain on the P2TP molecules was of odd or even length. The monolayers were deposited on densely packed ultrasmooth self-assembled alkane silane modified SiO2 surfaces. Our work shows that a subtle change in molecular structure can have a significant impact on the molecular packing structure in thin film, which in turn, will have a strong impact on charge transport of organic semiconductors. This was verified by quantum-chemical calculations that predict a corresponding odd-even effect in the strength of the intermolecular electronic coupling. © 2013 American Chemical Society.

  7. Effects of Odd–Even Side Chain Length of Alkyl-Substituted Diphenylbithiophenes on First Monolayer Thin Film Packing Structure

    KAUST Repository

    Akkerman, Hylke B.; Mannsfeld, Stefan C. B.; Kaushik, Ananth P.; Verploegen, Eric; Burnier, Luc; Zoombelt, Arjan P.; Saathoff, Jonathan D.; Hong, Sanghyun; Atahan-Evrenk, Sule; Liu, Xueliang; Aspuru-Guzik, Alá n; Toney, Michael F.; Clancy, Paulette; Bao, Zhenan

    2013-01-01

    Because of their preferential two-dimensional layer-by-layer growth in thin films, 5,5′bis(4-alkylphenyl)-2,2′-bithiophenes (P2TPs) are model compounds for studying the effects of systematic chemical structure variations on thin-film structure and morphology, which in turn, impact the charge transport in organic field-effect transistors. For the first time, we observed, by grazing incidence X-ray diffraction (GIXD), a strong change in molecular tilt angle in a monolayer of P2TP, depending on whether the alkyl chain on the P2TP molecules was of odd or even length. The monolayers were deposited on densely packed ultrasmooth self-assembled alkane silane modified SiO2 surfaces. Our work shows that a subtle change in molecular structure can have a significant impact on the molecular packing structure in thin film, which in turn, will have a strong impact on charge transport of organic semiconductors. This was verified by quantum-chemical calculations that predict a corresponding odd-even effect in the strength of the intermolecular electronic coupling. © 2013 American Chemical Society.

  8. Magnetic properties of amorphous Tb-Fe thin films with an artificially layered structure

    International Nuclear Information System (INIS)

    Sato, N.

    1986-01-01

    An alternating terbium-iron (Tb-Fe) multilayer structure artificially made in amorphous Tb-Fe thin films gives rise to excellent magnetic properties of large perpendicular uniaxial anisotropy, large saturation magnetization, and large coercivity over a wide range of Tb composition in the films. The films are superior to amorphous Tb-Fe alloy thin films, especially when they are piled up with a monatomic layer of Tb and several atomic layers of Fe in an alternating fashion. Small-angle x-ray diffraction analysis confirmed the layering of monatomic layers of Tb and Fe, where the periodicity of the layers was found to be about 5.9 A. Direct evidence for an artificially layered structure was obtained by transmission electron microscopic and Auger electron spectroscopic observations. Together with magnetic measurements of hysteresis loops and torque curves, it has been concluded that the most important origin of the large magnetic uniaxial anisotropy can be attributed to the Tb-Fe pairs aligned perpendicular to the films

  9. Composition, structure and magnetic properties of sputter deposited Ni-Mn-Ga ferromagnetic shape memory thin films

    Energy Technology Data Exchange (ETDEWEB)

    Annadurai, A.; Nandakumar, A.K.; Jayakumar, S.; Kannan, M.D. [Thin Film Center, Department of Physics, PSG College of Technology, Coimbatore 641004 (India); Manivel Raja, M.; Bysak, S. [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad, Andhra Pradesh 500 058 (India); Gopalan, R. [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad, Andhra Pradesh 500 058 (India)], E-mail: rg_gopy@yahoo.com; Chandrasekaran, V. [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad, Andhra Pradesh 500 058 (India)

    2009-03-15

    Polycrystalline Ni-Mn-Ga thin films were deposited by the d.c. magnetron sputtering on well-cleaned substrates of Si(1 0 0) and glass at a constant sputtering power of 36 W. We report the influence of sputtering pressure on the composition, structure and magnetic properties of the sputtered thin films. These films display ferromagnetic behaviour only after annealing at an elevated temperature and a maximum saturation magnetization of 335 emu/cc was obtained for the films investigated. Evolution of martensitic microstructure was observed in the annealed thin films with the increase of sputtering pressure. The thermo-magnetic curves exhibited only magnetic transition in the temperature range of 339-374 K. The thin film deposited at high sputtering pressure of 0.025 mbar was found to be ordered L2{sub 1} austenitic phase.

  10. The morphology and structure of PVD ZrN-Cu thin films

    International Nuclear Information System (INIS)

    Audronis, M; Jimenez, O; Leyland, A; Matthews, A

    2009-01-01

    ZrN-Cu thin films containing variable amounts of copper, namely 8, 33 and 58 at%, were produced by reactive pulsed unbalanced magnetron sputtering. Coatings were found to possess hardness values of 22.5 GPa, 9.5 GPa and 3.7 GPa, respectively. The morphology of coatings was investigated by field emission gun scanning electron microscopy and the structure (microstructure and nanostructure) was investigated by conventional (bright-field and dark-field imaging) and high-resolution transmission electron microscopy. Complementary x-ray diffraction experiments were also performed. ZrN coatings containing 8 at% of copper were found to possess a nano-columnar structure composed of ZrN columnar grains, the diameter of which was approximately 15-35 nm. The majority of the copper content was apparently dissolved within the ZrN grains, rather than existing as a separate phase. Coatings of the two other compositions were found to be composed of a mixture of mostly equiaxed ZrN and Cu nano-crystalline grains, the diameters of which were in the approximate range 5-25 nm. None of the coatings investigated in this study were found to possess the so-called 'nanocomposite' structure, which is often envisaged as crystalline nano-grains surrounded by a thin amorphous intergranular phase. Instead, coatings were found to be either single-phase ZrN (with Cu in substitutional solid solution for Zr) or a mixture of ZrN and Cu nano-grains.

  11. [Establishment of anatomical terminology in Japan].

    Science.gov (United States)

    Shimada, Kazuyuki

    2008-12-01

    The history of anatomical terminology in Japan began with the publication of Waran Naikei Ihan-teimŏ in 1805 and Chŏtei Kaitai Shinsho in 1826. Although the establishment of Japanese anatomical terminology became necessary during the Meiji era when many western anatomy books imported into Janan were translated, such terminology was not unified during this period and varied among translators. In 1871, Tsukumo Ono's Kaibŏgaku Gosen was published by the Ministry of Education. Although this book is considered to be the first anatomical glossary terms in Japan, its contents were incomplete. Overseas, the German Anatomical Society established a unified anatomical terminology in 1895 called the Basle Nomina Anatomica (B.N.A.). Based on this development, Kaibŏgaku Meishŭ which follows the BNA, by Buntarŏ Suzuki was published in 1905. With the subsequent establishment in 1935 of Jena Nomina Anatomica (J.N.A.), the unification of anatomical terminology was also accelerated in Japan, leading to the further development of terminology.

  12. Heat treatment and aging effect on the structural and optical properties of plasma polymerized 2,6-diethylaniline thin films

    International Nuclear Information System (INIS)

    Matin, Rummana; Bhuiyan, A.H.

    2012-01-01

    The monomer, 2,6-diethylaniline has been used to deposit plasma polymerized 2,6-diethylaniline (PPDEA) thin films at room temperature on to glass substrates by a capacitively coupled parallel plate glow discharge reactor. A comparative analysis on the changes of morphological, structural and optical properties of as-deposited, heat treated and aged PPDEA thin films is ascertained. Scanning electron microscopy shows uniform and pinhole free surface of PPDEA thin films and no significant difference in the surface morphology is observed due to heat treatment. Electron dispersive X-ray and Fourier transform infrared spectroscopic investigations indicate some structural rearrangement in PPDEA thin films due to heat treatment. Differential thermal analysis, thermogravimetric analysis and differential thermogravimetric analysis suggest that the PPDEA is thermally stable up to about 580 K. The study on the optical absorption spectra of as-deposited, heat treated and aged PPDEA thin films of different thicknesses lead to the determination of the allowed direct and indirect transition energies ranging from 3.63 to 2.73 and 2.38 to 1.26 eV respectively. Urbach energy, steepness parameter and extinction coefficient are also assessed. It is observed that the optical parameters of as-deposited PPDEA thin films change due to heat treatment and do not change appreciably due to aging. - Highlights: ► Heat treatment and aging effect of plasma polymerized 2,6-diethylaniline thin films. ► The surface morphology of PPDEA is found uniform for all types of sample. ► Heat treatment introduces some elemental and structural rearrangement. ► The thermal stability is found up to about 580 K. ► Optical parameters were changed for heat treatment but not markedly for aging.

  13. [Histo-anatomical researches of two subspecies of Lavandula angustifolia Mill].

    Science.gov (United States)

    Robu, Silvia; Galeş, Ramona; Toma, C; Stănescu, Ursula

    2011-01-01

    The structure of the inflorescences of two subspecies of Lavandula angustifolia sL. angustifolia ssp. angustifolia and. L. angustifolia ssp. pyrenaica (D.C.) Guineaţ was studied to determine the range of variation in certain histo-anatomical characters. The flower and leaf structure has been analysed on cross and superficial section using the usual techniques and methods applied in plant histo-anatomical research. In cross-section, inflorescence axis has a squared-shape contour, with four proeminent ribs. On the epiderme of inflorescence axis there are present stomata, trichoms and secretory hairs. The trichoms are pluricelullar and T-branched. The secretory hairs have a short pedicel and a uni-or bicellular head. The study revealed that there are only quantitative differences, referring to the degree of sclerification and lignification of mechanical elements and the size of the vascular bundles.

  14. Cardiac Conduction System: Delineation of Anatomic Landmarks With Multidetector CT

    Directory of Open Access Journals (Sweden)

    Farhood Saremi

    2009-11-01

    Full Text Available Major components of the cardiac conduction system including the sinoatrial node (SAN, atrioventricular node (AVN, the His Bundle, and the right and left bundle branches are too small to be directly visualized by multidetector CT (MDCT given the limited spatial resolution of current scanners. However, the related anatomic landmarks and variants of this system a well as the areas with special interest to electrophysiologists can be reliably demonstrated by MDCT. Some of these structures and landmarks include the right SAN artery, right atrial cavotricuspid isthmus, Koch triangle, AVN artery, interatrial muscle bundles, and pulmonary veins. In addition, MDCT has an imperative role in demarcating potential arrhythmogenic structures. The aim of this review will be to assess the extent at which MDCT can outline the described anatomic landmarks and therefore provide crucial information used in clinical practice.

  15. Electronic structure of Fe1.08Te bulk crystals and epitaxial FeTe thin films on Bi2Te3

    Science.gov (United States)

    Arnold, Fabian; Warmuth, Jonas; Michiardi, Matteo; Fikáček, Jan; Bianchi, Marco; Hu, Jin; Mao, Zhiqiang; Miwa, Jill; Singh, Udai Raj; Bremholm, Martin; Wiesendanger, Roland; Honolka, Jan; Wehling, Tim; Wiebe, Jens; Hofmann, Philip

    2018-02-01

    The electronic structure of thin films of FeTe grown on Bi2Te3 is investigated using angle-resolved photoemission spectroscopy, scanning tunneling microscopy and first principles calculations. As a comparison, data from cleaved bulk Fe1.08Te taken under the same experimental conditions is also presented. Due to the substrate and thin film symmetry, FeTe thin films grow on Bi2Te3 in three domains, rotated by 0°, 120°, and 240°. This results in a superposition of photoemission intensity from the domains, complicating the analysis. However, by combining bulk and thin film data, it is possible to partly disentangle the contributions from three domains. We find a close similarity between thin film and bulk electronic structure and an overall good agreement with first principles calculations, assuming a p-doping shift of 65 meV for the bulk and a renormalization factor of around two. By tracking the change of substrate electronic structure upon film growth, we find indications of an electron transfer from the FeTe film to the substrate. No significant change of the film’s electronic structure or doping is observed when alkali atoms are dosed onto the surface. This is ascribed to the film’s high density of states at the Fermi energy. This behavior is also supported by the ab initio calculations.

  16. Anatomical contributions to plant taxonomy II. The affinities of Hua Pierre and Afrostyrax Perkins et Gilg

    NARCIS (Netherlands)

    Baas, P.

    1972-01-01

    Vegetative anatomy, fruit and seed structure, and pollen morphology of Hua and Afrostyrax (tropical West and Central Africa) are described in detail. The two genera have many anatomical characters in common (see anatomical family diagnosis on p. 182) but are sufficiently different from other

  17. On the structural and optical properties of sputtered hydrogenated amorphous silicon thin films

    International Nuclear Information System (INIS)

    Barhdadi, A.; Chafik El ldrissi, M.

    2002-08-01

    The present work is essentially focused on the study of optical and structural properties of hydrogenated amorphous silicon thin films (a-Si:H) prepared by radio-frequency cathodic sputtering. We examine separately the influence of hydrogen partial pressure during film deposition, and the effect of post-deposition thermal annealings on the main optical characteristics of the layers such as refraction index, optical gap and Urbach energy. Using the grazing X-rays reflectometry technique, thin film structural properties are examined immediately after films deposition as well as after surface oxidation or annealing. We show that low hydrogen pressures allow a saturation of dangling bonds in the layers, while high doses lead to the creation of new defects. We show also that thermal annealing under moderate temperatures improves the structural quality of the deposited layers. For the films examined just after deposition, the role of hydrogen appears in the increase of their density. For those analysed after a short stay in the ambient, hydrogen plays a protective role against the oxidation of their surfaces. This role disappears for a long time stay in the ambient. (author)

  18. Structure of the Buried Metal-Molecule Interface in Organic Thin Film Devices

    DEFF Research Database (Denmark)

    Hansen, Christian Rein; Sørensen, Thomas Just; Glyvradal, Magni

    2009-01-01

    By use of specular X-ray reflectivity (XR) the structure of a metal-covered organic thin film device is measured with angstrom resolution. The model system is a Langmuir-Blodgett (LB) film, sandwiched between a silicon substrate and a top electrode consisting of 25 Å titanium and 100 Å aluminum....... By comparison of XR data for the five-layer Pb2+ arachidate LB film before and after vapor deposition of the Ti/Al top electrode, a detailed account of the structural damage to the organic film at the buried metal-molecule interface is obtained. We find that the organized structure of the two topmost LB layers...

  19. Fast detection of the main anatomical structures in digital retinal images based on intra- and inter-structure relational knowledge.

    Science.gov (United States)

    Molina-Casado, José M; Carmona, Enrique J; García-Feijoó, Julián

    2017-10-01

    The anatomical structure detection in retinal images is an open problem. However, most of the works in the related literature are oriented to the detection of each structure individually or assume the previous detection of a structure which is used as a reference. The objective of this paper is to obtain simultaneous detection of the main retinal structures (optic disc, macula, network of vessels and vascular bundle) in a fast and robust way. We propose a new methodology oriented to accomplish the mentioned objective. It consists of two stages. In an initial stage, a set of operators is applied to the retinal image. Each operator uses intra-structure relational knowledge in order to produce a set of candidate blobs that belongs to the desired structure. In a second stage, a set of tuples is created, each of which contains a different combination of the candidate blobs. Next, filtering operators, using inter-structure relational knowledge, are used in order to find the winner tuple. A method using template matching and mathematical morphology is implemented following the proposed methodology. A success is achieved if the distance between the automatically detected blob center and the actual structure center is less than or equal to one optic disc radius. The success rates obtained in the different public databases analyzed were: MESSIDOR (99.33%, 98.58%, 97.92%), DIARETDB1 (96.63%, 100%, 97.75%), DRIONS (100%, n/a, 100%) and ONHSD (100%, 98.85%, 97.70%) for optic disc (OD), macula (M) and vascular bundle (VB), respectively. Finally, the overall success rate obtained in this study for each structure was: 99.26% (OD), 98.69% (M) and 98.95% (VB). The average time of processing per image was 4.16 ± 0.72 s. The main advantage of the use of inter-structure relational knowledge was the reduction of the number of false positives in the detection process. The implemented method is able to simultaneously detect four structures. It is fast, robust and its detection

  20. Structural and electrical properties of Ta2O5 thin films prepared by ...

    Indian Academy of Sciences (India)

    The dielectric constant and leakage current density of the Ta2O5 thin films increase with increasing powers of the UV- lamps. Effects of UV- lamp powers on the structural and electrical properties were discussed. Keywords. Chemical vapour deposition processes; oxides; dielectric material; MOS capacitor. 1. Introduction.

  1. Structural and optical studied of nano structured lead sulfide thin films prepared by the chemical bath deposition technique

    Energy Technology Data Exchange (ETDEWEB)

    Al Din, Nasser Saad, E-mail: nsaadaldin@yahoo.com; Hussain, Nabiha, E-mail: nabihahssin@yahoo.com [Damascus University Faculty of Science, Department of physics, Homs (Syrian Arab Republic); Jandow, Nidhal, E-mail: nidhaljandow@yahoo.com [Al –Mustansiriyah University, College of Education, Department of physics, Baghdad (Iraq)

    2016-07-25

    Lead (II) Sulfide PbS thin films were deposited on glass substrates at 25°C by chemical bath deposition (CBD) method. The structural properties of the films were studied as a function of the concentration of Thiourea (CS (NH{sub 2}){sub 2}) as Source of Sulfide and deposition time. The surface morphology of the films was characterized by X-ray diffraction and SEM. The obtained results showed that the as-deposited films Polycrystalline had cubic crystalline phase that belong to S.G: Fm3m. We found that they have preferred orientation [200]. Also the thickness of thin films decrease with deposition time after certain value and, it observed free sulfide had orthorhombic phase. Optical properties showed that the thin films have high transmission at visible range and low transmission at UV, IR range. The films of PbS have direct band gap (I.68 - 2.32 ev) at 300 K the values of band energy decreases with increases thickness of the Lead (II) Sulfide films.

  2. Stress state of thin – walled member of the structure with operation damages under nonuniform loading

    Directory of Open Access Journals (Sweden)

    В.В. Астанін

    2004-01-01

    Full Text Available  The publication is dedicated to determining of stress state in particular the stress concentration factors for thin – walled members of the structures subject to nonuniform tension. A structure member has obtained the operation damage generation by corrosion and other causes.

  3. Anatomical Peculiarities in Wheat (Triticum Aestivum L.) varieties Under Copper Stress

    International Nuclear Information System (INIS)

    Atabayeva, S.; Nurmahanova, A.; Akhmetova, A.; Narmuratova, M.; Asrandina, S.; Alybayeva, R.

    2016-01-01

    The effect of different concentrations (0.25 mM, 0.5 mM) of Cu/sup 2+/ on anatomical parameters of leaves and roots was investigated in hydroponically grown five wheat (Triticum aestivum L.) varieties (Kazakhstanskaya rannaya, Kazakhstanskaya-3, Melturn, Kaiyr and Shagala). The results showed that wheat varieties exposed to 0.5 mM Cu/sup 2+/ exhibited significant alterations in anatomical structure of leaves and roots. The thickness of the upper and lower epidermis, diameter of vascular bundles of leaves of almost all varieties showed a tendency to decrease under copper stress. Our experiments showed an activation of defense responses in the root anatomical structure like exodermis thickening in some varieties in the presence of copper in growth medium as compared to the control. This indicates that copper ions increase the thickness of exodermis, which reduce the absorption of toxic elements by root cells. Copper stress caused a decrease in the thickness of the lower and upper epidermis to varying degrees and reduction in the diameter of vascular bundles of wheat leaves. Copper stress caused a reduction in endodermis thickness thereby decreasing the diameter of the central cylinder of wheat roots. (author)

  4. Structural and electrical properties of sputter deposited ZnO thin films

    Science.gov (United States)

    Muhammed Shameem P., V.; Mekala, Laxman; Kumar, M. Senthil

    2018-05-01

    The growth of zinc oxide thin films having different oxygen content was achieved at ambient temperature by reactive dc magnetron sputtering technique and their structural and electrical properties are studied. The structural studies show that the films are polycrystalline with a preferential orientation of the grains along the c-axis [002], which increases with increase in oxygen partial pressure. The grain size and the surface roughness of the zinc oxide films are found to decrease with increasing oxygen partial pressure. It is observed that the resistivity of the zinc oxide films can be tuned from semiconducting to insulating regime by varying the oxygen content.

  5. Effects of thickness on the nanocrystalline structure and semiconductor-metal transition characteristics of vanadium dioxide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Zhenfei, E-mail: zhfluo8@yahoo.com [Terahertz Research Center, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Zhou, Xun, E-mail: zx_zky@yahoo.com [Terahertz Research Center, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Yan, Dawei [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Wang, Du; Li, Zeyu [Terahertz Research Center, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Yang, Cunbang [Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang Sichuan 621900 (China); Jiang, Yadong [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2014-01-01

    Nanocrystalline vanadium dioxide (VO{sub 2}) thin films were grown on glass substrates by using reactive direct current magnetron sputtering and in situ thermal treatments at low preparation temperatures (≤ 350 °C). The VO{sub 2} thin films were characterized by grazing-incidence X-ray diffraction, field emission scanning electron microscope, transmission electron microscopy and spectroscopic ellipsometry (SE). The semiconductor-metal transition (SMT) characteristics of the films were investigated by four-point probe resistivity measurements and infrared spectrometer equipped with heating pads. The testing results showed that the crystal structure, morphology, grain size and semiconductor-metal transition temperature (T{sub SMT}) significantly changed as the film thickness decreased. Multilayer structures were observed in the particles of thinner films whose average particle size is much larger than the film thickness and average VO{sub 2} grain size. A competition mechanism between the suppression effect of decreased thickness and coalescence of nanograins was proposed to understand the film growth and the formation of multilayer structure. The value of T{sub SMT} was found to decrease as average VO{sub 2} grain size became smaller, and SE results showed that small nanograin size significantly affected the electronic structure of VO{sub 2} film. - Highlights: • Nanocrystalline vanadium dioxide thin films were prepared. • Multilayer structures were observed in the films with large particles. • The transition temperature of the film is correlated with its electronic structure.

  6. Medial structure generation for registration of anatomical structures

    DEFF Research Database (Denmark)

    Vera, Sergio; Gil, Debora; Kjer, Hans Martin

    2017-01-01

    structures. Methods for generation of medial structures, however, are prone to the generation of medial artifacts (spurious branches) that traditionally need to be pruned before the medial structure can be used for further computations. The act of pruning can affect main sections of the medial surface......Medial structures (skeletons and medial manifolds) have shown capacity to describe shape in a compact way. In the field of medical imaging, they have been employed to enrich the description of organ anatomy, to improve segmentation, or to describe the organ position in relation to surrounding...

  7. Epitaxial growth and characterization of CoO/Fe(001) thin film layered structures

    International Nuclear Information System (INIS)

    Brambilla, A.; Sessi, P.; Cantoni, M.; Duo, L.; Finazzi, M.; Ciccacci, F.

    2008-01-01

    By means of X-ray photoemission spectroscopy and low energy electron diffraction, we show that it is possible to grow good quality thin epitaxial CoO films on Fe(001) substrates, through deposition in oxygen atmosphere. In particular, the composition and the structure of CoO(001)/Fe(001) bilayer systems and Fe(001)/CoO(001)/Fe(001) trilayer systems have been investigated by monitoring the evolution of the chemical interactions at the interfaces as a function of CoO thickness and growth temperature. We observe the presence of Fe oxides at the CoO/Fe interface and of a thin layer of metallic cobalt at the upper Fe/CoO interface of trilayer systems

  8. Effect of thermal annealing on structural properties of SrGa2S4:Ce thin films prepared by flash evaporation

    International Nuclear Information System (INIS)

    Gambarov, E.F.; Bayramov, A.I.

    2009-01-01

    In the present report the preparation technology and structural characterization of Ce 3 +activated SrGa 2 S 4 thin films are given. SrGa 2 S 4 : e thin films are prepared by so called flash evaporation which is simple and inexpensive method for thin film deposition. X-ray diffraction shows that the as deposited films exhibit amorphous behavior, but after annealing in H S stream, the polycrystalline one. EPMA results indicate nearly stoichiometric composition of the thin films

  9. Radio-guided sentinel lymph node identification by lymphoscintigraphy fused with an anatomical vector profile: clinical applications.

    Science.gov (United States)

    Niccoli Asabella, A; Antonica, F; Renna, M A; Rubini, D; Notaristefano, A; Nicoletti, A; Rubini, G

    2013-12-01

    To develop a method to fuse lymphoscintigraphic images with an adaptable anatomical vector profile and to evaluate its role in the clinical practice. We used Adobe Illustrator CS6 to create different vector profiles, we fused those profiles, using Adobe Photoshop CS6, with lymphoscintigraphic images of the patient. We processed 197 lymphoscintigraphies performed in patients with cutaneous melanomas, breast cancer or delayed lymph drainage. Our models can be adapted to every patient attitude or position and contain different levels of anatomical details ranging from external body profiles to the internal anatomical structures like bones, muscles, vessels, and lymph nodes. If needed, more new anatomical details can be added and embedded in the profile without redrawing them, saving a lot of time. Details can also be easily hidden, allowing the physician to view only relevant information and structures. Fusion times are about 85 s. The diagnostic confidence of the observers increased significantly. The validation process showed a slight shift (mean 4.9 mm). We have created a new, practical, inexpensive digital technique based on commercial software for fusing lymphoscintigraphic images with built-in anatomical reference profiles. It is easily reproducible and does not alter the original scintigraphic image. Our method allows a more meaningful interpretation of lymphoscintigraphies, an easier recognition of the anatomical site and better lymph node dissection planning.

  10. Magnetic structures in ultra-thin Holmium films: Influence of external magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, L.J. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59600-900, RN (Brazil); Departamento de Física, Universidade do Estado do Rio Grande do Norte, Mossoró 59625-620, RN (Brazil); Mello, V.D. [Departamento de Física, Universidade do Estado do Rio Grande do Norte, Mossoró 59625-620, RN (Brazil); Anselmo, D.H.A.L. [Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59600-900, RN (Brazil); Vasconcelos, M.S., E-mail: mvasconcelos@ect.ufrn.br [Escola de Ciência e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, RN (Brazil)

    2015-03-01

    We address the magnetic phases in very thin Ho films at the temperature interval between 20 K and 132 K. We show that slab size, surface effects and magnetic field due to spin ordering impact significantly the magnetic phase diagram. Also we report that there is a relevant reduction of the external field strength required to saturate the magnetization and for ultra-thin films the helical state does not form. We explore the specific heat and the susceptibility as auxiliary tools to discuss the nature of the phase transitions, when in the presence of an external magnetic field and temperature effects. The presence of an external field gives rise to the magnetic phase Fan and the spin-slip structures. - Highlights: • We analyze the magnetic phases of very thin Ho films in the temperature interval 20–132 K. • We show that slab size, etc. due to spin ordering may impact the magnetic phase diagram. • All magnetic phase transitions, for strong magnetic fields, are marked by the specific heat. • The presence of an external field gives rise to the magnetic phase Fan and the spin-slip one.

  11. Optical and structural properties of ZnO/ZnMgO composite thin films prepared by sol–gel technique

    International Nuclear Information System (INIS)

    Xu, Linhua; Su, Jing; Chen, Yulin; Zheng, Gaige; Pei, Shixin; Sun, Tingting; Wang, Junfeng; Lai, Min

    2013-01-01

    Highlights: ► ZnMgO thin film and ZnO/ZnMgO composite thin film have been prepared by sol–gel method. ► The intensity of ultraviolet emission of ZnMgO thin film is enhanced two times compared with that of pure ZnO thin film. ► Compared with ZnMgO thin film, ZnO/ZnMgO composite thin film shows better crystallization and optical properties. ► ZnO/ZnMgO composite thin films prepared by sol–gel method have potential applications in many optoelectronic devices. - Abstract: In this study, pure ZnO thin film, Mg-doped ZnO (ZnMgO) thin film, ZnO/ZnMgO and ZnMgO/ZnO composite thin films were prepared by sol–gel technique. The structural and optical properties of the samples were analyzed by X-ray diffraction, scanning electron microscopy, UV–visible spectrophotometer, ellipsometer and photoluminescence spectra, respectively. The results showed that the incorporation of Mg increased the strain, broadened the optical bandgap, and improved the intensity of ultraviolet emission of ZnO thin film. The full width at half maximum (FWHM) of the ultraviolet emission peak was also increased due to Mg-doping at the same time. Compared with pure ZnO and ZnMgO thin films, the ZnO/ZnMgO thin film showed better crystalline quality and ultraviolet emission performance, smaller strains and higher transmittance in the visible range.

  12. The effect of Mg dopants on magnetic and structural properties of iron oxide and zinc ferrite thin films

    Science.gov (United States)

    Saritaş, Sevda; Ceviz Sakar, Betul; Kundakci, Mutlu; Yildirim, Muhammet

    2018-06-01

    Iron oxide thin films have been obtained significant interest as a material that put forwards applications in photovoltaics, gas sensors, biosensors, optoelectronic and especially in spintronics. Iron oxide is one of the considerable interest due to its chemical and thermal stability. Metallic ion dopant influenced superexchange interactions and thus changed the structural, electrical and magnetic properties of the thin film. Mg dopped zinc ferrite (Mg:ZnxFe3-xO4) crystal was used to avoid the damage of Fe3O4 (magnetite) crystal instead of Zn2+ in this study. Because the radius of the Mg2+ ion in the A-site (tetrahedral) is almost equal to that of the replaced Fe3+ ion. Inverse-spinel structure in which oxygen ions (O2-) are arranged to form a face-centered cubic (FCC) lattice where there are two kinds of sublattices, namely, A-site and B-site (octahedral) interstitial sites and in which the super exchange interactions occur. In this study, to increase the saturation of magnetization (Ms) value for iron oxide, inverse-spinal ferrite materials have been prepared, in which the iron oxide was doped by multifarious divalent metallic elements including Zn and Mg. Triple and quaternary; iron oxide and zinc ferrite thin films with Mg metal dopants were grown by using Spray Pyrolysis (SP) technique. The structural, electrical and magnetic properties of Mg dopped iron oxide (Fe2O3) and zinc ferrite (ZnxFe3-xO4) thin films have been investigated. Vibrating Sample Magnetometer (VSM) technique was used to study for the magnetic properties. As a result, we can say that Mg dopped iron oxide thin film has huge diamagnetic and of Mg dopped zinc ferrite thin film has paramagnetic property at bigger magnetic field.

  13. Growth and structure of a young Aleppo pine planted forest after thinning for diversification and wildfire prevention

    Energy Technology Data Exchange (ETDEWEB)

    Ruiz-Mirazo, J.; Gonzalez-Rebollar, J. L.

    2013-05-01

    Aim of study: In the Mediterranean, low timber-production forests are frequently thinned to promote biodiversity and reduce wildfire risk, but few studies in the region have addressed such goals. The aim of this research was to compare six thinning regimes applied to create a fuel break in a young Aleppo pine (Pinus halepensis Mill.) planted forest. Area of study: A semiarid continental high plateau in south-eastern Spain. Material and Methods: Three thinning intensities (Light, Medium and Heavy) were combined with two thinning methods: i) Random (tree selection), and ii) Regular (tree spacing). Tree growth and stand structure measurements were made four years following treatments. Main results: Heavy Random thinning successfully transformed the regular tree plantation pattern into a close-to-random spatial tree distribution. Heavy Regular thinning (followed by the Medium Regular and Heavy Random regimes) significantly reduced growth in stand basal area and biomass. Individual tree growth, in contrast, was greater in Heavy and Medium thinnings than in Light ones, which were similar to the Control. Research highlights: Heavy Random thinning seemed the most appropriate in a young Aleppo pine planted forest to reduce fire risk and artificial tree distribution simultaneously. Light Regular thinning avoids under stocking the stand and may be the most suitable treatment for creating a fuel break when the undergrowth poses a high fire risk. (Author) 35 refs.

  14. Study of post annealing influence on structural, chemical and electrical properties of ZTO thin films

    International Nuclear Information System (INIS)

    Jain, Vipin Kumar; Kumar, Praveen; Kumar, Mahesh; Jain, Praveen; Bhandari, Deepika; Vijay, Y.K.

    2011-01-01

    Research highlights: → Structural, chemical and electrical properties of cost effective ZTO thin films with varying concentrations. → Effect of annealing of ZTO films. - Abstract: Zinc-Tin-Oxide (ZTO) thin films were deposited on glass substrate with varying concentrations (ZnO:SnO 2 ; 100:0, 90:10, 70:30 and 50:50 wt.%) at room temperature by flash evaporation technique. These deposited ZTO films were annealed at 450 deg. C in vacuum. These films were characterized to study the effect of annealing and addition of SnO 2 concentration on the structural, chemical and electrical properties. The XRD analysis indicates that crystallization of the ZTO films strongly depends on the concentration of SnO 2 and post annealing where annealed films showed polycrystalline nature. Atomic force microscopy (AFM) images manifest the surface morphology of these ZTO thin films. The XPS core level spectra of Zn(2p), O(1s) and Sn(3d) have been deconvoluted into their Gaussian component to evaluate the chemical changes, while valence band spectra reveal the electronic structures of these films. A small shift in Zn(2p) and Sn(3d) core level towards higher binding energy and O(1s) core level towards lower binding energy have been observed. The minimum electrical resistivity (ρ ∼ 3.69 x 10 -2 Ω-cm), maximum carrier concentration (n ∼ 3.26 x 10 19 cm -3 ) and Hall mobility (μ ∼ 5.2 cm 2 v -1 s -1 ) were obtained for as-prepared ZTO (50:50) film thereafter move towards lowest resistivity (ρ ∼ 1.12 x 10 -3 Ω-cm), highest carrier concentration (n ∼ 2.96 x 10 20 cm -3 ) and mobility (μ ∼ 18.8 cm 2 v -1 s -1 ) for annealed ZTO (50:50) thin film.

  15. Structural studies on Langmuir-Blodgett ultra-thin films on tin (IV) stearate using X-ray diffraction technique

    International Nuclear Information System (INIS)

    Mohamad Deraman; Muhamad Mat Salleh; Mohd Ali Sulaiman; Mohd Ali Sufi

    1991-01-01

    X-ray diffraction measurements were carried out on Langmuir-Blodgett (LB) ultra-thin films of tin (IV) stearate for different numbers of layers. The structural information such as interplanar spacing, unit cells spacing, molecular length and orientation of molecular chains were obtained from the diffraction data. This information is discussed and compared with that previously published for LB ultra-thin films of manganese stearate and cadmium stearate

  16. Bioinspired Non-iridescent Structural Color from Polymer Blend Thin Films

    Science.gov (United States)

    Nallapaneni, Asritha; Shawkey, Matthew; Karim, Alamgir

    Colors exhibited in biological species are either due to natural pigments, sub-micron structural variation or both. Structural colors thus exhibited can be iridescent (ID) or non-iridescent (NID) in nature. NID colors originate due to interference and coherent scattering of light with quasi-ordered micro- and nano- structures. Specifically, in Eastern Bluebird (Sialia sialis) these nanostructures develop as a result of phase separation of β-keratin from cytoplasm present in cells. We replicate these structures via spinodal blend phase separation of PS-PMMA thin films. Colors of films vary from ultraviolet to blue. Scattering of UV-visible light from selectively leeched phase separated blends are studied in terms of varying domain spacing (200nm to 2 μm) of film. We control these parameters by tuning annealing time and temperature. Angle-resolved spectroscopy studies suggest that the films are weakly iridescent and scattering from phase-separated films is more diffused when compared to well-mixed films. This study offers solutions to several color-based application in paints and coatings industry.

  17. Structural and optical properties of nanocrystalline CdSe and Al:CdSe thin films for photoelectrochemical application

    Energy Technology Data Exchange (ETDEWEB)

    Gawali, Sanjay A. [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur - 416 004 (India); Bhosale, C.H., E-mail: bhosale_ch@yahoo.com [Electrochemical Materials Laboratory, Department of Physics, Shivaji University, Kolhapur - 416 004 (India)

    2011-10-03

    Highlights: {yields} The CdSe and Al:CdSe thin films have been successfully deposited by SPT. {yields} Hexagonal cubic structured CdSe and Al: CdSe thin films are observed. {yields} Large number of fine grains, Uniform and compact growth morphology. {yields} Hydrophilic surface nature. {yields} Al:CdSe have better PEC performance than CdSe. - Abstract: Nanocrystalline CdSe and Al:CdSe semiconductor thin films have been successfully synthesized onto amorphous and FTO glass substrates by spray pyrolysis technique. Aqueous solutions containing precursors of Cd and Se have been used to obtain good quality films. The optimized films have been characterized for their structural, morphological, wettability and optical properties. X-ray diffraction (XRD) studies show that the films are polycrystalline in nature with hexagonal crystal structure. Scanning electron microscopy (SEM) studies show that the film surface is smooth, uniform and compact in nature. Water wettability study reveals that the films are hydrophilic behavior. The formation of CdSe and Al:CdSe thin film were confirmed with the help of FTIR spectroscopy. UV-vis spectrophotometric measurement showed a direct allowed band gap lying in the range 1.673-1.87 eV. Output characteristics were studied by using cell configuration n- CdSe/Al:CdSe |1 M (NaOH + Na{sub 2} + S)|C. An efficient solar cell having a power conversion efficiency of 0.38% at illumination 25 mW cm{sup -2} was fabricated.

  18. Structural and Optical Studies of Magnesium Doped Zinc Oxide Thin Films

    OpenAIRE

    Arpana Agrawal; Tanveer Ahmad Dar; Pratima Sen

    2013-01-01

    The paper describes the structural and optical properties of Magnesium doped Zinc Oxide (Mg  3.5 %, 6 %, 9 %, 12 % by weight) thin films prepared by pulsed laser deposition technique. The samples are characterized by X-ray diffraction technique, Ultra-violet visible absorption spectroscopy, X-ray photoelectron spectroscopy. X-ray diffraction results reveal the polycrystalline nature of samples with no impurity or secondary phase formation. Ultra-violet visible absorption spectroscopy studies...

  19. Investigation of growth, structural and electronic properties of V{sub 2}O{sub 3} thin films on selected substrates

    Energy Technology Data Exchange (ETDEWEB)

    Nateprov, Alexei

    2006-08-15

    The present work is devoted to the experimental study of the MI transition in V{sub 2}O{sub 3} thin films, grown on different substrates. The main goal of the work was to develop a technology of growth of V{sub 2}O{sub 3} thin films on substrates with different electrical and structural properties (diamond and LiNbO{sub 3}), designed for specific applications. The structural and electrical properties of the obtained films were characterized in detail with a special focus on their potential applications. The MIT of V{sub 2}O{sub 3} was investigated by SAW using first directly deposited V{sub 2}O{sub 3} thin film onto a LiNbO{sub 3} substrate. (orig.)

  20. Preparation of InSe Thin Films by Thermal Evaporation Method and Their Characterization: Structural, Optical, and Thermoelectrical Properties

    Directory of Open Access Journals (Sweden)

    Sarita Boolchandani

    2018-01-01

    Full Text Available The indium selenium (InSe bilayer thin films of various thickness ratios, InxSe(1-x (x = 0.25, 0.50, 0.75, were deposited on a glass substrate keeping overall the same thickness of 2500 Ǻ using thermal evaporation method under high vacuum atmosphere. Electrical, optical, and structural properties of these bilayer thin films have been compared before and after thermal annealing at different temperatures. The structural and morphological characterization was done using XRD and SEM, respectively. The optical bandgap of these thin films has been calculated by Tauc’s relation that varies within the range of 1.99 to 2.05 eV. A simple low-cost thermoelectrical power measurement setup is designed which can measure the Seebeck coefficient “S” in the vacuum with temperature variation. The setup temperature variation is up to 70°C. This setup contains a Peltier device TEC1-12715 which is kept between two copper plates that act as a reference metal. Also, in the present work, the thermoelectric power of indium selenide (InSe and aluminum selenide (AlSe bilayer thin films prepared and annealed in the same way is calculated. The thermoelectric power has been measured by estimating the Seebeck coefficient for InSe and AlSe bilayer thin films. It was observed that the Seebeck coefficient is negative for InSe and AlSe thin films.

  1. Crystal Structure of AgBi2I7 Thin Films.

    Science.gov (United States)

    Xiao, Zewen; Meng, Weiwei; Mitzi, David B; Yan, Yanfa

    2016-10-06

    Synthesis of cubic-phase AgBi 2 I 7 iodobismuthate thin films and fabrication of air-stable Pb-free solar cells using the AgBi 2 I 7 absorber have recently been reported. On the basis of X-ray diffraction (XRD) analysis and nominal composition, it was suggested that the synthesized films have a cubic ThZr 2 H 7 crystal structure with AgBi 2 I 7 stoichiometry. Through careful examination of the proposed structure and computational evaluation of the phase stability and bandgap, we find that the reported "AgBi 2 I 7 " films cannot be forming with the ThZr 2 H 7 -type structure, but rather more likely adopt an Ag-deficient AgBiI 4 type. Both the experimental X-ray diffraction pattern and bandgap can be better explained by the AgBiI 4 structure. Additionally, the proposed AgBiI 4 structure, with octahedral bismuth coordination, removes unphysically short Bi-I bonding within the [BiI 8 ] hexahedra of the ThZr 2 I 7 model. Our results provide critical insights for assessing the photovoltaic properties of AgBi 2 I 7 iodobismuthate materials.

  2. Intermediate surface structure between step bunching and step flow in SrRuO3 thin film growth

    Science.gov (United States)

    Bertino, Giulia; Gura, Anna; Dawber, Matthew

    We performed a systematic study of SrRuO3 thin films grown on TiO2 terminated SrTiO3 substrates using off-axis magnetron sputtering. We investigated the step bunching formation and the evolution of the SRO film morphology by varying the step size of the substrate, the growth temperature and the film thickness. The thin films were characterized using Atomic Force Microscopy and X-Ray Diffraction. We identified single and multiple step bunching and step flow growth regimes as a function of the growth parameters. Also, we clearly observe a stronger influence of the step size of the substrate on the evolution of the SRO film surface with respect to the other growth parameters. Remarkably, we observe the formation of a smooth, regular and uniform ``fish skin'' structure at the transition between one regime and another. We believe that the fish skin structure results from the merging of 2D flat islands predicted by previous models. The direct observation of this transition structure allows us to better understand how and when step bunching develops in the growth of SrRuO3 thin films.

  3. Influence of the side chain and substrate on polythiophene thin film surface, bulk, and buried interfacial structures.

    Science.gov (United States)

    Xiao, Minyu; Jasensky, Joshua; Zhang, Xiaoxian; Li, Yaoxin; Pichan, Cayla; Lu, Xiaolin; Chen, Zhan

    2016-08-10

    The molecular structures of organic semiconducting thin films mediate the performance of various devices composed of such materials. To fully understand how the structures of organic semiconductors alter on substrates due to different polymer side chains and different interfacial interactions, thin films of two kinds of polythiophene derivatives with different side-chains, poly(3-hexylthiophene) (P3HT) and poly(3-potassium-6-hexanoate thiophene) (P3KHT), were deposited and compared on various surfaces. A combination of analytical tools was applied in this research: contact angle goniometry and X-ray photoelectron spectroscopy (XPS) were used to characterize substrate dielectric surfaces with varied hydrophobicity for polymer film deposition; X-ray diffraction and UV-vis spectroscopy were used to examine the polythiophene film bulk structure; sum frequency generation (SFG) vibrational spectroscopy was utilized to probe the molecular structures of polymer film surfaces in air and buried solid/solid interfaces. Both side-chain hydrophobicity and substrate hydrophobicity were found to mediate the crystallinity of the polythiophene film, as well as the orientation of the thiophene ring within the polymer backbone at the buried polymer/substrate interface and the polymer thin film surface in air. For the same type of polythiophene film deposited on different substrates, a more hydrophobic substrate surface induced thiophene ring alignment with the surface normal at both the buried interface and on the surface in air. For different films (P3HT vs. P3KHT) deposited on the same dielectric substrate, a more hydrophobic polythiophene side chain caused the thiophene ring to align more towards the surface at the buried polymer/substrate interface and on the surface in air. We believe that the polythiophene surface, bulk, and buried interfacial molecular structures all influence the hole mobility within the polythiophene film. Successful characterization of an organic conducting

  4. Structure and electrical properties of Pb(ZrxTi1-x)O3 deposited on textured Pt thin films

    International Nuclear Information System (INIS)

    Hong, Jongin; Song, Han Wook; Lee, Hee Chul; Lee, Won Jong; No, Kwangsoo

    2001-01-01

    The texturing of the bottom electrode plays a key role in the structure and electrical properties of Pb(Zr,Ti)O 3 (PZT) thin films. We fabricated Pt bottom electrodes having a different thickness on MgO single crystals at 600 o C by rf magnetron sputtering. As the thickness of platinum (Pt) thin film increased, the preferred orientation of Pt thin film changed from (200) to (111). PZT thin films were fabricated at 450 o C by electron cyclotron resonance-plasma enhanced metal organic chemical vapor deposition on the textured Pt thin films. The texturing of the bottom electrode caused drastic changes in the C--V characteristics, P--E characteristics, and fatigue characteristics of metal/ferroelectric material/metal (MFM) capacitors. The difference of the electrical properties between the PZT thin films having different texturing was discussed in terms-of the x--y alignment and the interface between electrode and PZT in MFM capacitors. copyright 2001 American Institute of Physics

  5. InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties

    Science.gov (United States)

    Sang, Liwen; Liao, Meiyong; Koide, Yasuo; Sumiya, Masatomo

    2015-03-01

    InxGa1-xN, with the tunable direct bandgaps from ultraviolet to near infrared region, offers a promising candidate for the high-efficiency next-generation thin-film photovoltaic applications. Although the adoption of thick InGaN film as the active region is desirable to obtain efficient light absorption and carrier collection compared to InGaN/GaN quantum wells structure, the understanding on the effect from structural design is still unclear due to the poor-quality InGaN films with thickness and difficulty of p-type doping. In this paper, we comprehensively investigate the effects from film epitaxy, doping, and device structural design on the performances of the InGaN-based solar cells. The high-quality InGaN thick film is obtained on AlN/sapphire template, and p-In0.08Ga0.92N is achieved with a high hole concentration of more than 1018 cm-3. The dependence of the photovoltaic performances on different structures, such as active regions and p-type regions is analyzed with respect to the carrier transport mechanism in the dark and under illumination. The strategy of improving the p-i interface by using a super-thin AlN interlayer is provided, which successfully enhances the performance of the solar cells.

  6. Solution processed pentacene thin films and their structural properties

    International Nuclear Information System (INIS)

    Tao Chunlan; Zhang Xuhui; Zhang Fujia; Liu Yiyang; Zhang Haoli

    2007-01-01

    The paper reported the solution process of pentacene thin films from organic solvent O-dichlorobenzene. The pentacene thin films obtained from different conditions were characterized by X-ray diffraction (XRD), optical microscopy, scanning electron microscopy (SEM), and UV-vis spectroscopy. The result shows that the pentacene solution was successfully obtained at a minimum temperature of 40 deg. C. The optimum temperature of forming pentacene thin films was 100 deg. C

  7. Analysis of Crystal Structure of Fe3O4 Thin Films Based on Iron Sand Growth by Spin Coating Method

    Science.gov (United States)

    Rianto, D.; Yulfriska, N.; Murti, F.; Hidayati, H.; Ramli, R.

    2018-04-01

    Recently, iron sand used as one of base materials in the steel industry. However, the content of iron sand can be used as starting materials in sensor technology in the form of thin films. In this paper, we report the analysis of crystal structure of magnetite thin film based on iron sand from Tiram’s Beach. The magnetic content of sand separated by a permanent magnet, then it was milled at 30 hours milling time. In order to increase the purity of magnetite, it washed after milling using aquades under magnetic separation by a magnet permanent. The thin film has been prepared using iron (III) nitrate by sol–gel technique. The precursor is resulted by dissolving magnetite in oxalic acid and nitric acid. Then, solution of iron (III) nitrate dissolved in ethylene glycol was applied on glass substrates by spin coating. The X-Ray Diffraction is operated thin film characterization. The structure of magnetite has been studied based on X-Ray Peaks that correspond to magnetite content of thin films.

  8. Structure and magnetic properties of Fe doped In{sub 2}O{sub 3} thin films prepared by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, N. Sai; Kaleemulla, S., E-mail: skaleemulla@gmail.com; Rao, N. Madhusudhana; Krishnamoorthi, C.; Begam, M. Rigana [Thin Films Laboratory, School of Advanced Sciences, VIT University, Vellore – 632014 (India); Amarendra, G. [Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam – 603102 (India); UGC-DAE-CSR, Kalpakkam Node, Kokilamedu, Tamilnadu -603104 (India)

    2015-06-24

    Pure and Fe (7 at.%) doped In{sub 2}O{sub 3} thin films were grown onto the glass substrates by electron beam evaporation technique. The structural and magnetic properties of the pure and Fe doped In{sub 2}O{sub 3} thin films have been studied. The undoped and Fe doped In{sub 2}O{sub 3} thin films shown ferromagnetic property at room temperature. A magnetization of 24 emu/cm{sup 3} was observed for pure In{sub 2}O{sub 3} thin films. The magnetization of 38.23 emu/cm{sup 3} was observed for the Fe (7 at.%) doped In{sub 2}O{sub 3} thin films.

  9. Degenerated shell element for geometrically nonlinear analysis of thin-walled piezoelectric active structures

    International Nuclear Information System (INIS)

    Marinković, D; Köppe, H; Gabbert, U

    2008-01-01

    Active piezoelectric thin-walled structures, especially those with a notably higher membrane than bending stiffness, are susceptible to large rotations and transverse deflections. Recent investigations conducted by a number of researchers have shown that the predicted behavior of piezoelectric structures can be significantly influenced by the assumption of large displacements and rotations of the structure, thus demanding a geometrically nonlinear formulation in order to investigate it. This paper offers a degenerated shell element and a simplified formulation that relies on small incremental steps for the geometrically nonlinear analysis of piezoelectric composite structures. A set of purely mechanical static cases is followed by a set of piezoelectric coupled static cases, both demonstrating the applicability of the proposed formulation

  10. Solution processable semiconductor thin films: Correlation between morphological, structural, optical and charge transport properties

    Science.gov (United States)

    Isik, Dilek

    This Ph.D. thesis is a result of multidisciplinary research bringing together fundamental concepts in thin film engineering, materials science, materials processing and characterization, electrochemistry, microfabrication, and device physics. Experiments were conducted by tackling scientific problems in the field of thin films and interfaces, with the aim to correlate the morphology, crystalline structure, electronic structure of thin films with the functional properties of the films and the performances of electronic devices based thereon. Furthermore, novel strategies based on interfacial phenomena at electrolyte/thin film interfaces were explored and exploited to control the electrical conductivity of the thin films. Three main chemical systems were the object of the studies performed during this Ph.D., two types of organic semiconductors (azomethine-based oligomers and polymers and soluble pentacene derivatives) and one metal oxide semiconductor (tungsten trioxide, WO3). To explore the morphological properties of the thin films, atomic force microscopy was employed. The morphological properties were further investigated by hyperspectral fluorescence microscopy and tentatively correlated to the charge transport properties of the films. X-ray diffraction (Grazing incidence XRD, GIXRD) was used to investigate the crystallinity of the film and the effect of the heat treatment on such crystallinity, as well as to understand the molecular arrangement of the organic molecules in the thin film. The charge transport properties of the films were evaluated in thin film transistor configuration. For electrolyte gated thin film transistors, time dependent transient measurements were conducted, in parallel to more conventional transistor characterizations, to explore the specific effects played on the gating by the anion and cation constituting the electrolyte. The capacitances of the electrical double layers at the electrolyte/WO3 interface were obtained from

  11. Automatic lung lobe segmentation using particles, thin plate splines, and maximum a posteriori estimation.

    Science.gov (United States)

    Ross, James C; San José Estépar, Rail; Kindlmann, Gordon; Díaz, Alejandro; Westin, Carl-Fredrik; Silverman, Edwin K; Washko, George R

    2010-01-01

    We present a fully automatic lung lobe segmentation algorithm that is effective in high resolution computed tomography (CT) datasets in the presence of confounding factors such as incomplete fissures (anatomical structures indicating lobe boundaries), advanced disease states, high body mass index (BMI), and low-dose scanning protocols. In contrast to other algorithms that leverage segmentations of auxiliary structures (esp. vessels and airways), we rely only upon image features indicating fissure locations. We employ a particle system that samples the image domain and provides a set of candidate fissure locations. We follow this stage with maximum a posteriori (MAP) estimation to eliminate poor candidates and then perform a post-processing operation to remove remaining noise particles. We then fit a thin plate spline (TPS) interpolating surface to the fissure particles to form the final lung lobe segmentation. Results indicate that our algorithm performs comparably to pulmonologist-generated lung lobe segmentations on a set of challenging cases.

  12. Mesoscopic layered structure in conducting polymer thin film fabricated by potential-programmed electropolymerization

    Energy Technology Data Exchange (ETDEWEB)

    Fujitsuka, Mamoru (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Nakahara, Reiko (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Iyoda, Tomokazu (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Shimidzu, Takeo (Div. of Molecular Engineering, Kyoto Univ. (Japan)); Tomita, Shigehisa (Toray Research Center Co., Ltd., Shiga (Japan)); Hatano, Yayoi (Toray Research Center Co., Ltd., Shiga (Japan)); Soeda, Fusami (Toray Research Center Co., Ltd., Shiga (Japan)); Ishitani, Akira (Toray Research Center Co., Ltd., Shiga (Japan)); Tsuchiya, Hajime (Nitto Technical Information Center Co., Ltd., Shimohozumi Ibaraki, Osaka (Japan)); Ohtani, Akira (Central Research Lab., Nitto Denko Co., Ltd., Shimohozumi Ibaraki, Osaka (Japan))

    1992-11-01

    Mesoscopic layered structures in conducting polymer thin films are fabricated by the potential-programmed electropolymerization method. High lateral quality in the layered structure is realized by the improvement of polymerization conditions, i.e., a mixture of pyrrole and bithiophene as monomers, a silicon single-crystal wafer as a working electrode and propylene carbonate as a solvent. SIMS depth profiling of the resulting layered films indicates a significant linear correlation between the electric charge passed and the thickness of the individual layers on a 100 A scale. (orig.)

  13. Annealing Temperature Dependent Structural and Optical Properties of RF Sputtered ZnO Thin Films.

    Science.gov (United States)

    Sharma, Shashikant; Varma, Tarun; Asokan, K; Periasamy, C; Boolchandani, Dharmendar

    2017-01-01

    This work investigates the effect of annealing temperature on structural and optical properties of ZnO thin films grown over Si 100 and glass substrates using RF sputtering technique. Annealing temperature has been varied from 300 °C to 600 °C in steps of 100, and different microstructural parameters such as grain size, dislocation density, lattice constant, stress and strain have been evaluated. The structural and surface morphological characterization has been done using X-ray Diffraction (XRD) and Scanning Electron Microscope (SEM). XRD analysis reveals that the peak intensity of 002 crystallographic orientation increases with increased annealing temperature. Optical characterization of deposited films have been done using UV-Vis-NIR spectroscopy and photoluminescence spectrometer. An increase in optical bandgap of deposited ZnO thin films with increasing annealing temperature has been observed. The average optical transmittance was found to be more than 85% for all deposited films. Photoluminiscense spectra (PL) suggest that the crystalline quality of deposited film has increased at higher annealing temperature.

  14. Investigation of the optical property and structure of WO3 thin films with different sputtering depositions

    Science.gov (United States)

    Chen, Hsi-Chao; Jan, Der-Jun; Chen, Chien-Han; Huang, Kuo-Ting; Lo, Yen-Ming; Chen, Sheng-Hui

    2011-09-01

    The purpose of this research was to compare the optical properties and structure of tungsten oxide (WO3) thin films that was deposited by different sputtering depositions. WO3 thin films deposited by two different depositions of direct current (DC) magnetron sputtering and pulsed DC sputtering. A 99.95% WO3 target was used as the starting material for these depositions. These WO3 thin films were deposited on the ITO glass, PET and silicon substrate by different ratios of oxygen and argon. A shadow moiré interferometer would be introduced to measure the residual stress for PET substrate. RF magnetron sputtering had the large residual stress than the other's depositions. A Raman spectrum could exhibit the phase of oxidation of WO3 thin film by different depositions. At the ratio of oxygen and argon was about 1:1, and the WO3 thin films had the best oxidation. However, it was important at the change of the transmittance (ΔT = Tbleached - Tcolored) between the coloring and bleaching for the smart window. Therefore, we also found the WO3 thin films had the large variation of transmittance between the coloring and bleaching at the gas ratios of oxygen and argon of 1:1.

  15. Thin film metal-oxides

    CERN Document Server

    Ramanathan, Shriram

    2009-01-01

    Presents an account of the fundamental structure-property relations in oxide thin films. This title discusses the functional properties of thin film oxides in the context of applications in the electronics and renewable energy technologies.

  16. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure

    KAUST Repository

    Tiraferri, Alberto; Yip, Ngai Yin; Phillip, William A.; Schiffman, Jessica D.; Elimelech, Menachem

    2011-01-01

    the technology to the point that it is commercially viable. Here, a systematic investigation of the influence of thin-film composite membrane support layer structure on forward osmosis performance is conducted. The membranes consist of a selective polyamide

  17. The effect of film thickness and molecular structure on order and disorder in thin films of compositionally asymmetric block copolymers

    Science.gov (United States)

    Mishra, Vindhya

    Directed self-assembly of thin film block copolymers offer a high throughput-low cost route to produce next generation lithographic devices, if one can bring the defect densities in the self assembled patterns below tolerance limits. However, the ability to control the nanoscale structure or morphology in thin film block copolymers presents challenges due to confinement effects on equilibrium behavior. Using structure characterization techniques such as grazing incidence small angle X-ray scattering (GISAXS), transmission electron and atomic force microscopy as well as self-consistent field theory, we have investigated how film thickness, annealing temperature and block copolymer structure affects the equilibrium behavior of asymmetric block copolymer films. Our studies have revealed the complicated dependence of order-disorder transitions, order-order transitions and symmetry transitions on film thickness. We found that the thickness dependent transition in the packing symmetry of spherical morphology diblock copolymers can be suppressed by blending with a small amount of majority block homopolymer, which allowed us to resolve the driving force behind this transition. Defect densities in, and the order-disorder transition temperature of, thin films of graphoepitaxially aligned diblock copolymer cylinders showed surprising sensitivity to the microdomain spacing. Methods to mitigate defect formation in thin films have been identified. The challenge of quantification of structural order in these systems was overcome using GISAXS, which allowed us to study the phenomena of disordering in two and three dimensions. Through studies on block copolymers which exhibit an order-order transition in bulk, we found that that subtle differences in the packing frustration of the spherical and cylindrical phases as well as the higher configurational entropy of free chain ends at the surface can drive the equilibrium configuration in thin films away from the stable bulk structure

  18. Anatomical traces of vocabulary acquisition in the adolescent brain.

    Science.gov (United States)

    Lee, HweeLing; Devlin, Joseph T; Shakeshaft, Clare; Stewart, Lauren H; Brennan, Amanda; Glensman, Jen; Pitcher, Katherine; Crinion, Jenny; Mechelli, Andrea; Frackowiak, Richard S J; Green, David W; Price, Cathy J

    2007-01-31

    A surprising discovery in recent years is that the structure of the adult human brain changes when a new cognitive or motor skill is learned. This effect is seen as a change in local gray or white matter density that correlates with behavioral measures. Critically, however, the cognitive and anatomical mechanisms underlying these learning-related structural brain changes remain unknown. Here, we combined brain imaging, detailed behavioral analyses, and white matter tractography in English-speaking monolingual adolescents to show that a critical linguistic prerequisite (namely, knowledge of vocabulary) is proportionately related to relative gray matter density in bilateral posterior supramarginal gyri. The effect was specific to the number of words learned, regardless of verbal fluency or other cognitive abilities. The identified region was found to have direct connections to other inferior parietal areas that separately process either the sounds of words or their meanings, suggesting that the posterior supramarginal gyrus plays a role in linking the basic components of vocabulary knowledge. Together, these analyses highlight the cognitive and anatomical mechanisms that mediate an essential language skill.

  19. Atomic force microscopy imaging and 3-D reconstructions of serial thin sections of a single cell and its interior structures

    International Nuclear Information System (INIS)

    Chen Yong; Cai Jiye; Zhao Tao; Wang Chenxi; Dong Shuo; Luo Shuqian; Chen, Zheng W.

    2005-01-01

    The thin sectioning has been widely applied in electron microscopy (EM), and successfully used for an in situ observation of inner ultrastructure of cells. This powerful technique has recently been extended to the research field of atomic force microscopy (AFM). However, there have been no reports describing AFM imaging of serial thin sections and three-dimensional (3-D) reconstruction of cells and their inner structures. In the present study, we used AFM to scan serial thin sections approximately 60 nm thick of a mouse embryonic stem (ES) cell, and to observe the in situ inner ultrastructure including cell membrane, cytoplasm, mitochondria, nucleus membrane, and linear chromatin. The high-magnification AFM imaging of single mitochondria clearly demonstrated the outer membrane, inner boundary membrane and cristal membrane of mitochondria in the cellular compartment. Importantly, AFM imaging on six serial thin sections of a single mouse ES cell showed that mitochondria underwent sequential changes in the number, morphology and distribution. These nanoscale images allowed us to perform 3-D surface reconstruction of interested interior structures in cells. Based on the serial in situ images, 3-D models of morphological characteristics, numbers and distributions of interior structures of the single ES cells were validated and reconstructed. Our results suggest that the combined AFM and serial-thin-section technique is useful for the nanoscale imaging and 3-D reconstruction of single cells and their inner structures. This technique may facilitate studies of proliferating and differentiating stages of stem cells or somatic cells at a nanoscale

  20. Effect of Precursor Concentration on Structural Optical and Electrical Properties of NiO Thin Films Prepared by Spray Pyrolysis

    Directory of Open Access Journals (Sweden)

    Rafia Barir

    2017-01-01

    Full Text Available Undoped nickel oxide (NiO thin films were deposited on 500°C heated glass substrates using spray pyrolysis method at (0.015–0.1 M range of precursor. The latter was obtained by decomposition of nickel nitrate hexahydrate in double distilled water. Effect of precursor concentration on structural, optical, and electrical properties of NiO thin films was investigated. X-ray diffraction (XRD shows the formation of NiO under cubic structure with single diffraction peak along (111 plane at 2θ=37.24°. When precursor concentration reaches 0.1 M, an increment in NiO crystallite size over 37.04 nm was obtained indicating the product nano structure. SEM images reveal that beyond 0.04 M as precursor concentration the substrate becomes completely covered with NiO and thin films exhibit formation of nano agglomerations at the top of the sample surface. Ni-O bonds vibrations modes in the product of films were confirmed by FT-IR analysis. Transparency of the films ranged from 57 to 88% and band gap energy of the films decreases from 3.68 to 3.60 eV with increasing precursor concentration. Electrical properties of the elaborated NiO thin films were correlated to the precursor concentration.

  1. The Structure and Stability of Molybdenum Ditelluride Thin Films

    Directory of Open Access Journals (Sweden)

    Zhouling Wang

    2014-01-01

    Full Text Available Molybdenum-tellurium alloy thin films were fabricated by electron beam evaporation and the films were annealed in different conditions in N2 ambient. The hexagonal molybdenum ditelluride thin films with well crystallization annealed at 470°C or higher were obtained by solid state reactions. Thermal stability measurements indicate the formation of MoTe2 took place at about 350°C, and a subtle weight-loss was in the range between 30°C and 500°C. The evolution of the chemistry for Mo-Te thin films was performed to investigate the growth of the MoTe2 thin films free of any secondary phase. And the effect of other postdeposition treatments on the film characteristics was also investigated.

  2. Electronic structure and magnetic properties of Ni-doped SnO2 thin films

    Science.gov (United States)

    Sharma, Mayuri; Kumar, Shalendra; Alvi, P. A.

    2018-05-01

    This paper reports the electronic structure and magnetic properties of Ni-doped SnO2 thin film which were grown on Si (100) substrate by PLD (pulse laser deposition) technique under oxygen partial pressure (PO2). For getting electronic structure and magnetic behavior, the films were characterized using near edge X-ray absorption fine structure spectroscopy (NEXAFS) and DC magnetization measurements. The NEXAFS study at Ni L3,2 edge has been done to understand the local environment of Ni and Sn ions within SnO2 lattice. DC magnetization measurement shows that the saturation magnetization increases with the increase in substitution of Ni2+ ions in the system.

  3. Anatomical approach for surgery of the male posterior urethra.

    Science.gov (United States)

    Dalpiaz, Orietta; Mitterberger, Michael; Kerschbaumer, Andrea; Pinggera, Germar M; Bartsch, Georg; Strasser, Hannes

    2008-11-01

    To investigate, in a morphological study, the anatomy of the male rhabdosphincter and the relation between the membranous urethra, the rhabdosphincter and the neurovascular bundles (NVBs) to provide the anatomical basis for surgical approach of the posterior urethra as successful outcomes in urethral reconstructive surgery still remain a challenging issue. In all, 11 complete pelves and four tissue blocks of prostate, rectum, membranous urethra and the rhabdosphincter were studied. Besides anatomical preparations, the posterior urethra and their relationship were studied by means of serial histological sections. In the histological cross-sections, the rhabdosphincter forms an omega-shaped loop around the anterior and lateral aspects of the membranous urethra. Ventrally and laterally, it is separated from the membranous urethra by a delicate sheath of connective tissue. Through a midline approach displacing the nerves and vessels laterally, injuries to the NVBs can be avoided. With meticulous dissection of the delicate ventral connective tissue sheath between the ventral wall of the membranous urethra and the rhabdosphincter, the two structures can be separated without damage to either of them. This anatomical approach can be used for dissection of the anterior urethral wall in urethral surgery. Based on precise anatomical knowledge, the ventral wall of the posterior urethra can be dissected and exposed without injuring the rhabdosphincter and the NVBs. This approach provides the basis for sparing of the rhabdosphincter and for successful outcomes in urethral surgery for the treatment of bulbo-membranous urethral strictures.

  4. Structural phase transitions of BaNbxTi1-xO3(0.0≤x≤0.5) thin films

    International Nuclear Information System (INIS)

    Guo Haizhong; Liu Lifeng; Ding Shuo; Lu Huibin; Zhou Yueliang; Cheng Bolin; Chen Zhenghao

    2004-01-01

    The phase transition behavior of BaNb x Ti 1-x O 3 (BNTO) (0.0≤x≤0.50) thin films grown on MgO substrates by laser molecular beam epitaxy was systematically investigated by using x-ray diffraction (XRD) and micro-Raman spectroscopy. The asymmetric rocking XRD scan measurements show that with an increase of Nb-doped content, the lattice parameters c and a increase while c/a ratio decreases, indicating a decrease of tetragonality of the BNTO films. The intensity of Raman signal decreases and the width of the bands broaden with increase of Nb-doped content. The results of XRD and Raman spectra indicate that at room temperature BNTO thin films with Nb≤10 at. % have tetragonal structure, however, for Nb≥20 at. %, BNTO thin films exhibit typical disordering cubic structure

  5. Electrodeposition of nanocrystalline CdSe thin films from dimethyl sulfoxide solution: Nucleation and growth mechanism, structural and optical studies

    International Nuclear Information System (INIS)

    Henriquez, R.; Badan, A.; Grez, P.; Munoz, E.; Vera, J.; Dalchiele, E.A.; Marotti, R.E.; Gomez, H.

    2011-01-01

    Highlights: → Electrodeposition of CdSe nanocrystalline semiconductor thin films. → Polycrystalline wurtzite structure with a slight (1010) preferred orientation. → Absorption edge shifts in the optical properties due to quantum confinement effects. - Abstract: Cadmium selenide (CdSe) nanocrystalline semiconductor thin films have been synthesized by electrodeposition at controlled potential based in the electrochemical reduction process of molecular selenium in dimethyl sulfoxide (DMSO) solution. The nucleation and growth mechanism of this process has been studied. The XRD pattern shows a characteristic polycrystalline hexagonal wurtzite structure with a slight (1 0 1 0) crystallographic preferred orientation. The crystallite size of nanocrystalline CdSe thin films can be simply controlled by the electrodeposition potential. A quantum size effect is deduced from the correlation between the band gap energy and the crystallite size.

  6. The anatomical diaspora: evidence of early American anatomical traditions in North Dakota.

    Science.gov (United States)

    Stubblefield, Phoebe R

    2011-09-01

    The current focus in forensic anthropology on increasing scientific certainty in ancestry determination reinforces the need to examine the ancestry of skeletal remains used for osteology instruction. Human skeletal remains were discovered on the University of North Dakota campus in 2007. After recovery, the osteological examination resulted in a profile for a 33- to 46-year-old woman of African descent with stature ranging from 56.3 to 61.0 in. The pattern of postmortem damage indicated that the remains had been prepared for use as an anatomical teaching specimen. Review of the American history of anatomical teaching revealed a preference for Black subjects, which apparently extended to states like North Dakota despite extremely low resident populations of people of African descent. This study emphasizes the need to examine the ancestry of older teaching specimens that lack provenience, rather than assuming they are derived from typical (i.e., Indian) sources of anatomical material. © 2011 American Academy of Forensic Sciences.

  7. Structural features of spin-coated thin films of binary As{sub x}S{sub 100−x} chalcogenide glass system

    Energy Technology Data Exchange (ETDEWEB)

    Cook, J. [Austin Peay State University, Clarksville, TN 37075 (United States); Slang, S. [Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice (Czech Republic); Golovchak, R. [Austin Peay State University, Clarksville, TN 37075 (United States); Jain, H. [International Materials Institute for New Functionality in Glass, Lehigh University, Bethlehem, PA 18015 (United States); Vlcek, M. [Faculty of Chemical Technology, University of Pardubice, 53210 Pardubice (Czech Republic); Kovalskiy, A., E-mail: kovalskyya@apsu.edu [Austin Peay State University, Clarksville, TN 37075 (United States)

    2015-08-31

    Spin-coating technology offers a convenient method for fabricating photostable chalcogenide glass thin films that are especially attractive for applications in IR optics. In this paper we report the structure of spin-coated As{sub x}S{sub 100−x} (x = 30, 35, 40) thin films as determined using high resolution X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy, especially in relation to composition (i.e. As/S ratio) and preparation process variables. It was observed that As atoms during preparation have a tendency to precipitate out in close to stoichiometric compositions. The mechanism of bonding between the inorganic matrix and organic residuals is discussed based on the experimental data. A weak interaction between S ions and amine-based clusters is proposed as the basis of structural organization of the organic–inorganic interface. - Highlights: • As–S spin-coated chalcogenide thin films with different As/S were fabricated. • XPS measurements support the cluster-like structure of spin-coated films. • As{sub 2}O{sub 3} was confirmed as the composition of precipitate formed during dissolution. • Lack of As–As bonds explains the observed photostability of the thin films.

  8. Geometric structures of thin film: Pt on Pd(110) and NiO on Ni(100)

    Energy Technology Data Exchange (ETDEWEB)

    Warren, Oden L. [Iowa State Univ., Ames, IA (United States)

    1993-07-01

    This thesis is divided into 3 papers: dynamical low-energy electron- diffraction investigation of lateral displacements in topmost layer of Pd(110); determination of (1x1) and (1x2) structures of Pt thin films on Pd(110) by dynamical low-energy electron-diffraction analysis; and structural determination of a NiO(111) film on Ni(100) by dynamical low-energy electron-diffraction analysis.

  9. Structural and vibrational investigations of Nb-doped TiO2 thin films

    International Nuclear Information System (INIS)

    Uyanga, E.; Gibaud, A.; Daniel, P.; Sangaa, D.; Sevjidsuren, G.; Altantsog, P.; Beuvier, T.; Lee, Chih Hao; Balagurov, A.M.

    2014-01-01

    Highlights: • We studied the evolutions of structure for TiO 2 thin film as changes with Nb doping and temperatures. • Up to 800 °C, the grain size of Nb 0.1 Ti 0.9 O 2 is smaller than for pure TiO 2 because doped Nb hinders the growth of the TiO 2 grains. • There was no formation of the rutile phase at high temperature. • Nb doped TiO 2 films have high electron densities at 400–700 °C. • Nb dope extends the absorbance spectra of TiO 2 which leads to the band gap reduce. - Abstract: Acid-catalyzed sol–gel and spin-coating methods were used to prepare Nb-doped TiO 2 thin film. In this work, we studied the effect of niobium doping on the structure, surface, and absorption properties of TiO 2 by energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), X-ray reflectometry (XRR), X-ray photoelectron spectroscopy (XPS), Raman, and UV–vis absorption spectroscopy at various annealing temperatures. EDX spectra show that the Nb:Ti atomic ratios of the niobium-doped titania films are in good agreement with the nominal values (5 and 10%). XPS results suggest that charge compensation is achieved by the formation of Ti vacancies. Specific niobium phases are not observed, thus confirming that niobium is well incorporated into the titania crystal lattice. Thin films are amorphous at room temperature and the formation of anatase phase appeared at an annealing temperature close to 400 °C. The rutile phase was not observed even at 900 °C (XRD and Raman spectroscopy). Grain sizes and electron densities increased when the temperature was raised. Nb-doped films have higher electron densities and lower grain sizes due to niobium doping. Grain size inhibition can be explained by lattice stress induced by the incorporation of larger Nb 5+ ions into the lattice. The band gap energy of indirect transition of the TiO 2 thin films was calculated to be about 3.03 eV. After niobium doping, it decreased to 2.40 eV

  10. Adjustable threshold-voltage in all-inkjet-printed organic thin film transistor using double-layer dielectric structures

    International Nuclear Information System (INIS)

    Wu, Wen-Jong; Lee, Chang-Hung; Hsu, Chun-Hao; Yang, Shih-Hsien; Lin, Chih-Ting

    2013-01-01

    An all-inkjet-printed organic thin film transistor (OTFT) with a double-layer dielectric structure is proposed and implemented in this study. By using the double-layer structure with different dielectric materials (i.e., polyvinylphenol with poly(vinylidene fluoride-co-hexafluoropropylene)), the threshold-voltage of OTFT can be adjusted. The threshold-voltage shift can be controlled by changing the composition of dielectric layers. That is, an enhancement-mode OTFT can be converted to a depletion-mode OTFT by selectively printing additional dielectric layers to form a high-k/low-k double-layer structure. The printed OTFT has a carrier mobility of 5.0 × 10 −3 cm 2 /V-s. The threshold-voltages of the OTFTs ranged between − 13 V and 10 V. This study demonstrates an additional design parameter for organic electronics manufactured using inkjet printing technology. - Highlights: • A double-layer dielectric organic thin film transistor, OTFT, is implemented. • The threshold voltage of OTFT can be configured by the double dielectric structure. • The composition of the dielectric determines the threshold voltage shift. • The characteristics of OTFTs can be adjusted by double dielectric structures

  11. Root anatomical phenes predict root penetration ability and biomechanical properties in maize (Zea Mays)

    OpenAIRE

    Chimungu, Joseph G.; Loades, Kenneth W.; Lynch, Jonathan P.

    2015-01-01

    The ability of roots to penetrate hard soil is important for crop productivity but specific root phenes contributing to this ability are poorly understood. Root penetrability and biomechanical properties are likely to vary in the root system dependent on anatomical structure. No information is available to date on the influence of root anatomical phenes on root penetrability and biomechanics. Root penetration ability was evaluated using a wax layer system. Root tensile and bending strength we...

  12. Effects of substrate temperature on structural and electrical properties of SiO2-matrix boron-doped silicon nanocrystal thin films

    International Nuclear Information System (INIS)

    Huang, Junjun; Zeng, Yuheng; Tan, Ruiqin; Wang, Weiyan; Yang, Ye; Dai, Ning; Song, Weijie

    2013-01-01

    In this work, silicon-rich SiO 2 (SRSO) thin films were deposited at different substrate temperatures (T s ) and then annealed by rapid thermal annealing to form SiO 2 -matrix boron-doped silicon-nanocrystals (Si-NCs). The effects of T s on the micro-structure and electrical properties of the SiO 2 -matrix boron-doped Si-NC thin films were investigated using Raman spectroscopy and Hall measurements. Results showed that the crystalline fraction and dark conductivity of the SiO 2 -matrix boron-doped Si-NC thin films both increased significantly when the T s was increased from room temperature to 373 K. When the T s was further increased from 373 K to 676 K, the crystalline fraction of 1373 K-annealed thin films decreased from 52.2% to 38.1%, and the dark conductivity reduced from 8 × 10 −3 S/cm to 5.5 × 10 −5 S/cm. The changes in micro-structure and dark conductivity of the SiO 2 -matrix boron-doped Si-NC thin films were most possibly due to the different amount of Si-O 4 bond in the as-deposited SRSO thin films. Our work indicated that there was an optimal T s , which could significantly increase the crystallization and conductivity of Si-NC thin films. Also, it was illumined that the low-resistivity SiO 2 -matrix boron-doped Si-NC thin films can be achieved under the optimal substrate temperatures, T s .

  13. Structural and photocarrier radiometric characterization of Cux(CdTe)yOz thin films growth by reactive sputtering

    International Nuclear Information System (INIS)

    Velazquez-Hernandez, R.; Rojas-Rodriguez, I.; Carmona-Rodriguez, J.; Jimenez-Sandoval, S.; Rodriguez-Garcia, M.E.

    2011-01-01

    This research presents a structural and photocarrier radiometric (PCR) characterization of Cu x (CdTe) y O z thin films grown using reactive radiofrequency co-sputtering. Electronic distribution induced by variations in dopant concentration as a function of the position was studied using photocarrier radiometric images. Optical and structural characterization of these thin films was carried out by using micro Raman spectroscopy and X-ray diffraction. Due to its nondestructive and noncontact characteristics, the PCR is an excellent technique that permits one to obtain details of lateral electronic distribution across the sample. It was found that Cu target power influences the electronic distribution and produces different phases such as Cu 2 Te and CdO.

  14. The role of cationic precursors in structural, morphological and optical properties of PbS thin films

    International Nuclear Information System (INIS)

    Preetha, K C; Murali, K V; Ragina, A J; Deepa, K; Dhanya, A C; Remadevi, T L

    2013-01-01

    Thin films of Lead sulphide (PbS) were grown on soda lime glass substrate by Successive Ionic Layer Adsorption and Reaction (SILAR) method using lead acetate, lead chloride, lead nitrate, and lead sulphate as cationic precursors and thioacetamide as sulphur source. The experiments were carried out at room temperature under normal pressure utilizing aqueous conditions. The structural and morphological aspects of the as prepared samples were investigated by means of XRD and SEM results. The prepared samples were polycrystalline with nanometer-sized grains and identified as galena type cubic structure (FCC). The values of average crystallite size were found to be in the range 22 to 30 nm. The SEM micrographs show variations in morphology. Optical studies revealed that the absorption edges of the films indicated strong blue shifts with respect to bulk sample. In this work, we establish that the cationic precursor sources and in turn the size of the crystallites affects the structural, morphological and optical properties of PbS thin films.

  15. Characterization of Capsicum species using anatomical and molecular data.

    Science.gov (United States)

    Dias, G B; Gomes, V M; Moraes, T M S; Zottich, U P; Rabelo, G R; Carvalho, A O; Moulin, M; Gonçalves, L S A; Rodrigues, R; Da Cunha, M

    2013-02-28

    Capsicum species are frequently described in terms of genetic divergence, considering morphological, agronomic, and molecular databases. However, descriptions of genetic differences based on anatomical characters are rare. We examined the anatomy and the micromorphology of vegetative and reproductive organs of several Capsicum species. Four Capsicum accessions representing the species C. annuum var. annuum, C. baccatum var. pendulum, C. chinense, and C. frutescens were cultivated in a greenhouse; leaves, fruits and seeds were sampled and their organ structure analyzed by light and scanning electronic microscopy. Molecular accession characterization was made using ISSR markers. Polymorphism was observed among tector trichomes and also in fruit color and shape. High variability among accessions was detected by ISSR markers. Despite the species studied present a wide morphological and molecular variability that was not reflected by anatomical features.

  16. Processing/structure/property Relationships of Barium Strontium Titanate Thin Films for Dynamic Random Access Memory Application.

    Science.gov (United States)

    Peng, Cheng-Jien

    The purpose of this study is to see the application feasibility of barium strontium titanate (BST) thin films on ultra large scale integration (ULSI) dynamic random access memory (DRAM) capacitors through the understanding of the relationships among processing, structure and electrical properties. Thin films of BST were deposited by multi-ion -beam reactive sputtering (MIBERS) technique and metallo -organic decomposition (MOD) method. The processing parameters such as Ba/Sr ratio, substrate temperature, annealing temperature and time, film thickness and doping concentration were correlated with the structure and electric properties of the films. Some effects of secondary low-energy oxygen ion bombardment were also examined. Microstructures of BST thin films could be classified into two types: (a) Type I structures, with multi-grains through the film thickness, for amorphous as-grown films after high temperature annealing, and (b) columnar structure (Type II) which remained even after high temperature annealing, for well-crystallized films deposited at high substrate temperatures. Type I films showed Curie-von Schweidler response, while Type II films showed Debted type behavior. Type I behavior may be attributed to the presence of a high density of disordered grain boundaries. Two types of current -voltage characteristics could be seen in non-bombarded films depending on the chemistry of the films (doped or undoped) and substrate temperature during deposition. Only the MIBERS films doped with high donor concentration and deposited at high substrate temperature showed space-charge -limited conduction (SCLC) with discrete shallow traps embedded in trap-distributed background at high electric field. All other non-bombarded films, including MOD films, showed trap-distributed SCLC behavior with a slope of {~}7.5-10 due to the presence of grain boundaries through film thickness or traps induced by unavoidable acceptor impurities in the films. Donor-doping could

  17. Comparison between periodic and stochastic parabolic light trapping structures for thin-film microcrystalline Silicon solar cells.

    Science.gov (United States)

    Peters, M; Battaglia, C; Forberich, K; Bläsi, B; Sahraei, N; Aberle, A G

    2012-12-31

    Light trapping is of very high importance for silicon photovoltaics (PV) and especially for thin-film silicon solar cells. In this paper we investigate and compare theoretically the light trapping properties of periodic and stochastic structures having similar geometrical features. The theoretical investigations are based on the actual surface geometry of a scattering structure, characterized by an atomic force microscope. This structure is used for light trapping in thin-film microcrystalline silicon solar cells. Very good agreement is found in a first comparison between simulation and experimental results. The geometrical parameters of the stochastic structure are varied and it is found that the light trapping mainly depends on the aspect ratio (length/height). Furthermore, the maximum possible light trapping with this kind of stochastic structure geometry is investigated. In a second step, the stochastic structure is analysed and typical geometrical features are extracted, which are then arranged in a periodic structure. Investigating the light trapping properties of the periodic structure, we find that it performs very similar to the stochastic structure, in agreement with reports in literature. From the obtained results we conclude that a potential advantage of periodic structures for PV applications will very likely not be found in the absorption enhancement in the solar cell material. However, uniformity and higher definition in production of these structures can lead to potential improvements concerning electrical characteristics and parasitic absorption, e.g. in a back reflector.

  18. Structural and optical characteristics of SnS thin film prepared by SILAR

    Directory of Open Access Journals (Sweden)

    Mukherjee A.

    2015-12-01

    Full Text Available SnS thin films were grown on glass substrates by a simple route named successive ion layer adsorption and reaction (SILAR method. The films were prepared using tin chloride as tin (Sn source and ammonium sulfide as sulphur (S source. The structural, optical and morphological study was done using XRD, FESEM, FT-IR and UV-Vis spectrophotometer. XRD measurement confirmed the presence of orthorhombic phase. Particle size estimated from XRD was about 45 nm which fitted well with the FESEM measurement. The value of band gap was about 1.63 eV indicating that SnS can be used as an important material for thin film solar cells. The surface morphology showed a smooth, homogenous film over the substrate. Characteristic stretching vibration mode of SnS was observed in the absorption band of FT-IR spectrum. The electrical activation energy was about 0.306 eV.

  19. Nonlinear mechanics of thin-walled structures asymptotics, direct approach and numerical analysis

    CERN Document Server

    Vetyukov, Yury

    2014-01-01

    This book presents a hybrid approach to the mechanics of thin bodies. Classical theories of rods, plates and shells with constrained shear are based on asymptotic splitting of the equations and boundary conditions of three-dimensional elasticity. The asymptotic solutions become accurate as the thickness decreases, and the three-dimensional fields of stresses and displacements can be determined. The analysis includes practically important effects of electromechanical coupling and material inhomogeneity. The extension to the geometrically nonlinear range uses the direct approach based on the principle of virtual work. Vibrations and buckling of pre-stressed structures are studied with the help of linearized incremental formulations, and direct tensor calculus rounds out the list of analytical techniques used throughout the book. A novel theory of thin-walled rods of open profile is subsequently developed from the models of rods and shells, and traditionally applied equations are proven to be asymptotically exa...

  20. Ultra-low damping in lift-off structured yttrium iron garnet thin films

    Science.gov (United States)

    Krysztofik, A.; Coy, L. E.; Kuświk, P.; Załeski, K.; Głowiński, H.; Dubowik, J.

    2017-11-01

    We show that using maskless photolithography and the lift-off technique, patterned yttrium iron garnet thin films possessing ultra-low Gilbert damping can be accomplished. The films of 70 nm thickness were grown on (001)-oriented gadolinium gallium garnet by means of pulsed laser deposition, and they exhibit high crystalline quality, low surface roughness, and the effective magnetization of 127 emu/cm3. The Gilbert damping parameter is as low as 5 ×10-4. The obtained structures have well-defined sharp edges which along with good structural and magnetic film properties pave a path in the fabrication of high-quality magnonic circuits and oxide-based spintronic devices.

  1. Photoluminescence, structural and electrical properties of passivated a-Si:H based thin films and corresponding solar cells

    International Nuclear Information System (INIS)

    Pincik, E.; Kobayashi, H.; Takahashi, M.; Fujiwara, N.; Brunner, R.; Gleskova, H.; Jergel, M.; Muellerova, J.; Kucera, M.; Falcony, C.; Ortega, L.; Rusnak, J.; Mikula, M.; Zahoran, M.; Jurani, R.; Kral, M.

    2004-01-01

    This paper deals with the photoluminescence, structural and electrical properties of chemically passivated a-Si:H based thin films and corresponding thin film solar cells. The structures were chemically passivated in three types of KCN and HCN solutions containing MeOH and/or with water. The photoluminescence measurements were performed at 6 K using Ar laser and lock-in signal recording device containing Ge and Si photodetectors. Optically determined band gap related photoluminescence signals were observed between 1.1 and 1.7 eV. The electrical properties were measured by a high-sensitive charge version of deep level transient spectroscopy (Q-DLTS). The evolution of three basic groups of defects was observed. The structural studies were realized by the standard X-ray diffraction analysis. The cyanide treatment improved significantly the electrical characteristics of both corresponding MOS structures and solar cells due to the passivation of some parts of the dangling bonds by CN group. Particularly, the passivation of the defects at interfaces in MOS or solar cell multilayer structures was achieved which is of primary practical importance

  2. Electrodeposited Structurally Stable V2O5 Inverse Opal Networks as High Performance Thin Film Lithium Batteries.

    Science.gov (United States)

    Armstrong, Eileen; McNulty, David; Geaney, Hugh; O'Dwyer, Colm

    2015-12-09

    High performance thin film lithium batteries using structurally stable electrodeposited V2O5 inverse opal (IO) networks as cathodes provide high capacity and outstanding cycling capability and also were demonstrated on transparent conducting oxide current collectors. The superior electrochemical performance of the inverse opal structures was evaluated through galvanostatic and potentiodynamic cycling, and the IO thin film battery offers increased capacity retention compared to micron-scale bulk particles from improved mechanical stability and electrical contact to stainless steel or transparent conducting current collectors from bottom-up electrodeposition growth. Li(+) is inserted into planar and IO structures at different potentials, and correlated to a preferential exposure of insertion sites of the IO network to the electrolyte. Additionally, potentiodynamic testing quantified the portion of the capacity stored as surface bound capacitive charge. Raman scattering and XRD characterization showed how the IO allows swelling into the pore volume rather than away from the current collector. V2O5 IO coin cells offer high initial capacities, but capacity fading can occur with limited electrolyte. Finally, we demonstrate that a V2O5 IO thin film battery prepared on a transparent conducting current collector with excess electrolyte exhibits high capacities (∼200 mAh g(-1)) and outstanding capacity retention and rate capability.

  3. Effects of annealing on the compositional heterogeneity and structure in zirconium-based bulk metallic glass thin films

    International Nuclear Information System (INIS)

    He, L.; Chu, J.P.; Li, C.-L.; Lee, C.-M.; Chen, Y.-C.; Liaw, P.K.; Voyles, P.M.

    2014-01-01

    In-situ heating fluctuation electron microscopy and scanning transmission electron microscopy have been utilized to study compositional and structural heterogeneities in Zr 51 Cu 32 Al 9 Ni 8 thin films upon annealing. Composition fluctuations are present in the as-deposited thin films. Well below the glass transition temperature, the composition fluctuations increase with annealing time. Short- and medium-range order also change with annealing temperature. The observed heterogeneities in the glass structure persist until annealing causes crystallization. The 20 nm thick Zr 51 Cu 32 Al 9 Ni 8 films contain oxide layers both at the surface and the film/substrate interface with the total thickness of 7–8 nm. In-situ annealing increased the oxygen content of the whole films to about 24 wt.% after 2 h at 400 °C. - Highlights: • Zr 51 Cu 32 Al 9 Ni 8 thin films were studied with in-situ heating electron microscopy. • Annealing at 400 °C increases the Zr and Cu compositional fluctuations. • Short-range order in Zr 51 Cu 32 Al 9 Ni 8 becomes less homogeneous above 350 °C. • Medium-range order changes in degree and types at 400 °C, well below T g . • Annealing increases composition and structure heterogeneities until crystallization

  4. Pseudocapacitive properties of nano-structured anhydrous ruthenium oxide thin film prepared by electrostatic spray deposition and electrochemical lithiation/delithiation

    Energy Technology Data Exchange (ETDEWEB)

    Park, S.H.; Kim, J.Y.; Kim, K.B. [Division of Materials Science and Engineering, Yonsei University, Seoul (Korea, Republic of)

    2010-10-15

    Nano-structured anhydrous ruthenium oxide (RuO{sub 2}) thin films were prepared using an electrostatic spray deposition (ESD) technique followed by electrochemical lithiation and delithiation. During the electrochemical lithiation process, RuO{sub 2} decomposed to nano-structured metallic ruthenium Ru with the concomitant formation of Li{sub 2}O. Nano-structured RuO{sub 2} was formed upon subsequent electrochemical extraction of Li from the Ru/Li{sub 2}O nanocomposite. Electrochemical lithiation/deliathiation at different charge/discharge rates (C-rate) was used to control the nano-structure of the anhydrous RuO{sub 2}. Electrochemical lithiation/delithiation of the RuO{sub 2} thin film electrode at different C-rates was closely related to the specific capacitance and high rate capability of the nano-structured anhydrous RuO{sub 2} thin film. Nano-structured RuO{sub 2} thin films prepared by electrochemical lithiation and delithiation at 2C rate showed the highest specific capacitance of 653 F g{sup -1} at 20 mV s{sup -1}, which is more than two times higher than the specific capacitance of 269 F g{sup -1} for the as-prepared RuO{sub 2}. In addition, it showed 14% loss in specific capacitance from 653 F g{sup -1} at 20 mV s{sup -1} to 559 F g{sup -1} at 200 mV s{sup -1}, indicating significant improvement in the high rate capability compared to the 26% loss of specific capacitance of the as-prepared RuO{sub 2} electrode from 269 F g{sup -1} at 20 mV s{sup -1} to 198 F g{sup -1} at 200 mV s{sup -1} for the same change in scan rate. (Abstract Copyright [2010], Wiley Periodicals, Inc.)

  5. Nodule detection in digital chest radiography: Effect of anatomical noise

    International Nuclear Information System (INIS)

    Baath, M.; Haakansson, M.; Boerjesson, S.; Hoeschen, C.; Tischenko, O.; Kheddache, S.; Vikgren, J.; Maansson, L. G.

    2005-01-01

    The image background resulting from imaged anatomy can be divided into those components that are meaningful to the observers, in the sense that they are recognised as separate structures, and those that are not. These latter components (referred to as anatomical noise) can be removed using a method developed within the RADIUS group. The aim of the present study was to investigate whether the removal of the anatomical noise results in images where lung nodules with lower contrast can be detected. A receiver operating characteristic (ROC) study was therefore conducted using two types of images: clinical chest images and chest images in which the anatomical noise had been removed. Simulated designer nodules with a full-width-at-fifth-maximum of 10 mm but with varying contrast were added to the images. The contrast needed to obtain an area under the ROC curve of 0.80, C0.8, was used as a measure of detectability (a low value of C0.8 represents a high delectability). Five regions of the chest X ray were investigated and it was found that in all regions the removal of anatomical noise led to images with lower C0.8 than the original images. On average, C0.8 was 20% higher in the original images, ranging from 7% (the lateral pulmonary regions) to 41% (the upper mediastinal regions). (authors)

  6. Anatomic study of cranial nerve emergence and associated skull foramina in cats using CT and MRI.

    Science.gov (United States)

    Gomes, Eymeric; Degueurce, Christophe; Ruel, Yannick; Dennis, Ruth; Begon, Dominique

    2009-01-01

    Magnetic resonance (MR) images of the brain of four normal cats were reviewed retrospectively to assess the emergence and course of the cranial nerves (CNs). Two-millimeter-thick images were obtained in transverse, sagittal, and dorsal planes using a 1.5 T unit. CN skull foramina, as anatomic landmarks for MR imaging, were identified by computed tomography performed on an isolated cat skull using thin wire within each skull foramen. Thin slice (1 mm slice thickness) images were obtained with a high-resolution bone filter scan protocol. The origins of CNs II, V, VII, and VIII and the group of IX, X, XI, and XII could be identified. The pathway and proximal divisions of CNs V were described. CNs III, IV, and VI were not distinguished from each other but could be seen together in the orbital fissure. CN V was characterized by slight contrast enhancement.

  7. Salinity-Induced Callus Browning and Re-Differentiation, Root Formation by Plantlets and Anatomical Structures of Plantlet Leaves in Two Malus Species

    International Nuclear Information System (INIS)

    Gou, W.; Zheng, P.; Zheng, P.; Wang, K.; Zhang, L.; Akram, N. A.

    2016-01-01

    Apple (Malus domestica L.) is widely grown in northern China. However, soil salinization has become one of the most severe factors limiting apple productivity in some regions including the Loess Plateau. In our study, the regeneration system of both rootstock Rehd (Malus robusta Rehd) and scion Fuji (Malus domestica Borkh. cv. Fuji) was established In vitro. The two Malus species were cultured on the MS medium containing 0 or 150 mM NaCl to examine salt-induced effects on callus browning and re-differentiation, root formation of plantlets and anatomical structures of plantlet leaves at 15 days old callus and plantlet stages. Salt stress caused a marked increase in callus browning rate, while a decrease in re-differentiation rate, rooting rate, root number and length in both species. Additionally, anatomical structures of plantlet leave showed salt-induced damage such as reduced palisade tissue and intracellular chloroplast, incomplete development of xylem and severe damage of the phloem tissue. Salt stress also caused a few adaptive structural features in leaves including increased thickness of upper and lower epidermis, elevated proportion of spongy tissue and formation of lignified vessels. The responses of the two Malus species did not differ significantly at the differentiation stage. However, they were more sensitive to salinity at the callus stage than those at the plantlet stage in each species. Therefore, callus stage has been found to be more suitable for evaluating responses of the two apple species to salt stress. The Fuji and Rehd could be treated as a good scion/rootstock combination of apple to adapt to soil salinity based on their similar degree of salt stress-tolerance. (author)

  8. Full-spectrum light management by pseudo-disordered moth-eye structures for thin film solar cells.

    Science.gov (United States)

    Liu, Xiaojun; Da, Yun; Xuan, Yimin

    2017-08-07

    In this paper, the role of pseudo-disordered moth-eye structures on the optical features for application to thin-film solar cells is investigated to realize the superior light management for the full-spectrum solar energy utilization, compared with some ordered structures. Without loss of generality, the c-Si thin film solar cell is taken as the example. The results demonstrate that the fluctuations introduced into the geometry parameters of moth-eye elements can lead to the remarkable absorption enhancement in the wavelength region of 0.3-1.1 μm and high transmission in the wavelength range of 1.1-2.5 μm. Two mechanisms including the increasing spectral density of modes and the intensive forescattering intensity are identified to be responsible for the absorption enhancement. In addition, the optical characteristics of the moth-eye surface with both disordered height and disordered diameter are insensitive to the incident angle.

  9. Effect of Secondary Doping Using Sorbitol on Structure and Transport Properties of PEDOT-PSS Thin Films

    Science.gov (United States)

    Khasim, Syed; Pasha, Apsar; Roy, Aashish S.; Parveen, Ameena; Badi, Nacer

    2017-07-01

    Poly(3,4-ethylene dioxythiophene):poly(styrenesulphonate) (PEDOT-PSS) in the recent past has emerged as one of the most fascinating conducting polymers for many device applications. The unique feature of PEDOT-PSS is its transparency in the entire visible spectrum with excellent thermal stability. The PEDOT-PSS as prepared as an aqueous dispersion has very low conductivity, and it hinders the performance of a device. In this work we report the conductivity enhancement of PEDOT-PSS thin films through secondary doping using a polar organic solvent such as sorbitol. The mechanism of conductivity enhancement was studied through various physical and chemical characterizations. The effect of sorbitol concentration on structure and transport properties of PEDOT-PSS thin films was investigated in detail. The structural and morphological modifications in PEDOT-PSS due to the addition of sorbitol was studied through Fourier transform spectroscopy, Ultra Violet-visible spectroscopy, theromogravimetric analysis, scanning electron microscopy and atomic force microscopy. The interactions resulting from conformational changes of PEDOT chains that changes from coiled to linear structure due to the sorbitol treatment significantly improves the conductivity of PEDOT-PSS films. The secondary doping of sorbitol reduces the energy barrier that facilitates the charge carrier hopping leading to enhanced conductivity. We have observed that the conductivity of PEDOT-PSS thin films was increased by two fold due to sorbitol treatment when compared to conductivity of pure PEDOT-PSS. We have carried out detailed analysis of dielectric parameters of sorbitol-treated PEDOT-PSS films and found that sorbitol treatment has a significant effect on various dielectric attributes of PEDOT-PSS films. Hence, secondary doping using sorbitol could be a useful way to effectively tailor the conductivity and dielectric properties of PEDOT-PSS thin films that can be used as flexible electrodes in

  10. InGaN-based thin film solar cells: Epitaxy, structural design, and photovoltaic properties

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Liwen, E-mail: SANG.Liwen@nims.go.jp [International Center for Material Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); JST-PRESTO, The Japan Science and Technology Agency, Tokyo 102-0076 (Japan); Liao, Meiyong; Koide, Yasuo [Wide Bandgap Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); Sumiya, Masatomo [Wide Bandgap Materials Group, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044 (Japan); JST-ALCA, The Japan Science and Technology Agency, Tokyo 102-0076 (Japan)

    2015-03-14

    In{sub x}Ga{sub 1−x}N, with the tunable direct bandgaps from ultraviolet to near infrared region, offers a promising candidate for the high-efficiency next-generation thin-film photovoltaic applications. Although the adoption of thick InGaN film as the active region is desirable to obtain efficient light absorption and carrier collection compared to InGaN/GaN quantum wells structure, the understanding on the effect from structural design is still unclear due to the poor-quality InGaN films with thickness and difficulty of p-type doping. In this paper, we comprehensively investigate the effects from film epitaxy, doping, and device structural design on the performances of the InGaN-based solar cells. The high-quality InGaN thick film is obtained on AlN/sapphire template, and p-In{sub 0.08}Ga{sub 0.92}N is achieved with a high hole concentration of more than 10{sup 18 }cm{sup −3}. The dependence of the photovoltaic performances on different structures, such as active regions and p-type regions is analyzed with respect to the carrier transport mechanism in the dark and under illumination. The strategy of improving the p-i interface by using a super-thin AlN interlayer is provided, which successfully enhances the performance of the solar cells.

  11. Galvanic corrosion of structural non-stoichiometric silicon nitride thin films and its implications on reliability of microelectromechanical devices

    Energy Technology Data Exchange (ETDEWEB)

    Broas, M., E-mail: mikael.broas@aalto.fi; Mattila, T. T.; Paulasto-Kröckel, M. [Department of Electrical Engineering and Automation, Aalto University, Espoo, P.O. Box 13500, FIN-00076 Aalto (Finland); Liu, X.; Ge, Y. [Department of Materials Science and Engineering, Aalto University, Espoo, P.O. Box 16200, FIN-00076 Aalto (Finland)

    2015-06-28

    This paper describes a reliability assessment and failure analysis of a poly-Si/non-stoichiometric silicon nitride thin film composite structure. A set of poly-Si/SiN{sub x} thin film structures were exposed to a mixed flowing gas (MFG) environment, which simulates outdoor environments, for 90 days, and an elevated temperature and humidity (85 °C/95% R.H.) test for 140 days. The mechanical integrity of the thin films was observed to degrade during exposure to the chemically reactive atmospheres. The degree of degradation was analyzed with nanoindentation tests. Statistical analysis of the forces required to initiate a fracture in the thin films indicated degradation due to the exposure to the MFG environment in the SiN{sub x} part of the films. Scanning electron microscopy revealed a porous-like reaction layer on top of SiN{sub x}. The morphology of the reaction layer resembled that of galvanically corroded poly-Si. Transmission electron microscopy further clarified the microstructure of the reaction layer which had a complex multi-phase structure extending to depths of ∼100 nm. Furthermore, the layer was oxidized two times deeper in a 90 days MFG-tested sample compared to an untested reference. The formation of the layer is proposed to be caused by galvanic corrosion of elemental silicon in non-stoichiometric silicon nitride during hydrofluoric acid etching. The degradation is proposed to be due uncontrolled oxidation of the films during the stress tests.

  12. Structural and electronic properties of rare-earth silicide thin films at Si(111)

    Energy Technology Data Exchange (ETDEWEB)

    Dues, Christof; Schmidt, Wolf Gero; Sanna, Simone [Lehrstuhl fuer Theoretische Physik, Universitaet Paderborn (Germany)

    2016-07-01

    Rare-earth (RE) silicides thin films on silicon surfaces are currently of high interest. They grow nearly defect-free because of the small lattice mismatch, and exhibit very low Schottky-barriers on n-type silicon. They even give rise to the self-organized formation of RE silicide nanowires on the Si(001) and vicinal surfaces. Depending on the amount of deposited RE atoms, a plethora of reconstructions are observed for the RE silicide. While one monolayer leads to the formation of a 1 x 1-reconstruction, several monolayer thick silicides crystallize in a √(3) x √(3) R30 {sup circle} superstructure. Submonolayer RE deposition leads to different periodicities. In this work we investigate the formation of RE silicides thin films on Si(111) within the density functional theory. The energetically favored adsorption site for RE adatoms is determined calculating the potential energy surface. As prototypical RE, Dysprosium is used. Additional calculations are performed for silicides formed by different RE elements. We calculate structural properties, electronic band structures and compare measured and simulated STM images. We consider different terminations for the 5 x 2 reconstruction occurring in the submonolayer regime and investigate their stability by means of ab initio thermodynamics. The same method is employed to predict the stable silicide structure as a function of the deposited RE atoms.

  13. Solid thin film materials for use in thin film charge-coupled devices

    International Nuclear Information System (INIS)

    Lynch, S.J.

    1983-01-01

    Solid thin films deposited by vacuum deposition were evaluated to ascertain their effectiveness for use in the manufacturing of charge-coupled devices (CCDs). Optical and electrical characteristics of tellurium and Bi 2 Te 3 solid thin films were obtained in order to design and to simulate successfully the operation of thin film (TF) CCDs. In this article some of the material differences between single-crystal material and the island-structured thin film used in TFCCDs are discussed. The electrical parameters were obtained and tabulated, e.g. the mobility, conductivity, dielectric constants, permittivity, lifetime of holes and electrons in the thin films and drift diffusion constants. The optical parameters were also measured and analyzed. After the design was complete, experimental TFCCDs were manufactured and were successfully operated utilizing the aforementioned solid thin films. (Auth.)

  14. Optical, structural and electrochromic behavior studies on nanocomposite thin film of aniline, o-toluidine and WO3

    Science.gov (United States)

    Najafi-Ashtiani, Hamed; Bahari, Ali

    2016-08-01

    In the field of materials for electrochromic (EC) applications much attention was paid to the derivatives of aniline. We report on the optical, structural and electrochromic properties of electrochromic thin film based on composite of WO3 nanoparticles and copolymer of aniline and o-toluidine prepared by electrochemical polymerization method on fluorine doped tin oxide (FTO) coated glass. The thin film was studied by X-ray diffraction (XRD) and Fourier transforms infrared (FTIR) spectroscopy. The morphology of prepared thin film was characterized by field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM) and the thermal gravimetric analysis (TGA) as well. The optical spectra of nanocomposite thin film were characterized in the 200-900 nm wavelength range and EC properties of nanocomposite thin film were studied by cyclic voltammetry (CV). The calculation of optical band gaps of thin film exhibited that the thin film has directly allowed transition with the values of 2.63 eV on first region and 3.80 eV on second region. Dispersion parameters were calculated based on the single oscillator model. Finally, important parameters such as dispersion energy, oscillator energy and lattice dielectric constant were determined and compared with the data from other researchers. The nonlinear optical properties such as nonlinear optical susceptibility, nonlinear absorption coefficient and nonlinear refractive index were extracted. The obtained results of nanocomposite thin film can be useful for the optoelectronic applications.

  15. Thickness dependent structural ordering, degradation and metastability in polysilane thin films: A photoluminescence study on representative σ-conjugated polymers

    International Nuclear Information System (INIS)

    Urbánek, Pavel; Kuřitka, Ivo

    2015-01-01

    We present a fundamental experimental study based on the fluorescence investigation of thin σ-conjugated polymer films, where the dependence of optoelectrical properties and UV degradation on film thickness ranging from nano- to microscale was studied. Such extensive and detailed study was performed for the first time and observed spectral shifts in emission and excitation spectra and UV degradation retardation point towards the conclusions that there exists a threshold thickness where the material degradation behavior, electron delocalization and structure suddenly change. The development of well aligned polymeric chain structure between the nano- and micrometer thickness (on the mesoscale) was shown responsible for the manifested phenomena. The material thicker than critical 500 nm has extremely small Stokes' shift, maximum extended σ-delocalization along the silicon polymer backbone and exhibits remarkable UV degradation slowdown and self-recovery ability. On the contrary, the electronic properties of thin films below 80 nm resemble those of random coils in solutions. The films of moderate thickness show relatively steep transition between these two modes of structural ordering and resulting properties. Altogether, we consider this complex phenomenon as a consequence of the mesoscale effect, which is an only recently introduced concept in polymer thin films. - Highlights: • Photoluminescence was used as a tool for structural investigation of polysilanes. • Primary study of strong dependence of thin polymer film structure on mesoscale. • A mesoscale effect observed for the first time on sigma conjugated polymers. • Conjugation length is dramatically extended in thicker films than in nanoscale. • Self-recovery effect was shown to be dependent on the mesoscale as well.

  16. Vertical Structure of Radiation-pressure-dominated Thin Disks: Link between Vertical Advection and Convective Stability

    International Nuclear Information System (INIS)

    Gong, Hong-Yu; Gu, Wei-Min

    2017-01-01

    In the classic picture of standard thin accretion disks, viscous heating is balanced by radiative cooling through the diffusion process, and the radiation-pressure-dominated inner disk suffers convective instability. However, recent simulations have shown that, owing to the magnetic buoyancy, the vertical advection process can significantly contribute to energy transport. In addition, in comparing the simulation results with the local convective stability criterion, no convective instability has been found. In this work, following on from simulations, we revisit the vertical structure of radiation-pressure-dominated thin disks and include the vertical advection process. Our study indicates a link between the additional energy transport and the convectively stable property. Thus, the vertical advection not only significantly contributes to the energy transport, but it also plays an important role in making the disk convectively stable. Our analyses may help to explain the discrepancy between classic theory and simulations on standard thin disks.

  17. Landmark-based elastic registration using approximating thin-plate splines.

    Science.gov (United States)

    Rohr, K; Stiehl, H S; Sprengel, R; Buzug, T M; Weese, J; Kuhn, M H

    2001-06-01

    We consider elastic image registration based on a set of corresponding anatomical point landmarks and approximating thin-plate splines. This approach is an extension of the original interpolating thin-plate spline approach and allows to take into account landmark localization errors. The extension is important for clinical applications since landmark extraction is always prone to error. Our approach is based on a minimizing functional and can cope with isotropic as well as anisotropic landmark errors. In particular, in the latter case it is possible to include different types of landmarks, e.g., unique point landmarks as well as arbitrary edge points. Also, the scheme is general with respect to the image dimension and the order of smoothness of the underlying functional. Optimal affine transformations as well as interpolating thin-plate splines are special cases of this scheme. To localize landmarks we use a semi-automatic approach which is based on three-dimensional (3-D) differential operators. Experimental results are presented for two-dimensional as well as 3-D tomographic images of the human brain.

  18. Impact of amylosucrase modification on the structural and physicochemical properties of native and acid-thinned waxy corn starch.

    Science.gov (United States)

    Zhang, Hao; Zhou, Xing; He, Jian; Wang, Tao; Luo, Xiaohu; Wang, Li; Wang, Ren; Chen, Zhengxing

    2017-04-01

    Recombinant amylosucrase from Neisseria polysaccharea was utilized to modify native and acid-thinned starches. The molecular structures and physicochemical properties of modified starches were investigated. Acid-thinned starch displayed much lower viscosity after gelatinization than did the native starch. However, the enzyme exhibited similar catalytic efficiency for both forms of starch. The modified starches had higher proportions of long (DP>33) and intermediate chains (DP 13-33), and X-ray diffraction showed a B-type crystalline structure for all modified starches. With increasing reaction time, the relative crystallinity and endothermic enthalpy of the modified starches gradually decreased, whereas the melting peak temperatures and resistant starch contents increased. Slight differences were observed in thermal parameters, relative crystallinity, and branch chain length distribution between the modified native and acid-thinned starches. Moreover, the digestibility of the modified starches was not affected by acid hydrolysis pretreatment, but was affected by the percentage of intermediate and long chains. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Influence of lithium doping on the structural and electrical characteristics of ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Johny, T. Anto [Centre for Materials for Electronics Technology (C-MET), (Department of Information Technology, Scientific Society, Ministry of Communication and Information Technology, Govt. of India), Athani - PO, Thrissur, 680 581 Kerala (India); Kumar, Viswanathan, E-mail: vkumar10@yahoo.com [Centre for Materials for Electronics Technology (C-MET), (Department of Information Technology, Scientific Society, Ministry of Communication and Information Technology, Govt. of India), Athani - PO, Thrissur, 680 581 Kerala (India); Imai, Hideyuki; Kanno, Isaku [Micro Engineering, Kyoto University, Kyoto 606-8501 (Japan)

    2012-06-30

    Thin films of undoped and lithium-doped Zinc oxide, (Zn{sub 1-x}Li{sub x})O; x = 0, 0.05, 0.10 and 0.20 were prepared by sol-gel method using spin-coating technique on silicon substrates [(111)Pt/Ti/SiO{sub 2}/Si)]. The influence of lithium doping on the structural, electrical and microstructural characteristics have been investigated by means of X-ray diffraction, leakage current, piezoelectric measurements and scanning electron microscopy. The resistivity of the ZnO film is found to increase markedly with low levels (x {<=} 0.05) of lithium doping thereby enhancing their piezoelectric applications. The transverse piezoelectric coefficient, e{sub 31}{sup Low-Asterisk} has been determined for the thin films having the composition (Zn{sub 0.95}Li{sub 0.05})O, to study their suitability for piezoelectric applications. - Highlights: Black-Right-Pointing-Pointer Preferentially c-axis oriented (Zn{sub 1-x}Li{sub x})O films were spin-coated on glass. Black-Right-Pointing-Pointer (Zn{sub 1-x}Li{sub x})O thin films exhibit dense columnar microstructure. Black-Right-Pointing-Pointer Low levels of lithium doping, increases the electrical resistivity of ZnO thin films. Black-Right-Pointing-Pointer (Zn{sub 1-x}Li{sub x})O thin films show high values of transverse piezoelectric coefficient, e{sup Low-Asterisk }{sub 31}.

  20. The role of Long-Range Connectivity for the Characterization of the Functional-Anatomical Organization of the Cortex

    Directory of Open Access Journals (Sweden)

    Thomas R Knösche

    2011-07-01

    Full Text Available This review focuses on the role of long-range connectivity as one element of brain structure that is of key importance for the functional-anatomical organization of the cortex. In this context, we discuss the putative guiding principles for mapping brain function and structure onto the cortical surface. Such mappings reveal a high-degree of functional-anatomical segregation. Given that brain regions frequently maintain characteristic connectivity profiles and the functional repertoire of a cortical area is closely related to its anatomical connections, long-range connectivity may be used to define segregated cortical areas. This methodology is called connectivity-based parcellation.Within this framework, we investigate different techniques to estimate connectivity profiles with emphasis given to non-invasive methods based on diffusion magnetic resonance imaging (dMRI and diffusion tractography. Cortical parcellation is then defined based on similarity between diffusion tractograms, and different clustering approaches are discussed.We conclude that the use of non-invasively acquired connectivity estimates to characterize the functional-anatomical organization of the brain is a valid, relevant and necessary endeavor. Current and future developments in dMRI technology, tractography algorithms and models of the similarity structure hold great potential for a substantial improvement and enrichment of the results of the technique.

  1. The role of long-range connectivity for the characterization of the functional-anatomical organization of the cortex.

    Science.gov (United States)

    Knösche, Thomas R; Tittgemeyer, Marc

    2011-01-01

    This review focuses on the role of long-range connectivity as one element of brain structure that is of key importance for the functional-anatomical organization of the cortex. In this context, we discuss the putative guiding principles for mapping brain function and structure onto the cortical surface. Such mappings reveal a high degree of functional-anatomical segregation. Given that brain regions frequently maintain characteristic connectivity profiles and the functional repertoire of a cortical area is closely related to its anatomical connections, long-range connectivity may be used to define segregated cortical areas. This methodology is called connectivity-based parcellation. Within this framework, we investigate different techniques to estimate connectivity profiles with emphasis given to non-invasive methods based on diffusion magnetic resonance imaging (dMRI) and diffusion tractography. Cortical parcellation is then defined based on similarity between diffusion tractograms, and different clustering approaches are discussed. We conclude that the use of non-invasively acquired connectivity estimates to characterize the functional-anatomical organization of the brain is a valid, relevant, and necessary endeavor. Current and future developments in dMRI technology, tractography algorithms, and models of the similarity structure hold great potential for a substantial improvement and enrichment of the results of the technique.

  2. Effect of R.F. Power to the Structural Properties of ZnO Thin Films Deposited by Magnetron Sputtering

    International Nuclear Information System (INIS)

    Sin, N.D.M.; Rusop, M.

    2011-01-01

    The effect of RF power variation (100 watt∼400 watt ) on the zinc oxide (ZnO) thin films electrical, optical and structural properties were examined using current voltage (I-V) measurement, UV-Vis-NIR spectrophotometer, x-ray diffraction (XRD) and atomic force microscope (AFM). ZnO thin films were prepared at room temperature in pure argon atmosphere by a RF magnetron sputtering using ZnO target. The resistivity of thin film show the lowest at 300 watt. The absorption coefficient spectra obtained from UV-Vis-NIR spectrophotometer measurement show all films have low absorbance in visible and near infrared (IR) region but have high UV absorption properties using UV-VIS spectrophotometer (JASCO 670) . Highly oriented ZnO thin films [002] direction were obtained by using Rigaku Ultima IV. (author)

  3. Rare Earth Oxide Thin Films

    CERN Document Server

    Fanciulli, Marco

    2007-01-01

    Thin rare earth (RE) oxide films are emerging materials for microelectronic, nanoelectronic, and spintronic applications. The state-of-the-art of thin film deposition techniques as well as the structural, physical, chemical, and electrical properties of thin RE oxide films and of their interface with semiconducting substrates are discussed. The aim is to identify proper methodologies for the development of RE oxides thin films and to evaluate their effectiveness as innovative materials in different applications.

  4. Influence of stress on the structural and dielectric properties of rf magnetron sputtered zinc oxide thin film

    Science.gov (United States)

    Menon, Rashmi; Sreenivas, K.; Gupta, Vinay

    2008-05-01

    Highly c axis oriented zinc oxide (ZnO) thin films have been prepared on 1737 Corning glass substrate by planar rf magnetron sputtering under varying pressure (10-50mTorr) and different oxygen percentage (40%-100%) in reactive gas mixtures. The as-grown ZnO thin films were found to have stress over a wide range from -6×1010to-9×107dynes/cm2. The presence of stress depends strongly on processing conditions, and films become almost stress free under a unique combination of sputtering pressure and reactive gas composition. The studies show a correlation of stress with structural and electrical properties of the ZnO thin film. The stressed films possess high electrical conductivity and exhibits strong dielectric dispersion over a wide frequency (1kHz-1MHz). The dielectric constant ɛ'(ω) of stress free ZnO film was almost frequency independent and was close to the bulk value. The measured value of dc conductivity, σdc(ω) and ac conductivity σac(ω) of stress free ZnO film was 1.3×10-9 and 6.8×10-5Ω-1cm-1, respectively. The observed variation in the structural and electrical properties of ZnO thin film with stress has been analyzed in the light of growth kinetics.

  5. Study of copper doping effects on structural, optical and electrical properties of sprayed ZnO thin films

    International Nuclear Information System (INIS)

    Mhamdi, A.; Mimouni, R.; Amlouk, A.; Amlouk, M.; Belgacem, S.

    2014-01-01

    Highlights: • The sprayed Cu-doped ZnO thin layers films were well crystallised in hexagonal wurtzite phase. • Nanoncrystallites on clusters were observed whose density decreases especially at 2% Cu content. • This parallel circuit R–C represents the contribution of the grain boundaries delineating the oriented columnar microcrystallites along c-axis. - Abstract: Copper-doped zinc oxide thin films (ZnO:Cu) at different percentages (1–3%) were deposited on glass substrates using a chemical spray technique. The effect of Cu concentration on the structural, morphology and optical properties of the ZnO:Cu thin films were investigated. XRD analysis revealed that all films consist of single phase ZnO and were well crystallised in würtzite phase with the crystallites preferentially oriented towards (0 0 2) direction parallel to c-axis. The Film surface was analyzed by contact atomic force microscopy (AFM) in order to understand the effect of the doping on the surface structure. Doping by copper resulted in a slight decrease in the optical band gap energy of the films and a noticeably change in optical constants. From the spectroscopy impedance analysis we investigated the frequency relaxation phenomenon and the circuit equivalent circuit of such thin layers. Finally, all results have been discussed in terms of the copper doping concentration

  6. {11-bar 01} twin dislocation structures in evaporated titanium thin films

    International Nuclear Information System (INIS)

    Bursill, L.A.; Peng, Julin; Fan, Xudong; Kasukabe, Y.; Yamada, Y.

    1995-01-01

    High-resolution transmission electron micrographs of { 11-bar 01} interfacial twin dislocations in Ti thin films are reexamined. Computer simulations of the experimental images were obtained using atomic models deduced by Pond, Bacon and Serra (Phil Mag Letts, 1995). Two twin dislocations were analysed, with step heights of 4 x d(K 1 ) and 2 x d (K 1 ), where d(K 1 ) is the spacing of the { 11-bar 01 } planes. Reasonable agreement with the predicted structures was obtained at about 0.17nm resolution. 10 refs., 2 figs

  7. Structural and morphological properties of HfxZr 1-xO2 thin films prepared by Pechini route

    KAUST Repository

    García-Cerda, L. A.

    2010-03-01

    In this study, HfxZr1-xO2 (0 < x < 1) thin films were deposited on silicon wafers using a dip-coating technique and by using a precursor solution prepared by the Pechini route. The effects of annealing temperature on the structure and morphological properties of the proposed films were investigated. HfxZr1-xO2 thin films with 1, 3 and 5 layers were annealed in air for 2 h at 600 and 800 °C and the structural and morphological properties studied by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD results show that the films have monoclinic and tetragonal structure depending of the Hf and Zr concentration. SEM photographs show that all films consist of nanocrystalline grains with sizes in the range of 6 - 13 nm. The total film thickness is about 90 nm. © (2010) Trans Tech Publications.

  8. The relationship of lateral anatomic structures to exiting guide pins during femoral tunnel preparation utilizing an accessory medial portal.

    Science.gov (United States)

    Farrow, Lutul D; Parker, Richard D

    2010-06-01

    Anatomic reconstruction of the anterior cruciate ligament through an accessory medial portal has become increasingly popular. The purpose of this study is to describe the relationship of guide pin exit points to the lateral anatomic structures when preparing the anterior cruciate ligament femoral tunnel through an accessory medial portal. We utilized seven fresh frozen cadaveric knees. Utilizing an anteromedial approach, a guide wire was placed into the center of each bundle's footprint. Each guide wire was advanced through the lateral femoral cortex. The guide pins were passed at 90, 110, and 130 degrees of knee flexion. The distances from each guide pin to the closest relevant structures on the lateral side of the knee were measured. At 90 degrees the posterolateral bundle guide pin was closest to the lateral condyle articular cartilage (mean 5.4 +/- 2.2 mm) and gastrocnemius tendon (mean 5.7 +/- 2.1 mm). At 110 degrees the posterolateral bundle pin was closest to the gastrocnemius tendon (mean 4.5 +/- 3.4 mm). At 130 degrees the posterolateral bundle pin was closest to the gastrocnemius tendon (mean 7.2 +/- 5.5 mm) and lateral collateral ligament (mean 6.8 +/- 2.1 mm). At 90 degrees the anteromedial bundle guide pin was closest to the articular cartilage (mean 2.0 +/- 2.0 mm). At 110 degrees the anteromedial bundle pin was closest to the articular cartilage (mean 7.4 +/- 3.5 mm) and gastrocnemius tendon (mean 12.3 +/- 3.1 mm). At 130 degrees the AM bundle pin was closest to the gastrocnemius tendon (mean 8.2 +/- 3.2 mm) and LCL (mean 15.1 +/- 2.9 mm). Neither guide pin (anteromedial or posterolateral bundle) put the peroneal nerve at risk at any knee flexion angle. At low knee flexion angles the anteromedial and posterolateral bundle guide pins closely approximated multiple lateral structures when using an accessory medial arthroscopic portal. Utilizing higher flexion angles increases the margin of error when preparing both femoral tunnels. During preparation of

  9. Congenital blindness is associated with large-scale reorganization of anatomical networks.

    Science.gov (United States)

    Hasson, Uri; Andric, Michael; Atilgan, Hicret; Collignon, Olivier

    2016-03-01

    Blindness is a unique model for understanding the role of experience in the development of the brain's functional and anatomical architecture. Documenting changes in the structure of anatomical networks for this population would substantiate the notion that the brain's core network-level organization may undergo neuroplasticity as a result of life-long experience. To examine this issue, we compared whole-brain networks of regional cortical-thickness covariance in early blind and matched sighted individuals. This covariance is thought to reflect signatures of integration between systems involved in similar perceptual/cognitive functions. Using graph-theoretic metrics, we identified a unique mode of anatomical reorganization in the blind that differed from that found for sighted. This was seen in that network partition structures derived from subgroups of blind were more similar to each other than they were to partitions derived from sighted. Notably, after deriving network partitions, we found that language and visual regions tended to reside within separate modules in sighted but showed a pattern of merging into shared modules in the blind. Our study demonstrates that early visual deprivation triggers a systematic large-scale reorganization of whole-brain cortical-thickness networks, suggesting changes in how occipital regions interface with other functional networks in the congenitally blind. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Alterations in Anatomical Covariance in the Prematurely Born.

    Science.gov (United States)

    Scheinost, Dustin; Kwon, Soo Hyun; Lacadie, Cheryl; Vohr, Betty R; Schneider, Karen C; Papademetris, Xenophon; Constable, R Todd; Ment, Laura R

    2017-01-01

    Preterm (PT) birth results in long-term alterations in functional and structural connectivity, but the related changes in anatomical covariance are just beginning to be explored. To test the hypothesis that PT birth alters patterns of anatomical covariance, we investigated brain volumes of 25 PTs and 22 terms at young adulthood using magnetic resonance imaging. Using regional volumetrics, seed-based analyses, and whole brain graphs, we show that PT birth is associated with reduced volume in bilateral temporal and inferior frontal lobes, left caudate, left fusiform, and posterior cingulate for prematurely born subjects at young adulthood. Seed-based analyses demonstrate altered patterns of anatomical covariance for PTs compared with terms. PTs exhibit reduced covariance with R Brodmann area (BA) 47, Broca's area, and L BA 21, Wernicke's area, and white matter volume in the left prefrontal lobe, but increased covariance with R BA 47 and left cerebellum. Graph theory analyses demonstrate that measures of network complexity are significantly less robust in PTs compared with term controls. Volumes in regions showing group differences are significantly correlated with phonological awareness, the fundamental basis for reading acquisition, for the PTs. These data suggest both long-lasting and clinically significant alterations in the covariance in the PTs at young adulthood. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  11. Structural, morphological and optical properties of Na and K dual doped CdS thin film

    International Nuclear Information System (INIS)

    Mageswari, S.; Dhivya, L.; Palanivel, Balan; Murugan, Ramaswamy

    2012-01-01

    Highlights: ► Effect of incorporation of Na, K and Na,K dual dopants into CdS thin film was investigated. ► Thin films were prepared by simple chemical bath deposition technique. ► The XRD analysis revealed cubic phase for all the investigated films. ► AFM analysis revealed uniform surface with crack free and densely packed morphology for CdS:Na,K film. ► The band gap value increases for CdS:Na, CdS:K and CdS:Na,K thin films compared to CdS film. - Abstract: CdS, sodium doped CdS (CdS:Na), potassium doped CdS (CdS:K) and sodium and potassium dual doped CdS (CdS:Na,K) thin films were deposited on glass substrate by chemical bath deposition (CBD) technique. Structural, morphological and optical properties of the as-grown films were characterised using X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray analysis (EDAX), atomic force microscopy (AFM) and ultraviolet visible (UV–VIS) spectroscopy. The XRD analysis revealed cubic phase for ‘as-deposited’ CdS, CdS:Na, CdS:K and CdS:Na,K dual doped thin films. AFM analysis revealed uniform film surface with crack free and densely packed morphology for CdS:Na,K film. The absorption edge in the optical absorption spectra shifts towards the shorter wavelength for CdS:Na, CdS:K and CdS:Na,K thin films compared to CdS film. The optical band gap of CdS, CdS:Na, CdS:K and CdS:Na,K thin films was found to be 2.31, 2.35, 2.38 and 2.34 eV, respectively.

  12. Structural, optical and electrical properties of CuIn{sub 5}S{sub 8} thin films grown by thermal evaporation method

    Energy Technology Data Exchange (ETDEWEB)

    Gannouni, M., E-mail: gm_mounir@yahoo.fr [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs -ENIT BP 37, Le belvedere 1002-Tunis (Tunisia); Kanzari, M. [Laboratoire de Photovoltaique et Materiaux Semi-conducteurs -ENIT BP 37, Le belvedere 1002-Tunis (Tunisia)

    2011-05-19

    Highlights: > In this work, thin films of CuIn{sub 5}S{sub 8} were successfully deposited onto glass substrates by thermal evaporation and annealed in air. > Post-depositional annealing effects on structural, optical and electrical properties of thermal evaporated CuIn{sub 5}S{sub 8} thin films were studied. > The results reported in this work make this material attractive as an absorber material in solar cells applications. - Abstract: Stoichiometric compound of copper indium sulfur (CuIn{sub 5}S{sub 8}) was synthesized by direct reaction of high purity elemental copper, indium and sulfur in an evacuated quartz tube. The phase structure of the synthesized material revealed the cubic spinel structure. The lattice parameter (a) of single crystals was calculated to be 10.667 A. Thin films of CuIn{sub 5}S{sub 8} were deposited onto glass substrates under the pressure of 10{sup -6} Torr using thermal evaporation technique. CuIn{sub 5}S{sub 8} thin films were then thermally annealed in air from 100 to 300 deg. C for 2 h. The effects of thermal annealing on their physico-chemical properties were investigated using X-ray diffraction (XRD), Energy-dispersive X-ray spectroscopy (EDX), scanning electron microscope (SEM), optical transmission and hot probe method. XRD studies of CuIn{sub 5}S{sub 8} thin films showed that as-deposited films were amorphous in nature and transformed into polycrystalline spinel structure with strong preferred orientation along the (3 1 1) plane after the annealing at 200 deg. C. The composition is greatly affected by thermal treatment. From the optical transmission and reflection, an important absorption coefficient exceeds 10{sup 4} cm{sup -1} was found. As increasing the annealing temperature, the optical energy band gap decreases from 1.83 eV for the as-deposited films to 1.43 eV for the annealed films at 300 deg. C. It was found that CuIn{sub 5}S{sub 8} thin film is an n-type semiconductor at 300 deg. C.

  13. Reversal of lattice, electronic structure, and magnetism in epitaxial SrCoOx thin films

    Science.gov (United States)

    Jeen, H.; Choi, W. S.; Lee, J. H.; Cooper, V. R.; Lee, H. N.; Seo, S. S. A.; Rabe, K. M.

    2014-03-01

    SrCoOx (x = 2.5 - 3.0, SCO) is an ideal material to study the role of oxygen content for electronic structure and magnetism, since SCO has two distinct topotactic phases: the antiferromagnetic insulating brownmillerite SrCoO2.5 and the ferromagnetic metallic perovskite SrCoO3. In this presentation, we report direct observation of a reversible lattice and electronic structure evolution in SrCoOx epitaxial thin films as well as different magnetic and electronic ground states between the topotactic phases.[2] By magnetization measurements, optical absorption, and transport measurements drastically different electronic and magnetic ground states are found in the epitaxially grown SrCoO2.5 and SrCoO3 thin films by pulsed laser epitaxy. First-principles calculations confirm substantial, which originate from the modification in the Co valence states and crystallographic structures. By real-time spectroscopic ellipsometry, the two electronically and magnetically different phases can be reversibly changed by changing the ambient pressure at greatly reduced temperatures. Our finding provides an important pathway to understanding the novel oxygen-content-dependent phase transition uniquely found in multivalent transition metal oxides. The work was supported by the U.S. Department of Energy, Basic Energy Sciences, Materials Sciences and Engineering Division.

  14. Fabrication and Crystal Structure of Sol-Gel Deposited BST Thin Films with Compositional Gradient

    Directory of Open Access Journals (Sweden)

    Czekaj D.

    2017-06-01

    Full Text Available In the present research technology of compositionally graded barium strontium titanate Ba1-xSrxTiO3 thin films deposited on stainless steel substrates by sol-gel spin coating followed with thermal annealing at T = 650°C is reported. Results of thermal behavior of the sol-gel derived powders with compositions used for fabrication of graded structure (i.e. with Sr mole fraction x = 0.5, 0.4 and 0.3 are described. X-ray diffraction studies of the phase composition and crystal structure of such complex thin film configuration are given. It was found that gel powders exhibited a large total weight loss of about Δm ≈ 44-47%. Three stages of weight loss took place at temperature ranges: below T ≈ 300°C, at ΔT ≈ 300-500°C and between T = 600°C and T = 800°C. Phase analysis has shown that the dominating phase is Ba0.67Sr0.33TiO3 compound while the second phase is Ba0.7Sr0.3TiO3 or Ba0.5Sr0.5TiO3 for “up-graded” and “down-graded” structure, respectively.

  15. Effect of sputtering parameters and substrate composition on the structure of tantalum thin films

    Energy Technology Data Exchange (ETDEWEB)

    Hallmann, Lubica, E-mail: lubica.hallmann@zzm.uzh.c [Clinic of Fixed and Removable Prosthodontics and Dental Material Science, Center of Dental Medicine, University of Zürich (Switzerland); Ulmer, Peter [Institute of Geochemistry and Petrology, ETH Zürich (Switzerland)

    2013-10-01

    The crystallographic properties of tantalum films deposited as a bioactive coating on Co–Cr–Mo and Ti–Al–Nb alloys have been investigated. The desired tough and ductile alpha phase of tantalum has been obtained by DC magnetron sputtering on Co–Cr–Mo and Ti–Al–Nb substrates. The thickness of the tantalum layer was between 20 and 600 nm. The crystallographic structure of tantalum thin film was dependent on the sputtering parameters such as DC power, bias voltage and gas impurities. Oxygen is an important factor for the stabilization of the tantalum alpha phase on Co–Cr–Mo substrate. The crystallographic structure and texture of tantalum thin films was found to be additionally dependent on the substrate composition. For Ti–Al–Nb substrate, oxygen content was not an important factor for the stabilization of the alpha phase. The observed shift of X-ray diffraction peaks to lower 2(θ) is an indication of stress evolving during the sputtering process and was dependent on bias voltage and oxygen content of the carrier gas.

  16. Hierarchical modeling and its numerical implementation for layered thin elastic structures

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jin-Rae [Hongik University, Sejong (Korea, Republic of)

    2017-05-15

    Thin elastic structures such as beam- and plate-like structures and laminates are characterized by the small thickness, which lead to classical plate and laminate theories in which the displacement fields through the thickness are assumed linear or higher-order polynomials. These classical theories are either insufficient to represent the complex stress variation through the thickness or may encounter the accuracy-computational cost dilemma. In order to overcome the inherent problem of classical theories, the concept of hierarchical modeling has been emerged. In the hierarchical modeling, the hierarchical models with different model levels are selected and combined within a structure domain, in order to make the modeling error be distributed as uniformly as possible throughout the problem domain. The purpose of current study is to explore the potential of hierarchical modeling for the effective numerical analysis of layered structures such as laminated composite. For this goal, the hierarchical models are constructed and the hierarchical modeling is implemented by selectively adjusting the level of hierarchical models. As well, the major characteristics of hierarchical models are investigated through the numerical experiments.

  17. Structural evolution of bias sputtered LiNi0.5Mn1.5O4 thin film cathodes for lithium ion batteries

    International Nuclear Information System (INIS)

    Su, Shih-Hsuan; Chiu, Kuo-Feng; Leu, Hoang-Jyh

    2014-01-01

    LiNi 0.5 Mn 1.5 O 4 (LNMO) thin films have been deposited on stainless steel substrates using radio frequency (f = 13.56 MHz) magnetron sputtering, followed by thermal annealing in ambient atmosphere. Various negative biases were applied on the substrates during deposition. The structural evolution of LNMO thin films under different negative biases has been investigated and characterized by X-ray diffraction. All of the deposited films exhibit a crystalline spinel structure with a space group of Fd-3m, which is a so-called disordered phase. The results also indicate that particle size decreases with increasing negative bias. The electrochemical properties of the LNMO thin films as cathode materials for lithium ion batteries were investigated. Two distinctive voltage plateaus at ∼ 4.7 V and at ∼ 4.0 V (vs. Li + /Li) can be observed in the discharge curves, corresponding to the reactions of the disordered phase. The capacity of LNMO thin film electrodes under suitable negative bias can be optimized. - Highlights: • LiNi 0.5 Mn 1.5 O 4 thin films have been deposited on stainless steel substrates. • Various negative biases were applied on the substrates during deposition. • The particle sizes of LNMO thin films decrease with increasing negative bias

  18. Relating performance of thin-film composite forward osmosis membranes to support layer formation and structure

    KAUST Repository

    Tiraferri, Alberto

    2011-02-01

    Osmotically driven membrane processes have the potential to treat impaired water sources, desalinate sea/brackish waters, and sustainably produce energy. The development of a membrane tailored for these processes is essential to advance the technology to the point that it is commercially viable. Here, a systematic investigation of the influence of thin-film composite membrane support layer structure on forward osmosis performance is conducted. The membranes consist of a selective polyamide active layer formed by interfacial polymerization on top of a polysulfone support layer fabricated by phase separation. By systematically varying the conditions used during the casting of the polysulfone layer, an array of support layers with differing structures was produced. The role that solvent quality, dope polymer concentration, fabric layer wetting, and casting blade gate height play in the support layer structure formation was investigated. Using a 1M NaCl draw solution and a deionized water feed, water fluxes ranging from 4 to 25Lm-2h-1 with consistently high salt rejection (>95.5%) were produced. The relationship between membrane structure and performance was analyzed. This study confirms the hypothesis that the optimal forward osmosis membrane consists of a mixed-structure support layer, where a thin sponge-like layer sits on top of highly porous macrovoids. Both the active layer transport properties and the support layer structural characteristics need to be optimized in order to fabricate a high performance forward osmosis membrane. © 2010 Elsevier B.V.

  19. Superconductivity of Rock-Salt Structure LaO Epitaxial Thin Film.

    Science.gov (United States)

    Kaminaga, Kenichi; Oka, Daichi; Hasegawa, Tetsuya; Fukumura, Tomoteru

    2018-06-06

    We report a superconducting transition in a LaO epitaxial thin film with the superconducting transition onset temperature ( T c ) at around 5 K. This T c is higher than those of other lanthanum monochalcogenides and opposite to their chemical trend: T c = 0.84, 1.02, and 1.48 K for LaX (X = S, Se, Te), respectively. The carrier control resulted in a dome-shaped T c as a function of electron carrier density. In addition, the T c was significantly sensitive to epitaxial strain in spite of the highly symmetric crystal structure. This rock-salt superconducting LaO could be a building block to design novel superlattice superconductors.

  20. Electronic structure of Cr doped Fe3O4 thin films by X-ray absorption near-edge structure spectroscopy

    Science.gov (United States)

    Chen, Chi-Liang; Dong, Chung-Li; Asokan, Kandasami; Chern, G.; Chang, C. L.

    2018-04-01

    Present study reports the electronic structures of Cr doped Fe3O4 (Fe3-xCrxO4 (0 ≤ x ≤ 3) grown on MgO (100) substrates in the form of thin films fabricated by a plasma-oxygen assisted Molecular Beam Epitaxy (MBE). X-ray absorption near-edge structure (XANES) spectra at Cr & Fe L-, and O K-edges were used to understand the electronic structure: changes in the bonding nature, valence states, and site occupancies. Cr doping in Fe3O4 results in the change of charge transfer, crystal structure, and selective occupation of ions in octahedral and tetrahedral sites. Such change modifies the electrical and magnetic properties due to the covalency of Cr ions. The physical and chemical properties of ferrites are strongly dependent on the lattice site, ion size of dopant, and magnetic nature present at different structural symmetry of the spinel structure.

  1. Study of the optical properties and structure of ZnSe/ZnO thin films grown by MOCVD with varying thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Jabri, S., E-mail: slaheddine.jabri@fst.rnu.tn [Unité des nanomatériaux et photoniques, Faculté des Sciences de Tunis, Campus Universitaire Ferhat Hachad, El Manar, 2092 Tunis (Tunisia); Amiri, G.; Sallet, V. [Groupe d’Etude de la Matière Condensée, CNRS-Université de Versailles St Quentin, Université Paris-Saclay, 45 avenue des Etats Unis, 78035 Versailles Cedex (France); Souissi, A. [Laboratoire de Photovoltaïque, Centre de Recherches et des Technologies de l’Energie, Technopole Borj Cedria, B.P. 95, Hammammlif 2050 (Tunisia); Meftah, A. [Unité des nanomatériaux et photoniques, Faculté des Sciences de Tunis, Campus Universitaire Ferhat Hachad, El Manar, 2092 Tunis (Tunisia); Galtier, P. [Groupe d’Etude de la Matière Condensée, CNRS-Université de Versailles St Quentin, Université Paris-Saclay, 45 avenue des Etats Unis, 78035 Versailles Cedex (France); Oueslati, M. [Unité des nanomatériaux et photoniques, Faculté des Sciences de Tunis, Campus Universitaire Ferhat Hachad, El Manar, 2092 Tunis (Tunisia)

    2016-05-15

    ZnSe layers were grown on ZnO substrates by the metal organic chemical vapor deposition technique. A new structure appeared at lower thicknesses films. The structural properties of the thin films were studied by the X-ray diffraction (XRD) and Raman spectroscopy methods. First, Raman selection rules are explicitly put forward from a theoretical viewpoint. Second, experimentally-retrieved-intensities of the Raman signal as a function of polarization angle of incident light are fitted to the obtained theoretical dependencies in order to confirm the crystallographic planes of zinc blend ZnSe thin film, and correlate with DRX measurements. Raman spectroscopy has been used to characterize the interfacial disorder that affects energy transport phenomena at ZnSe/ZnO interfaces and the Photoluminescence (PL) near the band edge of ZnSe thin films.

  2. Dynamic article: surgical anatomical planes for complete mesocolic excision and applied vascular anatomy of the right colon.

    Science.gov (United States)

    Açar, Halil İbrahim; Cömert, Ayhan; Avşar, Abdullah; Çelik, Safa; Kuzu, Mehmet Ayhan

    2014-10-01

    Lower local recurrence rates and better overall survival are associated with complete mesocolic excision with central vascular ligation for treatment of colon cancer. To accomplish this, surgeons need to pay special attention to the surgical anatomical planes and vascular anatomy of the colon. However, surgical education in this area has been neglected. The aim of this study is to define the correct surgical anatomical planes for complete mesocolic excision with central vascular ligation and to demonstrate the correct dissection technique for protecting anatomical structures. Macroscopic and microscopic surgical dissections were performed on 12 cadavers in the anatomy laboratory and on autopsy specimens. The dissections were recorded as video clips. Dissections were performed in accordance with the complete mesocolic excision technique on 10 male and 2 female cadavers. Vascular structures, autonomic nerves, and related fascias were shown. Within each step of the surgical procedure, important anatomical structures were displayed on still images captured from videos by animations. Three crucial steps for complete mesocolic excision with central vascular ligation are demonstrated on the cadavers: 1) full mobilization of the superior mesenteric root following the embryological planes between the visceral and the parietal fascias; 2) mobilization of the mesocolon from the duodenum and the pancreas and identification of vascular structures, especially the veins around the pancreas; and 3) central vascular ligation of the colonic vessels at their origin, taking into account the vascular variations within the mesocolonic vessels and the autonomic nerves around the superior mesenteric artery. The limitation of this study was the number of the cadavers used. Successful complete mesocolic excision with central vascular ligation depends on an accurate knowledge of the surgical anatomical planes and the vascular anatomy of the colon.

  3. Multiferroic BiFeO{sub 3} thin films: Structural and magnetic characterization

    Energy Technology Data Exchange (ETDEWEB)

    Ali, Z. [Physics Department, Faculty of Science (Girls Branch), Al-Azhar University, Cairo (Egypt); Atta, A. [National Center for Radiation Research and Technology (NCRRT), Nasr City, Cairo (Egypt); Abbas, Y. [Physics Department, Faculty of Science, Suez Canal University, Ismailia (Egypt); Sedeek, K.; Adam, A.; Abdeltwab, E. [Physics Department, Faculty of Science (Girls Branch), Al-Azhar University, Cairo (Egypt)

    2015-02-27

    BiFeO{sub 3} (BFO) film has been deposited on indium tin oxide (ITO) substrate by a simple sol–gel spin-coating technique. The crystal phase composition, surface morphology, topography and magnetization measurements of the BFO thin film were investigated using grazing incidence X-ray diffraction (GIXRD), scanning electronic microscope (SEM), atomic force microscope and vibrating sample magnetometer, respectively. GIXRD analysis revealed that the film was fully crystallized and no impure phase was observed. Cross-section SEM results indicated that compact and homogeneous BFO thin film was deposited on ITO with a thickness of about 180 nm. Moreover, most of A and E-symmetry normal modes of R3c BFO were assigned by Raman spectroscopy. We report here that the pure phase BFO film shows ferromagnetism at room temperature with remarkably high saturation magnetization of 63 kA m{sup −1}. Our results are discussed mainly in correlation with the condition of processing technique and destruction of the spiral spin cycloid at interface layers and grain boundaries. - Highlights: • Multiferroic BiFeO{sub 3} (BFO) thin film was prepared by sol–gel spin-coating method. • BFO film w asdeposited on indium tin oxide substrate with a thickness of 180 nm. • The film exhibits pure rhombohedral perovskite structure. • High saturation magnetization was recorded for our film at room temperature.

  4. NUMERICAL ANALYSIS OF THE CRITICAL STATE OF THIN-WALLED STRUCTURE WITH Z-PROFILE CROSS SECTION

    Directory of Open Access Journals (Sweden)

    Patryk Różyło

    2017-03-01

    Full Text Available The object of the study was the thin-walled profile with Z-shaped cross section made of the carbon-epoxy composite. Material model was prepared based on the implemented orthotropic properties. The purpose of study was to determine the value of the critical load at which buckling occurs, the form of buckling and operating characteristics in critical condition. In order to achieve this numerical analysis were carried out. Additionally, the effects of the modification in arrangement of layers of the laminate to the stability and strength of thin-walled composite structures was presented. Numerical studies were carried out using commercial simulation software - ABAQUS®. Within the FEM research, both forms of buckling and the associated critical load, dependent on the configuration the layers of the composite were achieved. Analysis of the obtained results, allowed the evaluation of the structure's work in relation to the level of energy consumption or rigidity estimation. In the paper only numerical simulations of the critical state were conducted.

  5. Laser Structuring of Thin Layers for Flexible Electronics by a Shock Wave-induced Delamination Process

    Science.gov (United States)

    Lorenz, Pierre; Ehrhardt, Martin; Zimmer, Klaus

    The defect-free laser-assisted structuring of thin films on flexible substrates is a challenge for laser methods. However, solving this problem exhibits an outstanding potential for a pioneering development of flexible electronics. Thereby, the laser-assisted delamination method has a great application potential. At the delamination process: the localized removal of the layer is induced by a shock wave which is produced by a laser ablation process on the rear side of the substrate. In this study, the thin-film patterning process is investigated for different polymer substrates dependent on the material and laser parameters using a KrF excimer laser. The resultant structures were studied by optical microscopy and white light interferometry (WLI). The delamination process was tested at different samples (indium tin oxide (ITO) on polyethylene terephthalate (PET), epoxy-based negative photoresist (SU8) on polyimide (PI) and indium tin oxide/copper indium gallium selenide/molybdenum (ITO/CIGS/Mo) on PI.

  6. Structural and optical properties of furfurylidenemalononitrile thin films

    Science.gov (United States)

    Ali, H. A. M.

    2013-03-01

    Thin films of furfurylidenemalononitrile (FMN) were deposited on different substrates at room temperature by thermal evaporation technique under a high vacuum. The structure of the powder was confirmed by Fourier transformation infrared (FTIR) technique. The unit cell dimensions were determined from X-ray diffraction (XRD) studies. The optical properties were investigated using spectrophotometric measurements of the transmittance and reflectance at normal incidence of light in the wavelength range from 200 to 2500 nm. The refractive index (n), the absorption index (k) and the absorption coefficient (α) were calculated. The analysis of the spectral behavior of the absorption coefficient in the absorption region revealed an indirect allowed transition. The refractive index dispersion was analyzed using the single oscillator model. Some dispersion parameters were estimated. Complex dielectric function and optical conductivity were determined. The influence of the irradiation with high-energy X-rays (6 MeV) on the studied properties was also investigated.

  7. Enhanced stimulated emission in ZnO thin films using microdisk top-down structuring

    Energy Technology Data Exchange (ETDEWEB)

    Nomenyo, K.; Kostcheev, S.; Lérondel, G. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, CNRS UMR 6281, Université de Technologie de Troyes, 12 rue Marie Curie, CS 42060, 10004 Troyes Cedex (France); Gadallah, A.-S. [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Institut Charles Delaunay, CNRS UMR 6281, Université de Technologie de Troyes, 12 rue Marie Curie, CS 42060, 10004 Troyes Cedex (France); Department of Laser Sciences and Interactions, National Institute of Laser Enhanced Sciences, Cairo University, Giza (Egypt); Rogers, D. J. [Nanovation, 8, route de Chevreuse, 78117 Châteaufort (France)

    2014-05-05

    Microdisks were fabricated in zinc oxide (ZnO) thin films using a top-down approach combining electron beam lithography and reactive ion etching. These microdisk structured thin films exhibit a stimulated surface emission between 3 and 7 times higher than that from a reference film depending on the excitation power density. Emission peak narrowing, reduction in lasing threshold and blue-shifting of the emission wavelength were observed along with enhancement in the emitted intensity. Results indicate that this enhancement is due to an increase in the internal quantum efficiency combined with an amplification of the stimulated emission. An analysis in terms of waveguiding is presented in order to explain these effects. These results demonstrate that very significant gains in emission can be obtained through conventional microstructuration without the need for more onerous top-down nanostructuration techniques.

  8. Growth and structural properties of indium sesquitelluride (In2Te3) thin films

    International Nuclear Information System (INIS)

    Desai, R.R.; Lakshminarayana, D.; Patel, P.B.; Patel, P.K.; Panchal, C.J.

    2005-01-01

    Indium sesquitelluride (In 2 Te 3 ) compound was synthesized by mixing and melting the pure individual elements in stoichiometric proportions. The synthesized compound was utilized for the deposition of In 2 Te 3 thin films on glass and freshly cleaved NaCl substrates using flash evaporation technique. The structure of In 2 Te 3 thin films has been studied on the glass substrates by X-ray diffraction technique and on the cleavage faces of NaCl by electron diffraction technique. It was observed that the deposition from an ordered α-phase compound results in polycrystalline films on glass substrate at 473 K which are predominant α-phase and random β-phase compounds resulting in single crystal films on NaCl substrate at 523 K. Effect of source and substrate temperature on the composition of In 2 Te 3 was also studied

  9. Evaluation of influences of the Viennese Anatomical School on the work of the Croatian Anatomist Jelena Krmpotic-Nemanic.

    Science.gov (United States)

    Dinjar, Kristijan; Toth, Jurica; Atalic, Bruno; Radanovic, Danijela; Maric, Svjetlana

    2012-01-01

    This paper tries to evaluate the connections between the Viennese Anatomical School and the Croatian Anatomist Jelena Krmpotic-Nemanic. 17 papers written by Professor Jelena Krmpotic-Nemanic in the last decade of her life were chosen for analyses. According to their themes they could be divided into three groups: ones which evaluate the anatomical terminology, ones which research the development of anatomical structures, and ones which describe the anatomical variations. Mentioned papers were analysed through their topics, methods of research and cited references. Analyses of the mentioned papers revealed the indirect link between the Viennese Anatomical School and the Professor Jelena Krmpotic-Nemanic, through her mentor Professor Drago Perovic, regarding the themes and the methods of her anatomical researches. It has also showed her preference for Austrian and German anatomical textbooks and atlases, primarily ones published in Vienna and Jena, rather than English and American ones. Finally, her direct connections with the Viennese Institute for the History of Medicine and the Viennese Josephinum Wax Models Museum were emphasized. Mentioned indirect and direct influences of the Viennese Anatomical School on the work of Professor Jelena Krmpotic-Nemanic were critically appraised.

  10. Increased cortical-limbic anatomical network connectivity in major depression revealed by diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Peng Fang

    Full Text Available Magnetic resonance imaging studies have reported significant functional and structural differences between depressed patients and controls. Little attention has been given, however, to the abnormalities in anatomical connectivity in depressed patients. In the present study, we aim to investigate the alterations in connectivity of whole-brain anatomical networks in those suffering from major depression by using machine learning approaches. Brain anatomical networks were extracted from diffusion magnetic resonance images obtained from both 22 first-episode, treatment-naive adults with major depressive disorder and 26 matched healthy controls. Using machine learning approaches, we differentiated depressed patients from healthy controls based on their whole-brain anatomical connectivity patterns and identified the most discriminating features that represent between-group differences. Classification results showed that 91.7% (patients=86.4%, controls=96.2%; permutation test, p<0.0001 of subjects were correctly classified via leave-one-out cross-validation. Moreover, the strengths of all the most discriminating connections were increased in depressed patients relative to the controls, and these connections were primarily located within the cortical-limbic network, especially the frontal-limbic network. These results not only provide initial steps toward the development of neurobiological diagnostic markers for major depressive disorder, but also suggest that abnormal cortical-limbic anatomical networks may contribute to the anatomical basis of emotional dysregulation and cognitive impairments associated with this disease.

  11. Determination of the anatomic borders of the irradiation area for cervical and corporal carcinomas

    International Nuclear Information System (INIS)

    Moeller-Kuhlmann, G.

    1980-01-01

    Intention of the present study was to refer the silhouettes of the irradiation field to anatomically definite osseous structures. For this examination the caudal, cranial and the lateral borders were marked by different methods and their position with respect to the corresponding osseous structures was detected. For documenting the soft-tissue structures the following techniques could be applied: lymphography, hysterosalpingography, vaginal contrasting and computerized tomography. The evaluation of the obtained results showed that the dorsal silhouette ranges between the 4th and 5th lumbar vertebrae, that the lateral silhouette reaches the middle of the head of the femur and that the caudal one includes the obturator. The detection and definition of the target area for curative radiotherapy of corporal and cervical carcinomas can therefore renounce on the contrast representation of soft-tissue organs. On the contrary it is even possible to adjust the irradiation field with the therapy simulator under consideration of anatomically fixed osseous structures. (orig./MG) [de

  12. Influence of post-deposition annealing on structural, morphological and optical properties of copper (II) acetylacetonate thin films.

    Science.gov (United States)

    Abdel-Khalek, H; El-Samahi, M I; El-Mahalawy, Ahmed M

    2018-05-21

    In this study, the effect of thermal annealing under vacuum conditions on structural, morphological and optical properties of thermally evaporated copper (II) acetylacetonate, cu(acac) 2 , thin films were investigated. The copper (II) acetylacetonate thin films were deposited using thermal evaporation technique at vacuum pressure ~1 × 10 -5  mbar. The deposited films were thermally annealed at 323, 373, 423, and 473 K for 2 h in vacuum. The thermogravimetric analysis of cu(acac) 2 powder indicated a thermal stability of cu(acac) 2 up to 423 K. The effects of thermal annealing on the structural properties of cu(acac) 2 were evaluated employing X-ray diffraction method and the analysis showed a polycrystalline nature of the as-deposited and annealed films with a preferred orientation in [1¯01] direction. Fourier transformation infrared (FTIR) technique was used to negate the decomposition of copper (II) acetylacetonate during preparation or/and annealing up to 423 K. The surface morphology of the prepared films was characterized by means of field emission scanning electron microscopy (FESEM). A significant enhancement of the morphological properties of cu(acac) 2 thin films was obtained till the annealing temperature reaches 423 K. The variation of optical constants that estimated from spectrophotometric measurements of the prepared thin films was investigated as a function of annealing temperature. The annealing process presented significantly impacted the nonlinear optical properties such as third-order optical susceptibility χ (3) and nonlinear refractive index n 2 of cu(acac) 2 thin films. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Rupture of thin liquid films on structured surfaces.

    Science.gov (United States)

    Ajaev, Vladimir S; Gatapova, Elizaveta Ya; Kabov, Oleg A

    2011-10-01

    We investigate stability and breakup of a thin liquid film on a solid surface under the action of disjoining pressure. The solid surface is structured by parallel grooves. Air is trapped in the grooves under the liquid film. Our mathematical model takes into account the effect of slip due to the presence of menisci separating the liquid film from the air inside the grooves, the deformation of these menisci due to local variations of pressure in the liquid film, and nonuniformities of the Hamaker constant which measures the strength of disjoining pressure. Both linear stability and strongly nonlinear evolution of the film are analyzed. Surface structuring results in decrease of the fastest growing instability wavelength and the rupture time. It is shown that a simplified description of film dynamics based on the standard formula for effective slip leads to significant deviations from the behavior seen in our simulations. Self-similar decay over several orders of magnitude of the film thickness near the rupture point is observed. We also show that the presence of the grooves can lead to instability in otherwise stable films if the relative groove width is above a critical value, found as a function of disjoining pressure parameters.

  14. Morpho-anatomical and physicochemical studies of Fumaria indica(Hausskn.)Pugsley

    Institute of Scientific and Technical Information of China (English)

    Prakash; Chandra; Gupta; Ch; V; Rao

    2012-01-01

    Objective:To study morpho-anatomical characters and physicochemical analysis of Fumaria indica(F.indica)(Hausskn.)Pugsley,(Fumariaceae),an important medicinal plant used extensively for treating a variety of ailments in various system of indigenous medicine.Methods:Evaluation of the different parts of the plant was carried out to determine the morphoanatomical,physicochemical,phytochemical and HPTLC fingerprinting profile of F.indica and other WHO recommended methods were performed for standardization.Results:Morphoanatomical studies showed compound and pinnatifid leaf,4 to 6 cm in length,linear and oblong in shape and anomocytic arrangement of stomata,thin walled parenchymatous cells,scattered,sclerenchymatous,capped vascular bundles and radiating medullary rays.Physicochemical studies showed foreign matter 0.2%,loss on drying 6.8%,total ash 16.77%,alcohol and water soluble extractives 8.92%and 20.26%,respectively,sugar 17.75%,starch 22.97%and tannins 2.37%.Phytochemical evaluation revealed the presence of carbohydrate,alkaloids,flavonoids,saponins,tannins and sterol.Thin layer chromatography was carried out with different solvents and the best solvent system was chloroform and methanol in 80:20 ratio and revealed 12 spots with different R_f value under UV light 366λ.Conclusions:The results of the study can serve as a valuable source of information and provide suitable standards for identification of this plant material for future investigations and applications.

  15. Anatomical correlates of cognitive functions in early Parkinson's disease patients.

    Directory of Open Access Journals (Sweden)

    Roberta Biundo

    Full Text Available Cognitive deficits may occur early in Parkinson's disease (PD but the extent of cortical involvement associated with cognitive dysfunction needs additional investigations. The aim of our study is to identify the anatomical pattern of cortical thickness alterations in patients with early stage PD and its relationship with cognitive disability.We recruited 29 PD patients and 21 healthy controls. All PD patients performed an extensive neuropsychological examination and 14 were diagnosed with mild cognitive impairment (PD-MCI. Surface-based cortical thickness analysis was applied to investigate the topographical distribution of cortical and subcortical alterations in early PD compared with controls and to assess the relationship between cognition and regional cortical changes in PD-MCI.Overall PD patients showed focal cortical (occipital-parietal areas, orbito-frontal and olfactory areas and subcortical thinning when compared with controls. PD-MCI showed a wide spectrum of cognitive deficits and related significant regional thickening in the right parietal-frontal as well as in the left temporal-occipital areas.Our results confirm the presence of changes in grey matter thickness at relatively early PD stage and support previous studies showing thinning and atrophy in the neocortex and subcortical regions. Relative cortical thickening in PD-MCI may instead express compensatory neuroplasticity. Brain reserve mechanisms might first modulate cognitive decline during the initial stages of PD.

  16. Compositional Dependence of Optical and Structural Properties of Nanogranular Mixed ZrO2/ZnO/SnO2 Thin Film

    Science.gov (United States)

    Salari, S.; Ghodsi, F. E.

    2018-06-01

    A study on the optical properties and photoluminescence (PL) spectra of ternary oxide nanogranular thin films comprising Zr, Zn, and Sn revealed that the change in component ratio could direct the roadmap to improve characteristics of the films. Grazing angle X-ray diffraction analysis showed that incorporation of Sn atoms into the tetragonal structure of Zn/Zr thin film resulted in an amorphous structure. The band gap of film was tunable by precisely controlling the concentration of components. The widening of band gap could correlate to the quantum confinement effect. PL spectra of the composite thin films under excitation at 365 nm showed a sharp red emission with relatively Gaussian line shape, which was intensified in the optimum percentage ratio of 50/30/20. This nearly red emission is attributed to the radiative emission of electrons captured at low-energy traps located near the valence band. An optimum red emission is strongly desirable for use in white LEDs. The comparative study on FTIR spectra of unary, binary, and ternary thin films confirmed successful composition of three different metal oxides in ternary thin films. Detailed investigation on FTIR spectra of ternary compounds revealed that the quenching in PL emission at higher percentage of Sn was originally due to the hydroxyl group.

  17. Surface anatomy and anatomical planes in the adult turkish population.

    Science.gov (United States)

    Uzun, C; Atman, E D; Ustuner, E; Mirjalili, S A; Oztuna, D; Esmer, T S

    2016-03-01

    Surface anatomy and anatomical planes are widely used in education and clinical practice. The planes are largely derived from cadaveric studies and their projections on the skin show discrepancies between and within anatomical reference textbooks. In this study, we reassessed the accuracy of common thoracic and abdominopelvic anatomical planes using computed tomography (CT) imaging in the live adult Turkish population. After patients with distorting pathologies had been excluded, CT images of 150 supine patients at the end tidal inspiration were analyzed. Sternal angle, transpyloric, subcostal, supracristal and pubic crest planes and their relationships to anatomical structures were established by dual consensus. The tracheal bifurcation, azygos vein/superior vena cava (SVC) junction and pulmonary bifurcation were usually below the sternal angle while the concavity of the aortic arch was generally within the plane. The tip of the tenth rib, the superior mesenteric artery and the portal vein were usually within the transpyloric plane while the renal hila and the fundus of the gallbladder were below it. The inferior mesenteric artery was below the subcostal plane and the aortic bifurcation was below the supracristal plane in most adults. Projectional surface anatomy is fundamental to medical education and clinical practice. Modern cross-sectional imaging techniques allow large groups of live patients to be examined. Classic textbook information regarding anatomy needs to be reviewed and updated using the data gathered from these recent studies, taking ethnic differences into consideration. © 2015 Wiley Periodicals, Inc.

  18. Prevalence of anatomical variations in maxillary sinus using cone beam computed tomography

    Directory of Open Access Journals (Sweden)

    Deepjyoti K Mudgade

    2018-01-01

    Full Text Available Introduction: The maxillary sinuses (MS are of particular importance to dentist because of their close proximity to the teeth and their associated structures, so increased risk of maxillary sinusitis has been reported with periapical abscess, periodontal diseases, dental trauma, tooth extraction, and implant placement. Complications of MS are related to its anatomic and pathologic variations. Thus, study was conducted to assess the prevalence of anatomic variations in MS by using cone-beam computerized tomography (CBCT. Aims and Objectives: To determine different anatomical variations in MS by using CBCT. Materials and Methods: CBCT scans of 150 subjects were collected between the age group of 18 years to 70 years and were analyzed for MS anatomical variation. Statistical Analysis: The distribution of age, sex, reasons for CBCT, and dimensions of sinus calculated using descriptive statistics and distribution of other anatomic findings using Chi-square test. Results: Prevalence of obstructed ostium is 23.3% and septa is 66.7%. Average height, width, and antero-posterior (A-P dimensions for right MS are 34.13 mm, 26.09 mm, 37.39 mm and that of left MS are 33.24 mm, 26.11 mm, 37.72 mm respectively. Average distance between lower border of ostium to sinus floor in right MS is 32.17 mm and that of left is 32.69 mm. Average diameter of ostium in right MS is 1.88 mm and that of left is 1.67 mm. Conclusion: Study highlights the importance of accurate assessment of MS and its variations in order to properly differentiate the pathologic lesions from anatomic variations avoiding unnecessary surgical explorations.

  19. Structural characterization of vacuum evaporated ZnSe thin films

    Indian Academy of Sciences (India)

    The lattice parameter, grain size, average internal stress, microstrain, dislocation density and degree of pre- ferred orientation in the film are calculated and correlated with Ts. Keywords. ZnSe thin films; X-ray diffraction; average internal stress; microstrain; dislocation density. 1. Introduction. Thin films of ZnSe has attracted ...

  20. Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization

    Energy Technology Data Exchange (ETDEWEB)

    Segars, W. P.; Bond, Jason; Frush, Jack; Hon, Sylvia; Eckersley, Chris; Samei, E. [Carl E. Ravin Advanced Imaging Laboratories, Department of Radiology, Duke University Medical Center, Durham, North Carolina 27705 (United States); Williams, Cameron H.; Frush, D. [Department of Radiology, Duke University Medical Center, Durham, North Carolina 27710 (United States); Feng Jianqiao; Tward, Daniel J.; Ratnanather, J. T.; Miller, M. I. [Center for Imaging Science, Johns Hopkins University, Baltimore, Maryland 21218 (United States)

    2013-04-15

    Purpose: The authors previously developed the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. The XCAT consisted of highly detailed whole-body models for the standard male and female adult, including the cardiac and respiratory motions. In this work, the authors extend the XCAT beyond these reference anatomies by developing a series of anatomically variable 4D XCAT adult phantoms for imaging research, the first library of 4D computational phantoms. Methods: The initial anatomy of each phantom was based on chest-abdomen-pelvis computed tomography data from normal patients obtained from the Duke University database. The major organs and structures for each phantom were segmented from the corresponding data and defined using nonuniform rational B-spline surfaces. To complete the body, the authors manually added on the head, arms, and legs using the original XCAT adult male and female anatomies. The structures were scaled to best match the age and anatomy of the patient. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from the template XCAT phantom (male or female) to the target patient model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. Each new phantom was refined by checking for anatomical accuracy via inspection of the models. Results: Using these methods, the authors created a series of computerized phantoms with thousands of anatomical structures and modeling cardiac and respiratory motions. The database consists of 58 (35 male and 23 female) anatomically variable phantoms in total. Like the original XCAT, these phantoms can be combined with existing simulation packages to simulate realistic imaging data. Each new phantom contains parameterized models for the anatomy and the cardiac and respiratory motions and can, therefore, serve

  1. Population of anatomically variable 4D XCAT adult phantoms for imaging research and optimization

    International Nuclear Information System (INIS)

    Segars, W. P.; Bond, Jason; Frush, Jack; Hon, Sylvia; Eckersley, Chris; Samei, E.; Williams, Cameron H.; Frush, D.; Feng Jianqiao; Tward, Daniel J.; Ratnanather, J. T.; Miller, M. I.

    2013-01-01

    Purpose: The authors previously developed the 4D extended cardiac-torso (XCAT) phantom for multimodality imaging research. The XCAT consisted of highly detailed whole-body models for the standard male and female adult, including the cardiac and respiratory motions. In this work, the authors extend the XCAT beyond these reference anatomies by developing a series of anatomically variable 4D XCAT adult phantoms for imaging research, the first library of 4D computational phantoms. Methods: The initial anatomy of each phantom was based on chest–abdomen–pelvis computed tomography data from normal patients obtained from the Duke University database. The major organs and structures for each phantom were segmented from the corresponding data and defined using nonuniform rational B-spline surfaces. To complete the body, the authors manually added on the head, arms, and legs using the original XCAT adult male and female anatomies. The structures were scaled to best match the age and anatomy of the patient. A multichannel large deformation diffeomorphic metric mapping algorithm was then used to calculate the transform from the template XCAT phantom (male or female) to the target patient model. The transform was applied to the template XCAT to fill in any unsegmented structures within the target phantom and to implement the 4D cardiac and respiratory models in the new anatomy. Each new phantom was refined by checking for anatomical accuracy via inspection of the models. Results: Using these methods, the authors created a series of computerized phantoms with thousands of anatomical structures and modeling cardiac and respiratory motions. The database consists of 58 (35 male and 23 female) anatomically variable phantoms in total. Like the original XCAT, these phantoms can be combined with existing simulation packages to simulate realistic imaging data. Each new phantom contains parameterized models for the anatomy and the cardiac and respiratory motions and can, therefore

  2. Structural and magnetic properties of NiZn-ferrite thin films prepared by radio frequency magnetron sputtering

    International Nuclear Information System (INIS)

    Liu Yingli; Li Yuanxun; Zhang Huaiwu; Chen Daming; Mu Chunhong

    2011-01-01

    Polycrystalline NiZn-ferrite thin films were deposited on Si(100) substrate by rf magnetron sputtering, using targets with a nominal composition of Ni 0.5 Zn 0.5 Fe 2 O 4 . The effects of substrate condition, sputtering pressure, and postannealing on the structure and magnetic properties of thin films have been investigated. Our results show that the preferred orientation of the NiZn spinel film changed from (311) to (400) with increasing the Ar pressure from 0.8 to 1.6 Pa, meanwhile, the grain size also increased. Atomic force microscopy analysis indicates that perfect surface morphology of the film can be obtained at a relatively lower sputtering pressure of 1.0 Pa. The relative percentage of residual oxygen increases significantly on a condition of lower sputtering pressure, and plays an important role in film structure due to the strong molecular adsorption tendency of oxygen on the film surface during the deposition process. A thin film with a typical thickness of 1 μm, a saturation magnetization of 150 emu/cm 3 , and a coercivity of 8.8 kA/m has been obtained after annealing at 800 deg. C, which has the potential application in magnetic integrated circuits.

  3. Semiconductor thin films directly from minerals—study of structural, optical, and transport characteristics of Cu2O thin films from malachite mineral and synthetic CuO

    International Nuclear Information System (INIS)

    Balasubramaniam, K.R.; Kao, V.M.; Ravichandran, J.; Rossen, P.B.; Siemons, W.; Ager, J.W.

    2012-01-01

    We demonstrate the proof-of-concept of using an abundantly occurring natural ore, malachite (Cu 2 CO 3 (OH) 2 ) to directly yield the semiconductor Cu 2 O to be used as an active component of a functional thin film based device. Cu 2 O is an archetype hole-conducting semiconductor that possesses several interesting characteristics particularly useful for solar cell applications, including low cost, non-toxicity, good hole mobility, large minority carrier diffusion length, and a direct energy gap ideal for efficient absorption. In this article, we compare the structural, optical, and electrical transport characteristics of Cu 2 O thin films grown from the natural mineral malachite and synthetic CuO targets. Growth from either source material results in single-phase, fully epitaxial cuprous oxide thin films as determined by x-ray diffraction. The films grown from malachite have strong absorption coefficients ( 10 4 cm −1 ), a direct allowed optical bandgap ( 2.4 eV), and majority carrier hole mobilities ( 35 cm 2 V −1 s −1 at room temperature) that compare well with films grown from the synthetic target as well as with previously reported values. Our work demonstrates that minerals could be useful to directly yield the active components in functional devices and suggests a route for the exploration of low cost energy conversion and storage technologies. - Highlights: ► Semiconductor thin films directly from minerals ► Chemistry and structure evolution of the films obtained from mineral target is very similar to that films obtained from high-purity synthetic targets. ► Quite interestingly, transport and optical characteristics are also found to be similar.

  4. Chemical and Electronic Structure Studies of Refractory and Dielectric Thin Films.

    Science.gov (United States)

    Corneille, Jason Stephen

    This study presents the synthesis and characterization of oxide and refractory thin films under varying conditions. The deposition of the thin films is performed under vacuum conditions. The characterization of the growth, as well as the chemical and electronic properties of the thin films was accomplished using a broad array of surface analytical techniques. These model studies describe the relationship between the preparative processes and the stoichiometry, structure and electronic properties of the film products. From these efforts, the optimal deposition conditions for the production of high quality films have been established. The thin film oxides synthesized and studied here include magnesium oxide, silicon oxide and iron oxide. These oxides were synthesized on a refractory substrate using both post oxidation of thin films as well as reactive vapor deposition of the metals in the presence of an oxygen background. Comparisons and contrasts are presented for the various systems. Metallic magnesium films were grown and characterized as a preliminary study to the synthesis of magnesium oxide. Magnesium oxide (MgO(100)) was synthesized on Mo(100) by evaporating magnesium at a rate of one monolayer per minute in an oxygen background pressure of 1 times 10 ^{-6} Torr at room temperature. The resulting film was found to exhibit spectroscopic characteristics quite similar to those observed for bulk MgO. The acid/base characteristics of the films were studied using carbon monoxide, water and methanol as probe molecules. The film was found to exhibit essentially the same chemical properties as found in analogous powdered catalysts. Silicon dioxide was synthesized by evaporating silicon onto Mo(100) in an oxygen ambient. It is shown that the silicon oxide prepared at room temperature with a silicon deposition rate of {~ }{1.2}A/min and an oxygen pressure of 2 times 10^{ -8} Torr, consisted of predominantly silicon dioxide with a small fraction of suboxides. Annealing to

  5. Effect of patient size, anatomical location and modulation strength on dose delivered and image-quality on CT examination

    International Nuclear Information System (INIS)

    Greffier, Joel; Larbi, Ahmed; Macri, Francesco; Beregi, Jean-Paul; Pereira, Fabricio

    2017-01-01

    To study the effect of patient size, anatomical location and modulation strength (MS) on image-quality and delivered dose of CT scans acquired with automatic-exposure control system (AEC). Four anthropomorphic phantoms (three paediatric and one thin adult) were studied, and normal and obese adults were simulated by placing bolus plates around the adult phantom. Thorax and abdomen pelvis CT were performed using an AEC system equipped with five possible MS. Modulated tube current (mAs mod ) was compared to Reference mAs and image-noise was assessed. Effective-mAs were lower than Reference-mAs for all but the obese phantom. However, reversal points were estimated for an effective diameter of 27.8 cm in thorax and 26.9 cm in abdomen pelvis scans, beyond which the patterns of MS were inverted. mAs mod were dependent on attenuation differences among distinct anatomical location. Finally, dose delivered was associated to the mAs mod and patient s size, with both affecting image-quality. (authors)

  6. Reference stand condition - Effects of Thinning on Forest Structure important to the recovery of ESA-listed species

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This study evaluates the effects of thinning regimes designed to accelerate the development of late-successional forest structure for the benefit of salmon and other...

  7. On the carrier transport in metal-insulator-metal structures for CdTe thin film

    International Nuclear Information System (INIS)

    Choi, K.W.; Choi, C.K.

    1982-01-01

    According to the energy band model for the Al-CdTe-Ag sandwich structure, we have investigate to the mechanism of the current limited transport(CLT). As the bias voltage applied to the Alsup(+) and Agsup(+) electrode, the potential barrier difference for this structure was found 0.2eV. From what this results, we conclude that the mechanism of the current limited transport due to the potential barrier of the contact limited current. Not only this phenomena but also the annealing effect of thin film was shown that the distingushable for virgin film. (Author)

  8. Three-Dimensional Anatomic Evaluation of the Anterior Cruciate Ligament for Planning Reconstruction

    Directory of Open Access Journals (Sweden)

    Yuichi Hoshino

    2012-01-01

    Full Text Available Anatomic study related to the anterior cruciate ligament (ACL reconstruction surgery has been developed in accordance with the progress of imaging technology. Advances in imaging techniques, especially the move from two-dimensional (2D to three-dimensional (3D image analysis, substantially contribute to anatomic understanding and its application to advanced ACL reconstruction surgery. This paper introduces previous research about image analysis of the ACL anatomy and its application to ACL reconstruction surgery. Crucial bony landmarks for the accurate placement of the ACL graft can be identified by 3D imaging technique. Additionally, 3D-CT analysis of the ACL insertion site anatomy provides better and more consistent evaluation than conventional “clock-face” reference and roentgenologic quadrant method. Since the human anatomy has a complex three-dimensional structure, further anatomic research using three-dimensional imaging analysis and its clinical application by navigation system or other technologies is warranted for the improvement of the ACL reconstruction.

  9. Investigations of rapid thermal annealing induced structural evolution of ZnO: Ge nanocomposite thin films via GISAXS

    Energy Technology Data Exchange (ETDEWEB)

    Ceylan, Abdullah, E-mail: aceylanabd@yahoo.com [Department of Physics Eng., Hacettepe University, Beytepe, 06800 Ankara (Turkey); Ozcan, Yusuf [Department of Electricity and Energy, Pamukkale University, Denizli (Turkey); Orujalipoor, Ilghar [Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara (Turkey); Huang, Yen-Chih; Jeng, U-Ser [National Synchrotron Radiation Research Center, 101 Hsin-Ann Road, Hsinchu Science Park, Hsinchu, Taiwan (China); Ide, Semra [Department of Physics Eng., Hacettepe University, Beytepe, 06800 Ankara (Turkey); Department of Nanotechnology and Nanomedicine, Hacettepe University, Beytepe, 06800 Ankara (Turkey)

    2016-06-07

    In this work, we present in depth structural investigations of nanocomposite ZnO: Ge thin films by utilizing a state of the art grazing incidence small angle x-ray spectroscopy (GISAXS) technique. The samples have been deposited by sequential r.f. and d.c. sputtering of ZnO and Ge thin film layers, respectively, on single crystal Si(100) substrates. Transformation of Ge layers into Ge nanoparticles (Ge-np) has been initiated by ex-situ rapid thermal annealing of asprepared thin film samples at 600 °C for 30, 60, and 90 s under forming gas atmosphere. A special attention has been paid on the effects of reactive and nonreactive growth of ZnO layers on the structural evolution of Ge-np. GISAXS analyses have been performed via cylindrical and spherical form factor calculations for different nanostructure types. Variations of the size, shape, and distributions of both ZnO and Ge nanostructures have been determined. It has been realized that GISAXS results are not only remarkably consistent with the electron microscopy observations but also provide additional information on the large scale size and shape distribution of the nanostructured components.

  10. Study of structural and optical properties of Cd{sub 1-x}Zn{sub x}Se thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wahab, L.A., E-mail: aly_lo2003@yahoo.com [National Center for Radiation Research and Technology, Nasr City, Cairo (Egypt); Zayed, H.A. [University Collage of Women for Art, Science and Education, Ain Shams University, Cairo (Egypt); El-Galil, A.A. Abd [National Center for Radiation Research and Technology, Nasr City, Cairo (Egypt)

    2012-06-01

    Cd{sub 1-x}Zn{sub x}Se (x = 0, 0.5 and 1) thin films have been deposited onto glass substrates using thermal evaporation technique. The lattice constants, grain size, microstrain and dislocation density were studied by using X-ray diffraction. In addition the optical constants were calculated in the wavelength range 400-2500 nm. Transmittance and reflectance were used to calculate the absorption coefficient {alpha} and the optical band gap E{sub g}. The linear relation of ({alpha}h{upsilon}){sup 2} as a function of photon energy h{upsilon} for the thin films illustrated that the films exhibit a direct band gap, which increases with increasing Zn content. This increasing of optical band gap was interpreted in accordance to the increasing in the cohesive energy. Optical constants, such as refractive index n, optical conductivity {sigma}{sub opt}, complex dielectric constant, relaxation time {tau} and dissipation factor tan{delta} were determined. The optical dispersion parameters E{sub 0}, E{sub d} were determined according to Wemple and Di Domenico method. - Highlights: Black-Right-Pointing-Pointer ZnSe thin film has cubic zinc blende structure while CdSe and Cd{sub 0.5}Zn{sub 0.5}Se thin films have hexagonal structure. Black-Right-Pointing-Pointer Grain size of Cd{sub 1-x}Zn{sub x}Se decreases with increasing x (x = 0, 0.5 and 1). Black-Right-Pointing-Pointer Optical band gap increases with increasing x.

  11. Anatomical variations of paranasal sinuses: what to inform the otolaryngologist?

    International Nuclear Information System (INIS)

    Villela, Caroline Laurita Batista Couto; Gomes, Natalia Delage; Gaiotti, Juliana Oggioni; Costa, Ana Maria Doffemond; Ribeiro, Marcelo Almeida; Motta, Emilia Guerra Pinto Coelho; Moreira, Wanderval; Ramos, Laura Filgueiras Mourao; Diniz, Renata Lopes Furletti Caldeira

    2012-01-01

    Anatomic variations of paranasal sinuses are common findings in daily practice. For a radiologist, to know these variations is necessary because of the pathological conditions related to them, and also because they are import for planning a functional endoscopic endonasal surgery, the procedure of choice for diagnosis, biopsy and treatment of various sinonasal diseases. To assure that this surgery is done safely, preventing iatrogenic injuries, it is essential that the surgeon has the mapping of these structures. Thus, a CT is indispensable for preoperative evaluation of paranasal sinuses. Since a general radiologist is expected to know these changes and their relationship to pathological conditions, a literature review and a iconographic essay were conducted with the aim of discussing the importance of major anatomic variations of paranasal sinuses. (author)

  12. Different Response of Sap Flow at Different Measurement Depths after Thinning in a Japanese Cypress Plantation

    Science.gov (United States)

    Chiu, C. W.; Gomi, T.; Onda, Y.; Kato, H.; Sakashita, W.; Sun, X.

    2017-12-01

    Thinning experiments in forests can alter light conditions and further affect growth rate and transpiration of the remained trees. Previous studies suggested transpiration was increased one year after thinning experiment due to improved canopy light condition. On the other hand, the anatomical and morphological responses to thinning are not react immediately because of the tree adaptation to the new surrounding conditions. It has been hypothesized that lower crown is connected to the inner part of sapwood and need more years to adapt new light conditions after thinning. However, our knowledge for the relationship between tree crown development and water movement inside the trunk after several years from thinning experiment was still limited due to lack of long-term field measurement after thinning. Therefore, in this study, we aim to examine the interannual variability of water movement inside the trunk accompanied the development of tree crown after thinning experiment. To do that, we applied sap flow measurement and terrestrial LiDAR survey from 2011 to 2017 in a Japanese cypress (Chamaecyparis obtusa) plantation in Japan, where 50% strip thinning experiment was conducted in the end of 2011. Consequently, we found sap flow densities at different measurement depths were not always increased year by year and those may relate to the crown development after thinning.

  13. Room-temperature wide-range luminescence and structural, optical, and electrical properties of SILAR deposited Cu-Zn-S nano-structured thin films

    Science.gov (United States)

    Jose, Edwin; Kumar, M. C. Santhosh

    2016-09-01

    We report the deposition of nanostructured Cu-Zn-S composite thin films by Successive Ionic Layer Adsorption and Reaction (SILAR) method on glass substrates at room temperature. The structural, morphological, optical, photoluminescence and electrical properties of Cu-Zn-S thin films are investigated. The results of X-ray diffraction (XRD) and Raman spectroscopy studies indicate that the films exhibit a ternary Cu-Zn-S structure rather than the Cu xS and ZnS binary composite. Scanning electron microscope (SEM) studies show that the Cu-Zn-S films are covered well over glass substrates. The optical band gap energies of the Cu-Zn-S films are calculated using UV-visible absorption measurements, which are found in the range of 2.2 to 2.32 eV. The room temperature photoluminescence studies show a wide range of emissions from 410 nm to 565 nm. These emissions are mainly due to defects and vacancies in the composite system. The electrical studies using Hall effect measurements show that the Cu-Zn-S films are having p-type conductivity.

  14. Structural, optical and magnetic properties of Mn diffusion-doped CdS thin films prepared by vacuum evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Aksu, S. [SoloPower, Inc., 5981 Optical Ct., San Jose, CA 95138 (United States); Bacaksiz, E., E-mail: eminb@ktu.edu.tr [Department of Physics, Karadeniz Technical University, 61080 Trabzon (Turkey); Parlak, M. [Department of Physics, Middle East Technical University, 06531 Ankara (Turkey); Yilmaz, S.; Polat, I.; Altunbas, M. [Department of Physics, Karadeniz Technical University, 61080 Trabzon (Turkey); Tuerksoy, M.; Topkaya, R. [Department of Physics, Gebze Institute of Technology, Gebze, 41400 Kocaeli (Turkey); Ozdogan, K. [Department of Physics, Yildiz Technical University, 34210 Istanbul (Turkey)

    2011-10-17

    Highlights: {yields} Cadmium sulphide thin films were deposited by vacuum evaporation. {yields} Elemental Mn was deposited onto CdS thin films by using electron beam evaporation and annealed under vacuum at different temperatures. {yields} Structural, optical and magnetic studies of Mn-doped CdS have been investigated. {yields} X-ray diffraction results showed that the undoped CdS film had a zinc-blende structure with a strong preferred orientation along the (1 1 1) direction. {yields} Magnetic measurements show that Mn-doped CdS thin films exhibit a ferromagnetism behavior at room temperature. - Abstract: The effect of Mn-doping on the vacuum deposited CdS thin films has been investigated by studying the changes in the structural, optical and magnetic properties of the films. A thin Mn layer evaporated on the CdS film surface served as the source layer for the diffusion doping. Doping was accomplished by annealing the CdS/Mn stack layers at the temperature range from 300 deg. C to 400 deg. C in step of 50 deg. C for 30 min under vacuum. The X-ray diffraction results showed that the undoped CdS film had a zinc-blende structure with a strong preferred orientation along the (1 1 1) direction. The incorporation of Mn did not cause any change in the texture but reduced the peak intensity and lead to a smaller crystallite size. Investigation of surface morphology using atomic force microscopy confirmed the decrease in the grain size with the Mn diffusion. In addition, a more uniform grain size distribution was observed in the doped films. X-ray photoelectron spectroscopy analysis showed that Mn atoms on the surface of the films were bounded to either sulphur or oxygen atoms. Auger electron spectroscopy of the diffusion-doped CdS sample at 350 deg. C indicated that the atomic Mn concentration was higher close to the surface region and Mn was distributed with a steadily decreasing profile through the bulk of the film with an average atomic concentration value around few

  15. Introducing 3-Dimensional Printing of a Human Anatomic Pathology Specimen: Potential Benefits for Undergraduate and Postgraduate Education and Anatomic Pathology Practice.

    Science.gov (United States)

    Mahmoud, Amr; Bennett, Michael

    2015-08-01

    Three-dimensional (3D) printing, a rapidly advancing technology, is widely applied in fields such as mechanical engineering and architecture. Three-dimensional printing has been introduced recently into medical practice in areas such as reconstructive surgery, as well as in clinical research. Three-dimensionally printed models of anatomic and autopsy pathology specimens can be used for demonstrating pathology entities to undergraduate medical, dental, and biomedical students, as well as for postgraduate training in examination of gross specimens for anatomic pathology residents and pathology assistants, aiding clinicopathological correlation at multidisciplinary team meetings, and guiding reconstructive surgical procedures. To apply 3D printing in anatomic pathology for teaching, training, and clinical correlation purposes. Multicolored 3D printing of human anatomic pathology specimens was achieved using a ZCorp 510 3D printer (3D Systems, Rock Hill, South Carolina) following creation of a 3D model using Autodesk 123D Catch software (Autodesk, Inc, San Francisco, California). Three-dimensionally printed models of anatomic pathology specimens created included pancreatoduodenectomy (Whipple operation) and radical nephrectomy specimens. The models accurately depicted the topographic anatomy of selected specimens and illustrated the anatomic relation of excised lesions to adjacent normal tissues. Three-dimensional printing of human anatomic pathology specimens is achievable. Advances in 3D printing technology may further improve the quality of 3D printable anatomic pathology specimens.

  16. Influences of oxygen incorporation on the structural and optoelectronic properties of Cu_2ZnSnS_4 thin films

    International Nuclear Information System (INIS)

    Yu, Ruei-Sung; Hung, Ta-Chun

    2016-01-01

    Highlights: • Oxygen incorporation in Cu_2ZnSnS_4 changes the energy band structure. • The material has a comparatively high-absorptive capacity for short wavelength. • Absorption coefficients of the film increase from 10"4 to 10"5 cm"−"1. • The oxygen-containing CZTS film has a mixture of crystallite and crystalline states. • The material could be a candidate as an absorber layer in multi-junction solar cells. - Abstract: This study used the sol–gel method to prepare Cu_2ZnSnS_4 thin films containing oxygen and explored the composition, structural, and optoelectronic properties of the films. The non-vacuum process enabled the oxygen content of the Cu_2ZnSnS_4 films to be 8.89 at% and 10.30 at% for two different annealing conditions. In the crystal structure, oxygen was substituted at the positions of sulfur and appeared in the interstitial sites of the lattice. The compositions of the thin films deviated from the stoichiometric ratio. Both films had kesterite structures with no secondary phase structure. The kesterite CZTS film possessed a composite microstructure of crystallite and crystalline states. The microstructure of the Cu_2ZnSnS_4 film with higher oxygen content was denser and the average grain size was smaller. Incorporating oxygen atoms into crystalline Cu_2ZnSnS_4 changed the energy band structure: the direct energy band gaps were, respectively, 2.75 eV and 2.84 eV; the thin films mainly adsorbed photons with wavelengths less than 500 nm; and the absorption coefficients increased from 10"4 cm"−"1 to 10"5 cm"−"1. The films had a comparatively high absorptive capacity for photons less than 350 nm. Increasing the oxygen content of the film lowered the resistivity. Thus, the oxygen-containing Cu_2ZnSnS_4 thin film could be a candidate for the p-type absorber layer material required in multi-junction solar cells.

  17. Safe Corridor to Access Clivus for Endoscopic Trans-Sphenoidal Surgery: A Radiological and Anatomical Study.

    Directory of Open Access Journals (Sweden)

    Ye Cheng

    Full Text Available Penetration of the clivus is required for surgical access of the brain stem. The endoscopic transclivus approach is a difficult procedure with high risk of injury to important neurovascular structures. We undertook a novel anatomical and radiological investigation to understand the structure of the clivus and neurovascular structures relevant to the extended trans-nasal trans-sphenoid procedure and determine a safe corridor for the penetration of the clivus.We examined the clivus region in the computed tomographic angiography (CTA images of 220 adults, magnetic resonance (MR images of 50 adults, and dry skull specimens of 10 adults. Multiplanar reconstruction (MPR of the CT images was performed, and the anatomical features of the clivus were studied in the coronal, sagittal, and axial planes. The data from the images were used to determine the anatomical parameters of the clivus and neurovascular structures, such as the internal carotid artery and inferior petrosal sinus.The examination of the CTA and MR images of the enrolled subjects revealed that the thickness of the clivus helped determine the depth of the penetration, while the distance from the sagittal midline to the important neurovascular structures determined the width of the penetration. Further, data from the CTA and MR images were consistent with those retrieved from the examination of the cadaveric specimens.Our findings provided certain pointers that may be useful in guiding the surgery such that inadvertent injury to vital structures is avoided and also provided supportive information for the choice of the appropriate endoscopic equipment.

  18. TIBIAL LANDMARKS IN ACL ANATOMIC REPAIR

    Directory of Open Access Journals (Sweden)

    M. V. Demesсhenko

    2016-01-01

    Full Text Available Purpose: to identify anatomical landmarks on tibial articular surface to serve as reference in preparing tibial canal with respect to the center of ACL footprint during single bundle arthroscopic repair.Materials and methods. Twelve frozen knee joint specimens and 68 unpaired macerated human tibia were studied using anatomical, morphometric, statistical methods as well as graphic simulation.Results. Center of the tibial ACL footprint was located 13,1±1,7 mm anteriorly from posterior border of intercondylar eminence, at 1/3 of the distance along the line connecting apexes of internal and external tubercles and 6,1±0,5 mm anteriorly along the perpendicular raised to this point.Conclusion. Internal and external tubercles, as well as posterior border of intercondylar eminence can be considered as anatomical references to determine the center of the tibial ACL footprint and to prepare bone canals for anatomic ligament repair.

  19. Zebrafish Expression Ontology of Gene Sets (ZEOGS): A Tool to Analyze Enrichment of Zebrafish Anatomical Terms in Large Gene Sets

    Science.gov (United States)

    Marsico, Annalisa

    2013-01-01

    Abstract The zebrafish (Danio rerio) is an established model organism for developmental and biomedical research. It is frequently used for high-throughput functional genomics experiments, such as genome-wide gene expression measurements, to systematically analyze molecular mechanisms. However, the use of whole embryos or larvae in such experiments leads to a loss of the spatial information. To address this problem, we have developed a tool called Zebrafish Expression Ontology of Gene Sets (ZEOGS) to assess the enrichment of anatomical terms in large gene sets. ZEOGS uses gene expression pattern data from several sources: first, in situ hybridization experiments from the Zebrafish Model Organism Database (ZFIN); second, it uses the Zebrafish Anatomical Ontology, a controlled vocabulary that describes connected anatomical structures; and third, the available connections between expression patterns and anatomical terms contained in ZFIN. Upon input of a gene set, ZEOGS determines which anatomical structures are overrepresented in the input gene set. ZEOGS allows one for the first time to look at groups of genes and to describe them in terms of shared anatomical structures. To establish ZEOGS, we first tested it on random gene selections and on two public microarray datasets with known tissue-specific gene expression changes. These tests showed that ZEOGS could reliably identify the tissues affected, whereas only very few enriched terms to none were found in the random gene sets. Next we applied ZEOGS to microarray datasets of 24 and 72 h postfertilization zebrafish embryos treated with beclomethasone, a potent glucocorticoid. This analysis resulted in the identification of several anatomical terms related to glucocorticoid-responsive tissues, some of which were stage-specific. Our studies highlight the ability of ZEOGS to extract spatial information from datasets derived from whole embryos, indicating that ZEOGS could be a useful tool to automatically analyze gene

  20. Wavelet-based resolution recovery using an anatomical prior provides quantitative recovery for human population phantom PET [11C]raclopride data

    International Nuclear Information System (INIS)

    Shidahara, M; Tamura, H; Tsoumpas, C; McGinnity, C J; Hammers, A; Turkheimer, F E; Kato, T; Watabe, H

    2012-01-01

    The objective of this study was to evaluate a resolution recovery (RR) method using a variety of simulated human brain [ 11 C]raclopride positron emission tomography (PET) images. Simulated datasets of 15 numerical human phantoms were processed by a wavelet-based RR method using an anatomical prior. The anatomical prior was in the form of a hybrid segmented atlas, which combined an atlas for anatomical labelling and a PET image for functional labelling of each anatomical structure. We applied RR to both 60 min static and dynamic PET images. Recovery was quantified in 84 regions, comparing the typical ‘true’ value for the simulation, as obtained in normal subjects, simulated and RR PET images. The radioactivity concentration in the white matter, striatum and other cortical regions was successfully recovered for the 60 min static image of all 15 human phantoms; the dependence of the solution on accurate anatomical information was demonstrated by the difficulty of the technique to retrieve the subthalamic nuclei due to mismatch between the two atlases used for data simulation and recovery. Structural and functional synergy for resolution recovery (SFS-RR) improved quantification in the caudate and putamen, the main regions of interest, from −30.1% and −26.2% to −17.6% and −15.1%, respectively, for the 60 min static image and from −51.4% and −38.3% to −27.6% and −20.3% for the binding potential (BP ND ) image, respectively. The proposed methodology proved effective in the RR of small structures from brain [ 11 C]raclopride PET images. The improvement is consistent across the anatomical variability of a simulated population as long as accurate anatomical segmentations are provided. (paper)

  1. Zebrafish Expression Ontology of Gene Sets (ZEOGS): a tool to analyze enrichment of zebrafish anatomical terms in large gene sets.

    Science.gov (United States)

    Prykhozhij, Sergey V; Marsico, Annalisa; Meijsing, Sebastiaan H

    2013-09-01

    The zebrafish (Danio rerio) is an established model organism for developmental and biomedical research. It is frequently used for high-throughput functional genomics experiments, such as genome-wide gene expression measurements, to systematically analyze molecular mechanisms. However, the use of whole embryos or larvae in such experiments leads to a loss of the spatial information. To address this problem, we have developed a tool called Zebrafish Expression Ontology of Gene Sets (ZEOGS) to assess the enrichment of anatomical terms in large gene sets. ZEOGS uses gene expression pattern data from several sources: first, in situ hybridization experiments from the Zebrafish Model Organism Database (ZFIN); second, it uses the Zebrafish Anatomical Ontology, a controlled vocabulary that describes connected anatomical structures; and third, the available connections between expression patterns and anatomical terms contained in ZFIN. Upon input of a gene set, ZEOGS determines which anatomical structures are overrepresented in the input gene set. ZEOGS allows one for the first time to look at groups of genes and to describe them in terms of shared anatomical structures. To establish ZEOGS, we first tested it on random gene selections and on two public microarray datasets with known tissue-specific gene expression changes. These tests showed that ZEOGS could reliably identify the tissues affected, whereas only very few enriched terms to none were found in the random gene sets. Next we applied ZEOGS to microarray datasets of 24 and 72 h postfertilization zebrafish embryos treated with beclomethasone, a potent glucocorticoid. This analysis resulted in the identification of several anatomical terms related to glucocorticoid-responsive tissues, some of which were stage-specific. Our studies highlight the ability of ZEOGS to extract spatial information from datasets derived from whole embryos, indicating that ZEOGS could be a useful tool to automatically analyze gene expression

  2. Consensus guidelines for the uniform reporting of study ethics in anatomical research within the framework of the anatomical quality assurance (AQUA) checklist.

    Science.gov (United States)

    Henry, Brandon Michael; Vikse, Jens; Pekala, Przemyslaw; Loukas, Marios; Tubbs, R Shane; Walocha, Jerzy A; Jones, D Gareth; Tomaszewski, Krzysztof A

    2018-05-01

    Unambiguous reporting of a study's compliance with ethical guidelines in anatomical research is imperative. As such, clear, universal, and uniform reporting guidelines for study ethics are essential. In 2016, the International Evidence-Based Anatomy Working group in collaboration with international partners established reporting guidelines for anatomical studies, the Anatomical Quality Assurance (AQUA) Checklist. In this elaboration of the AQUA Checklist, consensus guidelines for reporting study ethics in anatomical studies are provided with in the framework of the AQUA Checklist. The new guidelines are aimed to be applicable to research across the spectrum of the anatomical sciences, including studies on both living and deceased donors. The authors hope the established guidelines will improve ethical compliance and reporting in anatomical research. Clin. Anat. 31:521-524, 2018. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  3. Structural analysis of LaVO3 thin films under epitaxial strain

    Directory of Open Access Journals (Sweden)

    H. Meley

    2018-04-01

    Full Text Available Rare earth vanadate perovskites exhibit a phase diagram in which two different types of structural distortions coexist: the strongest, the rotation of the oxygen octahedra, comes from the small tolerance factor of the perovskite cell (t = 0.88 for LaVO3 and the smaller one comes from inter-site d-orbital interactions manifesting as a cooperative Jahn-Teller effect. Epitaxial strain acts on octahedral rotations and crystal field symmetry to alter this complex lattice-orbit coupling. In this study, LaVO3 thin film structures have been investigated by X-ray diffraction and scanning transmission electron microscopy. The analysis shows two different orientations of octahedral tilt patterns, as well as two distinct temperature behaviors, for compressive and tensile film strain states. Ab initio calculations capture the strain effect on the tilt pattern orientation in agreement with experimental data.

  4. X-ray structural investigation of nonsymmetrically and symmetrically alkylated [1]benzothieno[3,2-b]benzothiophene derivatives in bulk and thin films.

    Science.gov (United States)

    Gbabode, Gabin; Dohr, Michael; Niebel, Claude; Balandier, Jean-Yves; Ruzié, Christian; Négrier, Philippe; Mondieig, Denise; Geerts, Yves H; Resel, Roland; Sferrazza, Michele

    2014-08-27

    A detailed structural study of the bulk and thin film phases observed for two potential high-performance organic semiconductors has been carried out. The molecules are based on [1]benzothieno[3,2-b]benzothiophene (BTBT) as conjugated core and octyl side groups, which are anchored either symmetrically at both sides of the BTBT core (C8-BTBT-C8) or nonsymmetrically at one side only (C8-BTBT). Thin films of different thickness (8-85 nm) have been prepared by spin-coating for both systems and analyzed by combining specular and grazing incidence X-ray diffraction. In the case of C8-BTBT-C8, the known crystal structure obtained from single-crystal investigations is observed within all thin films, down to a film thickness of 9 nm. In the case of C8-BTBT, the crystal structure of the bulk phase has been determined from X-ray powder diffraction data with a consistent matching of experimental and calculated X-ray diffraction patterns (Rwp = 5.8%). The packing arrangement of C8-BTBT is similar to that of C8-BTBT-C8, that is, consisting of a lamellar structure with molecules arranged in a "herringbone" fashion, yet with lamellae composed of two head-to-head (or tail-to-tail as the structure is periodic) superimposed molecules instead of only one molecule for C8-BTBT-C8. As for C8-BTBT-C8, we demonstrate that the same phase is observed in bulk and thin films for C8-BTBT whatever the film thickness investigated.

  5. Structural and optical investigation of Te-based chalcogenide thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Rita, E-mail: reetasharma2012@gmail.com; Sharma, Shaveta; Thangaraj, R.; Mian, M. [Semiconductors Laboratory, Department of Physics, GND University, Amritsar (India); Chander, Ravi [Applied Science Deptt. Govt. Polytechnic College Amritsar (India); Kumar, Praveen [Department of Physics, DAV University, Sarmastipur, Jalandhar-144012 (India)

    2015-05-15

    We report the structural and optical properties of thermally evaporated Bi{sub 2}Te{sub 3}, In{sub 2}Te{sub 3} and InBiTe{sub 3} films by using X-ray diffraction, optical and Raman Spectroscopy techniques. The as-prepared thin films were found to be Semi-crystalline by X-ray diffraction. Particle Size and Strain has been calculated from XRD data. The optical constants, film thickness, refractive index and optical band gap (E{sub g}) has been reported for In{sub 2}Te{sub 3}, InBiTe{sub 3} films. Raman Spectroscopy was performed to investigate the effect of Bi, In, on lattice vibration and chemical bonding in Te based chalcogenide glassy alloys.

  6. Self-assembly of dodecaphenyl POSS thin films

    Science.gov (United States)

    Handke, Bartosz; Klita, Łukasz; Niemiec, Wiktor

    2017-12-01

    The self-assembly abilities of Dodecaphenyl Polyhedral Oligomeric Silsesquioxane thin films on Si(1 0 0) surfaces were studied. Due to their thermal properties - relatively low sublimation temperature and preservation of molecular structure - cage type silsesquioxanes are ideal material for the preparation of a thin films by Physical Vapor Deposition. The Ultra-High Vacuum environment and the deposition precision of the PVD method enable the study of early stages of thin film growth and its molecular organization. X-ray Reflectivity and Atomic Force Microscopy measurements allow to pursuit size-effects in the structure of thin films with thickness ranges from less than a single molecular layer up to several tens of layers. Thermal treatment of the thin films triggered phase change: from a poorly ordered polycrystalline film into a well-ordered multilayer structure. Self-assembly of the layers is the effect of the π-stacking of phenyl rings, which force molecules to arrange in a superlattice, forming stacks of alternating organic-inorganic layers.

  7. Imaging of current distributions in superconducting thin film structures

    International Nuclear Information System (INIS)

    Doenitz, D.

    2006-01-01

    Local analysis plays an important role in many fields of scientific research. However, imaging methods are not very common in the investigation of superconductors. For more than 20 years, Low Temperature Scanning Electron Microscopy (LTSEM) has been successfully used at the University of Tuebingen for studying of condensed matter phenomena, especially of superconductivity. In this thesis LTSEM was used for imaging current distributions in different superconducting thin film structures: - Imaging of current distributions in Josephson junctions with ferromagnetic interlayer, also known as SIFS junctions, showed inhomogeneous current transport over the junctions which directly led to an improvement in the fabrication process. An investigation of improved samples showed a very homogeneous current distribution without any trace of magnetic domains. Either such domains were not present or too small for imaging with the LTSEM. - An investigation of Nb/YBCO zigzag Josephson junctions yielded important information on signal formation in the LTSEM both for Josephson junctions in the short and in the long limit. Using a reference junction our signal formation model could be verified, thus confirming earlier results on short zigzag junctions. These results, which could be reproduced in this work, support the theory of d-wave symmetry in the superconducting order parameter of YBCO. Furthermore, investigations of the quasiparticle tunneling in the zigzag junctions showed the existence of Andreev bound states, which is another indication of the d-wave symmetry in YBCO. - The LTSEM study of Hot Electron Bolometers (HEB) allowed the first successful imaging of a stable 'Hot Spot', a self-heating region in HEB structures. Moreover, the electron beam was used to induce an - otherwise unstable - hot spot. Both investigations yielded information on the homogeneity of the samples. - An entirely new method of imaging the current distribution in superconducting interference devices

  8. Structural, morphological and local electric properties of TiO2 thin films grown by pulsed laser deposition

    International Nuclear Information System (INIS)

    Gyoergy, E; Pino, A Perez del; Sauthier, G; Figueras, A; Alsina, F; Pascual, J

    2007-01-01

    Titanium dioxide (TiO 2 ) thin films were synthesized on (1 0 0) Si substrates by reactive pulsed laser deposition (PLD) technique. A frequency quadrupled Nd : YAG (λ = 266 nm, τ FWHM ≅ 5 ns, ν = 10 Hz) laser source was used for the irradiations of metallic Ti targets. The experiments were performed in controlled oxygen atmosphere. Crystallinity, surface morphology and local electric properties of the obtained oxide thin films were investigated by x-ray diffractometry, micro-Raman spectroscopy and current sensing atomic force microscopy. An inter-relation was found between the surface morphology, the crystalline structure and the nano-scale electric properties which open the possibility of synthesizing by the PLD technique TiO 2 thin films with tunable functional properties for future applications such as photocatalysts, gas sensors or solar energy converters

  9. Handbook of thin film technology

    CERN Document Server

    Frey, Hartmut

    2015-01-01

    “Handbook of Thin Film Technology” covers all aspects of coatings preparation, characterization and applications. Different deposition techniques based on vacuum and plasma processes are presented. Methods of surface and thin film analysis including coating thickness, structural, optical, electrical, mechanical and magnetic properties of films are detailed described. The several applications of thin coatings and a special chapter focusing on nanoparticle-based films can be found in this handbook. A complete reference for students and professionals interested in the science and technology of thin films.

  10. Structural and Electrochemical Properties of Lithium Nickel Oxide Thin Films

    Directory of Open Access Journals (Sweden)

    Gyu-bong Cho

    2014-01-01

    Full Text Available LiNiO2 thin films were fabricated by RF magnetron sputtering. The microstructure of the films was determined by X-ray diffraction and field-emission scanning electron microscopy. The electrochemical properties were investigated with a battery cycler using coin-type half-cells. The LiNiO2 thin films annealed below 500°C had the surface carbonate. The results suggest that surface carbonate interrupted the Li intercalation and deintercalation during charge/discharge. Although the annealing process enhanced the crystallization of LiNiO2, the capacity did not increase. When the annealing temperature was increased to 600°C, the FeCrNiO4 oxide phase was generated and the discharge capacity decreased due to an oxygen deficiency in the LiNiO2 thin film. The ZrO2-coated LiNiO2 thin film provided an improved discharge capacity compared to bare LiNiO2 thin film suggesting that the improved electrochemical characteristic may be attributed to the inhibition of surface carbonate by ZrO2 coating layer.

  11. Specification and estimation of sources of bias affecting neurological studies in PET/MR with an anatomical brain phantom

    Science.gov (United States)

    Teuho, J.; Johansson, J.; Linden, J.; Saunavaara, V.; Tolvanen, T.; Teräs, M.

    2014-01-01

    Selection of reconstruction parameters has an effect on the image quantification in PET, with an additional contribution from a scanner-specific attenuation correction method. For achieving comparable results in inter- and intra-center comparisons, any existing quantitative differences should be identified and compensated for. In this study, a comparison between PET, PET/CT and PET/MR is performed by using an anatomical brain phantom, to identify and measure the amount of bias caused due to differences in reconstruction and attenuation correction methods especially in PET/MR. Differences were estimated by using visual, qualitative and quantitative analysis. The qualitative analysis consisted of a line profile analysis for measuring the reproduction of anatomical structures and the contribution of the amount of iterations to image contrast. The quantitative analysis consisted of measurement and comparison of 10 anatomical VOIs, where the HRRT was considered as the reference. All scanners reproduced the main anatomical structures of the phantom adequately, although the image contrast on the PET/MR was inferior when using a default clinical brain protocol. Image contrast was improved by increasing the amount of iterations from 2 to 5 while using 33 subsets. Furthermore, a PET/MR-specific bias was detected, which resulted in underestimation of the activity values in anatomical structures closest to the skull, due to the MR-derived attenuation map that ignores the bone. Thus, further improvements for the PET/MR reconstruction and attenuation correction could be achieved by optimization of RAMLA-specific reconstruction parameters and implementation of bone to the attenuation template.

  12. Accurate measurement of surface areas of anatomical structures by computer-assisted triangulation of computed tomography images

    Energy Technology Data Exchange (ETDEWEB)

    Allardice, J.T.; Jacomb-Hood, J.; Abulafi, A.M.; Williams, N.S. (Royal London Hospital (United Kingdom)); Cookson, J.; Dykes, E.; Holman, J. (London Hospital Medical College (United Kingdom))

    1993-05-01

    There is a need for accurate surface area measurement of internal anatomical structures in order to define light dosimetry in adjunctive intraoperative photodynamic therapy (AIOPDT). The authors investigated whether computer-assisted triangulation of serial sections generated by computed tomography (CT) scanning can give an accurate assessment of the surface area of the walls of the true pelvis after anterior resection and before colorectal anastomosis. They show that the technique of paper density tessellation is an acceptable method of measuring the surface areas of phantom objects, with a maximum error of 0.5%, and is used as the gold standard. Computer-assisted triangulation of CT images of standard geometric objects and accurately-constructed pelvic phantoms gives a surface area assessment with a maximum error of 2.5% compared with the gold standard. The CT images of 20 patients' pelves have been analysed by computer-assisted triangulation and this shows the surface area of the walls varies from 143 cm[sup 2] to 392 cm[sup 2]. (Author).

  13. On the Effect of Thinning on Tree Growth and Stand Structure of White Birch (Betula platyphylla Sukaczev and Siberian Larch (Larix sibirica Ledeb. in Mongolia

    Directory of Open Access Journals (Sweden)

    Alexander Gradel

    2017-03-01

    Full Text Available The forests of North Mongolia are largely dominated either by larch (Larix sibirica Ledeb. or birch (Betula platyphylla Sukaczev. The increasing demand for timber and firewood is currently met by removal of wood from these forest stands. Therefore, silvicultural approaches that account for both utilization and protection are needed. Thinning trials were established in the research area Altansumber, in the mountain forest steppe west of the town of Darkhan. We analyzed the response of non-spatial and spatial structure and growth of birch and larch stands on thinning. Before thinning, spatial tree distribution was largely clumped. Thinning promoted regular tree distribution. Ingrowth of new stems after thinning tended to redirect stand structure towards clumping. Both relative and absolute tree growth and competition were evaluated before, directly after, and three years after the thinning. Competition played a significant role in tree growth before thinning. A reduction in competition after thinning triggered significantly increased growth of both birch and larch. The observed positive growth response was valid in absolute and relative terms. A methodically based forest management strategy, including thinning operations and selective cuttings, could be established, even under the harsh Mongolian conditions. Our findings could initiate the development of broader forest management guidelines for the light-taiga dominated stands.

  14. Structural effects in UO{sub 2} thin films irradiated with fission-energy Xe ions

    Energy Technology Data Exchange (ETDEWEB)

    Popel, A.J., E-mail: apopel@cantab.net [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ (United Kingdom); Lebedev, V.A. [Lomonosov Moscow State University, Moscow, 119991 (Russian Federation); Martin, P.G. [Interface Analysis Centre, School of Physics, University of Bristol, Bristol, BS8 1TL (United Kingdom); Shiryaev, A.A. [Frumkin Institute of Physical Chemistry and Electrochemistry RAS, Moscow (Russian Federation); Lomonosov Moscow State University, Moscow, 119991 (Russian Federation); Lampronti, G.I. [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ (United Kingdom); Springell, R. [Interface Analysis Centre, School of Physics, University of Bristol, Bristol, BS8 1TL (United Kingdom); Kalmykov, S.N. [Lomonosov Moscow State University, Moscow, 119991 (Russian Federation); National Research Centre “Kurchatov Institute”, 123098, Moscow (Russian Federation); Scott, T.B. [Interface Analysis Centre, School of Physics, University of Bristol, Bristol, BS8 1TL (United Kingdom); Monnet, I.; Grygiel, C. [CIMAP, CEA-CNRS-ENSICAEN-Université de Caen, BP 5133, 14070, Caen, Cedex5 (France); Farnan, I. [Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2 3EQ (United Kingdom)

    2016-12-15

    Uranium dioxide thin films have been successfully grown on LSAT (Al{sub 10}La{sub 3}O{sub 51}Sr{sub 14}Ta{sub 7}) substrates by reactive magnetron sputtering. Irradiation by 92 MeV {sup 129}Xe{sup 23+} ions to simulate fission damage that occurs within nuclear fuels caused microstructural and crystallographic changes. Initially flat and continuous thin films were produced by magnetron sputtering with a root mean square roughness of 0.35 nm determined by AFM. After irradiation, this roughness increased to 60–70 nm, with the films developing discrete microstructural features: small grains (∼3 μm), along with larger circular (up to 40 μm) and linear formations with non-uniform composition according to the SEM, AFM and EDX results. The irradiation caused significant restructuring of the UO{sub 2} films that was manifested in significant film-substrate mixing, observed through EDX analysis. Diffusion of Al from the substrate into the film in unirradiated samples was also observed. - Highlights: • Flat (001) single crystal UO{sub 2} thin films on LSAT (001) substrates produced. • Ion irradiation induced topographical and structural rearrangements in UO{sub 2} films.

  15. Annealing behaviour of structural and magnetic properties of evaporated Co thin films

    International Nuclear Information System (INIS)

    Jergel, M; Halahovets, Y; Siffalovic, P; Mat'ko, I; Senderak, R; Majkova, E; Luby, S; Cheshko, I; Protsenko, S

    2009-01-01

    Cobalt thin films of 50 nm nominal thickness were e-beam evaporated on silicon substrates covered with thermal oxide. Two series of independent and cumulative vacuum annealings up to 600 deg. C and 650 deg. C, respectively, were performed. The x-ray diffraction, specular and non-specular x-ray reflectivity and longitudinal magneto-optical Kerr effect measurements were applied to probe the annealing behaviour of the film structure and magnetic properties. A gradual transition from the hexagonal close-packed (hcp) to the face-centred cubic (fcc) structure was observed. Evolution of the in-plane magnetic anisotropy is dominated by residual stresses which relax during the structural transformation. The coercivity follows the stress behaviour in the hcp phase up to 300 deg. C and increases abruptly above 400 deg. C due to improving the magneto-crystalline anisotropy in the growing fcc crystallites and enhanced surface/interface roughness.

  16. Optimal Shakedown of the Thin-Wall Metal Structures Under Strength and Stiffness Constraints

    Directory of Open Access Journals (Sweden)

    Alawdin Piotr

    2017-06-01

    Full Text Available Classical optimization problems of metal structures confined mainly with 1st class cross-sections. But in practice it is common to use the cross-sections of higher classes. In this paper, a new mathematical model for described shakedown optimization problem for metal structures, which elements are designed from 1st to 4th class cross-sections, under variable quasi-static loads is presented. The features of limited plastic redistribution of forces in the structure with thin-walled elements there are taken into account. Authors assume the elastic-plastic flexural buckling in one plane without lateral torsional buckling behavior of members. Design formulae for Methods 1 and 2 for members are analyzed. Structures stiffness constrains are also incorporated in order to satisfy the limit serviceability state requirements. With the help of mathematical programming theory and extreme principles the structure optimization algorithm is developed and justified with the numerical experiment for the metal plane frames.

  17. Structural and optical properties of ZnO–SnO{sub 2} mixed thin films deposited by spray pyrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Tharsika, T., E-mail: tharsika@siswa.um.edu.my; Haseeb, A.S.M.A., E-mail: haseeb@um.edu.my; Sabri, M.F.M., E-mail: faizul@um.edu.my

    2014-05-02

    Nanocrystalline ZnO–SnO{sub 2} mixed thin films were deposited by the spray pyrolysis technique at various substrate temperatures during deposition. The mixed films were prepared in the range of 20.9 at.% to 73.4 at.% by altering the Zn/(Sn + Zn) atomic ratio in the starting solution. Morphology, crystal structures, and optical properties of the films were characterized by field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and ultraviolet–visible and photoluminescence (PL) spectroscopy. XRD analysis reveals that the crystallinity of the Sn-rich mixed thin films increases with increasing substrate temperatures. FESEM images show that the grain size of mixed thin films is smaller compared to that of pure ZnO and SnO{sub 2} thin films. A drop in the thickness and optical bandgap of the film was observed for films fabricated at high temperatures, which coincided with the increased crystallinity of the films. The average optical transmission of mixed thin films increased from 70% to 95% within the visible range (400–800 nm) as the substrate temperature increases. Optical bandgap of the films was determined to be in the range of 3.21–3.96 eV. The blue shift in the PL spectra from the films was supported by the fact that grain size of the mixed thin films is much smaller than that of the pure ZnO and SnO{sub 2} thin films. Due to the improved transmission and reduced grain size, the ZnO–SnO{sub 2} mixed thin films can have potential use in photovoltaic and gas sensing applications. - Highlights: • ZnO–SnO{sub 2} mixed thin films were deposited on glass substrate by spray pyrolysis. • Crystallinity of the thin films increases with substrate temperature. • Grain size of the mixed thin films is smaller than that of the pure thin films. • Reduction of grain size depends on mixed atomic ratios of precursor solution. • Optical band gap of films could be engineered by changing substrate temperature.

  18. Structural, electrical and magnetic properties of evaporated Ni/Cu and Ni/glass thin films

    Energy Technology Data Exchange (ETDEWEB)

    Nacereddine, C. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria); Layadi, A. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria)]. E-mail: A_Layadi@yahoo.fr; Guittoum, A. [Centre de Recherche Nucleaire d' Alger (CRNA), Alger 16000 (Algeria); Cherif, S.-M. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse 93340 (France); Chauveau, T. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse 93340 (France); Billet, D. [Laboratoire PMTM, Institut Galilee, Univeriste Paris 13, Villetaneuse 93340 (France); Youssef, J. Ben [Laboratoire de Magnetisme de Bretagne, U.B.O., Brest 29238 (France); Bourzami, A. [Departement de Physique, Universite Ferhat Abbas, Setif 19000 (Algeria); Bourahli, M.-H. [Departement d' O. M. P., Universite Ferhat Abbas, Setif 19000 (Algeria)

    2007-01-25

    The structural, electrical and magnetic properties of Ni thin films evaporated onto glass and polycrystalline Cu substrates have been investigated. The Ni thickness ranges from 31 to 165 nm. X-ray diffraction (XRD), scanning electron microscopy (SEM) and atomic force microscopy (AFM) have been used to study the structure and morphology of these systems. The Ni/Cu and Ni/glass thin films are found to be polycrystalline with a (1 1 1) texture. There is an overall increase of the grain size with increasing thickness. A negative strain was noted indicating that all the samples are under a compressive stress. Diffusion at the grain boundaries seems to be a major contribution to the electrical resistivity in this thickness range. Study of the hysteresis curves, obtained by vibrating sample magnetometer (VSM), indicates that all samples are characterized by an in-plane magnetization easy axis. Higher in-plane coercive fields seem to be associated with higher grain size, indicating that coercivity may be due to nucleation of reverse domains rather than pinning of domain walls. The saturation field and the squareness have been studied as a function of the Ni thickness.

  19. Effects of stabilizer ratio on photoluminescence properties of sol-gel ZnO nano-structured thin films

    International Nuclear Information System (INIS)

    Boudjouan, F.; Chelouche, A.; Touam, T.; Djouadi, D.; Khodja, S.; Tazerout, M.; Ouerdane, Y.; Hadjoub, Z.

    2015-01-01

    Nanostructured ZnO thin films with different molar ratios of MEA to zinc acetate (0.5, 1.0, 1.5 and 2.0) have been deposited on glass substrates by a sol–gel dip coating technique. X-ray diffraction, Scanning Electron Microscopy, UV–visible spectrophotometry and photoluminescence spectroscopy have been employed to investigate the effect of MEA stabilizer ratio on structural, morphological, absorbance and emission properties of the ZnO thin films. Diffraction patterns have shown that all the films are polycrystalline and exhibit a wurtzite hexagonal structure. The c axis orientation has been enhanced with increasing stabilizer ratio. SEM micrographs have revealed that the morphology of the ZnO films depend on stabilizer ratio. The UV–visible absorption spectra have demonstrated that the optical absorption is affected by stabilizer ratio. The photoluminescence spectra have indicated one ultraviolet and two visible emission bands (green and red), while band intensities are found to be dependent on stabilizer ratio. ZnO thin films deposited at MEA ratio of 1.0 show the highest UV emission while the minimum UV emission intensity is observed in thin films deposited at ratio of 0.5 and the maximum green has been recorded for films deposited at MEA ratio of 2.0. - Highlight: • c axis orientation increases with increasing MEA ratio. • The increase of MEA ration from 0.5 to 1.0 enhances greatly the UV emission. • The larger I UV /I visible is obtained for the MEA to Zn ratio of 1:1. • The MEA ratio of 0.5 favors the formation of large density of V zn . • The MEA ratio of 2.0 increases the V o density

  20. Anatomical characterisation of the cricothyroid membrane in females of childbearing age using computed tomography.

    LENUS (Irish Health Repository)

    Long, N

    2014-02-01

    In the event of failure to secure the airway by conventional means, it may be necessary to perform invasive airway access via the cricothyroid membrane. No studies have addressed anatomy of this structure in the obstetric population. We aimed to review the anatomical variation of this structure in a population of childbearing age.

  1. Development of highly flexible and ultra-low permeation rate thin-film barrier structure for organic electronics

    International Nuclear Information System (INIS)

    Kim, Namsu; Graham, Samuel

    2013-01-01

    A flexible thin-film encapsulation architecture for organic electronics was built and consisted of a silicon oxide/alumina and parylene layer deposited over Ca sensors on a barrier-coated polyethylene terephthalate substrate. The film's effective water vapor transmission rate was 2.4 ± 1.5 × 10 −5 g/m 2 /day at 20 °C and 50% relative humidity. Flexural tests revealed that for films deposited on the polyethylene terephthalate substrate, the barrier layer failed due to cracking at a curvature radius of 6.4 mm, corresponding to a strain of 0.8%. Adding an epoxy top coat of suitable thickness shifted the neutral axis toward the encapsulation layer, reducing the induced strain. Barrier performance was maintained under the 6.4 mm radius of curvature in this encapsulation structure. Thus, shifting the neutral axis via device structural design is an effective method of extending the flexibility of thin-film encapsulation structure without compromising the performance loss as a barrier layer. - Highlights: • High performance barrier is fabricated on flexible substrate. • The water vapor transmission rate is 2.4 ± 1.5 × 10 −5 g/m 2 /day. • The structure maintains its performance under a small radius of bending curvature

  2. Structure and electronic properties of ordered binay thin-film compounds of rare earths with transition metals

    International Nuclear Information System (INIS)

    Schneider, W.

    2004-01-01

    The present thesis deals with preparation of structurally ordered thin-film compounds of the rare-earths Ce and Dy with the transition metals Pd, Rh, and Ni as well as with investigations of their crystalline and electronic structures. Typically 10 nm-thick films were grown in-situ by deposition of the rare-earth metals onto single crystalline transitionmetal substrates or alternatively by codeposition of both constituents onto a W(110) single crystal. In both cases deposition was followed by short-term annealing at temperatures of 400-1000 C to achieve crystalline order. The latter was analyzed by means of low-energy electron-diffraction (LEED) and evaluated on the basis of a simple kinematic theory. The electronic structure was investigated by means of angle-resolved photoemission (ARPES), partially exploiting synchrotron radiation from BESSY. The studies concentrate mainly on the behavior of the valence bands as a function of structure and composition of the thin films, particularly under consideration of surface phenomena. Measured energy dispersions were compared with results of LDA-LCAO calculations performed in the framework of this thesis. Observed shifts of the energy bands by up to 1 eV are attributed in the light of a simple model to incomplete screening of the photoemission final states. (orig.)

  3. Hot plate annealing at a low temperature of a thin ferroelectric P(VDF-TrFE) film with an improved crystalline structure for sensors and actuators.

    Science.gov (United States)

    Mahdi, Rahman Ismael; Gan, W C; Abd Majid, W H

    2014-10-14

    Ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer 70/30 thin films are prepared by spin coating. The crystalline structure of these films is investigated by varying the annealing temperature from the ferroelectric phase to the paraelectric phase. A hot plate was used to produce a direct and an efficient annealing effect on the thin film. The dielectric, ferroelectric and pyroelectric properties of the P(VDF-TrFE) thin films are measured as a function of different annealing temperatures (80 to 140 °C). It was found that an annealing temperature of 100 °C (slightly above the Curie temperature, Tc) has induced a highly crystalline β phase with a rod-like crystal structure, as examined by X-ray. Such a crystal structure yields a high remanent polarization, Pr = 94 mC/m2, and pyroelectric constant, p = 24 μC/m2K. A higher annealing temperature exhibits an elongated needle-like crystal domain, resulting in a decrease in the crystalline structure and the functional electrical properties. This study revealed that highly crystalline P(VDF-TrFE) thin films could be induced at 100 °C by annealing the thin film with a simple and cheap method.

  4. Anatomical recommendations for safe botulinum toxin injection into temporalis muscle: a simplified reproducible approach.

    Science.gov (United States)

    Lee, Won-Kang; Bae, Jung-Hee; Hu, Kyung-Seok; Kato, Takafumi; Kim, Seong-Taek

    2017-03-01

    The objective of this study was to simplify the anatomically safe and reproducible approach for BoNT injection and to generate a detailed topographic map of the important anatomical structures of the temporal region by dividing the temporalis into nine equally sized compartments. Nineteen sides of temporalis muscle were used. The topographies of the superficial temporal artery, middle temporal vein, temporalis tendon, and the temporalis muscle were evaluated. Also evaluated was the postural relations among the foregoing anatomical structures in the temporalis muscle, pivoted upon a total of nine compartments. The temporalis above the zygomatic arch exhibited an oblique quadrangular shape with rounded upper right and left corners. The distance between the anterior and posterior margins of the temporalis muscle was equal to the width of the temporalis rectangle, and the distance between the reference line and the superior temporalis margin was equal to its height. The mean ratio of width to height was 5:4. We recommend compartments Am, Mu, and Pm (coordinates of the rectangular outline) as areas in the temporal region for BoNT injection, because using these sites will avoid large blood vessels and tendons, thus improving the safety and reproducibility of the injection.

  5. Probing magnetism and electronic structure of Fe-doped ZnO thin films

    International Nuclear Information System (INIS)

    El Amiri, A.; Moubah, R.; Lmai, F.; Abid, M.; Hassanain, N.; Hlil, E.K.; Lassri, H.

    2016-01-01

    Ab-initio calculations using Korringa–Kohn–Rostoker method combined with the coherent potential approximation were performed in order to study the magnetic properties of Fe-doped ZnO thin films with different Fe contents. The extracted parameters are compared with those determined experimentally. Based on total and partial densities of state curves, we demonstrate that there is a competition between p–d exchange and superexchange mechanisms leading to weak ferromagnetic and antiferromagnetic contributions, respectively. The dominant mechanism is found to be antiferromagnetic. However, with increasing Fe content the ferromagnetic contribution increases. In addition, the effect of structural defects on the magnetism of the system is reported. It is shown that both Zn and O vacancies increase ferromagnetism, which is more pronounced in case of Zn. - Highlights: • The KKR–CPA approach was used to study the magnetism of Fe-doped ZnO thin films. • There is a competition between p–d exchange and superexchange mechanisms leading to weak ferromagnetic and antiferromagnetic contributions. • Zn vacancies are more significant than the O ones for obtaining ferromagnetism.

  6. Probing magnetism and electronic structure of Fe-doped ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    El Amiri, A., E-mail: aelamiri@casablanca.ma [LPFA, Faculté des Sciences Ain Chock, Université Hassan II, BP 5366 Mâarif, Casablanca (Morocco); Moubah, R., E-mail: reda.moubah@hotmail.fr [LPMMAT, Faculté des Sciences Ain Chock, Université Hassan II, BP 5366 Mâarif, Casablanca (Morocco); Lmai, F. [LPTA, Faculté des Sciences Ain Chock, Université Hassan II, BP 5366 Mâarif, Casablanca (Morocco); Abid, M. [LPFA, Faculté des Sciences Ain Chock, Université Hassan II, BP 5366 Mâarif, Casablanca (Morocco); Hassanain, N. [Laboratoire de Physique des Matériaux, Faculté des Sciences, BP 1014 Rabat (Morocco); Hlil, E.K. [Institut Néel, CNRS et Université Joseph Fourier, BP 166, 38042 Grenoble (France); Lassri, H. [LPMMAT, Faculté des Sciences Ain Chock, Université Hassan II, BP 5366 Mâarif, Casablanca (Morocco)

    2016-01-15

    Ab-initio calculations using Korringa–Kohn–Rostoker method combined with the coherent potential approximation were performed in order to study the magnetic properties of Fe-doped ZnO thin films with different Fe contents. The extracted parameters are compared with those determined experimentally. Based on total and partial densities of state curves, we demonstrate that there is a competition between p–d exchange and superexchange mechanisms leading to weak ferromagnetic and antiferromagnetic contributions, respectively. The dominant mechanism is found to be antiferromagnetic. However, with increasing Fe content the ferromagnetic contribution increases. In addition, the effect of structural defects on the magnetism of the system is reported. It is shown that both Zn and O vacancies increase ferromagnetism, which is more pronounced in case of Zn. - Highlights: • The KKR–CPA approach was used to study the magnetism of Fe-doped ZnO thin films. • There is a competition between p–d exchange and superexchange mechanisms leading to weak ferromagnetic and antiferromagnetic contributions. • Zn vacancies are more significant than the O ones for obtaining ferromagnetism.

  7. Geometric structure of thin SiO xN y films on Si(100)

    Science.gov (United States)

    Behrens, K.-M.; Klinkenberg, E.-D.; Finster, J.; Meiwes-Broer, K.-H.

    1998-05-01

    Thin films of amorphous stoichometric SiO xN y are deposited on radiation-heated Si(100) by rapid thermal low-pressure chemical vapour deposition. We studied the whole range of possible compositions. In order to determine the geometric structure, we used EXAFS and photoelectron spectroscopy. Tetrahedrons constitute the short-range units with a central Si atom connected to N and O. The distribution of the possible tetrahedrons can be described by a mixture of the Random Bonding Model and the Random Mixture Model. For low oxygen contents x/( x+ y)≤0.3, the geometric structure of the film is almost the structure of a-Si 3N 4, with the oxygen preferably on top of Si-N 3 triangles. Higher oxygen contents induce changes in the bond lengths, bond angles and coordination numbers.

  8. Resting state cortico-cerebellar functional connectivity networks: A comparison of anatomical and self-organizing map approaches

    Directory of Open Access Journals (Sweden)

    Jessica A Bernard

    2012-08-01

    Full Text Available The cerebellum plays a role in a wide variety of complex behaviors. In order to better understand the role of the cerebellum in human behavior, it is important to know how this structure interacts with cortical and other subcortical regions of the brain. To date, several studies have investigated the cerebellum using resting-state functional connectivity magnetic resonance imaging (fcMRI; Buckner et al., 2011; Krienen & Buckner, 2009; O’Reilly et al., 2009. However, none of this work has taken an anatomically-driven approach. Furthermore, though detailed maps of cerebral cortex and cerebellum networks have been proposed using different network solutions based on the cerebral cortex (Buckner et al., 2011, it remains unknown whether or not an anatomical lobular breakdown best encompasses the networks of the cerebellum. Here, we used fcMRI to create an anatomically-driven cerebellar connectivity atlas. Timecourses were extracted from the lobules of the right hemisphere and vermis. We found distinct networks for the individual lobules with a clear division into motor and non-motor regions. We also used a self-organizing map algorithm to parcellate the cerebellum. This allowed us to investigate redundancy and independence of the anatomically identified cerebellar networks. We found that while anatomical boundaries in the anterior cerebellum provide functional subdivisions of a larger motor grouping defined using our self-organizing map algorithm, in the posterior cerebellum, the lobules were made up of sub-regions associated with distinct functional networks. Together, our results indicate that the lobular boundaries of the human cerebellum are not indicative of functional boundaries, though anatomical divisions can be useful, as is the case of the anterior cerebellum. Additionally, driving the analyses from the cerebellum is key to determining the complete picture of functional connectivity within the structure.

  9. An interactive 3D framework for anatomical education

    OpenAIRE

    Vázquez Alcocer, Pere Pau; Götzelmann, Timo; Hartmann, Knut; Nürnberger, Andreas

    2008-01-01

    Object: This paper presents a 3D framework for Anatomy teaching. We are mainly concerned with the proper understanding of human anatomical 3D structures. Materials and methods: The main idea of our approach is taking an electronic book such as Henry Gray’s Anatomy of the human body, and a set of 3D models properly labeled, and constructing the correct linking that allows users to perform mutual searches between both media. Results: We implemented a system where learners can intera...

  10. Influence of film structure on the dewetting kinetics of thin polymer films in the solvent annealing process.

    Science.gov (United States)

    Zhang, Huanhuan; Xu, Lin; Lai, Yuqing; Shi, Tongfei

    2016-06-28

    On a non-wetting solid substrate, the solvent annealing process of a thin polymer film includes the swelling process and the dewetting process. Owing to difficulties in the in situ analysis of the two processes simultaneously, a quantitative study on the solvent annealing process of thin polymer films on the non-wetting solid substrate is extremely rare. In this paper, we design an experimental method by combining spectroscopic ellipsometry with optical microscopy to achieve the simultaneous in situ study. Using this method, we investigate the influence of the structure of swollen film on its dewetting kinetics during the solvent annealing process. The results show that for a thin PS film with low Mw (Mw = 4.1 kg mol(-1)), acetone molecules can form an ultrathin enriched layer between the PS film and the solid substrate during the swelling process. The presence of the acetone enriched layer accounts for the exponential kinetic behavior in the case of a thin PS film with low Mw. However, the acetone enriched layer is not observed in the case of a thin PS film with high Mw (Mw = 400 kg mol(-1)) and the slippage effect of polymer chains is valid during the dewetting process.

  11. The influence of annealing in nitrogen atmosphere on the electrical, optical and structural properties of spray- deposited ZnO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ikhmayies, S.J. [Applied Science Private Univ., Amman (Jordan). Dept. of Physics; Abu El-Haija, N.M.; Ahmad-Bitar, R.N. [Jordan Univ., Amman (Jordan). Dept. of Physics

    2009-07-01

    Thin-film zinc oxide (ZnO) has many applications in solar cell technology and is considered to be a candidate for the substitution of indium tin oxide and tin oxide. ZnO thin films can be prepared by thermal evaporation, rf-sputtering, atomic layer deposition, chemical vapor deposition, sol-gel, laser ablation and spray pyrolysis technique. Spray pyrolysis has received much attention because of its simplicity and low cost. In this study, large area and highly uniform polycrystalline ZnO thin films were produced by spray pyrolysis using a home-made spraying system on glass substrates at 450 degrees C. The electrical, optical and structural properties of the ZnO films were enhanced by annealing the thin films in nitrogen atmosphere. X-ray diffraction revealed that the films are polycrystalline with a hexagonal wurtzite structure. The preferential orientation did not change with annealing, but XRD patterns revealed that some very weak lines had grown. There was no noticeable increase in the grain size. The transmittance of the films increased as a result of annealing. It was concluded that post-deposition annealing is essential to improve the quality of the ZnO thin films. The electrical properties improved due to a decrease in resistivity. 13 refs., 5 figs.

  12. Early Results of Anatomic Double Bundle Anterior Cruciate Ligament Reconstruction

    Directory of Open Access Journals (Sweden)

    Demet Pepele

    2014-03-01

    Full Text Available Aim: The goal in anterior cruciate ligament reconstruction (ACLR is to restore the normal anatomic structure and function of the knee. In the significant proportion of patients after the traditional single-bundle ACLR, complaints of instability still continue. Anatomic double bundle ACLR may provide normal kinematics in knees, much closer to the natural anatomy. The aim of this study is to clinically assess the early outcomes of our anatomical double bundle ACLR. Material and Method: In our clinic between June 2009 and March 2010, performed the anatomic double bundle ACLR with autogenous hamstring grafts 20 patients were evaluated prospectively with Cincinnati, IKDC and Lysholm scores and in clinically for muscle strength and with Cybex II dynamometer. Results: The mean follow-up is 17.8 months (13-21 months. Patients%u2019 scores of Cincinnati, IKDC and Lysholm were respectively, preoperative 18.1, 39.3 and 39.8, while the post-op increased to 27.2, 76.3 and 86.3. In their last check, 17 percent of the patients according to IKDC scores (85% A (excellent and B (good group and 3 patients took place as C (adequate group. The power measurements of quadriceps and hamstring muscle groups of patients who underwent surgery showed no significant difference compared with the intact knees. Discussion: Double-bundle ACL reconstruction is a satisfactory method. There is a need comparative, long-term studies in large numbers in order to determine improving clinical outcome, preventing degeneration and restoring the knee biomechanics better.

  13. Pulsed EM Field Response of a Thin, High-Contrast, Finely Layered Structure With Dielectric and Conductive Properties

    NARCIS (Netherlands)

    De Hoop, A.T.; Jiang, L.

    2009-01-01

    The response of a thin, high-contrast, finely layered structure with dielectric and conductive properties to an incident, pulsed, electromagnetic field is investigated theoretically. The fine layering causes the standard spatial discretization techniques to solve Maxwell's equations numerically to

  14. In-vivo visualisation of the anatomical structures related to the acupuncture points Dai mai and Shen mai by MRI: A single-case pilot study

    International Nuclear Information System (INIS)

    Moncayo, Roy; Rudisch, Ansgar; Diemling, Markus; Kremser, Christian

    2007-01-01

    ideal MRI imaging sequences it has been possible to visualize the anatomical characteristics at the acupuncture points Dai mai and Shen mai in-vivo. At the selected sites the needles showed a relation to tendino-fascial and muscular structures. These anatomical structures fit well into the recently described WOMED concept of lateral tension in which these acupuncture points play a regulatory role

  15. [The sural medial perforator flap: Anatomical bases, surgical technique and indications in head and neck reconstruction].

    Science.gov (United States)

    Struk, S; Schaff, J-B; Qassemyar, Q

    2018-04-01

    The medial sural artery perforator (MSAP) flap is defined as a thin cutaneo-adipose perforator flap harvested on the medial aspect of the leg. The aims of this study were to describe the anatomical basis as well as the surgical technique and discuss the indications in head and neck reconstructive surgery. We harvested 10 MSAP flap on 5 fresh cadavers. For each case, the number and the location of the perforators were recorded. For each flap, the length of pedicle, the diameter of source vessels and the thickness of the flap were studied. Finally, we performed a clinical application of a MSAP flap. A total of 23 perforators with a diameter superior than 1mm were dissected on 10 legs. The medial sural artery provided between 1 and 4 musculocutaneous perforators. Perforators were located in average at 10.3cm±2cm from the popliteal fossa and at 3.6cm±1cm from the median line of the calf. The mean pedicle length was 12.1cm±2.5cm. At its origin, the source artery diameter was 1.8mm±0.25mm and source veins diameters were 2.45mm±0.9mm in average. There was no complication in our clinical application. This study confirms the reliability of previous anatomical descriptions of the medial sural artery perforator flap. This flap was reported as thin and particularly adapted for oral cavity reconstruction and for facial or limb resurfacing. Sequelae might be reduced as compared to those of the radial forearm flap with comparable results. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  16. The first report on SILAR deposited nano-structured uranyl sulphide thin films and their chemical conversion to silver sulphide

    International Nuclear Information System (INIS)

    Garole, Dipak J.; Tetgure, Sandesh R.; Borse, Amulrao U.; Yogesh R Toda; Vaman J Garole; Babasaheb R Sankapal; Prashant K Baviskar

    2015-01-01

    This paper reports the novel synthesis of uranyl sulphide (UO_2S) thin films using the successive ionic layer adsorption and reaction (SILAR) technique at room temperature. Cationic exchange reaction was used to convert uranyl sulphide (UO_2S) to silver sulphide (Ag_2S). The influence of concentration variation on the structural and optical properties of UO_2S and Ag_2S thin films was investigated. The structural, surface morphological, elemental analysis and optical absorption studies were performed. Structural studies revealed that all the deposited films were nano-sized and amorphous in nature. Surface morphology showed that all the grains were spherical and granular in nature and grains got conglomerated to form a large particle. Also, the variations of the optical band gap and the width of the tail of localized states were represented as a function of various parameters. (authors)

  17. Co thin film with metastable bcc structure formed on GaAs(111 substrate

    Directory of Open Access Journals (Sweden)

    Minakawa Shigeyuki

    2014-07-01

    Full Text Available Co thin films are prepared on GaAs(111 substrates at temperatures ranging from room temperature to 600 ºC by radio-frequency magnetron sputtering. The growth behavior and the detailed resulting film structure are investigated by in-situ reflection high-energy electron diffraction and X-ray diffraction. In early stages of film growth at temperatures lower than 200 ºC, Co crystals with metastable A2 (bcc structure are formed, where the crystal structure is stabilized through hetero-epitaxial growth. With increasing the film thickness beyond 2 nm, the metastable structure starts to transform into more stable A1 (fcc structure through atomic displacements parallel to the A2{110} close-packed planes. The crystallographic orientation relationship between the A2 and the transformed A1 crystals is A1{111} || A2{110}. When the substrate temperature is higher than 400 ºC, Ga atoms of substrate diffuse into the Co films and a Co-Ga alloy with bcc-based ordered structure of B2 is formed.

  18. Anatomical Modularity of Verbal Working Memory? Functional Anatomical Evidence from a Famous Patient with Short-Term Memory Deficits.

    Science.gov (United States)

    Paulesu, Eraldo; Shallice, Tim; Danelli, Laura; Sberna, Maurizio; Frackowiak, Richard S J; Frith, Chris D

    2017-01-01

    Cognitive skills are the emergent property of distributed neural networks. The distributed nature of these networks does not necessarily imply a lack of specialization of the individual brain structures involved. However, it remains questionable whether discrete aspects of high-level behavior might be the result of localized brain activity of individual nodes within such networks. The phonological loop of working memory, with its simplicity, seems ideally suited for testing this possibility. Central to the development of the phonological loop model has been the description of patients with focal lesions and specific deficits. As much as the detailed description of their behavior has served to refine the phonological loop model, a classical anatomoclinical correlation approach with such cases falls short in telling whether the observed behavior is based on the functions of a neural system resembling that seen in normal subjects challenged with phonological loop tasks or whether different systems have taken over. This is a crucial issue for the cross correlation of normal cognition, normal physiology, and cognitive neuropsychology. Here we describe the functional anatomical patterns of JB, a historical patient originally described by Warrington et al. (1971), a patient with a left temporo-parietal lesion and selective short phonological store deficit. JB was studied with the H 2 15 O PET activation technique during a rhyming task, which primarily depends on the rehearsal system of the phonological loop. No residual function was observed in the left temporo-parietal junction, a region previously associated with the phonological buffer of working memory. However, Broca's area, the major counterpart of the rehearsal system, was the major site of activation during the rhyming task. Specific and autonomous activation of Broca's area in the absence of afferent inputs from the other major anatomical component of the phonological loop shows that a certain degree of

  19. The magnetic domain structures of Fe thin films on rectangular land-and-groove substrates studied by spin-polarized secondary electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, S. [Photodynamics Research Center, RIKEN, Aoba-ku, Sendai 980-0845 (Japan)]. E-mail: uedas@postman.riken.go.jp; Iwasaki, Y. [Photodynamics Research Center, RIKEN, Aoba-ku, Sendai 980-0845 (Japan); Micro Systems Network Company, Sony Corporation, Tagajo, Miyagi 985-0842 (Japan); Ushioda, S. [Photodynamics Research Center, RIKEN, Aoba-ku, Sendai 980-0845 (Japan); Research Institute of Electrical Communication, Tohoku University, Aoba-ku, Sendai 980-8577 (Japan)

    2004-10-01

    The magnetic domain structures of Fe thin films on rectangular land-and-groove structures have been studied by spin-polarized secondary electron microscopy (SP-SEM) under an applied dc field. The coercive force on the land area was found to be higher than that on the groove area in the magnetization reversal due to the difference in surface roughness between land and groove areas. The magnetic domain structure and domain wall pinning behavior during the reversal process depended on the direction of the magnetic field relative to the rectangles. These results show that the anisotropy induced by film geometry also contributes to the magnetization reversal process of thin magnetic films on land{sub a}nd{sub g}roove substrates.

  20. Crystal structure determination of solar cell materials: Cu2ZnSnS4 thin films using X-ray anomalous dispersion

    International Nuclear Information System (INIS)

    Nozaki, Hiroshi; Fukano, Tatsuo; Ohta, Shingo; Seno, Yoshiki; Katagiri, Hironori; Jimbo, Kazuo

    2012-01-01

    Highlights: ► Cu 2 ZnSnS 4 thin films as a solar cell material were synthesized. ► The wavelength dependences of the diffraction intensity were measured. ► The crystal structures were clearly identified as kesterite structure for all samples. ► Crystal structure analysis revealed that the atomic compositions were Cu/(Zn + Sn) = 0.97 and Zn/Sn = 1.42 for the sample synthesized using stoichiometric amount of starting materials. - Abstract: The crystal structure of Cu 2 ZnSnS 4 (CZTS) thin films fabricated by vapor-phase sulfurization was determined using X-ray anomalous dispersion. High statistic synchrotron radiation X-ray diffraction data were collected from very small amounts of powder. By analyzing the wavelength dependencies of the diffraction peak intensities, the crystal structure was clearly identified as kesterite. Rietveld analysis revealed that the atomic composition deviated from stoichiometric composition, and the compositions were Cu/(Zn + Sn) = 0.97, and Zn/Sn = 1.42.