Directory of Open Access Journals (Sweden)
Bangyong Sun
2014-01-01
Full Text Available The polynomial regression method is employed to calculate the relationship of device color space and CIE color space for color characterization, and the performance of different expressions with specific parameters is evaluated. Firstly, the polynomial equation for color conversion is established and the computation of polynomial coefficients is analysed. And then different forms of polynomial equations are used to calculate the RGB and CMYK’s CIE color values, while the corresponding color errors are compared. At last, an optimal polynomial expression is obtained by analysing several related parameters during color conversion, including polynomial numbers, the degree of polynomial terms, the selection of CIE visual spaces, and the linearization.
Quality Parameters Defined by Chebyshev Polynomials in Cold Rolling Process Chain
International Nuclear Information System (INIS)
Judin, Mika; Nylander, Jari; Larkiola, Jari; Verho, Martti
2011-01-01
The thickness profile of hot strip is of importance to profile, flatness and shape of the final cold rolled product. In this work, strip thickness and flatness profiles are decomposed into independent components by solving Chebyshev polynomials coefficients using matrix calculation. Four terms are used to characterize most common shapes of thickness and flatness profile. The calculated Chebyshev coefficients from different line measurements are combined together and analysed using neural network tools. The most common types of shapes are classified.
Computation of rectangular source integral by rational parameter polynomial method
International Nuclear Information System (INIS)
Prabha, Hem
2001-01-01
Hubbell et al. (J. Res. Nat Bureau Standards 64C, (1960) 121) have obtained a series expansion for the calculation of the radiation field generated by a plane isotropic rectangular source (plaque), in which leading term is the integral H(a,b). In this paper another integral I(a,b), which is related with the integral H(a,b) has been solved by the rational parameter polynomial method. From I(a,b), we compute H(a,b). Using this method the integral I(a,b) is expressed in the form of a polynomial of a rational parameter. Generally, a function f (x) is expressed in terms of x. In this method this is expressed in terms of x/(1+x). In this way, the accuracy of the expression is good over a wide range of x as compared to the earlier approach. The results for I(a,b) and H(a,b) are given for a sixth degree polynomial and are found to be in good agreement with the results obtained by numerically integrating the integral. Accuracy could be increased either by increasing the degree of the polynomial or by dividing the range of integration. The results of H(a,b) and I(a,b) are given for values of b and a up to 2.0 and 20.0, respectively
Nobile, Fabio
2015-01-01
the parameter-to-solution map u(y) from random noise-free or noisy observations in random points by discrete least squares on polynomial spaces. The noise-free case is relevant whenever the technique is used to construct metamodels, based on polynomial
Ding, A Adam; Wu, Hulin
2014-10-01
We propose a new method to use a constrained local polynomial regression to estimate the unknown parameters in ordinary differential equation models with a goal of improving the smoothing-based two-stage pseudo-least squares estimate. The equation constraints are derived from the differential equation model and are incorporated into the local polynomial regression in order to estimate the unknown parameters in the differential equation model. We also derive the asymptotic bias and variance of the proposed estimator. Our simulation studies show that our new estimator is clearly better than the pseudo-least squares estimator in estimation accuracy with a small price of computational cost. An application example on immune cell kinetics and trafficking for influenza infection further illustrates the benefits of the proposed new method.
Reduction of the number of parameters needed for a polynomial random regression test-day model
Pool, M.H.; Meuwissen, T.H.E.
2000-01-01
Legendre polynomials were used to describe the (co)variance matrix within a random regression test day model. The goodness of fit depended on the polynomial order of fit, i.e., number of parameters to be estimated per animal but is limited by computing capacity. Two aspects: incomplete lactation
Nonnegativity of uncertain polynomials
Directory of Open Access Journals (Sweden)
iljak Dragoslav D.
1998-01-01
Full Text Available The purpose of this paper is to derive tests for robust nonnegativity of scalar and matrix polynomials, which are algebraic, recursive, and can be completed in finite number of steps. Polytopic families of polynomials are considered with various characterizations of parameter uncertainty including affine, multilinear, and polynomic structures. The zero exclusion condition for polynomial positivity is also proposed for general parameter dependencies. By reformulating the robust stability problem of complex polynomials as positivity of real polynomials, we obtain new sufficient conditions for robust stability involving multilinear structures, which can be tested using only real arithmetic. The obtained results are applied to robust matrix factorization, strict positive realness, and absolute stability of multivariable systems involving parameter dependent transfer function matrices.
Gribling, Sander; de Laat, David; Laurent, Monique
2017-01-01
In this paper we study bipartite quantum correlations using techniques from tracial polynomial optimization. We construct a hierarchy of semidefinite programming lower bounds on the minimal entanglement dimension of a bipartite correlation. This hierarchy converges to a new parameter: the minimal
Nobile, Fabio
2015-01-07
We consider a general problem F(u, y) = 0 where u is the unknown solution, possibly Hilbert space valued, and y a set of uncertain parameters. We specifically address the situation in which the parameterto-solution map u(y) is smooth, however y could be very high (or even infinite) dimensional. In particular, we are interested in cases in which F is a differential operator, u a Hilbert space valued function and y a distributed, space and/or time varying, random field. We aim at reconstructing the parameter-to-solution map u(y) from random noise-free or noisy observations in random points by discrete least squares on polynomial spaces. The noise-free case is relevant whenever the technique is used to construct metamodels, based on polynomial expansions, for the output of computer experiments. In the case of PDEs with random parameters, the metamodel is then used to approximate statistics of the output quantity. We discuss the stability of discrete least squares on random points show convergence estimates both in expectation and probability. We also present possible strategies to select, either a-priori or by adaptive algorithms, sequences of approximating polynomial spaces that allow to reduce, and in some cases break, the curse of dimensionality
A New Generalisation of Macdonald Polynomials
Garbali, Alexandr; de Gier, Jan; Wheeler, Michael
2017-06-01
We introduce a new family of symmetric multivariate polynomials, whose coefficients are meromorphic functions of two parameters ( q, t) and polynomial in a further two parameters ( u, v). We evaluate these polynomials explicitly as a matrix product. At u = v = 0 they reduce to Macdonald polynomials, while at q = 0, u = v = s they recover a family of inhomogeneous symmetric functions originally introduced by Borodin.
Homogenous polynomially parameter-dependent H∞ filter designs of discrete-time fuzzy systems.
Zhang, Huaguang; Xie, Xiangpeng; Tong, Shaocheng
2011-10-01
This paper proposes a novel H(∞) filtering technique for a class of discrete-time fuzzy systems. First, a novel kind of fuzzy H(∞) filter, which is homogenous polynomially parameter dependent on membership functions with an arbitrary degree, is developed to guarantee the asymptotic stability and a prescribed H(∞) performance of the filtering error system. Second, relaxed conditions for H(∞) performance analysis are proposed by using a new fuzzy Lyapunov function and the Finsler lemma with homogenous polynomial matrix Lagrange multipliers. Then, based on a new kind of slack variable technique, relaxed linear matrix inequality-based H(∞) filtering conditions are proposed. Finally, two numerical examples are provided to illustrate the effectiveness of the proposed approach.
Graph Treewidth and Geometric Thickness Parameters
Dujmović, Vida; Wood, David R.
2005-01-01
Consider a drawing of a graph $G$ in the plane such that crossing edges are coloured differently. The minimum number of colours, taken over all drawings of $G$, is the classical graph parameter "thickness". By restricting the edges to be straight, we obtain the "geometric thickness". By further restricting the vertices to be in convex position, we obtain the "book thickness". This paper studies the relationship between these parameters and treewidth. Our first main result states that for grap...
Vertex models, TASEP and Grothendieck polynomials
International Nuclear Information System (INIS)
Motegi, Kohei; Sakai, Kazumitsu
2013-01-01
We examine the wavefunctions and their scalar products of a one-parameter family of integrable five-vertex models. At a special point of the parameter, the model investigated is related to an irreversible interacting stochastic particle system—the so-called totally asymmetric simple exclusion process (TASEP). By combining the quantum inverse scattering method with a matrix product representation of the wavefunctions, the on-/off-shell wavefunctions of the five-vertex models are represented as a certain determinant form. Up to some normalization factors, we find that the wavefunctions are given by Grothendieck polynomials, which are a one-parameter deformation of Schur polynomials. Introducing a dual version of the Grothendieck polynomials, and utilizing the determinant representation for the scalar products of the wavefunctions, we derive a generalized Cauchy identity satisfied by the Grothendieck polynomials and their duals. Several representation theoretical formulae for the Grothendieck polynomials are also presented. As a byproduct, the relaxation dynamics such as Green functions for the periodic TASEP are found to be described in terms of the Grothendieck polynomials. (paper)
Energy Technology Data Exchange (ETDEWEB)
Othmani, Cherif, E-mail: othmanicheriffss@gmail.com; Takali, Farid; Njeh, Anouar; Ben Ghozlen, Mohamed Hédi
2016-09-01
The propagation of Rayleigh–Lamb waves in bi-layered structures is studied. For this purpose, an extension of the Legendre polynomial (LP) method is proposed to formulate the acoustic wave equation in the bi-layered structures induced by thin film Gallium Antimonide (GaSb) and with Aluminum Antimonide (AlSb) substrate in moderate thickness. Acoustic modes propagating along a bi-layer plate are shown to be quite different than classical Lamb modes, contrary to most of the multilayered structures. The validation of the LP method is illustrated by a comparison between the associated numerical results and those obtained using the ordinary differential equation (ODE) method. The convergency of the LP method is discussed through a numerical example. Moreover, the influences of thin film GaSb parameters on the characteristics Rayleigh–Lamb waves propagation has been studied in detail. Finally, the advantages of the Legendre polynomial (LP) method to analyze the multilayered structures are described. All the developments performed in this work were implemented in Matlab software.
International Nuclear Information System (INIS)
Othmani, Cherif; Takali, Farid; Njeh, Anouar; Ben Ghozlen, Mohamed Hédi
2016-01-01
The propagation of Rayleigh–Lamb waves in bi-layered structures is studied. For this purpose, an extension of the Legendre polynomial (LP) method is proposed to formulate the acoustic wave equation in the bi-layered structures induced by thin film Gallium Antimonide (GaSb) and with Aluminum Antimonide (AlSb) substrate in moderate thickness. Acoustic modes propagating along a bi-layer plate are shown to be quite different than classical Lamb modes, contrary to most of the multilayered structures. The validation of the LP method is illustrated by a comparison between the associated numerical results and those obtained using the ordinary differential equation (ODE) method. The convergency of the LP method is discussed through a numerical example. Moreover, the influences of thin film GaSb parameters on the characteristics Rayleigh–Lamb waves propagation has been studied in detail. Finally, the advantages of the Legendre polynomial (LP) method to analyze the multilayered structures are described. All the developments performed in this work were implemented in Matlab software.
A new class of generalized polynomials associated with Hermite and Bernoulli polynomials
Directory of Open Access Journals (Sweden)
M. A. Pathan
2015-05-01
Full Text Available In this paper, we introduce a new class of generalized polynomials associated with the modified Milne-Thomson's polynomials Φ_{n}^{(α}(x,ν of degree n and order α introduced by Derre and Simsek.The concepts of Bernoulli numbers B_n, Bernoulli polynomials B_n(x, generalized Bernoulli numbers B_n(a,b, generalized Bernoulli polynomials B_n(x;a,b,c of Luo et al, Hermite-Bernoulli polynomials {_HB}_n(x,y of Dattoli et al and {_HB}_n^{(α} (x,y of Pathan are generalized to the one {_HB}_n^{(α}(x,y,a,b,c which is called the generalized polynomial depending on three positive real parameters. Numerous properties of these polynomials and some relationships between B_n, B_n(x, B_n(a,b, B_n(x;a,b,c and {}_HB_n^{(α}(x,y;a,b,c are established. Some implicit summation formulae and general symmetry identities are derived by using different analytical means and applying generating functions. These results extend some known summations and identities of generalized Bernoulli numbers and polynomials
Wang, S.; Huang, G. H.; Baetz, B. W.; Huang, W.
2015-11-01
This paper presents a polynomial chaos ensemble hydrologic prediction system (PCEHPS) for an efficient and robust uncertainty assessment of model parameters and predictions, in which possibilistic reasoning is infused into probabilistic parameter inference with simultaneous consideration of randomness and fuzziness. The PCEHPS is developed through a two-stage factorial polynomial chaos expansion (PCE) framework, which consists of an ensemble of PCEs to approximate the behavior of the hydrologic model, significantly speeding up the exhaustive sampling of the parameter space. Multiple hypothesis testing is then conducted to construct an ensemble of reduced-dimensionality PCEs with only the most influential terms, which is meaningful for achieving uncertainty reduction and further acceleration of parameter inference. The PCEHPS is applied to the Xiangxi River watershed in China to demonstrate its validity and applicability. A detailed comparison between the HYMOD hydrologic model, the ensemble of PCEs, and the ensemble of reduced PCEs is performed in terms of accuracy and efficiency. Results reveal temporal and spatial variations in parameter sensitivities due to the dynamic behavior of hydrologic systems, and the effects (magnitude and direction) of parametric interactions depending on different hydrological metrics. The case study demonstrates that the PCEHPS is capable not only of capturing both expert knowledge and probabilistic information in the calibration process, but also of implementing an acceleration of more than 10 times faster than the hydrologic model without compromising the predictive accuracy.
Directory of Open Access Journals (Sweden)
Maria Gabriela Campolina Diniz Peixoto
2014-05-01
Full Text Available The objective of this work was to compare random regression models for the estimation of genetic parameters for Guzerat milk production, using orthogonal Legendre polynomials. Records (20,524 of test-day milk yield (TDMY from 2,816 first-lactation Guzerat cows were used. TDMY grouped into 10-monthly classes were analyzed for additive genetic effect and for environmental and residual permanent effects (random effects, whereas the contemporary group, calving age (linear and quadratic effects and mean lactation curve were analized as fixed effects. Trajectories for the additive genetic and permanent environmental effects were modeled by means of a covariance function employing orthogonal Legendre polynomials ranging from the second to the fifth order. Residual variances were considered in one, four, six, or ten variance classes. The best model had six residual variance classes. The heritability estimates for the TDMY records varied from 0.19 to 0.32. The random regression model that used a second-order Legendre polynomial for the additive genetic effect, and a fifth-order polynomial for the permanent environmental effect is adequate for comparison by the main employed criteria. The model with a second-order Legendre polynomial for the additive genetic effect, and that with a fourth-order for the permanent environmental effect could also be employed in these analyses.
Zhao, Mingtao; Kuo, Anthony N; Izatt, Joseph A
2010-04-26
Capable of three-dimensional imaging of the cornea with micrometer-scale resolution, spectral domain-optical coherence tomography (SDOCT) offers potential advantages over Placido ring and Scheimpflug photography based systems for accurate extraction of quantitative keratometric parameters. In this work, an SDOCT scanning protocol and motion correction algorithm were implemented to minimize the effects of patient motion during data acquisition. Procedures are described for correction of image data artifacts resulting from 3D refraction of SDOCT light in the cornea and from non-idealities of the scanning system geometry performed as a pre-requisite for accurate parameter extraction. Zernike polynomial 3D reconstruction and a recursive half searching algorithm (RHSA) were implemented to extract clinical keratometric parameters including anterior and posterior radii of curvature, central cornea optical power, central corneal thickness, and thickness maps of the cornea. Accuracy and repeatability of the extracted parameters obtained using a commercial 859nm SDOCT retinal imaging system with a corneal adapter were assessed using a rigid gas permeable (RGP) contact lens as a phantom target. Extraction of these parameters was performed in vivo in 3 patients and compared to commercial Placido topography and Scheimpflug photography systems. The repeatability of SDOCT central corneal power measured in vivo was 0.18 Diopters, and the difference observed between the systems averaged 0.1 Diopters between SDOCT and Scheimpflug photography, and 0.6 Diopters between SDOCT and Placido topography.
Cosmographic analysis with Chebyshev polynomials
Capozziello, Salvatore; D'Agostino, Rocco; Luongo, Orlando
2018-05-01
The limits of standard cosmography are here revised addressing the problem of error propagation during statistical analyses. To do so, we propose the use of Chebyshev polynomials to parametrize cosmic distances. In particular, we demonstrate that building up rational Chebyshev polynomials significantly reduces error propagations with respect to standard Taylor series. This technique provides unbiased estimations of the cosmographic parameters and performs significatively better than previous numerical approximations. To figure this out, we compare rational Chebyshev polynomials with Padé series. In addition, we theoretically evaluate the convergence radius of (1,1) Chebyshev rational polynomial and we compare it with the convergence radii of Taylor and Padé approximations. We thus focus on regions in which convergence of Chebyshev rational functions is better than standard approaches. With this recipe, as high-redshift data are employed, rational Chebyshev polynomials remain highly stable and enable one to derive highly accurate analytical approximations of Hubble's rate in terms of the cosmographic series. Finally, we check our theoretical predictions by setting bounds on cosmographic parameters through Monte Carlo integration techniques, based on the Metropolis-Hastings algorithm. We apply our technique to high-redshift cosmic data, using the Joint Light-curve Analysis supernovae sample and the most recent versions of Hubble parameter and baryon acoustic oscillation measurements. We find that cosmography with Taylor series fails to be predictive with the aforementioned data sets, while turns out to be much more stable using the Chebyshev approach.
Circular parameters of polynomials orthogonal on several arcs of the unit circle
International Nuclear Information System (INIS)
Lukashov, A L
2004-01-01
The asymptotic behaviour of the circular parameters (a n ) of the polynomials orthogonal on the unit circle with respect to Geronimus measures is analysed. It is shown that only when the harmonic measures of the arcs making up the support of the orthogonality measure are rational do the corresponding parameters form a pseudoperiodic sequence starting from some index (that is, after a suitable rotation of the circle and the corresponding modification of the orthogonality measures they form a periodic sequence). In addition it is demonstrated that if the harmonic measures of these arcs are linearly independent over the field of rational numbers, then the sets of limit points of the sequences of absolute values of the circular parameters |a n | and of their ratios (a n+k /a n ) n=1 ∞ are a closed interval on the real line and a continuum in the complex plane, respectively.
The effects of slice thickness and reconstructive parameters on VR image quality in multi-slice CT
International Nuclear Information System (INIS)
Gao Zhenlong; Wang Qiang; Liu Caixia
2005-01-01
Objective: To explore the effects of slice thickness, reconstructive thickness and reconstructive interval on VR image quality in multi-slice CT, in order to select the best slice thickness and reconstructive parameters for the imaging. Methods: Multi-slice CT scan was applied on a rubber dinosaur model with different slice thickness. VR images were reconstructed with different reconstructive thickness and reconstructive interval. Five radiologists were invited to evaluate the quality of the images without knowing anything about the parameters. Results: The slice thickness, reconstructive thickness and reconstructive interval did have effects on VR image quality and the effective degree was different. The effective coefficients were V 1 =1413.033, V 2 =563.733, V 3 =390.533, respectively. The parameters interacted with the others (P<0.05). The smaller of those parameters, the better of the image quality. With a small slice thickness and a reconstructive slice equal to slice thickness, the image quality had no obvious difference when the reconstructive interval was 1/2, 1/3, 1/4 of the slice thickness. Conclusion: A relative small scan slice thickness, a reconstructive slice equal to slice thickness and a reconstructive interval 1/2 of the slice thickness should be selected for the best VR image quality. The image quality depends mostly on the slice thickness. (authors)
A New Six-Parameter Model Based on Chebyshev Polynomials for Solar Cells
Directory of Open Access Journals (Sweden)
Shu-xian Lun
2015-01-01
Full Text Available This paper presents a new current-voltage (I-V model for solar cells. It has been proved that series resistance of a solar cell is related to temperature. However, the existing five-parameter model ignores the temperature dependence of series resistance and then only accurately predicts the performance of monocrystalline silicon solar cells. Therefore, this paper uses Chebyshev polynomials to describe the relationship between series resistance and temperature. This makes a new parameter called temperature coefficient for series resistance introduced into the single-diode model. Then, a new six-parameter model for solar cells is established in this paper. This new model can improve the accuracy of the traditional single-diode model and reflect the temperature dependence of series resistance. To validate the accuracy of the six-parameter model in this paper, five kinds of silicon solar cells with different technology types, that is, monocrystalline silicon, polycrystalline silicon, thin film silicon, and tripe-junction amorphous silicon, are tested at different irradiance and temperature conditions. Experiment results show that the six-parameter model proposed in this paper is an I-V model with moderate computational complexity and high precision.
Orthogonal polynomials in transport theories
International Nuclear Information System (INIS)
Dehesa, J.S.
1981-01-01
The asymptotical (k→infinity) behaviour of zeros of the polynomials gsub(k)sup((m)(ν)) encountered in the treatment of direct and inverse problems of scattering in neutron transport as well as radiative transfer theories is investigated in terms of the amplitude antiwsub(k) of the kth Legendre polynomial needed in the expansion of the scattering function. The parameters antiwsub(k) describe the anisotropy of scattering of the medium considered. In particular, it is shown that the asymptotical density of zeros of the polynomials gsub(k)sup(m)(ν) is an inverted semicircle for the anisotropic non-multiplying scattering medium
Branched polynomial covering maps
DEFF Research Database (Denmark)
Hansen, Vagn Lundsgaard
2002-01-01
A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch ...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere. (C) 2001 Elsevier Science B.V. All rights reserved.......A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...
Solutions of interval type-2 fuzzy polynomials using a new ranking method
Rahman, Nurhakimah Ab.; Abdullah, Lazim; Ghani, Ahmad Termimi Ab.; Ahmad, Noor'Ani
2015-10-01
A few years ago, a ranking method have been introduced in the fuzzy polynomial equations. Concept of the ranking method is proposed to find actual roots of fuzzy polynomials (if exists). Fuzzy polynomials are transformed to system of crisp polynomials, performed by using ranking method based on three parameters namely, Value, Ambiguity and Fuzziness. However, it was found that solutions based on these three parameters are quite inefficient to produce answers. Therefore in this study a new ranking method have been developed with the aim to overcome the inherent weakness. The new ranking method which have four parameters are then applied in the interval type-2 fuzzy polynomials, covering the interval type-2 of fuzzy polynomial equation, dual fuzzy polynomial equations and system of fuzzy polynomials. The efficiency of the new ranking method then numerically considered in the triangular fuzzy numbers and the trapezoidal fuzzy numbers. Finally, the approximate solutions produced from the numerical examples indicate that the new ranking method successfully produced actual roots for the interval type-2 fuzzy polynomials.
Branched polynomial covering maps
DEFF Research Database (Denmark)
Hansen, Vagn Lundsgaard
1999-01-01
A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere....
Directory of Open Access Journals (Sweden)
Yu-Bo Jiao
2015-01-01
Full Text Available The paper presents an effective approach for damage identification of bridge based on Chebyshev polynomial fitting and fuzzy logic systems without considering baseline model data. The modal curvature of damaged bridge can be obtained through central difference approximation based on displacement modal shape. Depending on the modal curvature of damaged structure, Chebyshev polynomial fitting is applied to acquire the curvature of undamaged one without considering baseline parameters. Therefore, modal curvature difference can be derived and used for damage localizing. Subsequently, the normalized modal curvature difference is treated as input variable of fuzzy logic systems for damage condition assessment. Numerical simulation on a simply supported bridge was carried out to demonstrate the feasibility of the proposed method.
Exact Polynomial Eigenmodes for Homogeneous Spherical 3-Manifolds
Weeks, Jeffrey R.
2005-01-01
Observational data hints at a finite universe, with spherical manifolds such as the Poincare dodecahedral space tentatively providing the best fit. Simulating the physics of a model universe requires knowing the eigenmodes of the Laplace operator on the space. The present article provides explicit polynomial eigenmodes for all globally homogeneous 3-manifolds: the Poincare dodecahedral space S3/I*, the binary octahedral space S3/O*, the binary tetrahedral space S3/T*, the prism manifolds S3/D...
Linear operator pencils on Lie algebras and Laurent biorthogonal polynomials
International Nuclear Information System (INIS)
Gruenbaum, F A; Vinet, Luc; Zhedanov, Alexei
2004-01-01
We study operator pencils on generators of the Lie algebras sl 2 and the oscillator algebra. These pencils are linear in a spectral parameter λ. The corresponding generalized eigenvalue problem gives rise to some sets of orthogonal polynomials and Laurent biorthogonal polynomials (LBP) expressed in terms of the Gauss 2 F 1 and degenerate 1 F 1 hypergeometric functions. For special choices of the parameters of the pencils, we identify the resulting polynomials with the Hendriksen-van Rossum LBP which are widely believed to be the biorthogonal analogues of the classical orthogonal polynomials. This places these examples under the umbrella of the generalized bispectral problem which is considered here. Other (non-bispectral) cases give rise to some 'nonclassical' orthogonal polynomials including Tricomi-Carlitz and random-walk polynomials. An application to solutions of relativistic Toda chain is considered
Polynomial realization of the Uq (sl(3)) Gel'fand-(Weyl)-Zetlin basis
International Nuclear Information System (INIS)
Dobrev, V.K.; Truini, P.
1996-01-01
We give an explicit realization of the U ≡ U q (sl(3)) Gel'fand-(Weyl)-Zetlin (GWZ) basis as polynomial functions in three variables. This realization is obtained in two complementary ways. First we establish a 1-to-1 correspondence between the abstract GWZ basis and explicit polynomials in the quantum subgroup U + of the raising generators. We then use an explicit construction of arbitrary lowest weight (holomorphic) representations of U in terms of three variables on which the generators of U are realized as q-difference operators. Applying the GWZ corresponding polynomials in this realization to the lowest weight vector (the function 1) produces one realization of our GWZ basis. Another realization of the GWZ polynomial basis is found by the explicit diagonalization of the operators of isospin I-circumflex 2 , third component of isospin I-circumflex z , and hypercharge Y-circumflex, in the same realization as q-difference operators. The result is that the eigenvectors can be written in terms of q-hypergeometric polynomials in our three variables. Finally we construct an explicit scalar product (adapting the Shapovalov form to our setting). Using it we prove the orthogonality of our GWZ polynomials for which we use both realizations. This provides a polynomial construction for the orthonormal GWZ basis. We work for generic q, leaving the root of unity case for a following paper. It seems that our results are new also in the classical situation (q=1). (author). 20 refs
Multiple Meixner polynomials and non-Hermitian oscillator Hamiltonians
Ndayiragije, François; Van Assche, Walter
2013-01-01
Multiple Meixner polynomials are polynomials in one variable which satisfy orthogonality relations with respect to $r>1$ different negative binomial distributions (Pascal distributions). There are two kinds of multiple Meixner polynomials, depending on the selection of the parameters in the negative binomial distribution. We recall their definition and some formulas and give generating functions and explicit expressions for the coefficients in the nearest neighbor recurrence relation. Followi...
Polynomial regression analysis and significance test of the regression function
International Nuclear Information System (INIS)
Gao Zhengming; Zhao Juan; He Shengping
2012-01-01
In order to analyze the decay heating power of a certain radioactive isotope per kilogram with polynomial regression method, the paper firstly demonstrated the broad usage of polynomial function and deduced its parameters with ordinary least squares estimate. Then significance test method of polynomial regression function is derived considering the similarity between the polynomial regression model and the multivariable linear regression model. Finally, polynomial regression analysis and significance test of the polynomial function are done to the decay heating power of the iso tope per kilogram in accord with the authors' real work. (authors)
Force prediction in cold rolling mills by polynomial methods
Directory of Open Access Journals (Sweden)
Nicu ROMAN
2007-12-01
Full Text Available A method for steel and aluminium strip thickness control is provided including a new technique for predictive rolling force estimation method by statistic model based on polynomial techniques.
Weierstrass polynomials for links
DEFF Research Database (Denmark)
Hansen, Vagn Lundsgaard
1997-01-01
There is a natural way of identifying links in3-space with polynomial covering spaces over thecircle. Thereby any link in 3-space can be definedby a Weierstrass polynomial over the circle. Theequivalence relation for covering spaces over thecircle is, however, completely different from...
Eye aberration analysis with Zernike polynomials
Molebny, Vasyl V.; Chyzh, Igor H.; Sokurenko, Vyacheslav M.; Pallikaris, Ioannis G.; Naoumidis, Leonidas P.
1998-06-01
New horizons for accurate photorefractive sight correction, afforded by novel flying spot technologies, require adequate measurements of photorefractive properties of an eye. Proposed techniques of eye refraction mapping present results of measurements for finite number of points of eye aperture, requiring to approximate these data by 3D surface. A technique of wave front approximation with Zernike polynomials is described, using optimization of the number of polynomial coefficients. Criterion of optimization is the nearest proximity of the resulted continuous surface to the values calculated for given discrete points. Methodology includes statistical evaluation of minimal root mean square deviation (RMSD) of transverse aberrations, in particular, varying consecutively the values of maximal coefficient indices of Zernike polynomials, recalculating the coefficients, and computing the value of RMSD. Optimization is finished at minimal value of RMSD. Formulas are given for computing ametropia, size of the spot of light on retina, caused by spherical aberration, coma, and astigmatism. Results are illustrated by experimental data, that could be of interest for other applications, where detailed evaluation of eye parameters is needed.
Influence of Liquid Petroleum Gas on the Electrical Parameters of the WO3 Thick Film
Directory of Open Access Journals (Sweden)
R. S. KHADAYATE
2007-02-01
Full Text Available In this work, the WO3 thick films were prepared by standard screen-printing technology. These films were characterized by x-ray diffraction (XRD measurements and scanning electron microscopy (SEM. Influence of LPG on the electrical properties of the prepared WO3 thick film is reported. It was observed that the slope of the Arrhenius curves of the WO3 thick film decreased as the medium changed from pure air to 100 ppm LPG in air. From I-V characteristics, it was observed that the WO3 thick film exhibit highest sensitivity to 50 ppm LPG in air at 400oC.
Multiple Meixner polynomials and non-Hermitian oscillator Hamiltonians
International Nuclear Information System (INIS)
Ndayiragije, F; Van Assche, W
2013-01-01
Multiple Meixner polynomials are polynomials in one variable which satisfy orthogonality relations with respect to r > 1 different negative binomial distributions (Pascal distributions). There are two kinds of multiple Meixner polynomials, depending on the selection of the parameters in the negative binomial distribution. We recall their definition and some formulas and give generating functions and explicit expressions for the coefficients in the nearest neighbor recurrence relation. Following a recent construction of Miki, Tsujimoto, Vinet and Zhedanov (for multiple Meixner polynomials of the first kind), we construct r > 1 non-Hermitian oscillator Hamiltonians in r dimensions which are simultaneously diagonalizable and for which the common eigenstates are expressed in terms of multiple Meixner polynomials of the second kind. (paper)
Superiority of legendre polynomials to Chebyshev polynomial in ...
African Journals Online (AJOL)
In this paper, we proved the superiority of Legendre polynomial to Chebyshev polynomial in solving first order ordinary differential equation with rational coefficient. We generated shifted polynomial of Chebyshev, Legendre and Canonical polynomials which deal with solving differential equation by first choosing Chebyshev ...
Local polynomial Whittle estimation of perturbed fractional processes
DEFF Research Database (Denmark)
Frederiksen, Per; Nielsen, Frank; Nielsen, Morten Ørregaard
We propose a semiparametric local polynomial Whittle with noise (LPWN) estimator of the memory parameter in long memory time series perturbed by a noise term which may be serially correlated. The estimator approximates the spectrum of the perturbation as well as that of the short-memory component...... of the signal by two separate polynomials. Including these polynomials we obtain a reduction in the order of magnitude of the bias, but also in‡ate the asymptotic variance of the long memory estimate by a multiplicative constant. We show that the estimator is consistent for d 2 (0; 1), asymptotically normal...... for d ε (0, 3/4), and if the spectral density is infinitely smooth near frequency zero, the rate of convergence can become arbitrarily close to the parametric rate, pn. A Monte Carlo study reveals that the LPWN estimator performs well in the presence of a serially correlated perturbation term...
Bayesian inference of earthquake parameters from buoy data using a polynomial chaos-based surrogate
Giraldi, Loic
2017-04-07
This work addresses the estimation of the parameters of an earthquake model by the consequent tsunami, with an application to the Chile 2010 event. We are particularly interested in the Bayesian inference of the location, the orientation, and the slip of an Okada-based model of the earthquake ocean floor displacement. The tsunami numerical model is based on the GeoClaw software while the observational data is provided by a single DARTⓇ buoy. We propose in this paper a methodology based on polynomial chaos expansion to construct a surrogate model of the wave height at the buoy location. A correlated noise model is first proposed in order to represent the discrepancy between the computational model and the data. This step is necessary, as a classical independent Gaussian noise is shown to be unsuitable for modeling the error, and to prevent convergence of the Markov Chain Monte Carlo sampler. Second, the polynomial chaos model is subsequently improved to handle the variability of the arrival time of the wave, using a preconditioned non-intrusive spectral method. Finally, the construction of a reduced model dedicated to Bayesian inference is proposed. Numerical results are presented and discussed.
Stable piecewise polynomial vector fields
Directory of Open Access Journals (Sweden)
Claudio Pessoa
2012-09-01
Full Text Available Let $N={y>0}$ and $S={y<0}$ be the semi-planes of $mathbb{R}^2$ having as common boundary the line $D={y=0}$. Let $X$ and $Y$ be polynomial vector fields defined in $N$ and $S$, respectively, leading to a discontinuous piecewise polynomial vector field $Z=(X,Y$. This work pursues the stability and the transition analysis of solutions of $Z$ between $N$ and $S$, started by Filippov (1988 and Kozlova (1984 and reformulated by Sotomayor-Teixeira (1995 in terms of the regularization method. This method consists in analyzing a one parameter family of continuous vector fields $Z_{epsilon}$, defined by averaging $X$ and $Y$. This family approaches $Z$ when the parameter goes to zero. The results of Sotomayor-Teixeira and Sotomayor-Machado (2002 providing conditions on $(X,Y$ for the regularized vector fields to be structurally stable on planar compact connected regions are extended to discontinuous piecewise polynomial vector fields on $mathbb{R}^2$. Pertinent genericity results for vector fields satisfying the above stability conditions are also extended to the present case. A procedure for the study of discontinuous piecewise vector fields at infinity through a compactification is proposed here.
Abd-Elhameed, W. M.
2017-07-01
In this paper, a new formula relating Jacobi polynomials of arbitrary parameters with the squares of certain fractional Jacobi functions is derived. The derived formula is expressed in terms of a certain terminating hypergeometric function of the type _4F3(1) . With the aid of some standard reduction formulae such as Pfaff-Saalschütz's and Watson's identities, the derived formula can be reduced in simple forms which are free of any hypergeometric functions for certain choices of the involved parameters of the Jacobi polynomials and the Jacobi functions. Some other simplified formulae are obtained via employing some computer algebra algorithms such as the algorithms of Zeilberger, Petkovsek and van Hoeij. Some connection formulae between some Jacobi polynomials are deduced. From these connection formulae, some other linearization formulae of Chebyshev polynomials are obtained. As an application to some of the introduced formulae, a numerical algorithm for solving nonlinear Riccati differential equation is presented and implemented by applying a suitable spectral method.
Freud, Géza
1971-01-01
Orthogonal Polynomials contains an up-to-date survey of the general theory of orthogonal polynomials. It deals with the problem of polynomials and reveals that the sequence of these polynomials forms an orthogonal system with respect to a non-negative m-distribution defined on the real numerical axis. Comprised of five chapters, the book begins with the fundamental properties of orthogonal polynomials. After discussing the momentum problem, it then explains the quadrature procedure, the convergence theory, and G. Szegő's theory. This book is useful for those who intend to use it as referenc
Describing Quadratic Cremer Point Polynomials by Parabolic Perturbations
DEFF Research Database (Denmark)
Sørensen, Dan Erik Krarup
1996-01-01
We describe two infinite order parabolic perturbation proceduresyielding quadratic polynomials having a Cremer fixed point. The main ideais to obtain the polynomial as the limit of repeated parabolic perturbations.The basic tool at each step is to control the behaviour of certain externalrays.......Polynomials of the Cremer type correspond to parameters at the boundary of ahyperbolic component of the Mandelbrot set. In this paper we concentrate onthe main cardioid component. We investigate the differences between two-sided(i.e. alternating) and one-sided parabolic perturbations.In the two-sided case, we prove...... the existence of polynomials having an explicitlygiven external ray accumulating both at the Cremer point and at its non-periodicpreimage. We think of the Julia set as containing a "topologists double comb".In the one-sided case we prove a weaker result: the existence of polynomials havingan explicitly given...
Orthogonal polynomials derived from the tridiagonal representation approach
Alhaidari, A. D.
2018-01-01
The tridiagonal representation approach is an algebraic method for solving second order differential wave equations. Using this approach in the solution of quantum mechanical problems, we encounter two new classes of orthogonal polynomials whose properties give the structure and dynamics of the corresponding physical system. For a certain range of parameters, one of these polynomials has a mix of continuous and discrete spectra making it suitable for describing physical systems with both scattering and bound states. In this work, we define these polynomials by their recursion relations and highlight some of their properties using numerical means. Due to the prime significance of these polynomials in physics, we hope that our short expose will encourage experts in the field of orthogonal polynomials to study them and derive their properties (weight functions, generating functions, asymptotics, orthogonality relations, zeros, etc.) analytically.
Information-theoretic lengths of Jacobi polynomials
Energy Technology Data Exchange (ETDEWEB)
Guerrero, A; Dehesa, J S [Departamento de Fisica Atomica, Molecular y Nuclear, Universidad de Granada, Granada (Spain); Sanchez-Moreno, P, E-mail: agmartinez@ugr.e, E-mail: pablos@ugr.e, E-mail: dehesa@ugr.e [Instituto ' Carlos I' de Fisica Teorica y Computacional, Universidad de Granada, Granada (Spain)
2010-07-30
The information-theoretic lengths of the Jacobi polynomials P{sup ({alpha}, {beta})}{sub n}(x), which are information-theoretic measures (Renyi, Shannon and Fisher) of their associated Rakhmanov probability density, are investigated. They quantify the spreading of the polynomials along the orthogonality interval [- 1, 1] in a complementary but different way as the root-mean-square or standard deviation because, contrary to this measure, they do not refer to any specific point of the interval. The explicit expressions of the Fisher length are given. The Renyi lengths are found by the use of the combinatorial multivariable Bell polynomials in terms of the polynomial degree n and the parameters ({alpha}, {beta}). The Shannon length, which cannot be exactly calculated because of its logarithmic functional form, is bounded from below by using sharp upper bounds to general densities on [- 1, +1] given in terms of various expectation values; moreover, its asymptotics is also pointed out. Finally, several computational issues relative to these three quantities are carefully analyzed.
Complex Polynomial Vector Fields
DEFF Research Database (Denmark)
Dias, Kealey
vector fields. Since the class of complex polynomial vector fields in the plane is natural to consider, it is remarkable that its study has only begun very recently. There are numerous fundamental questions that are still open, both in the general classification of these vector fields, the decomposition...... of parameter spaces into structurally stable domains, and a description of the bifurcations. For this reason, the talk will focus on these questions for complex polynomial vector fields.......The two branches of dynamical systems, continuous and discrete, correspond to the study of differential equations (vector fields) and iteration of mappings respectively. In holomorphic dynamics, the systems studied are restricted to those described by holomorphic (complex analytic) functions...
Influence of processing parameters on PZT thick films
International Nuclear Information System (INIS)
Huang, Oliver; Bandyopadhyay, Amit; Bose, Susmita
2005-01-01
We have studied influence of processing parameters on the microstructure and ferroelectric properties of lead zirconate titanate (PZT)-based thick films in the range of 5-25 μm. PZT and 2% La-doped PZT thick films were processed using a modified sol-gel process. In this process, PZT- and La-doped PZT powders were first prepared via sol-gel. These powders were calcined and then used with respective sols to form a slurry. Slurry composition was optimized to spin-coat thick films on platinized Si substrate (Si/SiO 2 /Ti/Pt). Spinning rate, acceleration and slurry deposition techniques were optimized to form thick films with uniform thickness and without any cracking. Increasing solids loading was found to enhance the surface smoothness of the film and decrease porosity. Films were tested for their electrical properties and ferroelectric fatigue response. The maximum polarization obtained was 40 μC/cm 2 at 250 kV/cm for PZT thick film and 30 μC/cm 2 at 450 kV/cm for La-doped PZT thick film. After 10 9 cycles of fatiguing at 35 kHz, La-doped PZT showed better resistance for ferroelectric fatigue compared with un-doped PZT films
Global sensitivity analysis by polynomial dimensional decomposition
Energy Technology Data Exchange (ETDEWEB)
Rahman, Sharif, E-mail: rahman@engineering.uiowa.ed [College of Engineering, The University of Iowa, Iowa City, IA 52242 (United States)
2011-07-15
This paper presents a polynomial dimensional decomposition (PDD) method for global sensitivity analysis of stochastic systems subject to independent random input following arbitrary probability distributions. The method involves Fourier-polynomial expansions of lower-variate component functions of a stochastic response by measure-consistent orthonormal polynomial bases, analytical formulae for calculating the global sensitivity indices in terms of the expansion coefficients, and dimension-reduction integration for estimating the expansion coefficients. Due to identical dimensional structures of PDD and analysis-of-variance decomposition, the proposed method facilitates simple and direct calculation of the global sensitivity indices. Numerical results of the global sensitivity indices computed for smooth systems reveal significantly higher convergence rates of the PDD approximation than those from existing methods, including polynomial chaos expansion, random balance design, state-dependent parameter, improved Sobol's method, and sampling-based methods. However, for non-smooth functions, the convergence properties of the PDD solution deteriorate to a great extent, warranting further improvements. The computational complexity of the PDD method is polynomial, as opposed to exponential, thereby alleviating the curse of dimensionality to some extent.
Polynomial fuzzy model-based approach for underactuated surface vessels
DEFF Research Database (Denmark)
Khooban, Mohammad Hassan; Vafamand, Navid; Dragicevic, Tomislav
2018-01-01
The main goal of this study is to introduce a new polynomial fuzzy model-based structure for a class of marine systems with non-linear and polynomial dynamics. The suggested technique relies on a polynomial Takagi–Sugeno (T–S) fuzzy modelling, a polynomial dynamic parallel distributed compensation...... surface vessel (USV). Additionally, in order to overcome the USV control challenges, including the USV un-modelled dynamics, complex nonlinear dynamics, external disturbances and parameter uncertainties, the polynomial fuzzy model representation is adopted. Moreover, the USV-based control structure...... and a sum-of-squares (SOS) decomposition. The new proposed approach is a generalisation of the standard T–S fuzzy models and linear matrix inequality which indicated its effectiveness in decreasing the tracking time and increasing the efficiency of the robust tracking control problem for an underactuated...
Polynomial chaos expansion with random and fuzzy variables
Jacquelin, E.; Friswell, M. I.; Adhikari, S.; Dessombz, O.; Sinou, J.-J.
2016-06-01
A dynamical uncertain system is studied in this paper. Two kinds of uncertainties are addressed, where the uncertain parameters are described through random variables and/or fuzzy variables. A general framework is proposed to deal with both kinds of uncertainty using a polynomial chaos expansion (PCE). It is shown that fuzzy variables may be expanded in terms of polynomial chaos when Legendre polynomials are used. The components of the PCE are a solution of an equation that does not depend on the nature of uncertainty. Once this equation is solved, the post-processing of the data gives the moments of the random response when the uncertainties are random or gives the response interval when the variables are fuzzy. With the PCE approach, it is also possible to deal with mixed uncertainty, when some parameters are random and others are fuzzy. The results provide a fuzzy description of the response statistical moments.
Directory of Open Access Journals (Sweden)
Jin-Seok Lee
2012-01-01
Full Text Available In order to obtain optimum growth conditions for desired thickness and more effective silicon feedstock usage, effects of processing parameters such as preheated substrate temperatures, time intervals, moving velocity of substrates, and Ar gas blowing rates on silicon ribbon thickness were investigated in the horizontal growth process. Most of the parameters strongly affected in the control of ribbon thickness with columnar grain structure depended on the solidification rate. The thickness of the silicon ribbon decreased with an increasing substrate temperature, decreasing time interval, and increasing moving velocity of the substrate. However, the blowing of Ar gas onto a liquid layer existing on the surface of solidified ribbon contributed to achieving smooth surface roughness but did not closely affect the change of ribbon thickness in the case of a blowing rate of ≥0.65 Nm3/h because the thickness of the solidified layer was already determined by the exit height of the reservoir.
Directory of Open Access Journals (Sweden)
S. Vukotic
2016-08-01
Full Text Available Digital polynomial-based interpolation filters implemented using the Farrow structure are used in Digital Signal Processing (DSP to calculate the signal between its discrete samples. The two basic design parameters for these filters are number of polynomial-segments defining the finite length of impulse response, and order of polynomials in each polynomial segment. The complexity of the implementation structure and the frequency domain performance depend on these two parameters. This contribution presents estimation formulae for length and polynomial order of polynomial-based filters for various types of requirements including attenuation in stopband, width of transitions band, deviation in passband, weighting in passband/stopband.
A zero-free interval for chromatic polynomials of graphs with 3-leaf spanning trees
DEFF Research Database (Denmark)
Perrett, Thomas
2016-01-01
It is proved that if G is a graph containing a spanning tree with at most three leaves, then the chromatic polynomial of G has no roots in the interval (1,t1], where t1≈1.2904 is the smallest real root of the polynomial (t-2)6+4(t-1)2 (t-2)3-(t-1)4. We also construct a family of graphs containing...
A set of sums for continuous dual q-2-Hahn polynomials
International Nuclear Information System (INIS)
Gade, R. M.
2009-01-01
An infinite set {τ (l) (y;r,z)} r,lisanelementofN 0 of linear sums of continuous dual q -2 -Hahn polynomials with prefactors depending on a complex parameter z is studied. The sums τ (l) (y;r,z) have an interpretation in context with tensor product representations of the quantum affine algebra U q ' (sl(2)) involving both a positive and a negative discrete series representation. For each l>0, the sum τ (l) (y;r,z) can be expressed in terms of the sum τ (0) (y;r,z), continuous dual q 2 -Hahn polynomials, and their associated polynomials. The sum τ (0) (y;r,z) is obtained as a combination of eight basic hypergeometric series. Moreover, an integral representation is provided for the sums τ (l) (y;r,z) with the complex parameter restricted by |zq| -2 -Hahn polynomials.
Need for higher order polynomial basis for polynomial nodal methods employed in LWR calculations
International Nuclear Information System (INIS)
Taiwo, T.A.; Palmiotti, G.
1997-01-01
The paper evaluates the accuracy and efficiency of sixth order polynomial solutions and the use of one radial node per core assembly for pressurized water reactor (PWR) core power distributions and reactivities. The computer code VARIANT was modified to calculate sixth order polynomial solutions for a hot zero power benchmark problem in which a control assembly along a core axis is assumed to be out of the core. Results are presented for the VARIANT, DIF3D-NODAL, and DIF3D-finite difference codes. The VARIANT results indicate that second order expansion of the within-node source and linear representation of the node surface currents are adequate for this problem. The results also demonstrate the improvement in the VARIANT solution when the order of the polynomial expansion of the within-node flux is increased from fourth to sixth order. There is a substantial saving in computational time for using one radial node per assembly with the sixth order expansion compared to using four or more nodes per assembly and fourth order polynomial solutions. 11 refs., 1 tab
Parallel Construction of Irreducible Polynomials
DEFF Research Database (Denmark)
Frandsen, Gudmund Skovbjerg
Let arithmetic pseudo-NC^k denote the problems that can be solved by log space uniform arithmetic circuits over the finite prime field GF(p) of depth O(log^k (n + p)) and size polynomial in (n + p). We show that the problem of constructing an irreducible polynomial of specified degree over GF(p) ...... of polynomials is in arithmetic NC^3. Our algorithm works over any field and compared to other known algorithms it does not assume the ability to take p'th roots when the field has characteristic p....
A Posteriori Error Analysis of Stochastic Differential Equations Using Polynomial Chaos Expansions
Butler, T.; Dawson, C.; Wildey, T.
2011-01-01
We develop computable a posteriori error estimates for linear functionals of a solution to a general nonlinear stochastic differential equation with random model/source parameters. These error estimates are based on a variational analysis applied to stochastic Galerkin methods for forward and adjoint problems. The result is a representation for the error estimate as a polynomial in the random model/source parameter. The advantage of this method is that we use polynomial chaos representations for the forward and adjoint systems to cheaply produce error estimates by simple evaluation of a polynomial. By comparison, the typical method of producing such estimates requires repeated forward/adjoint solves for each new choice of random parameter. We present numerical examples showing that there is excellent agreement between these methods. © 2011 Society for Industrial and Applied Mathematics.
Asymptotics for the ratio and the zeros of multiple Charlier polynomials
Ndayiragije, François; Van Assche, Walter
2011-01-01
We investigate multiple Charlier polynomials and in particular we will use the (nearest neighbor) recurrence relation to find the asymptotic behavior of the ratio of two multiple Charlier polynomials. This result is then used to obtain the asymptotic distribution of the zeros, which is uniform on an interval. We also deal with the case where one of the parameters of the various Poisson distributions depend on the degree of the polynomial, in which case we obtain another asymptotic distributio...
Lu, Wenlong; Xie, Junwei; Wang, Heming; Sheng, Chuan
2016-01-01
Inspired by track-before-detection technology in radar, a novel time-frequency transform, namely polynomial chirping Fourier transform (PCFT), is exploited to extract components from noisy multicomponent signal. The PCFT combines advantages of Fourier transform and polynomial chirplet transform to accumulate component energy along a polynomial chirping curve in the time-frequency plane. The particle swarm optimization algorithm is employed to search optimal polynomial parameters with which the PCFT will achieve a most concentrated energy ridge in the time-frequency plane for the target component. The component can be well separated in the polynomial chirping Fourier domain with a narrow-band filter and then reconstructed by inverse PCFT. Furthermore, an iterative procedure, involving parameter estimation, PCFT, filtering and recovery, is introduced to extract components from a noisy multicomponent signal successively. The Simulations and experiments show that the proposed method has better performance in component extraction from noisy multicomponent signal as well as provides more time-frequency details about the analyzed signal than conventional methods.
Irreducible multivariate polynomials obtained from polynomials in ...
Indian Academy of Sciences (India)
Hall, 1409 W. Green Street, Urbana, IL 61801, USA. E-mail: Nicolae. ... Theorem A. If we write an irreducible polynomial f ∈ K[X] as a sum of polynomials a0,..., an ..... This shows us that deg ai = (n − i) deg f2 for each i = 0,..., n, so min k>0.
Dada, Tanuj; Behera, Geeta; Agarwal, Anand; Kumar, Sanjeev; Sihota, Ramanjit; Panda, Anita
2010-01-01
To study the effect of cataract extraction on the retinal nerve fiber layer (RNFL) thickness, and assessment by scanning laser polarimetry (SLP), with variable corneal compensation (GDx VCC), at the glaucoma service of a tertiary care center in North India. Thirty-two eyes of 32 subjects were enrolled in the study. The subjects underwent RNFL analysis by SLP (GDx VCC) before undergoing phacoemulsification cataract extraction with intraocular lens (IOL) implantation (Acrysof SA 60 AT) four weeks following cataract surgery. The RNFL thickness parameters evaluated both before and after surgery included temporal, superior, nasal, inferior, temporal (TSNIT) average, superior average, inferior average, and nerve fiber index (NFI). The mean age of subjects was 57.6 +/- 11.7 years (18 males, 14 females). Mean TSNIT average thickness (microm) pre- and post-cataract surgery was 49.2 +/- 14.1 and 56.5 +/- 7.6 ( P = 0.001). There was a statistically significant increase in RNFL thickness parameters (TSNIT average, superior average, and inferior average) and decrease in NFI post-cataract surgery as compared to the baseline values. Mean NFI pre- and post-cataract surgery was 41.3 +/- 15.3 and 21.6 +/- 11.8 ( P = 0.001). Measurement of RNFL thickness parameters by scanning laser polarimetry is significantly altered following cataract surgery. Post the cataract surgery, a new baseline needs to be established for assessing the longitudinal follow-up of a glaucoma patient. The presence of cataract may lead to an underestimation of the RNFL thickness, and this should be taken into account when analyzing progression in a glaucoma patient.
Algebraic limit cycles in polynomial systems of differential equations
International Nuclear Information System (INIS)
Llibre, Jaume; Zhao Yulin
2007-01-01
Using elementary tools we construct cubic polynomial systems of differential equations with algebraic limit cycles of degrees 4, 5 and 6. We also construct a cubic polynomial system of differential equations having an algebraic homoclinic loop of degree 3. Moreover, we show that there are polynomial systems of differential equations of arbitrary degree that have algebraic limit cycles of degree 3, as well as give an example of a cubic polynomial system of differential equations with two algebraic limit cycles of degree 4
Discrete-time state estimation for stochastic polynomial systems over polynomial observations
Hernandez-Gonzalez, M.; Basin, M.; Stepanov, O.
2018-07-01
This paper presents a solution to the mean-square state estimation problem for stochastic nonlinear polynomial systems over polynomial observations confused with additive white Gaussian noises. The solution is given in two steps: (a) computing the time-update equations and (b) computing the measurement-update equations for the state estimate and error covariance matrix. A closed form of this filter is obtained by expressing conditional expectations of polynomial terms as functions of the state estimate and error covariance. As a particular case, the mean-square filtering equations are derived for a third-degree polynomial system with second-degree polynomial measurements. Numerical simulations show effectiveness of the proposed filter compared to the extended Kalman filter.
Stability analysis of polynomial fuzzy models via polynomial fuzzy Lyapunov functions
Bernal Reza, Miguel Ángel; Sala, Antonio; JAADARI, ABDELHAFIDH; Guerra, Thierry-Marie
2011-01-01
In this paper, the stability of continuous-time polynomial fuzzy models by means of a polynomial generalization of fuzzy Lyapunov functions is studied. Fuzzy Lyapunov functions have been fruitfully used in the literature for local analysis of Takagi-Sugeno models, a particular class of the polynomial fuzzy ones. Based on a recent Taylor-series approach which allows a polynomial fuzzy model to exactly represent a nonlinear model in a compact set of the state space, it is shown that a refinemen...
Solving the interval type-2 fuzzy polynomial equation using the ranking method
Rahman, Nurhakimah Ab.; Abdullah, Lazim
2014-07-01
Polynomial equations with trapezoidal and triangular fuzzy numbers have attracted some interest among researchers in mathematics, engineering and social sciences. There are some methods that have been developed in order to solve these equations. In this study we are interested in introducing the interval type-2 fuzzy polynomial equation and solving it using the ranking method of fuzzy numbers. The ranking method concept was firstly proposed to find real roots of fuzzy polynomial equation. Therefore, the ranking method is applied to find real roots of the interval type-2 fuzzy polynomial equation. We transform the interval type-2 fuzzy polynomial equation to a system of crisp interval type-2 fuzzy polynomial equation. This transformation is performed using the ranking method of fuzzy numbers based on three parameters, namely value, ambiguity and fuzziness. Finally, we illustrate our approach by numerical example.
Critical thickness and strain relaxation in molecular beam epitaxy-grown SrTiO3 films
International Nuclear Information System (INIS)
Wang, Tianqi; Ganguly, Koustav; Marshall, Patrick; Xu, Peng; Jalan, Bharat
2013-01-01
We report on the study of the critical thickness and the strain relaxation in epitaxial SrTiO 3 film grown on (La 0.3 Sr 0.7 )(Al 0.65 Ta 0.35 )O 3 (001) (LSAT) substrate using the hybrid molecular beam epitaxy approach. No change in the film's lattice parameter (both the in-plane and the out-of-plane) was observed up to a film thickness of 180 nm, which is in sharp contrast to the theoretical critical thickness of ∼12 nm calculated using the equilibrium theory of strain relaxation. For film thicknesses greater than 180 nm, the out-of-plane lattice parameter was found to decrease hyperbolically in an excellent agreement with the relaxation via forming misfit dislocations. Possible mechanisms are discussed by which the elastic strain energy can be accommodated prior to forming misfit dislocations leading to such anomalously large critical thickness
Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies
International Nuclear Information System (INIS)
Hampton, Jerrad; Doostan, Alireza
2015-01-01
Sampling orthogonal polynomial bases via Monte Carlo is of interest for uncertainty quantification of models with random inputs, using Polynomial Chaos (PC) expansions. It is known that bounding a probabilistic parameter, referred to as coherence, yields a bound on the number of samples necessary to identify coefficients in a sparse PC expansion via solution to an ℓ 1 -minimization problem. Utilizing results for orthogonal polynomials, we bound the coherence parameter for polynomials of Hermite and Legendre type under their respective natural sampling distribution. In both polynomial bases we identify an importance sampling distribution which yields a bound with weaker dependence on the order of the approximation. For more general orthonormal bases, we propose the coherence-optimal sampling: a Markov Chain Monte Carlo sampling, which directly uses the basis functions under consideration to achieve a statistical optimality among all sampling schemes with identical support. We demonstrate these different sampling strategies numerically in both high-order and high-dimensional, manufactured PC expansions. In addition, the quality of each sampling method is compared in the identification of solutions to two differential equations, one with a high-dimensional random input and the other with a high-order PC expansion. In both cases, the coherence-optimal sampling scheme leads to similar or considerably improved accuracy
Compressive sampling of polynomial chaos expansions: Convergence analysis and sampling strategies
Hampton, Jerrad; Doostan, Alireza
2015-01-01
Sampling orthogonal polynomial bases via Monte Carlo is of interest for uncertainty quantification of models with random inputs, using Polynomial Chaos (PC) expansions. It is known that bounding a probabilistic parameter, referred to as coherence, yields a bound on the number of samples necessary to identify coefficients in a sparse PC expansion via solution to an ℓ1-minimization problem. Utilizing results for orthogonal polynomials, we bound the coherence parameter for polynomials of Hermite and Legendre type under their respective natural sampling distribution. In both polynomial bases we identify an importance sampling distribution which yields a bound with weaker dependence on the order of the approximation. For more general orthonormal bases, we propose the coherence-optimal sampling: a Markov Chain Monte Carlo sampling, which directly uses the basis functions under consideration to achieve a statistical optimality among all sampling schemes with identical support. We demonstrate these different sampling strategies numerically in both high-order and high-dimensional, manufactured PC expansions. In addition, the quality of each sampling method is compared in the identification of solutions to two differential equations, one with a high-dimensional random input and the other with a high-order PC expansion. In both cases, the coherence-optimal sampling scheme leads to similar or considerably improved accuracy.
Planar real polynomial differential systems of degree n > 3 having a weak focus of high order
International Nuclear Information System (INIS)
Llibre, J.; Rabanal, R.
2008-06-01
We construct planar polynomial differential systems of even (respectively odd) degree n > 3, of the form linear plus a nonlinear homogeneous part of degree n having a weak focus of order n 2 -1 (respectively (n 2 -1)/2 ) at the origin. As far as we know this provides the highest order known until now for a weak focus of a polynomial differential system of arbitrary degree n. (author)
Constructing general partial differential equations using polynomial and neural networks.
Zjavka, Ladislav; Pedrycz, Witold
2016-01-01
Sum fraction terms can approximate multi-variable functions on the basis of discrete observations, replacing a partial differential equation definition with polynomial elementary data relation descriptions. Artificial neural networks commonly transform the weighted sum of inputs to describe overall similarity relationships of trained and new testing input patterns. Differential polynomial neural networks form a new class of neural networks, which construct and solve an unknown general partial differential equation of a function of interest with selected substitution relative terms using non-linear multi-variable composite polynomials. The layers of the network generate simple and composite relative substitution terms whose convergent series combinations can describe partial dependent derivative changes of the input variables. This regression is based on trained generalized partial derivative data relations, decomposed into a multi-layer polynomial network structure. The sigmoidal function, commonly used as a nonlinear activation of artificial neurons, may transform some polynomial items together with the parameters with the aim to improve the polynomial derivative term series ability to approximate complicated periodic functions, as simple low order polynomials are not able to fully make up for the complete cycles. The similarity analysis facilitates substitutions for differential equations or can form dimensional units from data samples to describe real-world problems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Coexistence of critical orbit types in sub-hyperbolic polynomial maps
Poirier, Alfredo
1994-01-01
We establish necessary and sufficient conditions for the realization of mapping schemata as post-critically finite polynomials, or more generally, as post-critically finite polynomial maps from a finite union of copies of the complex numbers {\\bf C} to itself which have degree two or more in each copy. As a consequence of these results we prove a transitivity relation between hyperbolic components in parameter space which was conjectured by Milnor.
Uncertainty Quantification in Simulations of Epidemics Using Polynomial Chaos
Directory of Open Access Journals (Sweden)
F. Santonja
2012-01-01
Full Text Available Mathematical models based on ordinary differential equations are a useful tool to study the processes involved in epidemiology. Many models consider that the parameters are deterministic variables. But in practice, the transmission parameters present large variability and it is not possible to determine them exactly, and it is necessary to introduce randomness. In this paper, we present an application of the polynomial chaos approach to epidemiological mathematical models based on ordinary differential equations with random coefficients. Taking into account the variability of the transmission parameters of the model, this approach allows us to obtain an auxiliary system of differential equations, which is then integrated numerically to obtain the first-and the second-order moments of the output stochastic processes. A sensitivity analysis based on the polynomial chaos approach is also performed to determine which parameters have the greatest influence on the results. As an example, we will apply the approach to an obesity epidemic model.
Hamed Kharrati; Sohrab Khanmohammadi; Witold Pedrycz; Ghasem Alizadeh
2012-01-01
This study presents an improved model and controller for nonlinear plants using polynomial fuzzy model-based (FMB) systems. To minimize mismatch between the polynomial fuzzy model and nonlinear plant, the suitable parameters of membership functions are determined in a systematic way. Defining an appropriate fitness function and utilizing Taylor series expansion, a genetic algorithm (GA) is used to form the shape of membership functions in polynomial forms, which are afterwards used in fuzzy m...
Computation of the Likelihood in Biallelic Diffusion Models Using Orthogonal Polynomials
Directory of Open Access Journals (Sweden)
Claus Vogl
2014-11-01
Full Text Available In population genetics, parameters describing forces such as mutation, migration and drift are generally inferred from molecular data. Lately, approximate methods based on simulations and summary statistics have been widely applied for such inference, even though these methods waste information. In contrast, probabilistic methods of inference can be shown to be optimal, if their assumptions are met. In genomic regions where recombination rates are high relative to mutation rates, polymorphic nucleotide sites can be assumed to evolve independently from each other. The distribution of allele frequencies at a large number of such sites has been called “allele-frequency spectrum” or “site-frequency spectrum” (SFS. Conditional on the allelic proportions, the likelihoods of such data can be modeled as binomial. A simple model representing the evolution of allelic proportions is the biallelic mutation-drift or mutation-directional selection-drift diffusion model. With series of orthogonal polynomials, specifically Jacobi and Gegenbauer polynomials, or the related spheroidal wave function, the diffusion equations can be solved efficiently. In the neutral case, the product of the binomial likelihoods with the sum of such polynomials leads to finite series of polynomials, i.e., relatively simple equations, from which the exact likelihoods can be calculated. In this article, the use of orthogonal polynomials for inferring population genetic parameters is investigated.
Polynomial solutions of nonlinear integral equations
International Nuclear Information System (INIS)
Dominici, Diego
2009-01-01
We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials
Polynomial solutions of nonlinear integral equations
Energy Technology Data Exchange (ETDEWEB)
Dominici, Diego [Department of Mathematics, State University of New York at New Paltz, 1 Hawk Dr. Suite 9, New Paltz, NY 12561-2443 (United States)], E-mail: dominicd@newpaltz.edu
2009-05-22
We analyze the polynomial solutions of a nonlinear integral equation, generalizing the work of Bender and Ben-Naim (2007 J. Phys. A: Math. Theor. 40 F9, 2008 J. Nonlinear Math. Phys. 15 (Suppl. 3) 73). We show that, in some cases, an orthogonal solution exists and we give its general form in terms of kernel polynomials.
Variability of silver fir (Abies alba Mill. cones – variability of cone parameters
Directory of Open Access Journals (Sweden)
Aniszewska Monika
2016-09-01
Full Text Available This study aimed at determining the shape of closed silver fir cones from the Jawor Forest District (Wroclaw, based purely on measurements of their length and thickness. Using these two parameters, the most accurate estimations were achieved with a fourth-degree polynomial fitting function. We then calculated the cones’ surface area and volume in three different ways: 1 Using the fourth-degree polynomial shape estimation, 2 Introducing indicators of compliance (k1, k2, k3 to calculate the volume and then comparing it to its actual value as measured in a pitcher filled with water, 3 Comparing the surface area of the cones as calculated with the polynomial function to the value obtained from ratios of indicators of compliance (ratios k4 and k5. We found that the calculated surface area and volume were substantially higher than the corresponding measured values. Test values of cone volume and surface area as calculated by our model were 8% and 5% lower, respectively, compared to direct measurements. We also determined the fir cones apparent density to be 0.8 g·cm-3on average. The gathered data on cone surface area, volume and bulk density is a valuable tool for optimizing the thermal peeling process in mill cabinets to acquire high quality seeds.
Miller, W., Jr.; Li, Q.
2015-04-01
The Wilson and Racah polynomials can be characterized as basis functions for irreducible representations of the quadratic symmetry algebra of the quantum superintegrable system on the 2-sphere, HΨ = EΨ, with generic 3-parameter potential. Clearly, the polynomials are expansion coefficients for one eigenbasis of a symmetry operator L2 of H in terms of an eigenbasis of another symmetry operator L1, but the exact relationship appears not to have been made explicit. We work out the details of the expansion to show, explicitly, how the polynomials arise and how the principal properties of these functions: the measure, 3-term recurrence relation, 2nd order difference equation, duality of these relations, permutation symmetry, intertwining operators and an alternate derivation of Wilson functions - follow from the symmetry of this quantum system. This paper is an exercise to show that quantum mechancal concepts and recurrence relations for Gausian hypergeometrc functions alone suffice to explain these properties; we make no assumptions about the structure of Wilson polynomial/functions, but derive them from quantum principles. There is active interest in the relation between multivariable Wilson polynomials and the quantum superintegrable system on the n-sphere with generic potential, and these results should aid in the generalization. Contracting function space realizations of irreducible representations of this quadratic algebra to the other superintegrable systems one can obtain the full Askey scheme of orthogonal hypergeometric polynomials. All of these contractions of superintegrable systems with potential are uniquely induced by Wigner Lie algebra contractions of so(3, C) and e(2,C). All of the polynomials produced are interpretable as quantum expansion coefficients. It is important to extend this process to higher dimensions.
International Nuclear Information System (INIS)
Miller, W Jr; Li, Q
2015-01-01
The Wilson and Racah polynomials can be characterized as basis functions for irreducible representations of the quadratic symmetry algebra of the quantum superintegrable system on the 2-sphere, HΨ = EΨ, with generic 3-parameter potential. Clearly, the polynomials are expansion coefficients for one eigenbasis of a symmetry operator L 2 of H in terms of an eigenbasis of another symmetry operator L 1 , but the exact relationship appears not to have been made explicit. We work out the details of the expansion to show, explicitly, how the polynomials arise and how the principal properties of these functions: the measure, 3-term recurrence relation, 2nd order difference equation, duality of these relations, permutation symmetry, intertwining operators and an alternate derivation of Wilson functions - follow from the symmetry of this quantum system. This paper is an exercise to show that quantum mechancal concepts and recurrence relations for Gausian hypergeometrc functions alone suffice to explain these properties; we make no assumptions about the structure of Wilson polynomial/functions, but derive them from quantum principles. There is active interest in the relation between multivariable Wilson polynomials and the quantum superintegrable system on the n-sphere with generic potential, and these results should aid in the generalization. Contracting function space realizations of irreducible representations of this quadratic algebra to the other superintegrable systems one can obtain the full Askey scheme of orthogonal hypergeometric polynomials. All of these contractions of superintegrable systems with potential are uniquely induced by Wigner Lie algebra contractions of so(3, C) and e(2,C). All of the polynomials produced are interpretable as quantum expansion coefficients. It is important to extend this process to higher dimensions. (paper)
Orthogonal Polynomials and Special Functions
Assche, Walter
2003-01-01
The set of lectures from the Summer School held in Leuven in 2002 provide an up-to-date account of recent developments in orthogonal polynomials and special functions, in particular for algorithms for computer algebra packages, 3nj-symbols in representation theory of Lie groups, enumeration, multivariable special functions and Dunkl operators, asymptotics via the Riemann-Hilbert method, exponential asymptotics and the Stokes phenomenon. The volume aims at graduate students and post-docs working in the field of orthogonal polynomials and special functions, and in related fields interacting with orthogonal polynomials, such as combinatorics, computer algebra, asymptotics, representation theory, harmonic analysis, differential equations, physics. The lectures are self-contained requiring only a basic knowledge of analysis and algebra, and each includes many exercises.
Exponential-Polynomial Families and the Term Structure of Interest Rates
Filipovic, Damir
2000-01-01
Exponential-polynomial families like the Nelson-Siegel or Svensson family are widely used to estimate the current forward rate curve. We investigate whether these methods go well with inter-temporal modelling. We characterize the consistent Ito processes which have the property to provide an arbitrage free interest rate model when representing the parameters of some bounded exponential-polynomial type function. This includes in particular diffusion processes. We show that there is a strong li...
On the number of polynomial solutions of Bernoulli and Abel polynomial differential equations
Cima, A.; Gasull, A.; Mañosas, F.
2017-12-01
In this paper we determine the maximum number of polynomial solutions of Bernoulli differential equations and of some integrable polynomial Abel differential equations. As far as we know, the tools used to prove our results have not been utilized before for studying this type of questions. We show that the addressed problems can be reduced to know the number of polynomial solutions of a related polynomial equation of arbitrary degree. Then we approach to these equations either applying several tools developed to study extended Fermat problems for polynomial equations, or reducing the question to the computation of the genus of some associated planar algebraic curves.
On generalized Fibonacci and Lucas polynomials
Energy Technology Data Exchange (ETDEWEB)
Nalli, Ayse [Department of Mathematics, Faculty of Sciences, Selcuk University, 42075 Campus-Konya (Turkey)], E-mail: aysenalli@yahoo.com; Haukkanen, Pentti [Department of Mathematics, Statistics and Philosophy, 33014 University of Tampere (Finland)], E-mail: mapehau@uta.fi
2009-12-15
Let h(x) be a polynomial with real coefficients. We introduce h(x)-Fibonacci polynomials that generalize both Catalan's Fibonacci polynomials and Byrd's Fibonacci polynomials and also the k-Fibonacci numbers, and we provide properties for these h(x)-Fibonacci polynomials. We also introduce h(x)-Lucas polynomials that generalize the Lucas polynomials and present properties of these polynomials. In the last section we introduce the matrix Q{sub h}(x) that generalizes the Q-matrix whose powers generate the Fibonacci numbers.
Stabilisation of discrete-time polynomial fuzzy systems via a polynomial lyapunov approach
Nasiri, Alireza; Nguang, Sing Kiong; Swain, Akshya; Almakhles, Dhafer
2018-02-01
This paper deals with the problem of designing a controller for a class of discrete-time nonlinear systems which is represented by discrete-time polynomial fuzzy model. Most of the existing control design methods for discrete-time fuzzy polynomial systems cannot guarantee their Lyapunov function to be a radially unbounded polynomial function, hence the global stability cannot be assured. The proposed control design in this paper guarantees a radially unbounded polynomial Lyapunov functions which ensures global stability. In the proposed design, state feedback structure is considered and non-convexity problem is solved by incorporating an integrator into the controller. Sufficient conditions of stability are derived in terms of polynomial matrix inequalities which are solved via SOSTOOLS in MATLAB. A numerical example is presented to illustrate the effectiveness of the proposed controller.
Topological string partition functions as polynomials
International Nuclear Information System (INIS)
Yamaguchi, Satoshi; Yau Shingtung
2004-01-01
We investigate the structure of the higher genus topological string amplitudes on the quintic hypersurface. It is shown that the partition functions of the higher genus than one can be expressed as polynomials of five generators. We also compute the explicit polynomial forms of the partition functions for genus 2, 3, and 4. Moreover, some coefficients are written down for all genus. (author)
Bai , Shi; Bouvier , Cyril; Kruppa , Alexander; Zimmermann , Paul
2016-01-01
International audience; The general number field sieve (GNFS) is the most efficient algo-rithm known for factoring large integers. It consists of several stages, the first one being polynomial selection. The quality of the selected polynomials can be modelled in terms of size and root properties. We propose a new kind of polynomials for GNFS: with a new degree of freedom, we further improve the size property. We demonstrate the efficiency of our algorithm by exhibiting a better polynomial tha...
On Roots of Polynomials and Algebraically Closed Fields
Directory of Open Access Journals (Sweden)
Schwarzweller Christoph
2017-10-01
Full Text Available In this article we further extend the algebraic theory of polynomial rings in Mizar [1, 2, 3]. We deal with roots and multiple roots of polynomials and show that both the real numbers and finite domains are not algebraically closed [5, 7]. We also prove the identity theorem for polynomials and that the number of multiple roots is bounded by the polynomial’s degree [4, 6].
A map for the thick beam-beam interaction
International Nuclear Information System (INIS)
Irwin, J.; Chen, T.
1995-01-01
The authors give a closed-form expression for the thick beam-beam interaction for a small disruption parameter, as typical in electron-positron storage rings. The dependence on transverse angle and position of the particle trajectory as well as the longitudinal position of collision and the waist-modified shape of the beam distribution are included. Large incident angles, as are present for beam-halo particles or for large crossing-angle geometry, are accurately represented. The closed-form expression is well approximated by polynomials times the complex error function. Comparisons with multi-slice representations show even the first order terms are more accurate than a five slice representation, saving a factor of 5 in computation time
On Dual Gabor Frame Pairs Generated by Polynomials
DEFF Research Database (Denmark)
Christensen, Ole; Rae Young, Kim
2010-01-01
We provide explicit constructions of particularly convenient dual pairs of Gabor frames. We prove that arbitrary polynomials restricted to sufficiently large intervals will generate Gabor frames, at least for small modulation parameters. Unfortunately, no similar function can generate a dual Gabo...
Le Maitre, Olivier
2015-01-07
We address model dimensionality reduction in the Bayesian inference of Gaussian fields, considering prior covariance function with unknown hyper-parameters. The Karhunen-Loeve (KL) expansion of a prior Gaussian process is traditionally derived assuming fixed covariance function with pre-assigned hyperparameter values. Thus, the modes strengths of the Karhunen-Loeve expansion inferred using available observations, as well as the resulting inferred process, dependent on the pre-assigned values for the covariance hyper-parameters. Here, we seek to infer the process and its the covariance hyper-parameters in a single Bayesian inference. To this end, the uncertainty in the hyper-parameters is treated by means of a coordinate transformation, leading to a KL-type expansion on a fixed reference basis of spatial modes, but with random coordinates conditioned on the hyper-parameters. A Polynomial Chaos (PC) expansion of the model prediction is also introduced to accelerate the Bayesian inference and the sampling of the posterior distribution with MCMC method. The PC expansion of the model prediction also rely on a coordinates transformation, enabling us to avoid expanding the dependence of the prediction with respect to the covariance hyper-parameters. We demonstrate the efficiency of the proposed method on a transient diffusion equation by inferring spatially-varying log-diffusivity fields from noisy data.
International Nuclear Information System (INIS)
Freund, P.G.O.
1992-01-01
We establish a previously conjectured connection between p-adics and quantum groups. We find in Sklyanin's two parameter elliptic quantum algebra and its generalizations, the conceptual basis for the Macdonald polynomials, which 'interpolate' between the zonal spherical functions of related real and p-adic symmetric spaces. The elliptic quantum algebras underlie the Z n -Baxter models. We show that in the n→∞ limit, the Jost function for the scattering of first level excitations in the Z n -Baxter model coincides with the Harish-Chandra-like c-function constructed from the Macdonald polynomials associated to the root system A 1 . The partition function of the Z 2 -Baxter model itself is also expressed in terms of this Macdonald-Harish-Chandra c-function albeit in a less simple way. We relate the two parameters q and t of the Macdonald polynomials to the anisotropy and modular parameters of the Baxter model. In particular the p-acid 'regimes' in the Macdonald polynomials correspond to a discrete sequence of XXZ models. We also discuss the possibility of 'q-deforming' Euler products. (orig.)
New link polynomial obtained from octet representation of quantum sl(3) enveloping algebra
International Nuclear Information System (INIS)
Ma Zhongqi.
1989-08-01
The quantum Clebsch-Gordan coefficients for the coproduct 8x8 of the quantum sl(3) enveloping algebra are computed. In the decomposition of the coproduct 8x8, there are two octet representations which are identified by the symmetry in changing the order of the factor octet representations. The corresponding R q matrix, and a new link polynomial are obtained. (author). 14 refs, 3 tabs
On Multiple Polynomials of Capelli Type
Directory of Open Access Journals (Sweden)
S.Y. Antonov
2016-03-01
Full Text Available This paper deals with the class of Capelli polynomials in free associative algebra F{Z} (where F is an arbitrary field, Z is a countable set generalizing the construction of multiple Capelli polynomials. The fundamental properties of the introduced Capelli polynomials are provided. In particular, decomposition of the Capelli polynomials by means of the same type of polynomials is shown. Furthermore, some relations between their T -ideals are revealed. A connection between double Capelli polynomials and Capelli quasi-polynomials is established.
Processing parameters for ZnO-based thick film varistors obtained by screen printing
Directory of Open Access Journals (Sweden)
de la Rubia, M. A.
2006-06-01
Full Text Available Thick film varistors based on the ZnO-Bi2O3-Sb2O3 system have been prepared by screen printing on dense alumina substrates. Different processing parameters like the paste viscosity, burn out and sintering cycles, green and sintered thickness, have been studied to improve the processing of ZnO-based thick film varistors. Starting powders were pre-treated in two different ways in order to control both the Bi-rich liquid phase formation and the excessive volatilization of Bi2O3 during sintering due to the high area/volume ratio of the thick films. Significant changes have been observed in the electrical properties related to the different firing schedule and selection of the starting powders.
Se han preparado varistores basados en el sistema ZnO-Bi2O3-Sb2O3 en forma de lámina gruesa sobre sustratos de alúmina densa. Diferentes parámetros del procesamiento como la viscosidad de la pasta, los ciclos de calcinación y sinterización y el espesor en verde y sinterizado han sido estudiados para mejorar el procesamiento de los varistores basados en ZnO preparados en forma de lámina gruesa. Los polvos de partida fueron pretratados de dos formas diferentes con el objetivo de controlar la formación de la fase líquida rica en bismuto y la excesiva volatilización de Bi2O3 durante la sinterización debida a la alta relación área-volumen de las láminas gruesas. Se han observado cambios significativos en las propiedades eléctricas relacionadas con los diferentes ciclos de calcinado y con la selección de los polvos de partida.
Chromatic polynomials for simplicial complexes
DEFF Research Database (Denmark)
Møller, Jesper Michael; Nord, Gesche
2016-01-01
In this note we consider s s -chromatic polynomials for finite simplicial complexes. When s=1 s=1 , the 1 1 -chromatic polynomial is just the usual graph chromatic polynomial of the 1 1 -skeleton. In general, the s s -chromatic polynomial depends on the s s -skeleton and its value at r...
Sparse grid-based polynomial chaos expansion for aerodynamics of an airfoil with uncertainties
Directory of Open Access Journals (Sweden)
Xiaojing WU
2018-05-01
Full Text Available The uncertainties can generate fluctuations with aerodynamic characteristics. Uncertainty Quantification (UQ is applied to compute its impact on the aerodynamic characteristics. In addition, the contribution of each uncertainty to aerodynamic characteristics should be computed by uncertainty sensitivity analysis. Non-Intrusive Polynomial Chaos (NIPC has been successfully applied to uncertainty quantification and uncertainty sensitivity analysis. However, the non-intrusive polynomial chaos method becomes inefficient as the number of random variables adopted to describe uncertainties increases. This deficiency becomes significant in stochastic aerodynamic analysis considering the geometric uncertainty because the description of geometric uncertainty generally needs many parameters. To solve the deficiency, a Sparse Grid-based Polynomial Chaos (SGPC expansion is used to do uncertainty quantification and sensitivity analysis for stochastic aerodynamic analysis considering geometric and operational uncertainties. It is proved that the method is more efficient than non-intrusive polynomial chaos and Monte Carlo Simulation (MSC method for the stochastic aerodynamic analysis. By uncertainty quantification, it can be learnt that the flow characteristics of shock wave and boundary layer separation are sensitive to the geometric uncertainty in transonic region. The uncertainty sensitivity analysis reveals the individual and coupled effects among the uncertainty parameters. Keywords: Non-intrusive polynomial chaos, Sparse grid, Stochastic aerodynamic analysis, Uncertainty sensitivity analysis, Uncertainty quantification
a Unified Matrix Polynomial Approach to Modal Identification
Allemang, R. J.; Brown, D. L.
1998-04-01
One important current focus of modal identification is a reformulation of modal parameter estimation algorithms into a single, consistent mathematical formulation with a corresponding set of definitions and unifying concepts. Particularly, a matrix polynomial approach is used to unify the presentation with respect to current algorithms such as the least-squares complex exponential (LSCE), the polyreference time domain (PTD), Ibrahim time domain (ITD), eigensystem realization algorithm (ERA), rational fraction polynomial (RFP), polyreference frequency domain (PFD) and the complex mode indication function (CMIF) methods. Using this unified matrix polynomial approach (UMPA) allows a discussion of the similarities and differences of the commonly used methods. the use of least squares (LS), total least squares (TLS), double least squares (DLS) and singular value decomposition (SVD) methods is discussed in order to take advantage of redundant measurement data. Eigenvalue and SVD transformation methods are utilized to reduce the effective size of the resulting eigenvalue-eigenvector problem as well.
Roots of the Chromatic Polynomial
DEFF Research Database (Denmark)
Perrett, Thomas
The chromatic polynomial of a graph G is a univariate polynomial whose evaluation at any positive integer q enumerates the proper q-colourings of G. It was introduced in connection with the famous four colour theorem but has recently found other applications in the field of statistical physics...... extend Thomassen’s technique to the Tutte polynomial and as a consequence, deduce a density result for roots of the Tutte polynomial. This partially answers a conjecture of Jackson and Sokal. Finally, we refocus our attention on the chromatic polynomial and investigate the density of chromatic roots...
Data-driven uncertainty quantification using the arbitrary polynomial chaos expansion
International Nuclear Information System (INIS)
Oladyshkin, S.; Nowak, W.
2012-01-01
We discuss the arbitrary polynomial chaos (aPC), which has been subject of research in a few recent theoretical papers. Like all polynomial chaos expansion techniques, aPC approximates the dependence of simulation model output on model parameters by expansion in an orthogonal polynomial basis. The aPC generalizes chaos expansion techniques towards arbitrary distributions with arbitrary probability measures, which can be either discrete, continuous, or discretized continuous and can be specified either analytically (as probability density/cumulative distribution functions), numerically as histogram or as raw data sets. We show that the aPC at finite expansion order only demands the existence of a finite number of moments and does not require the complete knowledge or even existence of a probability density function. This avoids the necessity to assign parametric probability distributions that are not sufficiently supported by limited available data. Alternatively, it allows modellers to choose freely of technical constraints the shapes of their statistical assumptions. Our key idea is to align the complexity level and order of analysis with the reliability and detail level of statistical information on the input parameters. We provide conditions for existence and clarify the relation of the aPC to statistical moments of model parameters. We test the performance of the aPC with diverse statistical distributions and with raw data. In these exemplary test cases, we illustrate the convergence with increasing expansion order and, for the first time, with increasing reliability level of statistical input information. Our results indicate that the aPC shows an exponential convergence rate and converges faster than classical polynomial chaos expansion techniques.
A note on some identities of derangement polynomials.
Kim, Taekyun; Kim, Dae San; Jang, Gwan-Woo; Kwon, Jongkyum
2018-01-01
The problem of counting derangements was initiated by Pierre Rémond de Montmort in 1708 (see Carlitz in Fibonacci Q. 16(3):255-258, 1978, Clarke and Sved in Math. Mag. 66(5):299-303, 1993, Kim, Kim and Kwon in Adv. Stud. Contemp. Math. (Kyungshang) 28(1):1-11 2018. A derangement is a permutation that has no fixed points, and the derangement number [Formula: see text] is the number of fixed-point-free permutations on an n element set. In this paper, we study the derangement polynomials and investigate some interesting properties which are related to derangement numbers. Also, we study two generalizations of derangement polynomials, namely higher-order and r -derangement polynomials, and show some relations between them. In addition, we express several special polynomials in terms of the higher-order derangement polynomials by using umbral calculus.
Establishing some Correlations between Certain Morphometric Parameters and Embryo Quality
Directory of Open Access Journals (Sweden)
Nicolae Păcală
2011-05-01
Full Text Available The aim of this paper was to establish some correlations between certain morphometric parameters and embryo quality. The morphometric parameters taken into consideration were: zona pellucida thickness, outer and inner diameter, and outer and inner perimeter. For experiments we used embryos recovered at 24 hours from mouse females superovulated with gonadotrope hormones (eCG and hCG. The embryos recovered were cultivated in KSOM media, supplemented with amino acids, and during the in vitro cultivation they were measured at different time intervals for establishing morphometric parameters. The data obtained were statistically analyzed using Minitab 15, using Fitted Line Plot regression that allows testing of the linear and polynomial regression of one variable. After statistical analyze of the data we found that the thickness of the zona pellucida can constitute a morphometric parameter that can be used as an indicator of subsequent development of the 2 cell embryos to morula and blastocyst stage respectively. The other morphometric parameters studied (outer and inner diameter, and outer and inner perimeter cannot be used as indicators of the embryo development.
Representations for the extreme zeros of orthogonal polynomials
van Doorn, Erik A.; van Foreest, Nicky D.; Zeifman, Alexander I.
2009-01-01
We establish some representations for the smallest and largest zeros of orthogonal polynomials in terms of the parameters in the three-terms recurrence relation. As a corollary we obtain representations for the endpoints of the true interval of orthogonality. Implications of these results for the
Sibling curves of quadratic polynomials | Wiggins | Quaestiones ...
African Journals Online (AJOL)
Sibling curves were demonstrated in [1, 2] as a novel way to visualize the zeroes of real valued functions. In [3] it was shown that a polynomial of degree n has n sibling curves. This paper focuses on the algebraic and geometric properites of the sibling curves of real and complex quadratic polynomials. Key words: Quadratic ...
General Reducibility and Solvability of Polynomial Equations ...
African Journals Online (AJOL)
General Reducibility and Solvability of Polynomial Equations. ... Unlike quadratic, cubic, and quartic polynomials, the general quintic and higher degree polynomials cannot be solved algebraically in terms of finite number of additions, ... Galois Theory, Solving Polynomial Systems, Polynomial factorization, Polynomial Ring ...
Certain non-linear differential polynomials sharing a non zero polynomial
Directory of Open Access Journals (Sweden)
Majumder Sujoy
2015-10-01
functions sharing a nonzero polynomial and obtain two results which improves and generalizes the results due to L. Liu [Uniqueness of meromorphic functions and differential polynomials, Comput. Math. Appl., 56 (2008, 3236-3245.] and P. Sahoo [Uniqueness and weighted value sharing of meromorphic functions, Applied. Math. E-Notes., 11 (2011, 23-32.].
Free and Forced Vibrations of Thick-Walled Anisotropic Cylindrical Shells
Marchuk, A. V.; Gnedash, S. V.; Levkovskii, S. A.
2017-03-01
Two approaches to studying the free and forced axisymmetric vibrations of cylindrical shell are proposed. They are based on the three-dimensional theory of elasticity and division of the original cylindrical shell with concentric cross-sectional circles into several coaxial cylindrical shells. One approach uses linear polynomials to approximate functions defined in plan and across the thickness. The other approach also uses linear polynomials to approximate functions defined in plan, but their variation with thickness is described by the analytical solution of a system of differential equations. Both approaches have approximation and arithmetic errors. When determining the natural frequencies by the semi-analytical finite-element method in combination with the divide and conqure method, it is convenient to find the initial frequencies by the finite-element method. The behavior of the shell during free and forced vibrations is analyzed in the case where the loading area is half the shell thickness
Polynomial Heisenberg algebras
International Nuclear Information System (INIS)
Carballo, Juan M; C, David J Fernandez; Negro, Javier; Nieto, Luis M
2004-01-01
Polynomial deformations of the Heisenberg algebra are studied in detail. Some of their natural realizations are given by the higher order susy partners (and not only by those of first order, as is already known) of the harmonic oscillator for even-order polynomials. Here, it is shown that the susy partners of the radial oscillator play a similar role when the order of the polynomial is odd. Moreover, it will be proved that the general systems ruled by such kinds of algebras, in the quadratic and cubic cases, involve Painleve transcendents of types IV and V, respectively
M-Polynomials and Topological Indices of Dominating David Derived Networks
Directory of Open Access Journals (Sweden)
Kang Shin Min
2018-03-01
Full Text Available There is a strong relationship between the chemical characteristics of chemical compounds and their molecular structures. Topological indices are numerical values associated with the chemical molecular graphs that help to understand the physical features, chemical reactivity, and biological activity of chemical compound. Thus, the study of the topological indices is important. M-polynomial helps to recover many degree-based topological indices for example Zagreb indices, Randic index, symmetric division idex, inverse sum index etc. In this article we compute M-polynomials of dominating David derived networks of the first type, second type and third type of dimension n and find some topological properties by using these M-polynomials. The results are plotted using Maple to see the dependence of topological indices on the involved parameters.
Polynomial optimization : Error analysis and applications
Sun, Zhao
2015-01-01
Polynomial optimization is the problem of minimizing a polynomial function subject to polynomial inequality constraints. In this thesis we investigate several hierarchies of relaxations for polynomial optimization problems. Our main interest lies in understanding their performance, in particular how
Birth-death processes and associated polynomials
van Doorn, Erik A.
2003-01-01
We consider birth-death processes on the nonnegative integers and the corresponding sequences of orthogonal polynomials called birth-death polynomials. The sequence of associated polynomials linked with a sequence of birth-death polynomials and its orthogonalizing measure can be used in the analysis
Papadopoulos, Anthony
2009-01-01
The first-degree power-law polynomial function is frequently used to describe activity metabolism for steady swimming animals. This function has been used in hydrodynamics-based metabolic studies to evaluate important parameters of energetic costs, such as the standard metabolic rate and the drag power indices. In theory, however, the power-law polynomial function of any degree greater than one can be used to describe activity metabolism for steady swimming animals. In fact, activity metabolism has been described by the conventional exponential function and the cubic polynomial function, although only the power-law polynomial function models drag power since it conforms to hydrodynamic laws. Consequently, the first-degree power-law polynomial function yields incorrect parameter values of energetic costs if activity metabolism is governed by the power-law polynomial function of any degree greater than one. This issue is important in bioenergetics because correct comparisons of energetic costs among different steady swimming animals cannot be made unless the degree of the power-law polynomial function derives from activity metabolism. In other words, a hydrodynamics-based functional form of activity metabolism is a power-law polynomial function of any degree greater than or equal to one. Therefore, the degree of the power-law polynomial function should be treated as a parameter, not as a constant. This new treatment not only conforms to hydrodynamic laws, but also ensures correct comparisons of energetic costs among different steady swimming animals. Furthermore, the exponential power-law function, which is a new hydrodynamics-based functional form of activity metabolism, is a special case of the power-law polynomial function. Hence, the link between the hydrodynamics of steady swimming and the exponential-based metabolic model is defined.
Directory of Open Access Journals (Sweden)
Anthony Papadopoulos
Full Text Available The first-degree power-law polynomial function is frequently used to describe activity metabolism for steady swimming animals. This function has been used in hydrodynamics-based metabolic studies to evaluate important parameters of energetic costs, such as the standard metabolic rate and the drag power indices. In theory, however, the power-law polynomial function of any degree greater than one can be used to describe activity metabolism for steady swimming animals. In fact, activity metabolism has been described by the conventional exponential function and the cubic polynomial function, although only the power-law polynomial function models drag power since it conforms to hydrodynamic laws. Consequently, the first-degree power-law polynomial function yields incorrect parameter values of energetic costs if activity metabolism is governed by the power-law polynomial function of any degree greater than one. This issue is important in bioenergetics because correct comparisons of energetic costs among different steady swimming animals cannot be made unless the degree of the power-law polynomial function derives from activity metabolism. In other words, a hydrodynamics-based functional form of activity metabolism is a power-law polynomial function of any degree greater than or equal to one. Therefore, the degree of the power-law polynomial function should be treated as a parameter, not as a constant. This new treatment not only conforms to hydrodynamic laws, but also ensures correct comparisons of energetic costs among different steady swimming animals. Furthermore, the exponential power-law function, which is a new hydrodynamics-based functional form of activity metabolism, is a special case of the power-law polynomial function. Hence, the link between the hydrodynamics of steady swimming and the exponential-based metabolic model is defined.
Extended biorthogonal matrix polynomials
Directory of Open Access Journals (Sweden)
Ayman Shehata
2017-01-01
Full Text Available The pair of biorthogonal matrix polynomials for commutative matrices were first introduced by Varma and Tasdelen in [22]. The main aim of this paper is to extend the properties of the pair of biorthogonal matrix polynomials of Varma and Tasdelen and certain generating matrix functions, finite series, some matrix recurrence relations, several important properties of matrix differential recurrence relations, biorthogonality relations and matrix differential equation for the pair of biorthogonal matrix polynomials J(A,B n (x, k and K(A,B n (x, k are discussed. For the matrix polynomials J(A,B n (x, k, various families of bilinear and bilateral generating matrix functions are constructed in the sequel.
Computing derivative-based global sensitivity measures using polynomial chaos expansions
International Nuclear Information System (INIS)
Sudret, B.; Mai, C.V.
2015-01-01
In the field of computer experiments sensitivity analysis aims at quantifying the relative importance of each input parameter (or combinations thereof) of a computational model with respect to the model output uncertainty. Variance decomposition methods leading to the well-known Sobol' indices are recognized as accurate techniques, at a rather high computational cost though. The use of polynomial chaos expansions (PCE) to compute Sobol' indices has allowed to alleviate the computational burden though. However, when dealing with large dimensional input vectors, it is good practice to first use screening methods in order to discard unimportant variables. The derivative-based global sensitivity measures (DGSMs) have been developed recently in this respect. In this paper we show how polynomial chaos expansions may be used to compute analytically DGSMs as a mere post-processing. This requires the analytical derivation of derivatives of the orthonormal polynomials which enter PC expansions. Closed-form expressions for Hermite, Legendre and Laguerre polynomial expansions are given. The efficiency of the approach is illustrated on two well-known benchmark problems in sensitivity analysis. - Highlights: • Derivative-based global sensitivity measures (DGSM) have been developed for screening purpose. • Polynomial chaos expansions (PC) are used as a surrogate model of the original computational model. • From a PC expansion the DGSM can be computed analytically. • The paper provides the derivatives of Hermite, Legendre and Laguerre polynomials for this purpose
Bannai-Ito polynomials and dressing chains
Derevyagin, Maxim; Tsujimoto, Satoshi; Vinet, Luc; Zhedanov, Alexei
2012-01-01
Schur-Delsarte-Genin (SDG) maps and Bannai-Ito polynomials are studied. SDG maps are related to dressing chains determined by quadratic algebras. The Bannai-Ito polynomials and their kernel polynomials -- the complementary Bannai-Ito polynomials -- are shown to arise in the framework of the SDG maps.
Imaging characteristics of Zernike and annular polynomial aberrations.
Mahajan, Virendra N; Díaz, José Antonio
2013-04-01
The general equations for the point-spread function (PSF) and optical transfer function (OTF) are given for any pupil shape, and they are applied to optical imaging systems with circular and annular pupils. The symmetry properties of the PSF, the real and imaginary parts of the OTF, and the modulation transfer function (MTF) of a system with a circular pupil aberrated by a Zernike circle polynomial aberration are derived. The interferograms and PSFs are illustrated for some typical polynomial aberrations with a sigma value of one wave, and 3D PSFs and MTFs are shown for 0.1 wave. The Strehl ratio is also calculated for polynomial aberrations with a sigma value of 0.1 wave, and shown to be well estimated from the sigma value. The numerical results are compared with the corresponding results in the literature. Because of the same angular dependence of the corresponding annular and circle polynomial aberrations, the symmetry properties of systems with annular pupils aberrated by an annular polynomial aberration are the same as those for a circular pupil aberrated by a corresponding circle polynomial aberration. They are also illustrated with numerical examples.
Effects of X-ray tube parameters on thickness measure precision in X-ray profile gauge
International Nuclear Information System (INIS)
Miao Jichen; Wu Zhifang; Xing Guilai
2011-01-01
Instantaneous profile gauge technology has been widely used in metallurgy industry because it can on-line get the profile of steel strip. It has characters of high measure precision and wide measure range, but the X-ray tube parameters only can be set few different values during measurement. The relations of thickness measure precision and X-ray tube current, X-ray tube voltage were analyzed. The results show that the X-ray tube current affects the thickness measure precision and the X-ray tube voltage determines the thickness measure range. The method of estimating the X-ray current by thickness measure precision was provided in the end. This method is the base of X-ray source selection and X-ray source parameter's setting in the instantaneous profile gauge. (authors)
Directory of Open Access Journals (Sweden)
Hamed Kharrati
2012-01-01
Full Text Available This study presents an improved model and controller for nonlinear plants using polynomial fuzzy model-based (FMB systems. To minimize mismatch between the polynomial fuzzy model and nonlinear plant, the suitable parameters of membership functions are determined in a systematic way. Defining an appropriate fitness function and utilizing Taylor series expansion, a genetic algorithm (GA is used to form the shape of membership functions in polynomial forms, which are afterwards used in fuzzy modeling. To validate the model, a controller based on proposed polynomial fuzzy systems is designed and then applied to both original nonlinear plant and fuzzy model for comparison. Additionally, stability analysis for the proposed polynomial FMB control system is investigated employing Lyapunov theory and a sum of squares (SOS approach. Moreover, the form of the membership functions is considered in stability analysis. The SOS-based stability conditions are attained using SOSTOOLS. Simulation results are also given to demonstrate the effectiveness of the proposed method.
Root and Critical Point Behaviors of Certain Sums of Polynomials
Indian Academy of Sciences (India)
13
There is an extensive literature concerning roots of sums of polynomials. Many papers and books([5], [6],. [7]) have written about these polynomials. Perhaps the most immediate question of sums of polynomials,. A + B = C, is “given bounds for the roots of A and B, what bounds can be given for the roots of C?” By. Fell [3], if ...
Tripathi, Ravi P.; Zulfequar, M.; Khan, Shamshad A.
2018-04-01
Our aim is to study the thickness dependent effects on structure, electrical and optical properties of Se85In12Bi3 nanochalcogenide thin films. Bulk alloy of Se85In12Bi3 was synthesized by melt-quenching technique. The amorphous as well as glassy nature of Se85In12Bi3 chalcogenide was confirmed by non-isothermal Differential Scanning Calorimetry (DSC) measurements. The nanochalcogenide thin films of thickness 30, 60 and 90 nm were prepared on glass/Si wafer substrate using Physical Vapour Condensation Technique (PVCT). From XRD studies it was found that thin films have amorphous texture. The surface morphology and particle size of films were studied by Field Emission Scanning Electron Microscope (FESEM). From optical studies, different optical parameters were estimated for Se85In12Bi3 thin films at different thickness. It was found that the absorption coefficient (α) and extinction coefficient (k) increases with photon energy and decreases with film thickness. The optical absorption process followed the rule of indirect transitions and optical band gap were found to be increase with film thickness. The value of Urbach energy (Et) and steepness parameter (σ) were also calculated for different film thickness. For electrical studies, dc-conductivity measurement was done at different temperature and activation energy (ΔEc) were determined and found to be increase with film thickness.
Vortices and polynomials: non-uniqueness of the Adler–Moser polynomials for the Tkachenko equation
International Nuclear Information System (INIS)
Demina, Maria V; Kudryashov, Nikolai A
2012-01-01
Stationary and translating relative equilibria of point vortices in the plane are studied. It is shown that stationary equilibria of any system containing point vortices with arbitrary choice of circulations can be described with the help of the Tkachenko equation. It is also obtained that translating relative equilibria of point vortices with arbitrary circulations can be constructed using a generalization of the Tkachenko equation. Roots of any pair of polynomials solving the Tkachenko equation and the generalized Tkachenko equation are proved to give positions of point vortices in stationary and translating relative equilibria accordingly. These results are valid even if the polynomials in a pair have multiple or common roots. It is obtained that the Adler–Moser polynomial provides non-unique polynomial solutions of the Tkachenko equation. It is shown that the generalized Tkachenko equation possesses polynomial solutions with degrees that are not triangular numbers. (paper)
Directory of Open Access Journals (Sweden)
Anantha Krishna G. L.
2018-01-01
Full Text Available Neodymium – Iron – Boron (NdFeB permanent magnets of 12.5 mm thickness and 50 mm diameter are chosen for analyses because of their higher remanence and coercivity. Experimental analyses were carried out with Copper discs of thickness 4 mm, 6 mm and 8 mm at 2000 rpm, 3000 rpm, 4000 rpm and 5000 rpm. Experiments were conducted with three different positions of magnets such as 2 coaxial magnets, single magnet and single magnet with sudden application conditions. The brake parameters recorded are % speed reduction, deceleration and time taken. In 2 coaxial magnets condition, brake parameters are better in 6 mm thick disc. In single magnet condition, the brake parameters in 6 mm thick disc are found to be more consistent than 4 mm and 8 mm thick discs. In single magnet with sudden application condition, in 4 mm thick disc, the brake parameters are found better. During analysis, very high repulsion was experienced by magnet with 8 mm thick Copper disc at all the above mentioned speeds in single magnet with sudden application condition. For high speed train applications, single magnet condition with 6mm thick disc may be suitable. For high speed automotive applications, single magnet with sudden application condition with 4 mm thick disc may be suitable.
Dielectric enhancement of PbZr{sub 0.3}Ti{sub 0.7}O{sub 3}/LaNiO{sub 3} multilayer thick film
Energy Technology Data Exchange (ETDEWEB)
Fan, Yasong; Chen, Xiaoyang; Habibul, Arzigul; Zhang, Danyang; Yu, Ping [College of Materials Science and Engineering, Sichuan University, Chengdu, 610064 (China)
2016-08-15
Multilayer thick films (∝4 μm) with compositional PbZr{sub 0.3}Ti{sub 0.7}O{sub 3}/LaNiO{sub 3} layers and one-layer PZT thick films were prepared on the silicon substrate by radio-frequency magnetron sputtering. PbZr{sub 0.3}Ti{sub 0.7}O{sub 3}/LaNiO{sub 3} multilayer thick film are characterized by highly preferential (100)-oriented growth and columnar microstructure due to alternately introducing LaNiO{sub 3} seeding layers. The effects of LaNiO{sub 3} layers on microstructure and electrical properties of PbZr{sub 0.3}Ti{sub 0.7}O{sub 3} thick films were investigated in detail. The results show that both PZT and PbZr{sub 0.3}Ti{sub 0.7}O{sub 3}/LaNiO{sub 3} multilayer thick film were pure perovskite crystalline phase. The PbZr{sub 0.3}Ti{sub 0.7}O{sub 3} film texture was dense and well adhered on the LaNiO{sub 3} layer. PbZr{sub 0.3}Ti{sub 0.7}O{sub 3}/LaNiO{sub 3} multilayer thick film possessed obvious enhanced dielectric properties compared with PZT thick film: ε{sub r} ∝2450 (10 kHz) and tanδ ∝0.02 (10 kHz). Rayleigh law was used to analysis the behavior of the enhanced dielectric properties and the pinched-shaped polarization-electric field hysteresis loops. The larger Rayleigh parameter, α ∝51.1408 cm kV{sup -1} (1 kHz) indicates the larger extrinsic contribution to permittivity and strong domain-wall-defect charge interaction. The leakage current behaviors of the multilayer thick film were also investigated in detail. (copyright 2016 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)
Bayesian inference of earthquake parameters from buoy data using a polynomial chaos-based surrogate
Giraldi, Loic; Le Maî tre, Olivier P.; Mandli, Kyle T.; Dawson, Clint N.; Hoteit, Ibrahim; Knio, Omar
2017-01-01
on polynomial chaos expansion to construct a surrogate model of the wave height at the buoy location. A correlated noise model is first proposed in order to represent the discrepancy between the computational model and the data. This step is necessary, as a
The algebra of Weyl symmetrised polynomials and its quantum extension
International Nuclear Information System (INIS)
Gelfand, I.M.; Fairlie, D.B.
1991-01-01
The Algebra of Weyl symmetrised polynomials in powers of Hamiltonian operators P and Q which satisfy canonical commutation relations is constructed. This algebra is shown to encompass all recent infinite dimensional algebras acting on two-dimensional phase space. In particular the Moyal bracket algebra and the Poisson bracket algebra, of which the Moyal is the unique one parameter deformation are shown to be different aspects of this infinite algebra. We propose the introduction of a second deformation, by the replacement of the Heisenberg algebra for P, Q with a q-deformed commutator, and construct algebras of q-symmetrised Polynomials. (orig.)
Generalizations of orthogonal polynomials
Bultheel, A.; Cuyt, A.; van Assche, W.; van Barel, M.; Verdonk, B.
2005-07-01
We give a survey of recent generalizations of orthogonal polynomials. That includes multidimensional (matrix and vector orthogonal polynomials) and multivariate versions, multipole (orthogonal rational functions) variants, and extensions of the orthogonality conditions (multiple orthogonality). Most of these generalizations are inspired by the applications in which they are applied. We also give a glimpse of these applications, which are usually generalizations of applications where classical orthogonal polynomials also play a fundamental role: moment problems, numerical quadrature, rational approximation, linear algebra, recurrence relations, and random matrices.
Stochastic Estimation via Polynomial Chaos
2015-10-01
AFRL-RW-EG-TR-2015-108 Stochastic Estimation via Polynomial Chaos Douglas V. Nance Air Force Research...COVERED (From - To) 20-04-2015 – 07-08-2015 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER Stochastic Estimation via Polynomial Chaos ...This expository report discusses fundamental aspects of the polynomial chaos method for representing the properties of second order stochastic
A polynomial based model for cell fate prediction in human diseases.
Ma, Lichun; Zheng, Jie
2017-12-21
Cell fate regulation directly affects tissue homeostasis and human health. Research on cell fate decision sheds light on key regulators, facilitates understanding the mechanisms, and suggests novel strategies to treat human diseases that are related to abnormal cell development. In this study, we proposed a polynomial based model to predict cell fate. This model was derived from Taylor series. As a case study, gene expression data of pancreatic cells were adopted to test and verify the model. As numerous features (genes) are available, we employed two kinds of feature selection methods, i.e. correlation based and apoptosis pathway based. Then polynomials of different degrees were used to refine the cell fate prediction function. 10-fold cross-validation was carried out to evaluate the performance of our model. In addition, we analyzed the stability of the resultant cell fate prediction model by evaluating the ranges of the parameters, as well as assessing the variances of the predicted values at randomly selected points. Results show that, within both the two considered gene selection methods, the prediction accuracies of polynomials of different degrees show little differences. Interestingly, the linear polynomial (degree 1 polynomial) is more stable than others. When comparing the linear polynomials based on the two gene selection methods, it shows that although the accuracy of the linear polynomial that uses correlation analysis outcomes is a little higher (achieves 86.62%), the one within genes of the apoptosis pathway is much more stable. Considering both the prediction accuracy and the stability of polynomial models of different degrees, the linear model is a preferred choice for cell fate prediction with gene expression data of pancreatic cells. The presented cell fate prediction model can be extended to other cells, which may be important for basic research as well as clinical study of cell development related diseases.
International Nuclear Information System (INIS)
Cooling, C.M.; Williams, M.M.R.; Nygaard, E.T.; Eaton, M.D.
2013-01-01
Highlights: • A point kinetics model for the Medical Isotope Production Reactor is formulated. • Reactivity insertions are simulated using this model. • Polynomial chaos is used to simulate uncertainty in reactor parameters. • The computational efficiency of polynomial chaos is compared to that of Monte Carlo. -- Abstract: This paper models a conceptual Medical Isotope Production Reactor (MIPR) using a point kinetics model which is used to explore power excursions in the event of a reactivity insertion. The effect of uncertainty of key parameters is modelled using intrusive polynomial chaos. It is found that the system is stable against reactivity insertions and power excursions are all bounded and tend towards a new equilibrium state due to the negative feedbacks inherent in Aqueous Homogeneous Reactors (AHRs). The Polynomial Chaos Expansion (PCE) method is found to be much more computationally efficient than that of Monte Carlo simulation in this application
Determination of the paraxial focal length using Zernike polynomials over different apertures
Binkele, Tobias; Hilbig, David; Henning, Thomas; Fleischmann, Friedrich
2017-02-01
The paraxial focal length is still the most important parameter in the design of a lens. As presented at the SPIE Optics + Photonics 2016, the measured focal length is a function of the aperture. The paraxial focal length can be found when the aperture approaches zero. In this work, we investigate the dependency of the Zernike polynomials on the aperture size with respect to 3D space. By this, conventional wavefront measurement systems that apply Zernike polynomial fitting (e.g. Shack-Hartmann-Sensor) can be used to determine the paraxial focal length, too. Since the Zernike polynomials are orthogonal over a unit circle, the aperture used in the measurement has to be normalized. By shrinking the aperture and keeping up with the normalization, the Zernike coefficients change. The relation between these changes and the paraxial focal length are investigated. The dependency of the focal length on the aperture size is derived analytically and evaluated by simulation and measurement of a strong focusing lens. The measurements are performed using experimental ray tracing and a Shack-Hartmann-Sensor. Using experimental ray tracing for the measurements, the aperture can be chosen easily. Regarding the measurements with the Shack-Hartmann- Sensor, the aperture size is fixed. Thus, the Zernike polynomials have to be adapted to use different aperture sizes by the proposed method. By doing this, the paraxial focal length can be determined from the measurements in both cases.
Special polynomials associated with some hierarchies
International Nuclear Information System (INIS)
Kudryashov, Nikolai A.
2008-01-01
Special polynomials associated with rational solutions of a hierarchy of equations of Painleve type are introduced. The hierarchy arises by similarity reduction from the Fordy-Gibbons hierarchy of partial differential equations. Some relations for these special polynomials are given. Differential-difference hierarchies for finding special polynomials are presented. These formulae allow us to obtain special polynomials associated with the hierarchy studied. It is shown that rational solutions of members of the Schwarz-Sawada-Kotera, the Schwarz-Kaup-Kupershmidt, the Fordy-Gibbons, the Sawada-Kotera and the Kaup-Kupershmidt hierarchies can be expressed through special polynomials of the hierarchy studied
Effect of low-Z absorber's thickness on gamma-ray shielding parameters
Energy Technology Data Exchange (ETDEWEB)
Mann, Kulwinder Singh, E-mail: ksmann6268@gmail.com [Department of Applied Sciences, Punjab Technical University, Kapurthala 144601 (India); Department of Physics, D.A.V. College, Bathinda 151001, Punjab (India); Heer, Manmohan Singh [Department of Physics, Kanya Maha Vidyalaya, Jalandhar 144001 (India); Rani, Asha [Department of Applied Sciences, Ferozpur College of Engineering and Technology, Ferozshah, Ferozpur 142052 (India)
2015-10-11
Gamma ray shielding behaviour of any material can be studied by various interaction parameters such as total mass attenuation coefficient (μ{sub m}); half value layer (HVL); tenth value layer (TVL); effective atomic number (Z{sub eff}), electron density (N{sub el}), effective atomic weight (A{sub eff}) and buildup factor. For gamma rays, the accurate measurements of μ{sub m} (cm{sup 2} g{sup −1}) theoretically require perfect narrow beam irradiation geometry. However, the practical geometries used for the experimental investigations deviate from perfect-narrowness thereby the multiple scattered photons cause systematic errors in the measured values of μ{sub m}. Present investigation is an attempt to find the optimum value of absorber thickness (low-Z) for which these errors are insignificant and acceptable. Both experimental and theoretical calculations have been performed to investigate the effect of absorber's thickness on μ{sub m} of six low-Z (10
International Nuclear Information System (INIS)
Calogero, F.
1978-01-01
Let zsub(j)(α, β) be the jth zero of the Jacobi polynomial J sub(n)sup(α,β)(z), and xsub(j) the jth zero of the Hermite polynomial Hsub(n)(x). Then, as t→infinity, zsub(j)(at,bt)=(b-a)/(b+a)+t sup(-1/2)c x sub(j)+t -1 4/3(n+1/2+xsub(j) 2 )(a-b)/(a+b) 2 +0(t sup(-3/2)), with c=(ab)sup(1/2) [(a+b)/2]sup(-3/2) a>0, b>0. This formula implies the limit relation n exclamation mark lim sub(t→infinity) [t sup(-n/2)J sub(n)sup(at,bt) ((b-a)/(b+a)+t sup(-1/2)x)] = [(a+b)c/4]sup(n) Hsub(n)(chi/c). (author)
A Summation Formula for Macdonald Polynomials
de Gier, Jan; Wheeler, Michael
2016-03-01
We derive an explicit sum formula for symmetric Macdonald polynomials. Our expression contains multiple sums over the symmetric group and uses the action of Hecke generators on the ring of polynomials. In the special cases {t = 1} and {q = 0}, we recover known expressions for the monomial symmetric and Hall-Littlewood polynomials, respectively. Other specializations of our formula give new expressions for the Jack and q-Whittaker polynomials.
Energy Technology Data Exchange (ETDEWEB)
Shao, Yan-Lin, E-mail: yanlin.shao@dnvgl.com; Faltinsen, Odd M.
2014-10-01
We propose a new efficient and accurate numerical method based on harmonic polynomials to solve boundary value problems governed by 3D Laplace equation. The computational domain is discretized by overlapping cells. Within each cell, the velocity potential is represented by the linear superposition of a complete set of harmonic polynomials, which are the elementary solutions of Laplace equation. By its definition, the method is named as Harmonic Polynomial Cell (HPC) method. The characteristics of the accuracy and efficiency of the HPC method are demonstrated by studying analytical cases. Comparisons will be made with some other existing boundary element based methods, e.g. Quadratic Boundary Element Method (QBEM) and the Fast Multipole Accelerated QBEM (FMA-QBEM) and a fourth order Finite Difference Method (FDM). To demonstrate the applications of the method, it is applied to some studies relevant for marine hydrodynamics. Sloshing in 3D rectangular tanks, a fully-nonlinear numerical wave tank, fully-nonlinear wave focusing on a semi-circular shoal, and the nonlinear wave diffraction of a bottom-mounted cylinder in regular waves are studied. The comparisons with the experimental results and other numerical results are all in satisfactory agreement, indicating that the present HPC method is a promising method in solving potential-flow problems. The underlying procedure of the HPC method could also be useful in other fields than marine hydrodynamics involved with solving Laplace equation.
International Nuclear Information System (INIS)
Benny, P.G.; Khader, S.A.; Sarma, K.S.S.
2012-01-01
Graphite calorimeters of different thickness in the range of 0.6 mm to 10 mm have been designed and fabricated for the dosimetry of 2 MeV electron beam accelerator. Average absorbed dose in each of the calorimeters of different thickness has been determined. The paper reports a method for selecting calorimeters with suitable thickness for its application as absorbed dose calorimeters and as total energy absorption calorimeters for an electron beam of particular energy. Also it reports, using calorimeters of different thickness, it is possible to estimate various parameters such as energy fluence, average absorbed dose, absorbed dose at any depth in the medium and practical range.
Behera, Laxmi; Chakraverty, S.
2014-03-01
Vibration analysis of nonlocal nanobeams based on Euler-Bernoulli and Timoshenko beam theories is considered. Nonlocal nanobeams are important in the bending, buckling and vibration analyses of beam-like elements in microelectromechanical or nanoelectromechanical devices. Expressions for free vibration of Euler-Bernoulli and Timoshenko nanobeams are established within the framework of Eringen's nonlocal elasticity theory. The problem has been solved previously using finite element method, Chebyshev polynomials in Rayleigh-Ritz method and using other numerical methods. In this study, numerical results for free vibration of nanobeams have been presented using simple polynomials and orthonormal polynomials in the Rayleigh-Ritz method. The advantage of the method is that one can easily handle the specified boundary conditions at the edges. To validate the present analysis, a comparison study is carried out with the results of the existing literature. The proposed method is also validated by convergence studies. Frequency parameters are found for different scaling effect parameters and boundary conditions. The study highlights that small scale effects considerably influence the free vibration of nanobeams. Nonlocal frequency parameters of nanobeams are smaller when compared to the corresponding local ones. Deflection shapes of nonlocal clamped Euler-Bernoulli nanobeams are also incorporated for different scaling effect parameters, which are affected by the small scale effect. Obtained numerical solutions provide a better representation of the vibration behavior of short and stubby micro/nanobeams where the effects of small scale, transverse shear deformation and rotary inertia are significant.
M-Polynomials and Topological Indices of Titania Nanotubes
Directory of Open Access Journals (Sweden)
Mobeen Munir
2016-10-01
Full Text Available Titania is one of the most comprehensively studied nanostructures due to their widespread applications in the production of catalytic, gas sensing, and corrosion-resistant materials. M-polynomial of nanotubes has been vastly investigated, as it produces many degree-based topological indices, which are numerical parameters capturing structural and chemical properties. These indices are used in the development of quantitative structure-activity relationships (QSARs in which the biological activity and other properties of molecules, such as boiling point, stability, strain energy, etc., are correlated with their structure. In this report, we provide M-polynomials of single-walled titania (SW TiO2 nanotubes and recover important topological degree-based indices to theoretically judge these nanotubes. We also plot surfaces associated to single-walled titania (SW TiO2 nanotubes.
Exact polynomial solutions of second order differential equations and their applications
International Nuclear Information System (INIS)
Zhang Yaozhong
2012-01-01
We find all polynomials Z(z) such that the differential equation where X(z), Y(z), Z(z) are polynomials of degree at most 4, 3, 2, respectively, has polynomial solutions S(z) = ∏ n i=1 (z − z i ) of degree n with distinct roots z i . We derive a set of n algebraic equations which determine these roots. We also find all polynomials Z(z) which give polynomial solutions to the differential equation when the coefficients of X(z) and Y(z) are algebraically dependent. As applications to our general results, we obtain the exact (closed-form) solutions of the Schrödinger-type differential equations describing: (1) two Coulombically repelling electrons on a sphere; (2) Schrödinger equation from the kink stability analysis of φ 6 -type field theory; (3) static perturbations for the non-extremal Reissner–Nordström solution; (4) planar Dirac electron in Coulomb and magnetic fields; and (5) O(N) invariant decatic anharmonic oscillator. (paper)
Golden, Ryan; Cho, Ilwoo
2015-01-01
In this paper, we study structure theorems of algebras of symmetric functions. Based on a certain relation on elementary symmetric polynomials generating such algebras, we consider perturbation in the algebras. In particular, we understand generators of the algebras as perturbations. From such perturbations, define injective maps on generators, which induce algebra-monomorphisms (or embeddings) on the algebras. They provide inductive structure theorems on algebras of symmetric polynomials. As...
Dynamic Harmony Search with Polynomial Mutation Algorithm for Valve-Point Economic Load Dispatch
Directory of Open Access Journals (Sweden)
M. Karthikeyan
2015-01-01
mutation (DHSPM algorithm to solve ORPD problem. In DHSPM algorithm the key parameters of HS algorithm like harmony memory considering rate (HMCR and pitch adjusting rate (PAR are changed dynamically and there is no need to predefine these parameters. Additionally polynomial mutation is inserted in the updating step of HS algorithm to favor exploration and exploitation of the search space. The DHSPM algorithm is tested with three power system cases consisting of 3, 13, and 40 thermal units. The computational results show that the DHSPM algorithm is more effective in finding better solutions than other computational intelligence based methods.
Associated polynomials and birth-death processes
van Doorn, Erik A.
2001-01-01
We consider sequences of orthogonal polynomials with positive zeros, and pursue the question of how (partial) knowledge of the orthogonalizing measure for the {\\it associated polynomials} can lead to information about the orthogonalizing measure for the original polynomials, with a view to
New realisation of Preisach model using adaptive polynomial approximation
Liu, Van-Tsai; Lin, Chun-Liang; Wing, Home-Young
2012-09-01
Modelling system with hysteresis has received considerable attention recently due to the increasing accurate requirement in engineering applications. The classical Preisach model (CPM) is the most popular model to demonstrate hysteresis which can be represented by infinite but countable first-order reversal curves (FORCs). The usage of look-up tables is one way to approach the CPM in actual practice. The data in those tables correspond with the samples of a finite number of FORCs. This approach, however, faces two major problems: firstly, it requires a large amount of memory space to obtain an accurate prediction of hysteresis; secondly, it is difficult to derive efficient ways to modify the data table to reflect the timing effect of elements with hysteresis. To overcome, this article proposes the idea of using a set of polynomials to emulate the CPM instead of table look-up. The polynomial approximation requires less memory space for data storage. Furthermore, the polynomial coefficients can be obtained accurately by using the least-square approximation or adaptive identification algorithm, such as the possibility of accurate tracking of hysteresis model parameters.
Migliorati, G.
2013-05-30
In this work we consider the random discrete L^2 projection on polynomial spaces (hereafter RDP) for the approximation of scalar quantities of interest (QOIs) related to the solution of a partial differential equation model with random input parameters. In the RDP technique the QOI is first computed for independent samples of the random input parameters, as in a standard Monte Carlo approach, and then the QOI is approximated by a multivariate polynomial function of the input parameters using a discrete least squares approach. We consider several examples including the Darcy equations with random permeability, the linear elasticity equations with random elastic coefficient, and the Navier--Stokes equations in random geometries and with random fluid viscosity. We show that the RDP technique is well suited to QOIs that depend smoothly on a moderate number of random parameters. Our numerical tests confirm the theoretical findings in [G. Migliorati, F. Nobile, E. von Schwerin, and R. Tempone, Analysis of the Discrete $L^2$ Projection on Polynomial Spaces with Random Evaluations, MOX report 46-2011, Politecnico di Milano, Milano, Italy, submitted], which have shown that, in the case of a single uniformly distributed random parameter, the RDP technique is stable and optimally convergent if the number of sampling points is proportional to the square of the dimension of the polynomial space. Here optimality means that the weighted $L^2$ norm of the RDP error is bounded from above by the best $L^\\\\infty$ error achievable in the given polynomial space, up to logarithmic factors. In the case of several random input parameters, the numerical evidence indicates that the condition on quadratic growth of the number of sampling points could be relaxed to a linear growth and still achieve stable and optimal convergence. This makes the RDP technique very promising for moderately high dimensional uncertainty quantification.
The distribution of particles in the plane dispersed by a simple 3-dimensional diffusion process
DEFF Research Database (Denmark)
Stockmarr, Anders
2002-01-01
densities, and thick-tailed polynomially decreasing densities with infinite mean travel distance from the source, depending on parameter values. The drift in the third coordinate represents gravitation, while the drift in the first and second represents a (constant) wind. Conditions for the density having...
Scattering theory and orthogonal polynomials
International Nuclear Information System (INIS)
Geronimo, J.S.
1977-01-01
The application of the techniques of scattering theory to the study of polynomials orthogonal on the unit circle and a finite segment of the real line is considered. The starting point is the recurrence relations satisfied by the polynomials instead of the orthogonality condition. A set of two two terms recurrence relations for polynomials orthogonal on the real line is presented and used. These recurrence relations play roles analogous to those satisfied by polynomials orthogonal on unit circle. With these recurrence formulas a Wronskian theorem is proved and the Christoffel-Darboux formula is derived. In scattering theory a fundamental role is played by the Jost function. An analogy is deferred of this function and its analytic properties and the locations of its zeros investigated. The role of the analog Jost function in various properties of these orthogonal polynomials is investigated. The techniques of inverse scattering theory are also used. The discrete analogues of the Gelfand-Levitan and Marchenko equations are derived and solved. These techniques are used to calculate asymptotic formulas for the orthogonal polynomials. Finally Szego's theorem on toeplitz and Hankel determinants is proved using the recurrence formulas and some properties of the Jost function. The techniques of inverse scattering theory are used to calculate the correction terms
International Nuclear Information System (INIS)
Milks, Matthew M; Guise, Hubert de
2005-01-01
The construction of su(2) intelligent states is simplified using a polynomial representation of su(2). The cornerstone of the new construction is the diagonalization of a 2 x 2 matrix. The method is sufficiently simple to be easily extended to su(3), where one is required to diagonalize a single 3 x 3 matrix. For two perfectly general su(3) operators, this diagonalization is technically possible but the procedure loses much of its simplicity owing to the algebraic form of the roots of a cubic equation. Simplified expressions can be obtained by specializing the choice of su(3) operators. This simpler construction will be discussed in detail
Fermionic formula for double Kostka polynomials
Liu, Shiyuan
2016-01-01
The $X=M$ conjecture asserts that the $1D$ sum and the fermionic formula coincide up to some constant power. In the case of type $A,$ both the $1D$ sum and the fermionic formula are closely related to Kostka polynomials. Double Kostka polynomials $K_{\\Bla,\\Bmu}(t),$ indexed by two double partitions $\\Bla,\\Bmu,$ are polynomials in $t$ introduced as a generalization of Kostka polynomials. In the present paper, we consider $K_{\\Bla,\\Bmu}(t)$ in the special case where $\\Bmu=(-,\\mu'').$ We formula...
Generalized Freud's equation and level densities with polynomial potential
Boobna, Akshat; Ghosh, Saugata
2013-08-01
We study orthogonal polynomials with weight $\\exp[-NV(x)]$, where $V(x)=\\sum_{k=1}^{d}a_{2k}x^{2k}/2k$ is a polynomial of order 2d. We derive the generalised Freud's equations for $d=3$, 4 and 5 and using this obtain $R_{\\mu}=h_{\\mu}/h_{\\mu -1}$, where $h_{\\mu}$ is the normalization constant for the corresponding orthogonal polynomials. Moments of the density functions, expressed in terms of $R_{\\mu}$, are obtained using Freud's equation and using this, explicit results of level densities as $N\\rightarrow\\infty$ are derived.
Relations between Möbius and coboundary polynomials
Jurrius, R.P.M.J.
2012-01-01
It is known that, in general, the coboundary polynomial and the Möbius polynomial of a matroid do not determine each other. Less is known about more specific cases. In this paper, we will investigate if it is possible that the Möbius polynomial of a matroid, together with the Möbius polynomial of
Matrix product formula for Macdonald polynomials
Cantini, Luigi; de Gier, Jan; Wheeler, Michael
2015-09-01
We derive a matrix product formula for symmetric Macdonald polynomials. Our results are obtained by constructing polynomial solutions of deformed Knizhnik-Zamolodchikov equations, which arise by considering representations of the Zamolodchikov-Faddeev and Yang-Baxter algebras in terms of t-deformed bosonic operators. These solutions are generalized probabilities for particle configurations of the multi-species asymmetric exclusion process, and form a basis of the ring of polynomials in n variables whose elements are indexed by compositions. For weakly increasing compositions (anti-dominant weights), these basis elements coincide with non-symmetric Macdonald polynomials. Our formulas imply a natural combinatorial interpretation in terms of solvable lattice models. They also imply that normalizations of stationary states of multi-species exclusion processes are obtained as Macdonald polynomials at q = 1.
Matrix product formula for Macdonald polynomials
International Nuclear Information System (INIS)
Cantini, Luigi; Gier, Jan de; Michael Wheeler
2015-01-01
We derive a matrix product formula for symmetric Macdonald polynomials. Our results are obtained by constructing polynomial solutions of deformed Knizhnik–Zamolodchikov equations, which arise by considering representations of the Zamolodchikov–Faddeev and Yang–Baxter algebras in terms of t-deformed bosonic operators. These solutions are generalized probabilities for particle configurations of the multi-species asymmetric exclusion process, and form a basis of the ring of polynomials in n variables whose elements are indexed by compositions. For weakly increasing compositions (anti-dominant weights), these basis elements coincide with non-symmetric Macdonald polynomials. Our formulas imply a natural combinatorial interpretation in terms of solvable lattice models. They also imply that normalizations of stationary states of multi-species exclusion processes are obtained as Macdonald polynomials at q = 1. (paper)
Arabic text classification using Polynomial Networks
Directory of Open Access Journals (Sweden)
Mayy M. Al-Tahrawi
2015-10-01
Full Text Available In this paper, an Arabic statistical learning-based text classification system has been developed using Polynomial Neural Networks. Polynomial Networks have been recently applied to English text classification, but they were never used for Arabic text classification. In this research, we investigate the performance of Polynomial Networks in classifying Arabic texts. Experiments are conducted on a widely used Arabic dataset in text classification: Al-Jazeera News dataset. We chose this dataset to enable direct comparisons of the performance of Polynomial Networks classifier versus other well-known classifiers on this dataset in the literature of Arabic text classification. Results of experiments show that Polynomial Networks classifier is a competitive algorithm to the state-of-the-art ones in the field of Arabic text classification.
Generalization of binary tensor product schemes depends upon four parameters
International Nuclear Information System (INIS)
Bashir, R.; Bari, M.; Mustafa, G.
2018-01-01
This article deals with general formulae of parametric and non parametric bivariate subdivision scheme with four parameters. By assigning specific values to those parameters we get some special cases of existing tensor product schemes as well as a new proposed scheme. The behavior of schemes produced by the general formulae is interpolating, approximating and relaxed. Approximating bivariate subdivision schemes produce some other surfaces as compared to interpolating bivariate subdivision schemes. Polynomial reproduction and polynomial generation are desirable properties of subdivision schemes. Capability of polynomial reproduction and polynomial generation is strongly connected with smoothness, sum rules, convergence and approximation order. We also calculate the polynomial generation and polynomial reproduction of 9-point bivariate approximating subdivision scheme. Comparison of polynomial reproduction, polynomial generation and continuity of existing and proposed schemes has also been established. Some numerical examples are also presented to show the behavior of bivariate schemes. (author)
Ceramic thick film humidity sensor based on MgTiO3 + LiF
International Nuclear Information System (INIS)
Kassas, Ahmad; Bernard, Jérôme; Lelièvre, Céline; Besq, Anthony; Guhel, Yannick; Houivet, David; Boudart, Bertrand; Lakiss, Hassan; Hamieh, Tayssir
2013-01-01
Graphical abstract: - Highlights: • The fabricated sensor based on MgTiO 3 + LiF materials used the spin coating technology. • The response time is 70 s to detect variation between 5 and 95% relative humidity. • The addition of Scleroglucan controls the viscosity and decreases the roughness of thick film surface. • This humidity sensor is a promising, low-cost, high-quality, reliable ceramic films, that is highly sensitive to humidity. - Abstract: The feasibility of humidity sensor, consisting of a thick layer of MgTiO 3 /LiF materials on alumina substrate, was studied. The thermal analysis TGA-DTGA and dilatometric analysis worked out to confirm the sintering temperature. An experimental plan was applied to describe the effects of different parameters in the development of the thick film sensor. Structural and microstructural characterizations of the developed thick film were made. Rheological study with different amounts of a thickener (scleroglucan “sclg”), showing the behavior variation, as a function of sclg weight % was illustrated and rapprochement with the results of thickness variation as a function of angular velocity applied in the spin coater. The electrical and dielectric measurements confirmed the sensitivity of the elaborated thick film against moisture, along with low response time
Many-body orthogonal polynomial systems
International Nuclear Information System (INIS)
Witte, N.S.
1997-03-01
The fundamental methods employed in the moment problem, involving orthogonal polynomial systems, the Lanczos algorithm, continued fraction analysis and Pade approximants has been combined with a cumulant approach and applied to the extensive many-body problem in physics. This has yielded many new exact results for many-body systems in the thermodynamic limit - for the ground state energy, for excited state gaps, for arbitrary ground state avenges - and are of a nonperturbative nature. These results flow from a confluence property of the three-term recurrence coefficients arising and define a general class of many-body orthogonal polynomials. These theorems constitute an analytical solution to the Lanczos algorithm in that they are expressed in terms of the three-term recurrence coefficients α and β. These results can also be applied approximately for non-solvable models in the form of an expansion, in a descending series of the system size. The zeroth order order this expansion is just the manifestation of the central limit theorem in which a Gaussian measure and hermite polynomials arise. The first order represents the first non-trivial order, in which classical distribution functions like the binomial distributions arise and the associated class of orthogonal polynomials are Meixner polynomials. Amongst examples of systems which have infinite order in the expansion are q-orthogonal polynomials where q depends on the system size in a particular way. (author)
Jarlebring, E.; Hochstenbach, M.E.
2009-01-01
Several recent methods used to analyze asymptotic stability of delay-differential equations (DDEs) involve determining the eigenvalues of a matrix, a matrix pencil or a matrix polynomial constructed by Kronecker products. Despite some similarities between the different types of these so-called
Simplified polynomial representation of cross sections for reactor calculation
International Nuclear Information System (INIS)
Dias, A.M.; Sakai, M.
1985-01-01
It is shown a simplified representation of a cross section library generated by transport theory using the cell model of Wigner-Seitz for typical PWR fuel elements. The effect of burnup evolution through tables of reference cross sections and the effect of the variation of the reactor operation parameters considered by adjusted polynomials are presented. (M.C.K.) [pt
Congruences concerning Legendre polynomials III
Sun, Zhi-Hong
2010-01-01
Let $p>3$ be a prime, and let $R_p$ be the set of rational numbers whose denominator is coprime to $p$. Let $\\{P_n(x)\\}$ be the Legendre polynomials. In this paper we mainly show that for $m,n,t\\in R_p$ with $m\
International Nuclear Information System (INIS)
Prakash, Deo; Shaaban, E.R.; Shapaan, M.; Mohamed, S.H.; Othman, A.A.; Verma, K.D.
2016-01-01
Highlights: • Combined experimental and theoretical researches on ZnSe Thin Films. • The film thickness and refractive index were determined using envelope method. • The absorption coefficient and the energy gap were calculated. • Dispersion parameters were determined using Wemple-DiDomenico relation. • The third order susceptibility and nonlinear refractive index were calculated. - Abstract: Zinc selenide (ZnSe) thin films with different thicknesses were evaporated onto glass substrates using the thermal evaporation technique. X-ray diffraction analysis confirmed that both the film and powder have cubic zinc-blende structure. The fundamental optical parameters like absorption coefficient, extinction coefficient and band gap were evaluated in transparent region of transmittance and reflectance spectrum. The optical transition of the films was found to be allowed, where the energy gap increased from 2.576 to 2.702 eV with increasing film thickness. Also, the refractive index value increase with increasing film thickness. The refractive indices evaluated through envelope method were extrapolated by Cauchy dispersion relationship over the whole spectra range. Additionally, the dispersion of refractive index was determined in terms of Wemple-DiDomenico single oscillator model. Third order susceptibility and nonlinear refractive index were determined for different thickness of ZnSe thin films.
Energy Technology Data Exchange (ETDEWEB)
Prakash, Deo [School of Computer Science & Engineering, Faculty of Engineering, SMVD University, Kakryal, Katra 182320, J& K (India); Shaaban, E.R., E-mail: esam_ramadan2008@yahoo.com [Physics Department, Faculty of Science, Al-Azhar University, Assiut 71542 (Egypt); Shapaan, M. [Department of Physics, Faculty of Science, Al-Azahar University, Cairo (Egypt); Mohamed, S.H. [Physics Department, Faculty of Science, Sohag University, 82524 Sohag (Egypt); Othman, A.A. [Physics Department, Faculty of Science, Assiut University, Assiut 71516 (Egypt); Verma, K.D., E-mail: kdverma1215868@gmail.com [Material Science Research Laboratory, Department of Physics, S. V. College, Aligarh 202001, U.P. (India)
2016-08-15
Highlights: • Combined experimental and theoretical researches on ZnSe Thin Films. • The film thickness and refractive index were determined using envelope method. • The absorption coefficient and the energy gap were calculated. • Dispersion parameters were determined using Wemple-DiDomenico relation. • The third order susceptibility and nonlinear refractive index were calculated. - Abstract: Zinc selenide (ZnSe) thin films with different thicknesses were evaporated onto glass substrates using the thermal evaporation technique. X-ray diffraction analysis confirmed that both the film and powder have cubic zinc-blende structure. The fundamental optical parameters like absorption coefficient, extinction coefficient and band gap were evaluated in transparent region of transmittance and reflectance spectrum. The optical transition of the films was found to be allowed, where the energy gap increased from 2.576 to 2.702 eV with increasing film thickness. Also, the refractive index value increase with increasing film thickness. The refractive indices evaluated through envelope method were extrapolated by Cauchy dispersion relationship over the whole spectra range. Additionally, the dispersion of refractive index was determined in terms of Wemple-DiDomenico single oscillator model. Third order susceptibility and nonlinear refractive index were determined for different thickness of ZnSe thin films.
International Nuclear Information System (INIS)
Fang, Yuanxing; Lee, Wei Cheat; Canciani, Giacomo E.; Draper, Thomas C.; Al-Bawi, Zainab F.; Bedi, Jasbir S.; Perry, Christopher C.; Chen, Qiao
2015-01-01
Graphical abstract: - Highlights: • A novel method combining electrospinning and electrophoretic deposition was established for the creation of nanostructured semiconductor thin films. • The created thin films displayed a high chemical stability with a controllable thickness. • The PEC water splitting performance of the thin films was optimized by fine-tuning the thickness of the films. • A maximum photoconversion efficiency was achieved by 18 μm nanofibrous thin films. - Abstract: Electrophoretic deposition (EPD) of ground electrospun WO 3 nanofibers was applied to create photoanodes with controlled morphology for the application of photoelectrochemical (PEC) water splitting. The correlations between deposition parameters and film thicknesses were investigated with theoretical models to precisely control the morphology of the nanostructured porous thin film. The photoconversion efficiency was further optimized as a function of film thickness. A maximum photoconversion efficiency of 0.924% from electrospun WO 3 nanofibers that EPD deposited on a substrate was achieved at a film thickness of 18 μm.
On the Laurent polynomial rings
International Nuclear Information System (INIS)
Stefanescu, D.
1985-02-01
We describe some properties of the Laurent polynomial rings in a finite number of indeterminates over a commutative unitary ring. We study some subrings of the Laurent polynomial rings. We finally obtain two cancellation properties. (author)
International Nuclear Information System (INIS)
Aguirre-Hernández, B.; Campos-Cantón, E.; López-Renteria, J.A.; Díaz González, E.C.
2015-01-01
In this paper, we consider characteristic polynomials of n-dimensional systems that determine a segment of polynomials. One parameter is used to characterize this segment of polynomials in order to determine the maximal interval of dissipativity and unstability. Then we apply this result to the generation of a family of attractors based on a class of unstable dissipative systems (UDS) of type affine linear systems. This class of systems is comprised of switched linear systems yielding strange attractors. A family of these chaotic switched systems is determined by the maximal interval of perturbation of the matrix that governs the dynamics for still having scroll attractors
Best polynomial degree reduction on q-lattices with applications to q-orthogonal polynomials
Ait-Haddou, Rachid
2015-06-07
We show that a weighted least squares approximation of q-Bézier coefficients provides the best polynomial degree reduction in the q-L2-norm. We also provide a finite analogue of this result with respect to finite q-lattices and we present applications of these results to q-orthogonal polynomials. © 2015 Elsevier Inc. All rights reserved.
Best polynomial degree reduction on q-lattices with applications to q-orthogonal polynomials
Ait-Haddou, Rachid; Goldman, Ron
2015-01-01
We show that a weighted least squares approximation of q-Bézier coefficients provides the best polynomial degree reduction in the q-L2-norm. We also provide a finite analogue of this result with respect to finite q-lattices and we present applications of these results to q-orthogonal polynomials. © 2015 Elsevier Inc. All rights reserved.
Computing the Alexander Polynomial Numerically
DEFF Research Database (Denmark)
Hansen, Mikael Sonne
2006-01-01
Explains how to construct the Alexander Matrix and how this can be used to compute the Alexander polynomial numerically.......Explains how to construct the Alexander Matrix and how this can be used to compute the Alexander polynomial numerically....
Jeong, Hyunjo; Barnard, Daniel; Cho, Sungjong; Zhang, Shuzeng; Li, Xiongbing
2017-11-01
This paper presents analytical and experimental techniques for accurate determination of the nonlinearity parameter (β) in thick solid samples. When piezoelectric transducers are used for β measurements, the receiver calibration is required to determine the transfer function from which the absolute displacement can be calculated. The measured fundamental and second harmonic displacement amplitudes should be modified to account for beam diffraction and material absorption. All these issues are addressed in this study and the proposed technique is validated through the β measurements of thick solid samples. A simplified self-reciprocity calibration procedure for a broadband receiver is described. The diffraction and attenuation corrections for the fundamental and second harmonics are explicitly derived. Aluminum alloy samples in five different thicknesses (4, 6, 8, 10, 12cm) are prepared and β measurements are made using the finite amplitude, through-transmission method. The effects of diffraction and attenuation corrections on β measurements are systematically investigated. When diffraction and attenuation corrections are all properly made, the variation of β between different thickness samples is found to be less than 3.2%. Copyright © 2017 Elsevier B.V. All rights reserved.
Density of Real Zeros of the Tutte Polynomial
DEFF Research Database (Denmark)
Ok, Seongmin; Perrett, Thomas
2018-01-01
The Tutte polynomial of a graph is a two-variable polynomial whose zeros and evaluations encode many interesting properties of the graph. In this article we investigate the real zeros of the Tutte polynomials of graphs, and show that they form a dense subset of certain regions of the plane. This ....... This is the first density result for the real zeros of the Tutte polynomial in a region of positive volume. Our result almost confirms a conjecture of Jackson and Sokal except for one region which is related to an open problem on flow polynomials.......The Tutte polynomial of a graph is a two-variable polynomial whose zeros and evaluations encode many interesting properties of the graph. In this article we investigate the real zeros of the Tutte polynomials of graphs, and show that they form a dense subset of certain regions of the plane...
Density of Real Zeros of the Tutte Polynomial
DEFF Research Database (Denmark)
Ok, Seongmin; Perrett, Thomas
2017-01-01
The Tutte polynomial of a graph is a two-variable polynomial whose zeros and evaluations encode many interesting properties of the graph. In this article we investigate the real zeros of the Tutte polynomials of graphs, and show that they form a dense subset of certain regions of the plane. This ....... This is the first density result for the real zeros of the Tutte polynomial in a region of positive volume. Our result almost confirms a conjecture of Jackson and Sokal except for one region which is related to an open problem on flow polynomials.......The Tutte polynomial of a graph is a two-variable polynomial whose zeros and evaluations encode many interesting properties of the graph. In this article we investigate the real zeros of the Tutte polynomials of graphs, and show that they form a dense subset of certain regions of the plane...
Energy Technology Data Exchange (ETDEWEB)
Degroote, M. [Rice Univ., Houston, TX (United States); Henderson, T. M. [Rice Univ., Houston, TX (United States); Zhao, J. [Rice Univ., Houston, TX (United States); Dukelsky, J. [Consejo Superior de Investigaciones Cientificas (CSIC), Madrid (Spain). Inst. de Estructura de la Materia; Scuseria, G. E. [Rice Univ., Houston, TX (United States)
2018-01-03
We present a similarity transformation theory based on a polynomial form of a particle-hole pair excitation operator. In the weakly correlated limit, this polynomial becomes an exponential, leading to coupled cluster doubles. In the opposite strongly correlated limit, the polynomial becomes an extended Bessel expansion and yields the projected BCS wavefunction. In between, we interpolate using a single parameter. The e ective Hamiltonian is non-hermitian and this Polynomial Similarity Transformation Theory follows the philosophy of traditional coupled cluster, left projecting the transformed Hamiltonian onto subspaces of the Hilbert space in which the wave function variance is forced to be zero. Similarly, the interpolation parameter is obtained through minimizing the next residual in the projective hierarchy. We rationalize and demonstrate how and why coupled cluster doubles is ill suited to the strongly correlated limit whereas the Bessel expansion remains well behaved. The model provides accurate wave functions with energy errors that in its best variant are smaller than 1% across all interaction stengths. The numerical cost is polynomial in system size and the theory can be straightforwardly applied to any realistic Hamiltonian.
Optimization over polynomials : Selected topics
Laurent, M.; Jang, Sun Young; Kim, Young Rock; Lee, Dae-Woong; Yie, Ikkwon
2014-01-01
Minimizing a polynomial function over a region defined by polynomial inequalities models broad classes of hard problems from combinatorics, geometry and optimization. New algorithmic approaches have emerged recently for computing the global minimum, by combining tools from real algebra (sums of
Directory of Open Access Journals (Sweden)
Glenda Biasotto
2011-03-01
Full Text Available Bi0.85La0.15FeO3 (BLFO thin films were deposited on Pt(111/Ti/SiO2 /Si substrates by the soft chemical method. Films with thicknesses ranging from 140 to 280 nm were grown on platinum coated silicon substrates at 500°C for 2 hours. The X-ray diffraction analysis of BLFO films evidenced a hexagonal structure over the entire thickness range investigated. The grain size of the film changes as the number of the layers increases, indicating thickness dependence. It is found that the piezoelectric response is strongly influenced by the film thickness. It is shown that the properties of BiFeO3 thin films, such as lattice parameter, dielectric permittivity, piezoeletric coefficient etc., are functions of misfit strains.
Equivalent parameter model of 1-3 piezocomposite with a sandwich polymer
Zhang, Yanjun; Wang, Likun; Qin, Lei
2018-06-01
A theoretical model was developed to investigate the performance of 1-3 piezoelectric composites with a sandwich polymer. Effective parameters, such as the electromechanical coupling factor, longitudinal velocity, and characteristic acoustic impedance of the piezocomposite, were predicted using the developed model. The influences of volume fractions and components of the polymer phase on the effective parameters of the piezoelectric composite were studied. The theoretical model was verified experimentally. The proposed model can reproduce the effective parameters of 1-3 piezoelectric composites with a sandwich polymer in the thickness mode. The measured electromechanical coupling factor was improved by more than 9.8% over the PZT/resin 1-3 piezoelectric composite.
Parallel multigrid smoothing: polynomial versus Gauss-Seidel
International Nuclear Information System (INIS)
Adams, Mark; Brezina, Marian; Hu, Jonathan; Tuminaro, Ray
2003-01-01
Gauss-Seidel is often the smoother of choice within multigrid applications. In the context of unstructured meshes, however, maintaining good parallel efficiency is difficult with multiplicative iterative methods such as Gauss-Seidel. This leads us to consider alternative smoothers. We discuss the computational advantages of polynomial smoothers within parallel multigrid algorithms for positive definite symmetric systems. Two particular polynomials are considered: Chebyshev and a multilevel specific polynomial. The advantages of polynomial smoothing over traditional smoothers such as Gauss-Seidel are illustrated on several applications: Poisson's equation, thin-body elasticity, and eddy current approximations to Maxwell's equations. While parallelizing the Gauss-Seidel method typically involves a compromise between a scalable convergence rate and maintaining high flop rates, polynomial smoothers achieve parallel scalable multigrid convergence rates without sacrificing flop rates. We show that, although parallel computers are the main motivation, polynomial smoothers are often surprisingly competitive with Gauss-Seidel smoothers on serial machines
Parallel multigrid smoothing: polynomial versus Gauss-Seidel
Adams, Mark; Brezina, Marian; Hu, Jonathan; Tuminaro, Ray
2003-07-01
Gauss-Seidel is often the smoother of choice within multigrid applications. In the context of unstructured meshes, however, maintaining good parallel efficiency is difficult with multiplicative iterative methods such as Gauss-Seidel. This leads us to consider alternative smoothers. We discuss the computational advantages of polynomial smoothers within parallel multigrid algorithms for positive definite symmetric systems. Two particular polynomials are considered: Chebyshev and a multilevel specific polynomial. The advantages of polynomial smoothing over traditional smoothers such as Gauss-Seidel are illustrated on several applications: Poisson's equation, thin-body elasticity, and eddy current approximations to Maxwell's equations. While parallelizing the Gauss-Seidel method typically involves a compromise between a scalable convergence rate and maintaining high flop rates, polynomial smoothers achieve parallel scalable multigrid convergence rates without sacrificing flop rates. We show that, although parallel computers are the main motivation, polynomial smoothers are often surprisingly competitive with Gauss-Seidel smoothers on serial machines.
On the optimal polynomial approximation of stochastic PDEs by galerkin and collocation methods
Beck, Joakim; Tempone, Raul; Nobile, Fabio; Tamellini, Lorenzo
2012-01-01
In this work we focus on the numerical approximation of the solution u of a linear elliptic PDE with stochastic coefficients. The problem is rewritten as a parametric PDE and the functional dependence of the solution on the parameters is approximated by multivariate polynomials. We first consider the stochastic Galerkin method, and rely on sharp estimates for the decay of the Fourier coefficients of the spectral expansion of u on an orthogonal polynomial basis to build a sequence of polynomial subspaces that features better convergence properties, in terms of error versus number of degrees of freedom, than standard choices such as Total Degree or Tensor Product subspaces. We consider then the Stochastic Collocation method, and use the previous estimates to introduce a new class of Sparse Grids, based on the idea of selecting a priori the most profitable hierarchical surpluses, that, again, features better convergence properties compared to standard Smolyak or tensor product grids. Numerical results show the effectiveness of the newly introduced polynomial spaces and sparse grids. © 2012 World Scientific Publishing Company.
On the optimal polynomial approximation of stochastic PDEs by galerkin and collocation methods
Beck, Joakim
2012-09-01
In this work we focus on the numerical approximation of the solution u of a linear elliptic PDE with stochastic coefficients. The problem is rewritten as a parametric PDE and the functional dependence of the solution on the parameters is approximated by multivariate polynomials. We first consider the stochastic Galerkin method, and rely on sharp estimates for the decay of the Fourier coefficients of the spectral expansion of u on an orthogonal polynomial basis to build a sequence of polynomial subspaces that features better convergence properties, in terms of error versus number of degrees of freedom, than standard choices such as Total Degree or Tensor Product subspaces. We consider then the Stochastic Collocation method, and use the previous estimates to introduce a new class of Sparse Grids, based on the idea of selecting a priori the most profitable hierarchical surpluses, that, again, features better convergence properties compared to standard Smolyak or tensor product grids. Numerical results show the effectiveness of the newly introduced polynomial spaces and sparse grids. © 2012 World Scientific Publishing Company.
Efficient computation of Laguerre polynomials
A. Gil (Amparo); J. Segura (Javier); N.M. Temme (Nico)
2017-01-01
textabstractAn efficient algorithm and a Fortran 90 module (LaguerrePol) for computing Laguerre polynomials . Ln(α)(z) are presented. The standard three-term recurrence relation satisfied by the polynomials and different types of asymptotic expansions valid for . n large and . α small, are used
ISAR Imaging of Maneuvering Targets Based on the Modified Discrete Polynomial-Phase Transform
Directory of Open Access Journals (Sweden)
Yong Wang
2015-09-01
Full Text Available Inverse synthetic aperture radar (ISAR imaging of a maneuvering target is a challenging task in the field of radar signal processing. The azimuth echo can be characterized as a multi-component polynomial phase signal (PPS after the translational compensation, and the high quality ISAR images can be obtained by the parameters estimation of it combined with the Range-Instantaneous-Doppler (RID technique. In this paper, a novel parameters estimation algorithm of the multi-component PPS with order three (cubic phase signal-CPS based on the modified discrete polynomial-phase transform (MDPT is proposed, and the corresponding new ISAR imaging algorithm is presented consequently. This algorithm is efficient and accurate to generate a focused ISAR image, and the results of real data demonstrate the effectiveness of it.
Chromatic polynomials of random graphs
International Nuclear Information System (INIS)
Van Bussel, Frank; Fliegner, Denny; Timme, Marc; Ehrlich, Christoph; Stolzenberg, Sebastian
2010-01-01
Chromatic polynomials and related graph invariants are central objects in both graph theory and statistical physics. Computational difficulties, however, have so far restricted studies of such polynomials to graphs that were either very small, very sparse or highly structured. Recent algorithmic advances (Timme et al 2009 New J. Phys. 11 023001) now make it possible to compute chromatic polynomials for moderately sized graphs of arbitrary structure and number of edges. Here we present chromatic polynomials of ensembles of random graphs with up to 30 vertices, over the entire range of edge density. We specifically focus on the locations of the zeros of the polynomial in the complex plane. The results indicate that the chromatic zeros of random graphs have a very consistent layout. In particular, the crossing point, the point at which the chromatic zeros with non-zero imaginary part approach the real axis, scales linearly with the average degree over most of the density range. While the scaling laws obtained are purely empirical, if they continue to hold in general there are significant implications: the crossing points of chromatic zeros in the thermodynamic limit separate systems with zero ground state entropy from systems with positive ground state entropy, the latter an exception to the third law of thermodynamics.
New polynomial-based molecular descriptors with low degeneracy.
Directory of Open Access Journals (Sweden)
Matthias Dehmer
Full Text Available In this paper, we introduce a novel graph polynomial called the 'information polynomial' of a graph. This graph polynomial can be derived by using a probability distribution of the vertex set. By using the zeros of the obtained polynomial, we additionally define some novel spectral descriptors. Compared with those based on computing the ordinary characteristic polynomial of a graph, we perform a numerical study using real chemical databases. We obtain that the novel descriptors do have a high discrimination power.
Piecewise Polynomial Fitting with Trend Item Removal and Its Application in a Cab Vibration Test
Directory of Open Access Journals (Sweden)
Wu Ren
2018-01-01
Full Text Available The trend item of a long-term vibration signal is difficult to remove. This paper proposes a piecewise integration method to remove trend items. Examples of direct integration without trend item removal, global integration after piecewise polynomial fitting with trend item removal, and direct integration after piecewise polynomial fitting with trend item removal were simulated. The results showed that direct integration of the fitted piecewise polynomial provided greater acceleration and displacement precision than the other two integration methods. A vibration test was then performed on a special equipment cab. The results indicated that direct integration by piecewise polynomial fitting with trend item removal was highly consistent with the measured signal data. However, the direct integration method without trend item removal resulted in signal distortion. The proposed method can help with frequency domain analysis of vibration signals and modal parameter identification for such equipment.
Ceramic thick film humidity sensor based on MgTiO{sub 3} + LiF
Energy Technology Data Exchange (ETDEWEB)
Kassas, Ahmad, E-mail: a.kassas.mcema@ul.edu.lb [Faculty of Agricultural Engineering and Veterinary Medicine, Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences and Doctoral School of Sciences and Technology (EDST), Lebanese University, Hariri Campus, Hadath, Beirut (Lebanon); Laboratoire Universitaire des Sciences Appliquées de Cherbourg (LUSAC), 50130 Cherbourg-Octeville (France); Bernard, Jérôme; Lelièvre, Céline; Besq, Anthony; Guhel, Yannick; Houivet, David; Boudart, Bertrand [Laboratoire Universitaire des Sciences Appliquées de Cherbourg (LUSAC), 50130 Cherbourg-Octeville (France); Lakiss, Hassan [Faculty of Agricultural Engineering and Veterinary Medicine, Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences and Doctoral School of Sciences and Technology (EDST), Lebanese University, Hariri Campus, Hadath, Beirut (Lebanon); Faculty of Engineering, Section III, Hariri Campus, Hadath, Beirut (Lebanon); Hamieh, Tayssir [Faculty of Agricultural Engineering and Veterinary Medicine, Laboratory of Materials, Catalysis, Environment and Analytical Methods (MCEMA), Faculty of Sciences and Doctoral School of Sciences and Technology (EDST), Lebanese University, Hariri Campus, Hadath, Beirut (Lebanon)
2013-10-15
Graphical abstract: - Highlights: • The fabricated sensor based on MgTiO{sub 3} + LiF materials used the spin coating technology. • The response time is 70 s to detect variation between 5 and 95% relative humidity. • The addition of Scleroglucan controls the viscosity and decreases the roughness of thick film surface. • This humidity sensor is a promising, low-cost, high-quality, reliable ceramic films, that is highly sensitive to humidity. - Abstract: The feasibility of humidity sensor, consisting of a thick layer of MgTiO{sub 3}/LiF materials on alumina substrate, was studied. The thermal analysis TGA-DTGA and dilatometric analysis worked out to confirm the sintering temperature. An experimental plan was applied to describe the effects of different parameters in the development of the thick film sensor. Structural and microstructural characterizations of the developed thick film were made. Rheological study with different amounts of a thickener (scleroglucan “sclg”), showing the behavior variation, as a function of sclg weight % was illustrated and rapprochement with the results of thickness variation as a function of angular velocity applied in the spin coater. The electrical and dielectric measurements confirmed the sensitivity of the elaborated thick film against moisture, along with low response time.
Modeling and characterization of through-the-thickness properties of 3D woven composites
Hartranft, Dru; Pravizi-Majidi, Azar; Chou, Tsu-Wei
1995-01-01
The through-the-thickness properties of three-dimensionally (3D) woven carbon/epoxy composites have been studied. The investigation aimed at the evaluation and development of test methodologies for the property characterization in the thickness direction, and the establishment of fiber architectures were studied: layer-to-layer Angle Interlock, through-the-thickness Orthogonal woven preform with surface pile was also designed and manufactured for the fabrication of tensile test coupons with integrated grips. All the preforms were infiltrated by the resin transfer molding technique. The microstructures of the composites were characterized along the warp and fill (weft) directions to determine the degree of yarn undulations, yarn cross-sectional shapes, and microstructural dimensions. These parameters were correlated to the fiber architecture. Specimens were designed and tested for the direct measurement of the through-the-thickness tensile, compressive and shear properties of the composites. Design optimization was conducted through the analysis of the stress fields within the specimen coupled with experimental verification. The experimentally-derived elastic properties in the thickness direction compared well with analytical predictions obtained from a volume averaging model.
Schur Stability Regions for Complex Quadratic Polynomials
Cheng, Sui Sun; Huang, Shao Yuan
2010-01-01
Given a quadratic polynomial with complex coefficients, necessary and sufficient conditions are found in terms of the coefficients such that all its roots have absolute values less than 1. (Contains 3 figures.)
Energy Technology Data Exchange (ETDEWEB)
Fang, Yuanxing; Lee, Wei Cheat; Canciani, Giacomo E.; Draper, Thomas C.; Al-Bawi, Zainab F. [Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ (United Kingdom); Bedi, Jasbir S. [School of Public Health & Zoonoses, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana 141004 Punjab (India); Perry, Christopher C. [Division of Biochemistry, School of Medicine, Loma Linda University, Loma Linda, CA 92350 (United States); Chen, Qiao, E-mail: qiao.chen@sussex.ac.uk [Department of Chemistry, School of Life Sciences, University of Sussex, Brighton BN1 9QJ (United Kingdom)
2015-12-15
Graphical abstract: - Highlights: • A novel method combining electrospinning and electrophoretic deposition was established for the creation of nanostructured semiconductor thin films. • The created thin films displayed a high chemical stability with a controllable thickness. • The PEC water splitting performance of the thin films was optimized by fine-tuning the thickness of the films. • A maximum photoconversion efficiency was achieved by 18 μm nanofibrous thin films. - Abstract: Electrophoretic deposition (EPD) of ground electrospun WO{sub 3} nanofibers was applied to create photoanodes with controlled morphology for the application of photoelectrochemical (PEC) water splitting. The correlations between deposition parameters and film thicknesses were investigated with theoretical models to precisely control the morphology of the nanostructured porous thin film. The photoconversion efficiency was further optimized as a function of film thickness. A maximum photoconversion efficiency of 0.924% from electrospun WO{sub 3} nanofibers that EPD deposited on a substrate was achieved at a film thickness of 18 μm.
Directory of Open Access Journals (Sweden)
Ernest G. Kalnins
2013-10-01
Full Text Available We show explicitly that all 2nd order superintegrable systems in 2 dimensions are limiting cases of a single system: the generic 3-parameter potential on the 2-sphere, S9 in our listing. We extend the Wigner-Inönü method of Lie algebra contractions to contractions of quadratic algebras and show that all of the quadratic symmetry algebras of these systems are contractions of that of S9. Amazingly, all of the relevant contractions of these superintegrable systems on flat space and the sphere are uniquely induced by the well known Lie algebra contractions of e(2 and so(3. By contracting function space realizations of irreducible representations of the S9 algebra (which give the structure equations for Racah/Wilson polynomials to the other superintegrable systems, and using Wigner's idea of ''saving'' a representation, we obtain the full Askey scheme of hypergeometric orthogonal polynomials. This relationship directly ties the polynomials and their structure equations to physical phenomena. It is more general because it applies to all special functions that arise from these systems via separation of variables, not just those of hypergeometric type, and it extends to higher dimensions.
Structure Theory for Extended Kepler-Coulomb 3D Classical Superintegrable Systems
Directory of Open Access Journals (Sweden)
Ernie G. Kalnins
2012-06-01
Full Text Available The classical Kepler-Coulomb system in 3 dimensions is well known to be 2nd order superintegrable, with a symmetry algebra that closes polynomially under Poisson brackets. This polynomial closure is typical for 2nd order superintegrable systems in 2D and for 2nd order systems in 3D with nondegenerate (4-parameter potentials. However the degenerate 3-parameter potential for the 3D extended Kepler-Coulomb system (also 2nd order superintegrable is an exception, as its quadratic symmetry algebra doesn't close polynomially. The 3D 4-parameter potential for the extended Kepler-Coulomb system is not even 2nd order superintegrable. However, Verrier and Evans (2008 showed it was 4th order superintegrable, and Tanoudis and Daskaloyannis (2011 showed that in the quantum case, if a second 4th order symmetry is added to the generators, the double commutators in the symmetry algebra close polynomially. Here, based on the Tremblay, Turbiner and Winternitz construction, we consider an infinite class of classical extended Kepler-Coulomb 3- and 4-parameter systems indexed by a pair of rational numbers (k_1,k_2 and reducing to the usual systems when k_1=k_2=1. We show these systems to be superintegrable of arbitrarily high order and work out explicitly the structure of the symmetry algebras determined by the 5 basis generators we have constructed. We demonstrate that the symmetry algebras close rationally; only for systems admitting extra discrete symmetries is polynomial closure achieved. Underlying the structure theory is the existence of raising and lowering constants of the motion, not themselves polynomials in the momenta, that can be employed to construct the polynomial symmetries and their structure relations.
Obtaining Thickness-Limited Electrospray Deposition for 3D Coating.
Lei, Lin; Kovacevich, Dylan A; Nitzsche, Michael P; Ryu, Jihyun; Al-Marzoki, Kutaiba; Rodriguez, Gabriela; Klein, Lisa C; Jitianu, Andrei; Singer, Jonathan P
2018-04-04
Electrospray processing utilizes the balance of electrostatic forces and surface tension within a charged spray to produce charged microdroplets with a narrow dispersion in size. In electrospray deposition, each droplet carries a small quantity of suspended material to a target substrate. Past electrospray deposition results fall into two major categories: (1) continuous spray of films onto conducting substrates and (2) spray of isolated droplets onto insulating substrates. A crossover regime, or a self-limited spray, has only been limitedly observed in the spray of insulating materials onto conductive substrates. In such sprays, a limiting thickness emerges, where the accumulation of charge repels further spray. In this study, we examined the parametric spray of several glassy polymers to both categorize past electrospray deposition results and uncover the critical parameters for thickness-limited sprays. The key parameters for determining the limiting thickness were (1) field strength and (2) spray temperature, related to (i) the necessary repulsive field and (ii) the ability for the deposited materials to swell in the carrier solvent vapor and redistribute charge. These control mechanisms can be applied to the uniform or controllably-varied microscale coating of complex three-dimensional objects.
Sheffer and Non-Sheffer Polynomial Families
Directory of Open Access Journals (Sweden)
G. Dattoli
2012-01-01
Full Text Available By using the integral transform method, we introduce some non-Sheffer polynomial sets. Furthermore, we show how to compute the connection coefficients for particular expressions of Appell polynomials.
Generalized Pseudospectral Method and Zeros of Orthogonal Polynomials
Directory of Open Access Journals (Sweden)
Oksana Bihun
2018-01-01
Full Text Available Via a generalization of the pseudospectral method for numerical solution of differential equations, a family of nonlinear algebraic identities satisfied by the zeros of a wide class of orthogonal polynomials is derived. The generalization is based on a modification of pseudospectral matrix representations of linear differential operators proposed in the paper, which allows these representations to depend on two, rather than one, sets of interpolation nodes. The identities hold for every polynomial family pνxν=0∞ orthogonal with respect to a measure supported on the real line that satisfies some standard assumptions, as long as the polynomials in the family satisfy differential equations Apν(x=qν(xpν(x, where A is a linear differential operator and each qν(x is a polynomial of degree at most n0∈N; n0 does not depend on ν. The proposed identities generalize known identities for classical and Krall orthogonal polynomials, to the case of the nonclassical orthogonal polynomials that belong to the class described above. The generalized pseudospectral representations of the differential operator A for the case of the Sonin-Markov orthogonal polynomials, also known as generalized Hermite polynomials, are presented. The general result is illustrated by new algebraic relations satisfied by the zeros of the Sonin-Markov polynomials.
On the Connection Coefficients of the Chebyshev-Boubaker Polynomials
Directory of Open Access Journals (Sweden)
Paul Barry
2013-01-01
Full Text Available The Chebyshev-Boubaker polynomials are the orthogonal polynomials whose coefficient arrays are defined by ordinary Riordan arrays. Examples include the Chebyshev polynomials of the second kind and the Boubaker polynomials. We study the connection coefficients of this class of orthogonal polynomials, indicating how Riordan array techniques can lead to closed-form expressions for these connection coefficients as well as recurrence relations that define them.
Directory of Open Access Journals (Sweden)
Insoo Ye
2015-04-01
Full Text Available The behaviors of the slag layers formed by the deposition of molten ash onto the wall are important for the operation of entrained coal gasifiers. In this study, the effects of design/operation parameters and slag properties on the slag behaviors were assessed in a commercial coal gasifier using numerical modeling. The parameters influenced the slag behaviors through mechanisms interrelated to the heat transfer, temperature, velocity, and viscosity of the slag layers. The velocity profile of the liquid slag was less sensitive to the variations in the parameters. Therefore, the change in the liquid slag thickness was typically smaller than that of the solid slag. The gas temperature was the most influential factor, because of its dominant effect on the radiative heat transfer to the slag layer. The solid slag thickness exponentially increased with higher gas temperatures. The influence of the ash deposition rate was diminished by the high-velocity region developed near the liquid slag surface. The slag viscosity significantly influenced the solid slag thickness through the corresponding changes in the critical temperature and the temperature gradient (heat flux. For the bottom cone of the gasifier, steeper angles were favorable in reducing the thickness of the slag layers.
3D position readout from thick scintillators
Antich, P; Parkey, R; Slavin, N V; Tsyganov, E N
2002-01-01
A novel technique has been developed and tested for the three-dimensional measurement of position in SPECT-PET detectors. Results are presented for 2 and 20 mm thick NaI(Tl) planar crystals. In a plane of crystal, a coordinate resolution of about 1 mm (rms error) is demonstrated. The depth of interaction (DOI) is measured with an rms error of about 2 mm using light cone parameters.
Kimiaei, S; Jonsson, E; Crafoord, J; Maguire, G Q
1999-01-01
The aim of this study is to compare and evaluate the potential usability of linear and non-linear (polynomial) 3D-warping for constructing an atlas by matching abdominal MR-images from a number of different individuals using manually picked anatomical landmarks. The significance of this study lies in the fact that it illustrates the potential to use polynomial matching at a local or organ level. This is a necessary requirement for constructing an atlas and for fine intra-patient image matching and fusion. Finally 3D-image warping using anatomical landmark for inter-patient intra-modality image co-registration and fusion was found to be a very powerful and robust method. Additionally it can be used for intra-patient inter- modality image matching.
Polynomial sequences generated by infinite Hessenberg matrices
Directory of Open Access Journals (Sweden)
Verde-Star Luis
2017-01-01
Full Text Available We show that an infinite lower Hessenberg matrix generates polynomial sequences that correspond to the rows of infinite lower triangular invertible matrices. Orthogonal polynomial sequences are obtained when the Hessenberg matrix is tridiagonal. We study properties of the polynomial sequences and their corresponding matrices which are related to recurrence relations, companion matrices, matrix similarity, construction algorithms, and generating functions. When the Hessenberg matrix is also Toeplitz the polynomial sequences turn out to be of interpolatory type and we obtain additional results. For example, we show that every nonderogative finite square matrix is similar to a unique Toeplitz-Hessenberg matrix.
PLOTNFIT.4TH, Data Plotting and Curve Fitting by Polynomials
International Nuclear Information System (INIS)
Schiffgens, J.O.
1990-01-01
1 - Description of program or function: PLOTnFIT is used for plotting and analyzing data by fitting nth degree polynomials of basis functions to the data interactively and printing graphs of the data and the polynomial functions. It can be used to generate linear, semi-log, and log-log graphs and can automatically scale the coordinate axes to suit the data. Multiple data sets may be plotted on a single graph. An auxiliary program, READ1ST, is included which produces an on-line summary of the information contained in the PLOTnFIT reference report. 2 - Method of solution: PLOTnFIT uses the least squares method to calculate the coefficients of nth-degree (up to 10. degree) polynomials of 11 selected basis functions such that each polynomial fits the data in a least squares sense. The procedure incorporated in the code uses a linear combination of orthogonal polynomials to avoid 'i11-conditioning' and to perform the curve fitting task with single-precision arithmetic. 3 - Restrictions on the complexity of the problem - Maxima of: 225 data points per job (or graph) including all data sets 8 data sets (or tasks) per job (or graph)
Special polynomials associated with rational solutions of some hierarchies
International Nuclear Information System (INIS)
Kudryashov, Nikolai A.
2009-01-01
New special polynomials associated with rational solutions of the Painleve hierarchies are introduced. The Hirota relations for these special polynomials are found. Differential-difference hierarchies to find special polynomials are presented. These formulae allow us to search special polynomials associated with the hierarchies. It is shown that rational solutions of the Caudrey-Dodd-Gibbon, the Kaup-Kupershmidt and the modified hierarchy for these ones can be obtained using new special polynomials.
Synthesis of nanometre-thick MoO3 sheets
Kalantar-Zadeh, Kourosh; Tang, Jianshi; Wang, Minsheng; Wang, Kang L.; Shailos, Alexandros; Galatsis, Kosmas; Kojima, Robert; Strong, Veronica; Lech, Andrew; Wlodarski, Wojtek; Kaner, Richard B.
2010-03-01
The formation of MoO3 sheets of nanoscale thickness is described. They are made from several fundamental sheets of orthorhombic α-MoO3, which can be processed in large quantities via a low cost synthesis route that combines thermal evaporation and mechanical exfoliation. These fundamental sheets consist of double-layers of linked distorted MoO6 octahedra. Atomic force microscopy (AFM) measurements show that the minimum resolvable thickness of these sheets is 1.4 nm which is equivalent to the thickness of two double-layers within one unit cell of the α-MoO3 crystal.
Prediction of zeolite-cement-sand unconfined compressive strength using polynomial neural network
MolaAbasi, H.; Shooshpasha, I.
2016-04-01
The improvement of local soils with cement and zeolite can provide great benefits, including strengthening slopes in slope stability problems, stabilizing problematic soils and preventing soil liquefaction. Recently, dosage methodologies are being developed for improved soils based on a rational criterion as it exists in concrete technology. There are numerous earlier studies showing the possibility of relating Unconfined Compressive Strength (UCS) and Cemented sand (CS) parameters (voids/cement ratio) as a power function fits. Taking into account the fact that the existing equations are incapable of estimating UCS for zeolite cemented sand mixture (ZCS) well, artificial intelligence methods are used for forecasting them. Polynomial-type neural network is applied to estimate the UCS from more simply determined index properties such as zeolite and cement content, porosity as well as curing time. In order to assess the merits of the proposed approach, a total number of 216 unconfined compressive tests have been done. A comparison is carried out between the experimentally measured UCS with the predictions in order to evaluate the performance of the current method. The results demonstrate that generalized polynomial-type neural network has a great ability for prediction of the UCS. At the end sensitivity analysis of the polynomial model is applied to study the influence of input parameters on model output. The sensitivity analysis reveals that cement and zeolite content have significant influence on predicting UCS.
Multilevel weighted least squares polynomial approximation
Haji-Ali, Abdul-Lateef
2017-06-30
Weighted least squares polynomial approximation uses random samples to determine projections of functions onto spaces of polynomials. It has been shown that, using an optimal distribution of sample locations, the number of samples required to achieve quasi-optimal approximation in a given polynomial subspace scales, up to a logarithmic factor, linearly in the dimension of this space. However, in many applications, the computation of samples includes a numerical discretization error. Thus, obtaining polynomial approximations with a single level method can become prohibitively expensive, as it requires a sufficiently large number of samples, each computed with a sufficiently small discretization error. As a solution to this problem, we propose a multilevel method that utilizes samples computed with different accuracies and is able to match the accuracy of single-level approximations with reduced computational cost. We derive complexity bounds under certain assumptions about polynomial approximability and sample work. Furthermore, we propose an adaptive algorithm for situations where such assumptions cannot be verified a priori. Finally, we provide an efficient algorithm for the sampling from optimal distributions and an analysis of computationally favorable alternative distributions. Numerical experiments underscore the practical applicability of our method.
Dendritic thickness: a morphometric parameter to classify mouse retinal ganglion cells
Directory of Open Access Journals (Sweden)
L.D. Loopuijt
2007-10-01
Full Text Available To study the dendritic morphology of retinal ganglion cells in wild-type mice we intracellularly injected these cells with Lucifer yellow in an in vitro preparation of the retina. Subsequently, quantified values of dendritic thickness, number of branching points and level of stratification of 73 Lucifer yellow-filled ganglion cells were analyzed by statistical methods, resulting in a classification into 9 groups. The variables dendritic thickness, number of branching points per cell and level of stratification were independent of each other. Number of branching points and level of stratification were independent of eccentricity, whereas dendritic thickness was positively dependent (r = 0.37 on it. The frequency distribution of dendritic thickness tended to be multimodal, indicating the presence of at least two cell populations composed of neurons with dendritic diameters either smaller or larger than 1.8 µm ("thin" or "thick" dendrites, respectively. Three cells (4.5% were bistratified, having thick dendrites, and the others (95.5% were monostratified. Using k-means cluster analysis, monostratified cells with either thin or thick dendrites were further subdivided according to level of stratification and number of branching points: cells with thin dendrites were divided into 2 groups with outer stratification (0-40% and 2 groups with inner (50-100% stratification, whereas cells with thick dendrites were divided into one group with outer and 3 groups with inner stratification. We postulate, that one group of cells with thin dendrites resembles cat ß-cells, whereas one group of cells with thick dendrites includes cells that resemble cat a-cells.
Directory of Open Access Journals (Sweden)
Arístides Alejandro Legrá-Lobaina
2016-10-01
Full Text Available The local polynomial method is based on assuming that is possible to estimate the value of a U variable in any of the P coordinate through local polynomials estimated based on approximate data. This investigation analyzes the probability of modeling in two dimensions the thickness and nickel, iron and cobalt concentrations in a block of Cuban laterite ores by using the mentioned method. It was also analyzed if the results of modeling these variables depend on the estimation method that is used.
Comparison of functional parameters of CsI:Tl crystals and thick films
International Nuclear Information System (INIS)
Fedorov, A.; Gektin, A.; Lebedynskiy, A.; Mateychenko, P.; Shkoropatenko, A.
2013-01-01
500 mkm thick CsI:Tl columnar films can be produced using thermal evaporation in vacuum by sublimation of the same bulk crystal. Comparison of afterglow and radiation stability of deposited CsI:Tl films with source crystal was the aim of current work. It is shown that the afterglow in the films is always below its level in initial single crystal. It was ascertained that the annealing atmospheres influence the processes leading to the activator depletion of the films during the thermal processing. -- Highlights: ► Thick CsI:Tl columnar films were obtained by thermal evaporation in vacuum. ► Radiation stability of such CsI:Tl films appears to be better than that of crystal. ► CsI:Tl film parameters can be modified by annealing in different atmospheres
Relations between zeros of special polynomials associated with the Painleve equations
International Nuclear Information System (INIS)
Kudryashov, Nikolai A.; Demina, Maria V.
2007-01-01
A method for finding relations of roots of polynomials is presented. Our approach allows us to get a number of relations between the zeros of the classical polynomials as well as the roots of special polynomials associated with rational solutions of the Painleve equations. We apply the method to obtain the relations for the zeros of several polynomials. These are: the Hermite polynomials, the Laguerre polynomials, the Yablonskii-Vorob'ev polynomials, the generalized Okamoto polynomials, and the generalized Hermite polynomials. All the relations found can be considered as analogues of generalized Stieltjes relations
On polynomial solutions of the Heun equation
International Nuclear Information System (INIS)
Gurappa, N; Panigrahi, Prasanta K
2004-01-01
By making use of a recently developed method to solve linear differential equations of arbitrary order, we find a wide class of polynomial solutions to the Heun equation. We construct the series solution to the Heun equation before identifying the polynomial solutions. The Heun equation extended by the addition of a term, -σ/x, is also amenable for polynomial solutions. (letter to the editor)
A new Arnoldi approach for polynomial eigenproblems
Energy Technology Data Exchange (ETDEWEB)
Raeven, F.A.
1996-12-31
In this paper we introduce a new generalization of the method of Arnoldi for matrix polynomials. The new approach is compared with the approach of rewriting the polynomial problem into a linear eigenproblem and applying the standard method of Arnoldi to the linearised problem. The algorithm that can be applied directly to the polynomial eigenproblem turns out to be more efficient, both in storage and in computation.
Directory of Open Access Journals (Sweden)
Liyun Su
2012-01-01
Full Text Available We introduce the extension of local polynomial fitting to the linear heteroscedastic regression model. Firstly, the local polynomial fitting is applied to estimate heteroscedastic function, then the coefficients of regression model are obtained by using generalized least squares method. One noteworthy feature of our approach is that we avoid the testing for heteroscedasticity by improving the traditional two-stage method. Due to nonparametric technique of local polynomial estimation, we do not need to know the heteroscedastic function. Therefore, we can improve the estimation precision, when the heteroscedastic function is unknown. Furthermore, we focus on comparison of parameters and reach an optimal fitting. Besides, we verify the asymptotic normality of parameters based on numerical simulations. Finally, this approach is applied to a case of economics, and it indicates that our method is surely effective in finite-sample situations.
Colouring and knot polynomials
International Nuclear Information System (INIS)
Welsh, D.J.A.
1991-01-01
These lectures will attempt to explain a connection between the recent advances in knot theory using the Jones and related knot polynomials with classical problems in combinatorics and statistical mechanics. The difficulty of some of these problems will be analysed in the context of their computational complexity. In particular we shall discuss colourings and groups valued flows in graphs, knots and the Jones and Kauffman polynomials, the Ising, Potts and percolation problems of statistical physics, computational complexity of the above problems. (author). 20 refs, 9 figs
Uniqueness and zeros of q-shift difference polynomials
Indian Academy of Sciences (India)
In this paper, we consider the zero distributions of -shift difference polynomials of meromorphic functions with zero order, and obtain two theorems that extend the classical Hayman results on the zeros of differential polynomials to -shift difference polynomials. We also investigate the uniqueness problem of -shift ...
Weighted Polynomial Approximation for Automated Detection of Inspiratory Flow Limitation
Directory of Open Access Journals (Sweden)
Sheng-Cheng Huang
2017-01-01
Full Text Available Inspiratory flow limitation (IFL is a critical symptom of sleep breathing disorders. A characteristic flattened flow-time curve indicates the presence of highest resistance flow limitation. This study involved investigating a real-time algorithm for detecting IFL during sleep. Three categories of inspiratory flow shape were collected from previous studies for use as a development set. Of these, 16 cases were labeled as non-IFL and 78 as IFL which were further categorized into minor level (20 cases and severe level (58 cases of obstruction. In this study, algorithms using polynomial functions were proposed for extracting the features of IFL. Methods using first- to third-order polynomial approximations were applied to calculate the fitting curve to obtain the mean absolute error. The proposed algorithm is described by the weighted third-order (w.3rd-order polynomial function. For validation, a total of 1,093 inspiratory breaths were acquired as a test set. The accuracy levels of the classifications produced by the presented feature detection methods were analyzed, and the performance levels were compared using a misclassification cobweb. According to the results, the algorithm using the w.3rd-order polynomial approximation achieved an accuracy of 94.14% for IFL classification. We concluded that this algorithm achieved effective automatic IFL detection during sleep.
Factoring polynomials over arbitrary finite fields
Lange, T.; Winterhof, A.
2000-01-01
We analyse an extension of Shoup's (Inform. Process. Lett. 33 (1990) 261–267) deterministic algorithm for factoring polynomials over finite prime fields to arbitrary finite fields. In particular, we prove the existence of a deterministic algorithm which completely factors all monic polynomials of
Additive and polynomial representations
Krantz, David H; Suppes, Patrick
1971-01-01
Additive and Polynomial Representations deals with major representation theorems in which the qualitative structure is reflected as some polynomial function of one or more numerical functions defined on the basic entities. Examples are additive expressions of a single measure (such as the probability of disjoint events being the sum of their probabilities), and additive expressions of two measures (such as the logarithm of momentum being the sum of log mass and log velocity terms). The book describes the three basic procedures of fundamental measurement as the mathematical pivot, as the utiliz
International Nuclear Information System (INIS)
Shrock, Robert; Xu Yan
2012-01-01
We present an analysis of the structure and properties of chromatic polynomials P(G pt,m-vector, q) of one-parameter and multi-parameter families of planar triangulation graphs G pt,m-vector , where m-vector = (m 1 ,…,m p ) is a vector of integer parameters. We use these to study the ratio of |P(G pt,m-vector, τ+1)| to the Tutte upper bound (τ − 1) n−5 , where τ=(1+√5)/2 and n is the number of vertices in G pt,m-vector . In particular, we calculate limiting values of this ratio as n → ∞ for various families of planar triangulations. We also use our calculations to analyze zeros of these chromatic polynomials. We study a large class of families G pt,m-vector with p = 1 and p = 2 and show that these have a structure of the form P(G pt,m ,q) = c G pt ,1 λ 1 m + c G pt ,2 λ 2 m + c G pt ,3 λ 3 m for p = 1, where λ 1 = q − 2, λ 2 = q − 3, and λ 3 = −1, and P(G pt,m-vector ,q) =Σ i 1 =1 3 Σ i 2 =1 3 c G pt ,i 1 i 2 λ i 1 m 1 λ i 2 m 2 for p = 2. We derive properties of the coefficients c G pt ,i-vector and show that P(G pt,m-vector ,q) has a real chromatic zero that approaches (1/2)(3+√5) as one or more of the m i → ∞. The generalization to p ⩾ 3 is given. Further, we present a one-parameter family of planar triangulations with real zeros that approach 3 from below as m → ∞. Implications for the ground-state entropy of the Potts antiferromagnet are discussed. (paper)
A Determinant Expression for the Generalized Bessel Polynomials
Directory of Open Access Journals (Sweden)
Sheng-liang Yang
2013-01-01
Full Text Available Using the exponential Riordan arrays, we show that a variation of the generalized Bessel polynomial sequence is of Sheffer type, and we obtain a determinant formula for the generalized Bessel polynomials. As a result, the Bessel polynomial is represented as determinant the entries of which involve Catalan numbers.
A generalization of the Bernoulli polynomials
Directory of Open Access Journals (Sweden)
Pierpaolo Natalini
2003-01-01
Full Text Available A generalization of the Bernoulli polynomials and, consequently, of the Bernoulli numbers, is defined starting from suitable generating functions. Furthermore, the differential equations of these new classes of polynomials are derived by means of the factorization method introduced by Infeld and Hull (1951.
Humidity sensing properties of WO3 thick film resistor prepared by screen printing technique
International Nuclear Information System (INIS)
Garde, Arun S
2014-01-01
Highlights: • Polycrystalline WO 3 Thick films are fabricated by screen printing technique. • Monoclinic phases were the majority in formation of films. • The peak at 1643 cm −1 shows stretching vibrations attributed to W-OH of adsorbed H 2 O. • Absorption peaks in the range 879–650 cm −1 are attributed to the stretching W-O-W bonds. • Increase in resistance with decrease in RH when exposed to 20–100% RH. - Abstract: Thick films of tungsten oxide based were prepared using standard screen printing technique. To study the effect of temperature on the thick films were fired at different temperature for 30 min in air atmosphere. The WO 3 thick films were characterized with X-ray diffraction, scanning electron microscopy and EDAX for elemental analysis. The formation of mixed phases of the film together with majority of monoclinic phase was observed. IR spectra confirm the peak at 1643 cm −1 clearly shows stretching vibrations attributed to the W-OH bending vibration mode of the adsorbed water molecules. The absorption peaks in the range 879–650 cm −1 are attributed to the stretching W-O-W bonds (i.e. ν [W-O inter -W]). The peak located at 983 cm −1 belong to W=O terminal of cluster boundaries. A change in the resistance was observed with respect to the relative humidity when the WO 3 thick films were exposed to a wide humidity range of 20–100%. An increasing firing temperature of WO 3 film increases with the sensitivity. The parameters such as sensitivity and hysteresis of the WO 3 film sensors have been evaluated
Transversals of Complex Polynomial Vector Fields
DEFF Research Database (Denmark)
Dias, Kealey
Vector fields in the complex plane are defined by assigning the vector determined by the value P(z) to each point z in the complex plane, where P is a polynomial of one complex variable. We consider special families of so-called rotated vector fields that are determined by a polynomial multiplied...... by rotational constants. Transversals are a certain class of curves for such a family of vector fields that represent the bifurcation states for this family of vector fields. More specifically, transversals are curves that coincide with a homoclinic separatrix for some rotation of the vector field. Given...... a concrete polynomial, it seems to take quite a bit of work to prove that it is generic, i.e. structurally stable. This has been done for a special class of degree d polynomial vector fields having simple equilibrium points at the d roots of unity, d odd. In proving that such vector fields are generic...
Zhao, Ke; Ji, Yaoyao; Pan, Boan; Li, Ting
2018-02-01
The continuous-wave Near-infrared spectroscopy (NIRS) devices have been highlighted for its clinical and health care applications in noninvasive hemodynamic measurements. The baseline shift of the deviation measurement attracts lots of attentions for its clinical importance. Nonetheless current published methods have low reliability or high variability. In this study, we found a perfect polynomial fitting function for baseline removal, using NIRS. Unlike previous studies on baseline correction for near-infrared spectroscopy evaluation of non-hemodynamic particles, we focused on baseline fitting and corresponding correction method for NIRS and found that the polynomial fitting function at 4th order is greater than the function at 2nd order reported in previous research. Through experimental tests of hemodynamic parameters of the solid phantom, we compared the fitting effect between the 4th order polynomial and the 2nd order polynomial, by recording and analyzing the R values and the SSE (the sum of squares due to error) values. The R values of the 4th order polynomial function fitting are all higher than 0.99, which are significantly higher than the corresponding ones of 2nd order, while the SSE values of the 4th order are significantly smaller than the corresponding ones of the 2nd order. By using the high-reliable and low-variable 4th order polynomial fitting function, we are able to remove the baseline online to obtain more accurate NIRS measurements.
On Multiple Interpolation Functions of the -Genocchi Polynomials
Directory of Open Access Journals (Sweden)
Jin Jeong-Hee
2010-01-01
Full Text Available Abstract Recently, many mathematicians have studied various kinds of the -analogue of Genocchi numbers and polynomials. In the work (New approach to q-Euler, Genocchi numbers and their interpolation functions, "Advanced Studies in Contemporary Mathematics, vol. 18, no. 2, pp. 105–112, 2009.", Kim defined new generating functions of -Genocchi, -Euler polynomials, and their interpolation functions. In this paper, we give another definition of the multiple Hurwitz type -zeta function. This function interpolates -Genocchi polynomials at negative integers. Finally, we also give some identities related to these polynomials.
The modified Gauss diagonalization of polynomial matrices
International Nuclear Information System (INIS)
Saeed, K.
1982-10-01
The Gauss algorithm for diagonalization of constant matrices is modified for application to polynomial matrices. Due to this modification the diagonal elements become pure polynomials rather than rational functions. (author)
Approximating Exponential and Logarithmic Functions Using Polynomial Interpolation
Gordon, Sheldon P.; Yang, Yajun
2017-01-01
This article takes a closer look at the problem of approximating the exponential and logarithmic functions using polynomials. Either as an alternative to or a precursor to Taylor polynomial approximations at the precalculus level, interpolating polynomials are considered. A measure of error is given and the behaviour of the error function is…
M-Polynomials and topological indices of V-Phenylenic Nanotubes and Nanotori.
Kwun, Young Chel; Munir, Mobeen; Nazeer, Waqas; Rafique, Shazia; Min Kang, Shin
2017-08-18
V-Phenylenic nanotubes and nanotori are most comprehensively studied nanostructures due to widespread applications in the production of catalytic, gas-sensing and corrosion-resistant materials. Representing chemical compounds with M-polynomial is a recent idea and it produces nice formulas of degree-based topological indices which correlate chemical properties of the material under investigation. These indices are used in the development of quantitative structure-activity relationships (QSARs) in which the biological activity and other properties of molecules like boiling point, stability, strain energy etc. are correlated with their structures. In this paper, we determine general closed formulae for M-polynomials of V-Phylenic nanotubes and nanotori. We recover important topological degree-based indices. We also give different graphs of topological indices and their relations with the parameters of structures.
Critical points for finite Fibonacci chains of point delta-interactions and orthogonal polynomials
International Nuclear Information System (INIS)
De Prunele, E
2011-01-01
For a one-dimensional Schroedinger operator with a finite number n of point delta-interactions with a common intensity, the parameters are the intensity, the n - 1 intercenter distances and the mass. Critical points are points in the parameters space of the Hamiltonian where one bound state appears or disappears. The study of critical points for Hamiltonians with point delta-interactions arranged along a Fibonacci chain is shown to be closely related to the study of the so-called Fibonacci operator, a discrete one-dimensional Schroedinger-type operator, which occurs in the context of tight binding Hamiltonians. These critical points are the zeros of orthogonal polynomials previously studied in the context of special diatomic linear chains with elastic nearest-neighbor interaction. Properties of the zeros (location, asymptotic behavior, gaps, ...) are investigated. The perturbation series from the solvable periodic case is determined. The measure which yields orthogonality is investigated numerically from the zeros. It is shown that the transmission coefficient at zero energy can be expressed in terms of the orthogonal polynomials and their associated polynomials. In particular, it is shown that when the number of point delta-interactions is equal to a Fibonacci number minus 1, i.e. when the intervals between point delta-interactions form a palindrome, all the Fibonacci chains at critical points are completely transparent at zero energy. (paper)
Numerical Simulation of Polynomial-Speed Convergence Phenomenon
Li, Yao; Xu, Hui
2017-11-01
We provide a hybrid method that captures the polynomial speed of convergence and polynomial speed of mixing for Markov processes. The hybrid method that we introduce is based on the coupling technique and renewal theory. We propose to replace some estimates in classical results about the ergodicity of Markov processes by numerical simulations when the corresponding analytical proof is difficult. After that, all remaining conclusions can be derived from rigorous analysis. Then we apply our results to seek numerical justification for the ergodicity of two 1D microscopic heat conduction models. The mixing rate of these two models are expected to be polynomial but very difficult to prove. In both examples, our numerical results match the expected polynomial mixing rate well.
Exceptional polynomials and SUSY quantum mechanics
Indian Academy of Sciences (India)
Abstract. We show that for the quantum mechanical problem which admit classical Laguerre/. Jacobi polynomials as solutions for the Schrödinger equations (SE), will also admit exceptional. Laguerre/Jacobi polynomials as solutions having the same eigenvalues but with the ground state missing after a modification of the ...
A companion matrix for 2-D polynomials
International Nuclear Information System (INIS)
Boudellioua, M.S.
1995-08-01
In this paper, a matrix form analogous to the companion matrix which is often encountered in the theory of one dimensional (1-D) linear systems is suggested for a class of polynomials in two indeterminates and real coefficients, here referred to as two dimensional (2-D) polynomials. These polynomials arise in the context of 2-D linear systems theory. Necessary and sufficient conditions are also presented under which a matrix is equivalent to this companion form. (author). 6 refs
Deformation of the three-term recursion relation and generation of new orthogonal polynomials
International Nuclear Information System (INIS)
Alhaidari, A D
2002-01-01
We find solutions for a linear deformation of the three-term recursion relation. The orthogonal polynomials of the first and second kind associated with the deformed relation are obtained. The new density (weight) function is written in terms of the original one and the deformation parameters
Colored Kauffman homology and super-A-polynomials
International Nuclear Information System (INIS)
Nawata, Satoshi; Ramadevi, P.; Zodinmawia
2014-01-01
We study the structural properties of colored Kauffman homologies of knots. Quadruple-gradings play an essential role in revealing the differential structure of colored Kauffman homology. Using the differential structure, the Kauffman homologies carrying the symmetric tensor products of the vector representation for the trefoil and the figure-eight are determined. In addition, making use of relations from representation theory, we also obtain the HOMFLY homologies colored by rectangular Young tableaux with two rows for these knots. Furthermore, the notion of super-A-polynomials is extended in order to encompass two-parameter deformations of PSL(2,ℂ) character varieties
Polynomial asymptotic stability of damped stochastic differential equations
Directory of Open Access Journals (Sweden)
John Appleby
2004-08-01
Full Text Available The paper studies the polynomial convergence of solutions of a scalar nonlinear It\\^{o} stochastic differential equation\\[dX(t = -f(X(t\\,dt + \\sigma(t\\,dB(t\\] where it is known, {\\it a priori}, that $\\lim_{t\\rightarrow\\infty} X(t=0$, a.s. The intensity of the stochastic perturbation $\\sigma$ is a deterministic, continuous and square integrable function, which tends to zero more quickly than a polynomially decaying function. The function $f$ obeys $\\lim_{x\\rightarrow 0}\\mbox{sgn}(xf(x/|x|^\\beta = a$, for some $\\beta>1$, and $a>0$.We study two asymptotic regimes: when $\\sigma$ tends to zero sufficiently quickly the polynomial decay rate of solutions is the same as for the deterministic equation (when $\\sigma\\equiv0$. When $\\sigma$ decays more slowly, a weaker almost sure polynomial upper bound on the decay rate of solutions is established. Results which establish the necessity for $\\sigma$ to decay polynomially in order to guarantee the almost sure polynomial decay of solutions are also proven.
International Nuclear Information System (INIS)
Konakli, Katerina; Sudret, Bruno
2016-01-01
The growing need for uncertainty analysis of complex computational models has led to an expanding use of meta-models across engineering and sciences. The efficiency of meta-modeling techniques relies on their ability to provide statistically-equivalent analytical representations based on relatively few evaluations of the original model. Polynomial chaos expansions (PCE) have proven a powerful tool for developing meta-models in a wide range of applications; the key idea thereof is to expand the model response onto a basis made of multivariate polynomials obtained as tensor products of appropriate univariate polynomials. The classical PCE approach nevertheless faces the “curse of dimensionality”, namely the exponential increase of the basis size with increasing input dimension. To address this limitation, the sparse PCE technique has been proposed, in which the expansion is carried out on only a few relevant basis terms that are automatically selected by a suitable algorithm. An alternative for developing meta-models with polynomial functions in high-dimensional problems is offered by the newly emerged low-rank approximations (LRA) approach. By exploiting the tensor–product structure of the multivariate basis, LRA can provide polynomial representations in highly compressed formats. Through extensive numerical investigations, we herein first shed light on issues relating to the construction of canonical LRA with a particular greedy algorithm involving a sequential updating of the polynomial coefficients along separate dimensions. Specifically, we examine the selection of optimal rank, stopping criteria in the updating of the polynomial coefficients and error estimation. In the sequel, we confront canonical LRA to sparse PCE in structural-mechanics and heat-conduction applications based on finite-element solutions. Canonical LRA exhibit smaller errors than sparse PCE in cases when the number of available model evaluations is small with respect to the input
Energy Technology Data Exchange (ETDEWEB)
Konakli, Katerina, E-mail: konakli@ibk.baug.ethz.ch; Sudret, Bruno
2016-09-15
The growing need for uncertainty analysis of complex computational models has led to an expanding use of meta-models across engineering and sciences. The efficiency of meta-modeling techniques relies on their ability to provide statistically-equivalent analytical representations based on relatively few evaluations of the original model. Polynomial chaos expansions (PCE) have proven a powerful tool for developing meta-models in a wide range of applications; the key idea thereof is to expand the model response onto a basis made of multivariate polynomials obtained as tensor products of appropriate univariate polynomials. The classical PCE approach nevertheless faces the “curse of dimensionality”, namely the exponential increase of the basis size with increasing input dimension. To address this limitation, the sparse PCE technique has been proposed, in which the expansion is carried out on only a few relevant basis terms that are automatically selected by a suitable algorithm. An alternative for developing meta-models with polynomial functions in high-dimensional problems is offered by the newly emerged low-rank approximations (LRA) approach. By exploiting the tensor–product structure of the multivariate basis, LRA can provide polynomial representations in highly compressed formats. Through extensive numerical investigations, we herein first shed light on issues relating to the construction of canonical LRA with a particular greedy algorithm involving a sequential updating of the polynomial coefficients along separate dimensions. Specifically, we examine the selection of optimal rank, stopping criteria in the updating of the polynomial coefficients and error estimation. In the sequel, we confront canonical LRA to sparse PCE in structural-mechanics and heat-conduction applications based on finite-element solutions. Canonical LRA exhibit smaller errors than sparse PCE in cases when the number of available model evaluations is small with respect to the input
International Nuclear Information System (INIS)
Lee, Sung Sik; Kim, Young H.
2005-01-01
In order to improve the accuracies in the thickness evaluation using radiography, a new relationship between film density and penetrated thickness has been proposed, and experimental verification of the proposed relationship was carried out by using the X- and γ-ray radiographs of two carbon steel step wedges. A new parameter, the logarithmic gradient of film density, was defined in order to express the characteristics of the radiographic film for wider range of film density. A new relationship between the film density and the penetrated thickness were formulated using the logarithmic gradient of the film density. In experiment, the logarithmic gradient of the film density was independent on both the exposure and the film density and measured for the radiographic film used in the present work from the slope of the fitting lines for the same penetrated thickness. Experimental results verifies the accuracy of the proposed relationship between film density and the penetrated thickness for the range of film density from 1.0 to 3.5. The thickness can be more accurately determined by using the proposed relationship and the parameters determined by experiment. It is also found that the γ-ray having simple energy spectrum is more appropriate radiation source for the evaluation of the thickness from the film density of the radiograph
Degenerate r-Stirling Numbers and r-Bell Polynomials
Kim, T.; Yao, Y.; Kim, D. S.; Jang, G.-W.
2018-01-01
The purpose of this paper is to exploit umbral calculus in order to derive some properties, recurrence relations, and identities related to the degenerate r-Stirling numbers of the second kind and the degenerate r-Bell polynomials. Especially, we will express the degenerate r-Bell polynomials as linear combinations of many well-known families of special polynomials.
Commutators with idempotent values on multilinear polynomials in ...
Indian Academy of Sciences (India)
Multilinear polynomial; derivations; generalized polynomial identity; prime ring; right ideal. Abstract. Let R be a prime ring of characteristic different from 2, C its extended centroid, d a nonzero derivation of R , f ( x 1 , … , x n ) a multilinear polynomial over C , ϱ a nonzero right ideal of R and m > 1 a fixed integer such that.
Polynomial weights and code constructions
DEFF Research Database (Denmark)
Massey, J; Costello, D; Justesen, Jørn
1973-01-01
polynomial included. This fundamental property is then used as the key to a variety of code constructions including 1) a simplified derivation of the binary Reed-Muller codes and, for any primepgreater than 2, a new extensive class ofp-ary "Reed-Muller codes," 2) a new class of "repeated-root" cyclic codes...... of long constraint length binary convolutional codes derived from2^r-ary Reed-Solomon codes, and 6) a new class ofq-ary "repeated-root" constacyclic codes with an algebraic decoding algorithm.......For any nonzero elementcof a general finite fieldGF(q), it is shown that the polynomials(x - c)^i, i = 0,1,2,cdots, have the "weight-retaining" property that any linear combination of these polynomials with coefficients inGF(q)has Hamming weight at least as great as that of the minimum degree...
The generalized Yablonskii-Vorob'ev polynomials and their properties
International Nuclear Information System (INIS)
Kudryashov, Nikolai A.; Demina, Maria V.
2008-01-01
Rational solutions of the generalized second Painleve hierarchy are classified. Representation of the rational solutions in terms of special polynomials, the generalized Yablonskii-Vorob'ev polynomials, is introduced. Differential-difference relations satisfied by the polynomials are found. Hierarchies of differential equations related to the generalized second Painleve hierarchy are derived. One of these hierarchies is a sequence of differential equations satisfied by the generalized Yablonskii-Vorob'ev polynomials
2-variable Laguerre matrix polynomials and Lie-algebraic techniques
International Nuclear Information System (INIS)
Khan, Subuhi; Hassan, Nader Ali Makboul
2010-01-01
The authors introduce 2-variable forms of Laguerre and modified Laguerre matrix polynomials and derive their special properties. Further, the representations of the special linear Lie algebra sl(2) and the harmonic oscillator Lie algebra G(0,1) are used to derive certain results involving these polynomials. Furthermore, the generating relations for the ordinary as well as matrix polynomials related to these matrix polynomials are derived as applications.
Overcoming the sign problem in 1-dimensional QCD by new integration rules with polynomial exactness
Energy Technology Data Exchange (ETDEWEB)
Ammon, A. [IVU-Traffic Technologies AG, Berlin (Germany); Hartung, T. [King' s College London (United Kingdom). Dept. of Mathematics; Jansen, K.; Volmer, J. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Leoevey, H. [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Mathematik
2016-08-15
In this paper we describe a new integration method for the groups U(N) and SU(N), for which we verified numerically that it is polynomially exact for N≤3. The method is applied to the example of 1-dimensional QCD with a chemical potential. We explore, in particular, regions of the parameter space in which the sign problem appears due the presence of the chemical potential. While Markov Chain Monte Carlo fails in this region, our new integration method still provides results for the chiral condensate on arbitrary precision, demonstrating clearly that it overcomes the sign problem. Furthermore, we demonstrate that our new method leads to orders of magnitude reduced errors also in other regions of parameter space.
Topological quantum information, virtual Jones polynomials and Khovanov homology
International Nuclear Information System (INIS)
Kauffman, Louis H
2011-01-01
In this paper, we give a quantum statistical interpretation of the bracket polynomial state sum 〈K〉, the Jones polynomial V K (t) and virtual knot theory versions of the Jones polynomial, including the arrow polynomial. We use these quantum mechanical interpretations to give new quantum algorithms for these Jones polynomials. In those cases where the Khovanov homology is defined, the Hilbert space C(K) of our model is isomorphic with the chain complex for Khovanov homology with coefficients in the complex numbers. There is a natural unitary transformation U:C(K) → C(K) such that 〈K〉 = Trace(U), where 〈K〉 denotes the evaluation of the state sum model for the corresponding polynomial. We show that for the Khovanov boundary operator ∂:C(K) → C(K), we have the relationship ∂U + U∂ = 0. Consequently, the operator U acts on the Khovanov homology, and we obtain a direct relationship between the Khovanov homology and this quantum algorithm for the Jones polynomial. (paper)
Polynomial solutions of the Monge-Ampère equation
Energy Technology Data Exchange (ETDEWEB)
Aminov, Yu A [B.Verkin Institute for Low Temperature Physics and Engineering, National Academy of Sciences of Ukraine, Khar' kov (Ukraine)
2014-11-30
The question of the existence of polynomial solutions to the Monge-Ampère equation z{sub xx}z{sub yy}−z{sub xy}{sup 2}=f(x,y) is considered in the case when f(x,y) is a polynomial. It is proved that if f is a polynomial of the second degree, which is positive for all values of its arguments and has a positive squared part, then no polynomial solution exists. On the other hand, a solution which is not polynomial but is analytic in the whole of the x, y-plane is produced. Necessary and sufficient conditions for the existence of polynomial solutions of degree up to 4 are found and methods for the construction of such solutions are indicated. An approximation theorem is proved. Bibliography: 10 titles.
Robust ∞ Filtering of 2D Roesser Discrete Systems: A Polynomial Approach
Directory of Open Access Journals (Sweden)
Chakir El-Kasri
2012-01-01
procedure for generating conditions for the existence of a 2D discrete filter such that, for all admissible uncertainties, the error system is asymptotically stable, and the ∞ norm of the transfer function from the noise signal to the estimation error is below a prespecified level. These conditions are expressed as parameter-dependent linear matrix inequalities. Using homogeneous polynomially parameter-dependent filters of arbitrary degree on the uncertain parameters, the proposed method extends previous results in the quadratic framework and the linearly parameter-dependent framework, thus reducing its conservatism. Performance of the proposed method, in comparison with that of existing methods, is illustrated by two examples.
Zeros and uniqueness of Q-difference polynomials of meromorphic ...
Indian Academy of Sciences (India)
Meromorphic functions; Nevanlinna theory; logarithmic order; uniqueness problem; difference-differential polynomial. Abstract. In this paper, we investigate the value distribution of -difference polynomials of meromorphic function of finite logarithmic order, and study the zero distribution of difference-differential polynomials ...
Laguerre polynomials by a harmonic oscillator
Baykal, Melek; Baykal, Ahmet
2014-09-01
The study of an isotropic harmonic oscillator, using the factorization method given in Ohanian's textbook on quantum mechanics, is refined and some collateral extensions of the method related to the ladder operators and the associated Laguerre polynomials are presented. In particular, some analytical properties of the associated Laguerre polynomials are derived using the ladder operators.
Mahmood, Zahid; Ning, Huansheng; Ghafoor, AtaUllah
2017-03-24
Wireless Sensor Networks (WSNs) consist of lightweight devices to measure sensitive data that are highly vulnerable to security attacks due to their constrained resources. In a similar manner, the internet-based lightweight devices used in the Internet of Things (IoT) are facing severe security and privacy issues because of the direct accessibility of devices due to their connection to the internet. Complex and resource-intensive security schemes are infeasible and reduce the network lifetime. In this regard, we have explored the polynomial distribution-based key establishment schemes and identified an issue that the resultant polynomial value is either storage intensive or infeasible when large values are multiplied. It becomes more costly when these polynomials are regenerated dynamically after each node join or leave operation and whenever key is refreshed. To reduce the computation, we have proposed an Efficient Key Management (EKM) scheme for multiparty communication-based scenarios. The proposed session key management protocol is established by applying a symmetric polynomial for group members, and the group head acts as a responsible node. The polynomial generation method uses security credentials and secure hash function. Symmetric cryptographic parameters are efficient in computation, communication, and the storage required. The security justification of the proposed scheme has been completed by using Rubin logic, which guarantees that the protocol attains mutual validation and session key agreement property strongly among the participating entities. Simulation scenarios are performed using NS 2.35 to validate the results for storage, communication, latency, energy, and polynomial calculation costs during authentication, session key generation, node migration, secure joining, and leaving phases. EKM is efficient regarding storage, computation, and communication overhead and can protect WSN-based IoT infrastructure.
Directory of Open Access Journals (Sweden)
N. Bhardwaj
2008-01-01
Full Text Available In the present paper, asymmetric vibration of polar orthotropic annular circular plates of quadratically varying thickness resting on Winkler elastic foundation is studied by using boundary characteristic orthonormal polynomials in Rayleigh-Ritz method. Convergence of the results is tested and comparison is made with results already available in the existing literature. Numerical results for the first ten frequencies for various values of parameters describing width of annular plate, thickness profile, material orthotropy and foundation constant for all three possible combinations of clamped, simply supported and free edge conditions are shown and discussed. It is found that (a higher elastic property in circumferential direction leads to higher stiffness against lateral vibration; (b Lateral vibration characteristics of F-Fplates is more sensitive towards parametric changes in material orthotropy and foundation stiffness than C-C and S-Splates; (c Effect of quadratical thickness variation on fundamental frequency is more significant in cases of C-C and S-S plates than that of F-Fplates. Thickness profile which is convex relative to plate center-line tends to result in higher stiffness of annular plates against lateral vibration than the one which is concave and (d Fundamental mode of vibration of C-C and S-Splates is axisymmetrical while that of F-Fplates is asymmetrical.
International Nuclear Information System (INIS)
Yorimitsu, Misako; Yokoyama, Kenichi; Nitatori, Toshiaki; Yoshino, Hideaki; Isono, Sachiko; Kuhara, Shigehide
2012-01-01
Whole-heart 3-dimensional (3D) late-gadolinium-enhanced magnetic resonance (MR) imaging (WH-LGE) uses respiratory gating combined with acquisition of 3D data for the entire heart in a single scan, which permits reconstruction of any plane with high resolution. We investigated the optimal scan parameters and compared WH-LGE with the conventional scanning method. We employed inversion recovery 3D fast field echo using a 1.5-tesla system and scan parameters: repetition time (TR), 6.6 ms; echo time (TE), 2.5 ms; number of segments, 2; parallel imaging factor, 1.8; matrix size, 128 x 256; field of view (FOV), 320 x 320 mm; and acquisition slice thickness, 3 mm (reconstruction slice thickness, 1.5 mm). Five healthy volunteers underwent scanning during free breathing with real-time motion correction, from which we determined optimal scan parameters. We then used those parameters to scan 25 patients with myocardial infarction to compare scan time and image quality between the WH-LGE and conventional 3D breath-holding methods (slice thickness, 10 mm; matrix size, 128 x 256). Results in volunteers showed optimal scan parameters of 12deg flip angle, fat suppression turned off in combination, and interleaved ordering. In clinical cases, scan times did not differ significantly. Sharpness of the margins of normal myocardium at the apex of the heart and contrast between enhanced and nonenhanced myocardium improved significantly with WH-LGE. WH-LGE yields high resolution images during free breathing and is considered useful for accurately estimating the area and transmural extent of myocardial infarction. (author)
Directory of Open Access Journals (Sweden)
Chih-Hong Lin
2015-01-01
Full Text Available Because the V-belt continuously variable transmission (CVT system driven by permanent magnet synchronous motor (PMSM has much unknown nonlinear and time-varying characteristics, the better control performance design for the linear control design is a time consuming procedure. In order to overcome difficulties for design of the linear controllers, the hybrid recurrent Laguerre-orthogonal-polynomial neural network (NN control system which has online learning ability to respond to the system’s nonlinear and time-varying behaviors is proposed to control PMSM servo-driven V-belt CVT system under the occurrence of the lumped nonlinear load disturbances. The hybrid recurrent Laguerre-orthogonal-polynomial NN control system consists of an inspector control, a recurrent Laguerre-orthogonal-polynomial NN control with adaptive law, and a recouped control with estimated law. Moreover, the adaptive law of online parameters in the recurrent Laguerre-orthogonal-polynomial NN is derived using the Lyapunov stability theorem. Furthermore, the optimal learning rate of the parameters by means of modified particle swarm optimization (PSO is proposed to achieve fast convergence. Finally, to show the effectiveness of the proposed control scheme, comparative studies are demonstrated by experimental results.
Julia Sets of Orthogonal Polynomials
DEFF Research Database (Denmark)
Christiansen, Jacob Stordal; Henriksen, Christian; Petersen, Henrik Laurberg
2018-01-01
For a probability measure with compact and non-polar support in the complex plane we relate dynamical properties of the associated sequence of orthogonal polynomials fPng to properties of the support. More precisely we relate the Julia set of Pn to the outer boundary of the support, the lled Julia...... set to the polynomial convex hull K of the support, and the Green's function associated with Pn to the Green's function for the complement of K....
An introduction to orthogonal polynomials
Chihara, Theodore S
1978-01-01
Assuming no further prerequisites than a first undergraduate course in real analysis, this concise introduction covers general elementary theory related to orthogonal polynomials. It includes necessary background material of the type not usually found in the standard mathematics curriculum. Suitable for advanced undergraduate and graduate courses, it is also appropriate for independent study. Topics include the representation theorem and distribution functions, continued fractions and chain sequences, the recurrence formula and properties of orthogonal polynomials, special functions, and some
Polynomial selection in number field sieve for integer factorization
Directory of Open Access Journals (Sweden)
Gireesh Pandey
2016-09-01
Full Text Available The general number field sieve (GNFS is the fastest algorithm for factoring large composite integers which is made up by two prime numbers. Polynomial selection is an important step of GNFS. The asymptotic runtime depends on choice of good polynomial pairs. In this paper, we present polynomial selection algorithm that will be modelled with size and root properties. The correlations between polynomial coefficient and number of relations have been explored with experimental findings.
Laguerre polynomials by a harmonic oscillator
International Nuclear Information System (INIS)
Baykal, Melek; Baykal, Ahmet
2014-01-01
The study of an isotropic harmonic oscillator, using the factorization method given in Ohanian's textbook on quantum mechanics, is refined and some collateral extensions of the method related to the ladder operators and the associated Laguerre polynomials are presented. In particular, some analytical properties of the associated Laguerre polynomials are derived using the ladder operators. (paper)
Remarks on determinants and the classical polynomials
International Nuclear Information System (INIS)
Henning, J.J.; Kranold, H.U.; Louw, D.F.B.
1986-01-01
As motivation for this formal analysis the problem of Landau damping of Bernstein modes is discussed. It is shown that in the case of a weak but finite constant external magnetic field, the analytical structure of the dispersion relations is of such a nature that longitudinal waves propagating orthogonal to the external magnetic field are also damped, contrary to normal belief. In the treatment of the linearized Vlasov equation it is found convenient to generate certain polynomials by the problem at hand and to explicitly write down expressions for these polynomials. In the course of this study methods are used that relate to elementary but fairly unknown functional relationships between power sums and coefficients of polynomials. These relationships, also called Waring functions, are derived. They are then used in other applications to give explicit expressions for the generalized Laguerre polynomials in terms of determinant functions. The properties of polynomials generated by a wide class of generating functions are investigated. These relationships are also used to obtain explicit forms for the cumulants of a distribution in terms of its moments. It is pointed out that cumulants (or moments, for that matter) do not determine a distribution function
General quantum polynomials: irreducible modules and Morita equivalence
International Nuclear Information System (INIS)
Artamonov, V A
1999-01-01
In this paper we continue the investigation of the structure of finitely generated modules over rings of general quantum (Laurent) polynomials. We obtain a description of the lattice of submodules of periodic finitely generated modules and describe the irreducible modules. We investigate the problem of Morita equivalence of rings of general quantum polynomials, consider properties of division rings of fractions, and solve Zariski's problem for quantum polynomials
Multivariable biorthogonal continuous--discrete Wilson and Racah polynomials
International Nuclear Information System (INIS)
Tratnik, M.V.
1990-01-01
Several families of multivariable, biorthogonal, partly continuous and partly discrete, Wilson polynomials are presented. These yield limit cases that are purely continuous in some of the variables and purely discrete in the others, or purely discrete in all the variables. The latter are referred to as the multivariable biorthogonal Racah polynomials. Interesting further limit cases include the multivariable biorthogonal Hahn and dual Hahn polynomials
Primitive polynomials selection method for pseudo-random number generator
Anikin, I. V.; Alnajjar, Kh
2018-01-01
In this paper we suggested the method for primitive polynomials selection of special type. This kind of polynomials can be efficiently used as a characteristic polynomials for linear feedback shift registers in pseudo-random number generators. The proposed method consists of two basic steps: finding minimum-cost irreducible polynomials of the desired degree and applying primitivity tests to get the primitive ones. Finally two primitive polynomials, which was found by the proposed method, used in pseudorandom number generator based on fuzzy logic (FRNG) which had been suggested before by the authors. The sequences generated by new version of FRNG have low correlation magnitude, high linear complexity, less power consumption, is more balanced and have better statistical properties.
Neck curve polynomials in neck rupture model
International Nuclear Information System (INIS)
Kurniadi, Rizal; Perkasa, Yudha S.; Waris, Abdul
2012-01-01
The Neck Rupture Model is a model that explains the scission process which has smallest radius in liquid drop at certain position. Old fashion of rupture position is determined randomly so that has been called as Random Neck Rupture Model (RNRM). The neck curve polynomials have been employed in the Neck Rupture Model for calculation the fission yield of neutron induced fission reaction of 280 X 90 with changing of order of polynomials as well as temperature. The neck curve polynomials approximation shows the important effects in shaping of fission yield curve.
The finite Fourier transform of classical polynomials
Dixit, Atul; Jiu, Lin; Moll, Victor H.; Vignat, Christophe
2014-01-01
The finite Fourier transform of a family of orthogonal polynomials $A_{n}(x)$, is the usual transform of the polynomial extended by $0$ outside their natural domain. Explicit expressions are given for the Legendre, Jacobi, Gegenbauer and Chebyshev families.
From sequences to polynomials and back, via operator orderings
Energy Technology Data Exchange (ETDEWEB)
Amdeberhan, Tewodros, E-mail: tamdeber@tulane.edu; Dixit, Atul, E-mail: adixit@tulane.edu; Moll, Victor H., E-mail: vhm@tulane.edu [Department of Mathematics, Tulane University, New Orleans, Louisiana 70118 (United States); De Angelis, Valerio, E-mail: vdeangel@xula.edu [Department of Mathematics, Xavier University of Louisiana, New Orleans, Louisiana 70125 (United States); Vignat, Christophe, E-mail: vignat@tulane.edu [Department of Mathematics, Tulane University, New Orleans, Louisiana 70118, USA and L.S.S. Supelec, Universite d' Orsay (France)
2013-12-15
Bender and Dunne [“Polynomials and operator orderings,” J. Math. Phys. 29, 1727–1731 (1988)] showed that linear combinations of words q{sup k}p{sup n}q{sup n−k}, where p and q are subject to the relation qp − pq = ı, may be expressed as a polynomial in the symbol z=1/2 (qp+pq). Relations between such polynomials and linear combinations of the transformed coefficients are explored. In particular, examples yielding orthogonal polynomials are provided.
Connection coefficients between Boas-Buck polynomial sets
Cheikh, Y. Ben; Chaggara, H.
2006-07-01
In this paper, a general method to express explicitly connection coefficients between two Boas-Buck polynomial sets is presented. As application, we consider some generalized hypergeometric polynomials, from which we derive some well-known results including duplication and inversion formulas.
Eigenvalues of PT-symmetric oscillators with polynomial potentials
International Nuclear Information System (INIS)
Shin, Kwang C
2005-01-01
We study the eigenvalue problem -u''(z) - [(iz) m + P m-1 (iz)]u(z) λu(z) with the boundary condition that u(z) decays to zero as z tends to infinity along the rays arg z = -π/2 ± 2π/(m+2) in the complex plane, where P m-1 (z) = a 1 z m-1 + a 2 z m-2 + . . . + a m-1 z is a polynomial and integers m ≥ 3. We provide an asymptotic expansion of the eigenvalues λ n as n → +∞, and prove that for each real polynomial P m-1 , the eigenvalues are all real and positive, with only finitely many exceptions
Least squares orthogonal polynomial approximation in several independent variables
International Nuclear Information System (INIS)
Caprari, R.S.
1992-06-01
This paper begins with an exposition of a systematic technique for generating orthonormal polynomials in two independent variables by application of the Gram-Schmidt orthogonalization procedure of linear algebra. It is then demonstrated how a linear least squares approximation for experimental data or an arbitrary function can be generated from these polynomials. The least squares coefficients are computed without recourse to matrix arithmetic, which ensures both numerical stability and simplicity of implementation as a self contained numerical algorithm. The Gram-Schmidt procedure is then utilised to generate a complete set of orthogonal polynomials of fourth degree. A theory for the transformation of the polynomial representation from an arbitrary basis into the familiar sum of products form is presented, together with a specific implementation for fourth degree polynomials. Finally, the computational integrity of this algorithm is verified by reconstructing arbitrary fourth degree polynomials from their values at randomly chosen points in their domain. 13 refs., 1 tab
A Symbolic Computation Approach to Parameterizing Controller for Polynomial Hamiltonian Systems
Directory of Open Access Journals (Sweden)
Zhong Cao
2014-01-01
Full Text Available This paper considers controller parameterization method of H∞ control for polynomial Hamiltonian systems (PHSs, which involves internal stability and external disturbance attenuation. The aims of this paper are to design a controller with parameters to insure that the systems are H∞ stable and propose an algorithm for solving parameters of the controller with symbolic computation. The proposed parameterization method avoids solving Hamilton-Jacobi-Isaacs equations, and thus the obtained controllers with parameters are relatively simple in form and easy in operation. Simulation with a numerical example shows that the controller is effective as it can optimize H∞ control by adjusting parameters. All these results are expected to be of use in the study of H∞ control for nonlinear systems with perturbations.
Global sensitivity analysis using sparse grid interpolation and polynomial chaos
International Nuclear Information System (INIS)
Buzzard, Gregery T.
2012-01-01
Sparse grid interpolation is widely used to provide good approximations to smooth functions in high dimensions based on relatively few function evaluations. By using an efficient conversion from the interpolating polynomial provided by evaluations on a sparse grid to a representation in terms of orthogonal polynomials (gPC representation), we show how to use these relatively few function evaluations to estimate several types of sensitivity coefficients and to provide estimates on local minima and maxima. First, we provide a good estimate of the variance-based sensitivity coefficients of Sobol' (1990) [1] and then use the gradient of the gPC representation to give good approximations to the derivative-based sensitivity coefficients described by Kucherenko and Sobol' (2009) [2]. Finally, we use the package HOM4PS-2.0 given in Lee et al. (2008) [3] to determine the critical points of the interpolating polynomial and use these to determine the local minima and maxima of this polynomial. - Highlights: ► Efficient estimation of variance-based sensitivity coefficients. ► Efficient estimation of derivative-based sensitivity coefficients. ► Use of homotopy methods for approximation of local maxima and minima.
International Nuclear Information System (INIS)
Yasa, F.; Anli, F.; Guengoer, S.
2007-01-01
We present analytical calculations of spherically symmetric radioactive transfer and neutron transport using a hypothesis of P1 and T1 low order polynomial approximation for diffusion coefficient D. Transport equation in spherical geometry is considered as the pseudo slab equation. The validity of polynomial expansionion in transport theory is investigated through a comparison with classic diffusion theory. It is found that for causes when the fluctuation of the scattering cross section dominates, the quantitative difference between the polynomial approximation and diffusion results was physically acceptable in general
Rotation of 2D orthogonal polynomials
Czech Academy of Sciences Publication Activity Database
Yang, B.; Flusser, Jan; Kautský, J.
2018-01-01
Roč. 102, č. 1 (2018), s. 44-49 ISSN 0167-8655 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Rotation invariants * Orthogonal polynomials * Recurrent relation * Hermite-like polynomials * Hermite moments Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.995, year: 2016 http://library.utia.cas.cz/separaty/2017/ZOI/flusser-0483250.pdf
q-analogue of the Krawtchouk and Meixner orthogonal polynomials
International Nuclear Information System (INIS)
Campigotto, C.; Smirnov, Yu.F.; Enikeev, S.G.
1993-06-01
The comparative analysis of Krawtchouk polynomials on a uniform grid with Wigner D-functions for the SU(2) group is presented. As a result the partnership between corresponding properties of the polynomials and D-functions is established giving the group-theoretical interpretation of the Krawtchouk polynomials properties. In order to extend such an analysis on the quantum groups SU q (2) and SU q (1,1), q-analogues of Krawtchouk and Meixner polynomials of a discrete variable are studied. The total set of characteristics of these polynomials is calculated, including the orthogonality condition, normalization factor, recurrent relation, the explicit analytic expression, the Rodrigues formula, the difference derivative formula and various particular cases and values. (R.P.) 22 refs.; 2 tabs
Asymptotics and Numerics of Polynomials Used in Tricomi and Buchholz Expansions of Kummer functions
J.L. López; N.M. Temme (Nico)
2010-01-01
textabstractExpansions in terms of Bessel functions are considered of the Kummer function ${}_1F_1(a;c,z)$ (or confluent hypergeometric function) as given by Tricomi and Buchholz. The coefficients of these expansions are polynomials in the parameters of the Kummer function and the asymptotic
Skew-orthogonal polynomials and random matrix theory
Ghosh, Saugata
2009-01-01
Orthogonal polynomials satisfy a three-term recursion relation irrespective of the weight function with respect to which they are defined. This gives a simple formula for the kernel function, known in the literature as the Christoffel-Darboux sum. The availability of asymptotic results of orthogonal polynomials and the simple structure of the Christoffel-Darboux sum make the study of unitary ensembles of random matrices relatively straightforward. In this book, the author develops the theory of skew-orthogonal polynomials and obtains recursion relations which, unlike orthogonal polynomials, depend on weight functions. After deriving reduced expressions, called the generalized Christoffel-Darboux formulas (GCD), he obtains universal correlation functions and non-universal level densities for a wide class of random matrix ensembles using the GCD. The author also shows that once questions about higher order effects are considered (questions that are relevant in different branches of physics and mathematics) the ...
Some properties of generalized self-reciprocal polynomials over finite fields
Directory of Open Access Journals (Sweden)
Ryul Kim
2014-07-01
Full Text Available Numerous results on self-reciprocal polynomials over finite fields have been studied. In this paper we generalize some of these to a-self reciprocal polynomials defined in [4]. We consider some properties of the divisibility of a-reciprocal polynomials and characterize the parity of the number of irreducible factors for a-self reciprocal polynomials over finite fields of odd characteristic.
Coupling coefficients of SO(n) and integrals involving Jacobi and Gegenbauer polynomials
International Nuclear Information System (INIS)
Alisauskas, Sigitas
2002-01-01
The expressions for the coupling coefficients (3j-symbols) for most degenerate (symmetric) representations of orthogonal groups SO(n) in a canonical basis (with SO(n) restricted to SO(n-1) and different semicanonical or tree bases (with SO(n) restricted to SO(n')xSO(n''), n'+n''=n) are considered, respectively, in context of integrals involving triplets of the Gegenbauer and the Jacobi polynomials. Since the directly derived triple-hypergeometric series do not reveal the apparent triangle conditions of the 3j-symbols, they are rearranged, using their relation with semistretched isofactors of the second kind for the complementary chain Sp(4) contains SU(2)xSU(2) and analogy with the stretched 9j coefficients of SU(2), into formulae with more rich limits for summation intervals and obvious triangle conditions. The isofactors of class-one representations of orthogonal groups or class-two representations of unitary groups (and, of course, the related integrals involving triplets of the Gegenbauer and the Jacobi polynomials) turn into double sums in the cases of canonical SO(n) contains SO(n-1) or U(n) contains U(n-1) and semicanonical SO(n) contains SO(n-2)xSO(2) chains, as well as into the 4 F 3 (1) series under more specific conditions. Some ambiguities of the phase choice of the complementary group approach are adjusted, as well as problems with an alternating sign parameter of SO(2) representations in the SO(3) contains SO(2) and SO(n) contains SO(n-2)xSO(2) chains. (author)
International Nuclear Information System (INIS)
Feng Yi-Fu; Zhang Qing-Ling; Feng De-Zhi
2012-01-01
The global stability problem of Takagi—Sugeno (T—S) fuzzy Hopfield neural networks (FHNNs) with time delays is investigated. Novel LMI-based stability criteria are obtained by using Lyapunov functional theory to guarantee the asymptotic stability of the FHNNs with less conservatism. Firstly, using both Finsler's lemma and an improved homogeneous matrix polynomial technique, and applying an affine parameter-dependent Lyapunov—Krasovskii functional, we obtain the convergent LMI-based stability criteria. Algebraic properties of the fuzzy membership functions in the unit simplex are considered in the process of stability analysis via the homogeneous matrix polynomials technique. Secondly, to further reduce the conservatism, a new right-hand-side slack variables introducing technique is also proposed in terms of LMIs, which is suitable to the homogeneous matrix polynomials setting. Finally, two illustrative examples are given to show the efficiency of the proposed approaches
on the performance of Autoregressive Moving Average Polynomial
African Journals Online (AJOL)
Timothy Ademakinwa
Distributed Lag (PDL) model, Autoregressive Polynomial Distributed Lag ... Moving Average Polynomial Distributed Lag (ARMAPDL) model. ..... Global Journal of Mathematics and Statistics. Vol. 1. ... Business and Economic Research Center.
Application of polynomial preconditioners to conservation laws
Geurts, Bernardus J.; van Buuren, R.; Lu, H.
2000-01-01
Polynomial preconditioners which are suitable in implicit time-stepping methods for conservation laws are reviewed and analyzed. The preconditioners considered are either based on a truncation of a Neumann series or on Chebyshev polynomials for the inverse of the system-matrix. The latter class of
Symmetric functions and orthogonal polynomials
Macdonald, I G
1997-01-01
One of the most classical areas of algebra, the theory of symmetric functions and orthogonal polynomials has long been known to be connected to combinatorics, representation theory, and other branches of mathematics. Written by perhaps the most famous author on the topic, this volume explains some of the current developments regarding these connections. It is based on lectures presented by the author at Rutgers University. Specifically, he gives recent results on orthogonal polynomials associated with affine Hecke algebras, surveying the proofs of certain famous combinatorial conjectures.
Applications of polynomial optimization in financial risk investment
Zeng, Meilan; Fu, Hongwei
2017-09-01
Recently, polynomial optimization has many important applications in optimization, financial economics and eigenvalues of tensor, etc. This paper studies the applications of polynomial optimization in financial risk investment. We consider the standard mean-variance risk measurement model and the mean-variance risk measurement model with transaction costs. We use Lasserre's hierarchy of semidefinite programming (SDP) relaxations to solve the specific cases. The results show that polynomial optimization is effective for some financial optimization problems.
Polynomially Riesz elements | Živković-Zlatanović | Quaestiones ...
African Journals Online (AJOL)
A Banach algebra element ɑ ∈ A is said to be "polynomially Riesz", relative to the homomorphism T : A → B, if there exists a nonzero complex polynomial p(z) such that the image Tp ∈ B is quasinilpotent. Keywords: Homomorphism of Banach algebras, polynomially Riesz element, Fredholm spectrum, Browder element, ...
Symmetric integrable-polynomial factorization for symplectic one-turn-map tracking
International Nuclear Information System (INIS)
Shi, Jicong
1993-01-01
It was found that any homogeneous polynomial can be written as a sum of integrable polynomials of the same degree which Lie transformations can be evaluated exactly. By utilizing symplectic integrators, an integrable-polynomial factorization is developed to convert a symplectic map in the form of Dragt-Finn factorization into a product of Lie transformations associated with integrable polynomials. A small number of factorization bases of integrable polynomials enable one to use high order symplectic integrators so that the high-order spurious terms can be greatly suppressed. A symplectic map can thus be evaluated with desired accuracy
Connections between the matching and chromatic polynomials
Directory of Open Access Journals (Sweden)
E. J. Farrell
1992-01-01
Full Text Available The main results established are (i a connection between the matching and chromatic polynomials and (ii a formula for the matching polynomial of a general complement of a subgraph of a graph. Some deductions on matching and chromatic equivalence and uniqueness are made.
On Generalisation of Polynomials in Complex Plane
Directory of Open Access Journals (Sweden)
Maslina Darus
2010-01-01
Full Text Available The generalised Bell and Laguerre polynomials of fractional-order in complex z-plane are defined. Some properties are studied. Moreover, we proved that these polynomials are univalent solutions for second order differential equations. Also, the Laguerre-type of some special functions are introduced.
Technique for image interpolation using polynomial transforms
Escalante Ramírez, B.; Martens, J.B.; Haskell, G.G.; Hang, H.M.
1993-01-01
We present a new technique for image interpolation based on polynomial transforms. This is an image representation model that analyzes an image by locally expanding it into a weighted sum of orthogonal polynomials. In the discrete case, the image segment within every window of analysis is
Okounkov's BC-Type Interpolation Macdonald Polynomials and Their q=1 Limit
Koornwinder, T.H.
2015-01-01
This paper surveys eight classes of polynomials associated with A-type and BC-type root systems: Jack, Jacobi, Macdonald and Koornwinder polynomials and interpolation (or shifted) Jack and Macdonald polynomials and their BC-type extensions. Among these the BC-type interpolation Jack polynomials were
Interlacing of zeros of quasi-orthogonal meixner polynomials | Driver ...
African Journals Online (AJOL)
... interlacing of zeros of quasi-orthogonal Meixner polynomials Mn(x;β; c) with the zeros of their nearest orthogonal counterparts Mt(x;β + k; c), l; n ∈ ℕ, k ∈ {1; 2}; is also discussed. Mathematics Subject Classication (2010): 33C45, 42C05. Key words: Discrete orthogonal polynomials, quasi-orthogonal polynomials, Meixner
All-Pole Recursive Digital Filters Design Based on Ultraspherical Polynomials
N. Stojanovic; N. Stamenkovic; V. Stojanovic
2014-01-01
A simple method for approximation of all-pole recursive digital filters, directly in digital domain, is described. Transfer function of these filters, referred to as Ultraspherical filters, is controlled by order of the Ultraspherical polynomial, nu. Parameter nu, restricted to be a nonnegative real number (nu ≥ 0), controls ripple peaks in the passband of the magnitude response and enables a trade-off between the passband loss and the group delay response of the resulting filter. Chebyshev f...
Zamaere, Christine Berkesch; Griffeth, Stephen; Sam, Steven V.
2014-08-01
We show that for Jack parameter α = -( k + 1)/( r - 1), certain Jack polynomials studied by Feigin-Jimbo-Miwa-Mukhin vanish to order r when k + 1 of the coordinates coincide. This result was conjectured by Bernevig and Haldane, who proposed that these Jack polynomials are model wavefunctions for fractional quantum Hall states. Special cases of these Jack polynomials include the wavefunctions of Laughlin and Read-Rezayi. In fact, along these lines we prove several vanishing theorems known as clustering properties for Jack polynomials in the mathematical physics literature, special cases of which had previously been conjectured by Bernevig and Haldane. Motivated by the method of proof, which in the case r = 2 identifies the span of the relevant Jack polynomials with the S n -invariant part of a unitary representation of the rational Cherednik algebra, we conjecture that unitary representations of the type A Cherednik algebra have graded minimal free resolutions of Bernstein-Gelfand-Gelfand type; we prove this for the ideal of the ( k + 1)-equals arrangement in the case when the number of coordinates n is at most 2 k + 1. In general, our conjecture predicts the graded S n -equivariant Betti numbers of the ideal of the ( k + 1)-equals arrangement with no restriction on the number of ambient dimensions.
Discriminants and functional equations for polynomials orthogonal on the unit circle
International Nuclear Information System (INIS)
Ismail, M.E.H.; Witte, N.S.
2000-01-01
We derive raising and lowering operators for orthogonal polynomials on the unit circle and find second order differential and q-difference equations for these polynomials. A general functional equation is found which allows one to relate the zeros of the orthogonal polynomials to the stationary values of an explicit quasi-energy and implies recurrences on the orthogonal polynomial coefficients. We also evaluate the discriminants and quantized discriminants of polynomials orthogonal on the unit circle
Contributions to fuzzy polynomial techniques for stability analysis and control
Pitarch Pérez, José Luis
2014-01-01
The present thesis employs fuzzy-polynomial control techniques in order to improve the stability analysis and control of nonlinear systems. Initially, it reviews the more extended techniques in the field of Takagi-Sugeno fuzzy systems, such as the more relevant results about polynomial and fuzzy polynomial systems. The basic framework uses fuzzy polynomial models by Taylor series and sum-of-squares techniques (semidefinite programming) in order to obtain stability guarantees...
On the Lorentz degree of a product of polynomials
Ait-Haddou, Rachid
2015-01-01
In this note, we negatively answer two questions of T. Erdélyi (1991, 2010) on possible lower bounds on the Lorentz degree of product of two polynomials. We show that the correctness of one question for degree two polynomials is a direct consequence of a result of Barnard et al. (1991) on polynomials with nonnegative coefficients.
Strong result for real zeros of random algebraic polynomials
Directory of Open Access Journals (Sweden)
T. Uno
2001-01-01
Full Text Available An estimate is given for the lower bound of real zeros of random algebraic polynomials whose coefficients are non-identically distributed dependent Gaussian random variables. Moreover, our estimated measure of the exceptional set, which is independent of the degree of the polynomials, tends to zero as the degree of the polynomial tends to infinity.
Large degree asymptotics of generalized Bessel polynomials
J.L. López; N.M. Temme (Nico)
2011-01-01
textabstractAsymptotic expansions are given for large values of $n$ of the generalized Bessel polynomials $Y_n^\\mu(z)$. The analysis is based on integrals that follow from the generating functions of the polynomials. A new simple expansion is given that is valid outside a compact neighborhood of the
Combinatorial formulas for Kazhdan-Lusztig polynomials with respect to W-graph ideals
Wang, Qi
2017-01-01
In \\cite{y1} Yin generalized the definition of $W$-graph ideal $E_J$ in weighted Coxeter groups and introduced the weighted Kazhdan-Lusztig polynomials $ \\left \\{ P_{x,y} \\mid x,y\\in E_J\\right \\}$, where $J$ is a subset of simple generators $S$. In this paper, we study the combinatorial formulas for those polynomials, which extend the results of Deodhar \\cite{v3} and Tagawa \\cite{h1}.
Higher order branching of periodic orbits from polynomial isochrones
Directory of Open Access Journals (Sweden)
B. Toni
1999-09-01
Full Text Available We discuss the higher order local bifurcations of limit cycles from polynomial isochrones (linearizable centers when the linearizing transformation is explicitly known and yields a polynomial perturbation one-form. Using a method based on the relative cohomology decomposition of polynomial one-forms complemented with a step reduction process, we give an explicit formula for the overall upper bound of branch points of limit cycles in an arbitrary $n$ degree polynomial perturbation of the linear isochrone, and provide an algorithmic procedure to compute the upper bound at successive orders. We derive a complete analysis of the nonlinear cubic Hamiltonian isochrone and show that at most nine branch points of limit cycles can bifurcate in a cubic polynomial perturbation. Moreover, perturbations with exactly two, three, four, six, and nine local families of limit cycles may be constructed.
On the estimation of the degree of regression polynomial
International Nuclear Information System (INIS)
Toeroek, Cs.
1997-01-01
The mathematical functions most commonly used to model curvature in plots are polynomials. Generally, the higher the degree of the polynomial, the more complex is the trend that its graph can represent. We propose a new statistical-graphical approach based on the discrete projective transformation (DPT) to estimating the degree of polynomial that adequately describes the trend in the plot
On Some Extensions of Szasz Operators Including Boas-Buck-Type Polynomials
Directory of Open Access Journals (Sweden)
Sezgin Sucu
2012-01-01
Full Text Available This paper is concerned with a new sequence of linear positive operators which generalize Szasz operators including Boas-Buck-type polynomials. We establish a convergence theorem for these operators and give the quantitative estimation of the approximation process by using a classical approach and the second modulus of continuity. Some explicit examples of our operators involving Laguerre polynomials, Charlier polynomials, and Gould-Hopper polynomials are given. Moreover, a Voronovskaya-type result is obtained for the operators containing Gould-Hopper polynomials.
International Nuclear Information System (INIS)
Macabebe, E.Q.B.; Sheppard, C.J.; Dyk, E.E. van
2009-01-01
In pursuit of low-cost and highly efficient thin film solar cells, Cu(In,Ga)(Se,S) 2 /CdS/i-ZnO/ZnO:Al (CIGSS) solar cells were fabricated using a two-step process. The thickness of i-ZnO layer was varied from 0 to 454 nm. The current density-voltage (J-V) characteristics of the devices were measured, and the device and performance parameters of the solar cells were obtained from the J-V curves to analyze the effect of varying i-ZnO layer thickness. The device parameters were determined using a parameter extraction method that utilized particle swarm optimization. The method is a curve-fitting routine that employed the two-diode model. The J-V curves of the solar cells were fitted with the model and the parameters were determined. Results show that as the thickness of i-ZnO was increased, the average efficiency and the fill factor (FF) of the solar cells increase. Device parameters reveal that although the series resistance increased with thicker i-ZnO layer, the solar cells absorbed more photons resulting in higher short-circuit current density (J sc ) and, consequently, higher photo-generated current density (J L ). For solar cells with 303-454 nm-thick i-ZnO layer, the best devices achieved efficiency between 15.24% and 15.73% and the fill factor varied between 0.65 and 0.67.
On associated polynomials and decay rates for birth-death processes
van Doorn, Erik A.
2001-01-01
We consider sequences of orthogonal polynomials and pursue the question of how (partial) knowledge of the orthogonalizing measure for the {\\it associated polynomials} can lead to information about the orthogonalizing measure for the original polynomials. In particular, we relate the supports of the
On associated polynomials and decay rates for birth-death processes
van Doorn, Erik A.
2003-01-01
We consider sequences of orthogonal polynomials and pursue the question of how (partial) knowledge of the orthogonalizing measure for the associated polynomials can lead to information about the orthogonalizing measure for the original polynomials. In particular, we relate the supports of the two
Self-Poling of BiFeO3 Thick Films.
Khomyakova, Evgeniya; Sadl, Matej; Ursic, Hana; Daniels, John; Malic, Barbara; Bencan, Andreja; Damjanovic, Dragan; Rojac, Tadej
2016-08-03
Bismuth ferrite (BiFeO3) is difficult to pole because of the combination of its high coercive field and high electrical conductivity. This problem is particularly pronounced in thick films. The poling, however, must be performed to achieve a large macroscopic piezoelectric response. This study presents evidence of a prominent and reproducible self-poling effect in few-tens-of-micrometer-thick BiFeO3 films. Direct and converse piezoelectric measurements confirmed that the as-sintered BiFeO3 thick films yield d33 values of up to ∼20 pC/N. It was observed that a significant self-poling effect only appears in cases when the films are heated and cooled through the ferroelectric-paraelectric phase transition (Curie temperature TC ∼ 820 °C). These self-poled films exhibit a microstructure with randomly oriented columnar grains. The presence of a compressive strain gradient across the film thickness cooled from above the TC was experimentally confirmed and is suggested to be responsible for the self-poling effect. Finally, the macroscopic d33 response of the self-poled BiFeO3 film was characterized as a function of the driving-field frequency and amplitude.
Carvalho, Luis Alberto
2005-02-01
Our main goal in this work was to develop an artificial neural network (NN) that could classify specific types of corneal shapes using Zernike coefficients as input. Other authors have implemented successful NN systems in the past and have demonstrated their efficiency using different parameters. Our claim is that, given the increasing popularity of Zernike polynomials among the eye care community, this may be an interesting choice to add complementing value and precision to existing methods. By using a simple and well-documented corneal surface representation scheme, which relies on corneal elevation information, one can generate simple NN input parameters that are independent of curvature definition and that are also efficient. We have used the Matlab Neural Network Toolbox (MathWorks, Natick, MA) to implement a three-layer feed-forward NN with 15 inputs and 5 outputs. A database from an EyeSys System 2000 (EyeSys Vision, Houston, TX) videokeratograph installed at the Escola Paulista de Medicina-Sao Paulo was used. This database contained an unknown number of corneal types. From this database, two specialists selected 80 corneas that could be clearly classified into five distinct categories: (1) normal, (2) with-the-rule astigmatism, (3) against-the-rule astigmatism, (4) keratoconus, and (5) post-laser-assisted in situ keratomileusis. The corneal height (SAG) information of the 80 data files was fit with the first 15 Vision Science and it Applications (VSIA) standard Zernike coefficients, which were individually used to feed the 15 neurons of the input layer. The five output neurons were associated with the five typical corneal shapes. A group of 40 cases was randomly selected from the larger group of 80 corneas and used as the training set. The NN responses were statistically analyzed in terms of sensitivity [true positive/(true positive + false negative)], specificity [true negative/(true negative + false positive)], and precision [(true positive + true
Statistics of Data Fitting: Flaws and Fixes of Polynomial Analysis of Channeled Spectra
Karstens, William; Smith, David
2013-03-01
Starting from general statistical principles, we have critically examined Baumeister's procedure* for determining the refractive index of thin films from channeled spectra. Briefly, the method assumes that the index and interference fringe order may be approximated by polynomials quadratic and cubic in photon energy, respectively. The coefficients of the polynomials are related by differentiation, which is equivalent to comparing energy differences between fringes. However, we find that when the fringe order is calculated from the published IR index for silicon* and then analyzed with Baumeister's procedure, the results do not reproduce the original index. This problem has been traced to 1. Use of unphysical powers in the polynomials (e.g., time-reversal invariance requires that the index is an even function of photon energy), and 2. Use of insufficient terms of the correct parity. Exclusion of unphysical terms and addition of quartic and quintic terms to the index and order polynomials yields significantly better fits with fewer parameters. This represents a specific example of using statistics to determine if the assumed fitting model adequately captures the physics contained in experimental data. The use of analysis of variance (ANOVA) and the Durbin-Watson statistic to test criteria for the validity of least-squares fitting will be discussed. *D.F. Edwards and E. Ochoa, Appl. Opt. 19, 4130 (1980). Supported in part by the US Department of Energy, Office of Nuclear Physics under contract DE-AC02-06CH11357.
International Nuclear Information System (INIS)
Vidal, F.; Assis, J.T. de; Lopes, R.T.; Lima, I.
2014-01-01
In recent years, bone quantification led to a deeper knowledge of the 3D microarchitecture. In this study the bone architecture of rats was investigated based on 2D/3D morphometric analysis using microcomputed tomography, aiming at determining the effect of the image acquisition pixel on the quality of some 2D/3D morphometric parameters, such as porosity and trabecular density. Six pairs of bone samples were used and the scans were carried out using high microcomputed tomography system, operating at three different pixel sizes of 33.3 μm, 15.0 μm and 9.5 μm. The results showed 2D parameters values lower than those obtained in the 3D analysis, mainly for trabecular density, separation and thickness. - Highlights: ► Bone quantification led to a deeper knowledge of the 3D microarchitecture. ► μCT was used in order to investigate condyles bone in 03 different pixel sizes. ► The results showed 2D parameters values lower than those obtained in the 3D analysis. ► The parameters trabecular density, separation and thickness were the most affected
Some Polynomials Associated with the r-Whitney Numbers
Indian Academy of Sciences (India)
26
Abstract. In the present article we study three families of polynomials associated with ... [29, 39] for their relations with the Bernoulli and generalized Bernoulli polynomials and ... generating functions in a similar way as in the classical cases.
The Bessel polynomials and their differential operators
International Nuclear Information System (INIS)
Onyango Otieno, V.P.
1987-10-01
Differential operators associated with the ordinary and the generalized Bessel polynomials are defined. In each case the commutator bracket is constructed and shows that the differential operators associated with the Bessel polynomials and their generalized form are not commutative. Some applications of these operators to linear differential equations are also discussed. (author). 4 refs
Conference on Commutative rings, integer-valued polynomials and polynomial functions
Frisch, Sophie; Glaz, Sarah; Commutative Algebra : Recent Advances in Commutative Rings, Integer-Valued Polynomials, and Polynomial Functions
2014-01-01
This volume presents a multi-dimensional collection of articles highlighting recent developments in commutative algebra. It also includes an extensive bibliography and lists a substantial number of open problems that point to future directions of research in the represented subfields. The contributions cover areas in commutative algebra that have flourished in the last few decades and are not yet well represented in book form. Highlighted topics and research methods include Noetherian and non- Noetherian ring theory as well as integer-valued polynomials and functions. Specific topics include: · Homological dimensions of Prüfer-like rings · Quasi complete rings · Total graphs of rings · Properties of prime ideals over various rings · Bases for integer-valued polynomials · Boolean subrings · The portable property of domains · Probabilistic topics in Intn(D) · Closure operations in Zariski-Riemann spaces of valuation domains · Stability of do...
Dual exponential polynomials and linear differential equations
Wen, Zhi-Tao; Gundersen, Gary G.; Heittokangas, Janne
2018-01-01
We study linear differential equations with exponential polynomial coefficients, where exactly one coefficient is of order greater than all the others. The main result shows that a nontrivial exponential polynomial solution of such an equation has a certain dual relationship with the maximum order coefficient. Several examples illustrate our results and exhibit possibilities that can occur.
Tsutsumi, Takeshi; Ikeda, Takuo; Watanabe, Kensuke; Kikuchi, Shigeru
2011-12-01
Three-dimensional analysis of video-oculograms can be used to calculate Listing plane for patients and experimental subjects. Listing plane reflects the head's orientation with respect to gravity, which suggests that the plane is derived from otolithic vestibular input, itself, or from a gravity-oriented internal model constructed through integration of visual, vestibular, and proprioceptive sensory inputs. The goal of this study was to determine whether the Listing plane can serve as a parameter for evaluating static (peripheral or central) vestibular function. Prospective study. Tertiary referral center. Healthy subjects and patients with unilateral vestibular schwannoma without any previous treatment. Diagnostic. Video-oculograms were recorded from healthy subjects (aged 36.8 ± 6.3 yr) and from patients (aged 60.3 ± 7.5 yr) during voluntary gaze with the head in an upright or each-side-down orientation, and the thicknesses of the calculated Listing planes were then compared. Results revealed thickening of the Listing plane in patients only when the head was in an impaired-side-down orientation (1.250 ± 0.795 and 1.074 ± 0.759 degrees in the right- and left-side-down head orientations in healthy subjects versus 2.222 ± 1.237 degrees in the impaired-side-down orientation in patients), and this thickening correlated with caloric weakness. By contrast, neither the sensation of postural instability nor postural disturbance in force platform recordings contributed to the thickness of Listing plane. The thickness of the Listing plane could be a novel parameter for quantitatively evaluating static vestibular (otolithic) function, although central compensation might exist.
Generalized Freud's equation and level densities with polynomial
Indian Academy of Sciences (India)
Home; Journals; Pramana – Journal of Physics; Volume 81; Issue 2. Generalized Freud's equation and level densities with polynomial potential. Akshat Boobna Saugata Ghosh. Research Articles Volume 81 ... Keywords. Orthogonal polynomial; Freud's equation; Dyson–Mehta method; methods of resolvents; level density.
Dong, Zehua; Fang, Guangyou; Ji, Yicai; Gao, Yunze; Wu, Chao; Zhang, Xiaojuan
2017-01-01
Chang'E-3 (CE-3) landed in the northwest Mare Imbrium, a region that has not been explored before. Yutu rover that released by CE-3 lander carried the first lunar surface penetrating radar (LPR) for exploring lunar regolith thickness and subsurface shallow geological structures. In this paper, based on the LPR data and the Panoramic Camera (PC) data, we first calculate the lunar surface regolith parameters in CE-3 landing area including its permittivity, density, conductivity and FeO + TiO2 content. LPR data provides a higher spatial resolution and more accuracy for the lunar regolith parameters comparing to other remote sensing techniques, such as orbit radar sounder and microwave sensing or earth-based powerful radar. We also derived the regolith thickness and its weathered rate with much better accuracy in the landing area. The results indicate that the regolith growth rate is much faster than previous estimation, the regolith parameters are not uniform even in such a small study area and the thickness and growth rate of lunar regolith here are different from other areas in Mare Imbrium. We infer that the main reason should be geological deformation that caused by multiple impacts of meteorites in different sizes.
Sraj, Ihab; Le Maî tre, Olivier P.; Knio, Omar; Hoteit, Ibrahim
2015-01-01
using a coordinate transformation to account for the dependence with respect to the covariance hyper-parameters. Polynomial Chaos expansions are employed for the acceleration of the Bayesian inference using similar coordinate transformations, enabling us
Polynomial fuzzy observer designs: a sum-of-squares approach.
Tanaka, Kazuo; Ohtake, Hiroshi; Seo, Toshiaki; Tanaka, Motoyasu; Wang, Hua O
2012-10-01
This paper presents a sum-of-squares (SOS) approach to polynomial fuzzy observer designs for three classes of polynomial fuzzy systems. The proposed SOS-based framework provides a number of innovations and improvements over the existing linear matrix inequality (LMI)-based approaches to Takagi-Sugeno (T-S) fuzzy controller and observer designs. First, we briefly summarize previous results with respect to a polynomial fuzzy system that is a more general representation of the well-known T-S fuzzy system. Next, we propose polynomial fuzzy observers to estimate states in three classes of polynomial fuzzy systems and derive SOS conditions to design polynomial fuzzy controllers and observers. A remarkable feature of the SOS design conditions for the first two classes (Classes I and II) is that they realize the so-called separation principle, i.e., the polynomial fuzzy controller and observer for each class can be separately designed without lack of guaranteeing the stability of the overall control system in addition to converging state-estimation error (via the observer) to zero. Although, for the last class (Class III), the separation principle does not hold, we propose an algorithm to design polynomial fuzzy controller and observer satisfying the stability of the overall control system in addition to converging state-estimation error (via the observer) to zero. All the design conditions in the proposed approach can be represented in terms of SOS and are symbolically and numerically solved via the recently developed SOSTOOLS and a semidefinite-program solver, respectively. To illustrate the validity and applicability of the proposed approach, three design examples are provided. The examples demonstrate the advantages of the SOS-based approaches for the existing LMI approaches to T-S fuzzy observer designs.
An overview on polynomial approximation of NP-hard problems
Directory of Open Access Journals (Sweden)
Paschos Vangelis Th.
2009-01-01
Full Text Available The fact that polynomial time algorithm is very unlikely to be devised for an optimal solving of the NP-hard problems strongly motivates both the researchers and the practitioners to try to solve such problems heuristically, by making a trade-off between computational time and solution's quality. In other words, heuristic computation consists of trying to find not the best solution but one solution which is 'close to' the optimal one in reasonable time. Among the classes of heuristic methods for NP-hard problems, the polynomial approximation algorithms aim at solving a given NP-hard problem in poly-nomial time by computing feasible solutions that are, under some predefined criterion, as near to the optimal ones as possible. The polynomial approximation theory deals with the study of such algorithms. This survey first presents and analyzes time approximation algorithms for some classical examples of NP-hard problems. Secondly, it shows how classical notions and tools of complexity theory, such as polynomial reductions, can be matched with polynomial approximation in order to devise structural results for NP-hard optimization problems. Finally, it presents a quick description of what is commonly called inapproximability results. Such results provide limits on the approximability of the problems tackled.
A note on the zeros of Freud-Sobolev orthogonal polynomials
Moreno-Balcazar, Juan J.
2007-10-01
We prove that the zeros of a certain family of Sobolev orthogonal polynomials involving the Freud weight function e-x4 on are real, simple, and interlace with the zeros of the Freud polynomials, i.e., those polynomials orthogonal with respect to the weight function e-x4. Some numerical examples are shown.
About the solvability of matrix polynomial equations
Netzer, Tim; Thom, Andreas
2016-01-01
We study self-adjoint matrix polynomial equations in a single variable and prove existence of self-adjoint solutions under some assumptions on the leading form. Our main result is that any self-adjoint matrix polynomial equation of odd degree with non-degenerate leading form can be solved in self-adjoint matrices. We also study equations of even degree and equations in many variables.
Two polynomial representations of experimental design
Notari, Roberto; Riccomagno, Eva; Rogantin, Maria-Piera
2007-01-01
In the context of algebraic statistics an experimental design is described by a set of polynomials called the design ideal. This, in turn, is generated by finite sets of polynomials. Two types of generating sets are mostly used in the literature: Groebner bases and indicator functions. We briefly describe them both, how they are used in the analysis and planning of a design and how to switch between them. Examples include fractions of full factorial designs and designs for mixture experiments.
International Nuclear Information System (INIS)
Balondo Iyela, Daddy; Govaerts, Jan; Hounkonnou, M. Norbert
2013-01-01
Within the context of supersymmetric quantum mechanics and its related hierarchies of integrable quantum Hamiltonians and potentials, a general programme is outlined and applied to its first two simplest illustrations. Going beyond the usual restriction of shape invariance for intertwined potentials, it is suggested to require a similar relation for Hamiltonians in the hierarchy separated by an arbitrary number of levels, N. By requiring further that these two Hamiltonians be in fact identical up to an overall shift in energy, a periodic structure is installed in the hierarchy which should allow for its resolution. Specific classes of orthogonal polynomials characteristic of such periodic hierarchies are thereby generated, while the methods of supersymmetric quantum mechanics then lead to generalised Rodrigues formulae and recursion relations for such polynomials. The approach also offers the practical prospect of quantum modelling through the engineering of quantum potentials from experimental energy spectra. In this paper, these ideas are presented and solved explicitly for the cases N= 1 and N= 2. The latter case is related to the generalised Laguerre polynomials, for which indeed new results are thereby obtained. In the context of dressing chains and deformed polynomial Heisenberg algebras, some partial results for N⩾ 3 also exist in the literature, which should be relevant to a complete study of the N⩾ 3 general periodic hierarchies
Energy Technology Data Exchange (ETDEWEB)
Balondo Iyela, Daddy [International Chair in Mathematical Physics and Applications (ICMPA–UNESCO Chair), University of Abomey–Calavi, 072 B. P. 50 Cotonou, Republic of Benin (Benin); Centre for Cosmology, Particle Physics and Phenomenology (CP3), Institut de Recherche en Mathématique et Physique (IRMP), Université catholique de Louvain U.C.L., 2, Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium); Département de Physique, Université de Kinshasa (UNIKIN), B.P. 190 Kinshasa XI, Democratic Republic of Congo (Congo, The Democratic Republic of the); Govaerts, Jan [International Chair in Mathematical Physics and Applications (ICMPA–UNESCO Chair), University of Abomey–Calavi, 072 B. P. 50 Cotonou, Republic of Benin (Benin); Centre for Cosmology, Particle Physics and Phenomenology (CP3), Institut de Recherche en Mathématique et Physique (IRMP), Université catholique de Louvain U.C.L., 2, Chemin du Cyclotron, B-1348 Louvain-la-Neuve (Belgium); Hounkonnou, M. Norbert [International Chair in Mathematical Physics and Applications (ICMPA–UNESCO Chair), University of Abomey–Calavi, 072 B. P. 50 Cotonou, Republic of Benin (Benin)
2013-09-15
Within the context of supersymmetric quantum mechanics and its related hierarchies of integrable quantum Hamiltonians and potentials, a general programme is outlined and applied to its first two simplest illustrations. Going beyond the usual restriction of shape invariance for intertwined potentials, it is suggested to require a similar relation for Hamiltonians in the hierarchy separated by an arbitrary number of levels, N. By requiring further that these two Hamiltonians be in fact identical up to an overall shift in energy, a periodic structure is installed in the hierarchy which should allow for its resolution. Specific classes of orthogonal polynomials characteristic of such periodic hierarchies are thereby generated, while the methods of supersymmetric quantum mechanics then lead to generalised Rodrigues formulae and recursion relations for such polynomials. The approach also offers the practical prospect of quantum modelling through the engineering of quantum potentials from experimental energy spectra. In this paper, these ideas are presented and solved explicitly for the cases N= 1 and N= 2. The latter case is related to the generalised Laguerre polynomials, for which indeed new results are thereby obtained. In the context of dressing chains and deformed polynomial Heisenberg algebras, some partial results for N⩾ 3 also exist in the literature, which should be relevant to a complete study of the N⩾ 3 general periodic hierarchies.
Positive trigonometric polynomials and signal processing applications
Dumitrescu, Bogdan
2017-01-01
This revised edition is made up of two parts: theory and applications. Though many of the fundamental results are still valid and used, new and revised material is woven throughout the text. As with the original book, the theory of sum-of-squares trigonometric polynomials is presented unitarily based on the concept of Gram matrix (extended to Gram pair or Gram set). The programming environment has also evolved, and the books examples are changed accordingly. The applications section is organized as a collection of related problems that use systematically the theoretical results. All the problems are brought to a semi-definite programming form, ready to be solved with algorithms freely available, like those from the libraries SeDuMi, CVX and Pos3Poly. A new chapter discusses applications in super-resolution theory, where Bounded Real Lemma for trigonometric polynomials is an important tool. This revision is written to be more appealing and easier to use for new readers. < Features updated information on LMI...
q-Bernoulli numbers and q-Bernoulli polynomials revisited
Directory of Open Access Journals (Sweden)
Kim Taekyun
2011-01-01
Full Text Available Abstract This paper performs a further investigation on the q-Bernoulli numbers and q-Bernoulli polynomials given by Acikgöz et al. (Adv Differ Equ, Article ID 951764, 9, 2010, some incorrect properties are revised. It is point out that the generating function for the q-Bernoulli numbers and polynomials is unreasonable. By using the theorem of Kim (Kyushu J Math 48, 73-86, 1994 (see Equation 9, some new generating functions for the q-Bernoulli numbers and polynomials are shown. Mathematics Subject Classification (2000 11B68, 11S40, 11S80
Directory of Open Access Journals (Sweden)
Guillaume Wantz
2012-11-01
Full Text Available Several parameters of the fabrication process of inverted polymer bulk heterojunction solar cells based on titanium oxide as an electron selective layer and molybdenum oxide as a hole selective layer were tested in order to achieve efficient organic photovoltaic solar cells. Thermal annealing treatment is a common process to achieve optimum morphology, but it proved to be damageable for the performance of this kind of inverted solar cells. We demonstrate using Auger analysis combined with argon etching that diffusion of species occurs from the MoO3/Ag top layers into the active layer upon thermal annealing. In order to achieve efficient devices, the morphology of the bulk heterojunction was then manipulated using the solvent annealing technique as an alternative to thermal annealing. The influence of the MoO3 thickness was studied on inverted, as well as direct, structure. It appeared that only 1 nm-thick MoO3 is enough to exhibit highly efficient devices (PCE = 3.8% and that increasing the thickness up to 15 nm does not change the device performance.
Computing Galois Groups of Eisenstein Polynomials Over P-adic Fields
Milstead, Jonathan
The most efficient algorithms for computing Galois groups of polynomials over global fields are based on Stauduhar's relative resolvent method. These methods are not directly generalizable to the local field case, since they require a field that contains the global field in which all roots of the polynomial can be approximated. We present splitting field-independent methods for computing the Galois group of an Eisenstein polynomial over a p-adic field. Our approach is to combine information from different disciplines. We primarily, make use of the ramification polygon of the polynomial, which is the Newton polygon of a related polynomial. This allows us to quickly calculate several invariants that serve to reduce the number of possible Galois groups. Algorithms by Greve and Pauli very efficiently return the Galois group of polynomials where the ramification polygon consists of one segment as well as information about the subfields of the stem field. Second, we look at the factorization of linear absolute resolvents to further narrow the pool of possible groups.
Fast beampattern evaluation by polynomial rooting
Häcker, P.; Uhlich, S.; Yang, B.
2011-07-01
Current automotive radar systems measure the distance, the relative velocity and the direction of objects in their environment. This information enables the car to support the driver. The direction estimation capabilities of a sensor array depend on its beampattern. To find the array configuration leading to the best angle estimation by a global optimization algorithm, a huge amount of beampatterns have to be calculated to detect their maxima. In this paper, a novel algorithm is proposed to find all maxima of an array's beampattern fast and reliably, leading to accelerated array optimizations. The algorithm works for arrays having the sensors on a uniformly spaced grid. We use a general version of the gcd (greatest common divisor) function in order to write the problem as a polynomial. We differentiate and root the polynomial to get the extrema of the beampattern. In addition, we show a method to reduce the computational burden even more by decreasing the order of the polynomial.
Energy Technology Data Exchange (ETDEWEB)
Macabebe, E.Q.B. [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa); Sheppard, C.J. [Department of Physics, University of Johannesburg, P.O. Box 524, Auckland Park 2006 (South Africa); Dyk, E.E. van, E-mail: ernest.vandyk@nmmu.ac.z [Department of Physics, Nelson Mandela Metropolitan University, P.O. Box 77000, Port Elizabeth 6031 (South Africa)
2009-12-01
In pursuit of low-cost and highly efficient thin film solar cells, Cu(In,Ga)(Se,S){sub 2}/CdS/i-ZnO/ZnO:Al (CIGSS) solar cells were fabricated using a two-step process. The thickness of i-ZnO layer was varied from 0 to 454 nm. The current density-voltage (J-V) characteristics of the devices were measured, and the device and performance parameters of the solar cells were obtained from the J-V curves to analyze the effect of varying i-ZnO layer thickness. The device parameters were determined using a parameter extraction method that utilized particle swarm optimization. The method is a curve-fitting routine that employed the two-diode model. The J-V curves of the solar cells were fitted with the model and the parameters were determined. Results show that as the thickness of i-ZnO was increased, the average efficiency and the fill factor (FF) of the solar cells increase. Device parameters reveal that although the series resistance increased with thicker i-ZnO layer, the solar cells absorbed more photons resulting in higher short-circuit current density (J{sub sc}) and, consequently, higher photo-generated current density (J{sub L}). For solar cells with 303-454 nm-thick i-ZnO layer, the best devices achieved efficiency between 15.24% and 15.73% and the fill factor varied between 0.65 and 0.67.
Guts of surfaces and the colored Jones polynomial
Futer, David; Purcell, Jessica
2013-01-01
This monograph derives direct and concrete relations between colored Jones polynomials and the topology of incompressible spanning surfaces in knot and link complements. Under mild diagrammatic hypotheses, we prove that the growth of the degree of the colored Jones polynomials is a boundary slope of an essential surface in the knot complement. We show that certain coefficients of the polynomial measure how far this surface is from being a fiber for the knot; in particular, the surface is a fiber if and only if a particular coefficient vanishes. We also relate hyperbolic volume to colored Jones polynomials. Our method is to generalize the checkerboard decompositions of alternating knots. Under mild diagrammatic hypotheses, we show that these surfaces are essential, and obtain an ideal polyhedral decomposition of their complement. We use normal surface theory to relate the pieces of the JSJ decomposition of the complement to the combinatorics of certain surface spines (state graphs). Since state graphs have p...
Computing Tutte polynomials of contact networks in classrooms
Hincapié, Doracelly; Ospina, Juan
2013-05-01
Objective: The topological complexity of contact networks in classrooms and the potential transmission of an infectious disease were analyzed by sex and age. Methods: The Tutte polynomials, some topological properties and the number of spanning trees were used to algebraically compute the topological complexity. Computations were made with the Maple package GraphTheory. Published data of mutually reported social contacts within a classroom taken from primary school, consisting of children in the age ranges of 4-5, 7-8 and 10-11, were used. Results: The algebraic complexity of the Tutte polynomial and the probability of disease transmission increases with age. The contact networks are not bipartite graphs, gender segregation was observed especially in younger children. Conclusion: Tutte polynomials are tools to understand the topology of the contact networks and to derive numerical indexes of such topologies. It is possible to establish relationships between the Tutte polynomial of a given contact network and the potential transmission of an infectious disease within such network
Link polynomial, crossing multiplier and surgery formula
International Nuclear Information System (INIS)
Deguchi, Tetsuo; Yamada, Yasuhiko.
1989-01-01
Relations between link polynomials constructed from exactly solvable lattice models and topological field theory are reviewed. It is found that the surgery formula for a three-sphere S 3 with Wilson lines corresponds to the Markov trace constructed from the exactly solvable models. This indicates that knot theory intimately relates various important subjects such as exactly solvable models, conformal field theories and topological quantum field theories. (author)
Exponential time paradigms through the polynomial time lens
Drucker, A.; Nederlof, J.; Santhanam, R.; Sankowski, P.; Zaroliagis, C.
2016-01-01
We propose a general approach to modelling algorithmic paradigms for the exact solution of NP-hard problems. Our approach is based on polynomial time reductions to succinct versions of problems solvable in polynomial time. We use this viewpoint to explore and compare the power of paradigms such as
International Nuclear Information System (INIS)
Sanchez, Jorge J.; Giedt, Warren H.
2004-01-01
A numerical procedure for calculating the equilibrium thickness distribution of a thin layer of deuterium and tritium on the inner surface of an indirect drive target sphere (∼2.0 mm in diameter) is described. Starting with an assumed uniform thickness layer and with specified thermal boundary conditions, the temperature distribution throughout the capsule and hohlraum (including natural convection in the hohlraum gas) is calculated. Results are used to make a first estimate of the final non-uniform thickness distribution of the layer. This thickness distribution is then used to make a second calculation of the temperature distribution with the same boundary conditions. Legendre polynomial coefficients are evaluated for the two temperature distributions and the two thickness profiles. Final equilibrium Legendre coefficients are determined by linear extrapolation. From these coefficients, the equilibrium layer thickness can be computed
Energy Technology Data Exchange (ETDEWEB)
Mehrez, Loujaine [University of Southern California; Ghanem, Roger [University of Southern California; Aitharaju, Venkat [General Motors; Rodgers, William [General Motors
2017-10-23
Design of non-crimp fabric (NCF) composites entails major challenges pertaining to (1) the complex fine-scale morphology of the constituents, (2) the manufacturing-produced inconsistency of this morphology spatially, and thus (3) the ability to build reliable, robust, and efficient computational surrogate models to account for this complex nature. Traditional approaches to construct computational surrogate models have been to average over the fluctuations of the material properties at different scale lengths. This fails to account for the fine-scale features and fluctuations in morphology, material properties of the constituents, as well as fine-scale phenomena such as damage and cracks. In addition, it fails to accurately predict the scatter in macroscopic properties, which is vital to the design process and behavior prediction. In this work, funded in part by the Department of Energy, we present an approach for addressing these challenges by relying on polynomial chaos representations of both input parameters and material properties at different scales. Moreover, we emphasize the efficiency and robustness of integrating the polynomial chaos expansion with multiscale tools to perform multiscale assimilation, characterization, propagation, and prediction, all of which are necessary to construct the data-driven surrogate models required to design under the uncertainty of composites. These data-driven constructions provide an accurate map from parameters (and their uncertainties) at all scales and the system-level behavior relevant for design. While this perspective is quite general and applicable to all multiscale systems, NCF composites present a particular hierarchy of scales that permits the efficient implementation of these concepts.
Compressive Sensing with Cross-Validation and Stop-Sampling for Sparse Polynomial Chaos Expansions
Energy Technology Data Exchange (ETDEWEB)
Huan, Xun; Safta, Cosmin; Sargsyan, Khachik; Vane, Zachary Phillips; Lacaze, Guilhem; Oefelein, Joseph C.; Najm, Habib N.
2017-07-01
Compressive sensing is a powerful technique for recovering sparse solutions of underdetermined linear systems, which is often encountered in uncertainty quanti cation analysis of expensive and high-dimensional physical models. We perform numerical investigations employing several com- pressive sensing solvers that target the unconstrained LASSO formulation, with a focus on linear systems that arise in the construction of polynomial chaos expansions. With core solvers of l1 ls, SpaRSA, CGIST, FPC AS, and ADMM, we develop techniques to mitigate over tting through an automated selection of regularization constant based on cross-validation, and a heuristic strategy to guide the stop-sampling decision. Practical recommendations on parameter settings for these tech- niques are provided and discussed. The overall method is applied to a series of numerical examples of increasing complexity, including large eddy simulations of supersonic turbulent jet-in-cross flow involving a 24-dimensional input. Through empirical phase-transition diagrams and convergence plots, we illustrate sparse recovery performance under structures induced by polynomial chaos, accuracy and computational tradeoffs between polynomial bases of different degrees, and practi- cability of conducting compressive sensing for a realistic, high-dimensional physical application. Across test cases studied in this paper, we find ADMM to have demonstrated empirical advantages through consistent lower errors and faster computational times.
The chromatic polynomial and list colorings
DEFF Research Database (Denmark)
Thomassen, Carsten
2009-01-01
We prove that, if a graph has a list of k available colors at every vertex, then the number of list-colorings is at least the chromatic polynomial evaluated at k when k is sufficiently large compared to the number of vertices of the graph.......We prove that, if a graph has a list of k available colors at every vertex, then the number of list-colorings is at least the chromatic polynomial evaluated at k when k is sufficiently large compared to the number of vertices of the graph....
BSDEs with polynomial growth generators
Directory of Open Access Journals (Sweden)
Philippe Briand
2000-01-01
Full Text Available In this paper, we give existence and uniqueness results for backward stochastic differential equations when the generator has a polynomial growth in the state variable. We deal with the case of a fixed terminal time, as well as the case of random terminal time. The need for this type of extension of the classical existence and uniqueness results comes from the desire to provide a probabilistic representation of the solutions of semilinear partial differential equations in the spirit of a nonlinear Feynman-Kac formula. Indeed, in many applications of interest, the nonlinearity is polynomial, e.g, the Allen-Cahn equation or the standard nonlinear heat and Schrödinger equations.
Directory of Open Access Journals (Sweden)
Tianjin Huang
2017-08-01
Full Text Available We present in this paper a polynomial fitting method applicable to segments of footprints measured by the Geoscience Laser Altimeter System (GLAS to estimate glacier thickness change. Our modification makes the method applicable to complex topography, such as a large mountain glacier. After a full analysis of the planar fitting method to characterize errors of estimates due to complex topography, we developed an improved fitting method by adjusting a binary polynomial surface to local topography. The improved method and the planar fitting method were tested on the accumulation areas of the Naimona’nyi glacier and Yanong glacier on along-track facets with lengths of 1000 m, 1500 m, 2000 m, and 2500 m, respectively. The results show that the improved method gives more reliable estimates of changes in elevation than planar fitting. The improved method was also tested on Guliya glacier with a large and relatively flat area and the Chasku Muba glacier with very complex topography. The results in these test sites demonstrate that the improved method can give estimates of glacier thickness change on glaciers with a large area and a complex topography. Additionally, the improved method based on GLAS Data and Shuttle Radar Topography Mission-Digital Elevation Model (SRTM-DEM can give estimates of glacier thickness change from 2000 to 2008/2009, since it takes the 2000 SRTM-DEM as a reference, which is a longer period than 2004 to 2008/2009, when using the GLAS data only and the planar fitting method.
Control of Alq3 wetting layer thickness via substrate surface functionalization.
Tsoi, Shufen; Szeto, Bryan; Fleischauer, Michael D; Veinot, Jonathan G C; Brett, Michael J
2007-06-05
The effects of substrate surface energy and vapor deposition rate on the initial growth of porous columnar tris(8-hydroxyquinoline)aluminum (Alq3) nanostructures were investigated. Alq3 nanostructures thermally evaporated onto as-supplied Si substrates bearing an oxide were observed to form a solid wetting layer, likely caused by an interfacial energy mismatch between the substrate and Alq3. Wetting layer thickness control is important for potential optoelectronic applications. A dramatic decrease in wetting layer thickness was achieved by depositing Alq3 onto alkyltrichlorosilane-derivatized Si/oxide substrates. Similar effects were noted with increasing deposition rates. These two effects enable tailoring of the wetting layer thickness.
Polynomial chaos functions and stochastic differential equations
International Nuclear Information System (INIS)
Williams, M.M.R.
2006-01-01
The Karhunen-Loeve procedure and the associated polynomial chaos expansion have been employed to solve a simple first order stochastic differential equation which is typical of transport problems. Because the equation has an analytical solution, it provides a useful test of the efficacy of polynomial chaos. We find that the convergence is very rapid in some cases but that the increased complexity associated with many random variables can lead to very long computational times. The work is illustrated by exact and approximate solutions for the mean, variance and the probability distribution itself. The usefulness of a white noise approximation is also assessed. Extensive numerical results are given which highlight the weaknesses and strengths of polynomial chaos. The general conclusion is that the method is promising but requires further detailed study by application to a practical problem in transport theory
Minimal residual method stronger than polynomial preconditioning
Energy Technology Data Exchange (ETDEWEB)
Faber, V.; Joubert, W.; Knill, E. [Los Alamos National Lab., NM (United States)] [and others
1994-12-31
Two popular methods for solving symmetric and nonsymmetric systems of equations are the minimal residual method, implemented by algorithms such as GMRES, and polynomial preconditioning methods. In this study results are given on the convergence rates of these methods for various classes of matrices. It is shown that for some matrices, such as normal matrices, the convergence rates for GMRES and for the optimal polynomial preconditioning are the same, and for other matrices such as the upper triangular Toeplitz matrices, it is at least assured that if one method converges then the other must converge. On the other hand, it is shown that matrices exist for which restarted GMRES always converges but any polynomial preconditioning of corresponding degree makes no progress toward the solution for some initial error. The implications of these results for these and other iterative methods are discussed.
Bernoulli numbers and polynomials from a more general point of view
International Nuclear Information System (INIS)
Dattoli, G.; Cesarano, C.; Lorenzutta, S.
2000-01-01
In this work it is applied the method of generating function, to introduce new forms of Bernoulli numbers and polynomials, which are exploited to derive further classes of partial sums involving generalized many index many variable polynomials. Analogous considerations are developed for the Euler numbers and polynomials [it
Generalizations of an integral for Legendre polynomials by Persson and Strang
Diekema, E.; Koornwinder, T.H.
2012-01-01
Persson and Strang (2003) evaluated the integral over [−1,1] of a squared odd degree Legendre polynomial divided by x2 as being equal to 2. We consider a similar integral for orthogonal polynomials with respect to a general even orthogonality measure, with Gegenbauer and Hermite polynomials as
Animating Nested Taylor Polynomials to Approximate a Function
Mazzone, Eric F.; Piper, Bruce R.
2010-01-01
The way that Taylor polynomials approximate functions can be demonstrated by moving the center point while keeping the degree fixed. These animations are particularly nice when the Taylor polynomials do not intersect and form a nested family. We prove a result that shows when this nesting occurs. The animations can be shown in class or…
Learning Read-constant Polynomials of Constant Degree modulo Composites
DEFF Research Database (Denmark)
Chattopadhyay, Arkadev; Gavaldá, Richard; Hansen, Kristoffer Arnsfelt
2011-01-01
Boolean functions that have constant degree polynomial representation over a fixed finite ring form a natural and strict subclass of the complexity class \\textACC0ACC0. They are also precisely the functions computable efficiently by programs over fixed and finite nilpotent groups. This class...... is not known to be learnable in any reasonable learning model. In this paper, we provide a deterministic polynomial time algorithm for learning Boolean functions represented by polynomials of constant degree over arbitrary finite rings from membership queries, with the additional constraint that each variable...
Explicit analytical expression for the condition number of polynomials in power form
Rack, Heinz-Joachim
2017-07-01
In his influential papers [1-3] W. Gautschi has defined and reshaped the condition number κ∞ of polynomials Pn of degree ≤ n which are represented in power form on a zero-symmetric interval [-ω, ω]. Basically, κ∞ is expressed as the product of two operator norms: an explicit factor times an implicit one (the l∞-norm of the coefficient vector of the n-th Chebyshev polynomial of the first kind relative to [-ω, ω]). We provide a new proof, economize the second factor and express it by an explicit analytical formula.
Kruglyakov, Mikhail; Kuvshinov, Alexey
2018-05-01
3-D interpretation of electromagnetic (EM) data of different origin and scale becomes a common practice worldwide. However, 3-D EM numerical simulations (modeling)—a key part of any 3-D EM data analysis—with realistic levels of complexity, accuracy and spatial detail still remains challenging from the computational point of view. We present a novel, efficient 3-D numerical solver based on a volume integral equation (IE) method. The efficiency is achieved by using a high-order polynomial (HOP) basis instead of the zero-order (piecewise constant) basis that is invoked in all routinely used IE-based solvers. We demonstrate that usage of the HOP basis allows us to decrease substantially the number of unknowns (preserving the same accuracy), with corresponding speed increase and memory saving.
Denominator function for canonical SU(3) tensor operators
International Nuclear Information System (INIS)
Biedenharn, L.C.; Lohe, M.A.; Louck, J.D.
1985-01-01
The definition of a canonical unit SU(3) tensor operator is given in terms of its characteristic null space as determined by group-theoretic properties of the intertwining number. This definition is shown to imply the canonical splitting conditions used in earlier work for the explicit and unique (up to +- phases) construction of all SU(3) WCG coefficients (Wigner--Clebsch--Gordan). Using this construction, an explicit SU(3)-invariant denominator function characterizing completely the canonically defined WCG coefficients is obtained. It is shown that this denominator function (squared) is a product of linear factors which may be obtained explicitly from the characteristic null space times a ratio of polynomials. These polynomials, denoted G/sup t//sub q/, are defined over three (shift) parameters and three barycentric coordinates. The properties of these polynomials (hence, of the corresponding invariant denominator function) are developed in detail: These include a derivation of their degree, symmetries, and zeros. The symmetries are those induced on the shift parameters and barycentric coordinates by the transformations of a 3 x 3 array under row interchange, column interchange, and transposition (the group of 72 operations leaving a 3 x 3 determinant invariant). Remarkably, the zeros of the general G/sup t//sub q/ polynomial are in position and multiplicity exactly those of the SU(3) weight space associated with irreducible representation [q-1,t-1,0]. The results obtained are an essential step in the derivation of a fully explicit and comprehensible algebraic expression for all SU(3) WCG coefficients
Thickness dependent charge transport in ferroelectric BaTiO3 heterojunctions
Singh, Pooja; Rout, P. K.; Singh, Manju; Rakshit, R. K.; Dogra, Anjana
2015-09-01
We have investigated the effect of ferroelectric barium titanate (BaTiO3) film thickness on the charge transport mechanism in pulsed laser deposited epitaxial metal-ferroelectric semiconductor junctions. The current (I)-voltage (V) measurements across the junctions comprising of 20-500 nm thick BaTiO3 and conducting bottom electrode (Nb: SrTiO3 substrate or La2/3Ca1/3MnO3 buffer layer) demonstrate the space charge limited conduction. Further analysis indicates a reduction in the ratio of free to trapped carriers with increasing thickness in spite of decreasing trap density. Such behaviour arises the deepening of the shallow trap levels (I-V curves implies a bipolar resistive switching behaviour, which can be explained in terms of charge trapping and de-trapping process.
Non-contact radiation thickness gauge
International Nuclear Information System (INIS)
Tsujii, T.; Okino, T.
1983-01-01
A noncontact thickness gauge system for measuring the thickness of a material comprising a source of radiation, a detector for detecting the amount of radiation transmitted through the material which is a function of the absorptance and thickness of the material, a memory for storing the output signals of the detector and curve-defining parameters for a plurality of quadratic calibration curves which correspond to respective thickness ranges, and a processor for processing the signals and curve defining parameters to determine the thickness of the material. Measurements are made after precalibration to obtain calibration curves and these are stored in the memory, providing signals representative of a nominal thickness and an alloy compensation coefficient for the material. The calibration curve corresponding to a particular thickness range is selected and the curve compensated for drift; the material is inserted into the radiation path and the detector output signal processed with the compensated calibration curve to determine the thickness of the material. (author)
Complex centers of polynomial differential equations
Directory of Open Access Journals (Sweden)
Mohamad Ali M. Alwash
2007-07-01
Full Text Available We present some results on the existence and nonexistence of centers for polynomial first order ordinary differential equations with complex coefficients. In particular, we show that binomial differential equations without linear terms do not have complex centers. Classes of polynomial differential equations, with more than two terms, are presented that do not have complex centers. We also study the relation between complex centers and the Pugh problem. An algorithm is described to solve the Pugh problem for equations without complex centers. The method of proof involves phase plane analysis of the polar equations and a local study of periodic solutions.
Differential recurrence formulae for orthogonal polynomials
Directory of Open Access Journals (Sweden)
Anton L. W. von Bachhaus
1995-11-01
Full Text Available Part I - By combining a general 2nd-order linear homogeneous ordinary differential equation with the three-term recurrence relation possessed by all orthogonal polynomials, it is shown that sequences of orthogonal polynomials which satisfy a differential equation of the above mentioned type necessarily have a differentiation formula of the type: gn(xY'n(x=fn(xYn(x+Yn-1(x. Part II - A recurrence formula of the form: rn(xY'n(x+sn(xY'n+1(x+tn(xY'n-1(x=0, is derived using the result of Part I.
International Nuclear Information System (INIS)
Jeong, Ho Gul; Kim, Kee Deog; Hu, Kyung Seok; Lee, Jae Bum; Park, Hyok; Han, Seung Ho; Choi, Seong Ho; Kim, Chong Kwan; Park, Chang Seo
2006-01-01
To evaluate clinical usefulness of facial soft tissue thickness measurement using 3D computed tomographic images. One cadaver that had sound facial soft tissues was chosen for the study. The cadaver was scanned with a Helical CT under following scanning protocols about slice thickness and table speed: 3 mm and 3 mm/sec, 5 mm and 5 mm/sec, 7 mm and 7 mm/sec. The acquired data were reconstructed 1.5, 2.5, 3.5 mm reconstruction interval respectively and the images were transferred to a personal computer. Using a program developed to measure facial soft tissue thickness in 3D image, the facial soft tissue thickness was measured. After the ten-time repeation of the measurement for ten times, repeated measure analysis of variance (ANOVA) was adopted to compare and analyze the measurements using the three scanning protocols. Comparison according to the areas was analysed by Mann-Whitney test. There were no statistically significant intraobserver differences in the measurements of the facial soft tissue thickness using the three scanning protocols (p>0.05). There were no statistically significant differences between measurements in the 3 mm slice thickness and those in the 5 mm, 7 mm slice thickness (p>0.05). There were statistical differences in the 14 of the total 30 measured points in the 5 mm slice thickness and 22 in the 7 mm slice thickness. The facial soft tissue thickness measurement using 3D images of 7 mm slice thickness is acceptable clinically, but those of 5 mm slice thickness is recommended for the more accurate measurement
Pb(Zr,Ti)O3-Pb(Mn1/3Nb2/3)O3 piezoelectric thick films by aerosol deposition
International Nuclear Information System (INIS)
Ryu, Jungho; Choi, Jong-Jin; Hahn, Byung-Dong; Yoon, Woon-Ha; Lee, Byoung-Kuk; Choi, Joon Hwan; Park, Dong-Soo
2010-01-01
Piezoelectric thick films of Pb(Zr,Ti)O 3 -Pb(Mn 1/3 Nb 2/3 )O 3 (PZT-PMnN) with Zr:Ti ratios ranging from 0.45:0.55 to 0.60:0.40 were fabricated on a platinized silicon wafer by aerosol deposition (AD). All the films were deposited with a thickness of 10 μm with high density. By adding PMnN to 57:43 PZT, a dielectric constant as low as ∼660 was achieved while the effective piezoelectric constant was over 140 pC/N. PZT-PMnN with a Zr:Ti ratio of 57:43 thus showed a maximum piezoelectric voltage constant (g 33 ) of 23.8 x 10 -3 Vm/N and is a good candidate for high quality thick films for application to high-energy density or high sensitivity, piezoelectric energy harvesters and sensors.
Considering a non-polynomial basis for local kernel regression problem
Silalahi, Divo Dharma; Midi, Habshah
2017-01-01
A common used as solution for local kernel nonparametric regression problem is given using polynomial regression. In this study, we demonstrated the estimator and properties using maximum likelihood estimator for a non-polynomial basis such B-spline to replacing the polynomial basis. This estimator allows for flexibility in the selection of a bandwidth and a knot. The best estimator was selected by finding an optimal bandwidth and knot through minimizing the famous generalized validation function.
Open Problems Related to the Hurwitz Stability of Polynomials Segments
Directory of Open Access Journals (Sweden)
Baltazar Aguirre-Hernández
2018-01-01
Full Text Available In the framework of robust stability analysis of linear systems, the development of techniques and methods that help to obtain necessary and sufficient conditions to determine stability of convex combinations of polynomials is paramount. In this paper, knowing that Hurwitz polynomials set is not a convex set, a brief overview of some results and open problems concerning the stability of the convex combinations of Hurwitz polynomials is then provided.
Polynomial Chaos Surrogates for Bayesian Inference
Le Maitre, Olivier
2016-01-06
The Bayesian inference is a popular probabilistic method to solve inverse problems, such as the identification of field parameter in a PDE model. The inference rely on the Bayes rule to update the prior density of the sought field, from observations, and derive its posterior distribution. In most cases the posterior distribution has no explicit form and has to be sampled, for instance using a Markov-Chain Monte Carlo method. In practice the prior field parameter is decomposed and truncated (e.g. by means of Karhunen- Lo´eve decomposition) to recast the inference problem into the inference of a finite number of coordinates. Although proved effective in many situations, the Bayesian inference as sketched above faces several difficulties requiring improvements. First, sampling the posterior can be a extremely costly task as it requires multiple resolutions of the PDE model for different values of the field parameter. Second, when the observations are not very much informative, the inferred parameter field can highly depends on its prior which can be somehow arbitrary. These issues have motivated the introduction of reduced modeling or surrogates for the (approximate) determination of the parametrized PDE solution and hyperparameters in the description of the prior field. Our contribution focuses on recent developments in these two directions: the acceleration of the posterior sampling by means of Polynomial Chaos expansions and the efficient treatment of parametrized covariance functions for the prior field. We also discuss the possibility of making such approach adaptive to further improve its efficiency.
Directory of Open Access Journals (Sweden)
Baha'a A. Al-Hilli
2017-11-01
Full Text Available The objective of this study is to assess the influence of nano-particle Fe2O3 thin film thickness on some physical properties which were prepared by magnetron DC- sputtering on glass substrate at room temperature. The structure was tested with X-Ray diffraction and it was to be amorphous and to become single crystal with recognized peak in (003 after annealing at temperature 500oC. The physical properties as a function of deposition parameters and then film thickness were studied. The optical properties such as absorbance, energy gap and some optical constants are measured and found that of about (3eV energy gap.
Study of Microstructural Parameters of Screen Printed ZnO Thick Film Sensors
Directory of Open Access Journals (Sweden)
A. V. PATIL
2010-06-01
Full Text Available This paper explores the compositional, morphological and structural properties of ZnO thick films prepared by a standard screen printing method and fired between 650 oC to 900 oC for 2 hours in an air atmosphere. The material characterization was done using X-ray energy dispersive analysis (EDX, X-ray diffraction (XRD and a scanning electron microscope (SEM. The deposited films were polycrystalline in nature having the wurtzite (hexagonal structure with a preferred orientation along the (101 plane. The result shows that the wt. % of Zn was found to be 80.39, 82.66 and 83.47 % for firing temperatures of 700, 800 and 900 oC respectively may be due to the release of excess oxygen. The effect of the firing temperature on structural parameters such as the crystallite size, specific surface area, texture coefficient, RMSmicrostrain, dislocation density and stacking fault probability have been studied. The results indicate that grain growth can be increased by increasing the firing temperature which is responsible for decreasing the RMSmicrostrain, stacking fault probability and dislocation density in ZnO thick films. The crystallite size changes from 18.58 nm to 37.23 nm with respect to the increase in the firing temperature.
The computation of bond percolation critical polynomials by the deletion–contraction algorithm
International Nuclear Information System (INIS)
Scullard, Christian R
2012-01-01
Although every exactly known bond percolation critical threshold is the root in [0,1] of a lattice-dependent polynomial, it has recently been shown that the notion of a critical polynomial can be extended to any periodic lattice. The polynomial is computed on a finite subgraph, called the base, of an infinite lattice. For any problem with exactly known solution, the prediction of the bond threshold is always correct for any base containing an arbitrary number of unit cells. For unsolved problems, the polynomial is referred to as the generalized critical polynomial and provides an approximation that becomes more accurate with increasing number of bonds in the base, appearing to approach the exact answer. The polynomials are computed using the deletion–contraction algorithm, which quickly becomes intractable by hand for more than about 18 bonds. Here, I present generalized critical polynomials calculated with a computer program for bases of up to 36 bonds for all the unsolved Archimedean lattices, except the kagome lattice, which was considered in an earlier work. The polynomial estimates are generally within 10 −5 –10 −7 of the numerical values, but the prediction for the (4,8 2 ) lattice, though not exact, is not ruled out by simulations. (paper)
A high-order q-difference equation for q-Hahn multiple orthogonal polynomials
DEFF Research Database (Denmark)
Arvesú, J.; Esposito, Chiara
2012-01-01
A high-order linear q-difference equation with polynomial coefficients having q-Hahn multiple orthogonal polynomials as eigenfunctions is given. The order of the equation coincides with the number of orthogonality conditions that these polynomials satisfy. Some limiting situations when are studie....... Indeed, the difference equation for Hahn multiple orthogonal polynomials given in Lee [J. Approx. Theory (2007), ), doi: 10.1016/j.jat.2007.06.002] is obtained as a limiting case....
On the Lorentz degree of a product of polynomials
Ait-Haddou, Rachid
2015-01-01
In this note, we negatively answer two questions of T. Erdélyi (1991, 2010) on possible lower bounds on the Lorentz degree of product of two polynomials. We show that the correctness of one question for degree two polynomials is a direct consequence
Dolgov, Sergey
2015-11-03
We apply the tensor train (TT) decomposition to construct the tensor product polynomial chaos expansion (PCE) of a random field, to solve the stochastic elliptic diffusion PDE with the stochastic Galerkin discretization, and to compute some quantities of interest (mean, variance, and exceedance probabilities). We assume that the random diffusion coefficient is given as a smooth transformation of a Gaussian random field. In this case, the PCE is delivered by a complicated formula, which lacks an analytic TT representation. To construct its TT approximation numerically, we develop the new block TT cross algorithm, a method that computes the whole TT decomposition from a few evaluations of the PCE formula. The new method is conceptually similar to the adaptive cross approximation in the TT format but is more efficient when several tensors must be stored in the same TT representation, which is the case for the PCE. In addition, we demonstrate how to assemble the stochastic Galerkin matrix and to compute the solution of the elliptic equation and its postprocessing, staying in the TT format. We compare our technique with the traditional sparse polynomial chaos and the Monte Carlo approaches. In the tensor product polynomial chaos, the polynomial degree is bounded for each random variable independently. This provides higher accuracy than the sparse polynomial set or the Monte Carlo method, but the cardinality of the tensor product set grows exponentially with the number of random variables. However, when the PCE coefficients are implicitly approximated in the TT format, the computations with the full tensor product polynomial set become possible. In the numerical experiments, we confirm that the new methodology is competitive in a wide range of parameters, especially where high accuracy and high polynomial degrees are required.
Control design and robustness analysis of a ball and plate system by using polynomial chaos
Energy Technology Data Exchange (ETDEWEB)
Colón, Diego [University of São Paulo, Polytechnic School, LAC -PTC, São Paulo (Brazil); Balthazar, José M. [São Paulo State University - Rio Claro Campus, Rio Claro (Brazil); Reis, Célia A. dos [São Paulo State University - Bauru Campus, Bauru (Brazil); Bueno, Átila M.; Diniz, Ivando S. [São Paulo State University - Sorocaba Campus, Sorocaba (Brazil); Rosa, Suelia de S. R. F. [University of Brasilia, Brasilia (Brazil)
2014-12-10
In this paper, we present a mathematical model of a ball and plate system, a control law and analyze its robustness properties by using the polynomial chaos method. The ball rolls without slipping. There is an auxiliary robot vision system that determines the bodies' positions and velocities, and is used for control purposes. The actuators are to orthogonal DC motors, that changes the plate's angles with the ground. The model is a extension of the ball and beam system and is highly nonlinear. The system is decoupled in two independent equations for coordinates x and y. Finally, the resulting nonlinear closed loop systems are analyzed by the polynomial chaos methodology, which considers that some system parameters are random variables, and generates statistical data that can be used in the robustness analysis.
H∞ Control of Polynomial Fuzzy Systems: A Sum of Squares Approach
Directory of Open Access Journals (Sweden)
Bomo W. Sanjaya
2014-07-01
Full Text Available This paper proposes the control design ofa nonlinear polynomial fuzzy system with H∞ performance objective using a sum of squares (SOS approach. Fuzzy model and controller are represented by a polynomial fuzzy model and controller. The design condition is obtained by using polynomial Lyapunov functions that not only guarantee stability but also satisfy the H∞ performance objective. The design condition is represented in terms of an SOS that can be numerically solved via the SOSTOOLS. A simulation study is presented to show the effectiveness of the SOS-based H∞ control designfor nonlinear polynomial fuzzy systems.
Zeros and logarithmic asymptotics of Sobolev orthogonal polynomials for exponential weights
Díaz Mendoza, C.; Orive, R.; Pijeira Cabrera, H.
2009-12-01
We obtain the (contracted) weak zero asymptotics for orthogonal polynomials with respect to Sobolev inner products with exponential weights in the real semiaxis, of the form , with [gamma]>0, which include as particular cases the counterparts of the so-called Freud (i.e., when [phi] has a polynomial growth at infinity) and Erdös (when [phi] grows faster than any polynomial at infinity) weights. In addition, the boundness of the distance of the zeros of these Sobolev orthogonal polynomials to the convex hull of the support and, as a consequence, a result on logarithmic asymptotics are derived.
Thickness-dependent nonlinear optical properties of CsPbBr3 perovskite nanosheets.
Zhang, Jun; Jiang, Tian; Zheng, Xin; Shen, Chao; Cheng, Xiang'ai
2017-09-01
Halide perovskite has attracted significant attention because of excellent optical properties. Here, we study the optical properties of CsPbBr 3 perovskite nanosheets and observe that the nonlinear optical properties can be tuned by the thickness. The photoluminescence (PL) properties and nonlinear absorption effects induced by saturation absorption (SA) and two-photon absorption (TPA) in CsPbBr 3 nanosheets with different thicknesses (from 104.6 to 195.4 nm) have been studied. The PL intensity increases nearly three times with changing from the thinnest one to the thinnest under the same excitation condition. Moreover, the same phenomenon takes place no matter when SA or TPA effects happen. The PL lifetime (τ) varies inversely with the thickness. When SA happens, τ decreases from 11.54 to 9.43 ns while when TPA happens new decay channels emerge with the increase of the thickness. Besides, both saturation intensity (I sat ) and the modulation depth are proportional to the thickness (I sat rises from 3.12 to 4.79 GW/cm 2 , the modulation depth increases from 18.6% to 32.3%), while the TPA coefficient (β) is inversely proportional with the thickness (decreases from 10.94 to 4.73 cm/GW). In addition, quantum yields and thicknesses are in the direct ratio. This Letter advocates great promise for nonlinear optical property related photonics devices.
Numerical solution of the Schroedinger equation with a polynomial potential
International Nuclear Information System (INIS)
Campoy, G.; Palma, A.
1986-01-01
A numerical method for solving the Schroedinger equation for a potential expressed as a polynomial is proposed. The basic assumption relies on the asymptotic properties of the solution of this equation. It is possible to obtain the energies and the stationary state functions simultaneously. They analyze, in particular, the cases of the quartic anharmonic oscillator and a hydrogen atom perturbed by a quadratic term, obtaining its energy eigenvalues for some values of the perturbation parameter. Together with the Hellmann-Feynman theorem, they use their algorithm to calculate expectation values of x'' for arbitrary positive values of n. 4 tables
Some Results on the Independence Polynomial of Unicyclic Graphs
Directory of Open Access Journals (Sweden)
Oboudi Mohammad Reza
2018-05-01
Full Text Available Let G be a simple graph on n vertices. An independent set in a graph is a set of pairwise non-adjacent vertices. The independence polynomial of G is the polynomial I(G,x=∑k=0ns(G,kxk$I(G,x = \\sum\
3-D mapping with ellipsometrically determined physical thickness ...
Indian Academy of Sciences (India)
Unknown
values at different points (121 nos.) with 1 mm gap between two points. Those data were utilized in the Auto- lisp programme for 3-D mapping. Radial distribution of the evaluated values was also displayed. Keywords. Sol–gel silica layer; ellipsometric studies; refractive index; physical thickness; 3D-mapping. 1. Introduction.
Directory of Open Access Journals (Sweden)
Reddy Sreenivasulu
2016-12-01
Full Text Available In any machining operations, quality is the important conflicting objective. In order to give assurance for high productivity, some extent of quality has to be compromised. Similarly productivity will be decreased while the efforts are channelized to enhance quality. In this study, the experiments were carried out on a CNC vertical machining center to perform 10mm slots on Al 6351-T6 alloy work piece by K10 carbide, four flute end milling cutter. Furthermore the cutting speed, the feed rate and depth of cut are regulated in this experiment. Each experiment was conducted three times and the surface roughness and chip thickness was measured by a surface analyser of Surf Test-211 series (Mitutoyo and Digital Micrometer (Mitutoyo with least count 0.001 mm respectively. The selection of orthogonal array is concerned with the total degree of freedom of process parameters. Total degree of freedom (DOF associated with three parameters is equal to 6 (3X2.The degree of freedom for the orthogonal array should be greater than or at least equal to that of the process parameters. There by, a L9 orthogonal array having degree of freedom equal to (9-1= 8 8 has been considered .But in present case each experiment is conducted three times, therefore total degree of freedom (9X3-1=26 26 has been considered. Finally, confirmation test (ANOVA was conducted to compare the predicted values with the experimental values confirm its effectiveness in the analysis of surface roughness and chip thickness. Surface Roughness (Ra is greatly reduced from 0.145 µm to 0.1326 µm and the chip thickness (Ct is slightly reduced from 0.1 mm to 0.085 mm, because of in the measurement collected the chips after machining of every experiment, from that randomly selected a few chips for measuring of their thickness using digital micrometer.
Limit cycles bifurcating from the periodic annulus of cubic homogeneous polynomial centers
Directory of Open Access Journals (Sweden)
Jaume Llibre
2015-10-01
Full Text Available We obtain an explicit polynomial whose simple positive real roots provide the limit cycles which bifurcate from the periodic orbits of any cubic homogeneous polynomial center when it is perturbed inside the class of all polynomial differential systems of degree n.
Polynomial Poisson algebras: Gel'fand-Kirillov problem and Poisson spectra
Lecoutre, César
2014-01-01
We study the fields of fractions and the Poisson spectra of polynomial Poisson algebras.\\ud \\ud First we investigate a Poisson birational equivalence problem for polynomial Poisson algebras over a field of arbitrary characteristic. Namely, the quadratic Poisson Gel'fand-Kirillov problem asks whether the field of fractions of a Poisson algebra is isomorphic to the field of fractions of a Poisson affine space, i.e. a polynomial algebra such that the Poisson bracket of two generators is equal to...
On an Inequality Concerning the Polar Derivative of a Polynomial
Indian Academy of Sciences (India)
Abstract. In this paper, we present a correct proof of an -inequality concerning the polar derivative of a polynomial with restricted zeros. We also extend Zygmund's inequality to the polar derivative of a polynomial.
Resonant frequency function of thickness-shear vibrations of rectangular crystal plates.
Wang, Ji; Yang, Lijun; Pan, Qiaoqiao; Chao, Min-Chiang; Du, Jianke
2011-05-01
The resonant frequencies of thickness-shear vibrations of quartz crystal plates in rectangular and circular shapes are always required in the design and manufacturing of quartz crystal resonators. As the size of quartz crystal resonators shrinks, for rectangular plates we must consider effects of both length and width for the precise calculation of resonant frequency. Starting from the three-dimensional equations of wave propagation in finite crystal plates and the general expression of vibration modes, we obtained the relations between frequency and wavenumbers. By satisfying the major boundary conditions of the dominant thickness-shear mode, three wavenumber solutions are obtained and the frequency equation is constructed. It is shown the resonant frequency of thickness-shear mode is a second-order polynomial of aspect ratios. This conforms to known results in the simplest form and is applicable to further analytical and experimental studies of the frequency equation of quartz crystal resonators.
Directory of Open Access Journals (Sweden)
A.K. Parida
2016-09-01
Full Text Available In this paper Chebyshev polynomial functions based locally recurrent neuro-fuzzy information system is presented for the prediction and analysis of financial and electrical energy market data. The normally used TSK-type feedforward fuzzy neural network is unable to take the full advantage of the use of the linear fuzzy rule base in accurate input–output mapping and hence the consequent part of the rule base is made nonlinear using polynomial or arithmetic basis functions. Further the Chebyshev polynomial functions provide an expanded nonlinear transformation to the input space thereby increasing its dimension for capturing the nonlinearities and chaotic variations in financial or energy market data streams. Also the locally recurrent neuro-fuzzy information system (LRNFIS includes feedback loops both at the firing strength layer and the output layer to allow signal flow both in forward and backward directions, thereby making the LRNFIS mimic a dynamic system that provides fast convergence and accuracy in predicting time series fluctuations. Instead of using forward and backward least mean square (FBLMS learning algorithm, an improved Firefly-Harmony search (IFFHS learning algorithm is used to estimate the parameters of the consequent part and feedback loop parameters for better stability and convergence. Several real world financial and energy market time series databases are used for performance validation of the proposed LRNFIS model.
Classification of complex polynomial vector fields in one complex variable
DEFF Research Database (Denmark)
Branner, Bodil; Dias, Kealey
2010-01-01
This paper classifies the global structure of monic and centred one-variable complex polynomial vector fields. The classification is achieved by means of combinatorial and analytic data. More specifically, given a polynomial vector field, we construct a combinatorial invariant, describing...... the topology, and a set of analytic invariants, describing the geometry. Conversely, given admissible combinatorial and analytic data sets, we show using surgery the existence of a unique monic and centred polynomial vector field realizing the given invariants. This is the content of the Structure Theorem......, the main result of the paper. This result is an extension and refinement of Douady et al. (Champs de vecteurs polynomiaux sur C. Unpublished manuscript) classification of the structurally stable polynomial vector fields. We further review some general concepts for completeness and show that vector fields...
Directory of Open Access Journals (Sweden)
Maryam Ezoji
2017-05-01
Full Text Available Nowadays, making use of additive manufacturing (AM processes such as fused deposition modeling (FDM, in different areas, such as car manufacturing, biomedical and aerospace industries is gaining popularity worldwide because of their capacities in producing functional parts with complex geometries. Therefore, it is very important to identify the significance of FDM processing parameters which would have an impact on the quality of articles produced by the processing system. In this work, poly(lactic acid was used to study the effects of processing parameters such as layer thickness, raster angle and printing plane on the tensile properties and surface roughness of the printed specimens. The results showed that the tensile strength of a specimen increased by reducing its layer thickness. However, the elastic modulus values increased with decreasing the layer thickness to some extent. Moreover, when the layer thickness was kept constant at 0.05 mm and 3D-printing was carried out in XYZ plane, the maximum modulus and tensile strength were obtained for the raster angle of 0˚. Microscopic studies showed that in low layer thickness, the polymeric layers diffused properly into each other and no voids were formed between the layers. However, with a thickness above its critical value, a few voids were formed between the layers which played as a stress concentrator and decreased the tensile strength of the specimens. The results also showed that the surface roughness increased with increasing the layer thickness.
Xu, Zhe; Li, Weibo; Jiang, Jun; Zhuang, Xiran; Chen, Wei; Peng, Mei; Wang, Jianhua; Lu, Fan; Shen, Meixiao; Wang, Yuanyuan
2017-11-28
The study aimed to characterize the entire corneal topography and tomography for the detection of sub-clinical keratoconus (KC) with a Zernike application method. Normal subjects (n = 147; 147 eyes), sub-clinical KC patients (n = 77; 77 eyes), and KC patients (n = 139; 139 eyes) were imaged with the Pentacam HR system. The entire corneal data of pachymetry and elevation of both the anterior and posterior surfaces were exported from the Pentacam HR software. Zernike polynomials fitting was used to quantify the 3D distribution of the corneal thickness and surface elevation. The root mean square (RMS) values for each order and the total high-order irregularity were calculated. Multimeric discriminant functions combined with individual indices were built using linear step discriminant analysis. Receiver operating characteristic curves determined the diagnostic accuracy (area under the curve, AUC). The 3rd-order RMS of the posterior surface (AUC: 0.928) obtained the highest discriminating capability in sub-clinical KC eyes. The multimeric function, which consisted of the Zernike fitting indices of corneal posterior elevation, showed the highest discriminant ability (AUC: 0.951). Indices generated from the elevation of posterior surface and thickness measurements over the entire cornea using the Zernike method based on the Pentacam HR system were able to identify very early KC.
Random polynomials and expected complexity of bisection methods for real solving
DEFF Research Database (Denmark)
Emiris, Ioannis Z.; Galligo, André; Tsigaridas, Elias
2010-01-01
, and by Edelman and Kostlan in order to estimate the real root separation of degree d polynomials with i.i.d. coefficients that follow two zero-mean normal distributions: for SO(2) polynomials, the i-th coefficient has variance (d/i), whereas for Weyl polynomials its variance is 1/i!. By applying results from....... The second part of the paper shows that the expected number of real roots of a degree d polynomial in the Bernstein basis is √2d ± O(1), when the coefficients are i.i.d. variables with moderate standard deviation. Our paper concludes with experimental results which corroborate our analysis....
O(N) symmetries, sum rules for generalized Hermite polynomials and squeezed states
International Nuclear Information System (INIS)
Daboul, Jamil; Mizrahi, Salomon S
2005-01-01
Quantum optics has been dealing with coherent states, squeezed states and many other non-classical states. The associated mathematical framework makes use of special functions as Hermite polynomials, Laguerre polynomials and others. In this connection we here present some formal results that follow directly from the group O(N) of complex transformations. Motivated by the squeezed states structure, we introduce the generalized Hermite polynomials (GHP), which include as particular cases, the Hermite polynomials as well as the heat polynomials. Using generalized raising operators, we derive new sum rules for the GHP, which are covariant under O(N) transformations. The GHP and the associated sum rules become useful for evaluating Wigner functions in a straightforward manner. As a byproduct, we use one of these sum rules, on the operator level, to obtain raising and lowering operators for the Laguerre polynomials and show that they generate an sl(2, R) ≅ su(1, 1) algebra
Euler polynomials and identities for non-commutative operators
De Angelis, Valerio; Vignat, Christophe
2015-12-01
Three kinds of identities involving non-commutating operators and Euler and Bernoulli polynomials are studied. The first identity, as given by Bender and Bettencourt [Phys. Rev. D 54(12), 7710-7723 (1996)], expresses the nested commutator of the Hamiltonian and momentum operators as the commutator of the momentum and the shifted Euler polynomial of the Hamiltonian. The second one, by Pain [J. Phys. A: Math. Theor. 46, 035304 (2013)], links the commutators and anti-commutators of the monomials of the position and momentum operators. The third appears in a work by Figuieira de Morisson and Fring [J. Phys. A: Math. Gen. 39, 9269 (2006)] in the context of non-Hermitian Hamiltonian systems. In each case, we provide several proofs and extensions of these identities that highlight the role of Euler and Bernoulli polynomials.
On integral and finite Fourier transforms of continuous q-Hermite polynomials
International Nuclear Information System (INIS)
Atakishiyeva, M. K.; Atakishiyev, N. M.
2009-01-01
We give an overview of the remarkably simple transformation properties of the continuous q-Hermite polynomials H n (x vertical bar q) of Rogers with respect to the classical Fourier integral transform. The behavior of the q-Hermite polynomials under the finite Fourier transform and an explicit form of the q-extended eigenfunctions of the finite Fourier transform, defined in terms of these polynomials, are also discussed.
On polynomial selection for the general number field sieve
Kleinjung, Thorsten
2006-12-01
The general number field sieve (GNFS) is the asymptotically fastest algorithm for factoring large integers. Its runtime depends on a good choice of a polynomial pair. In this article we present an improvement of the polynomial selection method of Montgomery and Murphy which has been used in recent GNFS records.
Directory of Open Access Journals (Sweden)
Kwan-Shik Shim
2017-04-01
Full Text Available This paper describes a multiple time interval (“multi-interval” parameter estimation method. The multi-interval parameter estimation method estimates a parameter from a new multi-interval prediction error polynomial that can simultaneously consider multiple time intervals. The root of the multi-interval prediction error polynomial includes the effect on each time interval, and the important mode can be estimated by solving one polynomial for multiple time intervals or signals. The algorithm of the multi-interval parameter estimation method proposed in this paper is applied to the test function and the data measured from a PMU (phasor measurement unit installed in the KEPCO (Korea Electric Power Corporation system. The results confirm that the proposed multi-interval parameter estimation method accurately and reliably estimates important parameters.
Automorphisms of Algebras and Bochner's Property for Vector Orthogonal Polynomials
Horozov, Emil
2016-05-01
We construct new families of vector orthogonal polynomials that have the property to be eigenfunctions of some differential operator. They are extensions of the Hermite and Laguerre polynomial systems. A third family, whose first member has been found by Y. Ben Cheikh and K. Douak is also constructed. The ideas behind our approach lie in the studies of bispectral operators. We exploit automorphisms of associative algebras which transform elementary vector orthogonal polynomial systems which are eigenfunctions of a differential operator into other systems of this type.
Families of superintegrable Hamiltonians constructed from exceptional polynomials
International Nuclear Information System (INIS)
Post, Sarah; Tsujimoto, Satoshi; Vinet, Luc
2012-01-01
We introduce a family of exactly-solvable two-dimensional Hamiltonians whose wave functions are given in terms of Laguerre and exceptional Jacobi polynomials. The Hamiltonians contain purely quantum terms which vanish in the classical limit leaving only a previously known family of superintegrable systems. Additional, higher-order integrals of motion are constructed from ladder operators for the considered orthogonal polynomials proving the quantum system to be superintegrable. (paper)
Raising and Lowering Operators for Askey-Wilson Polynomials
Directory of Open Access Journals (Sweden)
Siddhartha Sahi
2007-01-01
Full Text Available In this paper we describe two pairs of raising/lowering operators for Askey-Wilson polynomials, which result from constructions involving very different techniques. The first technique is quite elementary, and depends only on the ''classical'' properties of these polynomials, viz. the q-difference equation and the three term recurrence. The second technique is less elementary, and involves the one-variable version of the double affine Hecke algebra.
Díaz Mendoza, C.; Orive, R.; Pijeira Cabrera, H.
2008-10-01
We study the asymptotic behavior of the zeros of a sequence of polynomials whose weighted norms, with respect to a sequence of weight functions, have the same nth root asymptotic behavior as the weighted norms of certain extremal polynomials. This result is applied to obtain the (contracted) weak zero distribution for orthogonal polynomials with respect to a Sobolev inner product with exponential weights of the form e-[phi](x), giving a unified treatment for the so-called Freud (i.e., when [phi] has polynomial growth at infinity) and Erdös (when [phi] grows faster than any polynomial at infinity) cases. In addition, we provide a new proof for the bound of the distance of the zeros to the convex hull of the support for these Sobolev orthogonal polynomials.
Mathematical Use Of Polynomials Of Different End Periods Of ...
African Journals Online (AJOL)
This paper focused on how polynomials of different end period of random numbers can be used in the application of encryption and decryption of a message. Eight steps were used in generating information on how polynomials of different end periods of random numbers in the application of encryption and decryption of a ...
The Jones polynomial as a new invariant of topological fluid dynamics
International Nuclear Information System (INIS)
Ricca, Renzo L; Liu, Xin
2014-01-01
A new method based on the use of the Jones polynomial, a well-known topological invariant of knot theory, is introduced to tackle and quantify topological aspects of structural complexity of vortex tangles in ideal fluids. By re-writing the Jones polynomial in terms of helicity, the resulting polynomial becomes then function of knot topology and vortex circulation, providing thus a new invariant of topological fluid dynamics. Explicit computations of the Jones polynomial for some standard configurations, including the Whitehead link and the Borromean rings (whose linking numbers are zero), are presented for illustration. In the case of a homogeneous, isotropic tangle of vortex filaments with same circulation, the new Jones polynomial reduces to some simple algebraic expression, that can be easily computed by numerical methods. This shows that this technique may offer a new setting and a powerful tool to detect and compute topological complexity and to investigate relations with energy, by tackling fundamental aspects of turbulence research. (paper)
Multivariate Local Polynomial Regression with Application to Shenzhen Component Index
Directory of Open Access Journals (Sweden)
Liyun Su
2011-01-01
Full Text Available This study attempts to characterize and predict stock index series in Shenzhen stock market using the concepts of multivariate local polynomial regression. Based on nonlinearity and chaos of the stock index time series, multivariate local polynomial prediction methods and univariate local polynomial prediction method, all of which use the concept of phase space reconstruction according to Takens' Theorem, are considered. To fit the stock index series, the single series changes into bivariate series. To evaluate the results, the multivariate predictor for bivariate time series based on multivariate local polynomial model is compared with univariate predictor with the same Shenzhen stock index data. The numerical results obtained by Shenzhen component index show that the prediction mean squared error of the multivariate predictor is much smaller than the univariate one and is much better than the existed three methods. Even if the last half of the training data are used in the multivariate predictor, the prediction mean squared error is smaller than the univariate predictor. Multivariate local polynomial prediction model for nonsingle time series is a useful tool for stock market price prediction.
The development of a JCH-3a intelligent precision thickness meter
International Nuclear Information System (INIS)
He Fengqi; Chen Lin
1988-12-01
Plating and coating technique are more widely used along with the development of the material science and industry. A precision, real-time and non-distructive testing method is established and a digitized and intelligent thickness meter JCH-3a is developed for measuring the layer thickness. The JCH-3a meter consists of a high accurate probe, very large scale integrated circuits and a built-in microcomputer. Its special features are: 1. digital display of the measured data; 2. preseting the limitation of warning values and automatic storing the measured data; 3. output of printing data; 4. broad measuring range; 5. small in size and light in weight. It can be also used in the thickness measuring of the reactor components
Twisted Polynomials and Forgery Attacks on GCM
DEFF Research Database (Denmark)
Abdelraheem, Mohamed Ahmed A. M. A.; Beelen, Peter; Bogdanov, Andrey
2015-01-01
Polynomial hashing as an instantiation of universal hashing is a widely employed method for the construction of MACs and authenticated encryption (AE) schemes, the ubiquitous GCM being a prominent example. It is also used in recent AE proposals within the CAESAR competition which aim at providing...... in an improved key recovery algorithm. As cryptanalytic applications of our twisted polynomials, we develop the first universal forgery attacks on GCM in the weak-key model that do not require nonce reuse. Moreover, we present universal weak-key forgeries for the nonce-misuse resistant AE scheme POET, which...
Parameter estimation and prediction of nonlinear biological systems: some examples
Doeswijk, T.G.; Keesman, K.J.
2006-01-01
Rearranging and reparameterizing a discrete-time nonlinear model with polynomial quotient structure in input, output and parameters (xk = f(Z, p)) leads to a model linear in its (new) parameters. As a result, the parameter estimation problem becomes a so-called errors-in-variables problem for which
Fractional order differentiation by integration with Jacobi polynomials
Liu, Dayan
2012-12-01
The differentiation by integration method with Jacobi polynomials was originally introduced by Mboup, Join and Fliess [22], [23]. This paper generalizes this method from the integer order to the fractional order for estimating the fractional order derivatives of noisy signals. The proposed fractional order differentiator is deduced from the Jacobi orthogonal polynomial filter and the Riemann-Liouville fractional order derivative definition. Exact and simple formula for this differentiator is given where an integral formula involving Jacobi polynomials and the noisy signal is used without complex mathematical deduction. Hence, it can be used both for continuous-time and discrete-time models. The comparison between our differentiator and the recently introduced digital fractional order Savitzky-Golay differentiator is given in numerical simulations so as to show its accuracy and robustness with respect to corrupting noises. © 2012 IEEE.
Synchronization of generalized Henon map using polynomial controller
International Nuclear Information System (INIS)
Lam, H.K.
2010-01-01
This Letter presents the chaos synchronization of two discrete-time generalized Henon map, namely the drive and response systems. A polynomial controller is proposed to drive the system states of the response system to follow those of the drive system. The system stability of the error system formed by the drive and response systems and the synthesis of the polynomial controller are investigated using the sum-of-squares (SOS) technique. Based on the Lyapunov stability theory, stability conditions in terms of SOS are derived to guarantee the system stability and facilitate the controller synthesis. By satisfying the SOS-based stability conditions, chaotic synchronization is achieved. The solution of the SOS-based stability conditions can be found numerically using the third-party Matlab toolbox SOSTOOLS. A simulation example is given to illustrate the merits of the proposed polynomial control approach.
Fractional order differentiation by integration with Jacobi polynomials
Liu, Dayan; Gibaru, O.; Perruquetti, Wilfrid; Laleg-Kirati, Taous-Meriem
2012-01-01
The differentiation by integration method with Jacobi polynomials was originally introduced by Mboup, Join and Fliess [22], [23]. This paper generalizes this method from the integer order to the fractional order for estimating the fractional order derivatives of noisy signals. The proposed fractional order differentiator is deduced from the Jacobi orthogonal polynomial filter and the Riemann-Liouville fractional order derivative definition. Exact and simple formula for this differentiator is given where an integral formula involving Jacobi polynomials and the noisy signal is used without complex mathematical deduction. Hence, it can be used both for continuous-time and discrete-time models. The comparison between our differentiator and the recently introduced digital fractional order Savitzky-Golay differentiator is given in numerical simulations so as to show its accuracy and robustness with respect to corrupting noises. © 2012 IEEE.
Non-existence criteria for Laurent polynomial first integrals
Directory of Open Access Journals (Sweden)
Shaoyun Shi
2003-01-01
Full Text Available In this paper we derived some simple criteria for non-existence and partial non-existence Laurent polynomial first integrals for a general nonlinear systems of ordinary differential equations $\\dot x = f(x$, $x \\in \\mathbb{R}^n$ with $f(0 = 0$. We show that if the eigenvalues of the Jacobi matrix of the vector field $f(x$ are $\\mathbb{Z}$-independent, then the system has no nontrivial Laurent polynomial integrals.
Vanishing of Littlewood-Richardson polynomials is in P
Adve, Anshul; Robichaux, Colleen; Yong, Alexander
2017-01-01
J. DeLoera-T. McAllister and K. D. Mulmuley-H. Narayanan-M. Sohoni independently proved that determining the vanishing of Littlewood-Richardson coefficients has strongly polynomial time computational complexity. Viewing these as Schubert calculus numbers, we prove the generalization to the Littlewood-Richardson polynomials that control equivariant cohomology of Grassmannians. We construct a polytope using the edge-labeled tableau rule of H. Thomas-A. Yong. Our proof then combines a saturation...
Recurrence coefficients for discrete orthonormal polynomials and the Painlevé equations
International Nuclear Information System (INIS)
Clarkson, Peter A
2013-01-01
We investigate semi-classical generalizations of the Charlier and Meixner polynomials, which are discrete orthogonal polynomials that satisfy three-term recurrence relations. It is shown that the coefficients in these recurrence relations can be expressed in terms of Wronskians of modified Bessel functions and confluent hypergeometric functions, respectively for the generalized Charlier and generalized Meixner polynomials. These Wronskians arise in the description of special function solutions of the third and fifth Painlevé equations. (paper)
Thermal fatigue crack growth on a thick wall tube containing a semi elliptical circumferential crack
International Nuclear Information System (INIS)
Deschanels, H.; Wakai, T.; Lacire, M.H.; Michel, B.
2001-01-01
In order to check the ability of the simplified assessment procedure (A16 guide) to predict fatigue crack growth, a benchmark problem was conducted. This work is carried out under the project ''agreement on the Exchange of Information and Collaboration in the field of Research and Development of Fast Breeder Reactor (FBR) between Europe (EU) and Japan''. Experimental work is conducted by PNC using Air cooled Thermal transient Test Facility (ATTF). Specimen is a thick wall tube containing a semi elliptical (3-D) circumferential crack and subjected to cyclic thermal transients. The constitutive material is the 304 austenitic stainless steel type SUS304. Due to thermal shock (650 C-300 C) the stress distribution through the wall is non-linear and well approximated using a 3 rd order polynomial. When comparing computations and tests data we observe a good agreement for the crack propagation in length. In crack depth, accurate results are obtained in the first part of the test, but on the later stage of the experiment the computations slightly underestimate the propagation (deep crack). In addition, we notice the importance of good evaluation of fracture mechanics parameters for non-linear stress distribution through the wall. At present A16 guide handbook gives stress intensity factor solutions for non-linear stress distribution through the wall. (author)
Design and Use of a Learning Object for Finding Complex Polynomial Roots
Benitez, Julio; Gimenez, Marcos H.; Hueso, Jose L.; Martinez, Eulalia; Riera, Jaime
2013-01-01
Complex numbers are essential in many fields of engineering, but students often fail to have a natural insight of them. We present a learning object for the study of complex polynomials that graphically shows that any complex polynomials has a root and, furthermore, is useful to find the approximate roots of a complex polynomial. Moreover, we…
Two polynomial division inequalities in
Directory of Open Access Journals (Sweden)
Goetgheluck P
1998-01-01
Full Text Available This paper is a first attempt to give numerical values for constants and , in classical estimates and where is an algebraic polynomial of degree at most and denotes the -metric on . The basic tools are Markov and Bernstein inequalities.
H∞ Control of Polynomial Fuzzy Systems: A Sum of Squares Approach
Bomo W. Sanjaya; Bambang Riyanto Trilaksono; Arief Syaichu-Rohman
2014-01-01
This paper proposes the control design ofa nonlinear polynomial fuzzy system with H∞ performance objective using a sum of squares (SOS) approach. Fuzzy model and controller are represented by a polynomial fuzzy model and controller. The design condition is obtained by using polynomial Lyapunov functions that not only guarantee stability but also satisfy the H∞ performance objective. The design condition is represented in terms of an SOS that can be numerically solved via the SOSTOOLS. A simul...
Euler Polynomials and Identities for Non-Commutative Operators
De Angelis, V.; Vignat, C.
2015-01-01
Three kinds of identities involving non-commutating operators and Euler and Bernoulli polynomials are studied. The first identity, as given by Bender and Bettencourt, expresses the nested commutator of the Hamiltonian and momentum operators as the commutator of the momentum and the shifted Euler polynomial of the Hamiltonian. The second one, due to J.-C. Pain, links the commutators and anti-commutators of the monomials of the position and momentum operators. The third appears in a work by Fig...
Polynomial algebra of discrete models in systems biology.
Veliz-Cuba, Alan; Jarrah, Abdul Salam; Laubenbacher, Reinhard
2010-07-01
An increasing number of discrete mathematical models are being published in Systems Biology, ranging from Boolean network models to logical models and Petri nets. They are used to model a variety of biochemical networks, such as metabolic networks, gene regulatory networks and signal transduction networks. There is increasing evidence that such models can capture key dynamic features of biological networks and can be used successfully for hypothesis generation. This article provides a unified framework that can aid the mathematical analysis of Boolean network models, logical models and Petri nets. They can be represented as polynomial dynamical systems, which allows the use of a variety of mathematical tools from computer algebra for their analysis. Algorithms are presented for the translation into polynomial dynamical systems. Examples are given of how polynomial algebra can be used for the model analysis. alanavc@vt.edu Supplementary data are available at Bioinformatics online.
Covariance of the number of real zeros of a random trigonometric polynomial
Directory of Open Access Journals (Sweden)
K. Farahmand
2006-01-01
Full Text Available For random coefficients aj and bj we consider a random trigonometric polynomial defined as Tn(θ=∑j=0n{ajcosjθ+bjsinjθ}. The expected number of real zeros of Tn(θ in the interval (0,2π can be easily obtained. In this note we show that this number is in fact n/3. However the variance of the above number is not known. This note presents a method which leads to the asymptotic value for the covariance of the number of real zeros of the above polynomial in intervals (0,π and (π,2π. It can be seen that our method in fact remains valid to obtain the result for any two disjoint intervals. The applicability of our method to the classical random trigonometric polynomial, defined as Pn(θ=∑j=0naj(ωcosjθ, is also discussed. Tn(θ has the advantage on Pn(θ of being stationary, with respect to θ, for which, therefore, a more advanced method developed could be used to yield the results.
Polynomial Vector Fields in One Complex Variable
DEFF Research Database (Denmark)
Branner, Bodil
In recent years Adrien Douady was interested in polynomial vector fields, both in relation to iteration theory and as a topic on their own. This talk is based on his work with Pierrette Sentenac, work of Xavier Buff and Tan Lei, and my own joint work with Kealey Dias.......In recent years Adrien Douady was interested in polynomial vector fields, both in relation to iteration theory and as a topic on their own. This talk is based on his work with Pierrette Sentenac, work of Xavier Buff and Tan Lei, and my own joint work with Kealey Dias....
3D enamel thickness in Neandertal and modern human permanent canines.
Buti, Laura; Le Cabec, Adeline; Panetta, Daniele; Tripodi, Maria; Salvadori, Piero A; Hublin, Jean-Jacques; Feeney, Robin N M; Benazzi, Stefano
2017-12-01
Enamel thickness figures prominently in studies of human evolution, particularly for taxonomy, phylogeny, and paleodietary reconstruction. Attention has focused on molar teeth, through the use of advanced imaging technologies and novel protocols. Despite the important results achieved thus far, further work is needed to investigate all tooth classes. We apply a recent approach developed for anterior teeth to investigate the 3D enamel thickness of Neandertal and modern human (MH) canines. In terms of crown size, the values obtained for both upper and lower unworn/slightly worn canines are significantly greater in Neandertals than in Upper Paleolithic and recent MH. The 3D relative enamel thickness (RET) is significantly lower in Neandertals than in MH. Moreover, differences in 3D RET values between the two groups appear to decrease in worn canines beginning from wear stage 3, suggesting that both the pattern and the stage of wear may have important effects on the 3D RET value. Nevertheless, the 3D average enamel thickness (AET) does not differ between the two groups. In both groups, 3D AET and 3D RET indices are greater in upper canines than in lower canines, and overall the enamel is thicker on the occlusal half of the labial aspect of the crown, particularly in MH. By contrast, the few early modern humans investigated show the highest volumes of enamel while for all other components of 3D enamel, thickness this group holds an intermediate position between Neandertals and recent MH. Overall, our study supports the general findings that Neandertals have relatively thinner enamel than MH (as also observed in molars), indicating that unworn/slightly worn canines can be successfully used to discriminate between the two groups. Further studies, however, are needed to understand whether these differences are functionally related or are the result of pleiotropic or genetic drift effects. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Kersaudy, Pierric, E-mail: pierric.kersaudy@orange.com [Orange Labs, 38 avenue du Général Leclerc, 92130 Issy-les-Moulineaux (France); Whist Lab, 38 avenue du Général Leclerc, 92130 Issy-les-Moulineaux (France); ESYCOM, Université Paris-Est Marne-la-Vallée, 5 boulevard Descartes, 77700 Marne-la-Vallée (France); Sudret, Bruno [ETH Zürich, Chair of Risk, Safety and Uncertainty Quantification, Stefano-Franscini-Platz 5, 8093 Zürich (Switzerland); Varsier, Nadège [Orange Labs, 38 avenue du Général Leclerc, 92130 Issy-les-Moulineaux (France); Whist Lab, 38 avenue du Général Leclerc, 92130 Issy-les-Moulineaux (France); Picon, Odile [ESYCOM, Université Paris-Est Marne-la-Vallée, 5 boulevard Descartes, 77700 Marne-la-Vallée (France); Wiart, Joe [Orange Labs, 38 avenue du Général Leclerc, 92130 Issy-les-Moulineaux (France); Whist Lab, 38 avenue du Général Leclerc, 92130 Issy-les-Moulineaux (France)
2015-04-01
In numerical dosimetry, the recent advances in high performance computing led to a strong reduction of the required computational time to assess the specific absorption rate (SAR) characterizing the human exposure to electromagnetic waves. However, this procedure remains time-consuming and a single simulation can request several hours. As a consequence, the influence of uncertain input parameters on the SAR cannot be analyzed using crude Monte Carlo simulation. The solution presented here to perform such an analysis is surrogate modeling. This paper proposes a novel approach to build such a surrogate model from a design of experiments. Considering a sparse representation of the polynomial chaos expansions using least-angle regression as a selection algorithm to retain the most influential polynomials, this paper proposes to use the selected polynomials as regression functions for the universal Kriging model. The leave-one-out cross validation is used to select the optimal number of polynomials in the deterministic part of the Kriging model. The proposed approach, called LARS-Kriging-PC modeling, is applied to three benchmark examples and then to a full-scale metamodeling problem involving the exposure of a numerical fetus model to a femtocell device. The performances of the LARS-Kriging-PC are compared to an ordinary Kriging model and to a classical sparse polynomial chaos expansion. The LARS-Kriging-PC appears to have better performances than the two other approaches. A significant accuracy improvement is observed compared to the ordinary Kriging or to the sparse polynomial chaos depending on the studied case. This approach seems to be an optimal solution between the two other classical approaches. A global sensitivity analysis is finally performed on the LARS-Kriging-PC model of the fetus exposure problem.
Measurement of facial soft tissues thickness using 3D computed tomographic images
Energy Technology Data Exchange (ETDEWEB)
Jeong, Ho Gul; Kim, Kee Deog; Shin, Dong Won; Hu, Kyung Seok; Lee, Jae Bum; Park, Hyok; Park, Chang Seo [Yonsei Univ. Hospital, Seoul (Korea, Republic of); Han, Seung Ho [Catholic Univ. of Korea, Seoul (Korea, Republic of)
2006-03-15
To evaluate accuracy and reliability of program to measure facial soft tissue thickness using 3D computed tomographic images by comparing with direct measurement. One cadaver was scanned with a Helical CT with 3 mm slice thickness and 3 mm/sec table speed. The acquired data was reconstructed with 1.5 mm reconstruction interval and the images were transferred to a personal computer. The facial soft tissue thickness were measured using a program developed newly in 3D image. For direct measurement, the cadaver was cut with a bone cutter and then a ruler was placed above the cut side. The procedure was followed by taking pictures of the facial soft tissues with a high-resolution digital camera. Then the measurements were done in the photographic images and repeated for ten times. A repeated measure analysis of variance was adopted to compare and analyze the measurements resulting from the two different methods. Comparison according to the areas was analyzed by Mann-Whitney test. There were no statistically significant differences between the direct measurements and those using the 3D images(p>0.05). There were statistical differences in the measurements on 17 points but all the points except 2 points showed a mean difference of 0.5 mm or less. The developed software program to measure the facial soft tissue thickness using 3D images was so accurate that it allows to measure facial soft tissue thickness more easily in forensic science and anthropology.
Measurement of facial soft tissues thickness using 3D computed tomographic images
International Nuclear Information System (INIS)
Jeong, Ho Gul; Kim, Kee Deog; Shin, Dong Won; Hu, Kyung Seok; Lee, Jae Bum; Park, Hyok; Park, Chang Seo; Han, Seung Ho
2006-01-01
To evaluate accuracy and reliability of program to measure facial soft tissue thickness using 3D computed tomographic images by comparing with direct measurement. One cadaver was scanned with a Helical CT with 3 mm slice thickness and 3 mm/sec table speed. The acquired data was reconstructed with 1.5 mm reconstruction interval and the images were transferred to a personal computer. The facial soft tissue thickness were measured using a program developed newly in 3D image. For direct measurement, the cadaver was cut with a bone cutter and then a ruler was placed above the cut side. The procedure was followed by taking pictures of the facial soft tissues with a high-resolution digital camera. Then the measurements were done in the photographic images and repeated for ten times. A repeated measure analysis of variance was adopted to compare and analyze the measurements resulting from the two different methods. Comparison according to the areas was analyzed by Mann-Whitney test. There were no statistically significant differences between the direct measurements and those using the 3D images(p>0.05). There were statistical differences in the measurements on 17 points but all the points except 2 points showed a mean difference of 0.5 mm or less. The developed software program to measure the facial soft tissue thickness using 3D images was so accurate that it allows to measure facial soft tissue thickness more easily in forensic science and anthropology
Directory of Open Access Journals (Sweden)
Hjalmar Rosengren
2006-12-01
Full Text Available We study multivariable Christoffel-Darboux kernels, which may be viewed as reproducing kernels for antisymmetric orthogonal polynomials, and also as correlation functions for products of characteristic polynomials of random Hermitian matrices. Using their interpretation as reproducing kernels, we obtain simple proofs of Pfaffian and determinant formulas, as well as Schur polynomial expansions, for such kernels. In subsequent work, these results are applied in combinatorics (enumeration of marked shifted tableaux and number theory (representation of integers as sums of squares.
Oreopoulos, Lazaros
2004-01-01
The MODIS Level-3 optical thickness and effective radius cloud product is a gridded l deg. x 1 deg. dataset that is derived from aggregation and subsampling at 5 km of 1 km, resolution Level-2 orbital swath data (Level-2 granules). This study examines the impact of the 5 km subsampling on the mean, standard deviation and inhomogeneity parameter statistics of optical thickness and effective radius. The methodology is simple and consists of estimating mean errors for a large collection of Terra and Aqua Level-2 granules by taking the difference of the statistics at the original and subsampled resolutions. It is shown that the Level-3 sampling does not affect the various quantities investigated to the same degree, with second order moments suffering greater subsampling errors, as expected. Mean errors drop dramatically when averages over a sufficient number of regions (e.g., monthly and/or latitudinal averages) are taken, pointing to a dominance of errors that are of random nature. When histograms built from subsampled data with the same binning rules as in the Level-3 dataset are used to reconstruct the quantities of interest, the mean errors do not deteriorate significantly. The results in this paper provide guidance to users of MODIS Level-3 optical thickness and effective radius cloud products on the range of errors due to subsampling they should expect and perhaps account for, in scientific work with this dataset. In general, subsampling errors should not be a serious concern when moderate temporal and/or spatial averaging is performed.
Szász-Durrmeyer operators involving Boas-Buck polynomials of blending type.
Sidharth, Manjari; Agrawal, P N; Araci, Serkan
2017-01-01
The present paper introduces the Szász-Durrmeyer type operators based on Boas-Buck type polynomials which include Brenke type polynomials, Sheffer polynomials and Appell polynomials considered by Sucu et al. (Abstr. Appl. Anal. 2012:680340, 2012). We establish the moments of the operator and a Voronvskaja type asymptotic theorem and then proceed to studying the convergence of the operators with the help of Lipschitz type space and weighted modulus of continuity. Next, we obtain a direct approximation theorem with the aid of unified Ditzian-Totik modulus of smoothness. Furthermore, we study the approximation of functions whose derivatives are locally of bounded variation.
Szász-Durrmeyer operators involving Boas-Buck polynomials of blending type
Directory of Open Access Journals (Sweden)
Manjari Sidharth
2017-05-01
Full Text Available Abstract The present paper introduces the Szász-Durrmeyer type operators based on Boas-Buck type polynomials which include Brenke type polynomials, Sheffer polynomials and Appell polynomials considered by Sucu et al. (Abstr. Appl. Anal. 2012:680340, 2012. We establish the moments of the operator and a Voronvskaja type asymptotic theorem and then proceed to studying the convergence of the operators with the help of Lipschitz type space and weighted modulus of continuity. Next, we obtain a direct approximation theorem with the aid of unified Ditzian-Totik modulus of smoothness. Furthermore, we study the approximation of functions whose derivatives are locally of bounded variation.
An extension of Krawtchouk\\'s polynomials to the contstruction of ...
African Journals Online (AJOL)
A simple method is described for the construction of a set of orthogonal polynomials for any case where the proportions of observations follow a binomial distribution. The least squares equation which fits the data is determined using the properties of orthogonal polynomials and the analysis of variance technique.
Siripatana, Adil; Mayo, Talea; Sraj, Ihab; Knio, Omar; Dawson, Clint; Le Maitre, Olivier; Hoteit, Ibrahim
2017-01-01
an ensemble Kalman-based data assimilation method for parameter estimation of a coastal ocean model against an MCMC polynomial chaos (PC)-based scheme. We focus on quantifying the uncertainties of a coastal ocean ADvanced CIRCulation (ADCIRC) model
Directory of Open Access Journals (Sweden)
Arghavan Farzadi
Full Text Available Powder-based inkjet 3D printing method is one of the most attractive solid free form techniques. It involves a sequential layering process through which 3D porous scaffolds can be directly produced from computer-generated models. 3D printed products' quality are controlled by the optimal build parameters. In this study, Calcium Sulfate based powders were used for porous scaffolds fabrication. The printed scaffolds of 0.8 mm pore size, with different layer thickness and printing orientation, were subjected to the depowdering step. The effects of four layer thicknesses and printing orientations, (parallel to X, Y and Z, on the physical and mechanical properties of printed scaffolds were investigated. It was observed that the compressive strength, toughness and Young's modulus of samples with 0.1125 and 0.125 mm layer thickness were more than others. Furthermore, the results of SEM and μCT analyses showed that samples with 0.1125 mm layer thickness printed in X direction have more dimensional accuracy and significantly close to CAD software based designs with predefined pore size, porosity and pore interconnectivity.
Geometry of polynomials and root-finding via path-lifting
Kim, Myong-Hi; Martens, Marco; Sutherland, Scott
2018-02-01
Using the interplay between topological, combinatorial, and geometric properties of polynomials and analytic results (primarily the covering structure and distortion estimates), we analyze a path-lifting method for finding approximate zeros, similar to those studied by Smale, Shub, Kim, and others. Given any polynomial, this simple algorithm always converges to a root, except on a finite set of initial points lying on a circle of a given radius. Specifically, the algorithm we analyze consists of iterating where the t k form a decreasing sequence of real numbers and z 0 is chosen on a circle containing all the roots. We show that the number of iterates required to locate an approximate zero of a polynomial f depends only on log\\vert f(z_0)/ρ_\\zeta\\vert (where ρ_\\zeta is the radius of convergence of the branch of f-1 taking 0 to a root ζ) and the logarithm of the angle between f(z_0) and certain critical values. Previous complexity results for related algorithms depend linearly on the reciprocals of these angles. Note that the complexity of the algorithm does not depend directly on the degree of f, but only on the geometry of the critical values. Furthermore, for any polynomial f with distinct roots, the average number of steps required over all starting points taken on a circle containing all the roots is bounded by a constant times the average of log(1/ρ_\\zeta) . The average of log(1/ρ_\\zeta) over all polynomials f with d roots in the unit disk is \
Existence of 121 limit cycles in a perturbed planar polynomial Hamiltonian vector field of degree 11
International Nuclear Information System (INIS)
Wang, S.; Yu, P.
2006-01-01
In this article, a systematic procedure has been explored to studying general Z q -equivariant planar polynomial Hamiltonian vector fields for the maximal number of closed orbits and the maximal number of limit cycles after perturbation. Following the procedure by taking special consideration of Z 12 -equivariant vector fields of degree 11, the maximal of 99 closed orbits are obtained under a well-defined coefficient group. Consequently, perturbation parameter control in limit cycle computation leads to the existence of 121 limit cycles in the perturbed Hamiltonian vector field, which gives rise to the lower bound of Hilbert number of 11th-order systems as H(11) ≥ 11 2 . Two conjectures are proposed regarding the maximal number of closed orbits for equivariant polynomial Hamiltonian vector fields and the maximal number of limit cycles bifurcated from the well defined Hamiltonian vector fields after perturbation
Xie, Xiangpeng; Yue, Dong; Zhang, Huaguang; Xue, Yusheng
2016-03-01
This paper deals with the problem of control synthesis of discrete-time Takagi-Sugeno fuzzy systems by employing a novel multiinstant homogenous polynomial approach. A new multiinstant fuzzy control scheme and a new class of fuzzy Lyapunov functions, which are homogenous polynomially parameter-dependent on both the current-time normalized fuzzy weighting functions and the past-time normalized fuzzy weighting functions, are proposed for implementing the object of relaxed control synthesis. Then, relaxed stabilization conditions are derived with less conservatism than existing ones. Furthermore, the relaxation quality of obtained stabilization conditions is further ameliorated by developing an efficient slack variable approach, which presents a multipolynomial dependence on the normalized fuzzy weighting functions at the current and past instants of time. Two simulation examples are given to demonstrate the effectiveness and benefits of the results developed in this paper.
The Combinatorial Rigidity Conjecture is False for Cubic Polynomials
DEFF Research Database (Denmark)
Henriksen, Christian
2003-01-01
We show that there exist two cubic polynomials with connected Julia sets which are combinatorially equivalent but not topologically conjugate on their Julia sets. This disproves a conjecture by McMullen from 1995.......We show that there exist two cubic polynomials with connected Julia sets which are combinatorially equivalent but not topologically conjugate on their Julia sets. This disproves a conjecture by McMullen from 1995....
Ratio asymptotics of Hermite-Pade polynomials for Nikishin systems
International Nuclear Information System (INIS)
Aptekarev, A I; Lopez, Guillermo L; Rocha, I A
2005-01-01
The existence of ratio asymptotics is proved for a sequence of multiple orthogonal polynomials with orthogonality relations distributed among a system of m finite Borel measures with support on a bounded interval of the real line which form a so-called Nikishin system. For m=1 this result reduces to Rakhmanov's celebrated theorem on the ratio asymptotics for orthogonal polynomials on the real line.
Global Polynomial Kernel Hazard Estimation
DEFF Research Database (Denmark)
Hiabu, Munir; Miranda, Maria Dolores Martínez; Nielsen, Jens Perch
2015-01-01
This paper introduces a new bias reducing method for kernel hazard estimation. The method is called global polynomial adjustment (GPA). It is a global correction which is applicable to any kernel hazard estimator. The estimator works well from a theoretical point of view as it asymptotically redu...
Optimal Conformal Polynomial Projections for Croatia According to the Airy/Jordan Criterion
Directory of Open Access Journals (Sweden)
Dražen Tutić
2009-05-01
Full Text Available The paper describes optimal conformal polynomial projections for Croatia according to the Airy/Jordan criterion. A brief introduction of history and theory of conformal mapping is followed by descriptions of conformal polynomial projections and their current application. The paper considers polynomials of degrees 1 to 10. Since there are conditions in which the 1st degree polynomial becomes the famous Mercator projection, it was not considered specifically for Croatian territory. The area of Croatia was defined as a union of national territory and the continental shelf. Area definition data were taken from the Euro Global Map 1:1 000 000 for Croatia, as well as from two maritime delimitation treaties. Such an irregular area was approximated with a regular grid consisting of 11 934 ellipsoidal trapezoids 2' large. The Airy/Jordan criterion for the optimal projection is defined as minimum of weighted mean of Airy/Jordan measure of distortion in points. The value of the Airy/Jordan criterion is calculated from all 11 934 centres of ellipsoidal trapezoids, while the weights are equal to areas of corresponding ellipsoidal trapezoids. The minimum is obtained by Nelder and Mead’s method, as implemented in the fminsearch function of the MATLAB package. Maps of Croatia representing the distribution of distortions are given for polynomial degrees 2 to 6 and 10. Increasing the polynomial degree results in better projections considering the criterion, and the 6th degree polynomial provides a good ratio of formula complexity and criterion value.
Real zeros of classes of random algebraic polynomials
Directory of Open Access Journals (Sweden)
K. Farahmand
2003-01-01
Full Text Available There are many known asymptotic estimates for the expected number of real zeros of an algebraic polynomial a0+a1x+a2x2+⋯+an−1xn−1 with identically distributed random coefficients. Under different assumptions for the distribution of the coefficients {aj}j=0n−1 it is shown that the above expected number is asymptotic to O(logn. This order for the expected number of zeros remains valid for the case when the coefficients are grouped into two, each group with a different variance. However, it was recently shown that if the coefficients are non-identically distributed such that the variance of the jth term is (nj the expected number of zeros of the polynomial increases to O(n. The present paper provides the value for this asymptotic formula for the polynomials with the latter variances when they are grouped into three with different patterns for their variances.
Design and development by direct polishing of the WFXT thin polynomial mirror shells
Proserpio, L.; Campana, S.; Citterio, O.; Civitani, M.; Combrinck, H.; Conconi, P.; Cotroneo, V.; Freeman, R.; Mattini, E.; Langstrof, P.; Morton, R.; Motta, G.; Oberle, O.; Pareschi, G.; Parodi, G.; Pels, C.; Schenk, C.; Stock, R.; Tagliaferri, G.
2017-11-01
The Wide Field X-ray Telescope (WFXT) is a medium class mission proposed to address key questions about cosmic origins and physics of the cosmos through an unprecedented survey of the sky in the soft X-ray band (0.2-6 keV) [1], [2]. In order to get the desired angular resolution of 10 arcsec (5 arcsec goal) on the entire 1 degrees Field Of View (FOV), the design of the optical system is based on nested grazing-incidence polynomial profiles mirrors, and assumes a focal plane curvature and plate scale corrections among the shells. This design guarantees an increased angular resolution also at large off-axis positions with respect to the usually adopted Wolter I configuration. In order to meet the requirements in terms of mass and effective area (less than 1200 kg, 6000 cm2 @ 1 keV), the nested shells are thin and made of quartz glass. The telescope assembly is composed by three identical modules of 78 nested shells each, with diameter up to 1.1 m, length in the range of 200-440 mm and thickness of less than 2.2 mm. At this regard, a deterministic direct polishing method is under investigation to manufacture the WFXT thin grazing-incidence mirrors made of quartz. The direct polishing method has already been used for past missions (as Einstein, Rosat, Chandra) but based on much thicker shells (10 mm ore more). The technological challenge for WFXT is to apply the same approach but for 510 times thinner shells. The proposed approach is based on two main steps: first, quartz glass tubes available on the market are ground to conical profiles; second the pre-shaped shells are polished to the required polynomial profiles using a CNC polishing machine. In this paper, preliminary results on the direct grinding and polishing of prototypes shells made by quartz glass with low thickness, representative of the WFXT optical design, are presented.
Czech Academy of Sciences Publication Activity Database
Knížek, J.; Tichý, Petr; Beránek, L.; Šindelář, Jan; Vojtěšek, B.; Bouchal, P.; Nenutil, R.; Dedík, O.
2010-01-01
Roč. 7, č. 10 (2010), s. 48-60 ISSN 0974-5718 Grant - others:GA MZd(CZ) NS9812; GA ČR(CZ) GAP304/10/0868 Institutional research plan: CEZ:AV0Z10300504; CEZ:AV0Z10750506 Keywords : polynomial regression * orthogonalization * numerical methods * markers * biomarkers Subject RIV: BA - General Mathematics
Quantum entanglement via nilpotent polynomials
International Nuclear Information System (INIS)
Mandilara, Aikaterini; Akulin, Vladimir M.; Smilga, Andrei V.; Viola, Lorenza
2006-01-01
We propose a general method for introducing extensive characteristics of quantum entanglement. The method relies on polynomials of nilpotent raising operators that create entangled states acting on a reference vacuum state. By introducing the notion of tanglemeter, the logarithm of the state vector represented in a special canonical form and expressed via polynomials of nilpotent variables, we show how this description provides a simple criterion for entanglement as well as a universal method for constructing the invariants characterizing entanglement. We compare the existing measures and classes of entanglement with those emerging from our approach. We derive the equation of motion for the tanglemeter and, in representative examples of up to four-qubit systems, show how the known classes appear in a natural way within our framework. We extend our approach to qutrits and higher-dimensional systems, and make contact with the recently introduced idea of generalized entanglement. Possible future developments and applications of the method are discussed
International Nuclear Information System (INIS)
Miller, Willard Jr
2014-01-01
We describe a contraction theory for 2nd order superintegrable systems, showing that all such systems in 2 dimensions are limiting cases of a single system: the generic 3-parameter potential on the 2-sphere, S9 in our listing. Analogously, all of the quadratic symmetry algebras of these systems can be obtained by a sequence of contractions starting from S9. By contracting function space realizations of irreducible representations of the S9 algebra (which give the structure equations for Racah/Wilson polynomials) to the other superintegrable systems one obtains the full Askey scheme of orthogonal hypergeometric polynomials.This relates the scheme directly to explicitly solvable quantum mechanical systems. Amazingly, all of these contractions of superintegrable systems with potential are uniquely induced by Wigner Lie algebra contractions of so(3, C) and e(2, C). The present paper concentrates on describing this intimate link between Lie algebra and superintegrable system contractions, with the detailed calculations presented elsewhere. Joint work with E. Kalnins, S. Post, E. Subag and R. Heinonen.
Ethanol vapour sensing properties of screen printed WO 3 thick films
Indian Academy of Sciences (India)
The ethanol vapour sensing properties of these thick films were investigated at different operating temperatures and ethanol vapour concentrations. The WO3 thick films exhibit excellent ethanol vapour sensing properties with a maximum sensitivity of ∼1424.6% at 400°C in air atmosphere with fast response and recovery ...
Nuclear-magnetic-resonance quantum calculations of the Jones polynomial
International Nuclear Information System (INIS)
Marx, Raimund; Spoerl, Andreas; Pomplun, Nikolas; Schulte-Herbrueggen, Thomas; Glaser, Steffen J.; Fahmy, Amr; Kauffman, Louis; Lomonaco, Samuel; Myers, John M.
2010-01-01
The repertoire of problems theoretically solvable by a quantum computer recently expanded to include the approximate evaluation of knot invariants, specifically the Jones polynomial. The experimental implementation of this evaluation, however, involves many known experimental challenges. Here we present experimental results for a small-scale approximate evaluation of the Jones polynomial by nuclear magnetic resonance (NMR); in addition, we show how to escape from the limitations of NMR approaches that employ pseudopure states. Specifically, we use two spin-1/2 nuclei of natural abundance chloroform and apply a sequence of unitary transforms representing the trefoil knot, the figure-eight knot, and the Borromean rings. After measuring the nuclear spin state of the molecule in each case, we are able to estimate the value of the Jones polynomial for each of the knots.
Energy Technology Data Exchange (ETDEWEB)
Tang, Kunkun, E-mail: ktg@illinois.edu [The Center for Exascale Simulation of Plasma-Coupled Combustion (XPACC), University of Illinois at Urbana–Champaign, 1308 W Main St, Urbana, IL 61801 (United States); Inria Bordeaux – Sud-Ouest, Team Cardamom, 200 avenue de la Vieille Tour, 33405 Talence (France); Congedo, Pietro M. [Inria Bordeaux – Sud-Ouest, Team Cardamom, 200 avenue de la Vieille Tour, 33405 Talence (France); Abgrall, Rémi [Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich (Switzerland)
2016-06-01
The Polynomial Dimensional Decomposition (PDD) is employed in this work for the global sensitivity analysis and uncertainty quantification (UQ) of stochastic systems subject to a moderate to large number of input random variables. Due to the intimate connection between the PDD and the Analysis of Variance (ANOVA) approaches, PDD is able to provide a simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to the Polynomial Chaos expansion (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of standard methods unaffordable for real engineering applications. In order to address the problem of the curse of dimensionality, this work proposes essentially variance-based adaptive strategies aiming to build a cheap meta-model (i.e. surrogate model) by employing the sparse PDD approach with its coefficients computed by regression. Three levels of adaptivity are carried out in this paper: 1) the truncated dimensionality for ANOVA component functions, 2) the active dimension technique especially for second- and higher-order parameter interactions, and 3) the stepwise regression approach designed to retain only the most influential polynomials in the PDD expansion. During this adaptive procedure featuring stepwise regressions, the surrogate model representation keeps containing few terms, so that the cost to resolve repeatedly the linear systems of the least-squares regression problem is negligible. The size of the finally obtained sparse PDD representation is much smaller than the one of the full expansion, since only significant terms are eventually retained. Consequently, a much smaller number of calls to the deterministic model is required to compute the final PDD coefficients.
International Nuclear Information System (INIS)
Tang, Kunkun; Congedo, Pietro M.; Abgrall, Rémi
2016-01-01
The Polynomial Dimensional Decomposition (PDD) is employed in this work for the global sensitivity analysis and uncertainty quantification (UQ) of stochastic systems subject to a moderate to large number of input random variables. Due to the intimate connection between the PDD and the Analysis of Variance (ANOVA) approaches, PDD is able to provide a simpler and more direct evaluation of the Sobol' sensitivity indices, when compared to the Polynomial Chaos expansion (PC). Unfortunately, the number of PDD terms grows exponentially with respect to the size of the input random vector, which makes the computational cost of standard methods unaffordable for real engineering applications. In order to address the problem of the curse of dimensionality, this work proposes essentially variance-based adaptive strategies aiming to build a cheap meta-model (i.e. surrogate model) by employing the sparse PDD approach with its coefficients computed by regression. Three levels of adaptivity are carried out in this paper: 1) the truncated dimensionality for ANOVA component functions, 2) the active dimension technique especially for second- and higher-order parameter interactions, and 3) the stepwise regression approach designed to retain only the most influential polynomials in the PDD expansion. During this adaptive procedure featuring stepwise regressions, the surrogate model representation keeps containing few terms, so that the cost to resolve repeatedly the linear systems of the least-squares regression problem is negligible. The size of the finally obtained sparse PDD representation is much smaller than the one of the full expansion, since only significant terms are eventually retained. Consequently, a much smaller number of calls to the deterministic model is required to compute the final PDD coefficients.
Silvayeh, Zahra; Vallant, Rudolf; Sommitsch, Christof; Götzinger, Bruno; Karner, Werner; Hartmann, Matthias
2017-11-01
Hybrid components made of aluminum alloys and high-strength steels are typically used in automotive lightweight applications. Dissimilar joining of these materials is quite challenging; however, it is mandatory in order to produce multimaterial car body structures. Since especially welding of tailored blanks is of utmost interest, single-sided Cold Metal Transfer butt welding of thin sheets of aluminum alloy EN AW 6014 T4 and galvanized dual-phase steel HCT 450 X + ZE 75/75 was experimentally investigated in this study. The influence of different filler alloy compositions and welding process parameters on the thickness of the intermetallic layer, which forms between the weld seam and the steel sheet, was studied. The microstructures of the weld seam and of the intermetallic layer were characterized using conventional optical light microscopy and scanning electron microscopy. The results reveal that increasing the heat input and decreasing the cooling intensity tend to increase the layer thickness. The silicon content of the filler alloy has the strongest influence on the thickness of the intermetallic layer, whereas the magnesium and scandium contents of the filler alloy influence the cracking tendency. The layer thickness is not uniform and shows spatial variations along the bonding interface. The thinnest intermetallic layer (mean thickness < 4 µm) is obtained using the silicon-rich filler Al-3Si-1Mn, but the layer is more than twice as thick when different low-silicon fillers are used.
Expressing the remainder of the Taylor polynomial when the function lacks smoothness
Czech Academy of Sciences Publication Activity Database
Hošek, Radim
2017-01-01
Roč. 72, č. 3 (2017), s. 126-130 ISSN 0013-6018 Institutional support: RVO:67985840 Keywords : Taylor polynomial * Taylor theorem Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics http://www.ems-ph.org/doi/10.4171/EM/335
International Nuclear Information System (INIS)
Wang Junping; Shah, Ami; Yu Xiaojun
2011-01-01
We have developed a 3D nanofibrous spiral scaffold for bone tissue engineering which has shown enhanced cell attachment, proliferation and differentiation compared to traditional cylindrical scaffolds due to the spiral structures and the nanofiber incorporation. Some important parameters of these spiral scaffolds including gap distance, wall thickness and especially fiber thickness are crucial to the performance of the spiral structured scaffolds. In this study, we investigated the fiber thickness, gap distance and wall thickness of the spiral structure on the behavior of osteoblast cells. The human osteoblast cells are seeded on spiral structured scaffolds with various fiber thickness, gap distance and wall thickness and cell attachment, proliferation, differentiation and mineralized matrix deposition on the scaffolds are evaluated. It was found that increasing the thickness of nanofiber layer not only limited the cell infiltration into the scaffolds, but also restrained the osteoblastic cell phenotype development. Moreover, the geometric effect studies indicated that scaffolds with the thinner wall and gap distance 0.2 mm show the best bioactivity for osteoblasts.
Quantification the Effect of the Thickness of Thin Films on their Elastic Parameters
International Nuclear Information System (INIS)
Gacem, A.; Doghmane, A.; Hadjoub, Z
2011-01-01
The determination of the characteristics and properties of thin films deposited on substrates is necessary in any device application in various fields. Adequate mechanical properties are highly required for the majority of surface waves and semiconductor devices. In this context, modelling the ultrasonic-material interaction, we present results of simulation curves of acoustic signatures for multiple thin film/substrate combinations. The results obtained on several structures (Al, SiO 2 , ZnO, Cu, AlN, SiC and Cr)/(Al 2 O 3 , Si, Cu or Quartz) showed a velocity dispersion of the Rayleigh wave as a function of layer thickness. The development of a theoretical calculation model based on the acoustic behaviour of these structures has enabled us to quantify the dispersive evolution (positive and negative) density. Thus, we have established a universal relationship describing the density-thickness variation. In addition, networks of dispersion curves, representing the evolution of elasticity modulus (Young and shear), were determined. These charts can be used to extract the influence of thickness of layers on the variation of elastic constants.(author)
Weierstrass method for quaternionic polynomial root-finding
Falcão, M. Irene; Miranda, Fernando; Severino, Ricardo; Soares, M. Joana
2018-01-01
Quaternions, introduced by Hamilton in 1843 as a generalization of complex numbers, have found, in more recent years, a wealth of applications in a number of different areas which motivated the design of efficient methods for numerically approximating the zeros of quaternionic polynomials. In fact, one can find in the literature recent contributions to this subject based on the use of complex techniques, but numerical methods relying on quaternion arithmetic remain scarce. In this paper we propose a Weierstrass-like method for finding simultaneously {\\sl all} the zeros of unilateral quaternionic polynomials. The convergence analysis and several numerical examples illustrating the performance of the method are also presented.
Crossover ensembles of random matrices and skew-orthogonal polynomials
International Nuclear Information System (INIS)
Kumar, Santosh; Pandey, Akhilesh
2011-01-01
Highlights: → We study crossover ensembles of Jacobi family of random matrices. → We consider correlations for orthogonal-unitary and symplectic-unitary crossovers. → We use the method of skew-orthogonal polynomials and quaternion determinants. → We prove universality of spectral correlations in crossover ensembles. → We discuss applications to quantum conductance and communication theory problems. - Abstract: In a recent paper (S. Kumar, A. Pandey, Phys. Rev. E, 79, 2009, p. 026211) we considered Jacobi family (including Laguerre and Gaussian cases) of random matrix ensembles and reported exact solutions of crossover problems involving time-reversal symmetry breaking. In the present paper we give details of the work. We start with Dyson's Brownian motion description of random matrix ensembles and obtain universal hierarchic relations among the unfolded correlation functions. For arbitrary dimensions we derive the joint probability density (jpd) of eigenvalues for all transitions leading to unitary ensembles as equilibrium ensembles. We focus on the orthogonal-unitary and symplectic-unitary crossovers and give generic expressions for jpd of eigenvalues, two-point kernels and n-level correlation functions. This involves generalization of the theory of skew-orthogonal polynomials to crossover ensembles. We also consider crossovers in the circular ensembles to show the generality of our method. In the large dimensionality limit, correlations in spectra with arbitrary initial density are shown to be universal when expressed in terms of a rescaled symmetry breaking parameter. Applications of our crossover results to communication theory and quantum conductance problems are also briefly discussed.
Fibonacci-like Differential Equations with a Polynomial Non-Homogeneous Part
Asveld, P.R.J.
1989-01-01
We investigate non-homogeneous linear differential equations of the form $x''(t) + x'(t) - x(t) = p(t)$ where $p(t)$ is either a polynomial or a factorial polynomial in $t$. We express the solution of these differential equations in terms of the coefficients of $p(t)$, in the initial conditions, and
Sparse DOA estimation with polynomial rooting
DEFF Research Database (Denmark)
Xenaki, Angeliki; Gerstoft, Peter; Fernandez Grande, Efren
2015-01-01
Direction-of-arrival (DOA) estimation involves the localization of a few sources from a limited number of observations on an array of sensors. Thus, DOA estimation can be formulated as a sparse signal reconstruction problem and solved efficiently with compressive sensing (CS) to achieve highresol......Direction-of-arrival (DOA) estimation involves the localization of a few sources from a limited number of observations on an array of sensors. Thus, DOA estimation can be formulated as a sparse signal reconstruction problem and solved efficiently with compressive sensing (CS) to achieve...... highresolution imaging. Utilizing the dual optimal variables of the CS optimization problem, it is shown with Monte Carlo simulations that the DOAs are accurately reconstructed through polynomial rooting (Root-CS). Polynomial rooting is known to improve the resolution in several other DOA estimation methods...
A polynomial time algorithm for checking regularity of totally normed process algebra
Yang, F.; Huang, H.
2015-01-01
A polynomial algorithm for the regularity problem of weak and branching bisimilarity on totally normed process algebra (PA) processes is given. Its time complexity is O(n 3 +mn) O(n3+mn), where n is the number of transition rules and m is the maximal length of the rules. The algorithm works for
Directory of Open Access Journals (Sweden)
Adnan M.F.
2017-01-01
Full Text Available Non-uniform thickness section section is considered one of the most effective approaches to reduce automotive part weight. Reduction in term of mass and size result in less fuel consumption and greenhouse gases. Thickness is the most significant parameter to formability, therefore forming a section with non-uniform thickness becomes a great challenge. Improper process and incorrect decision may lead to severe defect and one of the main concerns is the springback. This study will focus on springback behaviour of non-uniform thickness AA6061 strip with complex profile using Taguchi Method. Profile projector (PC 3000 is used to measure the spring back and two-line technique is applied to measure angles (after loading between two lines. Three parameters (i.e. annealing temperature, thickness ratio and bend angle are studied, and results determine that the most significant parameter is bend angle, followed by thickness ratio, and then by the annealing temperature of the specimen during bending process.
Polynomials in finite geometries and combinatorics
Blokhuis, A.; Walker, K.
1993-01-01
It is illustrated how elementary properties of polynomials can be used to attack extremal problems in finite and euclidean geometry, and in combinatorics. Also a new result, related to the problem of neighbourly cylinders is presented.
Dirichlet polynomials, majorization, and trumping
International Nuclear Information System (INIS)
Pereira, Rajesh; Plosker, Sarah
2013-01-01
Majorization and trumping are two partial orders which have proved useful in quantum information theory. We show some relations between these two partial orders and generalized Dirichlet polynomials, Mellin transforms, and completely monotone functions. These relations are used to prove a succinct generalization of Turgut’s characterization of trumping. (paper)
The neighbourhood polynomial of some families of dendrimers
Nazri Husin, Mohamad; Hasni, Roslan
2018-04-01
The neighbourhood polynomial N(G,x) is generating function for the number of faces of each cardinality in the neighbourhood complex of a graph and it is defined as (G,x)={\\sum }U\\in N(G){x}|U|, where N(G) is neighbourhood complex of a graph, whose vertices of the graph and faces are subsets of vertices that have a common neighbour. A dendrimers is an artificially manufactured or synthesized molecule built up from branched units called monomers. In this paper, we compute this polynomial for some families of dendrimer.
A new derivation of the highest-weight polynomial of a unitary lie algebra
International Nuclear Information System (INIS)
P Chau, Huu-Tai; P Van, Isacker
2000-01-01
A new method is presented to derive the expression of the highest-weight polynomial used to build the basis of an irreducible representation (IR) of the unitary algebra U(2J+1). After a brief reminder of Moshinsky's method to arrive at the set of equations defining the highest-weight polynomial of U(2J+1), an alternative derivation of the polynomial from these equations is presented. The method is less general than the one proposed by Moshinsky but has the advantage that the determinantal expression of the highest-weight polynomial is arrived at in a direct way using matrix inversions. (authors)
A probabilistic approach of sum rules for heat polynomials
International Nuclear Information System (INIS)
Vignat, C; Lévêque, O
2012-01-01
In this paper, we show that the sum rules for generalized Hermite polynomials derived by Daboul and Mizrahi (2005 J. Phys. A: Math. Gen. http://dx.doi.org/10.1088/0305-4470/38/2/010) and by Graczyk and Nowak (2004 C. R. Acad. Sci., Ser. 1 338 849) can be interpreted and easily recovered using a probabilistic moment representation of these polynomials. The covariance property of the raising operator of the harmonic oscillator, which is at the origin of the identities proved in Daboul and Mizrahi and the dimension reduction effect expressed in the main result of Graczyk and Nowak are both interpreted in terms of the rotational invariance of the Gaussian distributions. As an application of these results, we uncover a probabilistic moment interpretation of two classical integrals of the Wigner function that involve the associated Laguerre polynomials. (paper)
A Combinatorial Proof of a Result on Generalized Lucas Polynomials
Directory of Open Access Journals (Sweden)
Laugier Alexandre
2016-09-01
Full Text Available We give a combinatorial proof of an elementary property of generalized Lucas polynomials, inspired by [1]. These polynomials in s and t are defined by the recurrence relation 〈n〉 = s〈n-1〉+t〈n-2〉 for n ≥ 2. The initial values are 〈0〉 = 2; 〈1〉= s, respectively.
A Kantorovich Type of Szasz Operators Including Brenke-Type Polynomials
Directory of Open Access Journals (Sweden)
Fatma Taşdelen
2012-01-01
convergence properties of these operators by using Korovkin's theorem. We also present the order of convergence with the help of a classical approach, the second modulus of continuity, and Peetre's -functional. Furthermore, an example of Kantorovich type of the operators including Gould-Hopper polynomials is presented and Voronovskaya-type result is given for these operators including Gould-Hopper polynomials.
Lower bounds for the circuit size of partially homogeneous polynomials
Czech Academy of Sciences Publication Activity Database
Le, Hong-Van
2017-01-01
Roč. 225, č. 4 (2017), s. 639-657 ISSN 1072-3374 Institutional support: RVO:67985840 Keywords : partially homogeneous polynomials * polynomials Subject RIV: BA - General Mathematics OBOR OECD: Computer sciences, information science, bioinformathics (hardware development to be 2.2, social aspect to be 5.8) https://link.springer.com/article/10.1007/s10958-017-3483-4
Generalized catalan numbers, sequences and polynomials
KOÇ, Cemal; GÜLOĞLU, İsmail; ESİN, Songül
2010-01-01
In this paper we present an algebraic interpretation for generalized Catalan numbers. We describe them as dimensions of certain subspaces of multilinear polynomials. This description is of utmost importance in the investigation of annihilators in exterior algebras.
Multilevel weighted least squares polynomial approximation
Haji-Ali, Abdul-Lateef; Nobile, Fabio; Tempone, Raul; Wolfers, Sö ren
2017-01-01
, obtaining polynomial approximations with a single level method can become prohibitively expensive, as it requires a sufficiently large number of samples, each computed with a sufficiently small discretization error. As a solution to this problem, we propose
vs. a polynomial chaos-based MCMC
Siripatana, Adil
2014-08-01
Bayesian Inference of Manning\\'s n coefficient in a Storm Surge Model Framework: comparison between Kalman lter and polynomial based method Adil Siripatana Conventional coastal ocean models solve the shallow water equations, which describe the conservation of mass and momentum when the horizontal length scale is much greater than the vertical length scale. In this case vertical pressure gradients in the momentum equations are nearly hydrostatic. The outputs of coastal ocean models are thus sensitive to the bottom stress terms de ned through the formulation of Manning\\'s n coefficients. This thesis considers the Bayesian inference problem of the Manning\\'s n coefficient in the context of storm surge based on the coastal ocean ADCIRC model. In the first part of the thesis, we apply an ensemble-based Kalman filter, the singular evolutive interpolated Kalman (SEIK) filter to estimate both a constant Manning\\'s n coefficient and a 2-D parameterized Manning\\'s coefficient on one ideal and one of more realistic domain using observation system simulation experiments (OSSEs). We study the sensitivity of the system to the ensemble size. we also access the benefits from using an in ation factor on the filter performance. To study the limitation of the Guassian restricted assumption on the SEIK lter, 5 we also implemented in the second part of this thesis a Markov Chain Monte Carlo (MCMC) method based on a Generalized Polynomial chaos (gPc) approach for the estimation of the 1-D and 2-D Mannning\\'s n coe cient. The gPc is used to build a surrogate model that imitate the ADCIRC model in order to make the computational cost of implementing the MCMC with the ADCIRC model reasonable. We evaluate the performance of the MCMC-gPc approach and study its robustness to di erent OSSEs scenario. we also compare its estimates with those resulting from SEIK in term of parameter estimates and full distributions. we present a full analysis of the solution of these two methods, of the
An algorithmic approach to solving polynomial equations associated with quantum circuits
International Nuclear Information System (INIS)
Gerdt, V.P.; Zinin, M.V.
2009-01-01
In this paper we present two algorithms for reducing systems of multivariate polynomial equations over the finite field F 2 to the canonical triangular form called lexicographical Groebner basis. This triangular form is the most appropriate for finding solutions of the system. On the other hand, the system of polynomials over F 2 whose variables also take values in F 2 (Boolean polynomials) completely describes the unitary matrix generated by a quantum circuit. In particular, the matrix itself can be computed by counting the number of solutions (roots) of the associated polynomial system. Thereby, efficient construction of the lexicographical Groebner bases over F 2 associated with quantum circuits gives a method for computing their circuit matrices that is alternative to the direct numerical method based on linear algebra. We compare our implementation of both algorithms with some other software packages available for computing Groebner bases over F 2
Recurrence approach and higher order polynomial algebras for superintegrable monopole systems
Hoque, Md Fazlul; Marquette, Ian; Zhang, Yao-Zhong
2018-05-01
We revisit the MIC-harmonic oscillator in flat space with monopole interaction and derive the polynomial algebra satisfied by the integrals of motion and its energy spectrum using the ad hoc recurrence approach. We introduce a superintegrable monopole system in a generalized Taub-Newman-Unti-Tamburino (NUT) space. The Schrödinger equation of this model is solved in spherical coordinates in the framework of Stäckel transformation. It is shown that wave functions of the quantum system can be expressed in terms of the product of Laguerre and Jacobi polynomials. We construct ladder and shift operators based on the corresponding wave functions and obtain the recurrence formulas. By applying these recurrence relations, we construct higher order algebraically independent integrals of motion. We show that the integrals form a polynomial algebra. We construct the structure functions of the polynomial algebra and obtain the degenerate energy spectra of the model.
Canonical basis for type A4 (II) - Polynomial elements in one variable
International Nuclear Information System (INIS)
Hu Yuwang; Ye Jiachen
2003-12-01
All the 62 monomial elements in the canonical basis B of the quantized enveloping algebra for type A 4 have been determined. According to Lusztig's idea, the elements in the canonical basis B consist of monomials and linear combinations of monomials (for convenience, we call them polynomials). In this note, we compute all the 144 polynomial elements in one variable in the canonical basis B of the quantized enveloping algebra for type A 4 based on our joint note. We conjecture that there are other polynomial elements in two or three variables in the canonical basis B, which include independent variables and dependent variables. Moreover, it is conjectured that there are no polynomial elements in the canonical basis B with four or more variables. (author)
Discrete-Time Filter Synthesis using Product of Gegenbauer Polynomials
N. Stojanovic; N. Stamenkovic; I. Krstic
2016-01-01
A new approximation to design continuoustime and discrete-time low-pass filters, presented in this paper, based on the product of Gegenbauer polynomials, provides the ability of more flexible adjustment of passband and stopband responses. The design is achieved taking into account a prescribed specification, leading to a better trade-off among the magnitude and group delay responses. Many well-known continuous-time and discrete-time transitional filter based on the classical polynomial approx...
Bounds and asymptotics for orthogonal polynomials for varying weights
Levin, Eli
2018-01-01
This book establishes bounds and asymptotics under almost minimal conditions on the varying weights, and applies them to universality limits and entropy integrals. Orthogonal polynomials associated with varying weights play a key role in analyzing random matrices and other topics. This book will be of use to a wide community of mathematicians, physicists, and statisticians dealing with techniques of potential theory, orthogonal polynomials, approximation theory, as well as random matrices. .
On Linear Combinations of Two Orthogonal Polynomial Sequences on the Unit Circle
Directory of Open Access Journals (Sweden)
Suárez C
2010-01-01
Full Text Available Let be a monic orthogonal polynomial sequence on the unit circle. We define recursively a new sequence of polynomials by the following linear combination: , , . In this paper, we give necessary and sufficient conditions in order to make be an orthogonal polynomial sequence too. Moreover, we obtain an explicit representation for the Verblunsky coefficients and in terms of and . Finally, we show the relation between their corresponding Carathéodory functions and their associated linear functionals.
On the existence of polynomial Lyapunov functions for rationally stable vector fields
DEFF Research Database (Denmark)
Leth, Tobias; Wisniewski, Rafal; Sloth, Christoffer
2018-01-01
This paper proves the existence of polynomial Lyapunov functions for rationally stable vector fields. For practical purposes the existence of polynomial Lyapunov functions plays a significant role since polynomial Lyapunov functions can be found algorithmically. The paper extents an existing result...... on exponentially stable vector fields to the case of rational stability. For asymptotically stable vector fields a known counter example is investigated to exhibit the mechanisms responsible for the inability to extend the result further....
On Modular Counting with Polynomials
DEFF Research Database (Denmark)
Hansen, Kristoffer Arnsfelt
2006-01-01
For any integers m and l, where m has r sufficiently large (depending on l) factors, that are powers of r distinct primes, we give a construction of a (symmetric) polynomial over Z_m of degree O(\\sqrt n) that is a generalized representation (commonly also called weak representation) of the MODl f...
Corneal thickness: measurement and implications.
Ehlers, Niels; Hjortdal, Jesper
2004-03-01
The thickness of the cornea was reported in more than 100-year-old textbooks on physiological optics (Helmholtz, Gullstrand). Physiological interest was revived in the 1950s by David Maurice, and over the next 50 years, this 'simple' biological parameter has been studied extensively. Several techniques for its measurement have been described and physiological and clinical significance have been studied. In this review, the different methods and techniques of measurement are briefly presented (optical, ultrasound). While the corneal thickness of many animals are the same over a considerable part of the surface, in the human cornea anterior and posterior curvature are not concentric giving rise to a problem of definition. Based on this the precision and accuracy of determining the central corneal thickness are discussed. Changes in corneal thickness reflects changes in function of the boundary layers, in particular the endothelial barrier. The absolute value of thickness is of importance for the estimation of IOP but also in diagnosis of corneal and systemic disorders. Finally it is discussed to what extent the thickness is a biometric parameter of significance, e.g. in the progression of myopia or in the development of retinal detachment.
Directory of Open Access Journals (Sweden)
Chi Yaodan
2017-08-01
Full Text Available Crosstalk in wiring harness has been studied extensively for its importance in the naval ships electromagnetic compatibility field. An effective and high-efficiency method is proposed in this paper for analyzing Statistical Characteristics of crosstalk in wiring harness with random variation of position based on Polynomial Chaos Expansion (PCE. A typical 14-cable wiring harness was simulated as the object of research. Distance among interfering cable, affected cable and GND is synthesized and analyzed in both frequency domain and time domain. The model of naval ships wiring harness distribution parameter was established by utilizing Legendre orthogonal polynomials as basis functions along with prediction model of statistical characters. Detailed mean value, mean square error, probability density function and reasonable varying range of crosstalk in naval ships wiring harness are described in both time domain and frequency domain. Numerical experiment proves that the method proposed in this paper, not only has good consistency with the MC method can be applied in the naval ships EMC research field to provide theoretical support for guaranteeing safety, but also has better time-efficiency than the MC method. Therefore, the Polynomial Chaos Expansion method.
Rangaswamy, T.; Vidhyashankar, S.; Madhusudan, M.; Bharath Shekar, H. R.
2015-04-01
The current trends of engineering follow the basic rule of innovation in mechanical engineering aspects. For the engineers to be efficient, problem solving aspects need to be viewed in a multidimensional perspective. One such methodology implemented is the fusion of technologies from other disciplines in order to solve the problems. This paper mainly deals with the application of Neural Networks in order to analyze the performance parameters of an XD3P Peugeot engine (used in Ministry of Defence). The basic propaganda of the work is divided into two main working stages. In the former stage, experimentation of an IC engine is carried out in order to obtain the primary data. In the latter stage the primary database formed is used to design and implement a predictive neural network in order to analyze the output parameters variation with respect to each other. A mathematical governing equation for the neural network is obtained. The obtained polynomial equation describes the characteristic behavior of the built neural network system. Finally, a comparative study of the results is carried out.
Bernoulli numbers and polynomials from a more general point of view
Energy Technology Data Exchange (ETDEWEB)
Dattoli, G. [ENEA, Centro Ricerche Frascati, Frascati, RM(Italy). Div. Fisica Applicata; Cesarano, C. [Ulm Univ., Ulm (Germany). Dept. of Mathematics; Lonzellutta, S. [ENEA, Centro Ricerche E. Clementel, Bologna (Italy). Div. Fisica Applicata
2000-07-01
In this work it is applied the method of generating function, to introduce new forms of Bernoulli numbers and polynomials, which are exploited to derive further classes of partial sums involving generalized many index many variable polynomials. Analogous considerations are developed for the Euler numbers and polynomials. [Italian] Si applica il metodo della funzione generatrice per introdurre nuove forme di numeri e polinomi di Bernoulli che vengono utilizzati per sviluppare e per calcolare somme parziali che coinvolgono polinomi a piu' indici ed a piu' variabili. Si sviluppano considerazioni analoghe per i polinomi ed i numeri di Eulero.
Quantum Hurwitz numbers and Macdonald polynomials
Harnad, J.
2016-11-01
Parametric families in the center Z(C[Sn]) of the group algebra of the symmetric group are obtained by identifying the indeterminates in the generating function for Macdonald polynomials as commuting Jucys-Murphy elements. Their eigenvalues provide coefficients in the double Schur function expansion of 2D Toda τ-functions of hypergeometric type. Expressing these in the basis of products of power sum symmetric functions, the coefficients may be interpreted geometrically as parametric families of quantum Hurwitz numbers, enumerating weighted branched coverings of the Riemann sphere. Combinatorially, they give quantum weighted sums over paths in the Cayley graph of Sn generated by transpositions. Dual pairs of bases for the algebra of symmetric functions with respect to the scalar product in which the Macdonald polynomials are orthogonal provide both the geometrical and combinatorial significance of these quantum weighted enumerative invariants.
Välimäki, Vesa; Pekonen, Jussi; Nam, Juhan
2012-01-01
Digital subtractive synthesis is a popular music synthesis method, which requires oscillators that are aliasing-free in a perceptual sense. It is a research challenge to find computationally efficient waveform generation algorithms that produce similar-sounding signals to analog music synthesizers but which are free from audible aliasing. A technique for approximately bandlimited waveform generation is considered that is based on a polynomial correction function, which is defined as the difference of a non-bandlimited step function and a polynomial approximation of the ideal bandlimited step function. It is shown that the ideal bandlimited step function is equivalent to the sine integral, and that integrated polynomial interpolation methods can successfully approximate it. Integrated Lagrange interpolation and B-spline basis functions are considered for polynomial approximation. The polynomial correction function can be added onto samples around each discontinuity in a non-bandlimited waveform to suppress aliasing. Comparison against previously known methods shows that the proposed technique yields the best tradeoff between computational cost and sound quality. The superior method amongst those considered in this study is the integrated third-order B-spline correction function, which offers perceptually aliasing-free sawtooth emulation up to the fundamental frequency of 7.8 kHz at the sample rate of 44.1 kHz. © 2012 Acoustical Society of America.
Tensor calculus in polar coordinates using Jacobi polynomials
Vasil, Geoffrey M.; Burns, Keaton J.; Lecoanet, Daniel; Olver, Sheehan; Brown, Benjamin P.; Oishi, Jeffrey S.
2016-11-01
Spectral methods are an efficient way to solve partial differential equations on domains possessing certain symmetries. The utility of a method depends strongly on the choice of spectral basis. In this paper we describe a set of bases built out of Jacobi polynomials, and associated operators for solving scalar, vector, and tensor partial differential equations in polar coordinates on a unit disk. By construction, the bases satisfy regularity conditions at r = 0 for any tensorial field. The coordinate singularity in a disk is a prototypical case for many coordinate singularities. The work presented here extends to other geometries. The operators represent covariant derivatives, multiplication by azimuthally symmetric functions, and the tensorial relationship between fields. These arise naturally from relations between classical orthogonal polynomials, and form a Heisenberg algebra. Other past work uses more specific polynomial bases for solving equations in polar coordinates. The main innovation in this paper is to use a larger set of possible bases to achieve maximum bandedness of linear operations. We provide a series of applications of the methods, illustrating their ease-of-use and accuracy.
Real-root property of the spectral polynomial of the Treibich-Verdier potential and related problems
Chen, Zhijie; Kuo, Ting-Jung; Lin, Chang-Shou; Takemura, Kouichi
2018-04-01
We study the spectral polynomial of the Treibich-Verdier potential. Such spectral polynomial, which is a generalization of the classical Lamé polynomial, plays fundamental roles in both the finite-gap theory and the ODE theory of Heun's equation. In this paper, we prove that all the roots of such spectral polynomial are real and distinct under some assumptions. The proof uses the classical concept of Sturm sequence and isomonodromic theories. We also prove an analogous result for a polynomial associated with a generalized Lamé equation, where we apply a new approach based on the viewpoint of the monodromy data.
Deposition of SrTiO3 films by electrophoresis with thickness and particle size control
International Nuclear Information System (INIS)
Junior, W.D.M.; Pena, A.F.V.; Souza, A.E.; Santos, G.T.A.; Teixeira, S.R.; Senos, A.M.R.; Longo, E.
2012-01-01
The SrTiO3 (ST) is a material that exhibits semiconducting characteristics and interesting electrical properties. In room temperature has a structure of high cubic symmetry. The size of the crystallites of this material directly influences this symmetry, changing its network parameters. ST nanoparticles are obtained by hydrothermal method assisted by microwave (MAH). ST films are prepared by electrophoretic deposition (EPD). Approximately 1 g of the powder is dissolved in 100 ml of acetone and 1.5 ml of triethanolamine. The stainless steel substrates are arranged horizontally in the solution. The depositions are performed for 1-10 min and subjected to a potential difference of 20-100 V. The films were characterized by x-ray diffraction (XRD) and atomic force microscopy (AFM). The characterizations show that it is possible to control both the thickness and size of the crystallites of the film depending on the deposition parameters adopted. (author)
On Sequences of Numbers and Polynomials Defined by Linear Recurrence Relations of Order 2
Directory of Open Access Journals (Sweden)
Tian-Xiao He
2009-01-01
Full Text Available Here we present a new method to construct the explicit formula of a sequence of numbers and polynomials generated by a linear recurrence relation of order 2. The applications of the method to the Fibonacci and Lucas numbers, Chebyshev polynomials, the generalized Gegenbauer-Humbert polynomials are also discussed. The derived idea provides a general method to construct identities of number or polynomial sequences defined by linear recurrence relations. The applications using the method to solve some algebraic and ordinary differential equations are presented.
Numerical Solutions for Convection-Diffusion Equation through Non-Polynomial Spline
Directory of Open Access Journals (Sweden)
Ravi Kanth A.S.V.
2016-01-01
Full Text Available In this paper, numerical solutions for convection-diffusion equation via non-polynomial splines are studied. We purpose an implicit method based on non-polynomial spline functions for solving the convection-diffusion equation. The method is proven to be unconditionally stable by using Von Neumann technique. Numerical results are illustrated to demonstrate the efficiency and stability of the purposed method.
Invariant hyperplanes and Darboux integrability of polynomial vector fields
International Nuclear Information System (INIS)
Zhang Xiang
2002-01-01
This paper is composed of two parts. In the first part, we provide an upper bound for the number of invariant hyperplanes of the polynomial vector fields in n variables. This result generalizes those given in Artes et al (1998 Pac. J. Math. 184 207-30) and Llibre and Rodriguez (2000 Bull. Sci. Math. 124 599-619). The second part gives an extension of the Darboux theory of integrability to polynomial vector fields on algebraic varieties
A Formally Verified Conflict Detection Algorithm for Polynomial Trajectories
Narkawicz, Anthony; Munoz, Cesar
2015-01-01
In air traffic management, conflict detection algorithms are used to determine whether or not aircraft are predicted to lose horizontal and vertical separation minima within a time interval assuming a trajectory model. In the case of linear trajectories, conflict detection algorithms have been proposed that are both sound, i.e., they detect all conflicts, and complete, i.e., they do not present false alarms. In general, for arbitrary nonlinear trajectory models, it is possible to define detection algorithms that are either sound or complete, but not both. This paper considers the case of nonlinear aircraft trajectory models based on polynomial functions. In particular, it proposes a conflict detection algorithm that precisely determines whether, given a lookahead time, two aircraft flying polynomial trajectories are in conflict. That is, it has been formally verified that, assuming that the aircraft trajectories are modeled as polynomial functions, the proposed algorithm is both sound and complete.
On selfadjoint functors satisfying polynomial relations
DEFF Research Database (Denmark)
Agerholm, Troels; Mazorchuk, Volodomyr
2011-01-01
We study selfadjoint functors acting on categories of finite dimen- sional modules over finite dimensional algebras with an emphasis on functors satisfying some polynomial relations. Selfadjoint func- tors satisfying several easy relations, in particular, idempotents and square roots of a sum...
SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos
Energy Technology Data Exchange (ETDEWEB)
Ahlfeld, R., E-mail: r.ahlfeld14@imperial.ac.uk; Belkouchi, B.; Montomoli, F.
2016-09-01
A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5
SAMBA: Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos
International Nuclear Information System (INIS)
Ahlfeld, R.; Belkouchi, B.; Montomoli, F.
2016-01-01
A new arbitrary Polynomial Chaos (aPC) method is presented for moderately high-dimensional problems characterised by limited input data availability. The proposed methodology improves the algorithm of aPC and extends the method, that was previously only introduced as tensor product expansion, to moderately high-dimensional stochastic problems. The fundamental idea of aPC is to use the statistical moments of the input random variables to develop the polynomial chaos expansion. This approach provides the possibility to propagate continuous or discrete probability density functions and also histograms (data sets) as long as their moments exist, are finite and the determinant of the moment matrix is strictly positive. For cases with limited data availability, this approach avoids bias and fitting errors caused by wrong assumptions. In this work, an alternative way to calculate the aPC is suggested, which provides the optimal polynomials, Gaussian quadrature collocation points and weights from the moments using only a handful of matrix operations on the Hankel matrix of moments. It can therefore be implemented without requiring prior knowledge about statistical data analysis or a detailed understanding of the mathematics of polynomial chaos expansions. The extension to more input variables suggested in this work, is an anisotropic and adaptive version of Smolyak's algorithm that is solely based on the moments of the input probability distributions. It is referred to as SAMBA (PC), which is short for Sparse Approximation of Moment-Based Arbitrary Polynomial Chaos. It is illustrated that for moderately high-dimensional problems (up to 20 different input variables or histograms) SAMBA can significantly simplify the calculation of sparse Gaussian quadrature rules. SAMBA's efficiency for multivariate functions with regard to data availability is further demonstrated by analysing higher order convergence and accuracy for a set of nonlinear test functions with 2, 5 and 10
Bayer Demosaicking with Polynomial Interpolation.
Wu, Jiaji; Anisetti, Marco; Wu, Wei; Damiani, Ernesto; Jeon, Gwanggil
2016-08-30
Demosaicking is a digital image process to reconstruct full color digital images from incomplete color samples from an image sensor. It is an unavoidable process for many devices incorporating camera sensor (e.g. mobile phones, tablet, etc.). In this paper, we introduce a new demosaicking algorithm based on polynomial interpolation-based demosaicking (PID). Our method makes three contributions: calculation of error predictors, edge classification based on color differences, and a refinement stage using a weighted sum strategy. Our new predictors are generated on the basis of on the polynomial interpolation, and can be used as a sound alternative to other predictors obtained by bilinear or Laplacian interpolation. In this paper we show how our predictors can be combined according to the proposed edge classifier. After populating three color channels, a refinement stage is applied to enhance the image quality and reduce demosaicking artifacts. Our experimental results show that the proposed method substantially improves over existing demosaicking methods in terms of objective performance (CPSNR, S-CIELAB E, and FSIM), and visual performance.
Localizing gravity on exotic thick 3-branes
International Nuclear Information System (INIS)
Castillo-Felisola, Oscar; Melfo, Alejandra; Pantoja, Nelson; Ramirez, Alba
2004-01-01
We consider localization of gravity on thick branes with a nontrivial structure. Double walls that generalize the thick Randall-Sundrum solution, and asymmetric walls that arise from a Z 2 symmetric scalar potential, are considered. We present a new asymmetric solution: a thick brane interpolating between two AdS 5 spacetimes with different cosmological constants, which can be derived from a 'fake supergravity' superpotential, and show that it is possible to confine gravity on such branes
Polynomials in algebraic analysis
Multarzyński, Piotr
2012-01-01
The concept of polynomials in the sense of algebraic analysis, for a single right invertible linear operator, was introduced and studied originally by D. Przeworska-Rolewicz \\cite{DPR}. One of the elegant results corresponding with that notion is a purely algebraic version of the Taylor formula, being a generalization of its usual counterpart, well known for functions of one variable. In quantum calculus there are some specific discrete derivations analyzed, which are right invertible linear ...
Polynomial hybrid Monte Carlo algorithm for lattice QCD with an odd number of flavors
International Nuclear Information System (INIS)
Aoki, S.; Burkhalter, R.; Ishikawa, K-I.; Tominaga, S.; Fukugita, M.; Hashimoto, S.; Kaneko, T.; Kuramashi, Y.; Okawa, M.; Tsutsui, N.; Yamada, N.; Ishizuka, N.; Iwasaki, Y.; Kanaya, K.; Ukawa, A.; Yoshie, T.; Onogi, T.
2002-01-01
We present a polynomial hybrid Monte Carlo (PHMC) algorithm for lattice QCD with odd numbers of flavors of O(a)-improved Wilson quark action. The algorithm makes use of the non-Hermitian Chebyshev polynomial to approximate the inverse square root of the fermion matrix required for an odd number of flavors. The systematic error from the polynomial approximation is removed by a noisy Metropolis test for which a new method is developed. Investigating the property of our PHMC algorithm in the N f =2 QCD case, we find that it is as efficient as the conventional HMC algorithm for a moderately large lattice size (16 3 x48) with intermediate quark masses (m PS /m V ∼0.7-0.8). We test our odd-flavor algorithm through extensive simulations of two-flavor QCD treated as an N f =1+1 system, and comparing the results with those of the established algorithms for N f =2 QCD. These tests establish that our PHMC algorithm works on a moderately large lattice size with intermediate quark masses (16 3 x48,m PS /m V ∼0.7-0.8). Finally we experiment with the (2+1)-flavor QCD simulation on small lattices (4 3 x8 and 8 3 x16), and confirm the agreement of our results with those obtained with the R algorithm and extrapolated to a zero molecular dynamics step size
High-resolution MRI of the labyrinth. Optimization of scan parameters with 3D-FSE
International Nuclear Information System (INIS)
Sakata, Motomichi; Harada, Kuniaki; Shirase, Ryuji; Kumagai, Akiko; Ogasawara, Masashi
2005-01-01
The aim of our study was to optimize the parameters of high-resolution MRI of the labyrinth with a 3D fast spin-echo (3D-FSE) sequence. We investigated repetition time (TR), echo time (TE), Matrix, field of view (FOV), and coil selection in terms of CNR (contrast-to-noise ratio) and SNR (signal-to-noise ratio) by comparing axial images and/or three-dimensional images. The optimal 3D-FSE sequence parameters were as follows: 1.5 Tesla MR unit (Signa LX, GE Medical Systems), 3D-FSE sequence, dual 3-inch surface coil, acquisition time=12.08 min, TR=5000 msec, TE=300 msec, 3 number of excitations (NEX), FOV=12 cm, matrix=256 x 256, slice thickness=0.5 mm/0.0 sp, echo train=64, bandwidth=±31.5 kHz. High-resolution MRI of the labyrinth using the optimized 3D-FSE sequence parameters permits visualization of important anatomic details (such as scala tympani and scala vestibuli), making it possible to determine inner ear anomalies and the patency of cochlear turns. To obtain excellent heavily T2-weighted axial and three-dimensional images in the labyrinth, high CNR, SNR, and spatial resolution are significant factors at the present time. Furthermore, it is important not only to optimize the scan parameters of 3D-FSE but also to select an appropriate coil for high-resolution MRI of the labyrinth. (author)
Optimum target thickness for polarimeters
International Nuclear Information System (INIS)
Sitnik, I.M.
2003-01-01
Polarimeters with thick targets are a tool to measure the proton polarization. But the question about the optimum target thickness is still the subject of discussion. An attempt to calculate the most common parameters concerning this problem, in a few GeV region, is made
A new ball launching system with controlled flight parameters for catching experiments.
d'Avella, A; Cesqui, B; Portone, A; Lacquaniti, F
2011-03-30
Systematic investigations of sensorimotor control of interceptive actions in naturalistic conditions, such as catching or hitting a ball moving in three-dimensional space, requires precise control of the projectile flight parameters and of the associated visual stimuli. Such control is challenging when air drag cannot be neglected because the mapping of launch parameters into flight parameters cannot be computed analytically. We designed, calibrated, and experimentally validated an actuated launching apparatus that can control the average spatial position and flight duration of a ball at a given distance from a fixed launch location. The apparatus was constructed by mounting a ball launching machine with adjustable delivery speed on an actuated structure capable of changing the spatial orientation of the launch axis while projecting balls through a hole in a screen hiding the apparatus. The calibration procedure relied on tracking the balls with a motion capture system and on approximating the mapping of launch parameters into flight parameters by means of polynomials functions. Polynomials were also used to estimate the variability of the flight parameters. The coefficients of these polynomials were obtained using the launch and flight parameters of 660 launches with 65 different initial conditions. The relative accuracy and precision of the apparatus were larger than 98% for flight times and larger than 96% for ball heights at a distance of 6m from the screen. Such novel apparatus, by reliably and automatically controlling desired ball flight characteristics without neglecting air drag, allows for a systematic investigation of naturalistic interceptive tasks. Copyright © 2011 Elsevier B.V. All rights reserved.
3D electroplated inductors with thickness variation for improved broadband performance
Farm-Guoo Tseng, Victor; Bedair, Sarah S.; Lazarus, Nathan
2017-01-01
The performance of an RF spiral inductor is based on the balance between ohmic losses in the outer turns and eddy current losses dominant in the inner turns where the magnetic field is the strongest. In this work, air-core spiral inductors with winding trace thicknesses decreasing towards the center are demonstrated, achieving quality factor improvement over a wide frequency range compared to uniform thickness inductors. A custom 3D copper electroplating process was used to produce spiral inductors with varying winding thicknesses in a single plating step, with patterned gaps in a seed layer used to create delays in the vertical plating. The fabricated center-lowered coil inductors were 80 nH within a one square millimeter area with thickness varying from 60 µm to 10 µm from outer to inner winding. Within the 16 MHz-160 MHz range, the center-lowered inductors were shown to have a maximum to minimum quality factor improvement of 90%-10% when compared to uniform thickness inductors with thicknesses ranging from 60 µm to 10 µm. Compared to the 20 µm uniform thickness inductor which has the optimal performance among all uniform thickness inductors in this frequency range, the center-lowered inductors were shown to achieve a maximum quality factor improvement of 20% at the edge frequencies of 16 MHz and 160 MHz, and a minimum quality factor improvement of 10% near the geometric mean center frequency of 46 MHz.
International Nuclear Information System (INIS)
van Diejen, J.F.
1997-01-01
Two families (type A and type B) of confluent hypergeometric polynomials in several variables are studied. We describe the orthogonality properties, differential equations, and Pieri-type recurrence formulas for these families. In the one-variable case, the polynomials in question reduce to the Hermite polynomials (type A) and the Laguerre polynomials (type B), respectively. The multivariable confluent hypergeometric families considered here may be used to diagonalize the rational quantum Calogero models with harmonic confinement (for the classical root systems) and are closely connected to the (symmetric) generalized spherical harmonics investigated by Dunkl. (orig.)
Application of Chybeshev Polynomials in Factorizations of Balancing and Lucas-Balancing Numbers
Directory of Open Access Journals (Sweden)
Prasanta Kumar Ray
2012-01-01
Full Text Available In this paper, with the help of orthogonal polynomial especially Chybeshev polynomials of first and second kind, number theory and linear algebra intertwined to yield factorization of the balancing and Lucas-balancing numbers.
International Nuclear Information System (INIS)
Deman, G.; Konakli, K.; Sudret, B.; Kerrou, J.; Perrochet, P.; Benabderrahmane, H.
2016-01-01
The study makes use of polynomial chaos expansions to compute Sobol' indices within the frame of a global sensitivity analysis of hydro-dispersive parameters in a simplified vertical cross-section of a segment of the subsurface of the Paris Basin. Applying conservative ranges, the uncertainty in 78 input variables is propagated upon the mean lifetime expectancy of water molecules departing from a specific location within a highly confining layer situated in the middle of the model domain. Lifetime expectancy is a hydrogeological performance measure pertinent to safety analysis with respect to subsurface contaminants, such as radionuclides. The sensitivity analysis indicates that the variability in the mean lifetime expectancy can be sufficiently explained by the uncertainty in the petrofacies, i.e. the sets of porosity and hydraulic conductivity, of only a few layers of the model. The obtained results provide guidance regarding the uncertainty modeling in future investigations employing detailed numerical models of the subsurface of the Paris Basin. Moreover, the study demonstrates the high efficiency of sparse polynomial chaos expansions in computing Sobol' indices for high-dimensional models. - Highlights: • Global sensitivity analysis of a 2D 15-layer groundwater flow model is conducted. • A high-dimensional random input comprising 78 parameters is considered. • The variability in the mean lifetime expectancy for the central layer is examined. • Sparse polynomial chaos expansions are used to compute Sobol' sensitivity indices. • The petrofacies of a few layers can sufficiently explain the response variance.
STABILITY SYSTEMS VIA HURWITZ POLYNOMIALS
Directory of Open Access Journals (Sweden)
BALTAZAR AGUIRRE HERNÁNDEZ
2017-01-01
Full Text Available To analyze the stability of a linear system of differential equations ẋ = Ax we can study the location of the roots of the characteristic polynomial pA(t associated with the matrix A. We present various criteria - algebraic and geometric - that help us to determine where the roots are located without calculating them directly.
Space complexity in polynomial calculus
Czech Academy of Sciences Publication Activity Database
Filmus, Y.; Lauria, M.; Nordström, J.; Ron-Zewi, N.; Thapen, Neil
2015-01-01
Roč. 44, č. 4 (2015), s. 1119-1153 ISSN 0097-5397 R&D Projects: GA AV ČR IAA100190902; GA ČR GBP202/12/G061 Institutional support: RVO:67985840 Keywords : proof complexity * polynomial calculus * lower bounds Subject RIV: BA - General Mathematics Impact factor: 0.841, year: 2015 http://epubs.siam.org/doi/10.1137/120895950
Wu, Haokaifeng; Sudoh, Iori; Xu, Ruihan; Si, Wenshuo; Vaz, C. A. F.; Kim, Jun-young; Vallejo-Fernandez, Gonzalo; Hirohata, Atsufumi
2018-05-01
Polycrystalline Mn3Ga layers with thickness in the range from 6–20 nm were deposited at room temperature by a high target utilisation sputtering. To investigate the onset of exchange-bias, a ferromagnetic Co0.6Fe0.4 layer (3.3–9 nm thick) capped with 5 nm Ta, were subsequently deposited. X-ray diffraction measurements confirm the presence of Mn3Ga (0 0 0 2) and (0 0 0 4) peaks characteristic of the D019 antiferromagnetic structure. The 6 nm thick Mn3Ga film shows the largest exchange bias of 430 Oe at 120 K with a blocking temperature of 225 K. The blocking temperature is found to decrease with increasing Mn3Ga thickness. These results in combination with x-ray reflectivity measurements confirm that the quality of the Mn3Ga/Co0.6Fe0.4 interface controls the exchange bias, with the sharp interface with the 6-nm-thick Mn3Ga inducing the largest exchange bias. The magneto-crystalline anisotropy for 6 nm thick Mn3Ga thin film sample is calculated to be . Such a binary antiferromagnetic Heusler alloy is compatible with the current memory fabrication process and hence has a great potential for antiferromagnetic spintronics.
Lusine Poghosyan
2014-01-01
The paper considers convergence acceleration of the quasi-periodic and the quasi-periodic-rational interpolations by application of polynomial corrections. We investigate convergence of the resultant quasi-periodic-polynomial and quasi-periodic-rational-polynomial interpolations and derive exact constants of the main terms of asymptotic errors in the regions away from the endpoints. Results of numerical experiments clarify behavior of the corresponding interpolations for moderate number of in...
Zernike polynomial based Rayleigh-Ritz model of a piezoelectric unimorph deformable mirror
CSIR Research Space (South Africa)
Long, CS
2012-04-01
Full Text Available , are routinely and conveniently described using Zernike polynomials. A Rayleigh-Ritz structural model, which uses Zernike polynomials directly to describe the displacements, is proposed in this paper. The proposed formulation produces a numerically inexpensive...
Thickness-dependent photovoltaic effects in miscut Nb-doped SrTiO3 single crystals
International Nuclear Information System (INIS)
Yue Zengji; Zhao Kun; Zhao Songqing; Lu Zhiqing; Li Xiaoming; Ni Hao; Wang Aijun
2010-01-01
The photovoltaic effects of Nb-doped SrTiO 3 single crystals with different thicknesses were investigated under the illumination of ultraviolet pulsed lasers. The peak photovoltage increased and then decreased quickly with the decrease in crystal thickness, and a maximum photovoltage occurred for the 180 μm-thick crystal. The photovoltaic response time decreased monotonically with decreasing crystal thickness. The present results suggested the promising potential of reducing crystal thickness in high sensitivity detectors with fast response.
Polynomial structures in one-loop amplitudes
International Nuclear Information System (INIS)
Britto, Ruth; Feng Bo; Yang Gang
2008-01-01
A general one-loop scattering amplitude may be expanded in terms of master integrals. The coefficients of the master integrals can be obtained from tree-level input in a two-step process. First, use known formulas to write the coefficients of (4-2ε)-dimensional master integrals; these formulas depend on an additional variable, u, which encodes the dimensional shift. Second, convert the u-dependent coefficients of (4-2ε)-dimensional master integrals to explicit coefficients of dimensionally shifted master integrals. This procedure requires the initial formulas for coefficients to have polynomial dependence on u. Here, we give a proof of this property in the case of massless propagators. The proof is constructive. Thus, as a byproduct, we produce different algebraic expressions for the scalar integral coefficients, in which the polynomial property is apparent. In these formulas, the box and pentagon contributions are separated explicitly.
Optimization of polynomials in non-commuting variables
Burgdorf, Sabine; Povh, Janez
2016-01-01
This book presents recent results on positivity and optimization of polynomials in non-commuting variables. Researchers in non-commutative algebraic geometry, control theory, system engineering, optimization, quantum physics and information science will find the unified notation and mixture of algebraic geometry and mathematical programming useful. Theoretical results are matched with algorithmic considerations; several examples and information on how to use NCSOStools open source package to obtain the results provided. Results are presented on detecting the eigenvalue and trace positivity of polynomials in non-commuting variables using Newton chip method and Newton cyclic chip method, relaxations for constrained and unconstrained optimization problems, semidefinite programming formulations of the relaxations and finite convergence of the hierarchies of these relaxations, and the practical efficiency of algorithms.
All-Pole Recursive Digital Filters Design Based on Ultraspherical Polynomials
Directory of Open Access Journals (Sweden)
N. Stojanovic
2014-09-01
Full Text Available A simple method for approximation of all-pole recursive digital filters, directly in digital domain, is described. Transfer function of these filters, referred to as Ultraspherical filters, is controlled by order of the Ultraspherical polynomial, nu. Parameter nu, restricted to be a nonnegative real number (nu ≥ 0, controls ripple peaks in the passband of the magnitude response and enables a trade-off between the passband loss and the group delay response of the resulting filter. Chebyshev filters of the first and of the second kind, and also Legendre and Butterworth filters are shown to be special cases of these allpole recursive digital filters. Closed form equations for the computation of the filter coefficients are provided. The design technique is illustrated with examples.
Impact of Different CT Slice Thickness on Clinical Target Volume for 3D Conformal Radiation Therapy
International Nuclear Information System (INIS)
Prabhakar, Ramachandran; Ganesh, Tharmar; Rath, Goura K.; Julka, Pramod K.; Sridhar, Pappiah S.; Joshi, Rakesh C.; Thulkar, Sanjay
2009-01-01
The purpose of this study was to present the variation of clinical target volume (CTV) with different computed tomography (CT) slice thicknesses and the impact of CT slice thickness on 3-dimensional (3D) conformal radiotherapy treatment planning. Fifty patients with brain tumors were selected and CT scans with 2.5-, 5-, and 10-mm slice thicknesses were performed with non-ionic contrast enhancement. The patients were selected with tumor volume ranging from 2.54 cc to 222 cc. Three-dimensional treatment planning was performed for all three CT datasets. The target coverage and the isocenter shift between the treatment plans for different slice thickness were correlated with the tumor volume. An important observation from our study revealed that for volume 25 cc, the target underdosage was less than 6.7% for 5-mm slice thickness and 8% for 10-mm slice thickness. For 3D conformal radiotherapy treatment planning (3DCRT), a CT slice thickness of 2.5 mm is optimum for tumor volume 25 cc
Generating the patterns of variation with GeoGebra: the case of polynomial approximations
Attorps, Iiris; Björk, Kjell; Radic, Mirko
2016-01-01
In this paper, we report a teaching experiment regarding the theory of polynomial approximations at the university mathematics teaching in Sweden. The experiment was designed by applying Variation theory and by using the free dynamic mathematics software GeoGebra. The aim of this study was to investigate if the technology-assisted teaching of Taylor polynomials compared with traditional way of work at the university level can support the teaching and learning of mathematical concepts and ideas. An engineering student group (n = 19) was taught Taylor polynomials with the assistance of GeoGebra while a control group (n = 18) was taught in a traditional way. The data were gathered by video recording of the lectures, by doing a post-test concerning Taylor polynomials in both groups and by giving one question regarding Taylor polynomials at the final exam for the course in Real Analysis in one variable. In the analysis of the lectures, we found Variation theory combined with GeoGebra to be a potentially powerful tool for revealing some critical aspects of Taylor Polynomials. Furthermore, the research results indicated that applying Variation theory, when planning the technology-assisted teaching, supported and enriched students' learning opportunities in the study group compared with the control group.