WorldWideScience

Sample records for thickness variations imaged

  1. 4D segmentation of brain MR images with constrained cortical thickness variation.

    Directory of Open Access Journals (Sweden)

    Li Wang

    Full Text Available Segmentation of brain MR images plays an important role in longitudinal investigation of developmental, aging, disease progression changes in the cerebral cortex. However, most existing brain segmentation methods consider multiple time-point images individually and thus cannot achieve longitudinal consistency. For example, cortical thickness measured from the segmented image will contain unnecessary temporal variations, which will affect the time related change pattern and eventually reduce the statistical power of analysis. In this paper, we propose a 4D segmentation framework for the adult brain MR images with the constraint of cortical thickness variations. Specifically, we utilize local intensity information to address the intensity inhomogeneity, spatial cortical thickness constraint to maintain the cortical thickness being within a reasonable range, and temporal cortical thickness variation constraint in neighboring time-points to suppress the artificial variations. The proposed method has been tested on BLSA dataset and ADNI dataset with promising results. Both qualitative and quantitative experimental results demonstrate the advantage of the proposed method, in comparison to other state-of-the-art 4D segmentation methods.

  2. SU-E-I-53: Variation in Measurements of Breast Skin Thickness Obtained Using Different Imaging Modalities

    International Nuclear Information System (INIS)

    Nguyen, U; Kumaraswamy, N; Markey, M

    2014-01-01

    Purpose: To investigate variation in measurements of breast skin thickness obtained using different imaging modalities, including mammography, computed tomography (CT), ultrasound, and magnetic resonance imaging (MRI). Methods: Breast skin thicknesses as measured by mammography, CT, ultrasound, and MRI were compared. Mammographic measurements of skin thickness were obtained from published studies that utilized standard positioning (upright) and compression. CT measurements of skin thickness were obtained from a published study of a prototype breast CT scanner in which the women were in the prone position and the breast was uncompressed. Dermatological ultrasound exams of the breast skin were conducted at our institution, with the subjects in the upright position and the breast uncompressed. Breast skin thickness was calculated from breast MRI exams at our institution, with the patient in the prone position and the breast uncompressed. Results: T tests for independent samples demonstrated significant differences in the mean breast skin thickness as measured by different imaging modalities. Repeated measures ANOVA revealed significant differences in breast skin thickness across different quadrants of the breast for some modalities. Conclusion: The measurement of breast skin thickness is significantly different across different imaging modalities. Differences in the amount of compression and differences in patient positioning are possible reasons why measurements of breast skin thickness vary by modality

  3. Thickness of patellofemoral articular cartilage as measured on MR imaging: sequence comparison of accuracy, reproducibility, and interobserver variation

    Energy Technology Data Exchange (ETDEWEB)

    Van Leersum, M.D. [Dept. of Radiology, Thomas Jefferson Univ. Hospital, Philadelphia, PA (United States); Schweitzer, M.E. [Dept. of Radiology, Thomas Jefferson Univ. Hospital, Philadelphia, PA (United States); Gannon, F. [Dept. of Pathology, Thomas Jefferson Univ. Hospital, Philadelphia, PA (United States); Vinitski, S. [Dept. of Radiology, Thomas Jefferson Univ. Hospital, Philadelphia, PA (United States); Finkel, G. [Dept. of Pathology, Thomas Jefferson Univ. Hospital, Philadelphia, PA (United States); Mitchell, D.G. [Dept. of Radiology, Thomas Jefferson Univ. Hospital, Philadelphia, PA (United States)

    1995-08-01

    This study was undertaken to assess the accuracy, precision, and reliability of magnetic resonance (MR) measurements of articular cartilage. Fifteen cadaveric patellas were imaged in the axial plane at 1.5 T. Gradient echo and fat-suppressed FSE, T2-weighted, proton density, and T1-weighted sequences were performed. We measured each 5-mm section separately at three standardized positions, giving a total of 900 measurements. These findings were correlated with independently performed measurements of the corresponding anatomic sections. A hundred random measurements were also evaluated for reproducibility and interobserver variation. Although all sequences were highly accurate, the T1-weighted images were the most accurate, with a mean difference of 0.25 mm and a correlation coefficient of 0.85. All sequences were also highly reproducible with little inter-observer variation. In an attempt to improve the accuracy of the MR measurements further, we retrospectively evaluated all measurements with discrepancies greater than 1 mm from the specimen. All these differences were attributable to focal defects causing exaggeration of the thickness on MR imaging. (orig.)

  4. Thickness of patellofemoral articular cartilage as measured on MR imaging: sequence comparison of accuracy, reproducibility, and interobserver variation

    International Nuclear Information System (INIS)

    Van Leersum, M.D.; Schweitzer, M.E.; Gannon, F.; Vinitski, S.; Finkel, G.; Mitchell, D.G.

    1995-01-01

    This study was undertaken to assess the accuracy, precision, and reliability of magnetic resonance (MR) measurements of articular cartilage. Fifteen cadaveric patellas were imaged in the axial plane at 1.5 T. Gradient echo and fat-suppressed FSE, T2-weighted, proton density, and T1-weighted sequences were performed. We measured each 5-mm section separately at three standardized positions, giving a total of 900 measurements. These findings were correlated with independently performed measurements of the corresponding anatomic sections. A hundred random measurements were also evaluated for reproducibility and interobserver variation. Although all sequences were highly accurate, the T1-weighted images were the most accurate, with a mean difference of 0.25 mm and a correlation coefficient of 0.85. All sequences were also highly reproducible with little inter-observer variation. In an attempt to improve the accuracy of the MR measurements further, we retrospectively evaluated all measurements with discrepancies greater than 1 mm from the specimen. All these differences were attributable to focal defects causing exaggeration of the thickness on MR imaging. (orig.)

  5. Terahertz Mapping of Microstructure and Thickness Variations

    Science.gov (United States)

    Roth, Donald J.; Seebo, Jeffrey P.; Winfree, William P.

    2010-01-01

    A noncontact method has been devised for mapping or imaging spatial variations in the thickness and microstructure of a layer of a dielectric material. The method involves (1) placement of the dielectric material on a metal substrate, (2) through-the-thickness pulse-echo measurements by use of electromagnetic waves in the terahertz frequency range with a raster scan in a plane parallel to the substrate surface that do not require coupling of any kind, and (3) appropriate processing of the digitized measurement data.

  6. Thermal behavior variations in coating thickness using pulse phase thermography

    Energy Technology Data Exchange (ETDEWEB)

    Ranjit, Shrestha; Chung, Yoonjae; Kim, Won Tae [Kongju National University, Cheonan (Korea, Republic of)

    2016-08-15

    This paper presents a study on the use of pulsed phase thermography in the measurement of thermal barrier coating thickness with a numerical simulation. A multilayer heat transfer model was used to analyze the surface temperature response acquired from one-sided pulsed thermal imaging. The test sample comprised four layers: the metal substrate, bond coat, thermally grown oxide and the top coat. The finite element software, ANSYS, was used to model and predict the temperature distribution in the test sample under an imposed heat flux on the exterior of the TBC. The phase image was computed with the use of the software MATLAB and Thermofit Pro using a Fourier transform. The relationship between the coating thickness and the corresponding phase angle was then established with the coating thickness being expressed as a function of the phase angle. The method is successfully applied to measure the coating thickness that varied from 0.25 mm to 1.5 mm.

  7. Anatomical Variation in the Wall Thickness of Wood Fibres of ...

    African Journals Online (AJOL)

    The wall thickness of wood fibres of rubber (Hevea brasiliensis) grown and tapped for latex in south eastern Nigeria were investigated to determine anatomical variation. The rubber trees which were overmature for tapping and keeping were sampled in hierarchical order of plantations, bud classes, trees, discs, cardinal ...

  8. CRUSTAL THICKNESS VARIATIONS AND SEISMICITY OF NORTHWESTERN SOUTH AMERICA

    Directory of Open Access Journals (Sweden)

    Woo Kim Jeong

    2007-06-01

    Full Text Available Any uncompensated mass of the northern Andes Mountains is presumably under pressure to adjust within the Earth to its ideal state of isostatic equilibrium. Isostasy is the ideal state that any
    uncompensated mass seeks to achieve in time. These pressures interact with the relative motions between adjacent plates that give rise to earthquakes along the plate boundaries. By combining the
    gravity MOHO estimates and crustal discontinuities with historical and instrumental seismological catalogs the correlation between isostatically disturbed terrains and seismicity has been established.
    The thinner and thicker crustal regions were mapped from the zero horizontal curvature of the crustal thickness estimates. These boundaries or edges of crustal thickness variations were compared to
    crustal discontinuities inferred from gravity and magnetic anomalies and the patterns of seismicity that have been catalogued for the last 363 years. The seismicity is very intense along the Nazca-North
    Andes, Caribbean-North American and North Andes-South American collision zones and associated with regional tectonic compressional stresses that have locally increased and/or diminished by
    compressional and tensional stress, respectively, due to crustal thickness variations. High seismicity is also associated with the Nazca-Cocos diverging plate boundary whereas low seismicity is associated with the Panama-Nazca Transform Fault and the South American Plate.

  9. Radiographic detection of 100 A thickness variations in 1-μm-thick coatings applied to submillimeter-diameter laser fusion targets

    International Nuclear Information System (INIS)

    Stupin, D.M.

    1986-01-01

    We have developed x-ray radiography to measure thickness variations of coatings on laser fusion targets. Our technique is based on measuring the variation in x-ray transmission through the targets. The simplest targets are hollow glass microshells or microballoons 100 to 500 μm in diameter, that have several layers of metals or plastics, 1 to 100 μm thick. Our goal is to examine these opaque coatings for thickness variations as small as 1% or 0.1%, depending on the type of defect. Using contact radiography we have obtained the desired sensitivity for concentric and elliptical defects of 1%. This percentage corresponds to thickness variations as small as 100 A in a 1-μm-thick coating. For warts and dimples, the desired sensitivity is a function of the area of the defect, and we are developing a system to detect 0.1% thickness variations that cover an area 10 μm by 10 μm. We must use computer analysis of contact radiographs to measure 1% thickness variations in either concentricity or ellipticity. Because this analysis takes so long on our minicomputer, we preselect the radiographs by looking for defects at the 10% level on a video image analysis system

  10. Reconstruction of Optical Thickness from Hoffman Modulation Contrast Images

    DEFF Research Database (Denmark)

    Olsen, Niels Holm; Sporring, Jon; Nielsen, Mads

    2003-01-01

    Hoffman microscopy imaging systems are part of numerous fertility clinics world-wide. We discuss the physics of the Hoffman imaging system from optical thickness to image intensity, implement a simple, yet fast, reconstruction algorithm using Fast Fourier Transformation and discuss the usability...... of the method on a number of cells from a human embryo. Novelty is identifying the non-linearity of a typical Hoffman imaging system, and the application of Fourier Transformation to reconstruct the optical thickness....

  11. Multispectral UV imaging for determination of the tablet coating thickness

    DEFF Research Database (Denmark)

    Novikova, Anna; Carstensen, Jens Michael; Zeitler, J. Axel

    2017-01-01

    The applicability of off-line multispectral ultraviolet (UV) imaging in combination with multivariate data analysis was investigated to determine the coating thickness and its distribution on the tablet surface during lab scale coating. The UV imaging results were compared with the weight gain...... measured for each individual tablet and the corresponding coating thickness and its distribution measured by terahertz pulsed imaging (TPI). Three different tablet formulations were investigated, two of which contained UV active tablet cores. Three coating formulations were applied: Aquacoat® ECD (a mainly...... translucent coating) and Eudragit® NE (a turbid coating containing solid particles). It was shown that UV imaging is a fast and non-destructive method to predict individual tablet weight gain as well as coating thickness. The coating thickness distribution profiles determined by UV imaging correlated...

  12. Variation in thickness of the large cryosections cut for whole-body autoradiography

    International Nuclear Information System (INIS)

    Ito, Tsunao; Brill, A.B.

    1991-01-01

    A method to assess variation in thickness of the large cryosections for whole-body autoradiography (WBARG) was described, and the degree of intraslice and interslice variations were determined for our cryomicrotome system (LKB PMV-2250). Intraslice variation in thickness of the 180 x 80 mm cryosection was 0.72-0.92 μm within the range of section thickness for WBARG (15-50 μm), and interslice variation was 0.89-1.21 μm. These potential variations in section thickness should be kept in mind whenever working with quantitative WBARG. (author)

  13. Through thickness property variations in a thick plate AA7050 friction stir welded joint

    International Nuclear Information System (INIS)

    Canaday, Clinton T.; Moore, Matthew A.; Tang, Wei; Reynolds, A.P.

    2013-01-01

    In this study, moderately thick (32 mm) AA7050 plates were joined by friction stir welding (FSW). Various methods were used to characterize the welded joints, including nugget grain size measurements at different locations through the thickness, micro-hardness indentation through nugget, thermo-mechanically affected zone (TMAZ), and heat affected zone (HAZ) at different cross section heights, and residual stress measurement using the cut compliance method with full thickness and partial thickness specimens. All testing results are consistent with the presence of a strong gradient in peak temperature through the plate thickness during FSW.

  14. Loess Thickness Variations Across the Loess Plateau of China

    Science.gov (United States)

    Zhu, Yuanjun; Jia, Xiaoxu; Shao, Mingan

    2018-01-01

    The soil thickness is very important for investigating and modeling soil-water processes, especially on the Loess Plateau of China with its deep loess deposit and limited water resources. A digital elevation map (DEM) of the Loess Plateau and neighborhood analysis in ArcGIS software were used to generate a map of loess thickness, which was then validated by 162 observations across the plateau. The generated loess thickness map has a high resolution of 100 m × 100 m. The map indicates that loess is thick in the central part of the plateau and becomes gradually shallower in the southeast and northwest directions. The areas near mountains and river basins have the shallowest loess deposit. The mean loess thickness is the deepest in the zones with 400-600-mm precipitation and decreases gradually as precipitation varies beyond this range. Our validation indicates that the map just slightly overestimates loess thickness and is reliable. The loess thickness is mostly between 0 and 350 m in the Loess Plateau region. The calculated mean loess thickness is 105.7 m, with the calibrated value being 92.2 m over the plateau exclusive of the mountain areas. Our findings provide very basic data of loess thickness and demonstrate great progress in mapping the loess thickness distribution for the plateau, which are valuable for a better study of soil-water processes and for more accurate estimations of soil water, carbon, and solute reservoirs in the Loess Plateau of China.

  15. The influence of structure depth on image blurring of micrometres-thick specimens in MeV transmission electron imaging.

    Science.gov (United States)

    Wang, Fang; Sun, Ying; Cao, Meng; Nishi, Ryuji

    2016-04-01

    This study investigates the influence of structure depth on image blurring of micrometres-thick films by experiment and simulation with a conventional transmission electron microscope (TEM). First, ultra-high-voltage electron microscope (ultra-HVEM) images of nanometer gold particles embedded in thick epoxy-resin films were acquired in the experiment and compared with simulated images. Then, variations of image blurring of gold particles at different depths were evaluated by calculating the particle diameter. The results showed that with a decrease in depth, image blurring increased. This depth-related property was more apparent for thicker specimens. Fortunately, larger particle depth involves less image blurring, even for a 10-μm-thick epoxy-resin film. The quality dependence on depth of a 3D reconstruction of particle structures in thick specimens was revealed by electron tomography. The evolution of image blurring with structure depth is determined mainly by multiple elastic scattering effects. Thick specimens of heavier materials produced more blurring due to a larger lateral spread of electrons after scattering from the structure. Nevertheless, increasing electron energy to 2MeV can reduce blurring and produce an acceptable image quality for thick specimens in the TEM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Multispectral UV Imaging for Determination of the Tablet Coating Thickness.

    Science.gov (United States)

    Novikova, Anna; Carstensen, Jens M; Zeitler, J Axel; Rades, Thomas; Leopold, Claudia S

    2017-06-01

    The applicability of off-line multispectral UV imaging in combination with multivariate data analysis was investigated to determine the coating thickness and its distribution on the tablet surface during lab-scale coating. The UV imaging results were compared with the weight gain measured for each individual tablet and the corresponding coating thickness and its distribution measured by terahertz pulsed imaging (TPI). Three different tablet formulations were investigated, 2 of which contained UV-active tablet cores. Three coating formulations were applied: Aquacoat® ECD (a mainly translucent coating) and Eudragit® NE (a turbid coating containing solid particles). It was shown that UV imaging is a fast and nondestructive method to predict individual tablet weight gain as well as coating thickness. The coating thickness distribution profiles determined by UV imaging correlated to the results of the TPI measurements. UV imaging appears to hold a significant potential as a process analytical technology tool for determination of the tablet coating thickness and its distribution resulting from its high measurement speed, high molar absorptivity, and a high scattering coefficient, in addition to relatively low costs. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Influence of slice thickness on the determination of left ventricular wall thickness and dimension by magnetic resonance imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, Shusaku; Fukui, Sugao; Atsumi, Chisato and others

    1989-02-01

    Wall thickness of the ventricular septum and left ventricle, and left ventricular cavity dimension were determined on magnetic resonance (MR) images with slices 5 mm and 10 mm in thickness. Subjects were 3 healthy volunteers and 7 patients with hypertension (4), hypertrophic cardiomyopathy (one) or valvular heart disease (2). In visualizing the cardiac structures such as left ventricular papillary muscle and right and left ventricles, 5 mm-thick images were better than 10 mm-thick images. Edges of ventricular septum and left ventricular wall were more clearly visualized on 5 mm-thick images than 10 mm-thick images. Two mm-thick MR images obtained from 2 patients yielded the most excellent visualization in end-systole, but failed to reveal cardiac structures in detail in end-diastole. Phantom studies revealed no significant differences in image quality of 10 mm and 5 mm in thickness in the axial view 80 degree to the long axis. In the axial view 45 degree to the long axis, 10 mm-thick images were inferior to 5 mm-thick images in detecting the edge of the septum and the left ventricular wall. These results indicate that the selection of slice thickness is one of the most important determinant factors in the measurement of left ventricular wall thickness and cavity dimension. (Namekawa, K).

  18. Influence of slice thickness on the determination of left ventricular wall thickness and dimension by magnetic resonance imaging

    International Nuclear Information System (INIS)

    Ohnishi, Shusaku; Fukui, Sugao; Atsumi, Chisato

    1989-01-01

    Wall thickness of the ventricular septum and left ventricle, and left ventricular cavity dimension were determined on magnetic resonance (MR) images with slices 5 mm and 10 mm in thickness. Subjects were 3 healthy volunteers and 7 patients with hypertension (4), hypertrophic cardiomyopathy (one) or valvular heart disease (2). In visualizing the cardiac structures such as left ventricular papillary muscle and right and left ventricles, 5 mm-thick images were better than 10 mm-thick images. Edges of ventricular septum and left ventricular wall were more clearly visualized on 5 mm-thick images than 10 mm-thick images. Two mm-thick MR images obtained from 2 patients yielded the most excellent visualization in end-systole, but failed to reveal cardiac structures in detail in end-diastole. Phantom studies revealed no significant differences in image quality of 10 mm and 5 mm in thickness in the axial view 80 degree to the long axis. In the axial view 45 degree to the long axis, 10 mm-thick images were inferior to 5 mm-thick images in detecting the edge of the septum and the left ventricular wall. These results indicate that the selection of slice thickness is one of the most important determinant factors in the measurement of left ventricular wall thickness and cavity dimension. (Namekawa, K)

  19. Imaging and thickness measurement of amorphous intergranular films using TEM

    International Nuclear Information System (INIS)

    MacLaren, I.

    2004-01-01

    Fresnel fringe analysis is shown to be unreliable for grain boundaries in yttrium-doped alumina: the determined thicknesses do not agree well with those measured from high resolution transmission electron microscopy (HRTEM), the asymmetry between under- and overfocus is very large, and Fresnel fringes are sometimes shown at boundaries which contain no amorphous film. An alternative approach to the analysis of HRTEM images of grain boundary films is demonstrated: Fourier filtering is used to remove the lattice fringes from the image thereby significantly enhancing the visibility of the intergranular films. The apparent film thickness shows a discrepancy between measurements from the original HRTEM image and the filtered image. It was shown that fringe delocalisation and diffuseness of the amorphous/crystalline interfaces will lead to a significant underestimate of the thickness in unprocessed HRTEM images. In contrast to this, the average thickness can be much more accurately measured from the Fourier-filtered image, provided the boundary is oriented accurately edge-on

  20. Automated computer analysis of x-ray radiographs greatly facilitates measurement of coating-thickness variations in laser-fusion targets

    International Nuclear Information System (INIS)

    Stupin, D.M.; Moore, K.R.; Thomas, G.D.; Whitman, R.L.

    1981-01-01

    An automated system was built to analyze x-ray radiographs of laser fusion targets which greatly facilitates the detection of coating thickness variations. Many laser fusion targets reqire opaque coatings 1 to 20 μm thick which have been deposited on small glass balloons 100 to 500 μm in diameter. These coatings must be uniformly thick to 1% for the targets to perform optimally. Our system is designed to detect variations as small as 100 A in 1-μm-thick coatings by converting the optical density variations of contact x-ray radiographs into coating thickness variations. Radiographic images are recorded in HRP emulsions and magnified by an optical microscope, imaged onto television camera, digitized and processed on a Data General S/230 computer with a code by Whitman. After an initial set-up by the operator, as many as 200 targets will be automatically characterized

  1. The influence of nitride thickness variations on the switching speed of MNOS memory transistors

    DEFF Research Database (Denmark)

    Bruun, Erik

    1978-01-01

    The influence of nitride thickness variations on the switching speed of MNOS memory transistors is examined. The switching time constant is calculated as a function of the nitride thickness using a model of modified Fowler-Nordheim injection. The calculated characteristics compare well with measu......The influence of nitride thickness variations on the switching speed of MNOS memory transistors is examined. The switching time constant is calculated as a function of the nitride thickness using a model of modified Fowler-Nordheim injection. The calculated characteristics compare well...

  2. Filter and slice thickness selection in SPECT image reconstruction

    International Nuclear Information System (INIS)

    Ivanovic, M.; Weber, D.A.; Wilson, G.A.; O'Mara, R.E.

    1985-01-01

    The choice of filter and slice thickness in SPECT image reconstruction as function of activity and linear and angular sampling were investigated in phantom and patient imaging studies. Reconstructed transverse and longitudinal spatial resolution of the system were measured using a line source in a water filled phantom. Phantom studies included measurements of the Data Spectrum phantom; clinical studies included tomographic procedures in 40 patients undergoing imaging of the temporomandibular joint. Slices of the phantom and patient images were evaluated for spatial of the phantom and patient images were evaluated for spatial resolution, noise, and image quality. Major findings include; spatial resolution and image quality improve with increasing linear sampling frequencies over the range of 4-8 mm/p in the phantom images, best spatial resolution and image quality in clinical images were observed at a linear sampling frequency of 6mm/p, Shepp and Logan filter gives the best spatial resolution for phantom studies at the lowest linear sampling frequency; smoothed Shepp and Logan filter provides best quality images without loss of resolution at higher frequencies and, spatial resolution and image quality improve with increased angular sampling frequency in the phantom at 40 c/p but appear to be independent of angular sampling frequency at 400 c/p

  3. Refining enamel thickness measurements from B-mode ultrasound images.

    Science.gov (United States)

    Hua, Jeremy; Chen, Ssu-Kuang; Kim, Yongmin

    2009-01-01

    Dental erosion has been growing increasingly prevalent with the rise in consumption of heavy starches, sugars, coffee, and acidic beverages. In addition, various disorders, such as Gastroenterological Reflux Disease (GERD), have symptoms of rapid rates of tooth erosion. The measurement of enamel thickness would be important for dentists to assess the progression of enamel loss from all forms of erosion, attrition, and abrasion. Characterizing enamel loss is currently done with various subjective indexes that can be interpreted in different ways by different dentists. Ultrasound has been utilized since the 1960s to determine internal tooth structure, but with mixed results. Via image processing and enhancement, we were able to refine B-mode dental ultrasound images for more accurate enamel thickness measurements. The mean difference between the measured thickness of the occlusal enamel from ultrasound images and corresponding gold standard CT images improved from 0.55 mm to 0.32 mm with image processing (p = 0.033). The difference also improved from 0.62 to 0.53 mm at the buccal/lingual enamel surfaces, but not significantly (p = 0.38).

  4. Imaging the inside of thick structures using cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Guardincerri, E., E-mail: elenaguardincerri@lanl.gov; Durham, J. M.; Morris, C.; Bacon, J. D.; Daughton, T. M.; Fellows, S.; Morley, D. J.; Johnson, O. R.; Plaud-Ramos, K.; Poulson, D. C.; Wang, Z. [Los Alamos National Laboratory, Los Alamos, NM, 87545 (United States)

    2016-01-15

    The authors present here a new method to image reinforcement elements inside thick structures and the results of a demonstration measurement performed on a mock-up wall built at Los Alamos National Laboratory. The method, referred to as “multiple scattering muon radiography”, relies on the use of cosmic-ray muons as probes. The work described in this article was performed to prove the viability of the technique as a means to image the interior of the dome of Florence Cathedral Santa Maria del Fiore, one of the UNESCO World Heritage sites and among the highest profile buildings in existence. Its result shows the effectiveness of the technique as a tool to radiograph thick structures and image denser object inside them.

  5. Imaging the inside of thick structures using cosmic rays

    Science.gov (United States)

    Guardincerri, E.; Durham, J. M.; Morris, C.; Bacon, J. D.; Daughton, T. M.; Fellows, S.; Morley, D. J.; Johnson, O. R.; Plaud-Ramos, K.; Poulson, D. C.; Wang, Z.

    2016-01-01

    The authors present here a new method to image reinforcement elements inside thick structures and the results of a demonstration measurement performed on a mock-up wall built at Los Alamos National Laboratory. The method, referred to as "multiple scattering muon radiography", relies on the use of cosmic-ray muons as probes. The work described in this article was performed to prove the viability of the technique as a means to image the interior of the dome of Florence Cathedral Santa Maria del Fiore, one of the UNESCO World Heritage sites and among the highest profile buildings in existence. Its result shows the effectiveness of the technique as a tool to radiograph thick structures and image denser object inside them.

  6. Imaging the inside of thick structures using cosmic rays

    International Nuclear Information System (INIS)

    Guardincerri, E.; Durham, J. M.; Morris, C.; Bacon, J. D.; Daughton, T. M.; Fellows, S.; Morley, D. J.; Johnson, O. R.; Plaud-Ramos, K.; Poulson, D. C.; Wang, Z.

    2016-01-01

    The authors present here a new method to image reinforcement elements inside thick structures and the results of a demonstration measurement performed on a mock-up wall built at Los Alamos National Laboratory. The method, referred to as “multiple scattering muon radiography”, relies on the use of cosmic-ray muons as probes. The work described in this article was performed to prove the viability of the technique as a means to image the interior of the dome of Florence Cathedral Santa Maria del Fiore, one of the UNESCO World Heritage sites and among the highest profile buildings in existence. Its result shows the effectiveness of the technique as a tool to radiograph thick structures and image denser object inside them

  7. MEASUREMENT OF RNFL THICKNESS USING OCT IMAGES FOR GLAUCOMA DETECTION

    Directory of Open Access Journals (Sweden)

    Dhivyabharathi

    2013-08-01

    Full Text Available The thickness of retinal nerve fiber layer (RNFL is one of the pompous parameters for assessing the disease, Glaucoma. A substantial amount of vision can be lost before the patient becomes aware of any defect. Optical Coherence Tomography (OCT provides enhanced depth and clarity of viewing tissues with high resolution compared with other medical imaging devices. It examines the living tissue non-invasively. This paper presents an automatic method to find the thickness of RNFL using OCT images. The proposed algorithm first extracts all the layers present in the OCT image by texture segmentation using Gabor filter method and an algorithm is then developed to segment the RNFL. The thickness measurement of RNFL is automatically displayed based on pixel calculation. The calculated thickness values are compared with the original values obtained from hospital. The result shows that the proposed algorithm is efficient in segmenting the region of interest without manual intervention. The effectiveness of the proposed method is proved statistically by the performance analysis.

  8. Methods for determining the wall thickness variation of tubular heaters used in thermalhydraulic studies

    International Nuclear Information System (INIS)

    Cubizolles, G.; Garnier, J.; Groeneveld, D.; Tanase, A.

    2009-01-01

    Fuel bundle simulators used in thermalhydraulic studies typically consist of bundles of directly heated tubes. It is usually assumed that the heater tubes have a uniform circumferential heat flux distribution. In practice, this heat flux distribution is never exactly uniform because of wall thickness variations and bore eccentricity. Ignoring the non-uniformity in wall thickness can lead to under-estimating the local heat transfer coefficients. During nucleate boiling tests in a 5x5 PWR-type bundle subassembly at CEA-Grenoble, a sinusoidal temperature distribution was observed around the inside circumference of the heater rods. These heater rods were equipped with high-accuracy sliding thermocouple probes that permit the detailed measurement of the internal wall temperature distribution, both axially and circumferentially. The sinusoidal temperature distribution strongly suggests a variation in wall thickness. A methodology was subsequently derived to determine the circumferential wall thickness variation. The method is based on the principle that for directly heated fuel-element simulators, the nucleate boiling wall superheat at high pressures is nearly uniform around the heater rod circumference. The results show wall thickness variations of up to ±4% which was confirmed by subsequent ultrasonic wall-thickness measurements performed after bundle disassembly. Non-uniformities in circumferential temperature distributions were also observed during parallel thermalhydraulic tests at the University of Ottawa (UofO) on an electrically heated tube cooled internally by R-134a and equipped with fixed thermocouples on the outside. From the measured wall temperatures and knowledge of the inside heat transfer coefficient or wall temperature distribution, the variations in wall thickness and surface heat flux to the coolant were evaluated by solving conduction equations using three separate sets of data (1) single phase heat transfer data, (2) nucleate boiling data, and (3

  9. Thickness related textural properties of retinal nerve fiber layer in color fundus images.

    Science.gov (United States)

    Odstrcilik, Jan; Kolar, Radim; Tornow, Ralf-Peter; Jan, Jiri; Budai, Attila; Mayer, Markus; Vodakova, Martina; Laemmer, Robert; Lamos, Martin; Kuna, Zdenek; Gazarek, Jiri; Kubena, Tomas; Cernosek, Pavel; Ronzhina, Marina

    2014-09-01

    Images of ocular fundus are routinely utilized in ophthalmology. Since an examination using fundus camera is relatively fast and cheap procedure, it can be used as a proper diagnostic tool for screening of retinal diseases such as the glaucoma. One of the glaucoma symptoms is progressive atrophy of the retinal nerve fiber layer (RNFL) resulting in variations of the RNFL thickness. Here, we introduce a novel approach to capture these variations using computer-aided analysis of the RNFL textural appearance in standard and easily available color fundus images. The proposed method uses the features based on Gaussian Markov random fields and local binary patterns, together with various regression models for prediction of the RNFL thickness. The approach allows description of the changes in RNFL texture, directly reflecting variations in the RNFL thickness. Evaluation of the method is carried out on 16 normal ("healthy") and 8 glaucomatous eyes. We achieved significant correlation (normals: ρ=0.72±0.14; p≪0.05, glaucomatous: ρ=0.58±0.10; p≪0.05) between values of the model predicted output and the RNFL thickness measured by optical coherence tomography, which is currently regarded as a standard glaucoma assessment device. The evaluation thus revealed good applicability of the proposed approach to measure possible RNFL thinning. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Study of the Variation of Material layer Compotition and Thickness Related Neutron Flux and Gamma Radiation

    Science.gov (United States)

    Nirmalasari, Yuliana Dian; Suparmi; Sardjono, Y.

    2017-11-01

    Optimation of simulation design of collimator is corresponding to 30 MeV cyclotron generator. The simulation has used the variation of the thickness materials layers that was applied at treatment room’s door. The purpose of the variation and thickness of the material in this simulation to obtain optimum results for the shielding design in the irradiation chamber. The layers that we used are Pb-Fe and Pb-SS312. Simulation on cancer treatment is used with monte carlo simaulation MCNPX. The spesifications that we used for cyclotron is the spesification of the HM-30 Proton Cyclotron from Sumitomo Heavy Industries Ltd. The variation of the thickness materials layers that was applied at treatment room’s door are Pb remains 4cm while Fe and SS312 varies between 2 cm, 4 cm, 6 cm respectively. This simulation of Fe layer on Pb was give good result in measurement simulation at 4 cm thickness.

  11. Influence of image slice thickness on rectal dose–response relationships following radiotherapy of prostate cancer

    International Nuclear Information System (INIS)

    Olsson, C; Thor, M; Apte, A; Deasy, J O; Liu, M; Moissenko, V; Petersen, S E; Høyer, M

    2014-01-01

    When pooling retrospective data from different cohorts, slice thicknesses of acquired computed tomography (CT) images used for treatment planning may vary between cohorts. It is, however, not known if varying slice thickness influences derived dose–response relationships. We investigated this for rectal bleeding using dose–volume histograms (DVHs) of the rectum and rectal wall for dose distributions superimposed on images with varying CT slice thicknesses. We used dose and endpoint data from two prostate cancer cohorts treated with three-dimensional conformal radiotherapy to either 74 Gy (N = 159) or 78 Gy (N = 159) at 2 Gy per fraction. The rectum was defined as the whole organ with content, and the morbidity cut-off was Grade ≥2 late rectal bleeding. Rectal walls were defined as 3 mm inner margins added to the rectum. DVHs for simulated slice thicknesses from 3 to 13 mm were compared to DVHs for the originally acquired slice thicknesses at 3 and 5 mm. Volumes, mean, and maximum doses were assessed from the DVHs, and generalized equivalent uniform dose (gEUD) values were calculated. For each organ and each of the simulated slice thicknesses, we performed predictive modeling of late rectal bleeding using the Lyman–Kutcher–Burman (LKB) model. For the most coarse slice thickness, rectal volumes increased (≤18%), whereas maximum and mean doses decreased (≤0.8 and ≤4.2 Gy, respectively). For all a values, the gEUD for the simulated DVHs were ≤1.9 Gy different than the gEUD for the original DVHs. The best-fitting LKB model parameter values with 95% CIs were consistent between all DVHs. In conclusion, we found that the investigated slice thickness variations had minimal impact on rectal dose–response estimations. From the perspective of predictive modeling, our results suggest that variations within 10 mm in slice thickness between cohorts are unlikely to be a limiting factor when pooling multi-institutional rectal dose data that include slice

  12. Influence of image slice thickness on rectal dose-response relationships following radiotherapy of prostate cancer

    Science.gov (United States)

    Olsson, C.; Thor, M.; Liu, M.; Moissenko, V.; Petersen, S. E.; Høyer, M.; Apte, A.; Deasy, J. O.

    2014-07-01

    When pooling retrospective data from different cohorts, slice thicknesses of acquired computed tomography (CT) images used for treatment planning may vary between cohorts. It is, however, not known if varying slice thickness influences derived dose-response relationships. We investigated this for rectal bleeding using dose-volume histograms (DVHs) of the rectum and rectal wall for dose distributions superimposed on images with varying CT slice thicknesses. We used dose and endpoint data from two prostate cancer cohorts treated with three-dimensional conformal radiotherapy to either 74 Gy (N = 159) or 78 Gy (N = 159) at 2 Gy per fraction. The rectum was defined as the whole organ with content, and the morbidity cut-off was Grade ≥2 late rectal bleeding. Rectal walls were defined as 3 mm inner margins added to the rectum. DVHs for simulated slice thicknesses from 3 to 13 mm were compared to DVHs for the originally acquired slice thicknesses at 3 and 5 mm. Volumes, mean, and maximum doses were assessed from the DVHs, and generalized equivalent uniform dose (gEUD) values were calculated. For each organ and each of the simulated slice thicknesses, we performed predictive modeling of late rectal bleeding using the Lyman-Kutcher-Burman (LKB) model. For the most coarse slice thickness, rectal volumes increased (≤18%), whereas maximum and mean doses decreased (≤0.8 and ≤4.2 Gy, respectively). For all a values, the gEUD for the simulated DVHs were ≤1.9 Gy different than the gEUD for the original DVHs. The best-fitting LKB model parameter values with 95% CIs were consistent between all DVHs. In conclusion, we found that the investigated slice thickness variations had minimal impact on rectal dose-response estimations. From the perspective of predictive modeling, our results suggest that variations within 10 mm in slice thickness between cohorts are unlikely to be a limiting factor when pooling multi-institutional rectal dose data that include slice thickness

  13. Plantar fascia segmentation and thickness estimation in ultrasound images.

    Science.gov (United States)

    Boussouar, Abdelhafid; Meziane, Farid; Crofts, Gillian

    2017-03-01

    Ultrasound (US) imaging offers significant potential in diagnosis of plantar fascia (PF) injury and monitoring treatment. In particular US imaging has been shown to be reliable in foot and ankle assessment and offers a real-time effective imaging technique that is able to reliably confirm structural changes, such as thickening, and identify changes in the internal echo structure associated with diseased or damaged tissue. Despite the advantages of US imaging, images are difficult to interpret during medical assessment. This is partly due to the size and position of the PF in relation to the adjacent tissues. It is therefore a requirement to devise a system that allows better and easier interpretation of PF ultrasound images during diagnosis. This study proposes an automatic segmentation approach which for the first time extracts ultrasound data to estimate size across three sections of the PF (rearfoot, midfoot and forefoot). This segmentation method uses artificial neural network module (ANN) in order to classify small overlapping patches as belonging or not-belonging to the region of interest (ROI) of the PF tissue. Features ranking and selection techniques were performed as a post-processing step for features extraction to reduce the dimension and number of the extracted features. The trained ANN classifies the image overlapping patches into PF and non-PF tissue, and then it is used to segment the desired PF region. The PF thickness was calculated using two different methods: distance transformation and area-length calculation algorithms. This new approach is capable of accurately segmenting the PF region, differentiating it from surrounding tissues and estimating its thickness. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. Microscopic image processing system for measuring nonuniform film thickness profiles: Image scanning ellipsometry

    International Nuclear Information System (INIS)

    Liu, A.H.; Plawsky, J.L.; Wayner, P.C. Jr.

    1993-01-01

    The long-term objective of this research program is to determine the stability and heat transfer characteristics of evaporating thin films. The current objective is to develop and use a microscopic image-processing system (IPS) which has two parts: an image analyzing interferometer (IAI) and an image scanning ellipsometer (ISE). The primary purpose of this paper is to present the basic concept of ISE, which is a novel technique to measure the two dimensional thickness profile of a non-uniform, thin film, from several nm up to several μm, in a steady state as well as in a transient state. It is a full-field imaging technique which can study every point on the surface simultaneously with high spatial resolution and thickness sensitivity, i.e., it can measure and map the 2-D film thickness profile. The ISE was tested by measuring the thickness profile and the refractive index of a nonuniform solid film

  15. Age, Sex, and Ethnic Variations in Inner and Outer Retinal and Choroidal Thickness on Spectral-Domain Optical Coherence Tomography.

    Science.gov (United States)

    Bafiq, Rinoza; Mathew, Raeba; Pearce, Elizabeth; Abdel-Hey, Ahmed; Richardson, Matthew; Bailey, Thomas; Sivaprasad, Sobha

    2015-11-01

    To evaluate age, sex, and ethnic variations in inner and outer retinal and choroidal thickness and foveal pit, using spectral-domain optical coherence tomography (SD OCT). Single-center observational cross-sectional study. Ninety randomly selected, healthy individuals of white, black, and South Asian origin underwent SD OCT raster and enhanced depth imaging scan. Manual measurements of inner and outer retinal thickness and choroidal thickness up to 3 mm nasal and temporal to the fovea were performed. The age, sex, and ethnic differences in these parameters were analyzed. The mean inner retinal thickness was lower by approximately 12 μm in black subjects across the central retina compared to white subjects (P ethnic groups but the temporal choroid was significantly thinner in black subjects (P < .05). The choroid showed an age-related decline in thickness of 2 μm per year of age of the subjects. Interethnic differences include wider fovea, lower central foveal thickness, and thinner inner retina in eyes of black subjects compared to their white and South Asian counterparts. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Restoration of Thickness, Density, and Volume for Highly Blurred Thin Cortical Bones in Clinical CT Images.

    Science.gov (United States)

    Pakdel, Amirreza; Hardisty, Michael; Fialkov, Jeffrey; Whyne, Cari

    2016-11-01

    In clinical CT images containing thin osseous structures, accurate definition of the geometry and density is limited by the scanner's resolution and radiation dose. This study presents and validates a practical methodology for restoring information about thin bone structure by volumetric deblurring of images. The methodology involves 2 steps: a phantom-free, post-reconstruction estimation of the 3D point spread function (PSF) from CT data sets, followed by iterative deconvolution using the PSF estimate. Performance of 5 iterative deconvolution algorithms, blind, Richardson-Lucy (standard, plus Total Variation versions), modified residual norm steepest descent (MRNSD), and Conjugate Gradient Least-Squares were evaluated using CT scans of synthetic cortical bone phantoms. The MRNSD algorithm resulted in the highest relative deblurring performance as assessed by a cortical bone thickness error (0.18 mm) and intensity error (150 HU), and was subsequently applied on a CT image of a cadaveric skull. Performance was compared against micro-CT images of the excised thin cortical bone samples from the skull (average thickness 1.08 ± 0.77 mm). Error in quantitative measurements made from the deblurred images was reduced 82% (p < 0.01) for cortical thickness and 55% (p < 0.01) for bone mineral mass. These results demonstrate a significant restoration of geometrical and radiological density information derived for thin osseous features.

  17. Effect of Ice-Shell Thickness Variations on the Tidal Deformation of Enceladus

    Science.gov (United States)

    Choblet, G.; Cadek, O.; Behounkova, M.; Tobie, G.; Kozubek, T.

    2015-12-01

    Recent analysis of Enceladus's gravity and topography has suggested that the thickness of the ice shell significantly varies laterally - from 30-40 km in the south polar region to 60 km elsewhere. These variations may influence the activity of the geysers and increase the tidal heat production in regions where the ice shell is thinned. Using a model including a regional or global subsurface ocean and Maxwell viscoelasticity, we investigate the impact of these variations on the tidal deformation of the moon and its heat production. For that purpose, we use different numerical approaches - finite elements, local application of 1d spectral method, and a generalized spectral method. Results obtained with these three approaches for various models of ice-shell thickness variations are presented and compared. Implications of a reduced ice shell thickness for the south polar terrain activity are discussed.

  18. Spatial Evolution of the Thickness Variations over a CFRP Laminated Structure

    Science.gov (United States)

    Davila, Yves; Crouzeix, Laurent; Douchin, Bernard; Collombet, Francis; Grunevald, Yves-Henri

    2017-10-01

    Ply thickness is one of the main drivers of the structural performance of a composite part. For stress analysis calculations (e.g., finite element analysis), composite plies are commonly considered to have a constant thickness compared to the reality (coefficients of variation up to 9% of the mean ply thickness). Unless this variability is taken into account reliable property predictions cannot be made. A modelling approach of such variations is proposed using parameters obtained from a 16-ply quasi-isotropic CFRP plate cured in an autoclave. A discrete Fourier transform algorithm is used to analyse the frequency response of the observed ply and plate thickness profiles. The model inputs, obtained by a mathematical representation of the ply thickness profiles, permit the generation of a representative stratification considering the spatial continuity of the thickness variations that are in good agreement with the real ply profiles spread over the composite part. A residual deformation FE model of the composite plate is used to illustrate the feasibility of the approach.

  19. Geographical variation of shell thickness in the mussel Perumytilus purpuratus along the southeast Pacific coast.

    Science.gov (United States)

    Briones, Carolina; Rivadeneira, Marcelo M; Fernández, Miriam; Guiñez, Ricardo

    2014-12-01

    At broad geographical scales, the variation in bivalve shell thickness can be modulated by environmental factors that vary with latitude, such as sea surface temperature (SST), seawater pH, or calcium carbonate availability. Mussels usually form multilayered beds, and shell thickness is also expected to be affected by density and layering due to intraspecific competition. In this work, we explored the geographical variation of shell thickness in the intertidal mussel Perumytilus purpuratus between 18° and 42°S along the southeastern Pacific coast. We tested the hypothesis that there was a positive relationship between shell thickness and SST, and then we explored other variables that could have an effect on thickness, such as density, number of layers, and others environmental variables (pH and calcite concentration). The expected positive linear relationship between shell thickness and sea surface temperature was not found, but when the other population variables were included in the analysis, an unexpected inverse SST-thickness relationships appeared as significant, probably because this species could be adapted to colder and more acid seawater as are those of the tips of South America. Thickness was also negatively affected by density, which was expected for a gregarious species showing high intraspecific competition. Finally, our results highlight the importance of including density and crowding effects when macroscale patterns are explored, particularly in gregarious species, since these patterns could also be modulated by density-dependent processes, which might then override latitudinal trends of shell thickness when they are not included in the analyses. © 2014 Marine Biological Laboratory.

  20. Reducing lumber thickness variation using real-time statistical process control

    Science.gov (United States)

    Thomas M. Young; Brian H. Bond; Jan Wiedenbeck

    2002-01-01

    A technology feasibility study for reducing lumber thickness variation was conducted from April 2001 until March 2002 at two sawmills located in the southern U.S. A real-time statistical process control (SPC) system was developed that featured Wonderware human machine interface technology (HMI) with distributed real-time control charts for all sawing centers and...

  1. Evaluation of methods to determine the spectral variations of aerosol optical thickness

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Talaulikar, M.; Rodrigues, A.; Desa, E.; Chauhan, P.

    The methods used to derive spectral variations of aerosol optical thickness, AOT are evaluated. For our analysis we have used the AOT measured using a hand held sunphotometer at the coastal station on the west coast of India, Dona-Paula, Goa...

  2. An investigation into the relationship between thickness variations and manufacturing techniques of mouthguards.

    Science.gov (United States)

    Farrington, Timothy; Coward, Trevor; Onambele-Pearson, Gladys; Taylor, Rebecca L; Earl, Philip; Winwood, Keith

    2016-02-01

    The aim of this study was to measure the finished thickness of a single identical 4-mm EVA mouthguard model from a large fabricated sample group and to evaluate the degree of material thinning and variations during the fabrication process. Twenty boxes were distributed to dental technician participants, each containing five duplicated dental models (n = 100), alongside 5 × 4 mm mouthguard blanks and a questionnaire. The mouthguards were measured using electronic callipers (resolution: ±0.01 mm) at three specific points. The five thickest and thinnest mouthguards were examined using a CT scanner to describe the surface typography unique to each mouthguard, highlighting dimensional thinning patterns during the fabrication process. Of the three measurement points, the anterior sulcus point of the mouthguard showed a significant degree of variation (up to 34% coefficient of variation), in finished mouthguard thickness between individuals. The mean thickness of the mouthguards in the anterior region was 1.62 ± 0.38 mm with a range of 0.77-2.80 mm. This variation was also evident in the occlusion and posterior lingual regions but to a lesser extent (up to 12.2% and 9.8% variations, respectively). This study highlights variability in the finished thickness of the mouthguards especially in the anterior sulcus region measurement point, both within and between individuals. At the anterior region measurement point of the mouthguard, the mean thickness was 1.62 mm, equating to an overall material thinning of 59.5% when using a single 4-mm EVA blank. This degree of thinning is comparative to previous single operator research studies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Detection of the Thickness Variation of a Stainless Steel sample using Pulsed Eddy Current

    International Nuclear Information System (INIS)

    Cheong, Y. M.; Angani, C. S.; Park, D. G.; Jhong, H. K.; Kim, G. D.; Kim, C. G.

    2008-01-01

    The Pulsed Eddy Current (PEC) system has been developed for the detection of thickness variation of stainless steel. The sample was machined as step configuration using stainless steel for thickness variation from 1mm to 5mm step by step. The LabView computer program was developed to display the variation in the amplitude of the detected pulse by scanning the PECT probe on the flat side of the sample. The pickup Sensor measures the effective magnetic field on the sample, which is the sum of the incident field and the field reflected by the specimen due to the induced eddy currents in the sample. We use the hall sensor for the detection. Usage of hall sensor instead of coil as a field detector improves the detectability and special resolution. This technology can be used in detection of local wall thinning of the pipeline of nuclear power plant

  4. MCNP Code in Assessment of Variations of Effective Dose with Torso Adipose Tissue Thickness

    International Nuclear Information System (INIS)

    Massoud, E.

    2005-01-01

    The effective dose is the unite used in the field of radiation protection. It is a well defined doubly weighted uantity involving both physical and biological variables. Several factors may induce variation in the effective dose in different individuals of similar exposure data. One of these factors is the variation of adipose tissue thickness in different exposed individuals. This study essentially concenrs the assessment of the possible variation in the effective dose due to variation in the thickness of adipose tissue. The study was done using MCNP4b code to perform mathematical model of the human body depending on that given to the reference man developed by International Commission of Radiological Protection (ICRP), and calculate the effective dose with different thicknessess of adipose tissues. The study includes a comprehensive appraisal of the Monte Cario simulation, the Medical Internal Radiation Dose (MIRD) model for the human body, and the various mathematical considerations involved in the radiation dose calculations for the various pertinent parts of the human body. The radiation energies considered were 80 KeV, 300 KeV and I MeV, applying two exposure positions; anteroposterior (AP), postero-anterior (PA) with different adipose tissue thickness. This study is a theoretical approach based on detailed mathematical calculations of great precision that deals with all considerations involved in the mechanisms of radiation energy absorption in biological system depending on the variation in the densities of the particular in biological system depending on the variation in the densities of the particular tissues. The results obtained indicate that maximum decrease in effective dose occures with the lowest energy at 5cm adipose tissues thickeness for both AP and PA exposure positions. The results obtained were compared to similar work previsouly done using MCNP4 b showing very good agreement

  5. Enface Thickness Mapping and Reflectance Imaging of Retinal Layers in Diabetic Retinopathy.

    Science.gov (United States)

    Francis, Andrew W; Wanek, Justin; Lim, Jennifer I; Shahidi, Mahnaz

    2015-01-01

    To present a method for image segmentation and generation of enface thickness maps and reflectance images of retinal layers in healthy and diabetic retinopathy (DR) subjects. High density spectral domain optical coherence tomography (SDOCT) images were acquired in 10 healthy and 4 DR subjects. Customized image analysis software identified 5 retinal cell layer interfaces and generated thickness maps and reflectance images of the total retina (TR), inner retina (IR), outer retina (OR), and the inner segment ellipsoid (ISe) band. Thickness maps in DR subjects were compared to those of healthy subjects by generating deviation maps which displayed retinal locations with thickness below, within, and above the normal 95% confidence interval. In healthy subjects, TR and IR thickness maps displayed the foveal depression and increased thickness in the parafoveal region. OR and ISe thickness maps showed increased thickness at the fovea, consistent with normal retinal anatomy. In DR subjects, thickening and thinning in localized regions were demonstrated on TR, IR, OR, and ISe thickness maps, corresponding to retinal edema and atrophy, respectively. TR and OR reflectance images showed reduced reflectivity in regions of increased thickness. Hard exudates appeared as hyper-reflective spots in IR reflectance images and casted shadows on the deeper OR and ISe reflectance images. The ISe reflectance image clearly showed the presence of focal laser scars. Enface thickness mapping and reflectance imaging of retinal layers is a potentially useful method for quantifying the spatial and axial extent of pathologies due to DR.

  6. Comparison of experimental techniques for characterization of through-thickness texture variations

    DEFF Research Database (Denmark)

    Mishin, Oleg; Lauridsen, E.M.; Krieger Lassen, N.C.

    1999-01-01

    For the investigation of through-thickness texture gradients, a number of layers in rolled plates and sheets are inspected. Crystallographic textures in different layers can be characterized using several techniques. In the present work, traditional low-energy X-ray diffraction, the electron...... backscattering pattern technique in the scanning electron microscope and a novel technique which involves high energy synchrotron radiation are used for characterization of through-thickness texture variations in commercial purity cold-rolled aluminium. Important experimental aspects of these three techniques...

  7. Image denoising by a direct variational minimization

    Directory of Open Access Journals (Sweden)

    Pilipović Stevan

    2011-01-01

    Full Text Available Abstract In this article we introduce a novel method for the image de-noising which combines a mathematically well-posdenes of the variational modeling with the efficiency of a patch-based approach in the field of image processing. It based on a direct minimization of an energy functional containing a minimal surface regularizer that uses fractional gradient. The minimization is obtained on every predefined patch of the image, independently. By doing so, we avoid the use of an artificial time PDE model with its inherent problems of finding optimal stopping time, as well as the optimal time step. Moreover, we control the level of image smoothing on each patch (and thus on the whole image by adapting the Lagrange multiplier using the information on the level of discontinuities on a particular patch, which we obtain by pre-processing. In order to reduce the average number of vectors in the approximation generator and still to obtain the minimal degradation, we combine a Ritz variational method for the actual minimization on a patch, and a complementary fractional variational principle. Thus, the proposed method becomes computationally feasible and applicable for practical purposes. We confirm our claims with experimental results, by comparing the proposed method with a couple of PDE-based methods, where we get significantly better denoising results specially on the oscillatory regions.

  8. The impact of lateral variations in lithospheric thickness on glacial isostatic adjustment in West Antarctica

    Science.gov (United States)

    Nield, Grace A.; Whitehouse, Pippa L.; van der Wal, Wouter; Blank, Bas; O'Donnell, John Paul; Stuart, Graham W.

    2018-04-01

    Differences in predictions of Glacial Isostatic Adjustment (GIA) for Antarctica persist due to uncertainties in deglacial history and Earth rheology. The Earth models adopted in many GIA studies are defined by parameters that vary in the radial direction only and represent a global average Earth structure (referred to as 1D Earth models). Over-simplifying actual Earth structure leads to bias in model predictions in regions where Earth parameters differ significantly from the global average, such as West Antarctica. We investigate the impact of lateral variations in lithospheric thickness on GIA in Antarctica by carrying out two experiments that use different rheological approaches to define 3D Earth models that include spatial variations in lithospheric thickness. The first experiment defines an elastic lithosphere with spatial variations in thickness inferred from seismic studies. We compare the results from this 3D model with results derived from a 1D Earth model that has a uniform lithospheric thickness defined as the average of the 3D lithospheric thickness. Irrespective of deglacial history and sub-lithospheric mantle viscosity, we find higher gradients of present-day uplift rates (i.e. higher amplitude and shorter wavelength) in West Antarctica when using the 3D models, due to the thinner-than-1D-average lithosphere prevalent in this region. The second experiment uses seismically-inferred temperature as input to a power-law rheology thereby allowing the lithosphere to have a viscosity structure. Modelling the lithosphere with a power-law rheology results in behaviour that is equivalent to a thinner-lithosphere model, and it leads to higher amplitude and shorter wavelength deformation compared with the first experiment. We conclude that neglecting spatial variations in lithospheric thickness in GIA models will result in predictions of peak uplift and subsidence that are biased low in West Antarctica. This has important implications for ice-sheet modelling

  9. Crustal thickness variations in the Zagros continental collision zone (Iran) from joint inversion of receiver functions and surface wave dispersion

    Science.gov (United States)

    Tatar, M.; Nasrabadi, A.

    2013-10-01

    Variations in crustal thickness in the Zagros determined by joint inversion of P wave receiver functions (RFs) and Rayleigh wave group and phase velocity dispersion. The time domain iterative deconvolution procedure was employed to compute RFs from teleseismic recordings at seven broadband stations of INSN network. Rayleigh wave phase velocity dispersion curves were estimated employing two-station method. Fundamental mode Rayleigh wave group velocities for each station is taken from a regional scale surface wave tomographic imaging. The main variations in crustal thickness that we observe are between stations located in the Zagros fold and thrust belt with those located in the Sanandaj-Sirjan zone (SSZ) and Urumieh-Dokhtar magmatic assemblage (UDMA). Our results indicate that the average crustal thickness beneath the Zagros Mountain Range varies from ˜46 km in Western and Central Zagros beneath SHGR and GHIR up to ˜50 km beneath BNDS located in easternmost of the Zagros. Toward NE, we observe an increase in Moho depth where it reaches ˜58 km beneath SNGE located in the SSZ. Average crustal thickness also varies beneath the UDMA from ˜50 km in western parts below ASAO to ˜58 in central parts below NASN. The observed variation along the SSZ and UDMA may be associated to ongoing slab steepening or break off in the NW Zagros, comparing under thrusting of the Arabian plate beneath Central Zagros. The results show that in Central Iran, the crustal thickness decrease again to ˜47 km below KRBR. There is not a significant crustal thickness difference along the Zagros fold and thrust belt. We found the same crystalline crust of ˜34 km thick beneath the different parts of the Zagros fold and thrust belt. The similarity of crustal structure suggests that the crust of the Zagros fold and thrust belt was uniform before subsidence and deposition of the sediments. Our results confirm that the shortening of the western and eastern parts of the Zagros basement is small and

  10. Effect of mechanical ventilation on regional variation of pleural liquid thickness in rabbits.

    Science.gov (United States)

    Wang, P M; Lai-Fook, S J

    1997-01-01

    We studied the effect of ventilation on the regional distribution of pleural liquid thickness in anesthetized rabbits. Three transparent pleural windows were made between the second and eight intercostal space along the midaxillary line of the right chest. Fluorescein isothiocyanate-labeled dextran (1 ml) was injected into the pleural space through a rib capsule and allowed to mix with the pleural liquid. The light emitted from the pleural space beneath the windows was measured by fluorescence videomicroscopy at a constant tidal volume (20 ml) and two ventilation frequencies (20 and 40 breaths/min). Pleural liquid thickness was determined from the light measurements after in vitro calibration of pleural liquid collected postmortem. At 20 breaths/min, pleural liquid thickness increased with a cranial-caudal distance from 5 microns at the second to third intercostal space to 30 microns at the sixth through eighth intercostal space. At 40 breaths/min, pleural space thickness was unchanged at the second to third intercostal space but increased to 46 microns at the sixth through eighth intercostal space. To determine this effect on pleural liquid shear stress, we measured relative lung velocity from videomicroscopic images of the lung surface through the windows. Lung velocity amplitude increased with cranial-caudal distance and with ventilation frequency. Calculated shear stress amplitude was constant with cranial-caudal distance but increased with ventilation frequency. Thus, pleural liquid thickness is matched to the relative lung motion so as to maintain a spatially uniform shear stress amplitude in pleural liquid during mechanical ventilation.

  11. The Effect of Selected Conditions in a Thermoforming Process on Wall Thickness Variations

    Directory of Open Access Journals (Sweden)

    Emil Sasimowski

    2017-12-01

    Full Text Available The paper reports the results of a study on the effect of selected conditions in a thermoforming process for thin polystyrene sheet by vacuum assisted drape forming on the wall thickness non-uniformity of finished parts. The investigation was performed using Statistica’s DOE module for three variables: temperatures in the external and internal zones of the heater as well as heating time of the plastic sheet. The results demonstrate that the wall thickness in the finished parts at the measuring points is primarily affected by the heating time and the temperature in the internal zone of the heater, while the temperature in the external zone only affects some regions of the finished part. The results demonstrate that a short heating time and hence a lower temperature of the plastic sheet lead to a more uniform deformation of both the bottom and the side walls of the finished part, and as a consequence, to smaller variations in the wall thickness. The shortening of the heating time is however limited by the necessity of accurate reproduction of the shape of the finished part.

  12. A Monte Carlo investigation of Swank noise for thick, segmented, crystalline scintillators for radiotherapy imaging

    International Nuclear Information System (INIS)

    Wang Yi; Antonuk, Larry E.; El-Mohri, Youcef; Zhao Qihua

    2009-01-01

    Thick, segmented scintillating detectors, consisting of 2D matrices of scintillator crystals separated by optically opaque septal walls, hold considerable potential for significantly improving the performance of megavoltage (MV) active matrix, flat-panel imagers (AMFPIs). Initial simulation studies of the radiation transport properties of segmented detectors have indicated the possibility of significant improvement in DQE compared to conventional MV AMFPIs based on phosphor screen detectors. It is therefore interesting to investigate how the generation and transport of secondary optical photons affect the DQE performance of such segmented detectors. One effect that can degrade DQE performance is optical Swank noise (quantified by the optical Swank factor I opt ), which is induced by depth-dependent variations in optical gain. In this study, Monte Carlo simulations of radiation and optical transport have been used to examine I opt and zero-frequency DQE for segmented CsI:Tl and BGO detectors at different thicknesses and element-to-element pitches. For these detectors, I opt and DQE were studied as a function of various optical parameters, including absorption and scattering in the scintillator, absorption at the top reflector and septal walls, as well as scattering at the side surfaces of the scintillator crystals. The results indicate that I opt and DQE are only weakly affected by absorption and scattering in the scintillator, as well as by absorption at the top reflector. However, in some cases, these metrics were found to be significantly degraded by absorption at the septal walls and scattering at the scintillator side surfaces. Moreover, such degradations are more significant for detectors with greater thickness or smaller element pitch. At 1.016 mm pitch and with optimized optical properties, 40 mm thick segmented CsI:Tl and BGO detectors are predicted to provide DQE values of ∼29% and 42%, corresponding to improvement by factors of ∼29 and 42

  13. Association of GSK-3β genetic variation with GSK-3β expression, prefrontal cortical thickness, prefrontal physiology, and schizophrenia.

    Science.gov (United States)

    Blasi, Giuseppe; Napolitano, Francesco; Ursini, Gianluca; Di Giorgio, Annabella; Caforio, Grazia; Taurisano, Paolo; Fazio, Leonardo; Gelao, Barbara; Attrotto, Maria Teresa; Colagiorgio, Lucia; Todarello, Giovanna; Piva, Francesco; Papazacharias, Apostolos; Masellis, Rita; Mancini, Marina; Porcelli, Annamaria; Romano, Raffaella; Rampino, Antonio; Quarto, Tiziana; Giulietti, Matteo; Lipska, Barbara K; Kleinman, Joel E; Popolizio, Teresa; Weinberger, Daniel R; Usiello, Alessandro; Bertolino, Alessandro

    2013-08-01

    OBJECTIVE Glycogen synthase kinase 3β (GSK-3β) is an enzyme implicated in neurodevelopmental processes with a broad range of substrates mediating several canonical signaling pathways in the brain. The authors investigated the association of variation in the GSK-3β gene with a series of progressively more complex phenotypes of relevance to schizophrenia, a neurodevelopmental disorder with strong genetic risk. METHOD Based on computer predictions, the authors investigated in humans the association of GSK-3β functional variation with 1) GSK-3β mRNA expression from postmortem prefrontal cortex, 2) GSK-3β and β-catenin protein expression from peripheral blood mononuclear cells (PBMCs), 3) prefrontal imaging phenotypes, and 4) diagnosis of schizophrenia. RESULTS Consistent with predictions, the TT genotype of a single-nucleotide polymorphism in GSK-3β (rs12630592) was associated with reduced GSK-3β mRNA from postmortem prefrontal cortex. Furthermore, this genotype was associated with GSK-3β protein expression and kinase activity, as well as with downstream effects on β-catenin expression in PBMCs. Finally, the TT genotype was associated with attenuated functional MRI prefrontal activity, reduced prefrontal cortical thickness, and diagnosis of schizophrenia. CONCLUSIONS These results suggest that GSK-3β variation is implicated in multiple phenotypes relevant to schizophrenia.

  14. Age- and gender-related regional variations of human brain cortical thickness, complexity, and gradient in the third decade.

    Science.gov (United States)

    Creze, Maud; Versheure, Leslie; Besson, Pierre; Sauvage, Chloe; Leclerc, Xavier; Jissendi-Tchofo, Patrice

    2014-06-01

    Brain functional and cytoarchitectural maturation continue until adulthood, but little is known about the evolution of the regional pattern of cortical thickness (CT), complexity (CC), and intensity or gradient (CG) in young adults. We attempted to detect global and regional age- and gender-related variations of brain CT, CC, and CG, in 28 healthy young adults (19-33 years) using a three-dimensional T1 -weighted magnetic resonance imaging sequence and surface-based methods. Whole brain interindividual variations of CT and CG were similar to that in the literature. As a new finding, age- and gender-related variations significantly affected brain complexity (P gender), all in the right hemisphere. Regions of interest analyses showed age and gender significant interaction (P left inferior parietal. In addition, we found significant inverse correlations between CT and CC and between CT and CG over the whole brain and markedly in precentral and occipital areas. Our findings differ in details from previous reports and may correlate with late brain maturation and learning plasticity in young adults' brain in the third decade. Copyright © 2013 Wiley Periodicals, Inc.

  15. Spatial variations of effective elastic thickness of the Lithosphere in the Southeast Asia regions

    Science.gov (United States)

    Shi, Xiaobin; Kirby, Jon; Yu, Chuanhai; Swain, Chris; Zhao, Junfeng

    2016-04-01

    The effective elastic thickness Te corresponds to the thickness of an idealized elastic beam that would bend similarly to the actual lithosphere under the same applied loads, and could provide important insight into rheology and state of stress. Thus, it is helpful to improve our understanding of the relationship between tectonic styles, distribution of earthquakes and lithospheric rheology in various tectonic settings. The Southeast Asia, located in the southeastern part of the Eurasian Plate, comprises a complex collage of continental fragments, volcanic arcs, and suture zones and marginal oceanic basins, and is surrounded by tectonically active margins which exhibit intense seismicity and volcanism. The Cenozoic southeastward extrusion of the rigid Indochina Block due to the Indo-Asian collision resulted in the drastic surface deformation in the western area. Therefore, a high resolution spatial variation map of Te might be a useful tool for the complex Southeast Asia area to examine the relationships between surface deformation, earthquakes, lithospheric structure and mantle dynamics. In this study, we present a high-resolution map of spatial variations of Te in the Southeast Asia area using the wavelet method, which convolves a range of scaled wavelets with the two data sets of Bouguer gravity anomaly and topography. The topography and bathymetry grid data was extracted from the GEBCO_08 Grid of GEBCO digital atlas. The pattern of Te variations agrees well with the tectonic provinces in the study area. On the whole, low lithosphere strength characterizes the oceanic basins, such as the South China Sea, the Banda sea area, the Celebes Sea, the Sulu Sea and the Andaman Sea. Unlike the oceanic basins, the continental fragments show a complex pattern of Te variations. The Khorat plateau and its adjacent area show strong lithosphere characteristics with a Te range of 20-50 km, suggesting that the Khorat plateau is the strong core of the Indochina Block. The West

  16. A method for quantitative mapping of thick oil spills using imaging spectroscopy

    Science.gov (United States)

    Clark, Roger N.; Swayze, Gregg A.; Leifer, Ira; Livo, K. Eric; Kokaly, Raymond F.; Hoefen, Todd; Lundeen, Sarah; Eastwood, Michael; Green, Robert O.; Pearson, Neil; Sarture, Charles; McCubbin, Ian; Roberts, Dar; Bradley, Eliza; Steele, Denis; Ryan, Thomas; Dominguez, Roseanne; ,

    2010-01-01

    In response to the Deepwater Horizon oil spill in the Gulf of Mexico, a method of near-infrared imaging spectroscopic analysis was developed to map the locations of thick oil floating on water. Specifically, this method can be used to derive, in each image pixel, the oil-to-water ratio in oil emulsions, the sub-pixel areal fraction, and its thicknesses and volume within the limits of light penetration into the oil (up to a few millimeters). The method uses the shape of near-infrared (NIR) absorption features and the variations in the spectral continuum due to organic compounds found in oil to identify different oil chemistries, including its weathering state and thickness. The method is insensitive to complicating conditions such as moderate aerosol scattering and reflectance level changes from other conditions, including moderate sun glint. Data for this analysis were collected by the NASA Airborne Visual Infrared Imaging Spectrometer (AVIRIS) instrument, which was flown over the oil spill on May 17, 2010. Because of the large extent of the spill, AVIRIS flight lines could cover only a portion of the spill on this relatively calm, nearly cloud-free day. Derived lower limits for oil volumes within the top few millimeters of the ocean surface directly probed with the near-infrared light detected in the AVIRIS scenes were 19,000 (conservative assumptions) to 34,000 (aggressive assumptions) barrels of oil. AVIRIS covered about 30 percent of the core spill area, which consisted of emulsion plumes and oil sheens. Areas of oil sheen but lacking oil emulsion plumes outside of the core spill were not evaluated for oil volume in this study. If the core spill areas not covered by flight lines contained similar amounts of oil and oil-water emulsions, then extrapolation to the entire core spill area defined by a MODIS (Terra) image collected on the same day indicates a minimum of 66,000 to 120,000 barrels of oil was floating on the surface. These estimates are preliminary and

  17. Evaluation of the possibility to use thick slabs of reconstructed outer breast tomosynthesis slice images

    Science.gov (United States)

    Petersson, Hannie; Dustler, Magnus; Tingberg, Anders; Timberg, Pontus

    2016-03-01

    The large image volumes in breast tomosynthesis (BT) have led to large amounts of data and a heavy workload for breast radiologists. The number of slice images can be decreased by combining adjacent image planes (slabbing) but the decrease in depth resolution can considerably affect the detection of lesions. The aim of this work was to assess if thicker slabbing of the outer slice images (where lesions seldom are present) could be a viable alternative in order to reduce the number of slice images in BT image volumes. The suggested slabbing (an image volume with thick outer slabs and thin slices between) were evaluated in two steps. Firstly, a survey of the depth of 65 cancer lesions within the breast was performed to estimate how many lesions would be affected by outer slabs of different thicknesses. Secondly, a selection of 24 lesions was reconstructed with 2, 6 and 10 mm slab thickness to evaluate how the appearance of lesions located in the thicker slabs would be affected. The results show that few malignant breast lesions are located at a depth less than 10 mm from the surface (especially for breast thicknesses of 50 mm and above). Reconstruction of BT volumes with 6 mm slab thickness yields an image quality that is sufficient for lesion detection for a majority of the investigated cases. Together, this indicates that thicker slabbing of the outer slice images is a promising option in order to reduce the number of slice images in BT image volumes.

  18. Inverse Transient Analysis for Classification of Wall Thickness Variations in Pipelines

    Directory of Open Access Journals (Sweden)

    Jeffrey Tuck

    2013-12-01

    Full Text Available Analysis of transient fluid pressure signals has been investigated as an alternative method of fault detection in pipeline systems and has shown promise in both laboratory and field trials. The advantage of the method is that it can potentially provide a fast and cost effective means of locating faults such as leaks, blockages and pipeline wall degradation within a pipeline while the system remains fully operational. The only requirement is that high speed pressure sensors are placed in contact with the fluid. Further development of the method requires detailed numerical models and enhanced understanding of transient flow within a pipeline where variations in pipeline condition and geometry occur. One such variation commonly encountered is the degradation or thinning of pipe walls, which can increase the susceptible of a pipeline to leak development. This paper aims to improve transient-based fault detection methods by investigating how changes in pipe wall thickness will affect the transient behaviour of a system; this is done through the analysis of laboratory experiments. The laboratory experiments are carried out on a stainless steel pipeline of constant outside diameter, into which a pipe section of variable wall thickness is inserted. In order to detect the location and severity of these changes in wall conditions within the laboratory system an inverse transient analysis procedure is employed which considers independent variations in wavespeed and diameter. Inverse transient analyses are carried out using a genetic algorithm optimisation routine to match the response from a one-dimensional method of characteristics transient model to the experimental time domain pressure responses. The accuracy of the detection technique is evaluated and benefits associated with various simplifying assumptions and simulation run times are investigated. It is found that for the case investigated, changes in the wavespeed and nominal diameter of the

  19. Inverse Transient Analysis for Classification of Wall Thickness Variations in Pipelines

    Science.gov (United States)

    Tuck, Jeffrey; Lee, Pedro

    2013-01-01

    Analysis of transient fluid pressure signals has been investigated as an alternative method of fault detection in pipeline systems and has shown promise in both laboratory and field trials. The advantage of the method is that it can potentially provide a fast and cost effective means of locating faults such as leaks, blockages and pipeline wall degradation within a pipeline while the system remains fully operational. The only requirement is that high speed pressure sensors are placed in contact with the fluid. Further development of the method requires detailed numerical models and enhanced understanding of transient flow within a pipeline where variations in pipeline condition and geometry occur. One such variation commonly encountered is the degradation or thinning of pipe walls, which can increase the susceptible of a pipeline to leak development. This paper aims to improve transient-based fault detection methods by investigating how changes in pipe wall thickness will affect the transient behaviour of a system; this is done through the analysis of laboratory experiments. The laboratory experiments are carried out on a stainless steel pipeline of constant outside diameter, into which a pipe section of variable wall thickness is inserted. In order to detect the location and severity of these changes in wall conditions within the laboratory system an inverse transient analysis procedure is employed which considers independent variations in wavespeed and diameter. Inverse transient analyses are carried out using a genetic algorithm optimisation routine to match the response from a one-dimensional method of characteristics transient model to the experimental time domain pressure responses. The accuracy of the detection technique is evaluated and benefits associated with various simplifying assumptions and simulation run times are investigated. It is found that for the case investigated, changes in the wavespeed and nominal diameter of the pipeline are both important

  20. Automated estimation of choroidal thickness distribution and volume based on OCT images of posterior visual section.

    Science.gov (United States)

    Vupparaboina, Kiran Kumar; Nizampatnam, Srinath; Chhablani, Jay; Richhariya, Ashutosh; Jana, Soumya

    2015-12-01

    A variety of vision ailments are indicated by anomalies in the choroid layer of the posterior visual section. Consequently, choroidal thickness and volume measurements, usually performed by experts based on optical coherence tomography (OCT) images, have assumed diagnostic significance. Now, to save precious expert time, it has become imperative to develop automated methods. To this end, one requires choroid outer boundary (COB) detection as a crucial step, where difficulty arises as the COB divides the choroidal granularity and the scleral uniformity only notionally, without marked brightness variation. In this backdrop, we measure the structural dissimilarity between choroid and sclera by structural similarity (SSIM) index, and hence estimate the COB by thresholding. Subsequently, smooth COB estimates, mimicking manual delineation, are obtained using tensor voting. On five datasets, each consisting of 97 adult OCT B-scans, automated and manual segmentation results agree visually. We also demonstrate close statistical match (greater than 99.6% correlation) between choroidal thickness distributions obtained algorithmically and manually. Further, quantitative superiority of our method is established over existing results by respective factors of 27.67% and 76.04% in two quotient measures defined relative to observer repeatability. Finally, automated choroidal volume estimation, being attempted for the first time, also yields results in close agreement with that of manual methods. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Firn thickness variations across the Northeast Greenland Ice Stream margins indicating nonlinear densification rates

    Science.gov (United States)

    Riverman, K. L.; Anandakrishnan, S.; Alley, R. B.; Peters, L. E.; Christianson, K. A.; Muto, A.

    2013-12-01

    Northeast Greenland Ice Stream (NEGIS) is the largest ice stream in Greenland, draining approximately 8.4% of the ice sheet's area. The flow pattern and stability mechanism of this ice stream are unique to others in Greenland and Antarctica, and merit further study to ascertain the sensitivity of this ice stream to future climate change. Geophysical methods are valuable tools for this application, but their results are sensitive to the structure of the firn and any spatial variations in firn properties across a given study region. Here we present firn data from a 40-km-long seismic profile across the upper reaches of NEGIS, collected in the summer of 2012 as part of an integrated ground-based geophysical survey. We find considerable variations in firn thickness that are coincident with the ice stream shear margins, where a thinner firn layer is present within the margins, and a thicker, more uniform firn layer is present elsewhere in our study region. Higher accumulation rates in the marginal surface troughs due to drift-snow trapping can account for some of this increased densification; however, our seismic results also highlight enhanced anisotropy within the firn and upper ice column that is confined to narrow bands within the shear margins. We thus interpret these large firn thickness variations and abrupt changes in anisotropy as indicators of firn densification dependent on the effective stress state as well as the overburden pressure, suggesting that the strain rate increases nonlinearly with stress across the shear margins. A GPS strain grid maintained for three weeks across both margins observed strong side shearing, with rapid stretching and then compression along particle paths, indicating large deviatoric stresses in the margins. This work demonstrates the importance of developing a high-resolution firn densification model when conducting geophysical field work in regions possessing a complex ice flow history; it also motivates the need for a more

  2. Validation and Variation of Upper Layer Thickness in South China Sea from Satellite Altimeter Data

    Directory of Open Access Journals (Sweden)

    Nan-Jung Kuo

    2008-06-01

    Full Text Available Satellite altimeter data from 1993 to 2005 has been used to analyze the seasonal variation and the interannual variability of upper layer thickness (ULT in the South China Sea (SCS. Base on in-situ measurements, the ULT is defined as the thickness from the sea surface to the depth of 16°C isotherm which is used to validate the result derived from satellite altimeter data. In comparison with altimeter and in-situ derived ULTs yields a correlation coefficient of 0.92 with a slope of 0.95 and an intercept of 6 m. The basin averaged ULT derived from altimeter is 160 m in winter and 171 m in summer which is similar to the in-situ measurements of 159 m in winter and 175 m in summer. Both results also show similar spatial patterns. It suggests that the sea surface height data derived from satellite sensors are usable for study the variation of ULT in the semi-closed SCS. Furthermore, we also use satellite derived ULT to detect the development of eddy. Interannual variability of two meso-scale cyclonic eddies and one anticyclonic eddy are strongly influenced by El Niño events. In most cases, there are highly positive correlations between ULT and sea surface temperature except the periods of El Niño. During the onset of El Niño event, ULT is deeper when sea surface temperature is lower.

  3. Estimating the thickness of ultra thin sections for electron microscopy by image statistics

    DEFF Research Database (Denmark)

    Sporring, Jon; Khanmohammadi, Mahdieh; Darkner, Sune

    2014-01-01

    We propose a method for estimating the thickness of ultra thin histological sections by image statistics alone. Our method works for images, that are the realisations of a stationary and isotropic stochastic process, and it relies on the existence of statistical image-measures that are strictly m...

  4. Clinical usefulness of facial soft tissues thickness measurement using 3D computed tomographic images

    International Nuclear Information System (INIS)

    Jeong, Ho Gul; Kim, Kee Deog; Hu, Kyung Seok; Lee, Jae Bum; Park, Hyok; Han, Seung Ho; Choi, Seong Ho; Kim, Chong Kwan; Park, Chang Seo

    2006-01-01

    To evaluate clinical usefulness of facial soft tissue thickness measurement using 3D computed tomographic images. One cadaver that had sound facial soft tissues was chosen for the study. The cadaver was scanned with a Helical CT under following scanning protocols about slice thickness and table speed: 3 mm and 3 mm/sec, 5 mm and 5 mm/sec, 7 mm and 7 mm/sec. The acquired data were reconstructed 1.5, 2.5, 3.5 mm reconstruction interval respectively and the images were transferred to a personal computer. Using a program developed to measure facial soft tissue thickness in 3D image, the facial soft tissue thickness was measured. After the ten-time repeation of the measurement for ten times, repeated measure analysis of variance (ANOVA) was adopted to compare and analyze the measurements using the three scanning protocols. Comparison according to the areas was analysed by Mann-Whitney test. There were no statistically significant intraobserver differences in the measurements of the facial soft tissue thickness using the three scanning protocols (p>0.05). There were no statistically significant differences between measurements in the 3 mm slice thickness and those in the 5 mm, 7 mm slice thickness (p>0.05). There were statistical differences in the 14 of the total 30 measured points in the 5 mm slice thickness and 22 in the 7 mm slice thickness. The facial soft tissue thickness measurement using 3D images of 7 mm slice thickness is acceptable clinically, but those of 5 mm slice thickness is recommended for the more accurate measurement

  5. Three-dimensional display of femoral head cartilage thickness maps from MR images

    International Nuclear Information System (INIS)

    Rubin, R.A.; Dolecki, M.; Rubash, H.E.; Thaete, F.L.; Hernden, J.H.

    1990-01-01

    This paper reports on the development of methods for three-dimensional display and analysis of the articular cartilage of the hip from MR images. Cadaveric femoral head specimens were images with three-dimensional GRASS MR imaging. Data were analyzed on a SUN workstation with original software, the ANALYZE package from Richard Robb's Biomedical Research Group at the Mayo Clinic, and SUN's Voxvu program. The articular cartilage was isolated by manually segmenting images. An original computer ray tracing method measured the cartilage thickness radially and produced movies of a rotating femoral head, displaying brightness proportional to cartilage thickness

  6. The effects of slice thickness and reconstructive parameters on VR image quality in multi-slice CT

    International Nuclear Information System (INIS)

    Gao Zhenlong; Wang Qiang; Liu Caixia

    2005-01-01

    Objective: To explore the effects of slice thickness, reconstructive thickness and reconstructive interval on VR image quality in multi-slice CT, in order to select the best slice thickness and reconstructive parameters for the imaging. Methods: Multi-slice CT scan was applied on a rubber dinosaur model with different slice thickness. VR images were reconstructed with different reconstructive thickness and reconstructive interval. Five radiologists were invited to evaluate the quality of the images without knowing anything about the parameters. Results: The slice thickness, reconstructive thickness and reconstructive interval did have effects on VR image quality and the effective degree was different. The effective coefficients were V 1 =1413.033, V 2 =563.733, V 3 =390.533, respectively. The parameters interacted with the others (P<0.05). The smaller of those parameters, the better of the image quality. With a small slice thickness and a reconstructive slice equal to slice thickness, the image quality had no obvious difference when the reconstructive interval was 1/2, 1/3, 1/4 of the slice thickness. Conclusion: A relative small scan slice thickness, a reconstructive slice equal to slice thickness and a reconstructive interval 1/2 of the slice thickness should be selected for the best VR image quality. The image quality depends mostly on the slice thickness. (authors)

  7. Variational PDE Models in Image Processing

    National Research Council Canada - National Science Library

    Chan, Tony F; Shen, Jianhong; Vese, Luminita

    2002-01-01

    .... These include astronomy and aerospace exploration, medical imaging, molecular imaging, computer graphics, human and machine vision, telecommunication, auto-piloting, surveillance video, and biometric...

  8. Thick tissue diffusion model with binding to optimize topical staining in fluorescence breast cancer margin imaging

    Science.gov (United States)

    Xu, Xiaochun; Kang, Soyoung; Navarro-Comes, Eric; Wang, Yu; Liu, Jonathan T. C.; Tichauer, Kenneth M.

    2018-03-01

    Intraoperative tumor/surgical margin assessment is required to achieve higher tumor resection rate in breast-conserving surgery. Though current histology provides incomparable accuracy in margin assessment, thin tissue sectioning and the limited field of view of microscopy makes histology too time-consuming for intraoperative applications. If thick tissue, wide-field imaging can provide an acceptable assessment of tumor cells at the surface of resected tissues, an intraoperative protocol can be developed to guide the surgery and provide immediate feedback for surgeons. Topical staining of margins with cancer-targeted molecular imaging agents has the potential to provide the sensitivity needed to see microscopic cancer on a wide-field image; however, diffusion and nonspecific retention of imaging agents in thick tissue can significantly diminish tumor contrast with conventional methods. Here, we present a mathematical model to accurately simulate nonspecific retention, binding, and diffusion of imaging agents in thick tissue topical staining to guide and optimize future thick tissue staining and imaging protocol. In order to verify the accuracy and applicability of the model, diffusion profiles of cancer targeted and untargeted (control) nanoparticles at different staining times in A431 tumor xenografts were acquired for model comparison and tuning. The initial findings suggest the existence of nonspecific retention in the tissue, especially at the tissue surface. The simulator can be used to compare the effect of nonspecific retention, receptor binding and diffusion under various conditions (tissue type, imaging agent) and provides optimal staining and imaging protocols for targeted and control imaging agent.

  9. Three-dimensional evaluation of cartilage thickness and cartilage volume in the knee joint with MR imaging: reproducibility in volunteers

    International Nuclear Information System (INIS)

    Westhoff, J.; Eckstein, F.; Sittek, H.; Faber, S.; Reiser, M.; Loesch, A.; Englmeier, K.H.; Kolem, H.

    1997-01-01

    Objective: To determine the reproductibility of three-dimensional volume and thickness measurements of the knee joint cartilage with MRI in volunteers. Methods: The knees of 7 healthy individuals (ages 23 to 58 yrs.) were sagitally imaged with a resolution of 2x0.31x0.31 mm 3 , using a fat-suppressed FLASH-3 D sequence. The knee was repositioned in between replicate acquisitions, 6 data sets being obtained in each case. After semiautomatic segmentation and three-dimensional reconstruction of the cartilage, the thickness was determined independent of the original section orientation. The coefficient of variation for repeated volume measurements and the deviations of the maximal cartilage thickness values were calculated subsequently. Results: The mean variation of the cartilage volumes of the replicate measurements was 1.4% (±0.8%) in the patella, 1.7% (±1.5%) in the femur, 3.0% (±1.2%) in the medial tibial plateau and 3.5% (±2.0%) in the lateral tibial plateau. The comparison of the distribution patterns of cartilage thickness yielded a high degree of agreement. Only in rare cases deviations of more than 0.5 mm were observed. Conclusions: The results show that the presented method for determining the quantitative distribution of articular cartilage yields a high degree of precision. It offers new possibilities in screening risk groups, monitoring the course of degenerative joint disease and the investigation of functional adaptation of the cartilage to mechanical loading. (orig.) [de

  10. Variations of retinal nerve fiber layer thickness and ganglion cell-inner plexiform layer thickness according to the torsion direction of optic disc.

    Science.gov (United States)

    Lee, Kang Hoon; Kim, Chan Yun; Kim, Na Rae

    2014-02-20

    To examine the relationship between the optic disc torsion and peripapillary retinal nerve fiber layer (RNFL) thickness through a comparison with the macular ganglion cell inner plexiform layer complex (GCIPL) thickness measured by Cirrus optical coherence tomography (OCT). Ninety-four eyes of 94 subjects with optic disc torsion and 114 eyes of 114 subjects without optic disc torsion were enrolled prospectively. The participants underwent fundus photography and OCT imaging in peripapillary RNFL mode and macular GCIPL mode. The participants were divided into groups according to the presence or absence of optic disc torsion. The eyes with optic disc torsion were further divided into supranasal torsion and inferotemporal torsion groups according to the direction of optic disc torsion. The mean RNFL and GCIPL thicknesses for the quadrants and subsectors were compared. The superior and inferior peak locations of the RNFL were also measured according to the torsion direction. The temporal RNFL thickness was significantly thicker in inferotemporal torsion, whereas the GCIPL thickness at all segments was unaffected. The inferotemporal optic torsion had more temporally positioned superior peak locations of the RNFL than the nontorsion and supranasal-torted optic disc. Thickening of the temporal RNFL with a temporal shift in the superior peak within the eyes with inferotemporal optic disc torsion can lead to interpretation errors. The ganglion cell analysis algorithm can assist in differentiating eyes with optic disc torsion.

  11. Measurement of facial soft tissues thickness using 3D computed tomographic images

    International Nuclear Information System (INIS)

    Jeong, Ho Gul; Kim, Kee Deog; Shin, Dong Won; Hu, Kyung Seok; Lee, Jae Bum; Park, Hyok; Park, Chang Seo; Han, Seung Ho

    2006-01-01

    To evaluate accuracy and reliability of program to measure facial soft tissue thickness using 3D computed tomographic images by comparing with direct measurement. One cadaver was scanned with a Helical CT with 3 mm slice thickness and 3 mm/sec table speed. The acquired data was reconstructed with 1.5 mm reconstruction interval and the images were transferred to a personal computer. The facial soft tissue thickness were measured using a program developed newly in 3D image. For direct measurement, the cadaver was cut with a bone cutter and then a ruler was placed above the cut side. The procedure was followed by taking pictures of the facial soft tissues with a high-resolution digital camera. Then the measurements were done in the photographic images and repeated for ten times. A repeated measure analysis of variance was adopted to compare and analyze the measurements resulting from the two different methods. Comparison according to the areas was analyzed by Mann-Whitney test. There were no statistically significant differences between the direct measurements and those using the 3D images(p>0.05). There were statistical differences in the measurements on 17 points but all the points except 2 points showed a mean difference of 0.5 mm or less. The developed software program to measure the facial soft tissue thickness using 3D images was so accurate that it allows to measure facial soft tissue thickness more easily in forensic science and anthropology

  12. Measurement of facial soft tissues thickness using 3D computed tomographic images

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ho Gul; Kim, Kee Deog; Shin, Dong Won; Hu, Kyung Seok; Lee, Jae Bum; Park, Hyok; Park, Chang Seo [Yonsei Univ. Hospital, Seoul (Korea, Republic of); Han, Seung Ho [Catholic Univ. of Korea, Seoul (Korea, Republic of)

    2006-03-15

    To evaluate accuracy and reliability of program to measure facial soft tissue thickness using 3D computed tomographic images by comparing with direct measurement. One cadaver was scanned with a Helical CT with 3 mm slice thickness and 3 mm/sec table speed. The acquired data was reconstructed with 1.5 mm reconstruction interval and the images were transferred to a personal computer. The facial soft tissue thickness were measured using a program developed newly in 3D image. For direct measurement, the cadaver was cut with a bone cutter and then a ruler was placed above the cut side. The procedure was followed by taking pictures of the facial soft tissues with a high-resolution digital camera. Then the measurements were done in the photographic images and repeated for ten times. A repeated measure analysis of variance was adopted to compare and analyze the measurements resulting from the two different methods. Comparison according to the areas was analyzed by Mann-Whitney test. There were no statistically significant differences between the direct measurements and those using the 3D images(p>0.05). There were statistical differences in the measurements on 17 points but all the points except 2 points showed a mean difference of 0.5 mm or less. The developed software program to measure the facial soft tissue thickness using 3D images was so accurate that it allows to measure facial soft tissue thickness more easily in forensic science and anthropology.

  13. Thickness measurement by two-sided step-heating thermal imaging

    Science.gov (United States)

    Li, Xiaoli; Tao, Ning; Sun, J. G.; Zhang, Cunlin; Zhao, Yuejin

    2018-01-01

    Infrared thermal imaging is a promising nondestructive technique for thickness prediction. However, it is usually thought to be only appropriate for testing the thickness of thin objects or near-surface structures. In this study, we present a new two-sided step-heating thermal imaging method which employed a low-cost portable halogen lamp as the heating source and verified it with two stainless steel step wedges with thicknesses ranging from 5 mm to 24 mm. We first derived the one-dimensional step-heating thermography theory with the consideration of warm-up time of the lamp, and then applied the nonlinear regression method to fit the experimental data by the derived function to determine the thickness. After evaluating the reliability and accuracy of the experimental results, we concluded that this method is capable of testing thick objects. In addition, we provided the criterions for both the required data length and the applicable thickness range of the testing material. It is evident that this method will broaden the thermal imaging application for thickness measurement.

  14. Eggshell thickness variation in red-legged partridge (Alectoris rufa) from Spain

    DEFF Research Database (Denmark)

    Castilla, Aurora M.; de Aragón, Juan Martínez; Herrel, Anthony

    2009-01-01

    Eggshell thickness is commonly used as an indicator of habitat quality and effects of environmental pollution on avian reproduction. We present the first data available on eggshell thickness for Red-legged Partridge (Alectoris rufa) in Spain. We compared eggshell thickness between eggs collected...

  15. US and MR imaging in the assessment of cartilage cap thickness in osteocartilaginous exostoses

    International Nuclear Information System (INIS)

    Prayer, L.

    1990-01-01

    This paper determines the accuracy of high- resolution real-time US and MR imaging in the assessment of cartilage cap thickness in osteocartilaginous exostoses, an important feature that may suggest malignant transformation. Sonography and MR imaging (T1- and T2-weighted spin-echo [SE] sequences, fast imaging with steady precession [FISP] sequence) of 14 patients were performed prospectively; all patients underwent surgical excision. US and MR results were compared with findings in those assessed pathoanatomically

  16. Variation of structure and magnetic properties with thickness of thin Co59Fe26Ni15 films

    NARCIS (Netherlands)

    Chechenin, NG; van Voorthuysen, EHD; De Hosson, JTM; Boerma, DO

    Variations of phase composition and magnetic properties of electrodeposited nanocrystalline Co-Fe-Ni films with film thickness in the range of 50-500 nm were analyzed. The samples were magnetically soft with coercivity in the range H-c = 2-20 Oe and uni axial magnetic anisotropy up to H-k = 20 Oe.

  17. Structure of carbon monoxide time variations in the atmospheric thickness over Central Eurasia (Issyk Kul Monitoring Station)

    Science.gov (United States)

    Aref'ev, V. N.; Kashin, F. V.; Orozaliev, M. D.; Sizov, N. I.; Sinyakov, V. P.; Sorokina, L. I.

    2013-03-01

    The results of measurements of the CO content in the atmospheric thickness by the method of solar molecular-absorption spectroscopy are presented. Over 87 months of observations, the annual mean CO content decreased by ˜19% at a mean rate of changes equal to -(0.14 ± 0.02) atm cm per year. Maxima and minima of seasonal variations most often fall on February and September, respectively. The mean overall amplitude of changes in the CO content during the annual cycle is about 50% of the mean value. The Fourier analysis revealed variations in the CO composition with periods from 3 to 84 months. A simple statistical model satisfactorily describes time changes in the CO content in the atmospheric thickness. The results of measurements of the CO content in the atmospheric thickness are compared with the data of CO measurements in samples of surface air at stations of the Global Atmospheric Watch.

  18. Subcutaneous Tissue Thickness is an Independent Predictor of Image Noise in Cardiac CT

    International Nuclear Information System (INIS)

    Staniak, Henrique Lane; Sharovsky, Rodolfo; Pereira, Alexandre Costa; Castro, Cláudio Campi de; Benseñor, Isabela M.; Lotufo, Paulo A.; Bittencourt, Márcio Sommer

    2014-01-01

    Few data on the definition of simple robust parameters to predict image noise in cardiac computed tomography (CT) exist. To evaluate the value of a simple measure of subcutaneous tissue as a predictor of image noise in cardiac CT. 86 patients underwent prospective ECG-gated coronary computed tomographic angiography (CTA) and coronary calcium scoring (CAC) with 120 kV and 150 mA. The image quality was objectively measured by the image noise in the aorta in the cardiac CTA, and low noise was defined as noise < 30HU. The chest anteroposterior diameter and lateral width, the image noise in the aorta and the skin-sternum (SS) thickness were measured as predictors of cardiac CTA noise. The association of the predictors and image noise was performed by using Pearson correlation. The mean radiation dose was 3.5 ± 1.5 mSv. The mean image noise in CT was 36.3 ± 8.5 HU, and the mean image noise in non-contrast scan was 17.7 ± 4.4 HU. All predictors were independently associated with cardiac CTA noise. The best predictors were SS thickness, with a correlation of 0.70 (p < 0.001), and noise in the non-contrast images, with a correlation of 0.73 (p < 0.001). When evaluating the ability to predict low image noise, the areas under the ROC curve for the non-contrast noise and for the SS thickness were 0.837 and 0.864, respectively. Both SS thickness and CAC noise are simple accurate predictors of cardiac CTA image noise. Those parameters can be incorporated in standard CT protocols to adequately adjust radiation exposure

  19. Subcutaneous Tissue Thickness is an Independent Predictor of Image Noise in Cardiac CT

    Energy Technology Data Exchange (ETDEWEB)

    Staniak, Henrique Lane; Sharovsky, Rodolfo [Hospital Universitário - Universidade de São Paulo, São Paulo, SP (Brazil); Pereira, Alexandre Costa [Hospital das Clínicas - Universidade de São Paulo, São Paulo, SP (Brazil); Castro, Cláudio Campi de; Benseñor, Isabela M.; Lotufo, Paulo A. [Hospital Universitário - Universidade de São Paulo, São Paulo, SP (Brazil); Faculdade de Medicina - Universidade de São Paulo, São Paulo, SP (Brazil); Bittencourt, Márcio Sommer, E-mail: msbittencourt@mail.harvard.edu [Hospital Universitário - Universidade de São Paulo, São Paulo, SP (Brazil)

    2014-01-15

    Few data on the definition of simple robust parameters to predict image noise in cardiac computed tomography (CT) exist. To evaluate the value of a simple measure of subcutaneous tissue as a predictor of image noise in cardiac CT. 86 patients underwent prospective ECG-gated coronary computed tomographic angiography (CTA) and coronary calcium scoring (CAC) with 120 kV and 150 mA. The image quality was objectively measured by the image noise in the aorta in the cardiac CTA, and low noise was defined as noise < 30HU. The chest anteroposterior diameter and lateral width, the image noise in the aorta and the skin-sternum (SS) thickness were measured as predictors of cardiac CTA noise. The association of the predictors and image noise was performed by using Pearson correlation. The mean radiation dose was 3.5 ± 1.5 mSv. The mean image noise in CT was 36.3 ± 8.5 HU, and the mean image noise in non-contrast scan was 17.7 ± 4.4 HU. All predictors were independently associated with cardiac CTA noise. The best predictors were SS thickness, with a correlation of 0.70 (p < 0.001), and noise in the non-contrast images, with a correlation of 0.73 (p < 0.001). When evaluating the ability to predict low image noise, the areas under the ROC curve for the non-contrast noise and for the SS thickness were 0.837 and 0.864, respectively. Both SS thickness and CAC noise are simple accurate predictors of cardiac CTA image noise. Those parameters can be incorporated in standard CT protocols to adequately adjust radiation exposure.

  20. Hip fracture and anthropometric variations: dominance among trochanteric soft tissue thickness, body height and body weight during sideways fall.

    Science.gov (United States)

    Majumder, Santanu; Roychowdhury, Amit; Pal, Subrata

    2013-01-01

    Hip fracture depends on various anthropometric parameters such as trochanteric soft tissue thickness, body height and body weight. The objective was to evaluate the responses to the variations in anthropometric parameters during sideways fall, and to identify the most dominant parameter among them. Seven finite element models were developed having anthropometric variations in trochanteric soft tissue thickness (5-26 mm), body height (1.70-1.88 m), and body weight (63-93.37 kg). These were simulated for sideways fall with ANSYS-LS-DYNA® code. Significant effect of trochanteric soft tissue thickness variation was found on 'normalized peak impact force with respect to the body weight' (p=0.004, r²=0.808) and strain ratio (p=0.083, r²=0.829). But, variation in body height was found to be less significant on normalized peak impact force (p=0.478, r²=0.105) and strain ratio (p=0.292, r²=0.217). Same was true for the variation in body weight on normalized peak impact force (p=0.075, r²=0.456) and strain ratio (p=0.857, r²=0.007). The risk factor for fracture was also well correlated to the strain ratio for the inter-trochanteric zone (pfractures are clinically observed to happen. Trochanteric soft tissue thickness was found likely to be the most dominant parameter over body height and body weight, signifying that a slimmer elderly person, taller or shorter, with less trochanteric soft tissue thickness should be advised to take preventive measures against hip fracture under sideways fall. © 2013.

  1. Using optical remote sensing model to estimate oil slick thickness based on satellite image

    International Nuclear Information System (INIS)

    Lu, Y C; Tian, Q J; Lyu, C G; Fu, W X; Han, W C

    2014-01-01

    An optical remote sensing model has been established based on two-beam interference theory to estimate marine oil slick thickness. Extinction coefficient and normalized reflectance of oil are two important parts in this model. Extinction coefficient is an important inherent optical property and will not vary with the background reflectance changed. Normalized reflectance can be used to eliminate the background differences between in situ measured spectra and remotely sensing image. Therefore, marine oil slick thickness and area can be estimated and mapped based on optical remotely sensing image and extinction coefficient

  2. Normative data of outer photoreceptor layer thickness obtained by software image enhancing based on Stratus optical coherence tomography images

    DEFF Research Database (Denmark)

    Christensen, U.C.; Krøyer, K.; Thomadsen, Jakob

    2008-01-01

    backscattered light within the outer nuclear layer (ONL) in the fovea was registered and compared with backscattered light within the ONL in the peripheral part of the macula (I-ratio-ONL). Results: The mean RPE-OScomplex thickness in the foveal centre was 77.2 mu m (SD = 3.95). The RPE-OScomplex thickness...... in the superior macula 0.5-3 mm of the centre was significantly increased as compared with the corresponding inferior retina. In healthy subjects, the I-ratio-ONL was 1.06. Conclusions: Contrast-enhanced OCT images enable quantification of outer photoreceptor layer thickness, and normative values may help...

  3. Comparison of Maximal Wall Thickness in Hypertrophic Cardiomyopathy Differs Between Magnetic Resonance Imaging and Transthoracic Echocardiography.

    Science.gov (United States)

    Bois, John P; Geske, Jeffrey B; Foley, Thomas A; Ommen, Steve R; Pellikka, Patricia A

    2017-02-15

    Left ventricular (LV) wall thickness is a prognostic marker in hypertrophic cardiomyopathy (HC). LV wall thickness ≥30 mm (massive hypertrophy) is independently associated with sudden cardiac death. Presence of massive hypertrophy is used to guide decision making for cardiac defibrillator implantation. We sought to determine whether measurements of maximal LV wall thickness differ between cardiac magnetic resonance imaging (MRI) and transthoracic echocardiography (TTE). Consecutive patients were studied who had HC without previous septal ablation or myectomy and underwent both cardiac MRI and TTE at a single tertiary referral center. Reported maximal LV wall thickness was compared between the imaging techniques. Patients with ≥1 technique reporting massive hypertrophy received subset analysis. In total, 618 patients were evaluated from January 1, 2003, to December 21, 2012 (mean [SD] age, 53 [15] years; 381 men [62%]). In 75 patients (12%), reported maximal LV wall thickness was identical between MRI and TTE. Median difference in reported maximal LV wall thickness between the techniques was 3 mm (maximum difference, 17 mm). Of the 63 patients with ≥1 technique measuring maximal LV wall thickness ≥30 mm, 44 patients (70%) had discrepant classification regarding massive hypertrophy. MRI identified 52 patients (83%) with massive hypertrophy; TTE, 30 patients (48%). Although guidelines recommend MRI or TTE imaging to assess cardiac anatomy in HC, this study shows discrepancy between the techniques for maximal reported LV wall thickness assessment. In conclusion, because this measure clinically affects prognosis and therapeutic decision making, efforts to resolve these discrepancies are critical. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Observation of normal appearance and wall thickness of esophagus on CT images

    International Nuclear Information System (INIS)

    Xia Fan; Mao Jingfang; Ding Jinquan; Yang Huanjun

    2009-01-01

    Purpose: This study sought to observe the appearance of normal esophagus, measure and record the thickness of esophageal wall in order to offer reference for estimating esophageal wall abnormalities and delineating gross tumor target of esophageal carcinomas on CT images. Materials and methods: From September 2006 to February 2007, 110 consecutive CT films from adult patients without esophageal diseases were collected and studied. On CT images the entire esophagus was divided into cervical, thoracic, retrocardiac and intraabdominal segments. The appearance of esophagus was described when the esophagus contracted or dilated. Thickness of esophageal wall and diameters of esophageal cavities were measured by hard-copy reading with a magnifying glass. Age, sex and the thickness of subcutaneous fat of each patient were recorded. Results: It was observed that the esophagus presented both contracted and dilated status on CT images. In each segment there were certain portions of esophagus in complete contraction or dilatation. 47 images (42.7%) showed contracted esophagus in each segment available for measurement. The largest wall thickness when esophagus was in contraction and dilatation was 4.70 (95%CI: 4.44-4.95) mm and 2.11 (95%CI: 2.00-2.23) mm, respectively. When contracting, the intraabdominal esophagus was thicker than the cervical, thoracic and retrocardiac parts, and the average thickness was 5.68 (95%CI: 5.28-6.09) mm, 4.67 (95%CI: 4.36-4.86) mm, 4.56 (95%CI: 4.31-4.87) mm, and 4.05 (95%CI: 3.71-4.21) mm, respectively. When the esophagus was dilating, the average esophageal wall thickness was between 1.87 and 2.70 mm. The thickest part was cervical esophagus. Thickness of esophageal wall was larger in males than that of females (5.26 mm vs. 4.34 mm p < 0.001). Age and the thickness of subcutaneous fat had no significant impact on the thickness of esophageal wall (p-value was 0.056 and 0.173, respectively). Conclusion: The Observation of normal appearance and

  5. 3D electroplated inductors with thickness variation for improved broadband performance

    Science.gov (United States)

    Farm-Guoo Tseng, Victor; Bedair, Sarah S.; Lazarus, Nathan

    2017-01-01

    The performance of an RF spiral inductor is based on the balance between ohmic losses in the outer turns and eddy current losses dominant in the inner turns where the magnetic field is the strongest. In this work, air-core spiral inductors with winding trace thicknesses decreasing towards the center are demonstrated, achieving quality factor improvement over a wide frequency range compared to uniform thickness inductors. A custom 3D copper electroplating process was used to produce spiral inductors with varying winding thicknesses in a single plating step, with patterned gaps in a seed layer used to create delays in the vertical plating. The fabricated center-lowered coil inductors were 80 nH within a one square millimeter area with thickness varying from 60 µm to 10 µm from outer to inner winding. Within the 16 MHz-160 MHz range, the center-lowered inductors were shown to have a maximum to minimum quality factor improvement of 90%-10% when compared to uniform thickness inductors with thicknesses ranging from 60 µm to 10 µm. Compared to the 20 µm uniform thickness inductor which has the optimal performance among all uniform thickness inductors in this frequency range, the center-lowered inductors were shown to achieve a maximum quality factor improvement of 20% at the edge frequencies of 16 MHz and 160 MHz, and a minimum quality factor improvement of 10% near the geometric mean center frequency of 46 MHz.

  6. A Method for Qualitative Mapping of Thick Oil Spills Using Imaging Spectroscopy

    Science.gov (United States)

    Clark, Roger N.; Swayze, Gregg A.; Leifer, Ira; Livo, K. Eric; Lundeen, Sarah; Eastwood, Michael; Green, Robert O.; Kokaly, Raymond F.; Hoefen, Todd; Sarture, Charles; McCubbin, Ian; Roberts, Dar; Steele, Denis; Ryan, Thomas; Dominguez, Roseanne; Pearson, Neil; ,

    2010-01-01

    A method is described to create qualitative images of thick oil in oil spills on water using near-infrared imaging spectroscopy data. The method uses simple 'three-point-band depths' computed for each pixel in an imaging spectrometer image cube using the organic absorption features due to chemical bonds in aliphatic hydrocarbons at 1.2, 1.7, and 2.3 microns. The method is not quantitative because sub-pixel mixing and layering effects are not considered, which are necessary to make a quantitative volume estimate of oil.

  7. Image quality dependence on thickness of sliced rat kidney taken by a simplest DEI construction

    Energy Technology Data Exchange (ETDEWEB)

    Li Gang [Institute of High Energy Physics, Chinese Academy of Science, Yuquan Rd. No 19, Beijing 100039 (China)]. E-mail: lig@ihep.ac.cn; Chen Zhihua [China-Japan Friendship Institute of Clinical Medical Science, Yinghua Rd., Beijing 100029 (China); Wu Ziyu [Institute of High Energy Physics, Chinese Academy of Science, Yuquan Rd. No 19, Beijing 100039 (China); Ando, M. [Photon Factory, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Pan Lin [China-Japan Friendship Institute of Clinical Medical Science, Yinghua Rd., Beijing 100029 (China); Wang, J.Y. [Institute of High Energy Physics, Chinese Academy of Science, Yuquan Rd. No 19, Beijing 100039 (China); Jiang, X.M. [Institute of High Energy Physics, Chinese Academy of Science, Yuquan Rd. No 19, Beijing 100039 (China)

    2005-08-11

    The excised rat kidney slices were investigated using a simplified diffraction-enhanced imaging (DEI) configuration with only two crystals: the first one working as monochromator and the second one working as analyzer in the Bragg geometry that was developed at Beijing Synchrotron Radiation Facility (BSRF). Many fine anatomic structures of the sliced rat kidneys with thickness of 2mm and 120{mu}m can be distinguished clearly in the DEI images that were obtained at the shoulder of a rocking curve. The authors would like to emphasize that the thick and thin slices DEI provides very different images; in the thick sample only the structure with the big density gradient or that near the surface where X-ray comes out can be distinguished, while in the thin ones some fine structures, which can not be distinguished at the thick sample under the same condition, can be seen very clearly. The reason related with the counteraction of {delta}(x,y,z) gradient in the integral process along the X-ray path inside the thick sample is discussed.

  8. Quantifying bone thickness, light transmission, and contrast interrelationships in transcranial photoacoustic imaging

    Science.gov (United States)

    Lediju Bell, Muyinatu A.; Ostrowski, Anastasia K.; Li, Ke; Kaanzides, Peter; Boctor, Emad

    2015-03-01

    We previously introduced photoacoustic imaging to detect blood vessels surrounded by bone and thereby eliminate the deadly risk of carotid artery injury during endonasal, transsphenoidal surgeries. Light would be transmitted through an optical fiber attached to the surgical drill, while a transcranial probe placed on the temporal region of the skull receives photoacoustic signals. This work quantifies changes in photoacoustic image contrast as the sphenoid bone is drilled. Frontal bone from a human adult cadaver skull was cut into seven 3 cm x 3 cm chips and sanded to thicknesses ranging 1-4 mm. For 700-940 nm wavelengths, the average optical transmission through these specimens increased from 19% to 44% as bone thickness decreased, with measurements agreeing with Monte Carlo simulations within 5%. These skull specimens were individually placed in the optical pathway of a 3.5 mm diameter, cylindrical, vessel-mimicking photoacoustic target, as the laser wavelength was varied between 700-940 nm. The mean optical insertion loss and photoacoustic image contrast loss due to the bone specimens were 56-80% and 46-79%, respectively, with the majority of change observed when the bone was <=2 mm thick. The decrease in contrast is directly proportional to insertion loss over this thickness range by factors of 0.8-1.1 when multiple wavelengths are considered. Results suggest that this proportional relationship may be used to determine the amount of bone that remains to be drilled when the thickness is 2 mm or less.

  9. Image quality dependence on thickness of sliced rat kidney taken by a simplest DEI construction

    International Nuclear Information System (INIS)

    Li Gang; Chen Zhihua; Wu Ziyu; Ando, M.; Pan Lin; Wang, J.Y.; Jiang, X.M.

    2005-01-01

    The excised rat kidney slices were investigated using a simplified diffraction-enhanced imaging (DEI) configuration with only two crystals: the first one working as monochromator and the second one working as analyzer in the Bragg geometry that was developed at Beijing Synchrotron Radiation Facility (BSRF). Many fine anatomic structures of the sliced rat kidneys with thickness of 2mm and 120μm can be distinguished clearly in the DEI images that were obtained at the shoulder of a rocking curve. The authors would like to emphasize that the thick and thin slices DEI provides very different images; in the thick sample only the structure with the big density gradient or that near the surface where X-ray comes out can be distinguished, while in the thin ones some fine structures, which can not be distinguished at the thick sample under the same condition, can be seen very clearly. The reason related with the counteraction of δ(x,y,z) gradient in the integral process along the X-ray path inside the thick sample is discussed

  10. Application of indocyanine green-fluorescence imaging to full-thickness cholecystectomy.

    Science.gov (United States)

    Morita, Kiyomi; Ishizawa, Takeaki; Tani, Keigo; Harada, Nobuhiro; Shimizu, Atsushi; Yamamoto, Satoshi; Takemura, Nobuyuki; Kaneko, Junichi; Aoki, Taku; Sakamoto, Yoshihiro; Sugawara, Yasuhiko; Hasegawa, Kiyoshi; Kokudo, Norihiro

    2014-05-01

    Fluorescence imaging using indocyanine green (ICG) has recently been applied to laparoscopic surgery to identify cancerous tissues, lymph nodes, and vascular anatomy. Here we report the application of ICG-fluorescence imaging to visualize the boundary between the liver and subserosal tissues of the gallbladder during laparoscopic full-thickness cholecystectomy. A patient with a potentially malignant gallbladder lesion was administered 2.5-mg intravenous ICG just before laparoscopic full-thickness cholecystectomy. Intraoperative fluorescence imaging enabled the real-time delineation of both extrahepatic bile duct anatomy and hepatic parenchyma throughout the procedure, which resulted in complete removal of subserosal tissues between liver and gallbladder. Safe and feasible ICG-fluorescence imaging can be widely applied to laparoscopic hepatobiliary surgery by utilizing a biliary excretion property of ICG. © 2014 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Wiley Publishing Asia Pty Ltd.

  11. Topographical Variation of Human Femoral Articular Cartilage Thickness, T1rho and T2 Relaxation Times Is Related to Local Loading during Walking.

    Science.gov (United States)

    Van Rossom, Sam; Wesseling, Mariska; Van Assche, Dieter; Jonkers, Ilse

    2018-01-01

    Objective Early detection of degenerative changes in the cartilage matrix composition is essential for evaluating early interventions that slow down osteoarthritis (OA) initiation. T1rho and T2 relaxation times were found to be effective for detecting early changes in proteoglycan and collagen content. To use these magnetic resonance imaging (MRI) methods, it is important to document the topographical variation in cartilage thickness, T1rho and T2 relaxation times in a healthy population. As OA is partially mechanically driven, the relation between these MRI-based parameters and localized mechanical loading during walking was investigated. Design MR images were acquired in 14 healthy adults and cartilage thickness and T1rho and T2 relaxation times were determined. Experimental gait data was collected and processed using musculoskeletal modeling to identify weight-bearing zones and estimate the contact force impulse during gait. Variation of the cartilage properties (i.e., thickness, T1rho, and T2) over the femoral cartilage was analyzed and compared between the weight-bearing and non-weight-bearing zone of the medial and lateral condyle as well as the trochlea. Results Medial condyle cartilage thickness was correlated to the contact force impulse ( r = 0.78). Lower T1rho, indicating increased proteoglycan content, was found in the medial weight-bearing zone. T2 was higher in all weight-bearing zones compared with the non-weight-bearing zones, indicating lower relative collagen content. Conclusions The current results suggest that medial condyle cartilage is adapted as a long-term protective response to localized loading during a frequently performed task and that the weight-bearing zone of the medial condyle has superior weight bearing capacities compared with the non-weight-bearing zones.

  12. Fast magnetic resonance imaging based on high degree total variation

    Science.gov (United States)

    Wang, Sujie; Lu, Liangliang; Zheng, Junbao; Jiang, Mingfeng

    2018-04-01

    In order to eliminating the artifacts and "staircase effect" of total variation in Compressive Sensing MRI, high degree total variation model is proposed for dynamic MRI reconstruction. the high degree total variation regularization term is used as a constraint to reconstruct the magnetic resonance image, and the iterative weighted MM algorithm is proposed to solve the convex optimization problem of the reconstructed MR image model, In addtion, one set of cardiac magnetic resonance data is used to verify the proposed algorithm for MRI. The results show that the high degree total variation method has a better reconstruction effect than the total variation and the total generalized variation, which can obtain higher reconstruction SNR and better structural similarity.

  13. Correlation between subcutaneous knee fat thickness and chondromalacia patellae on magnetic resonance imaging of the knee.

    LENUS (Irish Health Repository)

    Kok, Hong Kuan

    2013-08-01

    Chondromalacia patellae is a common cause of anterior knee pain in young patients and can be detected noninvasively with magnetic resonance imaging (MRI). The purpose of our study was to evaluate the correlation between subcutaneous fat thickness around the knee joint on axial MRIs as a surrogate marker of obesity, with the presence or absence of chondromalacia patellae.

  14. Retinal nerve fiber layer thickness map determined from optical coherence tomography images

    NARCIS (Netherlands)

    Mujat, M.; Chan, R. C.; Cense, B.; Park, B.H.; Joo, C.; Akkin, T.; Chen, TC; de Boer, JF

    2005-01-01

    We introduce a method to determine the retinal nerve fiber layer (RNFL) thickness in OCT images based on anisotropic noise suppression and deformable splines. Spectral-Domain Optical Coherence Tomography (SDOCT) data was acquired at 29 kHz A-line rate with a depth resolution of 2.6 mum and a depth

  15. Fractional Regularization Term for Variational Image Registration

    Directory of Open Access Journals (Sweden)

    Rafael Verdú-Monedero

    2009-01-01

    Full Text Available Image registration is a widely used task of image analysis with applications in many fields. Its classical formulation and current improvements are given in the spatial domain. In this paper a regularization term based on fractional order derivatives is formulated. This term is defined and implemented in the frequency domain by translating the energy functional into the frequency domain and obtaining the Euler-Lagrange equations which minimize it. The new regularization term leads to a simple formulation and design, being applicable to higher dimensions by using the corresponding multidimensional Fourier transform. The proposed regularization term allows for a real gradual transition from a diffusion registration to a curvature registration which is best suited to some applications and it is not possible in the spatial domain. Results with 3D actual images show the validity of this approach.

  16. Influence of Thickness Variation on the Flapping Performance of Symmetric NACA Airfoils in Plunging Motion

    Directory of Open Access Journals (Sweden)

    Liangyu Zhao

    2010-01-01

    Full Text Available In order to investigate the impact of airfoil thickness on flapping performance, the unsteady flow fields of a family of airfoils from an NACA0002 airfoil to an NACA0020 airfoil in a pure plunging motion and a series of altered NACA0012 airfoils in a pure plunging motion were simulated using computational fluid dynamics techniques. The “class function/shape function transformation“ parametric method was employed to decide the coordinates of these altered NACA0012 airfoils. Under specified plunging kinematics, it is observed that the increase of an airfoil thickness can reduce the leading edge vortex (LEV in strength and delay the LEV shedding. The increase of the maximum thickness can enhance the time-averaged thrust coefficient and the propulsive efficiency without lift reduction. As the maximum thickness location moves towards the leading edge, the airfoil obtains a larger time-averaged thrust coefficient and a higher propulsive efficiency without changing the lift coefficient.

  17. Variation of the critical slab thickness with the degree of strongly anisotropic scattering in one-speed neutron transport theory

    International Nuclear Information System (INIS)

    Yildiz, C.

    1998-01-01

    The critical slab problem is studied in one-speed neutron transport theory using a linearly anisotropic kernel which combines forward and backward scattering. It is shown that, the recently observed non-monotonic variation of the thickness also exists in this strongly anisotropic case. In addition, the influence of the linear anisotropy on the critical thickness is analysed in detail. Numerical analysis for the critical thickness are performed using the spherical harmonics method and results are tabulated for selected illustrative cases as a function of different degrees of anisotropic scattering. Finally, some results are discussed and compared with those already obtained by other methods, the agreement is satisfactory. The spherical harmonic method gives generally accurate results in one dimensional geometry, and it is very suitable for the numerical solution of the neutron transport equation with linearly anisotropic scattering

  18. Semi-automated Digital Imaging and Processing System for Measuring Lake Ice Thickness

    Science.gov (United States)

    Singh, Preetpal

    Canada is home to thousands of freshwater lakes and rivers. Apart from being sources of infinite natural beauty, rivers and lakes are an important source of water, food and transportation. The northern hemisphere of Canada experiences extreme cold temperatures in the winter resulting in a freeze up of regional lakes and rivers. Frozen lakes and rivers tend to offer unique opportunities in terms of wildlife harvesting and winter transportation. Ice roads built on frozen rivers and lakes are vital supply lines for industrial operations in the remote north. Monitoring the ice freeze-up and break-up dates annually can help predict regional climatic changes. Lake ice impacts a variety of physical, ecological and economic processes. The construction and maintenance of a winter road can cost millions of dollars annually. A good understanding of ice mechanics is required to build and deem an ice road safe. A crucial factor in calculating load bearing capacity of ice sheets is the thickness of ice. Construction costs are mainly attributed to producing and maintaining a specific thickness and density of ice that can support different loads. Climate change is leading to warmer temperatures causing the ice to thin faster. At a certain point, a winter road may not be thick enough to support travel and transportation. There is considerable interest in monitoring winter road conditions given the high construction and maintenance costs involved. Remote sensing technologies such as Synthetic Aperture Radar have been successfully utilized to study the extent of ice covers and record freeze-up and break-up dates of ice on lakes and rivers across the north. Ice road builders often used Ultrasound equipment to measure ice thickness. However, an automated monitoring system, based on machine vision and image processing technology, which can measure ice thickness on lakes has not been thought of. Machine vision and image processing techniques have successfully been used in manufacturing

  19. Morphology and epidermal thickness of normal skin imaged by optical coherence tomography

    DEFF Research Database (Denmark)

    Mogensen, Mette; Morsy, Hanan A.; Thrane, Lars

    2008-01-01

    colour. Methods: OCT imaging is based on infrared light reflection/backscatter from tissue. PS-OCT detects birefringence of tissue. Imaging was performed in 12 skin regions. ET was calculated from the OCT images. Results: Normal skin has a layered structure. Layering is less pronounced in adults......Background: Optical coherence tomography (OCT) is an optical imaging technology with a potential in the non-invasive diagnosis of skin cancer. To identify skin pathologies using OCT, it is of prime importance to establish baseline morphological features of normal skin. Aims: The aim of this study...... is to describe normal skin morphology using OCT and polarization-sensitive OCT (PS-OCT), which is a way of representing birefringent tissue such as collagen in OCT images. Anatomical locations in 20 healthy volunteers were imaged, and epidermal thickness (ET) was measured and compared to age, gender and skin...

  20. Enhancement of Efficiency and Reduction of Grid Thickness Variation on Casting Process with Lean Six Sigma Method

    Science.gov (United States)

    Witantyo; Setyawan, David

    2018-03-01

    In a lead acid battery industry, grid casting is a process that has high defect and thickness variation level. DMAIC (Define-Measure-Analyse-Improve-Control) method and its tools will be used to improve the casting process. In the Define stage, it is used project charter and SIPOC (Supplier Input Process Output Customer) method to map the existent problem. In the Measure stage, it is conducted a data retrieval related to the types of defect and the amount of it, also the grid thickness variation that happened. And then the retrieved data is processed and analyzed by using 5 Why’s and FMEA method. In the Analyze stage, it is conducted a grid observation that experience fragile and crack type of defect by using microscope showing the amount of oxide Pb inclusion in the grid. Analysis that is used in grid casting process shows the difference of temperature that is too high between the metal fluid and mold temperature, also the corking process that doesn’t have standard. The Improve stage is conducted a fixing process which generates the reduction of grid variation thickness level and defect/unit level from 9,184% to 0,492%. In Control stage, it is conducted a new working standard determination and already fixed control process.

  1. Semiautomatic vessel wall detection and quantification of wall thickness in computed tomography images of human abdominal aortic aneurysms

    International Nuclear Information System (INIS)

    Shum, Judy; DiMartino, Elena S.; Goldhammer, Adam; Goldman, Daniel H.; Acker, Leah C.; Patel, Gopal; Ng, Julie H.; Martufi, Giampaolo; Finol, Ender A.

    2010-01-01

    Purpose: Quantitative measurements of wall thickness in human abdominal aortic aneurysms (AAAs) may lead to more accurate methods for the evaluation of their biomechanical environment. Methods: The authors describe an algorithm for estimating wall thickness in AAAs based on intensity histograms and neural networks involving segmentation of contrast enhanced abdominal computed tomography images. The algorithm was applied to ten ruptured and ten unruptured AAA image data sets. Two vascular surgeons manually segmented the lumen, inner wall, and outer wall of each data set and a reference standard was defined as the average of their segmentations. Reproducibility was determined by comparing the reference standard to lumen contours generated automatically by the algorithm and a commercially available software package. Repeatability was assessed by comparing the lumen, outer wall, and inner wall contours, as well as wall thickness, made by the two surgeons using the algorithm. Results: There was high correspondence between automatic and manual measurements for the lumen area (r=0.978 and r=0.996 for ruptured and unruptured aneurysms, respectively) and between vascular surgeons (r=0.987 and r=0.992 for ruptured and unruptured aneurysms, respectively). The authors' automatic algorithm showed better results when compared to the reference with an average lumen error of 3.69%, which is less than half the error between the commercially available application Simpleware and the reference (7.53%). Wall thickness measurements also showed good agreement between vascular surgeons with average coefficients of variation of 10.59% (ruptured aneurysms) and 13.02% (unruptured aneurysms). Ruptured aneurysms exhibit significantly thicker walls (1.78±0.39 mm) than unruptured ones (1.48±0.22 mm), p=0.044. Conclusions: While further refinement is needed to fully automate the outer wall segmentation algorithm, these preliminary results demonstrate the method's adequate reproducibility and

  2. Statistical analysis of support thickness and particle size effects in HRTEM imaging of metal nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    House, Stephen D., E-mail: sdh46@pitt.edu [Chemical and Petroleum Engineering, and Physics, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Bonifacio, Cecile S.; Grieshaber, Ross V.; Li, Long; Zhang, Zhongfan [Chemical and Petroleum Engineering, and Physics, University of Pittsburgh, Pittsburgh, PA 15261 (United States); Ciston, Jim [National Center of Electron Microscopy, Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Stach, Eric A. [Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973 (United States); Yang, Judith C. [Chemical and Petroleum Engineering, and Physics, University of Pittsburgh, Pittsburgh, PA 15261 (United States)

    2016-10-15

    High-resolution transmission electron microscopy (HRTEM) examination of nanoparticles requires their placement on some manner of support – either TEM grid membranes or part of the material itself, as in many heterogeneous catalyst systems – but a systematic quantification of the practical imaging limits of this approach has been lacking. Here we address this issue through a statistical evaluation of how nanoparticle size and substrate thickness affects the ability to resolve structural features of interest in HRTEM images of metallic nanoparticles on common support membranes. The visibility of lattice fringes from crystalline Au nanoparticles on amorphous carbon and silicon supports of varying thickness was investigated with both conventional and aberration-corrected TEM. Over the 1–4 nm nanoparticle size range examined, the probability of successfully resolving lattice fringes differed significantly as a function both of nanoparticle size and support thickness. Statistical analysis was used to formulate guidelines for the selection of supports and to quantify the impact a given support would have on HRTEM imaging of crystalline structure. For nanoparticles ≥1 nm, aberration-correction was found to provide limited benefit for the purpose of visualizing lattice fringes; electron dose is more predictive of lattice fringe visibility than aberration correction. These results confirm that the ability to visualize lattice fringes is ultimately dependent on the signal-to-noise ratio of the HRTEM images, rather than the point-to-point resolving power of the microscope. This study provides a benchmark for HRTEM imaging of crystalline supported metal nanoparticles and is extensible to a wide variety of supports and nanostructures. - Highlights: • The impact of supports on imaging nanoparticle lattice structure is quantified. • Visualization probabilities given particle size and support thickness are estimated. • Aberration-correction provided limited benefit

  3. Statistical analysis of support thickness and particle size effects in HRTEM imaging of metal nanoparticles

    International Nuclear Information System (INIS)

    House, Stephen D.; Bonifacio, Cecile S.; Grieshaber, Ross V.; Li, Long; Zhang, Zhongfan; Ciston, Jim; Stach, Eric A.; Yang, Judith C.

    2016-01-01

    High-resolution transmission electron microscopy (HRTEM) examination of nanoparticles requires their placement on some manner of support – either TEM grid membranes or part of the material itself, as in many heterogeneous catalyst systems – but a systematic quantification of the practical imaging limits of this approach has been lacking. Here we address this issue through a statistical evaluation of how nanoparticle size and substrate thickness affects the ability to resolve structural features of interest in HRTEM images of metallic nanoparticles on common support membranes. The visibility of lattice fringes from crystalline Au nanoparticles on amorphous carbon and silicon supports of varying thickness was investigated with both conventional and aberration-corrected TEM. Over the 1–4 nm nanoparticle size range examined, the probability of successfully resolving lattice fringes differed significantly as a function both of nanoparticle size and support thickness. Statistical analysis was used to formulate guidelines for the selection of supports and to quantify the impact a given support would have on HRTEM imaging of crystalline structure. For nanoparticles ≥1 nm, aberration-correction was found to provide limited benefit for the purpose of visualizing lattice fringes; electron dose is more predictive of lattice fringe visibility than aberration correction. These results confirm that the ability to visualize lattice fringes is ultimately dependent on the signal-to-noise ratio of the HRTEM images, rather than the point-to-point resolving power of the microscope. This study provides a benchmark for HRTEM imaging of crystalline supported metal nanoparticles and is extensible to a wide variety of supports and nanostructures. - Highlights: • The impact of supports on imaging nanoparticle lattice structure is quantified. • Visualization probabilities given particle size and support thickness are estimated. • Aberration-correction provided limited benefit

  4. Image Quality Enhancement Using the Direction and Thickness of Vein Lines for Finger-Vein Recognition

    Directory of Open Access Journals (Sweden)

    Young Ho Park

    2012-10-01

    Full Text Available On the basis of the increased emphasis placed on the protection of privacy, biometric recognition systems using physical or behavioural characteristics such as fingerprints, facial characteristics, iris and finger-vein patterns or the voice have been introduced in applications including door access control, personal certification, Internet banking and ATM machines. Among these, finger-vein recognition is advantageous in that it involves the use of inexpensive and small devices that are difficult to counterfeit. In general, finger-vein recognition systems capture images by using near infrared (NIR illumination in conjunction with a camera. However, such systems can face operational difficulties, since the scattering of light from the skin can make capturing a clear image difficult. To solve this problem, we proposed new image quality enhancement method that measures the direction and thickness of vein lines. This effort represents novel research in four respects. First, since vein lines are detected in input images based on eight directional profiles of a grey image instead of binarized images, the detection error owing to the non-uniform illumination of the finger area can be reduced. Second, our method adaptively determines a Gabor filter for the optimal direction and width on the basis of the estimated direction and thickness of a detected vein line. Third, by applying this optimized Gabor filter, a clear vein image can be obtained. Finally, the further processing of the morphological operation is applied in the Gabor filtered image and the resulting image is combined with the original one, through which finger-vein image of a higher quality is obtained. Experimental results from application of our proposed image enhancement method show that the equal error rate (EER of finger-vein recognition decreases to approximately 0.4% in the case of a local binary pattern-based recognition and to approximately 0.3% in the case of a wavelet transform

  5. A rapid method for creating qualitative images indicative of thick oil emulsion on the ocean's surface from imaging spectrometer data

    Science.gov (United States)

    Kokaly, Raymond F.; Hoefen, Todd M.; Livo, K. Eric; Swayze, Gregg A.; Leifer, Ira; McCubbin, Ian B.; Eastwood, Michael L.; Green, Robert O.; Lundeen, Sarah R.; Sarture, Charles M.; Steele, Denis; Ryan, Thomas; Bradley, Eliza S.; Roberts, Dar A.; ,

    2010-01-01

    This report describes a method to create color-composite images indicative of thick oil:water emulsions on the surface of clear, deep ocean water by using normalized difference ratios derived from remotely sensed data collected by an imaging spectrometer. The spectral bands used in the normalized difference ratios are located in wavelength regions where the spectra of thick oil:water emulsions on the ocean's surface have a distinct shape compared to clear water and clouds. In contrast to quantitative analyses, which require rigorous conversion to reflectance, the method described is easily computed and can be applied rapidly to radiance data or data that have been atmospherically corrected or ground-calibrated to reflectance. Examples are shown of the method applied to Airborne Visible/Infrared Imaging Spectrometer data collected May 17 and May 19, 2010, over the oil spill from the Deepwater Horizon offshore oil drilling platform in the Gulf of Mexico.

  6. Relaxation in Thin Polymer Films Mapped across the Film Thickness by Astigmatic Single-Molecule Imaging

    KAUST Repository

    Oba, Tatsuya

    2012-06-19

    We have studied relaxation processes in thin supported films of poly(methyl acrylate) at the temperature corresponding to 13 K above the glass transition by monitoring the reorientation of single perylenediimide molecules doped into the films. The axial position of the dye molecules across the thickness of the film was determined with a resolution of 12 nm by analyzing astigmatic fluorescence images. The average relaxation times of the rotating molecules do not depend on the overall thickness of the film between 20 and 110 nm. The relaxation times also do not show any dependence on the axial position within the films for the film thickness between 70 and 110 nm. In addition to the rotating molecules we observed a fraction of spatially diffusing molecules and completely immobile molecules. These molecules indicate the presence of thin (<5 nm) high-mobility surface layer and low-mobility layer at the interface with the substrate. (Figure presented) © 2012 American Chemical Society.

  7. Optimal steel thickness combined with computed radiography for portal imaging of nasopharyngeal cancer patients

    International Nuclear Information System (INIS)

    Wu Shixiu; Jin Xiance; Xie Congying; Cao Guoquan

    2005-01-01

    The poor image quality of conventional metal screen-film portal imaging system has long been of concern, and various methods have been investigated in an attempt to enhance the quality of portal images. Computed radiography (CR) used in combination with a steel plate displays image enhancement. The optimal thickness of the steel plate had been studied by measuring the modulation transfer function (MTF) characteristics. Portal images of nasopharyngeal carcinoma patients were taken by both a conventional metal screen-film system and this optimal steel and CR plate combination system. Compared with a conventional metal screen-film system, the CR-metal screen system achieves a much higher image contrast. The measured modulation transfer function (MTF) of the CR combination is greater than conventional film-screen portal imaging systems and also results in superior image performance, as demonstrated by receiver operator characteristic (ROC) analysis. This optimal combination steel CR plate portal imaging system is capable of producing high contrast portal images conveniently

  8. Correlation between subcutaneous knee fat thickness and chondromalacia patellae on magnetic resonance imaging of the knee.

    Science.gov (United States)

    Kok, Hong Kuan; Donnellan, John; Ryan, Davinia; Torreggiani, William C

    2013-08-01

    Chondromalacia patellae is a common cause of anterior knee pain in young patients and can be detected noninvasively with magnetic resonance imaging (MRI). The purpose of our study was to evaluate the correlation between subcutaneous fat thickness around the knee joint on axial MRIs as a surrogate marker of obesity, with the presence or absence of chondromalacia patellae. A retrospective review was conducted of knee MRIs in 170 patients who satisfied the inclusion criteria. Imaging was performed over a 12-month period on a 1.5T MRI system with a dedicated extremity coil. Two radiologists experienced in musculoskeletal imaging assessed each examination in consensus for the presence or absence of chondromalacia patellae and graded positive studies from 0 (absent) to 3 (full cartilage thickness defect). Measurement of subcutaneous knee fat thickness was obtained on the medial aspect of the knee. MRI findings of chondromalacia patellae were present in 33 patients (19.4%), of which, there were 11 grade 1 lesions (33.3%), 9 grade 2 lesions (27.3%), and 13 grade 3 lesions (39.4%). The mean subcutaneous knee fat thickness was significantly higher in the chondromalacia patellae group for all grades compared with the normal group (P chondromalacia patellae (R = 0.48 [95% confidence interval, 0.38-0.68]; P chondromalacia patellae. Subcutaneous knee fat thickness as a surrogate marker of obesity was positively associated with the presence and severity of chondromalacia patellae on MRI. Copyright © 2013 Canadian Association of Radiologists. Published by Elsevier Inc. All rights reserved.

  9. E2CAV, Pavement layer thickness estimation system based on image texture operators

    Directory of Open Access Journals (Sweden)

    Brayan Barrios Arcila

    2017-01-01

    Full Text Available Context: Public roads are an essential part of economic progress in any country; they are fundamental for increasing the efficiency on transportation of goods and are a remarkable source of employment. For its part, Colombia has few statistics on the condition of its roads; according with INVIAS the state of the roads in Colombia can be classified as “Very Good” (21.1%, “Good” (34.7%, and “Regular” or “Bad” (43.46%. Thus, from the point of view of pavement rehabilitation, it is worth securing the quality of those roads classified as “Regular” or “Bad”. Objective: In this paper we propose a system to estimate the thickness of the pavement layer using image segmentation methods. The pavement thickness is currently estimated using radars of terrestrial penetration, extraction of cores or making pips; and it is part of structural parameters in the systems of evaluation of pavement. Method: The proposed system is composed of a vertical movement control unit, which introduces a video scope into a small hole in the pavement, then the images are obtained and unified in a laptop. Finally, this mosaic is processed through texture operators to estimate the thickness of the pavement. Users can select between the Otsu method and Gabor filters to process the image data. Results: The results include laboratory and field tests; these tests show errors of 5.03% and 11.3%, respectively, in the thickness of the pavement. Conclusion: The proposed system is an attractive option for local estimation of pavement thickness, with minimal structural damage and less impact on mobility and number of operators.

  10. Correction of thickness measurement errors for two adjacent sheet structures in MR images

    International Nuclear Information System (INIS)

    Cheng Yuanzhi; Wang Shuguo; Sato, Yoshinobu; Nishii, Takashi; Tamura, Shinichi

    2007-01-01

    We present a new method for measuring the thickness of two adjacent sheet structures in MR images. In the hip joint, in which the femoral and acetabular cartilages are adjacent to each other, a conventional measurement technique based on the second derivative zero crossings (called the zero-crossings method) can introduce large underestimation errors in measurements of cartilage thickness. In this study, we have developed a model-based approach for accurate thickness measurement. We model the imaging process for two adjacent sheet structures, which simulate the two articular cartilages in the hip joint. This model can be used to predict the shape of the intensity profile along the sheet normal orientation. Using an optimization technique, the model parameters are adjusted to minimize the differences between the predicted intensity profile and the actual intensity profiles observed in the MR data. The set of model parameters that minimize the difference between the model and the MR data yield the thickness estimation. Using three phantoms and one normal cadaveric specimen, the usefulness of the new model-based method is demonstrated by comparing the model-based results with the results generated using the zero-crossings method. (author)

  11. Efficient Variational Approaches for Deformable Registration of Images

    Directory of Open Access Journals (Sweden)

    Mehmet Ali Akinlar

    2012-01-01

    Full Text Available Dirichlet, anisotropic, and Huber regularization terms are presented for efficient registration of deformable images. Image registration, an ill-posed optimization problem, is solved using a gradient-descent-based method and some fundamental theorems in calculus of variations. Euler-Lagrange equations with homogeneous Neumann boundary conditions are obtained. These equations are discretized by multigrid and finite difference numerical techniques. The method is applied to the registration of brain MR images of size 65×65. Computational results indicate that the presented method is quite fast and efficient in the registration of deformable medical images.

  12. Despeckling Polsar Images Based on Relative Total Variation Model

    Science.gov (United States)

    Jiang, C.; He, X. F.; Yang, L. J.; Jiang, J.; Wang, D. Y.; Yuan, Y.

    2018-04-01

    Relatively total variation (RTV) algorithm, which can effectively decompose structure information and texture in image, is employed in extracting main structures of the image. However, applying the RTV directly to polarimetric SAR (PolSAR) image filtering will not preserve polarimetric information. A new RTV approach based on the complex Wishart distribution is proposed considering the polarimetric properties of PolSAR. The proposed polarization RTV (PolRTV) algorithm can be used for PolSAR image filtering. The L-band Airborne SAR (AIRSAR) San Francisco data is used to demonstrate the effectiveness of the proposed algorithm in speckle suppression, structural information preservation, and polarimetric property preservation.

  13. On the comparison between MRI and US imaging for human heel pad thickness measurements

    DEFF Research Database (Denmark)

    Matteoli, Sara; Corbin, Nadège Corbin; Wilhjelm, Jens E.

    2011-01-01

    The human heel pad thickness, defined as the shortest distance between the calcaneus and heel skin, is one of the intrinsic factor which must be taken into account when investigating the biomechanics of the heel pad. US and MRI are the preferable imaging modalities used to measure the heel pad...... thickness as they are both ionizing-free radiations. The aim of this paper is to measure the bone to skin distance of nine heel pad phantoms from MRI and US images, and to compare the results with a true value (TV) in order to find the errors. Paired sample t-test was used to compare the measurements......1530 (P-value=0.402). Results confirm the necessity to investigate on the real speed of sound for the heel pad tissues, in order to have realistic measurements when dealing with human heel pads. __________________________________________________________________________________________________________...

  14. Investigation of reactivity variations of the Isfahan MNSR reactor due to variations in the thickness of the core top beryllium layer using WIMSD and MCNP codes

    Directory of Open Access Journals (Sweden)

    A Shirani

    2010-12-01

    Full Text Available In this work, the Isfahan Miniature Neutron Source Reactor (MNSR is first simulated using the WIMSD code, and its fuel burn-up after 7 years of operation ( when the reactor was revived by adding a 1.5 mm thick beryllium shim plate to the top of its core and also after 14 years of operation (total operation time of the reactor is calculated. The reactor is then simulated using the MCNP code, and its reactivity variation due to adding a 1.5 mm thick beryllium shim plate to the top of the reactor core, after 7 years of operation, is calculated. The results show good agreement with the available data collected at the revival time. Exess reactivity of the reactor at present time (after 14 years of operation and after 7 years of the the reactor revival time is also determined both experimentally and by calculation, which show good agreement, and indicate that at the present time there is no need to add any further beryllium shim plate to the top of the reactor core. Furthermore, by adding more beryllium layers with various thicknesses to the top of the reactor core, in the input program of the MCNP program, reactivity value of these layers is calculated. From these results, one can predict the necessary beryllium thickness needed to reach a desired reactivity in the MNSR reactor.

  15. Intraocular pressure in a cohort of healthy eastern European schoolchildren: variations in method and corneal thickness

    Science.gov (United States)

    2012-01-01

    Background Intraocular pressure (IOP) in the developing eye of a child is not always easy to measure and there is no technique that is known to be the most accurate for the young eye. Measurements are needed on many cohorts of children with different tonometers to determine how the values correlate between instruments, whether corneal parameters affect readings and whether correlations between age and IOP values can be discerned. The aim of this study was to undertake a comparative analysis of three different tonometers on a group of healthy children to see whether differences exist and whether these may be related to central corneal thickness and/or radius of curvature. In addition, the study adds to the relatively small body of literature on IOP in the growing eye which will collectively allow trends to be identified and ultimately norms to be established. Methods IOP was measured on 115 eyes in a group of Polish children, aged between 5–17 years (mean ± standard deviation [SD] 11.3 ± 3.0 years) using three different tonometers: non-contact (NCT), the ICare and Goldmann applanation (GAT). Readings obtained were compared between instruments and with central corneal thickness and radius of curvature. Results The ICare tonometer provided statistically higher IOP values (16.9 ± 3.4 mmHg) than the GAT (14.7 ± 2.9 mmHg) regardless of corneal thickness and whether or not a correction factor was applied. A correlation was found between central corneal thickness (CCT) and IOP values obtained with all three tonometers but only the IOP values detected with the ICare tonometer showed a statistically significant correlation with radius of curvature (p < 0.004). No correlations with age or gender were found for IOP values measured with any of the instruments. Conclusions IOP measurements on children vary significantly between instruments and correlations are affected by the corneal thickness. Further studies on children are needed to determine which

  16. Intraocular pressure in a cohort of healthy eastern European schoolchildren: variations in method and corneal thickness

    Directory of Open Access Journals (Sweden)

    Krzyżanowska-Berkowska Patrycja

    2012-12-01

    Full Text Available Abstract Background Intraocular pressure (IOP in the developing eye of a child is not always easy to measure and there is no technique that is known to be the most accurate for the young eye. Measurements are needed on many cohorts of children with different tonometers to determine how the values correlate between instruments, whether corneal parameters affect readings and whether correlations between age and IOP values can be discerned. The aim of this study was to undertake a comparative analysis of three different tonometers on a group of healthy children to see whether differences exist and whether these may be related to central corneal thickness and/or radius of curvature. In addition, the study adds to the relatively small body of literature on IOP in the growing eye which will collectively allow trends to be identified and ultimately norms to be established. Methods IOP was measured on 115 eyes in a group of Polish children, aged between 5–17 years (mean ± standard deviation [SD] 11.3 ± 3.0 years using three different tonometers: non-contact (NCT, the ICare and Goldmann applanation (GAT. Readings obtained were compared between instruments and with central corneal thickness and radius of curvature. Results The ICare tonometer provided statistically higher IOP values (16.9 ± 3.4 mmHg than the GAT (14.7 ± 2.9 mmHg regardless of corneal thickness and whether or not a correction factor was applied. A correlation was found between central corneal thickness (CCT and IOP values obtained with all three tonometers but only the IOP values detected with the ICare tonometer showed a statistically significant correlation with radius of curvature (p  Conclusions IOP measurements on children vary significantly between instruments and correlations are affected by the corneal thickness. Further studies on children are needed to determine which instrument is most appropriate and to derive a normative IOP scale for the growing eye.

  17. New method for thickness determination and microscopic imaging of graphene-like two-dimensional materials

    International Nuclear Information System (INIS)

    Qin Xudong; Chen Yonghai; Liu Yu; Zhu Laipan; Li Yuan; Wu Qing; Huang Wei

    2016-01-01

    We employed the microscopic reflectance difference spectroscopy (micro-RDS) to determine the layer-number and microscopically image the surface topography of graphene and MoS 2 samples. The contrast image shows the efficiency and reliability of this new clipping technique. As a low-cost, quantifiable, no-contact and non-destructive method, it is not concerned with the characteristic signal of certain materials and can be applied to arbitrary substrates. Therefore it is a perfect candidate for characterizing the thickness of graphene-like two-dimensional materials. (paper)

  18. Focused fluorescence excitation with time-reversed ultrasonically encoded light and imaging in thick scattering media

    International Nuclear Information System (INIS)

    Lai, Puxiang; Suzuki, Yuta; Xu, Xiao; Wang, Lihong V

    2013-01-01

    Scattering dominates light propagation in biological tissue, and therefore restricts both resolution and penetration depth in optical imaging within thick tissue. As photons travel into the diffusive regime, typically 1 mm beneath human skin, their trajectories transition from ballistic to diffusive due to the increased number of scattering events, which makes it impossible to focus, much less track, photon paths. Consequently, imaging methods that rely on controlled light illumination are ineffective in deep tissue. This problem has recently been addressed by a novel method capable of dynamically focusing light in thick scattering media via time reversal of ultrasonically encoded (TRUE) diffused light. Here, using photorefractive materials as phase conjugate mirrors, we show a direct visualization and dynamic control of optical focusing with this light delivery method, and demonstrate its application for focused fluorescence excitation and imaging in thick turbid media. These abilities are increasingly critical for understanding the dynamic interactions of light with biological matter and processes at different system levels, as well as their applications for biomedical diagnosis and therapy. (letter)

  19. Study of imaging time shortening in Whole Heart MRCA. Evaluation of slice thickness

    International Nuclear Information System (INIS)

    Iwai, Mitsuhiro; Tateishi, Toshiki; Takeda, Soji; Hayashi, Ryuji

    2005-01-01

    A series of examinations in cardiac MR imaging, such as cine, perfusion, MR coronary angiography (MRCA) and viability, is generally known as One Stop Cardiac Examination. It takes about 40 to 60 minutes to perform One Stop Cardiac Examination, and Whole Heart MRCA accounts for most of the examination time. Therefore, we aimed to shorten imaging time of Whole Heart MRCA, especially in a large imaging area such as that in the case of the postoperative evaluation of a bypass graft, by investigating the depiction of a diameter of mimic blood vessels as changing the slice thickness of Whole Heart MRCA. The results showed that the maximum slice thickness of about 1 mm was excellent considering the diameters of actual coronary arteries are about 3 mm. In this study, we could grasp the relationships among slice thickness of Whole Heart MRCA, the diameter of a blood vessel, and shortened examination time. We suggested that it was useful for selecting the suitable sequence depending on a patient's conditions. (author)

  20. Confocal absorption spectral imaging of MoS2: optical transitions depending on the atomic thickness of intrinsic and chemically doped MoS2.

    Science.gov (United States)

    Dhakal, Krishna P; Duong, Dinh Loc; Lee, Jubok; Nam, Honggi; Kim, Minsu; Kan, Min; Lee, Young Hee; Kim, Jeongyong

    2014-11-07

    We performed a nanoscale confocal absorption spectral imaging to obtain the full absorption spectra (over the range 1.5-3.2 eV) within regions having different numbers of layers and studied the variation of optical transition depending on the atomic thickness of the MoS2 film. Three distinct absorption bands corresponding to A and B excitons and a high-energy background (BG) peak at 2.84 eV displayed a gradual redshift as the MoS2 film thickness increased from the monolayer, to the bilayer, to the bulk MoS2 and this shift was attributed to the reduction of the gap energy in the Brillouin zone at the K-point as the atomic thickness increased. We also performed n-type chemical doping of MoS2 films using reduced benzyl viologen (BV) and the confocal absorption spectra modified by the doping showed a strong dependence on the atomic thickness: A and B exciton peaks were greatly quenched in the monolayer MoS2 while much less effect was shown in larger thickness and the BG peak either showed very small quenching for 1 L MoS2 or remained constant for larger thicknesses. Our results indicate that confocal absorption spectral imaging can provide comprehensive information on optical transitions of microscopic size intrinsic and doped two-dimensional layered materials.

  1. Spatial and temporal variations of thaw layer thickness and its controlling factors identified using time-lapse electrical resistivity tomography and hydro-thermal modeling

    Science.gov (United States)

    Tran, Anh Phuong; Dafflon, Baptiste; Bisht, Gautam; Hubbard, Susan S.

    2018-06-01

    Quantitative understanding of controls on thaw layer thickness (TLT) dynamics in the Arctic peninsula is essential for predictive understanding of permafrost degradation feedbacks to global warming and hydrobiochemical processes. This study jointly interprets electrical resistivity tomography (ERT) measurements and hydro-thermal numerical simulation results to assess spatiotemporal variations of TLT and to determine its controlling factors in Barrow, Alaska. Time-lapse ERT measurements along a 35-m transect were autonomously collected from 2013 to 2015 and inverted to obtain soil electrical resistivity. Based on several probe-based TLT measurements and co-located soil electrical resistivity, we estimated the electrical resistivity thresholds associated with the boundary between the thaw layer and permafrost using a grid search optimization algorithm. Then, we used the obtained thresholds to derive the TLT from all soil electrical resistivity images. The spatiotemporal analysis of the ERT-derived TLT shows that the TLT at high-centered polygons (HCPs) is smaller than that at low-centered polygons (LCPs), and that both thawing and freezing occur earlier at the HCPs compared to the LCPs. In order to provide a physical explanation for dynamics in the thaw layer, we performed 1-D hydro-thermal simulations using the community land model (CLM). Simulation results showed that air temperature and precipitation jointly govern the temporal variations of TLT, while the topsoil organic content (SOC) and polygon morphology are responsible for its spatial variations. When the topsoil SOC and its thickness increase, TLT decreases. Meanwhile, at LCPs, a thicker snow layer and saturated soil contribute to a thicker TLT and extend the time needed for TLT to freeze and thaw. This research highlights the importance of combination of measurements and numerical modeling to improve our understanding spatiotemporal variations and key controls of TLT in cold regions.

  2. Automated measurement of epidermal thickness from optical coherence tomography images using line region growing

    Science.gov (United States)

    Delacruz, Jomer; Weissman, Jesse; Gossage, Kirk

    2010-02-01

    Optical Coherence Tomography (OCT) is a non-invasive imaging modality that acquires cross sectional images of tissue in-vivo. It accelerates skin diagnosis by eliminating invasive biopsy and laborious histology in the process. Dermatologists have widely used it for looking at morphology of skin diseases such as psoriasis, dermatitis, basal cell carcinoma etc. Skin scientists have also successfully used it for looking at differences in epidermal thickness and its underlying structure with respect to age, body sites, ethnicity, gender, and other related factors. Similar to other in-vivo imaging systems, OCT images suffer from a high degree of speckle and noise content, which hinders examination of tissue structures. Most of the previous work in OCT segmentation of skin was done manually. This compromised the quality of the results by limiting the analyses to a few frames per area. In this paper, we discuss a region growing method for automatic identification of the upper and lower boundaries of the epidermis in living human skin tissue. This image analysis method utilizes images obtained from a frequency-domain OCT. This system is high-resolution and high-speed, and thus capable of capturing volumetric images of the skin in short time. The three-dimensional (3D) data provides additional information that is used in the segmentation process to help compensate for the inherent noise in the images. This method not only provides a better estimation of the epidermal thickness, but also generates a 3D surface map of the epidermal-dermal junction, from which underlying topography can be visualized and further quantified.

  3. Adaptive Proximal Point Algorithms for Total Variation Image Restoration

    Directory of Open Access Journals (Sweden)

    Ying Chen

    2015-02-01

    Full Text Available Image restoration is a fundamental problem in various areas of imaging sciences. This paper presents a class of adaptive proximal point algorithms (APPA with contraction strategy for total variational image restoration. In each iteration, the proposed methods choose an adaptive proximal parameter matrix which is not necessary symmetric. In fact, there is an inner extrapolation in the prediction step, which is followed by a correction step for contraction. And the inner extrapolation is implemented by an adaptive scheme. By using the framework of contraction method, global convergence result and a convergence rate of O(1/N could be established for the proposed methods. Numerical results are reported to illustrate the efficiency of the APPA methods for solving total variation image restoration problems. Comparisons with the state-of-the-art algorithms demonstrate that the proposed methods are comparable and promising.

  4. Discrete gradient methods for solving variational image regularisation models

    International Nuclear Information System (INIS)

    Grimm, V; McLachlan, Robert I; McLaren, David I; Quispel, G R W; Schönlieb, C-B

    2017-01-01

    Discrete gradient methods are well-known methods of geometric numerical integration, which preserve the dissipation of gradient systems. In this paper we show that this property of discrete gradient methods can be interesting in the context of variational models for image processing, that is where the processed image is computed as a minimiser of an energy functional. Numerical schemes for computing minimisers of such energies are desired to inherit the dissipative property of the gradient system associated to the energy and consequently guarantee a monotonic decrease of the energy along iterations, avoiding situations in which more computational work might lead to less optimal solutions. Under appropriate smoothness assumptions on the energy functional we prove that discrete gradient methods guarantee a monotonic decrease of the energy towards stationary states, and we promote their use in image processing by exhibiting experiments with convex and non-convex variational models for image deblurring, denoising, and inpainting. (paper)

  5. Crosstalk in a KID Array Caused by the Thickness Variation of Superconducting Metal

    Science.gov (United States)

    Adane, A.; Boucher, C.; Coiffard, G.; Leclercq, S.; Schuster, K. F.; Goupy, J.; Calvo, M.; Hoarau, C.; Monfardini, A.

    2016-07-01

    The work presented in this paper is focused on the improvement of the kinetic detectors used on NIKA2 instrument (New IRAM KID array 2). Based on the simulation and low temperature measurements, it aims at showing how the variations of the superconducting metal corrupt the frequency comb of the kinetic Inductance detectors (KID) in the frequency range (between 1 and 3 GHz), i.e., how the superconducting metal inhomogeneity induces the resonance-to-resonance cross-coupling which deteriorates the homogeneity of the resonance quality factor and the frequency resonance separation. Solutions are then proposed to fight against the effect of these metallic variations when designing the KID array.

  6. On numerical heat transfer characteristic study of flat surface subjected to variation in geometric thickness

    Science.gov (United States)

    Umair, Siddique Mohammed; Kolawale, Abhijeet Rangnath; Bhise, Ganesh Anurath; Gulhane, Nitin Parashram

    Thermal management in the looming world of electronic packaging system is the most prior and conspicuous issue as far as the working efficiency of the system is concerned. The cooling in such systems can be achieved by impinging air jet over the heat sink as jet impingement cooling is one of the cooling technologies which are widely studied now. Here the modulation in impinging and geometric parameters results in the establishment of the characteristic cooling rate over the target surface. The characteristic cooling curve actually resembles non-uniformity in cooling rate. This non-uniformity favors the area average heat dissipation rate. In order to study the non-uniformity in cooling characteristic, the present study takes an initiative in plotting the local Nusselt number magnitude against the non-dimensional radial distance of the different thickness of target surfaces. For this, the steady temperature distribution over the target surface under the impingement of air jet is being determined numerically. The work is completely inclined towards the determination of critical value of geometric thickness below which the non-uniformity in the Nusselt profile starts. This is done by numerically examining different target surfaces under constant Reynolds number and nozzle-target spacing. The occurrences of non-uniformity in Nusselt profile contributes to over a 42% enhancement in area average Nusselt magnitude. The critical value of characteristic thickness (t/d) reported in the present investigation approximate to 0.05. Below this value, the impingement of air jet generates a discrete pressure zones over the target surface in the form of pressure spots. As a result of this, the air flowing in contact with the target surface experiences a damping potential, in due of which it gets more time and contact with the surface to dissipate heat.

  7. Creep Modeling in a Composite Rotating Disc with Thickness Variation in Presence of Residual Stress

    Directory of Open Access Journals (Sweden)

    Vandana Gupta

    2012-01-01

    Full Text Available Steady-state creep response in a rotating disc made of Al-SiC (particle composite having linearly varying thickness has been carried out using isotropic/anisotropic Hoffman yield criterion and results are compared with those using von Mises yield criterion/Hill's criterion ignoring difference in yield stresses. The steady-state creep behavior has been described by Sherby's creep law. The material parameters characterizing difference in yield stresses have been used from the available experimental results in literature. Stress and strain rate distributions developed due to rotation have been calculated. It is concluded that the stress and strain distributions got affected from the thermal residual stress in an isotropic/anisotropic rotating disc, although the effect of residual stress on creep behavior in an anisotropic rotating disc is observed to be lower than those observed in an isotropic disc. Thus, the presence of residual stress in composite rotating disc with varying thickness needs attention for designing a disc.

  8. Naturalness and image quality : chroma and hue variation in color images of natural scenes

    NARCIS (Netherlands)

    Ridder, de H.; Blommaert, F.J.J.; Fedorovskaya, E.A.; Rogowitz, B.E.; Allebach, J.P.

    1995-01-01

    The relation between perceptual image quality and naturalness was investigated by varying the colorfulness and hue of color images of natural scenes. These variations were created by digitizing the images, subsequently determining their color point distributions in the CIELUV color space and finally

  9. Naturalness and image quality: Chroma and hue variation in color images of natural scenes

    NARCIS (Netherlands)

    Ridder, de H.; Blommaert, F.J.J.; Fedorovskaya, E.A.; Eschbach, R.; Braun, K.

    1997-01-01

    The relation between perceptual image quality and natural ness was investigated by varying the colorfulness and hue of color images of natural scenes. These variations were created by digitizing the images, subsequently determining their color point distributions in the CIELUV color space and

  10. Mixed Gaussian-Impulse Noise Image Restoration Via Total Variation

    Science.gov (United States)

    2012-05-01

    deblurring under impulse noise ,” J. Math. Imaging Vis., vol. 36, pp. 46–53, January 2010. [5] B. Li, Q. Liu, J. Xu, and X. Luo, “A new method for removing......Several Total Variation (TV) regularization methods have recently been proposed to address denoising under mixed Gaussian and impulse noise . While

  11. X-ray CCD image sensor with a thick depletion region

    International Nuclear Information System (INIS)

    Saito, Hirobumi; Watabe, Hiroshi.

    1984-01-01

    To develop a solid-state image sensor for high energy X-ray above 1 -- 2 keV, basic studies have been made on the CCD (charge coupled device) with a thick depletion region. A method of super-imposing a high DC bias voltage on low voltage signal pulses was newly proposed. The characteristics of both SCCD and BCCD were investigated, and their ability as X-ray sensors was compared. It was found that a depletion region of 60 μm thick was able to be obtained with ordinary doping density of 10 20 /m 3 , and that even thicker over 1 mm depletion region was able to be obtained with doping density of about 10 18 /m 3 , and a high bias voltage above 1 kV was able to be applied. It is suggested that the CCD image sensors for 8 keV or 24 keV X-ray can be realized since the absorption length of these X-ray in Si is about 60 μm and 1 mm, respectively. As for the characteristics other than the depletion thickness, the BCCD is preferable to SCCD for the present purpose because of lower noise and dark current. As for the transfer method, the frame-transfer method is recommended. (Aoki, K.)

  12. Variational segmentation problems using prior knowledge in imaging and vision

    DEFF Research Database (Denmark)

    Fundana, Ketut

    This dissertation addresses variational formulation of segmentation problems using prior knowledge. Variational models are among the most successful approaches for solving many Computer Vision and Image Processing problems. The models aim at finding the solution to a given energy functional defined......, prior knowledge is needed to obtain the desired solution. The introduction of shape priors in particular, has proven to be an effective way to segment objects of interests. Firstly, we propose a prior-based variational segmentation model to segment objects of interest in image sequences, that can deal....... Many objects have high variability in shape and orientation. This often leads to unsatisfactory results, when using a segmentation model with single shape template. One way to solve this is by using more sophisticated shape models. We propose to incorporate shape priors from a shape sub...

  13. Solidifier effectiveness : variation due to oil composition, oil thickness and temperature

    International Nuclear Information System (INIS)

    Fieldhouse, B.; Fingas, M.

    2009-01-01

    This paper provided an overview of solidifier types and composition. Solidifiers are a class of spill treating agents that offer an effective means to convert a liquid oil into a solid material. They are used as a treatment option for oil spills on water. This paper also reported on recent laboratory studies that consist of 4 components: (1) a qualitative examination of the characteristics of the interaction of a broad range of solidifier products with a standard oil to evaluate reaction rate, states of solidification, and the impact of dosage, (2) a comparison of a smaller subset of solidifiers on the standard oil at lower temperatures, (3) solidifier treatment on a range of oils of varying physical properties and composition to assess the potential scope of application, and (4) the treatment of a series of small-scale oil layers of varying thickness to determine the significance of oil thickness on solidifier effectiveness and recovery. This paper also reviewed solidifier chemistry with particular reference to polymer sorbents; cross-linking agents; and cross-linking agents and polymeric sorbents combined. Toxicity is also an important issue regarding solidifiers. The aquatic toxicity of solidifiers is low and not measurable as the products are not water-soluble. There have not been any studies on the effects of the solidifier or the treated oil on surface feeders and shoreline wildlife that may come into contact with the products. It was concluded that oil composition may play a major role in solidifier effectiveness. The effectiveness of solidifiers is also inhibited at reduced temperatures, increased viscosity and density of the oil. 25 refs., 5 tabs., 2 figs., 1 appendix

  14. Mixed Higher Order Variational Model for Image Recovery

    Directory of Open Access Journals (Sweden)

    Pengfei Liu

    2014-01-01

    Full Text Available A novel mixed higher order regularizer involving the first and second degree image derivatives is proposed in this paper. Using spectral decomposition, we reformulate the new regularizer as a weighted L1-L2 mixed norm of image derivatives. Due to the equivalent formulation of the proposed regularizer, an efficient fast projected gradient algorithm combined with monotone fast iterative shrinkage thresholding, called, FPG-MFISTA, is designed to solve the resulting variational image recovery problems under majorization-minimization framework. Finally, we demonstrate the effectiveness of the proposed regularization scheme by the experimental comparisons with total variation (TV scheme, nonlocal TV scheme, and current second degree methods. Specifically, the proposed approach achieves better results than related state-of-the-art methods in terms of peak signal to ratio (PSNR and restoration quality.

  15. Effect of GaAs interlayer thickness variations on the optical properties of multiple InAs QD structure

    International Nuclear Information System (INIS)

    Park, C.Y.; Park, K.W.; Kim, J.M.; Lee, Y.T.

    2009-01-01

    Multiple InAs/GaAs self-assembled quantum dots (QDs) with vertically stacked structure are grown by molecular beam epitaxy and the effects of GaAs interlayer thickness variation on optical properties are studied. The growth conditions are optimized by in-situ RHEED, AFM, and PL measurement. The five InAs QD layers are embedded in GaAs and Al0.3Ga0.7As layer. The PL intensity is increased with increasing GaAs interlayer thickness. The thin GaAs interlayer has strain field, the strain-induced intermixing of indium atoms in the InAs QDs (blue-shift) can overcompensate for the effect on the increased QD size (red-shift) (H. Heidemeyer et al. Appl. Phys. Lett. 80, 1544 (2002); T. Nakaoka et al. J. Appl. Phys. Lett. 96, 150 (2004)[1, 2], respectively). For the interlayer thickness larger than about 7 nm, the blue-shifts are correlated to the dominant high-energy excited state transitions due to the successive state filling of the ground and higher excited states in the QDs. The energy separation of double PL peaks, originated from two different excited states, was kept at around 50 meV at room temperature. A possible mechanism concerning this phenomenon is also discussed. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. The effect of amorphous selenium detector thickness on dual-energy digital breast imaging

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Yue-Houng, E-mail: yuehoung.hu@gmail.com; Zhao, Wei [Department of Radiology, State University of New York at Stony Brook, L-4 120 Health Sciences Center, Stony Brook, New York 11794-8460 (United States)

    2014-11-01

    Purpose: Contrast enhanced (CE) imaging techniques for both planar digital mammography (DM) and three-dimensional (3D) digital breast tomosynthesis (DBT) applications requires x-ray photon energies higher than the k-edge of iodine (33.2 keV). As a result, x-ray tube potentials much higher (>40 kVp) than those typical for screening mammography must be utilized. Amorphous selenium (a-Se) based direct conversion flat-panel imagers (FPI) have been widely used in DM and DBT imaging systems. The a-Se layer is typically 200 μm thick with quantum detective efficiency (QDE) >87% for x-ray energies below 26 keV. However, QDE decreases substantially above this energy. To improve the object detectability of either CE-DM or CE-DBT, it may be advantageous to increase the thickness (d{sub Se}) of the a-Se layer. Increasing the d{sub Se} will improve the detective quantum efficiency (DQE) at the higher energies used in CE imaging. However, because most DBT systems are designed with partially isocentric geometries, where the gantry moves about a stationary detector, the oblique entry of x-rays will introduce additional blur to the system. The present investigation quantifies the effect of a-Se thickness on imaging performance for both CE-DM and CE-DBT, discussing the effects of improving photon absorption and blurring from oblique entry of x-rays. Methods: In this paper, a cascaded linear system model (CLSM) was used to investigate the effect of d{sub Se} on the imaging performance (i.e., MTF, NPS, and DQE) of FPI in CE-DM and CE-DBT. The results from the model are used to calculate the ideal observer signal-to-noise ratio, d′, which is used as a figure-of-merit to determine the total effect of increasing d{sub Se} for CE-DM and CE-DBT. Results: The results of the CLSM show that increasing d{sub Se} causes a substantial increase in QDE at the high energies used in CE-DM. However, at the oblique projection angles used in DBT, the increased length of penetration through a

  17. Reliability of rehabilitative ultrasonographic imaging for muscle thickness measurement of the rhomboid major.

    Science.gov (United States)

    Jeong, Ju Ri; Ko, Young Jun; Ha, Hyun Geun; Lee, Wan Hee

    2016-03-01

    This study was to establish inter-rater and intrarater reliability of the rehabilitative ultrasonographic imaging (RUSI) technique for muscle thickness measurement of the rhomboid major at rest and with the shoulder abducted to 90°. Twenty-four young adults (eight men, 16 women; right-handed; mean age [±SD], 24·4 years [±2·6]) with no history of neck, shoulder, or arm pain were recruited. Rhomboid major muscle images were obtained in the resting position and with shoulder in 90° abduction using an ultrasonography system with a 7·5-MHz linear transducer. In these two positions, the examiners found the site at which the transducer could be placed. Two examiners obtained the images of all participants in three test sessions at random. Intraclass correlation coefficients (ICC) were used to estimate reliability. All ICCs (95% CI) were >0·75, ranging from 0·93 to 0·98, which indicates good reliability. The ICCs for inter-rater reliability ranged from 0·75 to 0·94. For the absolute value of the difference in the intra-examiner reliability between the right and left ratios, the ICCs ranged from 0·58 to 0·91. In this study, the intra- and interexaminer reliability of muscle thickness measurements of the rhomboid major were good. Therefore, we suggest that muscle thickness measurements of the rhomboid major obtained with the RUSI technique would be useful for clinical rehabilitative assessment. © 2014 Scandinavian Society of Clinical Physiology and Nuclear Medicine. Published by John Wiley & Sons Ltd.

  18. AUTOMATED ASSESSMENT OF EPIDERMAL THICKNESS AND VASCULAR DENSITY OF PORT WINE STAINS OCT IMAGE

    Directory of Open Access Journals (Sweden)

    CHENGMING WANG

    2014-01-01

    Full Text Available Optical coherence tomography (OCT enables in vivo imaging of port wine stains (PWS lesions. The knowledge of vascular structure and epidermal thickness (ET of PWS may aid the objective diagnosis and optimal treatment. To obtain the structural parameters more rapidly and avoid user intervention, an automated algorithm of energy map is introduced based on intensity and edge information to extract the skin surface using dynamic programming method. Subsequently, an averaged A-scan analysis is performed to obtain the mean ET and the relative intensity of dermis indicating the corresponding vascular density. This approach is currently successfully applied in clinical diagnosis and shows promising guidance and assessment of PDT treatment.

  19. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Cloud Optical Thickness (COT) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Cloud Optical Thickness (COT) from the Visible Infrared Imaging Radiometer Suite...

  20. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Ice Thickness and Age Environmental Data Records (EDRs) from NDE

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Ice Thickness and Age from the Visible Infrared Imaging Radiometer Suite (VIIRS)...

  1. Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media.

    Science.gov (United States)

    Fahrbach, Florian O; Rohrbach, Alexander

    2012-01-17

    Laser beams that can self-reconstruct their initial beam profile even in the presence of massive phase perturbations are able to propagate deeper into inhomogeneous media. This ability has crucial advantages for light sheet-based microscopy in thick media, such as cell clusters, embryos, skin or brain tissue or plants, as well as scattering synthetic materials. A ring system around the central intensity maximum of a Bessel beam enables its self-reconstruction, but at the same time illuminates out-of-focus regions and deteriorates image contrast. Here we present a detection method that minimizes the negative effect of the ring system. The beam's propagation stability along one straight line enables the use of a confocal line principle, resulting in a significant increase in image contrast. The axial resolution could be improved by nearly 100% relative to the standard light-sheet techniques using scanned Gaussian beams, while demonstrating self-reconstruction also for high propagation depths.

  2. An algorithm for total variation regularized photoacoustic imaging

    DEFF Research Database (Denmark)

    Dong, Yiqiu; Görner, Torsten; Kunis, Stefan

    2014-01-01

    Recovery of image data from photoacoustic measurements asks for the inversion of the spherical mean value operator. In contrast to direct inversion methods for specific geometries, we consider a semismooth Newton scheme to solve a total variation regularized least squares problem. During the iter......Recovery of image data from photoacoustic measurements asks for the inversion of the spherical mean value operator. In contrast to direct inversion methods for specific geometries, we consider a semismooth Newton scheme to solve a total variation regularized least squares problem. During...... the iteration, each matrix vector multiplication is realized in an efficient way using a recently proposed spectral discretization of the spherical mean value operator. All theoretical results are illustrated by numerical experiments....

  3. Do Magnetic Resonance Imaging Characteristics of Full-Thickness Rotator Cuff Tears Correlate With Sleep Disturbance?

    Science.gov (United States)

    Reyes, Bryan A; Hull, Brandon R; Kurth, Alexander B; Kukowski, Nathan R; Mulligan, Edward P; Khazzam, Michael S

    2017-11-01

    Many patients with rotator cuff tears suffer from nocturnal shoulder pain, resulting in sleep disturbance. To determine whether rotator cuff tear size correlated with sleep disturbance in patients with full-thickness rotator cuff tears. Cross-sectional study; Level of evidence, 3. Patients with a diagnosis of unilateral full-thickness rotator cuff tears (diagnosed via magnetic resonance imaging [MRI]) completed the Pittsburgh Sleep Quality Index (PSQI), a visual analog scale (VAS) quantifying their shoulder pain, and the American Shoulder and Elbow Surgeons (ASES) questionnaire. Shoulder MRI scans were analyzed for anterior-posterior tear size (mm), tendon retraction (mm), Goutallier grade (0-4), number of tendons involved (1-4), muscle atrophy (none, mild, moderate, or severe), and humeral head rise (present or absent). Bivariate correlations were calculated between the MRI characteristics and baseline survey results. A total of 209 patients with unilateral full-thickness rotator cuff tears were included in this study: 112 (54%) female and 97 (46%) male (mean age, 64.1 years). On average, shoulder pain had been present for 24 months. The mean PSQI score was 9.8, and the mean VAS score was 5.0. No significant correlations were found between any of the rotator cuff tear characteristics and sleep quality. Only tendon retraction had a significant correlation with pain. Although rotator cuff tears are frequently associated with nocturnal pain and sleep disruption, this study demonstrated that morphological characteristics of full-thickness rotator cuff tears, such as size and tendon retraction, do not correlate with sleep disturbance and have little to no correlation with pain levels.

  4. Neuroanatomical correlates of tinnitus revealed by cortical thickness analysis and diffusion tensor imaging

    Energy Technology Data Exchange (ETDEWEB)

    Aldhafeeri, Faten M [The University of Liverpool, Department of Medical Imaging, School of Health Sciences, Liverpool (United Kingdom); King Khalid General Hospital, Ministry of Health, Radiology Department, Hafral-batin (Saudi Arabia); Mackenzie, Ian; Kay, Tony [Aintree University Hospitals NHS Foundation Trust, Liverpool (United Kingdom); Alghamdi, Jamaan [The University of Liverpool, Department of Medical Imaging, School of Health Sciences, Liverpool (United Kingdom); King Abdul Aziz University, Physics Department, Faculty of Sciences, Jeddah (Saudi Arabia); Sluming, Vanessa [The University of Liverpool, Department of Medical Imaging, School of Health Sciences, Liverpool (United Kingdom); Magnetic Resonance and Image Analysis Research Centre, Liverpool (United Kingdom)

    2012-08-15

    Tinnitus is a poorly understood auditory perception of sound in the absence of external stimuli. Convergent evidence proposes that tinnitus perception involves brain structural alterations as part of its pathophysiology. The aim of this study is to investigate the structural brain changes that might be associated with tinnitus-related stress and negative emotions. Using high-resolution magnetic resonance imaging and diffusion tensor imaging, we investigated grey matter and white matter (WM) alterations by estimating cortical thickness measures, fractional anisotropy and mean diffusivity in 14 tinnitus subjects and 14 age- and sex-matched non-tinnitus subjects. Significant cortical thickness reductions were found in the prefrontal cortex (PFC), temporal lobe and limbic system in tinnitus subjects compared to non-tinnitus subjects. Tinnitus sufferers were found to have disrupted WM integrity in tracts involving connectivity of the PFC, temporal lobe, thalamus and limbic system. Our results suggest that such neural changes may represent neural origins for tinnitus or consequences of tinnitus and its associations. (orig.)

  5. Neuroanatomical correlates of tinnitus revealed by cortical thickness analysis and diffusion tensor imaging

    International Nuclear Information System (INIS)

    Aldhafeeri, Faten M.; Mackenzie, Ian; Kay, Tony; Alghamdi, Jamaan; Sluming, Vanessa

    2012-01-01

    Tinnitus is a poorly understood auditory perception of sound in the absence of external stimuli. Convergent evidence proposes that tinnitus perception involves brain structural alterations as part of its pathophysiology. The aim of this study is to investigate the structural brain changes that might be associated with tinnitus-related stress and negative emotions. Using high-resolution magnetic resonance imaging and diffusion tensor imaging, we investigated grey matter and white matter (WM) alterations by estimating cortical thickness measures, fractional anisotropy and mean diffusivity in 14 tinnitus subjects and 14 age- and sex-matched non-tinnitus subjects. Significant cortical thickness reductions were found in the prefrontal cortex (PFC), temporal lobe and limbic system in tinnitus subjects compared to non-tinnitus subjects. Tinnitus sufferers were found to have disrupted WM integrity in tracts involving connectivity of the PFC, temporal lobe, thalamus and limbic system. Our results suggest that such neural changes may represent neural origins for tinnitus or consequences of tinnitus and its associations. (orig.)

  6. Radial variation in sap velocity as a function of stem diameter and sapwood thickness in yellow-poplar trees.

    Science.gov (United States)

    Wullschleger, Stan D.; King, Anthony W.

    2000-04-01

    Canopy transpiration and forest water use are frequently estimated as the product of sap velocity and cross-sectional sapwood area. Few studies, however, have considered whether radial variation in sap velocity and the proportion of sapwood active in water transport are significant sources of uncertainty in the extrapolation process. Therefore, radial profiles of sap velocity were examined as a function of stem diameter and sapwood thickness for yellow-poplar (Liriodendron tulipifera L.) trees growing on two adjacent watersheds in eastern Tennessee. The compensation heat pulse velocity technique was used to quantify sap velocity at four equal-area depths in 20 trees that ranged in stem diameter from 15 to 69 cm, and in sapwood thickness from 2.1 to 14.8 cm. Sap velocity was highly dependent on the depth of probe insertion into the sapwood. Rates of sap velocity were greatest for probes located in the two outer sapwood annuli (P1 and P2) and lowest for probes in closest proximity to the heartwood (P3 and P4). Relative sap velocities averaged 0.98 at P1, 0.66 at P2, 0.41 at P3 and 0.35 at P4. Tree-specific sap velocities measured at each of the four probe positions, divided by the maximum sap velocity measured (usually at P1 or P2), indicated that the fraction of sapwood functional in water transport (f(S)) varied between 0.49 and 0.96. There was no relationship between f(S) and sapwood thickness, or between f(S) and stem diameter. The fraction of functional sapwood averaged 0.66 +/- 0.13 for trees on which radial profiles were determined. No significant depth-related differences were observed for sapwood density, which averaged 469 kg m(-3) across all four probe positions. There was, however, a significant decline in sapwood water content between the two outer probe positions (1.04 versus 0.89 kg kg(-1)). This difference was not sufficient to account for the observed radial variation in sap velocity. A Monte-Carlo analysis indicated that the standard error in

  7. Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Almansouri, Hani [Purdue University; Clayton, Dwight A [ORNL; Kisner, Roger A [ORNL; Polsky, Yarom [ORNL; Bouman, Charlie [Purdue University; Santos-Villalobos, Hector J [ORNL

    2015-01-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well s health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.

  8. Development of Acoustic Model-Based Iterative Reconstruction Technique for Thick-Concrete Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Almansouri, Hani [Purdue University; Clayton, Dwight A [ORNL; Kisner, Roger A [ORNL; Polsky, Yarom [ORNL; Bouman, Charlie [Purdue University; Santos-Villalobos, Hector J [ORNL

    2016-01-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.

  9. Development of acoustic model-based iterative reconstruction technique for thick-concrete imaging

    Science.gov (United States)

    Almansouri, Hani; Clayton, Dwight; Kisner, Roger; Polsky, Yarom; Bouman, Charles; Santos-Villalobos, Hector

    2016-02-01

    Ultrasound signals have been used extensively for non-destructive evaluation (NDE). However, typical reconstruction techniques, such as the synthetic aperture focusing technique (SAFT), are limited to quasi-homogenous thin media. New ultrasonic systems and reconstruction algorithms are in need for one-sided NDE of non-homogenous thick objects. An application example space is imaging of reinforced concrete structures for commercial nuclear power plants (NPPs). These structures provide important foundation, support, shielding, and containment functions. Identification and management of aging and degradation of concrete structures is fundamental to the proposed long-term operation of NPPs. Another example is geothermal and oil/gas production wells. These multi-layered structures are composed of steel, cement, and several types of soil and rocks. Ultrasound systems with greater penetration range and image quality will allow for better monitoring of the well's health and prediction of high-pressure hydraulic fracturing of the rock. These application challenges need to be addressed with an integrated imaging approach, where the application, hardware, and reconstruction software are highly integrated and optimized. Therefore, we are developing an ultrasonic system with Model-Based Iterative Reconstruction (MBIR) as the image reconstruction backbone. As the first implementation of MBIR for ultrasonic signals, this paper document the first implementation of the algorithm and show reconstruction results for synthetically generated data.1

  10. Optimizing detector thickness in dual-shot dual-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Woon; Kam, Soohwa; Youn, Hanbean; Kim, Ho Kyung [Pusan National University, Busan (Korea, Republic of)

    2015-05-15

    As a result, there exist apparent limitations in the conventional two-dimensional (2D) radiography: One is that the contrast between the structure of interest and the background in a radiograph is much less than the intrinsic subject contrast (i.e. the difference between their attenuation coefficients; Another is that the superimposed anatomical structures in the 2D radiograph results in an anatomical background clutter that may decrease the conspicuity of subtle underlying features. These limitations in spatial and material discrimination are important motivations for the recent development of 3D (e.g. tomosynthesis) and dual energy imaging (DEI) systems. DEI technique uses a combination of two images obtained at two different energies in successive x-ray exposures by rapidly switching the kilovolage (kV) applied to the x-ray tube. Commercial DEI systems usually employ a 'single' of flat-panel detector (FPD) to obtain two different kV images. However, we have a doubt in the use of the same detector for acquiring two different projections for the low- and high-kV setups because it is typically known that there exists an optimal detector thickness regarding specific imaging tasks or energies used.

  11. Optimal design of detector thickness for dual-energy x-ray imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Woon; Kim, Ho Kyung [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    The projection of three-dimensional (3D) human body on a two-dimensional (2D) radiograph results in the superimposition of normal tissue that can obscure abnormalities and in some common cases be misread as abnormalities. To reduce or eliminate this effect, 3D depth-discrimination techniques such as computed tomography can be used. Another method for improving conspicuity of abnormalities is an energy discrimination technique such as dual-energy imaging (DEI). The DEI discriminates, or enhances, material content (e.g. bone or soft tissue) within a 2D radiograph by combining images obtained at separte low and high energies. A commercial DEI system uses the fast kilovoltage (kVp) switching technique, which acquires low and highkVp projections in successive x-ray exposure. To obtain better quality in DE images, a large energy separation between the low and high-kVp setups is typically used for chest (e.g. 60/120 kVp). The optimal CsI thickness for dual-energy chest imaging has been theoretically investigated by evaluating prewhitening observer model detectability indexes. To evaluate the PW and PWE detectability indexes, dual-energy fluence and MTF have reviewed compared to the conventional descriptions.

  12. Simulation of bending stress variation in long buried thick-walled pipes under the earth’s movement using combined linear dynamics and beam theories

    Directory of Open Access Journals (Sweden)

    Salau Tajudeen A.O.

    2014-01-01

    Full Text Available This study reported a simulation approach to the understanding of the interactions between a buried pipe and the soil system by computing the bending stress variation of harmonically-excited buried pipes. The established principles of linear dynamics theory and simple beam theory were utilised in the analysis of the problem of buried pipe bending stress accumulation and its dynamics. With regards to the parameters that influence the bending stress variations, the most important are the isolation factor, uniform external load, and the corresponding limiting conditions. The simulated mathematical expressions, containing static and dynamic parameters of the buried pipe and earth, were coded in Fortran programming language and applied in the simulation experiment. The results obtained showed that harmonically-excited buried thick-walled pipe became stable and effective when the ratio of the natural frequency of vibration to the forced frequency is greater than 2.0, whenever the damped factor is used as the control parameter for the maximum bending stress. The mirror image of the stress variation produces variation in the location of the maximum bending stress in quantitative terms. The acceptable pipe materials for the simulated cases must have yield strength in bending greater than or equal to 13.95 MPa. The results obtained in this work fill a gap in the literature and will be useful to pipeline engineers and designers, as well as to environmental scientists in initialising and controlling environmental issues and policy formulation concerning the influence of buried pipe on the soil and water in the environment.

  13. Variational Histogram Equalization for Single Color Image Defogging

    Directory of Open Access Journals (Sweden)

    Li Zhou

    2016-01-01

    Full Text Available Foggy images taken in the bad weather inevitably suffer from contrast loss and color distortion. Existing defogging methods merely resort to digging out an accurate scene transmission in ignorance of their unpleasing distortion and high complexity. Different from previous works, we propose a simple but powerful method based on histogram equalization and the physical degradation model. By revising two constraints in a variational histogram equalization framework, the intensity component of a fog-free image can be estimated in HSI color space, since the airlight is inferred through a color attenuation prior in advance. To cut down the time consumption, a general variation filter is proposed to obtain a numerical solution from the revised framework. After getting the estimated intensity component, it is easy to infer the saturation component from the physical degradation model in saturation channel. Accordingly, the fog-free image can be restored with the estimated intensity and saturation components. In the end, the proposed method is tested on several foggy images and assessed by two no-reference indexes. Experimental results reveal that our method is relatively superior to three groups of relevant and state-of-the-art defogging methods.

  14. Surface and thickness variations of Brenva Glacier tongue (Mont Blanc, Italian Alps) in the second half of the 20th century by historical maps and aerial photogrammetry comparisons

    Science.gov (United States)

    D Agata, C.; Zanutta, A.; Muzzu Martis, D.; Mancini, F.; Smiraglia, C.

    2003-04-01

    Aim of this contribution is the evaluation of volumetric and surface variations of Brenva Glacier (Mont Blanc, Italian Alps) during the second half of the 20th century, by GIS-based processing of maps and aerial photogrammetry technique. Brenva Glacier is a typical debris covered glacier, located in a valley on the S-E side of the Mont Blanc. The glacier covers a surface of 7 kmq and shows a length of 7,6 km at maximum. The glacier snout reaches 1415 m a.s.l., which is the lowest glacier terminus of the Italian Alps. To evaluate glacier variations different historical maps were used: 1) The 1959 Map, at the scale 1:5.000, by EIRA (Ente Italiano Rilievi Aerofotogrammetrici, Firenze), from terrestrial photogrammetric survey, published in the Bollettino del Comitato Glaciologico Italiano, 2, n. 19, 1971. 2) The 1971 Map, at the scale 1:5.000, from aerial photogrammetry (Alifoto, Torino) published in the Bollettino del Comitato Glaciologico Italiano, 2, n. 20, 1972. 3) The 1988 Map, at the scale 1:10.000, (Region Aosta Valley, Regional Technical Map) from 1983 aerial photogrammetric survey. 4) The 1999 Map, at the scale 1:10.000, (Region Aosta Valley, Regional Technical Map) from 1991 aerial photogrammetry survey. For the same purpose the following aereal photographs were used: 1) The 1975 image, CGR (Italian General Company aerial Surveys) flight RAVDA (Administrative Autonomous Region Aosta Valley), at the scale 1:17.000. 2) The 1991 image, CGR (Italian General Company aerial Surveys) flight RAVDA (Administrative Autonomous Region Aosta Valley), at the scale 1:17.000. Aerial imageries have been acquired over a long period from 1975 to 1991. The black and white images were scanned at suitable resolution if compared with the imagery scale and several models, representing the glacier tongue area, oriented using the inner and outer orientation parameters delivered with the images, were produced. The digital photogrammetric system, after orientation and matching, produces

  15. State Variation in Medical Imaging: Despite Great Variation, the Medicare Spending Decline Continues.

    Science.gov (United States)

    Rosenkrantz, Andrew B; Hughes, Danny R; Duszak, Richard

    2015-10-01

    The purpose of this study was to assess state-level trends in per beneficiary Medicare spending on medical imaging. Medicare part B 5% research identifiable files from 2004 through 2012 were used to compute national and state-by-state annual average per beneficiary spending on imaging. State-to-state geographic variation and temporal trends were analyzed. National average per beneficiary Medicare part B spending on imaging increased 7.8% annually between 2004 ($350.54) and its peak in 2006 ($405.41) then decreased 4.4% annually between 2006 and 2012 ($298.63). In 2012, annual per beneficiary spending was highest in Florida ($367.25) and New York ($355.67) and lowest in Ohio ($67.08) and Vermont ($72.78). Maximum state-to-state geographic variation increased over time, with the ratio of highest-spending state to lowest-spending state increasing from 4.0 in 2004 to 5.5 in 2012. Spending in nearly all states decreased since peaks in 2005 (six states) or 2006 (43 states). The average annual decrease among states was 5.1% ± 1.8% (range, 1.2-12.2%) The largest decrease was in Ohio. In only two states did per beneficiary spending increase (Maryland, 12.5% average annual increase since 2005; Oregon, 4.8% average annual increase since 2008). Medicare part B average per beneficiary spending on medical imaging declined in nearly every state since 2005 and 2006 peaks, abruptly reversing previously reported trends. Spending continued to increase, however, in Maryland and Oregon. Identification of state-level variation may facilitate future investigation of the potential effect of specific and regional changes in spending on patient access and outcomes.

  16. A Variational Approach to Simultaneous Image Segmentation and Bias Correction.

    Science.gov (United States)

    Zhang, Kaihua; Liu, Qingshan; Song, Huihui; Li, Xuelong

    2015-08-01

    This paper presents a novel variational approach for simultaneous estimation of bias field and segmentation of images with intensity inhomogeneity. We model intensity of inhomogeneous objects to be Gaussian distributed with different means and variances, and then introduce a sliding window to map the original image intensity onto another domain, where the intensity distribution of each object is still Gaussian but can be better separated. The means of the Gaussian distributions in the transformed domain can be adaptively estimated by multiplying the bias field with a piecewise constant signal within the sliding window. A maximum likelihood energy functional is then defined on each local region, which combines the bias field, the membership function of the object region, and the constant approximating the true signal from its corresponding object. The energy functional is then extended to the whole image domain by the Bayesian learning approach. An efficient iterative algorithm is proposed for energy minimization, via which the image segmentation and bias field correction are simultaneously achieved. Furthermore, the smoothness of the obtained optimal bias field is ensured by the normalized convolutions without extra cost. Experiments on real images demonstrated the superiority of the proposed algorithm to other state-of-the-art representative methods.

  17. Clinical evaluation of left ventricular wall thickness by combined technique with gated planer 201Tl image and gated cardiac pool image

    International Nuclear Information System (INIS)

    Nakai, Kenji; Katsuragawa, Shigehiko; Takahashi, Tsuneo; Matsushita, Kazuo; Kawamura, Akiyoshi

    1983-01-01

    To evaluate the left ventricular (LV) wall thickness, combined technique with gated planer 201-Thallium image and gated cardiac pool image was applied to 6 patients with hypertrophic cardiomyopathy (HCM) and 4 patients with secondary hypertrophy due to hypertension (HHD) proven by electrocardiography and ultrasonic-echocardiography. Scintigraphic pattern of hypertrophy on reconstructed planer 201 Tl image showed diffuse or asymmetrical apical hypertrophy in HHD, asymmetrical septal hypertrophy in HCM. It was very interesting that abnormal perfusion was shown in 201 Tl image, despite symmetrical hypertrophy in echocardiography. This techniques provided useful information for evaluating the LV wall thickness and cardiac performance. (author)

  18. Clinical evaluation of left ventricular wall thickness by combined technique with gated planer /sup 201/Tl image and gated cardiac pool image

    Energy Technology Data Exchange (ETDEWEB)

    Nakai, Kenji; Katsuragawa, Shigehiko; Takahashi, Tsuneo; Matsushita, Kazuo; Kawamura, Akiyoshi

    1983-11-01

    To evaluate the left ventricular (LV) wall thickness, a combined technique with gated planer 201-thallium image and gated cardiac pool image was applied to 6 patients with hypertrophic cardiomyopathy (HCM) and 4 patients with secondary hypertrophy due to hypertension (HHD) proven by electrocardiography and ultrasonic-echocardiography. Scintigraphic pattern of hypertrophy on reconstructed planer /sup 201/Tl image showed diffuse or asymmetrical apical hypertrophy in HHD, asymmetrical septal hypertrophy in HCM. It was very interesting that abnormal perfusion was shown in /sup 201/Tl image, despite symmetrical hypertrophy in echocardiography. This techniques provided useful information for evaluating the LV wall thickness and cardiac performance.

  19. Brain Atlas Fusion from High-Thickness Diagnostic Magnetic Resonance Images by Learning-Based Super-Resolution.

    Science.gov (United States)

    Zhang, Jinpeng; Zhang, Lichi; Xiang, Lei; Shao, Yeqin; Wu, Guorong; Zhou, Xiaodong; Shen, Dinggang; Wang, Qian

    2017-03-01

    It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images.

  20. Infrared sensing and the measurement of oil slick thickness

    International Nuclear Information System (INIS)

    Brown, H.M.; Baschuk, J.J.; Goodman, R.H.

    1998-01-01

    The issue of whether infrared images can be used to detect the thickness of a marine oil spill was discussed. Infrared images of oil spills on water show density variations because of variations in oil temperature and emissivity. These observations have been used to determine thickness variations in the oil. Experiments were conducted in a large wave basin using two typical crude oils in the thickness range of 1 mm to 10 mm. Infrared images of oil spills were recorded and simultaneous thickness measurements were made using an acoustic thickness gauge. The study showed that there is no relationship between infrared image pixel greyness and the thickness measured with an acoustic probe. It was not possible to determine the volume of a spill using infrared images. 2 refs., 1 tab., 4 figs

  1. Total variation superiorized conjugate gradient method for image reconstruction

    Science.gov (United States)

    Zibetti, Marcelo V. W.; Lin, Chuan; Herman, Gabor T.

    2018-03-01

    The conjugate gradient (CG) method is commonly used for the relatively-rapid solution of least squares problems. In image reconstruction, the problem can be ill-posed and also contaminated by noise; due to this, approaches such as regularization should be utilized. Total variation (TV) is a useful regularization penalty, frequently utilized in image reconstruction for generating images with sharp edges. When a non-quadratic norm is selected for regularization, as is the case for TV, then it is no longer possible to use CG. Non-linear CG is an alternative, but it does not share the efficiency that CG shows with least squares and methods such as fast iterative shrinkage-thresholding algorithms (FISTA) are preferred for problems with TV norm. A different approach to including prior information is superiorization. In this paper it is shown that the conjugate gradient method can be superiorized. Five different CG variants are proposed, including preconditioned CG. The CG methods superiorized by the total variation norm are presented and their performance in image reconstruction is demonstrated. It is illustrated that some of the proposed variants of the superiorized CG method can produce reconstructions of superior quality to those produced by FISTA and in less computational time, due to the speed of the original CG for least squares problems. In the Appendix we examine the behavior of one of the superiorized CG methods (we call it S-CG); one of its input parameters is a positive number ɛ. It is proved that, for any given ɛ that is greater than the half-squared-residual for the least squares solution, S-CG terminates in a finite number of steps with an output for which the half-squared-residual is less than or equal to ɛ. Importantly, it is also the case that the output will have a lower value of TV than what would be provided by unsuperiorized CG for the same value ɛ of the half-squared residual.

  2. Blind image fusion for hyperspectral imaging with the directional total variation

    Science.gov (United States)

    Bungert, Leon; Coomes, David A.; Ehrhardt, Matthias J.; Rasch, Jennifer; Reisenhofer, Rafael; Schönlieb, Carola-Bibiane

    2018-04-01

    Hyperspectral imaging is a cutting-edge type of remote sensing used for mapping vegetation properties, rock minerals and other materials. A major drawback of hyperspectral imaging devices is their intrinsic low spatial resolution. In this paper, we propose a method for increasing the spatial resolution of a hyperspectral image by fusing it with an image of higher spatial resolution that was obtained with a different imaging modality. This is accomplished by solving a variational problem in which the regularization functional is the directional total variation. To accommodate for possible mis-registrations between the two images, we consider a non-convex blind super-resolution problem where both a fused image and the corresponding convolution kernel are estimated. Using this approach, our model can realign the given images if needed. Our experimental results indicate that the non-convexity is negligible in practice and that reliable solutions can be computed using a variety of different optimization algorithms. Numerical results on real remote sensing data from plant sciences and urban monitoring show the potential of the proposed method and suggests that it is robust with respect to the regularization parameters, mis-registration and the shape of the kernel.

  3. New variational image decomposition model for simultaneously denoising and segmenting optical coherence tomography images

    International Nuclear Information System (INIS)

    Duan, Jinming; Bai, Li; Tench, Christopher; Gottlob, Irene; Proudlock, Frank

    2015-01-01

    Optical coherence tomography (OCT) imaging plays an important role in clinical diagnosis and monitoring of diseases of the human retina. Automated analysis of optical coherence tomography images is a challenging task as the images are inherently noisy. In this paper, a novel variational image decomposition model is proposed to decompose an OCT image into three components: the first component is the original image but with the noise completely removed; the second contains the set of edges representing the retinal layer boundaries present in the image; and the third is an image of noise, or in image decomposition terms, the texture, or oscillatory patterns of the original image. In addition, a fast Fourier transform based split Bregman algorithm is developed to improve computational efficiency of solving the proposed model. Extensive experiments are conducted on both synthesised and real OCT images to demonstrate that the proposed model outperforms the state-of-the-art speckle noise reduction methods and leads to accurate retinal layer segmentation. (paper)

  4. Ethnic Variations in Central Corneal Thickness in a Rural Population in China: The Yunnan Minority Eye Studies.

    Science.gov (United States)

    Pan, Chen-Wei; Li, Jun; Zhong, Hua; Shen, Wei; Niu, Zhiqiang; Yuan, Yuansheng; Chen, Qin

    2015-01-01

    To describe the ethnic differences in central corneal thickness (CCT) in population-based samples of ethnic Bai, Yi and Han people living in rural China. 6504 adults (2119 ethnic Bai, 2202 ethnic Yi and 2183 ethnic Han) aged 50 years or older participated in the study. Each subject underwent standardized ocular examinations and interviewer-administered questionnaires for risk factor assessment. CCT was measured for both eyes using an ultrasound pachymeter. Regression and principal component analysis were performed to examine the relationship of ethnicity and other factors with CCT. The mean CCT readings were 536.4 ± 34.2 μm in ethnic Bai, 532.1 ± 32.1 μm in ethnic Yi and 529.6 ± 32.7 μm in ethnic Han adults (Pethnic groups. In multivariate linear regression models, increasing CCT was associated with younger age (Pethnicity, greater body mass index (PEthnicity contributed significantly to presence of thin cornea (60%; Pethnic groups. This study of more than 6500 multiethnic participants demonstrates significant ethnic variations in CCT, with Han ethnicity having the thinnest cornea compared with ethnic minorities. These data are essential to guide future multiethnic clinical trials on CCT-related ocular conditions such as glaucoma.

  5. Limited diagnostic accuracy of magnetic resonance imaging and clinical tests for detecting partial-thickness tears of the rotator cuff.

    Science.gov (United States)

    Brockmeyer, Matthias; Schmitt, Cornelia; Haupert, Alexander; Kohn, Dieter; Lorbach, Olaf

    2017-12-01

    The reliable diagnosis of partial-thickness tears of the rotator cuff is still elusive in clinical practise. Therefore, the purpose of the study was to determine the diagnostic accuracy of MR imaging and clinical tests for detecting partial-thickness tears of the rotator cuff as well as the combination of these parameters. 334 consecutive shoulder arthroscopies for rotator cuff pathologies performed during the time period between 2010 and 2012 were analyzed retrospectively for the findings of common clinical signs for rotator cuff lesions and preoperative MR imaging. These were compared with the intraoperative arthroscopic findings as "gold standard". The reports of the MR imaging were evaluated with regard to the integrity of the rotator cuff. The Ellman Classification was used to define partial-thickness tears of the rotator cuff in accordance with the arthroscopic findings. Descriptive statistics, sensitivity, specificity, positive and negative predictive value were calculated. MR imaging showed 80 partial-thickness and 70 full-thickness tears of the rotator cuff. The arthroscopic examination confirmed 64 partial-thickness tears of which 52 needed debridement or refixation of the rotator cuff. Sensitivity for MR imaging to identify partial-thickness tears was 51.6%, specificity 77.2%, positive predictive value 41.3% and negative predictive value 83.7%. For the Jobe-test, sensitivity was 64.1%, specificity 43.2%, positive predictive value 25.9% and negative predictive value 79.5%. Sensitivity for the Impingement-sign was 76.7%, specificity 46.6%, positive predictive value 30.8% and negative predictive value 86.5%. For the combination of MR imaging, Jobe-test and Impingement-sign sensitivity was 46.9%, specificity 85.4%, positive predictive value 50% and negative predictive value 83.8%. The diagnostic accuracy of MR imaging and clinical tests (Jobe-test and Impingement-sign) alone is limited for detecting partial-thickness tears of the rotator cuff. Additionally

  6. A technique for visualization and mapping of local cartilage thickness changes in MR images of osteoarthritic knee

    Energy Technology Data Exchange (ETDEWEB)

    Ge, Quanxu, E-mail: gequanxu@yahoo.com.cn [Department of Radiology, Weihai Municipal Hospital, Weihai City, Shandong Province, 164200 (China); Cheng, Yuanzhi, E-mail: yzcheng@hitwh.edu.cn [School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001 (China); Bi, Kesen, E-mail: whbks@yahoo.com.cn [Department of Radiology, Weihai Municipal Hospital, Weihai City, Shandong Province, 164200 (China); Guo, Changyong, E-mail: hit_gcy@163.com [School of Computer Science and Technology, Harbin Institute of Technology, Harbin, 150001 (China); Bai, Jing, E-mail: deabj@tsinghua.edu.cn [Department of Biomedical Engineering, School of Medicine, Tsinghua University, China B209, Medical School Building, Tsinghua University, Beijing, 100084 (China); Tamura, Shinichi, E-mail: tamuras@nblmt.jp [Center for Advanced Medical Engineering and Informatics, Osaka University, D11, 2-2, Yamadaoka, Suita, Osaka 565-0871 (Japan)

    2012-11-15

    Purpose: The aim of this paper is to describe a technique for the visualization and mapping of focal, local cartilage thickness changes over time in magnetic resonance images of osteoarthritic knee. Methods: Magnetic resonance imaging was performed in 25 fresh frozen pig knee joints and 15 knees of patients with borderline to mild osteoarthritis (51.2 {+-} 6.3 years). Cartilage and corresponding bone structures were extracted by semi-automatic segmentation. Each point in the bone surface which was part of the bone-cartilage interface was assigned a cartilage thickness value. Cartilage thicknesses were computed for each point in the bone-cartilage interfaces and transferred to the bone surfaces. Moreover, we developed a three dimensional registration method for the identification of anatomically corresponding points of the bone surface to quantify local cartilage thickness changes. One of the main advantages of our method compared to other studies in the field of registration is a global optimization algorithm that does not require any initialization. Results and conclusion: The registration accuracy was 0.93 {+-} 0.05 mm (less than a voxel of magnetic resonance data). Local cartilage thickness changes were seen as having follow-up clinical study for detecting local changes in cartilage thickness. Experiment results suggest that our method was sufficiently accurate and effective for monitoring knee joint diseases.

  7. Thickness-Independent Ultrasonic Imaging Applied to Abrasive Cut-Off Wheels: An Advanced Aerospace Materials Characterization Method for the Abrasives Industry. A NASA Lewis Research Center Technology Transfer Case History

    Science.gov (United States)

    Roth, Don J.; Farmer, Donald A.

    1998-01-01

    Abrasive cut-off wheels are at times unintentionally manufactured with nonuniformity that is difficult to identify and sufficiently characterize without time-consuming, destructive examination. One particular nonuniformity is a density variation condition occurring around the wheel circumference or along the radius, or both. This density variation, depending on its severity, can cause wheel warpage and wheel vibration resulting in unacceptable performance and perhaps premature failure of the wheel. Conventional nondestructive evaluation methods such as ultrasonic c-scan imaging and film radiography are inaccurate in their attempts at characterizing the density variation because a superimposing thickness variation exists as well in the wheel. In this article, the single transducer thickness-independent ultrasonic imaging method, developed specifically to allow more accurate characterization of aerospace components, is shown to precisely characterize the extent of the density variation in a cut-off wheel having a superimposing thickness variation. The method thereby has potential as an effective quality control tool in the abrasives industry for the wheel manufacturer.

  8. Coating Thickness Measurement of the Simulated TRISO-Coated Fuel Particles using an Image Plate and a High Resolution Scanner

    International Nuclear Information System (INIS)

    Kim, Woong Ki; Kim, Yeon Ku; Jeong, Kyung Chai; Lee, Young Woo; Kim, Bong Goo; Eom, Sung Ho; Kim, Young Min; Yeo, Sung Hwan; Cho, Moon Sung

    2014-01-01

    In this study, the thickness of the coating layers of 196 coated particles was measured using an Image Plate detector, high resolution scanner and digital image processing techniques. The experimental results are as follows. - An X-ray image was acquired for 196 simulated TRISO-coated fuel particles with ZrO 2 kernel using an Image Plate with high resolution in a reduced amount of time. - We could observe clear boundaries between coating layers for 196 particles. - The geometric distortion error was compensated for the calculation. - The coating thickness of the TRISO-coated fuel particles can be nondestructively measured using X-ray radiography and digital image processing technology. - We can increase the number of TRISO-coated particles to be inspected by increasing the number of Image Plate detectors. A TRISO-coated fuel particle for an HTGR (high temperature gas-cooled reactor) is composed of a nuclear fuel kernel and outer coating layers. The coating layers consist of buffer PyC (pyrolytic carbon), inner PyC (I-PyC), SiC, and outer PyC (O-PyC) layer. The coating thickness is measured to evaluate the soundness of the coating layers. X-ray radiography is one of the nondestructive alternatives for measuring the coating thickness without generating a radioactive waste. Several billion particles are subject to be loaded in a reactor. A lot of sample particles should be tested as much as possible. The acquired X-ray images for the measurement of coating thickness have included a small number of particles because of the restricted resolution and size of the X-ray detector. We tried to test many particles for an X-ray exposure to reduce the measurement time. In this experiment, an X-ray image was acquired for 196 simulated TRISO-coated fuel particles using an image plate and high resolution scanner with a pixel size of 25Χ25 μm 2 . The coating thickness for the particles could be measured on the image

  9. Dark-field image contrast in transmission scanning electron microscopy: Effects of substrate thickness and detector collection angle

    Energy Technology Data Exchange (ETDEWEB)

    Woehl, Taylor, E-mail: tjwoehl@umd.edu; Keller, Robert

    2016-12-15

    An annular dark field (ADF) detector was placed beneath a specimen in a field emission scanning electron microscope operated at 30 kV to calibrate detector response to incident beam current, and to create transmission images of gold nanoparticles on silicon nitride (SiN) substrates of various thicknesses. Based on the linear response of the ADF detector diodes to beam current, we developed a method that allowed for direct determination of the percentage of that beam current forward scattered to the ADF detector from the sample, i.e. the transmitted electron (TE) yield. Collection angles for the ADF detector region were defined using a masking aperture above the detector and were systematically varied by changing the sample to detector distance. We found the contrast of the nanoparticles, relative to the SiN substrate, decreased monotonically with decreasing inner exclusion angle and increasing substrate thickness. We also performed Monte Carlo electron scattering simulations, which showed quantitative agreement with experimental contrast associated with the nanoparticles. Together, the experiments and Monte Carlo simulations revealed that the decrease in contrast with decreasing inner exclusion angle was due to a rapid increase in the TE yield of the low atomic number substrate. Nanoparticles imaged at low inner exclusion angles (<150 mrad) and on thick substrates (>50 nm) showed low image contrast in their centers surrounded by a bright high-contrast halo on their edges. This complex image contrast was predicted by Monte Carlo simulations, which we interpreted in terms of mixing of the nominally bright field (BF) and ADF electron signals. Our systematic investigation of inner exclusion angle and substrate thickness effects on ADF t-SEM imaging provides fundamental understanding of the contrast mechanisms for image formation, which in turn suggest practical limitations and optimal imaging conditions for different substrate thicknesses. - Highlights: • Developed a

  10. Uncertainties in cloud phase and optical thickness retrievals from the Earth Polychromatic Imaging Camera (EPIC)

    Science.gov (United States)

    Meyer, Kerry; Yang, Yuekui; Platnick, Steven

    2018-01-01

    This paper presents an investigation of the expected uncertainties of a single channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud temperature threshold based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODIS daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single channel COT retrieval is feasible for EPIC. For ice clouds, single channel retrieval errors are minimal (clouds the error is mostly limited to within 10%, although for thin clouds (COT cloud masking and cloud temperature retrievals are not considered in this study. PMID:29619116

  11. Compositional variation within thick (>10 m) flow units of Mauna Kea Volcano cored by the Hawaii Scientific Drilling Project

    Science.gov (United States)

    Huang, Shichun; Vollinger, Michael J.; Frey, Frederick A.; Rhodes, J. Michael; Zhang, Qun

    2016-07-01

    Geochemical analyses of stratigraphic sequences of lava flows are necessary to understand how a volcano works. Typically one sample from each lava flow is collected and studied with the assumption that this sample is representative of the flow composition. This assumption may not be valid. The thickness of flows ranges from 100 m. Geochemical heterogeneity in thin flows may be created by interaction with the surficial environment whereas magmatic processes occurring during emplacement may create geochemical heterogeneities in thick flows. The Hawaii Scientific Drilling Project (HSDP) cored ∼3.3 km of basalt erupted at Mauna Kea Volcano. In order to determine geochemical heterogeneities in a flow, multiple samples from four thick (9.3-98.4 m) HSDP flow units were analyzed for major and trace elements. We found that major element abundances in three submarine flow units are controlled by the varying proportion of olivine, the primary phenocryst phase in these samples. Post-magmatic alteration of a subaerial flow led to loss of SiO2, CaO, Na2O, K2O and P2O5, and as a consequence, contents of immobile elements, such as Fe2O3 and Al2O3, increase. The mobility of SiO2 is important because Mauma Kea shield lavas divide into two groups that differ in SiO2 content. Post-magmatic mobility of SiO2 adds complexity to determining if these groups reflect differences in source or process. The most mobile elements during post-magmatic subaerial and submarine alteration are K and Rb, and Ba, Sr and U were also mobile, but their abundances are not highly correlated with K and Rb. The Ba/Th ratio has been used to document an important role for a plagioclase-rich source component for basalt from the Galapagos, Iceland and Hawaii. Although Ba/Th is anomalously high in Hawaiian basalt, variation in Ba abundance within a single flow shows that it is not a reliable indicator of a deep source component. In contrast, ratios involving elements that are typically immobile, such as La/Nb, La

  12. Ethnic Variations in Central Corneal Thickness in a Rural Population in China: The Yunnan Minority Eye Studies.

    Directory of Open Access Journals (Sweden)

    Chen-Wei Pan

    Full Text Available To describe the ethnic differences in central corneal thickness (CCT in population-based samples of ethnic Bai, Yi and Han people living in rural China.6504 adults (2119 ethnic Bai, 2202 ethnic Yi and 2183 ethnic Han aged 50 years or older participated in the study. Each subject underwent standardized ocular examinations and interviewer-administered questionnaires for risk factor assessment. CCT was measured for both eyes using an ultrasound pachymeter. Regression and principal component analysis were performed to examine the relationship of ethnicity and other factors with CCT.The mean CCT readings were 536.4 ± 34.2 μm in ethnic Bai, 532.1 ± 32.1 μm in ethnic Yi and 529.6 ± 32.7 μm in ethnic Han adults (P<0.001, respectively. There was a decreasing trend of mean CCT with increasing age across all ethnic groups. In multivariate linear regression models, increasing CCT was associated with younger age (P<0.001, male gender (P<0.001, Bai (P<0.001 or Yi (P<0.001 ethnicity, greater body mass index (P<0.001, higher systolic blood pressure (P<0.001, greater corneal curvature (P<0.001, deeper anterior chamber (P < 0.001, and thicker lens (P<0.001. Ethnicity contributed significantly to presence of thin cornea (60%; P< 0.001 compared with other factors. CCT had similar impact on intraocular pressure readings across all ethnic groups.This study of more than 6500 multiethnic participants demonstrates significant ethnic variations in CCT, with Han ethnicity having the thinnest cornea compared with ethnic minorities. These data are essential to guide future multiethnic clinical trials on CCT-related ocular conditions such as glaucoma.

  13. Diagnostic difficulties resulting from morphological image variation in spondylodiscitis MR imaging

    International Nuclear Information System (INIS)

    Dziurzyńska-Białek, Ewa; Kruk-Bachonko, Joanna; Guz, Wiesław; Łosicki, Marek; Krupski, Witold

    2012-01-01

    Spinal infection (discitis; spondylodiscitis) presents a wide spectrum of pathologies. The method of choice for spondylodiscitis imaging is magnetic resonance (MR). It provides detailed anatomical information, especially concerning epidural space and spinal cord. The main aim of this article is the description and evaluation of spondylodiscitis morphological variation visible in magnetic resonance imaging. In this article we retrospectively analysed the patients diagnosed at the Department of Radiology of the Provincial Hospital No 2 in Rzeszów between October 2009 and October 2011. The subjects involved a group of five women aged 41–74 (mean 56.3 years) and eight men aged 46–69 (mean 61,3 years). All patients had spondylodiscitis symptoms. All patients underwent MRI examination before and after the contrast enhancement. In three patients additional CT examination was performed. Following the MRI procedure all patients were diagnosed with typical symptoms of spondylodiscitis. It also revealed a number of pathologies resulting from morphological spondylodiscitis variation. Other pathologies found on the MR images of the study group patients involved epidural intra-canal spinal pathological masses causing spinal cord compression, lung abscess, pyothorax, paravertebral abscesses and epidural empyemas, abscess between adjacent vertebral bodies, abscesses beneath anterior longitudinal ligament, and iliopsoas muscle abscesses. In all cases a destruction of vertebral bodies with end plates loss restriction and cortical layer discontinuity was observed. Moreover, one person was diagnosed with pathological vertebral body fractures and liquefactive necrosis of the vertebral body. Spondylodiscitis manifests itself in a great number of morphological variations visible on the radiological images. Apart from ordinary features of vertebral bodies and discs, progressive spinal destruction is observed together with reactive bone changes and soft tissue infiltration. The latter

  14. Soft X-ray imaging of thick carbon-based materials using the normal incidence multilayer optics.

    Science.gov (United States)

    Artyukov, I A; Feschenko, R M; Vinogradov, A V; Bugayev, Ye A; Devizenko, O Y; Kondratenko, V V; Kasyanov, Yu S; Hatano, T; Yamamoto, M; Saveliev, S V

    2010-10-01

    The high transparency of carbon-containing materials in the spectral region of "carbon window" (lambda approximately 4.5-5nm) introduces new opportunities for various soft X-ray microscopy applications. The development of efficient multilayer coated X-ray optics operating at the wavelengths of about 4.5nm has stimulated a series of our imaging experiments to study thick biological and synthetic objects. Our experimental set-up consisted of a laser plasma X-ray source generated with the 2nd harmonics of Nd-glass laser, scandium-based thin-film filters, Co/C multilayer mirror and X-ray film UF-4. All soft X-ray images were produced with a single nanosecond exposure and demonstrated appropriate absorption contrast and detector-limited spatial resolution. A special attention was paid to the 3D imaging of thick low-density foam materials to be used in design of laser fusion targets.

  15. SU-C-207A-03: Development of Proton CT Imaging System Using Thick Scintillator and CCD Camera

    Energy Technology Data Exchange (ETDEWEB)

    Tanaka, S; Uesaka, M [The University of Tokyo, Tokyo (Japan); Nishio, T; Tsuneda, M [Hiroshima University, Hiroshima (Japan); Matsushita, K [Rikkyo University, Tokyo (Japan); Kabuki, S [Tokai University, Isehara (Japan)

    2016-06-15

    Purpose: In the treatment planning of proton therapy, Water Equivalent Length (WEL), which is the parameter for the calculation of dose and the range of proton, is derived by X-ray CT (xCT) image and xCT-WEL conversion. However, about a few percent error in the accuracy of proton range calculation through this conversion has been reported. The purpose of this study is to construct a proton CT (pCT) imaging system for an evaluation of the error. Methods: The pCT imaging system was constructed with a thick scintillator and a cooled CCD camera, which acquires the two-dimensional image of integrated value of the scintillation light toward the beam direction. The pCT image is reconstructed by FBP method using a correction between the light intensity and residual range of proton beam. An experiment for the demonstration of this system was performed with 70-MeV proton beam provided by NIRS cyclotron. The pCT image of several objects reconstructed from the experimental data was evaluated quantitatively. Results: Three-dimensional pCT images of several objects were reconstructed experimentally. A finestructure of approximately 1 mm was clearly observed. The position resolution of pCT image was almost the same as that of xCT image. And the error of proton CT pixel value was up to 4%. The deterioration of image quality was caused mainly by the effect of multiple Coulomb scattering. Conclusion: We designed and constructed the pCT imaging system using a thick scintillator and a CCD camera. And the system was evaluated with the experiment by use of 70-MeV proton beam. Three-dimensional pCT images of several objects were acquired by the system. This work was supported by JST SENTAN Grant Number 13A1101 and JSPS KAKENHI Grant Number 15H04912.

  16. Uncertainties in cloud phase and optical thickness retrievals from the Earth Polychromatic Imaging Camera (EPIC).

    Science.gov (United States)

    Meyer, Kerry; Yang, Yuekui; Platnick, Steven

    2016-01-01

    This paper presents an investigation of the expected uncertainties of a single channel cloud optical thickness (COT) retrieval technique, as well as a simple cloud temperature threshold based thermodynamic phase approach, in support of the Deep Space Climate Observatory (DSCOVR) mission. DSCOVR cloud products will be derived from Earth Polychromatic Imaging Camera (EPIC) observations in the ultraviolet and visible spectra. Since EPIC is not equipped with a spectral channel in the shortwave or mid-wave infrared that is sensitive to cloud effective radius (CER), COT will be inferred from a single visible channel with the assumption of appropriate CER values for liquid and ice phase clouds. One month of Aqua MODIS daytime granules from April 2005 is selected for investigating cloud phase sensitivity, and a subset of these granules that has similar EPIC sun-view geometry is selected for investigating COT uncertainties. EPIC COT retrievals are simulated with the same algorithm as the operational MODIS cloud products (MOD06), except using fixed phase-dependent CER values. Uncertainty estimates are derived by comparing the single channel COT retrievals with the baseline bi-spectral MODIS retrievals. Results show that a single channel COT retrieval is feasible for EPIC. For ice clouds, single channel retrieval errors are minimal (< 2%) due to the particle size insensitivity of the assumed ice crystal (i.e., severely roughened aggregate of hexagonal columns) scattering properties at visible wavelengths, while for liquid clouds the error is mostly limited to within 10%, although for thin clouds (COT < 2) the error can be higher. Potential uncertainties in EPIC cloud masking and cloud temperature retrievals are not considered in this study.

  17. An observational study on MR images of the effect of the discoid meniscus on articular cartilage thickness.

    Science.gov (United States)

    Oni, David Babajide; Jeyapalan, K; Oni, Olusola O A

    2011-06-01

    The discoid meniscus is known to affect the morphology and mechanics of the knee compartment in which it is housed. To determine whether it also is determinative of the articular cartilage thickness, measurements were made on MR images. There was no statistically significant difference in femoral or tibial articular cartilage thickness between compartments with normal meniscus and compartments with discoid meniscus. These findings suggest that mechanical disturbances wrought by the discoid shape do not have a 'Wolff law' effect. Copyright © 2010. Published by Elsevier B.V.

  18. ICESat Observations of Seasonal and Interannual Variations of Sea-Ice Freeboard and Estimated Thickness in the Weddell Sea, Antarctica (2003-2009)

    Science.gov (United States)

    Yi, Donghui; Robbins, John W.

    2010-01-01

    Sea-ice freeboard heights for 17 ICESat campaign periods from 2003 to 2009 are derived from ICESat data. Freeboard is combined with snow depth from Advanced Microwave Scanning Radiometer for Earth Observing System (AMSR-E) data and nominal densities of snow, water and sea ice, to estimate sea-ice thickness. Sea-ice freeboard and thickness distributions show clear seasonal variations that reflect the yearly cycle of growth and decay of the Weddell Sea (Antarctica) pack ice. During October-November, sea ice grows to its seasonal maximum both in area and thickness; the mean freeboards are 0.33-0.41 m and the mean thicknesses are 2.10-2.59 m. During February-March, thinner sea ice melts away and the sea-ice pack is mainly distributed in the west Weddell Sea; the mean freeboards are 0.35-0.46 m and the mean thicknesses are 1.48-1.94 m. During May-June, the mean freeboards and thicknesses are 0.26-0.29 m and 1.32-1.37 m, respectively. The 6 year trends in sea-ice extent and volume are (0.023+/-0.051) x 10(exp 6)sq km/a (0.45%/a) and (0.007+/-1.0.092) x 10(exp 3)cu km/a (0.08%/a); however, the large standard deviations indicate that these positive trends are not statistically significant.

  19. Wide-angle imaging LIDAR (WAIL): a ground-based instrument for monitoring the thickness and density of optically thick clouds

    International Nuclear Information System (INIS)

    Love, Steven P.; Davis, A.B.; Rohde, C.A.; Ho, Cheng

    2001-01-01

    Traditional lidar provides little information on dense clouds beyond the range to their base (ceilometry), due to their extreme opacity. At most optical wavelengths, however, laser photons are not absorbed but merely scattered out of the beam, and thus eventually escape the cloud via multiple scattering, producing distinctive extended space- and time-dependent patterns which are, in essence, the cloud's radiative Green functions. These Green functions, essentially 'movies' of the time evolution of the spatial distribution of escaping light, are the primary data products of a new type of lidar: Wide Angle Imaging Lidar (WAIL). WAIL data can be used to infer both optical depth and physical thickness of clouds, and hence the cloud liquid water content. The instrumental challenge is to accommodate a radiance field varying over many orders of magnitude and changing over widely varying time-scales. Our implementation uses a high-speed microchannel plate/crossed delay line imaging detector system with a 60-degree full-angle field of view, and a 532 nm doubled Nd:YAG laser. Nighttime field experiments testing various solutions to this problem show excellent agreement with diffusion theory, and retrievals yield plausible values for the optical and geometrical parameters of the observed cloud decks.

  20. Glomus Tumors: Symptom Variations and Magnetic Resonance Imaging for Diagnosis

    Directory of Open Access Journals (Sweden)

    Ki Weon Ham

    2013-07-01

    Full Text Available Background The typical clinical symptoms of glomus tumors are pain, tenderness, and sensitivity to temperature change, and the presence of these clinical findings is helpful in diagnosis. However, the tumors often pose diagnostic difficulty because of variations in presentation and the nonspecific symptoms of glomus tumors. To the best of our knowledge, few studies have reported on the usefulness of magnetic resonance imaging (MRI in diagnosing glomus tumors in patients with unspecific symptoms.Methods The inclusion criteria of this study were: having undergone surgery for subungual glomus tumor of the hand, histopathologic confirmation of glomus tumor, and having undergone preoperative MRI. Twenty-one patients were enrolled. The characteristics of the tumors and the presenting symptoms including pain, tenderness, and sensitivity to temperature change were retrospectively reviewed.Results Five out of 21 patients (23% did not show the typical glomus tumor symptom triad because they did not complain of pain provoked by coldness. Nevertheless, preoperative MRI showed well-defined small soft-tissue lesions on T1- and T2-weighted images, which are typical findings of glomus tumors. The tumors were completely resected and confirmed as glomus tumor histopathologically.Conclusions Early occult lesions of glomus tumor in the hand may not be revealed by physical examination because of their barely detectable symptoms. Moreover, subungual lesions may be particularly difficult to evaluate on physical examination. Our cases showed that MRI offers excellent diagnostic information in clinically undiagnosed or misdiagnosed patients. Preoperative MRI can accurately define the character and extent of glomus tumor, even though it is impalpable and invisible.

  1. Glomus Tumors: Symptom Variations and Magnetic Resonance Imaging for Diagnosis

    Directory of Open Access Journals (Sweden)

    Ki Weon Ham

    2013-07-01

    Full Text Available BackgroundThe typical clinical symptoms of glomus tumors are pain, tenderness, and sensitivity to temperature change, and the presence of these clinical findings is helpful in diagnosis. However, the tumors often pose diagnostic difficulty because of variations in presentation and the nonspecific symptoms of glomus tumors. To the best of our knowledge, few studies have reported on the usefulness of magnetic resonance imaging (MRI in diagnosing glomus tumors in patients with unspecific symptoms.MethodsThe inclusion criteria of this study were: having undergone surgery for subungual glomus tumor of the hand, histopathologic confirmation of glomus tumor, and having undergone preoperative MRI. Twenty-one patients were enrolled. The characteristics of the tumors and the presenting symptoms including pain, tenderness, and sensitivity to temperature change were retrospectively reviewed.ResultsFive out of 21 patients (23% did not show the typical glomus tumor symptom triad because they did not complain of pain provoked by coldness. Nevertheless, preoperative MRI showed well-defined small soft-tissue lesions on T1- and T2-weighted images, which are typical findings of glomus tumors. The tumors were completely resected and confirmed as glomus tumor histopathologically.ConclusionsEarly occult lesions of glomus tumor in the hand may not be revealed by physical examination because of their barely detectable symptoms. Moreover, subungual lesions may be particularly difficult to evaluate on physical examination. Our cases showed that MRI offers excellent diagnostic information in clinically undiagnosed or misdiagnosed patients. Preoperative MRI can accurately define the character and extent of glomus tumor, even though it is impalpable and invisible.

  2. Variation of the optical energy gap with {gamma}-radiation and thickness in Bi-thin films

    Energy Technology Data Exchange (ETDEWEB)

    Al-Houty, L.; Kassem, M.E.; Abdel Kader, H.I. [Qatar Univ., Doha (Qatar). Dept. of Physics

    1995-02-01

    The effect of {gamma}-radiation and thickness on the optical energy gap of Bi-thin films has been investigated by measuring their optical absorbance. The measurements were carried out on thermally evaporated films having thicknesses in the range 5-20 nm. Different {gamma}-radiation doses were used ranging from 0-300 Mrad. The optical energy gap as well as the absorption coefficient were found to be {gamma}-dose dependent. (author).

  3. Variation of the optical energy gap with γ-radiation and thickness in Bi-thin films

    International Nuclear Information System (INIS)

    Al-Houty, L.; Kassem, M.E.; Abdel Kader, H.I.

    1995-01-01

    The effect of γ-radiation and thickness on the optical energy gap of Bi-thin films has been investigated by measuring their optical absorbance. The measurements were carried out on thermally evaporated films having thicknesses in the range 5-20 nm. Different γ-radiation doses were used ranging from 0-300 Mrad. The optical energy gap as well as the absorption coefficient were found to be γ-dose dependent. (author)

  4. Influence of ASIR (Adaptative Statistical Iterative Reconstruction) variation in the image noise of computerized tomography for high voltage

    International Nuclear Information System (INIS)

    Mendes, L.M.M.; Pereira, W.B.R.; Vieira, J.G.; Lamounier, C.S.; Gonçalves, D.A.; Carvalho, G.N.P.; Santana, P.C.; Oliveira, P.M.C.; Reis, L.P.

    2017-01-01

    Computed tomography had great advances in the equipment used in the diagnostic practice, directly influencing the levels of radiation for the patient. It is essential to optimize techniques that must be employed to comply with the ALARA (As Low As Reasonably Achievable) principle of radioprotection. The relationship of ASIR (Adaptive Statistical Iterative Reconstruction) with image noise was studied. Central images of a homogeneous water simulator were obtained in a 20 mm scan using a 64-channel Lightspeed VCT tomograph of General Electric in helical acquisitions with a rotation time of 0.5 seconds, Pitch 0.984: 1, and thickness of cut 0.625 mm. All these constant parameters varying the voltage in two distinct values: 120 and 140 kV with use of the automatic current by the CAE (Automatic Exposure Control), ranging from 50 to 675 mA (120 kV) and from 50 to 610 mA (140kV), minimum and maximum values, respectively allowed for each voltage. Image noise was determined through ImageJ free software. The analysis of the obtained data compared the percentage variation of the noise in the image based on the ASIR value of 10%, concluding that there is a variation of approximately 50% when compared to the values of ASIR (100%) in both tensions. Dose evaluation is required in future studies to better utilize the relationship between dose and image quality

  5. Numerical Simulation of Hydro-mechanical Deep Drawing — A Study on the Effect of Process Parameters on Drawability and Thickness Variation

    Science.gov (United States)

    Singh, Swadesh Kumar; Kumar, D. Ravi

    2005-08-01

    Hydro-mechanical deep drawing is a process for producing cup shaped parts with the assistance of a pressurized fluid. In the present work, numerical simulation of the conventional and counter pressure deep drawing processes has been done with the help of a finite element method based software. Simulation results were analyzed to study the improvement in drawability by using hydro-mechanical processes. The thickness variations in the drawn cups were analyzed and also the effect of counter pressure and oil gap on the thickness distribution was studied. Numerical simulations were also used for the die design, which combines both drawing and ironing processes in a single operation. This modification in the die provides high drawability, facilitates smooth material flow, gives more uniform thickness distribution and corrects the shape distortion.

  6. Global variations in gravity-derived oceanic crustal thickness: Implications on oceanic crustal accretion and hotspot-lithosphere interactions

    Science.gov (United States)

    Lin, J.; Zhu, J.

    2012-12-01

    We present a new global model of oceanic crustal thickness based on inversion of global oceanic gravity anomaly with constrains from seismic crustal thickness profiles. We first removed from the observed marine free-air gravity anomaly all gravitational effects that can be estimated and removed using independent constraints, including the effects of seafloor topography, marine sediment thickness, and the age-dependent thermal structure of the oceanic lithosphere. We then calculated models of gravity-derived crustal thickness through inversion of the residual mantle Bouguer anomaly using best-fitting gravity-modeling parameters obtained from comparison with seismically determined crustal thickness profiles. Modeling results show that about 5% of the global crustal volume (or 9% of the global oceanic surface area) is associated with model crustal thickness 8.6 km and is interpreted to have been affected by excess magmatism. The percentage of oceanic crustal volume that is associated with thick crustal thickness (>8.6 km) varies greatly among tectonic plates: Pacific (33%), Africa (50%), Antarctic (33%), Australia (30%), South America (34%), Nazca (23%), North America (47%), India (74%), Eurasia (68%), Cocos (20%), Philippine (26%), Scotia (41%), Caribbean (89%), Arabian (82%), and Juan de Fuca (21%). We also found that distribution of thickened oceanic crust (>8.6 km) seems to depend on spreading rate and lithospheric age: (1) On ocean basins younger than 5 Ma, regions of thickened crust are predominantly associated with slow and ultraslow spreading ridges. The relatively strong lithospheric plate at slow and ultraslow ridges might facilitate the loading of large magmatic emplacements on the plate. (2) In contrast, crustal thickness near fast and intermediately fast spreading ridges typically does not exceed 7-8 km. The relatively weak lithosphere at fast and intermediately fast ridges might make it harder for excess magmatism to accrete. We further speculate that

  7. Fracture resistance and failure modes of polymer infiltrated ceramic endocrown restorations with variations in margin design and occlusal thickness.

    Science.gov (United States)

    Taha, Doaa; Spintzyk, Sebastian; Schille, Christine; Sabet, Ahmed; Wahsh, Marwa; Salah, Tarek; Geis-Gerstorfer, Jürgen

    2017-12-11

    The purpose of this in vitro study was to assess the effect of varying the margin designs and the occlusal thicknesses on the fracture resistance and mode of failures of endodontically treated teeth restored with polymer infiltrated ceramic endocrown restorations. Root canal treated mandibular molars were divided into four groups (n=8) and were prepared to receive Computer-Aided Design/Computer-Aided Manufacturing (CAD/CAM) fabricated polymer infiltrated ceramic endocrowns (ENAMIC blocks). Group B2 represents teeth prepared with a butt joint design receiving endocrowns with 2mm occlusal thickness and the same for group B3.5 but with 3.5mm occlusal thickness. Group S2 represents teeth prepared with 1mm shoulder finish line receiving endocrowns with 2mm occlusal thickness and the same for group S3.5 but with 3.5mm occlusal thickness. After cementation and thermal aging, fracture resistance test was performed and failure modes were observed. Group S3.5 showed the highest mean fracture load value (1.27±0.31kN). Endocrowns with shoulder finish line had significantly higher mean fracture resistance values than endocrowns with butt margin (p<0.05). However, the results were not statistically significant regarding the restoration thickness. Evaluation of the fracture modes revealed no statistically significant difference between the modes of failure of tested groups. For the restoration of endodontically treated teeth, adding a short axial wall and shoulder finish line can increase the fracture resistance. However, further investigations, especially the fatigue behavior, are needed to ensure this effect applies with small increases of restoration thickness. Copyright © 2017 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  8. A Comparison of Vibroacoustic Response of Isotropic Plate with Attached Discrete Patches and Point Masses Having Different Thickness Variation with Different Taper Ratios

    Directory of Open Access Journals (Sweden)

    Bipin Kumar

    2016-01-01

    Full Text Available A comparison of sound radiation behavior of plate in air medium with attached discrete patches/point masses having different thickness variations with different taper ratio of 0.3, 0.6, and 0.9 is analysed. Finite element method is used to find the vibration characteristics while Rayleigh integral is used to predict the sound radiation characteristics. Minimum peak sound power level obtained is at a taper ratio of 0.6 with parabolic increasing-decreasing thickness variation for plate with four discrete patches. At higher taper ratio, linearly increasing-decreasing thickness variation is another alternative for minimum peak sound power level suppression with discrete patches. It is found that, in low frequency range, average radiation efficiency remains almost the same, but near first peak, four patches or four point masses cause increase in average radiation efficiency; that is, redistribution of point masses/patches does have effect on average radiation efficiency at a given taper ratio.

  9. 3-D Deep Penetration Neutron Imaging of Thick Absorgin and Diffusive Objects Using Transport Theory

    Energy Technology Data Exchange (ETDEWEB)

    Ragusa, Jean; Bangerth, Wolfgang

    2011-08-01

    locations where measurements were collected, the optical thickness of the domain, the amount of signal noise and signal bias applied to the measurements and the initial guess for the cross section distribution. All of these factors were explored for problems with and without scattering. Increasing the number of source and measurement locations and experiments generally was more successful at reconstructing optically thicker domains while producing less error in the image. The maximum optical thickness that could be reconstructed with this method was ten mean free paths for pure absorber and two mean free paths for scattering problems. Applying signal noise and signal bias to the measured fluxes produced more error in the produced image. Generally, Newtons method was more successful at reconstructing domains from an initial guess for the cross sections that was greater in magnitude than their true values than from an initial guess that was lower in magnitude.

  10. Normalization of cortical thickness measurements across different T1 magnetic resonance imaging protocols by novel W-Score standardization.

    Science.gov (United States)

    Chung, Jinyong; Yoo, Kwangsun; Lee, Peter; Kim, Chan Mi; Roh, Jee Hoon; Park, Ji Eun; Kim, Sang Joon; Seo, Sang Won; Shin, Jeong-Hyeon; Seong, Joon-Kyung; Jeong, Yong

    2017-10-01

    The use of different 3D T1-weighted magnetic resonance (T1 MR) imaging protocols induces image incompatibility across multicenter studies, negating the many advantages of multicenter studies. A few methods have been developed to address this problem, but significant image incompatibility still remains. Thus, we developed a novel and convenient method to improve image compatibility. W-score standardization creates quality reference values by using a healthy group to obtain normalized disease values. We developed a protocol-specific w-score standardization to control the protocol effect, which is applied to each protocol separately. We used three data sets. In dataset 1, brain T1 MR images of normal controls (NC) and patients with Alzheimer's disease (AD) from two centers, acquired with different T1 MR protocols, were used (Protocol 1 and 2, n = 45/group). In dataset 2, data from six subjects, who underwent MRI with two different protocols (Protocol 1 and 2), were used with different repetition times, echo times, and slice thicknesses. In dataset 3, T1 MR images from a large number of healthy normal controls (Protocol 1: n = 148, Protocol 2: n = 343) were collected for w-score standardization. The protocol effect and disease effect on subjects' cortical thickness were analyzed before and after the application of protocol-specific w-score standardization. As expected, different protocols resulted in differing cortical thickness measurements in both NC and AD subjects. Different measurements were obtained for the same subject when imaged with different protocols. Multivariate pattern difference between measurements was observed between the protocols. Classification accuracy between two protocols was nearly 90%. After applying protocol-specific w-score standardization, the differences between the protocols substantially decreased. Most importantly, protocol-specific w-score standardization reduced both univariate and multivariate differences in the images while

  11. Comparison of peripapillary choroidal thickness measurements via spectral domain optical coherence tomography with and without enhanced depth imaging.

    Science.gov (United States)

    Ayyildiz, Onder; Kucukevcilioglu, Murat; Ozge, Gokhan; Koylu, Mehmet Talay; Ozgonul, Cem; Gokce, Gokcen; Mumcuoglu, Tarkan; Durukan, Ali Hakan; Mutlu, Fatih Mehmet

    2016-05-01

    To compare peripapillary choroidal thickness (PP-CT) measurements using a spectral domain optical coherence tomography (SD-OCT) device with and without enhanced depth imaging (EDI). Sixty healthy subjects aged from 18 to 40 years were included in this study. PP-CTs were measured in the right eyes by manual segmentation via SD-OCT both with and without EDI. The intraclass correlation coefficient (ICC) for each technique and comparison of PP-CT measurements between two techniques were evaluated. The correlation between retinal nerve fiber layer (RNFL) thickness and PP-CT was also explored on images of SD-OCT without EDI. The PP-CT measurements of 55 subjects were evaluated. The ICC was 0.999 (95% CI: 0.998-1.0, p  0.05). Additionally, there was no correlation between RNFL thickness and PP-CT (r = -0.109; p = 0.335). The PP-CT measurements via SD-OCT without EDI were consistent with the measurements via SD-OCT with EDI. Ophthalmologists who do not have access to EDI technology can use images of SD-OCT without EDI to measure the peripapillary choroid for research purposes. However, thicker peripapillary choroids cannot be measured using this technique and require further modifications or newer technologies, such as SD-OCT with EDI.

  12. Simulation of the development and interaction of instabilities in a relativistic electron beam under variation of the beam wall thickness

    Energy Technology Data Exchange (ETDEWEB)

    Badarin, A. A.; Kurkin, S. A. [Saratov State University (Russian Federation); Koronovskii, A. A. [Yuri Gagarin State Technical University (Russian Federation); Rak, A. O. [Belorussian State University of Informatics and Radioelectronics (Belarus); Hramov, A. E., E-mail: hramovae@gmail.com [Saratov State University (Russian Federation)

    2017-03-15

    The development and interaction of Bursian and diocotron instabilities in an annular relativistic electron beam propagating in a cylindrical drift chamber are investigated analytically and numerically as functions of the beam wall thickness and the magnitude of the external uniform magnetic field. It is found that the interaction of instabilities results in the formation of a virtual cathode with a complicated rotating helical structure and several reflection regions (electron bunches) in the azimuthal direction. It is shown that the number of electron bunches in the azimuthal direction increases with decreasing beam wall thickness and depends in a complicated manner on the magnitude of the external magnetic field.

  13. To assess the intimal thickness, flow velocities, and luminal diameter of carotid arteries using high-resolution B-mode ultrasound doppler imaging

    Science.gov (United States)

    Vemuru, Madhuri; Jabbar, Afzal; Chandra, Suman

    2004-04-01

    Carotid imaging is a Gold Standard test that provides useful information about the structure and functions of carotid arteries. Spectral imaging helps to evaluate the vessel and hemodynamic changes. High resolution B-mode imaging has emerged as one of the methods of choice for determining the anatomic extent of atherosclerosis and its progression and for assessing cardiovascular risks. The measurements made with Doppler correlate well with pathologic measurements. Recent prospective studies have clearly demonstrated that these measurements of carotid intimal thickness are potent predictors of Myocardial Infarction and Stroke. This method appears very attractive as it is non-invasive, extremely safe, well accepted by the patient and relatively inexpensive. It can be performed serially and has the advantage of visualizing the arterial wall in contrast to angiographic techniques which provide only an outline of the arterial lumen. Recently, there has been an interest in the clinical use of this technique in making difficult clinical decisions like deciding on preventive therapies. 30 subjects aged 21-60 years and 30 subjects aged 61-85 years of both sexes are selected after doing a baseline study to exclude Hypertension, Diabetes, Obesity and Hyperlipidemia. The carotid arteries were examined for intimal thickening, blood flow velocities and luminal diameter. With aging there is a narrowing of the carotid vessels and significant increase in intimal thickening with a consequent increase in the blood flow velocities. Inter-observer, intra-observer and instrument variations are seen and there is no significant change in the values when the distal flow pattern is considered for measurements. Aging produces major cardiovascular changes including decreased elasticity and compliance of great arteries leading to structural and functional alterations in heart and vessels. With aging there is increased intimal thickness and increased pulse wave velocity which is clearly

  14. Low contrast detectability for color patterns variation of display images

    International Nuclear Information System (INIS)

    Ogura, Akio

    1998-01-01

    In recent years, the radionuclide images are acquired in digital form and displayed with false colors for signal intensity. This color scales for signal intensity have various patterns. In this study, low contrast detectability was compared the performance of gray scale cording with three color scales: the hot color scale, prism color scale and stripe color scale. SPECT images of brain phantom were displayed using four color patterns. These printed images and display images were evaluated with ROC analysis. Display images were indicated higher detectability than printed images. The hot scale and gray scale images indicated better Az of ROC than prism scale images because the prism scale images showed higher false positive rate. (author)

  15. Quantitative Image Analysis for Evaluating the Coating Thickness and Pore Distribution in Coated Small Particles

    NARCIS (Netherlands)

    Laksmana, F.L.; Van Vliet, L.J.; Hartman Kok, P.J.A.; Vromans, H.; Frijlink, H.W.; Van der Voort Maarschalk, K.

    2008-01-01

    Purpose This study aims to develop a characterization method for coating structure based on image analysis, which is particularly promising for the rational design of coated particles in the pharmaceutical industry. Methods The method applies the MATLAB image processing toolbox to images of coated

  16. Quantitative Image Analysis for Evaluating the Coating Thickness and Pore Distribution in Coated Small Particles

    NARCIS (Netherlands)

    Laksmana, F L; Van Vliet, L J; Hartman Kok, P J A; Vromans, H; Frijlink, H W; Van der Voort Maarschalk, K

    This study aims to develop a characterization method for coating structure based on image analysis, which is particularly promising for the rational design of coated particles in the pharmaceutical industry. The method applies the MATLAB image processing toolbox to images of coated particles taken

  17. Gender differences in knee joint cartilage thickness, volume and articular surface areas: assessment with quantitative three-dimensional MR imaging

    International Nuclear Information System (INIS)

    Faber, S.C.; Reiser, M.; Englmeier, K.H.

    2001-01-01

    Objective: To compare the cartilage thickness, volume, and articular surface areas of the knee joint between young healthy, non-athletic female and male individuals. Subjects and design. MR imaging was performed in 18 healthy subjects without local or systemic joints disease (9 female, age 22.3±2.4 years, and 9 male, age 22.2.±1.9 years), using a fat-suppressed FLASH 3D pulse sequence (TR=41 ms, TE=11 ms, FA=30 ) with sagittal orientation and a spatial resolution of 2x0.31x0.31 mm 3 . After three-dimensional reconstruction and triangulation of the knee joint cartilage plates, the cartilage thickness (mean and maximal), volume, and size of the articular surface area were quantified, independent of the original section orientation. Results and conclusions: Women displayed smaller cartilage volumes than men, the percentage difference ranging from 19.9% in the patella, to 46.6% in the medial tibia. The gender differences of the cartilage thickness were smaller, ranging from 2.0% in the femoral trochlea to 13.3% in the medial tibia for the mean thickness, and from 4.3% in the medial femoral condyle to 18.3% in the medial tibia for the maximal cartilage thickness. The differences between the cartilage surface areas were similar to those of the volumes, with values ranging from 21.0% in the femur to 33.4% in the lateral tibia. Gender differences could be reduced for cartilage volume and surface area when normalized to body weight and body weight x body height. The study demonstrates significant gender differences in cartilage volume and surface area of men and women, which need to be taken into account when retrospectively estimating articular cartilage loss in patients with symptoms of degenerative joint disease. Differences in cartilage volume are primarily due to differences in joint surface areas (epiphyseal bone size), not to differences in cartilage thickness. (orig.)

  18. Influence of basis images and skull position on evaluation of cortical bone thickness in cone beam computed tomography.

    Science.gov (United States)

    Nascimento, Monikelly do Carmo Chagas; Boscolo, Solange Maria de Almeida; Haiter-Neto, Francisco; Santos, Emanuela Carla Dos; Lambrichts, Ivo; Pauwels, Ruben; Jacobs, Reinhilde

    2017-06-01

    The aim of this study was to assess the influence of the number of basis images and the orientation of the skull on the evaluation of cortical alveolar bone in cone beam computed tomography (CBCT). Eleven skulls with a total of 59 anterior teeth were selected. CBCT images were acquired by using 4 protocols, by varying the rotation of the tube-detector arm and the orientation of the skull (protocol 1: 360°/0°; protocol 2: 180°/0°; protocol 3: 180°/90°; protocol 4: 180°/180°). Observers evaluated cortical bone as absent, thin, or thick. Direct observation of the skulls was used as the gold standard. Intra- and interobserver agreement, as well as agreement of scoring between the 3 bone thickness classifications, were calculated by using the κ statistic. The Wilcoxon signed-rank test was used to compare the 4 protocols. For lingual cortical bone, protocol 1 showed no statistical difference from the gold standard. Higher reliability was found in protocol 3 for absent (κ = 0.80) and thin (κ = 0.47) cortices, whereas for thick cortical bone, protocol 2 was more consistent (κ = 0.60). In buccal cortical bone, protocol 1 obtained the highest agreement for absent cortices (κ = 0.61), whereas protocol 4 was better for thin cortical plates (κ = 0.38) and protocol 2 for thick cortical plates (κ = 0.40). No consistent effect of the number of basis images or head orientation for visual detection of alveolar bone was detected, except for lingual cortical bone, for which full rotation scanning showed improved visualization. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Evaluation of the map accuracy thickness defects by computer analysis of the radiography images

    International Nuclear Information System (INIS)

    Wawszczak, J.; Wocial, A.

    2000-01-01

    Analysis of the sensitivity map radiography for the local profiles of the surface steel plate with artificial of the thickness defects were presented of the paper. Errors of these method estimation and they sources were presented also. Usefulness of this mapping radiography during field investigations for paper and film carriers were discussed and concluded. (author)

  20. TU-F-18C-02: Increasing Amorphous Selenium Thickness in Direct Conversion Flat-Panel Imagers for Contrast-Enhanced Dual-Energy Breast Imaging

    International Nuclear Information System (INIS)

    Scaduto, DA; Hu, Y-H; Zhao, W

    2014-01-01

    Purpose: Contrast-enhanced (CE) breast imaging using iodinated contrast agents requires imaging with x-ray spectra at energies greater than those used in mammography. Optimizing amorphous selenium (a-Se) flat panel imagers (FPI) for this higher energy range may increase lesion conspicuity. Methods: We compare imaging performance of a conventional FPI with 200 μm a-Se conversion layer to a prototype FPI with 300 μm a-Se layer. Both detectors are evaluated in a Siemens MAMMOMAT Inspiration prototype digital breast tomosynthesis (DBT) system using low-energy (W/Rh 28 kVp) and high-energy (W/Cu 49 kVp) x-ray spectra. Detectability of iodinated lesions in dual-energy images is evaluated using an iodine contrast phantom. Effects of beam obliquity are investigated in projection and reconstructed images using different reconstruction methods. The ideal observer signal-to-noise ratio is used as a figure-of-merit to predict the optimal a-Se thickness for CE lesion detectability without compromising conventional full-field digital mammography (FFDM) and DBT performance. Results: Increasing a-Se thickness from 200 μm to 300 μm preserves imaging performance at typical mammographic energies (e.g. W/Rh 28 kVp), and improves the detective quantum efficiency (DQE) for high energy (W/Cu 49 kVp) by 30%. While the more penetrating high-energy x-ray photons increase geometric blur due to beam obliquity in the FPI with thicker a-Se layer, the effect on lesion detectability in FBP reconstructions is negligible due to the reconstruction filters employed. Ideal observer SNR for CE objects shows improvements in in-plane detectability with increasing a-Se thicknesses, though small lesion detectability begins to degrade in oblique projections for a-Se thickness above 500 μm. Conclusion: Increasing a-Se thickness in direct conversion FPI from 200 μm to 300 μm improves lesion detectability in CE breast imaging with virtually no cost to conventional FFDM and DBT. This work was partially

  1. Inter-observer variation in masked and unmasked images for quality evaluation of clinical radiographs

    International Nuclear Information System (INIS)

    Tingberg, A.; Eriksson, F.; Medin, J.; Besjakov, J.; Baarth, M.; Haakansson, M.; Sandborg, M.; Almen, A.; Lanhede, B.; Alm-Carlsson, G.; Mattsson, S.; Maansson, L. G.

    2005-01-01

    Purpose: To investigate the influence of masking on the inter-observer variation in image quality evaluation of clinical radiographs of chest and lumbar spine. Background: Inter-observer variation is a big problem in image quality evaluation since this variation is often much bigger than the variation in image quality between, for example, two radiographic systems. In this study, we have evaluated the effect of masking on the inter-observer variation. The idea of the masking was to force every observer to view exactly the same part of the image and to avoid the effect of the overall 'first impression' of the image. A discussion with a group of European expert radiologists before the study indicated that masking might be a good way to reduce the inter-observer variation. Methods: Five chest and five lumbar spine radiographs were collected together with detailed information regarding exposure conditions. The radiographs were digitised with a high-performance scanner and five different manipulations were performed, simulating five different exposure conditions. The contrast, noise and spatial resolution were manipulated by this method. The images were printed onto the film and the individual masks were produced for each film, showing only the parts of the images that were necessary for the image quality evaluation. The quality of the images was evaluated on ordinary viewing boxes by a large group of experienced radiologists. The images were examined with and without the masks with a set of image criteria (if fulfilled, 1 point; and not fulfilled, 0 point), and the mean score was calculated for each simulated exposure condition. Results: The results of this study indicate that - contrary to what was supposed - the inter-observer variation increased when the images were masked. In some cases, especially for chest, this increase was statistically significant. Conclusions: Based on the results of this study, image masking in studies of fulfilment of image criteria cannot

  2. Motion estimation of tagged cardiac magnetic resonance images using variational techniques

    Czech Academy of Sciences Publication Activity Database

    Carranza-Herrezuelo, N.; Bajo, A.; Šroubek, Filip; Santamarta, C.; Cristóbal, G.; Santos, A.; Ledesma-Carbayo, M.J.

    2010-01-01

    Roč. 34, č. 6 (2010), s. 514-522 ISSN 0895-6111 Institutional research plan: CEZ:AV0Z10750506 Keywords : medical imaging processing * motion estimation * variational techniques * tagged cardiac magnetic resonance images * optical flow Subject RIV: JD - Computer Applications, Robotics Impact factor: 1.110, year: 2010 http://library.utia.cas.cz/separaty/2010/ZOI/sroubek- motion estimation of tagged cardiac magnetic resonance images using variational techniques.pdf

  3. Ethnic Variations in Central Corneal Thickness in a Rural Population in China: The Yunnan Minority Eye Studies

    OpenAIRE

    Pan, Chen-Wei; Li, Jun; Zhong, Hua; Shen, Wei; Niu, Zhiqiang; Yuan, Yuansheng; Chen, Qin

    2015-01-01

    Purpose To describe the ethnic differences in central corneal thickness (CCT) in population-based samples of ethnic Bai, Yi and Han people living in rural China. Methods 6504 adults (2119 ethnic Bai, 2202 ethnic Yi and 2183 ethnic Han) aged 50 years or older participated in the study. Each subject underwent standardized ocular examinations and interviewer-administered questionnaires for risk factor assessment. CCT was measured for both eyes using an ultrasound pachymeter. Regression and princ...

  4. Three-dimensional image analysis of the skull using variable CT scanning protocols-effect of slice thickness on measurement in the three-dimensional CT images

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Ho Gul; Kim, Kee Deog; Park, Hyok; Kim, Dong Ook; Jeong, Hai Jo; Kim, Hee Joung; Yoo, Sun Kook; Kim, Yong Oock; Park, Chang Seo [Yonsei University College of Medicine, Seoul (Korea, Republic of)

    2004-07-15

    To evaluate the quantitative accuracy of three-dimensional (3D) images by mean of comparing distance measurements on the 3D images with direct measurements of dry human skull according to slice thickness and scanning modes. An observer directly measured the distance of 21 line items between 12 orthodontic landmarks on the skull surface using a digital vernier caliper and each was repeated five times. The dry human skull was scanned with a Helical CT with various slice thickness (3, 5, 7 mm) and acquisition modes (Conventional and Helical). The same observer measured corresponding distance of the same items on reconstructed 3D images with the internal program of V-works 4.0 (Cybermed Inc., Seoul, Korea). The quantitative accuracy of distance measurements were statistically evaluated with Wilcoxons' two-sample test. 11 line items in Conventional 3 mm, 8 in Helical 3 mm, 11 in Conventional 5 mm, 10 in Helical 5 mm, 5 in Conventional 7 mm and 9 in Helical 7 mm showed no statistically significant difference. Average difference between direct measurements and measurements on 3D CT images was within 2 mm in 19 line items of Conventional 3 mm. 20 of Helical 3 mm, 15 of Conventional 5 mm, 18 of Helical 5 mm, 11 of Conventional 7 mm and 16 of Helical 7 mm. Considering image quality and patient's exposure time, scanning protocol of Helical 5 mm is recommended for 3D image analysis of the skull in CT.

  5. In-process tool rotational speed variation with constant heat input in friction stir welding of AZ31 sheets with variable thickness

    Science.gov (United States)

    Buffa, Gianluca; Campanella, Davide; Forcellese, Archimede; Fratini, Livan; Simoncini, Michela

    2017-10-01

    In the present work, friction stir welding experiments on AZ31 magnesium alloy sheets, characterized by a variable thickness along the welding line, were carried out. The approach adapted during welding consisted in maintaining constant the heat input to the joint. To this purpose, the rotational speed of the pin tool was increased with decreasing thickness and decreased with increasing thickness in order to obtain the same temperatures during welding. The amount by which the rotational speed was changed as a function of the sheet thickness was defined on the basis of the results given by FEM simulations of the FSW process. Finally, the effect of the in-process variation of the tool rotational speed on the mechanical and microstructural properties of FSWed joints was analysed by comparing both the nominal stress vs. nominal strain curves and microstructure of FSWed joints obtained in different process conditions. It was observed that FSW performed by keeping constant the heat input to the joint leads to almost coincident results both in terms of the curve shape, ultimate tensile strength and ultimate elongation values, and microstructure.

  6. Corpus callosum thickness in children: an MR pattern-recognition approach on the midsagittal image

    Energy Technology Data Exchange (ETDEWEB)

    Andronikou, Savvas; Pillay, Tanyia; Gabuza, Lungile; Mahomed, Nasreen; Naidoo, Jaishree; Tebogo Hlabangana, Linda [University of the Witwatersrand, Radiology Department, Faculty of Health Sciences, Johannesburg (South Africa); Du Plessis, Vicci [University of KwaZulu-Natal, Radiology Department, Faculty of Health Sciences, Durban (South Africa); Prabhu, Sanjay P. [Harvard Medical School, Department of Radiology, Boston Children' s Hospital, Boston, MA (United States)

    2014-08-31

    Thickening of the corpus callosum is an important feature of development, whereas thinning of the corpus callosum can be the result of a number of diseases that affect development or cause destruction of the corpus callosum. Corpus callosum thickness reflects the volume of the hemispheres and responds to changes through direct effects or through Wallerian degeneration. It is therefore not only important to evaluate the morphology of the corpus callosum for congenital anomalies but also to evaluate the thickness of specific components or the whole corpus callosum in association with other findings. The goal of this pictorial review is raise awareness that the thickness of the corpus callosum can be a useful feature of pathology in pediatric central nervous system disease and must be considered in the context of the stage of development of a child. Thinning of the corpus callosum can be primary or secondary, and generalized or focal. Primary thinning is caused by abnormal or failed myelination related to the hypomyelinating leukoencephalopathies, metabolic disorders affecting white matter, and microcephaly. Secondary thinning of the corpus callosum can be caused by diffuse injury such as hypoxic-ischemic encephalopathy, human immunodeficiency virus (HIV) encephalopathy, hydrocephalus, dysmyelinating conditions and demyelinating conditions. Focal disturbance of formation or focal injury also causes localized thinning, e.g., callosal dysgenesis, metabolic disorders with localized effects, hypoglycemia, white matter injury of prematurity, HIV-related atrophy, infarction and vasculitis, trauma and toxins. The corpus callosum might be too thick because of a primary disorder in which the corpus callosum finding is essential to diagnosis; abnormal thickening can also be secondary to inflammation, infection and trauma. (orig.)

  7. Corpus callosum thickness in children: an MR pattern-recognition approach on the midsagittal image

    International Nuclear Information System (INIS)

    Andronikou, Savvas; Pillay, Tanyia; Gabuza, Lungile; Mahomed, Nasreen; Naidoo, Jaishree; Tebogo Hlabangana, Linda; Du Plessis, Vicci; Prabhu, Sanjay P.

    2015-01-01

    Thickening of the corpus callosum is an important feature of development, whereas thinning of the corpus callosum can be the result of a number of diseases that affect development or cause destruction of the corpus callosum. Corpus callosum thickness reflects the volume of the hemispheres and responds to changes through direct effects or through Wallerian degeneration. It is therefore not only important to evaluate the morphology of the corpus callosum for congenital anomalies but also to evaluate the thickness of specific components or the whole corpus callosum in association with other findings. The goal of this pictorial review is raise awareness that the thickness of the corpus callosum can be a useful feature of pathology in pediatric central nervous system disease and must be considered in the context of the stage of development of a child. Thinning of the corpus callosum can be primary or secondary, and generalized or focal. Primary thinning is caused by abnormal or failed myelination related to the hypomyelinating leukoencephalopathies, metabolic disorders affecting white matter, and microcephaly. Secondary thinning of the corpus callosum can be caused by diffuse injury such as hypoxic-ischemic encephalopathy, human immunodeficiency virus (HIV) encephalopathy, hydrocephalus, dysmyelinating conditions and demyelinating conditions. Focal disturbance of formation or focal injury also causes localized thinning, e.g., callosal dysgenesis, metabolic disorders with localized effects, hypoglycemia, white matter injury of prematurity, HIV-related atrophy, infarction and vasculitis, trauma and toxins. The corpus callosum might be too thick because of a primary disorder in which the corpus callosum finding is essential to diagnosis; abnormal thickening can also be secondary to inflammation, infection and trauma. (orig.)

  8. Observation of the molten metal behaviors during the laser cutting of thick steel specimens using attenuated process images

    International Nuclear Information System (INIS)

    Tamura, Koji; Yamagishi, Ryuichiro

    2017-01-01

    Molten metal behaviors during the laser cutting of carbon steel and stainless steel specimens up to 300 mm in thickness were observed to dismantle large steel objects for the nuclear decommissioning, where attenuated process images from both steels were observed for detailed process analysis. Circular and rod-like molten metal structures were observed at the laser irradiated region depending on the assist gas flow conditions. Molten metal blow-off and flow processes were observed as cutting processes. The observations were explained by the aerodynamic interaction of the melted surface layer. The method is useful for the detailed observation of the molten metal behaviors, and the results are informative to understand and optimize the laser cutting process of very thick steel specimens. (author)

  9. Total variation regularization in measurement and image space for PET reconstruction

    KAUST Repository

    Burger, M

    2014-09-18

    © 2014 IOP Publishing Ltd. The aim of this paper is to test and analyse a novel technique for image reconstruction in positron emission tomography, which is based on (total variation) regularization on both the image space and the projection space. We formulate our variational problem considering both total variation penalty terms on the image and on an idealized sinogram to be reconstructed from a given Poisson distributed noisy sinogram. We prove existence, uniqueness and stability results for the proposed model and provide some analytical insight into the structures favoured by joint regularization. For the numerical solution of the corresponding discretized problem we employ the split Bregman algorithm and extensively test the approach in comparison to standard total variation regularization on the image. The numerical results show that an additional penalty on the sinogram performs better on reconstructing images with thin structures.

  10. Edge-wave-driven durable variations in the thickness of the surfactant film and concentration of surface floats

    Energy Technology Data Exchange (ETDEWEB)

    Averbukh, Elena [Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Minin St. 24, 603950 Nizhny Novgorod (Russian Federation); Kurkina, Oksana, E-mail: okurkina@hse.ru [Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Minin St. 24, 603950 Nizhny Novgorod (Russian Federation); National Research University Higher School of Economics, 25/12 Bol' shaya Pecherskaya St., 603155 Nizhny Novgorod (Russian Federation); Kurkin, Andrey [Nizhny Novgorod State Technical University n.a. R.E. Alekseev, Minin St. 24, 603950 Nizhny Novgorod (Russian Federation); Soomere, Tarmo, E-mail: soomere@cs.ioc.ee [Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn (Estonia); Estonian Academy of Sciences, Kohtu 6, 10130 Tallinn (Estonia)

    2014-01-03

    By employing a simple model for small-scale linear edge waves propagating along a homogeneous sloping beach, we demonstrate that certain combinations of linear wave components may lead to durable changes in the thickness of the surfactant film, equivalently, in the concentration of various substances (debris, litter) floating on the water surface. Such changes are caused by high-amplitude transient elevations that resemble rogue waves and occur during dispersive focusing of wave fields with a continuous spectrum. This process can be treated as an intrinsic mechanism of production of patches in the surface layer of an otherwise homogeneous coastal environment impacted by linear edge waves.

  11. Neutron radiography of thick hydrogenous materials with use of an imaging plate neutron detector

    International Nuclear Information System (INIS)

    Kato, K.; Matsumoto, G.; Karasawa, Y.; Niimura, N.; Matsubayashi, M.; Tsuruno, A.

    1996-01-01

    The value of the neutron mass attenuation coefficient of hydrogen being very high, it is extremely difficult to image normal size, living animals with neutron radiography. However, the authors suggest the possibility of applying neutron radiography for biomedical specimens. The organs in the breast, bones and cartilages in the extremities, and the tail of mice and rats were clearly imaged by neutron radiography with Gd foils as neutron converters and X-ray films. However, no contours of the organs in the mouse abdomen were visible with neutron radiography with an exposure time of 200 s. By adding Gd or Li compounds as neutron converters to imaging X-ray plates, imaging plates have been developed for neutron detectors. A trial using these imaging plates for neutron radiography of water-filled containers and the abdomen of mice was completed. The roundness of a 100 ml-beaker was imaged with a neutron exposure of 180 s. Obscure contours of the liver and kidneys of the mouse were imaged with a neutron exposure of 100 s. (orig.)

  12. Mathematical Model of Stress-Strain State of Curved Tube of Non-Circular Cross-Section with Account of Technological Wall Thickness Variation

    Science.gov (United States)

    Pirogov, S. P.; Ustinov, N. N.; Smolin, N. I.

    2018-05-01

    A mathematical model of the stress-strain state of a curved tube of a non-circular cross-section is presented, taking into account the technological wall thickness variation. On the basis of the semi-membrane shell theory, a system of linear differential equations describing the deformation of a tube under the effect of pressure is obtained. To solve the boundary value problem, the method of shooting is applied. The adequacy of the proposed mathematical model is verified by comparison with the experimental data and the results of the calculation of tubes by the energy method.

  13. Track counting and thickness measurement of LR115 radon detectors using a commercial image scanner

    International Nuclear Information System (INIS)

    De Cicco, F.; Pugliese, M.; Roca, V.; Sabbarese, C.

    2014-01-01

    An original optical method for track counting and film thickness determination of etched LR115 radon detectors was developed. The method offers several advantages compared with standard techniques. In particular, it is non-destructive, very simple and rather inexpensive, since it uses a commercial scanner and a free software. The complete analysis and the calibration procedure carried out for the determination of radon specific activity are reported. A comparison with the results of spark counting defines the accuracy and the precision of the new technique. (authors)

  14. Solvent micro-evaporation and concentration gradient synergistically induced crystallization of poly(L-lactide) and ring banded supra-structures with radial periodic variation of thickness

    DEFF Research Database (Denmark)

    Huang, Shaoyong; Li, Hongfei; Wen, Huiying

    2014-01-01

    The crystalline morphology and structure of poly(L-lactide) (PLLA) in a PLLA film-chloroform system were investigated by means of wide angle X-ray diffraction (WAXD), polarized optical microscopy (POM) and atomic force microscopy (AFM). Birefringent and nonbirefringent ring banded supra-structure......The crystalline morphology and structure of poly(L-lactide) (PLLA) in a PLLA film-chloroform system were investigated by means of wide angle X-ray diffraction (WAXD), polarized optical microscopy (POM) and atomic force microscopy (AFM). Birefringent and nonbirefringent ring banded supra......-structures with radial periodic variation of thickness were obtained, which were induced by micro-evaporation of solvents and concentration gradient of PLLA. The ring banded morphologies consisted of multilayer lamellar crystals, which is a manifestation of alternating ridge and valley bands of periodic variation...

  15. NOAA JPSS Visible Infrared Imaging Radiometer Suite (VIIRS) Aerosol Optical Thickness (AOT) and Aerosol Particle Size Parameter (APSP) Environmental Data Record (EDR) from IDPS

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset contains a high quality operational Environmental Data Record (EDR) of Aerosol Optical Thickness (AOT) from the Visible Infrared Imaging Radiometer...

  16. Ultrasound assessed thickness of burn scars in association with laser Doppler imaging determined depth of burns in paediatric patients.

    Science.gov (United States)

    Wang, Xue-Qing; Mill, Julie; Kravchuk, Olena; Kimble, Roy M

    2010-12-01

    This study describes the ultrasound assessment of burn scars in paediatric patients and the association of these scar thickness with laser Doppler imaging (LDI) determined burn depth. A total of 60 ultrasound scar assessments were conducted on 33 scars from 21 paediatric burn patients at 3, 6 and 9 months after-burn. The mean of peak scar thickness was 0.39±0.032 cm, with the thickest at 6 months (0.40±0.036 cm). There were 17 scald burn scars (0.34±0.045 cm), 4 contact burn scars (0.61±0.092 cm), and 10 flame burn scars (0.42±0.058 cm). Each group of scars followed normal distributions. Twenty-three scars had original burns successfully scanned by LDI and various depths of burns were presented by different colours according to blood perfusion units (PU), with dark blue burns, with the thinnest scars for green coloured burns and the thickest for dark blue coloured burns. Within light blue burns, grafted burns healed with significantly thinner scars than non-grafted burns. This study indicates that LDI can be used for predicting the risk of hypertrophic scarring and for guiding burn care. To our knowledge, this is the first study to correlate the thickness of burns scars by ultrasound scan with burn depth determined by LDI. Copyright © 2010 Elsevier Ltd and ISBI. All rights reserved.

  17. Association between retinal nerve fiber layer thickness and magnetic resonance imaging findings and intelligence in patients with multiple sclerosis.

    Science.gov (United States)

    Ashtari, Fereshteh; Emami, Parisa; Akbari, Mojtaba

    2015-01-01

    Multiple Sclerosis (MS) is a neurological disease in which demyelination and axonal loss leads to progressive disability. Cognition impairment is among the most common complication. Studying axonal loss in the retina is a new marker for MS. The main goal of our study is to search for correlations between magnetic resonance imaging (MRI) findings and the retinal nerve fiber layer (RNFL) thickness at the macula and head of the optic nerve and Wechsler Adult Intelligence Scale-Revised (WAIS-R) Scores that assess multiple domains of intelligence, and to explore the relationship between changes in the RNFL thickness with intellectual and cognitive dysfunction. A prospective cross-sectional study was conducted at the University Hospital of Kashani, Isfahan, Iran, from September to December 2013. All patients were assessed with a full-scale intelligence quotient (IQ) on the WAIS-R. An optical coherence tomography study and brain MRI were performed in the same week for all the patients. Statistical analysis was conducted by using a bivariate correlation, by utilizing SPSS 20.0. A P value ≤ 0.05 was the threshold of statistical significance. Examination of a 100 patients showed a significant correlation between the average RNFL thickness of the macula and the verbal IQ (P value = 0.01) and full IQ (P value = 0.01). There was a significant correlation between brain atrophy and verbal IQ. The RNFL loss was correlated with verbal IQ and full IQ.

  18. Emergency department CT screening of patients with nontraumatic neurological symptoms referred to the posterior fossa: comparison of thin versus thick slice images.

    Science.gov (United States)

    Kamalian, Shervin; Atkinson, Wendy L; Florin, Lauren A; Pomerantz, Stuart R; Lev, Michael H; Romero, Javier M

    2014-06-01

    Evaluation of the posterior fossa (PF) on 5-mm-thick helical CT images (current default) has improved diagnostic accuracy compared to 5-mm sequential CT images; however, 5-mm-thick images may not be ideal for PF pathology due to volume averaging of rapid changes in anatomy in the Z-direction. Therefore, we sought to determine if routine review of 1.25-mm-thin helical CT images has superior accuracy in screening for nontraumatic PF pathology. MRI proof of diagnosis was obtained within 6 h of helical CT acquisition for 90 consecutive ED patients with, and 88 without, posterior fossa lesions. Helical CT images were post-processed at 1.25 and 5-mm-axial slice thickness. Two neuroradiologists blinded to the clinical/MRI findings reviewed both image sets. Interobserver agreement and accuracy were rated using Kappa statistics and ROC analysis, respectively. Of the 90/178 (51 %) who were MR positive, 60/90 (66 %) had stroke and 30/90 (33 %) had other etiologies. There was excellent interobserver agreement (κ > 0.97) for both thick and thin slice assessments. The accuracy, sensitivity, and specificity for 1.25-mm images were 65, 44, and 84 %, respectively, and for 5-mm images were 67, 45, and 85 %, respectively. The diagnostic accuracy was not significantly different (p > 0.5). In this cohort of patients with nontraumatic neurological symptoms referred to the posterior fossa, 1.25-mm-thin slice CT reformatted images do not have superior accuracy compared to 5-mm-thick images. This information has implications on optimizing resource utilizations and efficiency in a busy emergency room. Review of 1.25-mm-thin images may help diagnostic accuracy only when review of 5-mm-thick images as current default is inconclusive.

  19. Estimation of cloud optical thickness by processing SEVIRI images and implementing a semi analytical cloud property retrieval algorithm

    Science.gov (United States)

    Pandey, P.; De Ridder, K.; van Lipzig, N.

    2009-04-01

    Clouds play a very important role in the Earth's climate system, as they form an intermediate layer between Sun and the Earth. Satellite remote sensing systems are the only means to provide information about clouds on large scales. The geostationary satellite, Meteosat Second Generation (MSG) has onboard an imaging radiometer, the Spinning Enhanced Visible and Infrared Imager (SEVIRI). SEVIRI is a 12 channel imager, with 11 channels observing the earth's full disk with a temporal resolution of 15 min and spatial resolution of 3 km at nadir, and a high resolution visible (HRV) channel. The visible channels (0.6 µm and 0.81 µm) and near infrared channel (1.6µm) of SEVIRI are being used to retrieve the cloud optical thickness (COT). The study domain is over Europe covering the region between 35°N - 70°N and 10°W - 30°E. SEVIRI level 1.5 images over this domain are being acquired from the European Organisation for the Exploitation of Meteorological Satellites (EUMETSAT) archive. The processing of this imagery, involves a number of steps before estimating the COT. The steps involved in pre-processing are as follows. First, the digital count number is acquired from the imagery. Image geo-coding is performed in order to relate the pixel positions to the corresponding longitude and latitude. Solar zenith angle is determined as a function of latitude and time. The radiometric conversion is done using the values of offsets and slopes of each band. The values of radiance obtained are then used to calculate the reflectance for channels in the visible spectrum using the information of solar zenith angle. An attempt is made to estimate the COT from the observed radiances. A semi analytical algorithm [Kokhanovsky et al., 2003] is implemented for the estimation of cloud optical thickness from the visible spectrum of light intensity reflected from clouds. The asymptotical solution of the radiative transfer equation, for clouds with large optical thickness, is the basis of

  20. Positive and negative variations in capacitive images for given defects under varying experimental conditions

    Science.gov (United States)

    Li, Chen; Yin, Xiaokang; Li, Zhen; Li, Wei; Chen, Guoming

    2018-04-01

    Capacitive imaging (CI) technique is a novel electromagnetic NDE technique. The Quasi-static electromagnetic field from the carefully designed electrode pair will vary when the electrical properties of the sample change, leading to the possibility of imaging. It is observed that for a given specimen, the targeted features appear as different variations in capacitive images under different experimental conditions. In some cases, even opposite variations occur, which brings confusion to indication interpretation. It is thus thought interesting to embark on investigations into the cause and effects of the negative variation phenomenon. In this work, the positive and negative variations were first explained from the measurement sensitivity distribution perspective. This was then followed by a detailed analysis using finite element models in COMSOL. A parametric experimental study on a glass fiber composite plate with artificial defects was then carried out to investigate how the experimental conditions affect the variation.

  1. Solving Quasi-Variational Inequalities for Image Restoration with Adaptive Constraint Sets

    KAUST Repository

    Lenzen, F.; Lellmann, J.; Becker, F.; Schnö rr, C.

    2014-01-01

    © 2014 Society for Industrial and Applied Mathematics. We consider a class of quasi-variational inequalities (QVIs) for adaptive image restoration, where the adaptivity is described via solution-dependent constraint sets. In previous work we studied

  2. Cost-effectiveness of magnetic resonance imaging versus ultrasound for the detection of symptomatic full-thickness supraspinatus tendon tears.

    Science.gov (United States)

    Gyftopoulos, Soterios; Guja, Kip E; Subhas, Naveen; Virk, Mandeep S; Gold, Heather T

    2017-12-01

    The purpose of this study was to determine the value of magnetic resonance imaging (MRI) and ultrasound-based imaging strategies in the evaluation of a hypothetical population with a symptomatic full-thickness supraspinatus tendon (FTST) tear using formal cost-effectiveness analysis. A decision analytic model from the health care system perspective for 60-year-old patients with symptoms secondary to a suspected FTST tear was used to evaluate the incremental cost-effectiveness of 3 imaging strategies during a 2-year time horizon: MRI, ultrasound, and ultrasound followed by MRI. Comprehensive literature search and expert opinion provided data on cost, probability, and quality of life estimates. The primary effectiveness outcome was quality-adjusted life-years (QALYs) through 2 years, with a willingness-to-pay threshold set to $100,000/QALY gained (2016 U.S. dollars). Costs and health benefits were discounted at 3%. Ultrasound was the least costly strategy ($1385). MRI was the most effective (1.332 QALYs). Ultrasound was the most cost-effective strategy but was not dominant. The incremental cost-effectiveness ratio for MRI was $22,756/QALY gained, below the willingness-to-pay threshold. Two-way sensitivity analysis demonstrated that MRI was favored over the other imaging strategies over a wide range of reasonable costs. In probabilistic sensitivity analysis, MRI was the preferred imaging strategy in 78% of the simulations. MRI and ultrasound represent cost-effective imaging options for evaluation of the patient thought to have a symptomatic FTST tear. The results indicate that MRI is the preferred strategy based on cost-effectiveness criteria, although the decision between MRI and ultrasound for an imaging center is likely to be dependent on additional factors, such as available resources and workflow. Copyright © 2017 Journal of Shoulder and Elbow Surgery Board of Trustees. Published by Elsevier Inc. All rights reserved.

  3. Microstructural variation through weld thickness and mechanical properties of peened friction stir welded 6061 aluminum alloy joints

    Energy Technology Data Exchange (ETDEWEB)

    Abdulstaar, Mustafa A., E-mail: mustafa.abdulstaar@gmail.com [Institute of Material Science and Engineering, Clausthal University of Technology, Agricolastr. 6, 38678 Clausthal-Zellerfeld (Germany); Al-Fadhalah, Khaled J. [Department of Mechanical Engineering, College of Engineering & Petroleum, Kuwait University, P.O. Box 5969, Safat 13060 (Kuwait); Wagner, Lothar [Institute of Material Science and Engineering, Clausthal University of Technology, Agricolastr. 6, 38678 Clausthal-Zellerfeld (Germany)

    2017-04-15

    The current study examined the effect of microstructure variation on the development of mechanical properties in friction stir welded joints of 6061-T6 aluminum alloy, which were subsequently processed by shot peening (SP). Following to FSW, fatigue specimens were extracted perpendicularly to the welding direction. Surface Skimming to 0.5 mm from crown and root sides of the joint was made and SP was later applied on the two sides using ceramic shots of two different Almen intensities of 0.18 mmA and 0.24 mmA. Microstructural examination by electron back scattered diffraction (EBSD) indicated variation in the grain refinement of the weld zone, with coarsest grains (5 μm) at the crown side and finest grains (2 μm) at the root side. Reduction of microhardness to 60 HV occurred in the weld zone for samples in FSW condition. Application of SP promoted significant strain hardening at the crown side, with Almen intensities of 0.24 mmA providing maximum increase in microhardness to 120 HV. On the contrary, only a maximum microhardness of 75 HV was obtained at the root side. The difference in strain hardening capability at the two sides was strongly dependent on grain size. The two Almen intensities produced similar distribution of compressive residual stresses in the subsurface regions that led to enhance the fatigue strength to the level of base metal for N ≥ 10{sup 5} cycles. Yet, the increase in fatigue strength was more pronounced with increasing Almen intensity to 0.24 mmA, demonstrating further enhancement by strain hardening. - Highlights: • Grain refinement was observed after friction stir welding of AA 6061-T6. • Reduction in microhardness and fatigue strength were obtained after welding. • Variation in grain refinement led to different hardening behavior after peening. • Shot peening induced beneficial compressive residual stresses. • Shot peening and surface skimming markedly improved the fatigue performance.

  4. Thickness correction of mammographic images by means of a global parameter model of the compressed breast.

    NARCIS (Netherlands)

    Snoeren, P.R.; Karssemeijer, N.

    2004-01-01

    Peripheral enhancement and tilt correction of unprocessed digital mammograms was achieved with a new reversible algorithm. This method has two major advantages for image visualization. First, the display dynamic range can be relatively small, and second, adjustment of the overall luminance to

  5. Sparse Source EEG Imaging with the Variational Garrote

    DEFF Research Database (Denmark)

    Hansen, Sofie Therese; Stahlhut, Carsten; Hansen, Lars Kai

    2013-01-01

    EEG imaging, the estimation of the cortical source distribution from scalp electrode measurements, poses an extremely ill-posed inverse problem. Recent work by Delorme et al. (2012) supports the hypothesis that distributed source solutions are sparse. We show that direct search for sparse solutions...

  6. Variational approach for restoring blurred images with cauchy noise

    DEFF Research Database (Denmark)

    Sciacchitano, Federica; Dong, Yiqiu; Zeng, Tieyong

    2015-01-01

    model, we add a quadratic penalty term, which guarantees the uniqueness of the solution. Due to the convexity of our model, the primal dual algorithm is employed to solve the minimization problem. Experimental results show the effectiveness of the proposed method for simultaneously deblurring...... and denoising images corrupted by Cauchy noise. Comparison with other existing and well-known methods is provided as well....

  7. Focus-variation image reconstruction in field-emission TEM

    NARCIS (Netherlands)

    Coene, W.M.J.; Janssen, A.J.E.M.; Op de Beeck, M.; Van Dyck, D.; Van Zwet, E.J.; Zandbergen, H.W.; Bailey, G.W.; Rieder, C.L.

    1993-01-01

    The use of a field emission gun (FEG) in high resolution TEM (HRTEM) improves the information limit much below the point resolution. In the area between point and information resolution of the FEG-TEM, image interpretation is complicated by the lens aberrations and focus effects. Different

  8. A Simplified Method to Measure Choroidal Thickness Using Adaptive Compensation in Enhanced Depth Imaging Optical Coherence Tomography

    Science.gov (United States)

    Gupta, Preeti; Sidhartha, Elizabeth; Girard, Michael J. A.; Mari, Jean Martial; Wong, Tien-Yin; Cheng, Ching-Yu

    2014-01-01

    Purpose To evaluate a simplified method to measure choroidal thickness (CT) using commercially available enhanced depth imaging (EDI) spectral domain optical coherence tomography (SD-OCT). Methods We measured CT in 31 subjects without ocular diseases using Spectralis EDI SD-OCT. The choroid-scleral interface of the acquired images was first enhanced using a post-processing compensation algorithm. The enhanced images were then analysed using Photoshop. Two graders independently graded the images to assess inter-grader reliability. One grader re-graded the images after 2 weeks to determine intra-grader reliability. Statistical analysis was performed using intra-class correlation coefficient (ICC) and Bland-Altman plot analyses. Results Using adaptive compensation both the intra-grader reliability (ICC: 0.95 to 0.97) and inter-grader reliability (ICC: 0.93 to 0.97) were perfect for all five locations of CT. However, with the conventional technique of manual CT measurements using built-in callipers provided with the Heidelberg explorer software, the intra- (ICC: 0.87 to 0.94) and inter-grader reliability (ICC: 0.90 to 0.93) for all the measured locations is lower. Using adaptive compensation, the mean differences (95% limits of agreement) for intra- and inter-grader sub-foveal CT measurements were −1.3 (−3.33 to 30.8) µm and −1.2 (−36.6 to 34.2) µm, respectively. Conclusions The measurement of CT obtained from EDI SD-OCT using our simplified method was highly reliable and efficient. Our method is an easy and practical approach to improve the quality of choroidal images and the precision of CT measurement. PMID:24797674

  9. A simplified method to measure choroidal thickness using adaptive compensation in enhanced depth imaging optical coherence tomography.

    Directory of Open Access Journals (Sweden)

    Preeti Gupta

    Full Text Available PURPOSE: To evaluate a simplified method to measure choroidal thickness (CT using commercially available enhanced depth imaging (EDI spectral domain optical coherence tomography (SD-OCT. METHODS: We measured CT in 31 subjects without ocular diseases using Spectralis EDI SD-OCT. The choroid-scleral interface of the acquired images was first enhanced using a post-processing compensation algorithm. The enhanced images were then analysed using Photoshop. Two graders independently graded the images to assess inter-grader reliability. One grader re-graded the images after 2 weeks to determine intra-grader reliability. Statistical analysis was performed using intra-class correlation coefficient (ICC and Bland-Altman plot analyses. RESULTS: Using adaptive compensation both the intra-grader reliability (ICC: 0.95 to 0.97 and inter-grader reliability (ICC: 0.93 to 0.97 were perfect for all five locations of CT. However, with the conventional technique of manual CT measurements using built-in callipers provided with the Heidelberg explorer software, the intra- (ICC: 0.87 to 0.94 and inter-grader reliability (ICC: 0.90 to 0.93 for all the measured locations is lower. Using adaptive compensation, the mean differences (95% limits of agreement for intra- and inter-grader sub-foveal CT measurements were -1.3 (-3.33 to 30.8 µm and -1.2 (-36.6 to 34.2 µm, respectively. CONCLUSIONS: The measurement of CT obtained from EDI SD-OCT using our simplified method was highly reliable and efficient. Our method is an easy and practical approach to improve the quality of choroidal images and the precision of CT measurement.

  10. CT liver volumetry using three-dimensional image data in living donor liver transplantation: Effects of slice thickness on volume calculation

    Science.gov (United States)

    Hori, Masatoshi; Suzuki, Kenji; Epstein, Mark L.; Baron, Richard L.

    2011-01-01

    The purpose was to evaluate a relationship between slice thickness and calculated volume on CT liver volumetry by comparing the results for images with various slice thicknesses including three-dimensional images. Twenty adult potential liver donors (12 men, 8 women; mean age, 39 years; range, 24–64) underwent CT with a 64-section multi-detector row CT scanner after intra-venous injection of contrast material. Four image sets with slice thicknesses of 0.625 mm, 2.5 mm, 5 mm, and 10 mm were used. First, a program developed in our laboratory for automated liver extraction was applied to CT images, and the liver boundary was obtained automatically. Then, an abdominal radiologist reviewed all images on which automatically extracted boundaries were superimposed, and edited the boundary on each slice to enhance the accuracy. Liver volumes were determined by counting of the voxels within the liver boundary. Mean whole liver volumes estimated with CT were 1322.5 cm3 on 0.625-mm, 1313.3 cm3 on 2.5-mm, 1310.3 cm3 on 5-mm, and 1268.2 cm3 on 10-mm images. Volumes calculated for three-dimensional (0.625-mm-thick) images were significantly larger than those for thicker images (Pvolumetry. If not, three-dimensional images could be essential. PMID:21850689

  11. Reconstruction 3-dimensional image from 2-dimensional image of status optical coherence tomography (OCT) for analysis of changes in retinal thickness

    Energy Technology Data Exchange (ETDEWEB)

    Arinilhaq,; Widita, Rena [Department of Physics, Nuclear Physics and Biophysics Research Group, Institut Teknologi Bandung (Indonesia)

    2014-09-30

    Optical Coherence Tomography is often used in medical image acquisition to diagnose that change due easy to use and low price. Unfortunately, this type of examination produces a two-dimensional retinal image of the point of acquisition. Therefore, this study developed a method that combines and reconstruct 2-dimensional retinal images into three-dimensional images to display volumetric macular accurately. The system is built with three main stages: data acquisition, data extraction and 3-dimensional reconstruction. At data acquisition step, Optical Coherence Tomography produced six *.jpg images of each patient were further extracted with MATLAB 2010a software into six one-dimensional arrays. The six arrays are combined into a 3-dimensional matrix using a kriging interpolation method with SURFER9 resulting 3-dimensional graphics of macula. Finally, system provides three-dimensional color graphs based on the data distribution normal macula. The reconstruction system which has been designed produces three-dimensional images with size of 481 × 481 × h (retinal thickness) pixels.

  12. Ability of combined Near-Infrared Spectroscopy-Intravascular Ultrasound (NIRS-IVUS) imaging to detect lipid core plaques and estimate cap thickness in human autopsy coronary arteries

    Science.gov (United States)

    Grainger, S. J.; Su, J. L.; Greiner, C. A.; Saybolt, M. D.; Wilensky, R. L.; Raichlen, J. S.; Madden, S. P.; Muller, J. E.

    2016-03-01

    The ability to determine plaque cap thickness during catheterization is thought to be of clinical importance for plaque vulnerability assessment. While methods to compositionally assess cap integrity are in development, a method utilizing currently available tools to measure cap thickness is highly desirable. NIRS-IVUS is a commercially available dual imaging method in current clinical use that may provide cap thickness information to the skilled reader; however, this is as yet unproven. Ten autopsy hearts (n=15 arterial segments) were scanned with the multimodality NIRS-IVUS catheter (TVC Imaging System, Infraredx, Inc.) to identify lipid core plaques (LCPs). Skilled readers made predictions of cap thickness over regions of chemogram LCP, using NIRS-IVUS. Artery segments were perfusion fixed and cut into 2 mm serial blocks. Thin sections stained with Movat's pentachrome were analyzed for cap thickness at LCP regions. Block level predictions were compared to histology, as classified by a blinded pathologist. Within 15 arterial segments, 117 chemogram blocks were found by NIRS to contain LCP. Utilizing NIRSIVUS, chemogram blocks were divided into 4 categories: thin capped fibroatheromas (TCFA), thick capped fibroatheromas (ThCFA), pathological intimal thickening (PIT)/lipid pool (no defined cap), and calcified/unable to determine cap thickness. Sensitivities/specificities for thin cap fibroatheromas, thick cap fibroatheromas, and PIT/lipid pools were 0.54/0.99, 0.68/0.88, and 0.80/0.97, respectively. The overall accuracy rate was 70.1% (including 22 blocks unable to predict, p = 0.075). In the absence of calcium, NIRS-IVUS imaging provided predictions of cap thickness over LCP with moderate accuracy. The ability of this multimodality imaging method to identify vulnerable coronary plaques requires further assessment in both larger autopsy studies, and clinical studies in patients undergoing NIRS-IVUS imaging.

  13. A comparison of two methods to measure choroidal thickness by enhanced depth imaging optical coherence tomography

    DEFF Research Database (Denmark)

    Lundberg, Lars Kristian; Vestergaard, Anders Højslet; Vergmann, Anna Stage

    Introduction The choroid is believed to be involved in the pathophysiology of several vision threatening diseases such as age-related macular degeneration, central serous chorioretinopathy, inflammatory disorders and myopic macular degeneration. Enhanced depth imaging spectral-domain optical...... millimeter in each direction of fovea. Only the horizontal and vertical sections were selected for analysis. A total of 9 targets per eye that represented anatomically different choroidal locations were analysed for every subject. We used 2 different methods from the Heidelberg Explorer software to measure...

  14. Radar correlated imaging for extended target by the combination of negative exponential restraint and total variation

    Science.gov (United States)

    Qian, Tingting; Wang, Lianlian; Lu, Guanghua

    2017-07-01

    Radar correlated imaging (RCI) introduces the optical correlated imaging technology to traditional microwave imaging, which has raised widespread concern recently. Conventional RCI methods neglect the structural information of complex extended target, which makes the quality of recovery result not really perfect, thus a novel combination of negative exponential restraint and total variation (NER-TV) algorithm for extended target imaging is proposed in this paper. The sparsity is measured by a sequential order one negative exponential function, then the 2D total variation technique is introduced to design a novel optimization problem for extended target imaging. And the proven alternating direction method of multipliers is applied to solve the new problem. Experimental results show that the proposed algorithm could realize high resolution imaging efficiently for extended target.

  15. Imaging derived cortical thickness reduction in high-functioning autism: key regions and temporal slope.

    Science.gov (United States)

    Scheel, Christian; Rotarska-Jagiela, Anna; Schilbach, Leonhard; Lehnhardt, Fritz G; Krug, Barbara; Vogeley, Kai; Tepest, Ralf

    2011-09-15

    Cortical thickness (CT) changes possibly contribute to the complex symptomatology of autism. The aberrant developmental trajectories underlying such differences in certain brain regions and their continuation in adulthood are a matter of intense debate. We studied 28 adults with high-functioning autism (HFA) and 28 control subjects matched for age, gender, IQ and handedness. A surface-based whole brain analysis utilizing FreeSurfer was employed to detect CT differences between the two diagnostic groups and to investigate the time course of age-related changes. Direct comparison with control subjects revealed thinner cortex in HFA in the posterior superior temporal sulcus (pSTS) of the left hemisphere. Considering the time course of CT development we found clusters around the pSTS and cuneus in the left and the paracentral lobule in the right hemisphere to be thinner in HFA with comparable age-related slopes in patients and controls. Conversely, we found clusters around the supramarginal gyrus and inferior parietal lobule (IPL) in the left and the precentral and postcentral gyrus in the right hemisphere to be thinner in HFA, but with different age-related slopes in patients and controls. In the latter regions CT showed a steady decrease in controls but no analogous thinning in HFA. CT analyses contribute in characterizing neuroanatomical correlates of HFA. Reduced CT is present in brain regions involved in social cognition. Furthermore, our results demonstrate that aberrant brain development leading to such differences is proceeding throughout adulthood. Discrepancies in prior morphometric studies may be induced by the complex time course of cortical changes. Copyright © 2011 Elsevier Inc. All rights reserved.

  16. Advances in Surface Plasmon Resonance Imaging enable quantitative measurement of laterally heterogeneous coatings of nanoscale thickness

    Science.gov (United States)

    Raegen, Adam; Reiter, Kyle; Clarke, Anthony; Lipkowski, Jacek; Dutcher, John

    2013-03-01

    The Surface Plasmon Resonance (SPR) phenomenon is routinely exploited to qualitatively probe changes to the optical properties of nanoscale coatings on thin metallic surfaces, for use in probes and sensors. Unfortunately, extracting truly quantitative information is usually limited to a select few cases - uniform absorption/desorption of small biomolecules and films, in which a continuous ``slab'' model is a good approximation. We present advancements in the SPR technique that expand the number of cases for which the technique can provide meaningful results. Use of a custom, angle-scanning SPR imaging system, together with a refined data analysis method, allow for quantitative kinetic measurements of laterally heterogeneous systems. We first demonstrate the directionally heterogeneous nature of the SPR phenomenon using a directionally ordered sample, then show how this allows for the calculation of the average coverage of a heterogeneous sample. Finally, the degradation of cellulose microfibrils and bundles of microfibrils due to the action of cellulolytic enzymes will be presented as an excellent example of the capabilities of the SPR imaging system.

  17. Removal of Optically Thick Clouds from Multi-Spectral Satellite Images Using Multi-Frequency SAR Data

    Directory of Open Access Journals (Sweden)

    Robert Eckardt

    2013-06-01

    Full Text Available This study presents a method for the reconstruction of pixels contaminated by optical thick clouds in multi-spectral Landsat images using multi-frequency SAR data. A number of reconstruction techniques have already been proposed in the scientific literature. However, all of the existing techniques have certain limitations. In order to overcome these limitations, we expose the Closest Spectral Fit (CSF method proposed by Meng et al. to a new, synergistic approach using optical and SAR data. Therefore, the term Closest Feature Vector (CFV is introduced. The technique facilitates an elegant way to avoid radiometric distortions in the course of image reconstruction. Furthermore the cloud cover removal is independent from underlying land cover types and assumptions on seasonality, etc. The methodology is applied to mono-temporal, multi-frequency SAR data from TerraSAR-X (X-Band, ERS (C-Band and ALOS Palsar (L-Band. This represents a way of thinking about Radar data not as foreign, but as additional data source in multi-spectral remote sensing. For the assessment of the image restoration performance, an experimental framework is established and a statistical evaluation protocol is designed. The results show the potential of a synergistic usage of multi-spectral and SAR data to overcome the loss of data due to cloud cover.

  18. Using H/V Spectral Ratio Analysis to Map Sediment Thickness and to Explain Macroseismic Intensity Variation of a Low-Magnitude Seismic Swarm in Central Belgium

    Science.gov (United States)

    Van Noten, K.; Lecocq, T.; Camelbeeck, T.

    2013-12-01

    Between 2008 and 2010, the Royal Observatory of Belgium received numerous ';Did You Feel It'-reports related to a 2-year lasting earthquake swarm at Court-Saint-Etienne, a small town in a hilly area 20 km SE of Brussels, Belgium. These small-magnitude events (-0.7 ≤ ML ≤ 3.2, n = c. 300 events) were recorded both by the permanent seismometer network in Belgium and by a locally installed temporary seismic network deployed in the epicentral area. Relocation of the hypocenters revealed that the seismic swarm can be related to the reactivation of a NW-SE strike-slip fault at 3 to 6 km depth in the basement rocks of the Lower Palaeozoic London-Brabant Massif. This sequence caused a lot of emotion in the region because more than 60 events were felt by the local population. Given the small magnitudes of the seismic swarm, most events were more often heard than felt by the respondents, which is indicative of a local high-frequency earthquake source. At places where the bedrock is at the surface or where it is covered by thin alluvial sediments ( 30 m). In those river valleys that have a considerable alluvial sedimentary cover, macroseismic intensities are again lower. To explain this variation in macroseismic intensity we present a macroseismic analysis of all DYFI-reports related to the 2008-2010 seismic swarm and a pervasive H/V spectral ratio (HVSR) analysis of ambient noise measurements to model the thickness of sediments covering the London-Brabant Massif. The HVSR method is a very powerful tool to map the basement morphology, particularly in regions of unknown subsurface structure. By calculating the soil's fundamental frequency above boreholes, we calibrated the power-law relationship between the fundamental frequency, shear wave velocity and the thickness of sediments. This relationship is useful for places where the sediment thickness is unknown and where the fundamental frequency can be calculated by H/V spectral ratio analysis of ambient noise. In a

  19. A variational ensemble scheme for noisy image data assimilation

    Science.gov (United States)

    Yang, Yin; Robinson, Cordelia; Heitz, Dominique; Mémin, Etienne

    2014-05-01

    Data assimilation techniques aim at recovering a system state variables trajectory denoted as X, along time from partially observed noisy measurements of the system denoted as Y. These procedures, which couple dynamics and noisy measurements of the system, fulfill indeed a twofold objective. On one hand, they provide a denoising - or reconstruction - procedure of the data through a given model framework and on the other hand, they provide estimation procedures for unknown parameters of the dynamics. A standard variational data assimilation problem can be formulated as the minimization of the following objective function with respect to the initial discrepancy, η, from the background initial guess: δ« J(η(x)) = 1∥Xb (x) - X (t ,x)∥2 + 1 tf∥H(X (t,x ))- Y (t,x)∥2dt. 2 0 0 B 2 t0 R (1) where the observation operator H links the state variable and the measurements. The cost function can be interpreted as the log likelihood function associated to the a posteriori distribution of the state given the past history of measurements and the background. In this work, we aim at studying ensemble based optimal control strategies for data assimilation. Such formulation nicely combines the ingredients of ensemble Kalman filters and variational data assimilation (4DVar). It is also formulated as the minimization of the objective function (1), but similarly to ensemble filter, it introduces in its objective function an empirical ensemble-based background-error covariance defined as: B ≡ )(Xb - )T>. (2) Thus, it works in an off-line smoothing mode rather than on the fly like sequential filters. Such resulting ensemble variational data assimilation technique corresponds to a relatively new family of methods [1,2,3]. It presents two main advantages: first, it does not require anymore to construct the adjoint of the dynamics tangent linear operator, which is a considerable advantage with respect to the method's implementation, and second, it enables the handling of a flow

  20. Active probing of cloud multiple scattering, optical depth, vertical thickness, and liquid water content using wide-angle imaging lidar

    Science.gov (United States)

    Love, Steven P.; Davis, Anthony B.; Rohde, Charles A.; Tellier, Larry; Ho, Cheng

    2002-09-01

    At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60-degree full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer, and, from there, estimate the volume-averaged liquid water content. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Here we present recent WAIL data on various clouds and discuss the extension of WAIL to full diurnal monitoring by means of an ultra-narrow magneto-optic atomic line filter for daytime measurements.

  1. Active probing of cloud multiple scattering, optical depth, vertical thickness, and liquid water content using wide-angle imaging LIDAR

    International Nuclear Information System (INIS)

    Love, Steven P.; Davis, Anthony B.; Rohde, Charles A.; Tellier, Larry L.; Ho, Cheng

    2002-01-01

    At most optical wavelengths, laser light in a cloud lidar experiment is not absorbed but merely scattered out of the beam, eventually escaping the cloud via multiple scattering. There is much information available in this light scattered far from the input beam, information ignored by traditional 'on-beam' lidar. Monitoring these off-beam returns in a fully space- and time-resolved manner is the essence of our unique instrument, Wide Angle Imaging Lidar (WAIL). In effect, WAIL produces wide-field (60-degree full-angle) 'movies' of the scattering process and records the cloud's radiative Green functions. A direct data product of WAIL is the distribution of photon path lengths resulting from multiple scattering in the cloud. Following insights from diffusion theory, we can use the measured Green functions to infer the physical thickness and optical depth of the cloud layer, and, from there, estimate the volume-averaged liquid water content. WAIL is notable in that it is applicable to optically thick clouds, a regime in which traditional lidar is reduced to ceilometry. Here we present recent WAIL data oti various clouds and discuss the extension of WAIL to full diurnal monitoring by means of an ultra-narrow magneto-optic atomic line filter for daytime measurements.

  2. An Improved Variational Method for Hyperspectral Image Pansharpening with the Constraint of Spectral Difference Minimization

    Science.gov (United States)

    Huang, Z.; Chen, Q.; Shen, Y.; Chen, Q.; Liu, X.

    2017-09-01

    Variational pansharpening can enhance the spatial resolution of a hyperspectral (HS) image using a high-resolution panchromatic (PAN) image. However, this technology may lead to spectral distortion that obviously affect the accuracy of data analysis. In this article, we propose an improved variational method for HS image pansharpening with the constraint of spectral difference minimization. We extend the energy function of the classic variational pansharpening method by adding a new spectral fidelity term. This fidelity term is designed following the definition of spectral angle mapper, which means that for every pixel, the spectral difference value of any two bands in the HS image is in equal proportion to that of the two corresponding bands in the pansharpened image. Gradient descent method is adopted to find the optimal solution of the modified energy function, and the pansharpened image can be reconstructed. Experimental results demonstrate that the constraint of spectral difference minimization is able to preserve the original spectral information well in HS images, and reduce the spectral distortion effectively. Compared to original variational method, our method performs better in both visual and quantitative evaluation, and achieves a good trade-off between spatial and spectral information.

  3. General filtering method for electronic speckle pattern interferometry fringe images with various densities based on variational image decomposition.

    Science.gov (United States)

    Li, Biyuan; Tang, Chen; Gao, Guannan; Chen, Mingming; Tang, Shuwei; Lei, Zhenkun

    2017-06-01

    Filtering off speckle noise from a fringe image is one of the key tasks in electronic speckle pattern interferometry (ESPI). In general, ESPI fringe images can be divided into three categories: low-density fringe images, high-density fringe images, and variable-density fringe images. In this paper, we first present a general filtering method based on variational image decomposition that can filter speckle noise for ESPI fringe images with various densities. In our method, a variable-density ESPI fringe image is decomposed into low-density fringes, high-density fringes, and noise. A low-density fringe image is decomposed into low-density fringes and noise. A high-density fringe image is decomposed into high-density fringes and noise. We give some suitable function spaces to describe low-density fringes, high-density fringes, and noise, respectively. Then we construct several models and numerical algorithms for ESPI fringe images with various densities. And we investigate the performance of these models via our extensive experiments. Finally, we compare our proposed models with the windowed Fourier transform method and coherence enhancing diffusion partial differential equation filter. These two methods may be the most effective filtering methods at present. Furthermore, we use the proposed method to filter a collection of the experimentally obtained ESPI fringe images with poor quality. The experimental results demonstrate the performance of our proposed method.

  4. Potential of electrical resistivity tomography and muon density imaging to study spatio-temporal variations in the sub-surface

    Science.gov (United States)

    Lesparre, Nolwenn; Cabrera, Justo; Courbet, Christelle

    2015-04-01

    We explore the capacity of electrical resistivity tomography and muon density imaging to detect spatio-temporal variations of the medium surrounding a regional fault crossing the underground platform of Tournemire (Aveyron, France). The studied Cernon fault is sub-vertical and intersects perpendicularly the tunnel of Tournemire and extends to surface. The fault separates clay and limestones layers of the Dogger from limestones layers of the Lias. The Cernon fault presents a thickness of a ten of meters and drives water from an aquifer circulating at the top of the Dogger clay layer to the tunnel. An experiment combining electrical resistivity imaging and muon density imaging was setup taking advantage of the tunnel presence. A specific array of electrodes were set up, adapted for the characterization of the fault. Electrodes were placed along the tunnel as well as at the surface above the tunnel on both sides of the fault in order to acquire data in transmission across the massif to better cover the sounded medium. Electrical resistivity is particularly sensitive to water presence in the medium and thus carry information on the main water flow paths and on the pore space saturation. At the same time a muon sensor was placed in the tunnel under the fault region to detect muons coming from the sky after their crossing of the rock medium. Since the muon flux is attenuated as function of the quantity of matter crossed, muons flux measurements supply information on the medium average density along muons paths. The sensor presents 961 angles of view so measurements performed from one station allows a comparison of the muon flux temporal variations along the fault as well as in the medium surrounding the fault. As the water saturation of the porous medium fluctuates through time the medium density might indeed present sensible variations as shown by gravimetric studies. During the experiment important rainfalls occurred leading variations of the medium properties

  5. A method for 3D-reconstruction of a muscle thick filament using the tilt series images of a single filament electron tomogram.

    Science.gov (United States)

    Márquez, G; Pinto, A; Alamo, L; Baumann, B; Ye, F; Winkler, H; Taylor, K; Padrón, R

    2014-05-01

    Myosin interacting-heads (MIH) motifs are visualized in 3D-reconstructions of thick filaments from striated muscle. These reconstructions are calculated by averaging methods using images from electron micrographs of grids prepared using numerous filament preparations. Here we propose an alternative method to calculate the 3D-reconstruction of a single thick filament using only a tilt series images recorded by electron tomography. Relaxed thick filaments, prepared from tarantula leg muscle homogenates, were negatively stained. Single-axis tilt series of single isolated thick filaments were obtained with the electron microscope at a low electron dose, and recorded on a CCD camera by electron tomography. An IHRSR 3D-recontruction was calculated from the tilt series images of a single thick filament. The reconstruction was enhanced by including in the search stage dual tilt image segments while only single tilt along the filament axis is usually used, as well as applying a band pass filter just before the back projection. The reconstruction from a single filament has a 40 Å resolution and clearly shows the presence of MIH motifs. In contrast, the electron tomogram 3D-reconstruction of the same thick filament - calculated without any image averaging and/or imposition of helical symmetry - only reveals MIH motifs infrequently. This is - to our knowledge - the first application of the IHRSR method to calculate a 3D reconstruction from tilt series images. This single filament IHRSR reconstruction method (SF-IHRSR) should provide a new tool to assess structural differences between well-ordered thick (or thin) filaments in a grid by recording separately their electron tomograms. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Splitting diffraction peak in different thickness LL-interferometer and determination of thickness of damaged layer induced by electron irradiation of plates

    International Nuclear Information System (INIS)

    Truni, K.G.; Sedrakyan, A.G.; Papoyan, A.A.; Bezirganyan, P.A.

    1988-01-01

    Amplitude of twice reflected beam is calculated analytically, oscillatory dependence of peak intensity in the centre of diffraction image on the small variations in thickness is shown. The expression, clearly binding the splitting value of diffraction peak with variation in thickness of the interferometer plates, is received. The effect of variation in thickness on the splitting value of focal line is studied experimentally in case of irradiation of the equal-arm Π-shaped interferometer blocks by fast electron flow, thickness of the originated damaged layers are determined

  7. An Improved Approach for Accurate and Efficient Measurement of Common Carotid Artery Intima-Media Thickness in Ultrasound Images

    Directory of Open Access Journals (Sweden)

    Qiang Li

    2014-01-01

    Full Text Available The intima-media thickness (IMT of common carotid artery (CCA can serve as an important indicator for the assessment of cardiovascular diseases (CVDs. In this paper an improved approach for automatic IMT measurement with low complexity and high accuracy is presented. 100 ultrasound images from 100 patients were tested with the proposed approach. The ground truth (GT of the IMT was manually measured for six times and averaged, while the automatic segmented (AS IMT was computed by the algorithm proposed in this paper. The mean difference ± standard deviation between AS and GT IMT is 0.0231 ± 0.0348 mm, and the correlation coefficient between them is 0.9629. The computational time is 0.3223 s per image with MATLAB under Windows XP on an Intel Core 2 Duo CPU E7500 @2.93 GHz. The proposed algorithm has the potential to achieve real-time measurement under Visual Studio.

  8. Fractional-Order Total Variation Image Restoration Based on Primal-Dual Algorithm

    OpenAIRE

    Chen, Dali; Chen, YangQuan; Xue, Dingyu

    2013-01-01

    This paper proposes a fractional-order total variation image denoising algorithm based on the primal-dual method, which provides a much more elegant and effective way of treating problems of the algorithm implementation, ill-posed inverse, convergence rate, and blocky effect. The fractional-order total variation model is introduced by generalizing the first-order model, and the corresponding saddle-point and dual formulation are constructed in theory. In order to guarantee $O(1/{N}^{2})$ conv...

  9. Variations in the size of focal nodular hyperplasia on magnetic resonance imaging.

    Science.gov (United States)

    Ramírez-Fuentes, C; Martí-Bonmatí, L; Torregrosa, A; Del Val, A; Martínez, C

    2013-01-01

    To evaluate the changes in the size of focal nodular hyperplasia (FNH) during long-term magnetic resonance imaging (MRI) follow-up. We reviewed 44 FNHs in 30 patients studied with MRI with at least two MRI studies at least 12 months apart. We measured the largest diameter of the lesion (inmm) in contrast-enhanced axial images and calculated the percentage of variation as the difference between the maximum diameter in the follow-up and the maximum diameter in the initial study. We defined significant variation in size as variation greater than 20%. We also analyzed predisposing hormonal factors. The mean interval between the two imaging studies was 35±2 months (range: 12-94). Most lesions (80%) remained stable during follow-up. Only 9 of the 44 lesions (20%) showed a significant variation in diameter: 7 (16%) decreased in size and 2 (4%) increased, with variations that reached the double of the initial size. The change in size was not related to pregnancy, menopause, or the use of birth control pills or corticoids. Changes in the size of FNHs during follow-up are relatively common and should not lead to a change in the diagnosis. These variations in size seem to be independent of hormonal factors that are considered to predispose. Copyright © 2011 SERAM. Published by Elsevier Espana. All rights reserved.

  10. Feedforward Object-Vision Models Only Tolerate Small Image Variations Compared to Human

    Directory of Open Access Journals (Sweden)

    Masoud eGhodrati

    2014-07-01

    Full Text Available Invariant object recognition is a remarkable ability of primates' visual system that its underlying mechanism has constantly been under intense investigations. Computational modelling is a valuable tool toward understanding the processes involved in invariant object recognition. Although recent computational models have shown outstanding performances on challenging image databases, they fail to perform well when images with more complex variations of the same object are applied to them. Studies have shown that making sparse representation of objects by extracting more informative visual features through a feedforward sweep can lead to higher recognition performances. Here, however, we show that when the complexity of image variations is high, even this approach results in poor performance compared to humans. To assess the performance of models and humans in invariant object recognition tasks, we built a parametrically controlled image database consisting of several object categories varied in different dimensions and levels, rendered from 3D planes. Comparing the performance of several object recognition models with human observers shows that only in low-level image variations the models perform similar to humans in categorization tasks. Furthermore, the results of our behavioral experiments demonstrate that, even under difficult experimental conditions (i.e. briefly presented masked stimuli with complex image variations, human observers performed outstandingly well, suggesting that the models are still far from resembling humans in invariant object recognition. Taken together, we suggest that learning sparse informative visual features, although desirable, is not a complete solution for future progresses in object-vision modelling. We show that this approach is not of significant help in solving the computational crux of object recognition (that is invariant object recognition when the identity-preserving image variations become more complex.

  11. Comparison of Laser Doppler Imaging (LDI) and clinical assessment in differentiating between superficial and deep partial thickness burn wounds.

    Science.gov (United States)

    Jan, Saadia Nosheen; Khan, Farid Ahmed; Bashir, Muhammad Mustehsan; Nasir, Muneeb; Ansari, Hamid Hussain; Shami, Hussan Birkhez; Nazir, Umer; Hanif, Asif; Sohail, Muhammad

    2018-03-01

    To compare the accuracy of Laser Doppler Imaging (LDI) and clinical assessment in differentiating between superficial and deep partial thickness burns to decide whether early tangential excision and grafting or conservative management should be employed to optimize burn and patient management. March 2015 to November 2016. Ninety two wounds in 34 patients reporting within 5days of less than 40% burn surface area were included. Unstable patients, pregnant females and those who expired were excluded. The wounds were clinically assessed and LDI done concomitantly Plastic Surgeons blinded to each other's findings. Wound appearance, color, blanching, pain, hair follicle dislodgement were the clinical parameters that distinguished between superficial and deep partial thickness burns. On day 21, the wounds were again assessed for the presence of healing by the same plastic surgeons. The findings were correlated with the initial findings on LDI and clinical assessment and the results statistically analyzed. The data of 92 burn wounds was analyzed using SPSS (ver. 17). Clinical assessment correctly identified the depth of 75 and LDI 83 wounds, giving diagnostic accuracies of 81.52% and 90.21% respectively. The sensitivity of clinical assessment was 81% and of LDI 92.75%, whereas the specificity was 82% for both. The positive predictive value was 93% for clinical assessment and 94% for LDI while the negative predictive value was 59% and 79% respectively. Predictive accuracy of LDI was found to be better than clinical assessment in the prediction of wound healing, the gold standard for wound healing being 21 days. As such it can prove to be a reliable and viable cost effective alternative per se to clinical assessment. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  12. Regularization by Functions of Bounded Variation and Applications to Image Enhancement

    International Nuclear Information System (INIS)

    Casas, E.; Kunisch, K.; Pola, C.

    1999-01-01

    Optimization problems regularized by bounded variation seminorms are analyzed. The optimality system is obtained and finite-dimensional approximations of bounded variation function spaces as well as of the optimization problems are studied. It is demonstrated that the choice of the vector norm in the definition of the bounded variation seminorm is of special importance for approximating subspaces consisting of piecewise constant functions. Algorithms based on a primal-dual framework that exploit the structure of these nondifferentiable optimization problems are proposed. Numerical examples are given for denoising of blocky images with very high noise

  13. Measurement of muscle thickness of the serratus anterior and lower trapezius using ultrasound imaging in competitive recreational adult swimmers, with and without current shoulder pain.

    Science.gov (United States)

    McKenna, Leanda J; de Ronde, Mandy; Le, Minyang; Burke, William; Graves, Anna; Williams, Sian A

    2018-02-01

    To compare serratus anterior and lower trapezius muscle thickness between swimmers with and without current shoulder pain, and between sides when measured by real-time ultrasound imaging. A single blinded age and gender-matched case-control study with 26 symptomatic and 26 asymptomatic recreational swimmers. Muscle thickness of serratus anterior and lower trapezius were measured using previously validated real-time ultrasound imaging protocols. Serratus anterior thickness was measured in side lying with 90° of glenohumeral flexion at rest and during a scapular protraction contraction. Lower trapezius thickness was measured in prone with 145° of glenohumeral abduction whilst at rest and when holding the weight of the arm. There was no statistically significant difference between the muscle thickness of serratus anterior and lower trapezius between the symptomatic shoulder and the dominance-matched shoulder in the asymptomatic group of swimmers. There was also no significant difference in muscle thickness between the symptomatic side and asymptomatic side within the symptomatic group. There appears to be no difference in serratus anterior and lower trapezius thickness between swimmers who have mild to moderate shoulder pain, who continue to swim and those who do not have shoulder pain. When imaging the serratus anterior and lower trapezius in swimmers with mild shoulder pain, clinicians should expect no differences between sides. If muscle thickness differences between sides are detected in recreational swimmers, this may indicate that the swimmer is participating in other asymmetrical activities or has a higher level of shoulder pain. Copyright © 2017 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.

  14. Decision-Based Marginal Total Variation Diffusion for Impulsive Noise Removal in Color Images

    Directory of Open Access Journals (Sweden)

    Hongyao Deng

    2017-01-01

    Full Text Available Impulsive noise removal for color images usually employs vector median filter, switching median filter, the total variation L1 method, and variants. These approaches, however, often introduce excessive smoothing and can result in extensive visual feature blurring and thus are suitable only for images with low density noise. A marginal method to reduce impulsive noise is proposed in this paper that overcomes this limitation that is based on the following facts: (i each channel in a color image is contaminated independently, and contaminative components are independent and identically distributed; (ii in a natural image the gradients of different components of a pixel are similar to one another. This method divides components into different categories based on different noise characteristics. If an image is corrupted by salt-and-pepper noise, the components are divided into the corrupted and the noise-free components; if the image is corrupted by random-valued impulses, the components are divided into the corrupted, noise-free, and the possibly corrupted components. Components falling into different categories are processed differently. If a component is corrupted, modified total variation diffusion is applied; if it is possibly corrupted, scaled total variation diffusion is applied; otherwise, the component is left unchanged. Simulation results demonstrate its effectiveness.

  15. Using a fast dual-wavelength imaging ellipsometric system to measure the flow thickness profile of an oil thin film

    Science.gov (United States)

    Kuo, Chih-Wei; Han, Chien-Yuan; Jhou, Jhe-Yi; Peng, Zeng-Yi

    2017-11-01

    Dual-wavelength light sources with stroboscopic illumination technique were applied in a process of photoelastic modulated ellipsometry to retrieve two-dimensional ellipsometric parameters of thin films on a silicon substrate. Two laser diodes were alternately switched on and modulated by a programmable pulse generator to generate four short pulses at specific temporal phase angles in a modulation cycle, and short pulses were used to freeze the intensity variation of the PEM modulated signal that allows ellipsometric images to be captured by a charge-coupled device. Although the phase retardation of a photoelastic modulator is related to the light wavelength, we employed an equivalent phase retardation technique to avoid any setting from the photoelastic modulator. As a result, the ellipsometric parameters of different wavelengths may be rapidly obtained using this dual-wavelength ellipsometric system every 4 s. Both static and dynamic experiments are demonstrated in this work.

  16. Impact of the Parameter Variation on the Image Blurring in 3 T Magnetic Resonance Imaging: A Phantom Study

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jong Woo; Lee, Sang Hoon; Kim, Nam Kug; Cho, Kyung Sik; Lee, Jin Seong [Dept. of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul (Korea, Republic of)

    2013-04-15

    To evaluate the effects of the key imaging-parameter alterations on the four MR sequences in a phantom study. Magnetic resonance (MR) imaging was performed on a MR phantom with an 8-channel head coil by using a 3 T MR system. The images were obtained in the axial plane on four MR sequences [T1-weighted, T2-weighted, Proton-density, and 3 dimensional (3D) fast spin echo (FSE)] with controlled variations in the following key parameters: 1) echo train length (ETL), 2) repetition time (TR), and 3) echo time (TE). The image blurring was determined by the degree of the gradient angle; i.e., the blurring increased as the gradient angle decreases. The increasing ETL was observed to cause an increase in the image blurring on all pulse sequences with a statistical significance (p = 0.004) on the 3D FSE. Increasing the TR appeared to have no effect except a statistically significant decrease on the T1-weighted images (p = 0.011). Increasing TE showed no effect on the T1-weighted images (p = 0.932); however, it caused an increase of blurring on the proton density images (p = 0.016) as well as the T2-weighted images (p < 0.001), and a decrease on the 3D FSE (p = 0.001). To reduce the image blurring, short ETL and long TE for 3D FSE, long TR for T1-weighted images and short TE for proton-density and T2-weighted images should be applied.

  17. Analysis of interfraction and intrafraction variation during tangential breast irradiation with an electronic portal imaging device

    International Nuclear Information System (INIS)

    Smith, Ryan P.; Bloch, Peter; Harris, Eleanor E.; McDonough, James; Sarkar, Abhirup; Kassaee, Alireza; Avery, Steven; Solin, Lawrence J.

    2005-01-01

    Purpose: To evaluate the daily setup variation and the anatomic movement of the heart and lungs during breast irradiation with tangential photon beams, as measured with an electronic portal imaging device. Methods and materials: Analysis of 1,709 portal images determined changes in the radiation field during a treatment course in 8 patients. Values obtained for every image included central lung distance (CLD) and area of lung and heart within the irradiated field. The data from these measurements were used to evaluate variation from setup between treatment days and motion due to respiration and/or patient movement during treatment delivery. Results: The effect of respiratory motion and movement during treatment was minimal: the maximum range in CLD for any patient on any day was 0.25 cm. The variation caused by day-to-day setup variation was greater, with CLD values for patients ranging from 0.59 cm to 2.94 cm. Similar findings were found for heart and lung areas. Conclusions: There is very little change in CLD and corresponding lung and heart area during individual radiation treatment fractions in breast tangential fields, compared with a relatively greater amount of variation that occurs between days

  18. A Combined First and Second Order Variational Approach for Image Reconstruction

    KAUST Repository

    Papafitsoros, K.

    2013-05-10

    In this paper we study a variational problem in the space of functions of bounded Hessian. Our model constitutes a straightforward higher-order extension of the well known ROF functional (total variation minimisation) to which we add a non-smooth second order regulariser. It combines convex functions of the total variation and the total variation of the first derivatives. In what follows, we prove existence and uniqueness of minimisers of the combined model and present the numerical solution of the corresponding discretised problem by employing the split Bregman method. The paper is furnished with applications of our model to image denoising, deblurring as well as image inpainting. The obtained numerical results are compared with results obtained from total generalised variation (TGV), infimal convolution and Euler\\'s elastica, three other state of the art higher-order models. The numerical discussion confirms that the proposed higher-order model competes with models of its kind in avoiding the creation of undesirable artifacts and blocky-like structures in the reconstructed images-a known disadvantage of the ROF model-while being simple and efficiently numerically solvable. ©Springer Science+Business Media New York 2013.

  19. Optimal thickness of a monocrystal line object in atomic plane visualization on its image in a high-resolution electron microscope

    International Nuclear Information System (INIS)

    Grishina, T.A.; Sviridova, V.Yu.

    1983-01-01

    Theoretical and experimental investigation of the influence of the FCC-lattice crystal (gold, nickel) thickness on conditions of visulization of atomic plane projections (APP) on the crystal image in a transmission high-resolution electron microscope (THREM) is reported. Results of electron diffraction theory are used for theoretical investigation. Calculation analysis of the influence of the monocrystal thickness and orientation on conitions of visualization of APP and atomic columns in monocrystal images formed in THREM in multibeam regimes with inclined and axial illumination is conducted. It is shown that, to visualize the atomic column projections in a crystal image formed in the multibeam regime with axial illumination, optimal are the thicknesses from 0.1 xisub(min) to 0.25 xisub(min) and at some object orientations also the thicknesses from 0.8 xisub(min) to 0.9 xisub(min), where xisub(min) is the extinction length minimum for the given orientation. It is shown that, to realize the ultimate resolutions in multibeam regimes both with inclined and axial illumination the optimal thickness of the object is 0.63 xisub(min). Satisfactory coincidence of theoretical and experimental data is obtained

  20. Applicability of X-ray fluorescence spectroscopy as method to determine thickness and composition of stacks of metal thin films: A comparison with imaging and profilometry

    International Nuclear Information System (INIS)

    Vrielink, J.A.M.; Tiggelaar, R.M.; Gardeniers, J.G.E.; Lefferts, L.

    2012-01-01

    In this work the applicability of X-ray fluorescence spectroscopy (XRF) for fast, accurate and non-destructive determination of the thickness of a variety of single-layer and multi-layer metal thin films deposited on glass and silicon is investigated. Data obtained with XRF is compared with information from profilometry and images from scanning electron microscopy (SEM). Whereas thickness determinations based on profilometry and cross-sectional SEM-imaging have restrictions with respect to thickness of metal stacks or hardness of the metals, XRF has no such limitations. Moreover, XRF can discriminate between sublayers in a multi-layer film, and can also be utilized for compositional analysis and density estimations. Good agreement between thickness data obtained with XRF, profilometry and SEM-images is found, under the justifiable assumption that the density of sputter-deposited and evaporated thin films is ca. 5% below that of bulk metals. Similar XRF-results are found for non-patterned areas (64 mm 2 metal) as well as lithographically patterned areas containing a series of small metal lines (total metal surface ca. 8 mm 2 ). As a consequence, it is concluded that XRF is a versatile technique for analysis, verification, control or evaluation of the thickness, density or (elemental) composition of thin metal film line-patterns, during their fabrication as well as prior or post to applications.

  1. A Convex Variational Model for Restoring Blurred Images with Multiplicative Noise

    DEFF Research Database (Denmark)

    Dong, Yiqiu; Tieyong Zeng

    2013-01-01

    In this paper, a new variational model for restoring blurred images with multiplicative noise is proposed. Based on the statistical property of the noise, a quadratic penalty function technique is utilized in order to obtain a strictly convex model under a mild condition, which guarantees...

  2. New Hybrid Variational Recovery Model for Blurred Images with Multiplicative Noise

    DEFF Research Database (Denmark)

    Dong, Yiqiu; Zeng, Tieyong

    2013-01-01

    A new hybrid variational model for recovering blurred images in the presence of multiplicative noise is proposed. Inspired by previous work on multiplicative noise removal, an I-divergence technique is used to build a strictly convex model under a condition that ensures the uniqueness...

  3. Spacial Variation in SAR Images of Different Resolution for Agricultural Fields

    DEFF Research Database (Denmark)

    Sandholt, Inge; Skriver, Henning

    1999-01-01

    The spatial variation in two types of Synthetic Aperture Radar (SAR) images covering agricultural fields is analysed. C-band polarimetric SAR data from the Danish airborne SAR, EMISAR, have been compared to space based ERS-1 C-band SAR with respect to scale and effect of polarization. The general...

  4. Image Size Variation Influence on Corrupted and Non-viewable BMP Image

    Science.gov (United States)

    Azmi, Tengku Norsuhaila T.; Azma Abdullah, Nurul; Rahman, Nurul Hidayah Ab; Hamid, Isredza Rahmi A.; Chai Wen, Chuah

    2017-08-01

    Image is one of the evidence component seek in digital forensics. Joint Photographic Experts Group (JPEG) format is most popular used in the Internet because JPEG files are very lossy and easy to compress that can speed up Internet transmitting processes. However, corrupted JPEG images are hard to recover due to the complexities of determining corruption point. Nowadays Bitmap (BMP) images are preferred in image processing compared to another formats because BMP image contain all the image information in a simple format. Therefore, in order to investigate the corruption point in JPEG, the file is required to be converted into BMP format. Nevertheless, there are many things that can influence the corrupting of BMP image such as the changes of image size that make the file non-viewable. In this paper, the experiment indicates that the size of BMP file influences the changes in the image itself through three conditions, deleting, replacing and insertion. From the experiment, we learnt by correcting the file size, it can able to produce a viewable file though partially. Then, it can be investigated further to identify the corruption point.

  5. Survival prediction using temporal muscle thickness measurements on cranial magnetic resonance images in patients with newly diagnosed brain metastases

    Energy Technology Data Exchange (ETDEWEB)

    Furtner, Julia; Prayer, Daniela [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Medical University of Vienna, Comprehensive Cancer Center, Central Nervous System Tumor Unit (CCC-CNS), Vienna (Austria); Berghoff, Anna S.; Zielinski, Christoph C.; Preusser, Matthias [Medical University of Vienna, Comprehensive Cancer Center, Central Nervous System Tumor Unit (CCC-CNS), Vienna (Austria); Medical University of Vienna, Department of Medicine I, Vienna (Austria); Albtoush, Omar M. [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); University of Jordan, Department of Radiology and Nuclear Medicine, Amman (Jordan); Woitek, Ramona; Asenbaum, Ulrika [Medical University of Vienna, Department of Biomedical Imaging and Image-guided Therapy, Vienna (Austria); Widhalm, Georg; Gatterbauer, Brigitte [Medical University of Vienna, Comprehensive Cancer Center, Central Nervous System Tumor Unit (CCC-CNS), Vienna (Austria); Medical University of Vienna, Department of Neurosurgery, Vienna (Austria); Dieckmann, Karin [Medical University of Vienna, Comprehensive Cancer Center, Central Nervous System Tumor Unit (CCC-CNS), Vienna (Austria); Medical University of Vienna, Department of Radiotherapy, Vienna (Austria); Birner, Peter [Medical University of Vienna, Comprehensive Cancer Center, Central Nervous System Tumor Unit (CCC-CNS), Vienna (Austria); Medical University of Vienna, Department of Medicine I, Vienna (Austria); Medical University of Vienna, Department of Pathology, Vienna (Austria); Aretin, Bernadette [General Hospital Vienna, Pharmacy Department, Vienna (Austria); Bartsch, Rupert [Medical University of Vienna, Comprehensive Cancer Center, Central Nervous System Tumor Unit (CCC-CNS), Vienna (Austria); Schoepf, Veronika [University of Graz, Institute of Psychology, Graz (Austria); BioTechMed, Graz (Austria)

    2017-08-15

    To evaluate the prognostic relevance of temporal muscle thickness (TMT) in brain metastasis patients. We retrospectively analysed TMT on magnetic resonance (MR) images at diagnosis of brain metastasis in two independent cohorts of 188 breast cancer (BC) and 247 non-small cell lung cancer (NSCLC) patients (overall: 435 patients). Survival analysis using a Cox regression model showed a reduced risk of death by 19% with every additional millimetre of baseline TMT in the BC cohort and by 24% in the NSCLC cohort. Multivariate analysis included TMT and diagnosis-specific graded prognostic assessment (DS-GPA) as covariates in the BC cohort (TMT: HR 0.791/CI [0.703-0.889]/p < 0.001; DS-GPA: HR 1.433/CI [1.160-1.771]/p = 0.001), and TMT, gender and DS-GPA in the NSCLC cohort (TMT: HR 0.710/CI [0.646-0.780]/p < 0.001; gender: HR 0.516/CI [0.387-0.687]/p < 0.001; DS-GPA: HR 1.205/CI [1.018-1.426]/p = 0.030). TMT is easily and reproducibly assessable on routine MR images and is an independent predictor of survival in patients with newly diagnosed brain metastasis from BC and NSCLC. TMT may help to better define frail patient populations and thus facilitate patient selection for therapeutic measures or clinical trials. Further prospective studies are needed to correlate TMT with other clinical frailty parameters of patients. (orig.)

  6. Survival prediction using temporal muscle thickness measurements on cranial magnetic resonance images in patients with newly diagnosed brain metastases

    International Nuclear Information System (INIS)

    Furtner, Julia; Prayer, Daniela; Berghoff, Anna S.; Zielinski, Christoph C.; Preusser, Matthias; Albtoush, Omar M.; Woitek, Ramona; Asenbaum, Ulrika; Widhalm, Georg; Gatterbauer, Brigitte; Dieckmann, Karin; Birner, Peter; Aretin, Bernadette; Bartsch, Rupert; Schoepf, Veronika

    2017-01-01

    To evaluate the prognostic relevance of temporal muscle thickness (TMT) in brain metastasis patients. We retrospectively analysed TMT on magnetic resonance (MR) images at diagnosis of brain metastasis in two independent cohorts of 188 breast cancer (BC) and 247 non-small cell lung cancer (NSCLC) patients (overall: 435 patients). Survival analysis using a Cox regression model showed a reduced risk of death by 19% with every additional millimetre of baseline TMT in the BC cohort and by 24% in the NSCLC cohort. Multivariate analysis included TMT and diagnosis-specific graded prognostic assessment (DS-GPA) as covariates in the BC cohort (TMT: HR 0.791/CI [0.703-0.889]/p < 0.001; DS-GPA: HR 1.433/CI [1.160-1.771]/p = 0.001), and TMT, gender and DS-GPA in the NSCLC cohort (TMT: HR 0.710/CI [0.646-0.780]/p < 0.001; gender: HR 0.516/CI [0.387-0.687]/p < 0.001; DS-GPA: HR 1.205/CI [1.018-1.426]/p = 0.030). TMT is easily and reproducibly assessable on routine MR images and is an independent predictor of survival in patients with newly diagnosed brain metastasis from BC and NSCLC. TMT may help to better define frail patient populations and thus facilitate patient selection for therapeutic measures or clinical trials. Further prospective studies are needed to correlate TMT with other clinical frailty parameters of patients. (orig.)

  7. Parallel algorithm of real-time infrared image restoration based on total variation theory

    Science.gov (United States)

    Zhu, Ran; Li, Miao; Long, Yunli; Zeng, Yaoyuan; An, Wei

    2015-10-01

    Image restoration is a necessary preprocessing step for infrared remote sensing applications. Traditional methods allow us to remove the noise but penalize too much the gradients corresponding to edges. Image restoration techniques based on variational approaches can solve this over-smoothing problem for the merits of their well-defined mathematical modeling of the restore procedure. The total variation (TV) of infrared image is introduced as a L1 regularization term added to the objective energy functional. It converts the restoration process to an optimization problem of functional involving a fidelity term to the image data plus a regularization term. Infrared image restoration technology with TV-L1 model exploits the remote sensing data obtained sufficiently and preserves information at edges caused by clouds. Numerical implementation algorithm is presented in detail. Analysis indicates that the structure of this algorithm can be easily implemented in parallelization. Therefore a parallel implementation of the TV-L1 filter based on multicore architecture with shared memory is proposed for infrared real-time remote sensing systems. Massive computation of image data is performed in parallel by cooperating threads running simultaneously on multiple cores. Several groups of synthetic infrared image data are used to validate the feasibility and effectiveness of the proposed parallel algorithm. Quantitative analysis of measuring the restored image quality compared to input image is presented. Experiment results show that the TV-L1 filter can restore the varying background image reasonably, and that its performance can achieve the requirement of real-time image processing.

  8. Global manipulation of digital images can lead to variation in cytological diagnosis.

    Science.gov (United States)

    Prasad, H; Wanjari, Sangeeta; Parwani, Rajkumar

    2011-03-31

    With the adoption of a completely electronic workflow by several journals and the advent of telepathology, digital imaging has become an integral part of every scientific research. However, manipulating digital images is very easy, and it can lead to misinterpretations. To analyse the impact of manipulating digital images on their diagnosis. Digital images were obtained from Papanicolaou-stained smears of dysplastic and normal oral epithelium. They were manipulated using GNU Image Manipulation Program (GIMP) to alter their brightness and contrast and color levels. A Power Point presentation composed of slides of these manipulated images along with the unaltered originals arranged randomly was created. The presentation was shown to five observers individually who rated the images as normal, mild, moderate or severe dysplasia. Weighted κ statistics was used to measure and assess the levels of agreement between observers. Levels of agreement between manipulated images and original images varied greatly among observers. Variation in diagnosis was in the form of overdiagnosis or under-diagnosis, usually by one grade. Global manipulations of digital images of cytological slides can significantly affect their interpretation. Such manipulations should therefore be kept to a minimum, and avoided wherever possible.

  9. Global manipulation of digital images can lead to variation in cytological diagnosis

    Directory of Open Access Journals (Sweden)

    H Prasad

    2011-01-01

    Full Text Available Background: With the adoption of a completely electronic workflow by several journals and the advent of telepathology, digital imaging has become an integral part of every scientific research. However, manipulating digital images is very easy, and it can lead to misinterpretations. Aim: To analyse the impact of manipulating digital images on their diagnosis. Design: Digital images were obtained from Papanicolaou-stained smears of dysplastic and normal oral epithelium. They were manipulated using GNU Image Manipulation Program (GIMP to alter their brightness and contrast and color levels. A Power Point presentation composed of slides of these manipulated images along with the unaltered originals arranged randomly was created. The presentation was shown to five observers individually who rated the images as normal, mild, moderate or severe dysplasia. Weighted k statistics was used to measure and assess the levels of agreement between observers. Results: Levels of agreement between manipulated images and original images varied greatly among observers. Variation in diagnosis was in the form of overdiagnosis or under-diagnosis, usually by one grade. Conclusion: Global manipulations of digital images of cytological slides can significantly affect their interpretation. Such manipulations should therefore be kept to a minimum, and avoided wherever possible.

  10. Omnigradient Based Total Variation Minimization for Enhanced Defocus Deblurring of Omnidirectional Images

    Directory of Open Access Journals (Sweden)

    Yongle Li

    2014-01-01

    Full Text Available We propose a new method of image restoration for catadioptric defocus blur using omnitotal variation (Omni-TV minimization based on omnigradient. Catadioptric omnidirectional imaging systems usually consist of conventional cameras and curved mirrors for capturing 360° field of view. The problem of catadioptric omnidirectional imaging defocus blur, which is caused by lens aperture and mirror curvature, becomes more severe when high resolution sensors and large apertures are used. In an omnidirectional image, two points near each other may not be close to one another in the 3D scene. Traditional gradient computation cannot be directly applied to omnidirectional image processing. Thus, omnigradient computing method combined with the characteristics of catadioptric omnidirectional imaging is proposed. Following this Omni-TV minimization is used as the constraint for deconvolution regularization, leading to the restoration of defocus blur in an omnidirectional image to obtain all sharp omnidirectional images. The proposed method is important for improving catadioptric omnidirectional imaging quality and promoting applications in related fields like omnidirectional video and image processing.

  11. Naturalness and image quality : saturation and lightness variation in color images of natural scenes

    NARCIS (Netherlands)

    Ridder, de H.

    1996-01-01

    The relation between perceived image quality and naturalness was investigated by varying the colorfulness of natural images at various lightness levels. At each lightness level, subjects assessed perceived colorfulness, naturalness, and quality as a function of average saturation by means of direct

  12. The numerical solution of total variation minimization problems in image processing

    Energy Technology Data Exchange (ETDEWEB)

    Vogel, C.R.; Oman, M.E. [Montana State Univ., Bozeman, MT (United States)

    1994-12-31

    Consider the minimization of penalized least squares functionals of the form: f(u) = 1/2 ({parallel}Au {minus} z{parallel}){sup 2} + {alpha}{integral}{sub {Omega}}{vert_bar}{del}u{vert_bar}dx. Here A is a bounded linear operator, z represents data, {parallel} {center_dot} {parallel} is a Hilbert space norm, {alpha} is a positive parameter, {integral}{sub {Omega}}{vert_bar}{del}u{vert_bar} dx represents the total variation (TV) of a function u {element_of} BV ({Omega}), the class of functions of bounded variation on a bounded region {Omega}, and {vert_bar} {center_dot} {vert_bar} denotes Euclidean norm. In image processing, u represents an image which is to be recovered from noisy data z. Certain {open_quotes}blurring processes{close_quotes} may be represented by the action of an operator A on the image u.

  13. [Effect of repeated sintering and variations in thickness on the color and microstructure of dental lithium disilicate-based glass ceramic veneers].

    Science.gov (United States)

    Cui, Huang; Jia, Yu; Shaofeng, Meng; Biyun, Gao

    2017-08-01

    Objective The aim of this study is to evaluate the effect of repeated sintering and variation in thickness on the color and microstructure of dental lithium disilicate-based glass ceramic veneers. Methods A total of 24 computer aided design and computer aided manufacturing (CAD/CAM) veneers was fabricated using the IPS e.max-CAD LS2 and then randomly divided into four groups (S0, S1, S2, S3; n=6). Each group was sintered 0, 1, 2, 3 times individually according to the manufacturer's recommendation. The color parameters (L, C, H, a, b values) of all the specimens were measured by a Vita easyshade dental colorimeter. The results were statistically analyzed using the SAS 9.1.3 software for MANOVA and LSD. Subsequently, the microstructures of the intersecting surfaces of the specimens were observed by scanning electron microscopy (SEM). Results After repeated sintering, the L value significantly decreased (P<0.05). For the C and b values, statistical differences were observed among the groups except between S2 and S3. SEM results showed that the interlocking microstructures of rod-shaped Li₂Si₂O₅ crystals became more compact when the number of sintering times was increased. Conclusion Repeated sintering exhibited significant influence on the color of the IPS e.max-CAD LS2 veneers.

  14. Anterior thigh composition measured using ultrasound imaging to quantify relative thickness of muscle and non-contractile tissue: a potential biomarker for musculoskeletal health

    International Nuclear Information System (INIS)

    Agyapong-Badu, Sandra; Warner, Martin; Samuel, Dinesh; Stokes, Maria; Narici, Marco; Cooper, Cyrus

    2014-01-01

    This study aimed to use ultrasound imaging to provide objective data on the effects of ageing and gender on relative thickness of quadriceps muscle and non-contractile tissue thickness (subcutaneous fat, SF, combined with perimuscular fascia). In 136 healthy males and females (aged 18–90 years n = 63 aged 18–35 years; n = 73 aged 65–90) images of the anterior thigh (dominant) were taken in relaxed supine using B-mode ultrasound imaging. Thickness of muscle, SF and perimuscular fascia were measured, and percentage thickness of total anterior thigh thickness calculated. Independent t-tests compared groups. Correlation between tissue thickness and BMI was examined using Pearson’s coefficient. Muscle thickness was: 39  ±  8 mm in young males, 29  ±  6 mm in females, 25  ±  4 mm in older males and 20  ±  5 mm in females. Percentage muscle to thigh thickness was greater in young participants (p = 0.001). Percentage SF and fascia was 17  ±  6% in young and 26  ±  8% in older males, 32  ±  7% in young and 44  ±  7% in older females. BMI was similar for age and correlated moderately with non-contractile tissue (r = 0.54; p < 0.001) and poorly with muscle (r = −0.01; p = 0.93). In conclusion, this novel application of ultrasound imaging as a simple and rapid means of assessing thigh composition (relative thickness of muscle and non-contractile tissue) may help inform health status, e.g. in older people at risk of frailty and loss of mobility, and aid monitoring effects of weight loss or gain, deconditioning and exercise. (paper)

  15. Variational contrast enhancement guided by global and local contrast measurements for single-image defogging

    Science.gov (United States)

    Zhou, Li; Bi, Du-Yan; He, Lin-Yuan

    2015-01-01

    The visibility of images captured in foggy conditions is impaired severely by a decrease in the contrasts of objects and veiling with a characteristic gray hue, which may limit the performance of visual applications out of doors. Contrast enhancement together with color restoration is a challenging mission for conventional fog-removal methods, as the degrading effect of fog is largely dependent on scene depth information. Nowadays, people change their minds by establishing a variational framework for contrast enhancement based on a physically based analytical model, unexpectedly resulting in color distortion, dark-patch distortion, or fuzzy features of local regions. Unlike previous work, our method treats an atmospheric veil as a scattering disturbance and formulates a foggy image as an energy functional minimization to estimate direct attenuation, originating from the work of image denoising. In addition to a global contrast measurement based on a total variation norm, an additional local measurement is designed in that optimal problem for the purpose of digging out more local details as well as suppressing dark-patch distortion. Moreover, we estimate the airlight precisely by maximization with a geometric constraint and a natural image prior in order to protect the faithfulness of the scene color. With the estimated direct attenuation and airlight, the fog-free image can be restored. Finally, our method is tested on several benchmark and realistic images evaluated by two assessment approaches. The experimental results imply that our proposed method works well compared with the state-of-the-art defogging methods.

  16. A Variational Level Set Model Combined with FCMS for Image Clustering Segmentation

    Directory of Open Access Journals (Sweden)

    Liming Tang

    2014-01-01

    Full Text Available The fuzzy C means clustering algorithm with spatial constraint (FCMS is effective for image segmentation. However, it lacks essential smoothing constraints to the cluster boundaries and enough robustness to the noise. Samson et al. proposed a variational level set model for image clustering segmentation, which can get the smooth cluster boundaries and closed cluster regions due to the use of level set scheme. However it is very sensitive to the noise since it is actually a hard C means clustering model. In this paper, based on Samson’s work, we propose a new variational level set model combined with FCMS for image clustering segmentation. Compared with FCMS clustering, the proposed model can get smooth cluster boundaries and closed cluster regions due to the use of level set scheme. In addition, a block-based energy is incorporated into the energy functional, which enables the proposed model to be more robust to the noise than FCMS clustering and Samson’s model. Some experiments on the synthetic and real images are performed to assess the performance of the proposed model. Compared with some classical image segmentation models, the proposed model has a better performance for the images contaminated by different noise levels.

  17. Regional variation in Medicare payments for medical imaging: radiologists versus nonradiologists.

    Science.gov (United States)

    Rosman, David A; Nsiah, Eugene; Hughes, Danny R; Duszak, Richard

    2015-05-01

    The purpose of this article was to study regional variation in Medicare Physician Fee Schedule (MPFS) payments for medical imaging to radiologists compared with nonradiologists. Using a 5% random sample of all Medicare enrollees, which covered approximately 2.5 million Part B beneficiaries in 2011, total professional-only, technical-only, and global MPFS spending was calculated on a state-by-state and United States Census Bureau regional basis for all Medicare Berenson-Eggers Type of Service-defined medical imaging services. Payments to radiologists versus nonradiologists were identified and variation was analyzed. Nationally, mean MPFS medical imaging spending per Medicare beneficiary was $207.17 ($95.71 [46.2%] to radiologists vs $111.46 [53.8%] to nonradiologists). Of professional-only (typically interpretation) payments, 20.6% went to nonradiologists. Of technical-only (typically owned equipment) payments, 84.9% went to nonradiologists. Of global (both professional and technical) payments, 70.1% went to nonradiologists. The percentage of MPFS medical imaging spending on nonradiologists ranged from 32% (Minnesota) to 69.5% (South Carolina). The percentage of MPFS payments for medical imaging to nonradiologists exceeded those to radiologists in 58.8% of states. The relative percentage of MPFS payments to nonradiologists was highest in the South (58.5%) and lowest in the Northeast (48.0%). Nationally, 53.8% of MPFS payments for medical imaging services are made to nonradiologists, who claim a majority of MPFS payments in most states dominated by noninterpretive payments. This majority spending on nonradiologists may have implications in bundled and capitated payment models for radiology services. Medical imaging payment policy initiatives must consider the roles of all provider groups and associated regional variation.

  18. Variational mode decomposition based approach for accurate classification of color fundus images with hemorrhages

    Science.gov (United States)

    Lahmiri, Salim; Shmuel, Amir

    2017-11-01

    Diabetic retinopathy is a disease that can cause a loss of vision. An early and accurate diagnosis helps to improve treatment of the disease and prognosis. One of the earliest characteristics of diabetic retinopathy is the appearance of retinal hemorrhages. The purpose of this study is to design a fully automated system for the detection of hemorrhages in a retinal image. In the first stage of our proposed system, a retinal image is processed with variational mode decomposition (VMD) to obtain the first variational mode, which captures the high frequency components of the original image. In the second stage, four texture descriptors are extracted from the first variational mode. Finally, a classifier trained with all computed texture descriptors is used to distinguish between images of healthy and unhealthy retinas with hemorrhages. Experimental results showed evidence of the effectiveness of the proposed system for detection of hemorrhages in the retina, since a perfect detection rate was achieved. Our proposed system for detecting diabetic retinopathy is simple and easy to implement. It requires only short processing time, and it yields higher accuracy in comparison with previously proposed methods for detecting diabetic retinopathy.

  19. Superresolution Interferometric Imaging with Sparse Modeling Using Total Squared Variation: Application to Imaging the Black Hole Shadow

    Science.gov (United States)

    Kuramochi, Kazuki; Akiyama, Kazunori; Ikeda, Shiro; Tazaki, Fumie; Fish, Vincent L.; Pu, Hung-Yi; Asada, Keiichi; Honma, Mareki

    2018-05-01

    We propose a new imaging technique for interferometry using sparse modeling, utilizing two regularization terms: the ℓ 1-norm and a new function named total squared variation (TSV) of the brightness distribution. First, we demonstrate that our technique may achieve a superresolution of ∼30% compared with the traditional CLEAN beam size using synthetic observations of two point sources. Second, we present simulated observations of three physically motivated static models of Sgr A* with the Event Horizon Telescope (EHT) to show the performance of proposed techniques in greater detail. Remarkably, in both the image and gradient domains, the optimal beam size minimizing root-mean-squared errors is ≲10% of the traditional CLEAN beam size for ℓ 1+TSV regularization, and non-convolved reconstructed images have smaller errors than beam-convolved reconstructed images. This indicates that TSV is well matched to the expected physical properties of the astronomical images and the traditional post-processing technique of Gaussian convolution in interferometric imaging may not be required. We also propose a feature-extraction method to detect circular features from the image of a black hole shadow and use it to evaluate the performance of the image reconstruction. With this method and reconstructed images, the EHT can constrain the radius of the black hole shadow with an accuracy of ∼10%–20% in present simulations for Sgr A*, suggesting that the EHT would be able to provide useful independent measurements of the mass of the supermassive black holes in Sgr A* and also another primary target, M87.

  20. A Retrospective Study on Indian Population to evaluate Cortical Bone Thickness in Maxilla and Mandible using Computed Tomography Images

    Directory of Open Access Journals (Sweden)

    Jeegar Ketan Vakil

    2014-01-01

    Conclusion: Mini-implants have gained considerable popularity due to their low cost, effectiveness, clinical management and stability. Among the factors related to microimplant stability, bone density and cortical bone thickness appear to be critical for successful placement. This study will provide knowledge of cortical bone thickness in various areas which can guide the clinicians in selecting the placement site.

  1. Matching of Remote Sensing Images with Complex Background Variations via Siamese Convolutional Neural Network

    Directory of Open Access Journals (Sweden)

    Haiqing He

    2018-02-01

    Full Text Available Feature-based matching methods have been widely used in remote sensing image matching given their capability to achieve excellent performance despite image geometric and radiometric distortions. However, most of the feature-based methods are unreliable for complex background variations, because the gradient or other image grayscale information used to construct the feature descriptor is sensitive to image background variations. Recently, deep learning-based methods have been proven suitable for high-level feature representation and comparison in image matching. Inspired by the progresses made in deep learning, a new technical framework for remote sensing image matching based on the Siamese convolutional neural network is presented in this paper. First, a Siamese-type network architecture is designed to simultaneously learn the features and the corresponding similarity metric from labeled training examples of matching and non-matching true-color patch pairs. In the proposed network, two streams of convolutional and pooling layers sharing identical weights are arranged without the manually designed features. The number of convolutional layers is determined based on the factors that affect image matching. The sigmoid function is employed to compute the matching and non-matching probabilities in the output layer. Second, a gridding sub-pixel Harris algorithm is used to obtain the accurate localization of candidate matches. Third, a Gaussian pyramid coupling quadtree is adopted to gradually narrow down the searching space of the candidate matches, and multiscale patches are compared synchronously. Subsequently, a similarity measure based on the output of the sigmoid is adopted to find the initial matches. Finally, the random sample consensus algorithm and the whole-to-local quadratic polynomial constraints are used to remove false matches. In the experiments, different types of satellite datasets, such as ZY3, GF1, IKONOS, and Google Earth images

  2. Combining variational and model-based techniques to register PET and MR images in hand osteoarthritis

    International Nuclear Information System (INIS)

    Magee, Derek; Tanner, Steven F; Jeavons, Alan P; Waller, Michael; Tan, Ai Lyn; McGonagle, Dennis

    2010-01-01

    Co-registration of clinical images acquired using different imaging modalities and equipment is finding increasing use in patient studies. Here we present a method for registering high-resolution positron emission tomography (PET) data of the hand acquired using high-density avalanche chambers with magnetic resonance (MR) images of the finger obtained using a 'microscopy coil'. This allows the identification of the anatomical location of the PET radiotracer and thereby locates areas of active bone metabolism/'turnover'. Image fusion involving data acquired from the hand is demanding because rigid-body transformations cannot be employed to accurately register the images. The non-rigid registration technique that has been implemented in this study uses a variational approach to maximize the mutual information between images acquired using these different imaging modalities. A piecewise model of the fingers is employed to ensure that the methodology is robust and that it generates an accurate registration. Evaluation of the accuracy of the technique is tested using both synthetic data and PET and MR images acquired from patients with osteoarthritis. The method outperforms some established non-rigid registration techniques and results in a mean registration error that is less than approximately 1.5 mm in the vicinity of the finger joints.

  3. In situ diagnostic of water distribution in thickness direction of MEA by neutron imaging. Focused on characteristics of water distribution in gas diffusion layer

    International Nuclear Information System (INIS)

    Tasaki, Yutaka; Ichikawa, Yasushi; Kobo, Norio; Shinohara, Kazuhiko; Boillat, Pierre; Kramer, Denis; Scherer, Gunther G.; Lehmann, Eberhard H.

    2008-01-01

    The mass transfer characteristics of gas diffusion layer (GDL) are closely related to cell performance in PEFC. In this study, In situ diagnostic of water distribution in thickness direction of MEA by Neutron Imaging has been carried out for three MEAs with different GDLs on cathode side as well as I-V characteristics. It was confirmed that this method is useful for analyzing water distribution in thickness direction of MEA. The relationship between I-V characteristics and liquid water distribution has been studied. (author)

  4. Rectal dose variation during the course of image-guided radiation therapy of prostate cancer

    International Nuclear Information System (INIS)

    Chen Lili; Paskalev, Kamen; Xu Xiu; Zhu, Jennifer; Wang Lu; Price, Robert A.; Hu Wei; Feigenberg, Steven J.; Horwitz, Eric M.; Pollack, Alan; Charlie Ma, C.M.

    2010-01-01

    Background and purpose: To investigate the change in rectal dose during the treatment course for intensity-modulated radiotherapy (IMRT) of prostate cancer with image-guidance. Materials and methods: Twenty prostate cancer patients were recruited for this retrospective study. All patients have been treated with IMRT. For each patient, MR and CT images were fused for target and critical structure delineation. IMRT treatment planning was performed on the simulation CT images. Inter-fractional motion during the course of treatment was corrected using a CT-on-rails system. The rectum was outlined on both the original treatment plan and the subsequent daily CT images from the CT-on-rails by the same investigator. Dose distributions on these daily CT images were recalculated with the isocenter shifts relative to the simulation CT images using the leaf sequences/MUs based on the original treatment plan. The rectal doses from the subsequent daily CTs were compared with the original doses planned on the simulation CT using our clinical acceptance criteria. Results: Based on 20 patients with 139 daily CT sets, 28% of the subsequent treatment dose distributions did not meet our criterion of V 40 65 < 17%. The inter-fractional rectal volume variation is significant for some patients. Conclusions: Due to the large inter-fractional variation of the rectal volume, it is more favorable to plan prostate IMRT based on an empty rectum and deliver treatment to patients with an empty rectum. Over 70% of actual treatments showed better rectal doses than our clinical acceptance criteria. A significant fraction (27%) of the actual treatments would benefit from adaptive image-guided radiotherapy based on daily CT images.

  5. Rifting Thick Lithosphere - Canning Basin, Western Australia

    Science.gov (United States)

    Czarnota, Karol; White, Nicky

    2016-04-01

    The subsidence histories and architecture of most, but not all, rift basins are elegantly explained by extension of ~120 km thick lithosphere followed by thermal re-thickening of the lithospheric mantle to its pre-rift thickness. Although this well-established model underpins most basin analysis, it is unclear whether the model explains the subsidence of rift basins developed over substantially thick lithosphere (as imaged by seismic tomography beneath substantial portions of the continents). The Canning Basin of Western Australia is an example where a rift basin putatively overlies lithosphere ≥180 km thick, imaged using shear wave tomography. Subsidence modelling in this study shows that the entire subsidence history of the account for the observed subsidence, at standard crustal densities, the lithospheric mantle is required to be depleted in density by 50-70 kg m-3, which is in line with estimates derived from modelling rare-earth element concentrations of the ~20 Ma lamproites and global isostatic considerations. Together, these results suggest that thick lithosphere thinned to > 120 km is thermally stable and is not accompanied by post-rift thermal subsidence driven by thermal re-thickening of the lithospheric mantle. Our results show that variations in lithospheric thickness place a fundamental control on basin architecture. The discrepancy between estimates of lithospheric thickness derived from subsidence data for the western Canning Basin and those derived from shear wave tomography suggests that the latter technique currently is limited in its ability to resolve lithospheric thickness variations at horizontal half-wavelength scales of <300 km.

  6. Bayesian Image Restoration Using a Large-Scale Total Patch Variation Prior

    Directory of Open Access Journals (Sweden)

    Yang Chen

    2011-01-01

    Full Text Available Edge-preserving Bayesian restorations using nonquadratic priors are often inefficient in restoring continuous variations and tend to produce block artifacts around edges in ill-posed inverse image restorations. To overcome this, we have proposed a spatial adaptive (SA prior with improved performance. However, this SA prior restoration suffers from high computational cost and the unguaranteed convergence problem. Concerning these issues, this paper proposes a Large-scale Total Patch Variation (LS-TPV Prior model for Bayesian image restoration. In this model, the prior for each pixel is defined as a singleton conditional probability, which is in a mixture prior form of one patch similarity prior and one weight entropy prior. A joint MAP estimation is thus built to ensure the iteration monotonicity. The intensive calculation of patch distances is greatly alleviated by the parallelization of Compute Unified Device Architecture(CUDA. Experiments with both simulated and real data validate the good performance of the proposed restoration.

  7. Image Restoration Based on the Hybrid Total-Variation-Type Model

    OpenAIRE

    Shi, Baoli; Pang, Zhi-Feng; Yang, Yu-Fei

    2012-01-01

    We propose a hybrid total-variation-type model for the image restoration problem based on combining advantages of the ROF model with the LLT model. Since two ${L}^{1}$ -norm terms in the proposed model make it difficultly solved by using some classically numerical methods directly, we first employ the alternating direction method of multipliers (ADMM) to solve a general form of the proposed model. Then, based on the ADMM and the Moreau-Yosida decomposition theory, a more efficient method call...

  8. Analysis of scene distortions in stereoscopic images due to the variation of the ideal viewing conditions

    Science.gov (United States)

    Viale, Alberto; Villa, Dario

    2011-03-01

    Recently stereoscopy has increased a lot its popularity and various technologies are spreading in theaters and homes allowing observation of stereoscopic images and movies, becoming affordable even for home users. However there are some golden rules that users should follow to ensure a better enjoyment of stereoscopic images, first of all the viewing condition should not be too different from the ideal ones, which were assumed during the production process. To allow the user to perceive stereo depth instead of a flat image, two different views of the same scene are shown to the subject, one is seen just through his left eye and the other just through the right one; the vision process is making the work of merging the two images in a virtual three-dimensional scene, giving to the user the perception of depth. The two images presented to the user were created, either from image synthesis or from more traditional techniques, following the rules of perspective. These rules need some boundary conditions to be explicit, such as eye separation, field of view, parallax distance, viewer position and orientation. In this paper we are interested in studying how the variation of the viewer position and orientation from the ideal ones expressed as specified parameters in the image creation process, is affecting the correctness of the reconstruction of the three-dimensional virtual scene.

  9. Generalized method for computation of true thickness and x-ray intensity information in highly blurred sub-millimeter bone features in clinical CT images.

    Science.gov (United States)

    Pakdel, Amirreza; Robert, Normand; Fialkov, Jeffrey; Maloul, Asmaa; Whyne, Cari

    2012-12-07

    In clinical computed tomography (CT) images, cortical bone features with sub-millimeter (sub-mm) thickness are substantially blurred, such that their thickness is overestimated and their intensity appears underestimated. Therefore, any inquiry of the geometry or the density of such bones based on these images is severely error prone. We present a model-based method for estimating the true thickness and intensity magnitude of cortical and trabecular bone layers at localized regions of complex shell bones down to 0.25 mm. The method also computes the width of the corresponding point spread function. This approach is applicable on any CT image data, and does not rely on any scanner-specific parameter inputs beyond what is inherently available in the images themselves. The method applied on CT intensity profiles of custom phantoms mimicking shell-bones produced average cortical thickness errors of 0.07 ± 0.04 mm versus an average error of 0.47 ± 0.29 mm in the untreated cases (t(55) = 10.92, p ≪ 0.001)). Similarly, the average error of intensity magnitude estimates of the method were 22 ± 2.2 HU versus an error of 445 ± 137 HU in the untreated cases (t(55) = 26.48, p ≪ 0.001)). The method was also used to correct the CT intensity profiles from a cadaveric specimen of the craniofacial skeleton (CFS) in 15 different regions. There was excellent agreement between the corrections and µCT intensity profiles of the same regions used as a 'gold standard' measure. These results set the groundwork towards restoring cortical bone geometry and intensity information in entire image data sets. This information is essential for the generation of finite element models of the CFS that can accurately describe the biomechanical behavior of its complex thin bone structures.

  10. Human cerebral cortices: signal variation on diffusion-weighted MR imaging

    Energy Technology Data Exchange (ETDEWEB)

    Asao, Chiaki [Kumamoto Regional Medical Center, Department of Radiology, Kumamoto (Japan); National Hospital Organization Kumamoto Medical Center, Department of Radiology, Kumamoto (Japan); Hirai, Toshinori; Yamashita, Yasuyuki [Kumamoto University Graduate School of Medical Sciences, Department of Diagnostic Radiology, Kumamoto (Japan); Yoshimatsu, Shunji [National Hospital Organization Kumamoto Medical Center, Department of Radiology, Kumamoto (Japan); Matsukawa, Tetsuya; Imuta, Masanori [Kumamoto Regional Medical Center, Department of Radiology, Kumamoto (Japan); Sagara, Katsuro [Kumamoto Regional Medical Center, Department of Internal Medicine, Kumamoto (Japan)

    2008-03-15

    We have often encountered high signal intensity (SI) of the cingulate gyrus and insula during diffusion-weighted magnetic resonance imaging (DW-MRI) on neurologically healthy adults. To date, cortical signal heterogeneity on DW images has not been investigated systematically. The purpose of our study was to determine whether there is regional signal variation in the brain cortices of neurologically healthy adults on DW-MR images. The SI of the cerebral cortices on DW-MR images at 1.5 T was evaluated in 50 neurologically healthy subjects (34 men, 16 women; age range 33-84 years; mean age 57.6 years). The cortical SI in the cingulate gyrus, insula, and temporal, occipital, and parietal lobes was graded relative to the SI of the frontal lobe. Contrast-to-noise ratios (CNRs) on DW-MR images were compared for each cortical area. Diffusion changes were analyzed by visually assessment of the differences in appearance among the cortices on apparent diffusion coefficient (ADC) maps. Increased SI was frequently seen in the cingulate gyrus and insula regardless of patient age. There were no significant gender- or laterality-related differences. The CNR was significantly higher in the cingulate gyrus and insula than in the other cortices (p <.01), and significant differences existed among the cortical regions (p <.001). There were no apparent ADC differences among the cortices on ADC maps. Regional signal variation of the brain cortices was observed on DW-MR images of healthy subjects, and the cingulate gyrus and insula frequently manifested high SI. These findings may help in the recognition of cortical signal abnormalities as visualized on DW-MR images. (orig.)

  11. Human cerebral cortices: signal variation on diffusion-weighted MR imaging

    International Nuclear Information System (INIS)

    Asao, Chiaki; Hirai, Toshinori; Yamashita, Yasuyuki; Yoshimatsu, Shunji; Matsukawa, Tetsuya; Imuta, Masanori; Sagara, Katsuro

    2008-01-01

    We have often encountered high signal intensity (SI) of the cingulate gyrus and insula during diffusion-weighted magnetic resonance imaging (DW-MRI) on neurologically healthy adults. To date, cortical signal heterogeneity on DW images has not been investigated systematically. The purpose of our study was to determine whether there is regional signal variation in the brain cortices of neurologically healthy adults on DW-MR images. The SI of the cerebral cortices on DW-MR images at 1.5 T was evaluated in 50 neurologically healthy subjects (34 men, 16 women; age range 33-84 years; mean age 57.6 years). The cortical SI in the cingulate gyrus, insula, and temporal, occipital, and parietal lobes was graded relative to the SI of the frontal lobe. Contrast-to-noise ratios (CNRs) on DW-MR images were compared for each cortical area. Diffusion changes were analyzed by visually assessment of the differences in appearance among the cortices on apparent diffusion coefficient (ADC) maps. Increased SI was frequently seen in the cingulate gyrus and insula regardless of patient age. There were no significant gender- or laterality-related differences. The CNR was significantly higher in the cingulate gyrus and insula than in the other cortices (p <.01), and significant differences existed among the cortical regions (p <.001). There were no apparent ADC differences among the cortices on ADC maps. Regional signal variation of the brain cortices was observed on DW-MR images of healthy subjects, and the cingulate gyrus and insula frequently manifested high SI. These findings may help in the recognition of cortical signal abnormalities as visualized on DW-MR images. (orig.)

  12. An improved method to compute supra glacial debris thickness using thermal satellite images together with an Energy Balance Model in the Nepal Himalayas

    Science.gov (United States)

    Egli, Pascal; Ayala, Alvaro; Buri, Pascal; Pellicciotti, Francesca

    2016-04-01

    A significant proportion of Himalayan glaciers is debris covered. Knowing the thickness of the debris cover is essential to obtain accurate estimates of melt rates. Due to the remoteness of these glaciers, collecting field measurements of debris thickness for a large number of glaciers is not realistic. For this reason, previous studies have proposed an approach based on computing the energy balance at the debris surface using surface temperature from satellite imagery together with meteorological data and solving the energy balance for debris thickness. These studies differ only in the way they account for the nonlinearity of debris temperature profiles and the heat stored in the debris layer. In our study we aim to 1) assess the performance of three existing models, and 2) develop a new methodology for calculating the conductive heat flux within the debris, which accounts for the history of debris temperature profiles by solving the advection-diffusion equation of heat numerically. Additionally, we found that in the previous studies several input variables are considered as uniform and we improved this by using distributed representations. As a study case we use Lirung glacier in Langtang valley, Nepal, and we work with Landsat satellite thermal images. Results are validated using measurements of debris thickness on the glacier from October 2012 and 2015. In some cases the existing models yield realistic results. But there is very little consistency between results for different satellite images. In general, computed debris thickness is frequently too thin compared to reality. Two of the existing models were able to accurately reproduce the extent of thin debris cover on the upper part of Lirung glacier. The mean debris thickness on Lirung obtained with the existing models lies between 0.1 m and 0.3 m depending on the model used, whereby the upper value of 0.3 m corresponds best to the field measurements. Preliminary results from our new model show a larger

  13. High-resolution magnetic resonance imaging of diurnal variations in rheumatoid arthritis

    International Nuclear Information System (INIS)

    Nicholas, R.S.

    2000-09-01

    This thesis describes work that uses high-resolution magnetic resonance imaging (MRI) to give an insight into the aetiology of rheumatoid arthritis (RA) with particular reference to characterising diurnal changes in joint stiffness in the metacarpophalangeal (MCP) joints. The study was performed on a targeted 1.1 T MRI scanner using specialised sequences, including 3-dimensional gradient-echo, magnetisation transfer (MT) and multiple gradient-echo. These enabled tissue-dependent parameters such as MT ratio, effective transverse relaxation time (T 2 *) and proton density (ρ) to be made. Preliminary reproducibility studies of the MRI measurements showed that MT ratio could be measured in vivo to an accuracy of better than 8%. This variation is due to repositioning errors and physiological changes. Equivalent variations in T 2 * and p were 23% and 16% respectively; these poorer figures were contributed to errors in fitting the data to an exponential curve. An MRI study monitoring the diurnal variation of stiffness in RA demonstrated better characterisation of the disease state using MT and T 2 * maps compared to standard gradient-echo imaging. Features associated with arthritis such as bone erosions and cysts were found in the control group and an MT age dependence was measured in the soft tissue on the superior margin of the joint. This region also exhibited a diurnal variation in MT ratio for the patient group. The interaction between this region of tissue and other structures (e.g. the sheath of extensor tendon) within the joint could be a possible cause of joint stiffness. An incidental finding of this study was that Ritchie joint score also showed a diurnal variation. This study has demonstrated that MRI can be used to make reproducible measurements of the diurnal variations in RA. The indication is that the soft tissues in the superior aspect of the joint may be responsible for the symptom of joint stiffness in the MCP joints and future studies should be

  14. Electron paramagnetic resonance image reconstruction with total variation and curvelets regularization

    Science.gov (United States)

    Durand, Sylvain; Frapart, Yves-Michel; Kerebel, Maud

    2017-11-01

    Spatial electron paramagnetic resonance imaging (EPRI) is a recent method to localize and characterize free radicals in vivo or in vitro, leading to applications in material and biomedical sciences. To improve the quality of the reconstruction obtained by EPRI, a variational method is proposed to inverse the image formation model. It is based on a least-square data-fidelity term and the total variation and Besov seminorm for the regularization term. To fully comprehend the Besov seminorm, an implementation using the curvelet transform and the L 1 norm enforcing the sparsity is proposed. It allows our model to reconstruct both image where acquisition information are missing and image with details in textured areas, thus opening possibilities to reduce acquisition times. To implement the minimization problem using the algorithm developed by Chambolle and Pock, a thorough analysis of the direct model is undertaken and the latter is inverted while avoiding the use of filtered backprojection (FBP) and of non-uniform Fourier transform. Numerical experiments are carried out on simulated data, where the proposed model outperforms both visually and quantitatively the classical model using deconvolution and FBP. Improved reconstructions on real data, acquired on an irradiated distal phalanx, were successfully obtained.

  15. Solving Quasi-Variational Inequalities for Image Restoration with Adaptive Constraint Sets

    KAUST Repository

    Lenzen, F.

    2014-01-01

    © 2014 Society for Industrial and Applied Mathematics. We consider a class of quasi-variational inequalities (QVIs) for adaptive image restoration, where the adaptivity is described via solution-dependent constraint sets. In previous work we studied both theoretical and numerical issues. While we were able to show the existence of solutions for a relatively broad class of problems, we encountered difficulties concerning uniqueness of the solution as well as convergence of existing algorithms for solving QVIs. In particular, it seemed that with increasing image size the growing condition number of the involved differential operator posed severe problems. In the present paper we prove uniqueness for a larger class of problems, particularly independent of the image size. Moreover, we provide a numerical algorithm with proved convergence. Experimental results support our theoretical findings.

  16. 3-D Deep Penetration Neutron Imaging of Thick Absorbing and Diffusive Objects Using Transport Theory. Final technical report

    International Nuclear Information System (INIS)

    Ragusa, Jean; Bangerth, Wolfgang

    2011-01-01

    locations where measurements were collected, the optical thickness of the domain, the amount of signal noise and signal bias applied to the measurements and the initial guess for the cross section distribution. All of these factors were explored for problems with and without scattering. Increasing the number of source and measurement locations and experiments generally was more successful at reconstructing optically thicker domains while producing less error in the image. The maximum optical thickness that could be reconstructed with this method was ten mean free paths for pure absorber and two mean free paths for scattering problems. Applying signal noise and signal bias to the measured fluxes produced more error in the produced image. Generally, Newtons method was more successful at reconstructing domains from an initial guess for the cross sections that was greater in magnitude than their true values than from an initial guess that was lower in magnitude.

  17. Optically Sectioned Imaging of Microvasculature of In-Vivo and Ex-Vivo Thick Tissue Models with Speckle-illumination HiLo Microscopy and HiLo Image Processing Implementation in MATLAB Architecture

    Science.gov (United States)

    Suen, Ricky Wai

    The work described in this thesis covers the conversion of HiLo image processing into MATLAB architecture and the use of speckle-illumination HiLo microscopy for use of ex-vivo and in-vivo imaging of thick tissue models. HiLo microscopy is a wide-field fluorescence imaging technique and has been demonstrated to produce optically sectioned images comparable to confocal in thin samples. The imaging technique was developed by Jerome Mertz and the Boston University Biomicroscopy Lab and has been implemented in our lab as a stand-alone optical setup and a modification to a conventional fluorescence microscope. Speckle-illumination HiLo microscopy combines two images taken under speckle-illumination and standard uniform-illumination to generate an optically sectioned image that reject out-of-focus fluorescence. The evaluated speckle contrast in the images is used as a weighting function where elements that move out-of-focus have a speckle contrast that decays to zero. The experiments shown here demonstrate the capability of our HiLo microscopes to produce optically-sectioned images of the microvasculature of ex-vivo and in-vivo thick tissue models. The HiLo microscope were used to image the microvasculature of ex-vivo mouse heart sections prepared for optical histology and the microvasculature of in-vivo rodent dorsal window chamber models. Studies in label-free surface profiling with HiLo microscopy is also presented.

  18. Intra- and interspecific variation in tropical tree and liana phenology derived from Unmanned Aerial Vehicle images

    Science.gov (United States)

    Bohlman, S.; Park, J.; Muller-Landau, H. C.; Rifai, S. W.; Dandois, J. P.

    2017-12-01

    Phenology is a critical driver of ecosystem processes. There is strong evidence that phenology is shifting in temperate ecosystems in response to climate change, but tropical tree and liana phenology remains poorly quantified and understood. A key challenge is that tropical forests contain hundreds of plant species with a wide variety of phenological patterns. Satellite-based observations, an important source of phenology data in northern latitudes, are hindered by frequent cloud cover in the tropics. To quantify phenology over a large number of individuals and species, we collected bi-weekly images from unmanned aerial vehicles (UAVs) in the well-studied 50-ha forest inventory plot on Barro Colorado Island, Panama. Between October 2014 and December 2015 and again in May 2015, we collected a total of 35 sets of UAV images, each with continuous coverage of the 50-ha plot, where every tree ≥ 1 cm DBH is mapped. Spectral, texture, and image information was extracted from the UAV images for individual tree crowns, which was then used as inputs for a machine learning algorithm to predict percent leaf and branch cover. We obtained the species identities of 2000 crowns in the images via field mapping. The objectives of this study are to (1) determined if machine learning algorithms, applied to UAV images, can effectively quantify changes in leaf cover, which we term "deciduousness; (2) determine how liana cover effects deciduousness and (3) test how well UAV-derived deciduousness patterns match satellite-derived temporal patterns. Machine learning algorithms trained on a variety of image parameters could effectively determine leaf cover, despite variation in lighting and viewing angles. Crowns with higher liana cover have less overall deciduousness (tree + liana together) than crowns with lower liana cover. Individual crown deciduousness, summed over all crowns measured in the 50-ha plot, showed a similar seasonal pattern as MODIS EVI composited over 10 years. However

  19. Evaluation of medial and lateral meniscus thicknesses in early osteoarthritis of the knee with magnetic resonance imaging

    International Nuclear Information System (INIS)

    Bamac, B.; Ozdemir, S.; Colak, T.; Ozbek, A.; Sarisoy, Hasan T.; Akansel, G.

    2006-01-01

    To evaluate early changes occurring in both medial and lateral meniscus thickness from the knees of patients with osteoarthritis (Oa). We conducted this study in the Department of Anatomy and Division of Radiology, Faculty of Medicine, Klucel University, Klucel, Turkey during the period 2004 to 2005. In this study, we measured the thickness of the medial and lateral meniscus in a group of 36 (50 knees) consecutive patients with chronic knee pain, and clinical findings of early Oa, and 10 (20 knees) control subjects using MRI. The thickness of the posterior horn of the medial meniscus and anterior horn of the lateral meniscus were significantly higher in the Oa patients compared with the control subjects. This study showed that meniscal degeneration in early stage Oa is not evenly distributed in the knee. Thickening of the menisci in some areas may occur due to their own localization and biomechanics. (author)

  20. Exchange bias variations of the seed and top NiFe layers in NiFe/FeMn/NiFe trilayer as a function of seed layer thickness

    International Nuclear Information System (INIS)

    Sankaranarayanan, V.K.; Yoon, S.M.; Kim, C.G.; Kim, C.O.

    2005-01-01

    Development of exchange bias at the seed and top NiFe layers in the NiFe (t nm)/FeMn(10 nm)/NiFe(5 nm) trilayer structure is investigated as a function of seed layer thickness, in the range of 2-20 nm. The seed NiFe layer shows maximum exchange bias at 4 nm seed layer thickness. The bias shows inverse thickness dependence with increasing thickness. The top NiFe layer on the other hand shows only half the bias of the seed layer which is retained even after the sharp fall in seed layer bias. The much smaller bias for the top NiFe layer is related to the difference in crystalline texture and spin orientations at the top FeMn/NiFe interface, in comparison to the bottom NiFe/FeMn interface which grows on a saturated NiFe layer with (1 1 1) orientation

  1. Supervised variational model with statistical inference and its application in medical image segmentation.

    Science.gov (United States)

    Li, Changyang; Wang, Xiuying; Eberl, Stefan; Fulham, Michael; Yin, Yong; Dagan Feng, David

    2015-01-01

    Automated and general medical image segmentation can be challenging because the foreground and the background may have complicated and overlapping density distributions in medical imaging. Conventional region-based level set algorithms often assume piecewise constant or piecewise smooth for segments, which are implausible for general medical image segmentation. Furthermore, low contrast and noise make identification of the boundaries between foreground and background difficult for edge-based level set algorithms. Thus, to address these problems, we suggest a supervised variational level set segmentation model to harness the statistical region energy functional with a weighted probability approximation. Our approach models the region density distributions by using the mixture-of-mixtures Gaussian model to better approximate real intensity distributions and distinguish statistical intensity differences between foreground and background. The region-based statistical model in our algorithm can intuitively provide better performance on noisy images. We constructed a weighted probability map on graphs to incorporate spatial indications from user input with a contextual constraint based on the minimization of contextual graphs energy functional. We measured the performance of our approach on ten noisy synthetic images and 58 medical datasets with heterogeneous intensities and ill-defined boundaries and compared our technique to the Chan-Vese region-based level set model, the geodesic active contour model with distance regularization, and the random walker model. Our method consistently achieved the highest Dice similarity coefficient when compared to the other methods.

  2. Robust bladder image registration by redefining data-term in total variational approach

    Science.gov (United States)

    Ali, Sharib; Daul, Christian; Galbrun, Ernest; Amouroux, Marine; Guillemin, François; Blondel, Walter

    2015-03-01

    Cystoscopy is the standard procedure for clinical diagnosis of bladder cancer diagnosis. Bladder carcinoma in situ are often multifocal and spread over large areas. In vivo, localization and follow-up of these tumors and their nearby sites is necessary. But, due to the small field of view (FOV) of the cystoscopic video images, urologists cannot easily interpret the scene. Bladder mosaicing using image registration facilitates this interpretation through the visualization of entire lesions with respect to anatomical landmarks. The reference white light (WL) modality is affected by a strong variability in terms of texture, illumination conditions and motion blur. Moreover, in the complementary fluorescence light (FL) modality, the texture is visually different from that of the WL. Existing algorithms were developed for a particular modality and scene conditions. This paper proposes a more general on fly image registration approach for dealing with these variability issues in cystoscopy. To do so, we present a novel, robust and accurate image registration scheme by redefining the data-term of the classical total variational (TV) approach. Quantitative results on realistic bladder phantom images are used for verifying accuracy and robustness of the proposed model. This method is also qualitatively assessed with patient data mosaicing for both WL and FL modalities.

  3. Variational Level Set Method for Two-Stage Image Segmentation Based on Morphological Gradients

    Directory of Open Access Journals (Sweden)

    Zemin Ren

    2014-01-01

    Full Text Available We use variational level set method and transition region extraction techniques to achieve image segmentation task. The proposed scheme is done by two steps. We first develop a novel algorithm to extract transition region based on the morphological gradient. After this, we integrate the transition region into a variational level set framework and develop a novel geometric active contour model, which include an external energy based on transition region and fractional order edge indicator function. The external energy is used to drive the zero level set toward the desired image features, such as object boundaries. Due to this external energy, the proposed model allows for more flexible initialization. The fractional order edge indicator function is incorporated into the length regularization term to diminish the influence of noise. Moreover, internal energy is added into the proposed model to penalize the deviation of the level set function from a signed distance function. The results evolution of the level set function is the gradient flow that minimizes the overall energy functional. The proposed model has been applied to both synthetic and real images with promising results.

  4. Robust Image Regression Based on the Extended Matrix Variate Power Exponential Distribution of Dependent Noise.

    Science.gov (United States)

    Luo, Lei; Yang, Jian; Qian, Jianjun; Tai, Ying; Lu, Gui-Fu

    2017-09-01

    Dealing with partial occlusion or illumination is one of the most challenging problems in image representation and classification. In this problem, the characterization of the representation error plays a crucial role. In most current approaches, the error matrix needs to be stretched into a vector and each element is assumed to be independently corrupted. This ignores the dependence between the elements of error. In this paper, it is assumed that the error image caused by partial occlusion or illumination changes is a random matrix variate and follows the extended matrix variate power exponential distribution. This has the heavy tailed regions and can be used to describe a matrix pattern of l×m dimensional observations that are not independent. This paper reveals the essence of the proposed distribution: it actually alleviates the correlations between pixels in an error matrix E and makes E approximately Gaussian. On the basis of this distribution, we derive a Schatten p -norm-based matrix regression model with L q regularization. Alternating direction method of multipliers is applied to solve this model. To get a closed-form solution in each step of the algorithm, two singular value function thresholding operators are introduced. In addition, the extended Schatten p -norm is utilized to characterize the distance between the test samples and classes in the design of the classifier. Extensive experimental results for image reconstruction and classification with structural noise demonstrate that the proposed algorithm works much more robustly than some existing regression-based methods.

  5. A Fast Alternating Minimization Algorithm for Nonlocal Vectorial Total Variational Multichannel Image Denoising

    Directory of Open Access Journals (Sweden)

    Rubing Xi

    2014-01-01

    Full Text Available The variational models with nonlocal regularization offer superior image restoration quality over traditional method. But the processing speed remains a bottleneck due to the calculation quantity brought by the recent iterative algorithms. In this paper, a fast algorithm is proposed to restore the multichannel image in the presence of additive Gaussian noise by minimizing an energy function consisting of an l2-norm fidelity term and a nonlocal vectorial total variational regularization term. This algorithm is based on the variable splitting and penalty techniques in optimization. Following our previous work on the proof of the existence and the uniqueness of the solution of the model, we establish and prove the convergence properties of this algorithm, which are the finite convergence for some variables and the q-linear convergence for the rest. Experiments show that this model has a fabulous texture-preserving property in restoring color images. Both the theoretical derivation of the computation complexity analysis and the experimental results show that the proposed algorithm performs favorably in comparison to the widely used fixed point algorithm.

  6. Effect of camera temperature variations on stereo-digital image correlation measurements

    KAUST Repository

    Pan, Bing

    2015-11-25

    In laboratory and especially non-laboratory stereo-digital image correlation (stereo-DIC) applications, the extrinsic and intrinsic parameters of the cameras used in the system may change slightly due to the camera warm-up effect and possible variations in ambient temperature. Because these camera parameters are generally calibrated once prior to measurements and considered to be unaltered during the whole measurement period, the changes in these parameters unavoidably induce displacement/strain errors. In this study, the effect of temperature variations on stereo-DIC measurements is investigated experimentally. To quantify the errors associated with camera or ambient temperature changes, surface displacements and strains of a stationary optical quartz glass plate with near-zero thermal expansion were continuously measured using a regular stereo-DIC system. The results confirm that (1) temperature variations in the cameras and ambient environment have a considerable influence on the displacements and strains measured by stereo-DIC due to the slightly altered extrinsic and intrinsic camera parameters; and (2) the corresponding displacement and strain errors correlate with temperature changes. For the specific stereo-DIC configuration used in this work, the temperature-induced strain errors were estimated to be approximately 30–50 με/°C. To minimize the adverse effect of camera temperature variations on stereo-DIC measurements, two simple but effective solutions are suggested.

  7. Effect of camera temperature variations on stereo-digital image correlation measurements

    KAUST Repository

    Pan, Bing; Shi, Wentao; Lubineau, Gilles

    2015-01-01

    In laboratory and especially non-laboratory stereo-digital image correlation (stereo-DIC) applications, the extrinsic and intrinsic parameters of the cameras used in the system may change slightly due to the camera warm-up effect and possible variations in ambient temperature. Because these camera parameters are generally calibrated once prior to measurements and considered to be unaltered during the whole measurement period, the changes in these parameters unavoidably induce displacement/strain errors. In this study, the effect of temperature variations on stereo-DIC measurements is investigated experimentally. To quantify the errors associated with camera or ambient temperature changes, surface displacements and strains of a stationary optical quartz glass plate with near-zero thermal expansion were continuously measured using a regular stereo-DIC system. The results confirm that (1) temperature variations in the cameras and ambient environment have a considerable influence on the displacements and strains measured by stereo-DIC due to the slightly altered extrinsic and intrinsic camera parameters; and (2) the corresponding displacement and strain errors correlate with temperature changes. For the specific stereo-DIC configuration used in this work, the temperature-induced strain errors were estimated to be approximately 30–50 με/°C. To minimize the adverse effect of camera temperature variations on stereo-DIC measurements, two simple but effective solutions are suggested.

  8. Validity and reliability of a structured-light 3D scanner and an ultrasound imaging system for measurements of facial skin thickness.

    Science.gov (United States)

    Lee, Kang-Woo; Kim, Sang-Hwan; Gil, Young-Chun; Hu, Kyung-Seok; Kim, Hee-Jin

    2017-10-01

    Three-dimensional (3 D)-scanning-based morphological studies of the face are commonly included in various clinical procedures. This study evaluated validity and reliability of a 3 D scanning system by comparing the ultrasound (US) imaging system versus the direct measurement of facial skin. The facial skin thickness at 19 landmarks was measured using the three different methods in 10 embalmed adult Korean cadavers. Skin thickness was first measured using the ultrasound device, then 3 D scanning of the facial skin surface was performed. After the skin on the left half of face was gently dissected, deviating slightly right of the midline, to separate it from the subcutaneous layer, and the harvested facial skin's thickness was measured directly using neck calipers. The dissected specimen was then scanned again, then the scanned images of undissected and dissected faces were superimposed using Morpheus Plastic Solution (version 3.0) software. Finally, the facial skin thickness was calculated from the superimposed images. The ICC value for the correlations between the 3 D scanning system and direct measurement showed excellent reliability (0.849, 95% confidence interval = 0.799-0.887). Bland-Altman analysis showed a good level of agreement between the 3 D scanning system and direct measurement (bias = 0.49 ± 0.49 mm, mean±SD). These results demonstrate that the 3 D scanning system precisely reflects structural changes before and after skin dissection. Therefore, an in-depth morphological study using this 3 D scanning system could provide depth data about the main anatomical structures of face, thereby providing crucial anatomical knowledge for utilization in various clinical applications. Clin. Anat. 30:878-886, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  9. Variational Methods for Discontinuous Structures : Applications to Image Segmentation, Continuum Mechanics

    CERN Document Server

    Tomarelli, Franco

    1996-01-01

    In recent years many researchers in material science have focused their attention on the study of composite materials, equilibrium of crystals and crack distribution in continua subject to loads. At the same time several new issues in computer vision and image processing have been studied in depth. The understanding of many of these problems has made significant progress thanks to new methods developed in calculus of variations, geometric measure theory and partial differential equations. In particular, new technical tools have been introduced and successfully applied. For example, in order to describe the geometrical complexity of unknown patterns, a new class of problems in calculus of variations has been introduced together with a suitable functional setting: the free-discontinuity problems and the special BV and BH functions. The conference held at Villa Olmo on Lake Como in September 1994 spawned successful discussion of these topics among mathematicians, experts in computer science and material scientis...

  10. Angular multiplexing holograms of four images recorded on photopolymer films with recording-film-thickness-dependent holographic characteristics

    Science.gov (United States)

    Osabe, Keiichi; Kawai, Kotaro

    2017-03-01

    In this study, angular multiplexing hologram recording photopolymer films were studied experimentally. The films contained acrylamide as a monomer, eosin Y as a sensitizer, and triethanolamine as a promoter in a polyvinyl alcohol matrix. In order to determine the appropriate thickness of the photopolymer films for angular multiplexing, photopolymer films with thicknesses of 29-503 μm were exposed to two intersecting beams of a YVO laser at a wavelength of 532 nm to form a holographic grating with a spatial frequency of 653 line/mm. The diffraction efficiencies as a function of the incident angle of reconstruction were measured. A narrow angular bandwidth and high diffraction efficiency are required for angular multiplexing; hence, we define the Q value, which is the diffraction efficiency divided by half the bandwidth. The Q value of the films depended on the thickness of the films, and was calculated based on the measured diffraction efficiencies. The Q value of a 297-μm-thick film was the highest of the all films. Therefore, the angular multiplexing experiments were conducted using 300-μm-thick films. In the angular multiplexing experiments, the object beam transmitted by a square aperture was focused by a Fourier transform lens and interfered with a reference beam. The maximum order of angular multiplexing was four. The signal intensity that corresponds to the squared-aperture transmission and the noise intensity that corresponds to transmission without the square aperture were measured. The signal intensities decreased as the order of angular multiplexing increased, and the noise intensities were not dependent on the order of angular multiplexing.

  11. The Imaging and Evolution of Seismic Layer 2A Thickness from a 0-70 Ma Oceanic Crustal Transect in the South Atlantic

    Science.gov (United States)

    Estep, J. D.; Reece, R.; Kardell, D. A.; Christeson, G. L.; Carlson, R. L.

    2017-12-01

    Seismic layer 2A, the uppermost igneous portion of oceanic crust, is commonly used to refer to the seismic velocities of upper crust that are bounded below by a steep vertical velocity gradient. Layer 2A velocities are known to increase with crustal age, from 2.5 km/s in crust 15 Ma. Thickness of layer 2A has been shown to increase by a factor of 2 within 1 Ma at fast spreading ridges and then remain relatively constant, while layer 2A maintains a fairly consistent thickness, irrespective of age, at slow-intermediate spreading ridges. Layer 2A thickness and velocity evolution studies to date have been largely focused on young oceanic crust very proximal to a spreading center with little investigation of changes (or lack thereof) that occur at crustal ages >10 Ma. We utilize a multichannel seismic dataset collected at 30° S in the western South Atlantic that continuously images 0 - 70 Ma oceanic crust along a single flowline generated at the slow-intermediate spreading Mid-Atlantic Ridge. We follow the methods of previous studies by processing the data to image the layer 2A event, which is then used for calculating thickness. 1D travel time forward modeling at regularly spaced age intervals across the transect provides for the conversion of time to depth thickness, and for determining the evolution of velocities with age. Our results show layer 2A in 20 Ma crust is roughly double the thickness of that in crust 0-5 Ma (830 vs. 440 m), but thickness does not appear to change beyond 20 Ma. The layer 2A event is readily observable in crust 0-50 Ma, is nearly completely absent in crust 50-65 Ma, and then reappears with anomalously high amplitude and lateral continuity in crust 65-70 Ma. Our results suggest that layer 2A thickens with age at the slow-intermediate spreading southern Mid-Atlantic Ridge, and that layer 2A either continues to evolve at the older crustal ages, well beyond the expected 10-15 Ma "mature age", or that external factors have altered the crust at

  12. The Use of Intravital Two-Photon and Thick Section Confocal Imaging to Analyze B Lymphocyte Trafficking in Lymph Nodes and Spleen.

    Science.gov (United States)

    Park, Chung; Hwang, Il-Young; Kehrl, John H

    2018-01-01

    Intravital two-photon laser scanning microscopy (TP-LSM) has allowed the direct observation of immune cells in intact organs of living animals. In the B cell biology field TP-LSM has detailed the movement of B cells in high endothelial venules and during their transmigration into lymph organs; described the movement and positioning of B cells within lymphoid organs; outlined the mechanisms by which antigen is delivered to B cells; observed B cell interacting with T cells, other cell types, and even with pathogens; and delineated the egress of B cells from the lymph node (LN) parenchyma into the efferent lymphatics. As the quality of TP-LSM improves and as new fluorescent probes become available additional insights into B cell behavior and function await new investigations. Yet intravital TP-LSM has some disadvantages including a lower resolution than standard confocal microscopy, a narrow imaging window, and a shallow depth of imaging. We have found that supplementing intravital TP-LSM with conventional confocal microscopy using thick LN sections helps to overcome some of these shortcomings. Here, we describe procedures for visualizing the behavior and trafficking of fluorescently labeled, adoptively transferred antigen-activated B cells within the inguinal LN of live mice using two-photon microscopy. Also, we introduce procedures for fixed thick section imaging using standard confocal microscopy, which allows imaging of fluorescently labeled cells deep in the LN cortex and in the spleen with high resolution.

  13. A Weighted Difference of Anisotropic and Isotropic Total Variation for Relaxed Mumford-Shah Image Segmentation

    Science.gov (United States)

    2016-05-01

    norm does not cap - ture the geometry completely. The L1−L2 in (c) does a better job than TV while L1 in (b) and L1−0.5L2 in (d) capture the squares most...and isotropic total variation (TV) norms into a relaxed formu- lation of the two phase Mumford-Shah (MS) model for image segmentation. We show...results exceeding those obtained by the MS model when using the standard TV norm to regular- ize partition boundaries. In particular, examples illustrating

  14. Accelerating cross-validation with total variation and its application to super-resolution imaging.

    Directory of Open Access Journals (Sweden)

    Tomoyuki Obuchi

    Full Text Available We develop an approximation formula for the cross-validation error (CVE of a sparse linear regression penalized by ℓ1-norm and total variation terms, which is based on a perturbative expansion utilizing the largeness of both the data dimensionality and the model. The developed formula allows us to reduce the necessary computational cost of the CVE evaluation significantly. The practicality of the formula is tested through application to simulated black-hole image reconstruction on the event-horizon scale with super resolution. The results demonstrate that our approximation reproduces the CVE values obtained via literally conducted cross-validation with reasonably good precision.

  15. Digital Image Stabilization Method Based on Variational Mode Decomposition and Relative Entropy

    Directory of Open Access Journals (Sweden)

    Duo Hao

    2017-11-01

    Full Text Available Cameras mounted on vehicles frequently suffer from image shake due to the vehicles’ motions. To remove jitter motions and preserve intentional motions, a hybrid digital image stabilization method is proposed that uses variational mode decomposition (VMD and relative entropy (RE. In this paper, the global motion vector (GMV is initially decomposed into several narrow-banded modes by VMD. REs, which exhibit the difference of probability distribution between two modes, are then calculated to identify the intentional and jitter motion modes. Finally, the summation of the jitter motion modes constitutes jitter motions, whereas the subtraction of the resulting sum from the GMV represents the intentional motions. The proposed stabilization method is compared with several known methods, namely, medium filter (MF, Kalman filter (KF, wavelet decomposition (MD method, empirical mode decomposition (EMD-based method, and enhanced EMD-based method, to evaluate stabilization performance. Experimental results show that the proposed method outperforms the other stabilization methods.

  16. Variation of central corneal thickness in patients with diabetic retinopathy as detected by ultrasonic pachymetry in patients presenting to a tertiary care hospital

    International Nuclear Information System (INIS)

    Khan, S.A.

    2017-01-01

    To compare the central corneal thickness between patients with diabetic retinopathy and non diabetics. Study Design: A cross sectional study. Place and Duration of Study: Lahore General Hospital Lahore, from 1st Dec 2015 to 31st May 2016. Material and Methods: A cross-sectional study was conducted in the ophthalmology outpatient department of Lahore General Hospital. A total of one hundred and fifty subjects from different age groups were selected for the study. An ultrasound pachymeter was used to measure CCT. There were two groups for sample, 75 were patients with diabetic retinopathy and 75 of them were non-diabetic subjects. Results: The diabetic patients had average central corneal thickness of value 554.93 +- 33.73 microns. The average central corneal thickness found in non-diabetic patients was 520.41 +- 26.06 microns. The diabetic patients showed an increased central corneal thickness as compared to non-diabetics. The result of this study was statistically significant (p=0.001). Conclusion: The diabetic patients showed an increased central corneal thickness as compared to non-diabetic patients. (author)

  17. Diffusion tensor imaging of the human calf: Variation of inter- and intramuscle-specific diffusion parameters.

    Science.gov (United States)

    Schlaffke, Lara; Rehmann, Robert; Froeling, Martijn; Kley, Rudolf; Tegenthoff, Martin; Vorgerd, Matthias; Schmidt-Wilcke, Tobias

    2017-10-01

    To investigate to what extent inter- and intramuscular variations of diffusion parameters of human calf muscles can be explained by age, gender, muscle location, and body mass index (BMI) in a specific age group (20-35 years). Whole calf muscles of 18 healthy volunteers were evaluated. Magnetic resonance imaging (MRI) was performed using a 3T scanner and a 16-channel Torso XL coil. Diffusion-weighted images were acquired to perform fiber tractography and diffusion tensor imaging (DTI) analysis for each muscle of both legs. Fiber tractography was used to separate seven lower leg muscles. Associations between DTI parameters and confounds were evaluated. All muscles were additionally separated in seven identical segments along the z-axis to evaluate intramuscular differences in diffusion parameters. Fractional anisotropy (FA) and mean diffusivity (MD) were obtained for each muscle with low standard deviations (SDs) (SD FA : 0.01-0.02; SD MD : 0.07-0.14(10 -3 )). We found significant differences in FA values of the tibialis anterior muscle (AT) and extensor digitorum longus (EDL) muscles between men and women for whole muscle FA (two-sample t-tests; AT: P = 0.0014; EDL: P = 0.0004). We showed significant intramuscular differences in diffusion parameters between adjacent segments in most calf muscles (P < 0.001). Whereas muscle insertions showed higher (SD 0.03-0.06) than muscle bellies (SD 0.01-0.03), no relationships between FA or MD with age or BMI were found. Inter- and intramuscular variations in diffusion parameters of the calf were shown, which are not related to age or BMI in this age group. Differences between muscle belly and insertion should be considered when interpreting datasets not including whole muscles. 3 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2017;46:1137-1148. © 2017 International Society for Magnetic Resonance in Medicine.

  18. In vivo imaging through the entire thickness of human cornea by full-field optical coherence tomography

    Science.gov (United States)

    Mazlin, Viacheslav; Xiao, Peng; Dalimier, Eugénie; Grieve, Kate; Irsch, Kristina; Sahel, José; Fink, Mathias; Boccara, Claude

    2018-02-01

    Despite obvious improvements in visualization of the in vivo cornea through the faster imaging speeds and higher axial resolutions, cellular imaging stays unresolvable task for OCT, as en face viewing with a high lateral resolution is required. The latter is possible with FFOCT, a method that relies on a camera, moderate numerical aperture (NA) objectives and an incoherent light source to provide en face images with a micrometer-level resolution. Recently, we for the first time demonstrated the ability of FFOCT to capture images from the in vivo human cornea1. In the current paper we present an extensive study of appearance of healthy in vivo human corneas under FFOCT examination. En face corneal images with a micrometer-level resolution were obtained from the three healthy subjects. For each subject it was possible to acquire images through the entire corneal depth and visualize the epithelium structures, Bowman's layer, sub-basal nerve plexus (SNP) fibers, anterior, middle and posterior stroma, endothelial cells with nuclei. Dimensions and densities of the structures visible with FFOCT, are in agreement with those seen by other cornea imaging methods. Cellular-level details in the images obtained together with the relatively large field-of-view (FOV) and contactless way of imaging make this device a promising candidate for becoming a new tool in ophthalmological diagnostics.

  19. Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization

    International Nuclear Information System (INIS)

    Sidky, Emil Y; Pan Xiaochuan

    2008-01-01

    An iterative algorithm, based on recent work in compressive sensing, is developed for volume image reconstruction from a circular cone-beam scan. The algorithm minimizes the total variation (TV) of the image subject to the constraint that the estimated projection data is within a specified tolerance of the available data and that the values of the volume image are non-negative. The constraints are enforced by the use of projection onto convex sets (POCS) and the TV objective is minimized by steepest descent with an adaptive step-size. The algorithm is referred to as adaptive-steepest-descent-POCS (ASD-POCS). It appears to be robust against cone-beam artifacts, and may be particularly useful when the angular range is limited or when the angular sampling rate is low. The ASD-POCS algorithm is tested with the Defrise disk and jaw computerized phantoms. Some comparisons are performed with the POCS and expectation-maximization (EM) algorithms. Although the algorithm is presented in the context of circular cone-beam image reconstruction, it can also be applied to scanning geometries involving other x-ray source trajectories

  20. P-type surface effects for thickness variation of 2um and 4um of n-type layer in GaN LED

    Science.gov (United States)

    Halim, N. S. A. Abdul; Wahid, M. H. A.; Hambali, N. A. M. Ahmad; Rashid, S.; Ramli, M. M.; Shahimin, M. M.

    2017-09-01

    The internal quantum efficiency of III-Nitrides group, GaN light-emitting diode (LED) has been considerably limited due to the insufficient hole injection and this is caused by the lack of performance p-type doping and low hole mobility. The low hole mobility makes the hole less energetic, thus reduced the performance operation of GaN LED itself. The internal quantum efficiency of GaN-based LED with surface roughness (texture) can be changed by texture size, density, and thickness of GaN film or by the combined effects of surface shape and thickness of GaN film. Besides, due to lack of p-type GaN, attempts to look forward the potential of GaN LED relied on the thickness of n-type layer and surface shape of p-type GaN layer. This work investigates the characteristics of GaN LED with undoped n-GaN layer of different thickness and the surface shape of p-type layer. The LEDs performance is significantly altered by modifying the thickness and shape. Enhancement of n-GaN layer has led to the annihilation of electrical conductivity of the chip. Different surface geometry governs the emission rate extensively. Internal quantum efficiency is also predominantly affected by the geometry of n-GaN layer which subjected to the current spreading. It is recorded that the IQE droop can be minimized by varying the thickness of the active layer without amplifying the forward voltage. Optimum forward voltage (I-V), total emission rate relationship with the injected current and internal quantum efficiency (IQE) for 2,4 µm on four different surfaces of p-type layer are also reported in this paper.

  1. Effects of thickness and geometric variations in the oxide gate stack on the nonvolatile memory behaviors of charge-trap memory thin-film transistors

    Science.gov (United States)

    Bak, Jun Yong; Kim, So-Jung; Byun, Chun-Won; Pi, Jae-Eun; Ryu, Min-Ki; Hwang, Chi Sun; Yoon, Sung-Min

    2015-09-01

    Device designs of charge-trap oxide memory thin-film transistors (CTM-TFTs) were investigated to enhance their nonvolatile memory performances. The first strategy was to optimize the film thicknesses of the tunneling and charge-trap (CT) layers in order to meet requirements of both higher operation speed and longer retention time. While the program speed and memory window were improved for the device with a thinner tunneling layer, a long retention time was obtained only for the device with a tunneling layer thicker than 5 nm. The carrier concentration and charge-trap densities were optimized in the 30-nm-thick CT layer. It was observed that 10-nm-thick tunneling, 30-nm-thick CT, and 50-nm-thick blocking layers were the best configuration for our proposed CTM-TFTs, where a memory on/off margin higher than 107 was obtained, and a memory margin of 6.6 × 103 was retained even after the lapse of 105 s. The second strategy was to examine the effects of the geometrical relations between the CT and active layers for the applications of memory elements embedded in circuitries. The CTM-TFTs fabricated without an overlap between the CT layer and the drain electrode showed an enhanced program speed by the reduced parasitic capacitance. The drain-bias disturbance for the memory off-state was effectively suppressed even when a higher read-out drain voltage was applied. Appropriate device design parameters, such as the film thicknesses of each component layer and the geometrical relations between them, can improve the memory performances and expand the application fields of the proposed CTM-TFTs.

  2. Quantification of common carotid artery and descending aorta vessel wall thickness from MR vessel wall imaging using a fully automated processing pipeline.

    Science.gov (United States)

    Gao, Shan; van 't Klooster, Ronald; Brandts, Anne; Roes, Stijntje D; Alizadeh Dehnavi, Reza; de Roos, Albert; Westenberg, Jos J M; van der Geest, Rob J

    2017-01-01

    To develop and evaluate a method that can fully automatically identify the vessel wall boundaries and quantify the wall thickness for both common carotid artery (CCA) and descending aorta (DAO) from axial magnetic resonance (MR) images. 3T MRI data acquired with T 1 -weighted gradient-echo black-blood imaging sequence from carotid (39 subjects) and aorta (39 subjects) were used to develop and test the algorithm. The vessel wall segmentation was achieved by respectively fitting a 3D cylindrical B-spline surface to the boundaries of lumen and outer wall. The tube-fitting was based on the edge detection performed on the signal intensity (SI) profile along the surface normal. To achieve a fully automated process, Hough Transform (HT) was developed to estimate the lumen centerline and radii for the target vessel. Using the outputs of HT, a tube model for lumen segmentation was initialized and deformed to fit the image data. Finally, lumen segmentation was dilated to initiate the adaptation procedure of outer wall tube. The algorithm was validated by determining: 1) its performance against manual tracing; 2) its interscan reproducibility in quantifying vessel wall thickness (VWT); 3) its capability of detecting VWT difference in hypertensive patients compared with healthy controls. Statistical analysis including Bland-Altman analysis, t-test, and sample size calculation were performed for the purpose of algorithm evaluation. The mean distance between the manual and automatically detected lumen/outer wall contours was 0.00 ± 0.23/0.09 ± 0.21 mm for CCA and 0.12 ± 0.24/0.14 ± 0.35 mm for DAO. No significant difference was observed between the interscan VWT assessment using automated segmentation for both CCA (P = 0.19) and DAO (P = 0.94). Both manual and automated segmentation detected significantly higher carotid (P = 0.016 and P = 0.005) and aortic (P < 0.001 and P = 0.021) wall thickness in the hypertensive patients. A reliable and reproducible pipeline for fully

  3. Thick Toenails

    Science.gov (United States)

    ... in individuals with nail fungus (onychomycosis), psoriasis and hypothyroidism. Those who have problems with the thickness of their toenails should consult a foot and ankle surgeon for proper diagnosis and treatment. Find an ACFAS Physician Search Search Tools Find ...

  4. High-resolution and high sensitivity mesoscopic fluorescence tomography based on de-scanning EMCCD: System design and thick tissue imaging applications

    Science.gov (United States)

    Ozturk, Mehmet Saadeddin

    Optical microscopy has been one of the essential tools for biological studies for decades, however, its application areas was limited to superficial investigation due to strong scattering in live tissues. Even though advanced techniques such as confocal or multiphoton methods have been recently developed to penetrate beyond a few hundreds of microns deep in tissues, they still cannot perform in the mesoscopic regime (millimeter scale) without using destructive sample preparation protocols such as clearing techniques. They provide rich cellular information; however, they cannot be readily employed to investigate the biological processes at larger scales. Herein, we will present our effort to establish a novel imaging approach that can quantify molecular expression in intact tissues, well beyond the current microscopy depth limits. Mesoscopic Fluorescence Molecular Tomography (MFMT) is an emerging imaging modality that offers unique potential for the non-invasive molecular assessment of thick in-vitro and in-vivo live tissues. This novel imaging modality is based on an optical inverse problem that allows for retrieval of the quantitative spatial distribution of fluorescent tagged bio-markers at millimeter depth. MFMT is well-suited for in-vivo subsurface tissue imaging and thick bio-printed specimens due to its high sensitivity and fast acquisition times, as well as relatively large fields of view. Herein, we will first demonstrate the potential of this technique using our first generation MFMT system applied to multiplexed reporter gene imaging (in-vitro) and determination of Photodynamic Therapy (PDT) agent bio-distribution in a mouse model (in-vivo). Second, we will present the design rationale, in silico benchmarking, and experimental validation of a second generation MFMT (2GMFMT) system. We will demonstrate the gain in resolution and sensitivity achieved due to the de-scanned dense detector configuration implemented. The potential of this novel platform will be

  5. Hand joint space narrowing and osteophytes are associated with magnetic resonance imaging-defined knee cartilage thickness and radiographic knee osteoarthritis: data from the Osteoarthritis Initiative.

    Science.gov (United States)

    Haugen, Ida K; Cotofana, Sebastian; Englund, Martin; Kvien, Tore K; Dreher, Donatus; Nevitt, Michael; Lane, Nancy E; Eckstein, Felix

    2012-01-01

    To evaluate whether features of radiographic hand osteoarthritis (OA) are associated with quantitative magnetic resonance imaging (MRI)-defined knee cartilage thickness, radiographic knee OA, and 1-year structural progression. A total of 765 participants in Osteoarthritis Initiative (OAI; 455 women, mean age 62.5 yrs, SD 9.4) obtained hand radiographs (at baseline), knee radiographs (baseline and Year 1), and knee MRI (baseline and Year 1). Hand radiographs were scored for presence of osteophytes and joint space narrowing (JSN). Knee radiographs were scored according to the Kellgren-Lawrence (KL) scale. Cartilage thickness in the medial and lateral femorotibial compartments was measured quantitatively from coronal FLASHwe images. We examined the cross-sectional and longitudinal associations between features of hand OA (total osteophyte and JSN scores) and knee cartilage thickness, 1-year knee cartilage thinning (above smallest detectable change), presence of knee OA (KL grade ≥ 3), and progression of knee OA (KL change ≥ 1) by linear and logistic regression. Both hand OA features were included in a multivariate model (if p ≤ 0.25) adjusted for age, sex, and body mass index (BMI). Hand JSN was associated with reduced knee cartilage thickness (ß = -0.02, 95% CI -0.03, -0.01) in the medial femorotibial compartment, while hand osteophytes were associated with the presence of radiographic knee OA (OR 1.10, 95% CI 1.03-1.18; multivariate models) with both hand OA features as independent variables adjusted for age, sex, and BMI). Radiographic features of hand OA were not associated with 1-year cartilage thinning or radiographic knee OA progression. Our results support a systemic OA susceptibility and possibly different mechanisms for osteophyte formation and cartilage thinning.

  6. Simultaneous determination of sample thickness, tilt, and electron mean free path using tomographic tilt images based on Beer-Lambert law.

    Science.gov (United States)

    Yan, Rui; Edwards, Thomas J; Pankratz, Logan M; Kuhn, Richard J; Lanman, Jason K; Liu, Jun; Jiang, Wen

    2015-11-01

    Cryo-electron tomography (cryo-ET) is an emerging technique that can elucidate the architecture of macromolecular complexes and cellular ultrastructure in a near-native state. Some important sample parameters, such as thickness and tilt, are needed for 3-D reconstruction. However, these parameters can currently only be determined using trial 3-D reconstructions. Accurate electron mean free path plays a significant role in modeling image formation process essential for simulation of electron microscopy images and model-based iterative 3-D reconstruction methods; however, their values are voltage and sample dependent and have only been experimentally measured for a limited number of sample conditions. Here, we report a computational method, tomoThickness, based on the Beer-Lambert law, to simultaneously determine the sample thickness, tilt and electron inelastic mean free path by solving an overdetermined nonlinear least square optimization problem utilizing the strong constraints of tilt relationships. The method has been extensively tested with both stained and cryo datasets. The fitted electron mean free paths are consistent with reported experimental measurements. The accurate thickness estimation eliminates the need for a generous assignment of Z-dimension size of the tomogram. Interestingly, we have also found that nearly all samples are a few degrees tilted relative to the electron beam. Compensation of the intrinsic sample tilt can result in horizontal structure and reduced Z-dimension of tomograms. Our fast, pre-reconstruction method can thus provide important sample parameters that can help improve performance of tomographic reconstruction of a wide range of samples. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. On the variation in the electrical properties and ac conductivity of through-thickness nano-porous anodic alumina with temperature

    International Nuclear Information System (INIS)

    Tahir, Mahmood; Mehmood, Mazhar; Nadeem, Muhammad; Waheed, Abdul; Tanvir, Muhammad Tauseef

    2013-01-01

    The electrical response of self-organized through-thickness anodic alumina with hexagonal arrangement of cylindrical pores has been studied as a function of temperature. Mechanically stable thick porous anodic alumina was prepared, by through-thickness anodic oxidation of aluminum sheet in sulfuric acid, with extremely high aspect ratio pores exhibiting fairly uniform diameter and interpore distance. It was observed that the electrical properties of through-thickness anodic alumina are very sensitive to minute changes in temperature and the role of surface conductivity in governing its electrical response cannot be overlooked. At high frequencies, intrinsic dielectric response of anodic alumina was dominant. The frequency-dependent conductivity behavior at low and intermediate frequencies was explained on the basis of correlated barrier hopping (CBH) and quantum mechanical tunneling (QMT) models, respectively. Experimental data was modeled using an equivalent circuit consisting of Debye circuit, for bulk alumina, parallel to surface conduction path. The surface conduction was primarily based on two circuits in series, each with a parallel arrangement of a resistor and a constant phase element. This suggested heterogeneity in alumina pore surface, possibly related with islands of physisorbed water separated by the regions of chemisorbed water. Temperature dependence of some circuit elements has been analyzed to express different charge migration phenomena occurring in nano-porous anodic alumina

  8. Variation in Patients' Travel Times among Imaging Examination Types at a Large Academic Health System.

    Science.gov (United States)

    Rosenkrantz, Andrew B; Liang, Yu; Duszak, Richard; Recht, Michael P

    2017-08-01

    Patients' willingness to travel farther distances for certain imaging services may reflect their perceptions of the degree of differentiation of such services. We compare patients' travel times for a range of imaging examinations performed across a large academic health system. We searched the NYU Langone Medical Center Enterprise Data Warehouse to identify 442,990 adult outpatient imaging examinations performed over a recent 3.5-year period. Geocoding software was used to estimate typical driving times from patients' residences to imaging facilities. Variation in travel times was assessed among examination types. The mean expected travel time was 29.2 ± 20.6 minutes, but this varied significantly (p travel times were shortest for ultrasound (26.8 ± 18.9) and longest for positron emission tomography-computed tomography (31.9 ± 21.5). For magnetic resonance imaging, travel times were shortest for musculoskeletal extremity (26.4 ± 19.2) and spine (28.6 ± 21.0) examinations and longest for prostate (35.9 ± 25.6) and breast (32.4 ± 22.3) examinations. For computed tomography, travel times were shortest for a range of screening examinations [colonography (25.5 ± 20.8), coronary artery calcium scoring (26.1 ± 19.2), and lung cancer screening (26.4 ± 14.9)] and longest for angiography (32.0 ± 22.6). For ultrasound, travel times were shortest for aortic aneurysm screening (22.3 ± 18.4) and longest for breast (30.1 ± 19.2) examinations. Overall, men (29.9 ± 21.6) had longer (p travel times than women (27.8 ± 20.3); this difference persisted for each modality individually (p ≤ 0.006). Patients' willingness to travel longer times for certain imaging examination types (particularly breast and prostate imaging) supports the role of specialized services in combating potential commoditization of imaging services. Disparities in travel times by gender warrant further investigation. Copyright

  9. Accelerated gradient methods for total-variation-based CT image reconstruction

    Energy Technology Data Exchange (ETDEWEB)

    Joergensen, Jakob H.; Hansen, Per Christian [Technical Univ. of Denmark, Lyngby (Denmark). Dept. of Informatics and Mathematical Modeling; Jensen, Tobias L.; Jensen, Soeren H. [Aalborg Univ. (Denmark). Dept. of Electronic Systems; Sidky, Emil Y.; Pan, Xiaochuan [Chicago Univ., Chicago, IL (United States). Dept. of Radiology

    2011-07-01

    Total-variation (TV)-based CT image reconstruction has shown experimentally to be capable of producing accurate reconstructions from sparse-view data. In particular TV-based reconstruction is well suited for images with piecewise nearly constant regions. Computationally, however, TV-based reconstruction is demanding, especially for 3D imaging, and the reconstruction from clinical data sets is far from being close to real-time. This is undesirable from a clinical perspective, and thus there is an incentive to accelerate the solution of the underlying optimization problem. The TV reconstruction can in principle be found by any optimization method, but in practice the large scale of the systems arising in CT image reconstruction preclude the use of memory-intensive methods such as Newton's method. The simple gradient method has much lower memory requirements, but exhibits prohibitively slow convergence. In the present work we address the question of how to reduce the number of gradient method iterations needed to achieve a high-accuracy TV reconstruction. We consider the use of two accelerated gradient-based methods, GPBB and UPN, to solve the 3D-TV minimization problem in CT image reconstruction. The former incorporates several heuristics from the optimization literature such as Barzilai-Borwein (BB) step size selection and nonmonotone line search. The latter uses a cleverly chosen sequence of auxiliary points to achieve a better convergence rate. The methods are memory efficient and equipped with a stopping criterion to ensure that the TV reconstruction has indeed been found. An implementation of the methods (in C with interface to Matlab) is available for download from http://www2.imm.dtu.dk/~pch/TVReg/. We compare the proposed methods with the standard gradient method, applied to a 3D test problem with synthetic few-view data. We find experimentally that for realistic parameters the proposed methods significantly outperform the standard gradient method. (orig.)

  10. Compensation of PVT Variations in ToF Imagers with In-Pixel TDC.

    Science.gov (United States)

    Vornicu, Ion; Carmona-Galán, Ricardo; Rodríguez-Vázquez, Ángel

    2017-05-09

    The design of a direct time-of-flight complementary metal-oxide-semiconductor (CMOS) image sensor (dToF-CIS) based on a single-photon avalanche-diode (SPAD) array with an in-pixel time-to-digital converter (TDC) must contemplate system-level aspects that affect its overall performance. This paper provides a detailed analysis of the impact of process parameters, voltage supply, and temperature (PVT) variations on the time bin of the TDC array. Moreover, the design and characterization of a global compensation loop is presented. It is based on a phase locked loop (PLL) that is integrated on-chip. The main building block of the PLL is a voltage-controlled ring-oscillator (VCRO) that is identical to the ones employed for the in-pixel TDCs. The reference voltage that drives the master VCRO is distributed to the voltage control inputs of the slave VCROs such that their multiphase outputs become invariant to PVT changes. These outputs act as time interpolators for the TDCs. Therefore the compensation scheme prevents the time bin of the TDCs from drifting over time due to the aforementioned factors. Moreover, the same scheme is used to program different time resolutions of the direct time-of-flight (ToF) imager aimed at 3D ranging or depth map imaging. Experimental results that validate the analysis are provided as well. The compensation loop proves to be remarkably effective. The spreading of the TDCs time bin is lowered from: (i) 20% down to 2.4% while the temperature ranges from 0 °C to 100 °C; (ii) 27% down to 0.27%, when the voltage supply changes within ±10% of the nominal value; (iii) 5.2 ps to 2 ps standard deviation over 30 sample chips, due to process parameters' variation.

  11. Two-dimensional and 3-D images of thick tissue using time-constrained times-of-flight and absorbance spectrophotometry

    Science.gov (United States)

    Benaron, David A.; Lennox, M.; Stevenson, David K.

    1992-05-01

    Reconstructing deep-tissue images in real time using spectrophotometric data from optically diffusing thick tissues has been problematic. Continuous wave applications (e.g., pulse oximetry, regional cerebral saturation) ignore both the multiple paths traveled by the photons through the tissue and the effects of scattering, allowing scalar measurements but only under limited conditions; interferometry works poorly in thick, highly-scattering media; frequency- modulated approaches may not allow full deconvolution of scattering and absorbance; and pulsed-light techniques allow for preservation of information regarding the multiple paths taken by light through the tissue, but reconstruction is both computation intensive and limited by the relative surface area available for detection of photons. We have developed a picosecond times-of-flight and absorbance (TOFA) optical system, time-constrained to measure only photons with a narrow range of path lengths and arriving within a narrow angel of the emitter-detector axis. The delay until arrival of the earliest arriving photons is a function of both the scattering and absorbance of the tissues in a direct line between the emitter and detector, reducing the influence of surrounding tissues. Measurement using a variety of emitter and detector locations produces spatial information which can be analyzed in a standard 2-D grid, or subject to computer reconstruction to produce tomographic images representing 3-D structure. Using such a technique, we have been able to demonstrate the principles of tc-TOFA, detect and localize diffusive and/or absorptive objects suspended in highly scattering media (such as blood admixed with yeast), and perform simple 3-D reconstructions using phantom objects. We are now attempting to obtain images in vivo. Potential future applications include use as a research tool, and as a continuous, noninvasive, nondestructive monitor in diagnostic imaging, fetal monitoring, neurologic and cardiac

  12. Variation in the quality of CT images of the upper abdomen when CT automatic exposure control is employed

    International Nuclear Information System (INIS)

    Aizawa, Isao; Muramatsu, Yoshihisa; Nomura, Keiichi; Shimizu, Fuminori

    2010-01-01

    The aim of this study was to analyze the reason for variation of image quality in the upper abdomen CT with the use of CT-automatic exposure control (AEC). The CT investigated was 3D modulation in the 16 multi detector row CT (MDCT) and lung cancer screening CT (LSCT) phantom was used to simulate the patient. When there was a phase difference, an image noise increase of around 15% at the maximum was accepted. It is concluded that the major reason for variation in image quality is respiratory motion and the importance of respiration control must be recognized. (author)

  13. Automatic Fontanel Extraction from Newborns' CT Images Using Variational Level Set

    Science.gov (United States)

    Kazemi, Kamran; Ghadimi, Sona; Lyaghat, Alireza; Tarighati, Alla; Golshaeyan, Narjes; Abrishami-Moghaddam, Hamid; Grebe, Reinhard; Gondary-Jouet, Catherine; Wallois, Fabrice

    A realistic head model is needed for source localization methods used for the study of epilepsy in neonates applying Electroencephalographic (EEG) measurements from the scalp. The earliest models consider the head as a series of concentric spheres, each layer corresponding to a different tissue whose conductivity is assumed to be homogeneous. The results of the source reconstruction depend highly on the electric conductivities of the tissues forming the head.The most used model is constituted of three layers (scalp, skull, and intracranial). Most of the major bones of the neonates’ skull are ossified at birth but can slightly move relative to each other. This is due to the sutures, fibrous membranes that at this stage of development connect the already ossified flat bones of the neurocranium. These weak parts of the neurocranium are called fontanels. Thus it is important to enter the exact geometry of fontaneles and flat bone in a source reconstruction because they show pronounced in conductivity. Computer Tomography (CT) imaging provides an excellent tool for non-invasive investigation of the skull which expresses itself in high contrast to all other tissues while the fontanels only can be identified as absence of bone, gaps in the skull formed by flat bone. Therefore, the aim of this paper is to extract the fontanels from CT images applying a variational level set method. We applied the proposed method to CT-images of five different subjects. The automatically extracted fontanels show good agreement with the manually extracted ones.

  14. An interior-point method for total variation regularized positron emission tomography image reconstruction

    Science.gov (United States)

    Bai, Bing

    2012-03-01

    There has been a lot of work on total variation (TV) regularized tomographic image reconstruction recently. Many of them use gradient-based optimization algorithms with a differentiable approximation of the TV functional. In this paper we apply TV regularization in Positron Emission Tomography (PET) image reconstruction. We reconstruct the PET image in a Bayesian framework, using Poisson noise model and TV prior functional. The original optimization problem is transformed to an equivalent problem with inequality constraints by adding auxiliary variables. Then we use an interior point method with logarithmic barrier functions to solve the constrained optimization problem. In this method, a series of points approaching the solution from inside the feasible region are found by solving a sequence of subproblems characterized by an increasing positive parameter. We use preconditioned conjugate gradient (PCG) algorithm to solve the subproblems directly. The nonnegativity constraint is enforced by bend line search. The exact expression of the TV functional is used in our calculations. Simulation results show that the algorithm converges fast and the convergence is insensitive to the values of the regularization and reconstruction parameters.

  15. Micro-CT image reconstruction based on alternating direction augmented Lagrangian method and total variation.

    Science.gov (United States)

    Gopi, Varun P; Palanisamy, P; Wahid, Khan A; Babyn, Paul; Cooper, David

    2013-01-01

    Micro-computed tomography (micro-CT) plays an important role in pre-clinical imaging. The radiation from micro-CT can result in excess radiation exposure to the specimen under test, hence the reduction of radiation from micro-CT is essential. The proposed research focused on analyzing and testing an alternating direction augmented Lagrangian (ADAL) algorithm to recover images from random projections using total variation (TV) regularization. The use of TV regularization in compressed sensing problems makes the recovered image quality sharper by preserving the edges or boundaries more accurately. In this work TV regularization problem is addressed by ADAL which is a variant of the classic augmented Lagrangian method for structured optimization. The per-iteration computational complexity of the algorithm is two fast Fourier transforms, two matrix vector multiplications and a linear time shrinkage operation. Comparison of experimental results indicate that the proposed algorithm is stable, efficient and competitive with the existing algorithms for solving TV regularization problems. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Novel active contour model based on multi-variate local Gaussian distribution for local segmentation of MR brain images

    Science.gov (United States)

    Zheng, Qiang; Li, Honglun; Fan, Baode; Wu, Shuanhu; Xu, Jindong

    2017-12-01

    Active contour model (ACM) has been one of the most widely utilized methods in magnetic resonance (MR) brain image segmentation because of its ability of capturing topology changes. However, most of the existing ACMs only consider single-slice information in MR brain image data, i.e., the information used in ACMs based segmentation method is extracted only from one slice of MR brain image, which cannot take full advantage of the adjacent slice images' information, and cannot satisfy the local segmentation of MR brain images. In this paper, a novel ACM is proposed to solve the problem discussed above, which is based on multi-variate local Gaussian distribution and combines the adjacent slice images' information in MR brain image data to satisfy segmentation. The segmentation is finally achieved through maximizing the likelihood estimation. Experiments demonstrate the advantages of the proposed ACM over the single-slice ACM in local segmentation of MR brain image series.

  17. Analysis of residual transverse stresses in a thick UD glass/polyester pultruded profile using hole drilling with strain gage and digital image correlation

    Science.gov (United States)

    Yuksel, Onur; Baran, Ismet; Ersoy, Nuri; Akkerman, Remko

    2018-05-01

    Process induced stresses inherently exist in fiber reinforced polymer composites particularly in thick parts due to the presence of non-uniform cure, shrinkage and thermal expansion/contraction during manufacturing. In order to increase the reliability and the performance of the composite materials, process models are developed to predict the residual stress formation. The accuracy of the process models is dependent on the geometrical (micro to macro), material and process parameters as well as the numerical implementation. Therefore, in order to have reliable process modelling framework, there is a need for validation and if necessary calibration of the developed models. This study focuses on measurement of the transverse residual stresses in a relatively thick pultruded profile (20×20 mm) made of glass/polyester. Process-induced residual stresses in the middle of the profile are examined with different techniques which have never been applied for transverse residual stresses in thick unidirectional composites. Hole drilling method with strain gage and digital image correlation are employed. Strain values measured from measurements are used in a finite element model (FEM) to simulate the hole drilling process and predict the residual stress level. The measured released strain is found to be approximately 180 μm/m from the strain gage. The tensile residual stress at the core of the profile is estimated approximately as 7-10 MPa. Proposed methods and measured values in this study will enable validation and calibration of the process models based on the residual stresses.

  18. Full-thickness knee articular cartilage defects in national football league combine athletes undergoing magnetic resonance imaging: prevalence, location, and association with previous surgery.

    Science.gov (United States)

    Nepple, Jeffrey J; Wright, Rick W; Matava, Matthew J; Brophy, Robert H

    2012-06-01

    To better define the prevalence and location of full-thickness articular cartilage lesions in elite football players undergoing knee magnetic resonance imaging (MRI) at the National Football League (NFL) Invitational Combine and assess the association of these lesions with previous knee surgery. We performed a retrospective review of all participants in the NFL Combine undergoing a knee MRI scan from 2005 to 2009. Each MRI scan was reviewed for evidence of articular cartilage disease. History of previous knee surgery including anterior cruciate ligament reconstruction, meniscal procedures, and articular cartilage surgery was recorded for each athlete. Knees with a history of previous articular cartilage restoration surgery were excluded from the analysis. A total of 704 knee MRI scans were included in the analysis. Full-thickness articular cartilage lesions were associated with a history of any previous knee surgery (P football players at the NFL Combine undergoing MRI. The lateral compartment appears to be at greater risk for full-thickness cartilage loss. Previous knee surgery, particularly meniscectomy, is associated with these lesions. Level IV, therapeutic case series. Copyright © 2012 Arthroscopy Association of North America. Published by Elsevier Inc. All rights reserved.

  19. The effects of thick sediment upon continental breakup: seismic imaging and thermal modeling of the Salton Trough, southern California

    Science.gov (United States)

    Han, L.; Hole, J. A.; Lowell, R. P.; Stock, J. M.; Fuis, G. S.; Driscoll, N. W.; Kell, A. M.; Kent, G. M.; Harding, A. J.; Gonzalez-Fernandez, A.; Lázaro-Mancilla, O.

    2015-12-01

    Continental rifting ultimately creates a deep accommodation space for sediment. When a major river flows into a late-stage rift, thick deltaic sediment can change the thermal regime and alter the mechanisms of extension and continental breakup. The Salton Trough, the northernmost rift segment of the Gulf of California plate boundary, has experienced the same extension as the rest of the Gulf, but is filled to sea level by sediment from the Colorado River. Unlike the southern Gulf, seafloor spreading has not initiated. Instead, seismicity, high heat flow, and minor volcanoes attest to ongoing rifting of thin, transitional crust. Recently acquired controlled-source seismic refraction and wide-angle reflection data in the Salton Trough provide constraints upon crustal architecture and active rift processes. The crust in the central Salton Trough is only 17-18 km thick, with a strongly layered but relatively one-dimensional structure for ~100 km in the direction of plate motion. The upper crust includes 2-4 km of Colorado River sediment. Crystalline rock below the sediment is interpreted to be similar sediment metamorphosed by the high heat flow and geothermal activity. Meta-sediment extends to at least 9 km depth. A 4-5 km thick layer in the middle crust is either additional meta-sediment or stretched pre-existing continental crust. The lowermost 4-5 km of the crust is rift-related mafic magmatic intrusion or underplating from partial melting in the hot upper mantle. North American lithosphere in the Salton Trough has been almost or completely rifted apart. The gap has been filled by ~100 km of new transitional crust created by magmatism from below and sedimentation from above. These processes create strong lithologic, thermal, and rheologic layering. While heat flow in the rift is very high, rapid sedimentation cools the upper crust as compared to a linear geotherm. Brittle extension occurs within new meta-sedimentary rock. The lower crust, in comparison, is

  20. Quantitative magnetic resonance imaging (MRI) evaluation of cartilage repair after microfracture treatment for full-thickness cartilage defect models in rabbit knee joints: correlations with histological findings

    International Nuclear Information System (INIS)

    Tao, Hongyue; Feng, Xiaoyuan; Chen, Shuang; Li, Hong; Hua, Yinghui; Chen, Zhongqing

    2015-01-01

    To evaluate repair tissue (RT) after microfracture treatment for full-thickness cartilage defect models using quantitative MRI and investigate the correlations between MRI and histological findings. The animal experiment was approved by the Animal Care and Use Committee of our college. Thirty-six full-thickness cartilage defect models in rabbit knee joints were assigned to the microfracture or joint debridement group (as control). Each group consisted of 3-week, 5-week, and 7-week subgroups. MR imaging, including a three-dimensional double-echo steady-state sequence (3D-DESS), and T2 mapping were performed at 3, 5, and 7 weeks postoperatively. The thickness and T2 indices of RT were calculated. After MRI scans at each time point, operation sites were removed to make hematoxylin-eosin (H and E)-stained sections. Histological results were evaluated using the modified O'Driscoll score system. Comparisons were made between the two groups with respect to the MRI and histological findings, and correlation analysis was performed within each group. The thickness index and histological O'Driscoll score of RT in the two groups increased over time, while the T2 index decreased. The thickness index and histological O'Driscoll score of the microfracture group were higher than in the joint debridement group at each time point. The T2 index of the microfracture group was lower than in the joint debridement group at 3 weeks (P = 0.006), while it was higher than in the joint debridement group at 5 and 7 weeks (P = 0.025 and 0.025). The thickness index was positively correlated with the histological O'Driscoll score in both groups (microfracture: r s = 0.745, P s = 0.680, P = 0.002). The T2 index was negatively correlated with the histological O'Driscoll score in both groups (microfracture: r s = -0.715, P = 0.002; joint debridement: r s = -0.826, P < 0.001). Significant improvement over time after microfracture can be expected on the basis of the quantitative MRI finding and

  1. Quantitative magnetic resonance imaging (MRI) evaluation of cartilage repair after microfracture treatment for full-thickness cartilage defect models in rabbit knee joints: correlations with histological findings

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Hongyue; Feng, Xiaoyuan; Chen, Shuang [Fudan University, Department of Radiology, Huashan Hospital, Shanghai (China); Li, Hong; Hua, Yinghui [Fudan University, Department of Sports Medicine, Huashan Hospital, Shanghai (China); Chen, Zhongqing [Fudan University, Department of Pathology, Huashan Hospital, Shanghai (China)

    2014-11-26

    To evaluate repair tissue (RT) after microfracture treatment for full-thickness cartilage defect models using quantitative MRI and investigate the correlations between MRI and histological findings. The animal experiment was approved by the Animal Care and Use Committee of our college. Thirty-six full-thickness cartilage defect models in rabbit knee joints were assigned to the microfracture or joint debridement group (as control). Each group consisted of 3-week, 5-week, and 7-week subgroups. MR imaging, including a three-dimensional double-echo steady-state sequence (3D-DESS), and T2 mapping were performed at 3, 5, and 7 weeks postoperatively. The thickness and T2 indices of RT were calculated. After MRI scans at each time point, operation sites were removed to make hematoxylin-eosin (H and E)-stained sections. Histological results were evaluated using the modified O'Driscoll score system. Comparisons were made between the two groups with respect to the MRI and histological findings, and correlation analysis was performed within each group. The thickness index and histological O'Driscoll score of RT in the two groups increased over time, while the T2 index decreased. The thickness index and histological O'Driscoll score of the microfracture group were higher than in the joint debridement group at each time point. The T2 index of the microfracture group was lower than in the joint debridement group at 3 weeks (P = 0.006), while it was higher than in the joint debridement group at 5 and 7 weeks (P = 0.025 and 0.025). The thickness index was positively correlated with the histological O'Driscoll score in both groups (microfracture: r{sub s} = 0.745, P < 0.001; joint debridement: r{sub s} = 0.680, P = 0.002). The T2 index was negatively correlated with the histological O'Driscoll score in both groups (microfracture: r{sub s} = -0.715, P = 0.002; joint debridement: r{sub s} = -0.826, P < 0.001). Significant improvement over time after

  2. Thirty Minutes of Running Exercise Decreases T2 Signal Intensity but Not Thickness of the Knee Joint Cartilage: A 3.0-T Magnetic Resonance Imaging Study.

    Science.gov (United States)

    Karanfil, Yiğitcan; Babayeva, Naila; Dönmez, Gürhan; Diren, H Barış; Eryılmaz, Muzaffer; Doral, Mahmut Nedim; Korkusuz, Feza

    2018-04-01

    Objective Recent studies showed a potential of magnetic resonance imaging (MRI), which can be used as an additional tool for diagnosing cartilage degeneration in the early stage. We designed a cross-sectional study in order to evaluate knee joint cartilage adaptation to running, using 3.0-T MRI equipped with the 3-dimensional turbo spin echo (VISTA = Volume ISotropic Turbo spin echo Acquisition) software. By this thickness (mm) and signal intensity (mean pixel value) can be quantified, which could be closely related to the fluid content of the knee joint cartilage, before and after running. Methods A total of 22 males, aged 18 to 35 years, dominant (right) and nondominant (left) knees were assessed before and after 30 minutes of running. Cartilage thickness and signal intensity of surfaces of the patella, medial and lateral femoral and tibial condyles were measured. Results Cartilage thickness of the lateral condyle decreased at the dominant knee, while it increased at the medial tibial plateau. Signal intensity decreased at all locations, except the lateral patella in both knees. The most obvious decrease in signal intensity (10.6%) was at the medial tibial plateau from 949.8 to 849.0 of the dominant knee. Conclusion There was an increase in thickness measurements and decrease in signal intensity in medial tibial plateau of the dominant knee after 30 minutes of running. This outcome could be related to fluid outflow from the tissue. Greater reductions in the medial tibial plateau cartilage indicate greater load sharing by these areas of the joint during a 30-minute running.

  3. Functional-analytic and numerical issues in splitting methods for total variation-based image reconstruction

    International Nuclear Information System (INIS)

    Hintermüller, Michael; Rautenberg, Carlos N; Hahn, Jooyoung

    2014-01-01

    Variable splitting schemes for the function space version of the image reconstruction problem with total variation regularization (TV-problem) in its primal and pre-dual formulations are considered. For the primal splitting formulation, while existence of a solution cannot be guaranteed, it is shown that quasi-minimizers of the penalized problem are asymptotically related to the solution of the original TV-problem. On the other hand, for the pre-dual formulation, a family of parametrized problems is introduced and a parameter dependent contraction of an associated fixed point iteration is established. Moreover, the theory is validated by numerical tests. Additionally, the augmented Lagrangian approach is studied, details on an implementation on a staggered grid are provided and numerical tests are shown. (paper)

  4. Statistical intensity variation analysis for rapid volumetric imaging of capillary network flux.

    Science.gov (United States)

    Lee, Jonghwan; Jiang, James Y; Wu, Weicheng; Lesage, Frederic; Boas, David A

    2014-04-01

    We present a novel optical coherence tomography (OCT)-based technique for rapid volumetric imaging of red blood cell (RBC) flux in capillary networks. Previously we reported that OCT can capture individual RBC passage within a capillary, where the OCT intensity signal at a voxel fluctuates when an RBC passes the voxel. Based on this finding, we defined a metric of statistical intensity variation (SIV) and validated that the mean SIV is proportional to the RBC flux [RBC/s] through simulations and measurements. From rapidly scanned volume data, we used Hessian matrix analysis to vectorize a segment path of each capillary and estimate its flux from the mean of the SIVs gathered along the path. Repeating this process led to a 3D flux map of the capillary network. The present technique enabled us to trace the RBC flux changes over hundreds of capillaries with a temporal resolution of ~1 s during functional activation.

  5. Image Restoration Based on the Hybrid Total-Variation-Type Model

    Directory of Open Access Journals (Sweden)

    Baoli Shi

    2012-01-01

    Full Text Available We propose a hybrid total-variation-type model for the image restoration problem based on combining advantages of the ROF model with the LLT model. Since two L1-norm terms in the proposed model make it difficultly solved by using some classically numerical methods directly, we first employ the alternating direction method of multipliers (ADMM to solve a general form of the proposed model. Then, based on the ADMM and the Moreau-Yosida decomposition theory, a more efficient method called the proximal point method (PPM is proposed and the convergence of the proposed method is proved. Some numerical results demonstrate the viability and efficiency of the proposed model and methods.

  6. Image-guided radiotherapy of bladder cancer: bladder volume variation and its relation to margins

    DEFF Research Database (Denmark)

    Muren, Ludvig; Redpath, Anthony Thomas; Lord, Hannah

    2007-01-01

    : The correlation between the relative bladder volume (RBV, defined as repeat scan volume/planning scan volume) and the margins required to account for internal motion was first studied using a series of 20 bladder cancer patients with weekly repeat CT scanning during treatment. Both conformal RT (CRT) and IGRT......BACKGROUND AND PURPOSE: To control and account for bladder motion is a major challenge in radiotherapy (RT) of bladder cancer. This study investigates the relation between bladder volume variation and margins in conformal and image-guided RT (IGRT) for this disease. MATERIALS AND METHODS...... these patients were given fluid intake restrictions on alternating weeks during treatment. RESULTS: IGRT gave the strongest correlation between the RBV and margin size (R(2)=0.75; p10mm were required in only 1% of the situations when the RBV1, whereas isotropic margins >10...

  7. Segmental Quantitative MR Imaging analysis of diurnal variation of water content in the lumbar intervertebral discs

    International Nuclear Information System (INIS)

    Zhu, Ting Ting; Ai, Tao; Zhang, Wei; Li, Tao; Li, Xiao Ming

    2015-01-01

    To investigate the changes in water content in the lumbar intervertebral discs by quantitative T2 MR imaging in the morning after bed rest and evening after a diurnal load. Twenty healthy volunteers were separately examined in the morning after bed rest and in the evening after finishing daily work. T2-mapping images were obtained and analyzed. An equally-sized rectangular region of interest (ROI) was manually placed in both, the anterior and the posterior annulus fibrosus (AF), in the outermost 20% of the disc. Three ROIs were placed in the space defined as the nucleus pulposus (NP). Repeated-measures analysis of variance and paired 2-tailed t tests were used for statistical analysis, with p < 0.05 as significantly different. T2 values significantly decreased from morning to evening, in the NP (anterior NP = -13.9 ms; central NP = -17.0 ms; posterior NP = -13.3 ms; all p < 0.001). Meanwhile T2 values significantly increased in the anterior AF (+2.9 ms; p = 0.025) and the posterior AF (+5.9 ms; p < 0.001). T2 values in the posterior AF showed the largest degree of variation among the 5 ROIs, but there was no statistical significance (p = 0.414). Discs with initially low T2 values in the center NP showed a smaller degree of variation in the anterior NP and in the central NP, than in discs with initially high T2 values in the center NP (10.0% vs. 16.1%, p = 0.037; 6.4% vs. 16.1%, p = 0.006, respectively). Segmental quantitative T2 MRI provides valuable insights into physiological aspects of normal discs.

  8. Sequential variation in brain functional magnetic resonance imaging after peripheral nerve injury: A rat study.

    Science.gov (United States)

    Onishi, Okihiro; Ikoma, Kazuya; Oda, Ryo; Yamazaki, Tetsuro; Fujiwara, Hiroyoshi; Yamada, Shunji; Tanaka, Masaki; Kubo, Toshikazu

    2018-04-23

    Although treatment protocols are available, patients experience both acute neuropathic pain and chronic neuropathic pain, hyperalgesia, and allodynia after peripheral nerve injury. The purpose of this study was to identify the brain regions activated after peripheral nerve injury using functional magnetic resonance imaging (fMRI) sequentially and assess the relevance of the imaging results using histological findings. To model peripheral nerve injury in male Sprague-Dawley rats, the right sciatic nerve was crushed using an aneurysm clip, under general anesthesia. We used a 7.04T MRI system. T 2 * weighted image, coronal slice, repetition time, 7 ms; echo time, 3.3 ms; field of view, 30 mm × 30 mm; pixel matrix, 64 × 64 by zero-filling; slice thickness, 2 mm; numbers of slices, 9; numbers of average, 2; and flip angle, 8°. fMR images were acquired during electrical stimulation to the rat's foot sole; after 90 min, c-Fos immunohistochemical staining of the brain was performed in rats with induced peripheral nerve injury for 3, 6, and 9 weeks. Data were pre-processed by realignment in the Statistical Parametric Mapping 8 software. A General Linear Model first level analysis was used to obtain T-values. One week after the injury, significant changes were detected in the cingulate cortex, insular cortex, amygdala, and basal ganglia; at 6 weeks, the brain regions with significant changes in signal density were contracted; at 9 weeks, the amygdala and hippocampus showed activation. Histological findings of the rat brain supported the fMRI findings. We detected sequential activation in the rat brain using fMRI after sciatic nerve injury. Many brain regions were activated during the acute stage of peripheral nerve injury. Conversely, during the chronic stage, activation of the amygdala and hippocampus may be related to chronic-stage hyperalgesia, allodynia, and chronic neuropathic pain. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Dynamic contrast-enhanced MR imaging to assess physiologic variations of myometrial perfusion

    International Nuclear Information System (INIS)

    Thomassin-Naggara, Isabelle; Balvay, Daniel; Cuenod, Charles A.; Darai, Emile; Marsault, Claude; Bazot, Marc

    2010-01-01

    To prospectively evaluate the ability of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to assess physiological microvascular states in normal myometrium. Eighty-five women (62 women of reproductive age, 23 postmenopausal) undergoing DCE-MRI of the pelvis were included. Microvascular parameters for the inner and outer myometrium were analysed using a pharmacokinetic model. These parameters were tissue blood flow (F), blood volume fraction (V b ), permeability-surface area product (PS), interstitial volume fraction (V e ) and lag time (Dt). In the women of reproductive age, the inner myometrium displayed higher F and PS, lower V b and V e , and longer Dt than the outer myometrium (p = 0.02, p = 0.01, p = 0.005, p = 0.03 and p = 0.01, respectively). The inner myometrium presented microvascular variations during the menstrual cycle with a pre-ovulatory peak followed by a fall reaching a nadir of F and V b about 4 days after ovulation. Compared with women of reproductive age, in the postmenopausal state, F and V b decreased in the outer myometrium, while PS, V e and Dt increased (p < 0.0001, p = 0.001, p = 0.001, p = 0.03 and p = 0.0004, respectively). DCE-MRI is a non-invasive technique that can measure variations of myometrial microcirculation, and thereby be potentially useful to help characterize the role and states of the myometrium in assisted reproductive therapy. (orig.)

  10. Quantitatively differentiating microstructural variations of skeletal muscle tissues by multispectral Mueller matrix imaging

    Science.gov (United States)

    Dong, Yang; He, Honghui; He, Chao; Ma, Hui

    2016-10-01

    Polarized light is sensitive to the microstructures of biological tissues and can be used to detect physiological changes. Meanwhile, spectral features of the scattered light can also provide abundant microstructural information of tissues. In this paper, we take the backscattering polarization Mueller matrix images of bovine skeletal muscle tissues during the 24-hour experimental time, and analyze their multispectral behavior using quantitative Mueller matrix parameters. In the processes of rigor mortis and proteolysis of muscle samples, multispectral frequency distribution histograms (FDHs) of the Mueller matrix elements can reveal rich qualitative structural information. In addition, we analyze the temporal variations of the sample using the multispectral Mueller matrix transformation (MMT) parameters. The experimental results indicate that the different stages of rigor mortis and proteolysis for bovine skeletal muscle samples can be judged by these MMT parameters. The results presented in this work show that combining with the multispectral technique, the FDHs and MMT parameters can characterize the microstructural variation features of skeletal muscle tissues. The techniques have the potential to be used as tools for quantitative assessment of meat qualities in food industry.

  11. Detecting in-field variation in photosynthetic capacity of trangenically modifed plants with hyperspectral imaging.

    Science.gov (United States)

    Meacham, K.; Montes, C.; Pederson, T.; Wu, J.; Guan, K.; Bernacchi, C.

    2017-12-01

    Improved photosynthetic rates have been shown to increase crop biomass, making improved photosynthesis a focus for driving future grain yield increases. Improving the photosynthetic pathway offers opportunity to meet food demand, but requires high throughput measurement techniques to detect photosynthetic variation in natural accessions and transgenically modified plants. Gas exchange measurements are the most widely used method of measuring photosynthesis in field trials but this process is laborious and slow, and requires further modeling to estimate meaningful parameters and to upscale to the plot or canopy level. In field trials of tobacco with modifications made to the photosynthetic pathway, we infer the maximum carboxylation rate of Rubisco (Vcmax) and maximum electron transport rate (Jmax) and detect photosynthetic variation from hyperspectral imaging with a partial least squares regression technique. Ground-truth measurements from photosynthetic gas exchange, a full-range (400-2500nm) handheld spectroadiometer with leaf clip, hyperspectral indices, and extractions of leaf pigments support the model. The results from a range of wild-type cultivars and from genetically modified germplasm suggest that the opportunity for rapid selection of top performing genotypes from among thousands of plots. This research creates the opportunity to extend agroecosystem models from simplified "one-cultivar" generic parameterization to better represent a full suite of current and future crop cultivars for a wider range of environmental conditions.

  12. Normal variation and long-term reproducibility of image-selected in vivo brain MR spectroscopy

    International Nuclear Information System (INIS)

    Smith, M.A.; Porter, D.; Lowry, M.; Ayton, V.; Twelves, C.J.; Richards, M.A.; Garlick, P.; Maisey, M.N.

    1988-01-01

    MR spectroscopy of P-31 in the brain was performed with a 1.5-T MR imaging and spectroscopy system using ISIS with a 5-cm cube. A standardized spectral processing routine was adopted, and the ratios of peak areas were measured. Localized brain spectra were obtained from 17 healthy subjects, of whom ten had undergone repeated investigations after a delay of at least 1 month. The variation among healthy subjects, expressed as the mean +- standard deviation, and the long-term reproducibility, expressed as the coefficient of variation, were as follows: for peak areas phosphocreatine (PCr) Pi 2.46 +- 0.72, 21.3%, for PCr/PME, 1.97 +- 0.62, 16.8%, for PCr/PDE, 0.51 +- 0.07, 8.1%; for PCr/Υ-adenosine triphosphate (ATP), 1.13 + 0.15, 6.3%; for PCr/α-ATP, 1.09 +- 0.21, 10.3%, for PCr/β-ATP, 1.66 +- .027, 10.4%; and for pH, 7.00 +- 0.05, 0.8%

  13. Microstructure, thickness and sheet resistivity of Cu/Ni thin film produced by electroplating technique on the variation of electrolyte temperature

    Science.gov (United States)

    Toifur, M.; Yuningsih, Y.; Khusnani, A.

    2018-03-01

    In this research, it has been made Cu/Ni thin film produced with electroplating technique. The deposition process was done in the plating bath using Cu and Ni as cathode and anode respectively. The electrolyte solution was made from the mixture of HBrO3 (7.5g), NiSO4 (100g), NiCl2 (15g), and aquadest (250 ml). Electrolyte temperature was varied from 40°C up to 80°C, to make the Ni ions in the solution easy to move to Cu cathode. The deposition was done during 2 minutes on the potential of 1.5 volt. Many characterizations were done including the thickness of Ni film, microstructure, and sheet resistivity. The results showed that at all samples Ni had attacked on the Cu substrate to form Cu/Ni. The raising of electrolyte temperature affected the increasing of Ni thickness that is the Ni thickness increase with the increasing electrolyte temperature. From the EDS spectrum, it can be informed that samples already contain Ni and Cu elements and NiO and CuO compounds. Addition element and compound are found for sample Cu/Ni resulted from 70° electrolyte temperature of Ni deposition, that are Pt and PtO2. From XRD pattern, there are several phases which have crystal structure i.e. Cu, Ni, and NiO, while CuO and PtO2 have amorphous structure. The sheet resistivity linearly decreases with the increasing electrolyte temperature.

  14. Rotation and scale invariant shape context registration for remote sensing images with background variations

    Science.gov (United States)

    Jiang, Jie; Zhang, Shumei; Cao, Shixiang

    2015-01-01

    Multitemporal remote sensing images generally suffer from background variations, which significantly disrupt traditional region feature and descriptor abstracts, especially between pre and postdisasters, making registration by local features unreliable. Because shapes hold relatively stable information, a rotation and scale invariant shape context based on multiscale edge features is proposed. A multiscale morphological operator is adapted to detect edges of shapes, and an equivalent difference of Gaussian scale space is built to detect local scale invariant feature points along the detected edges. Then, a rotation invariant shape context with improved distance discrimination serves as a feature descriptor. For a distance shape context, a self-adaptive threshold (SAT) distance division coordinate system is proposed, which improves the discriminative property of the feature descriptor in mid-long pixel distances from the central point while maintaining it in shorter ones. To achieve rotation invariance, the magnitude of Fourier transform in one-dimension is applied to calculate angle shape context. Finally, the residual error is evaluated after obtaining thin-plate spline transformation between reference and sensed images. Experimental results demonstrate the robustness, efficiency, and accuracy of this automatic algorithm.

  15. Limited data tomographic image reconstruction via dual formulation of total variation minimization

    Science.gov (United States)

    Jang, Kwang Eun; Sung, Younghun; Lee, Kangeui; Lee, Jongha; Cho, Seungryong

    2011-03-01

    The X-ray mammography is the primary imaging modality for breast cancer screening. For the dense breast, however, the mammogram is usually difficult to read due to tissue overlap problem caused by the superposition of normal tissues. The digital breast tomosynthesis (DBT) that measures several low dose projections over a limited angle range may be an alternative modality for breast imaging, since it allows the visualization of the cross-sectional information of breast. The DBT, however, may suffer from the aliasing artifact and the severe noise corruption. To overcome these problems, a total variation (TV) regularized statistical reconstruction algorithm is presented. Inspired by the dual formulation of TV minimization in denoising and deblurring problems, we derived a gradient-type algorithm based on statistical model of X-ray tomography. The objective function is comprised of a data fidelity term derived from the statistical model and a TV regularization term. The gradient of the objective function can be easily calculated using simple operations in terms of auxiliary variables. After a descending step, the data fidelity term is renewed in each iteration. Since the proposed algorithm can be implemented without sophisticated operations such as matrix inverse, it provides an efficient way to include the TV regularization in the statistical reconstruction method, which results in a fast and robust estimation for low dose projections over the limited angle range. Initial tests with an experimental DBT system confirmed our finding.

  16. Optimization image of magnetic resonance imaging (MRI) T2 fast spin echo (FSE) with variation echo train length (ETL) on the rupture tendon achilles case

    International Nuclear Information System (INIS)

    Muzamil, Akhmad; Firmansyah, Achmad Haries

    2017-01-01

    The research was done the optimization image of Magnetic Resonance Imaging (MRI) T2 Fast Spin Echo (FSE) with variation Echo Train Length (ETL) on the Rupture Tendon Achilles case. This study aims to find the variations Echo Train Length (ETL) from the results of ankle’s MRI image and find out how the value of Echo Train Length (ETL) works on the MRI ankle to produce optimal image. In this research, the used ETL variations were 12 and 20 with the interval 2 on weighting T2 FSE sagittal. The study obtained the influence of Echo Train Length (ETL) on the quality of ankle MRI image sagittal using T2 FSE weighting and analyzed in 25 images of five patients. The data analysis has done quantitatively with the Region of Interest (ROI) directly on computer MRI image planes which conducted statistical tests Signal to Noise Ratio (SNR) and Contras to Noise Ratio (CNR). The Signal to Noise Ratio (SNR) was the highest finding on fat tissue, while the Contras to Noise Ratio (CNR) on the Tendon-Fat tissue with ETL 12 found in two patients. The statistics test showed the significant SNR value of the 0.007 (p<0.05) of Tendon tissue, 0.364 (p>0.05) of the Fat, 0.912 (p>0.05) of the Fibula, and 0.436 (p>0.05) of the Heel Bone. For the contrast to noise ratio (CNR) of the Tendon-FAT tissue was about 0.041 (p>0.05). The results of the study showed that ETL variation with T2 FSE sagittal weighting had difference at Tendon tissue and Tendon-Fat tissue for MRI imaging quality. SNR and CNR were an important aspect on imaging optimization process to give the diagnose information. (paper)

  17. Imaging Seismic Source Variations Using Back-Projection Methods at El Tatio Geyser Field, Northern Chile

    Science.gov (United States)

    Kelly, C. L.; Lawrence, J. F.

    2014-12-01

    During October 2012, 51 geophones and 6 broadband seismometers were deployed in an ~50x50m region surrounding a periodically erupting columnar geyser in the El Tatio Geyser Field, Chile. The dense array served as the seismic framework for a collaborative project to study the mechanics of complex hydrothermal systems. Contemporaneously, complementary geophysical measurements (including down-hole temperature and pressure, discharge rates, thermal imaging, water chemistry, and video) were also collected. Located on the western flanks of the Andes Mountains at an elevation of 4200m, El Tatio is the third largest geyser field in the world. Its non-pristine condition makes it an ideal location to perform minutely invasive geophysical studies. The El Jefe Geyser was chosen for its easily accessible conduit and extremely periodic eruption cycle (~120s). During approximately 2 weeks of continuous recording, we recorded ~2500 nighttime eruptions which lack cultural noise from tourism. With ample data, we aim to study how the source varies spatially and temporally during each phase of the geyser's eruption cycle. We are developing a new back-projection processing technique to improve source imaging for diffuse signals. Our method was previously applied to the Sierra Negra Volcano system, which also exhibits repeating harmonic and diffuse seismic sources. We back-project correlated seismic signals from the receivers back to their sources, assuming linear source to receiver paths and a known velocity model (obtained from ambient noise tomography). We apply polarization filters to isolate individual and concurrent geyser energy associated with P and S phases. We generate 4D, time-lapsed images of the geyser source field that illustrate how the source distribution changes through the eruption cycle. We compare images for pre-eruption, co-eruption, post-eruption and quiescent periods. We use our images to assess eruption mechanics in the system (i.e. top-down vs. bottom-up) and

  18. Effects of small variations of speed of sound in optoacoustic tomographic imaging

    International Nuclear Information System (INIS)

    Deán-Ben, X. Luís; Ntziachristos, Vasilis; Razansky, Daniel

    2014-01-01

    Purpose: Speed of sound difference in the imaged object and surrounding coupling medium may reduce the resolution and overall quality of optoacoustic tomographic reconstructions obtained by assuming a uniform acoustic medium. In this work, the authors investigate the effects of acoustic heterogeneities and discuss potential benefits of accounting for those during the reconstruction procedure. Methods: The time shift of optoacoustic signals in an acoustically heterogeneous medium is studied theoretically by comparing different continuous and discrete wave propagation models. A modification of filtered back-projection reconstruction is subsequently implemented by considering a straight acoustic rays model for ultrasound propagation. The results obtained with this reconstruction procedure are compared numerically and experimentally to those obtained assuming a heuristically fitted uniform speed of sound in both full-view and limited-view optoacoustic tomography scenarios. Results: The theoretical analysis showcases that the errors in the time-of-flight of the signals predicted by considering the straight acoustic rays model tend to be generally small. When using this model for reconstructing simulated data, the resulting images accurately represent the theoretical ones. On the other hand, significant deviations in the location of the absorbing structures are found when using a uniform speed of sound assumption. The experimental results obtained with tissue-mimicking phantoms and a mouse postmortem are found to be consistent with the numerical simulations. Conclusions: Accurate analysis of effects of small speed of sound variations demonstrates that accounting for differences in the speed of sound allows improving optoacoustic reconstruction results in realistic imaging scenarios involving acoustic heterogeneities in tissues and surrounding media

  19. Evaluation of gestational diabetes mellitus risk factors using abdominal subcutaneous fat thickness for early pregnancy in the US imaging

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Chang Soo; Kim, Jung Hoon [Dept. of Radiological Science, College of Health Sciences, Catholic University of Pusan, Busan (Korea, Republic of); Yang, Sung Hee [Dept. of Radiology, Ilsin Christian Hospital, Busan (Korea, Republic of)

    2017-03-15

    The purpose of this study was to investigate the relationship between abdominal subcutaneous fat thickness(ASFT) and maternal gestational diabetes mellitus(GDM) measured by ultrasound at period of pregnancy. We compared maternal age, pre-pregnancy body mass index, and weight gain during pregnancy in 286 pregnant women who were diagnosed with early pregnancy ASFT and high GDM screening test(50 g OGTT) of more than 140 mg/dL. ROC curve analysis was used to determine the cut-off value of ASFT for GDM prediction. Maternal age and weight gain during pregnancy were not related to GDM in the mid-trimester and pre-pregnancy body mass index and early pregnancy ASFT were significantly different between normal and GDM high risk groups. The cut-off value of ASFT for GDM prediction was 2.23 cm(AUC 0.913. Sensitivity 76.19%, Specificity 93.72%). ASFT measured by ultrasound in early pregnancy was useful as an important index for predicting mid-trimester GDM prediction. Therefore, ASFT can be used as an auxiliary diagnostic index for early recognition of GDM.

  20. Evaluation of gestational diabetes mellitus risk factors using abdominal subcutaneous fat thickness for early pregnancy in the US imaging

    International Nuclear Information System (INIS)

    Kim, Chang Soo; Kim, Jung Hoon; Yang, Sung Hee

    2017-01-01

    The purpose of this study was to investigate the relationship between abdominal subcutaneous fat thickness(ASFT) and maternal gestational diabetes mellitus(GDM) measured by ultrasound at period of pregnancy. We compared maternal age, pre-pregnancy body mass index, and weight gain during pregnancy in 286 pregnant women who were diagnosed with early pregnancy ASFT and high GDM screening test(50 g OGTT) of more than 140 mg/dL. ROC curve analysis was used to determine the cut-off value of ASFT for GDM prediction. Maternal age and weight gain during pregnancy were not related to GDM in the mid-trimester and pre-pregnancy body mass index and early pregnancy ASFT were significantly different between normal and GDM high risk groups. The cut-off value of ASFT for GDM prediction was 2.23 cm(AUC 0.913. Sensitivity 76.19%, Specificity 93.72%). ASFT measured by ultrasound in early pregnancy was useful as an important index for predicting mid-trimester GDM prediction. Therefore, ASFT can be used as an auxiliary diagnostic index for early recognition of GDM

  1. Experimental Influences in the Accurate Measurement of Cartilage Thickness in MRI.

    Science.gov (United States)

    Wang, Nian; Badar, Farid; Xia, Yang

    2018-01-01

    Objective To study the experimental influences to the measurement of cartilage thickness by magnetic resonance imaging (MRI). Design The complete thicknesses of healthy and trypsin-degraded cartilage were measured at high-resolution MRI under different conditions, using two intensity-based imaging sequences (ultra-short echo [UTE] and multislice-multiecho [MSME]) and 3 quantitative relaxation imaging sequences (T 1 , T 2 , and T 1 ρ). Other variables included different orientations in the magnet, 2 soaking solutions (saline and phosphate buffered saline [PBS]), and external loading. Results With cartilage soaked in saline, UTE and T 1 methods yielded complete and consistent measurement of cartilage thickness, while the thickness measurement by T 2 , T 1 ρ, and MSME methods were orientation dependent. The effect of external loading on cartilage thickness is also sequence and orientation dependent. All variations in cartilage thickness in MRI could be eliminated with the use of a 100 mM PBS or imaged by UTE sequence. Conclusions The appearance of articular cartilage and the measurement accuracy of cartilage thickness in MRI can be influenced by a number of experimental factors in ex vivo MRI, from the use of various pulse sequences and soaking solutions to the health of the tissue. T 2 -based imaging sequence, both proton-intensity sequence and quantitative relaxation sequence, similarly produced the largest variations. With adequate resolution, the accurate measurement of whole cartilage tissue in clinical MRI could be utilized to detect differences between healthy and osteoarthritic cartilage after compression.

  2. A simple method of correcting for variation of sample thickness in the determination of the activity of environmental samples by gamma spectrometry

    International Nuclear Information System (INIS)

    Galloway, R.B.

    1991-01-01

    Gamma ray spectrometry is a well established method of determining the activity of radioactive components in environmental samples. It is usual to maintain precisely the same counting geometry in measurements on samples under investigation as in the calibration measurements on standard materials of known activity, thus avoiding perceived uncertainties and complications in correcting for changes in counting geometry. However this may not always be convenient if, as on some occasions, only a small quantity of sample material is available for analysis. A procedure which avoids re-calibration for each sample size is described and is shown to be simple to use without significantly reducing the accuracy of measurement of the activity of typical environmental samples. The correction procedure relates to the use of cylindrical samples at a constant distance from the detector, the samples all having the same diameter but various thicknesses being permissible. (author)

  3. The effect of unilateral partial edentulism to muscle thickness

    International Nuclear Information System (INIS)

    Koca-Ceylan, Golzem; Guler, Ahmet U.; Taskay-Yelmir, Nergiz; Lutfi, Incesu; Aksoz, Tolga

    2003-01-01

    Teeth and muscle play a very important role for occlusal equilibrium and function.when tooth loss begins ,it may also effect the function of muscle tissues. The thickness of masseter and anterior temporalis muscles were measured bilaterally in 30 healthy fully dentate adults and in 30 unilateral edentulous patients by using ultrasonographic imaging. All scans were carried out by the same radiologist to eliminate the inter-observer difference, using a real time scanner (Toshiba SSA -270A,Japan). A 7.5 MHz linear transducer was used. The effect of age, sex, duration of partial edentulism, unilateral chewing habits of the individuals to the muscle thickness were also evaluated. In all subjects,facial proportion index was also determined. Main purpose of this study was to compare and establish the differences of muscle thickness between dentate and edentulous side in unilateral partial edentulous patients with ultrasonography and to test whether the variation in the thickness of the muscle is related to the variation in the facial and morphology. Ultrasonography revealed a large variation in the thickness of the masseter and temporolis muscles in experimental and controlled groups ,both relaxed and contracted conditions.The thickness of muscles in females was less in both conditions.In experimental group, a high negative correlation was found between the thickness of the masseter muscle and Facial Proportion Index ( FPI) in the females ,however, the statistical analysis showed no significant difference in the males. Also a high negative correlation was found in female control group. There was no statistically significant relationship between unilateral chewing habits and muscle thickness .In this study the duration of partial edentulism did not affect the thickness of the muscle.Further research is required to study muscular atrophy for comparison with total edentulism. (author)

  4. Precision of hyaline cartilage thickness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, K.; Buckwalter, K.; Helvie, M.; Niklason, L.; Martel, W. (Univ. of Michigan Hospitals, Ann Arbor, MI (United States). Dept. of Radiology)

    1992-05-01

    Measurement of cartilage thickness in vivo is an important indicator of the status of a joint as the various degenerative and inflammatory arthritides directly affect the condition of the cartilage. In order to assess the precision of thickness measurements of hyaline articular cartilage, we undertook a pilot study using MR imaging, plain radiography, and ultrasonography (US). We measured the cartilage of the hip and knee joints in 10 persons (4 healthy volunteers and 6 patients). The joints in each patient were examined on two separate occasions using each modality. In the hips a swell as the knee joints, the most precise measuring method was plain film radiography. For radiographs of the knees obtained in the standing position, the coefficient of variation was 6.5%; in the hips this figure was 6.34%. US of the knees and MR imaging of the hips were the second best modalities in the measurement of cartilage thickness. In addition, MR imaging enabled the most complete visualization of the joint cartilage. (orig.).

  5. Significance of operator variation and the angle of illumination in lineament analysis on synoptic images. [LANDSAT geological investigations

    Science.gov (United States)

    Siegal, B. S.; Short, N. M.

    1977-01-01

    The significance of operator variation and the angle of illumination in acquired imagery is analyzed for lineament analysis. Five operators analyzed a LANDSAT image and four photographs of a plastic relief map illuminated at a low angle from varying directions of the Prescott, Arizona region. Significant differences were found in both number and length of the lineaments recognized by the different investigators for the images. The actual coincidence of lineaments recognized by the investigators for the same image is exceptionally low. Even the directional data on lineament orientation is significantly different from operator to operator and from image to image. Cluster analysis of the orientation data displays a clustering by operators rather than by images. It is recommended that extreme caution be taken before attempting to compare different investigators' results in lineament analysis.

  6. Dynamic contrast-enhanced MR imaging to assess physiologic variations of myometrial perfusion

    Energy Technology Data Exchange (ETDEWEB)

    Thomassin-Naggara, Isabelle [Assistance Publique-Hopitaux de Paris, Department of Radiology, Hopital Tenon, Paris (France); Universite Rene Descartes, Laboratoire de Recherche en Imagerie-INSERM U970, Paris (France); Hopital Tenon, Service de Radiologie, Paris (France); Balvay, Daniel [Universite Rene Descartes, Laboratoire de Recherche en Imagerie-INSERM U970, Paris (France); Cuenod, Charles A. [Universite Rene Descartes, Laboratoire de Recherche en Imagerie-INSERM U970, Paris (France); Hopital Europeen Georges Pompidou (HEGP), Department of Radiology, Paris (France); Darai, Emile [Assistance Publique-Hopitaux de Paris, Department of Gynaecology-Obstetrics, Hopital Tenon, Paris (France); Marsault, Claude; Bazot, Marc [Assistance Publique-Hopitaux de Paris, Department of Radiology, Hopital Tenon, Paris (France)

    2010-04-15

    To prospectively evaluate the ability of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) to assess physiological microvascular states in normal myometrium. Eighty-five women (62 women of reproductive age, 23 postmenopausal) undergoing DCE-MRI of the pelvis were included. Microvascular parameters for the inner and outer myometrium were analysed using a pharmacokinetic model. These parameters were tissue blood flow (F), blood volume fraction (V{sub b}), permeability-surface area product (PS), interstitial volume fraction (V{sub e}) and lag time (Dt). In the women of reproductive age, the inner myometrium displayed higher F and PS, lower V{sub b} and V{sub e}, and longer Dt than the outer myometrium (p = 0.02, p = 0.01, p = 0.005, p = 0.03 and p = 0.01, respectively). The inner myometrium presented microvascular variations during the menstrual cycle with a pre-ovulatory peak followed by a fall reaching a nadir of F and V{sub b} about 4 days after ovulation. Compared with women of reproductive age, in the postmenopausal state, F and V{sub b} decreased in the outer myometrium, while PS, V{sub e} and Dt increased (p < 0.0001, p = 0.001, p = 0.001, p = 0.03 and p = 0.0004, respectively). DCE-MRI is a non-invasive technique that can measure variations of myometrial microcirculation, and thereby be potentially useful to help characterize the role and states of the myometrium in assisted reproductive therapy. (orig.)

  7. Diurnal microstructural variations in healthy adult brain revealed by diffusion tensor imaging.

    Directory of Open Access Journals (Sweden)

    Chunxiang Jiang

    Full Text Available Biorhythm is a fundamental property of human physiology. Changes in the extracellular space induced by cell swelling in response to the neural activity enable the in vivo characterization of cerebral microstructure by measuring the water diffusivity using diffusion tensor imaging (DTI. To study the diurnal microstructural alterations of human brain, fifteen right-handed healthy adult subjects were recruited for DTI studies in two repeated sessions (8∶30 AM and 8∶30 PM within a 24-hour interval. Fractional anisotropy (FA, apparent diffusion coefficient (ADC, axial (λ// and radial diffusivity (λ⊥ were compared pixel by pixel between the sessions for each subject. Significant increased morning measurements in FA, ADC, λ// and λ⊥ were seen in a wide range of brain areas involving frontal, parietal, temporal and occipital lobes. Prominent evening dominant λ⊥ (18.58% was detected in the right inferior temporal and ventral fusiform gyri. AM-PM variation of λ⊥ was substantially left side hemisphere dominant (p<0.05, while no hemispheric preference was observed for the same analysis for ADC (p = 0.77, λ// (p = 0.08 or FA (p = 0.25. The percentage change of ADC, λ//, λ⊥, and FA were 1.59%, 2.15%, 1.20% and 2.84%, respectively, for brain areas without diurnal diffusivity contrast. Microstructural variations may function as the substrates of the phasic neural activities in correspondence to the environment adaptation in a light-dark cycle. This research provided a baseline for researches in neuroscience, sleep medicine, psychological and psychiatric disorders, and necessitates that diurnal effect should be taken into account in following up studies using diffusion tensor quantities.

  8. MR imaging after rotator cuff repair: full-thickness defects and bursitis-like subacromial abnormalities in asymptomatic subjects

    International Nuclear Information System (INIS)

    Zanetti, M.; Hodler, J.; Jost, B.; Gerber, C.

    2000-01-01

    Objective. To determine the prevalence and extent of residual defects or retears and bursitis-like subacromial abnormalities on MR images after rotator cuff repair in asymptomatic subjects, and to define the clinical relevance of these findings.Design and patients. Fourteen completely asymptomatic patients and 32 patients with residual symptoms were investigated 27-53 months (mean 39 months) after open transosseous reinsertion of the rotator cuff. Coronal T2-weighted turbo spin-echo and turbo STIR or T2-weighted fat-suppressed MR images were obtained. The prevalence and extent of residual defects or retears of the rotator cuff and bursitis-like subacromial abnormalities were determined.Results. Residual defects or retears were detected in three (21%) and bursitis-like abnormalities in 14 (100%) of the 14 asymptomatic patients. Fifteen (47%) residual defects or retears and 31 (97%) bursitis-like abnormalities were diagnosed in the 32 patients with residual symptoms. The size of the residual defects/retears was significantly smaller in the asymptomatic group (mean 8 mm, range 6-11 mm) than in the symptomatic group (mean 32 mm, range 7-50 mm) (t-test, P=0.001). The extent of the bursitis-like subacromial abnormalities did not significantly differ (t-test, P>0.05) between asymptomatic (mean 28 x 3 mm) and symptomatic patients (mean 32 x 3 mm).Conclusion. Small residual defects or retears (<1 cm) of the rotator cuff are not necessarily associated with clinical symptoms. Subacromial bursitis-like MR abnormalities are almost always seen after rotator cuff repair even in patients without residual complaints. They may persist for several years after rotator cuff repair and appear to be clinically irrelevant. (orig.)

  9. MR imaging after rotator cuff repair: full-thickness defects and bursitis-like subacromial abnormalities in asymptomatic subjects

    Energy Technology Data Exchange (ETDEWEB)

    Zanetti, M.; Hodler, J. [Dept. of Radiology, University Hospital Balgrist, Zurich (Switzerland); Jost, B.; Gerber, C. [Dept. of Orthopedic Surgery, University Hospital Balgrist, Zurich (Switzerland)

    2000-06-01

    Objective. To determine the prevalence and extent of residual defects or retears and bursitis-like subacromial abnormalities on MR images after rotator cuff repair in asymptomatic subjects, and to define the clinical relevance of these findings.Design and patients. Fourteen completely asymptomatic patients and 32 patients with residual symptoms were investigated 27-53 months (mean 39 months) after open transosseous reinsertion of the rotator cuff. Coronal T2-weighted turbo spin-echo and turbo STIR or T2-weighted fat-suppressed MR images were obtained. The prevalence and extent of residual defects or retears of the rotator cuff and bursitis-like subacromial abnormalities were determined.Results. Residual defects or retears were detected in three (21%) and bursitis-like abnormalities in 14 (100%) of the 14 asymptomatic patients. Fifteen (47%) residual defects or retears and 31 (97%) bursitis-like abnormalities were diagnosed in the 32 patients with residual symptoms. The size of the residual defects/retears was significantly smaller in the asymptomatic group (mean 8 mm, range 6-11 mm) than in the symptomatic group (mean 32 mm, range 7-50 mm) (t-test, P=0.001). The extent of the bursitis-like subacromial abnormalities did not significantly differ (t-test, P>0.05) between asymptomatic (mean 28 x 3 mm) and symptomatic patients (mean 32 x 3 mm).Conclusion. Small residual defects or retears (<1 cm) of the rotator cuff are not necessarily associated with clinical symptoms. Subacromial bursitis-like MR abnormalities are almost always seen after rotator cuff repair even in patients without residual complaints. They may persist for several years after rotator cuff repair and appear to be clinically irrelevant. (orig.)

  10. The Kepler-19 System: A Thick-envelope Super-Earth with Two Neptune-mass Companions Characterized Using Radial Velocities and Transit Timing Variations

    Energy Technology Data Exchange (ETDEWEB)

    Malavolta, Luca; Borsato, Luca; Granata, Valentina; Piotto, Giampaolo; Nascimbeni, Valerio [Dipartimento di Fisica e Astronomia “Galileo Galilei”, Universita’di Padova, Vicolo dell’Osservatorio 3, I-35122 Padova (Italy); Lopez, Eric [SUPA, Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill, Edinburgh, EH93HJ (United Kingdom); Vanderburg, Andrew; Charbonneau, David [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138 (United States); Figueira, Pedro [Instituto de Astrofísica e Ciências do Espaço, Universidade do Porto, CAUP, Rua das Estrelas, PT4150-762 Porto (Portugal); Mortier, Annelies; Cameron, Andrew Collier [Centre for Exoplanet Science, SUPA, School of Physics and Astronomy, University of St. Andrews, St. Andrews KY16 9SS (United Kingdom); Affer, Laura [INAF—Osservatorio Astronomico di Palermo, Piazza del Parlamento 1, I-90124 Palermo (Italy); Bonomo, Aldo S. [INAF—Osservatorio Astrofisico di Torino, via Osservatorio 20, I-10025 Pino Torinese (Italy); Bouchy, Francois [Observatoire Astronomique de l’Université de Genève, 51 ch. des Maillettes, 1290 Versoix (Switzerland); Buchhave, Lars A. [Centre for Star and Planet Formation, Natural History Museum of Denmark and Niels Bohr Institute, University of Copenhagen, Øster Voldgade 5-7, DK-1350 Copenhagen K (Denmark); Cosentino, Rosario, E-mail: luca.malavolta@unipd.it [INAF—Fundación Galileo Galilei, Rambla José Ana Fernandez Pérez 7, E-38712 Breña Baja (Spain); and others

    2017-05-01

    We report a detailed characterization of the Kepler-19 system. This star was previously known to host a transiting planet with a period of 9.29 days, a radius of 2.2 R {sub ⊕}, and an upper limit on the mass of 20 M {sub ⊕}. The presence of a second, non-transiting planet was inferred from the transit time variations (TTVs) of Kepler-19b over eight quarters of Kepler photometry, although neither the mass nor period could be determined. By combining new TTVs measurements from all the Kepler quarters and 91 high-precision radial velocities obtained with the HARPS-N spectrograph, using dynamical simulations we obtained a mass of 8.4 ± 1.6 M {sub ⊕} for Kepler-19b. From the same data, assuming system coplanarity, we determined an orbital period of 28.7 days and a mass of 13.1 ± 2.7 M {sub ⊕} for Kepler-19c and discovered a Neptune-like planet with a mass of 20.3 ± 3.4 M {sub ⊕} on a 63-day orbit. By comparing dynamical simulations with non-interacting Keplerian orbits, we concluded that neglecting interactions between planets may lead to systematic errors that can hamper the precision in the orbital parameters when the data set spans several years. With a density of 4.32 ± 0.87 g cm{sup −3} (0.78 ± 0.16 ρ {sub ⊕}) Kepler-19b belongs to the group of planets with a rocky core and a significant fraction of volatiles, in opposition to low-density planets characterized only by transit time variations and an increasing number of rocky planets with Earth-like density. Kepler-19 joins the small number of systems that reconcile transit timing variation and radial velocity measurements.

  11. Application of the ROC method to assessment of image quality issues in mammography. Part 2. Comparative evaluation of image quality and radiation dose to thick body sections

    International Nuclear Information System (INIS)

    Klein, R.; Saebel, M.

    2000-01-01

    For the experimental comparative assessment reported, the following radiation qualities were compared for radiation dose applied and image quality: molydenum anode, 30mum molybdenum filter, X-ray tube potential differences of 26-32 kV; molybdenum anode, 25 mum rhodium filter, X-ray tube potential differences of 26-32 kV; tungsten anode, 50 mum rhodium filter, X-ray tube potential differences of 26-32 kV. The results show that in the differentiated assessment according to the various radiation qualities, significant deviations in imaging quality of the different detail types are possible. (orig./CB) [de

  12. Numerical investigation on the variation of welding stresses after material removal from a thick titanium alloy plate joined by electron beam welding

    International Nuclear Information System (INIS)

    Liu, Chuan; Zhang, Jianxun; Wu, Bing; Gong, Shuili

    2012-01-01

    Highlights: → After less materials removal from the top, stresses on the bottom remain unchanged. → The transverse stress within the weld decreases significantly with material removal. → Local material removal does not influence the longitudinal stress significantly. -- Abstract: The stress modification after material removal from a 50 mm thick titanium alloy plate jointed by electron beam welding (EBW) was investigated through the finite element method (FEM). The welding experiment and milling process were carried out to experimentally determine the stresses induced by EBW and their modification after local material removal. The modification of as-welded stresses due to the local material removal method and the whole layer removal method was discussed with the finite element analysis. Investigated results showed that with less materials removal from the top, the stresses on the bottom surface remain almost unchanged; after material removal from the top and bottom part, the transverse stress on the newly-formed surface decreases significantly as compared to the as-welded stresses at the same locations; however, the stress modification only occurs at the material removal region in the case of local region removal method; the longitudinal stress decreases with the whole layer removal method while remains almost unchanged with the local region removal method.

  13. Diurnal, Seasonal, and Interannual Variations of Cloud Properties Derived for CERES From Imager Data

    Science.gov (United States)

    Minnis, Patrick; Young, David F.; Sun-Mack, Sunny; Trepte, Qing Z.; Chen, Yan; Brown, Richard R.; Gibson, Sharon; Heck, Patrick W.

    2004-01-01

    Simultaneous measurement of the radiation and cloud fields on a global basis is a key component in the effort to understand and model the interaction between clouds and radiation at the top of the atmosphere, at the surface, and within the atmosphere. The NASA Clouds and Earth s Radiant Energy System (CERES) Project, begun in 1998, is meeting this need. Broadband shortwave (SW) and longwave radiance measurements taken by the CERES scanners at resolutions between 10 and 20 km on the Tropical Rainfall Measuring Mission (TRMM), Terra, and Aqua satellites are matched to simultaneous retrievals of cloud height, phase, particle size, water path, and optical depth OD from the TRMM Visible Infrared Scanner (VIRS) and the Moderate Resolution Imaging Spectroradiometer (MODIS) on Terra and Aqua. Besides aiding the interpretation of the broadband radiances, the CERES cloud properties are valuable for understanding cloud variations at a variety of scales. In this paper, the resulting CERES cloud data taken to date are averaged at several temporal scales to examine the temporal and spatial variability of the cloud properties on a global scale at a 1 resolution.

  14. 3D imaging of hematoxylin and eosin stained thick tissues with a sub-femtoliter resolution by using Cr:forsterite-laser-based nonlinear microscopy (Conference Presentation)

    Science.gov (United States)

    Kao, Chien-Ting; Wei, Ming-Liang; Liao, Yi-Hua; Sun, Chi-Kuang

    2017-02-01

    Intraoperative assessment of excision tissues during cancer surgery is clinically important. The assessment is used to be guided by the examination for residual tumor with frozen pathology, while it is time consuming for preparation and is with low accuracy for diagnosis. Recently, reflection confocal microscopy (RCM) and nonlinear microscopy (NLM) were demonstrated to be promising methods for surgical border assessment. Intraoperative RCM imaging may enable detection of residual tumor directly on skin cancers patients during Mohs surgery. The assessment of benign and malignant breast pathologies in fresh surgical specimens was demonstrated by NLM. Without using hematoxylin and eosin (H and E) that are common dyes for histopathological diagnosis, RCM was proposed to image in vivo by using aluminum chloride for nuclear contrast on surgical wounds directly, while NLM was proposed to detect two photon fluorescence nuclear contrast from acrdine orange staining. In this paper, we propose and demonstrate 3D imaging of H and E stained thick tissues with a sub-femtoliter resolution by using Cr:forsterite-laser-based NLM. With a 1260 nm femtosecond Cr:forsterite laser as the excitation source, the hematoxylin will strongly enhance the third-harmonic generation (THG) signals, while eosin will illuminate strong fluorescence under three photon absorption. Compared with previous works, the 1260 nm excitation light provide high penetration and low photodamage to the exercised tissues so that the possibility to perform other follow-up examination will be preserved. The THG and three-photon process provides high nonlinearity so that the super resolution in 3D is now possible. The staining and the contrast of the imaging is also fully compatible with the current clinical standard on frozen pathology thus facilitate the rapid intraoperative assessment of excision tissues. This work is sponsored by National Health Research Institutes and supported by National Taiwan University

  15. Green roof seasonal variation: comparison of the hydrologic behavior of a thick and a thin extensive system in New York City

    Science.gov (United States)

    Elliott, R. M.; Gibson, R. A.; Carson, T. B.; Marasco, D. E.; Culligan, P. J.; McGillis, W. R.

    2016-07-01

    Green roofs have been utilized for urban stormwater management due to their ability to capture rainwater locally. Studies of the most common type, extensive green roofs, have demonstrated that green roofs can retain significant amounts of stormwater, but have also shown variation in seasonal performance. The purpose of this study is to determine how time of year impacts the hydrologic performance of extensive green roofs considering the covariates of antecedent dry weather period (ADWP), potential evapotranspiration (ET0) and storm event size. To do this, nearly four years of monitoring data from two full-scale extensive green roofs (with differing substrate depths of 100 mm and 31 mm) are analyzed. The annual performance is then modeled using a common empirical relationship between rainfall and green roof runoff, with the addition of Julian day in one approach, ET0 in another, and both ADWP and ET0 in a third approach. Together the monitoring and modeling results confirm that stormwater retention is highest in warmer months, the green roofs retain more rainfall with longer ADWPs, and the seasonal variations in behavior are more pronounced for the roof with the thinner media than the roof with the deeper media. Overall, the ability of seasonal accounting to improve stormwater retention modeling is demonstrated; modification of the empirical model to include ADWP, and ET0 improves the model R 2 from 0.944 to 0.975 for the thinner roof, and from 0.866 to 0.870 for the deeper roof. Furthermore, estimating the runoff with the empirical approach was shown to be more accurate then using a water balance model, with model R 2 of 0.944 and 0.866 compared to 0.975 and 0.866 for the thinner and deeper roof, respectively. This finding is attributed to the difficulty of accurately parameterizing the water balance model.

  16. Quaternary volcanism near the Valley of Mexico: implications for subduction zone magmatism and the effects of crustal thickness variations on primitive magma compositions

    Science.gov (United States)

    Wallace, Paul J.; Carmichael, Ian S. E.

    The Valley of Mexico and surrounding regions of Mexico and Morelos states in central Mexico contain more than 250 Quaternary eruptive vents in addition to the large, composite volcanoes of Popocatépetl, Iztaccíhuatl, and Nevado de Toluca. The eruptive vents include cinder and lava cones, shield volcanoes, and isolated andesitic and dacitic lava flows, and are most numerous in the Sierra Chichináutzin that forms the southern terminus of the Valley of Mexico. The Chichináutzin volcanic field (CVF) is part of the E-W-trending Mexican Volcanic Belt (MVB), a subduction-related volcanic arc that extends across Mexico. The crustal thickness beneath the CVF ( 50km) is the greatest of any region in the MVB and one of the greatest found in any arc worldwide. Lavas and scoriae erupted from vents in the CVF include alkaline basalts and calc-alkaline basaltic andesites, andesites, and dacites. Both alkaline and calc-alkaline groups contain primitive varieties that have whole rock Mg#, MgO, and Ni contents, and liquidus olivine compositions (<=Fo90) that are close to those expected of partial melts from mantle peridotite. Primitive varieties also show a wide range of incompatible trace element abundances (e.g. Ba 210-1080ppm Ce 25-100ppm Zr 130-280ppm). Data for primitive calc-alkaline rocks from both the CVF and other regions of the MVB to the west are consistent with magma generation in an underlying mantle wedge that is depleted in Ti, Zr, and Nb and enriched in large ion lithophile (K, Ba, Rb) and light rare earth (La, Ce) elements. Extents of partial melting estimated from Ti and Zr data are lower for primitive calc-alkaline magmas in the CVF than for those from the regions of the MVB to the west where the crust is thinner. The distinctive major element compositions (low CaO and Al2O3, high SiO2) of the primitive calc-alkaline magmas in the CVF indicate a more refractory mantle source beneath this region of thick crust. In contrast, primitive alkaline magmas from the

  17. Control of Porosity and Spatter in Laser Welding of Thick AlMg5 Parts Using High-Speed Imaging and Optical Microscopy

    Directory of Open Access Journals (Sweden)

    Andrei C. Popescu

    2017-10-01

    Full Text Available We report on a feedback mechanism for rapid identification of optimal laser parameters during welding of AlMg5 coupons using real-time monitoring by high-speed imaging. The purpose was to constrain the liquid movement in the groove in order to obtain pore-free welds in this otherwise difficult-to-weld alloy. High-speed imaging of the welding process via an optical microscope allowed for recording at millimeter level, providing new information on liquid-metal dynamics during laser irradiation as well as plausible explanations for spatter occurrence and pores formation. The pore formation and especially the position of these pores had to be controlled in order to weld 3 mm thick samples. By tuning both laser power and pulse duration, pores were aligned on a single line, at the bottom of the weld. A laser pass of reduced power on that side was then sufficient for removing all pores and providing a suitable weld.

  18. An improved algorithm of image processing technique for film thickness measurement in a horizontal stratified gas-liquid two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Kuntoro, Hadiyan Yusuf, E-mail: hadiyan.y.kuntoro@mail.ugm.ac.id; Majid, Akmal Irfan; Deendarlianto, E-mail: deendarlianto@ugm.ac.id [Center for Energy Studies, Gadjah Mada University, Sekip K-1A Kampus UGM, Yogyakarta 55281 (Indonesia); Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University, Jalan Grafika 2, Yogyakarta 55281 (Indonesia); Hudaya, Akhmad Zidni; Dinaryanto, Okto [Department of Mechanical and Industrial Engineering, Faculty of Engineering, Gadjah Mada University, Jalan Grafika 2, Yogyakarta 55281 (Indonesia)

    2016-06-03

    Due to the importance of the two-phase flow researches for the industrial safety analysis, many researchers developed various methods and techniques to study the two-phase flow phenomena on the industrial cases, such as in the chemical, petroleum and nuclear industries cases. One of the developing methods and techniques is image processing technique. This technique is widely used in the two-phase flow researches due to the non-intrusive capability to process a lot of visualization data which are contain many complexities. Moreover, this technique allows to capture direct-visual information data of the flow which are difficult to be captured by other methods and techniques. The main objective of this paper is to present an improved algorithm of image processing technique from the preceding algorithm for the stratified flow cases. The present algorithm can measure the film thickness (h{sub L}) of stratified flow as well as the geometrical properties of the interfacial waves with lower processing time and random-access memory (RAM) usage than the preceding algorithm. Also, the measurement results are aimed to develop a high quality database of stratified flow which is scanty. In the present work, the measurement results had a satisfactory agreement with the previous works.

  19. MR angiography of stenosis and aneurysm models in the pulsatile flow: variation with imaging parameters and concentration of contrast media

    International Nuclear Information System (INIS)

    Park, Kyung Joo; Park, Jae Hyung; Lee, Hak Jong; Won, Hyung Jin; Lee, Dong Hyuk; Min, Byung Goo; Chang, Kee Hyun

    1997-01-01

    The image quality of magnetic resonance angiography (MRA) varies according to the imaging techniques applied and the parameters affected by blood flow patterns, as well as by the shape of the blood vessels. This study was designed to assess the influence on signal intensity and its distribution of the geometry of these vessels, the imaging parameters, and the concentration of contrast media in MRA of stenosis and aneurysm models. MRA was performed in stenosis and aneurysm models made of glass tubes, using pulsatile flow with viscosity and flow profile similar to those of blood. Slice and maximum intensity projection (MIP) images were obtained using various imaging techniques and parameters;there was variation in repetition time, flip angle, imaging planes, and concentrations of contrast media. On slice images of three-dimensional (3D) time-of-flight (TOF) techniques, flow signal intensity was measured at five locations in the models, and contrast ratio was calculated as the difference between flow signal intensity (SI) and background signal intensity (SIb) divided by background signal intensity or (SI-SIb)/SIb. MIP images obtained by various techniques and using various parameters were also analyzed, with emphasis in the stenosis model on demonstrated degree of stenosis, severity of signal void and image distortion, and in the aneurysm model, on degree of visualization, distortion of contour and distribution of signals. In 3D TOF, the shortest TR (36 msec) and the largest FA (50 deg ) resulted in the highest contrast ratio, but larger flip angles did not effectively demonstrate the demonstration of the peripheral part of the aneurysm. Loss of signal was most prominent in images of the stenosis model obtained with parallel or oblique planes to the flow direction. The two-dimensional TOF technique also caused signal void in stenosis, but precisely demonstrated the aneurysm, with dense opacification of the peripheral part. The phase contrast technique showed some

  20. Community patterns of tropical tree phenology derived from Unmanned Aerial Vehicle images: intra- and interspecific variation, association with species plant traits, and response to interannual climate variation

    Science.gov (United States)

    Bohlman, Stephanie; Rifai, Sami; Park, John; Dandois, Jonathan; Muller-Landau, Helene

    2017-04-01

    Phenology is a key life history trait of plant species and critical driver of ecosystem processes. There is strong evidence that phenology is shifting in temperate ecosystems in response to climate change, but tropical forest phenology remains poorly quantified and understood. A key challenge is that tropical forests contain hundreds of plant species with a wide variety of phenological patterns, which makes it difficult to collect sufficient ground-based field data to characterize individual tropical tree species phenologies. Satellite-based observations, an important source of phenology data in northern latitudes, are hindered by frequent cloud cover in the tropics. To quantify phenology over a large number of individuals and species, we collected bi-weekly images from unmanned aerial vehicles (UAVs) in the well-studied 50-ha forest inventory plot on Barro Colorado Island, Panama. The objective of this study is to quantify inter- and intra-specific responses of tropical tree leaf phenology to environmental variation over large spatial scales and identify key environmental variables and physiological mechanisms underpinning phenological variation. Between October 2014 and December 2015 and again in May 2015, we collected a total of 35 sets of UAV images, each with continuous coverage of the 50-ha plot, where every tree ≥ 1 cm DBH is mapped. UAV imagery was corrected for exposure, orthorectified, and then processed to extract spectral, texture, and image information for individual tree crowns, which was then used as inputs for a machine learning algorithm that successfully predicted the percentages of leaf, branch, and flower cover for each tree crown (r2=0.76 between observed and predicted percent branch cover for individual tree crowns). We then quantified cumulative annual deciduousness for each crown by fitting a non-parametric curve of flexible shape to its predicted percent branch time series and calculated the area under the curve. We obtained the species

  1. Red shift, blue shift: investigating Doppler shifts, blubber thickness, and migration as explanations of seasonal variation in the tonality of Antarctic blue whale song.

    Directory of Open Access Journals (Sweden)

    Brian S Miller

    Full Text Available The song of Antarctic blue whales (Balaenoptera musculus intermedia comprises repeated, stereotyped, low-frequency calls. Measurements of these calls from recordings spanning many years have revealed a long-term linear decline as well as an intra-annual pattern in tonal frequency. While a number of hypotheses for this long-term decline have been investigated, including changes in population structure, changes in the physical environment, and changes in the behaviour of the whales, there have been relatively few attempts to explain the intra-annual pattern. An additional hypothesis that has not yet been investigated is that differences in the observed frequency from each call are due to the Doppler effect. The assumptions and implications of the Doppler effect on whale song are investigated using 1 vessel-based acoustic recordings of Antarctic blue whales with simultaneous observation of whale movement and 2 long-term acoustic recordings from both the subtropics and Antarctic. Results from vessel-based recordings of Antarctic blue whales indicate that variation in peak-frequency between calls produced by an individual whale was greater than would be expected by the movement of the whale alone. Furthermore, analysis of intra-annual frequency shift at Antarctic recording stations indicates that the Doppler effect is unlikely to fully explain the observations of intra-annual pattern in the frequency of Antarctic blue whale song. However, data do show cyclical changes in frequency in conjunction with season, thus suggesting that there might be a relationship among tonal frequency, body condition, and migration to and from Antarctic feeding grounds.

  2. Comparison of computerized digital and film-screen radiography: response to variation in imaging kVp

    Energy Technology Data Exchange (ETDEWEB)

    Broderick, N J; Long, B; Dreesen, R G; Cohen, M D; Cory, D A [Riley Hospital for Children, Indiana Univ. School of Medicine, Indianapolis, IN (United States). Dept. of Radiology; Katz, B P; Kalasinski, L A [Regenstreif Inst., Indiana Univ. School of Medicine, Indianapolis, IN (United States). Dept. of Medicine

    1992-09-01

    A controlled prospective study, in an animal model chosen to simulate portable neonatal radiography, was performed to compare the response of the Philips Computed Radiography (CR) system and conventional 200 speed film-screen (FS) to variation in imaging kVp. Acceptable images were obtained on the CR system over a very wide kVp range. In contrast the FS system produced acceptable images over a narrow kVp range. This ability suggests that the CR system should eliminate the need for repeat examinations in cases where a suboptimal kVp setting would have resulted in an unacceptable FS image. CR technology should therefore be ideally suited to portable radiography especially in situations where selection of correct exposure factors is difficult as in the neonatal nursery. (orig.).

  3. Comparison of computerized digital and film-screen radiography: response to variation in imaging kVp

    International Nuclear Information System (INIS)

    Broderick, N.J.; Long, B.; Dreesen, R.G.; Cohen, M.D.; Cory, D.A.; Katz, B.P.; Kalasinski, L.A.

    1992-01-01

    A controlled prospective study, in an animal model chosen to simulate portable neonatal radiography, was performed to compare the response of the Philips Computed Radiography (CR) system and conventional 200 speed film-screen (FS) to variation in imaging kVp. Acceptable images were obtained on the CR system over a very wide kVp range. In contrast the FS system produced acceptable images over a narrow kVp range. This ability suggests that the CR system should eliminate the need for repeat examinations in cases where a suboptimal kVp setting would have resulted in an unacceptable FS image. CR technology should therefore be ideally suited to portable radiography especially in situations where selection of correct exposure factors is difficult as in the neonatal nursery. (orig.)

  4. Noise properties of CT images reconstructed by use of constrained total-variation, data-discrepancy minimization

    DEFF Research Database (Denmark)

    Rose, Sean; Andersen, Martin S.; Sidky, Emil Y.

    2015-01-01

    Purpose: The authors develop and investigate iterative image reconstruction algorithms based on data-discrepancy minimization with a total-variation (TV) constraint. The various algorithms are derived with different data-discrepancy measures reflecting the maximum likelihood (ML) principle......: An incremental algorithm framework is developed for this purpose. The instances of the incremental algorithms are derived for solving optimization problems including a data fidelity objective function combined with a constraint on the image TV. For the data fidelity term the authors, compare application....... Simulations demonstrate the iterative algorithms and the resulting image statistical properties for low-dose CT data acquired with sparse projection view angle sampling. Of particular interest is to quantify improvement of image statistical properties by use of the ML data fidelity term. Methods...

  5. Mangrove forests submitted to depositional processes and salinity variation investigated using satellite images and vegetation structure surveys

    OpenAIRE

    Cunha-Lignon, M.; Kampel, M.; Menghini, R.P.; Schaeffer-Novelli, Y.; Cintrón, G.; Dahdouh-Guebas, F.

    2011-01-01

    The current paper examines the growth and spatio-temporal variation of mangrove forests in response to depositional processes and different salinity conditions. Data from mangrove vegetation structure collected at permanent plots and satellite images were used. In the northern sector important environmental changes occurred due to an artificial channel producing modifications in salinity. The southern sector is considered the best conserved mangrove area along the coast of São Paulo State, Br...

  6. Intra- and inter-rater reliabilities of measurement of ultrasound imaging for muscle thickness and pennation angle of tibialis anterior muscle in stroke patients.

    Science.gov (United States)

    Cho, Ki Hun; Lee, Hwang Jae; Lee, Wan Hee

    2017-07-01

    Dysfunction of skeletal muscle has been commonly reported in stroke patients. The purpose of this study was to investigate the intra- and inter-rater reliabilities of measurement of ultrasound imaging (USI) for pennation angle (PA) and muscle thickness (MT) of tibialis anterior muscle in stroke patients. Thirty-four stroke patients (19 men) participated in this study. USI was used for measurement of PA and MT of the tibialis anterior muscles at rest and during maximum voluntary contraction (MVC). Two examiners acquired images from all participants during two separate testing sessions, seven days apart. Intra-class correlation coefficients (ICCs), confidence interval (CI), standard error of measurement, minimal detectable change, and Bland-Altman plots were used for estimation of reliability. In the intra-rater reliability between measures, for all variables (PA and MT of the paretic and non-paretic sides of tibialis anterior muscles at rest and during MVC), the ICCs ranged between 0.639 and 0.998 and the CI was within an acceptable range of 0.388-0.999. In inter-rater reliability between examiners for the two tests, for all variables, the ICCs ranged between 0.690 and 0.995 and the CI was within an acceptable range of 0.463-0.997. In addition, significant difference was observed between the paretic and non-paretic sides of the tibialis anterior muscle architecture (p stroke patients. In addition, objective and quantitative measurements of tibialis anterior muscle using USI may provide appropriate management for the walking recovery of stroke patients.

  7. Adaptive-weighted total variation minimization for sparse data toward low-dose x-ray computed tomography image reconstruction.

    Science.gov (United States)

    Liu, Yan; Ma, Jianhua; Fan, Yi; Liang, Zhengrong

    2012-12-07

    Previous studies have shown that by minimizing the total variation (TV) of the to-be-estimated image with some data and other constraints, piecewise-smooth x-ray computed tomography (CT) can be reconstructed from sparse-view projection data without introducing notable artifacts. However, due to the piecewise constant assumption for the image, a conventional TV minimization algorithm often suffers from over-smoothness on the edges of the resulting image. To mitigate this drawback, we present an adaptive-weighted TV (AwTV) minimization algorithm in this paper. The presented AwTV model is derived by considering the anisotropic edge property among neighboring image voxels, where the associated weights are expressed as an exponential function and can be adaptively adjusted by the local image-intensity gradient for the purpose of preserving the edge details. Inspired by the previously reported TV-POCS (projection onto convex sets) implementation, a similar AwTV-POCS implementation was developed to minimize the AwTV subject to data and other constraints for the purpose of sparse-view low-dose CT image reconstruction. To evaluate the presented AwTV-POCS algorithm, both qualitative and quantitative studies were performed by computer simulations and phantom experiments. The results show that the presented AwTV-POCS algorithm can yield images with several notable gains, in terms of noise-resolution tradeoff plots and full-width at half-maximum values, as compared to the corresponding conventional TV-POCS algorithm.

  8. Constrained Total Generalized p-Variation Minimization for Few-View X-Ray Computed Tomography Image Reconstruction.

    Science.gov (United States)

    Zhang, Hanming; Wang, Linyuan; Yan, Bin; Li, Lei; Cai, Ailong; Hu, Guoen

    2016-01-01

    Total generalized variation (TGV)-based computed tomography (CT) image reconstruction, which utilizes high-order image derivatives, is superior to total variation-based methods in terms of the preservation of edge information and the suppression of unfavorable staircase effects. However, conventional TGV regularization employs l1-based form, which is not the most direct method for maximizing sparsity prior. In this study, we propose a total generalized p-variation (TGpV) regularization model to improve the sparsity exploitation of TGV and offer efficient solutions to few-view CT image reconstruction problems. To solve the nonconvex optimization problem of the TGpV minimization model, we then present an efficient iterative algorithm based on the alternating minimization of augmented Lagrangian function. All of the resulting subproblems decoupled by variable splitting admit explicit solutions by applying alternating minimization method and generalized p-shrinkage mapping. In addition, approximate solutions that can be easily performed and quickly calculated through fast Fourier transform are derived using the proximal point method to reduce the cost of inner subproblems. The accuracy and efficiency of the simulated and real data are qualitatively and quantitatively evaluated to validate the efficiency and feasibility of the proposed method. Overall, the proposed method exhibits reasonable performance and outperforms the original TGV-based method when applied to few-view problems.

  9. Clinical significance of three-dimensional measurement of tumour thickness on magnetic resonance imaging in patients with oral tongue squamous cell carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Minsu [Gyeongsang National University Hospital, School of Medicine, Department of Otorhinolaryngology, Jinju (Korea, Republic of); Moon, Hyun; Nam, Soon Yuhl; Kim, Ji Won; Lee, Yoon-Se; Roh, Jong-Lyel; Choi, Seung-Ho [University of Ulsan College of Medicine, Department of Otolaryngology, Asan Medical Centre, Seoul (Korea, Republic of); Lee, Jeong Hyun [University of Ulsan College of Medicine, Department of Radiology, Asan Medical Centre, Seoul (Korea, Republic of); Kim, Sang-Yoon [University of Ulsan College of Medicine, Department of Otolaryngology, Asan Medical Centre, Seoul (Korea, Republic of); Korea Institute of Science and Technology, Biomedical Research Institute, Seoul (Korea, Republic of)

    2016-03-15

    To identify the clinical significance of primary tumour thickness (TT) and its direction in patients with oral tongue squamous cell carcinoma (OTSCC), we measured TT in all axial/coronal/sagittal views on magnetic resonance imaging (MRI) and evaluated their meaning. A total of 53 OTSCC patients were analysed who had undergone preoperative three-dimensional MRI and had been surgically treated. TT measured on axial (mediolateral direction), coronal (superoinferior direction), and sagittal (anteroposterior direction) views was compared to that in pathologic specimens. The association between TT on MRI and other pathologic parameters was also evaluated. TT on MRI in each plane showed relatively high concordance rates with the histological measurements. TT in all three planes was significantly correlated with lymph node (LN) metastasis. Occult LN metastasis was found in 15 of 39 (38.5 %) patients, and the cutoff value of TT in axial/coronal/sagittal MRI predicting occult LN metastasis was 6.7 mm, 7.2 mm, and 12.3 mm, respectively. TT on MRI did not show any significant association with recurrence and survival. TT on MRI in all three planes showed relatively high coincidence with TT on histopathology and presented a potential cut-off value as a predictive indicator for occult LN metastasis. (orig.)

  10. Clinical significance of three-dimensional measurement of tumour thickness on magnetic resonance imaging in patients with oral tongue squamous cell carcinoma

    International Nuclear Information System (INIS)

    Kwon, Minsu; Moon, Hyun; Nam, Soon Yuhl; Kim, Ji Won; Lee, Yoon-Se; Roh, Jong-Lyel; Choi, Seung-Ho; Lee, Jeong Hyun; Kim, Sang-Yoon

    2016-01-01

    To identify the clinical significance of primary tumour thickness (TT) and its direction in patients with oral tongue squamous cell carcinoma (OTSCC), we measured TT in all axial/coronal/sagittal views on magnetic resonance imaging (MRI) and evaluated their meaning. A total of 53 OTSCC patients were analysed who had undergone preoperative three-dimensional MRI and had been surgically treated. TT measured on axial (mediolateral direction), coronal (superoinferior direction), and sagittal (anteroposterior direction) views was compared to that in pathologic specimens. The association between TT on MRI and other pathologic parameters was also evaluated. TT on MRI in each plane showed relatively high concordance rates with the histological measurements. TT in all three planes was significantly correlated with lymph node (LN) metastasis. Occult LN metastasis was found in 15 of 39 (38.5 %) patients, and the cutoff value of TT in axial/coronal/sagittal MRI predicting occult LN metastasis was 6.7 mm, 7.2 mm, and 12.3 mm, respectively. TT on MRI did not show any significant association with recurrence and survival. TT on MRI in all three planes showed relatively high coincidence with TT on histopathology and presented a potential cut-off value as a predictive indicator for occult LN metastasis. (orig.)

  11. Real-time intravital imaging of pH variation associated with osteoclast activity.

    Science.gov (United States)

    Maeda, Hiroki; Kowada, Toshiyuki; Kikuta, Junichi; Furuya, Masayuki; Shirazaki, Mai; Mizukami, Shin; Ishii, Masaru; Kikuchi, Kazuya

    2016-08-01

    Intravital imaging by two-photon excitation microscopy (TPEM) has been widely used to visualize cell functions. However, small molecular probes (SMPs), commonly used for cell imaging, cannot be simply applied to intravital imaging because of the challenge of delivering them into target tissues, as well as their undesirable physicochemical properties for TPEM imaging. Here, we designed and developed a functional SMP with an active-targeting moiety, higher photostability, and a fluorescence switch and then imaged target cell activity by injecting the SMP into living mice. The combination of the rationally designed SMP with a fluorescent protein as a reporter of cell localization enabled quantitation of osteoclast activity and time-lapse imaging of its in vivo function associated with changes in cell deformation and membrane fluctuations. Real-time imaging revealed heterogenic behaviors of osteoclasts in vivo and provided insights into the mechanism of bone resorption.

  12. Variation in the human ribs geometrical properties and mechanical response based on X-ray computed tomography images resolution.

    Science.gov (United States)

    Perz, Rafał; Toczyski, Jacek; Subit, Damien

    2015-01-01

    Computational models of the human body are commonly used for injury prediction in automobile safety research. To create these models, the geometry of the human body is typically obtained from segmentation of medical images such as computed tomography (CT) images that have a resolution between 0.2 and 1mm/pixel. While the accuracy of the geometrical and structural information obtained from these images depend greatly on their resolution, the effect of image resolution on the estimation of the ribs geometrical properties has yet to be established. To do so, each of the thirty-four sections of ribs obtained from a Post Mortem Human Surrogate (PMHS) was imaged using three different CT modalities: standard clinical CT (clinCT), high resolution clinical CT (HRclinCT), and microCT. The images were processed to estimate the rib cross-section geometry and mechanical properties, and the results were compared to those obtained from the microCT images by computing the 'deviation factor', a metric that quantifies the relative difference between results obtained from clinCT and HRclinCT to those obtained from microCT. Overall, clinCT images gave a deviation greater than 100%, and were therefore deemed inadequate for the purpose of this study. HRclinCT overestimated the rib cross-sectional area by 7.6%, the moments of inertia by about 50%, and the cortical shell area by 40.2%, while underestimating the trabecular area by 14.7%. Next, a parametric analysis was performed to quantify how the variations in the estimate of the geometrical properties affected the rib predicted mechanical response under antero-posterior loading. A variation of up to 45% for the predicted peak force and up to 50% for the predicted stiffness was observed. These results provide a quantitative estimate of the sensitivity of the response of the FE model to the resolution of the images used to generate it. They also suggest that a correction factor could be derived from the comparison between microCT and

  13. The triple line pattern on carotid intima media thickness imaging and its relationship to cardiovascular risk factors in patients on lipid lowering therapy

    Directory of Open Access Journals (Sweden)

    Singh TA

    2014-06-01

    Full Text Available Tania A Singh,1 Todd C Villines,2 Allen J Taylor31Division of Cardiology, Medstar Georgetown University Hospital, 2Walter Reed National Military Medical Center, Bethesda, MD, 3Georgetown University School of Medicine, Washington, DC, USA Background: Carotid intima media thickness (CIMT infrequently identifies a triple line pattern (TLP in the visualization of the internal elastic lamina. We examined the prevalence and predictors of the TLP among a consecutive series of subjects enrolled in a CIMT clinical trial, and also the effects of lipid lowering therapy.Methods: Baseline CIMT studies of subjects with known heart disease, or high risk for heart disease, were evaluated from a single site of the Arterial Biology for the Investigation of the Treatment Effects of Reducing Cholesterol 6-HDL and LDL Treatment Strategies in Atherosclerosis trial (N=120. One sonographer obtained four views of the right and left far wall common CIMT, using a 13 MHz ultrasound probe. Images were blindly reviewed for the presence of the TLP. The TLP was defined as absent (0, possible (1, or definite (2. A composite score from all four views was calculated. A patient was defined as having the TLP if the composite score was ≥4. Univariate predictors of the TLP were explored. Follow-up ultrasounds at 14 months were also reviewed for presence of the TLP.Results: The prevalence of the TLP at baseline was 22.5%. Among cardiovascular risk variables, systolic blood pressure was significantly higher in subjects displaying the TLP (141.3±15.6 mmHg versus 133.1±18.4 mmHg; P=0.036. There were no differences among those with, and without, the TLP, with respect to other cardiovascular risk variables (age, sex, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, C-reactive protein, glucose, weight, waist girth, tobacco use, medications, quantitative CIMT, or image quality. During ongoing lipid lowering therapy, the prevalence of the TLP increased to 54

  14. NUFFT-Based Iterative Image Reconstruction via Alternating Direction Total Variation Minimization for Sparse-View CT

    Directory of Open Access Journals (Sweden)

    Bin Yan

    2015-01-01

    Full Text Available Sparse-view imaging is a promising scanning method which can reduce the radiation dose in X-ray computed tomography (CT. Reconstruction algorithm for sparse-view imaging system is of significant importance. The adoption of the spatial iterative algorithm for CT image reconstruction has a low operation efficiency and high computation requirement. A novel Fourier-based iterative reconstruction technique that utilizes nonuniform fast Fourier transform is presented in this study along with the advanced total variation (TV regularization for sparse-view CT. Combined with the alternating direction method, the proposed approach shows excellent efficiency and rapid convergence property. Numerical simulations and real data experiments are performed on a parallel beam CT. Experimental results validate that the proposed method has higher computational efficiency and better reconstruction quality than the conventional algorithms, such as simultaneous algebraic reconstruction technique using TV method and the alternating direction total variation minimization approach, with the same time duration. The proposed method appears to have extensive applications in X-ray CT imaging.

  15. A Variational Level Set Approach Based on Local Entropy for Image Segmentation and Bias Field Correction.

    Science.gov (United States)

    Tang, Jian; Jiang, Xiaoliang

    2017-01-01

    Image segmentation has always been a considerable challenge in image analysis and understanding due to the intensity inhomogeneity, which is also commonly known as bias field. In this paper, we present a novel region-based approach based on local entropy for segmenting images and estimating the bias field simultaneously. Firstly, a local Gaussian distribution fitting (LGDF) energy function is defined as a weighted energy integral, where the weight is local entropy derived from a grey level distribution of local image. The means of this objective function have a multiplicative factor that estimates the bias field in the transformed domain. Then, the bias field prior is fully used. Therefore, our model can estimate the bias field more accurately. Finally, minimization of this energy function with a level set regularization term, image segmentation, and bias field estimation can be achieved. Experiments on images of various modalities demonstrated the superior performance of the proposed method when compared with other state-of-the-art approaches.

  16. National variation in preoperative imaging, carotid duplex ultrasound criteria, and threshold for surgery for asymptomatic carotid artery stenosis.

    Science.gov (United States)

    Arous, Edward J; Simons, Jessica P; Flahive, Julie M; Beck, Adam W; Stone, David H; Hoel, Andrew W; Messina, Louis M; Schanzer, Andres

    2015-10-01

    Carotid endarterectomy (CEA) for asymptomatic carotid artery stenosis is among the most common procedures performed in the United States. However, consensus is lacking regarding optimal preoperative imaging, carotid duplex ultrasound criteria, and ultimately, the threshold for surgery. We sought to characterize national variation in preoperative imaging, carotid duplex ultrasound criteria, and threshold for surgery for asymptomatic CEA. The Society for Vascular Surgery Vascular Quality Initiative (VQI) database was used to identify all CEA procedures performed for asymptomatic carotid artery stenosis between 2003 and 2014. VQI currently captures 100% of CEA procedures performed at >300 centers by >2000 physicians nationwide. Three analyses were performed to quantify the variation in (1) preoperative imaging, (2) carotid duplex ultrasound criteria, and (3) threshold for surgery. Of 35,695 CEA procedures in 33,488 patients, the study cohort was limited to 19,610 CEA procedures (55%) performed for asymptomatic disease. The preoperative imaging modality used before CEA varied widely, with 57% of patients receiving a single preoperative imaging study (duplex ultrasound imaging, 46%; computed tomography angiography, 7.5%; magnetic resonance angiography, 2.0%; cerebral angiography, 1.3%) and 43% of patients receiving multiple preoperative imaging studies. Of the 16,452 asymptomatic patients (89%) who underwent preoperative duplex ultrasound imaging, there was significant variability between centers in the degree of stenosis (50%-69%, 70%-79%, 80%-99%) designated for a given peak systolic velocity, end diastolic velocity, and internal carotid artery-to-common carotid artery ratio. Although 68% of CEA procedures in asymptomatic patients were performed for an 80% to 99% stenosis, 26% were performed for a 70% to 79% stenosis, and 4.1% were performed for a 50% to 69% stenosis. At the surgeon level, the range in the percentage of CEA procedures performed for a duplex ultrasound

  17. Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem

    KAUST Repository

    Lellmann, Jan; Lenzen, Frank; Schnö rr, Christoph

    2012-01-01

    We consider a variational convex relaxation of a class of optimal partitioning and multiclass labeling problems, which has recently proven quite successful and can be seen as a continuous analogue of Linear Programming (LP) relaxation methods

  18. Morphological variations of hippocampal formation in epilepsy: image, clinical and electrophysiological data.

    Science.gov (United States)

    Hamad, Ana Paula Andrade; Carrete, Henrique; Bianchin, Marino Muxfeldt; Ferrari-Marinho, Taissa; Lin, Katia; Yacubian, Elza Márcia Targas; Vilanova, Luiz Celso Pereira; Garzon, Eliana; Caboclo, Luís Otávio; Sakamoto, Américo Ceiki

    2013-01-01

    Morphological variations of hippocampal formation (MVHF) are observed in patients with epilepsy but also in asymptomatic individuals. The precise role of these findings in epilepsy is not yet fully understood. This study analyzes the hippocampal formation (HF) morphology of asymptomatic individuals (n = 30) and of patients with mesial temporal lobe epilepsy associated with hippocampal sclerosis (MTLE-HS) (n = 68), patients with malformations of cortical development (MCD) (n = 34), or patients with pure morphological variations of hippocampal formation (pure MVHF) (n = 12). Main clinical and electrophysiological data of patients with MVHF were also analyzed. Morphological variations of hippocampal formation are more frequently observed in patients with MCD than in patients with MTLE-HS or in asymptomatic individuals. Patients with pure morphological variations of hippocampal formation showed higher incidence of extratemporal seizure onset. Refractoriness seems to be more associated with other abnormalities, like HS or MCD, than with the HF variation itself. Thus, although morphological HF abnormalities might play a role in epileptogenicity, they seem to contribute less to refractoriness. Copyright © 2012 Elsevier Inc. All rights reserved.

  19. A Total Variation Model Based on the Strictly Convex Modification for Image Denoising

    Directory of Open Access Journals (Sweden)

    Boying Wu

    2014-01-01

    Full Text Available We propose a strictly convex functional in which the regular term consists of the total variation term and an adaptive logarithm based convex modification term. We prove the existence and uniqueness of the minimizer for the proposed variational problem. The existence, uniqueness, and long-time behavior of the solution of the associated evolution system is also established. Finally, we present experimental results to illustrate the effectiveness of the model in noise reduction, and a comparison is made in relation to the more classical methods of the traditional total variation (TV, the Perona-Malik (PM, and the more recent D-α-PM method. Additional distinction from the other methods is that the parameters, for manual manipulation, in the proposed algorithm are reduced to basically only one.

  20. Assessment of weld thickness loss in offshore pipelines using computed radiography and computational modeling

    International Nuclear Information System (INIS)

    Correa, S.C.A.; Souza, E.M.; Oliveira, D.F.; Silva, A.X.; Lopes, R.T.; Marinho, C.; Camerini, C.S.

    2009-01-01

    In order to guarantee the structural integrity of oil plants it is crucial to monitor the amount of weld thickness loss in offshore pipelines. However, in spite of its relevance, this parameter is very difficult to determine, due to both the large diameter of most pipes and the complexity of the multi-variable system involved. In this study, a computational modeling based on Monte Carlo MCNPX code is combined with computed radiography to estimate the weld thickness loss in large-diameter offshore pipelines. Results show that computational modeling is a powerful tool to estimate intensity variations in radiographic images generated by weld thickness variations, and it can be combined with computed radiography to assess weld thickness loss in offshore and subsea pipelines.

  1. Quantitative Assessment of Variational Surface Reconstruction from Sparse Point Clouds in Freehand 3D Ultrasound Imaging during Image-Guided Tumor Ablation

    Directory of Open Access Journals (Sweden)

    Shuangcheng Deng

    2016-04-01

    Full Text Available Surface reconstruction for freehand 3D ultrasound is used to provide 3D visualization of a VOI (volume of interest during image-guided tumor ablation surgery. This is a challenge because the recorded 2D B-scans are not only sparse but also non-parallel. To solve this issue, we established a framework to reconstruct the surface of freehand 3D ultrasound imaging in 2011. The key technique for surface reconstruction in that framework is based on variational interpolation presented by Greg Turk for shape transformation and is named Variational Surface Reconstruction (VSR. The main goal of this paper is to evaluate the quality of surface reconstructions, especially when the input data are extremely sparse point clouds from freehand 3D ultrasound imaging, using four methods: Ball Pivoting, Power Crust, Poisson, and VSR. Four experiments are conducted, and quantitative metrics, such as the Hausdorff distance, are introduced for quantitative assessment. The experiment results show that the performance of the proposed VSR method is the best of the four methods at reconstructing surface from sparse data. The VSR method can produce a close approximation to the original surface from as few as two contours, whereas the other three methods fail to do so. The experiment results also illustrate that the reproducibility of the VSR method is the best of the four methods.

  2. A Combined First and Second Order Variational Approach for Image Reconstruction

    KAUST Repository

    Papafitsoros, K.; Schö nlieb, C. B.

    2013-01-01

    the creation of undesirable artifacts and blocky-like structures in the reconstructed images-a known disadvantage of the ROF model-while being simple and efficiently numerically solvable. ©Springer Science+Business Media New York 2013.

  3. Flux and color variations of the doubly imaged quasar UM673

    DEFF Research Database (Denmark)

    Ricci, D.; Elyiv, A.; Finet, F.

    2013-01-01

    Aims. With the aim of characterizing the flux and color variations of the multiple components of the gravitationally lensed quasar UM673 as a function of time, we have performed multiepoch and multiband photometric observations with the Danish telescope at the La Silla Observatory. Methods...

  4. Diffusion tensor imaging of the human calf : Variation of inter- and intramuscle-specific diffusion parameters

    NARCIS (Netherlands)

    Schlaffke, Lara; Rehmann, Robert; Froeling, Martijn; Kley, Rudolf; Tegenthoff, Martin; Vorgerd, Matthias; Schmidt-Wilcke, Tobias

    2017-01-01

    Purpose: To investigate to what extent inter- and intramuscular variations of diffusion parameters of human calf muscles can be explained by age, gender, muscle location, and body mass index (BMI) in a specific age group (20-35 years). Materials and Methods: Whole calf muscles of 18 healthy

  5. Monitoring scale-specific and temporal variation in electromagnetic conductivity images

    Science.gov (United States)

    In the semi-arid and arid landscapes of southwest USA, irrigation sustains agricultural activity; however, there are increasing demands on water resources. As such spatial temporal variation of soil moisture needs to be monitored. One way to do this is to use electromagnetic (EM) induction instrumen...

  6. Infrared and visible image fusion based on total variation and augmented Lagrangian.

    Science.gov (United States)

    Guo, Hanqi; Ma, Yong; Mei, Xiaoguang; Ma, Jiayi

    2017-11-01

    This paper proposes a new algorithm for infrared and visible image fusion based on gradient transfer that achieves fusion by preserving the intensity of the infrared image and then transferring gradients in the corresponding visible one to the result. The gradient transfer suffers from the problems of low dynamic range and detail loss because it ignores the intensity from the visible image. The new algorithm solves these problems by providing additive intensity from the visible image to balance the intensity between the infrared image and the visible one. It formulates the fusion task as an l 1 -l 1 -TV minimization problem and then employs variable splitting and augmented Lagrangian to convert the unconstrained problem to a constrained one that can be solved in the framework of alternating the multiplier direction method. Experiments demonstrate that the new algorithm achieves better fusion results with a high computation efficiency in both qualitative and quantitative tests than gradient transfer and most state-of-the-art methods.

  7. Imaging regional variation of cellular proliferation in gliomas using 3'-deoxy-3'-[18F]fluorothymidine positron-emission tomography: an image-guided biopsy study

    International Nuclear Information System (INIS)

    Price, S.J.; Fryer, T.D.; Cleij, M.C.; Dean, A.F.; Joseph, J.; Salvador, R.; Wang, D.D.; Hutchinson, P.J.; Clark, J.C.; Burnet, N.G.; Pickard, J.D.; Aigbirhio, F.I.

    2009-01-01

    Aim: To compare regional variations in uptake of 3'-deoxy-3'- [ 18 F]-fluorothymidine (FLT) images using positron-emission tomography (PET) with measures of cellular proliferation from biopsy specimens obtained by image-guided brain biopsies. Materials and methods: Fourteen patients with a supratentorial glioma that required an image-guided brain biopsy were imaged preoperatively with dynamic PET after the administration of FLT. Maps of FLT irreversible uptake rate (K i ) and standardized uptake value (SUV) were calculated. These maps were co-registered to a gadolinium-enhanced T1-weighted spoiled gradient echo (SPGR) sequence that was used for biopsy guidance, and the mean and maximum K i and SUV determined for each biopsy site. These values were correlated with the MIB-1 labelling index (a tissue marker of proliferation) from these biopsy sites. Results: A total of 57 biopsy sites were studied. Although all measures correlated with MIB-1 labelling index, K i max provided the best correlation (Pearson coefficient, r = 0.68; p i mean (±SD) was significantly higher than in normal tissue (3.3 ± 1.7 x 10 -3 ml plasma /min/ml tissue versus 1.2 ± 0.7 x 10 -3 ml plasma /min/ml tissue ; p = 0.001). High-grade gliomas showed heterogeneous uptake with a mean K i of 7.7 ± 4 x 10 -3 ml plasma /min/ml tissue . A threshold K i mean of 1.8 x 10 -3 differentiates between normal tissue and tumour (sensitivity 84%, specificity 88%); however, the latter threshold underestimated the extent of tumour in half the cases. SUV closely agreed with K i measurements. Conclusion: FLT PET is a useful marker of cellular proliferation that correlates with regional variation in cellular proliferation; however, it is unable to identify the margin of gliomas

  8. TU-CD-BRA-12: Coupling PET Image Restoration and Segmentation Using Variational Method with Multiple Regularizations

    Energy Technology Data Exchange (ETDEWEB)

    Li, L; Tan, S [Huazhong University of Science and Technology, Wuhan, Hubei (China); Lu, W [University of Maryland School of Medicine, Baltimore, MD (United States)

    2015-06-15

    Purpose: To propose a new variational method which couples image restoration with tumor segmentation for PET images using multiple regularizations. Methods: Partial volume effect (PVE) is a major degrading factor impacting tumor segmentation accuracy in PET imaging. The existing segmentation methods usually need to take prior calibrations to compensate PVE and they are highly system-dependent. Taking into account that image restoration and segmentation can promote each other and they are tightly coupled, we proposed a variational method to solve the two problems together. Our method integrated total variation (TV) semi-blind deconvolution and Mumford-Shah (MS) segmentation. The TV norm was used on edges to protect the edge information, and the L{sub 2} norm was used to avoid staircase effect in the no-edge area. The blur kernel was constrained to the Gaussian model parameterized by its variance and we assumed that the variances in the X-Y and Z directions are different. The energy functional was iteratively optimized by an alternate minimization algorithm. Segmentation performance was tested on eleven patients with non-Hodgkin’s lymphoma, and evaluated by Dice similarity index (DSI) and classification error (CE). For comparison, seven other widely used methods were also tested and evaluated. Results: The combination of TV and L{sub 2} regularizations effectively improved the segmentation accuracy. The average DSI increased by around 0.1 than using either the TV or the L{sub 2} norm. The proposed method was obviously superior to other tested methods. It has an average DSI and CE of 0.80 and 0.41, while the FCM method — the second best one — has only an average DSI and CE of 0.66 and 0.64. Conclusion: Coupling image restoration and segmentation can handle PVE and thus improves tumor segmentation accuracy in PET. Alternate use of TV and L2 regularizations can further improve the performance of the algorithm. This work was supported in part by National Natural

  9. Semi-Automatic Classification Of Histopathological Images: Dealing With Inter-Slide Variations

    Directory of Open Access Journals (Sweden)

    Michael Gadermayr

    2016-06-01

    In case of 50 available labelled sample patches of a certain whole slide image, the overall classification rate increased from 92 % to 98 % through including the interactive labelling step. Even with only 20 labelled patches, accuracy already increased to 97 %. Without a pre-trained model, if training is performed on target domain data only, 88 % (20 labelled samples and 95 % (50 labelled samples accuracy, respectively, were obtained. If enough target domain data was available (about 20 images, the amount of source domain data was of minor relevance. The difference in outcome between a source domain training data set containing 100 patches from one whole slide image and a set containing 700 patches from seven images was lower than 1 %. Contrarily, without target domain data, the difference in accuracy was 10 % (82 % compared to 92 % between these two settings. Execution runtime between two interaction steps is significantly below one second (0.23 s, which is an important usability criterion. It proved to be beneficial to select specific target domain data in an active learning sense based on the currently available trained model. While experimental evaluation provided strong empirical evidence for increased classification performance with the proposed method, the additional manual effort can be kept at a low level. The labelling of e.g. 20 images per slide is surely less time consuming than the validation of a complete whole slide image processed with a fully automatic, but less reliable, segmentation approach. Finally, it should be highlighted that the proposed interaction protocol could easily be adapted to other histopathological classification or segmentation tasks, also for implementation in a clinical system.  

  10. Magnetic resonance imaging of anatomical variations in the knee. Part 1: ligamentous and musculotendinous

    International Nuclear Information System (INIS)

    Tyler, Philippa; Datir, Abhijit; Saifuddin, Asif

    2010-01-01

    Magnetic resonance imaging (MRI) is now the modality of choice for the investigation of internal derangement of the knee. Technological advances, including the wider availability of stronger magnets and new sequences, allows improved visualisation of smaller structures. Normal variants must be recognised as such, so that both over-investigation and mis-diagnosis are avoided. This article reviews both the well-recognised and the less common ligamentous and musculotendinous anatomical variants within the knee and illustrates their imaging characteristics on MRI. (orig.)

  11. Magnetic resonance imaging of anatomical variations in the knee. Part 1: ligamentous and musculotendinous

    Energy Technology Data Exchange (ETDEWEB)

    Tyler, Philippa [The Royal National Orthopaedic Hospital NHS Trust, Department of Radiology, Stanmore, Middlesex (United Kingdom); Imperial College Healthcare NHS Trust, Department of Radiology, St Mary' s Hospital, London (United Kingdom); Datir, Abhijit [Jackson Memorial Hospital, Department of Radiology, Miami, FL (United States); Saifuddin, Asif [The Royal National Orthopaedic Hospital NHS Trust, Department of Radiology, Stanmore, Middlesex (United Kingdom); University College London, The Institute of Orthopaedics and Musculoskeletal Sciences, London (United Kingdom)

    2010-12-15

    Magnetic resonance imaging (MRI) is now the modality of choice for the investigation of internal derangement of the knee. Technological advances, including the wider availability of stronger magnets and new sequences, allows improved visualisation of smaller structures. Normal variants must be recognised as such, so that both over-investigation and mis-diagnosis are avoided. This article reviews both the well-recognised and the less common ligamentous and musculotendinous anatomical variants within the knee and illustrates their imaging characteristics on MRI. (orig.)

  12. Temporal variations of natural soil salinity in an arid environment using satellite images

    Science.gov (United States)

    Gutierrez, M.; Johnson, E.

    2010-11-01

    In many remote arid areas the scarce amount of conventional soil salinity data precludes detailed analyses of salinity variations for the purpose of predicting its impact on agricultural production. A tool that is an appropriate surrogate for on-ground testing in determining temporal variations of soil salinity is Landsat satellite data. In this study six Landsat scenes over El Cuervo, a closed basin adjacent to the middle Rio Conchos basin in northern Mexico, were used to show temporal variation of natural salts from 1986 to 2005. Natural salts were inferred from ground reference data and spectral responses. Transformations used were Tasseled Cap, Principal Components and several (band) ratios. Classification of each scene was performed from the development of Regions Of Interest derived from geochemical data collected by SGM, spectral responses derived from ENVI software, and a small amount of field data collected by the authors. The resultant land cover classes showed a relationship between climatic drought and areal coverage of natural salts. When little precipitation occurred three months prior to the capture of the Landsat scene, approximately 15%-20% of the area was classified as salt. This is compared to practically no classified salt in the wetter years of 1992 and 2005 Landsat scenes.

  13. Imaging the corpus callosum, septum pellucidum and fornix in children: normal anatomy and variations of normality

    International Nuclear Information System (INIS)

    Griffiths, Paul D.; Batty, Ruth; Connolly, Dan J.A.; Reeves, Michael J.

    2009-01-01

    The midline structures of the supra-tentorial brain are important landmarks for judging if the brain has formed correctly. In this article, we consider the normal appearances of the corpus callosum, septum pellucidum and fornix as shown on MR imaging in normal and near-normal states. (orig.)

  14. Flux and color variations of the quadruply imaged quasar HE 0435-1223

    DEFF Research Database (Denmark)

    Ricci, D.; Poels, J.; Elyiv, A.

    2011-01-01

    Aims: We present VRi photometric observations of the quadruply imaged quasarHE0435-1223, carried out with the Danish 1.54 m telescope at the La Silla Observatory. Our aim was to monitor and study the magnitudes and colors of each lensed component as a function of time. Methods. We monitored...

  15. Variation of the count-dependent Metz filter with imaging system modulation transfer function

    International Nuclear Information System (INIS)

    King, M.A.; Schwinger, R.B.; Penney, B.C.

    1986-01-01

    A systematic investigation was conducted of how a number of parameters which alter the system modulation transfer function (MTF) influence the count-dependent Metz filter. Since restoration filters are most effective at those frequencies where the object power spectrum dominates that of the noise, it was observed that parameters which significantly degrade the MTF at low spatial frequencies strongly influence the formation of the Metz filter. Thus the radionuclide imaged and the depth of the source in a scattering medium had the most influence. This is because they alter the relative amount of scattered radiation being imaged. For low-energy photon emitters, the collimator employed and the distance from the collimator were found to have less of an influence but still to be significant. These cause alterations in the MTF which are more gradual, and hence are most pronounced at mid to high spatial frequencies. As long as adequate spatial sampling is employed, the Metz filter was determined to be independent of the exact size of the sampling bin width, to a first approximation. For planar and single photon emission computed tomographic (SPECT) imaging, it is shown that two-dimensional filtering with the Metz filter optimized for the imaging conditions is able to deconvolve scatter and other causes of spatial resolution loss while diminishing noise, all in a balanced manner

  16. Gender and Age Variations in the Self-Image of Jamaican Adolescents.

    Science.gov (United States)

    Smith, Delores E.; Muenchen, Robert A.

    1995-01-01

    Investigated the relationships among gender, age, and self-image of adolescents attending three secondary schools in Jamaica. Results revealed statistically significant effects for both gender and age. Gender significantly influenced morals, while age differences affected six other dimensions. Some results contradicted past research. (RJM)

  17. Anatomical Variations of Carotid Artery and Optic Nerve in Sphenoid Sinus Using Computerized Tomographic Imaging

    Directory of Open Access Journals (Sweden)

    Nikakhlagh

    2014-12-01

    Full Text Available Background Sphenoid sinus is surrounded by many vital vascular and nervous structures. In more than 20% of patients with chronic sinusitis, involvement of sphenoid sinus has been observed. Besides, sphenoid sinus is an appropriate route to access anterior and middle cranial fossa in surgery. Therefore, it is important to have an adequate knowledge about the contents of sphenoid sinus and its proximity for nasal endoscopy, sinus surgeries and neurosurgeries. Objectives The aim of this study was to study sphenoid sinus proximity with carotid artery and the optic nerve using computerized tomographic imaging. Materials and Methods In this prospective study, computerized tomographic images of sphenoid sinus of patients referred to Imam Khomeini and Apadana hospitals were studied. The images were studied regarding any bulging, as well as not having a bone covering in sphenoid sinus regarding internal carotid artery and optic nerve. Furthermore, unilateralness or bilateralness of their relationships was studied. Results Among 468 coronal and axial CT scan images of sphenoid sinus, 365 (78% showed post-sellar pneumatization and 103 (22% pre-sellar pneumatization. Regarding existence of internal septa, 346 (74% cases showed multiple septation, and the remaining images were reported to have a single septum. According to the reports of CT scan images, the existence of bulging as a result of internal carotid artery and uncovered artery were 4.22% and 5.8% in the right sinus, 4.9% and 5.4% in the left sinus, and 4.34% and 4.6% in both sinuses, respectively. According to the reports of CT scan images, existence of bulging as a result of optic nerve and uncovered nerve were 5.7% and 4.3% in the right sinus, 6% and 5.4% in the left sinus, and 12% and 3.2% in both sinuses, respectively. Conclusions Due to variability of sphenoid sinus pneumatization and the separator blade of the two sinus cavities, careful attention is required during sinus surgery to avoid

  18. Radioactive thickness gauge (1962)

    International Nuclear Information System (INIS)

    Guizerix, J.

    1962-01-01

    The author describes a thickness gauge in which the scintillating crystal detector alternately 'sees' a radioactive source through the material which is to be measured and then a control source of the same material; the radiations are separated in time by an absorbing valve whose sections are alternately full and hollow. The currents corresponding to the two sources are separated beyond the photomultiplier tube by a detector synchronized with the rotation of the valve. The quotient of these two currents is then obtained with a standard recording potentiometer. It is found that the average value of the response which is in the form G = f(I 1 /I 2 ) is not affected by decay of the radioactive sources, and that it is little influenced by variations of high tension, temperature, or properties of the air in the source detector interval. The performance of the gauge is given. (author) [fr

  19. Joint reconstruction of dynamic PET activity and kinetic parametric images using total variation constrained dictionary sparse coding

    Science.gov (United States)

    Yu, Haiqing; Chen, Shuhang; Chen, Yunmei; Liu, Huafeng

    2017-05-01

    Dynamic positron emission tomography (PET) is capable of providing both spatial and temporal information of radio tracers in vivo. In this paper, we present a novel joint estimation framework to reconstruct temporal sequences of dynamic PET images and the coefficients characterizing the system impulse response function, from which the associated parametric images of the system macro parameters for tracer kinetics can be estimated. The proposed algorithm, which combines statistical data measurement and tracer kinetic models, integrates a dictionary sparse coding (DSC) into a total variational minimization based algorithm for simultaneous reconstruction of the activity distribution and parametric map from measured emission sinograms. DSC, based on the compartmental theory, provides biologically meaningful regularization, and total variation regularization is incorporated to provide edge-preserving guidance. We rely on techniques from minimization algorithms (the alternating direction method of multipliers) to first generate the estimated activity distributions with sub-optimal kinetic parameter estimates, and then recover the parametric maps given these activity estimates. These coupled iterative steps are repeated as necessary until convergence. Experiments with synthetic, Monte Carlo generated data, and real patient data have been conducted, and the results are very promising.

  20. Helium ion microscopy based wall thickness and surface roughness analysis of polymer foams obtained from high internal phase emulsion

    International Nuclear Information System (INIS)

    Rodenburg, C.; Viswanathan, P.; Jepson, M.A.E.; Liu, X.; Battaglia, G.

    2014-01-01

    Due to their wide range of applications, porous polymers obtained from high internal phase emulsions have been widely studied using scanning electron microscopy. However, due to their lack of electrical conductivity, quantitative information of wall thicknesses and surface roughness, which are of particular interest to tissue engineering, has not been obtained. Here, Helium Ion Microscopy is used to examine uncoated polymer foams and some very strong but unexpected contrast is observed, the origin of which is established here. Based on this analysis, a method for the measurement of wall thickness variations and wall roughness measurements has been developed, based on the modeling of Helium ion transmission. The results presented here indicate that within the walls of the void structure there exist small features with height variations of ∼30 nm and wall thickness variations from ∼100 nm to larger 340 nm in regions surrounding interconnecting windows within the structure. The suggested imaging method is applicable to other porous carbon based structures with wall thicknesses in the range of 40–340 nm. - Highlights: • The first helium ion microscopy image of uncoated structures formed from HIPEs is presented. • Unusually high contrast features that change with accelerating voltage are observed. • The origin of the observed contrast is determined to be mass thickness contrast. • A new method for quantitative wall thickness variation/roughness measurements is demonstrated

  1. Helium ion microscopy based wall thickness and surface roughness analysis of polymer foams obtained from high internal phase emulsion

    Energy Technology Data Exchange (ETDEWEB)

    Rodenburg, C., E-mail: c.rodenburg@sheffield.ac.uk [Department of Materials Science and Engineering, University of Sheffield, Mappin Street, Sheffield S1 3JD (United Kingdom); Viswanathan, P. [Department of Biomedical Sciences, University of Sheffield, Firth Court, Western Bank Sheffield, Sheffield S10 2 TN (United Kingdom); Jepson, M.A.E. [Department of Materials, Loughborough University, Loughborough, Leicestershire LE11 3TU (United Kingdom); Liu, X. [Carl Zeiss Microscopy GmbH, Carl-Zeiss-Strasse 22, 73447 Oberkochen (Germany); Battaglia, G. [Department of Chemistry University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom); The MRC/UCL Centre for Medical Molecular Virology, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2014-04-01

    Due to their wide range of applications, porous polymers obtained from high internal phase emulsions have been widely studied using scanning electron microscopy. However, due to their lack of electrical conductivity, quantitative information of wall thicknesses and surface roughness, which are of particular interest to tissue engineering, has not been obtained. Here, Helium Ion Microscopy is used to examine uncoated polymer foams and some very strong but unexpected contrast is observed, the origin of which is established here. Based on this analysis, a method for the measurement of wall thickness variations and wall roughness measurements has been developed, based on the modeling of Helium ion transmission. The results presented here indicate that within the walls of the void structure there exist small features with height variations of ∼30 nm and wall thickness variations from ∼100 nm to larger 340 nm in regions surrounding interconnecting windows within the structure. The suggested imaging method is applicable to other porous carbon based structures with wall thicknesses in the range of 40–340 nm. - Highlights: • The first helium ion microscopy image of uncoated structures formed from HIPEs is presented. • Unusually high contrast features that change with accelerating voltage are observed. • The origin of the observed contrast is determined to be mass thickness contrast. • A new method for quantitative wall thickness variation/roughness measurements is demonstrated.

  2. Assessment of Vegetation Variation on Primarily Creation Zones of the Dust Storms Around the Euphrates Using Remote Sensing Images

    Directory of Open Access Journals (Sweden)

    Jamil Amanollahi

    2012-06-01

    Full Text Available Recently, period frequency and effect domain of the dust storms that enter Iran from Iraq have increased. In this study, in addition to detecting the creation zones of the dust storms, the effect of vegetation cover variation on their creation was investigated using remote sensing. Moderate resolution image Spectroradiometer (MODIS and Landsat Thematic Mapper (TM5 have been utilized to identify the primarily creation zones of the dust storms and to assess the vegetation cover variation, respectively. Vegetation cover variation was studied using Normalized Differences Vegetation Index (NDVI obtained from band 3 and band 4 of the Landsate satellite. The results showed that the surrounding area of the Euphrates in Syria, the desert in the vicinity of this river in Iraq, including the deserts of Alanbar Province, and the north deserts of Saudi Arabia are the primarily creation zones of the dust storms entering west and south west of Iran. The results of NDVI showed that excluding the deserts in the border of Syria and Iraq, the area with very weak vegetation cover have increased between 2.44% and 20.65% from 1991 to 2009. In the meanwhile, the retention pound surface areas in the south deserts of Syria as well as the deserts in its border with Iraq have decreased 6320 and 4397 hectares, respectively. As it can be concluded from the findings, one of the main environmental parameters initiating these dust storms is the decrease in the vegetation cover in their primarily creation zones.

  3. Technical Note: Cortical thickness and density estimation from clinical CT using a prior thickness-density relationship

    International Nuclear Information System (INIS)

    Humbert, Ludovic; Hazrati Marangalou, Javad; Rietbergen, Bert van; Río Barquero, Luis Miguel del; Lenthe, G. Harry van

    2016-01-01

    Purpose: Cortical thickness and density are critical components in determining the strength of bony structures. Computed tomography (CT) is one possible modality for analyzing the cortex in 3D. In this paper, a model-based approach for measuring the cortical bone thickness and density from clinical CT images is proposed. Methods: Density variations across the cortex were modeled as a function of the cortical thickness and density, location of the cortex, density of surrounding tissues, and imaging blur. High resolution micro-CT data of cadaver proximal femurs were analyzed to determine a relationship between cortical thickness and density. This thickness-density relationship was used as prior information to be incorporated in the model to obtain accurate measurements of cortical thickness and density from clinical CT volumes. The method was validated using micro-CT scans of 23 cadaver proximal femurs. Simulated clinical CT images with different voxel sizes were generated from the micro-CT data. Cortical thickness and density were estimated from the simulated images using the proposed method and compared with measurements obtained using the micro-CT images to evaluate the effect of voxel size on the accuracy of the method. Then, 19 of the 23 specimens were imaged using a clinical CT scanner. Cortical thickness and density were estimated from the clinical CT images using the proposed method and compared with the micro-CT measurements. Finally, a case-control study including 20 patients with osteoporosis and 20 age-matched controls with normal bone density was performed to evaluate the proposed method in a clinical context. Results: Cortical thickness (density) estimation errors were 0.07 ± 0.19 mm (−18 ± 92 mg/cm"3) using the simulated clinical CT volumes with the smallest voxel size (0.33 × 0.33 × 0.5 mm"3), and 0.10 ± 0.24 mm (−10 ± 115 mg/cm"3) using the volumes with the largest voxel size (1.0 × 1.0 × 3.0 mm"3). A trend for the cortical thickness and

  4. Technical Note: Cortical thickness and density estimation from clinical CT using a prior thickness-density relationship

    Energy Technology Data Exchange (ETDEWEB)

    Humbert, Ludovic, E-mail: ludohumberto@gmail.com [Galgo Medical, Barcelona 08036 (Spain); Hazrati Marangalou, Javad; Rietbergen, Bert van [Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB (Netherlands); Río Barquero, Luis Miguel del [CETIR Centre Medic, Barcelona 08029 (Spain); Lenthe, G. Harry van [Biomechanics Section, KU Leuven–University of Leuven, Leuven 3001 (Belgium)

    2016-04-15

    Purpose: Cortical thickness and density are critical components in determining the strength of bony structures. Computed tomography (CT) is one possible modality for analyzing the cortex in 3D. In this paper, a model-based approach for measuring the cortical bone thickness and density from clinical CT images is proposed. Methods: Density variations across the cortex were modeled as a function of the cortical thickness and density, location of the cortex, density of surrounding tissues, and imaging blur. High resolution micro-CT data of cadaver proximal femurs were analyzed to determine a relationship between cortical thickness and density. This thickness-density relationship was used as prior information to be incorporated in the model to obtain accurate measurements of cortical thickness and density from clinical CT volumes. The method was validated using micro-CT scans of 23 cadaver proximal femurs. Simulated clinical CT images with different voxel sizes were generated from the micro-CT data. Cortical thickness and density were estimated from the simulated images using the proposed method and compared with measurements obtained using the micro-CT images to evaluate the effect of voxel size on the accuracy of the method. Then, 19 of the 23 specimens were imaged using a clinical CT scanner. Cortical thickness and density were estimated from the clinical CT images using the proposed method and compared with the micro-CT measurements. Finally, a case-control study including 20 patients with osteoporosis and 20 age-matched controls with normal bone density was performed to evaluate the proposed method in a clinical context. Results: Cortical thickness (density) estimation errors were 0.07 ± 0.19 mm (−18 ± 92 mg/cm{sup 3}) using the simulated clinical CT volumes with the smallest voxel size (0.33 × 0.33 × 0.5 mm{sup 3}), and 0.10 ± 0.24 mm (−10 ± 115 mg/cm{sup 3}) using the volumes with the largest voxel size (1.0 × 1.0 × 3.0 mm{sup 3}). A trend for the

  5. Digital immunohistochemistry platform for the staining variation monitoring based on integration of image and statistical analyses with laboratory information system.

    Science.gov (United States)

    Laurinaviciene, Aida; Plancoulaine, Benoit; Baltrusaityte, Indra; Meskauskas, Raimundas; Besusparis, Justinas; Lesciute-Krilaviciene, Daiva; Raudeliunas, Darius; Iqbal, Yasir; Herlin, Paulette; Laurinavicius, Arvydas

    2014-01-01

    Digital immunohistochemistry (IHC) is one of the most promising applications brought by new generation image analysis (IA). While conventional IHC staining quality is monitored by semi-quantitative visual evaluation of tissue controls, IA may require more sensitive measurement. We designed an automated system to digitally monitor IHC multi-tissue controls, based on SQL-level integration of laboratory information system with image and statistical analysis tools. Consecutive sections of TMA containing 10 cores of breast cancer tissue were used as tissue controls in routine Ki67 IHC testing. Ventana slide label barcode ID was sent to the LIS to register the serial section sequence. The slides were stained and scanned (Aperio ScanScope XT), IA was performed by the Aperio/Leica Colocalization and Genie Classifier/Nuclear algorithms. SQL-based integration ensured automated statistical analysis of the IA data by the SAS Enterprise Guide project. Factor analysis and plot visualizations were performed to explore slide-to-slide variation of the Ki67 IHC staining results in the control tissue. Slide-to-slide intra-core IHC staining analysis revealed rather significant variation of the variables reflecting the sample size, while Brown and Blue Intensity were relatively stable. To further investigate this variation, the IA results from the 10 cores were aggregated to minimize tissue-related variance. Factor analysis revealed association between the variables reflecting the sample size detected by IA and Blue Intensity. Since the main feature to be extracted from the tissue controls was staining intensity, we further explored the variation of the intensity variables in the individual cores. MeanBrownBlue Intensity ((Brown+Blue)/2) and DiffBrownBlue Intensity (Brown-Blue) were introduced to better contrast the absolute intensity and the colour balance variation in each core; relevant factor scores were extracted. Finally, tissue-related factors of IHC staining variance were

  6. Variational and PDE-Based Methods for Big Data Analysis, Classification and Image Processing Using Graphs

    Science.gov (United States)

    2015-01-01

    Assistant for Calculus (winter 2011) xii CHAPTER 1 Introduction We present several methods, outlined in Chapters 3-5, for image processing and data...local calculus formulation [103] to generalize the continuous formulation to a (non-local) discrete setting, while other non-local versions for...graph-based model based on the Ginzburg-Landau functional in their work [9]. To define the functional on a graph, the spatial gradient is replaced by a

  7. SMOS images restoration from L1A data: A sparsity-based variational approach

    OpenAIRE

    Preciozzi, J.; Musé, Pablo; Almansa, A.; Durand, Sylvain; Khazaal, Ali; Rougé, B.

    2014-01-01

    International audience; Data degradation by radio frequency interferences (RFI) is one of the major challenges that SMOS and other interferometers radiometers missions have to face. Although a great number of the illegal emitters were turned off since the mission was launched, not all of the sources were completely removed. Moreover, the data obtained previously is already corrupted by these RFI. Thus, the recovery of brightness temperature from corrupted data by image restoration techniques ...

  8. JUPITER’S PHASE VARIATIONS FROM CASSINI : A TESTBED FOR FUTURE DIRECT-IMAGING MISSIONS

    International Nuclear Information System (INIS)

    Mayorga, L. C.; Jackiewicz, J.; Rages, K.; West, R. A.; Knowles, B.; Lewis, N.; Marley, M. S.

    2016-01-01

    We present empirical phase curves of Jupiter from ∼0° to 140° as measured in multiple optical bandpasses by Cassini /Imaging Science Subsystem (ISS) during the Millennium flyby of Jupiter in late 2000 to early 2001. Phase curves are of interest for studying the energy balance of Jupiter and understanding the scattering behavior of the planet as an exoplanet analog. We find that Jupiter is significantly darker at partial phases than an idealized Lambertian planet by roughly 25% and is not well fit by Jupiter-like exoplanet atmospheric models across all wavelengths. We provide analytic fits to Jupiter’s phase function in several Cassini /ISS imaging filter bandpasses. In addition, these observations show that Jupiter’s color is more variable with phase angle than predicted by models. Therefore, the color of even a near Jupiter-twin planet observed at a partial phase cannot be assumed to be comparable to that of Jupiter at full phase. We discuss how the Wide-Field Infrared Survey Telescope and other future direct-imaging missions can enhance the study of cool giants.

  9. Gender and age variations in the self-image of Jamaican adolescents.

    Science.gov (United States)

    Smith, D E; Muenchen, R A

    1995-01-01

    The purpose of the study was to investigate the relationships among gender, age, and self-image of adolescents attending three secondary schools in Jamaica. The relatively few studies that have been done regarding self-perceptions of these youth are not only dated but have utilized a unidimensional conceptualization of the self. The Offer Self-Image Questionnaire which employs a multidimensional construct of the self was administered to a sample of 174 Jamaican adolescents ranging in age from 14 to 18 years (M = 15.90 years, SD = 1.21). Results revealed statistically significant effects for both gender and age. Gender was found to be significant on one self-image dimension: Morals, while age differences were evident on six dimensions: Social Relationships, Morals, Sexual Attitudes, Mastery of the External World, Vocational and Educational Goals, and Emotional Health. The results in some instances were contrary to those of past research. Discussion focused on cultural socialization and other factors affecting youth in Jamaican society.

  10. A center-median filtering method for detection of temporal variation in coronal images

    Directory of Open Access Journals (Sweden)

    Plowman Joseph

    2016-01-01

    Full Text Available Events in the solar corona are often widely separated in their timescales, which can allow them to be identified when they would otherwise be confused with emission from other sources in the corona. Methods for cleanly separating such events based on their timescales are thus desirable for research in the field. This paper develops a technique for identifying time-varying signals in solar coronal image sequences which is based on a per-pixel running median filter and an understanding of photon-counting statistics. Example applications to “EIT waves” (named after EIT, the EUV Imaging Telescope on the Solar and Heliospheric Observatory and small-scale dynamics are shown, both using 193 Å data from the Atmospheric Imaging Assembly (AIA on the Solar Dynamics Observatory. The technique is found to discriminate EIT waves more cleanly than the running and base difference techniques most commonly used. It is also demonstrated that there is more signal in the data than is commonly appreciated, finding that the waves can be traced to the edge of the AIA field of view when the data are rebinned to increase the signal-to-noise ratio.

  11. Image correction during large and rapid B(0) variations in an open MRI system with permanent magnets using navigator echoes and phase compensation.

    Science.gov (United States)

    Li, Jianqi; Wang, Yi; Jiang, Yu; Xie, Haibin; Li, Gengying

    2009-09-01

    An open permanent magnet system with vertical B(0) field and without self-shielding can be quite susceptible to perturbations from external magnetic sources. B(0) variation in such a system located close to a subway station was measured to be greater than 0.7 microT by both MRI and a fluxgate magnetometer. This B(0) variation caused image artifacts. A navigator echo approach that monitored and compensated the view-to-view variation in magnetic resonance signal phase was developed to correct for image artifacts. Human brain imaging experiments using a multislice gradient-echo sequence demonstrated that the ghosting and blurring artifacts associated with B(0) variations were effectively removed using the navigator method.

  12. Regolith thickness over Sinus Iridum: Results from morphology and size-frequency distribution of small impact craters

    Science.gov (United States)

    Fa, Wenzhe; Liu, Tiantian; Zhu, Meng-Hua; Haruyama, Junichi

    2014-08-01

    High-resolution optical images returned from recent lunar missions provide a new chance for estimation of lunar regolith thickness using morphology and the size-frequency distribution of small impact craters. In this study, regolith thickness over the Sinus Iridum region is estimated using Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Cameras (NACs) images. A revised relationship between crater geometry and regolith thickness is proposed based on old experimental data that takes into considering the effect of the illumination angle of the images. In total, 227 high-resolution LROC NAC images are used, and 378,556 impact craters with diameters from 4.2 to 249.8 m are counted, and their morphologies are identified. Our results show that 50% of the Sinus Iridum region has a regolith thickness between 5.1 and 10.7 m, and the mean and median regolith thicknesses are 8.5 and 8.0 m, respectively. There are substantial regional variations in the regolith thickness, with its median value varying from 2.6 to 12.0 m for most regions. Local variations of regolith thickness are found to be correlated with the lunar surface age: the older the surface, the greater the thickness. In addition, sporadically distributed impact ejecta and crater rays are associated with relatively larger regolith thickness, which might result from excavation and transport of materials during the formation of the secondaries of Copernican-aged craters. Our estimated regolith thickness can help with future analysis of Chang'E-3 lunar penetrating radar echoes and studies of the subsurface stratigraphic structure of the Moon.

  13. The role of ensemble-based statistics in variational assimilation of cloud-affected observations from infrared imagers

    Science.gov (United States)

    Hacker, Joshua; Vandenberghe, Francois; Jung, Byoung-Jo; Snyder, Chris

    2017-04-01

    Effective assimilation of cloud-affected radiance observations from space-borne imagers, with the aim of improving cloud analysis and forecasting, has proven to be difficult. Large observation biases, nonlinear observation operators, and non-Gaussian innovation statistics present many challenges. Ensemble-variational data assimilation (EnVar) systems offer the benefits of flow-dependent background error statistics from an ensemble, and the ability of variational minimization to handle nonlinearity. The specific benefits of ensemble statistics, relative to static background errors more commonly used in variational systems, have not been quantified for the problem of assimilating cloudy radiances. A simple experiment framework is constructed with a regional NWP model and operational variational data assimilation system, to provide the basis understanding the importance of ensemble statistics in cloudy radiance assimilation. Restricting the observations to those corresponding to clouds in the background forecast leads to innovations that are more Gaussian. The number of large innovations is reduced compared to the more general case of all observations, but not eliminated. The Huber norm is investigated to handle the fat tails of the distributions, and allow more observations to be assimilated without the need for strict background checks that eliminate them. Comparing assimilation using only ensemble background error statistics with assimilation using only static background error statistics elucidates the importance of the ensemble statistics. Although the cost functions in both experiments converge to similar values after sufficient outer-loop iterations, the resulting cloud water, ice, and snow content are greater in the ensemble-based analysis. The subsequent forecasts from the ensemble-based analysis also retain more condensed water species, indicating that the local environment is more supportive of clouds. In this presentation we provide details that explain the

  14. Diurnal Variation of Tropical Ice Cloud Microphysics inferred from Global Precipitation Measurement Microwave Imager (GPM-GMI)'s Polarimetric Measurement

    Science.gov (United States)

    Gong, J.; Zeng, X.; Wu, D. L.; Li, X.

    2017-12-01

    Diurnal variation of tropical ice cloud has been well observed and examined in terms of the area of coverage, occurring frequency, and total mass, but rarely on ice microphysical parameters (habit, size, orientation, etc.) because of lack of direct measurements of ice microphysics on a high temporal and spatial resolutions. This accounts for a great portion of the uncertainty in evaluating ice cloud's role on global radiation and hydrological budgets. The design of Global Precipitation Measurement (GPM) mission's procession orbit gives us an unprecedented opportunity to study the diurnal variation of ice microphysics on the global scale for the first time. Dominated by cloud ice scattering, high-frequency microwave polarimetric difference (PD, namely the brightness temperature difference between vertically- and horizontally-polarized paired channel measurements) from the GPM Microwave Imager (GMI) has been proven by our previous study to be very valuable to infer cloud ice microphysical properties. Using one year of PD measurements at 166 GHz, we found that cloud PD exhibits a strong diurnal cycle in the tropics (25S-25N). The peak PD amplitude varies as much as 35% over land, compared to only 6% over ocean. The diurnal cycle of the peak PD value is strongly anti-correlated with local ice cloud occurring frequency and the total ice mass with a leading period of 3 hours for the maximum correlation. The observed PD diurnal cycle can be explained by the change of ice crystal axial ratio. Using a radiative transfer model, we can simulate the observed 166 GHz PD-brightness temperature curve as well as its diurnal variation using different axial ratio values, which can be caused by the diurnal variation of ice microphysical properties including particle size, percentage of horizontally-aligned non-spherical particles, and ice habit. The leading of the change of PD ahead of ice cloud mass and occurring frequency implies the important role microphysics play in the

  15. Contribution to the study of slab thickness

    International Nuclear Information System (INIS)

    Moraitis, G.A.; Rorris, G.P.

    1978-01-01

    A method is proposed for calculating the time-independent values of the equivalent slab thickness of the ionosphere, defined as the ratio of the total electron content to the corresponding maximum electron density of the F region. Periodic variations of slab thickness are studied and are correlated to relative changes in exospheric temperature, deduced from the OGO-6 model

  16. Optimality Bounds for a Variational Relaxation of the Image Partitioning Problem

    KAUST Repository

    Lellmann, Jan

    2012-11-09

    We consider a variational convex relaxation of a class of optimal partitioning and multiclass labeling problems, which has recently proven quite successful and can be seen as a continuous analogue of Linear Programming (LP) relaxation methods for finite-dimensional problems. While for the latter several optimality bounds are known, to our knowledge no such bounds exist in the infinite-dimensional setting. We provide such a bound by analyzing a probabilistic rounding method, showing that it is possible to obtain an integral solution of the original partitioning problem from a solution of the relaxed problem with an a priori upper bound on the objective. The approach has a natural interpretation as an approximate, multiclass variant of the celebrated coarea formula. © 2012 Springer Science+Business Media New York.

  17. Accelerated gradient methods for total-variation-based CT image reconstruction

    DEFF Research Database (Denmark)

    Jørgensen, Jakob Heide; Jensen, Tobias Lindstrøm; Hansen, Per Christian

    2011-01-01

    incorporates several heuristics from the optimization literature such as Barzilai-Borwein (BB) step size selection and nonmonotone line search. The latter uses a cleverly chosen sequence of auxiliary points to achieve a better convergence rate. The methods are memory efficient and equipped with a stopping...... reconstruction can in principle be found by any optimization method, but in practice the large scale of the systems arising in CT image reconstruction preclude the use of memory-demanding methods such as Newton’s method. The simple gradient method has much lower memory requirements, but exhibits slow convergence...

  18. Imaging Tumor Variation in Response to Photodynamic Therapy in Pancreatic Cancer Xenograft Models

    International Nuclear Information System (INIS)

    Samkoe, Kimberley S.; Chen, Alina; Rizvi, Imran; O'Hara, Julia A.; Hoopes, P. Jack; Pereira, Stephen P.; Hasan, Tayyaba; Pogue, Brian W.

    2010-01-01

    Purpose: A treatment monitoring study investigated the differential effects of orthotopic pancreatic cancer models in response to interstitial photodynamic therapy (PDT), and the validity of using magnetic resonance imaging as a surrogate measure of response was assessed. Methods and Materials: Different orthotopic pancreatic cancer xenograft models (AsPC-1 and Panc-1) were used to represent the range of pathophysiology observed in human beings. Identical dose escalation studies (10, 20, and 40J/cm) using interstitial verteporfin PDT were performed, and magnetic resonance imaging with T2-weighted and T1-weighted contrast were used to monitor the total tumor volume and the vascular perfusion volume, respectively. Results: There was a significant amount of necrosis in the slower-growing Panc-1 tumor using high light dose, although complete necrosis was not observed. Lower doses were required for the same level of tumor kill in the faster-growing AsPC-1 cell line. Conclusions: The tumor growth rate and vascular pattern of the tumor affect the optimal PDT treatment regimen, with faster-growing tumors being relatively easier to treat. This highlights the fact that therapy in human beings shows a heterogeneous range of outcomes, and suggests a need for careful individualized treatment outcomes assessment in clinical work.

  19. In-situ Non-Invasive Imaging of Liquid-Immersed Thin Film Composite Membranes

    KAUST Repository

    Ogieglo, Wojciech; Pinnau, Ingo; Wessling, Matthias

    2017-01-01

    We present a non-invasive method to directly image liquid-immersed thin film composite membranes. The approach allows accessing information not only on the lateral distribution of the coating thickness, including variations in its swelling

  20. Moho Depth Variations in the Northeastern North China Craton Revealed by Receiver Function Imaging

    Science.gov (United States)

    Zhang, P.; Chen, L.; Yao, H.; Fang, L.

    2016-12-01

    The North China Craton (NCC), one of the oldest cratons in the world, has attracted wide attention in Earth Science for decades because of the unusual Mesozoic destruction of its cratonic lithosphere. Understanding the deep processes and mechanism of this craton destruction demands detailed knowledge about the deep structure of the region. In this study, we used two-year teleseismic receiver function data from the North China Seismic Array consisting of 200 broadband stations deployed in the northeastern NCC to image the Moho undulation of the region. A 2-D wave equation-based poststack depth migration method was employed to construct the structural images along 19 profiles, and a pseudo 3D crustal velocity model of the region based on previous ambient noise tomography and receiver function study was adopted in the migration. We considered both the Ps and PpPs phases, but in some cases we also conducted PpSs+PsPs migration using different back azimuth ranges of the data, and calculated the travel times of all the considered phases to constrain the Moho depths. By combining the structure images along the 19 profiles, we got a high-resolution Moho depth map beneath the northeastern NCC. Our results broadly consist with the results of previous active source studies [http://www.craton.cn/data], and show a good correlation of the Moho depths with geological and tectonic features. Generally, the Moho depths are distinctly different on the opposite sides of the North-South Gravity Lineament. The Moho in the west are deeper than 40 km and shows a rapid uplift from 40 km to 30 km beneath the Taihang Mountain Range in the middle. To the east in the Bohai Bay Basin, the Moho further shallows to 30-26 km depth and undulates by 3 km, coinciding well with the depressions and uplifts inside the basin. The Moho depth beneath the Yin-Yan Mountains in the north gradually decreases from 42 km in the west to 25 km in the east, varying much smoother than that to the south.

  1. Gammatography of thick lead vessels

    International Nuclear Information System (INIS)

    Raghunath, V.M.; Bhatnagar, P.K.; Sundaram, V.M.

    1979-01-01

    Radiography, scintillation and GM counting and dose measurements using ionisation chamber equipment are commonly used for detecting flaws/voids in materials. The first method is mostly used for steel vessels and to a lesser extent thin lead vessels also and is essentially qualitative. Dose measuring techniques are used for very thick and large lead vessels for which high strength radioactive sources are required, with its inherent handling problems. For vessels of intermediate thicknesses, it is ideal to use a small strength source and a GM or scintillation counter assembly. At the Reactor Research Centre, Kalpakkam, such a system was used for checking three lead vessels of thicknesses varying from 38mm to 65mm. The tolerances specified were +- 4% variation in lead thickness. The measurements also revealed the non concentricity of one vessel which had a thickness varying from 38mm to 44mm. The second vessel was patently non-concentric and the dimensional variation was truly reproduced in the measurements. A third vessel was fabricated with careful control of dimensions and the measurements exhibited good concentricity. Small deviations were observed, attributable to imperfect bondings between steel and lead. This technique has the following advantages: (a) weaker sources used result in less handling problems reducing the personnel exposures considerably; (b) the sensitivity of the instrument is quite good because of better statistics; (c) the time required for scanning a small vessel is more, but a judicious use of a scintillometer for initial fast scan will help in reducing the total scanning time; (d) this method can take advantage of the dimensional variations themselves to get the calibration and to estimate the deviations from specified tolerances. (auth.)

  2. Determination of bare soil and its seasonal variation using image analysis

    International Nuclear Information System (INIS)

    Pulido Fernandez, M.; Lavado Contador, J. F.; Schnabel, S.; Gomez Gutierrez, A.

    2009-01-01

    Bare soil is of outstanding interest as an indicator of land degradation because it is strongly related with water erosion, particularly in low-vegetated areas as those typical of the Mediterranean rangelands. In areas with high livestock densities, erosion can ultimately get to a partial or total soil loss, particularly at the beginning of the rainy season, when the surface cover is reduce after the dry summer period. Therefore, it is necessary to develop accurate methods allowing the quantification of soil exposed areas and their temporal dynamics. The main goal of this work is the determination of bare soil surface using aerial orthophotomaps and the analysis of the changes resulting from the analysis and classification of images corresponding to two contrasting seasons (summer and spring). (Author) 6 refs.

  3. Improved total variation-based CT image reconstruction applied to clinical data

    Energy Technology Data Exchange (ETDEWEB)

    Ritschl, Ludwig; Bergner, Frank; Kachelriess, Marc [Institute of Medical Physics (IMP), University of Erlangen-Nuernberg, Henkestr. 91, 91052 Erlangen (Germany); Fleischmann, Christof, E-mail: ludwig.ritschl@imp.uni-erlangen.de [Ziehm Imaging GmbH, Donaustrasse 31, 90451 Nuernberg (Germany)

    2011-03-21

    In computed tomography there are different situations where reconstruction has to be performed with limited raw data. In the past few years it has been shown that algorithms which are based on compressed sensing theory are able to handle incomplete datasets quite well. As a cost function these algorithms use the l{sub 1}-norm of the image after it has been transformed by a sparsifying transformation. This yields to an inequality-constrained convex optimization problem. Due to the large size of the optimization problem some heuristic optimization algorithms have been proposed in the past few years. The most popular way is optimizing the raw data and sparsity cost functions separately in an alternating manner. In this paper we will follow this strategy and present a new method to adapt these optimization steps. Compared to existing methods which perform similarly, the proposed method needs no a priori knowledge about the raw data consistency. It is ensured that the algorithm converges to the lowest possible value of the raw data cost function, while holding the sparsity constraint at a low value. This is achieved by transferring the step-size determination of both optimization procedures into the raw data domain, where they are adapted to each other. To evaluate the algorithm, we process measured clinical datasets. To cover a wide field of possible applications, we focus on the problems of angular undersampling, data lost due to metal implants, limited view angle tomography and interior tomography. In all cases the presented method reaches convergence within less than 25 iteration steps, while using a constant set of algorithm control parameters. The image artifacts caused by incomplete raw data are mostly removed without introducing new effects like staircasing. All scenarios are compared to an existing implementation of the ASD-POCS algorithm, which realizes the step-size adaption in a different way. Additional prior information as proposed by the PICCS algorithm

  4. Cone Beam CT Imaging Analysis of Interfractional Variations in Bladder Volume and Position During Radiotherapy for Bladder Cancer

    International Nuclear Information System (INIS)

    Yee, Don; Parliament, Matthew; Rathee, Satyapal; Ghosh, Sunita; Ko, Lawrence; Murray, Brad

    2010-01-01

    Purpose: To quantify daily bladder size and position variations during bladder cancer radiotherapy. Methods and Materials: Ten bladder cancer patients underwent daily cone beam CT (CBCT) imaging of the bladder during radiotherapy. Bladder and planning target volumes (bladder/PTV) from CBCT and planning CT scans were compared with respect to bladder center-of-mass shifts in the x (lateral), y (anterior-posterior), and z (superior-inferior) coordinates, bladder/PTV size, bladder/PTV margin positions, overlapping areas, and mutually exclusive regions. Results: A total of 262 CBCT images were obtained from 10 bladder cancer patients. Bladder center of mass shifted most in the y coordinate (mean, -0.32 cm). The anterior bladder wall shifted the most (mean, -0.58 cm). Mean ratios of CBCT-derived bladder and PTV volumes to planning CT-derived counterparts were 0.83 and 0.88. The mean CBCT-derived bladder volume (± standard deviation [SD]) outside the planning CT counterpart was 29.24 cm 3 (SD, 29.71 cm 3 ). The mean planning CT-derived bladder volume outside the CBCT counterpart was 47.74 cm 3 (SD, 21.64 cm 3 ). The mean CBCT PTV outside the planning CT-derived PTV was 47.35 cm 3 (SD, 36.51 cm 3 ). The mean planning CT-derived PTV outside the CBCT-derived PTV was 93.16 cm 3 (SD, 50.21). The mean CBCT-derived bladder volume outside the planning PTV was 2.41 cm 3 (SD, 3.97 cm 3 ). CBCT bladder/ PTV volumes significantly differed from planning CT counterparts (p = 0.047). Conclusions: Significant variations in bladder and PTV volume and position occurred in patients in this trial.

  5. Measuring plate thickness using spatial local wavenumber filtering

    International Nuclear Information System (INIS)

    Kang, To; Han, Soon Woo; Park, Jin Ho; Lee, Jeong Han; Park, Gyu Hae; Jeon, Jun Young

    2016-01-01

    Corrosion on the surface of a structure can generate cracks or cause walls to thin. This can lead to fracturing, which can eventually lead to fatalities and property loss. In an effort to prevent this, laser imaging technology has been used over the last ten years to detect thin-plate structure, or relatively thin piping. The most common laser imaging was used to develop a new technology for inspecting and imaging a desired area in order to scan various structures for thin-plate structure and thin piping. However, this method builds images by measuring waves reflected from defects, and subsequently has a considerable time delay of a few milliseconds at each scanning point. In addition, the complexity of the system is high, due to additional required components, such as laser-focusing parts. This paper proposes a laser imaging method with an increased scanning speed, based on excitation and the measurement of standing waves in structures. The wavenumber of standing waves changes at sections with a geometrical discontinuity, such as thickness. Therefore, it is possible to detect defects in a structure by generating standing waves with a single frequency and scanning the waves at each point by with the laser scanning system. The proposed technique is demonstrated on a wall-thinned plate with a linear thickness variation

  6. Dual beam x-ray thickness gauge

    International Nuclear Information System (INIS)

    Allport, J.J.

    1977-01-01

    The apparatus and method for continuous measurement of thickness of a sheet at a rolling mill or the like without contacting the sheet are described. A system directing radiation through the sheet in two energy bands and providing a measure of change in composition of the material as it passes the thickness gauging station is included. A system providing for changing the absorption coefficient of the material in the thickness measurement as a function of the change in composition so that the measured thickness is substantially independent of variations in composition is described

  7. Assessment of the variations in fat content in normal liver using a fast MR imaging method in comparison with results obtained by spectroscopic imaging

    International Nuclear Information System (INIS)

    Irwan, Roy; Edens, Mireille A.; Sijens, Paul E.

    2008-01-01

    A recently published Dixon-based MRI method for quantifying liver fat content using dual-echo breath-hold gradient echo imaging was validated by phantom experiments and compared with results of biopsy in two patients (Radiology 2005;237:1048-1055). We applied this method in ten healthy volunteers and compared the outcomes with the results of MR spectroscopy (MRS), the gold standard in quantifying liver fat content. Novel was the use of spectroscopic imaging yielding the variations in fat content across the liver rather than a single value obtained by single voxel MRS. Compared with the results of MRS, liver fat content according to MRI was too high in nine subjects (range 3.3-10.7% vs. 0.9-7.7%) and correct in one (21.1 vs. 21.3%). Furthermore, in one of the ten subjects the MRI fat content according to the Dixon-based MRI method was incorrect due to a (100-x) versus x percent lipid content mix-up. The second problem was fixed by a minor adjustment of the MRI algorithm. Despite systematic overestimation of liver fat contents by MRI, Spearman's correlation between the adjusted MRI liver fat contents with MRS was high (r = 0.927, P < 0.001). Even after correction of the algorithm, the problem remaining with the Dixon-based MRI method for the assessment of liver fat content,is that, at the lower end range, liver fat content is systematically overestimated by 4%. (orig.)

  8. SU-E-I-88: Mammography Imaging: Does Positioning Matter?

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, J; Szabunio, M [University of Kentucky, Lexington, KY (United States)

    2014-06-01

    Purpose: In mammography, compression is imperative for quality images and glandular radiation exposure dose. The thickness of the compressed breast directly determines mammography acquisition parameters. The compressed thickness varies due to variation in technologist practice, even for the same patient imaged at different time. This study is to investigate potential effect of the variation in breast positioning on radiation dose and image quality. Methods: Radiation dose at different thicknesses was measured with a BR-12 breast phantom for both conventional craniocaudal view and tomosynthesis in a Hologic Tomosynthesis mammography system. The CIRS stereotactic needle biopsy training phantom embedded dense masses and microcalcification in various sizes were imaged for image quality evaluation. Radiologists evaluated images. Clinical mammograms from the same patient but acquired at different time were retrospectively retrieved to evaluate potential effects of variation in positioning. Results: Acquisition parameters (kVp and mAs) increase with the increased phantom thickness. Radiation exposure increases following an exponential trend. The stereotactic phantom images showed loss of spatial and contrast resolution with inappropriate positioning. The compressed pressure may not be a good indicator for appropriate positioning. The inclusion of different amount of pectoralis muscle may lead to the same compressed pressure but different compressed thickness. The initial retrospective study of 3 patients showed that there were potential large variations in positioning the same patient at different examination time, resulting in large variations in patient radiation dose and image quality. Conclusion: Variations in patient positioning potentially influence patient radiation dose and image quality. The technologist has the critical responsibility to position patient to provide quality images in spite of different breast and body types. To reduce intra and inter practice

  9. Spatial Variation of Diapycnal Diffusivity Estimated From Seismic Imaging of Internal Wave Field, Gulf of Mexico

    Science.gov (United States)

    Dickinson, Alex; White, N. J.; Caulfield, C. P.

    2017-12-01

    Bright reflections are observed within the upper 1,000 m of the water column along a seismic reflection profile that traverses the northern margin of the Gulf of Mexico. Independent hydrographic calibration demonstrates that these reflections are primarily caused by temperature changes associated with different water masses that are entrained into the Gulf along the Loop Current. The internal wave field is analyzed by automatically tracking 1,171 reflections, each of which is greater than 2 km in length. Power spectra of the horizontal gradient of isopycnal displacement, ϕξx, are calculated from these tracked reflections. At low horizontal wave numbers (kxcpm), ϕξx∝kx-0.2±0.6, in agreement with hydrographic observations of the internal wave field. The turbulent spectral subrange is rarely observed. Diapycnal diffusivity, K, is estimated from the observed internal wave spectral subrange of each tracked reflection using a fine-scale parametrization of turbulent mixing. Calculated values of K vary between 10-8 and 10-4 m2 s-1 with a mean value of K˜4×10-6 m2 s-1. The spatial distribution of turbulent mixing shows that K˜10-7 m2 s-1 away from the shelf edge in the upper 300 m where stratification is strong. Mixing is enhanced by up to 4 orders of magnitude adjacent to the shoaling bathymetry of the continental slope. This overall pattern matches that determined by analyzing nearby suites of CTD casts. However, the range of values recovered by spectral analysis of the seismic image is greater as a consequence of significantly better horizontal resolution.

  10. Uncertainty in Earthquake Source Imaging Due to Variations in Source Time Function and Earth Structure

    KAUST Repository

    Razafindrakoto, H. N. T.

    2014-03-25

    One way to improve the accuracy and reliability of kinematic earthquake source imaging is to investigate the origin of uncertainty and to minimize their effects. The difficulties in kinematic source inversion arise from the nonlinearity of the problem, nonunique choices in the parameterization, and observational errors. We analyze particularly the uncertainty related to the choice of the source time function (STF) and the variability in Earth structure. We consider a synthetic data set generated from a spontaneous dynamic rupture calculation. Using Bayesian inference, we map the solution space of peak slip rate, rupture time, and rise time to characterize the kinematic rupture in terms of posterior density functions. Our test to investigate the effect of the choice of STF reveals that all three tested STFs (isosceles triangle, regularized Yoffe with acceleration time of 0.1 and 0.3 s) retrieve the patch of high slip and slip rate around the hypocenter. However, the use of an isosceles triangle as STF artificially accelerates the rupture to propagate faster than the target solution. It additionally generates an artificial linear correlation between rupture onset time and rise time. These appear to compensate for the dynamic source effects that are not included in the symmetric triangular STF. The exact rise time for the tested STFs is difficult to resolve due to the small amount of radiated seismic moment in the tail of STF. To highlight the effect of Earth structure variability, we perform inversions including the uncertainty in the wavespeed only, and variability in both wavespeed and layer depth. We find that little difference is noticeable between the resulting rupture model uncertainties from these two parameterizations. Both significantly broaden the posterior densities and cause faster rupture propagation particularly near the hypocenter due to the major velocity change at the depth where the fault is located.

  11. Uncertainty in Earthquake Source Imaging Due to Variations in Source Time Function and Earth Structure

    KAUST Repository

    Razafindrakoto, H. N. T.; Mai, Paul Martin

    2014-01-01

    One way to improve the accuracy and reliability of kinematic earthquake source imaging is to investigate the origin of uncertainty and to minimize their effects. The difficulties in kinematic source inversion arise from the nonlinearity of the problem, nonunique choices in the parameterization, and observational errors. We analyze particularly the uncertainty related to the choice of the source time function (STF) and the variability in Earth structure. We consider a synthetic data set generated from a spontaneous dynamic rupture calculation. Using Bayesian inference, we map the solution space of peak slip rate, rupture time, and rise time to characterize the kinematic rupture in terms of posterior density functions. Our test to investigate the effect of the choice of STF reveals that all three tested STFs (isosceles triangle, regularized Yoffe with acceleration time of 0.1 and 0.3 s) retrieve the patch of high slip and slip rate around the hypocenter. However, the use of an isosceles triangle as STF artificially accelerates the rupture to propagate faster than the target solution. It additionally generates an artificial linear correlation between rupture onset time and rise time. These appear to compensate for the dynamic source effects that are not included in the symmetric triangular STF. The exact rise time for the tested STFs is difficult to resolve due to the small amount of radiated seismic moment in the tail of STF. To highlight the effect of Earth structure variability, we perform inversions including the uncertainty in the wavespeed only, and variability in both wavespeed and layer depth. We find that little difference is noticeable between the resulting rupture model uncertainties from these two parameterizations. Both significantly broaden the posterior densities and cause faster rupture propagation particularly near the hypocenter due to the major velocity change at the depth where the fault is located.

  12. Monitoring glacier variations in the Urubamba and Vilcabamba Mountain Ranges, Peru, using "Landsat 5" images

    Science.gov (United States)

    Suarez, Wilson; Cerna, Marcos; Ordoñez, Julio; Frey, Holger; Giráldez, Claudia; Huggel, Christian

    2013-04-01

    The Urubamba and Vilcabamba mountain ranges are two geological structures belonging to the Andes in the southern part of Peru, which is located in the tropical region. These mountain ranges are especially located within the transition area between the Amazon region (altitudes close to 1'000 m a.s.l.) and the Andes. These mountains, with a maximum height of 6'280 m a.s.l. (Salkantay Snow Peak in the Vilcabamba range), are characterized by glaciers mainly higher than 5000 m a.s.l. Here we present a study on the evolution of the ice cover based on "Landsat 5" images from 1991 and 2011 is presented in this paper. These data are freely available from the USGS in a georeferenced format and cover a time span of more than 25 years. The glacier mapping is based on the Normalized Difference Snow Index (NDSI). In 1991 the Vilcabamba mountain range had 221 km2 of glacier cover, being reduced to 116.4 km2 in 2011, which represents a loss of 48%. In the Urubamba mountain range, the total glacier area was 64.9 km2 in 1991 and 29.4 km2 in 2011, representing a loss of 54.7%. It means that the glacier area was halved during the past two decades although precipitation patterns show an increase in recent years (the wet season lasts from September to April with precipitation peaks in February and March). Glacier changes in these two tropical mountain ranges also impact from an economic point of view due to small local farming common in this region (use of water from the melting glacier). Furthermore, potential glacier related hazards can pose a threat to people and infrastructure in the valleys below these glaciers, where the access routes to Machu Picchu Inca City, Peru's main tourist destination, are located too.

  13. Variations in PET/CT methodology for oncologic imaging at U.S. academic medical centers: an imaging response assessment team survey.

    Science.gov (United States)

    Graham, Michael M; Badawi, Ramsey D; Wahl, Richard L

    2011-02-01

    In 2005, 8 Imaging Response Assessment Teams (IRATs) were funded by the National Cancer Institute (NCI) as supplemental grants to existing NCI Cancer Centers. After discussion among the IRATs regarding the need for increased standardization of clinical and research PET/CT methodology, it became apparent that data acquisition and processing approaches differ considerably among centers. To determine the variability in detail, a survey of IRAT sites and IRAT affiliates was performed. A 34-question instrument evaluating patient preparation, scanner type, performance approach, display, and analysis was developed. Fifteen institutions, including the 8 original IRATs and 7 institutions that had developed affiliate IRATs, were surveyed. The major areas of variation were (18)F-FDG dose (259-740 MBq [7-20 mCi]) uptake time (45-90 min), sedation (never to frequently), handling of diabetic patients, imaging time (2-7 min/bed position), performance of diagnostic CT scans as a part of PET/CT, type of acquisition (2-dimensional vs. 3-dimensional), CT technique, duration of fasting (4 or 6 h), and (varying widely) acquisition, processing, display, and PACS software--with 4 sites stating that poor-quality images appear on PACS. There is considerable variability in the way PET/CT scans are performed at academic institutions that are part of the IRAT network. This variability likely makes it difficult to quantitatively compare studies performed at different centers. These data suggest that additional standardization in methodology will be required so that PET/CT studies, especially those performed quantitatively, are more comparable across sites.

  14. The effect of bowel preparation regime on interfraction rectal filling variation during image guided radiotherapy for prostate cancer.

    Science.gov (United States)

    Hosni, Ali; Rosewall, Tara; Craig, Timothy; Kong, Vickie; Bayley, Andrew; Berlin, Alejandro; Bristow, Robert; Catton, Charles; Warde, Padraig; Chung, Peter

    2017-03-09

    This study aimed to investigate the tolerability and impact of milk of magnesia (MoM) on interfraction rectal filling during prostate cancer radiotherapy. Two groups were retrospectively identified, each consisting of 40 patients with prostate cancer treated with radiotherapy to prostate+/-seminal vesicles, with daily image-guidance in 78Gy/39fractions/8 weeks. The first-group followed anti-flatulence diet with MoM started 3-days prior to planning-CT and continued during radiotherapy, while the second-group followed the same anti-flatulence diet only. The rectum between upper and lower limit of the clinical target volume (CTV) was delineated on planning-CT and on weekly cone-beam-CT (CBCT). Rectal filling was assessed by measurement of anterio-posterior diameter of the rectum at the superior and mid levels of CTV, rectal volume (RV), and average cross-sectional rectal area (CSA; RV/length). Overall 720 images (80 planning-CT and 640 CBCT images) from 80 patients were analyzed. Using linear mixed models, and after adjusting for baseline values at the time of planning-CT to test the differences in rectal dimensions between both groups over the 8-week treatment period, there were no significant differences in RV (p = 0.4), CSA (p = 0.5), anterio-posterior diameter of rectum at superior (p = 0.4) or mid level of CTV (p = 0.4). In the non-MoM group; 22.5% of patients had diarrhea compared to 60% in the MoM group, while 40% discontinued use of MoM by end of radiotherapy. The addition of MoM to antiflatulence diet did not reduce the interfraction variation in rectal filling but caused diarrhea in a substantial proportion of patients who then discontinued its use.

  15. Rapid Measurement of Nanoparticle Thickness Profiles

    International Nuclear Information System (INIS)

    Katz-Boon, Hadas; Rossouw, Chris J.; Dwyer, Christian; Etheridge, Joanne

    2013-01-01

    A method to measure the thickness of a single-crystal nanoparticle in the direction parallel to the incident beam from annular dark field scanning transmission electron microscope (ADF-STEM) images is reported, providing a map of thickness versus position across the nanoparticle—a ‘thickness profile’ image. The method is rapid and hence suitable for surveying large numbers of nanoparticles. The method measures the intensity scattered to a characterised ADF detector and compares this to the incident beam intensity, to obtain a normalized ADF image. The normalised intensity is then converted to thickness via dynamical ADF image simulations. The method is accurate within 10% and the precision is dominated primarily by ‘shot noise’. Merits and limitations of this method are discussed. A method to calibrate the response function of the ADF detector without external equipment is also described, which is applicable to the entire range of gain and background settings. -- Highlights: ► A method is developed to convert ADF-STEM images to ‘thickness profile’ images. ► It is applicable in particles survey, facets determination and discrete tomography. ► A method to calibrate the response of the ADF detector is described. ► The response in analysed across a range of conditions. ► Dynamical ADF image simulations are presented, demonstrating intensity vs. thickness dependence.

  16. Investigation on the variation of annual ring thicknesses and word densities in South African Pinus radiata stands under the influence of climate and different thinning measures by means of radiodensitometry

    International Nuclear Information System (INIS)

    Bues, C.T.

    1984-01-01

    The present work investigates three phenomena of growth biology in Pinus radiata stands: In the first investigation project: the thickness of the annual rings in relation to climate factors; In the second project: the variability of annual ring thickness and wood density as a function of different thinning measures; In the third project the variability of wood density within a Pinus radiate stand is analyzed. To determine the thickness of the annual rings and the wood density values within the annual rings, the method of radiodensitometry, developed during the last decade, is adopted: In the first investigation project the thicknesses of 800 annual rings are determined, in the second project 3808 annual ring structures are investigated, and in the third project 2000 annual rings are evaluated for their density characteristics. (orig./MG) [de