WorldWideScience

Sample records for thickness hydrate number

  1. Gas hydrates stability zone thickness map of Indian deep offshore areas - A GIS based approach

    Digital Repository Service at National Institute of Oceanography (India)

    Rastogi, A.; Deka, B.; Bhattacharya, G.C.; Ramprasad, T.; KameshRaju, K.A.; Srinivas, K.; Murty, G.P.S.; Chaubey, A.K.; Ramana, M.V.; Subrahmanyam, V.; Sarma, K.V.L.N.S.; Desa, M.; Paropkari, A.L.; Menezes, A.A.A.; Murty, V.S.N.; Antony, M.K.; SubbaRaju, L.V.; Desa, E.; Veerayya, M.

    hydrate occurrence in offshore regions and around the Indian sub-continent. This was accomplished by estimating the gas hydrate stability zone (GHSZ) thickness from the saptial analysis of the physical parameters that control the formation and stability...

  2. Hydration numbers of trivalent lanthanide and actinide ions

    International Nuclear Information System (INIS)

    David, F.; Fourest, B.; Duplessis, J.

    1987-01-01

    Investigations on the structure of actinide aquo ions and determination of hydration numbers have to be studied, essentially, through radiochemical methods. They measured the transport numbers, diffusion coefficient D by the open end capillary method and ionic mobility u by electrophoresis. Both methods show a discontinuity in the transport number corresponding to the crystallographic radius of Eu 3+ or Bk 3+ ion. They deduced the volume of the actinide aquo ions, and the coordination number in the primary sphere. From calculations of the electrostriction phenomenon in the vicinity of central ion, they obtained effective volume of the water molecules and the dynamic hydration number corresponding to the second hydration sphere

  3. Enthalpy of dissociation and hydration number of methane hydrate from the Clapeyron equation

    International Nuclear Information System (INIS)

    Anderson, Graydon K.

    2004-01-01

    The enthalpies of the reactions in which methane hydrate is dissociated to methane vapor and either (1) water, or (2) ice are determined by a new analysis using the Clapeyron equation. The difference in enthalpies of the two reactions is used to infer the hydration number at the quadruple point where hydrate, ice, liquid water, and methane vapor coexist. By appropriate corrections, the hydration number at points removed from the quadruple point is also determined. The most important feature of the new analysis is the direct use of the Clapeyron equation. The method avoids the use of certain simplifying assumptions that have compromised the accuracy of previous analyses in which the Clausius-Clapeyron equation was used. The analysis takes into account the finite volumes of all phases, the non-ideality of the vapor phase, and the solubility of methane in water. The results show that the enthalpy of dissociation and hydration number are constant within experimental error over the entire (hydrate, liquid, vapor) coexistence region. The results are more accurate than but entirely consistent with almost all previous studies

  4. Estimating the thickness of hydrated ultrathin poly(o-phenylenediamine) film by atomic force microscopy

    International Nuclear Information System (INIS)

    Wu, C.-C.; Chang, H.-C.

    2004-01-01

    A novel method to measure ultrathin poly(o-phenylenediamine) (PPD) film electropolymerized on gold electrode in liquid was developed. It is based on the force versus distance curve (force curve) of atomic force microscopy (AFM). When 1-0.25 μm/s was chosen as the rising rate of the scanner, and 50% of the confidence interval (CI) as the qualifying threshold value, the thickness of the hydrated polymer film could be calculated. This result was compared with one obtained from an AFM image. A step-like electrode fabricated by a photolithographic process was used. The height difference of the electrode before and after the PPD coating was imaged in liquid, and then the real thickness, 19.6±5.2 nm, was obtained. The sample was also measured by estimating the transition range of the force curve of hydrated PPD film, and the thickness of the hydrated PPD film was determined to be 19.3±8.2 nm. However, the results calculated by integrating the electropolymerized charge for the oxidation process of o-phenylenediamine (o-PD) was only one-third as large as it was when using the two previously described methods. This indicated that the structure of hydrated PPD film might have been swollen

  5. Hydration number of alkali metal ions determined by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen

    2008-01-01

    of all other water molecules whose properties are still influenced significantly by the cation. Knowing the hydration number is important when considering, for instance, the transport of Na+ and K+ in biological cell membranes, since their different behavior may depend on the details of ion hydration....... The solvation of alkali metal ions has been discussed for many years without a clear consensus. This work presents a systematic study of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS...... direct calculation of the number of M+ ions entering the film, and therefore the inserted M+ mass. The mass of the water molecules is calculated as a difference. The results yield the following primary hydration numbers: Li+: 5.5-5.6; Na+: 4.0-4.1; K+: 2.0-2.5; Rb+: 0.6-1.2; Cs+: ~0. The most important...

  6. Determination of membrane hydration numbers of alkali metal ions by insertion in a conducting polymer

    DEFF Research Database (Denmark)

    Skaarup, Steen; Junaid Mohamed Jafeen, Mohamed; Careem, M.A.

    2010-01-01

    , and a secondary (or outer) solvation shell, consisting of all other water molecules whose properties are still influenced significantly by the cation. Knowing the hydration number is important when considering, for instance, the transport of Na+ and K+ in biological cell membranes, since their different behavior...... may depend on the details of ion hydration. Although the solvation of alkali metal ions in aqueous solution has been discussed for many years, there is still no clear consensus. Part of the discrepancy is simply that different methods measure over different time scales, and therefore do...... not necessarily define the same hydration shell. This work presents a systematic study of one special variant of the hydration numbers of the 5 alkali metal ions, using the electrochemical insertion of the ions in a conducting polymer (polypyrrole containing the large immobile anion DBS-). The technique...

  7. A Novel Method for the Determination of Membrane Hydration Numbers of Cations in Conducting Polymers

    DEFF Research Database (Denmark)

    Jafeen, M.J.M.; Careem, M.A.; Skaarup, Steen

    2012-01-01

    Polypyrrole polymer films doped with the large, immobile dodecy lbenzene sulfonate anions operating in alkali halide aqueous electroly tes has beenused as a novel physico-chemical environment to develop a more direct way of obtaining reliable values for the hydration numbers of cations. Simultane......Polypyrrole polymer films doped with the large, immobile dodecy lbenzene sulfonate anions operating in alkali halide aqueous electroly tes has beenused as a novel physico-chemical environment to develop a more direct way of obtaining reliable values for the hydration numbers of cations....... The number of water moleculesentering the polymer during the initial part of the first reduction was found to be constant and independent of the concentration of the electrolyte below ∼1 M. This well-defined value can be considered as the primarymembrane hydration number of the cation involved...... in the reduction process. The goal was to investigate both the effects of cation size and of cation charge. The membrane hydration number values obtained by this simple and direct method for a number of cations are: The hydration number for all of these cations seems to follow the same simple relation....

  8. Speed and Strain of Polypyrrole Actuators: Dependence on Cation Hydration Number

    DEFF Research Database (Denmark)

    Jafeen, Mohamed J.M.; Careem, Mohamed A.; Skaarup, Steen

    2010-01-01

    Polypyrrole films have been characterized by simultaneous cyclic voltammetry driven force-displacement measurements. The aim was to clarify the role of cations in the electrolyte on the speed of response and on the strain of the film. The strain as a function of actuation frequency was studied in...... frequencies, the strain depends almost exclusively on insertion of strongly solvated cations and therefore depends on the hydration number of the cations: Li+ (hydration number ~5.4) gives more strain than Na+ (~4.4) and much more than Cs+ (~0) as predicted by the model....

  9. Complex formation constant and hydration number change of aqua-rare earth ions

    International Nuclear Information System (INIS)

    Kanno, H.

    1998-01-01

    Full text: It is now well established that the inner-sphere hydration number of aqua-rare earth ions changes from nine to eight in the middle of the rare earth series. This hydration number change greatly affects the complex formation of rare earth ions as we observe irregular variations in most series behaviours of the complex formation constant (K) in aqueous solution systems when K being plotted against 1/r or r (r is ionic radius of rare earth ion). Furthermore, it shows very anomalous concentration dependence in the sense that nona-aqua Ln 3+ ion increases in number with increase in salt concentration in aqueous rare earth salt solution (salt chloride, perchlorate). In this report, a theoretical derivation of the formation constant (K) for the inner-sphere complex formation of rare earth ions with a monodentate ligand was made by taking account of both the hydration number change in the middle of the series and its anomalous salt concentration dependence. The series behaviour of the formation constant against 1/r (or r) is successfully explained with using the empirical finding that K varies almost linearly with 1/r (or r) in the region where only one hydration number dominates. This success is also taken as evidence that the anomalous salt concentration dependence of the hydration number change is caused by the outer-sphere complex formation of rare earth ions with the condition that nona-aqua rare earth ions form outer-sphere complexes more easily than octa-aqua ions

  10. Thick massive gas hydrate deposits were revealed by LWD in Off-Joetsu area, eastern margin of Japan Sea.

    Science.gov (United States)

    Tanahashi, M.; Morita, S.; Matsumoto, R.

    2016-12-01

    GR14 and HR15 survey cruises, which were dedicated to the LWD (Logging While Drilling), were carried out in summers of 2014 and 2015, respectively, by Meiji University and Geological Survey of Japan, AIST to explore the "gas chimney" structures in eastern margin of Japan Sea. Shallow (33 to 172m-bsf, average 136m-bsf) 33 LWD drilling were performed in Oki Trough, Off-Joetsu, and Mogami Trough areas along eastern margin of Japan Sea during two cruises. Schlumberger LWD tools, GeoVISION (resistivity), TeleScope, ProVISION (NMR) and SonicVISION were used during GR14. NeoScope (neutron) was added and SonicScope was replaced for SonicVISION during HR14. The data quality was generally good. "Gas chimney" structures with acoustic blanking columns on the high frequency seismic sections with mound and pockmark morphologic features on the sea bottom, are well developed within survey areas. Every LWD records taken from gas chimney structures during the cruises show high resistivity and acoustic velocity anomalies which suggest the development of gas hydrate. Characteristic development of massive gas hydrate was interpreted at the Umitaka CW mound structure, Off-Joetsu. The mound lies at 890-910m in water depth and has very rough bottom surface, regional high resistivity, regional high heat flow, several natural seep sites, 200m x 300m area, and 10-20m height. 8 LWD holes, J18L to J21L and J23L to J26L, were drilled on and around the mound. There are highly anomalous intervals which suggest the development of massive gas hydrate at J24L, with high resistivity, high Vp and Vs, high neutron porosity, low natural gamma ray intensity, low neutron gamma density, low NMR porosity, low NMR permeability, low formation sigma, from 10 to 110m-bsf with intercalating some thin less hydrate layers. It is interpreted that there is several tens of meter thick massive gas hydrate in the gas chimney mound. It is partly confirmed by the later nearby coring result which showed the repetition of

  11. In vivo confirmation of hydration-induced changes in human-skin thickness, roughness and interaction with the environment.

    Science.gov (United States)

    Dąbrowska, Agnieszka K; Adlhart, Christian; Spano, Fabrizio; Rotaru, Gelu-Marius; Derler, Siegfried; Zhai, Lina; Spencer, Nicholas D; Rossi, René M

    2016-09-15

    The skin properties, structure, and performance can be influenced by many internal and external factors, such as age, gender, lifestyle, skin diseases, and a hydration level that can vary in relation to the environment. The aim of this work was to demonstrate the multifaceted influence of water on human skin through a combination of in vivo confocal Raman spectroscopy and images of volar-forearm skin captured with the laser scanning confocal microscopy. By means of this pilot study, the authors have both qualitatively and quantitatively studied the influence of changing the depth-dependent hydration level of the stratum corneum (SC) on the real contact area, surface roughness, and the dimensions of the primary lines and presented a new method for characterizing the contact area for different states of the skin. The hydration level of the skin and the thickness of the SC increased significantly due to uptake of moisture derived from liquid water or, to a much lesser extent, from humidity present in the environment. Hydrated skin was smoother and exhibited higher real contact area values. The highest rates of water uptake were observed for the upper few micrometers of skin and for short exposure times.

  12. Effect of hydration repulsion on nanoparticle agglomeration evaluated via a constant number Monte–Carlo simulation

    International Nuclear Information System (INIS)

    Liu, Haoyang Haven; Lanphere, Jacob; Walker, Sharon; Cohen, Yoram

    2015-01-01

    The effect of hydration repulsion on the agglomeration of nanoparticles in aqueous suspensions was investigated via the description of agglomeration by the Smoluchowski coagulation equation using constant number Monte–Carlo simulation making use of the classical DLVO theory extended to include the hydration repulsion energy. Evaluation of experimental DLS measurements for TiO 2 , CeO 2 , SiO 2 , and α-Fe 2 O 3 (hematite) at high IS (up to 900 mM) or low |ζ-potential| (≥1.35 mV) demonstrated that hydration repulsion energy can be above electrostatic repulsion energy such that the increased overall repulsion energy can significantly lower the agglomerate diameter relative to the classical DLVO prediction. While the classical DLVO theory, which is reasonably applicable for agglomeration of NPs of high |ζ-potential| (∼>35 mV) in suspensions of low IS (∼<1 mM), it can overpredict agglomerate sizes by up to a factor of 5 at high IS or low |ζ-potential|. Given the potential important role of hydration repulsion over a range of relevant conditions, there is merit in quantifying this repulsion energy over a wide range of conditions as part of overall characterization of NP suspensions. Such information would be of relevance to improved understanding of NP agglomeration in aqueous suspensions and its correlation with NP physicochemical and solution properties. (paper)

  13. Assessing the permafrost temperature and thickness conditions favorable for the occurrence of gas hydrate in the Qinghai-Tibet Plateau

    International Nuclear Information System (INIS)

    Wu Qingbai; Jiang Guanli; Zhang Peng

    2010-01-01

    Permafrost accounts for about 52% of the total area of the Qinghai-Tibet Plateau, and the permafrost area is about 140 x 10 4 km 2 . The mean annual ground temperature of permafrost ranges from -0.1 to -5 deg. C, and lower than -5 deg. C at extreme high-mountains. Permafrost thickness ranges from 10 to 139.4 m by borehole data, and more than 200 m by geothermal gradients. The permafrost geothermal gradient ranges from 1.1 deg. C/100 m to 8.0 deg. C/100 m with an average of 2.9 deg. C/100 m, and the geothermal gradient of the soil beneath permafrost is about 2.8-8.5 deg. C/100 m with an average of 6.0 deg. C/100 m in the Qinghai-Tibet Plateau. For a minimum of permafrost geothermal gradients of 1.1 deg. C/100 m, the areas of the potential occurrence of methane hydrate (sI) is approximately estimated to be about 27.5% of the total area of permafrost regions in the Qinghai-Tibet Plateau. For an average of permafrost geothermal gradients of 2.9 deg. C/100 m, the areas of the potential occurrence of methane hydrate (sI) is approximately estimated about 14% of the total area of permafrost regions in the Qinghai-Tibet Plateau. For the sII hydrate, the areas of the potential occurrence of sII hydrate are more than that of sI methane hydrate.

  14. Relative merits and limiting factors for x-ray and electron microscopy of thick, hydrated organic materials.

    Science.gov (United States)

    Du, Ming; Jacobsen, Chris

    2018-01-01

    Electron and x-ray microscopes allow one to image the entire, unlabeled structure of hydrated materials at a resolution well beyond what visible light microscopes can achieve. However, both approaches involve ionizing radiation, so that radiation damage must be considered as one of the limits to imaging. Drawing upon earlier work, we describe here a unified approach to estimating the image contrast (and thus the required exposure and corresponding radiation dose) in both x-ray and electron microscopy. This approach accounts for factors such as plural and inelastic scattering, and (in electron microscopy) the use of energy filters to obtain so-called "zero loss" images. As expected, it shows that electron microscopy offers lower dose for specimens thinner than about 1 µm (such as for studies of macromolecules, viruses, bacteria and archaebacteria, and thin sectioned material), while x-ray microscopy offers superior characteristics for imaging thicker specimen such as whole eukaryotic cells, thick-sectioned tissues, and organs. The required radiation dose scales strongly as a function of the desired spatial resolution, allowing one to understand the limits of live and frozen hydrated specimen imaging. Finally, we consider the factors limiting x-ray microscopy of thicker materials, suggesting that specimens as thick as a whole mouse brain can be imaged with x-ray microscopes without significant image degradation should appropriate image reconstruction methods be identified. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Use of high-frequency ultrasonography for evaluation of skin thickness in relation to hydration status and fluid distribution at various cutaneous sites in dogs.

    Science.gov (United States)

    Diana, Alessia; Guglielmini, Carlo; Fracassi, Federico; Pietra, Marco; Balletti, Erika; Cipone, Mario

    2008-09-01

    To assess the usefulness of high-frequency diagnostic ultrasonography for evaluation of changes of skin thickness in relation to hydration status and fluid distribution at various cutaneous sites in dogs. 10 clinically normal adult dogs (6 males and 4 females) of various breeds. Ultrasonographic examination of the skin was performed before and after hydration via IV administration of an isotonic crystalloid solution (30 mL/kg/h for 30 minutes). A 13-MHz linear-array transducer was used to obtain series of ultrasonographic images at 4 different cutaneous sites (the frontal, sacral, flank, and metatarsal regions). Weight and various clinicopathologic variables (PCV; serum osmolality; and serum total protein, albumin, and sodium concentrations) were determined before and after the infusion. These variables and ultrasonographic measurements of skin thickness before and after hydration were compared. Among the 10 dogs, mean preinfusion skin thickness ranged from 2,211 microm (metatarsal region) to 3,249 microm (sacral region). Compared with preinfusion values, weight was significantly increased, whereas PCV; serum osmolality; and serum total protein, albumin, and sodium concentrations were significantly decreased after infusion. After infusion, dermal echogenicity decreased and skin thickness increased significantly by 21%, 14%, 15%, and 13% in the frontal, sacral, flank, and metatarsal regions, respectively. Cutaneous site and hydration were correlated with cutaneous characteristics and skin thickness determined by use of high-frequency ultrasonography in dogs. Thus, diagnostic ultrasonography may be a useful tool for the noninvasive evaluation of skin hydration in healthy dogs and in dogs with skin edema.

  16. Determination of hydration numbers of electrolytes from temperature dependence of PMR chemical shifts

    International Nuclear Information System (INIS)

    Subramanian, N.

    1979-01-01

    The method proposed by Malinowski et al. for the determination of effective hydration numbers (h) of electrolytes leads to a consistent incrrease in the observed values of 'h' with increase in solution concentration. An attempt is made to rationalize the experimental results by cosidering the simultaneous effects of temperature and concentration on the proton chemical shift. It is suggested that Malinowski's technique might yeld 'h' values very close to the true value for those ions for which there is a fortuitous cancellation of structure-making and structure-breaking properties. (Author) [pt

  17. Discrete element analysis of the mechanical properties of deep-sea methane hydrate-bearing soils considering interparticle bond thickness

    Science.gov (United States)

    Jiang, Mingjing; He, Jie; Wang, Jianfeng; Zhou, Yaping; Zhu, Fangyuan

    2017-12-01

    Due to increasing global energy demands, research is being conducted on the mechanical properties of methane hydrate-bearing soils (MHBSs), from which methane hydrate (MH) will be explored. This paper presents a numerical approach to study the mechanical properties of MHBSs. The relationship between the level of MH saturation and the interparticle bond thickness is first obtained by analyzing the scanning electron microscope images of MHBS samples, in which is the bridge connecting the micromechanical behavior captured by the DEM with the macroscopic properties of MHBSs. A simplified thermal-hydromechanical (THM) bond model that considers the different bond thicknesses is then proposed to describe the contact behavior between the soil particles and those incorporated into the discrete element method (DEM). Finally, a series of biaxial compression tests are carried out with different MH saturations under different effective confining pressures to analyze the mechanical properties of deep-sea MHBSs. The results of the DEM numerical simulation are also compared with the findings from triaxial compression tests. The results show that the macromechanical properties of deep-sea MHBSs can be qualitatively captured by the proposed DEM. The shear strength, cohesion, and volumetric contraction of deep-sea MHBSs increase with increasing MH saturation, although its influence on the internal friction angle is obscure. The shear strength and volumetric contraction increase with increasing effective confining pressure. The peak shear strength and the dilation of MHBSs increase as the critical bond thickness increases, while the residual deviator stress largely remains the same at a larger axial strain. With increasing the axial strain, the percentage of broken bonds increases, along with the expansion of the shear band.

  18. Solvation numbers and hydration constant for thorium(IV) in ethanol-water medium

    International Nuclear Information System (INIS)

    Sedaira, H.; Idriss, K.A.; Hashem, E.Y.

    1996-01-01

    The solvation number and hydration constant of Th 4+ in ethanol-water medium were determined at 25 degrees C using UV-spectral and electrochemical measurements. A solvate formation equilibrium is demonstrated and characterized. Three molecules of ethanol (S) can bond to the metal cation with strengths comparable to that for H 2 O to form ThS 3 (H 2 O) 3 4+ . Formation of thorium monochelate with lawsone (2-hydroxy-1.4-naphthoquinone) eliminates bonding with alcohol molecules. The dissociation constant of the chelating agent s K a and the formation contant of the monochelated metal ion s K f * that are essentially independent of the solution composition are evaluated. Hydration titrations involving thorium-lawsone monochlate are performed and the data obtained from the changes of pH with solvent composition are analyzed. The solution independent constant, s K f * for thorium-lawsone complex formation in mixed aqueous ethanol is given by log x K f * =vpK a + log s K h - log [LH] - vpH + 3 log v where vpK a is the dissociation constant of the chelating agent LH in the solvent system of v volume fraction of water and s K h is the solution-independent hydration constant of thorium (IV) in the solvent system. Log-values for the constants s K h , s K f * and s K z * are found to be 7.8 ±0.02, 11.38±0.04 and -0.753, respectively

  19. Effects of relative thickness on aerodynamic characteristics of airfoil at a low Reynolds number

    Directory of Open Access Journals (Sweden)

    Ma Dongli

    2015-08-01

    Full Text Available This study focuses on the characteristics of low Reynolds number flow around airfoil of high-altitude unmanned aerial vehicles (HAUAVs cruising at low speed. Numerical simulation on the flows around several representative airfoils is carried out to investigate the low Reynolds number flow. The water tunnel model tests further validate the accuracy and effectiveness of the numerical method. Then the effects of the relative thickness of airfoil on aerodynamic performance are explored, using the above numerical method, by simulating flows around airfoils of different relative thicknesses (12%, 14%, 16%, 18%, as well as different locations of the maximum relative thickness (x/c = 22%, 26%, 30%, 34%, at a low Reynolds number of 5 × 105. Results show that performance of airfoils at low Reynolds number is mainly affected by the laminar separation bubble. On the premise of good stall characteristics, the value of maximum relative thickness should be as small as possible, and the location of the maximum relative thickness ought to be closer to the trailing edge to obtain fine airfoil performance. The numerical method is feasible for the simulation of low Reynolds number flow. The study can help to provide a basis for the design of low Reynolds number airfoil.

  20. Thin and thick primary cutaneous melanomas reveal distinct patterns of somatic copy number alterations.

    Science.gov (United States)

    Montagnani, Valentina; Benelli, Matteo; Apollo, Alessandro; Pescucci, Chiara; Licastro, Danilo; Urso, Carmelo; Gerlini, Gianni; Borgognoni, Lorenzo; Luzzatto, Lucio; Stecca, Barbara

    2016-05-24

    Cutaneous melanoma is one of the most aggressive type of skin tumor. Early stage melanoma can be often cured by surgery; therefore current management guidelines dictate a different approach for thin (thick (>4mm) melanomas. We have carried out whole-exome sequencing in 5 thin and 5 thick fresh-frozen primary cutaneous melanomas. Unsupervised hierarchical clustering analysis of somatic copy number alterations (SCNAs) identified two groups corresponding to thin and thick melanomas. The most striking difference between them was the much greater abundance of SCNAs in thick melanomas, whereas mutation frequency did not significantly change between the two groups. We found novel mutations and focal SCNAs in genes that are embryonic regulators of axon guidance, predominantly in thick melanomas. Analysis of publicly available microarray datasets provided further support for a potential role of Ephrin receptors in melanoma progression. In addition, we have identified a set of SCNAs, including amplification of BRAF and ofthe epigenetic modifier EZH2, that are specific for the group of thick melanomas that developed metastasis during the follow-up. Our data suggest that mutations occur early during melanoma development, whereas SCNAs might be involved in melanoma progression.

  1. A Postmortem Study of Frontal and Temporal Gyri Thickness and Cell Number in Human Obesity.

    Science.gov (United States)

    Gómez-Apo, Erick; García-Sierra, Adrián; Silva-Pereyra, Juan; Soto-Abraham, Virgilia; Mondragón-Maya, Alejandra; Velasco-Vales, Verónica; Pescatello, Linda S

    2018-01-01

    This study aimed to compare cortex thickness and neuronal cell density in postmortem brain tissue from people with overweight or obesity and normal weight. The cortex thickness and neuron density of eight donors with overweight or obesity (mean = 31.6 kg/m 2 ; SD = 4.35; n = 8; 6 male) and eight donors with normal weight (mean = 21.8 kg/m 2 ; SD = 1.5; n = 8; 5 male) were compared. All participants were Mexican and lived in Mexico City. Randomly selected thickness measures of different cortex areas from the frontal and temporal lobes were analyzed based on high-resolution real-size photographs. A histological analysis of systematic-random fields was used to quantify the number of neurons in postmortem left and right of the first, second, and third gyri of frontal and temporal lobe brain samples. No statistical difference was found in cortical thickness between donors with overweight or obesity and individuals with normal weight. A smaller number of neurons was found among the donors with overweight or obesity than the donors with normal weight at different frontal and temporal areas. A lower density of neurons is associated with overweight or obesity. The morphological basis for structural brain changes in obesity requires further investigation. © 2017 The Obesity Society.

  2. Cell number, tissue thickness and protein content as measures for development and variability in cultured neocortex explants

    NARCIS (Netherlands)

    de Jong, B. M.; Ruijter, J. M.

    1989-01-01

    The development of neuronal number, explant thickness and amount of protein was studied in several series of rat neocortex explants, cultured up to 21 days in vitro (DIV). In contrast to the dimensions of the explant, which rapidly stabilized, the amount of protein showed a prolonged increase with

  3. Effect of QW thickness and numbers on performance characteristics of deep violet InGaN MQW lasers

    Science.gov (United States)

    Alahyarizadeh, Gh.; Amirhoseiny, M.; Hassan, Z.

    2015-03-01

    The performance characteristics of deep violet indium gallium nitride (InGaN) multiquantum well (MQW) laser diodes (LDs) with an emission wavelength of around 390 nm have been investigated using the integrated system engineering technical computer aided design (ISE-TCAD) software. A comparative study on the effect of quantum well (QW) thickness and number on electrical and optical performance of deep violet In0.082Ga0.918N/GaN MQW LDs have been carried out. The simulation results showed that the highest slope efficiency and external differential quantum efficiency (DQE), as well as the lowest threshold current are obtained when the number of wells is two. The different QW thickness values of 2.2, 2.5, 2.8, 3 and 3.2 nm were compared and the best results were achieved for 2.5 nm QW thickness. The radiative recombination rate decreases with increasing QW thickness because of decreasing electron and hole carrier densities in wells. By increasing QW thickness, output power decreases and threshold current increases.

  4. Gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-31

    The overall aim of the project was to gain more knowledge about the kinetics of gas hydrate formation especially the early growth phase. Knowledge of kinetics of gas hydrate formation is important and measurements of gas hydrate particle size and concentration can contribute to improve this knowledge. An experimental setup for carrying out experimental studies of the nucleation and growth of gas hydrates has been constructed and tested. Multi wavelength extinction (MWE) was the experimental technique selected for obtaining particle diameter and concentration. The principle behind MWE is described as well as turbidity spectrum analysis that in an initial stage of the project was considered as an alternative experimental technique. Details of the experimental setup and its operation are outlined. The measuring cell consists of a 1 litre horizontal tube sustaining pressures up to 200 bar. Laser light for particle size determination can be applied through sapphire windows. A description of the various auxiliary equipment and of another gas hydrate cell used in the study are given. A computer program for simulation and analysis of gas hydrate experiments is based on the gas hydrate kinetics model proposed by Skovborg and Rasmussen (1993). Initial measurements showed that knowledge of the refractive index of gas hydrates was important in order to use MWE. An experimental determination of the refractive index of methane and natural gas hydrate is described. The test experiments performed with MWE on collectives of gas hydrate particles and experiments with ethane, methane and natural gas hydrate are discussed. Gas hydrate particles initially seem to grow mainly in size and at latter stages in number. (EG) EFP-94; 41 refs.

  5. Gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The overall aim of the project was to gain more knowledge about the kinetics of gas hydrate formation especially the early growth phase. Knowledge of kinetics of gas hydrate formation is important and measurements of gas hydrate particle size and concentration can contribute to improve this knowledge. An experimental setup for carrying out experimental studies of the nucleation and growth of gas hydrates has been constructed and tested. Multi wavelength extinction (MWE) was the experimental technique selected for obtaining particle diameter and concentration. The principle behind MWE is described as well as turbidity spectrum analysis that in an initial stage of the project was considered as an alternative experimental technique. Details of the experimental setup and its operation are outlined. The measuring cell consists of a 1 litre horizontal tube sustaining pressures up to 200 bar. Laser light for particle size determination can be applied through sapphire windows. A description of the various auxiliary equipment and of another gas hydrate cell used in the study are given. A computer program for simulation and analysis of gas hydrate experiments is based on the gas hydrate kinetics model proposed by Skovborg and Rasmussen (1993). Initial measurements showed that knowledge of the refractive index of gas hydrates was important in order to use MWE. An experimental determination of the refractive index of methane and natural gas hydrate is described. The test experiments performed with MWE on collectives of gas hydrate particles and experiments with ethane, methane and natural gas hydrate are discussed. Gas hydrate particles initially seem to grow mainly in size and at latter stages in number. (EG) EFP-94; 41 refs.

  6. Obsidian hydration dates glacial loading?

    Science.gov (United States)

    Friedman, I; Pierce, K L; Obradovich, J D; Long, W D

    1973-05-18

    Three different groups of hydration rinds have been measured on thin sections of obsidian from Obsidian Cliff, Yellowstone National Park, Wyoming. The average thickness of the thickest (oldest) group of hydration rinds is 16.3 micrometers and can be related to the original emplacement of the flow 176,000 years ago (potassium-argon age). In addition to these original surfaces, most thin sections show cracks and surfaces which have average hydration rind thicknesses of 14.5 and 7.9 micrometers. These later two hydration rinds compare closely in thickness with those on obsidian pebbles in the Bull Lake and Pinedale terminal moraines in the West Yellowstone Basin, which are 14 to 15 and 7 to 8 micrometers thick, respectively. The later cracks are thought to have been formed by glacial loading during the Bull Lake and Pinedale glaciations, when an estimated 800 meters of ice covered the Obsidian Cliff flow.

  7. Flow visualization over a thick blunt trailing-edge airfoil with base cavity at low Reynolds numbers using PIV technique.

    Science.gov (United States)

    Taherian, Gholamhossein; Nili-Ahmadabadi, Mahdi; Karimi, Mohammad Hassan; Tavakoli, Mohammad Reza

    2017-01-01

    In this study, the effect of cutting the end of a thick airfoil and adding a cavity on its flow pattern is studied experimentally using PIV technique. First, by cutting 30% chord length of the Riso airfoil, a thick blunt trialing-edge airfoil is generated. The velocity field around the original airfoil and the new airfoil is measured by PIV technique and compared with each other. Then, adding two parallel plates to the end of the new airfoil forms the desired cavity. Continuous measurement of unsteady flow velocity over the Riso airfoil with thick blunt trailing edge and base cavity is the most important innovation of this research. The results show that cutting off the end of the airfoil decreases the wake region behind the airfoil, when separation occurs. Moreover, adding a cavity to the end of the thickened airfoil causes an increase in momentum and a further decrease in the wake behind the trailing edge that leads to a drag reduction in comparison with the thickened airfoil without cavity. Furthermore, using cavity decreases the Strouhal number and vortex shedding frequency.

  8. Gas hydrates

    Digital Repository Service at National Institute of Oceanography (India)

    Ramprasad, T.

    , not all of them are white like snow. Some hydrates from the deep Gulf of Mexico are richly colored in shades of yellow, orange, or even red. The ice-like masses are beautiful, and contrast with the dull gray of deep sea muds. Hydrates from the Blake... volcanoes and associated gas hydrates: Marine Geology, v. 167, p. 29-42. Milkov, A.V. and R. Sassen, 2001a, Estimate of gas hydrate resource, northwestern Gulf of Mexico continental slope: Marine Geology, v. 179, pp. 71-83. Milkov, A.V., Sassen, R...

  9. Obsidian hydration dating of volcanic events

    Science.gov (United States)

    Friedman, I.; Obradovich, J.

    1981-01-01

    Obsidian hydration dating of volcanic events had been compared with ages of the same events determined by the 14C and KAr methods at several localities. The localities, ranging in age from 1200 to over 1 million yr, include Newberry Craters, Oregon; Coso Hot Springs, California; Salton Sea, California; Yellowstone National Park, Wyoming; and Mineral Range, Utah. In most cases the agreement is quite good. A number of factors including volcanic glass composition and exposuretemperature history must be known in order to relate hydration thickness to age. The effect of composition can be determined from chemical analysis or the refractive index of the glass. Exposure-temperature history requires a number of considerations enumerated in this paper. ?? 1981.

  10. The Effectiveness of Clomiphene Citrate and Letrozole for Ovulation Induction Related to Endometrial Thickness and Number of Dominant Follicle

    Directory of Open Access Journals (Sweden)

    Budi Wiweko

    2016-09-01

    Full Text Available The aim of the study is to know the effectiveness of clomiphene citrate and letrozole for ovulationrelated to endometrial thickness and number of dominant follicle. Study design was cross sectional basedon medical records of women who underwent ovulation induction from January 2011-May 2015. A numberof 143 anovulation women were divided into clomiphene citrate 50mg, clomiphene citrate 100 mg, letrozole2.5mg and letrozole 5mg. Each group received the agent daily on 3rd-7th day of menstrual cycle. On 12thday of menstrual cycle, the transvaginal ultrasound was performed to measure endometrial thickness anddominant follicle number. From all subjects, 45 subjects (31.5% were in 50mg clomiphene citrate groups, 29subjects (20.3% in 100mg clomiphene citrate group, 23 subjects (16.1% in 2,5mg letrozole group, and 46subjects (32.2% in 5mg letrozole group. Subjects who received letrozole had thicker endometrium comparedto clomiphene citrate (p<0.05. Different doses were not associated with endometrial thickness betweensubjects who received either letrozole or clomiphene citrate. In addition, subjects receiving letrozole hadhigher proportion of having trilaminar endometrium morphology. We did not observe the difference in totalnumber of dominant follicle between groups. It is concluded that letrozole is more effective than clomiphenecitrate in terms of endometrial thickness but not for number of dominant follicles. Keywords: clomiphene citrate, letrozole, ovulation induction, endometrial thickness, dominant follicle   Efektivitas Induksi Ovulasi Klomifen Sitrat dan Letrozol dalam Hal KetebalanEndometrium dan Jumlah Folikel Dominan Abstrak Studi ini bertujuan untuk menilai efektivitas induksi ovulasi klomifen sitrat dan letrozol dalam halketebalan endometrium dan jumlah folikel dominan pada perempuan yang tidak berovulasi. Desain studiadalah potong lintang menggunakan rekam medik pasien yang menjalani induksi ovulasi pada bulan Januari2011-Mei 2015

  11. Chloral Hydrate

    Science.gov (United States)

    ... if you are allergic to chloral hydrate, aspirin, tartrazine (a yellow dye in some processed foods and ... in, tightly closed, and out of reach of children. Store it at room temperature, away from excess ...

  12. Assessment of the aerodynamic characteristics of thick airfoils in high Reynolds and moderate Ma numbers using CFD modeling

    International Nuclear Information System (INIS)

    Prospathopoulos, John M; Papadakis, Giorgos; Voutsinas, Spyros G; Diakakis, Kostas; Sieros, Giorgos; Chaviaropoulos, Takis K

    2014-01-01

    The aerodynamic characteristics of thick airfoils in high Reynolds number is assessed using two different CFD RANS solvers: the compressible MaPFlow and the incompressible CRES-flowNS-2D both equipped with the k-ω SST turbulence model. Validation is carried out by comparing simulations against existing high Reynolds experimental data for the NACA 63-018 airfoil in the range of -10° to 20°. The use of two different solvers aims on one hand at increasing the credibility in the results and on the other at quantifying the compressibility effects. Convergence of steady simulations is achieved within a mean range of -10° to 14° which refers to attached or light stall conditions. Over this range the simulations from the two codes are in good agreement. As stall gets deeper, steady convergence ceases and the simulations must switch to unsteady. Lift and drag oscillations are produced which increase in amplitude as the angle of attack increases. Finally in post stall, the average C L is found to decrease up to ∼24° or 32° for the FFA or the NACA 63-018 airfoils respectively, and then recover to higher values indicating a change in the unsteady features of the flow

  13. Effect of quercetin on the number of blastomeres, zona pellucida thickness, and hatching rate of mouse embryos exposed to actinomycin D: An experimental study

    Directory of Open Access Journals (Sweden)

    Hamid Reza Sameni

    2018-02-01

    Full Text Available Background: Quercetin is a flavonoid with the ability to improve the growth of embryos in vitro, and actinomycin D is an inducer of apoptosis in embryonic cells. Objective: The aim was to evaluate the effect of quercetin on the number of viable and apoptotic cells, the zona pellucida (ZP thickness and the hatching rate of preimplantation embryos exposed to actinomycin D in mice. Materials and Methods: Two-cell embryos were randomly divided into four groups (Control, Quercetin, actinomycin D, and Quercetin + actinomycin D group. Blastocysts percentage, hatched blastocysts, and ZP thickness of blastocysts was measured. The number of blastomeres was counted by Hoechst and propidium iodide staining and the apoptotic cells number was counted by TUNEL assay. Results: The results showed that the use of quercetin significantly improved the growth of embryos compared to the control group (p=0.037. Moreover, quercetin reduced the destructive effects of actinomycin D on the growth of embryos significantly (p=0.026. Conclusion: quercetin may protect the embryos against actinomycin D so that increases the number of viable cells and decreases the number of apoptotic cells, which can help the expansion of the blastocysts, thinning of the ZP thickness and increasing the hatching rate in mouse embryos.

  14. [Skin hydration and hydrating products].

    Science.gov (United States)

    Duplan, H; Nocera, T

    2018-05-01

    One of the skin's principal functions is to protect the body against its environment by maintaining an effective epidermal barrier, not only against external factors, but also to prevent water loss from the body. Indeed, water homeostasis is vital for the normal physiological functioning of skin. Hydration levels affect not only visible microscopic parameters such as the suppleness and softness of skin, but also molecular parameters, enzyme activities and cellular signalling within the epidermis. The body is continually losing some of its water, but this phenomenon is limited and the optimal hydration gradient in skin is ensured via a set of sophisticated regulatory processes that rely on the functional and dynamic properties of the uppermost level of the skin consisting of the stratum corneum. The present article brings together data recently acquired in the fields of skin hydration and the characterisation of dehydrated or dry skin, whether through study of the regulatory processes involved or as a result of changes in the techniques used for in situ measurement, and thus in optimisation of management. Copyright © 2018. Published by Elsevier Masson SAS.

  15. Finite-thickness effect on speed of a counter-rotating vortex pair at high Reynolds numbers

    Science.gov (United States)

    Habibah, Ummu; Nakagawa, Hironori; Fukumoto, Yasuhide

    2018-03-01

    We establish a general formula for the translational speed of a counter-rotating vortex pair, valid for thick cores, moving in an incompressible fluid with and without viscosity. We extend to higher order the method of matched asymptotic expansions developed by Ting and Tung (1965 Phys. Fluids 8 1039–51). The solution of the Euler or the Navier–Stokes equations is constructed in the form of a power series in a small parameter, the ratio of the core radius to the distance between the core centers. For a viscous vortex pair, the small parameter should be \\sqrt{ν /{{Γ }}} where ν is the kinematic viscosity of the fluid and Γ is the circulation of each vortex. A correction due to the effect of finite thickness of the vortices to the traveling speed makes its appearance at fifth order. A drastic simplification is achieved of expressing it solely in terms of the strength of the second-order quadrupole field associated with the elliptical deformation of the core. For a viscous vortex pair, we exploit the conservation law for the hydrodynamic impulse to derive the growth of the distance between the vortices, which is cubic in time.

  16. Study by the Prandtl-Glauert method of compressibility effects and critical Mach number for ellipsoids of various aspect ratios and thickness ratios

    Science.gov (United States)

    Hess, Robert V; Gardner, Clifford S

    1947-01-01

    By using the Prandtl-Glauert method that is valid for three-dimensional flow problems, the value of the maximum incremental velocity for compressible flow about thin ellipsoids at zero angle of attack is calculated as a function of the Mach number for various aspect ratios and thickness ratios. The critical Mach numbers of the various ellipsoids are also determined. The results indicate an increase in critical Mach number with decrease in aspect ratio which is large enough to explain experimental results on low-aspect-ratio wings at zero lift.

  17. Calculation of amorphous silica solubilities at 25° to 300°C and apparent cation hydration numbers in aqueous salt solutions using the concept of effective density of water

    Science.gov (United States)

    Fournier, Robert O.; Williams, Marshall L.

    1983-01-01

    The solubility of amorphous silica in aqueous salt solutions at 25° to 300°C can be calculated using information on its solubility in pure water and a model in which the activity of water in the salt solution is defined to equal the effective density. pe, of “free” water in that solution. At temperatures of 100°C and above, pe closely equals the product of the density of the solution times the weight fraction of water in the solution. At 25°C, a correction parameter must be applied to pe that incorporates a term called the apparent cation hydration number, h. Because of the many assumptions and other uncertainties involved in determining values of h, by the model used here, the reported numbers are not necessarily real hydration numbers even though they do agree with some published values determined by activity and diffusion methods. Whether or not h is a real hydration number, it would appear to be useful in its inclusion within a more extensive activity coefficient term that describes the departure of silica solubilities in concentrated salt solutions from expected behavior according to the model presented here. Values of h can be calculated from measured amorphous silica solubilities in salt solutions at 25°C provided there is no complexing of dissolved silica with the dissolved salt, or if the degree of complexing is known. The previously postulated aqueous silica-sulfate complexing in aqueous Na2SO4 solutions is supported by results of the present effective density of water model

  18. Shifting Focus: From Hydration for Performance to Hydration for Health.

    Science.gov (United States)

    Perrier, Erica T

    2017-01-01

    Over the past 10 years, literature on hydration biomarkers has evolved considerably - from (de)hydration assessment towards a more global definition of biomarkers of hydration in daily life. This shift in thinking about hydration markers was largely driven by investigating the differences that existed between otherwise healthy individuals whose habitual, ad-libitum drinking habits differ, and by identifying physiological changes in low-volume drinkers who subsequently increase their water intake. Aside from obvious differences in urinary volume and concentration, a growing body of evidence is emerging that links differences in fluid intake with small, but biologically significant, differences in vasopressin (copeptin), glomerular filtration rate, and markers of metabolic dysfunction or disease. Taken together, these pieces of the puzzle begin to form a picture of how much water intake should be considered adequate for health, and represent a shifting focus from hydration for performance, toward hydration for health outcomes. This narrative review outlines the key areas of research in which the global hydration process - including water intake, urinary hydration markers, and vasopressin - has been associated with health outcomes, focusing on kidney and metabolic endpoints. It will also provide a commentary on how various hydration biomarkers may be used in hydration for health assessment. Finally, if adequate water intake can play a role in maintaining health, how might we tell if we are drinking enough? Urine output is easily measured, and can take into account differences in daily physical activity, climate, dietary solute load, and other factors that influence daily water needs. Today, targets have been proposed for urine osmolality, specific gravity, and color that may be used by researchers, clinicians, and individuals as simple indicators of optimal hydration. However, there remain a large number of incomplete or unanswered research questions regarding the

  19. Rhodamine B triggers ovarian toxicity through oxidative stress, decreases in the number of follicles, 17B-estradiol level, and thickness of endometrium

    Directory of Open Access Journals (Sweden)

    Syiska Atik Maryanti

    2014-06-01

    Full Text Available Objective: The purpose of this study was to analyze the effects of exposure to rhodamine B on ovarian oxidative stress, ovarian follicles, hormone 17beta-estradiol and thickness of endometrium. Methods: A total of 28 female rats were divided into four groups consisting of control; groups treated with rhodamine B at doses of 4.5; 9, and 18 milligram/200 gram body weight. Rhodamine B was administered orally for 36 days with the probe. Analysis of MDA level was done spectrophotometrically. Analysis of the number of ovarian follicles and thickness of endometrium was done histopathologically by hematoxylin eosin staining. Analysis of 17-estradiol level was done by ELISA. Results: Rhodamine B administered in different doses in female rats can increase ovarian MDA levels significantly than the control (P 0.05. Administration of rhodamine B of the second and third doses in female rats can reduce the number of primary, secondary, and De Graaf follicles significantly compared to the control (P 0.05. Administration of rhodamine B of the second and third doses in female rats can reduce 17-estradiol level significantly compared to the control (P 0.05. The administration of rhodamine B could reduce thickness of endometrium significantly compared to the control (P 0.05. Conclusion: It was concluded that administration of rhodamine B triggered ovarian toxicity through oxidative stress, a decrease in the number of follicles, and decreased level of 17-estradiol which ultimately lowered the thickness of endometrium. [Cukurova Med J 2014; 39(3.000: 451-457

  20. Reconsideration on Hydration of Sodium Ion: From Micro-Hydration to Bulk Hydration

    Science.gov (United States)

    Yongquan, Zhou; Chunhui, Fang; Yan, Fang; Fayan, Zhu; Haiwen, Ge; Hongyan, Liu

    2017-12-01

    Micro hydration structures of the sodium ion, [Na(H2O) n ]+, n = 1-12, were probed by density functional theory (DFT) at B3LYP/aug-cc-pVDZ level in both gaseous and aqueous phase. The predicted equilibrium sodium-oxygen distance of 0.240 nm at the present level of theory. The four-, five- and six-coordinated cluster can transform from each other at the ambient condition. The analysis of the successive water binding energy and natural charge population (NBO) on Na+ clearly shows that the influence of Na+ on the surrounding water molecules goes beyond the first hydration shell with the hydration number of 6. The Car-Parrinello molecular dynamic simulation shows that only the first hydration sphere can be found, and the hydration number of Na+ is 5.2 and the hydration distance ( r Na-O) is 0.235 nm. All our simulations mentioned in the present paper show an excellent agreement with the diffraction result from X-ray scattering study.

  1. Artificial Hydration and Nutrition

    Science.gov (United States)

    ... Crisis Situations Pets and Animals myhealthfinder Food and Nutrition Healthy Food Choices Weight Loss and Diet Plans ... Your Health Resources Healthcare Management Artificial Hydration and Nutrition Artificial Hydration and Nutrition Share Print Patients who ...

  2. Charge fraction of 6.0 MeV/n heavy ions with a carbon foil: Dependence on the foil thickness and projectile atomic number

    CERN Document Server

    Sato, Y; Muramatsu, M; Murakami, T; Yamada, S; Kobayashi, C; Kageyama, Y; Miyoshi, T; Ogawa, H; Nakabushi, H; Fujimoto, T; Miyata, T; Sano, Y

    2003-01-01

    We measured the charge fraction of 6.0 MeV/n heavy ions (C, Ne, Si, Ar, Fe and Cu) with a carbon foil at the NIRS-HIMAC injector. At this energy they are stripped with a carbon foil before being injected into two synchrotron rings with a maximum energy of 800 MeV/n. In order to find the foil thickness (D sub E) at which an equilibrium charge state distribution occurs, and to study the dependence of the D sub E -values on the projectile atomic number, we measured the exit charge fractions for foil thicknesses of between 10 and 350 mu g/cm sup 2. The results showed that the D sub E -values are 21.5, 62.0, 162, 346, 121, 143 mu g/cm sup 2 for C, Ne, Si, Ar, Fe, Cu, respectively. The fraction of Ar sup 1 sup 8 sup + ions was actually improved to 33% at 320 mu g/cm sup 2 from approx 15% at 100 mu g/cm sup 2. For Fe and Cu ions, the D sub E -values were found to be only 121 and 143 mu g/cm sup 2; there is a large gap between Ar and Fe, which is related to the differences in the ratio of the binding energy of the K-...

  3. Assessment of delta ferrite in multipass TIG welds of 40 mm thick SS 316L: A comparative study of ferrite number (FN) prediction and measurements

    Science.gov (United States)

    Buddu, Ramesh Kumar; Raole, P. M.; Sarkar, B.

    2017-04-01

    Austenitic stainless steels are widely used in the fabrication of fusion reactor major systems like vacuum vessel, divertor, cryostat and other structural components development. Multipass welding is used for the development of thick plates for the structural components fabrication. Due to the repeated weld thermal cycles, the microstructure adversely alters owing to the presence of complex phases like austenite, ferrite and delta ferrite and subsequently influences the mechanical properties like tensile and impact toughness of joints. The present paper reports the detail analysis of delta ferrite phase in welded region of 40 mm thick SS316L plates welded by special design multipass narrow groove TIG welding process under three different heat input conditions. The correlation of delta ferrite microstructure of different type structures acicular and vermicular is observed. The chemical composition of weld samples was used to predict the Ferrite Number (FN), which is representative form of delta ferrite in welds, with Schaeffler’s, WRC-1992 diagram and DeLong techniques by calculating the Creq and Nieq ratios and compared with experimental data of FN from Feritescope measurements. The low heat input conditions (1.67 kJ/mm) have produced higher FN (7.28), medium heat input (1.72 kJ/mm) shown FN (7.04) where as high heat input (1.87 kJ/mm) conditions has shown FN (6.68) decreasing trend and FN data is compared with the prediction methods.

  4. Oceanic hydrates: more questions than answers

    International Nuclear Information System (INIS)

    Laherrere, Jean

    2000-01-01

    Methane hydrates create problems by blocking pipelines and casing; they are also accused of contributing to environmental problems (e.g. global warming). Methane hydrates are also found in permafrost areas and in oceanic sediments where the necessary temperature and pressure for stability occur. Claims for the widespread occurrence in thick oceanic deposits are unfounded: apparently indirect evidence from seismic reflectors, seismic hydrocarbon indicators, logs and free samples is unreliable. At one time, hydrate was seen as a static, biogenic, continuous, huge resource but that view is changing to one of a dynamic, overpressurised, discontinuous and unreliable resource. Only Japan and India are currently showing any serious interest in hydrates. Academic research has raised more questions than answers. It is suggested that more hard exploratory evidence rather than theoretical study is required

  5. The structure of hydrate bearing fine grained marine sediments

    Energy Technology Data Exchange (ETDEWEB)

    Priest, J.; Kingston, E.; Clayton, C. [Southampton Univ., Highfield (United Kingdom). School of Civil Engineering and the Environment; Schultheiss, P.; Druce, M. [Geotek Ltd., Daventry (United Kingdom)

    2008-07-01

    This paper discussed the structure of naturally occurring methane gas hydrates in fine-grained sediments from core samples recovered using in situ pressures from the eastern margin of the Indian Ocean. High resolution X-ray computed tomography (CT) images were taken of gas hydrate cores. The hydrate structure was examined and comparisons were made between low resolution X-ray images obtained on the cores prior to sub-sectioning and depressurization procedures. The X-ray images showed the presence of high-angle, sub-parallel veins within the recovered sediments. The scans indicated that the hydrates occurred as fracture filing veins throughout the core. Fracture orientation was predominantly sub-vertical. Thick millimetric hydrate veins were composed of sub-millimetric veins with variations in fracture angle. The analysis indicated that hydrate formation was episodic in nature and subject to changes in the stress regime. Results of the study showed that depressurization and subsequent freezing alter the structure of the sediment even when the gas hydrate has not been altered. A large proportion of the hydrate survived when outside of its stability region. The self-preserving behaviour of the hydrate was attributed to the endothermic nature of gas hydrate dissociation. It was concluded that the accurate physical characterization of gas hydrates can only be conducted when the core section remains under in situ stress conditions. 13 refs., 9 figs.

  6. ConocoPhillips Gas Hydrate Production Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoderbek, David [ConocoPhillips Co., Houston, TX (United States); Farrell, Helen [ConocoPhillips Co., Houston, TX (United States); Howard, James [ConocoPhillips Co., Houston, TX (United States); Raterman, Kevin [ConocoPhillips Co., Houston, TX (United States); Silpngarmlert, Suntichai [ConocoPhillips Co., Houston, TX (United States); Martin, Kenneth [ConocoPhillips Co., Houston, TX (United States); Smith, Bruce [ConocoPhillips Co., Houston, TX (United States); Klein, Perry [ConocoPhillips Co., Houston, TX (United States)

    2013-06-30

    Work began on the ConocoPhillips Gas Hydrates Production Test (DOE award number DE-NT0006553) on October 1, 2008. This final report summarizes the entire project from January 1, 2011 to June 30, 2013.

  7. The rates measurement of methane hydrate formation and dissociation using micro-drilling system application for gas hydrate exploration

    Energy Technology Data Exchange (ETDEWEB)

    Bin Dou [Engineering Faculty, China Univ. of Geosciences, Wuhan (China)]|[Inst. of Petroleum Engineering, Technology Univ. of Clausthal (Germany); Reinicke, K.M. [Inst. of Petroleum Engineering, Technology Univ. of Clausthal (Germany); Guosheng Jiang; Xiang Wu; Fulong Ning [Engineering Faculty, China Univ. of Geosciences, Wuhan (China)

    2006-07-01

    When drilling through gas hydrate bearing formations, the energy supplied by virtue of the drilling process may lead to a destabilization of the hydrates surrounding the wellbore. Therefore, as the number of oil and gas fields being development in deepwater and onshore arctic environments increases, greater emphasis should be placed on quantifying the risks, gas hydrates pose to drilling operations. The qualification of these risks requires a comprehensive understanding of gas hydrate-formation and dissociation as a result of drilling induced processes. To develop the required understanding of gas hydrat formation and dissociation, the authors conducted laboratory experiments by using a micro-drilling system, to study the dissociation rates of methane hydrates contained in a tank reactor. The test facility used is a development of China University of Geosciences. The rates of methane hydrate formation and dissociation in the tank reactor were measured at steady-state conditions at pressures ranging from 0.1 to 25 MPa and temperatures ranging from -5 to 20 C. The experimental results show that the rate of hydrate formation is strongly influenced by the fluid system used to form the hydrates, pressure and temperature, with the influence of the temperature on methane hydrate dissociation being stronger than that of the pressure. Drilling speed, drilling fluids and hydrate dissociation inhibitors were also shown to influence hydrate dissociation rate. The derived results have been used to predict hydrate drilling stability for several drilling fluid systems.

  8. Skin hydration analysis by experiment and computer simulations and its implications for diapered skin.

    Science.gov (United States)

    Saadatmand, M; Stone, K J; Vega, V N; Felter, S; Ventura, S; Kasting, G; Jaworska, J

    2017-11-01

    Experimental work on skin hydration is technologically challenging, and mostly limited to observations where environmental conditions are constant. In some cases, like diapered baby skin, such work is practically unfeasible, yet it is important to understand potential effects of diapering on skin condition. To overcome this challenge, in part, we developed a computer simulation model of reversible transient skin hydration effects. Skin hydration model by Li et al. (Chem Eng Sci, 138, 2015, 164) was further developed to simulate transient exposure conditions where relative humidity (RH), wind velocity, air, and skin temperature can be any function of time. Computer simulations of evaporative water loss (EWL) decay after different occlusion times were compared with experimental data to calibrate the model. Next, we used the model to investigate EWL and SC thickness in different diapering scenarios. Key results from the experimental work were: (1) For occlusions by RH=100% and free water longer than 30 minutes the absorbed amount of water is almost the same; (2) Longer occlusion times result in higher water absorption by the SC. The EWL decay and skin water content predictions were in agreement with experimental data. Simulations also revealed that skin under occlusion hydrates mainly because the outflux is blocked, not because it absorbs water from the environment. Further, simulations demonstrated that hydration level is sensitive to time, RH and/or free water on skin. In simulated diapering scenarios, skin maintained hydration content very close to the baseline conditions without a diaper for the entire duration of a 24 hours period. Different diapers/diaper technologies are known to have different profiles in terms of their ability to provide wetness protection, which can result in consumer-noticeable differences in wetness. Simulation results based on published literature using data from a number of different diapers suggest that diapered skin hydrates within

  9. Assessment of delta ferrite in multipass TIG welds of 40 mm thick SS 316L plates: a comparative study of ferrite number (FN) prediction and experimental measurements

    International Nuclear Information System (INIS)

    Buddu, Ramesh Kumar; Shaikh, Shamsuddin; Raole, Prakash M.; Sarkar, Biswanath

    2015-01-01

    Austenitic stainless steels are widely used in the fabrication of fusion reactor major systems like vacuum vessel, divertor, cryostat and other major structural components development. AISI SS316L materials of different thicknesses are utilized due to the superior mechanical properties, corrosion resistance, fatigue and stability at high temperature operation. The components are developed by using welding techniques like TIG welding with suitable filler material. Like in case of vacuum vessel, the multipass welding is unavoidable due to the use of high thickness plates (like in case of ITER and DEMO reactors). In general austenitic welds contains fraction of delta ferrite phase in multipass welds. The quantification depends on the weld thermal cycles like heat input and cooling rates associated with process conditions and chemical composition of the welds. Due to the repeated weld thermal passes, the microstructure adversely alters due to the presence of complex phases like austenite, ferrite and delta ferrite and subsequently influence the mechanical properties like tensile and impact toughness of joints. Control of the delta ferrite is necessary to hold the compatible final properties of the joints and hence its evaluation vital before the fabrication process. The present paper reports the detail analysis of delta ferrite phase in welded region and heat affected zones of 40 mm thick SS316L plates welded by special design multipass narrow groove TIG welding process under three different heat input conditions (1.67 kJ/mm, 1.78 kJ/mm, 1.87 kJ/mm). The correlation of delta ferrite microstructure with optical microscope and high resolution SEM has been carried out and different type of acicular and vermicular delta ferrite structures is observed. This is further correlated with the non destructive magnetic measurement using Ferrite scope. The measured ferrite number (FN) is correlated with the formed delta ferrite phase. The chemical composition of weld samples is

  10. Dissolution mechanisms of CO2 hydrate droplets in deep seawaters

    International Nuclear Information System (INIS)

    Gabitto, Jorge; Tsouris, Costas

    2006-01-01

    Carbon dioxide dissolution at intermediate ocean depths was studied using physical and mass transfer models. Particle density and hydrate layer thickness were determined using existing field data. Pseudo-homogeneous and heterogeneous mass transfer models were proposed to study the dissolution process. Pseudo-homogeneous models do not seem to represent the dissolution process well. Although heterogeneous models interpret the physical behavior better, unresolved issues related to hydrate dissolution still remain. For example, solid hydrate forms on one side of the hydrate film while it dissolves on the other. Dissolution is a complex process that comprises at least two sequential steps. The global process is controlled by mass transfer inside the hydrate layer or by a dissolution reaction at the hydrate-water interface

  11. Gas hydrate in nature

    Science.gov (United States)

    Ruppel, Carolyn D.

    2018-01-17

    Gas hydrate is a naturally occurring, ice-like substance that forms when water and gas combine under high pressure and at moderate temperatures. Methane is the most common gas present in gas hydrate, although other gases may also be included in hydrate structures, particularly in areas close to conventional oil and gas reservoirs. Gas hydrate is widespread in ocean-bottom sediments at water depths greater than 300–500 meters (m; 984–1,640 feet [ft]) and is also present in areas with permanently frozen ground (permafrost). Several countries are evaluating gas hydrate as a possible energy resource in deepwater or permafrost settings. Gas hydrate is also under investigation to determine how environmental change may affect these deposits.

  12. Carbon dioxide gas hydrates accumulation in freezing and frozen sediments

    Energy Technology Data Exchange (ETDEWEB)

    Chuvilin, E.; Guryeva, O. [Moscow State Univ., Moscow (Russian Federation). Dept. of Geology

    2008-07-01

    Carbon dioxide (CO{sub 2}) hydrates and methane hydrates can be formed, and exist under natural conditions. The permafrost area has been considered as an environment for the potential disposal of CO{sub 2}. The favorable factors for preserving CO{sub 2} in liquid and gas hydrate states in frozen sediments and under permafrost horizons are great thickness of frozen sediments; low permeability in comparison with thawed sediments; and favourable conditions for hydrates formation. Therefore, research on the formation and existence conditions of CO{sub 2} gas hydrates in permafrost and under permafrost sediments are of great importance for estimation of CO{sub 2} disposal conditions in permafrost, and for working out specific sequestration schemes. This paper presented the results of an experimental study on the process of carbon dioxide (CO{sub 2}) gas hydrates formation in the porous media of sediments under positive and negative temperatures. Sediment samples of various compositions including those selected in the permafrost area were used. The research was conducted in a special pressure chamber, which allowed to monitor pressure and temperature. The study used the monitoring results in order to make quantitative estimation of the kinetics of CO{sub 2} hydrates accumulation in the model sediments. Results were presented in terms of kinetics of CO{sub 2} hydrates accumulation in the porous media at positive and negative temperatures; kinetics of CO{sub 2} hydrates accumulation in various porous media; gas hydrate-former influence on kinetics of hydrates accumulation in frozen sediments; and influence of freezing on CO{sub 2} hydrates accumulation in porous media. It was concluded that hydrate accumulation took an active place in porous media not only under positive, but also under high negative temperatures, when the water was mainly in the form of ice in porous media. 27 refs., 3 tabs., 5 figs.

  13. Effects of CO2 hydrate on deep-sea foraminiferal assemblages

    International Nuclear Information System (INIS)

    Ricketts, E. R.; Kennett, J. P.; Hill, T. M.; Barry, J. P.

    2005-01-01

    This study, conducted with the Monterey Bay Aquarium Research Institute (MBARI), is the first to investigate potential effects of carbon dioxide (CO2) hydrates on benthic microfossils, specifically oraminifera. The experiment was conducted in September 2003 aboard the R/V Western Flier using the ROV Tiburon. Experimental (CO2 exposed) and control cores were collected at 3600m and stained to distinguish live (stained) from dead (unstained) individuals. Foraminifera are ideal for these investigations because of differing test composition (calcareous and agglutinated) and thickness, and diverse epifaunal and infaunal depth preferences. The effects of the CO2 on assemblages have been tracked both vertically (10cm depth) and horizontally, and between live and dead individuals. Increased mortality and dissolution of calcareous forms resulted from exposure to CO2 hydrate. Preliminary results suggest several major effects on surface sediment assemblages: 1) total number of foraminifera in a sample decreases; 2) foraminiferal diversity decreases in both stained and unstained specimens. The number of planktonic and hyaline calcareous tests declines greatly, with milliolids being more resistant to dissolution when stained; and 3) percentage of stained (live) forms is higher. Down-core trends (up to 10cm) indicate: 1) percent agglutinated forms decline and calcareous forms increasingly dominate; 2) agglutinated diversity decreases with depth; and 3) assemblages become increasingly similar with depth to those in control cores not subjected to CO2 hydrate. These results imply almost complete initial mortality and dissolution upon CO2 hydrate emplacement in the corrals. (Author)

  14. Gas hydrate formation and accumulation potential in the Qiangtang Basin, northern Tibet, China

    International Nuclear Information System (INIS)

    Fu, Xiugen; Wang, Jian; Tan, Fuwen; Feng, Xinglei; Wang, Dong; He, Jianglin

    2013-01-01

    Highlights: • Qiangtang Basin is the biggest residual petroleum-bearing basin in Tibet Plateau. • The Late Triassic Tumen Gela Formation is the most important gas source rock. • Seventy-one potential anticline structural traps have been found. • A favorable geothermal condition for gas hydrate formation. • A large number of mud volcanoes were discovered in the basin. - Abstract: The Qiangtang Basin is the biggest residual petroleum-bearing basin in the Qinghai–Tibet Plateau, and is also an area of continuous permafrost in southwest China with strong similarities to other known gas-hydrate-bearing regions. Permafrost thickness is typically 60–180 m; average surface temperature ranges from −0.2 to −4.0 °C, and the geothermal gradient is about 2.64 °C/100 m. In the basin, the Late Triassic Tumen Gela Formation is the most important gas source rock for gas, and there are 34.3 × 10 8 t of gas resources in the Tumen Gela Formation hydrocarbon system. Seventy-one potential anticline structural traps have been found nowadays covering an area of more than 30 km 2 for each individual one, five of them are connected with the gas source by faults. Recently, a large number of mud volcanoes were discovered in the central Qiangtang Basin, which could be indicative of the formation of potential gas hydrate. The North Qiangtang depression should be delineated as the main targets for the purpose of gas hydrate exploration

  15. Hydration of urea and alkylated urea derivatives

    Science.gov (United States)

    Kaatze, Udo

    2018-01-01

    Compressibility data and broadband dielectric spectra of aqueous solutions of urea and some of its alkylated derivatives have been evaluated to yield their numbers Nh of hydration water molecules per molecule of solute. Nh values in a broad range of solute concentrations are discussed and are compared to hydration numbers of other relevant molecules and organic ions. Consistent with previous results, it is found that urea differs from other solutes in its unusually small hydration number, corresponding to just one third of the estimated number of nearest neighbor molecules. This remarkable hydration behavior is explained by the large density φH of hydrogen bonding abilities offered by the urea molecule. In terms of currently discussed models of reorientational motions and allied dynamics in water and related associating liquids, the large density φH causes a relaxation time close to that of undisturbed water with most parts of water encircling the solute. Therefore only a small part of disturbed ("hydration") water is left around each urea molecule. Adding alkyl groups to the basic molecule leads to Nh values which, within the series of n-alkylurea derivatives, progressively increase with the number of methyl groups per solute. With n-butylurea, Nh from dielectric spectra, in conformity with many other organic solutes, slightly exceeds the number of nearest neighbors. Compared to such Nh values, hydration numbers from compressibility data are substantially smaller, disclosing incorrect assumptions in the formula commonly used to interpret the experimental compressibilities. Similar to other series of organic solutes, effects of isomerization have been found with alkylated urea derivatives, indicating that factors other than the predominating density φH of hydrogen bond abilities contribute also to the hydration properties.

  16. Supramolecular Organization of Nonstoichiometric Drug Hydrates: Dapsone

    Science.gov (United States)

    Braun, Doris E.; Griesser, Ulrich J.

    2018-01-01

    The observed moisture- and temperature dependent transformations of the dapsone (4,4′-diaminodiphenyl sulfone, DDS) 0. 33-hydrate were correlated to its structure and the number and strength of the water-DDS intermolecular interactions. A combination of characterization techniques was used, including thermal analysis (hot-stage microscopy, differential scanning calorimetry and thermogravimetric analysis), gravimetric moisture sorption/desorption studies and variable humidity powder X-ray diffraction, along with computational modeling (crystal structure prediction and pair-wise intermolecular energy calculations). Depending on the relative humidity the hydrate contains between 0 and 0.33 molecules of water per molecule DDS. The crystal structure is retained upon dehydration indicating that DDS hydrate shows a non-stoichiometric (de)hydration behavior. Unexpectedly, the water molecules are not located in structural channels but at isolated-sites of the host framework, which is counterintuitively for a hydrate with non-stoichiometric behavior. The water-DDS interactions were estimated to be weaker than water-host interactions that are commonly observed in stoichiometric hydrates and the lattice energies of the isomorphic dehydration product (hydrate structure without water molecules) and (form III) differ only by ~1 kJ mol−1. The computational generation of hypothetical monohydrates confirms that the hydrate with the unusual DDS:water ratio of 3:1 is more stable than a feasible monohydrate structure. Overall, this study highlights that a deeper understanding of the formation of hydrates with non-stoichiometric behavior requires a multidisciplinary approach including suitable experimental and computational methods providing a firm basis for the development and manufacturing of high quality drug products. PMID:29520359

  17. Hydrate Control for Gas Storage Operations

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey Savidge

    2008-10-31

    The overall objective of this project was to identify low cost hydrate control options to help mitigate and solve hydrate problems that occur in moderate and high pressure natural gas storage field operations. The study includes data on a number of flow configurations, fluids and control options that are common in natural gas storage field flow lines. The final phase of this work brings together data and experience from the hydrate flow test facility and multiple field and operator sources. It includes a compilation of basic information on operating conditions as well as candidate field separation options. Lastly the work is integrated with the work with the initial work to provide a comprehensive view of gas storage field hydrate control for field operations and storage field personnel.

  18. Major occurrences and reservoir concepts of marine clathrate hydrates: Implications of field evidence

    Science.gov (United States)

    Booth, J.S.; Winters, W.J.; Dillon, William P.; Clennell, M.B.; Rowe, M.M.

    1998-01-01

    This paper is part of the special publication Gas hydrates: relevance to world margin stability and climatic change (eds J.P. Henriet and J. Mienert). Questions concerning clathrate hydrate as an energy resource, as a factor in modifying global climate and as a triggering mechanism for mass movements invite consideration of what factors promote hydrate concentration, and what the quintessential hydrate-rich sediment may be. Gas hydrate field data, although limited, provide a starting point for identifying the environments and processes that lead to more massive concentrations. Gas hydrate zones are up to 30 m thick and the vertical range of occurrence at a site may exceed 200 m. Zones typically occur more than 100m above the phase boundary. Thicker zones are overwhelmingly associated with structural features and tectonism, and often contain sand. It is unclear whether an apparent association between zone thickness and porosity represents a cause-and-effect relationship. The primary control on the thickness of a potential gas hydrate reservoir is the geological setting. Deep water and low geothermal gradients foster thick gas hydrate stability zones (GHSZs). The presence of faults, fractures, etc. can favour migration of gas-rich fluids. Geological processes, such as eustacy or subsidence, may alter the thickness of the GHSZ or affect hydrate concentratiion. Tectonic forces may promote injection of gas into the GHSZ. More porous and permeable sediment, as host sediment properties, increase storage capacity and fluid conductivity, and thus also enhance reservoir potential.

  19. X-ray microanalysis of freeze-dried and frozen-hydrated cryosections

    International Nuclear Information System (INIS)

    Zierold, K.

    1988-01-01

    The elemental composition and the ultrastructure of biological cells were studied by scanning transmission electron microscopy (STEM) combined with energy dispersive X-ray microanalysis. The preparation technique involves cryofixation, cryoultramicrotomy, cryotransfer, and freeze-drying of samples. Freeze-dried cryosections 100-nm thick appeared to be appropriate for measuring the distribution of diffusible elements and water in different compartments of the cells. The lateral analytical resolution was less than 50 nm, depending on ice crystal damage and section thickness. The detection limit was in the range of 10 mmol/kg dry weight for all elements with an atomic number higher than 12; for sodium and magnesium the detection limits were about 30 and 20 mmol/kg dry weight, respectively. The darkfield intensity in STEM is linearly related to the mass thickness. Thus, it becomes possible to measure the water content in intracellular compartments by using the darkfield signal of the dry mass remaining after freeze-drying. By combining the X-ray microanalytical data expressed as dry weight concentrations with the measurements of the water content, physiologically more meaningful wet weight concentrations of elements were determined. In comparison to freeze-dried cryosections frozen-hydrated sections showed poor contrast and were very sensitive against radiation damage, resulting in mass loss. The high electron exposure required for recording X-ray spectra made reproducible microanalysis of ultrathin (about 100-nm thick) frozen-hydrated sections impossible. The mass loss could be reduced by carbon coating; however, the improvement achieved thus far is still insufficient for applications in X-ray microanalysis. Therefore, at present only bulk specimens or at least 1-micron thick sections can be used for X-ray microanalysis of frozen-hydrated biological samples

  20. Hydration rate of obsidian.

    Science.gov (United States)

    Friedman, I; Long, W

    1976-01-30

    The hydration rates of 12 obsidian samples of different chemical compositions were measured at temperatures from 95 degrees to 245 degrees C. An expression relating hydration rate to temperature was derived for each sample. The SiO(2) content and refractive index are related to the hydration rate, as are the CaO, MgO, and original water contents. With this information it is possible to calculate the hydration rate of a sample from its silica content, refractive index, or chemical index and a knowledge of the effective temperature at which the hydration occurred. The effective hydration temperature can be either measured or approximated from weather records. Rates have been calculated by both methods, and the results show that weather records can give a good approximation to the true EHT, particularly in tropical and subtropical climates. If one determines the EHT by any of the methods suggested, and also measures or knows the rate of hydration of the particular obsidian used, it should be possible to carry out absolute dating to +/- 10 percent of the true age over periods as short as several years and as long as millions of years.

  1. Methane Hydrates: Chapter 8

    Science.gov (United States)

    Boswell, Ray; Yamamoto, Koji; Lee, Sung-Rock; Collett, Timothy S.; Kumar, Pushpendra; Dallimore, Scott

    2008-01-01

    Gas hydrate is a solid, naturally occurring substance consisting predominantly of methane gas and water. Recent scientific drilling programs in Japan, Canada, the United States, Korea and India have demonstrated that gas hydrate occurs broadly and in a variety of forms in shallow sediments of the outer continental shelves and in Arctic regions. Field, laboratory and numerical modelling studies conducted to date indicate that gas can be extracted from gas hydrates with existing production technologies, particularly for those deposits in which the gas hydrate exists as pore-filling grains at high saturation in sand-rich reservoirs. A series of regional resource assessments indicate that substantial volumes of gas hydrate likely exist in sand-rich deposits. Recent field programs in Japan, Canada and in the United States have demonstrated the technical viability of methane extraction from gas-hydrate-bearing sand reservoirs and have investigated a range of potential production scenarios. At present, basic reservoir depressurisation shows the greatest promise and can be conducted using primarily standard industry equipment and procedures. Depressurisation is expected to be the foundation of future production systems; additional processes, such as thermal stimulation, mechanical stimulation and chemical injection, will likely also be integrated as dictated by local geological and other conditions. An innovative carbon dioxide and methane swapping technology is also being studied as a method to produce gas from select gas hydrate deposits. In addition, substantial additional volumes of gas hydrate have been found in dense arrays of grain-displacing veins and nodules in fine-grained, clay-dominated sediments; however, to date, no field tests, and very limited numerical modelling, have been conducted with regard to the production potential of such accumulations. Work remains to further refine: (1) the marine resource volumes within potential accumulations that can be

  2. Supramolecular Organization of Nonstoichiometric Drug Hydrates: Dapsone

    Directory of Open Access Journals (Sweden)

    Doris E. Braun

    2018-02-01

    Full Text Available The observed moisture- and temperature dependent transformations of the dapsone (4,4′-diaminodiphenyl sulfone, DDS 0. 33-hydrate were correlated to its structure and the number and strength of the water-DDS intermolecular interactions. A combination of characterization techniques was used, including thermal analysis (hot-stage microscopy, differential scanning calorimetry and thermogravimetric analysis, gravimetric moisture sorption/desorption studies and variable humidity powder X-ray diffraction, along with computational modeling (crystal structure prediction and pair-wise intermolecular energy calculations. Depending on the relative humidity the hydrate contains between 0 and 0.33 molecules of water per molecule DDS. The crystal structure is retained upon dehydration indicating that DDS hydrate shows a non-stoichiometric (dehydration behavior. Unexpectedly, the water molecules are not located in structural channels but at isolated-sites of the host framework, which is counterintuitively for a hydrate with non-stoichiometric behavior. The water-DDS interactions were estimated to be weaker than water-host interactions that are commonly observed in stoichiometric hydrates and the lattice energies of the isomorphic dehydration product (hydrate structure without water molecules and (form III differ only by ~1 kJ mol−1. The computational generation of hypothetical monohydrates confirms that the hydrate with the unusual DDS:water ratio of 3:1 is more stable than a feasible monohydrate structure. Overall, this study highlights that a deeper understanding of the formation of hydrates with non-stoichiometric behavior requires a multidisciplinary approach including suitable experimental and computational methods providing a firm basis for the development and manufacturing of high quality drug products.

  3. Mechanisms Leading to Co-Existence of Gas Hydrate in Ocean Sediments [Part 1 of 2

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Steven; Juanes, Ruben

    2011-12-31

    saturations. Large volumes (of order one pore volume) of gaseous and aqueous phases must be transported into the gas hydrate stability zone. The driver for this transport is the pressure sink induced by a reduction in occupied pore volume that accompanies the formation of hydrate from gas and water. Pore-scale imbibition models and bed-scale multiphase flow models indicate that the rate-limiting step in converting gas to hydrate is the supply of water to the hydrate stability zone. Moreover, the water supply rate is controlled by capillarity-driven flux for conditions typical of the Alaska North Slope. A meter-scale laboratory experiment confirms that significant volumes of fluid phases move into the hydrate stability zone and that capillarity is essential for the water flux. The model shows that without capillarity-driven flux, large saturations of hydrate cannot form. The observations of thick zones of large saturation at Mallik and Mt Elbert thus suggest that the primary control on these systems is the rate of transport of gaseous and aqueous phases, driven by the pressure sink at the base of the gas hydrate stability zone. A key finding of our project is the elucidation of ?capillary fracturing? as a dominant gas transport mechanism in low-permeability media. We initially investigate this phenomenon by means of grain-scale simulations in which we extended a discrete element mechanics code (PFC, by Itasca) to incorporate the dynamics of first single-phase and then multiphase flow. A reductionist model on a square lattice allows us to determine some of the fundamental dependencies of the mode of gas invasion (capillary fingering, viscous fingering, and fracturing) on the parameters of the system. We then show that the morphology of the gas-invaded region exerts a fundamental control on the fabric of methane hydrate formation, and on the overpressures caused by methane hydrate dissociation. We demonstrate the existence of the different invasion regimes by means of controlled

  4. Mechanisms Leading to Co-Existence of Gas Hydrate in Ocean Sediments [Part 2 of 2

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, Steven; Juanes, Ruben

    2011-12-31

    saturations. Large volumes (of order one pore volume) of gaseous and aqueous phases must be transported into the gas hydrate stability zone. The driver for this transport is the pressure sink induced by a reduction in occupied pore volume that accompanies the formation of hydrate from gas and water. Pore-scale imbibition models and bed-scale multiphase flow models indicate that the rate-limiting step in converting gas to hydrate is the supply of water to the hydrate stability zone. Moreover, the water supply rate is controlled by capillarity-driven flux for conditions typical of the Alaska North Slope. A meter-scale laboratory experiment confirms that significant volumes of fluid phases move into the hydrate stability zone and that capillarity is essential for the water flux. The model shows that without capillarity-driven flux, large saturations of hydrate cannot form. The observations of thick zones of large saturation at Mallik and Mt Elbert thus suggest that the primary control on these systems is the rate of transport of gaseous and aqueous phases, driven by the pressure sink at the base of the gas hydrate stability zone. A key finding of our project is the elucidation of ?capillary fracturing? as a dominant gas transport mechanism in low-permeability media. We initially investigate this phenomenon by means of grain-scale simulations in which we extended a discrete element mechanics code (PFC, by Itasca) to incorporate the dynamics of first singlephase and then multiphase flow. A reductionist model on a square lattice allows us to determine some of the fundamental dependencies of the mode of gas invasion (capillary fingering, viscous fingering, and fracturing) on the parameters of the system. We then show that the morphology of the gas-invaded region exerts a fundamental control on the fabric of methane hydrate formation, and on the overpressures caused by methane hydrate dissociation. We demonstrate the existence of the different invasion regimes by means of controlled

  5. Enzyme hydration, activity and flexibility : A neutron scattering approach

    International Nuclear Information System (INIS)

    Kurkal-Siebert, V.; Finney, J.L.; Daniel, R.M.; Smith, Jeremy C.

    2006-01-01

    Recent measurements have demonstrated enzyme activity at hydrations as low as 3%. The question of whether the hydration-induced enzyme flexibility is important for activity is addressed by performing picosecond dynamic neutron scattering experiments on pig liver esterase powders at various temperatures as well as solutions. At all temperatures and hydrations investigated here, significant quasielastic scattering intensity is found in the protein, indicating the presence of anharmonic, diffusive motion. As the hydration increases a temperature-dependent dynamical transition appears and strengthens involving additional diffusive motion. At low temperature, increasing hydration resulted in lower flexibility of the enzyme. At higher temperatures, systems containing sufficient number of water molecules interacting with the protein exhibit increased flexibility. The implication of these results is that, although the additional hydration-induced diffusive motion and flexibility at high temperatures in the enzyme detected here may be related to increased activity, they are not required for the enzyme to function

  6. Conductivity, transport number measurements and hydration thermodynamics of BaCe0.2Zr0.7Y(0.1 − ξ)NiξO(3 − δ)

    DEFF Research Database (Denmark)

    Ricote, Sandrine; Bonanos, Nikolaos; Wang, Hsiang-Jen

    2011-01-01

    pressures, as well as the emf technique. The compounds exhibit p-type conduction in oxidizing atmosphere, and ionic conduction elsewhere. The oxide ion contribution of the conductivity is negligible only for temperatures below 600 °C. The determination of hydration enthalpies, our second goal, was achieved...

  7. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Richard Sigal; Kent Newsham; Thomas Williams; Barry Freifeld; Timothy Kneafsey; Carl Sondergeld; Shandra Rai; Jonathan Kwan; Stephen Kirby; Robert Kleinberg; Doug Griffin

    2005-02-01

    part of the Ugnu and throughout the West Sak. No hydrate-bearing zones were identified either in recovered core or on well logs. The base of the permafrost was found at about 1260 ft. With the exception of the deepest sands in the West Sak and some anomalous thin, tight zones, all sands recovered (after thawing) are unconsolidated with high porosity and high permeability. At 800 psi, Ugnu sands have an average porosity of 39.3% and geometrical mean permeability of 3.7 Darcys. Average grain density is 2.64 g/cc. West Sak sands have an average porosity of 35.5%, geometrical mean permeability of 0.3 Darcys, and average grain density of 2.70 g/cc. There were several 1-2 ft intervals of carbonate-cemented sandstone recovered from the West Sak. These intervals have porosities of only a few percent and very low permeability. On a well log they appear as resistive with a high sonic velocity. In shallow sections of other wells these usually are the only logs available. Given the presence of gas in Hot Ice No. 1, if only resistivity and sonic logs and a mud log had been available, tight sand zones may have been interpreted as containing hydrates. Although this finding does not imply that all previously mapped hydrate zones are merely tight sands, it does add a note of caution to the practice of interpreting the presence of hydrates from old well information. The methane hydrate stability zone below the Hot Ice No. 1 location includes thick sections of sandstone and conglomerate which would make excellent reservoir rocks for hydrates and below the permafrost zone shallow gas. The Ugnu formation comprises a more sand-rich section than does the West Sak formation, and the Ugnu sands when cleaned and dried are slightly more porous and significantly more permeable than the West Sak.

  8. A prediction method of natural gas hydrate formation in deepwater gas well and its application

    Directory of Open Access Journals (Sweden)

    Yanli Guo

    2016-09-01

    Full Text Available To prevent the deposition of natural gas hydrate in deepwater gas well, the hydrate formation area in wellbore must be predicted. Herein, by comparing four prediction methods of temperature in pipe with field data and comparing five prediction methods of hydrate formation with experiment data, a method based on OLGA & PVTsim for predicting the hydrate formation area in wellbore was proposed. Meanwhile, The hydrate formation under the conditions of steady production, throttling and shut-in was predicted by using this method based on a well data in the South China Sea. The results indicate that the hydrate formation area decreases with the increase of gas production, inhibitor concentrations and the thickness of insulation materials and increases with the increase of thermal conductivity of insulation materials and shutdown time. Throttling effect causes a plunge in temperature and pressure in wellbore, thus leading to an increase of hydrate formation area.

  9. Tectono-sedimentary controls on the likelihood of gas hydrate occurrence near Taiwan

    Energy Technology Data Exchange (ETDEWEB)

    McDonnell, S.L.; Cherkis, N.Z.; Czarnecki, M.F. [Naval Research Lab., Washington, DC (United States); Max, M.D. [MDS Research, Washington, DC (United States)

    2000-09-01

    Marine sediments on the continental slope of the NE South China Sea have appropriate thickness, methane-generating potential, and occur in a suitable pressure-temperature regime to host gas hydrate. Evidence for gas hydrate, the bottom simulating reflector (BSR), is observed to the south of Taiwan on reflection seismic records, and can be used to suggest that gas hydrates are widely distributed. The tectono-sedimentary framework south of Taiwan bears directly upon methane generation and the likelihood of the presence of significant gas hydrate deposits. Three zones of probable hydrate occurrence have been delineated along the margins of the NE South China Sea: (1) in a thick accumulation of sediment along the northern passive margin; (2) along a more thinly sedimented eastern active collisional margin, and especially; (3) in a zone of thick originally passive margin sedimentation into which the collisional margin has encroached obliquely. (author)

  10. [Laser Raman Spectroscopy and Its Application in Gas Hydrate Studies].

    Science.gov (United States)

    Fu, Juan; Wu, Neng-you; Lu, Hai-long; Wu, Dai-dai; Su, Qiu-cheng

    2015-11-01

    Gas hydrates are important potential energy resources. Microstructural characterization of gas hydrate can provide information to study the mechanism of gas hydrate formation and to support the exploitation and application of gas hydrate technology. This article systemly introduces the basic principle of laser Raman spectroscopy and summarizes its application in gas hydrate studies. Based on Raman results, not only can the information about gas composition and structural type be deduced, but also the occupancies of large and small cages and even hydration number can be calculated from the relative intensities of Raman peaks. By using the in-situ analytical technology, laser Raman specstropy can be applied to characterize the formation and decomposition processes of gas hydrate at microscale, for example the enclathration and leaving of gas molecules into/from its cages, to monitor the changes in gas concentration and gas solubility during hydrate formation and decomposition, and to identify phase changes in the study system. Laser Raman in-situ analytical technology has also been used in determination of hydrate structure and understanding its changing process under the conditions of ultra high pressure. Deep-sea in-situ Raman spectrometer can be employed for the in-situ analysis of the structures of natural gas hydrate and their formation environment. Raman imaging technology can be applied to specify the characteristics of crystallization and gas distribution over hydrate surface. With the development of laser Raman technology and its combination with other instruments, it will become more powerful and play a more significant role in the microscopic study of gas hydrate.

  11. Thickness and bilayer number dependence on exchange bias in ferromagnetic/antiferromagnetic multilayers based on La{sub 1−x}Ca{sub x}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Restrepo-Parra, E., E-mail: erestrepopa@unal.edu.co [Departamento de Física y Química, Universidad Nacional de Colombia-Sede Manizales, A.A. 127 Manizales (Colombia); Agudelo-Giraldo, J.D. [Departamento de Física y Química, Universidad Nacional de Colombia-Sede Manizales, A.A. 127 Manizales (Colombia); Grupo de Investigación y Desarrollo en Informática y Telecomunicaciones, Universidad de Manizales, Manizales (Colombia); Restrepo, J. [Grupo de Magnetismo y Simulación, Instituto de Física, Universidad de Antioquia, A.A. 1226 Medellín (Colombia)

    2014-05-01

    In this work, simulations of ferromagnetic/antiferromagnetic multilayers of La{sub 1−x}Ca{sub x}MnO{sub 3} have been carried out by using the Monte Carlo method combined with the Metropolis algorithm and the classical Heisenberg model. In the Hamiltonian we have considered three contributions: nearest neighbor exchange interaction, magnetocrystalline anisotropy and Zeeman interaction. Samples were built by including three types of Mn ions depending on their valence state and type of ionic orbital. Both the number of layers and the antiferromagnetic layer thickness influence on the exchange bias phenomenon are analyzed. Hysteresis loops results exhibit not only a shift as evidence of exchange bias but also the formation of plateaus or steps caused by the presence of more than one interface and the low layers thickness. Each layer presents a strong magnetic behavior because the magneto static energy favors formation of multi-domains in contrast with the single-domains of a single layer FM producing one sub-Loop of each domain (each layer). On the other hand, as the number of layers (n) increases, the sub-cycles tend to disappear. As the plateaus disappear, the system is more effective, increasing the coercive and bias fields. Moreover, domain sizes (layers thickness) also affect the shape of the hysteresis loop. On increasing the thickness of the AFM layer, a decrease in the plateaus produced by the uncoupling is generated.

  12. Advanced Gas Hydrate Reservoir Modeling Using Rock Physics

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Daniel

    2017-12-30

    Prospecting for high saturation gas hydrate deposits can be greatly aided with improved approaches to seismic interpretation and especially if sets of seismic attributes can be shown as diagnostic or direct hydrocarbon indicators for high saturation gas hydrates in sands that would be of most interest for gas hydrate production.

    A large 3D seismic data set in the deep water Eastern Gulf of Mexico was screened for gas hydrates using a set of techniques and seismic signatures that were developed and proven in the Central deepwater Gulf of Mexico in the DOE Gulf of Mexico Joint Industry Project JIP Leg II in 2009 and recently confirmed with coring in 2017.

    A large gas hydrate deposit is interpreted in the data where gas has migrated from one of the few deep seated faults plumbing the Jurassic hydrocarbon source into the gas hydrate stability zone. The gas hydrate deposit lies within a flat-lying within Pliocene Mississippi Fan channel that was deposited outboard in a deep abyssal environment. The uniform architecture of the channel aided the evaluation of a set of seismic attributes that relate to attenuation and thin-bed energy that could be diagnostic of gas hydrates. Frequency attributes derived from spectral decomposition also proved to be direct hydrocarbon indicators by pseudo-thickness that could be only be reconciled by substituting gas hydrate in the pore space. The study emphasizes that gas hydrate exploration and reservoir characterization benefits from a seismic thin bed approach.

  13. Full-thickness rectal biopsy in children suspicious for Hirschsprung's disease is safe and yields a low number of insufficient biopsies

    DEFF Research Database (Denmark)

    Bjørn, Niels; Rasmussen, Lars; Qvist, Niels

    2018-01-01

    INTRODUCTION: The diagnosis of Hirschsprung's disease (HD) relies on the histological demonstration of aganglionosis in the bowel wall. Biopsies may be obtained by rectal suction biopsy (RSB) or by transanal full-thickness excision biopsy (FTB). The objective of the present study was to evaluate...... the frequency of complications and inconclusive biopsies after FTB in children referred with suspicion of HD. The secondary objective was to calculate the frequency of proven aganglionosis. METHODS: A retrospective chart review was performed of all patients under the age of 16years who underwent transanal FTB...... during the time period of 2008-2014. RESULTS: A total of 555 patients were included in the review. Inconclusive biopsies were found at the primary biopsy in 35 patients (5.9%). Aganglionosis was found in 12% of the cases. The complication rate was 6.6% (39 patients), 85% of which were classified...

  14. HYDRATE CORE DRILLING TESTS

    Energy Technology Data Exchange (ETDEWEB)

    John H. Cohen; Thomas E. Williams; Ali G. Kadaster; Bill V. Liddell

    2002-11-01

    The ''Methane Hydrate Production from Alaskan Permafrost'' project is a three-year endeavor being conducted by Maurer Technology Inc. (MTI), Noble, and Anadarko Petroleum, in partnership with the U.S. DOE National Energy Technology Laboratory (NETL). The project's goal is to build on previous and ongoing R&D in the area of onshore hydrate deposition. The project team plans to design and implement a program to safely and economically drill, core and produce gas from arctic hydrates. The current work scope includes drilling and coring one well on Anadarko leases in FY 2003 during the winter drilling season. A specially built on-site core analysis laboratory will be used to determine some of the physical characteristics of the hydrates and surrounding rock. Prior to going to the field, the project team designed and conducted a controlled series of coring tests for simulating coring of hydrate formations. A variety of equipment and procedures were tested and modified to develop a practical solution for this special application. This Topical Report summarizes these coring tests. A special facility was designed and installed at MTI's Drilling Research Center (DRC) in Houston and used to conduct coring tests. Equipment and procedures were tested by cutting cores from frozen mixtures of sand and water supported by casing and designed to simulate hydrate formations. Tests were conducted with chilled drilling fluids. Tests showed that frozen core can be washed out and reduced in size by the action of the drilling fluid. Washing of the core by the drilling fluid caused a reduction in core diameter, making core recovery very difficult (if not impossible). One successful solution was to drill the last 6 inches of core dry (without fluid circulation). These tests demonstrated that it will be difficult to capture core when drilling in permafrost or hydrates without implementing certain safeguards. Among the coring tests was a simulated hydrate

  15. Thick Toenails

    Science.gov (United States)

    ... in individuals with nail fungus (onychomycosis), psoriasis and hypothyroidism. Those who have problems with the thickness of their toenails should consult a foot and ankle surgeon for proper diagnosis and treatment. Find an ACFAS Physician Search Search Tools Find ...

  16. Low-δD hydration rinds in Yellowstone perlites record rapid syneruptive hydration during glacial and interglacial conditions

    Science.gov (United States)

    Bindeman, Ilya N.; Lowenstern, Jacob B.

    2016-01-01

    Hydration of silicic volcanic glass forms perlite, a dusky, porous form of altered glass characterized by abundant “onion-skin” fractures. The timing and temperature of perlite formation are enigmatic and could plausibly occur during eruption, during post-eruptive cooling, or much later at ambient temperatures. To learn more about the origin of natural perlite, and to fingerprint the hydration waters, we investigated perlitic glass from several synglacial and interglacial rhyolitic lavas and tuffs from the Yellowstone volcanic system. Perlitic cores are surrounded by a series of conchoidal cracks that separate 30- to 100-µm-thick slivers, likely formed in response to hydration-induced stress. H2O and D/H profiles confirm that most D/H exchange happens together with rapid H2O addition but some smoother D/H variations may suggest separate minor exchange by deuterium atom interdiffusion following hydration. The hydrated rinds (2–3 wt% H2O) transition rapidly (within 30 µm, or by 1 wt% H2O per 10 µm) to unhydrated glass cores. This is consistent with quenched “hydration fronts” where H2O diffusion coefficients are strongly dependent on H2O concentrations. The chemical, δ18O, and δD systematics of bulk glass records last equilibrium between ~110 and 60 °C without chemical exchange but with some δ18O exchange. Similarly, the δ18O of water extracted from glass by rapid heating suggests that water was added to the glass during cooling at higher rates of diffusion at 60–110 °C temperatures, compared with values expected from extrapolation of high-temperature (>400 °C) experimental data. The thick hydration rinds in perlites, measuring hundreds of microns, preserve the original D/H values of hydrating water as a recorder of paleoclimate conditions. Measured δD values in perlitic lavas are −150 to −191 or 20–40 ‰ lower than glass hydrated by modern Yellowstone waters. This suggests that Yellowstone perlites record the low-δD signature

  17. Analysis of Decomposition for Structure I Methane Hydrate by Molecular Dynamics Simulation

    Science.gov (United States)

    Wei, Na; Sun, Wan-Tong; Meng, Ying-Feng; Liu, An-Qi; Zhou, Shou-Wei; Guo, Ping; Fu, Qiang; Lv, Xin

    2018-05-01

    Under multi-nodes of temperatures and pressures, microscopic decomposition mechanisms of structure I methane hydrate in contact with bulk water molecules have been studied through LAMMPS software by molecular dynamics simulation. Simulation system consists of 482 methane molecules in hydrate and 3027 randomly distributed bulk water molecules. Through analyses of simulation results, decomposition number of hydrate cages, density of methane molecules, radial distribution function for oxygen atoms, mean square displacement and coefficient of diffusion of methane molecules have been studied. A significant result shows that structure I methane hydrate decomposes from hydrate-bulk water interface to hydrate interior. As temperature rises and pressure drops, the stabilization of hydrate will weaken, decomposition extent will go deep, and mean square displacement and coefficient of diffusion of methane molecules will increase. The studies can provide important meanings for the microscopic decomposition mechanisms analyses of methane hydrate.

  18. Assessing the conditions favorable for the occurrence of gas hydrate in the Tuonamu area Qiangtang basin, Qinghai–Tibetan, China

    International Nuclear Information System (INIS)

    He Jianglin; Wang Jian; Fu Xiugen; Zheng Chenggang; Chen Yanting

    2012-01-01

    Highlights: ► This is a pioneer research on the exploration of gas hydrate in Qiangtang basin. ► The factors influencing the stable of gas hydrate in Tuonamu area were studied. ► Simulation shows that gas hydrate stable zone is about 300 m thick in target area. ► Source condition is the key factor for the formation of gas hydrate in this area. ► The areas around the deeper faults are favorable targets for gas hydrate. - Abstract: Qiangtang basin, which is located in the largest continuous permafrost area in Qinghai–Tibetan Plateau, is expected to be a strategic area of gas hydrate exploitation in China. However, relatively little work has been done on the exploration of gas hydrate in this area. In this work, we evaluated the factors controlling the formation of gas hydrate in the Tuonamu area and provided a preliminary insight into gas hydrate distribution in it on the basis of the core samples, seismic data and laboratory analysis. It can be concluded that the source rock in the deeper formation would be dominant thermogenic source for the formation of gas hydrate in Tuonamu area. The thickness of gas hydrate stable zone in this area is about 300 m. The gas hydrate in the area most probably is in the form of gas-hydrate-water. The source condition is the key factor for the formation of gas hydrate and the gas hydrate layer would be mainly present in the form of interlayer in this area. The areas around the deeper faults are the favorable targets for the exploration of gas hydrate in the Tuonamu area.

  19. Gas hydrate phase equilibria measurement techniques and phase rule considerations

    International Nuclear Information System (INIS)

    Beltran, Juan G.; Bruusgaard, Hallvard; Servio, Phillip

    2012-01-01

    Highlights: → Inconsistencies found in hydrate literature. → Clarification to the number of variables needed to satisfy and justify equilibrium data. → Application of phase rule to mixed hydrate systems. → Thermodynamically consistent format to present data. - Abstract: A brief review of the Gibbs phase rule for non-reacting systems and its correct application to clathrate hydrates is presented. Clarification is provided for a common mistake found in hydrate phase-equilibria literature, whereby initial compositions are used as intensive variables to satisfy the Gibbs phase rule instead of the equilibrium values. The system of (methane + carbon dioxide + water) under (hydrate + liquid + vapor) equilibrium is used as a case study to illustrate key points and suggestions to improve experimental techniques are proposed.

  20. Obsidian hydration profile measurements using a nuclear reaction technique

    Science.gov (United States)

    Lee, R.R.; Leich, D.A.; Tombrello, T.A.; Ericson, J.E.; Friedman, I.

    1974-01-01

    AMBIENT water diffuses into the exposed surfaces of obsidian, forming a hydration layer which increases in thickness with time to a maximum depth of 20-40 ??m (ref. 1), this layer being the basic foundation of obsidian dating2,3. ?? 1974 Nature Publishing Group.

  1. Historical methane hydrate project review

    Science.gov (United States)

    Collett, Timothy; Bahk, Jang-Jun; Frye, Matt; Goldberg, Dave; Husebo, Jarle; Koh, Carolyn; Malone, Mitch; Shipp, Craig; Torres, Marta

    2013-01-01

    In 1995, U.S. Geological Survey made the first systematic assessment of the volume of natural gas stored in the hydrate accumulations of the United States. That study, along with numerous other studies, has shown that the amount of gas stored as methane hydrates in the world greatly exceeds the volume of known conventional gas resources. However, gas hydrates represent both a scientific and technical challenge and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of gas hydrates in nature, (2) assessing the volume of natural gas stored within various gas hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural gas hydrates, and (5) analyzing the effects of methane hydrate on drilling safety.Methane hydrates are naturally occurring crystalline substances composed of water and gas, in which a solid water-­‐lattice holds gas molecules in a cage-­‐like structure. The gas and water becomes a solid under specific temperature and pressure conditions within the Earth, called the hydrate stability zone. Other factors that control the presence of methane hydrate in nature include the source of the gas included within the hydrates, the physical and chemical controls on the migration of gas with a sedimentary basin containing methane hydrates, the availability of the water also included in the hydrate structure, and the presence of a suitable host sediment or “reservoir”. The geologic controls on the occurrence of gas hydrates have become collectively known as the “methane hydrate petroleum system”, which has become the focus of numerous hydrate research programs.Recognizing the importance of methane hydrate research and the need for a coordinated

  2. Hydration for the prevention of contrast medium-induced nephropathy. An update

    International Nuclear Information System (INIS)

    Heinrich, M.; Uder, M.

    2006-01-01

    Contrast medium-induced nephropathy (CIN) continues to be one of the most common causes of hospital-acquired acute renal failure. Since most of the clinical studies on the prophylactic use of different drugs to prevent CIN produced disappointing results, hydration remains the mainstay of prophylaxis. A number of recent prospective randomized trials provided further evidence of the effectiveness of hydration and relevant information regarding the optimization of hydration protocols. It was shown that a bolus hydration solely during examination is not sufficient to prevent CIN. In addition, isotonic 0.9% saline was superior to the commonly used halfisotonic 0.45% saline in another trial. An outpatient hydration protocol including oral hydration before the examination followed by forced intravenous hydration over 6 hrs. beginning 30 to 60 min. prior to examination seems to be comparable to the usual hydration over 24 hrs. Another hydration protocol, which could also be very attractive especially for outpatients, included the infusion of sodium bicarbonate. In a recent trial, hydration with sodium bicarbonate, given as a bolus for 1 hr. prior to examination followed by an infusion for 6 hrs. after examination, was more effective than hydration with sodium chloride for the prophylaxis of CIN. However, there is still a lack of large-scale, multi-center trials comparing different hydration protocols and investigating their influence on clinically relevant endpoints such as mortality or the need for dialysis. (orig.)

  3. Overview: Nucleation of clathrate hydrates.

    Science.gov (United States)

    Warrier, Pramod; Khan, M Naveed; Srivastava, Vishal; Maupin, C Mark; Koh, Carolyn A

    2016-12-07

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  4. Formation of submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Soloviev, V.; Ginsburg, G.D. (Reserch Institute of Geology and Mineral Resources of the Ocean ' ' VNII Okeangeologia' ' , St. Petersburg (Russian Federation))

    1994-03-01

    Submarine gas hydrates have been discoverd in the course of deep-sea drilling (DSDP and ODP) and bottom sampling in many offshore regions. This paper reports on expeditions carried out in the Black, Caspian and Okhotsk Seas. Gas hydrate accumulations were discovered and investigated in all these areas. The data and an analysis of the results of the deep-sea drilling programme suggest that the infiltration of gas-bearing fluids is a necessary condition for gas hydrate accumulation. This is confirmed by geological observations at three scale levels. Firstly, hydrates in cores are usually associated with comparatively coarse-grained, permeable sediments as well as voids and fractures. Secondly, hydrate accumulations are controlled by permeable geological structures, i.e. faults, diapirs, mud volcanos as well as layered sequences. Thirdly, in the worldwide scale, hydrate accumulations are characteristic of continental slopes and rises and intra-continental seas where submarine seepages also are widespread. Both biogenic and catagenic gas may occur, and the gas sources may be located at various distances from the accumulation. Gas hydrates presumably originate from water-dissolved gas. The possibility of a transition from dissolved gas into hydrate is confirmed by experimental data. Shallow gas hydrate accumulations associated with gas-bearing fluid plumes are the most convenient features for the study of submarine hydrate formation in general. These accumulations are known from the Black, Caspian and Okhotsk Seas, the Gulf of Mexico and off northern California. (au) (24 refs.)

  5. Overview: Nucleation of clathrate hydrates

    Science.gov (United States)

    Warrier, Pramod; Khan, M. Naveed; Srivastava, Vishal; Maupin, C. Mark; Koh, Carolyn A.

    2016-12-01

    Molecular level knowledge of nucleation and growth of clathrate hydrates is of importance for advancing fundamental understanding on the nature of water and hydrophobic hydrate formers, and their interactions that result in the formation of ice-like solids at temperatures higher than the ice-point. The stochastic nature and the inability to probe the small length and time scales associated with the nucleation process make it very difficult to experimentally determine the molecular level changes that lead to the nucleation event. Conversely, for this reason, there have been increasing efforts to obtain this information using molecular simulations. Accurate knowledge of how and when hydrate structures nucleate will be tremendously beneficial for the development of sustainable hydrate management strategies in oil and gas flowlines, as well as for their application in energy storage and recovery, gas separation, carbon sequestration, seawater desalination, and refrigeration. This article reviews various aspects of hydrate nucleation. First, properties of supercooled water and ice nucleation are reviewed briefly due to their apparent similarity to hydrates. Hydrate nucleation is then reviewed starting from macroscopic observations as obtained from experiments in laboratories and operations in industries, followed by various hydrate nucleation hypotheses and hydrate nucleation driving force calculations based on the classical nucleation theory. Finally, molecular simulations on hydrate nucleation are discussed in detail followed by potential future research directions.

  6. Methane hydrate distribution from prolonged and repeated formation in natural and compacted sand samples: X-ray CT observations

    Energy Technology Data Exchange (ETDEWEB)

    Rees, E.V.L.; Kneafsey, T.J.; Seol, Y.

    2010-07-01

    To study physical properties of methane gas hydrate-bearing sediments, it is necessary to synthesize laboratory samples due to the limited availability of cores from natural deposits. X-ray computed tomography (CT) and other observations have shown gas hydrate to occur in a number of morphologies over a variety of sediment types. To aid in understanding formation and growth patterns of hydrate in sediments, methane hydrate was repeatedly formed in laboratory-packed sand samples and in a natural sediment core from the Mount Elbert Stratigraphic Test Well. CT scanning was performed during hydrate formation and decomposition steps, and periodically while the hydrate samples remained under stable conditions for up to 60 days. The investigation revealed the impact of water saturation on location and morphology of hydrate in both laboratory and natural sediments during repeated hydrate formations. Significant redistribution of hydrate and water in the samples was observed over both the short and long term.

  7. Natural Gas Hydrates in the Offshore Beaufort-Mackenzie Basin-Study of a Feasible Energy Source II

    International Nuclear Information System (INIS)

    Majorowicz, J. A.; Hannigan, P. K.

    2000-01-01

    In the offshore part of Beaufort-Mackenzie Basin depth of methane hydrate stability reaches more than 1.5 km. However, there are areas in the western part of the basin where there are no conditions of methane hydrate stability. Construction of the first contour maps displaying thickness of hydrate stability zones as well as hydrate stability zone thicknesses below permafrost in the offshore area, shows that these zones can reach 1200 m and 900 m, respectively. Depth to the base of ice-bearing relict permafrost under the sea (depth of the -1 o C isotherm-ice-bearing permafrost base) and regional variations of geothermal gradient are the main controlling factors. Hydrostatic pressures in the upper 1500 m are the rule. History of methane hydrate stability zone is related mainly to the history of permafrost and it reached maximum depth in early Holocene. More recently, the permafrost and hydrate zone is diminishing because of sea transgression. Reevaluation of the location of possible gas hydrate occurrences is done from the analysis of well logs and other indicators in conjunction with knowledge of the hydrate stability zone. In the offshore Beaufort-Mackenzie Basin, methane hydrate occurs in 21 wells. Nine of these locations coincides with underlying conventional hydrocarbon occurrences. Previous analyses place some of the hydrate occurrences at greater depths than proposed for the methane hydrate-stability zone described in this study. Interpretation of geological cross sections and maps of geological sequences reveals that hydrates are occurring in the Iperk-Kugmallit sequence. Hydrate-gas contact zones, however, are possible in numerous situations. As there are no significant geological seals in the deeper part of the offshore basin (all hydrates are within Iperk), it is suggested that overlying permafrost and hydrate stability zone acted as the only trap for upward migrating gas during the last tens of thousand of years (i.e., Sangamonian to Holocene)

  8. Dehydration behaviour of hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Dette, S.S.; Stelzer, T.; Jones, M.J.; Ulrich, J. [Martin-Luther-Universitaet Halle-Wittenberg, Zentrum fuer Ingenieurwissenschaften, Verfahrenstechnik/TVT, 06099 Halle (Germany)

    2010-07-15

    Immersing a crystalline solvate in a suitable anti-solvent can induce phase transformation to solvent-free solid phase. In certain cases the solvent-mediated phase transition results in the generation of hollow, tubular structures. Both the tube dimensions of sodium-2-keto-L-gulonate anhydrate (skga) and the dehydration kinetics of sodium-2-keto-L-gulonate monohydrate (skgm) can be modified by the antisolvent employed. An explanation for the variable dehydration behaviour of skgm in the antisolvents is presented here. Furthermore, other crystalline hydrates were dehydrated in dry methanol. Providing an operational window can be found, any hydrate material could possibly find use in the production of tubes (micro- or nanotubes for different applications). The experimental conditions selected (dry methanol as antisolvent, dehydration temperature at 25 C) for the dehydration did not lead to the anhydrate tube growth for all hydrates investigated. Based upon the results presented here a first hypothesis is presented to explain this effect. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. Observation of ice sheet formation on methane and ethane gas hydrates using a scanning confocal microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nagao, J.; Shimomura, N.; Ebinuma, T.; Narita, H. [National Inst. of Advanced Industrial Science and Technology, Toyohira, Sapporo (Japan). Methane Hydrate Research Lab.

    2008-07-01

    Interest in gas hydrates has increased in recent years due to the discovery of large deposits under the ocean floor and in permafrost regions. Natural gas hydrates, including methane, is expected to become a new energy source and a medium for energy storage and transportation. Gas hydrates consist of an open network of water molecules that are hydrogen-bonded in a similar manner to ice. Gas molecules are interstitially engaged under high pressures and low temperatures. Although the dissociation temperature of methane hydrate under atmospheric pressure is about 193 K, studies have shown that methane hydrate can be stored at atmospheric pressure and 267 K for 2 years. Because of this phenomenon, known as self-preservation, transportation and storage of methane hydrate can occur at temperature conditions milder than those for liquefied methane gas at atmospheric pressure. This study examined the surface changes of methane and ethane hydrates during dissociation using an optical microscope and confocal scanning microscope (CSM). This paper reported on the results when the atmospheric gas pressure was decreased. Ice sheets formed on the surfaces of methane and ethane gas hydrates due to depressurizing dissociation of methane and ethane hydrates when the methane and ethane gas pressures were decreased at designated temperatures. The dissociation of methane gas hydrate below below 237 K resulted in the generation of small ice particles on the hydrate surface. A transparent ice sheet formed on the hydrate surface above 242 K. The thickness of the ice sheet on the methane hydrate surface showed the maximum of ca. 30 {mu}m at 253 K. In the case of ethane hydrates, ice particles and ice sheets formed below 262 and 267 respectively. Since the ice particles and ice sheets were formed by water molecules generated during the gas hydrate dissociation, the mechanism of ice sheet formation depends on the dissociation rate of hydrate, ice particle sintering rate, and water molecule

  10. Gas hydrate cool storage system

    Science.gov (United States)

    Ternes, M.P.; Kedl, R.J.

    1984-09-12

    The invention presented relates to the development of a process utilizing a gas hydrate as a cool storage medium for alleviating electric load demands during peak usage periods. Several objectives of the invention are mentioned concerning the formation of the gas hydrate as storage material in a thermal energy storage system within a heat pump cycle system. The gas hydrate was formed using a refrigerant in water and an example with R-12 refrigerant is included. (BCS)

  11. THERMODYNAMIC MODEL OF GAS HYDRATES

    OpenAIRE

    Недоступ, В. И.; Недоступ, О. В.

    2015-01-01

    The interest to gas hydrates grows last years. Therefore working out of reliable settlement-theoretical methods of definition of their properties is necessary. The thermodynamic model of gas hydrates in which the central place occupies a behaviour of guest molecule in cell is described. The equations of interaction of molecule hydrate formative gas with cell are received, and also an enthalpy and energy of output of molecule from a cell are determined. The equation for calculation of thermody...

  12. High-resolution well-log derived dielectric properties of gas-hydrate-bearing sediments, Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    Science.gov (United States)

    Sun, Y.; Goldberg, D.; Collett, T.; Hunter, R.

    2011-01-01

    A dielectric logging tool, electromagnetic propagation tool (EPT), was deployed in 2007 in the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert Well), North Slope, Alaska. The measured dielectric properties in the Mount Elbert well, combined with density log measurements, result in a vertical high-resolution (cm-scale) estimate of gas hydrate saturation. Two hydrate-bearing sand reservoirs about 20 m thick were identified using the EPT log and exhibited gas-hydrate saturation estimates ranging from 45% to 85%. In hydrate-bearing zones where variation of hole size and oil-based mud invasion are minimal, EPT-based gas hydrate saturation estimates on average agree well with lower vertical resolution estimates from the nuclear magnetic resonance logs; however, saturation and porosity estimates based on EPT logs are not reliable in intervals with substantial variations in borehole diameter and oil-based invasion.EPT log interpretation reveals many thin-bedded layers at various depths, both above and below the thick continuous hydrate occurrences, which range from 30-cm to about 1-m thick. Such thin layers are not indicated in other well logs, or from the visual observation of core, with the exception of the image log recorded by the oil-base microimager. We also observe that EPT dielectric measurements can be used to accurately detect fine-scale changes in lithology and pore fluid properties of hydrate-bearing sediments where variation of hole size is minimal. EPT measurements may thus provide high-resolution in-situ hydrate saturation estimates for comparison and calibration with laboratory analysis. ?? 2010 Elsevier Ltd.

  13. Investigating the influence of lithologic heterogeneity on gas hydrate formation and methane recycling at the base of the gas hydrate stability zone in channelized systems

    Energy Technology Data Exchange (ETDEWEB)

    Daigle, Hugh; Nole, Michael; Cook, Ann; Malinverno, Alberto

    2017-12-14

    In marine environments, gas hydrate preferentially accumulates in coarse-grained sediments. At the meso- to micro-scale, however, hydrate distribution in these coarse-grained units is often heterogeneous. We employ a methane hydrate reservoir simulator coupling heat and mass transfer as well as capillary effects to investigate how capillary controls on methane solubility affect gas and hydrate accumulations in reservoirs characterized by graded bedding and alternating sequences of coarse-grained sands and fine-grained silt and clay. Simulations bury a channelized reservoir unit encased in homogeneous, fine-grained material characterized by small pores (150 nm) and low permeability (~1 md in the absence of hydrate). Pore sizes within each reservoir bed between vary between coarse sand and fine silt. Sands have a median pore size of 35 microns and a lognormal pore size distribution. We also investigate how the amount of labile organic carbon (LOC) affects hydrate growth due to microbial methanogenesis within the sediments. In a diffusion-dominated system, methane movies into reservoir layers along spatial gradients in dissolved methane concentration. Hydrate grows in such a way as to minimize these concentration gradients by accumulating slower in finer-grained reservoir layers and faster in coarser-grained layers. Channelized, fining-upwards sediment bodies accumulate hydrate first along their outer surfaces and thence inward from top to bottom. If LOC is present in thin beds within the channel, higher saturations of hydrate will be distributed more homogeneously throughout the unit. When buried beneath the GHSZ, gas recycling can occur only if enough hydrate is present to form a connected gas phase upon dissociation. Simulations indicate that this is difficult to achieve for diffusion-dominated systems, especially those with thick GHSZs and/or small amounts of LOC. However, capillary-driven fracturing behavior may be more prevalent in settings with thick GHSZs.

  14. Hydration benefits to courtship feeding in crickets

    OpenAIRE

    Ivy, T. M.; Johnson, J. C.; Sakaluk, S. K.

    1999-01-01

    The spermatophore transferred by male decorated crickets (Gryllodes sigillatus) at mating includes a large gelatinous spermatophylax that the female consumes after copulation. Although previous studies have shown that G. sigillatus females gain no nutritional benefits from consuming food gifts, there may be other benefits to their consumption. We examined potential hydration benefits to females by experimentally manipulating both the availability of water and the number of food gifts that fem...

  15. Optical coherence tomography of the effects of stromal hydration on clear corneal incision architecture.

    Science.gov (United States)

    Calladine, Daniel; Tanner, Vaughan

    2009-08-01

    To evaluate the effects of stromal hydration on clear corneal incision (CCI) architecture immediately after surgery using anterior segment optical coherence tomography (AS-OCT). Department of Ophthalmology, Royal Berkshire Hospital, Reading, United Kingdom. Clear corneal incisions in adult eyes were examined using a Visante AS-OCT imaging system within 1 hour of surgery. Half the CCIs had stromal hydration with a balanced salt solution and half did not. Incisions were made with a 2.75 mm steel keratome. Intraocular pressure (IOP) was measured within 90 minutes after surgery. The CCI length and corneal thickness at the CCI site were measured using software built into the AS-OCT system. Thirty CCIs were evaluated. Stromal hydration significantly increased the measured CCI length (Pthe result of a trend toward increased corneal thickness at the CCI site with hydration (PThe mean CCI length was 1.69 mm +/- 0.27 (SD) (range 1.31 to 2.32 mm) with hydration and 1.51 +/- 0.23 mm (range 1.30 to 1.95 mm) without hydration. The mean IOP was 20.9 +/- 8.18 mm Hg and 15.8 +/- 8.20 mm Hg, respectively. The IOP tended to be higher with hydration (Pthe eye with a higher early postoperative IOP, showing the importance of taking stromal hydration into account when designing similar OCT studies of CCI architecture.

  16. Novel understanding of calcium silicate hydrate from dilute hydration

    KAUST Repository

    Zhang, Lina; Yamauchi, Kazuo; Li, Zongjin; Zhang, Xixiang; Ma, Hongyan; Ge, Shenguang

    2017-01-01

    The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10

  17. Effects of Attenuation of Gas Hydrate-bearing Sediments on Seismic Data: Example from Mallik, Northwest Territories, Canada

    Science.gov (United States)

    Bellefleur, G.; Riedel, M.; Brent, T.

    2007-05-01

    Wave attenuation is an important physical property of hydrate-bearing sediments that is rarely taken into account in site characterization with seismic data. We present a field example showing improved images of hydrate- bearing sediments on seismic data after compensation of attenuation effects. Compressional quality factors (Q) are estimated from zero-offset Vertical Seismic Profiling data acquired at Mallik, Northwest Territories, Canada. During the last 10 years, two internationally-partnered research drilling programs have intersected three major intervals of sub-permafrost gas hydrates at Mallik, and have successfully extracted core samples containing significant amount of gas hydrates. Individual gas hydrate intervals are up to 40m in thickness and are characterized by high in situ gas hydrate saturation, sometimes exceeding 80% of pore volume of unconsolidated clastic sediments having average porosities ranging from 25% to 40%. The Q-factors obtained from the VSP data demonstrate significant wave attenuation for permafrost and hydrate- bearing sediments. These results are in agreement with previous attenuation estimates from sonic logs and crosshole data at different frequency intervals. The Q-factors obtained from VSP data were used to compensate attenuation effects on surface 3D seismic data acquired over the Mallik gas hydrate research wells. Intervals of gas hydrate on surface seismic data are characterized by strong reflectivity and effects from attenuation are not perceptible from a simple visual inspection of the data. However, the application of an inverse Q-filter increases the resolution of the data and improves correlation with log data, particularly for the shallowest gas hydrate interval. Compensation of the attenuation effects of the permafrost likely explains most of the improvements for the shallow gas hydrate zone. Our results show that characterization of the Mallik gas hydrates with seismic data not corrected for attenuation would tend to

  18. Different Mechanism Effect between Gas-Solid and Liquid-Solid Interface on the Three-Phase Coexistence Hydrate System Dissociation in Seawater: A Molecular Dynamics Simulation Study

    Directory of Open Access Journals (Sweden)

    Zhixue Sun

    2017-12-01

    Full Text Available Almost 98% of methane hydrate is stored in the seawater environment, the study of microscopic mechanism for methane hydrate dissociation on the sea floor is of great significance to the development of hydrate production, involving a three-phase coexistence system of seawater (3.5% NaCl + hydrate + methane gas. The molecular dynamics method is used to simulate the hydrate dissociation process. The dissociation of hydrate system depends on diffusion of methane molecules from partially open cages and a layer by layer breakdown of the closed cages. The presence of liquid or gas phases adjacent to the hydrate has an effect on the rate of hydrate dissociation. At the beginning of dissociation process, hydrate layers that are in contact with liquid phase dissociated faster than layers adjacent to the gas phase. As the dissociation continues, the thickness of water film near the hydrate-liquid interface became larger than the hydrate-gas interface giving more resistance to the hydrate dissociation. Dissociation rate of hydrate layers adjacent to gas phase gradually exceeds the dissociation rate of layers adjacent to the liquid phase. The difficulty of methane diffusion in the hydrate-liquid side also brings about change in dissociation rate.

  19. Hydrate-CASM for modeling Methane Hydrate-Bearing Sediments

    Science.gov (United States)

    De La Fuente Ruiz, M.; Vaunat, J.; Marin Moreno, H.

    2017-12-01

    A clear understanding of the geomechanical behavior of methane hydrate-bearing sediments (MHBS) is crucial to assess the stability of the seafloor and submarine infrastructures to human and natural loading changes. Here we present the Hydrate-CASM, a new elastoplastic constitutive model to predict the geomechanical behavior of MHBS. Our model employs the critical state model CASM (Clay and Sand Model) because of its flexibility in describing the shape of the yield surface and its proven ability to predict the mechanical behavior of sands, the most commercially viable hydrate reservoirs. The model considers MHBS as a deformable elastoplastic continuum, and hydrate-related changes in the stress-strain behavior are predicted by a densification mechanism. The densification attributes the mechanical contribution of hydrate to; a reduction of the available void ratio; a decrease of the swelling line slope; and an increase of the volumetric yield stress. It is described by experimentally derived physical parameters except from the swelling slope coefficient that requires empirical calibration. The Hydrate-CASM is validated against published triaxial laboratory tests performed at different confinement stresses, hydrate saturations, and hydrate morphologies. During the validation, we focused on capturing the mechanical behavior of the host sediment and consider perturbations of the sediment's mechanical properties that could result from the sample preparation. Our model successfully captures the experimentally observed influence of hydrate saturation in the magnitude and trend of the stiffness, shear strength, and dilatancy of MHBS. Hence, we propose that hydrate-related densification changes might be a major factor controlling the geomechanical response of MHBS.

  20. Hydration behaviors of calcium silicate-based biomaterials.

    Science.gov (United States)

    Lee, Yuan-Ling; Wang, Wen-Hsi; Lin, Feng-Huie; Lin, Chun-Pin

    2017-06-01

    Calcium silicate (CS)-based biomaterials, such as mineral trioxide aggregate (MTA), have become the most popular and convincing material used in restorative endodontic treatments. However, the commercially available CS-based biomaterials all contain different minor additives, which may affect their hydration behaviors and material properties. The purpose of this study was to evaluate the hydration behavior of CS-based biomaterials with/without minor additives. A novel CS-based biomaterial with a simplified composition, without mineral oxides as minor additives, was produced. The characteristics of this biomaterial during hydration were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier transform infrared (FTIR) spectrometry. The hydration behaviors of commercially available gray and white MTAs with mineral oxide as minor additives were also evaluated for reference. For all three test materials, the XRD analysis revealed similar diffraction patterns after hydration, but MTAs presented a significant decrease in the intensities of Bi 2 O 3 -related peaks. SEM results demonstrated similar porous microstructures with some hexagonal and facetted crystals on the outer surfaces. In addition, compared to CS with a simplified composition, the FTIR plot indicated that hydrated MTAs with mineral oxides were better for the polymerization of calcium silicate hydrate (CSH), presenting Si-O band shifting to higher wave numbers, and contained more water crystals within CSH, presenting sharper bands for O-H bending. Mineral oxides might not result in significant changes in the crystal phases or microstructures during the hydration of CS-based biomaterials, but these compounds affected the hydration behavior at the molecular level. Copyright © 2016. Published by Elsevier B.V.

  1. Ductile flow of methane hydrate

    Science.gov (United States)

    Durham, W.B.; Stern, L.A.; Kirby, S.H.

    2003-01-01

    Compressional creep tests (i.e., constant applied stress) conducted on pure, polycrystalline methane hydrate over the temperature range 260-287 K and confining pressures of 50-100 MPa show this material to be extraordinarily strong compared to other icy compounds. The contrast with hexagonal water ice, sometimes used as a proxy for gas hydrate properties, is impressive: over the thermal range where both are solid, methane hydrate is as much as 40 times stronger than ice at a given strain rate. The specific mechanical response of naturally occurring methane hydrate in sediments to environmental changes is expected to be dependent on the distribution of the hydrate phase within the formation - whether arranged structurally between and (or) cementing sediments grains versus passively in pore space within a sediment framework. If hydrate is in the former mode, the very high strength of methane hydrate implies a significantly greater strain-energy release upon decomposition and subsequent failure of hydrate-cemented formations than previously expected.

  2. Comparing the sensitivity of permafrost and marine gas hydrate to climate warming

    International Nuclear Information System (INIS)

    Taylor, A.E.; Dallimore, S.R.; Hyndman, R.D.; Wright, F.

    2005-01-01

    The sensitivity of Arctic subpermafrost gas hydrate at the Mallik borehole was compared to temperate marine gas hydrate located offshore southwestern Canada. In particular, a finite element geothermal model was used to determine the sensitivity to the end of the ice age, and contemporary climate warming of a 30 m thick methane hydrate layer lying at the base of a gas hydrate stability zone prior to 13.5 kiloannum (ka) before present (BP). It was suggested that the 30 m gas-hydrate-bearing layer would have disappeared by now, according to the thermal signal alone. However, the same gas-hydrate-bearing layer underlying permafrost would persist until at least 4 ka after present, even with contemporary climate warming. The longer time for subpermafrost gas hydrate comes from the thawing pore ice at the base of permafrost, at the expense of dissociation of the deeper gas hydrate. The dissociation of underlying gas hydrate from climate surface warming is buffered by the overlying permafrost

  3. Implication of seismic attenuation for gas hydrate resource characterization, Mallik, Mackenzie Delta, Canada

    Science.gov (United States)

    Bellefleur, G.; Riedel, M.; Brent, T.; Wright, F.; Dallimore, S. R.

    2007-10-01

    Wave attenuation is an important physical property of hydrate-bearing sediments that is rarely taken into account in site characterization with seismic data. We present a field example showing improved images of hydrate-bearing sediments on seismic data after compensation of attenuation effects. Compressional quality factors estimated from zero-offset Vertical Seismic Profiling data acquired at Mallik, Northwest Territories, Canada, demonstrate significant wave attenuation for hydrate-bearing sediments. These results are in agreement with previous attenuation estimates obtained from sonic logs and crosshole data at different frequency intervals. The application of an inverse Q-filter to compensate attenuation effects of permafrost and hydrate-bearing sediments improved the resolution of surface 3D seismic data and its correlation with log data, particularly for the shallowest gas hydrate interval. Compensation of the attenuation effects of the permafrost likely explains most of the improvements for the shallow gas hydrate zone. Our results show that characterization of the Mallik gas hydrates with seismic data not corrected for attenuation would tend to overestimate thicknesses and lateral extent of hydrate-bearing strata and hence, the volume of hydrates in place.

  4. A study on dehydration of rare earth chloride hydrate

    International Nuclear Information System (INIS)

    Cho, Yong Zun; Eun, Hee Chul; Son, Sung Mo; Lee, Tae Kyo; Hwang, Taek Sung

    2012-01-01

    The dehydration schemes of rare earth (La, Ce, Nd, Pr, Sm. Eu, Gd, Y) chloride hydrates was investigated by using a dehydration apparatus. To prevent the formation of the rare earth oxychlorides, the operation temperature was changed step by step (80→150→230 degree C) based on the TGA (thermo-gravimetric analysis) results of the rare earth chloride hydrates. A vacuum pump and preheated Ar gas were used to effectively remove the evaporated moisture and maintain an inert condition in the dehydration apparatus. The dehydration temperature of the rare earth chloride hydrate was increased when the atomic number of the rare earth nuclide was increased. The content of the moisture in the rare earth chloride hydrate was decreased below 10% in the dehydration apparatus.

  5. Flow assurance intervention, hydrates remediation

    Energy Technology Data Exchange (ETDEWEB)

    Mancini, Christopher S. [Oceaneering International Inc., Houston, TX (United States)

    2012-07-01

    This paper addresses the issues of removing hydrates in sub sea flow lines and associated equipment with an Remotely Operated Vehicle (ROV) of opportunity and a multi-service-vessel (MSV). The paper is split into three topics: the equipment used with the ROV, assessing the interface points and handling fluids produced from drawing down the pressure. Each section is explained thoroughly and backed up with real world experience. The equipment section details information from actual jobs performed and why the particular components were utilized. The system is generally contained in an ROV mounted skid. Pumps are utilized to draw down the pressure inside the hydrated section of equipment, removing one of the three necessary components for hydrates formation. Once the section is pumped down, several options exist for handling the fluids pumped out of the system: pumping to surface, re-injection into the well, or injection into an operating flow line. This method of hydrates remediation is both economical and timely. Hydrate blockages form in low temperatures and high pressures. Reducing the pressure or increasing the temperature so the conditions lie to the right of the hydrate dissociation curve will slowly decompose the blockage. Depressurization and the use of MEG or methanol will give favorable conditions to remove the hydrate plug. Oceaneering has the capabilities to remove hydrates using the FRS in conjunction with an installation vessel to dispose of the gas and fluid removed from the flow line. Hydrate remediation techniques should be implemented into the initial design to reduce costs later. The cost of stopped production combined with the day rate for equipment needed for hydrate removal outweighs the costs if no technique is utilized. (author)

  6. Examination of Hydrate Formation Methods: Trying to Create Representative Samples

    Energy Technology Data Exchange (ETDEWEB)

    Kneafsey, T.J.; Rees, E.V.L.; Nakagawa, S.; Kwon, T.-H.

    2011-04-01

    Forming representative gas hydrate-bearing laboratory samples is important so that the properties of these materials may be measured, while controlling the composition and other variables. Natural samples are rare, and have often experienced pressure and temperature changes that may affect the property to be measured [Waite et al., 2008]. Forming methane hydrate samples in the laboratory has been done a number of ways, each having advantages and disadvantages. The ice-to-hydrate method [Stern et al., 1996], contacts melting ice with methane at the appropriate pressure to form hydrate. The hydrate can then be crushed and mixed with mineral grains under controlled conditions, and then compacted to create laboratory samples of methane hydrate in a mineral medium. The hydrate in these samples will be part of the load-bearing frame of the medium. In the excess gas method [Handa and Stupin, 1992], water is distributed throughout a mineral medium (e.g. packed moist sand, drained sand, moistened silica gel, other porous media) and the mixture is brought to hydrate-stable conditions (chilled and pressurized with gas), allowing hydrate to form. This method typically produces grain-cementing hydrate from pendular water in sand [Waite et al., 2004]. In the dissolved gas method [Tohidi et al., 2002], water with sufficient dissolved guest molecules is brought to hydrate-stable conditions where hydrate forms. In the laboratory, this is can be done by pre-dissolving the gas of interest in water and then introducing it to the sample under the appropriate conditions. With this method, it is easier to form hydrate from more soluble gases such as carbon dioxide. It is thought that this method more closely simulates the way most natural gas hydrate has formed. Laboratory implementation, however, is difficult, and sample formation is prohibitively time consuming [Minagawa et al., 2005; Spangenberg and Kulenkampff, 2005]. In another version of this technique, a specified quantity of gas

  7. Hydrate prevention in petroleum production sub sea system

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, Paula L.F.; Rocha, Humberto A.R. [Universidade Estacio de Sa (UNESA), Rio de Janeiro, RJ (Brazil); Rodrigues, Antonio P. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil)

    2012-07-01

    In spite of the merits of the several hydrate prevention techniques used nowadays, such as: chemical product injection for inhibition and use of thick thermal insulate lines; hydrates per times happen and they are responsible for considerable production losses. Depressurization techniques can be used so much for prevention as in the remediation. Some hydrate removal techniques need a rig or vessel, resources not readily available and with high cost, reason that limits such techniques just for remediation and not for prevention. In the present work it is proposed and described an innovative depressurization system, remote and resident, for hydrate prevention and removal, applicable as for individual sub sea wells as for grouped wells by manifold. Based on low cost jet pumps, without movable parts and with a high reliability, this technique allows hydrate prevention or remediation in a fast and remote way, operated from the production unit. The power fluid line and fluid return line can be integrated in the same umbilical or annulus line structure, without significant increase in the construction costs and installation. It is not necessary to wait for expensive resource mobilization, sometimes not available quickly, such as: vessels or rigs. It still reduces the chemical product consumption and permits to depressurized stopped lines. Other additional advantage, depressurization procedure can be used in the well starting, removing fluid until riser emptying. (author)

  8. Calcium Aluminate Cement Hydration Model

    Directory of Open Access Journals (Sweden)

    Matusinović, T.

    2011-01-01

    Full Text Available Calcium aluminate cement (AC is a very versatile special cement used for specific applications. As the hydration of AC is highly temperature dependent, yielding structurally different hydration products that continuously alter material properties, a good knowledge of thermal properties at early stages of hydration is essential. The kinetics of AC hydration is a complex process and the use of single mechanisms models cannot describe the rate of hydration during the whole stage.This paper examines the influence of temperature (ϑ=5–20 °C and water-to-cement mass ratio (mH /mAC = 0.4; 0.5 and 1.0 on hydration of commercial iron-rich AC ISTRA 40 (producer: Istra Cement, Pula, Croatia, which is a part of CALUCEM group, Figs 1–3. The flow rate of heat generation of cement pastes as a result of the hydration reactions was measured with differential microcalorimeter. Chemically bonded water in the hydrated cement samples was determined by thermo-gravimetry.Far less heat is liberated when cement and water come in contact for the first time, Fig. 1, than in the case for portland cement (PC. Higher water-to-cement ratio increases the heat evolved at later ages (Fig. 3 due to higher quantity of water available for hydration. A significant effect of the water-to-cement ratio on the hydration rate and hydration degree showed the importance of water as being the limiting reactant that slows down the reaction early. A simplified stoichiometric model of early age AC hydration (eq. (8 based on reaction schemes of principal minerals, nominally CA, C12A7 and C4AF (Table 1, was employed. Hydration kinetics after the induction period (ϑ < 20 °C had been successfully described (Fig. 4 and Table 2 by a proposed model (eq. (23 which simultaneously comprised three main mechanisms: nucleation and growth, interaction at phase boundary, and mass transfer. In the proposed kinetic model the nucleation and growth is proportional to the amount of reacted minerals (eq

  9. Tritium-exchange method for obsidian hydration shell measurement

    Energy Technology Data Exchange (ETDEWEB)

    Lowe, J P; Wilson, A T; Lowe, D J; Hodder, A P.W. [Waikato Univ., Hamilton (New Zealand)

    1984-12-01

    A new radiochemical method for measuring the amount of water in the hydrated layer on the surface of obsidians exchanges tritiated water with the water in the layer (20 ..mu..l of 5 Ci ml/sup -1/ at 90/sup 0/C for 10 days) and then back-exchanges it (in 150 ml of water at 35/sup 0/C for approx. 200 hr.). The activity of the back-exchange water (F) is monitored by liquid scintillation counting of aliquots extracted at known time intervals (t). The activity so measured is then related to the thickness of the hydration rim. A sheet diffusion model shows that the thickness of the hydration shell (l) is inversely proportional to the slope of the F vs. tsup(1/2) plot. Comparison of l-values so obtained between obsidians, whose age (x) is inferred from archaeological occupation layers containing radiocarbon-dated wood and charcoal, suggests a relationship between l and x. Implications for New Zealand prehistory are briefly considered. The technique, which is non-destructive, appears particularly applicable to young glasses where the development of hydrated layers may be inadequate for accurate optical measurement.

  10. The temperature hydration kinetics

    Directory of Open Access Journals (Sweden)

    Mircea Oroian

    2017-07-01

    Full Text Available The aim of this study is to evaluate the hydration kinetics of lentil seeds (Lens culinaris in water at different temperatures (25, 32.5, 40, 55, 70 and 80 °C for assessing the adequacy of models for describing the absorption phenomena during soaking. The diffusion coefficient values were calculated using Fick’s model for spherical and hemispherical geometries and the values were in the range of 10−6 m2/s. The experimental data were fitted to Peleg, Sigmoidal, Weibull and Exponential models. The models adequacy was determined using regression coefficients (R2, root mean square error (RMSE and reduced chi-square (χ2. The Peleg model is the suitable one for predicting the experimental data. Temperature had a positive and significant effect on the water absorption capacities and absorption was an endothermic process.

  11. Alcohol cosurfactants in hydrate antiagglomeration.

    Science.gov (United States)

    York, J Dalton; Firoozabadi, Abbas

    2008-08-28

    Because of availability, as well as economical and environmental considerations, natural gas is projected to be the premium fuel of the 21st century. Natural gas production involves risk of the shut down of onshore and offshore operations because of blockage from hydrates formed from coproduced water and hydrate-forming species in natural gas. Industry practice has been usage of thermodynamic inhibitors such as alcohols often in significant amounts, which have undesirable environmental and safety impacts. Thermodynamic inhibitors affect bulk-phase properties and inhibit hydrate formation. An alternative is changing surface properties through usage of polymers and surfactants, effective at 0.5 to 3 weight % of coproduced water. One group of low dosage hydrate inhibitors (LDHI) are kinetic inhibitors, which affect nucleation rate and growth. A second group of LDHI are antiagglomerants, which prevent agglomeration of small hydrate crystallites. Despite great potential, work on hydrate antiagglomeration is very limited. This work centers on the effect of small amounts of alcohol cosurfactant in mixtures of two vastly different antiagglomerants. We use a model oil, water, and tetrahydrofuran as a hydrate-forming species. Results show that alcohol cosurfactants may help with antiagglomeration when traditional antiagglomerants alone are ineffective. Specifically, as low as 0.5 wt. % methanol cosurfactant used in this study is shown to be effective in antiagglomeration. Without the cosurfactant there will be agglomeration independent of the AA concentration. To our knowledge, this is the first report of alcohol cosurfactants in hydrate antiagglomerants. It is also shown that a rhamnolipid biosurfactant is effective down to only 0.5 wt. % in such mixtures, yet a quaternary ammonium chloride salt, i. e., quat, results in hydrate slurries down to 0.01 wt. %. However, biochemical surfactants are less toxic and biodegradable, and thus their use may prove beneficial even if at

  12. A constitutive mechanical model for gas hydrate bearing sediments incorporating inelastic mechanisms

    KAUST Repository

    Sánchez, Marcelo

    2016-11-30

    Gas hydrate bearing sediments (HBS) are natural soils formed in permafrost and sub-marine settings where the temperature and pressure conditions are such that gas hydrates are stable. If these conditions shift from the hydrate stability zone, hydrates dissociate and move from the solid to the gas phase. Hydrate dissociation is accompanied by significant changes in sediment structure and strongly affects its mechanical behavior (e.g., sediment stiffenss, strength and dilatancy). The mechanical behavior of HBS is very complex and its modeling poses great challenges. This paper presents a new geomechanical model for hydrate bearing sediments. The model incorporates the concept of partition stress, plus a number of inelastic mechanisms proposed to capture the complex behavior of this type of soil. This constitutive model is especially well suited to simulate the behavior of HBS upon dissociation. The model was applied and validated against experimental data from triaxial and oedometric tests conducted on manufactured and natural specimens involving different hydrate saturation, hydrate morphology, and confinement conditions. Particular attention was paid to model the HBS behavior during hydrate dissociation under loading. The model performance was highly satisfactory in all the cases studied. It managed to properly capture the main features of HBS mechanical behavior and it also assisted to interpret the behavior of this type of sediment under different loading and hydrate conditions.

  13. Application of gas hydrate formation in separation processes: A review of experimental studies

    International Nuclear Information System (INIS)

    Eslamimanesh, Ali; Mohammadi, Amir H.; Richon, Dominique; Naidoo, Paramespri; Ramjugernath, Deresh

    2012-01-01

    Highlights: ► Review of gas hydrate technology applied to separation processes. ► Gas hydrates have potential to be a future sustainable separation technology. ► More theoretical, simulation, and economic studies needed. - Abstract: There has been a dramatic increase in gas hydrate research over the last decade. Interestingly, the research has not focussed on only the inhibition of gas hydrate formation, which is of particular relevance to the petroleum industry, but has evolved into investigations on the promotion of hydrate formation as a potential novel separation technology. Gas hydrate formation as a separation technology shows tremendous potential, both from a physical feasibility (in terms of effecting difficult separations) as well as an envisaged lower energy utilization criterion. It is therefore a technology that should be considered as a future sustainable technology and will find wide application, possibly replacing a number of current commercial separation processes. In this article, we focus on presenting a brief description of the positive applications of clathrate hydrates and a comprehensive survey of experimental studies performed on separation processes using gas hydrate formation technology. Although many investigations have been undertaken on the positive application of gas hydrates to date, there is a need to perform more theoretical, experimental, and economic studies to clarify various aspects of separation processes using clathrate/semi-clathrate hydrate formation phenomena, and to conclusively prove its sustainability.

  14. Exergy analysis of a gas-hydrate cool storage system

    International Nuclear Information System (INIS)

    Bi, Yuehong; Liu, Xiao; Jiang, Minghe

    2014-01-01

    Based on exergy analysis of charging and discharging processes in a gas-hydrate cool storage system, the formulas for exergy efficiency at the sensible heat transfer stage and the phase change stage corresponding to gas-hydrate charging and discharging processes are obtained. Furthermore, the overall exergy efficiency expressions of charging, discharging processes and the thermodynamic cycle of the gas-hydrate cool storage system are obtained. By using the above expressions, the effects of number of transfer units, the inlet temperatures of the cooling medium and the heating medium on exergy efficiencies of the gas-hydrate cool storage system are emphatically analyzed. The research results can be directly used to evaluate the performance of gas-hydrate cool storage systems and design more efficient energy systems by reducing the sources of inefficiency in gas-hydrate cool storage systems. - Highlights: • Formulas for exergy efficiency at four stages are obtained. • Exergy efficiency expressions of two processes and one cycle are obtained. • Three mainly influencing factors on exergy efficiencies are analyzed. • With increasing the inlet temperature of cooling medium, exergy efficiency increases. • With decreasing the inlet temperature of heating medium, exergy efficiency increases

  15. Unraveling halide hydration: A high dilution approach.

    Science.gov (United States)

    Migliorati, Valentina; Sessa, Francesco; Aquilanti, Giuliana; D'Angelo, Paola

    2014-07-28

    The hydration properties of halide aqua ions have been investigated combining classical Molecular Dynamics (MD) with Extended X-ray Absorption Fine Structure (EXAFS) spectroscopy. Three halide-water interaction potentials recently developed [M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144104 (2011)], along with three plausible choices for the value of the absolute hydration free energy of the proton (ΔG [minus sign in circle symbol]hyd[H+]), have been checked for their capability to properly describe the structural properties of halide aqueous solutions, by comparing the MD structural results with EXAFS experimental data. A very good agreement between theory and experiment has been obtained with one parameter set, namely LE, thus strengthening preliminary evidences for a ΔG [minus sign in circle symbol]hyd[H] value of -1100 kJ mol(-1) [M. M. Reif and P. H. Hünenberger, J. Chem. Phys. 134, 144104 (2011)]. The Cl(-), Br(-), and I(-) ions have been found to form an unstructured and disordered first hydration shell in aqueous solution, with a broad distribution of instantaneous coordination numbers. Conversely, the F(-) ion shows more ordered and defined first solvation shell, with only two statistically relevant coordination geometries (six and sevenfold complexes). Our thorough investigation on the effect of halide ions on the microscopic structure of water highlights that the perturbation induced by the Cl(-), Br(-), and I(-) ions does not extend beyond the ion first hydration shell, and the structure of water in the F(-) second shell is also substantially unaffected by the ion.

  16. Hydration water and microstructure in calcium silicate and aluminate hydrates

    International Nuclear Information System (INIS)

    Fratini, Emiliano; Ridi, Francesca; Chen, Sow-Hsin; Baglioni, Piero

    2006-01-01

    Understanding the state of the hydration water and the microstructure development in a cement paste is likely to be the key for the improvement of its ultimate strength and durability. In order to distinguish and characterize the reacted and unreacted water, the single-particle dynamics of water molecules in hydrated calcium silicates (C 3 S, C 2 S) and aluminates (C 3 A, C 4 AF) were studied by quasi-elastic neutron scattering, QENS. The time evolution of the immobile fraction represents the hydration kinetics and the mobile fraction follows a non-Debye relaxation. Less sophisticated, but more accessible and cheaper techniques, like differential scanning calorimetry, DSC, and near-infrared spectroscopy, NIR, were validated through QENS results and they allow one to easily and quantitatively follow the cement hydration kinetics and can be widely applied on a laboratory scale to understand the effect of additives (i.e., superplasticizers, cellulosic derivatives, etc) on the thermodynamics of the hydration process. DSC provides information on the free water index and on the activation energy involved in the hydration process while the NIR band at 7000 cm -1 monitors, at a molecular level, the increase of the surface-interacting water. We report as an example the effect of two classes of additives widely used in the cement industry: superplasticizers, SPs, and cellulose derivatives. SPs interact at the solid surface, leading to a consistent increment of the activation energy for the processes of nucleation and growth of the hydrated phases. In contrast, the cellulosic additives do not affect the nucleation and growth activation energy, but cause a significant increment in the water availability: in other words the hydration process is more efficient without any modification of the solid/liquid interaction, as also evidenced by the 1 H-NMR. Additional information is obtained by scanning electron microscopy (SEM), ultra small angle neutron scattering (USANS) and wide

  17. Hydration dependent dynamics in RNA

    International Nuclear Information System (INIS)

    Olsen, Greg L.; Bardaro, Michael F.; Echodu, Dorothy C.; Drobny, Gary P.; Varani, Gabriele

    2009-01-01

    The essential role played by local and collective motions in RNA function has led to a growing interest in the characterization of RNA dynamics. Recent investigations have revealed that even relatively simple RNAs experience complex motions over multiple time scales covering the entire ms-ps motional range. In this work, we use deuterium solid-state NMR to systematically investigate motions in HIV-1 TAR RNA as a function of hydration. We probe dynamics at three uridine residues in different structural environments ranging from helical to completely unrestrained. We observe distinct and substantial changes in 2 H solid-state relaxation times and lineshapes at each site as hydration levels increase. By comparing solid-state and solution state 13 C relaxation measurements, we establish that ns-μs motions that may be indicative of collective dynamics suddenly arise in the RNA as hydration reaches a critical point coincident with the onset of bulk hydration. Beyond that point, we observe smaller changes in relaxation rates and lineshapes in these highly hydrated solid samples, compared to the dramatic activation of motion occurring at moderate hydration

  18. Observed correlation between the depth to base and top of gas hydrate occurrence from review of global drilling data

    Science.gov (United States)

    Riedel, M.; Collett, T. S.

    2017-07-01

    A global inventory of data from gas hydrate drilling expeditions is used to develop relationships between the base of structure I gas hydrate stability, top of gas hydrate occurrence, sulfate-methane transition depth, pressure (water depth), and geothermal gradients. The motivation of this study is to provide first-order estimates of the top of gas hydrate occurrence and associated thickness of the gas hydrate occurrence zone for climate-change scenarios, global carbon budget analyses, or gas hydrate resource assessments. Results from publically available drilling campaigns (21 expeditions and 52 drill sites) off Cascadia, Blake Ridge, India, Korea, South China Sea, Japan, Chile, Peru, Costa Rica, Gulf of Mexico, and Borneo reveal a first-order linear relationship between the depth to the top and base of gas hydrate occurrence. The reason for these nearly linear relationships is believed to be the strong pressure and temperature dependence of methane solubility in the absence of large difference in thermal gradients between the various sites assessed. In addition, a statistically robust relationship was defined between the thickness of the gas hydrate occurrence zone and the base of gas hydrate stability (in meters below seafloor). The relationship developed is able to predict the depth of the top of gas hydrate occurrence zone using observed depths of the base of gas hydrate stability within less than 50 m at most locations examined in this study. No clear correlation of the depth to the top and base of gas hydrate occurrences with geothermal gradient and sulfate-methane transition depth was identified.

  19. Mechanism of gypsum hydration

    Directory of Open Access Journals (Sweden)

    Pacheco, G.

    1991-06-01

    Full Text Available There is an hypothesis that the mechanism o f gypsum hydration and dehydration is performed through two simultaneous phenomena. In this study we try to clear up this phenomenon using chlorides as accelerators or a mixture of ethanol-methanol as retarders to carry out the gypsum setting. Natural Mexican gypsum samples and a hemihydrate prepared in the laboratory are used. The following analytical techniques are used: MO, DRX, DTA, TG and DTG. In agreement with the obtained results, it can be concluded: that colloid formation depends on the action of accelerators or retarders and the crystals are a consequence of the quantity of hemihydrate formed.

    En el mecanismo de hidratación y deshidratación del yeso existe la hipótesis de que éste se efectúa por dos fenómenos simultáneos. Este estudio intenta esclarecer estos fenómenos, empleando: cloruros como aceleradores o mezcla etanol-metanol como retardadores para efectuar el fraguado del yeso. Se emplean muestras de yeso de origen natural mexicano y hemihydrate preparado en laboratorio; se utilizan técnicas analíticas: MO, DRX, DTA, TG y DTG. De acuerdo a los resultados obtenidos se puede deducir: que la formación del coloide depende de la acción de los agentes aceleradores o retardadores y que los cristales son consecuencia de la cantidad de hemihidrato formado.

  20. Probing the hydration water diffusion of macromolecular surfaces and interfaces

    International Nuclear Information System (INIS)

    Ortony, Julia H; Cheng, Chi-Yuan; Franck, John M; Pavlova, Anna; Hunt, Jasmine; Han, Songi; Kausik, Ravinath

    2011-01-01

    We probe the translational dynamics of the hydration water surrounding the macromolecular surfaces of selected polyelectrolytes, lipid vesicles and intrinsically disordered proteins with site specificity in aqueous solutions. These measurements are made possible by the recent development of a new instrumental and methodological approach based on Overhauser dynamic nuclear polarization (DNP)-enhanced nuclear magnetic resonance (NMR) spectroscopy. This technique selectively amplifies 1 H NMR signals of hydration water around a spin label that is attached to a molecular site of interest. The selective 1 H NMR amplification within molecular length scales of a spin label is achieved by utilizing short-distance range (∼r -3 ) magnetic dipolar interactions between the 1 H spin of water and the electron spin of a nitroxide radical-based label. Key features include the fact that only minute quantities (<10 μl) and dilute (≥100 μM) sample concentrations are needed. There is no size limit on the macromolecule or molecular assembly to be analyzed. Hydration water with translational correlation times between 10 and 800 ps is measured within ∼10 A distance of the spin label, encompassing the typical thickness of a hydration layer with three water molecules across. The hydration water moving within this time scale has significant implications, as this is what is modulated whenever macromolecules or molecular assemblies undergo interactions, binding or conformational changes. We demonstrate, with the examples of polymer complexation, protein aggregation and lipid-polymer interaction, that the measurements of interfacial hydration dynamics can sensitively and site specifically probe macromolecular interactions.

  1. Experimental determination of CCl4 hydrate phase equlibria up to high pressures

    NARCIS (Netherlands)

    Shariati - Sarabi, A.; Lameris, G.H.; Peters, C.J.

    2015-01-01

    A number of hydrate phase boundaries of the binary system of tetrachloromethane (CCl4) + water were measured experimentally at several temperatures and from low pressures up to 89.25 MPa. These hydrate phase boundaries included hydrate–ice–vapor, hydrate–liquid CCl4–vapor, hydrate–water–vapor,

  2. three dimensional photoelastic investigations on thick rectangular

    African Journals Online (AJOL)

    user

    1983-09-01

    Sep 1, 1983 ... Thick rectangular plates are investigated by means of three-dimensional photoelasticity ... a thin plate theory and a higher order thick plate theory. 1. ..... number of fringes lest the accuracy of the results will be considerably.

  3. A high yield process for hydrate formation

    Energy Technology Data Exchange (ETDEWEB)

    Giavarini, C.; Maccioni, F. [Univ. of Roma La Sapienza, Roma (Italy). Dept. of Chemical Engineering

    2008-07-01

    Due to the large quantities of natural gas stored in deep ocean hydrates, hydrate reservoirs are a substantial energy resource. Hydrates concentrate methane by as much as a factor of 164. As such, several natural gas transportation and storage systems using gas hydrates have been studied, and many of them are nearing practical use. In these systems, the hydrate is produced as a slurry by a spray process at approximately 7 megapascal (MPa), and then shaped into pellets. The use of a spray process, instead of a conventional stirred vessel is necessary in order to reach high hydrate concentrations in the hydrate-ice system. This paper presented a new procedure to produce a bulk of concentrated methane hydrate in a static traditional reactor at moderate pressure, controlling pressure and temperature in the interval between ice melting and the hydrate equilibrium curve. This paper discussed the experimental procedure which included formation of methane hydrate at approximately 5 MPa and 2 degrees Celsius in a reaction calorimeter at a volume of two liters. Results were also discussed. It was concluded that the procedure seemed suitable for the development of a gas hydrate storage and transport technology. It was found that the spray procedure took more time, but could be sped up and made continuous by using two vessels, one for hydrate formation and the other for hydrate concentration. The advantage was the production of a concentrated hydrate, using a simpler equipment and working at lower pressures respect to the spray process. 9 refs., 5 figs.

  4. Capillary pressure controlled methane hydrate and ice growth-melting patterns in porous media : synthetic silica versus natural sandstone

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, R.; Tohidi, B.; Webber, B. [Heriot-Watt Univ., Centre for Gas Research, Edinburgh (United Kingdom). Inst. of Petroleum Engineering

    2008-07-01

    Although naturally-occurring gas hydrates (or clathrate hydrates) in marine sediments can pose a hazard to deepwater hydrocarbon production operations, they represent a potential strategic energy reserve. Gas hydrates can also provide a means for deep ocean carbon dioxide disposal through sequestration/storage. They have long-term importance with respect to ocean margin stability, methane release, and global climate change. However, fundamental knowledge is still lacking regarding the mechanisms of hydrate growth, accumulation and distribution within the subsurface. Marine sediments which host gas hydrates are commonly fine-grained silts, muds, and clays with narrow mean pore diameters, leading to speculation that capillary phenomena could play a significant role in controlling hydrate distribution in the seafloor, and may be partly responsible for discrepancies between observed and predicted hydrate stability zone thicknesses. A close relationship between hydrate inhibition and pore size has been confirmed through previous laboratory studies. Clathrate stability has been significantly reduced in narrow pores. However, the focus of investigations has generally been hydrate dissociation conditions in porous media, with capillary controls on the equally important process of hydrate growth being largely overlooked. This paper presented the results of an experimental investigation into methane hydrate growth and dissociation equilibria in natural medium grained sandstone. The study also compared data with that previously measured for mesoporous silica glasses. The paper discussed solid-liquid phase behaviour in confined geometries including hysteresis in porous media. It also discussed the experimental equipment and method. It was concluded that, as for synthetic silicas, hydrate growth and dissociation in the sandstone were characterised by a measurable hysteresis between opposing transitions, notably hydrate (or ice) formation occurring at temperatures lower than

  5. Formation and dissociation of CO{sub 2} and CO{sub 2}-THF hydrates compared to CH{sub 4} and CH{sub 4}-THF hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Giavarini, C.; Maccioni, F.; Broggi, A. [Roma Univ. La Sapienza, Roma (Italy). Dept. of Chemical Engineering; Politi, M. [ENEL-RICERCHE, Brindisi (Italy)

    2008-07-01

    Carbon sequestration involves the removal of greenhouse gases from industrial or utility plant streams and their long term storage so that they cannot interact with the climate system. Different methods for selective carbon dioxide (CO{sub 2}) removal are in commercial use and are based on, gas absorption, membrane process, and cryogenic fractionation. In addition, disposal of captured CO{sub 2} in the ocean and in geological reservoirs has been proposed by researchers. Another challenge is to take advantage of the properties of CO{sub 2} hydrates for carbon sequestration since it could have a number of uses such as chemical production. As such, it is important to understand the hydrate decomposition kinetics during storage, transportation, and disposal. This paper presented a project that involved the separation of carbon dioxide from the flue gases of powers plants, in the form of hydrate. The project also involved the storage, use, and disposal of the hydrate. The purpose of the study was to evaluate the decomposition kinetics of CO{sub 2} hydrate containing different quantities of ice, at low pressures and temperatures between -3 and 0 degrees Celsius. In addition, in order to evaluate the tetrahydrofuran (THF) stabilization effect, the study examined the influence of THF on the formation and decomposition kinetics of mixed THF-methane (CH{sub 4}) and THF-CO{sub 2} hydrates. Preservation tests were conducted to determine the best pressure and temperature conditions for the mixed-hydrates conservation, with reference to the simple hydrates. The paper described the apparatus for the formation and dissociation tests which consisted of a jacketed stainless steel reactor, equipped with stirrer. The paper also described the hydrate formation procedure as well as hydrate characterization. Last, the paper discussed the hydrate dissociation tests that were conducted immediately after hydrate formation in the reactor. It was concluded that the hydrophilic and hydrophobic

  6. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede; Hansen, Per Freiesleben; Lachowski, Eric E.

    1999-01-01

    and experimental data are presented showing that C(3)A can hydrate at lower humidities than either C3S or C2S. It is suggested that the initiation of hydration during exposure to water vapour is nucleation controlled. When C(3)A hydrates at low humidity, the characteristic hydration product is C(3)AH(6......Vapour phase hydration of purl cement clinker minerals at reduced relative humidities is described. This is relevant to modern high performance concrete that may self-desiccate during hydration and is also relevant to the quality of the cement during storage. Both the oretical considerations...

  7. Storage capacity of hydrogen in gas hydrates

    International Nuclear Information System (INIS)

    Tsuda, Takaaki; Ogata, Kyohei; Hashimoto, Shunsuke; Sugahara, Takeshi; Sato, Hiroshi; Ohgaki, Kazunari

    2010-01-01

    The storage capacity of H 2 in the THF, THT, and furan hydrates was studied by p-V-T measurements. We confirmed that the storage and release processes of H 2 in all hydrates could be performed reversibly by pressure swing without destroying of hydrate cages. H 2 absorption in both THT and furan hydrates is much faster than THF hydrate in spite of same unit-cell structure. On the other hand, the storage amounts of H 2 are coincident in the all additive hydrates and would reach at about 1.0 mass% asymptotically.

  8. Is Obsidian Hydration Dating Affected by Relative Humidity?

    Science.gov (United States)

    Friedman, I.; Trembour, F.W.; Smith, G.I.; Smith, F.L.

    1994-01-01

    Experiments carried out under temperatures and relative humidities that approximate ambient conditions show that the rate of hydration of obsidian is a function of the relative humidity, as well as of previously established variables of temperature and obsidian chemical composition. Measurements of the relative humidity of soil at 25 sites and at depths of between 0.01 and 2 m below ground show that in most soil environments, at depths below about 0.25 m, the relative humidity is constant at 100%. We have found that the thickness of the hydrated layer developed on obsidian outcrops exposed to the sun and to relative humidities of 30-90% is similar to that formed on other portions of the outcrop that were shielded from the sun and exposed to a relative humidity of approximately 100%. Surface samples of obsidian exposed to solar heating should hydrate more rapidly than samples buried in the ground. However, the effect of the lower mean relative humidity experiences by surface samples tends to compensate for the elevated temperature, which may explain why obsidian hydration ages of surface samples usually approximate those derived from buried samples.

  9. Electrical Resistivity Investigation of Gas Hydrate Distribution in Mississippi Canyon Block 118, Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Dunbar, John

    2012-12-31

    Electrical methods offer a geophysical approach for determining the sub-bottom distribution of hydrate in deep marine environments. Methane hydrate is essentially non-conductive. Hence, sediments containing hydrate are more resistive than sediments without hydrates. To date, the controlled source electromagnetic (CSEM) method has been used in marine hydrates studies. This project evaluated an alternative electrical method, direct current resistivity (DCR), for detecting marine hydrates. DCR involves the injection of direct current between two source electrodes and the simultaneous measurement of the electric potential (voltage) between multiple receiver electrodes. The DCR method provides subsurface information comparable to that produced by the CSEM method, but with less sophisticated instrumentation. Because the receivers are simple electrodes, large numbers can be deployed to achieve higher spatial resolution. In this project a prototype seafloor DCR system was developed and used to conduct a reconnaissance survey at a site of known hydrate occurrence in Mississippi Canyon Block 118. The resulting images of sub-bottom resistivities indicate that high-concentration hydrates at the site occur only in the upper 50 m, where deep-seated faults intersect the seafloor. Overall, there was evidence for much less hydrate at the site than previously thought based on available seismic and CSEM data alone.

  10. Occurrence of gas hydrate in Oligocene Frio sand: Alaminos Canyon Block 818: Northern Gulf of Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Boswell, R.D.; Shelander, D.; Lee, M.; Latham, T.; Collett, T.; Guerin, G.; Moridis, G.; Reagan, M.; Goldberg, D.

    2009-07-15

    A unique set of high-quality downhole shallow subsurface well log data combined with industry standard 3D seismic data from the Alaminos Canyon area has enabled the first detailed description of a concentrated gas hydrate accumulation within sand in the Gulf of Mexico. The gas hydrate occurs within very fine grained, immature volcaniclastic sands of the Oligocene Frio sand. Analysis of well data acquired from the Alaminos Canyon Block 818 No.1 ('Tigershark') well shows a total gas hydrate occurrence 13 m thick, with inferred gas hydrate saturation as high as 80% of sediment pore space. Average porosity in the reservoir is estimated from log data at approximately 42%. Permeability in the absence of gas hydrates, as revealed from the analysis of core samples retrieved from the well, ranges from 600 to 1500 millidarcies. The 3-D seismic data reveals a strong reflector consistent with significant increase in acoustic velocities that correlates with the top of the gas-hydrate-bearing sand. This reflector extends across an area of approximately 0.8 km{sup 2} and delineates the minimal probable extent of the gas hydrate accumulation. The base of the inferred gas-hydrate zone also correlates well with a very strong seismic reflector that indicates transition into units of significantly reduced acoustic velocity. Seismic inversion analyses indicate uniformly high gas-hydrate saturations throughout the region where the Frio sand exists within the gas hydrate stability zone. Numerical modeling of the potential production of natural gas from the interpreted accumulation indicates serious challenges for depressurization-based production in settings with strong potential pressure support from extensive underlying aquifers.

  11. Onset and stability of gas hydrates under permafrost in an environment of surface climatic change : past and future

    International Nuclear Information System (INIS)

    Majorowicz, J.A.; Osadetz, K.; Safanda, J.

    2008-01-01

    This paper presented a model designed to simulate permafrost and gas hydrate formation in a changing surface temperature environment in the Beaufort-Mackenzie Basin (BMB). The numerical model simulated surface forcing due to general cooling trends that began in the late Miocene era. This study modelled the onset of permafrost formation and subsequent gas hydrate formation in the changing surface temperature environment for the BMB. Paleoclimatic data were used. The 1-D model was constrained by deep heat flow from well bottom hole temperatures; conductivity; permafrost thickness; and the thickness of the gas hydrates. The model used latent heat effects for the ice-bearing permafrost and hydrate intervals. Surface temperatures for glacial and interglacial histories for the last 14 million years were considered. The model also used a detailed Holocene temperature history as well as a scenario in which atmospheric carbon dioxide (CO 2 ) levels were twice as high as current levels. Two scenarios were considered: (1) the formation of gas hydrates from gas entrapped under geological seals; and (2) the formation of gas hydrates from gas located in free pore spaces simultaneously with permafrost formation. Results of the study showed that gas hydrates may have formed at a depth of 0.9 km only 1 million years ago. Results of the other modelling scenarios suggested that the hydrates formed 6 million years ago, when temperature changes caused the gas hydrate layer to expand both downward and upward. Detailed models of more recent glacial and interglacial histories showed that the gas hydrate zones will persist under the thick body of the BMB permafrost through current interglacial warming as well as in scenarios where atmospheric CO 2 is doubled. 28 refs., 13 figs

  12. Gas hydrates forming and decomposition conditions analysis

    Directory of Open Access Journals (Sweden)

    А. М. Павленко

    2017-07-01

    Full Text Available The concept of gas hydrates has been defined; their brief description has been given; factors that affect the formation and decomposition of the hydrates have been reported; their distribution, structure and thermodynamic conditions determining the gas hydrates formation disposition in gas pipelines have been considered. Advantages and disadvantages of the known methods for removing gas hydrate plugs in the pipeline have been analyzed, the necessity of their further studies has been proved. In addition to the negative impact on the process of gas extraction, the hydrates properties make it possible to outline the following possible fields of their industrial use: obtaining ultrahigh pressures in confined spaces at the hydrate decomposition; separating hydrocarbon mixtures by successive transfer of individual components through the hydrate given the mode; obtaining cold due to heat absorption at the hydrate decomposition; elimination of the open gas fountain by means of hydrate plugs in the bore hole of the gushing gasser; seawater desalination, based on the hydrate ability to only bind water molecules into the solid state; wastewater purification; gas storage in the hydrate state; dispersion of high temperature fog and clouds by means of hydrates; water-hydrates emulsion injection into the productive strata to raise the oil recovery factor; obtaining cold in the gas processing to cool the gas, etc.

  13. Sedimentological Properties of Natural Gas Hydrates-Bearing Sands in the Nankai Trough and Mallik Areas

    Science.gov (United States)

    Uchida, T.; Tsuji, T.; Waseda, A.

    2009-12-01

    The Nankai Trough parallels the Japanese Island, where extensive BSRs have been interpreted from seismic reflection records. High resolution seismic surveys have definitely indicated gas hydrate distributions, and drilling the MITI Nankai Trough wells in 2000 and the METI Tokai-oki to Kumano-nada wells in 2004 have revealed subsurface gas hydrate in the eastern part of Nankai Trough. In 1998 and 2002 Mallik wells were drilled at Mackenzie Delta in the Canadian Arctic that also clarified the characteristics of gas hydrate-dominant sandy layers at depths from 890 to 1110 m beneath the permafrost zone. During the field operations, the LWD and wire-line well log data were continuously obtained and plenty of gas hydrate-bearing sand cores were recovered. Subsequence sedimentological and geochemical analyses performed on those core samples revealed the crucial geologic controls on the formation and preservation of natural gas hydrate in sediments. Pore-space gas hydrates reside in sandy sediments mostly filling intergranular porosity. Pore waters chloride anomalies, core temperature depression and core observations on visible gas hydrates confirm the presence of pore-space gas hydrates within moderate to thick sandy layers, typically 10 cm to a meter thick. Sediment porosities and pore-size distributions were obtained by mercury porosimetry, which indicate that porosities of gas hydrate-bearing sandy strata are approximately 45 %. According to grain size distribution curves, gas hydrate is dominant in fine- to very fine-grained sandy strata. Gas hydrate saturations are typically up to 80 % in pore volume throughout most of the hydrate-dominant sandy layers, which are estimated by well log analyses as well as pore water chloride anomalies. It is necessary for investigating subsurface fluid flow behaviors to evaluate both porosity and permeability of gas hydrate-bearing sandy sediments, and the measurements of water permeability for them indicated that highly saturated

  14. Gas Hydrate Research Database and Web Dissemination Channel

    Energy Technology Data Exchange (ETDEWEB)

    Micheal Frenkel; Kenneth Kroenlein; V Diky; R.D. Chirico; A. Kazakow; C.D. Muzny; M. Frenkel

    2009-09-30

    To facilitate advances in application of technologies pertaining to gas hydrates, a United States database containing experimentally-derived information about those materials was developed. The Clathrate Hydrate Physical Property Database (NIST Standard Reference Database {number_sign} 156) was developed by the TRC Group at NIST in Boulder, Colorado paralleling a highly-successful database of thermodynamic properties of molecular pure compounds and their mixtures and in association with an international effort on the part of CODATA to aid in international data sharing. Development and population of this database relied on the development of three components of information-processing infrastructure: (1) guided data capture (GDC) software designed to convert data and metadata into a well-organized, electronic format, (2) a relational data storage facility to accommodate all types of numerical and metadata within the scope of the project, and (3) a gas hydrate markup language (GHML) developed to standardize data communications between 'data producers' and 'data users'. Having developed the appropriate data storage and communication technologies, a web-based interface for both the new Clathrate Hydrate Physical Property Database, as well as Scientific Results from the Mallik 2002 Gas Hydrate Production Research Well Program was developed and deployed at http://gashydrates.nist.gov.

  15. The characteristics of heat flow in the Shenhu gas hydrate drilling area, northern South China Sea

    Science.gov (United States)

    Xu, Xing; Wan, Zhifeng; Wang, Xianqing; Sun, Yuefeng; Xia, Bin

    2016-12-01

    Marine heat flow is of great significance for the formation and occurrence of seabed oil, gas and gas hydrate resources. Geothermal gradient is an important parameter in determining the thickness of the hydrate stability zone. The northern slope of the South China Sea is rich in gas hydrate resources. Several borehole drilling attempts were successful in finding hydrates in the Shenhu area, while others were not. The failures demand further study on the distribution regularities of heat flow and its controlling effects on hydrate occurrence. In this study, forty-eight heat flow measurements are analyzed in the Shenhu gas hydrate drilling area, located in the northern South China Sea, together with their relationship to topography, sedimentary environment and tectonic setting. Canyons are well developed in the study area, caused mainly by the development of faults, faster sediment supply and slumping of the Pearl River Estuary since the late Miocene in the northern South China Sea. The heat flow values in grooves, occurring always in fault zones, are higher than those of ridges. Additionally, the heat flow values gradually increase from the inner fan, to the middle fan, to the external fan subfacies. The locations with low heat flow such as ridges, locations away from faults and the middle fan subfacies, are more conducive to gas hydrate occurrence.

  16. Delineation, Characterization and Assessment of Gas-hydrates: Examples from Indian Offshore

    Science.gov (United States)

    Sain, K.

    2017-12-01

    Successful test productions in McKenzie delta, Alaska, Nankai Trough and more recently in South China Sea have provided great hopes for production of gas-hydrates in near future, and boosted national programs of many countries including India. It has been imperative to map the prospective zones of gas-hydrates and evaluate their resource potential. Hence, we have adopted a systematic strategy for the delineation, characterization and quantification of gas-hydrates based on seismic traveltime tomography, full-waveform inversion, impedance inversion, attributes computation and rock-physical modeling. The bathymetry, seafloor temperature, total organic carbon content, sediment-thickness, rate of sedimentation, geothermal gradient imply that shallow sediments of Indian deep water are good hosts for occurrences of gas-hydrates. From the analysis of multi-channel seismic (MCS) data, we have identified the Krishna-Godavari (KG), Mahanadi and Andaman basins as prospective for gas-hydrates, and their presence has been validated by drilling and coring of Indian Expeditions-01 and -02. The MCS data also shows BSR-like features in the Cauvery, Kerala-Konkan and Saurashtra basins indicating that gas-hydrates cannot be ruled out from these basins also. We shall present several approaches that have been applied to field seismic and well-log data for the detection, characterization and quantification of gas-hydrates along the Indian margin.

  17. Multi-property characterization chamber for geophysical-hydrological investigations of hydrate bearing sediments

    Energy Technology Data Exchange (ETDEWEB)

    Seol, Yongkoo, E-mail: Yongkoo.Seol@netl.doe.gov; Choi, Jeong-Hoon; Dai, Sheng [National Energy Technology Laboratory, U.S. Department of Energy, Morgantown, West Virginia 26507 (United States)

    2014-08-01

    With the increase in the interest of producing natural gas from methane hydrates as well as potential risks of massive hydrate dissociation in the context of global warming, studies have recently shifted from pure hydrate crystals to hydrates in sediments. Such a research focus shift requires a series of innovative laboratory devices that are capable of investigating various properties of hydrate-bearing sediments (HBS). This study introduces a newly developed high pressure testing chamber, i.e., multi-property characterization chamber (MPCC), that allows simultaneous investigation of a series of fundamental properties of HBS, including small-strain stiffness (i.e., P- and S-waves), shear strength, large-strain deformation, stress-volume responses, and permeability. The peripheral coolant circulation system of the MPCC permits stable and accurate temperature control, while the core holder body, made of aluminum, enables X-ray computer tomography scanning to be easily employed for structural and morphological characterization of specimens. Samples of hydrate-bearing sediments are held within a rubber sleeve inside the chamber. The thick sleeve is more durable and versatile than thin membranes while also being much softer than oedometer-type chambers that are incapable of enabling flow tests. Bias introduced by the rubber sleeve during large deformation tests are also calibrated both theoretically and experimentally. This system provides insight into full characterization of hydrate-bearing sediments in the laboratory, as well as pressure core technology in the field.

  18. Evaluation of influence of proteoglycans on hydration of articular cartilage with the use of ultrasound

    Directory of Open Access Journals (Sweden)

    Yi-yi YANG

    2015-04-01

    Full Text Available Objective To monitor the changes in hydration behaviour of articular cartilage induced by degradation of proteoglycans, and to explore the effect of proteoglycans on hydration behaviour of articular cartilage by using high-frequency ultrasound. Methods Twelve porcine patellae with smooth cartilage surface were prepared and equally divided into two groups: normal group without any enzyme treatment, and trypsin group they were treated with 0.25% trypsin for 8h to digest proteoglycan in the cartilage. The hydration behaviour of the cartilage tissue was scanned by high-frequency ultrasound system with a central frequency of 25MHz. Parameters including cartilage hydration strain and cartilage thickness were measured. The histopathological changes in the articular cartilage were observed under a light microscope. Results It took approximately 20min to reach equilibrium during the hydration process in the normal cartilages, while proteoglycan-degraded cartilage took only about 5min to achieve equilibrium. The equilibrium strain of normal cartilage was 3.5%±0.5%. The degradation of proteoglycans induced a significant decrease in equilibrium strain (1.8%±0.2%, P0.05. Conclusion Proteoglycans play an important role in hydration behaviour of articular cartilage. The degradation of proteoglycans could induce degeneration of cartilage structure and decrease in hydration behaviour after dehydration. DOI: 10.11855/j.issn.0577-7402.2015.03.03

  19. Multi-property characterization chamber for geophysical-hydrological investigations of hydrate bearing sediments

    International Nuclear Information System (INIS)

    Seol, Yongkoo; Choi, Jeong-Hoon; Dai, Sheng

    2014-01-01

    With the increase in the interest of producing natural gas from methane hydrates as well as potential risks of massive hydrate dissociation in the context of global warming, studies have recently shifted from pure hydrate crystals to hydrates in sediments. Such a research focus shift requires a series of innovative laboratory devices that are capable of investigating various properties of hydrate-bearing sediments (HBS). This study introduces a newly developed high pressure testing chamber, i.e., multi-property characterization chamber (MPCC), that allows simultaneous investigation of a series of fundamental properties of HBS, including small-strain stiffness (i.e., P- and S-waves), shear strength, large-strain deformation, stress-volume responses, and permeability. The peripheral coolant circulation system of the MPCC permits stable and accurate temperature control, while the core holder body, made of aluminum, enables X-ray computer tomography scanning to be easily employed for structural and morphological characterization of specimens. Samples of hydrate-bearing sediments are held within a rubber sleeve inside the chamber. The thick sleeve is more durable and versatile than thin membranes while also being much softer than oedometer-type chambers that are incapable of enabling flow tests. Bias introduced by the rubber sleeve during large deformation tests are also calibrated both theoretically and experimentally. This system provides insight into full characterization of hydrate-bearing sediments in the laboratory, as well as pressure core technology in the field

  20. Methods to determine hydration states of minerals and cement hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Thorell, Alva; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2014-11-15

    This paper describes a novel approach to the quantitative investigation of the impact of varying relative humidity (RH) and temperature on the structure and thermodynamic properties of salts and crystalline cement hydrates in different hydration states (i.e. varying molar water contents). The multi-method approach developed here is capable of deriving physico-chemical boundary conditions and the thermodynamic properties of hydrated phases, many of which are currently missing from or insufficiently reported in the literature. As an example the approach was applied to monosulfoaluminate, a phase typically found in hydrated cement pastes. New data on the dehydration and rehydration of monosulfoaluminate are presented. Some of the methods used were validated with the system Na{sub 2}SO{sub 4}–H{sub 2}O and new data related to the absorption of water by anhydrous sodium sulfate are presented. The methodology and data reported here should permit better modeling of the volume stability of cementitious systems exposed to various different climatic conditions.

  1. Methods to determine hydration states of minerals and cement hydrates

    International Nuclear Information System (INIS)

    Baquerizo, Luis G.; Matschei, Thomas; Scrivener, Karen L.; Saeidpour, Mahsa; Thorell, Alva; Wadsö, Lars

    2014-01-01

    This paper describes a novel approach to the quantitative investigation of the impact of varying relative humidity (RH) and temperature on the structure and thermodynamic properties of salts and crystalline cement hydrates in different hydration states (i.e. varying molar water contents). The multi-method approach developed here is capable of deriving physico-chemical boundary conditions and the thermodynamic properties of hydrated phases, many of which are currently missing from or insufficiently reported in the literature. As an example the approach was applied to monosulfoaluminate, a phase typically found in hydrated cement pastes. New data on the dehydration and rehydration of monosulfoaluminate are presented. Some of the methods used were validated with the system Na 2 SO 4 –H 2 O and new data related to the absorption of water by anhydrous sodium sulfate are presented. The methodology and data reported here should permit better modeling of the volume stability of cementitious systems exposed to various different climatic conditions

  2. Novel understanding of calcium silicate hydrate from dilute hydration

    KAUST Repository

    Zhang, Lina

    2017-05-13

    The perspective of calcium silicate hydrate (C-S-H) is still confronting various debates due to its intrinsic complicated structure and properties after decades of studies. In this study, hydration at dilute suspension of w/s equaling to 10 was conducted for tricalcium silicate (C3S) to interpret long-term hydration process and investigate the formation, structure and properties of C-S-H. Based on results from XRD, IR, SEM, NMR and so forth, loose and dense clusters of C-S-H with analogous C/S ratio were obtained along with the corresponding chemical formulae proposed as Ca5Si4O13∙6.2H2O. Crystalline structure inside C-S-H was observed by TEM, which was allocated at the foil-like proportion as well as the edge of wrinkles of the product. The long-term hydration process of C3S in dilute suspension could be sketchily described as migration of calcium hydroxide and in-situ growth of C-S-H with equilibrium silicon in aqueous solution relatively constant and calcium varied.

  3. Impacts of Hydrate Distribution on the Hydro-Thermo-Mechanical Properties of Hydrate-Bearing Sediments

    Science.gov (United States)

    Dai, S.; Seol, Y.

    2015-12-01

    In general, hydrate makes the sediments hydraulically less conductive, thermally more conductive, and mechanically stronger; yet the dependency of these physical properties on hydrate saturation varies with hydrate distribution and morphology. Hydrate distribution in sediments may cause the bulk physical properties of their host sediments varying several orders of magnitude even with the same amount of hydrate. In natural sediments, hydrate morphology is inherently governed by the burial depth and the grain size of the host sediments. Compare with patchy hydrate, uniformly distributed hydrate is more destructive to fluid flow, yet leads to higher gas and water permeability during hydrate dissociation due to the easiness of forming percolation paths. Water and hydrate have similar thermal conductivity values; the bulk thermal conductivity of hydrate-bearing sediments depends critically on gas-phase saturation. 60% of gas saturation may result in evident thermal conductivity drop and hinder further gas production. Sediments with patchy hydrate yield lower stiffness than that with cementing hydrate but higher stiffness than that with pore filling and loading bearing hydrate. Besides hydrate distribution, the stress state and loading history also play an important role in the mechanical behavior of hydrate-bearing sediments.

  4. Dynamics of Permafrost Associated Methane Hydrate in Response to Climate Change

    Science.gov (United States)

    You, K.; Flemings, P. B.

    2014-12-01

    The formation and melting of methane hydrate and ice are intertwined in permafrost regions. A shortage of methane supply leads to formation of hydrate only at depth, below the base of permafrost. We consider a system with the ground surface initially at 0 oC with neither ice nor hydrate present. We abruptly decrease the temperature from 0 to -10 oC to simulate the effect of marine regression/ global cooling. A low methane supply rate of 0.005 kg m-2 yr-1 from depth leads to distinct ice and hydrate layers: a 100 m continuous hydrate layer is present beneath 850 m at 80 k.y.. However, a high methane supply rate of 0.1 kg m-2 yr-1 leads to 50 m ice-bonded methane hydrate at the base of permafrost, and the hydrate layer distributes between the depth of 350 and 700 m at 80 k.y.. We apply our model to illuminate future melting of hydrate at Mallik, a known Arctic hydrate accumulation. We assume a 600 m thick ice saturated (average 90%) layer extending downward from the ground surface. We increase the surface temperature linearly from -6 to 0 oC for 300 yr and then keep the surface temperature at 0 oC to reflect future climate warming caused by doubling of CO2. Hydrate melting is initiated at the base of the hydrate layer after 15 k.y.. Methane gas starts to vent to the atmosphere at 38 k.y. with an average flux of ~ 0.35 g m-2 yr-1. If the 600 m thick average ice saturation is decreased to half (45%) (or to zero), methane gas starts to vent to the atmosphere at 29 k.y. (or at 20 k.y.) with the same average flux. These results are found by a newly-developed fully-coupled multiphase multicomponent fluid flow and heat transport model. Our thermodynamic equilibrium-based model emphasizes the role of salinity in both ice and hydrate dynamics.

  5. Hydration-controlled bacterial motility and dispersal on surfaces

    DEFF Research Database (Denmark)

    Dechesne, Arnaud; Wang, G.; Gulez, Gamze

    2010-01-01

    hydrated habitats, where water dynamics result in fragmented aquatic habitats connected by micrometric films, is debated. Here, we quantify the spatial dynamics of Pseudomonas putida KT2440 and its nonflagellated isogenic mutant as affected by the hydration status of a rough porous surface using......Flagellar motility, a mode of active motion shared by many prokaryotic species, is recognized as a key mechanism enabling population dispersal and resource acquisition in microbial communities living in marine, freshwater, and other liquid-replete habitats. By contrast, its role in variably...... an experimental system that mimics aquatic habitats found in unsaturated soils. The flagellar motility of the model soil bacterium decreased sharply within a small range of water potential (0 to −2 kPa) and nearly ceased in liquid films of effective thickness smaller than 1.5 μm. However, bacteria could rapidly...

  6. Estimation of seismic attenuation of gas hydrate bearing sediments from multi-channel seismic data: A case study from Krishna-Godavari offshore basin

    Digital Repository Service at National Institute of Oceanography (India)

    Dewangan, P.; Mandal, R.; Jaiswal, P.; Ramprasad, T.; Sriram, G.

    thickness of water column. The estimated effective Q-values, along the inline and crossline seismic profiles, depend on several factors such as gas hydrate, free gas and the complex fault system. The combined interpretation of the quality factor...

  7. Regional Mapping and Resource Assessment of Shallow Gas Hydrates of Japan Sea - METI Launched 3 Years Project in 2013.

    Science.gov (United States)

    Matsumoto, R.

    2014-12-01

    Agency of Natural Resources and Energy of METI launched a 3 years shallow gas hydrate exploration project in 2013 to make a precise resource assessment of shallow gas hydrates in the eastern margin of Japan Sea and around Hokkaido. Shallow gas hydrates of Japan Sea occur in fine-grained muddy sediments of shallow subsurface of mounds and gas chimneys in the form of massive nodular to platy accumulation. Gas hydrate bearing mounds are often associated with active methane seeps, bacterial mats and carbonate concretions and pavements. Gases of gas hydrates are derived either from deep thermogenic, shallow microbial or from the mixed gases, contrasting with totally microbial deep-seated stratigraphically controlled hydrates. Shallow gas hydrates in Japan Sea have not been considered as energy resource due to its limited distribution in narrow Joetsu basin. However recently academic research surveys have demonstrated regional distribution of gas chimney and hydrate mound in a number of sedimentary basins along the eastern margin of Japan Sea. Regional mapping of gas chimney and hydrate mound by means of MBES and SBP surveys have confirmed that more than 200 gas chimneys exist in 100 km x 100 km area. ROV dives have identified dense accumulation of hydrates on the wall of half collapsed hydrate mound down to 30 mbsf. Sequential LWD and shallow coring campaign in the Summer of 2014, R/V Hakurei, which is equipped with Fugro Seacore R140 drilling rig, drilled through hydrate mounds and gas chimneys down to the BGHS (base of gas hydrate stability) level and successfully recovered massive gas hydrates bearing sediments from several horizons.

  8. Is Br2 hydration hydrophobic?

    Science.gov (United States)

    Alcaraz-Torres, A; Gamboa-Suárez, A; Bernal-Uruchurtu, M I

    2017-02-28

    The spectroscopic properties of bromine in aqueous systems suggest it can behave as either hydrophilic or hydrophobic solute. In small water clusters, the halogen bond and the hydrogen-halogen interaction are responsible for its specific way of binding. In water hydrates, it is efficiently hosted by two different cages forming the crystal structure and it has been frequently assumed that there is little or no interaction between the guest and the host. Bromine in liquid solution poses a challenging question due to its non-negligible solubility and the large blue shift measured in its absorption spectra. Using a refined semi-empirical force field, PM3-PIF, we performed a Born-Oppenheimer molecular dynamics study of bromine in liquid water. Here we present a detailed study in which we retrieved the most representative hydration structures in terms of the most frequent positions around bromine and the most common water orientations. Albeit being an approximate description of the total hydration phenomenon, it captures the contribution of the leading molecular interactions in form of the recurrent structures. Our findings confirm that the spectroscopic signature is mainly caused by the closest neighbors. The dynamics of the whole first hydration shell strongly suggests that the external molecules in that structure effectively isolate the bulk from the presence of bromine. The solvation structure fluctuates from a hydrophilic to a hydrophobic-like environment along the studied trajectory.

  9. Hydration modeling of calcium sulphates

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, H.J.H.; Al-Mattarneh, Hashem; Mustapha, Kamal N.; Nuruddin, Muhd Fadhil

    2008-01-01

    The CEMHYD3D model has been extended at the University of Twente in the last ten years [1,2]. At present the cement hydration model is extended for the use of gypsum. Although gypsum was present in the model already, the model was not suitable for high contents of gypsum and did not include the

  10. Cage occupancies of natural gas hydrates encaging methane and ethane

    Energy Technology Data Exchange (ETDEWEB)

    Kida, M.; Hachikubo, A.; Sakagami, H.; Minami, H.; Krylov, A.; Yamashita, S.; Takahashi, N.; Shoji, H. [Kitami Inst. of Technology, Kitami (Japan); Kida, M. [National Inst. of Advanced Industrial Science and Technology, Toyohira-ku, Sapporo (Japan); Khlystov, O. [Limnological Inst., Irkutsk (Russian Federation). Siberian Branch of the Russian Academy of Sciences; Poort, J. [Ghent Univ., Ghent (Belgium). Renard Centre of Marine Geology; Narita, H. [National Inst. of Advanced Industrial Science and Technology, Toyohira-ku, Sapporo (Japan)

    2008-07-01

    Natural gas hydrates are crystalline compounds that contain large amounts of natural gas in its structure and are expected to provide natural gas resources in the future. The gas species are trapped in different types of polyhedral cages which consist of hydrogen bonded water molecules. Three main types of crystallographic structures exist, notably structure 1, structure 2 and structure H (sH). The crystallographic structure of natural gas hydrates depends on the encaged gas components. The cage occupancy is the ratio of the number of cages occupied by guest molecules to the number of total cages. It is also important to estimate the amount of natural gas, since it depends on the condition of the hydrate formation such as gas composition. The cages of natural gas hydrates mainly contain methane. However, other heavier hydrocarbons such as ethane (C{sub 2}H{sub 6}), propane (C{sub 3}H{sub 8}), and isobutane (i-C{sub 4}H{sub 1}0) may be encaged together with CH{sub 4}. Little is known about cage occupancies of natural gas hydrates including CH{sub 4} and heavier hydrocarbons. This paper discussed a study that developed cage occupancy estimations of natural gas hydrates encaging heavier hydrocarbons. 13C nuclear magnetic resonance (NMR) measurements were conducted. The assignments of resonance lines were based on 13C chemical shifts obtained by artificial sample measurements. The paper presented the experimental data and discussed the results of the study. The large cages were almost fully occupied with CH{sub 4} and C{sub 2}H{sub 6} molecules, whereas the small cage occupancies of CH{sub 4} were below 0.8. The distribution of CH{sub 4} and C{sub 2}H{sub 6} in each cage were similar to that of synthetic CH{sub 4} + C{sub 2}H{sub 6} hydrate. It was concluded that these results should be useful for optimal estimation of the amount of natural gas in gas hydrates. 18 refs., 1 tab., 3 figs.

  11. Observed gas hydrate morphologies in marine sediment

    Energy Technology Data Exchange (ETDEWEB)

    Holland, M.; Schultheiss, P.; Roberts, J.; Druce, M. [Geotek Ltd., Daventry, Northamptonshire (United Kingdom)

    2008-07-01

    The morphology of gas hydrate in marine sediments determines the basic physical properties of the sediment-hydrate matrix and provides information regarding the formation of gas hydrate deposits, and the nature of the disruption that will occur on dissociation. Small-scale morphology is useful in estimating the concentrations of gas hydrate from geophysical data. It is also important for predicting their response to climate change or commercial production. Many remote techniques for gas hydrate detection and quantification depend on hydrate morphology. In this study, morphology of gas hydrate was examined in HYACINTH pressure cores from recent seagoing expeditions. Visual and infrared observations from non-pressurized cores were also used. The expeditions and pressure core analysis were described in detail. This paper described the difference between two types of gas hydrate morphologies, notably pore-filling and grain-displacing. Last, the paper addressed the impact of hydrate morphology. It was concluded that a detailed morphology of gas hydrate is an essential component for a full understanding of the past, present, and future of any gas hydrate environment. 14 refs., 4 figs.

  12. Seismic reflections associated with submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, K

    1996-12-31

    Gas hydrates are often suggested as a future energy resource. This doctoral thesis improves the understanding of the concentration and distribution of natural submarine gas hydrates. The presence of these hydrates are commonly inferred from strong bottom simulating reflection (BSR). To investigate the nature of BSR, this work uses seismic studies of hydrate-related BSRs at two different locations, one where gas hydrates are accepted to exist and interpreted to be very extensive (in the Beaufort Sea), the other with good velocity data and downhole logs available (offshore Oregon). To ascertain the presence of free gas under the BSR, prestack offset data must supplement near-vertical incidence seismic data. A tentative model for physical properties of sediments partially saturated with gas hydrate and free gas is presented. This model, together with drilling information and seismic data containing the BSR beneath the Oregon margin and the Beaufort Sea, made it possible to better understand when to apply the amplitude-versus-offset (AVO) method to constrain BSR gas hydrate and gas models. Distribution of natural gas hydrates offshore Norway and Svalbard is discussed and interpreted as reflections from the base of gas hydrate-bearing sediments, overlying sediments containing free gas. Gas hydrates inferred to exist at the Norwegian-Svalbard continental margin correlate well with Cenozoic depocenters, and the associated gas is assumed to be mainly biogenic. Parts of that margin have a high potential for natural gas hydrates of both biogenic and thermogenic origin. 235 refs., 86 figs., 4 tabs.

  13. Seismic reflections associated with submarine gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Andreassen, K.

    1995-12-31

    Gas hydrates are often suggested as a future energy resource. This doctoral thesis improves the understanding of the concentration and distribution of natural submarine gas hydrates. The presence of these hydrates are commonly inferred from strong bottom simulating reflection (BSR). To investigate the nature of BSR, this work uses seismic studies of hydrate-related BSRs at two different locations, one where gas hydrates are accepted to exist and interpreted to be very extensive (in the Beaufort Sea), the other with good velocity data and downhole logs available (offshore Oregon). To ascertain the presence of free gas under the BSR, prestack offset data must supplement near-vertical incidence seismic data. A tentative model for physical properties of sediments partially saturated with gas hydrate and free gas is presented. This model, together with drilling information and seismic data containing the BSR beneath the Oregon margin and the Beaufort Sea, made it possible to better understand when to apply the amplitude-versus-offset (AVO) method to constrain BSR gas hydrate and gas models. Distribution of natural gas hydrates offshore Norway and Svalbard is discussed and interpreted as reflections from the base of gas hydrate-bearing sediments, overlying sediments containing free gas. Gas hydrates inferred to exist at the Norwegian-Svalbard continental margin correlate well with Cenozoic depocenters, and the associated gas is assumed to be mainly biogenic. Parts of that margin have a high potential for natural gas hydrates of both biogenic and thermogenic origin. 235 refs., 86 figs., 4 tabs.

  14. Influence of fluorosurfactants on hydrate formation rates

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C.U.; Jeong, K.E.; Chae, H.J.; Jeong, S.Y. [Korea Reasearch Inst. of Chemical Technology, Alternative Chemicals/Fuel Research Center, Yuseong-Gu, Daejon (Korea, Republic of)

    2008-07-01

    Gas hydrates, or clathrates, are ice-like solids that forms when natural gas is in contact with liquid water or ice under high pressure and low temperature. There is significant interest in studying the storage and transportation of gas in the form of hydrates. However, a critical problem impacting the industrial application of gas hydrates for storage and transportation of natural gas is the slow formation rate of natural gas hydrate. Researchers have previously reported on the promotion effect of some additives on gas hydrate formation and hydrate gas content. Fluorosurfactants are significantly superior to nonfluorinated surfactants in wetting action, as well as stability in harsh environments, both thermal and chemical. This paper discussed an experimental investigation into the effects of fluorosurfactants with different ionic types on the formation of methane hydrate. The surfactants used were FSN-100 of DuPont Zonyl as non-ionic surfactant and FC-143 of DuPont as anionic surfactant. The paper discussed the experimental apparatus for methane hydrate formation. It also discussed hydrate formation kinetics and the series of hydrate formation experiments that were conducted in the presence of fluorosurfactants. Last, the paper explored the results of the study. It was concluded that anionic fluorosurfactant of FC-143 had a better promoting effect on methane hydrate formation compared with nonionic surfactant of FSN-100. 8 refs., 2 tabs., 2 figs.

  15. Structure of the ordered hydration of amino acids in proteins: analysis of crystal structures

    Energy Technology Data Exchange (ETDEWEB)

    Biedermannová, Lada, E-mail: lada.biedermannova@ibt.cas.cz; Schneider, Bohdan [Institute of Biotechnology CAS, Videnska 1083, 142 20 Prague (Czech Republic)

    2015-10-27

    The hydration of protein crystal structures was studied at the level of individual amino acids. The dependence of the number of water molecules and their preferred spatial localization on various parameters, such as solvent accessibility, secondary structure and side-chain conformation, was determined. Crystallography provides unique information about the arrangement of water molecules near protein surfaces. Using a nonredundant set of 2818 protein crystal structures with a resolution of better than 1.8 Å, the extent and structure of the hydration shell of all 20 standard amino-acid residues were analyzed as function of the residue conformation, secondary structure and solvent accessibility. The results show how hydration depends on the amino-acid conformation and the environment in which it occurs. After conformational clustering of individual residues, the density distribution of water molecules was compiled and the preferred hydration sites were determined as maxima in the pseudo-electron-density representation of water distributions. Many hydration sites interact with both main-chain and side-chain amino-acid atoms, and several occurrences of hydration sites with less canonical contacts, such as carbon–donor hydrogen bonds, OH–π interactions and off-plane interactions with aromatic heteroatoms, are also reported. Information about the location and relative importance of the empirically determined preferred hydration sites in proteins has applications in improving the current methods of hydration-site prediction in molecular replacement, ab initio protein structure prediction and the set-up of molecular-dynamics simulations.

  16. Gas hydrate drilling transect across northern Cascadia margin - IODP Expedition 311

    Science.gov (United States)

    Riedel, M.; Collett, T.; Malone, M.J.; Collett, T.S.; Mitchell, M.; Guerin, G.; Akiba, F.; Blanc-Valleron, M.; Ellis, M.; Hashimoto, Y.; Heuer, V.; Higashi, Y.; Holland, M.; Jackson, P.D.; Kaneko, M.; Kastner, M.; Kim, J.-H.; Kitajima, H.; Long, P.E.; Malinverno, A.; Myers, Gwen E.; Palekar, L.D.; Pohlman, J.; Schultheiss, P.; Teichert, B.; Torres, M.E.; Trehu, A.M.; Wang, Jingyuan; Worthmann, U.G.; Yoshioka, H.

    2009-01-01

    A transect of four sites (U1325, U1326, U1327 and U1329) across the northern Cascadia margin was established during Integrated Ocean Drilling Program Expedition 311 to study the occurrence and formation of gas hydrate in accretionary complexes. In addition to the transect sites, a fifth site (U1328) was established at a cold vent with active fluid flow. The four transect sites represent different typical geological environments of gas hydrate occurrence across the northern Cascadia margin from the earliest occurrence on the westernmost first accreted ridge (Site U1326) to the eastward limit of the gas hydrate occurrence in shallower water (Site U1329). Expedition 311 complements previous gas hydrate studies along the Cascadia accretionary complex, especially ODP Leg 146 and Leg 204 by extending the aperture of the transect sampled and introducing new tools to systematically quantify the gas hydrate content of the sediments. Among the most significant findings of the expedition was the occurrence of up to 20 m thick sand-rich turbidite intervals with gas hydrate concentrations locally exceeding 50% of the pore space at Sites U1326 and U1327. Moreover, these anomalous gas hydrate intervals occur at unexpectedly shallow depths of 50-120 metres below seafloor, which is the opposite of what was expected from previous models of gas hydrate formation in accretionary complexes, where gas hydrate was predicted to be more concentrated near the base of the gas hydrate stability zone just above the bottom-simulating reflector. Gas hydrate appears to be mainly concentrated in turbidite sand layers. During Expedition 311, the visual correlation of gas hydrate with sand layers was clearly and repeatedly documented, strongly supporting the importance of grain size in controlling gas hydrate occurrence. The results from the transect sites provide evidence for a structurally complex, lithology-controlled gas hydrate environment on the northern Cascadia margin. Local shallow

  17. Ionic concentrations and hydration numbers of "supporting electrolytes"

    Czech Academy of Sciences Publication Activity Database

    Heyrovská, Rajalakshmi

    2006-01-01

    Roč. 18, č. 4 (2006), s. 351-361 ISSN 1040-0397 R&D Projects: GA MPO 1H-PK/42 Institutional research plan: CEZ:AV0Z40400503 Keywords : strong electrolytes * degrees of dissociation * solution thermodynamics * dissociation constant Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.444, year: 2006

  18. Growth of a Hydrate Mound in the Sea of Japan over 300 ka as Revealed by U-Th Ages of MDAC and by H2S Concentrations of Massive Hydrates

    Science.gov (United States)

    Matsumoto, R.; Snyder, G. T.; Hiruta, A.; Kakizaki, Y.; Huang, C. Y.; Shen, C. C.

    2017-12-01

    The geological and geophysical exploration of gas hydrate in the Sea of Japan has revealed that hydrates occur as thick massive deposits within gas chimneys which often give rise to pingo-like hydrate mounds on the seafloor. We examine one case in which LWD has demonstrated anomalous profiles including both very low natural gamma ray (<10 API) and high acoustic velocities (2.5 to 3.5 km/s) extending down to 120mbsf, the base of gas hydrate stability (BGHS)[1]. Both conventional and pressure coring have confirmed thick, massive deposits of pure-gas hydrates. Hydrates in the shallow subsurface (< 20mbsf) are characterized by high H2S concentrations corresponding to AOM-induced production of HS-. The deeper hydrates generally have negligible amounts of H2S, with occasional exceptions in which H2S is moderately high. These observations lead us to conclude that both the re-equilibration and growth of hydrates in high CH4 and low to zero H2S conditions has continued during burial, and that this ongoing growth is an essential processes involved in the development of massive hydrates in the Sea of Japan.Regardless of depth, the Japan Sea gas hydrates are closely associated with 13-C depleted, methane-derived authigenic carbonates (MDACs). These MDACs are considered to have been formed at near-SMT depths as a response to increased alkalinity caused by AOM and, as such, MDACs are assumed to represent approximate paleo-seafloor at times of enhanced methane flux and intensive accumulation of gas hydrate in shallow subsurface. U-Th ages of MDACs collected from various depths in a mound-chimney system in central Joetsu Spur have revealed that the paleo-seafloor of 300 ka is presently situated at 30 to 55 mbsf within the gas chimney, in contrast to off-mound sites where it is situated at 100 mbsf. This suggests that at 300 ka the mound stood as a "hydrate-pingo" of 70 m high relative to the surrounding sea floor. At this time, the BGHS shoaled upwards 10m due to eustatic sea

  19. Microbeam recoil detection for hydration of minerals studies

    Energy Technology Data Exchange (ETDEWEB)

    Sie, S H; Suter, G F [CSIRO, North Ryde, NSW (Australia). Exploration and Mining Div.; Chekhmir, A; Green, T H [Macquarie Univ., North Ryde, NSW (Australia)

    1994-12-31

    The glancing angle geometry is chosen to enable application of the elastic recoil detection microanalysis on thick geological samples, for hydrogen content determination. Simultaneous PIXE measurements can be used to eliminate the problem of uncertainties in beam charge collection. The method is applied to determine the hydration characteristics of silicates, produced experimentally at high pressure and temperature simulating the lower crust and upper mantle conditions. Preliminary results show that the technique can be applied readily on a microscopic (<100 {mu}m) scale for determination of H at fraction of atomic percent level. 9 refs., 3 figs.

  20. Microbeam recoil detection for hydration of minerals studies

    Energy Technology Data Exchange (ETDEWEB)

    Sie, S.H.; Suter, G.F. [CSIRO, North Ryde, NSW (Australia). Exploration and Mining Div.; Chekhmir, A.; Green, T.H. [Macquarie Univ., North Ryde, NSW (Australia)

    1993-12-31

    The glancing angle geometry is chosen to enable application of the elastic recoil detection microanalysis on thick geological samples, for hydrogen content determination. Simultaneous PIXE measurements can be used to eliminate the problem of uncertainties in beam charge collection. The method is applied to determine the hydration characteristics of silicates, produced experimentally at high pressure and temperature simulating the lower crust and upper mantle conditions. Preliminary results show that the technique can be applied readily on a microscopic (<100 {mu}m) scale for determination of H at fraction of atomic percent level. 9 refs., 3 figs.

  1. Fire extinction utilizing carbon dioxide hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Hatakeyama, T.; Aida, E.; Yokomori, T.; Ohmura, R.; Ueda, T. [Keio Univ., Hiyoshi, Kohoku-ku, Yokohama (Japan)

    2008-07-01

    Clathrate hydrates formed with nonflammable gases may be suitable for use as fire extinguishing agents because dissociation of the hydrates results in the temperature decrease in the combustion field and the nonflammable gases released from the dissociated hydrates prevent the supply of the oxygen to the combustion field. This paper discussed experiments in which ordinary ice and dry ice were used to evaluate the performance of CO{sub 2} hydrate as a fire extinguishing agent. The paper described the apparatus and procedure for the preparation of CO{sub 2} hydrate crystals. A schematic of the reactor to form CO{sub 2} hydrate and a photograph of CO{sub 2} hydrate crystal formed in the study were also presented. Other illustrations, photographs, and tables that were presented included a schematic diagram of the experimental apparatus used for the flame extinction experiments; a photograph of CO{sub 2} hydrate powder; sequential video graphs of the flame extinction by the supply of CO{sub 2} hydrate crystals to the methanol pool flame and the relevant illustration; and heat of CO{sub 2} hydrate dissociation, water vaporization and sublimation of dry ice. It was concluded that the critical mass of the CO{sub 2} hydrate required to extinguish a flame was much less than that of ordinary ice, indicating the superiority of CO{sub 2} hydrate to the ice. In addition, the experiments also revealed that the size of the CO{sub 2} hydrate particles had a significant effect on the performance of flame extinction. 5 refs., 2 tabs., 7 figs.

  2. Hydration and Proton Conductivity of Ionomers: The Model Case of Sulfonated Aromatic Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Knauth, Philippe, E-mail: philippe.knauth@univ-amu.fr [Madirel (UMR 7246), CNRS, Aix Marseille Université, Marseille (France); Di Vona, Maria Luisa [Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, Roma (Italy)

    2014-11-06

    The hydration of proton-conducting ionomers is described in terms of a simplified model, where only osmotic and elastic contributions to the Gibbs free energy of hydration are considered. Although only two physically meaningful parameters are used – the deformation parameter, inversely proportional to the elastic modulus of the ionomer, and the free volume parameter – simulated hydration isotherms are in good agreement with the experiment. The proton mobility u inside the electrolyte solution of the ionomer is calculated from the proton conductivity determined at various hydration numbers. Its variation with the proton concentration c reveals the percolation threshold of hydrated nanometric channels and the tortuosity of the membrane. Above the percolation threshold, a power law u ~ c{sup −3} is observed, in agreement with the “universal” law for 3-dimensional percolation. The proton conductivity σ shows at 100°C a maximum of 0.2 S/cm at a hydration number ~90. The σ = f(c) plot allows to predict, which hydration conditions are necessary for a desired area specific resistance.

  3. Hydration and proton conductivity of ionomers: the model case of Sulfonated Aromatic Polymers

    Directory of Open Access Journals (Sweden)

    Philippe eKnauth

    2014-11-01

    Full Text Available The hydration of proton-conducting ionomers is described in terms of a simplified model, where only osmotic and elastic contributions to the Gibbs free energy of hydration are considered. Although only two physically meaningful parameters are used - the deformation parameter, inversely proportional to the elastic modulus of the ionomer, and the free volume parameter – simulated hydration isotherms are in good agreement with the experiment. The proton mobility u inside the electrolyte solution of the ionomer is calculated from the proton conductivity determined at various hydration numbers. Its variation with the proton concentration c reveals the percolation threshold of hydrated nanometric channels and the tortuosity of the membrane. Above the percolation threshold, a power law u ~ c-3 is observed, in agreement with the universal law for 3-dimensional percolation. The proton conductivity  shows at 100°C a maximum of 0.2 S/cm at a hydration number ~90. The  = f(c plot allows to predict which hydration conditions are necessary for a desired area specific resistance.

  4. Growth of hydrated gel layers in nuclear waste glasses

    International Nuclear Information System (INIS)

    Sullivan, T.M.; Machiels, A.J.

    1984-01-01

    The hydration kinetics of waste glasses in contact with an aqueous solution has been studied by using three different approaches. Emphasis has been placed on modeling processes in the transition zone defined as the region in which the nature of the glass changes from the original dry glass to an open hydrated structure. The first model relies on concentration-dependent diffusion coefficients to obtain a transition zone in which the ions mobility is extremely low compared to that in the gel layer. In the second model, the transition zone and hydrated layer are treated as distinct phases and it is assumed that ion exchange at their common boundary is the rate-controlling process. The third model treats the transition zone as a thin film of constant thickness and low diffusivity. In the absence of appreciable network dissolution, all three models indicate that growth of the gel layer becomes eventually proportional to the square root of time; however, as long as processes in the transition zone are rate controlling, growth is linearly proportional to time

  5. A fermented barley and soybean formula enhances skin hydration.

    Science.gov (United States)

    Lee, Sein; Kim, Jong-Eun; Suk, Sujin; Kwon, Oh Wook; Park, Gaeun; Lim, Tae-Gyu; Seo, Sang Gwon; Kim, Jong Rhan; Kim, Dae Eung; Lee, Miyeong; Chung, Dae Kyun; Jeon, Jong Eun; Cho, Dong Woon; Hurh, Byung Serk; Kim, Sun Yeou; Lee, Ki Won

    2015-09-01

    Skin hydration is one of the primary aims of beauty and anti-aging treatments. Barley (Hordeum vulgare) and soybean (Glycine max) are major food crops, but can also be used as ingredients for the maintenance of skin health. We developed a natural product-based skin treatment using a barley and soybean formula (BS) incorporating yeast fermentation, and evaluated its skin hydration effects as a dietary supplement in a clinical study. Participants ingested a placebo- (n = 33) or BS- (3 g/day) containing drink (n = 32) for 8 weeks. A significant increase in hydration in the BS group as compared to the placebo group was observed on the faces of subjects after 4 and 8 weeks, and on the forearm after 4 weeks. Decreases in stratum corneum (SC) thickness were also observed on the face and forearm. BS enhanced hyaluronan (HA) and skin barrier function in vitro and reduced Hyal2 expression in human dermal fibroblasts (HDF). BS also recovered ultraviolet (UV) B-induced downregulation of HA in HaCaT cells. These results suggest that BS has promising potential for development as a health functional food to enhance skin health.

  6. Predictions of hydrate plug dissociation with electrical heating

    Energy Technology Data Exchange (ETDEWEB)

    Davies, S.R.; Ivanic, J.; Sloan, E.D.

    2005-07-01

    The rate of dissociation for cylindrical hydrate plugs by the application of radial electrical heating was investigated for structure I and structure II hydrates for pressures of 7 MPa (1000 psia) and 14 MPa (2000 psia). Heating rates of 2.3 kWm{sup -3}, 4.5 kWm-3 and 6.8 kWm{sup -3} were investigated for a plug 91.4 cm (36 inches) in length and 2.54 cm (1 inch) in diameter. A heat transfer model was developed in cylindrical coordinates based on Fourier's Law with a boundary condition of constant heat flux at the pipe wall. The equation set was solved numerically using a finite difference grid and the standard explicit scheme. The model was found to replicate well the experimental observations with no fitted parameters. A computer program was formulated to allow the practicing engineer to simulate the dissociation of industrial hydrates with minimal complexity. This program was incorporated into the latest version of our CSMPlug program which has been used by a number of energy companies to predict hydrate plug dissociation rates in the field. (Author)

  7. Clinker mineral hydration at reduced relative humidities

    DEFF Research Database (Denmark)

    Jensen, Ole Mejlhede

    1998-01-01

    This report deals with gas phase hydration of pure cement clinker minerals at reduced relative humidities. This is an important subject in relation to modern high performance concrete which may self-desiccate during hydration. In addition the subject has relevance to storage stability where...... prehydration may occur. In the report both theoretical considerations and experimental data are presented. It is suggested that the initiation of hydration during water vapour exposure is nucleation controlled....

  8. Thermal conductivity of hydrate-bearing sediments

    Science.gov (United States)

    Cortes, Douglas D.; Martin, Ana I.; Yun, Tae Sup; Francisca, Franco M.; Santamarina, J. Carlos; Ruppel, Carolyn D.

    2009-01-01

    A thorough understanding of the thermal conductivity of hydrate-bearing sediments is necessary for evaluating phase transformation processes that would accompany energy production from gas hydrate deposits and for estimating regional heat flow based on the observed depth to the base of the gas hydrate stability zone. The coexistence of multiple phases (gas hydrate, liquid and gas pore fill, and solid sediment grains) and their complex spatial arrangement hinder the a priori prediction of the thermal conductivity of hydrate-bearing sediments. Previous studies have been unable to capture the full parameter space covered by variations in grain size, specific surface, degree of saturation, nature of pore filling material, and effective stress for hydrate-bearing samples. Here we report on systematic measurements of the thermal conductivity of air dry, water- and tetrohydrofuran (THF)-saturated, and THF hydrate–saturated sand and clay samples at vertical effective stress of 0.05 to 1 MPa (corresponding to depths as great as 100 m below seafloor). Results reveal that the bulk thermal conductivity of the samples in every case reflects a complex interplay among particle size, effective stress, porosity, and fluid-versus-hydrate filled pore spaces. The thermal conductivity of THF hydrate–bearing soils increases upon hydrate formation although the thermal conductivities of THF solution and THF hydrate are almost the same. Several mechanisms can contribute to this effect including cryogenic suction during hydrate crystal growth and the ensuing porosity reduction in the surrounding sediment, increased mean effective stress due to hydrate formation under zero lateral strain conditions, and decreased interface thermal impedance as grain-liquid interfaces are transformed into grain-hydrate interfaces.

  9. Hydrogen speciation in hydrated layers on nuclear waste glass

    International Nuclear Information System (INIS)

    Aines, R.D.; Weed, H.C.; Bates, J.K.

    1987-01-01

    The hydration of an outer layer on nuclear waste glasses is known to occur during leaching, but the actual speciation of hydrogen (as water or hydroxyl groups) in these layers has not been determined. As part of the Nevada Nuclear Waste Storage Investigations Project, we have used infrared spectroscopy to determine hydrogen speciations in three nuclear waste glass compositions (SRL-131 and 165, and PNL 76-68), which were leached at 90 0 C (all glasses) or hydrated in a vapor-saturated atmosphere at 202 0 C (SRL-131 only). Hydroxyl groups were found in the surface layers of all the glasses. Molecular water was found in the surface of SRL-131 and PNL 76-68 glasses that had been leached for several months in deionized water, and in the vapor-hydrated sample. The water/hydroxyl ratio increases with increasing reaction time; molecular water makes up most of the hydrogen in the thick reaction layers on vapor-phase hydrated glass while only hydroxyl occurs in the least reacted samples. Using the known molar absorptivities of water and hydroxyl in silica-rich glass the vapor-phase layer contained 4.8 moles/liter of molecular water, and 0.6 moles water in the form hydroxyl. A 15 μm layer on SRL-131 glass formed by leaching at 90 0 C contained a total of 4.9 moles/liter of water, 2/3 of which was as hydroxyl. The unreacted bulk glass contains about 0.018 moles/liter water, all as hydroxyl. The amount of hydrogen added to the SRL-131 glass was about 70% of the original Na + Li content, not the 300% that would result from alkali=hydronium ion interdiffusion. If all the hydrogen is then assumed to be added as the result of alkali-H + interdiffusion, the molecular water observed may have formed from condensation of the original hydroxyl groups

  10. Physical Properties of Gas Hydrates: A Review

    Energy Technology Data Exchange (ETDEWEB)

    Gabitto, Jorge [Prairie View A& M University; Tsouris, Costas [ORNL

    2010-01-01

    Methane gas hydrates in sediments have been studied by several investigators as a possible future energy resource. Recent hydrate reserves have been estimated at approximately 1016?m3 of methane gas worldwide at standard temperature and pressure conditions. In situ dissociation of natural gas hydrate is necessary in order to commercially exploit the resource from the natural-gas-hydrate-bearing sediment. The presence of gas hydrates in sediments dramatically alters some of the normal physical properties of the sediment. These changes can be detected by field measurements and by down-hole logs. An understanding of the physical properties of hydrate-bearing sediments is necessary for interpretation of geophysical data collected in field settings, borehole, and slope stability analyses; reservoir simulation; and production models. This work reviews information available in literature related to the physical properties of sediments containing gas hydrates. A brief review of the physical properties of bulk gas hydrates is included. Detection methods, morphology, and relevant physical properties of gas-hydrate-bearing sediments are also discussed.

  11. Accelerated hydration of high silica cements

    International Nuclear Information System (INIS)

    Walker, Colin; Yui, Mikazu

    2012-01-01

    Current Japanese designs for high level radioactive waste (HLW) repositories anticipate the use of both bentonite (buffer and backfill material) and cement based materials. Using hydrated Ordinary Portland Cement (OPC) as a grouting material is undesirable because the associated high pH buffer will have an undisputed detrimental effect on the performance of the bentonite buffer and backfill and of the host rock by changing its porosity. Instead, hydrated low pH cement (LopHC) grouting materials are being developed to provide a pH inferior or equal to 11 to reduce these detrimental effects. LopHC grouting materials use mixtures of superfine OPC (SOPC) clinker and silica fume (SF), and are referred as high silica cements (HSC). The focus of the present study was to identify the development of the unhydrated and hydrated mineral assemblage and the solution chemistry during the hydration of HSC. Since hydration experiments of cementitious materials are notably slow, a ball mill was used to accelerate hydration. This was done for two reasons. Firstly, to develop a method to rapidly hydrate cement based materials without the need for higher temperatures (which can alter the mineral assemblage), and secondly, to ensure that the end point of hydration was reached in a reasonable time frame and so to realize the final mineralogy and solution chemistry of hydrated HSC

  12. Microstructure of natural hydrate host sediments

    International Nuclear Information System (INIS)

    Jones, K.W.; Kerkar, P.B.; Mahajan, D.; Lindquist, W.B.; Feng, H.

    2007-01-01

    There is worldwide interest in the study of natural gas hydrate because of its potential impact on world energy resources, control on seafloor stability, significance as a drilling hazard and probable impact on climate as a reservoir of a major greenhouse gas. Gas hydrates can (a) be free floating in the sediment matrix (b) contact, but do not cement, existing sediment grains, or (c) actually cement and stiffen the bulk sediment. Seismic surveys, often used to prospect for hydrates over a large area, can provide knowledge of the location of large hydrate concentrations because the hydrates within the sediment pores modify seismic properties. The ability to image a sample at the grain scale and to determine the porosity, permeability and seismic profile is of great interest since these parameters can help in determining the location of hydrates with certainty. We report here on an investigation of the structure of methane hydrate sediments at the grain-size scale using the synchrotron radiation-based computed microtomography (CMT) technique. Work has started on the measurements of the changes occurring as tetrahydrofuran hydrate, a surrogate for methane hydrate, is formed in the sediment

  13. Hydration layers trapped between graphene and a hydrophilic substrate

    International Nuclear Information System (INIS)

    Temmen, M; Reichling, M; Bollmann, T R J; Ochedowski, O; Schleberger, M

    2014-01-01

    Graphene is mechanically exfoliated on CaF 2 (111) under ambient conditions. We demonstrate the formation of a several monolayer thick hydration layer on the hydrophilic substrate and its response to annealing at temperatures up to 750 K in an ultra-high vacuum environment. Upon heating, water is released, however, it is impossible to remove the first layer. The initially homogeneous film separates into water-containing and water-free domains by two-dimensional Ostwald ripening. Upon severe heating, thick graphene multilayers undergo rupture, while nanoblisters confining sealed water appear on thinner sheets, capable of the storage and release of material. From modeling the dimensions of the nanoblisters, we estimate the graphene/CaF 2 (111) interfacial adhesion energy to be 0.33±0.13 J m −2 , thereby viable for polymer-assisted transfer printing. (paper)

  14. Hydration of poly( N-isopropylacrylamide) brushes on micro-silica beads measured by a fluorescent probe

    Science.gov (United States)

    Hattori, Yusuke; Nagase, Kenichi; Kobayashi, Jun; Kikuchi, Akihiko; Akiyama, Yoshikatsu; Kanazawa, Hideko; Okano, Teruo

    2010-05-01

    Hydration of poly( N-isopropylacrylamide) brushes on silica micro-beads was investigated using a fluorescent probe method. The free ends, the bottom, and the random of brushes were labeled with dansyl group. The emission spectra at the thin brushes were reduced with increasing temperature regardless of their labeling locations. At the free ends of thick brushes, the emission intensity was enhanced at 500 nm and reduced at 455 nm by heating, which was corresponding to the local micro-environmental change around the free ends. The spectral shift was speculated to be due to the enhancement of the flexibility and the hydration of thick brushes.

  15. Stability Zone of Natural Gas Hydrates in a Permafrost-Bearing Region of the Beaufort-Mackenzie Basin: Study of a Feasible Energy Source (Geological Survey of Canada Contribution No.1999275)

    International Nuclear Information System (INIS)

    Majorowicz, J. A.; Hannigan, P. K.

    2000-01-01

    Analysis of geological and geophysical data from 150 wells in the Beaufort-Mackenzie region(study area between 68 deg. 30'-70 deg. 00'N and 131 deg. -39 deg. W) led to reinterpretation of the depth of methane hydrate stability and construction of the first contour maps displaying thickness of hydrate stability zones as well as hydrate stability zone thicknesses below permafrost. Calculations were based on construction of temperature-depth profiles incorporating regional heat-flow values, temperature at the base of ice-bearing permafrost, and models relating thermal conductivity with depth. Data analysis indicates the presence and extent of the methane hydrate stability zone is related mainly to the history of permafrost development and less so by the relatively small regional variations of temperature gradients. Analysis of well logs and other indicators in conjunction with knowledge of the hydrate stability zone allows reevaluation of the location of possible gas hydrate occurrences. Log analysis indicates that in the onshore and shallow sea area of the Beaufort-Mackenzie Basin, methane hydrate occurs in 27 wells. Fifteen of these locations coincides with underlying conventional hydrocarbon occurrences. Previous analyses place some of the hydrate occurrences at greater depths than proposed for the methane hydrate stability zone described in this study. Interpretation of geological cross sections reveals that hydrates are related mainly to sandy deltaic and delta-plain deposits in Iperk, Kugmallit, and Reindeer sequences although additional hydrate picks have been inferred in other sequences, such as Richards. Overlying permafrost may act as seal for hydrate accumulations; however, the thickness of permafrost and its related hydrate stability zone fluctuated during geological time. It is interpreted that only in the last tens of thousand of years (i.e., Sangamonian to Holocene), conditions for hydrates changed from nonstable to stable. During Early and Late

  16. Application of empirical hydration distribution functions around polar atoms for assessing hydration structures of proteins

    International Nuclear Information System (INIS)

    Matsuoka, Daisuke; Nakasako, Masayoshi

    2013-01-01

    Highlights: ► Empirical distribution functions of water molecules in protein hydration are made. ► The functions measure how hydrogen-bond geometry in hydration deviate from ideal. ► The functions assess experimentally identified hydration structures of protein. - Abstract: To quantitatively characterize hydrogen-bond geometry in local hydration structures of proteins, we constructed a set of empirical hydration distribution functions (EHDFs) around polar protein atoms in the main and side chains of 11 types of hydrophilic amino acids (D. Matsuoka, M. Nakasako, Journal of Physical Chemistry B 113 (2009) 11274). The functions are the ensemble average of possible hydration patterns around the polar atoms, and describe the anisotropic deviations from ideal hydrogen bond geometry. In addition, we defined probability distribution function of hydration water molecules (PDFH) over the hydrophilic surface of a protein as the sum of EHDFs of solvent accessible polar protein atoms. The functions envelop most of hydration sites identified in crystal structures of proteins (D. Matsuoka, M. Nakasako, Journal of Physical Chemistry B 114 (2010) 4652). Here we propose the application of EHDFs and PDFHs for assessing crystallographically identified hydration structures of proteins. First, hydration water molecules are classified with respect to the geometry in hydrogen bonds in referring EHDFs. Difference Fourier electron density map weighted by PDFH of protein is proposed to identify easily density peaks as candidates of hydration water molecules. A computer program implementing those ideas was developed and used for assessing hydration structures of proteins

  17. Waters of Hydration of Cupric Hydrates: A Comparison between Heating and Absorbance Methods

    Science.gov (United States)

    Barlag, Rebecca; Nyasulu, Frazier

    2011-01-01

    The empirical formulas of four cupric hydrates are determined by measuring the absorbance in aqueous solution. The Beer-Lambert Law is verified by constructing a calibration curve of absorbance versus known Cu[superscript 2+](aq) concentration. A solution of the unknown hydrate is prepared by using 0.2-0.3 g of hydrate, and water is added such…

  18. Low frequency enzyme dynamics as a function of temperature and hydration: A neutron scattering study

    Energy Technology Data Exchange (ETDEWEB)

    Kurkal, V. [Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg (Germany); Daniel, R.M. [Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton (New Zealand); Finney, John L. [Department of Physics and Astronomy, University college, London, Gower Street, London WC1E 6BT, England (United Kingdom); Tehei, M. [Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton (New Zealand); Dunn, R.V. [Department of Biological Sciences, University of Waikato, Private Bag 3105, Hamilton (New Zealand); Smith, Jeremy C. [Interdisciplinary Center for Scientific Computing (IWR), University of Heidelberg, Im Neuenheimer Feld 368, D-69120 Heidelberg (Germany)], E-mail: biocomputing@iwr.uni-heidelberg.de

    2005-10-31

    The effect of hydration and temperature on the low-frequency dynamics of the enzyme Pig liver esterase has been investigated with incoherent neutron scattering experiments. The results suggest that at low temperature, increasing hydration results in lower flexibility of the protein. At higher temperatures, systems containing sufficient number of water molecules interacting with the protein exhibit increased flexibility. The environmental force constants indicate that the environment of the protein is more rigid below than it is above the dynamical transition temperature.

  19. Cement hydration from hours to centuries controlled by diffusion through barrier shells of C-S-H

    Science.gov (United States)

    Rahimi-Aghdam, Saeed; Bažant, Zdeněk P.; Abdolhosseini Qomi, M. J.

    2017-02-01

    Although a few good models for cement hydration exist, they have some limitations. Some do not take into account the complete range of variation of pore relative humidity and temperature, and apply over durations limited from up a few months to up to about a year. The ones that are applicable for long durations are either computationally too intensive for use in finite element programs or predict the hydration to terminate after few months. However, recent tests of autogenous shrinkage and swelling in water imply that the hydration may continue, at decaying rate, for decades, provided that a not too low relative pore humidity (above 0.7) persists for a long time, as expected for the cores of thick concrete structural members. Therefore, and because design lifetimes of over hundred years are required for large concrete structures, a new hydration model for a hundred year lifespan and beyond is developed. The new model considers that, after the first day of hydration, the remnants of anhydrous cement grains, gradually consumed by hydration, are enveloped by contiguous, gradually thickening, spherical barrier shells of calcium-silicate hydrate (C-S-H). The hydration progress is controlled by transport of water from capillary pores through the barrier shells toward the interface with anhydrous cement. The transport is driven by a difference of humidity, defined by equivalence with the difference in chemical potential of water. Although, during the period of 4-24 h, the C-S-H forms discontinuous nano-globules around the cement grain, an equivalent barrier shell control was formulated for this period, too, for ease and effectiveness of calculation. The entire model is calibrated and validated by published test data on the evolution of hydration degree for various cement types, particle size distributions, water-cement ratios and temperatures. Computationally, this model is sufficiently effective for calculating the evolution of hydration degree (or aging) at every

  20. Hydration in soccer: a review

    Directory of Open Access Journals (Sweden)

    Monteiro Cristiano Ralo

    2003-01-01

    Full Text Available Hydration should be considered before, during and after the exercise. This review intends to approach the main points of hydration process in soccer. The replacement of fluids during exercise is proportional to some factors, such as: exercise intensity; climatic conditions; the athlete's acclimatization; the athlete's physical conditioning; physiologic individual characteristics and the player's biomechanics. Performance is improved when players ingest not only water but also carbohydrate. The rates that carbohydrate and water are absorbed by the organism are limited by the rates of gastric emptying and intestinal absorption. The composition of drinks offered to the players should be influenced by the relative importance of the need of supplying carbohydrates or water; it should be remembered that the depletion of carbohydrate can result in fatigue and decrease of performance, but it is not usually a life-threatening condition. The addition of carbohydrate in these drinks increases the concentrations of blood glucose, increases the use of external fuel through the increase of the glucose oxidation in the muscles and it spares muscle glycogen. So, the ingestion of carbohydrate before and during the exercise can delay the emergence of fatigue and increase the players' performance. Several tactics can be used to avoid dehydration, like hyperhydration before exercise and player's acclimatization. The ideal situation to restore the player's fluid losses is between the sessions of exercises. Since soccer is a sport with quite peculiar characteristics related to hydration, the players should be concerned and educated about the importance of fluid ingestion before, during and after the exercise.

  1. Gas Hydrates | Alaska Division of Geological & Geophysical Surveys

    Science.gov (United States)

    Preliminary Report - Cascadia Margin Gas Hydrates, Volume 204 Initial Report Mallik 2002 GSC Bulletin 585 : Scientific results from the Mallik 2002 gas hydrate production well program Offshore gas hydrate sample

  2. Simulation and Characterization of Methane Hydrate Formation

    Science.gov (United States)

    Dhakal, S.; Gupta, I.

    2017-12-01

    The ever rising global energy demand dictates human endeavor to explore and exploit new and innovative energy sources. As conventional oil and gas reserves deplete, we are constantly looking for newer sources for sustainable energy. Gas hydrates have long been discussed as the next big energy resource to the earth. Its global occurrence and vast quantity of natural gas stored is one of the main reasons for such interest in its study and exploration. Gas hydrates are solid crystalline substances with trapped molecules of gas inside cage-like crystals of water molecules. Gases such as methane, ethane, propane and carbon dioxide can form hydrates but in natural state, methane hydrates are the most common. Subsurface geological conditions with high pressure and low temperature favor the formation and stability of gas hydrates. While the occurrence and potential of gas hydrates as energy source has long been studied, there are still gaps in knowledge, especially in the quantitative research of gas hydrate formation and reservoir characterization. This study is focused on exploring and understanding the geological setting in which gas hydrates are formed and the subsequent changes in rock characteristics as they are deposited. It involves the numerical simulation of methane gas flow through fault to form hydrates. The models are representative of the subsurface geologic setting of Gulf of Mexico with a fault through layers of shale and sandstone. Hydrate formation simulated is of thermogenic origin. The simulations are conducted using TOUGH+HYDRATE, a numerical code developed at the Lawrence Berkley National Laboratory for modeling multiphase flow through porous medium. Simulation results predict that as the gas hydrates form in the pores of the model, the porosity, permeability and other rock properties are altered. Preliminary simulation results have shown that hydrates begin to form in the fault zone and gradually in the sandstone layers. The increase in hydrate

  3. Formation rate of natural gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Mork, Marit

    2002-07-01

    The rate of methane hydrate and natural gas hydrate formation was measured in a 9.5 litre stirred tank reactor of standard design. The experiments were performed to better understand the performance and scale-up of a reactor for continuous production of natural gas hydrates. The hydrate formation rate was measured at steady-state conditions at pressures between 70 and 90 bar and temperatures between 7 and 15 deg C. Between 44 and 56 % of the gas continuously supplied to the reactor was converted to hydrate. The experimental results show that the rate of hydrate formation is strongly influenced by gas injection rate and pressure. The effect of stirring rate is less significant and subcooling has no observable effect on the formation rate. Hydrate crystal concentration and gas composition do not influence the hydrate formation rate. Observations of produced hydrate crystals indicate that the crystals are elongated, about 5 micron in diameter and 10 micron long. Analysis of the results shows that the rate of hydrate formation is dominated by gas-liquid mass transfer. A mass transfer model, the bubble-to-crystal model, was developed for the hydrate formation rate in a continuous stirred tank reactor, given in terms of concentration driving force and an overall mass transfer coefficient. The driving force is the difference between the gas concentration at the gas-liquid interface and at the hydrate crystal surface. These concentrations correspond to the solubility of gas in water at experimental temperature and pressure and the solubility of gas at hydrate equilibrium temperature and experimental pressure, respectively. The overall mass transfer coefficient is expressed in terms of superficial gas velocity and impeller power consumption, parameters commonly used in study of stirred tank reactors. Experiments and modeling show that the stirred tank reactor has a considerable potential for increased production capacity. However, at higher hydrate production rates the

  4. Hydration and rotational diffusion of levoglucosan in aqueous solutions

    Science.gov (United States)

    Corezzi, S.; Sassi, P.; Paolantoni, M.; Comez, L.; Morresi, A.; Fioretto, D.

    2014-05-01

    Extended frequency range depolarized light scattering measurements of water-levoglucosan solutions are reported at different concentrations and temperatures to assess the effect of the presence and distribution of hydroxyl groups on the dynamics of hydration water. The anhydro bridge, reducing from five to three the number of hydroxyl groups with respect to glucose, considerably affects the hydration properties of levoglucosan with respect to those of mono and disaccharides. In particular, we find that the average retardation of water dynamics is ≈3-4, that is lower than ≈5-6 previously found in glucose, fructose, trehalose, and sucrose. Conversely, the average number of retarded water molecules around levoglucosan is 24, almost double that found in water-glucose mixtures. These results suggest that the ability of sugar molecules to form H-bonds through hydroxyl groups with surrounding water, while producing a more effective retardation, it drastically reduces the spatial extent of the perturbation on the H-bond network. In addition, the analysis of the concentration dependence of the hydration number reveals the aptitude of levoglucosan to produce large aggregates in solution. The analysis of shear viscosity and rotational diffusion time suggests a very short lifetime for these aggregates, typically faster than ≈20 ps.

  5. Water Intake and Hydration Indices in Healthy European Adults: The European Hydration Research Study (EHRS).

    Science.gov (United States)

    Malisova, Olga; Athanasatou, Adelais; Pepa, Alex; Husemann, Marlien; Domnik, Kirsten; Braun, Hans; Mora-Rodriguez, Ricardo; Ortega, Juan F; Fernandez-Elias, Valentin E; Kapsokefalou, Maria

    2016-04-06

    Hydration status is linked with health, wellness, and performance. We evaluated hydration status, water intake, and urine output for seven consecutive days in healthy adults. Volunteers living in Spain, Germany, or Greece (n = 573, 39 ± 12 years (51.1% males), 25.0 ± 4.6 kg/m² BMI) participated in an eight-day study protocol. Total water intake was estimated from seven-day food and drink diaries. Hydration status was measured in urine samples collected over 24 h for seven days and in blood samples collected in fasting state on the mornings of days 1 and 8. Total daily water intake was 2.75 ± 1.01 L, water from beverages 2.10 ± 0.91 L, water from foods 0.66 ± 0.29 L. Urine parameters were: 24 h volume 1.65 ± 0.70 L, 24 h osmolality 631 ± 221 mOsmol/kg Η2Ο, 24 h specific gravity 1.017 ± 0.005, 24 h excretion of sodium 166.9 ± 54.7 mEq, 24 h excretion of potassium 72.4 ± 24.6 mEq, color chart 4.2 ± 1.4. Predictors for urine osmolality were age, country, gender, and BMI. Blood indices were: haemoglobin concentration 14.7 ± 1.7 g/dL, hematocrit 43% ± 4% and serum osmolality 294 ± 9 mOsmol/kg Η2Ο. Daily water intake was higher in summer (2.8 ± 1.02 L) than in winter (2.6 ± 0.98 L) (p = 0.019). Water intake was associated negatively with urine specific gravity, urine color, and urine sodium and potassium concentrations (p < 0.01). Applying urine osmolality cut-offs, approximately 60% of participants were euhydrated and 20% hyperhydrated or dehydrated. Most participants were euhydrated, but a substantial number of people (40%) deviated from a normal hydration level.

  6. Graph Treewidth and Geometric Thickness Parameters

    OpenAIRE

    Dujmović, Vida; Wood, David R.

    2005-01-01

    Consider a drawing of a graph $G$ in the plane such that crossing edges are coloured differently. The minimum number of colours, taken over all drawings of $G$, is the classical graph parameter "thickness". By restricting the edges to be straight, we obtain the "geometric thickness". By further restricting the vertices to be in convex position, we obtain the "book thickness". This paper studies the relationship between these parameters and treewidth. Our first main result states that for grap...

  7. Hydration benefits to courtship feeding in crickets

    Science.gov (United States)

    Ivy, T. M.; Johnson, J. C.; Sakaluk, S. K.

    1999-01-01

    The spermatophore transferred by male decorated crickets (Gryllodes sigillatus) at mating includes a large gelatinous spermatophylax that the female consumes after copulation. Although previous studies have shown that G. sigillatus females gain no nutritional benefits from consuming food gifts, there may be other benefits to their consumption. We examined potential hydration benefits to females by experimentally manipulating both the availability of water and the number of food gifts that females consumed, and by measuring their effect on female fitness. Analysis of the number of nymphs produced by females revealed a significant interaction between the number of spermatophylaxes consumed and water availability. When spermatophylaxes were not provided, females given water ad libitum produced significantly more nymphs than females subjected to water stress. Female longevity was significantly affected by water availability, with an increase in the availability of water corresponding to a significant increase in female longevity. These data suggest that female G. sigillatus accrue fitness benefits by consuming spermatophylaxes when alternative sources of water are unavailable. In addition, females appear to allocate water contained in spermatophylaxes towards reproduction as opposed to survival.

  8. Free energy of hydration of niobium oxide

    International Nuclear Information System (INIS)

    Plodinec, M.J.

    1996-01-01

    Some of the glasses being formulated by SRTC researchers contain niobium oxide. In this report, the free energy of hydration of the oxide is calculated from the free energies of formation of the oxide, the hydroxide, and water. This value can be used in calculations of the free energy of hydration of glasses containing niobium

  9. Investigations into surfactant/gas hydrate relationship

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Rudy; Zhang, Guochang; Dearman, Jennifer; Woods, Charles [Swalm School of Chemical Engineering, Mississippi State University, Mississippi State, MS 39762 (United States)

    2007-03-15

    Gas hydrates have unique physical properties portending useful industrial applications of gas storage, gas separation, or water desalination. When gas hydrates were found in the early 1990s to occur naturally and abundantly in seafloors, three other primary interests and concerns emerged: potential new energy source, climate threat from their greenhouse gases, and seafloor instabilities. This paper presents research showing how anionic synthetic surfactants helped develop an industrial gas hydrate storage process for natural gas and how naturally-occurring in-situ anionic biosurfactants influence the formation and placement of gas hydrates in ocean sediments. The catalytic effects, mechanisms, and surface specificities imparted by synthetic surfactants in the gas storage process and imparted by biosurfactants in porous media are discussed. The Bacillus subtilis bacterium that is indigenous to gas hydrate mounds in the Gulf of Mexico was cultured in the laboratory. Its biosurfactant was separated and found to catalyze gas hydrates in porous media. The experiments indicate that seafloor-biosurfactants can be produced rapidly in-situ to achieve threshold concentrations whereby hydrates are promoted. The biosurfactants accumulate and promote hydrate formation on specific mineral surfaces such as sodium montmorillonite. (author)

  10. 75 FR 9886 - Methane Hydrate Advisory Committee

    Science.gov (United States)

    2010-03-04

    ... DEPARTMENT OF ENERGY Methane Hydrate Advisory Committee AGENCY: Department of Energy, Office of Fossil Energy. ACTION: Notice of open meeting. SUMMARY: This notice announces a meeting of the Methane... the Committee: The purpose of the Methane Hydrate Advisory Committee is to provide advice on potential...

  11. Raman Spectroscopic Studies of Methane Gas Hydrates

    DEFF Research Database (Denmark)

    Hansen, Susanne Brunsgaard; Berg, Rolf W.

    2009-01-01

    A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory.......A brief review of the Raman spectroscopic studies of methane gas hydrates is given, supported by some new measurements done in our laboratory....

  12. Multicomponent modelling of Portland cement hydration reactions

    NARCIS (Netherlands)

    Ukrainczyk, N.; Koenders, E.A.B.; Van Breugel, K.

    2012-01-01

    The prospect of cement and concrete technologies depends on more in depth understanding of cement hydration reactions. Hydration reaction models simulate the development of the microstructures that can finally be used to estimate the cement based material properties that influence performance and

  13. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Donn McGuire; Steve Runyon; Richard Sigal; Bill Liddell; Thomas Williams; George Moridis

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is in the final stages of a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. Hot Ice No. 1 was planned to test the Ugnu and West Sak sequences for gas hydrates and a concomitant free gas accumulation on Anadarko's 100% working interest acreage in section 30 of Township 9N, Range 8E of the Harrison Bay quadrangle of the North Slope of Alaska. The Ugnu and West Sak intervals are favorably positioned in the hydrate-stability zone over an area extending from Anadarko's acreage westward to the vicinity of the aforementioned gas-hydrate occurrences. This suggests that a large, north-to-south trending gas-hydrate accumulation may exist in that area. The presence of gas shows in the Ugnu and West Sak reservoirs in wells situated eastward and down dip of the Hot Ice location indicate that a free-gas accumulation may be trapped by gas hydrates. The Hot Ice No. 1 well was designed to core from the surface to the base of the West Sak interval using the

  14. Experimental Setup to Characterize Bentonite Hydration Processes

    International Nuclear Information System (INIS)

    Bru, A.; Casero, D.; Pastor, J. M.

    2001-01-01

    We present an experimental setup to follow-up the hydration process of a bentonite. Clay samples, of 2 cm x 12 cm x 12 cm, were made and introduced in a Hele-Shaw cell with two PMM windows and two steel frames. In hydration experiments, a fluid enters by an orifice in the frame, located both at the top and the bottom of the cell, to perform hydration in both senses. To get a uniform hydration we place a diffuser near the orifice. Volume influxes in hydration cells are registered in time. The evolution of the developed interface was recorded on a videotape. The video cameras was fixed to a holder so that the vertical direction in the monitor was the same as the direction of the larger extension of the cell. (Author) 6 refs

  15. Volume of hydration in terminal cancer patients.

    Science.gov (United States)

    Bruera, E; Belzile, M; Watanabe, S; Fainsinger, R L

    1996-03-01

    In this retrospective study we reviewed the volume and modality of hydration of consecutive series of terminal cancer patients in two different settings. In a palliative care unit 203/290 admitted patients received subcutaneous hydration for 12 +/- 8 days at a daily volume of 1015 +/- 135 ml/day. At the cancer center, 30 consecutive similar patients received intravenous hydration for 11.5 +/- 5 days (P > 0.2) but at a daily volume of 2080 +/- 720 ml/day (P palliative care unit patients required discontinuation of hydration because of complications. Hypodermoclysis was administered mainly as a continuous infusion, an overnight infusion, or in one to three 1-h boluses in 62 (31%), 98 (48%) and 43 (21%) patients, respectively. Our findings suggest that, in some settings, patients may be receiving excessive volumes of hydration by less comfortable routes such as the intravenous route. Increased education and research in this area are badly needed.

  16. Hydration shells exchange charge with their protein

    DEFF Research Database (Denmark)

    Abitan, Haim; Lindgård, Per-Anker; Nielsen, Bjørn Gilbert

    2010-01-01

    . In our experiments, the amplitude of an ultrasonic pressure wave is gradually increased (0–20 atm) while we simultaneously measure the Raman spectra from the hydrated protein (β-lactoglobulin and lysozyme). We detected two types of spectral changes: first, up to 70% increase in the intensity......Investigation of the interaction between a protein and its hydration shells is an experimental and theoretical challenge. Here, we used ultrasonic pressure waves in aqueous solutions of a protein to explore the conformational states of the protein and its interaction with its hydration shells...... the presence of an ultrasonic pressure, a protein and its hydration shells are in thermodynamic and charge equilibrium, i.e. a protein and its hydration shells exchange charges. The ultrasonic wave disrupts these equilibria which are regained within 30–45 min after the ultrasonic pressure is shut off....

  17. Thermodynamic calculations in the system CH4-H2O and methane hydrate phase equilibria

    Science.gov (United States)

    Circone, S.; Kirby, S.H.; Stern, L.A.

    2006-01-01

    Using the Gibbs function of reaction, equilibrium pressure, temperature conditions for the formation of methane clathrate hydrate have been calculated from the thermodynamic properties of phases in the system CH4-H 2O. The thermodynamic model accurately reproduces the published phase-equilibria data to within ??2 K of the observed equilibrium boundaries in the range 0.08-117 MPa and 190-307 K. The model also provides an estimate of the third-law entropy of methane hydrate at 273.15 K, 0.1 MPa of 56.2 J mol-1 K-1 for 1/n CH4??H 2O, where n is the hydrate number. Agreement between the calculated and published phase-equilibria data is optimized when the hydrate composition is fixed and independent of the pressure and temperature for the conditions modeled. ?? 2006 American Chemical Society.

  18. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Thomas E. Williams; Keith Millheim; Bill Liddell

    2005-03-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Oil-field engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in Arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrates agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project is a cost-shared partnership between Maurer Technology, Anadarko Petroleum, Noble Corporation, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to help identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. As part of the project work scope, team members drilled and cored the HOT ICE No. 1 on Anadarko leases beginning in January 2003 and completed in March 2004. Due to scheduling constraints imposed by the Arctic drilling season, operations at the site were suspended between April 21, 2003 and January 30, 2004. An on-site core analysis laboratory was designed, constructed and used for determining physical characteristics of frozen core immediately after it was retrieved from the well. The well was drilled from a new and innovative Anadarko Arctic Platform that has a greatly reduced footprint and environmental impact. Final efforts of the project were to correlate geology, geophysics, logs, and drilling and production data and provide this information to scientists for future hydrate operations. Unfortunately, no gas hydrates were encountered in this well; however, a wealth of information was generated

  19. Lead Thickness Measurements

    International Nuclear Information System (INIS)

    Rucinski, R.

    1998-01-01

    The preshower lead thickness applied to the outside of D-Zero's superconducting solenoid vacuum shell was measured at the time of application. This engineering documents those thickness measurements. The lead was ordered in sheets 0.09375-inch and 0.0625-inch thick. The tolerance on thickness was specified to be +/- 0.003-inch. The sheets all were within that thickness tolerance. The nomenclature for each sheet was designated 1T, 1B, 2T, 2B where the numeral designates it's location in the wrap and 'T' or 'B' is short for 'top' or 'bottom' half of the solenoid. Micrometer measurements were taken at six locations around the perimeter of each sheet. The width,length, and weight of each piece was then measured. Using an assumed pure lead density of 0.40974 lb/in 3 , an average sheet thickness was calculated and compared to the perimeter thickness measurements. In every case, the calculated average thickness was a few mils thinner than the perimeter measurements. The ratio was constant, 0.98. This discrepancy is likely due to the assumed pure lead density. It is not felt that the perimeter is thicker than the center regions. The data suggests that the physical thickness of the sheets is uniform to +/- 0.0015-inch.

  20. Computational Recreation of Carbon Dioxide Hydrates at Habitable Planetary Conditions

    Science.gov (United States)

    Recio, J. M.; Izquierdo-Ruiz, F.; Prieto-Ballesteros, O.

    2017-12-01

    Gas clathrate hydrates are proposed as constituents of the icy moons of the giant planets in the Solar System [1]. Carbon dioxide has been detected on the surface of the moons of Jupiter, supposedly originated by internal degasification. In Ganymede, an aqueous ocean is proposed to exist under a thick ice crust in coexistence with several forms of ice, with pressure reaching up to 1.3 GPa [2]. Due to the limited available data on these systems under these conditions, we propose a combination of computational and experimental studies to describe microscopically and macroscopically the structural and chemical behavior of CO2@H2O polymorphs. This will allow us to understand how their presence affects the geophysical structure and activity and their impact on the habitability of the icy moon. A transition from the sI cubic structure to a high pressure phase at around 0.7 GPa has been found for CO2@H2O. In spite of different attempts to characterize the new structure, a definite answer has not been provided yet. A MH-III Filled Ice Structure type was proposed after neutron diffraction experiments in contrast with an alternative structure similar to the hexagonal C0 type for H2 hydrates [3]. It has an estimated hydration level ratio up to 2H2O:1CO2 and 6 water molecules per unit cell. In the figure below, our optimized unit cell based on this hexagonal C0 structure is displayed. Ab initio calculations using the XDM approximation to include van der Waals effects are performed in our search for the pressure evolution of the equilibrium geometries of the C0-CO2@H2O phase and those of a close related structure to this one called Ih-C0, with 8 water molecules per unit cell. We obtain occupation energies at different hydration ratios, densities, equations of state parameters, and stability energies with respect to decomposition. Raman and IR frequencies are also computed in the 0-2 GPa range. High pressure experiments are also being done in a newly designed chamber able to

  1. Growth mode transition of tetrahydrofuran clathrate hydrates in the guest/host concentration boundary layer.

    Science.gov (United States)

    Sabase, Yuichiro; Nagashima, Kazushige

    2009-11-19

    Clathrate hydrates are known to form a thin film along a guest/host boundary. We present here the first report of tetrahydrofuran (THF) clathrate hydrate formation in a THF/water concentration boundary layer. We found that the THF-water system also forms a hydrate film separating the guest/host phases. The lateral growth rate of the film increases as supercooling increases. The thickness of the film at the growth tip decreases as supercooling and the lateral growth rate increase. These tendencies are consistent with reports of experiments for other hydrates and predictions of heat-transfer models. After film formation and slight melting, two types of growth modes are observed, depending on temperature T. At T = 3.0 degrees C, the film slowly thickens. The thickening rate is much lower than the lateral growth rate, as reported for other hydrates. At T agglomerate of small polycrystalline hydrates forms in each phase. Grain boundaries in the film and pore spaces in the agglomerate act as paths for permeation of each liquid. Timing when continuous nucleation starts is dominantly controlled by the time of initiation of liquid permeation through the film. Digital particle image velocimetry analysis of the agglomerate shows that it expands not by growth at the advancing front but rather by continuous nucleation in the interior. Expansion rates of the agglomerate tend to be higher for the cases of multipermeation paths in the film and the thinner film. We suppose that the growth mode transition to continuous nucleation is caused by the memory effect due to slight melting of the hydrate film.

  2. Fractionation of hydrogen and oxygen isotopes between hydrated and free water molecules in aqueous urea solution

    International Nuclear Information System (INIS)

    Kakiuchi, M.; Matsuo, S.

    1985-01-01

    Ratios of D/H and 18 O/ 16 O in the vapor phase in equilibrium with aqueous urea solution with different urea molalities were measured at 15 and 25 0 C. Under the assumption that urea solutions consist of two species, i.e., the urea-water cluster and free water, the results are interpreted to give the average hydration number, i.e., the number of water molecules per urea molecule in the urea-water cluster. Good agreement was obtained for the hydration number estimated independently from hydrogen and oxygen isotopic fractions. On the basis of hydrogen isotopic data at 25 0 C, the average hydration number of urea in the cluster is 6.3 +/- 0.8 at 2.1 m and 2.75 +/- 0.08 at saturation (20.15 m). The corresponding average hydration numbers based on oxygen isotopic data were calculated to be 6.7 +/- 2.4 at 2.1 m and 2.75 +/- 0.25 at urea saturation. HD 16 O is enriched in the urea-water cluster and H 2 18 O is enriched in free water. Isotopic partitioning between the cluster and free water is markedly different from those between hydration spheres and free water in aqueous electrolyte solutions. 29 references, 6 figures, 5 tables

  3. Molecular dynamics simulation of polyacrylamides in potassium montmorillonite clay hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Junfang [CSIRO Petroleum Resources, Ian Wark Laboratory, Bayview Avenue, Clayton, Victoria 3168 (Australia); Rivero, Mayela [CSIRO Petroleum, PO Box 1130, Bentley, Western Australia, 6102 (Australia); Choi, S K [CSIRO Petroleum Resources, Ian Wark Laboratory, Bayview Avenue, Clayton, Victoria 3168 (Australia)

    2007-02-14

    We present molecular dynamics simulation results for polyacrylamide in potassium montmorillonite clay-aqueous systems. Interlayer molecular structure and dynamics properties are investigated. The number density profile, radial distribution function, root-mean-square deviation (RMSD), mean-square displacement (MSD) and diffusion coefficient are reported. The calculations are conducted in constant NVT ensembles, at T = 300 K and with layer spacing of 40 A. Our simulation results showed that polyacrylamides had little impact on the structure of interlayer water. Density profiles and radial distribution function indicated that hydration shells were formed. In the presence of polyacrylamides more potassium counterions move close to the clay surface while water molecules move away, indicating that potassium counterions are hydrated to a lesser extent than the system in which no polyacrylamides were added. The diffusion coefficients for potassium and water decreased when polyacrylamides were added.

  4. Scale-dependent gas hydrate saturation estimates in sand reservoirs in the Ulleung Basin, East Sea of Korea

    Science.gov (United States)

    Lee, Myung Woong; Collett, Timothy S.

    2013-01-01

    Through the use of 2-D and 3-D seismic data, several gas hydrate prospects were identified in the Ulleung Basin, East Sea of Korea and thirteen drill sites were established and logging-while-drilling (LWD) data were acquired from each site in 2010. Sites UBGH2–6 and UBGH2–10 were selected to test a series of high amplitude seismic reflections, possibly from sand reservoirs. LWD logs from the UBGH2–6 well indicate that there are three significant sand reservoirs with varying thickness. Two upper sand reservoirs are water saturated and the lower thinly bedded sand reservoir contains gas hydrate with an average saturation of 13%, as estimated from the P-wave velocity. The well logs at the UBGH2–6 well clearly demonstrated the effect of scale-dependency on gas hydrate saturation estimates. Gas hydrate saturations estimated from the high resolution LWD acquired ring resistivity (vertical resolution of about 5–8 cm) reaches about 90% with an average saturation of 28%, whereas gas hydrate saturations estimated from the low resolution A40L resistivity (vertical resolution of about 120 cm) reaches about 25% with an average saturation of 11%. However, in the UBGH2–10 well, gas hydrate occupies a 5-m thick sand reservoir near 135 mbsf with a maximum saturation of about 60%. In the UBGH2–10 well, the average and a maximum saturation estimated from various well logging tools are comparable, because the bed thickness is larger than the vertical resolution of the various logging tools. High resolution wireline log data further document the role of scale-dependency on gas hydrate calculations.

  5. In situ monitoring of the hydration process of K-PS geopolymer cement with ESEM

    International Nuclear Information System (INIS)

    Sun Wei; Zhang Yunsheng; Lin Wei; Liu Zhiyong

    2004-01-01

    Environmental scanning electron microscope (ESEM) was used to in situ quantitatively study the hydration process of K-PS geopolymer cement under an 80% RH environment. An energy dispersion X-ray analysis (EDXA) was also employed to distinguish the chemical composition of hydration product. The ESEM micrographs showed that metakaolin particles pack loosely at 10 min after mixing, resulting in the existence of many large voids. As hydration proceeds, a lot of gels were seen and gradually precipitated on the surfaces of these particles. At later stage, these particles were wrapped by thick gel layers and their interspaces were almost completely filled. The corresponding EDXA results illustrated that the molar ratios of K/Al increase while Si/Al decrease with the development of hydration. As a result, the molar ratios of K/Al and Si/Al of hydration products at an age of 4 h amounted to 0.99 and 1.49, respectively, which were close to the theoretical values (K/Al=1.0, Si/Al=1.0 for K-PS geopolymer cement paste). In addition, well-developed crystals could not been found at any ages; instead, spongelike amorphous gels were always been observed

  6. In-situ membrane hydration measurement of proton exchange membrane fuel cells

    Science.gov (United States)

    Lai, Yeh-Hung; Fly, Gerald W.; Clapham, Shawn

    2015-01-01

    Achieving proper membrane hydration control is one of the most critical aspects of PEM fuel cell development. This article describes the development and application of a novel 50 cm2 fuel cell device to study the in-situ membrane hydration by measuring the through-thickness membrane swelling via an array of linear variable differential transducers. Using this setup either as an air/air (dummy) cell or as a hydrogen/air (operating) cell, we performed a series of hydration and dehydration experiments by cycling the RH of the inlet gas streams at 80 °C. From the linear relationship between the under-the-land swelling and the over-the-channel water content, the mechanical constraint within the fuel cell assembly can suppress the membrane water uptake by 11%-18%. The results from the air/air humidity cycling test show that the membrane can equilibrate within 120 s for all RH conditions and that membrane can reach full hydration at a RH higher than 140% in spite of the use of a liquid water impermeable Carbel MP30Z microporous layer. This result confirms that the U.S. DOE's humidity cycling mechanical durability protocol induces sufficient humidity swings to maximize hygrothermal mechanical stresses. This study shows that the novel experimental technique can provide a robust and accurate means to study the in-situ hydration of thin membranes subject to a wide range of fuel cell conditions.

  7. Gas Hydrate Storage of Natural Gas

    Energy Technology Data Exchange (ETDEWEB)

    Rudy Rogers; John Etheridge

    2006-03-31

    Environmental and economic benefits could accrue from a safe, above-ground, natural-gas storage process allowing electric power plants to utilize natural gas for peak load demands; numerous other applications of a gas storage process exist. A laboratory study conducted in 1999 to determine the feasibility of a gas-hydrates storage process looked promising. The subsequent scale-up of the process was designed to preserve important features of the laboratory apparatus: (1) symmetry of hydrate accumulation, (2) favorable surface area to volume ratio, (3) heat exchanger surfaces serving as hydrate adsorption surfaces, (4) refrigeration system to remove heat liberated from bulk hydrate formation, (5) rapid hydrate formation in a non-stirred system, (6) hydrate self-packing, and (7) heat-exchanger/adsorption plates serving dual purposes to add or extract energy for hydrate formation or decomposition. The hydrate formation/storage/decomposition Proof-of-Concept (POC) pressure vessel and supporting equipment were designed, constructed, and tested. This final report details the design of the scaled POC gas-hydrate storage process, some comments on its fabrication and installation, checkout of the equipment, procedures for conducting the experimental tests, and the test results. The design, construction, and installation of the equipment were on budget target, as was the tests that were subsequently conducted. The budget proposed was met. The primary goal of storing 5000-scf of natural gas in the gas hydrates was exceeded in the final test, as 5289-scf of gas storage was achieved in 54.33 hours. After this 54.33-hour period, as pressure in the formation vessel declined, additional gas went into the hydrates until equilibrium pressure/temperature was reached, so that ultimately more than the 5289-scf storage was achieved. The time required to store the 5000-scf (48.1 hours of operating time) was longer than designed. The lower gas hydrate formation rate is attributed to a

  8. Can hydrate dissolution experiments predict the fate of a natural hydrate system?

    Energy Technology Data Exchange (ETDEWEB)

    Hester, K.C.; Peltzer, E.T.; Dunk, R.M.; Walz, P.M.; Brewer, P.G. [Monterey Bay Aquarium Research Inst., Moss Landing, CA (United States); Dendy Sloan, E. [Colorado School of Mines, Golden, CO (United States). Center for Hydrate Research

    2008-07-01

    Gas hydrates are naturally occurring compounds found in permafrost regions and in oceans. In the natural environment, sufficient temperature and pressure conditions for hydrate formation exist over a significant portion of the ocean. However, in addition to pressure and temperature, the chemical potential of the gas in the hydrate must be equal to the surrounding waters. If the concentration of the gas in surrounding water is under-saturated with respect to the gas in the hydrate, the hydrate will dissolve to drive the system towards chemical equilibrium. This paper presented a dissolution study of exposed hydrate from outcrops at Barkley Canyon, located off Vancouver Island, British Columbia. A previous field experiment on synthetic methane hydrate samples had demonstrated that mass transfer controlled dissolution in under-saturated seawater. However, seafloor hydrate outcrops have been shown to have significant longevity compared to expected dissolution rates based upon convective boundary layer diffusion calculations. An in-situ dissolution experiment was performed on two distinct natural hydrate fabrics in order to help resolve this apparent disconnect between the dissolution rates of synthetic and natural hydrate. The paper presented a map of Barkley Canyon and discussed the field measurements and methods for the study. Exposed outcrops of gas hydrates were cored using a specially constructed stainless steel coring device and a hydraulic ram was located inside the corer. Hydrate samples were cored directly using the a manipulator arm and then injected into a sampling cell. The hydrate was then added to an open mesh exposure container, which allowed for exposure to ambient benthic currents with minimal disturbance. As well, in order to observe the slow dissolution of the hydrate in seawater at Barkley Canyon, time-lapse photography was employed. Last, the paper presented the results of the hydrate fabric porosities and hydrate dissolution rates. It was

  9. Squirt flow due to interfacial water films in hydrate bearing sediments

    Directory of Open Access Journals (Sweden)

    K. Sell

    2018-05-01

    Full Text Available Sediments containing gas hydrate dispersed in the pore space are known to show a characteristic seismic anomaly which is a high attenuation along with increasing seismic velocities. Currently, this observation cannot be fully explained albeit squirt-flow type mechanisms on the microscale have been speculated to be the cause. Recent major findings from in situ experiments, using the gas in excess and water in excess formation method, and coupled with high-resolution synchrotron-based X-ray micro-tomography, have revealed the systematic presence of thin water films between the quartz grains and the encrusting hydrate. The data obtained from these experiments underwent an image processing procedure to quantify the thicknesses and geometries of the aforementioned interfacial water films. Overall, the water films vary from sub-micrometer to a few micrometers in thickness. In addition, some of the water films interconnect through water bridges. This geometrical analysis is used to propose a new conceptual squirt flow model for hydrate bearing sediments. A series of numerical simulations is performed considering variations of the proposed model to study seismic attenuation caused by such thin water films. Our results support previous speculation that squirt flow can explain high attenuation at seismic frequencies in hydrate bearing sediments, but based on a conceptual squirt flow model which is geometrically different than those previously considered.

  10. Hydration Properties of Ground Granulated Blast-Furnace Slag (GGBS Under Different Hydration Environments

    Directory of Open Access Journals (Sweden)

    Shuhua LIU

    2017-02-01

    Full Text Available The hydration properties of various cementitious materials containing Ground Granulated Blast-furnace Slag (GGBS, two alkali-activated slag cements (AAS-1 and AAS-2 in which sodium silicate and sodium hydroxide act as alkaline activators respectively, supersulfated cement (SSC and slag Portland cement(PSC, are compared with ordinary Portland cement (OPC to investigate the effect of activating environment on the hydration properties in this study by determining the compressive strength of the pastes, the hydration heat of binders within 96 hours, and the hydration products at age of 28 days. The results show that C-S-H gels are the main hydrated products for all cementitious systems containing GGBS. Ca(OH2 is the hydration products of OPC and PSC paste. However, ettringite and gypsum crystals instead of Ca(OH2 are detected in SSC paste. Additionally, tobermorite, a crystalline C-S-H, and calcite are hydrated products in AAS-1. Tobermorite, cowlesite and calcite are hydrated products of AAS-2 as well. Based on strength results, AAS-1 paste exhibits the highest compressive strength followed by POC, PSC, SSC in order at all testing ages and AAS-2 give the lowest compressive strength except for the early age at 3 days, which is higher than SSC but still lower than PSC. From hydration heat analysis, alkalinity in the reaction solution is a vital factor influencing the initial hydration rate and the initial hydration rate from higher to lower is AAS-2, AAS-1, OPC, PSC and SSC. Although AAS possesses a faster reaction rate in the initial hours, cumulative hydration heat of AAS is comparably lower than that of OPC, but higher than those of PSC and SSC in turn, which indicates that the hydration heat of clinkers is much higher than that of slag.DOI: http://dx.doi.org/10.5755/j01.ms.23.1.14934

  11. Education and "Thick" Epistemology

    Science.gov (United States)

    Kotzee, Ben

    2011-01-01

    In this essay Ben Kotzee addresses the implications of Bernard Williams's distinction between "thick" and "thin" concepts in ethics for epistemology and for education. Kotzee holds that, as in the case of ethics, one may distinguish between "thick" and "thin" concepts of epistemology and, further, that this distinction points to the importance of…

  12. Thick film hydrogen sensor

    Science.gov (United States)

    Hoffheins, Barbara S.; Lauf, Robert J.

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  13. Calcium and magnesium silicate hydrates

    International Nuclear Information System (INIS)

    Lothenbach, B.; L'Hopital, E.; Nied, D.; Achiedo, G.; Dauzeres, A.

    2015-01-01

    Deep geological disposals are planed to discard long-lived intermediate-level and high-level radioactive wastes. Clay-based geological barriers are expected to limit the ingress of groundwater and to reduce the mobility of radioelements. In the interaction zone between the cement and the clay based material alteration can occur. Magnesium silicate hydrates (M-S-H) have been observed due to the reaction of magnesium sulfate containing groundwater with cements or in the interaction zone between low-pH type cement and clays. M-S-H samples synthesized in the laboratory showed that M-S-H has a variable composition within 0.7 ≤ Mg/Si ≤ 1.5. TEM/EDS analyses show an homogeneous gel with no defined structure. IR and 29 Si NMR data reveal a higher polymerization degree of the silica network in M-S-H compared to calcium silicate hydrates (C-S-H). The presence of mainly Q 3 silicate tetrahedrons in M-S-H indicates a sheet like or a triple-chain silica structure while C-S-H is characterised by single chain-structure. The clear difference in the silica structure and the larger ionic radius of Ca 2+ (1.1 Angstrom) compared to Mg 2+ (0.8 Angstrom) make the formation of an extended solid solution between M-S-H and C-S-H gel improbable. In fact, the analyses of synthetic samples containing both magnesium and calcium in various ratios indicate the formation of separate M-S-H and C-S-H gels with no or very little uptake of magnesium in CS-H or calcium in M-S-H

  14. Detection and Production of Methane Hydrate

    Energy Technology Data Exchange (ETDEWEB)

    George Hirasaki; Walter Chapman; Gerald Dickens; Colin Zelt; Brandon Dugan; Kishore Mohanty; Priyank Jaiswal

    2011-12-31

    This project seeks to understand regional differences in gas hydrate systems from the perspective of as an energy resource, geohazard, and long-term climate influence. Specifically, the effort will: (1) collect data and conceptual models that targets causes of gas hydrate variance, (2) construct numerical models that explain and predict regional-scale gas hydrate differences in 2-dimensions with minimal 'free parameters', (3) simulate hydrocarbon production from various gas hydrate systems to establish promising resource characteristics, (4) perturb different gas hydrate systems to assess potential impacts of hot fluids on seafloor stability and well stability, and (5) develop geophysical approaches that enable remote quantification of gas hydrate heterogeneities so that they can be characterized with minimal costly drilling. Our integrated program takes advantage of the fact that we have a close working team comprised of experts in distinct disciplines. The expected outcomes of this project are improved exploration and production technology for production of natural gas from methane hydrates and improved safety through understanding of seafloor and well bore stability in the presence of hydrates. The scope of this project was to more fully characterize, understand, and appreciate fundamental differences in the amount and distribution of gas hydrate and how this would affect the production potential of a hydrate accumulation in the marine environment. The effort combines existing information from locations in the ocean that are dominated by low permeability sediments with small amounts of high permeability sediments, one permafrost location where extensive hydrates exist in reservoir quality rocks and other locations deemed by mutual agreement of DOE and Rice to be appropriate. The initial ocean locations were Blake Ridge, Hydrate Ridge, Peru Margin and GOM. The permafrost location was Mallik. Although the ultimate goal of the project was to understand

  15. Basics of development of gas hydrate deposits

    Energy Technology Data Exchange (ETDEWEB)

    Makogon, Yuri F.; Holditch, Stephen A.; Makogon, Taras Y.

    2005-07-01

    Natural gas hydrate deposits could possibly be an important energy resource during this century. However, many problems associated with producing these deposits must first be solved. The industry must develop new technologies to produce the gas, to forecast possible tectonic cataclysms in regions of gas hydrate accumulations, and to prevent damage to the environment. These global issues must be addressed by every company or country who wants to produce gas hydrate deposits. Cooperative research between industry and universities can lead to technology breakthroughs in coming years. This paper reviews the Messoyakha field and the Blake Ridge and Nankai areas to explain a methodology for estimating how much gas might be producible from gas hydrate deposits (GHDs) under various conditions. The Messoyakha field is located on land, while the Blake Ridge and Nankai areas are offshore. Messoyakha is the first and the only GHD where gas production from hydrates has reached commercial flow rates. The Blake Ridge GHD has been studied for 20 years and 11 wells have been drilled to collect gas-hydrate samples. The potential resources of gas (gas in place) from Blake Ridge is estimated at 37.7Oe10{sup 12} m{sup 3} (1.330 Tcf) in hydrate form and 19.3Oe10{sup 12}m{sup 3} (681 Bcf) [5] in free gas. To estimate how much of the potential resource can be produced we need a thorough understanding of both the geologic and the thermodynamic characteristics of the formations. (Author)

  16. Gas hydrate exploration activities in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Keun-Pil Park, K.P. [Korea Inst. of Geoscience and Mineral Resources, Gas Hydrate R and D Organization, Ministry of Knowledge Economy, Yuseong-gu, Daejeon (Korea, Republic of)

    2008-07-01

    Korea's first gas hydrate research project was launched in 1996 to study the gas hydrate potential in the Ulleung Basin of the East Sea. It involved a series of laboratory experiments followed by a preliminary offshore seismic survey and regional reconnaissance geophysical and marine geological surveys. The bottom simulating reflector (BSR) was interpreted to show wide area distribution in the southern part of the Ulleung Basin, and its average burial depth was 187 m below the sea floor in the East Sea. A three-phase 10-year National Gas Hydrate Development Program was launched in 2004 to estimate the potential reserves in the East Sea. It will involve drilling to identify natural gas hydrates and to determine the most optimized production methods. Drilling sites were proposed based on five indicators that imply gas hydrate occurrence, notably BSR, gas vent, enhanced seismic reflection, acoustic blanking and gas seeping structure. The UBGH-X-01 gas hydrate expedition in the East Sea Ulleung Basin involved 5 logging while drilling (LWD) surveys at three high priority sites. One wire line logging was implemented at the site of the UBGH09. A total 334 m of non-pressurized conventional cores and 16 pressure cores were obtained in late 2007. The UBGH-X-01 was successfully completed, recovering many natural samples of gas hydrate from 3 coring sites in the East Sea. 7 refs., 12 figs.

  17. Gas Hydrates Research Programs: An International Review

    Energy Technology Data Exchange (ETDEWEB)

    Jorge Gabitto; Maria Barrufet

    2009-12-09

    Gas hydrates sediments have the potential of providing a huge amount of natural gas for human use. Hydrate sediments have been found in many different regions where the required temperature and pressure conditions have been satisfied. Resource exploitation is related to the safe dissociation of the gas hydrate sediments. Basic depressurization techniques and thermal stimulation processes have been tried in pilot efforts to exploit the resource. There is a growing interest in gas hydrates all over the world due to the inevitable decline of oil and gas reserves. Many different countries are interested in this valuable resource. Unsurprisingly, developed countries with limited energy resources have taken the lead in worldwide gas hydrates research and exploration. The goal of this research project is to collect information in order to record and evaluate the relative strengths and goals of the different gas hydrates programs throughout the world. A thorough literature search about gas hydrates research activities has been conducted. The main participants in the research effort have been identified and summaries of their past and present activities reported. An evaluation section discussing present and future research activities has also been included.

  18. Methane hydrate stability and anthropogenic climate change

    Directory of Open Access Journals (Sweden)

    D. Archer

    2007-07-01

    Full Text Available Methane frozen into hydrate makes up a large reservoir of potentially volatile carbon below the sea floor and associated with permafrost soils. This reservoir intuitively seems precarious, because hydrate ice floats in water, and melts at Earth surface conditions. The hydrate reservoir is so large that if 10% of the methane were released to the atmosphere within a few years, it would have an impact on the Earth's radiation budget equivalent to a factor of 10 increase in atmospheric CO2.

    Hydrates are releasing methane to the atmosphere today in response to anthropogenic warming, for example along the Arctic coastline of Siberia. However most of the hydrates are located at depths in soils and ocean sediments where anthropogenic warming and any possible methane release will take place over time scales of millennia. Individual catastrophic releases like landslides and pockmark explosions are too small to reach a sizable fraction of the hydrates. The carbon isotopic excursion at the end of the Paleocene has been interpreted as the release of thousands of Gton C, possibly from hydrates, but the time scale of the release appears to have been thousands of years, chronic rather than catastrophic.

    The potential climate impact in the coming century from hydrate methane release is speculative but could be comparable to climate feedbacks from the terrestrial biosphere and from peat, significant but not catastrophic. On geologic timescales, it is conceivable that hydrates could release as much carbon to the atmosphere/ocean system as we do by fossil fuel combustion.

  19. Tapping methane hydrates for unconventional natural gas

    Science.gov (United States)

    Ruppel, Carolyn

    2007-01-01

    Methane hydrate is an icelike form of concentrated methane and water found in the sediments of permafrost regions and marine continental margins at depths far shallower than conventional oil and gas. Despite their relative accessibility and widespread occurrence, methane hydrates have never been tapped to meet increasing global energy demands. With rising natural gas prices, production from these unconventional gas deposits is becoming economically viable, particularly in permafrost areas already being exploited for conventional oil and gas. This article provides an overview of gas hydrate occurrence, resource assessment, exploration, production technologies, renewability, and future challenges.

  20. On the electrolytic generation of hydrated electron

    International Nuclear Information System (INIS)

    Ghosh Mazumdar, A.S.; Guha, S.N.

    1975-01-01

    Investigations on the electrolytic generation of hydrated electron in oxygenated as well as oxygen-free solutions at different pH were undertaken. Since sup(-e)aq is known to react rapidly with O 2 yielding the transient O 2 - ion, the latter was looked for through its interaction with phosphite ions resulting in their oxidation near the cathode. It appears from the results that in electrolytic processes, the primary electron (esup(-)sub(cathode)) probably reacts directly with reactive solutes like oxygen, bypassing the hydration step. Data obtained in oxygen-free solutions, however, support the possible formation of hydrated electron at least in alkaline solutions. (author)

  1. Accurate thickness measurement of graphene

    International Nuclear Information System (INIS)

    Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T

    2016-01-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1–1.3 nm to 0.1–0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials. (paper)

  2. Experimental investigation of smectite hydration from the simulation of 001 X-ray diffraction lines. Implications for the characterization of mineralogical modifications of the 'argilite' from the Meuse - Haute Marne site as a result of a thermal perturbation

    International Nuclear Information System (INIS)

    Ferrage, E.

    2004-10-01

    The structural modifications affecting the reactive mineral constituents of the clay barriers (smectite) and possibly resulting from the thermal pulse related to nuclear waste storage are essentially limited to the amount and location of the layer charge deficit. These modifications likely impact the hydration properties of these minerals, and a specific methodology has thus been developed to describe, using simulation of X-ray diffraction profiles (001 reflections), these hydration properties and specifically the heterogeneity resulting from the inter-stratification of different layer types, each exhibiting a specific hydration state. The detailed study of the hydration properties of a low-charge montmorillonite (octahedral charge) has shown that the affinity of the interlayer cation for water rules the hydration state and the thickness of hydrated smectite layers. If the layer charge is increased, the transition between the different hydration states is shifted, following a water desorption isotherm, towards lower relative humidities. In addition, the hydration of studied beidellites (tetrahedral charge) was shown to be more heterogeneous than that of montmorillonites. The developed methodology also allowed describing the structural modifications resulting from a chemical perturbation (chlorinated anionic background, pH). Finally, the link between the thickness of elementary layers and the amount of interlayer water molecules has been evidenced. A new structure model has also been determined for these interlayer species allowing an improved description of their positional distribution in bi-hydrated interlayers. (author)

  3. Problems of ecological and technical safety by exploration and production of natural gas hydrates

    Directory of Open Access Journals (Sweden)

    Chen-Chen

    2006-10-01

    Full Text Available Gas hydrates - the firm crystal connections form water (liquid water, ice, water vapor and low-molecular waterproof natural gases (mainly methane whose crystal structure effectively compresses gas e.s.: each cubic meter of hydrate can yield over 160 m3 of methane.In present time, the exploitation of the Messoyahsk (Russia and Mallik (Canada deposits of gas hydrates is conducted actively. The further perfection of prospecting methods in the field of studying gas hydrates containing sediments depends on the improvement of geophysical and the well test research, among which native-state core drilling is one of the major. Sampling a native-state core from gas hydrates sediments keeps not only the original composition but structural - textural features of their construction.Despite of the appeal to use gas hydrates as a perspective and ecologically pure fuel possessing huge resources, the investigation and development of their deposits can lead to a number of negative consequences connected with hazards arising from the maintenance of their technical and ecological safety of carrying out. Scales of the arising problems can change from local to regional and even global.

  4. Stochastic Approach to Determine CO2 Hydrate Induction Time in Clay Mineral Suspensions

    Science.gov (United States)

    Lee, K.; Lee, S.; Lee, W.

    2008-12-01

    A large number of induction time data for carbon dioxide hydrate formation were obtained from a batch reactor consisting of four independent reaction cells. Using resistance temperature detector(RTD)s and a digital microscope, we successfully monitored the whole process of hydrate formation (i.e., nucleation and crystal growth) and detected the induction time. The experiments were carried out in kaolinite and montmorillonite suspensions at temperatures between 274 and 277 K and pressures ranging from 3.0 to 4.0 MPa. Each set of data was analyzed beforehand whether to be treated by stochastic manner or not. Geochemical factors potentially influencing the hydrate induction time under different experimental conditions were investigated by stochastic analyses. We observed that clay mineral type, pressure, and temperature significantly affect the stochastic behavior of the induction times for CO2 hydrate formation in this study. The hydrate formation kinetics along with stochastic analyses can provide basic understanding for CO2 hydrate storage in deep-sea sediment and geologic formation, securing its stability under the environments.

  5. Experimental Investigation of Effect on Hydrate Formation in Spray Reactor

    Directory of Open Access Journals (Sweden)

    Jianzhong Zhao

    2015-01-01

    Full Text Available The effects of reaction condition on hydrate formation were conducted in spray reactor. The temperature, pressure, and gas volume of reaction on hydrate formation were measured in pure water and SDS solutions at different temperature and pressure with a high-pressure experimental rig for hydrate formation. The experimental data and result reveal that additives could improve the hydrate formation rate and gas storage capacity. Temperature and pressure can restrict the hydrate formation. Lower temperature and higher pressure can promote hydrate formation, but they can increase production cost. So these factors should be considered synthetically. The investigation will promote the advance of gas storage technology in hydrates.

  6. Gas hydrate concentration and characteristics within Hydrate Ridge inferred from multicomponent seismic reflection data

    Science.gov (United States)

    Kumar, Dhananjay; Sen, Mrinal K.; Bangs, Nathan L.

    2007-12-01

    A seismic experiment composed of streamer and ocean bottom seismometer (OBS) surveys was conducted in the summer of 2002 at southern Hydrate Ridge, offshore Oregon, to map the gas hydrate distribution within the hydrate stability zone. Gas hydrate concentrations within the reservoir can be estimated with P wave velocity (Vp); however, we can further constrain gas hydrate concentrations using S wave velocity (Vs), and use Vs through its relationship to Vp (Vp/Vs) to reveal additional details such as gas hydrate form within the matrix (i.e., hydrate cements the grains, becomes part of the matrix frame or floats in pore space). Both Vp and Vs can be derived simultaneously by inverting multicomponent seismic data. In this study, we use OBS data to estimate seismic velocities where both gas hydrate and free gas are present in the shallow sediments. Once Vp and Vs are estimated, they are simultaneously matched with modeled velocities to estimate the gas hydrate concentration. We model Vp using an equation based on a modification of Wood's equation that incorporates an appropriate rock physics model and Vs using an empirical relation. The gas hydrate concentration is estimated to be up to 7% of the rock volume, or 12% of the pore space. However, Vp and Vs do not always fit the model simultaneously. Vp can vary substantially more than Vs. Thus we conclude that a model, in which higher concentrations of hydrate do not affect shear stiffness, is more appropriate. Results suggest gas hydrates form within the pore space of the sediments and become part of the rock framework in our survey area.

  7. Determination of the coating base thickness with beta backscattering gauges

    International Nuclear Information System (INIS)

    Krejndlin, I.I.; Novikov, V.S.; Pravikov, A.A.

    1976-01-01

    In using beta thickness meters for coating examination, it is necessary that the substrate thickness be greater or equal to the saturation thickness for which one can neglect a systematic error caused by substrate thickness variation. A formula is derived and nomograms are presented for the determination of the substrate saturation thickness with the account of factors affecting the results of coating thickness measurement. The results of saturation thickness calculation are tabulated for a number of substrate materials with using different β-sources ( 147 Pm, 85 Kr, 90 Sr+ 90 Y)

  8. Gas Hydrate Investigations Using Pressure Core Analysis: Current Practice

    Science.gov (United States)

    Schultheiss, P.; Holland, M.; Roberts, J.; Druce, M.

    2006-12-01

    Recently there have been a number of major gas hydrate expeditions, both academic and commercially oriented, that have benefited from advances in the practice of pressure coring and pressure core analysis, especially using the HYACINTH pressure coring systems. We report on the now mature process of pressure core acquisition, pressure core handling and pressure core analysis and the results from the analysis of pressure cores, which have revealed important in situ properties along with some remarkable views of gas hydrate morphologies. Pressure coring success rates have improved as the tools have been modified and adapted for use on different drilling platforms. To ensure that pressure cores remain within the hydrate stability zone, tool deployment, recovery and on-deck handling procedures now mitigate against unwanted temperature rises. Core analysis has been integrated into the core transfer protocol and automated nondestructive measurements, including P-wave velocity, gamma density, and X-ray imaging, are routinely made on cores. Pressure cores can be subjected to controlled depressurization experiments while nondestructive measurements are being made, or cores can be stored at in situ conditions for further analysis and subsampling.

  9. A Hydrate Database: Vital to the Technical Community

    Directory of Open Access Journals (Sweden)

    D Sloan

    2007-06-01

    Full Text Available Natural gas hydrates may contain more energy than all the combined other fossil fuels, causing hydrates to be a potentially vital aspect of both energy and climate change. This article is an overview of the motivation, history, and future of hydrate data management using a CODATA vehicle to connect international hydrate databases. The basis is an introduction to the Gas Hydrate Markup Language (GHML to connect various hydrate databases. The accompanying four articles on laboratory hydrate data by Smith et al., on field hydrate data by L?wner et al., on hydrate modeling by Wang et al., and on construction of a Chinese gas hydrate system by Xiao et al. provide details of GHML in their respective areas.

  10. Densification of the interlayer spacing governs the nanomechanical properties of calcium-silicate-hydrate.

    Science.gov (United States)

    Geng, Guoqing; Myers, Rupert J; Qomi, Mohammad Javad Abdolhosseini; Monteiro, Paulo J M

    2017-09-08

    Calciuam-silicate-hydrate (C-S-H) is the principal binding phase in modern concrete. Molecular simulations imply that its nanoscale stiffness is 'defect-driven', i.e., dominated by crystallographic defects such as bridging site vacancies in its silicate chains. However, experimental validation of this result is difficult due to the hierarchically porous nature of C-S-H down to nanometers. Here, we integrate high pressure X-ray diffraction and atomistic simulations to correlate the anisotropic deformation of nanocrystalline C-S-H to its atomic-scale structure, which is changed by varying the Ca-to-Si molar ratio. Contrary to the 'defect-driven' hypothesis, we clearly observe stiffening of C-S-H with increasing Ca/Si in the range 0.8 ≤ Ca/Si ≤ 1.3, despite increasing numbers of vacancies in its silicate chains. The deformation of these chains along the b-axis occurs mainly through tilting of the Si-O-Si dihedral angle rather than shortening of the Si-O bond, and consequently there is no correlation between the incompressibilities of the a- and b-axes and the Ca/Si. On the contrary, the intrinsic stiffness of C-S-H solid is inversely correlated with the thickness of its interlayer space. This work provides direct experimental evidence to conduct more realistic modelling of C-S-H-based cementitious material.

  11. Exogenous origin of hydration on asteroid (16) Psyche: the role of hydrated asteroid families

    Science.gov (United States)

    Avdellidou, C.; Delbo', M.; Fienga, A.

    2018-04-01

    Asteroid (16) Psyche, which for a long time was the largest M-type with no detection of hydration features in its spectrum, was recently discovered to have a weak 3-μm band and thus it was eventually added to the group of hydrated asteroids. Its relatively high density, in combination with the high radar albedo, led researchers to classify the asteroid as a metallic object. It is believed that it is possibly a core of a differentiated body, a remnant of `hit-and-run' collisions. The detection of hydration is, in principle, inconsistent with a pure metallic origin for this body. Here, we consider the scenario in which the hydration on its surface is exogenous and was delivered by hydrated impactors. We show that impacting asteroids that belong to families whose members have the 3-μm band can deliver hydrated material to Psyche. We developed a collisional model with which we test all dark carbonaceous asteroid families, which contain hydrated members. We find that the major source of hydrated impactors is the family of Themis, with a total implanted mass on Psyche of the order of ˜1014 kg. However, the hydrated fraction could be only a few per cent of the implanted mass, as the water content in carbonaceous chondrite meteorites, the best analogue for the Themis asteroid family, is typically a few per cent of their mass.

  12. Dynamics of hydration in hen egg white lysozyme.

    Science.gov (United States)

    Sterpone, F; Ceccarelli, M; Marchi, M

    2001-08-10

    We investigate the hydration dynamics of a small globular protein, hen egg-white lysozyme. Extensive simulations (two trajectories of 9 ns each) were carried out to identify the time-scales and mechanism of water attachment to this protein. The location of the surface and integral water molecules in lysozyme was also investigated. Three peculiar temporal scales of the hydration dynamics can be discerned: two among these, with sub-nanosecond mean residence time, tau(w), are characteristic of surface hydration water; the slower time-scale (tau(w) approximately 2/3 ns) is associated with buried water molecules in hydrophilic pores and in superficial clefts. The computed tau(w) values in the two independent runs fall in a similar range and are consistent with each other, thus adding extra weight to our result. The tau(w) of surface water obtained from the two independent trajectories is 20 and 24 ps. In both simulations only three water molecules are bound to lysozyme for the entire length of the trajectories, in agreement with nuclear magnetic relaxation dispersion estimates. Locations other than those identified in the protein crystal are found to be possible for these long-residing water molecules. The dynamics of the hydration water molecules observed in our simulations implies that each water molecule visits a multitude of residues during the lifetime of its bound with the protein. The number of residues seen by a single water molecule increases with the time-scale of its residence time and, on average, is equal to one only for the water molecules with shorter residence time. Thus, tau(w) values obtained from inelastic neutron scattering and based on jump-diffusion models are likely not to account for the contribution of water molecules with longer residence time. Copyright 2001 Academic Press.

  13. Vibrational dynamics of hydration water in amylose

    CERN Document Server

    Cavatorta, F; Albanese, G; Angelini, N

    2002-01-01

    We present a study of the dynamical properties of hydration water associated with amylose helices, based on low-temperature vibrational spectra collected using the TOSCA inelastic spectrometer at ISIS. The structural constraints of the polysaccharidic chains favour the formation of a high-density structure for water, which has been suggested by Imberty and Perez on the basis of conformational analysis. According to this model, hydration water can only enter the pores formed by six adjacent helices and completely fills the pores at a hydration level of about 0.27-g water/g dry amylose. Our measurements show that the dynamical behaviour of hydration water is similar to that observed in high-density amorphous ice. (orig.)

  14. Separation of water through gas hydrate formation

    DEFF Research Database (Denmark)

    Boch Andersen, Torben; Thomsen, Kaj

    2009-01-01

    Gas hydrate is normally recognized as a troublemaker in the oil and gas industry. However, gas hydrate has some interesting possibilities when used in connection with separation of water. Nordic Sugar has investigated the possibility of using gas hydrates for concentration of sugar juice. The goal...... of the project was to formulate an alternative separation concept, which can replace the traditional water evaporation process in the sugar production. Work with the separation concept showed that gas hydrates can be used for water separation. The process is not suitable for sugar production because of large...... volumes and the needs for high pressure. The process could be interesting for concentration of heat sensitive, high value products...

  15. Hydration states of AFm cement phases

    Energy Technology Data Exchange (ETDEWEB)

    Baquerizo, Luis G., E-mail: luis.baquerizoibarra@holcim.com [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Matschei, Thomas [Innovation, Holcim Technology Ltd., CH-5113 Holderbank (Switzerland); Scrivener, Karen L. [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne (Switzerland); Saeidpour, Mahsa; Wadsö, Lars [Building Materials, Lund University, Box 124, 221 000 Lund (Sweden)

    2015-07-15

    The AFm phase, one of the main products formed during the hydration of Portland and calcium aluminate cement based systems, belongs to the layered double hydrate (LDH) family having positively charged layers and water plus charge-balancing anions in the interlayer. It is known that these phases present different hydration states (i.e. varying water content) depending on the relative humidity (RH), temperature and anion type, which might be linked to volume changes (swelling and shrinkage). Unfortunately the stability conditions of these phases are insufficiently reported. This paper presents novel experimental results on the different hydration states of the most important AFm phases: monocarboaluminate, hemicarboaluminate, strätlingite, hydroxy-AFm and monosulfoaluminate, and the thermodynamic properties associated with changes in their water content during absorption/desorption. This data opens the possibility to model the response of cementitious systems during drying and wetting and to engineer systems more resistant to harsh external conditions.

  16. METHANE HYDRATE PRODUCTION FROM ALASKAN PERMAFROST

    Energy Technology Data Exchange (ETDEWEB)

    Ali Kadaster; Bill Liddell; Tommy Thompson; Thomas Williams; Michael Niedermayr

    2005-02-01

    Natural-gas hydrates have been encountered beneath the permafrost and considered a nuisance by the oil and gas industry for years. Engineers working in Russia, Canada and the USA have documented numerous drilling problems, including kicks and uncontrolled gas releases, in arctic regions. Information has been generated in laboratory studies pertaining to the extent, volume, chemistry and phase behavior of gas hydrates. Scientists studying hydrate potential agree that the potential is great--on the North Slope of Alaska alone, it has been estimated at 590 TCF. However, little information has been obtained on physical samples taken from actual rock containing hydrates. This gas-hydrate project was a cost-shared partnership between Maurer Technology, Noble Corporation, Anadarko Petroleum, and the U.S. Department of Energy's Methane Hydrate R&D program. The purpose of the project is to build on previous and ongoing R&D in the area of onshore hydrate deposition to identify, quantify and predict production potential for hydrates located on the North Slope of Alaska. The work scope included drilling and coring a well (Hot Ice No. 1) on Anadarko leases beginning in FY 2003 and completed in 2004. During the first drilling season, operations were conducted at the site between January 28, 2003 to April 30, 2003. The well was spudded and drilled to a depth of 1403 ft. Due to the onset of warmer weather, work was then suspended for the season. Operations at the site were continued after the tundra was re-opened the following season. Between January 12, 2004 and March 19, 2004, the well was drilled and cored to a final depth of 2300 ft. An on-site core analysis laboratory was built and implemented for determining physical characteristics of the hydrates and surrounding rock. The well was drilled from a new Anadarko Arctic Platform that has a minimal footprint and environmental impact. Final efforts of the project are to correlate geology, geophysics, logs, and drilling and

  17. Ocean Sediment Thickness Contours

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean sediment thickness contours in 200 meter intervals for water depths ranging from 0 - 18,000 meters. These contours were derived from a global sediment...

  18. Preservation of methane hydrate at 1 atm

    Science.gov (United States)

    Stern, L.A.; Circone, S.; Kirby, S.H.; Durham, W.B.

    2001-01-01

    A "pressure-release" method that enables reproducible bulk preservation of pure, porous, methane hydrate at conditions 50 to 75 K above its equilibrium T (193 K) at 1 atm is refined. The amount of hydrate preserved by this method appears to be greatly in excess of that reported in the previous citations, and is likely the result of a mechanism different from ice shielding.

  19. Characterizing the hydration state of L-threonine in solution using terahertz time-domain attenuated total reflection spectroscopy

    Science.gov (United States)

    Huang, Huachuan; Liu, Qiao; Zhu, Liguo; Li, Zeren

    2018-01-01

    The hydration of biomolecules is closely related to the dynamic process of their functional expression, therefore, characterizing hydration phenomena is a subject of keen interest. However, direct measurements on the global hydration state of biomolecules couldn't have been acquired using traditional techniques such as thermodynamics, ultrasound, microwave spectroscopy or viscosity, etc. In order to realize global hydration characterization of amino acid such as L-threonine, terahertz time-domain attenuated total reflectance spectroscopy (THz-TDS-ATR) was adopted in this paper. By measuring the complex permittivity of L-threonine solutions with various concentrations in the THz region, the hydration state and its concentration dependence were obtained, indicating that the number of hydrous water decreased with the increase of concentration. The hydration number was evaluated to be 17.8 when the molar concentration of L-threonine was 0.34 mol/L, and dropped to 13.2 when the molar concentration increased to 0.84 mol/L, when global hydration was taken into account. According to the proposed direct measurements, it is believed that the THz-TDS-ATR technique is a powerful tool for studying the picosecond molecular dynamics of amino acid solutions.

  20. In Situ Raman Analyses of Natural Gas and Gas Hydrates at Hydrate Ridge, Oregon

    Science.gov (United States)

    Peltzer, E. T.; White, S. N.; Dunk, R. M.; Brewer, P. G.; Sherman, A. D.; Schmidt, K.; Hester, K. C.; Sloan, E. D.

    2004-12-01

    During a July 2004 cruise to Hydrate Ridge, Oregon, MBARI's sea-going laser Raman spectrometer was used to obtain in situ Raman spectra of natural gas hydrates and natural gas venting from the seafloor. This was the first in situ analysis of gas hydrates on the seafloor. The hydrate spectra were compared to laboratory analyses performed at the Center for Hydrate Research, Colorado School of Mines. The natural gas spectra were compared to MBARI gas chromatography (GC) analyses of gas samples collected at the same site. DORISS (Deep Ocean Raman In Situ Spectrometer) is a laboratory model laser Raman spectrometer from Kaiser Optical Systems, Inc modified at MBARI for deployment in the deep ocean. It has been successfully deployed to depths as great as 3600 m. Different sampling optics provide flexibility in adapting the instrument to a particular target of interest. An immersion optic was used to analyze natural gas venting from the seafloor at South Hydrate Ridge ( ˜780 m depth). An open-bottomed cube was placed over the vent to collect the gas. The immersion optic penetrated the side of the cube as did a small heater used to dissociate any hydrate formed during sample collection. To analyze solid hydrates at both South and North Hydrate Ridge ( ˜590 m depth), chunks of hydrate were excavated from the seafloor and collected in a glass cylinder with a mesh top. A stand-off optic was used to analyze the hydrate inside the cylinder. Due to the partial opacity of the hydrate and the small focal volume of the sampling optic, a precision underwater positioner (PUP) was used to focus the laser spot onto the hydrate. PUP is a stand-alone system with three degrees-of-freedom, capable of moving the DORISS probe head with a precision of 0.1 mm. In situ Raman analyses of the gas indicate that it is primarily methane. This is verified by GC analyses of samples collected from the same site. Other minor constituents (such as CO2 and higher hydrocarbons) are present but may be in

  1. The expression of proinflammatory genes in epidermal keratinocytes is regulated by hydration status.

    Science.gov (United States)

    Xu, Wei; Jia, Shengxian; Xie, Ping; Zhong, Aimei; Galiano, Robert D; Mustoe, Thomas A; Hong, Seok J

    2014-04-01

    Mucosal wounds heal more rapidly, exhibit less inflammation, and are associated with minimal scarring when compared with equivalent cutaneous wounds. We previously demonstrated that cutaneous epithelium exhibits an exaggerated response to injury compared with mucosal epithelium. We hypothesized that treatment of injured skin with a semiocclusive dressing preserves the hydration of the skin and results in a wound healing phenotype that more closely resembles that of mucosa. Here we explored whether changes in hydration status alter epidermal gene expression patterns in rabbit partial-thickness incisional wounds. Using microarray studies on injured epidermis, we showed that global gene expression patterns in highly occluded versus non-occluded wounds are distinct. Many genes including IL-1β, IL-8, TNF-α (tumor necrosis factor-α), and COX-2 (cyclooxygenase 2) are upregulated in non-occluded wounds compared with highly occluded wounds. In addition, decreased levels of hydration resulted in an increased expression of proinflammatory genes in human ex vivo skin culture (HESC) and stratified keratinocytes. Hierarchical analysis of genes using RNA interference showed that both TNF-α and IL-1β regulate the expression of IL-8 through independent pathways in response to reduced hydration. Furthermore, both gene knockdown and pharmacological inhibition studies showed that COX-2 mediates the TNF-α/IL-8 pathway by increasing the production of prostaglandin E2 (PGE2). IL-8 in turn controls the production of matrix metalloproteinase-9 in keratinocytes. Our data show that hydration status directly affects the expression of inflammatory signaling in the epidermis. The identification of genes involved in the epithelial hydration pathway provides an opportunity to develop strategies to reduce scarring and optimize wound healing.

  2. Stability of sorbents based on hydrated TiO2 with different content of ZrO2

    International Nuclear Information System (INIS)

    Malykh, T.G.; Sharygin, L.M.

    1983-01-01

    The effect of ZrO 2 content in hydrated titanium dioxide on i s hydrothermat stabitity in the 120-350 deg C range, is investigated. It is shown that the specific surface of hydrated titanium dioxide in the process of hydrothermal treatment at different temperatures changes within a number of stages and depends on the zirconium dioxide contents in it. Sorbents are stable under hydrothermal conditions at temperatures not exceeding 300 deg C. The stabilizing effect of zirconiUm dioxide on the properties of hydrated titanium dioxide is most pronounced at 350 deg C

  3. The influence of Na2O on the hydration of C3A II. Suspension hydration

    NARCIS (Netherlands)

    Spierings, G.A.C.M.; Stein, H.N.

    1976-01-01

    The influence of Na2O on the hydration of C3A was studied in suspensions from the start of the reaction onwards. The heat evolution rate in very early stages of the hydration, measured at varying NaOH concentrations, and SEM, indicate that at NaOH concentrations larger then 0.1 M the reaction

  4. Distinguishing between hydrated, partially hydrated or unhydrated clinker in hardened concrete using microscopy

    NARCIS (Netherlands)

    Valcke, S.L.A.; Rooij, M.R. de; Visser, J.H.M.; Nijland, T.G.

    2010-01-01

    Hydration of clinker particles is since long a topic of interest in both designing and optimizing cement composition and its quantity used in concrete. The interest for carefully observing and also quantifying the type or stage of clinker hydration in hardened cement paste is twofold. Firstly, the

  5. Methane hydrate dissociation using inverted five-spot water flooding method in cubic hydrate simulator

    International Nuclear Information System (INIS)

    Li, Gang; Li, Xiao-Sen; Li, Bo; Wang, Yi

    2014-01-01

    The combination forms of the hydrate dissociation methods in different well systems are divided into 6 main patterns. Dissociation processes of methane hydrate in porous media using the inverted five-spot water flooding method (Pattern 4) are investigated by the experimental observation and numerical simulation. In situ methane hydrate is synthesized in the Cubic Hydrate Simulator (CHS), a 5.832-L cubic reactor. A center vertical well is used as the hot water injection well, while the four vertical wells at the corner are the gas and water production wells. The gas production begins simultaneously with the hot water injection, while after approximately 20 min of compression, the water begins to be produced. One of the common characteristics of the inverted five-spot water flooding method is that both the gas and water production rates decrease with the reduction of the hydrate dissociation rate. The evaluation of the energy efficiency ratio might indicate the inverted five-spot water flooding as a promising gas producing method from the hydrate reservoir. - Highlights: • A three-dimensional 5.8-L cubic pressure vessel is developed. • Gas production of hydrate using inverted five-spot flooding method is studied. • Water/gas production rate and energy efficiency ratio are evaluated. • Temperature distributions of numerical simulation and experiment agree well. • Hydrate dissociation process is a moving boundary problem in this study

  6. Controls on Gas Hydrate Formation and Dissociation

    Energy Technology Data Exchange (ETDEWEB)

    Miriam Kastner; Ian MacDonald

    2006-03-03

    The main objectives of the project were to monitor, characterize, and quantify in situ the rates of formation and dissociation of methane hydrates at and near the seafloor in the northern Gulf of Mexico, with a focus on the Bush Hill seafloor hydrate mound; to record the linkages between physical and chemical parameters of the deposits over the course of one year, by emphasizing the response of the hydrate mound to temperature and chemical perturbations; and to document the seafloor and water column environmental impacts of hydrate formation and dissociation. For these, monitoring the dynamics of gas hydrate formation and dissociation was required. The objectives were achieved by an integrated field and laboratory scientific study, particularly by monitoring in situ formation and dissociation of the outcropping gas hydrate mound and of the associated gas-rich sediments. In addition to monitoring with the MOSQUITOs, fluid flow rates and temperature, continuously sampling in situ pore fluids for the chemistry, and imaging the hydrate mound, pore fluids from cores, peepers and gas hydrate samples from the mound were as well sampled and analyzed for chemical and isotopic compositions. In order to determine the impact of gas hydrate dissociation and/or methane venting across the seafloor on the ocean and atmosphere, the overlying seawater was sampled and thoroughly analyzed chemically and for methane C isotope ratios. At Bush hill the pore fluid chemistry varies significantly over short distances as well as within some of the specific sites monitored for 440 days, and gas venting is primarily focused. The pore fluid chemistry in the tub-warm and mussel shell fields clearly documented active gas hydrate and authigenic carbonate formation during the monitoring period. The advecting fluid is depleted in sulfate, Ca Mg, and Sr and is rich in methane; at the main vent sites the fluid is methane supersaturated, thus bubble plumes form. The subsurface hydrology exhibits both

  7. Neutron emission during lithium deuteride hydration in heavy water

    International Nuclear Information System (INIS)

    Arzhannikov, A.V.; Kezerashvili, G.Ya.; Muratov, V.V.; Sinitskij, S.L.

    1989-01-01

    An experiment on neutron detection during lithium deuteride hydration in heavy water using a system of SNM-17 or SNM-18 gas counters was set up. Signals were simultaneously detected by 6 counters and the data were stored in a computer. At the same time the temperature of the reaction ampule external surface was measured. It was found that the neutron number per 1 gram of lithium deuteride reacted with water in the ampule was equal to several dozens if their initial energy was about 2.5 MeV. 4 refs.; 2 figs

  8. Monitoring production target thickness

    International Nuclear Information System (INIS)

    Oothoudt, M.A.

    1993-01-01

    Pion and muon production targets at the Clinton P. Anderson Meson Physics Facility consist of rotating graphite wheels. The previous target thickness monitoring Procedure scanned the target across a reduced intensity beam to determine beam center. The fractional loss in current across the centered target gave a measure of target thickness. This procedure, however, required interruption of beam delivery to experiments and frequently indicated a different fractional loss than at normal beam currents. The new monitoring Procedure compares integrated ups and downs toroid current monitor readings. The current monitors are read once per minute and the integral of readings are logged once per eight-hour shift. Changes in the upstream to downstream fractional difference provide a nonintrusive continuous measurement of target thickness under nominal operational conditions. Target scans are now done only when new targets are installed or when unexplained changes in the current monitor data are observed

  9. Hydrates on tap: scientists say natural gas hydrates may be tough nut to crack

    Energy Technology Data Exchange (ETDEWEB)

    Mahoney, J.

    2001-12-01

    Gas hydrates are methane molecules trapped in cages of water molecules, yielding a substance with a slushy, sherbet-like consistency. Drilling for hydrates is similar to conventional oil and gas drilling, however, the secret to economic production still remains hidden. Hydrates exist in abundance in such places as deep ocean floor and below ground in some polar regions. The real challenge lies in producing gas from this resource, inasmuch as there is no existing technology for production of gas specifically from methane hydrates. This paper describes an international research program, involving a five-country partnership to spud the first of three wells into the permafrost of the Mackenzie River Delta in the Northwest Territories. The project, worth about $15 million, has brought together public funding and expertise from Japan, Germany, India as well as the Canadian and US Geological Surveys and the US Dept. of Energy in an effort to gain information on the production response of gas hydrates. The operator of the project is Japan Petroleum Exploration Company of Canada, a subsidiary of Japan National Oil Corporation. Since Japan is poor in domestic hydrocarbon resources, but is surrounded by deep water that contains potential for gas hydrates, Japan has a great deal riding on the success of this project. Germany and the United States are also very much interested. Current thinking is that gas is in contact with the hydrates and that it should be possible to develop a free gas reservoir as if it were a conventional deposit. As the free gas is drawn off, the pressure is reduced on the hydrates in contact with it , the hydrates dissociate from the gas and replenish the conventional reservoir. So far this is still only a theory, but it appears to be a sensible approach to hydrate production. 1 photo.

  10. Experimental Determination of Refractive Index of Gas Hydrates

    DEFF Research Database (Denmark)

    Bylov, Martin; Rasmussen, Peter

    1997-01-01

    . For methane hydrate (structure I) the refractive index was found to be 1.346 and for natural gas hydrate (structure II) it was found to be 1.350. The measurements further suggest that the gas hydrate growth rate increases if the water has formed hydrates before. The induction time, on the other hand, seems......The refractive indexes of methane hydrate and natural gas hydrate have been experimentally determined. The refractive indexes were determined in an indirect manner making use of the fact that two non-absorbing materials will have the same refractive index if they cannot be distinguished visually...

  11. Development of hydrate risk quantification in oil and gas production

    Science.gov (United States)

    Chaudhari, Piyush N.

    Subsea flowlines that transport hydrocarbons from wellhead to the processing facility face issues from solid deposits such as hydrates, waxes, asphaltenes, etc. The solid deposits not only affect the production but also pose a safety concern; thus, flow assurance is significantly important in designing and operating subsea oil and gas production. In most subsea oil and gas operations, gas hydrates form at high pressure and low temperature conditions, causing the risk of plugging flowlines, with a undesirable impact on production. Over the years, the oil and gas industry has shifted their perspective from hydrate avoidance to hydrate management given several parameters such as production facility, production chemistry, economic and environmental concerns. Thus, understanding the level of hydrate risk associated with subsea flowlines is an important in developing efficient hydrate management techniques. In the past, hydrate formation models were developed for various flow-systems (e.g., oil dominated, water dominated, and gas dominated) present in the oil and gas production. The objective of this research is to extend the application of the present hydrate prediction models for assessing the hydrate risk associated with subsea flowlines that are prone to hydrate formation. It involves a novel approach for developing quantitative hydrate risk models based on the conceptual models built from the qualitative knowledge obtained from experimental studies. A comprehensive hydrate risk model, that ranks the hydrate risk associated with the subsea production system as a function of time, hydrates, and several other parameters, which account for inertial, viscous, interfacial forces acting on the flow-system, is developed for oil dominated and condensate systems. The hydrate plugging risk for water dominated systems is successfully modeled using The Colorado School of Mines Hydrate Flow Assurance Tool (CSMHyFAST). It is found that CSMHyFAST can be used as a screening tool in

  12. Experimental investigation of methane release from hydrate formation in sandstone through both hydrate dissociation and CO{sub 2} sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Husebo, J.; Graue, A.; Kvamme, B. [Bergen Univ., Bergen (Norway). Dept. of Physics and Technology; Stevens, J.; Howard, J.J. [ConocoPhillips, Ponca City, OK (United States); Baldwin, B.A. [Green Country Petrophysics LLC, Dewey, OK (United States)

    2008-07-01

    Large amounts of natural gas trapped in hydrate reservoirs are found in Arctic regions and in deep offshore locations around the world. Natural gas production from hydrate deposits offer significant potential for future energy needs. However, research is needed in order to propose potential production schemes for natural gas hydrates. Natural gas molecules can be freed from hydrate structured cages by depressurization, by heating and by exposing the hydrate to a substance that will form a thermodynamically more stable hydrate structure. This paper provided a comparison of two approaches for releasing methane from methane hydrate in porous sandstone. The study scope covered the dissociation rate of methane hydrate in porous media through depressurization, and also referred to previous work done on producing methane from hydrates in sandstone while sequestering carbon dioxide (CO{sub 2}). The study was conducted in a laboratory setting. The paper discussed the experimental design which included the placing of a pressure- and temperature-controlled sample holder inside the bore of a magnetic resonance imager. The experimental procedures were then outlined, with reference to hydrate formation; carbon dioxide sequestration; hydrate dissociation experiments with constant volume; and hydrate dissociation experiments at constant pressure. The constant volume experiments demonstrated that in order to dissociate a large amount of hydrate, the initial depressurization had to be significantly lower than the hydrate stability pressure. 9 refs., 9 figs.

  13. Strength Estimation for Hydrate-Bearing Sediments From Direct Shear Tests of Hydrate-Bearing Sand and Silt

    Science.gov (United States)

    Liu, Zhichao; Dai, Sheng; Ning, Fulong; Peng, Li; Wei, Houzhen; Wei, Changfu

    2018-01-01

    Safe and economic methane gas production, as well as the replacement of methane while sequestering carbon in natural hydrate deposits, requires enhanced geomechanical understanding of the strength and volume responses of hydrate-bearing sediments during shear. This study employs a custom-made apparatus to investigate the mechanical and volumetric behaviors of carbon dioxide hydrate-bearing sediments subjected to direct shear. The results show that both peak and residual strengths increase with increased hydrate saturation and vertical stress. Hydrate contributes mainly the cohesion and dilatancy constraint to the peak strength of hydrate-bearing sediments. The postpeak strength reduction is more evident and brittle in specimens with higher hydrate saturation and under lower stress. Significant strength reduction after shear failure is expected in silty sediments with high hydrate saturation Sh ≥ 0.65. Hydrate contribution to the residual strength is mainly by increasing cohesion at low hydrate saturation and friction at high hydrate saturation. Stress state and hydrate saturation are dominating both the stiffness and the strength of hydrate-bearing sediments; thus, a wave velocity-based peak strength prediction model is proposed and validated, which allows for precise estimation of the shear strength of hydrate-bearing sediments through acoustic logging data. This method is advantageous to geomechanical simulators, particularly when the experimental strength data of natural samples are not available.

  14. Hydraulic and Mechanical Effects from Gas Hydrate Conversion and Secondary Gas Hydrate Formation during Injection of CO2 into CH4-Hydrate-Bearing Sediments

    Science.gov (United States)

    Bigalke, N.; Deusner, C.; Kossel, E.; Schicks, J. M.; Spangenberg, E.; Priegnitz, M.; Heeschen, K. U.; Abendroth, S.; Thaler, J.; Haeckel, M.

    2014-12-01

    The injection of CO2 into CH4-hydrate-bearing sediments has the potential to drive natural gas production and simultaneously sequester CO2 by hydrate conversion. The process aims at maintaining the in situ hydrate saturation and structure and causing limited impact on soil hydraulic properties and geomechanical stability. However, to increase hydrate conversion yields and rates it must potentially be assisted by thermal stimulation or depressurization. Further, secondary formation of CO2-rich hydrates from pore water and injected CO2 enhances hydrate conversion and CH4 production yields [1]. Technical stimulation and secondary hydrate formation add significant complexity to the bulk conversion process resulting in spatial and temporal effects on hydraulic and geomechanical properties that cannot be predicted by current reservoir simulation codes. In a combined experimental and numerical approach, it is our objective to elucidate both hydraulic and mechanical effects of CO2 injection and CH4-CO2-hydrate conversion in CH4-hydrate bearing soils. For the experimental approach we used various high-pressure flow-through systems equipped with different online and in situ monitoring tools (e.g. Raman microscopy, MRI and ERT). One particular focus was the design of triaxial cell experimental systems, which enable us to study sample behavior even during large deformations and particle flow. We present results from various flow-through high-pressure experimental studies on different scales, which indicate that hydraulic and geomechanical properties of hydrate-bearing sediments are drastically altered during and after injection of CO2. We discuss the results in light of the competing processes of hydrate dissociation, hydrate conversion and secondary hydrate formation. Our results will also contribute to the understanding of effects of temperature and pressure changes leading to dissociation of gas hydrates in ocean and permafrost systems. [1] Deusner C, Bigalke N, Kossel E

  15. A rigorous mechanistic model for predicting gas hydrate formation kinetics: The case of CO2 recovery and sequestration

    International Nuclear Information System (INIS)

    ZareNezhad, Bahman; Mottahedin, Mona

    2012-01-01

    Highlights: ► A mechanistic model for predicting gas hydrate formation kinetics is presented. ► A secondary nucleation rate model is proposed for the first time. ► Crystal–crystal collisions and crystal–impeller collisions are distinguished. ► Simultaneous determination of nucleation and growth kinetics are established. ► Important for design of gas hydrate based energy storage and CO 2 recovery systems. - Abstract: A rigorous mechanistic model for predicting gas hydrate formation crystallization kinetics is presented and the special case of CO 2 gas hydrate formation regarding CO 2 recovery and sequestration processes has been investigated by using the proposed model. A physical model for prediction of secondary nucleation rate is proposed for the first time and the formation rates of secondary nuclei by crystal–crystal collisions and crystal–impeller collisions are formulated. The objective functions for simultaneous determination of nucleation and growth kinetics are presented and a theoretical framework for predicting the dynamic behavior of gas hydrate formation is presented. Predicted time variations of CO 2 content, total number and surface area of produced hydrate crystals are in good agreement with the available experimental data. The proposed approach can have considerable application for design of gas hydrate converters regarding energy storage and CO 2 recovery processes.

  16. First-principles elasticity of monocarboaluminate hydrates

    KAUST Repository

    Moon, J.

    2014-07-01

    The elasticity of monocarboaluminate hydrates, 3CaO·Al2O3·CaCO3·xH2O (x = 11 or 8), has been investigated by first-principles calculations. Previous experimental study revealed that the fully hydrated monocarboaluminate (x = 11) exhibits exceptionally low compressibility compared to other reported calcium aluminate hydrates. This stiff hydration product can contribute to the strength of concrete made with Portland cements containing calcium carbonates. In this study, full elastic tensors and mechanical properties of the crystal structures with different water contents (x = 11 or 8) are computed by first-principles methods based on density functional theory. The results indicate that the compressibility of monocarboaluminate is highly dependent on the water content in the interlayer region. The structure also becomes more isotropic with the addition of water molecules in this region. Since the monocarboaluminate is a key hydration product of limestone added cement, elasticity of the crystal is important to understand its mechanical impact on concrete. Besides, it is put forth that this theoretical calculation will be useful in predicting the elastic properties of other complex cementitous materials and the influence of ion exchange on compressibility.

  17. Effect of overpressure on gas hydrate distribution

    Energy Technology Data Exchange (ETDEWEB)

    Bhatnagar, G.; Chapman, W.G.; Hirasaki, G.J. [Rice Univ., Houston, TX (United States). Dept. of Chemical and Biomolecular Engineering; Dickens, G.R.; Dugan, B. [Rice Univ., Houston, TX (United States). Dept. of Earth Sciences

    2008-07-01

    Natural gas hydrate systems can be characterized by high sedimentation rates and/or low permeability sediments, which can lead to pore pressure higher than hydrostatic. This paper discussed a study that examined this effect of overpressure on gas hydrate and free gas distribution in marine sediments. A one-dimensional numerical model that coupled sedimentation, fluid flow, and gas hydrate formation was utilized. In order to quantify the relative importance of sedimentation rates and low permeability sediments, a dimensionless sedimentation-compaction group (scN) was defined, that compared the absolute permeability of the sediments to the sedimentation rate. Higher values of scN mean higher permeability or low sedimentation rate which generally yield hydrostatic pore pressure while lower values of scN normally create pore pressure greater than hydrostatic. The paper discussed non-hydrostatic consolidation in gas hydrate systems, including mass balances; constitutive relationships; normalized variables; and dimensionless groups. A numerical solution to the problem was presented. It was concluded that simulation results demonstrated that decreasing scN not only increased pore pressure above hydrostatic values, but also lowered the lithostatic stress gradient and gas hydrate saturation. This occurred because overpressure resulted in lower effective stress, causing higher porosity and lower bulk density of the sediment. 16 refs., 5 figs., 1 appendix.

  18. First-principles elasticity of monocarboaluminate hydrates

    KAUST Repository

    Moon, J.; Yoon, S.; Wentzcovitch, R. M.; Monteiro, P. J. M.

    2014-01-01

    The elasticity of monocarboaluminate hydrates, 3CaO·Al2O3·CaCO3·xH2O (x = 11 or 8), has been investigated by first-principles calculations. Previous experimental study revealed that the fully hydrated monocarboaluminate (x = 11) exhibits exceptionally low compressibility compared to other reported calcium aluminate hydrates. This stiff hydration product can contribute to the strength of concrete made with Portland cements containing calcium carbonates. In this study, full elastic tensors and mechanical properties of the crystal structures with different water contents (x = 11 or 8) are computed by first-principles methods based on density functional theory. The results indicate that the compressibility of monocarboaluminate is highly dependent on the water content in the interlayer region. The structure also becomes more isotropic with the addition of water molecules in this region. Since the monocarboaluminate is a key hydration product of limestone added cement, elasticity of the crystal is important to understand its mechanical impact on concrete. Besides, it is put forth that this theoretical calculation will be useful in predicting the elastic properties of other complex cementitous materials and the influence of ion exchange on compressibility.

  19. Methane hydrates in quaternary climate change

    International Nuclear Information System (INIS)

    Kennett, J. P.; Hill, T. M.; Behl, R. J.

    2005-01-01

    The hydrate reservoir in marine sediments is known to contain a large volume of exchangeable carbon stored as solid methane hydrate and associated free gas. This reservoir has been shown to be potentially unstable in response to changing intermediate water temperature and sea level (pressure). Evidence continues to grow for past episodes of major methane release at times of climatic warming. Yet few studies of late Quaternary climate change include methane hydrates as an integral part of the global climate system, in spite of the largest known oscillations at this time in sea level and upper ocean temperature changes for the Cenozoic or earlier, conditions that favor instability of the methane hydrate reservoir. Abrupt increases in atmospheric methane recorded in polar ice cores are widely believed to have resulted, not from ocean-floor methane degassing, but instead from continental wetland activation, a hypothesis thus far unsupported by geological data. Furthermore, as part of this Wetland Methane Hypothesis, the abrupt methane increases have been seen as a response to climatic warming rather than contributing significantly to the change. An alternative view (formulated as the Clathrate Gun Hypothesis) is that the speed, magnitude and timing of abrupt climate change in the recent geologic past are consistent with the process of major degassing of methane hydrates. We summarize aspects of this hypothesis here and needs to test this hypothesis. (Author)

  20. Blue LED irradiation to hydration of skin

    Science.gov (United States)

    Menezes, Priscila F. C.; Requena, Michelle B.; Lizarelli, Rosane F., Z.; Bagnato, Vanderlei S.

    2015-06-01

    Blue LED system irradiation shows many important properties on skin as: bacterial decontamination, degradation of endogenous skin chromophores and biostimulation. In this clinical study we prove that the blue light improves the skin hydration. In the literature none authors reports this biological property on skin. Then this study aims to discuss the role of blue light in the skin hydration. Twenty patients were selected to this study with age between 25-35 years old and phototype I, II and III. A defined area from forearm was pre determined (A = 4.0 cm2). The study was randomized in two treatment groups using one blue light device (power of 5.3mW and irradiance of 10.8mW/cm2). The first treatment group was irradiated with 3J/cm2 (277seconds) and the second with 6J/cm2 (555 seconds). The skin hydration evaluations were done using a corneometer. The measurements were collected in 7, 14, 21 and 30 days, during the treatment. Statistical test of ANOVA, Tukey and T-Student were applied considering 5% of significance. In conclusion, both doses were able to improve the skin hydration; however, 6J/cm2 has kept this hydration for 30 days.

  1. Thickness filters for gradient based multi-material and thickness optimization of laminated composite structures

    DEFF Research Database (Denmark)

    Sørensen, Rene; Lund, Erik

    2015-01-01

    This paper presents a new gradient based method for performing discrete material and thickness optimization of laminated composite structures. The novelty in the new method lies in the application of so-called casting constraints, or thickness filters in this context, to control the thickness...... variation throughout the laminate. The filters replace the layerwise density variables with a single continuous through-the-thickness design variable. Consequently, the filters eliminate the need for having explicit constraints for preventing intermediate void through the thickness of the laminate....... Therefore, the filters reduce both the number of constraints and design variables in the optimization problem. Based upon a continuous approximation of a unit step function, the thickness filters are capable of projecting discrete 0/1 values to the underlying layerwise or ”physical” density variables which...

  2. Distribution of the dominant microbial communities in marine sediments containing high concentrations of gas hydrates

    Energy Technology Data Exchange (ETDEWEB)

    Briggs, B.; Colwell, F.; Carini, P.; Torres, M. [Oregon State Univ., Corvallis, OR (United States); Hangsterfer, A.; Kastner, M. [California Univ., San Diego, CA (United States). Scripps Inst. of Oceanography; Brodie, E. [Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Center for Environmental Biotechnology; Daly, R. [California Univ., Berkeley, CA (United States); Holland, M. [GeoTek, Daventry, Northants (United Kingdom); Long, P.; Schaef, H. [Pacific Northwest National Laboratory, Richland, WA (United States). Environmental Technology; Delwiche, M. [Idaho National Laboratory, Idaho Falls, ID (United States). Biotechnology; Winters, W. [United States Geological Survey, Woods Hole, MA (United States). Woods Hole Science Center; Riedel, M. [McGill Univ., Montreal, PQ (Canada). Dept. of Earth and Planetary Sciences

    2008-07-01

    Methane produced by microorganisms represents a large portion of the methane that occurs in marine sediments where gas hydrates are present. The diverse communities that populate these formations have been documented by cultures or through molecular traces. Previous studies have explored the biogeography of hydrate-bearing systems by comparing clone libraries developed from sediments where hydrates are abundant with those developed from sediments that lack hydrates. There is a distinct microbial community present in sediments that have methane hydrates. This paper presented an investigation into finer-scale biogeography, in order to determine how factors such as the presence or absence of hydrates, grain size, and the depositional environment in marine sediments may control the number, type and distribution of microbial communities in sediments. The purpose of the study was to understand the controls on the distribution and activity of all microbes that contribute to the conversion of organic matter to methane. To this aim, DNA was extracted from deep marine sediments cored from continental slope locations including offshore India and the Cascadia Margin. The data from the study was used to refine computational models that require biological rate terms that are consistent with sediment conditions in order to accurately describe the dynamics of this large methane reservoir. The paper discussed the materials and methods used for the study, including the sample site, sample collection and microbiological analysis. Results were presented in terms of DNA extractions; microbial diversity; and biofilm analyses. It was concluded that the findings from the study complemented previously reported studies which indicated the presence of diverse microbial communities in sediments containing methane hydrates. 9 refs., 5 figs.

  3. Coating thickness measurement

    International Nuclear Information System (INIS)

    1976-12-01

    The standard specifies measurements of the coating thickness, which make use of beta backscattering and/or x-ray fluorescence. For commonly used combinations of coating material and base material the appropriate measuring ranges and radionuclides to be used are given for continuous as well as for discontinuous measurements

  4. Effects of Nanosilica on Early Age Stages of Cement Hydration

    Directory of Open Access Journals (Sweden)

    Forood Torabian Isfahani

    2017-01-01

    Full Text Available Effects of nanosilica on cement hydration have been broadly investigated in the literature and early age cement hydration, as a whole, has been mainly considered, disregarding the substages of the hydration. The hydration of cement is characterized by different substages and nanosilica effect on the hydration could be a result of diverse, even contradictory, behavior of nanosilica in individual stages of the hydration. In this study, effects of nanosilica on different substages of cement hydration are investigated. Isothermal calorimetry results show that at early ages (initial 72 hours the effects of nanosilica depend on the phenomenon by which the hydration is governed: when the hydration is chemically controlled, that is, during initial reaction, dormant period, and acceleratory period, the hydration rate is accelerated by adding nanosilica; when the hydration is governed by diffusion process, that is, during postacceleratory period, the hydration rate is decelerated by adding nanosilica. The Thermal Gravimetric Analysis on the samples at the hardened state (after 28 days of curing reveals that, after adding nanosilica, the hydration degree slightly increased compared to the plain paste.

  5. Morphology studies on gas hydrates interacting with silica gel

    Energy Technology Data Exchange (ETDEWEB)

    Beltran, J.; Servio, P. [McGill Univ., Montreal, PQ (Canada). Dept. of Chemical Engineering

    2008-07-01

    Clathrate hydrates or gas hydrates are non-stoichiometric, crystalline compounds that form when small molecules come in contact with water at certain temperatures and pressures. Natural gas hydrates are found in the ocean bottom and in permafrost regions. It is thought that the amount of energy stored in natural hydrates is at least twice that of all other fossil fuels combined. In addition, trapping carbon dioxide as a hydrate in the bottom of the ocean has been suggested as an alternative means of reducing atmospheric carbon dioxide levels. Naturally occurring clathrates are found in close interaction with fine grained particles of very small mean pore diameters. Even though an increasing amount of hydrate equilibrium data for small diameter porous media has become available, the morphological behavior of hydrates subject to such conditions is yet to be explored. This paper presented a study that visually examined hydrate formation and decomposition of gas hydrates while interacting with fine grains of silica gel. The study showed still frames from high-resolution video recordings for hydrate formation and decomposition. The paper discussed the experiment including the apparatus as well as the results of hydrate formation and hydrate dissociation. This study enabled for the first time to observe clathrate morphology while hydrates interacted closely with fine grain particles with small mean pore diameters. 9 refs., 8 figs.

  6. Hydration Status in US Military Officer Students.

    Science.gov (United States)

    Rogers, Reva; Cole, Renee

    2016-01-01

    Relocation from a cool to a hot climate is a frequent occurrence in military service. Acclimatization requires time and exposure to heat. Nonacclimatized individuals frequently consume inadequate fluid leading to hypohydration, which can quickly result in dehydration with increased risk of heat illness/injury. This descriptive cross-sectional study assessed the hydration status of 196 officers attending the US Army Medical Department's Officer Basic Course (67%) or Captain's Career Course (33%) in San Antonio, Texas, prior to taking the Army Physical Fitness Test (APFT). Consenting Soldiers provided a first morning void urine sample and demographic survey (age, rank, sex, previous geographic location, etc) prior to the APFT. Height, weight, and APFT event scores were collected from a subject-coded, APFT scorecard without personal information data. Binary logistic regression was performed to identify variables that contribute to predicting hypohydration status. The sample population was 54% male, a mean age of 30 years, 5.2 years of military service, and a mean body mass index of 25 kg/m². Nearly one-third met the criteria for hypohydration (≥1.02 urine specific gravity). Soldiers who relocated from a cool environment within 9 days of taking the APFT had 2.1 higher odds of being hypohydrated compared with individuals who had resided in a hot environment for more than 9 days. Women had a 0.5 lower odds of being hypohydrated as compared to males. Significantly more Soldiers were hypohydrated on Monday compared to those tested on Tuesday (33% vs 16%, P=.004). Given these findings, the authors provided 5 recommendations to reduce the number of Soldiers exercising in a hypohydrated state.

  7. Methane hydrates in nature - Current knowledge and challenges

    Science.gov (United States)

    Collett, Timothy S.

    2014-01-01

    Recognizing the importance of methane hydrate research and the need for a coordinated effort, the United States Congress enacted the Methane Hydrate Research and Development Act of 2000. At the same time, the Ministry of International Trade and Industry in Japan launched a research program to develop plans for a methane hydrate exploratory drilling project in the Nankai Trough. India, China, the Republic of Korea, and other nations also have established large methane hydrate research and development programs. Government-funded scientific research drilling expeditions and production test studies have provided a wealth of information on the occurrence of methane hydrates in nature. Numerous studies have shown that the amount of gas stored as methane hydrates in the world may exceed the volume of known organic carbon sources. However, methane hydrates represent both a scientific and technical challenge, and much remains to be learned about their characteristics and occurrence in nature. Methane hydrate research in recent years has mostly focused on: (1) documenting the geologic parameters that control the occurrence and stability of methane hydrates in nature, (2) assessing the volume of natural gas stored within various methane hydrate accumulations, (3) analyzing the production response and characteristics of methane hydrates, (4) identifying and predicting natural and induced environmental and climate impacts of natural methane hydrates, (5) analyzing the methane hydrate role as a geohazard, (6) establishing the means to detect and characterize methane hydrate accumulations using geologic and geophysical data, and (7) establishing the thermodynamic phase equilibrium properties of methane hydrates as a function of temperature, pressure, and gas composition. The U.S. Department of Energy (DOE) and the Consortium for Ocean Leadership (COL) combined their efforts in 2012 to assess the contributions that scientific drilling has made and could continue to make to advance

  8. Fuel cell membrane hydration and fluid metering

    Science.gov (United States)

    Jones, Daniel O.; Walsh, Michael M.

    1999-01-01

    A hydration system includes fuel cell fluid flow plate(s) and injection port(s). Each plate has flow channel(s) with respective inlet(s) for receiving respective portion(s) of a given stream of reactant fluid for a fuel cell. Each injection port injects a portion of liquid water directly into its respective flow channel in order to mix its respective portion of liquid water with the corresponding portion of the stream. This serves to hydrate at least corresponding part(s) of a given membrane of the corresponding fuel cell(s). The hydration system may be augmented by a metering system including flow regulator(s). Each flow regulator meters an injecting at inlet(s) of each plate of respective portions of liquid into respective portion(s) of a given stream of fluid by corresponding injection port(s).

  9. Hydration dynamics of hyaluronan and dextran.

    Science.gov (United States)

    Hunger, Johannes; Bernecker, Anja; Bakker, Huib J; Bonn, Mischa; Richter, Ralf P

    2012-07-03

    Hyaluronan is a polysaccharide, which is ubiquitous in vertebrates and has been reported to be strongly hydrated in a biological environment. We study the hydration of hyaluronan in solution using the rotational dynamics of water as a probe. We measure these dynamics with polarization-resolved femtosecond-infrared and terahertz time-domain spectroscopies. Both experiments reveal that a subensemble of water molecules is slowed down in aqueous solutions of hyaluronan amounting to ∼15 water molecules per disaccharide unit. This quantity is consistent with what would be expected for the first hydration shell. Comparison of these results to the water dynamics in aqueous dextran solution, a structurally similar polysaccharide, yields remarkably similar results. This suggests that the observed interaction with water is a common feature for hydrophilic polysaccharides and is not specific to hyaluronan. Copyright © 2012 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  10. Multicavity SCRF calculation of ion hydration energies

    International Nuclear Information System (INIS)

    Diercksen, B.H.F.; Karelson, M.; Tamm, T.

    1994-01-01

    The hydration energies of the proton, hydroxyl ion, and several inorganic ions were calculated using the multicavity self-consistent reaction field (MCa SCRF) method developed for the quantum-mechanical modeling of rotationally or flexible systems in dielectric media. The ionic complexes H 3 O + (H2O) 4 , OH - (H2O) 4 , NH + 4 (H2O) 4 , and Hal - (H2O) 4 , where Hal = F, Cl, or Br, have been studied. Each complex was divided between five spheres, corresponding to the central ion and four water molecules in their first coordination sphere, respectively. Each cavity was surrounded by a polarizable medium with the dielectric permittivity of water at room temperature (80). The ionic hydration energies of ions were divided into specific and nonspecific parts. After accounting for the cavity-formation energy using scaled particle theory, good agreement between the total calculated and experimental hydration energies was obtained for all ions studied

  11. Thermal expansion properties of calcium aluminate hydrates

    International Nuclear Information System (INIS)

    Song, Tae Woong

    1986-01-01

    In order to eliminate the effect of impurities and aggregates on the thermomechanical properties of the various calcium aluminate hydrates, and to prepare clinkers in which all calcium aluminates are mixed homogeneously, chemically pure CaO and Al 2 O 3 were weighed, blended and heated in various conditions. After quantitative X-ray diffractometry(QXRD), the synthesized clinker was hydrated and cured under the conditions of 30 deg C, W/C=0.5, relative humidity> 90% respectively during 24 hours. And then differential thermal analysis(DTA), thermogravimetry(TG), micro calorimetry, thermomechanical analysis(TMA) and scanning electron microanalysis(SEM) were applied to examine the thermal properties of samples containing, calcium aluminate hydrates in various quantity. (Author)

  12. THz characterization of hydrated and anhydrous materials

    Science.gov (United States)

    Sokolnikov, Andre

    2011-06-01

    The characterization of anhydrous and hydrated forms of materials is of great importance to science and industry. Water content poses difficulties for successful identification of the material structure by THz radiation. However, biological tissues and hydrated forms of nonorganic substances still may be investigated by THz radiation. This paper outlines the range of possibilities of the above characterization, as well as provides analysis of the physical mechanism that allows or prevents penetration of THz waves through the substance. THz-TDS is used to measure the parameters of the characterization of anhydrous and hydrated forms of organic and nonorganic samples. Mathematical methods (such as prediction models of time-series analysis) are used to help identifying the absorption coefficient and other parameters of interest. The discovered dependencies allow designing techniques for material identification/characterization (e.g. of drugs, explosives, etc. that may have water content). The results are provided.

  13. Relaxation mechanism of the hydrated electron.

    Science.gov (United States)

    Elkins, Madeline H; Williams, Holly L; Shreve, Alexander T; Neumark, Daniel M

    2013-12-20

    The relaxation dynamics of the photoexcited hydrated electron have been subject to conflicting interpretations. Here, we report time-resolved photoelectron spectra of hydrated electrons in a liquid microjet with the aim of clarifying ambiguities from previous experiments. A sequence of three ultrashort laser pulses (~100 femtosecond duration) successively created hydrated electrons by charge-transfer-to-solvent excitation of dissolved anions, electronically excited these electrons via the s→p transition, and then ejected them into vacuum. Two distinct transient signals were observed. One was assigned to the initially excited p-state with a lifetime of ~75 femtoseconds, and the other, with a lifetime of ~400 femtoseconds, was attributed to s-state electrons just after internal conversion in a nonequilibrated solvent environment. These assignments support the nonadiabatic relaxation model.

  14. The thickness of the interplanetary collisionless shock waves

    International Nuclear Information System (INIS)

    Pinter, S.

    1980-05-01

    The thicknesses of magnetic structures of the interplanetary shock waves related to the upstream solar wind plasma parameters are studied. From this study the following results have been obtained: the measured shock thickness increases for decreasing upstream proton number density and decreases for increasing proton flux energy. The shock thickness strongly depends on the ion plasma β, i.e. for higher values of the β the thickness decreases. (author)

  15. Calcium silicate-based sealers: Assessment of physicochemical properties, porosity and hydration.

    Science.gov (United States)

    Marciano, Marina Angélica; Duarte, Marco Antonio Hungaro; Camilleri, Josette

    2016-02-01

    Investigation of hydration, chemical, physical properties and porosity of experimental calcium silicate-based sealers. Experimental calcium silicate-based sealers with calcium tungstate and zirconium oxide radio-opacifiers were prepared by mixing 1g of powder to 0.3 mL of 80% distilled water and 20% propylene glycol. MTA and MTA Fillapex were used as controls. The raw materials and set sealers were characterized using a combination of scanning electron microscopy, energy dispersive spectroscopy and X-ray diffraction. Physical properties were analyzed according to ANSI/ADA. The pH and calcium ion release were assessed after 3, 24, 72 and 168 h. The porosity was assessed using mercury intrusion porosimetry. The analysis of hydration of prototype sealers revealed calcium hydroxide as a by-product resulting in alkaline pH and detection of calcium ion release, with high values in initial periods. The radiopacity was similar to MTA for the sealers containing high amounts of radio-opacifiers (p>0.05). Flowability was higher and film thickness was lower for resinous MTA Fillapex sealer (p0.05). The prototype sealers presented adequate hydration, elevated pH and calcium ion release. Regarding physical properties, elevated proportions of radio-opacifiers were necessary to accomplish adequate radiopacity, enhance flowability and reduce film thickness. All the tested sealers presented water sorption and porosity similar to MTA. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  16. In vivo confirmation of hydration based contrast mechanisms for terahertz medical imaging using MRI

    Science.gov (United States)

    Bajwa, Neha; Sung, Shijun; Garritano, James; Nowroozi, Bryan; Tewari, Priyamvada; Ennis, Daniel B.; Alger, Jeffery; Grundfest, Warren; Taylor, Zachary

    2014-09-01

    Terahertz (THz) detection has been proposed and applied to a variety of medical imaging applications in view of its unrivaled hydration profiling capabilities. Variations in tissue dielectric function have been demonstrated at THz frequencies to generate high contrast imagery of tissue, however, the source of image contrast remains to be verified using a modality with a comparable sensing scheme. To investigate the primary contrast mechanism, a pilot comparison study was performed in a burn wound rat model, widely known to create detectable gradients in tissue hydration through both injured and surrounding tissue. Parallel T2 weighted multi slice multi echo (T2w MSME) 7T Magnetic Resonance (MR) scans and THz surface reflectance maps were acquired of a full thickness skin burn in a rat model over a 5 hour time period. A comparison of uninjured and injured regions in the full thickness burn demonstrates a 3-fold increase in average T2 relaxation times and a 15% increase in average THz reflectivity, respectively. These results support the sensitivity and specificity of MRI for measuring in vivo burn tissue water content and the use of this modality to verify and understand the hydration sensing capabilities of THz imaging for acute assessments of the onset and evolution of diseases that affect the skin. A starting point for more sophisticated in vivo studies, this preliminary analysis may be used in the future to explore how and to what extent the release of unbound water affects imaging contrast in THz burn sensing.

  17. Hydration structure of Ti(III) and Cr(III): Monte Carlo simulation ...

    African Journals Online (AJOL)

    Classical Monte Carlo simulations were performed to investigate the solvation structures of Ti(III) and Cr(III) ions in water with only ion-water pair interaction potential and by including three-body correction terms. The hydration structures were evaluated in terms of radial distribution functions, coordination numbers and ...

  18. STEREOCHEMICAL ASPECTS OF HYDRATION OF CARBOHYDRATES IN AQUEOUS-SOLUTIONS .3. DENSITY AND ULTRASOUND MEASUREMENTS

    NARCIS (Netherlands)

    GALEMA, SA; HOILAND, H

    1991-01-01

    Density and ultrasound measurements have been performed in aqueous solutions of pentoses, hexoses, methylpyranosides, and disaccharides as a function of molality of carbohydrate (0-0.3 mol kg-1). Partial molar volumes, partial molar isentropic compressibilities, and hydration numbers have been

  19. Chemical alteration of cement hydrates by dissolution

    International Nuclear Information System (INIS)

    Sugiyama, Daisuke; Fujita, Tomonari; Nakanishi, Kiyoshi

    2000-01-01

    Cementitious material is a potential waste packaging and backfilling material for the radioactive waste disposal, and is expected to provide both physical and chemical containment. In particular, the sorption of radionuclides onto cementitious material and the ability to provide a high pH condition are very important parameters when considering the release of radionuclides from radioactive wastes. For the long term, in the geological disposal environment, cement hydrates will be altered by, for example, dissolution, chemical reaction with ions in the groundwater, and hydrothermal reaction. Once the composition or crystallinity of the constituent minerals of a cement hydrate is changed by these processes, the pH of the repository buffered by cementitious material and its sorption ability might be affected. However, the mechanism of cement alteration is not yet fully understood. In this study, leaching experiments of some candidate cements for radioactive waste disposal were carried out. Hydrated Ordinary Portland Cement (OPC), Blast Furnace Slag blended cement (OPC/BFS) and Highly containing Flyash and Silicafume Cement (HFSC) samples were contacted with distilled water at liquid:solid ratios of 10:1, 100:1 and 1000:1 at room temperature for 200 days. In the case of OPC, Ca(OH) 2 dissolved at high liquid:solid ratios. The specific surface area of all cement samples increased by leaching process. This might be caused by further hydration and change of composition of constituent minerals. A model is presented which predicts the leaching of cement hydrates and the mineral composition in the hydrated cement solid phase, including the incongruent dissolution of CSH gel phases and congruent dissolution of Ca(OH) 2 , Ettringite and Hydrotalcite. Experimental results of dissolution of Ca-O-H and Ca-Si-O-H phases were well predicted by this model. (author)

  20. Ground movements associated with gas hydrate production

    International Nuclear Information System (INIS)

    Siriwardane, H.J.; Kutuk, B.

    1992-03-01

    This report deals with a study directed towards a modeling effort on production related ground movements and subsidence resulting from hydrate dissociation. The goal of this research study was to evaluate whether there could be subsidence related problems that could be an impediment to hydrate production. During the production of gas from a hydrate reservoir, it is expected that porous reservoir matrix becomes more compressible which may cause reservoir compression (compaction) under the influence of overburden weight. The overburden deformations can propagate its influence upwards causing subsidence near the surface where production equipment will be located. In the present study, the reservoir compaction is modeled by using the conventional ''stress equilibrium'' approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ''cavity'' generated by reservoir depletion. The present study is expected to provide a ''lower bound'' solution to the subsidence caused by hydrate reservoir depletion. The reservoir compaction anticipated during hydrate production was modeled by using the finite element method, which is a powerful computer modeling technique. The ground movements at the reservoir roof (i.e. reservoir compression) cause additional stresses and disturbance in the overburden strata. In this study, the reservoir compaction was modeled by using the conventional ''stress equilibrium'' approach. In this approach, the overburden strata move under the influence of body force (i.e. self weight) in response to the ''cavity'' generated by reservoir depletion. The resulting stresses and ground movements were computed by using the finite element method. Based on the parameters used in this investigation, the maximum ground subsidence could vary anywhere from 0.50 to 6.50 inches depending on the overburden depth and the size of the depleted hydrate reservoir

  1. Irrigation port hydration in phacoemulsification surgery

    Directory of Open Access Journals (Sweden)

    Suzuki H

    2018-01-01

    Full Text Available Hisaharu Suzuki,1 Yoichiro Masuda,2 Yuki Hamajima,1 Hiroshi Takahashi3 1Department of Ophthalmology, Nippon Medical School Musashikosugi Hospital, Kawasaki City, Kanagawa, 2Department of Ophthalmology, The Jikei University, Katsushika Medical Center, Tokyo, 3Department of Ophthalmology, Nippon Medical School, Tokyo, Japan Background: In most cases, hydration is performed by water injection into the stromal tissue with a needle. The technique is simple, however it is sometimes troublesome.Purpose: We describe a simple technique for hydrating the corneal stroma in cataract surgery using an irrigation port.Patients and methods: The technique began by pushing the irrigation port against the corneal stroma for a few seconds during phacoemulsification, which generated edema in the corneal incision that subsequently prevented leakage. This procedure is called the hydration using irrigation port (HYUIP technique. A total of 60 eyes were randomized and placed in two groups, 30 eyes underwent surgeries using the HYUIP technique (HYUIP group and 30 eyes underwent surgeries without the HYUIP technique (control. The three points evaluated during each surgery included 1 the occurrence of anterior chamber collapse during the pulling out of the I/A tip after inserting the intraocular lens, 2 the need for conventional hydration, and 3 watertight completion at the end stage of surgery.Results: The anterior chamber collapse and the need for conventional hydration were significantly smaller in the HYUIP group compared to the control group. Regarding the self-sealing completion, no significant difference was observed between the two groups.Conclusion: The HYUIP technique is an effective method for creating self-sealing wound. In addition, this technique helps to prevent anterior chamber collapse. Keywords: cataract surgery, hydration, irrigation and aspiration, phacoemulsification, wound, self-sealing 

  2. Hydration and nutrition knowledge in adolescent swimmers. Does water intake affect urine hydration markers after swimming?

    Directory of Open Access Journals (Sweden)

    Cesare Altavilla

    2017-12-01

    Full Text Available Little data exists regarding nutritional knowledge and hydration in adolescent swimmers. The aim of this study was to assess the level of nutrition and hydration knowledge and to describe the fluid balance in adolescent swimmers during training. A study was carried out with a cross-sectional descriptive part and a longitudinal part with repeated measurements over five swimming sessions. Eighty-six adolescent swimmers completed a questionnaire to assess their sport nutrition and hydration knowledge. Fluid balance and urine hydration markers were studied during training. Swimmers showed a limited nutrition knowledge (33.26 % ± SD 12.59 and meagre hydration knowledge (28.61 % ± SD 28.59. Females showed lower scores than male swimmers in nutrition and hydration knowledge. Based on urine specific gravity, swimmers started the training close to the euhydrated threshold (1.019 g/mL ± SD 0.008. Although urine specific gravity and urine colour were reduced after the training, there were minimal changes in body mass (-0.12 Kg ± SD 0.31. Sweat loss (2.67 g/min ± SD 3.23 and the net changes in the fluid balance (-0.22 % ± SD 0.59 were low. The poor knowledge in nutrition and hydration encountered in the swimmers can justify the development of a strategy to incorporate nutritional education programmes for this group. Body water deficit from swimming activity seems to be easily replaced with the water intake to maintain hydration. After the training, the urine of swimmers was diluted regardless of their water intake. Dilution of urine did not reflect real hydration state in swimming.

  3. Influence of polymeric excipient properties on crystal hydrate formation kinetics of caffeine in aqueous slurries.

    Science.gov (United States)

    Gift, Alan D; Southard, Leslie A; Riesberg, Amanda L

    2012-05-01

    The influence of polymeric excipients on the hydrate transformation of caffeine (CAF) was studied. Anhydrous CAF was added to aqueous solutions containing different additives and the transformation to the hydrate form was monitored using in-line Raman spectroscopy. Various properties of two known inhibitors of CAF hydrate formation, polyacrylic acid (PAA) and polyvinyl alcohol (PVA), were investigated. For inhibition by PAA, a pH dependence was observed: at low pH, the inhibition was greatest, whereas no inhibitory effects were observed at pH above 6.5. For PVA, grades with high percent hydrolysis were the most effective at inhibiting the transformation. In addition, PVA with higher molecular weight showed slightly more inhibition than the shorter chain PVA polymers. A variety of other hydroxyl containing compounds were examined but none inhibited the CAF anhydrate-to-hydrate transformation. The observed inhibitory effects of PAA and PVA are attributed to the large number of closely spaced hydrogen bond donating groups of the polymer molecule, which can interact with the CAF hydrate crystal. Copyright © 2012 Wiley Periodicals, Inc.

  4. Accurate description of phase diagram of clathrate hydrates on molecular level

    Energy Technology Data Exchange (ETDEWEB)

    Belosludov, V.; Subbotin, O. [Niklaev Inst. of Inorganic Chemistry, Novosibirsk (Russian Federation). Siberian Branch of Russian Academy of Science; Belosludov, R.; Mizuseki, H.; Kawazoe, Y. [Tohoku Univ., Aoba-ku, Sendai (Japan). Inst. for Materials Research

    2008-07-01

    A number of experimental and theoretical studies of hydrogen hydrates have been conducted using different methods. In order to accurately estimate the thermodynamic properties of clathrate hydrates that multiply filling the cages, this paper presented a method based on the solid solution theory of van der Waals and Platteeuw with several modifications, including multiple occupancies, host relaxation, and the description of the quantum nature of hydrogen behavior in the cavities. The validity of the proposed approach was verified for argon, methane, and xenon hydrates. The results were in agreement with known experimental data. The model was then used to calculate the curves of monovariant three-phase equilibrium gas-hydrate-ice and the degree of filling of the large and small cavities for pure hydrogen and mixed hydrogen/propane hydrates in a wide range of pressure and at low temperatures. The paper presented the theory, including equations, monovariant equilibria, and computational details. It was concluded that the proposed model accounted for the influence of guest molecules on the host lattice and guest-guest interaction. The model could be used with other inclusion compounds with the same type of composition such as clathrate silicon, zeolites, and inclusion compounds of semiconductor elements. The calculated curves of monovariant equilibrium agree with the experiment. 33 refs., 1 tab., 9 figs.

  5. Hydration sites of unpaired RNA bases: a statistical analysis of the PDB structures

    Directory of Open Access Journals (Sweden)

    Carugo Oliviero

    2011-10-01

    Full Text Available Abstract Background Hydration is crucial for RNA structure and function. X-ray crystallography is the most commonly used method to determine RNA structures and hydration and, therefore, statistical surveys are based on crystallographic results, the number of which is quickly increasing. Results A statistical analysis of the water molecule distribution in high-resolution X-ray structures of unpaired RNA nucleotides showed that: different bases have the same penchant to be surrounded by water molecules; clusters of water molecules indicate possible hydration sites, which, in some cases, match those of the major and minor grooves of RNA and DNA double helices; complex hydrogen bond networks characterize the solvation of the nucleotides, resulting in a significant rigidity of the base and its surrounding water molecules. Interestingly, the hydration sites around unpaired RNA bases do not match, in general, the positions that are occupied by the second nucleotide when the base-pair is formed. Conclusions The hydration sites around unpaired RNA bases were found. They do not replicate the atom positions of complementary bases in the Watson-Crick pairs.

  6. Molecular dynamics study of methane hydrate formation at a water/methane interface.

    Science.gov (United States)

    Zhang, Junfang; Hawtin, R W; Yang, Ye; Nakagava, Edson; Rivero, M; Choi, S K; Rodger, P M

    2008-08-28

    We present molecular dynamics simulation results of a liquid water/methane interface, with and without an oligomer of poly(methylaminoethylmethacrylate), PMAEMA. PMAEMA is an active component of a commercial low dosage hydrate inhibitor (LDHI). Simulations were performed in the constant NPT ensemble at temperatures of 220, 235, 240, 245, and 250 K and a pressure of 300 bar. The simulations show the onset of methane hydrate growth within 30 ns for temperatures below 245 K in the methane/water systems; at 240 K there is an induction period of ca. 20 ns, but at lower temperatures growth commences immediately. The simulations were analyzed to calculate hydrate content, the propensity for hydrogen bond formation, and how these were affected by both temperature and the presence of the LDHI. As expected, both the hydrogen bond number and hydrate content decreased with increasing temperature, though little difference was observed between the lowest two temperatures considered. In the presence of PMAEMA, the temperature below which sustained hydrate growth occurred was observed to decrease. Some of the implications for the role of PMAEMA in LDHIs are discussed.

  7. Thermal decomposition of uranyl sulphate hydrate

    International Nuclear Information System (INIS)

    Sato, T.; Ozawa, F.; Ikoma, S.

    1980-01-01

    The thermal decomposition of uranyl sulphate hydrate (UO 2 SO 4 .3H 2 O) has been investigated by thermogravimetry, differential thermal analysis, X-ray diffraction and infrared spectrophotometry. As a result, it is concluded that uranyl sulphate hydrate decomposes thermally: UO 2 SO 4 .3H 2 O → UO 2 SO 4 .xH 2 O(2.5 = 2 SO 4 . 2H 2 O → UO 2 SO 4 .H 2 O → UO 2 SO 4 → α-UO 2 SO 4 → β-UO 2 SO 4 → U 3 O 8 . (author)

  8. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.; Chae, S. R.; Benmore, C. J.; Wenk, H. R.; Monteiro, P. J. M.

    2010-01-01

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  9. Nanostructure of Calcium Silicate Hydrates in Cements

    KAUST Repository

    Skinner, L. B.

    2010-05-11

    Calcium silicate hydrate (CSH) is the major volume phase in the matrix of Portland cement concrete. Total x-ray scattering measurements with synchrotron x rays on synthetic CSH(I) shows nanocrystalline ordering with a particle diameter of 3.5(5) nm, similar to a size-broadened 1.1 nm tobermorite crystal structure. The CSH component in hydrated tricalcium silicate is found to be similar to CSH(I). Only a slight bend and additional disorder within the CaO sheets is required to explain its nanocrystalline structure. © 2010 The American Physical Society.

  10. Spectral Decomposition and Other Seismic Attributes for Gas Hydrate Prospecting

    Energy Technology Data Exchange (ETDEWEB)

    McConnell, Dan

    2018-02-25

    Studying the sediments at the base of gas hydrate stability is ideal for determining the seismic response to gas hydrate saturation. First, assuming gas migration to the shallow section, this area is more likely to have concentrated gas hydrate because it encompasses the zone in which upward moving buoyant gas transitions to form immobile gas hydrate deposits. Second, this zone is interesting because these areas have the potential to show a hydrate filled zone and a gas filled zone within the same sediments. Third, the fundamental measurement within seismic data is impedance contrasts between velocity*density layers. High saturation gas hydrates and free gas inhabit opposite ends of these measurements making the study of this zone ideal for investigating the seismic characteristics of gas hydrate and, hence, the investigation of other seismic attributes that may indicate gas hydrate fill.

  11. Coating thickness measuring device

    International Nuclear Information System (INIS)

    Joffe, B.B.; Sawyer, B.E.; Spongr, J.J.

    1984-01-01

    A device especially adapted for measuring the thickness of coatings on small, complexly-shaped parts, such as, for example, electronic connectors, electronic contacts, or the like. The device includes a source of beta radiation and a radiation detector whereby backscatter of the radiation from the coated part can be detected and the thickness of the coating ascertained. The radiation source and detector are positioned in overlying relationship to the coated part and a microscope is provided to accurately position the device with respect to the part. Means are provided to control the rate of descent of the radiation source and radiation detector from its suspended position to its operating position and the resulting impact it makes with the coated part to thereby promote uniformity of readings from operator to operator, and also to avoid excessive impact with the part, thereby improving accuracy of measurement and eliminating damage to the parts

  12. Marine Gas Hydrates - An Untapped Non-conventional Energy ...

    Indian Academy of Sciences (India)

    Table of contents. Marine Gas Hydrates - An Untapped Non-conventional Energy Resource · Slide 2 · Slide 3 · Slide 4 · Gas Hydrate Stability Zone · Slide 6 · Slide 7 · Exploration of gas hydrates (seismic) · Characteristics of BSR · Slide 10 · Slide 11 · Slide 12 · Slide 13 · Slide 14 · Slide 15 · Distribution of Gas Hydrates in KG ...

  13. Thick melanoma in Tuscany.

    Science.gov (United States)

    Chiarugi, Alessandra; Nardini, Paolo; Borgognoni, Lorenzo; Brandani, Paola; Gerlini, Gianni; Rubegni, Pietro; Lamberti, Arianna; Salvini, Camilla; Lo Scocco, Giovanni; Cecchi, Roberto; Sirna, Riccardo; Lorenzi, Stefano; Gattai, Riccardo; Battistini, Silvio; Crocetti, Emanuele

    2017-03-14

    The epidemiologic trends of cutaneous melanoma are similar in several countries with a Western-type life style, where there is a progressive increasing incidence and a low but not decreasing mor- tality, or somewhere an increase too, especially in the older age groups. Also in Tuscany there is a steady rise in incidence with prevalence of in situ and invasive thin melanomas, with also an increase of thick melanomas. It is necessary to reduce the frequency of thick melanomas to reduce specific mortality. The objective of the current survey has been to compare, in the Tuscany population, by a case- case study, thin and thick melanoma cases, trying to find out those personal and tumour characteristics which may help to customize preventive interventions. RESULTS The results confirmed the age and the lower edu- cation level are associated with a later detection. The habit to perform skin self-examination is resulted protec- tive forward thick melanoma and also the diagnosis by a doctor. The elements emerging from the survey allow to hypothesize a group of subjects resulting at higher risk for a late diagnosis, aged over 50 and carrier of a fewer constitutional and environmental risk factors: few total and few atypical nevi, and lower sun exposure and burning. It is assumable that a part of people did not be reached from messages of prevention because does not recognize oneself in the categories of people at risk for skin cancers described in educational cam- paigns. If we want to obtain better results on diagnosis of skin melanoma we have to think a new strategy. At least to think over the educational messages discriminating people more at risk of incidence of melanoma from people more at risk to die from melanoma, and to renewed active involvement of the Gen- eral Practitioners .

  14. Thick brane solutions

    International Nuclear Information System (INIS)

    Dzhunushaliev, Vladimir; Minamitsuji, Masato; Folomeev, Vladimir

    2010-01-01

    This paper gives a comprehensive review on thick brane solutions and related topics. Such models have attracted much attention from many aspects since the birth of the brane world scenario. In many works, it has been usually assumed that a brane is an infinitely thin object; however, in more general situations, one can no longer assume this. It is also widely considered that more fundamental theories such as string theory would have a minimal length scale. Many multidimensional field theories coupled to gravitation have exact solutions of gravitating topological defects, which can represent our brane world. The inclusion of brane thickness can realize a variety of possible brane world models. Given our understanding, the known solutions can be classified into topologically non-trivial solutions and trivial ones. The former class contains solutions of a single scalar (domain walls), multi-scalar, gauge-Higgs (vortices), Weyl gravity and so on. As an example of the latter class, we consider solutions of two interacting scalar fields. Approaches to obtain cosmological equations in the thick brane world are reviewed. Solutions with spatially extended branes (S-branes) and those with an extra time-like direction are also discussed.

  15. Hydrate bearing clayey sediments: Formation and gas production concepts

    KAUST Repository

    Jang, Jaewon; Santamarina, Carlos

    2016-01-01

    Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2single bondCH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.

  16. Standardization and software infrastructure for gas hydrate data communications

    Energy Technology Data Exchange (ETDEWEB)

    Kroenlein, K.; Chirico, R.D.; Kazakov, A.; Frenkel, M. [National Inst. of Standards and Technology, Boulder, CO (United States). Physical and Chemical Properties Div.; Lowner, R. [GeoForschungsZentrum Potsdam (Germany); Wang, W. [Chinese Academy of Science, Beijing (China). Computer Network Information Center; Smith, T. [MIT Systems, Flushing, NY (United States); Sloan, E.D. [Colorado School of Mines, Golden, CO (United States). Centre for Hydrate Research

    2008-07-01

    The perceived value of gas hydrates as an energy resource for the future has led to extensive hydrate research studies and experiments. The hydrate deposits are widely dispersed throughout the world, and many countries are now investigating methods of extracting gas hydrate resources. This paper described a gas hydrates markup language (GHML) developed as an international standard for data transfer and storage within the gas hydrates community. The language is related to a hydrates database developed to facilitate a greater understanding of naturally occurring hydrate interactions with geophysical processes, and aid in the development of hydrate technologies for resource recovery and storage. Recent updates to the GHML included the addition of ThermoML, a communication standard for thermodynamic data into the GHML schema. The standard will be used to represent all gas hydrates thermodynamic data. A new element for the description of crystal structures has also been developed, as well as a guided data capture tool. The tool is available free of charge and is publicly licensed for use by gas hydrate data producers. A web service has also been provided to ensure that access to GHML files for gas hydrates and data files are available for users. It was concluded that the tool will help to ensure data quality assurance for the conversion of data and meta-data within the database. 28 refs., 9 figs.

  17. Small angle X-ray scattering from hydrating tricalcium silicate

    International Nuclear Information System (INIS)

    Vollet, D.

    1983-01-01

    The small-angle X-ray scattering technique was used to study the structural evolution of hydrated tricalcium silicate at room temperature. The changes in specific area of the associated porosity and the evolution of density fluctuations in the solid hydrated phase were deduced from the scattering data. A correlation of these variations with the hydration mechanism is tried. (Author) [pt

  18. Hydrate bearing clayey sediments: Formation and gas production concepts

    KAUST Repository

    Jang, Jaewon

    2016-06-20

    Hydro-thermo-chemo and mechanically coupled processes determine hydrate morphology and control gas production from hydrate-bearing sediments. Force balance, together with mass and energy conservation analyses anchored in published data provide robust asymptotic solutions that reflect governing processes in hydrate systems. Results demonstrate that hydrate segregation in clayey sediments results in a two-material system whereby hydrate lenses are surrounded by hydrate-free water-saturated clay. Hydrate saturation can reach ≈2% by concentrating the excess dissolved gas in the pore water and ≈20% from metabolizable carbon. Higher hydrate saturations are often found in natural sediments and imply methane transport by advection or diffusion processes. Hydrate dissociation is a strongly endothermic event; the available latent heat in a reservoir can sustain significant hydrate dissociation without triggering ice formation during depressurization. The volume of hydrate expands 2-to-4 times upon dissociation or CO2single bondCH4 replacement. Volume expansion can be controlled to maintain lenses open and to create new open mode discontinuities that favor gas recovery. Pore size is the most critical sediment parameter for hydrate formation and gas recovery and is controlled by the smallest grains in a sediment. Therefore any characterization must carefully consider the amount of fines and their associated mineralogy.

  19. Echocardiographic impact of hydration status in dialysis patients.

    Science.gov (United States)

    Juan-García, Isabel; Puchades, María J; Sanjuán, Rafael; Torregrosa, Isidro; Solís, Miguel Á; González, Miguel; Blasco, Marisa; Martínez, Antonio; Miguel, Alfonso

    2012-01-01

    Cardiovascular disease is the main cause of death in Chronic Kidney Disease patients. Left ventricular hypertrophy is the most common manifestation and it is linked to arterial hypertension and overhydration. The goal of this paper is to stratify dialyzed patients according to hydration status and to make an evaluation about the possible echocardiography alterations of the different groups. A transversal study was carried out with 117 patients: 65 were on hemodialysis and 52 on peritoneal dialysis. We performed the following tests: multifrequency bioimpedance with the BCM-Body Composition Freesenius’ Monitor system, transthoracic echocardiography, and blood tests. If ECW/TBW (extracellular water vs total body water) normalization ratio for age and gender was > 2.5% SD, the patient was considered overhydrated. HD patients are significantly overhydrated before HD (67.1%) compared to DP patients (46.1%), and almost half of the overhydrated population presents arterial hypertension. However, after an HD session, a better control of the hydration status is reached (26.1%). DP patients frequently present high arterial pressure and/or are under antihypertensive treatment (DP 76.9% vs HD 49.2%). Left ventricular hypertrophy is much more common in HD overhydrated patients, eccentric LVH being more prevalent. Overhydrated patients present significantly high values of LAVI, ILVM, OH/ECW. Bioimpedance technique allows for the detection of a large number of overhydrated patients. Echocardiographic alterations in dialyzed patients show a high correlation between the hydration stage by ECW/TBW normalized ratio for age and gender and the LAVI and ILVM.

  20. Experimental investigation of smectite hydration from the simulation of 001 X-ray diffraction lines. Implications for the characterization of mineralogical modifications of the 'argilite' from the Meuse - Haute Marne site as a result of a thermal perturbation; Etude experimentale de l'hydratation des smectites par simulation des raies OOl de diffraction des rayons X. Implications pour l'etude d'une perturbation thermique sur la mineralogie de l'argilite du site Meuse-Haute Marne

    Energy Technology Data Exchange (ETDEWEB)

    Ferrage, E

    2004-10-15

    The structural modifications affecting the reactive mineral constituents of the clay barriers (smectite) and possibly resulting from the thermal pulse related to nuclear waste storage are essentially limited to the amount and location of the layer charge deficit. These modifications likely impact the hydration properties of these minerals, and a specific methodology has thus been developed to describe, using simulation of X-ray diffraction profiles (001 reflections), these hydration properties and specifically the heterogeneity resulting from the inter-stratification of different layer types, each exhibiting a specific hydration state. The detailed study of the hydration properties of a low-charge montmorillonite (octahedral charge) has shown that the affinity of the interlayer cation for water rules the hydration state and the thickness of hydrated smectite layers. If the layer charge is increased, the transition between the different hydration states is shifted, following a water desorption isotherm, towards lower relative humidities. In addition, the hydration of studied beidellites (tetrahedral charge) was shown to be more heterogeneous than that of montmorillonites. The developed methodology also allowed describing the structural modifications resulting from a chemical perturbation (chlorinated anionic background, pH). Finally, the link between the thickness of elementary layers and the amount of interlayer water molecules has been evidenced. A new structure model has also been determined for these interlayer species allowing an improved description of their positional distribution in bi-hydrated interlayers. (author)

  1. Extreme Morphologic and Venting Changes in Methane Seeps at Southern Hydrate Ridge, Cascadia Margin

    Science.gov (United States)

    Bigham, K.; Kelley, D. S.; Solomon, E. A.; Delaney, J. R.

    2017-12-01

    Two highly active methane hydrate seeps have been visited over a 7-year period as part of the construction and operation of NSF's Ocean Observatory Initiative's Regional Cable Array at Southern Hydrate Ridge. The site is located 90 km west of Newport, Oregon, at a water depth of 800 m. The seeps, Einstein's Grotto (OOI instrument deployment site) and Smokey Tavern (alternate site to the north), have been visited yearly from 2010 to 2017 with ROVs. Additionally, a digital still camera deployed from 2014 to 2017 at Einstein's Grotto, has been documenting the profound morphologic and biological changes at this site. A cabled pressure sensor, Acoustic Doppler Current Profiler, hydrophone, seismometer array, and uncabled fluid samplers have also been operational at the site for the duration of the camera's deployment. During this time, Einstein's Grotto has evolved from a gentle mound with little venting, to a vigorously bubbling pit bounded by a near vertical wall. Early on bubble emissions blew significant amounts of sediment into the water column and thick Beggiatoa mats coverd the mound. Most recently the face of the pit has collapsed, although bubble plumes are still emitted from the site. The Smokey Tavern site has undergone more extreme changes. Similar to Einstein's Grotto it was first characterized by gentle hummocks with dispersed bacterial mats. In subsequent years, it developed an extremely rugged, elongated collapsed area with vertical walls and jets of methane bubbles rising from small pits near the base of the collapse zone. Meter-across nearly sediment-free blocks of methane hydrate were exposed on the surface and in the walls of the collapse zone. In 2016, this area was unrecognizable with a much more subdued topography, and weak venting of bubbles. Exposed methane hydrate was not visible. From these observations new evolutionary models for methane seeps are being developed for Southern Hydrate Ridge.

  2. Thermodynamics of hydration of MX80-Na. What are the best approaches for evaluating the thermodynamic properties of hydration?

    International Nuclear Information System (INIS)

    Vieillard, P.; Lassin, A.; Blanc, P.; Gailhanou, H.; Gaboreau, S.; Gaucher, E.C.; Denoyel, R.; Bloch, E.; Fialips, C.; Giffaut, E.

    2012-01-01

    Document available in extended abstract form only. In the context of a waste disposal within clayey formations (Callovian-Oxfordian argillite) or using clayey barriers, the prediction of the long-term behavior requires the thermodynamic properties of clay minerals. It has been shown by Gailhanou et al. (submitted) that hydration reactions may have some dramatic consequences on the thermodynamic properties of clay minerals. Different theoretical models exist for extracting thermodynamic properties from water adsorption/desorption isotherms. The present work aims at investigating and comparing these methods, because they can provide very different results based on the assumptions of each models. First, three types of models are compared: 1) the Hill (1949) model based on heat of adsorption combined with adsorption isotherm, 2) the Jura and Hill (1951) model, based on the Clausius-Clapeyron relation, and 3) the BET theory. Both have been designed in order to describe surface sorption phenomena. For instance, they suppose that the number of sorption sites is constant during all the vapor sorption process (and at any relative humidity, P/P 0 ). The hydration reaction approach can also be used. Compared to the three previous models, it is not structurally constrained, except for mass balance considerations on the H 2 O component. It had been especially developed by Tardy and Touret, (1985) and modified into a solid solution model, first by Ransom and Helgeson, (1994). It relies simply on the reaction: Clay(dehydrated) + nH 2 O = Clay(hydrated).nH 2 O. The different families of models have been compared to experimental measurements performed on a sodic smectite MX80. The set of experiments includes a series of three adsorption/desorption isotherms obtained at 25, 45 and 60 C and a heat of adsorption combined with a adsorption isotherm obtained at 25 C. The heat of adsorption was derived from the 3 adsorption/desorption isotherms by using the different models. Then

  3. Obsidian Hydration Dating in the Undergraduate Curriculum.

    Science.gov (United States)

    Manche, Emanuel P.; Lakatos, Stephen

    1986-01-01

    Provides an overview of obsidian hydration dating for the instructor by presenting: (1) principles of the method; (2) procedures; (3) applications; and (4) limitations. The theory of the method and one or more laboratory exercises can be easily introduced into the undergraduate geology curriculum. (JN)

  4. Gas hydrate resource quantification in Uruguay

    International Nuclear Information System (INIS)

    Tomasini, J.; De Santa Ana, H.; Veroslavsky, G.

    2012-01-01

    The gas hydrates are crystalline solids formed by natural gas (mostly methane) and water, which are stable in thermobaric conditions given under high pressures and low temperatures. These conditions are given in permafrost zones and continental margin basins offshore in the nature

  5. Pentagonal dodecahedron methane hydrate cage and methanol ...

    Indian Academy of Sciences (India)

    methane hydrate in sea bed near continental margin and underneath of permafrost ... clathrate structure,6,7 IR spectroscopy analysis of vibra- tional form of guest .... Hydrogen (H71) of the hydroxyl group of methanol is found to have formed ...

  6. A new approach to model mixed hydrates

    Czech Academy of Sciences Publication Activity Database

    Hielscher, S.; Vinš, Václav; Jäger, A.; Hrubý, Jan; Breitkopf, C.; Span, R.

    2018-01-01

    Roč. 459, March (2018), s. 170-185 ISSN 0378-3812 R&D Projects: GA ČR(CZ) GA17-08218S Institutional support: RVO:61388998 Keywords : gas hydrate * mixture * modeling Subject RIV: BJ - Thermodynamics Impact factor: 2.473, year: 2016 https://www.sciencedirect.com/science/article/pii/S0378381217304983

  7. [Terminal phase hydration, pain and delirium

    DEFF Research Database (Denmark)

    Heick, A.

    2009-01-01

    Hydration of the terminal patient may relieve confusion and complaints of "dry mouth". But it may worsen oedema of the brain, lungs, and extremities, worsen terminal rattling and cause a need for frequent changing of diapers. The decision of whether and how to treat a dying patient with fluids...

  8. Hydration dynamics near a model protein surface

    International Nuclear Information System (INIS)

    Russo, Daniela; Hura, Greg; Head-Gordon, Teresa

    2003-01-01

    The evolution of water dynamics from dilute to very high concentration solutions of a prototypical hydrophobic amino acid with its polar backbone, N-acetyl-leucine-methylamide (NALMA), is studied by quasi-elastic neutron scattering and molecular dynamics simulation for both the completely deuterated and completely hydrogenated leucine monomer. We observe several unexpected features in the dynamics of these biological solutions under ambient conditions. The NALMA dynamics shows evidence of de Gennes narrowing, an indication of coherent long timescale structural relaxation dynamics. The translational water dynamics are analyzed in a first approximation with a jump diffusion model. At the highest solute concentrations, the hydration water dynamics is significantly suppressed and characterized by a long residential time and a slow diffusion coefficient. The analysis of the more dilute concentration solutions takes into account the results of the 2.0M solution as a model of the first hydration shell. Subtracting the first hydration layer based on the 2.0M spectra, the translational diffusion dynamics is still suppressed, although the rotational relaxation time and residential time are converged to bulk-water values. Molecular dynamics analysis shows spatially heterogeneous dynamics at high concentration that becomes homogeneous at more dilute concentrations. We discuss the hydration dynamics results of this model protein system in the context of glassy systems, protein function, and protein-protein interfaces

  9. A positron annihilation study of hydrated DNA

    DEFF Research Database (Denmark)

    Warman, J. M.; Eldrup, Morten Mostgaard

    1986-01-01

    Positron annihilation measurements are reported for hydrated DNA as a function of water content and as a function of temperature (20 to -180.degree. C) for samples containing 10 and 50% wt of water. The ortho-positronium mean lifetime and its intensity show distinct variations with the degree...

  10. Gold(III)-Catalyzed Hydration of Phenylacetylene

    Science.gov (United States)

    Leslie, J. Michelle; Tzeel, Benjamin A.

    2016-01-01

    A guided inquiry-based experiment exploring the regioselectivity of the hydration of phenylacetylene is described. The experiment uses an acidic gold(III) catalyst in a benign methanol/water solvent system to introduce students to alkyne chemistry and key principles of green chemistry. The experiment can be easily completed in approximately 2 h,…

  11. [Terminal phase hydration, pain and delirium

    DEFF Research Database (Denmark)

    Heick, A.

    2009-01-01

    Hydration of the terminal patient may relieve confusion and complaints of "dry mouth". But it may worsen oedema of the brain, lungs, and extremities, worsen terminal rattling and cause a need for frequent changing of diapers. The decision of whether and how to treat a dying patient with fluids sh...

  12. Alkali binding in hydrated Portland cement paste

    NARCIS (Netherlands)

    Chen, Wei; Brouwers, Jos

    2010-01-01

    The alkali-binding capacity of C–S–H in hydrated Portland cement pastes is addressed in this study. The amount of bound alkalis in C–S–H is computed based on the alkali partition theories firstly proposed by Taylor (1987) and later further developed by Brouwers and Van Eijk (2003). Experimental data

  13. Mechanical Properties of Additively Manufactured Thick Honeycombs

    Directory of Open Access Journals (Sweden)

    Reza Hedayati

    2016-07-01

    Full Text Available Honeycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding the mechanical behavior of more complex 3D tessellated structures such as porous biomaterials. In this paper, we study the mechanical behavior of thick honeycombs made using additive manufacturing techniques that allow for fabrication of honeycombs with arbitrary and precisely controlled thickness. Thick honeycombs with different wall thicknesses were produced from polylactic acid (PLA using fused deposition modelling, i.e., an additive manufacturing technique. The samples were mechanically tested in-plane under compression to determine their mechanical properties. We also obtained exact analytical solutions for the stiffness matrix of thick hexagonal honeycombs using both Euler-Bernoulli and Timoshenko beam theories. The stiffness matrix was then used to derive analytical relationships that describe the elastic modulus, yield stress, and Poisson’s ratio of thick honeycombs. Finite element models were also built for computational analysis of the mechanical behavior of thick honeycombs under compression. The mechanical properties obtained using our analytical relationships were compared with experimental observations and computational results as well as with analytical solutions available in the literature. It was found that the analytical solutions presented here are in good agreement with experimental and computational results even for very thick honeycombs, whereas the analytical solutions available in the literature show a large deviation from experimental observation, computational results, and our analytical solutions.

  14. Simulating the gas hydrate production test at Mallik using the pilot scale pressure reservoir LARS

    Science.gov (United States)

    Heeschen, Katja; Spangenberg, Erik; Schicks, Judith M.; Priegnitz, Mike; Giese, Ronny; Luzi-Helbing, Manja

    2014-05-01

    LARS, the LArge Reservoir Simulator, allows for one of the few pilot scale simulations of gas hydrate formation and dissociation under controlled conditions with a high resolution sensor network to enable the detection of spatial variations. It was designed and built within the German project SUGAR (submarine gas hydrate reservoirs) for sediment samples with a diameter of 0.45 m and a length of 1.3 m. During the project, LARS already served for a number of experiments simulating the production of gas from hydrate-bearing sediments using thermal stimulation and/or depressurization. The latest test simulated the methane production test from gas hydrate-bearing sediments at the Mallik test site, Canada, in 2008 (Uddin et al., 2011). Thus, the starting conditions of 11.5 MPa and 11°C and environmental parameters were set to fit the Mallik test site. The experimental gas hydrate saturation of 90% of the total pore volume (70 l) was slightly higher than volumes found in gas hydrate-bearing formations in the field (70 - 80%). However, the resulting permeability of a few millidarcy was comparable. The depressurization driven gas production at Mallik was conducted in three steps at 7.0 MPa - 5.0 MPa - 4.2 MPa all of which were used in the laboratory experiments. In the lab the pressure was controlled using a back pressure regulator while the confining pressure was stable. All but one of the 12 temperature sensors showed a rapid decrease in temperature throughout the sediment sample, which accompanied the pressure changes as a result of gas hydrate dissociation. During step 1 and 2 they continued up to the point where gas hydrate stability was regained. The pressure decreases and gas hydrate dissociation led to highly variable two phase fluid flow throughout the duration of the simulated production test. The flow rates were measured continuously (gas) and discontinuously (liquid), respectively. Next to being discussed here, both rates were used to verify a model of gas

  15. Clathrate Hydrates for Thermal Energy Storage in Buildings: Overview of Proper Hydrate-Forming Compounds

    Directory of Open Access Journals (Sweden)

    Beatrice Castellani

    2014-09-01

    Full Text Available Increasing energy costs are at the origin of the great progress in the field of phase change materials (PCMs. The present work aims at studying the application of clathrate hydrates as PCMs in buildings. Clathrate hydrates are crystalline structures in which guest molecules are enclosed in the crystal lattice of water molecules. Clathrate hydrates can form also at ambient pressure and present a high latent heat, and for this reason, they are good candidates for being used as PCMs. The parameter that makes a PCM suitable to be used in buildings is, first of all, a melting temperature at about 25 °C. The paper provides an overview of groups of clathrate hydrates, whose physical and chemical characteristics could meet the requirements needed for their application in buildings. Simulations with a dynamic building simulation tool are carried out to evaluate the performance of clathrate hydrates in enhancing thermal comfort through the moderation of summer temperature swings and, therefore, in reducing energy consumption. Simulations suggest that clathrate hydrates have a potential in terms of improvement of indoor thermal comfort and a reduction of energy consumption for cooling. Cooling effects of 0.5 °C and reduced overheating hours of up to 1.1% are predicted.

  16. Direct measurement of methane hydrate composition along the hydrate equilibrium boundary

    Science.gov (United States)

    Circone, S.; Kirby, S.H.; Stern, L.A.

    2005-01-01

    The composition of methane hydrate, namely nW for CH 4??nWH2O, was directly measured along the hydrate equilibrium boundary under conditions of excess methane gas. Pressure and temperature conditions ranged from 1.9 to 9.7 MPa and 263 to 285 K. Within experimental error, there is no change in hydrate composition with increasing pressure along the equilibrium boundary, but nW may show a slight systematic decrease away from this boundary. A hydrate stoichiometry of n W = 5.81-6.10 H2O describes the entire range of measured values, with an average composition of CH4??5.99(??0.07) H2O along the equilibrium boundary. These results, consistent with previously measured values, are discussed with respect to the widely ranging values obtained by thermodynamic analysis. The relatively constant composition of methane hydrate over the geologically relevant pressure and temperature range investigated suggests that in situ methane hydrate compositions may be estimated with some confidence. ?? 2005 American Chemical Society.

  17. Thermodynamic of hydration of a Wyoming montmorillonite saturated with Ca, Mg, Na and K

    International Nuclear Information System (INIS)

    Vieillard, P.; Blanc, P.; Gailhanou, H.; Gaboreau, S.; Giffaut, E.

    2010-01-01

    Document available in extended abstract form only. In the context of a disposal within clayey formations (Callovo-Oxfordian argillite) or using clayey barriers, the assessment of the long-term behavior of clay materials by geochemical modeling, requires thermodynamic properties of clay minerals. The Thermochimie database has been created by ANDRA in 1996 in order to provide coherent thermodynamic data of many minerals of interests with regards to this context, such as clay minerals. However, the thermodynamic properties of clay minerals, which govern the stability of these minerals in solution are still poorly understood. Indeed, there is little experimental data available in the literature concerning the hydration of smectites. On the other hand, it is not possible to acquire all the experimental thermodynamic hydration properties of clay minerals involved in natural systems or likely to be in the implementation of a deep disposal. In this study, we propose a method to estimate the thermodynamic hydration properties of a clay mineral. By considering the following reaction: Smectite nm H 2 O Smectite (0 H 2 O) + nm H 2 O (l), the hydration of smectite is calculated from an equilibrium condition involving anhydrous and hydrous components in which nm is the maximal number of moles of water in the fully hydrated end-member. By using a solid-solution formalism, the variation of the hydration state of a smectite with temperature or [H 2 O] can be possible. Analysis of experimental data indicates that solid solutions of hydrous and anhydrous smectite components at 25 deg. C and 1 bar are not ideal but can be expressed in terms of regular solution theory by considering the excess molal enthalpy of mixing (Hxs), the excess molal entropy of mixing (Sxs) and excess molal Gibbs free energy of mixing (Gxs) for binary solid solutions of homologous hydrous and anhydrous smectite components expressed in terms of Margules parameters W1 and W2. A compilation of measurements of

  18. MORPHOLOGY OF METHANE HYDRATE HOST SEDIMENTS

    International Nuclear Information System (INIS)

    JONES, K.W.; FENG, H.; TOMOV, S.; WINTER, W.J.; EATON, M.; MAHAJAN, D.

    2004-01-01

    Results from simulated experiments in several laboratories show that host sediments influence hydrate formation in accord with known heterogeneity of host sediments at sites of gas hydrate occurrence (1). For example, in Mackenzie Delta, NWT Canada (Mallik 2L-38 well), coarser-grained units (pore-filling model) are found whereas in the Gulf of Mexico, the found hydrate samples do not appear to be lithologically controlled. We have initiated a systematic study of sediments, initially focusing on samples from various depths at a specific site, to establish a correlation with hydrate occurrence (or variations thereof) to establish differences in their microstructure, porosity, and other associated properties. The synchrotron computed microtomography (CMT) set-up at the X-27A tomography beam line at the National Synchrotron Light Source (NSLS), Brookhaven National Laboratory was used as a tool to study sediments from Blake Ridge at three sub bottom depths of 0.2, 50, and 667 meters. Results from the tomographic analysis of the deepest sample (667 m) are presented here to illustrate how tomography can be used to obtain new insights into the structures of methane hydrate host sediments. The investigation shows the internal grain/pore space resolution in the microstructure and a 3-D visualization of the connecting pathways obtained following data segmentation into pore space and grains within the sediment sample. The analysis gives the sample porosity, specific surface area, mean particle size, and tortuosity, as well. An earlier report on the experimental program has been given by Mahajan et al. (2)

  19. Full reflector thickness and isolation thickness on neutron transport

    International Nuclear Information System (INIS)

    Sakai, Tomohiro; Naito, Yoshitaka; Komuro, Yuichi.

    1988-08-01

    A method to determine ''full reflector thickness'' and ''isolation thickness'', which is utilized for criticality safety evaluation on nuclear fuel facilities, was proposed in this paper. Firstly, a calculation was tryed to obtain the two kinds of thicknesses from the result of criticality calculations for a specific case. Then, two simple equations which calculates the two kinds of thicknesses were made from the relation between reflector (or isolator) thickness and k eff , and one-group diffusion theory. Finally, we proposed a new method to determine the thicknesses. From the method we proposed, ''full reflector thickness'' and ''isolation thickness'' can be obtain using the equations and migration length of the reflector (or isolator) and infinite and effective multiplication factor of the fuel. (author)

  20. Modelling the effect of hydration on skin conductivity.

    Science.gov (United States)

    Davies, L; Chappell, P; Melvin, T

    2017-08-01

    Electrical signals are recorded from and sent into the body via the skin in a number of applications. In practice, skin is often hydrated with liquids having different conductivities so a model was produced in order to determine the relationship between skin impedance and conductivity. A model representing the skin was subjected to a variety of electrical signals. The parts of the model representing the stratum corneum were given different conductivities to represent different levels of hydration. The overall impedance and conductivity of the cells did not vary at frequencies below 40 kHz. Above 40 kHz, levels of increased conductivity caused the overall impedance to decrease. The variation in impedance with conductivity between 5 and 50 mSm -1 can be modelled quadratically while variation in impedance with conductivity between 5 and 5000 mSm -1 can be modelled with a double exponential decay. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. Carbon dioxide hydrate formation in a fixed-bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    Fan, S.; Lang, X. [South China Univ. of Technology, Guangzhou (China). Key Laboratory of Enhanced Heat Transfer and Energy Conservation; Wang, Y.; Liang, D. [Chinese Academy of Sciences, Guangzhou (China). Guangzhou Inst. of Energy Conversion and Guangzhou Center of Natural Gas Hydrate; Sun, X.; Jurcik, B. [Air Liquide Laboratories, Tsukuba (Japan)

    2008-07-01

    Gas hydrates are thermodynamically stable at high pressures and near the freezing temperature of pure water. Methane hydrates occur naturally in sediments in the deep oceans and permafrost regions and constitute an extensive hydrocarbon reservoir. Carbon dioxide (CO{sub 2}) hydrates are of interest as a medium for marine sequestration of anthropogenic carbon dioxide. Sequestering CO{sub 2} as hydrate has potential advantages over most methods proposed for marine CO{sub 2} sequestration. Because this technique requires a shallower depth of injection when compared with other ocean sequestration methods, the costs of CO{sub 2} hydrate sequestration may be lower. Many studies have successfully used different continuous reactor designs to produce CO{sub 2} hydrates in both laboratory and field settings. This paper discussed a study that involved the design and construction of a fixed-bed reactor for simulation of hydrate formation system. Water, river sands and carbon dioxide were used to simulate the seep kind of hydrate formation. Carbon dioxide gas was distributed as small bubbles to enter from the bottom of the fixed-bed reactor. The paper discussed the experimental data and presented a diagram of the gas hydrate reactor system. The morphology as well as the reaction characters of CO{sub 2} hydrate was presented in detail. The results were discussed in terms of experimental phenomena and hydrate formation rate. A mathematical model was proposed for describing the process. 17 refs., 7 figs.

  2. Indian National Gas Hydrate Program Expedition 01 report

    Science.gov (United States)

    Collett, Timothy S.; Riedel, M.; Boswell, R.; Presley, J.; Kumar, P.; Sathe, A.; Sethi, A.; Lall, M.V.; ,

    2015-01-01

    Gas hydrate is a naturally occurring “ice-like” combination of natural gas and water that has the potential to serve as an immense resource of natural gas from the world’s oceans and polar regions. However, gas-hydrate recovery is both a scientific and a technical challenge and much remains to be learned about the geologic, engineering, and economic factors controlling the ultimate energy resource potential of gas hydrate. The amount of natural gas contained in the world’s gas-hydrate accumulations is enormous, but these estimates are speculative and range over three orders of magnitude from about 2,800 to 8,000,000 trillion cubic meters of gas. By comparison, conventional natural gas accumulations (reserves and undiscovered, technically recoverable resources) for the world are estimated at approximately 440 trillion cubic meters. Gas recovery from gas hydrate is hindered because the gas is in a solid form and because gas hydrate commonly occurs in remote Arctic and deep marine environments. Proposed methods of gas recovery from gas hydrate generally deal with disassociating or “melting” in situ gas hydrate by heating the reservoir beyond the temperature of gas-hydrate formation, or decreasing the reservoir pressure below hydrate equilibrium. The pace of energy-related gas hydrate assessment projects has accelerated over the past several years.

  3. Natural gas hydrates. Experimental techniques and their applications

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Yuguang; Liu, Changling (eds.) [Qingdao Institute of Marine Geology (China). Gas Hydrate Laboratory

    2013-07-01

    Focuses on gas hydrate experiment in laboratory. Intends to provide practical significant parameters for gas hydrate exploration and exploitation in the oceanic and permafrost environments. Consists of different themes that present up-to-date information on hydrate experiments. ''Natural Gas Hydrates: Experimental Techniques and Their Applications'' attempts to broadly integrate the most recent knowledge in the fields of hydrate experimental techniques in the laboratory. The book examines various experimental techniques in order to provide useful parameters for gas hydrate exploration and exploitation. It provides experimental techniques for gas hydrates, including the detection techniques, the thermo-physical properties, permeability and mechanical properties, geochemical abnormalities, stability and dissociation kinetics, exploitation conditions, as well as modern measurement technologies etc.

  4. Terahertz Time Domain Spectroscopy for Structure-II Gas Hydrates

    DEFF Research Database (Denmark)

    Takeya, Kei; Zhang, Caihong; Kawayama, Iwao

    2009-01-01

    For the nondestructive inspection of gas hydrates, terahertz (THz) time-domain spectroscopy (TDS) was applied to tetrahydrofuran (THF) hydrate and propane hydrate. The absorption of propane hydrate monotonically increases with frequency, similar to the case of ice, while THF hydrate has...... a characteristic broad absorption peak at 0.5 THz corresponding to the dipole moment of THF molecules. The refractive indices of THF and propane hydrates are 1.725 and 1.775 at 1 THz, respectively, and show a slight but clear difference from the refractive index of ice (1.79). THz-TDS is a potentially useful...... technique for the ondestructive inspection of gas hydrates. # 2009 The Japan Society of Applied Physics...

  5. Comparative Assessment of Advanced Gay Hydrate Production Methods

    Energy Technology Data Exchange (ETDEWEB)

    M. D. White; B. P. McGrail; S. K. Wurstner

    2009-06-30

    Displacing natural gas and petroleum with carbon dioxide is a proven technology for producing conventional geologic hydrocarbon reservoirs, and producing additional yields from abandoned or partially produced petroleum reservoirs. Extending this concept to natural gas hydrate production offers the potential to enhance gas hydrate recovery with concomitant permanent geologic sequestration. Numerical simulation was used to assess a suite of carbon dioxide injection techniques for producing gas hydrates from a variety of geologic deposit types. Secondary hydrate formation was found to inhibit contact of the injected CO{sub 2} regardless of injectate phase state, thus diminishing the exchange rate due to pore clogging and hydrate zone bypass of the injected fluids. Additional work is needed to develop methods of artificially introducing high-permeability pathways in gas hydrate zones if injection of CO{sub 2} in either gas, liquid, or micro-emulsion form is to be more effective in enhancing gas hydrate production rates.

  6. Characterization of un-hydrated and hydrated BioAggregate™ and MTA Angelus™.

    Science.gov (United States)

    Camilleri, J; Sorrentino, F; Damidot, D

    2015-04-01

    BioAggregate™ is a novel material introduced for use as a root-end filling material. It is tricalcium silicate-based, free of aluminium and uses tantalum oxide as radiopacifier. BioAggregate contains additives to enhance the material performance. The purpose of this research was to characterize the un-hydrated and hydrated forms of BioAggregate using a combination of techniques, verify whether the additives if present affect the properties of the set material and compare these properties to those of MTA Angelus™. Un-hydrated and hydrated BioAggregate and MTA Angelus were assessed. Un-hydrated cement was tested for chemical composition, specific surface area, mineralogy and kinetics of hydration. The set material was investigated for mineralogy, microstructure and bioactivity. Scanning electron microscopy, X-ray energy dispersive spectroscopic analysis, X-ray fluorescence spectroscopy, X-ray diffraction and isothermal calorimetry were employed. The specific surface area was investigated using a gas adsorption method with nitrogen as the probe. BioAggregate was composed of tricalcium silicate, tantalum oxide, calcium phosphate and silicon dioxide and was free of aluminium. On hydration, the tricalcium silicate produced calcium silicate hydrate and calcium hydroxide. The former was deposited around the cement grains, while the latter reacted with the silicon dioxide to form additional calcium silicate hydrate. This resulted in reduction of calcium hydroxide in the aged cement. MTA Angelus reacted in a similar fashion; however, since it contained no additives, the calcium hydroxide was still present in the aged cement. Bioactivity was demonstrated by deposition of hydroxyapatite. BioAggregate exhibited a high specific surface area. Nevertheless, the reactivity determined by isothermal calorimetry appeared to be slow compared to MTA Angelus. The tantalum oxide as opposed to bismuth oxide was inert, and tantalum was not leached in solution. BioAggregate exhibited

  7. A dynamic model to explain hydration behaviour along the lanthanide series

    International Nuclear Information System (INIS)

    Duvail, M.; Spezia, R.; Vitorge, P.

    2008-01-01

    An understanding of the hydration structure of heavy atoms, such as transition metals, lanthanides and actinides, in aqueous solution is of fundamental importance in order to address their solvation properties and chemical reactivity. Herein we present a systematic molecular dynamics study of Ln 3+ hydration in bulk water that can be used as reference for experimental and theoretical research in this and related fields. Our study of hydration structure and dynamics along the entire Ln 3+ series provides a dynamic picture of the CN behavioural change from light (CN=9 predominating) to heavy (CN=8 predominating) lanthanides consistent with the exchange mechanism proposed by Helm, Merbach and co-workers. This scenario is summarized in this work. The hydrated light lanthanides are stable TTP structures containing two kinds of water molecules: six molecules forming the trigonal prism and three in the centre triangle. Towards the middle of the series both ionic radii and polarizabilities decrease, such that first-shell water-water repulsion increases and water-cation attraction decreases. This mainly applies for molecules of the centre triangle of the nine-fold structure. Thus, one of these molecules stay in the second hydration sphere of the lanthanide for longer average times, as one progresses along the lanthanide series. The interchange between predominantly CN=9 and CN=8 is found between Tb and Dy. Therefore, we propose a model that determines the properties governing the change in the first-shell coordination number across the series, confirming the basic hypothesis proposed by Helm and Merbach. We show that it is not a sudden change in behaviour, but rather that it results from a statistical predominance of one first hydration shell structure containing nine water molecules over one containing eight. This is observed progressively across the series. (O.M.)

  8. Clinical Variables Associated with Hydration Status in Acute Ischemic Stroke Patients with Dysphagia.

    Science.gov (United States)

    Crary, Michael A; Carnaby, Giselle D; Shabbir, Yasmeen; Miller, Leslie; Silliman, Scott

    2016-02-01

    Acute stroke patients with dysphagia are at increased risk for poor hydration. Dysphagia management practices may directly impact hydration status. This study examined clinical factors that might impact hydration status in acute ischemic stroke patients with dysphagia. A retrospective chart review was completed on 67 ischemic stroke patients who participated in a prior study of nutrition and hydration status during acute care. Prior results indicated that patients with dysphagia demonstrated elevated BUN/Cr compared to non-dysphagia cases during acute care and that BUN/Cr increased selectively in dysphagic patients. This chart review evaluated clinical variables potentially impacting hydration status: diuretics, parenteral fluids, tube feeding, oral diet, and nonoral (NPO) status. Exposure to any variable and number of days of exposure to each variable were examined. Dysphagia cases demonstrated significantly more NPO days, tube fed days, and parenteral fluid days, but not oral fed days, or days on diuretics. BUN/Cr values at discharge were not associated with NPO days, parenteral fluid days, oral fed days, or days on diuretics. Patients on modified solid diets had significantly higher mean BUN/Cr values at discharge (27.12 vs. 17.23) as did tube fed patients (28.94 vs. 18.66). No difference was noted between these subgroups at baseline (regular diet vs. modified solids diets). Any modification of solid diets (31.11 vs. 17.23) or thickened liquids (28.50 vs. 17.81) resulted in significantly elevated BUN/Cr values at discharge. Liquid or diet modifications prescribed for acute stroke patients with dysphagia may impair hydration status in these patients.

  9. Mechanical properties of additively manufactured thick honeycombs

    NARCIS (Netherlands)

    Hedayati, R.; Sadighi, M.; Mohammadi-Aghdam, M; Zadpoor, A.A.

    2016-01-01

    Honeycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding

  10. Rapid Measurement of Nanoparticle Thickness Profiles

    International Nuclear Information System (INIS)

    Katz-Boon, Hadas; Rossouw, Chris J.; Dwyer, Christian; Etheridge, Joanne

    2013-01-01

    A method to measure the thickness of a single-crystal nanoparticle in the direction parallel to the incident beam from annular dark field scanning transmission electron microscope (ADF-STEM) images is reported, providing a map of thickness versus position across the nanoparticle—a ‘thickness profile’ image. The method is rapid and hence suitable for surveying large numbers of nanoparticles. The method measures the intensity scattered to a characterised ADF detector and compares this to the incident beam intensity, to obtain a normalized ADF image. The normalised intensity is then converted to thickness via dynamical ADF image simulations. The method is accurate within 10% and the precision is dominated primarily by ‘shot noise’. Merits and limitations of this method are discussed. A method to calibrate the response function of the ADF detector without external equipment is also described, which is applicable to the entire range of gain and background settings. -- Highlights: ► A method is developed to convert ADF-STEM images to ‘thickness profile’ images. ► It is applicable in particles survey, facets determination and discrete tomography. ► A method to calibrate the response of the ADF detector is described. ► The response in analysed across a range of conditions. ► Dynamical ADF image simulations are presented, demonstrating intensity vs. thickness dependence.

  11. In-situ gas hydrate hydrate saturation estimated from various well logs at the Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope

    Science.gov (United States)

    Lee, M.W.; Collett, T.S.

    2011-01-01

    In 2006, the U.S. Geological Survey (USGS) completed detailed analysis and interpretation of available 2-D and 3-D seismic data and proposed a viable method for identifying sub-permafrost gas hydrate prospects within the gas hydrate stability zone in the Milne Point area of northern Alaska. To validate the predictions of the USGS and to acquire critical reservoir data needed to develop a long-term production testing program, a well was drilled at the Mount Elbert prospect in February, 2007. Numerous well log data and cores were acquired to estimate in-situ gas hydrate saturations and reservoir properties.Gas hydrate saturations were estimated from various well logs such as nuclear magnetic resonance (NMR), P- and S-wave velocity, and electrical resistivity logs along with pore-water salinity. Gas hydrate saturations from the NMR log agree well with those estimated from P- and S-wave velocity data. Because of the low salinity of the connate water and the low formation temperature, the resistivity of connate water is comparable to that of shale. Therefore, the effect of clay should be accounted for to accurately estimate gas hydrate saturations from the resistivity data. Two highly gas hydrate-saturated intervals are identified - an upper ???43 ft zone with an average gas hydrate saturation of 54% and a lower ???53 ft zone with an average gas hydrate saturation of 50%; both zones reach a maximum of about 75% saturation. ?? 2009.

  12. LABORATORY STRATEGIES FOR HYDRATE FORMATION IN FINE-GRAINED SEDIMENTS

    KAUST Repository

    Lei, L.; Santamarina, Carlos

    2018-01-01

    Fine‐grained sediments limit hydrate nucleation, shift the phase boundary and hinder gas supply. Laboratory experiments in this study explore different strategies to overcome these challenges, including the use of a more soluble guest molecule rather than methane, grain‐scale gas‐storage within porous diatoms, ice‐to‐hydrate transformation to grow lenses at predefined locations, forced gas injection into water saturated sediments, and long‐term guest molecule transport. Tomographic images, thermal and pressure data provide rich information on hydrate formation and morphology. Results show that hydrate formation is inherently displacive in fine‐grained sediments; lenses are thicker and closer to each other in compressible, high specific surface area sediments subjected to low effective stress. Temperature and pressure trajectories follow a shifted phase boundary that is consistent with capillary effects. Exo‐pore growth results in freshly formed hydrate with a striped and porous structure; this open structure becomes an effective pathway for gas transport to the growing hydrate front. Ice‐to‐hydrate transformation goes through a liquid stage at pre‐melt temperatures; then, capillarity and cryogenic suction compete, and some water becomes imbibed into the sediment faster than hydrate reformation. The geometry of hydrate lenses and the internal hydrate structure continue evolving long after the exothermal response to hydrate formation has completely decayed. Multiple time‐dependent processes occur during hydrate formation, including gas, water and heat transport, sediment compressibility, reaction rate and the stochastic nucleation process. Hydrate formation strategies conceived for this study highlight the inherent difficulties in emulating hydrate formation in fine‐grained sediments within the relatively short time‐scale available for laboratory experiments.

  13. Modeling dissociation behaviour of methane hydrate in porous soil media

    Energy Technology Data Exchange (ETDEWEB)

    Jayasinghe, A.G.; Grozic, J.L.H. [Calgary Univ., AB (Canada). Dept. of Civil Engineering

    2008-07-01

    Gas hydrates, or clathrates, exist in the form of crystalline solid structures of hydrogen bonded water molecules where the lattice cages are occupied by guest gas molecules. Methane gas hydrates are the most common. As such, hydrate bearing sediments are considered to be a potential future energy resource. Gas hydrates also function as a source or sink for atmospheric methane, which may influence global warming. The authors emphasized that an understanding of the behaviour of soils containing gas hydrates is necessary in order to develop ways of recovering the vast gas resources that exist in the form of hydrates, particularly since hydrates are also suspected to be a potential factor in the initiation and propagation of submarine slope failures. Gas hydrate dissociation occurs when water and gas are released, resulting in an increase in pore fluid pressure, thereby causing significant reductions in effective stress leading to sediment failure. Dissociation may occur as a result of pressure reductions or increases in temperature. This study focused on the strength and deformation behaviour of hydrate bearing soils associated with temperature induced dissociation. Modeling the dissociation behavior of hydrates in porous soil media involves an understanding of the geomechanics of hydrate dissociation. This paper addressed the issue of coupling the hydrate dissociation problem with the soil deformation problem. A mathematical framework was constructed in which the thermally stimulated hydrate dissociation process in porous soil media under undrained conditions was considered with conduction heat transfer. It was concluded that a knowledge of geomechanical response of hydrate bearing sediments will enable better estimates of benefits and risks associated with the recovery process, thereby ensuring safe and economical exploration. 20 refs., 1 fig., 1 appendix.

  14. LABORATORY STRATEGIES FOR HYDRATE FORMATION IN FINE-GRAINED SEDIMENTS

    KAUST Repository

    Lei, L.

    2018-04-02

    Fine‐grained sediments limit hydrate nucleation, shift the phase boundary and hinder gas supply. Laboratory experiments in this study explore different strategies to overcome these challenges, including the use of a more soluble guest molecule rather than methane, grain‐scale gas‐storage within porous diatoms, ice‐to‐hydrate transformation to grow lenses at predefined locations, forced gas injection into water saturated sediments, and long‐term guest molecule transport. Tomographic images, thermal and pressure data provide rich information on hydrate formation and morphology. Results show that hydrate formation is inherently displacive in fine‐grained sediments; lenses are thicker and closer to each other in compressible, high specific surface area sediments subjected to low effective stress. Temperature and pressure trajectories follow a shifted phase boundary that is consistent with capillary effects. Exo‐pore growth results in freshly formed hydrate with a striped and porous structure; this open structure becomes an effective pathway for gas transport to the growing hydrate front. Ice‐to‐hydrate transformation goes through a liquid stage at pre‐melt temperatures; then, capillarity and cryogenic suction compete, and some water becomes imbibed into the sediment faster than hydrate reformation. The geometry of hydrate lenses and the internal hydrate structure continue evolving long after the exothermal response to hydrate formation has completely decayed. Multiple time‐dependent processes occur during hydrate formation, including gas, water and heat transport, sediment compressibility, reaction rate and the stochastic nucleation process. Hydrate formation strategies conceived for this study highlight the inherent difficulties in emulating hydrate formation in fine‐grained sediments within the relatively short time‐scale available for laboratory experiments.

  15. FY1995 molecular control technology for mining of methane-gas-hydrate; 1995 nendo methane hydrate no bunshi seigyo mining

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    The objectives of the investigation are as follows: 1) developing a method to control formation/dissociation of methane-gas-hydrate, 2) developing a technology to displace methane gas by CO{sub 2} in methane-gas-hydrate deposit, 3) developing a technology to produce methane gas from the deposit efficiently. The final purpose of the project is to create new mining industry that solves both the problems of energy and global environment. 1) Clustering of water molecules is found to play the key role in the methane gas hydrate formation. 2) Equilibrium properties and kinetics of gas hydrates formation and dissociation in bulk-scale gas-hydrate are clarified in the practical environmental conditions. 3) Particle size of hydrate deposit influences the formation and dissociation of bulk-scale gas-hydrate crystal. 4) Mass transfer between gas and liquid phase in turbulent bubbly flow is a function of bubble diameter. The mass transfer depends on interfacial dynamics. (NEDO)

  16. Geologic implications of gas hydrates in the offshore of India: results of the National Gas Hydrate Program Expedition 01

    Science.gov (United States)

    Collett, Timothy S.; Boswell, Ray; Cochran, J.R.; Kumar, Pushpendra; Lall, Malcolm; Mazumdar, Aninda; Ramana, Mangipudi Venkata; Ramprasad, Tammisetti; Riedel, Michael; Sain, Kalachand; Sathe, Arun Vasant; Vishwanath, Krishna

    2014-01-01

    The Indian National Gas Hydrate Program Expedition 01 (NGHP-01) is designed to study the occurrence of gas hydrate along the passive continental margin of the Indian Peninsula and in the Andaman convergent margin, with special emphasis on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these two diverse settings. The NGHP-01 expedition established the presence of gas hydrates in the Krishna-Godavari and Mahanadi Basins, and the Andaman Sea. The expedition discovered in the Krishna-Godavari Basin one of the thickest gas hydrate accumulations ever documented, in the Andaman Sea one of the thickest and deepest gas hydrate stability zones in the world, and established the existence of a fully developed gas hydrate petroleum system in all three basins.

  17. Radioactive thickness gauge (1962)

    International Nuclear Information System (INIS)

    Guizerix, J.

    1962-01-01

    The author describes a thickness gauge in which the scintillating crystal detector alternately 'sees' a radioactive source through the material which is to be measured and then a control source of the same material; the radiations are separated in time by an absorbing valve whose sections are alternately full and hollow. The currents corresponding to the two sources are separated beyond the photomultiplier tube by a detector synchronized with the rotation of the valve. The quotient of these two currents is then obtained with a standard recording potentiometer. It is found that the average value of the response which is in the form G = f(I 1 /I 2 ) is not affected by decay of the radioactive sources, and that it is little influenced by variations of high tension, temperature, or properties of the air in the source detector interval. The performance of the gauge is given. (author) [fr

  18. Thick-Big Descriptions

    DEFF Research Database (Denmark)

    Lai, Signe Sophus

    The paper discusses the rewards and challenges of employing commercial audience measurements data – gathered by media industries for profitmaking purposes – in ethnographic research on the Internet in everyday life. It questions claims to the objectivity of big data (Anderson 2008), the assumption...... communication systems, language and behavior appear as texts, outputs, and discourses (data to be ‘found’) – big data then documents things that in earlier research required interviews and observations (data to be ‘made’) (Jensen 2014). However, web-measurement enterprises build audiences according...... to a commercial logic (boyd & Crawford 2011) and is as such directed by motives that call for specific types of sellable user data and specific segmentation strategies. In combining big data and ‘thick descriptions’ (Geertz 1973) scholars need to question how ethnographic fieldwork might map the ‘data not seen...

  19. Disentangling The Thick Concept Argument

    DEFF Research Database (Denmark)

    Blomberg, Olle

    2007-01-01

    Critics argue that non-cognitivism cannot adequately account for the existence and nature of some thick moral concepts. They use the existence of thick concepts as a lever in an argument against non-cognitivism, here called the Thick Concept Argument (TCA). While TCA is frequently invoked...

  20. Spatial resolution of gas hydrate and permeability changes from ERT data in LARS simulating the Mallik gas hydrate production test

    Science.gov (United States)

    Priegnitz, Mike; Thaler, Jan; Spangenberg, Erik; Schicks, Judith M.; Abendroth, Sven

    2014-05-01

    The German gas hydrate project SUGAR studies innovative methods and approaches to be applied in the production of methane from hydrate-bearing reservoirs. To enable laboratory studies in pilot scale, a large reservoir simulator (LARS) was realized allowing for the formation and dissociation of gas hydrates under simulated in-situ conditions. LARS is equipped with a series of sensors. This includes a cylindrical electrical resistance tomography (ERT) array composed of 25 electrode rings featuring 15 electrodes each. The high-resolution ERT array is used to monitor the spatial distribution of the electrical resistivity during hydrate formation and dissociation experiments over time. As the present phases of poorly conducting sediment, well conducting pore fluid, non-conducting hydrates, and isolating free gas cover a wide range of electrical properties, ERT measurements enable us to monitor the spatial distribution of these phases during the experiments. In order to investigate the hydrate dissociation and the resulting fluid flow, we simulated a hydrate production test in LARS that was based on the Mallik gas hydrate production test (see abstract Heeschen et al., this volume). At first, a hydrate phase was produced from methane saturated saline water. During the two months of gas hydrate production we measured the electrical properties within the sediment sample every four hours. These data were used to establish a routine estimating both the local degrees of hydrate saturation and the resulting local permeabilities in the sediment's pore space from the measured resistivity data. The final gas hydrate saturation filled 89.5% of the total pore space. During hydrate dissociation, ERT data do not allow for a quantitative determination of free gas and remaining gas hydrates since both phases are electrically isolating. However, changes are resolved in the spatial distribution of the conducting liquid and the isolating phase with gas being the only mobile isolating phase

  1. Global Inventory of Methane Hydrate: How Large is the Threat? (Invited)

    Science.gov (United States)

    Buffett, B. A.; Frederick, J. M.

    2010-12-01

    Methane hydrate is a dark horse in the science of climate change. The volume of methane sequestered in marine sediments is large enough to pose a potential threat, yet the expected contribution to future warming is not known. Part of the uncertainty lies in the poorly understood details of methane release from hydrate. Slow, diffusive loss of methane probably results in oxidation by sulfate and precipitation to CaCO3 in the sediments, with little effect on climate. Conversely, a direct release of methane into the atmosphere is liable to have strong and immediate consequences. Progress in narrowing the possibilities requires a better understanding of the mechanisms responsible for methane release. Improvements are also needed in our estimates of the hydrate inventory, as this sets a limit on the possible response. Several recent estimates of the hydrate inventory have been constructed using mechanistic models. Many of the model parameters (e.g. sedimentation rate and sea floor temperature) can be estimated globally, while others (e.g. vertical fluid flow) are not well known. Available observations can be used to estimate the poorly known parameters, but it is reasonable to question whether the results from a limited number of sites are representative of other locations. Fluid flow is a case in point because most hydrate locations are associated with upward flow. On the other hand, simple models of sediment compaction predict downward flow relative to the sea floor, which acts to impede hydrate formation. A variety of mechanisms can produce upward flow, including time-dependent sedimentation, seafloor topography, subsurface fractures, dehydration of clay minerals and gradual burial of methane hydrate below the stability zone. Each of these mechanisms makes specific predictions for the magnitude of flow and the proportion of sea floor that is likely to be affected. We assess the role of fluid flow on the present-day inventory and show that the current estimates for

  2. Experimental techniques for cement hydration studies

    Directory of Open Access Journals (Sweden)

    Andreas Luttge

    2011-10-01

    Full Text Available Cement hydration kinetics is a complex problem of dissolution, nucleation and growth that is still not well understood, particularly in a quantitative way. While cement systems are unique in certain aspects they are also comparable to natural mineral systems. Therefore, geochemistry and particularly the study of mineral dissolution and growth may be able to provide insight and methods that can be utilized in cement hydration research. Here, we review mainly what is not known or what is currently used and applied in a problematic way. Examples are the typical Avrami approach, the application of Transition State Theory (TST to overall reaction kinetics and the problem of reactive surface area. Finally, we suggest an integrated approach that combines vertical scanning interferometry (VSI with other sophisticated analytical techniques such as atomic force microscopy (AFM and theoretical model calculations based on a stochastic treatment.

  3. Limitation of biocompatibility of hydrated nanocrystalline hydroxyapatite

    Science.gov (United States)

    Minaychev, V. V.; Teleshev, A. T.; Gorshenev, V. N.; Yakovleva, M. A.; Fomichev, V. A.; Pankratov, A. S.; Menshikh, K. A.; Fadeev, R. S.; Fadeeva, I. S.; Senotov, A. S.; Kobyakova, M. I.; Yurasova, Yu B.; Akatov, V. S.

    2018-04-01

    Nanostructured hydroxyapatite (HA) in the form of hydrated paste is considered to be a promising material for a minor-invasive surgical curing of bone tissue injure. However questions about adhesion of cells on this material and its biocompatibility still remain. In this study biocompatibility of paste-formed nanosized HA (nano-HA) by in vitro methods is investigated. Nano-HA (particles sized about 20 nm) was synthesized under conditions of mechano-acoustic activation of an aqueous reaction mixture of ammonium hydrophosphate and calcium nitrate. It was ascertained that nanocrystalline paste was not cytotoxic although limitation of adhesion, spreading and growth of the cells on its surface was revealed. The results obtained point on the need of modification of hydrated nano-HA in the aims of increasing its biocompatibility and osteoplastic potential.

  4. Predicting hydration energies for multivalent ions

    DEFF Research Database (Denmark)

    Andersson, Martin Peter; Stipp, Susan Louise Svane

    2014-01-01

    We have predicted the free energy of hydration for 40 monovalent and multivalent cations and anions using density functional theory and the implicit solvent model COnductor like Screening MOdel for Real Solvents (COSMO-RS) at the Becke-Perdew (BP)/Triple zeta valence with polarization functions...... (TZVP) level. Agreement with experimental data for monovalent and divalent ions is good and shows no significant systematic errors. Predictions are noticeably better than with standard COSMO. The agreement with experimental data for trivalent and tetravalent ions is slightly worse and shows systematic...... errors. Our results indicate that quantum chemical calculations combined with COSMO-RS solvent treatment is a reliable method for treating multivalent ions in solution, provided one hydration shell of explicit water molecules is included for metal cations. The accuracy is not high enough to allow...

  5. Advances in understanding hydration of Portland cement

    International Nuclear Information System (INIS)

    Scrivener, Karen L.; Juilland, Patrick; Monteiro, Paulo J.M.

    2015-01-01

    Progress in understanding hydration is summarized. Evidence supports the geochemistry dissolution theory as an explanation for the induction period, in preference to the inhibiting layer theory. The growth of C–S–H is the principal factor controlling the main heat evolution peak. Electron microscopy indicates that C–S–H “needles” grow from the surface of grains. At the peak, the surface is covered, but deceleration cannot be attributed to diffusion control. The shoulder peak comes from renewed reaction of C 3 A after depletion of sulfate in solution, but release of sulfate absorbed on C–S–H means that ettringite continues to form. After several days space becomes the major factor controlling hydration. The use of new analytical technique is improving our knowledge of the action of superplasticizers and leading to the design of molecules for different applications. Atomistic modeling is becoming a topic of increasing interest. Recent publications in this area are reviewed

  6. Phosphate vibrations as reporters of DNA hydration

    Science.gov (United States)

    Corcelli, Steven

    The asymmetric phosphate stretch vibrational frequency is extraordinarily sensitive to its local solvent environment. Using density functional theory calculations on the model compound dimethyl phosphate, the asymmetric phosphate stretch vibrational frequency was found to shift linearly with the magnitude of an electric field along the symmetry axis of the PO2 moiety (i.e. the asymmetric phosphate stretch is an excellent linear vibrational Stark effect probe). With this linear relationship established, asymmetric phosphate stretch vibrational frequencies were computed during the course of a molecular dynamics simulation of fully hydrated DNA. Moreover, contributions to shifts in the frequencies from subpopulations of water molecules (e.g. backbone, minor groove, major groove, etc.) were calculated to reveal how phosphate vibrations report the onset of DNA hydration in experiments that vary the relative humidity of non-condensing (dry) DNA samples.

  7. Advances in understanding hydration of Portland cement

    Energy Technology Data Exchange (ETDEWEB)

    Scrivener, Karen L., E-mail: Karen.scrivener@epfl.ch [Laboratory of Construction Materials, Ecole Polytechnique Fédérale de Lausanne, 1015 (Switzerland); Juilland, Patrick [Sika Technology AG, Zürich (Switzerland); Monteiro, Paulo J.M. [Department of Civil and Environmental Engineering, University of California at Berkeley (United States)

    2015-12-15

    Progress in understanding hydration is summarized. Evidence supports the geochemistry dissolution theory as an explanation for the induction period, in preference to the inhibiting layer theory. The growth of C–S–H is the principal factor controlling the main heat evolution peak. Electron microscopy indicates that C–S–H “needles” grow from the surface of grains. At the peak, the surface is covered, but deceleration cannot be attributed to diffusion control. The shoulder peak comes from renewed reaction of C{sub 3}A after depletion of sulfate in solution, but release of sulfate absorbed on C–S–H means that ettringite continues to form. After several days space becomes the major factor controlling hydration. The use of new analytical technique is improving our knowledge of the action of superplasticizers and leading to the design of molecules for different applications. Atomistic modeling is becoming a topic of increasing interest. Recent publications in this area are reviewed.

  8. Modelling porewater chemistry in hydrated Portland cement

    International Nuclear Information System (INIS)

    Berner, U.R.

    1987-01-01

    Extensive employment of concrete is foreseen in radioactive waste repositories. A prerequisite for modelling the interactions between concrete and formation waters is characterization of the concrete system. Available experimental data from high pressure squeezing of cement pore-water indicate that, besides the high pH due to alkali hydroxide dissolution, cement composition itself influences the solubility determining solid phases. A model which simulates the hydration of Portland cement assuming complete hydration of the main clinker minerals is presented. The model also includes parameters describing the reactions between the cement and blending agents. Comparison with measured pore-water data generally gives a consistent picture and, as expected, the model gives correct predictions for pure Portland cements. For blended cements, the required additional parameters can, to some extent, be derived from pore-water analysis. 14 references, 1 figure, 4 tables

  9. Propane hydrate nucleation: Experimental investigation and correlation

    DEFF Research Database (Denmark)

    Jensen, Lars; Thomsen, Kaj; von Solms, Nicolas

    2008-01-01

    supersaturation region. The experiments showed that the gas dissolution rate rather than the induction time of propane hydrate is influenced by a change in agitation. This was especially valid at high stirring rates when the water surface was severely disturbed.Addition of polyvinylpyrrolidone (PVP......) to the aqueous phase was found to reduce the gas dissolution rate slightly. However the induction times were prolonged quite substantially upon addition of PVP.The induction time data were correlated using a newly developed induction time model based on crystallization theory also capable of taking into account...... the presence of additives. In most cases reasonable agreement between the data and the model could be obtained. The results revealed that especially the effective surface energy between propane hydrate and water is likely to change when the stirring rate varies from very high to low. The prolongation...

  10. Non-invasive measurement of corneal hydration.

    Science.gov (United States)

    March, W F; Bauer, N J

    2001-01-01

    To investigate the feasibility of a confocal Raman spectroscopic technique for the noncontact assessment of corneal hydration in vivo in two legally blind subjects. A laser beam (632.8 nm; 15 mJ) was maintained on the cornea using a microscope objective lens (25x magnification, NA=0.5, f=10 mm) both for focusing the incident light as well as collecting the Raman backscattered light, in a 180 degrees backscatter configuration. An optical fiber, acting as the confocal pinhole for elimination of light from out-of-focus places, was coupled to a spectrometer that dispersed the collected light onto a sensitive array-detector for rapid spectral data acquisition over a range from 2,890 to 3,590 cm(-1). Raman spectra were recorded from the anterior 100 to 150 microm of the cornea over a period of time before and after topical application of a mild dehydrating solution. The ratio between the amplitudes of the signals at 3,400 cm(-1) (OH-vibrational mode of water) and 2,940 cm(-1) (CH-vibrational mode of proteins) was used as a measure of corneal hydration. High signal-to-noise ratio (SNR 25) Raman spectra were obtained from the human corneas using 15 mJ of laser light energy. Qualitative changes in the hydration of the anterior-most part of the corneas could be observed as a result of the dehydrating agent. Confocal Raman spectroscopy could potentially be applied clinically as a noncontact tool for the assessment of corneal hydration in vivo.

  11. Reservoir Models for Gas Hydrate Numerical Simulation

    Science.gov (United States)

    Boswell, R.

    2016-12-01

    Scientific and industrial drilling programs have now providing detailed information on gas hydrate systems that will increasingly be the subject of field experiments. The need to carefully plan these programs requires reliable prediction of reservoir response to hydrate dissociation. Currently, a major emphasis in gas hydrate modeling is the integration of thermodynamic/hydrologic phenomena with geomechanical response for both reservoir and bounding strata. However, also critical to the ultimate success of these efforts is the appropriate development of input geologic models, including several emerging issues, including (1) reservoir heterogeneity, (2) understanding of the initial petrophysical characteristics of the system (reservoirs and seals), the dynamic evolution of those characteristics during active dissociation, and the interdependency of petrophysical parameters and (3) the nature of reservoir boundaries. Heterogeneity is ubiquitous aspect of every natural reservoir, and appropriate characterization is vital. However, heterogeneity is not random. Vertical variation can be evaluated with core and well log data; however, core data often are challenged by incomplete recovery. Well logs also provide interpretation challenges, particularly where reservoirs are thinly-bedded due to limitation in vertical resolution. This imprecision will extend to any petrophysical measurements that are derived from evaluation of log data. Extrapolation of log data laterally is also complex, and should be supported by geologic mapping. Key petrophysical parameters include porosity, permeability and it many aspects, and water saturation. Field data collected to date suggest that the degree of hydrate saturation is strongly controlled by/dependant upon reservoir quality and that the ratio of free to bound water in the remaining pore space is likely also controlled by reservoir quality. Further, those parameters will also evolve during dissociation, and not necessary in a simple

  12. The combined effect of thermodynamic promoters tetrahydrofuran and cyclopentane on the kinetics of flue gas hydrate formation

    DEFF Research Database (Denmark)

    Daraboina, Nagu; von Solms, Nicolas

    2015-01-01

    ) hydrate formation using a rocking cell apparatus. Hydrate formation and decomposition kinetics were investigated by constant cooling (hydrate nucleation temperature) and isothermal (hydrate nucleation time) methods. Improved (synergistic) hydrate formation kinetics (hydrate nucleation and growth) were...... of these two promoters is favorable both thermodynamically and kinetically for hydrate formation from flue gas....

  13. Experimental solid state NMR of gas hydrates : problems and solutions

    Energy Technology Data Exchange (ETDEWEB)

    Moudrakovski, I.; Lu, H.; Ripmeester, J. [National Research Council of Canada, Ottawa, ON (Canada). Steacie Inst. for Molecular Sciences; Kumar, R.; Susilo, R. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Chemical and Biological Engineering; Luzi, M. [GeoForschungsZentrum Potsdam, Potsdam (Germany)

    2008-07-01

    Solid State NMR is a suitable spectroscopic technique for hydrate research for several reasons, including its capability to distinguish between different structural types of hydrates, its quantitative nature and potential for both in-situ and time resolved experiments. This study illustrated the applications of solid state NMR for compositional and structural studies of clathrate hydrates, with particular emphasis on experimental techniques and potential ways to overcome technical difficulties. In order to use the method to its full capacity, some instrumental developments are needed to adapt it to the specific experimental requirements of hydrate studies, such as very low temperatures and high pressures. This presentation discussed the quantification of the Carbon-13 spectra with examples from natural and synthetic hydrates prepared from multi-component mixtures of hydrocarbons. The main approach used for the first two examples was Carbon-13 NMR with Magic Angle Spinning (MAS) at -100 degrees C. The detailed characterization of mixed hydrogen hydrates required low temperature hydrogen MAS. The quantification problems encountered during these experiments were also discussed. The purpose of these recent experimental developments was to prompt wider application of Solid State NMR in hydrate research. NMR proved to be a viable method for analyzing the composition and structure of multi-component mixed gas hydrates; characterizing natural gas hydrates; and, evaluating the formation conditions and properties of mixed hydrogen hydrates. The limitations of the method were highlighted and sensible choices of experimental conditions and techniques that ensure accurate results were discussed. 34 refs., 10 figs.

  14. Effect of Gemini-type surfactant on methane hydrate formation

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, K.E.; Park, J.M.; Kim, C.U.; Chae, H.J.; Jeong, S.Y. [Korea Research Inst. of Chemical Technology, Jang-Dong, Yuseong-Gu, Daejeon (Korea, Republic of)

    2008-07-01

    Natural gas hydrates are formed from water and natural gas molecules at particular temperatures and pressures that become ice-like inclusion compounds. Gas hydrates offer several benefits such as energy resource potential and high storage capacity of natural gas in the form of hydrates. However, the application of natural gas hydrates has been deterred by its low formation rate and low conversion ratio of water into hydrate resulting in low actual storage capacity. This paper presented an experimental study to determine the effect of adding a novel Gemini-type surfactant on methane hydrate formation. The experimental study was described with reference to the properties of prepared diols and properties of prepared disulfonates. Gemini surfactant is the family of surfactant molecules possessing more than one hydrophobic tail and hydrophilic head group. They generally have better surface-active properties than conventional surfactants of equal chain length. The paper presented the results of the study in terms of the reactions of diols with propane sultone; storage capacity of hydrate formed with and without surfactant; and methane hydrate formation with and without disulfonate. It was concluded that the methane hydrate formation was accelerated by the addition of novel anionic Gemini-type surfactants and that hydrate formation was influenced by the surfactant concentration and alkyl chain length. For a given concentration, the surfactant with the highest chain length demonstrated the highest formation rate and storage capacity. 5 refs., 3 tabs., 4 figs.

  15. Polymorphism in Br2 clathrate hydrates.

    Science.gov (United States)

    Goldschleger, I U; Kerenskaya, G; Janda, K C; Apkarian, V A

    2008-02-07

    The structure and composition of bromine clathrate hydrate has been controversial for more than 170 years due to the large variation of its observed stoichiometries. Several different crystal structures were proposed before 1997 when Udachin et al. (Udachin, K. A.; Enright, G. D.; Ratcliffe, C. I.; Ripmeester, J. A. J. Am. Chem. Soc. 1997, 119, 11481) concluded that Br2 forms only the tetragonal structure (TS-I). We show polymorphism in Br2 clathrate hydrates by identifying two distinct crystal structures through optical microscopy and resonant Raman spectroscopy on single crystals. After growing TS-I crystals from a liquid bromine-water solution, upon dropping the temperature slightly below -7 degrees C, new crystals of cubic morphology form. The new crystals, which have a limited thermal stability range, are assigned to the CS-II structure. The two structures are clearly distinguished by the resonant Raman spectra of the enclathrated Br2, which show long overtone progressions and allow the extraction of accurate vibrational parameters: omega(e) = 321.2 +/- 0.1 cm(-1) and omega(e)x(e) = 0.82 +/- 0.05 cm(-1) in TS-I and omega(e) = 317.5 +/- 0.1 cm(-1) and omega(e)x(e) = 0.70 +/- 0.1 cm(-1) in CS-II. On the basis of structural analysis, the discovery of the CS-II crystals implies stability of a large class of bromine hydrate structures and, therefore, polymorphism.

  16. The economics of exploiting gas hydrates

    International Nuclear Information System (INIS)

    Döpke, Lena-Katharina; Requate, Till

    2014-01-01

    We investigate the optimal exploitation of methane hydrates, a recent discovery of methane resources under the sea floor, mainly located along the continental margins. Combustion of methane (releasing CO2) and leakage through blow-outs (releasing CH4) contribute to the accumulation of greenhouse gases. A second externality arises since removing solid gas hydrates from the sea bottom destabilizes continental margins and thus increases the risk of marine earthquakes. We show that in such a model three regimes can occur: i) resource exploitation will be stopped in finite time, and some of the resource will stay in situ, ii) the resource will be used up completely in finite time, and iii) the resource will be exhausted in infinite time. We also show how to internalize the externalities by policy instruments. - Highlights: • We set up a model of optimal has hydrate exploitation • We incorporate to types of damages: contribution to global warming and geo-hazards • We characterize optimal exploitation paths and study decentralization with an exploitation tax. • Three regimes can occur: • i) exploitation in finite time and some of the stock remaining in situ, • ii) exploitation in finite time and the resource will be exhausted, • iii) exploitation and exhaustion in infinite time

  17. Raman spectroscopic studies of hydrogen clathrate hydrates.

    Science.gov (United States)

    Strobel, Timothy A; Sloan, E Dendy; Koh, Carolyn A

    2009-01-07

    Raman spectroscopic measurements of simple hydrogen and tetrahydrofuran+hydrogen sII clathrate hydrates have been performed. Both the roton and vibron bands illuminate interesting quantum dynamics of enclathrated H(2) molecules. The complex vibron region of the Raman spectrum has been interpreted by observing the change in population of these bands with temperature, measuring the absolute H(2) content as a function of pressure, and with D(2) isotopic substitution. Quadruple occupancy of the large sII clathrate cavity shows the highest H(2) vibrational frequency, followed by triple and double occupancies. Singly occupied small cavities display the lowest vibrational frequency. The vibrational frequencies of H(2) within all cavity environments are redshifted from the free gas phase value. At 76 K, the progression from ortho- to para-H(2) occurs over a relatively slow time period (days). The rotational degeneracy of H(2) molecules within the clathrate cavities is lifted, observed directly in splitting of the para-H(2) roton band. Raman spectra from H(2) and D(2) hydrates suggest that the occupancy patterns between the two hydrates are analogous, increasing confidence that D(2) is a suitable substitute for H(2). The measurements suggest that Raman is an effective and convenient method to determine the relative occupancy of hydrogen molecules in different clathrate cavities.

  18. Electronic structure calculations of calcium silicate hydrates

    International Nuclear Information System (INIS)

    Sterne, P.A.; Meike, A.

    1995-11-01

    Many phases in the calcium-silicate-hydrate system can develop in cement exposed over long periods of time to temperatures above 25 C. As a consequence, chemical reactions involving these phases can affect the relative humidity and water chemistry of a radioactive waste repository that contains significant amounts of cement. In order to predict and simulate these chemical reactions, the authors are developing an internally consistent database of crystalline Ca-Si-hydrate structures. The results of first principles electronic structure calculations on two such phases, wollastonite (CaSiO 3 ) and xonotlite (Ca 6 Si 6 O 17 (OH) 2 ), are reported here. The calculated ground state properties are in very good agreement with experiment, providing equilibrium lattice parameters within about 1--1.4% of the experimentally reported values. The roles of the different types of oxygen atoms, which are fundamental to understanding the energetics of crystalline Ca-Si-hydrates are briefly discussed in terms of their electronic state densities. The good agreement with experiment for the lattice parameters and the consistency of the electronic density of states features for the two structures demonstrate the applicability of these electronic structure methods in calculating the fundamental properties of these phases

  19. Intermolecular Hydrogen Transfer in Isobutane Hydrate

    Directory of Open Access Journals (Sweden)

    Takeshi Sugahara

    2012-05-01

    Full Text Available Electron spin resonance (ESR spectra of butyl radicals induced with γ-ray irradiation in the simple isobutane (2-methylpropane hydrate (prepared with deuterated water were investigated. Isothermal annealing results of the γ-ray-irradiated isobutane hydrate reveal that the isobutyl radical in a large cage withdraws a hydrogen atom from the isobutane molecule through shared hexagonal-faces of adjacent large cages. During this “hydrogen picking” process, the isobutyl radical is apparently transformed into a tert-butyl radical, while the sum of isobutyl and tert-butyl radicals remains constant. The apparent transformation from isobutyl to tert-butyl radicals is an irreversible first-order reaction and the activation energy was estimated to be 35 ± 3 kJ/mol, which was in agreement with the activation energy (39 ± 5 kJ/mol of hydrogen picking in the γ-ray-irradiated propane hydrate with deuterated water.

  20. Cruise report for a seismic investigation of gas hydrates in the Mississippi Canyon region, northern Gulf of Mexico; cruise M1-98-GM

    Science.gov (United States)

    Cooper, Alan K.; Hart, Patrick E.; Pecher, Ingo

    1998-01-01

    property) analyses based on the acoustic data. The cruise was conducted in two regions, on opposite flanks of the Mississippi Canyon, where gas hydrates are known and suspected from prior coring and seismic operations (e.g., Neurauter and Bryant, 1989). The regions are also characterized by thick surficial, relatively young (Pleistocene and younger) sediments. Swath-bathymetry data (Fig. 2) show extensive sea-floor faults, piercement features, and slumps—features whose development could potentially be related to gas hydrates. The specific objectives of the cruise were (a) to image the gas-hydrate stability zone across the continental margin to document bottom-simulating reflections (BSRs) and changes in geometry of the hydrate stability zone; (b) to image known hydrate features (with several seismic systems) to estimate physical properties for hydrate and non-hydrate areas; (c) to outline the shallow structures of the hydrate stability zone to ascertain their potential effects on the formation/distribution of hydrates and on stability of the sea floor; and (d) to estimate, if possible, the amounts of hydrates present in the shallow sub surface.

  1. Hupa Numbers.

    Science.gov (United States)

    Bennett, Ruth, Ed.; And Others

    An introduction to the Hupa number system is provided in this workbook, one in a series of numerous materials developed to promote the use of the Hupa language. The book is written in English with Hupa terms used only for the names of numbers. The opening pages present the numbers from 1-10, giving the numeral, the Hupa word, the English word, and…

  2. Triangular Numbers

    Indian Academy of Sciences (India)

    Admin

    Triangular number, figurate num- ber, rangoli, Brahmagupta–Pell equation, Jacobi triple product identity. Figure 1. The first four triangular numbers. Left: Anuradha S Garge completed her PhD from. Pune University in 2008 under the supervision of Prof. S A Katre. Her research interests include K-theory and number theory.

  3. Proth Numbers

    Directory of Open Access Journals (Sweden)

    Schwarzweller Christoph

    2015-02-01

    Full Text Available In this article we introduce Proth numbers and prove two theorems on such numbers being prime [3]. We also give revised versions of Pocklington’s theorem and of the Legendre symbol. Finally, we prove Pepin’s theorem and that the fifth Fermat number is not prime.

  4. Growth of gas hydrate mounds and gas chimneys of the eastern margin of Japan Sea as revealed by MBES, SSS and SBP of AUV

    Science.gov (United States)

    Matsumoto, R.; Satoh, M.; Hiromatsu, M.; Tomaru, H.; Machiyama, H.

    2010-12-01

    A series of PC, ROV and SCS surveys to study the origin and evolution of gas hydrate systems along the eastern margin of Japan Sea have identified a number of shallow GH accumulations on the mounds, 300m to 500m in diameter and 30m to 40m high, on the Umitaka spur and Joetsu knoll in Joetsu basin with the WD of 880m to 1200m (Matsumoto et al., 2005; 2009). All of the hydrate mounds develop on gas chimneys as recognized by seismic profiles, and some are associated with gigantic methane plumes, 600m to 700m high. Multi Beam Echo Sounder (MBES), Side Scan Sonar (SSS) and Sub-Bottom Profiler (SBP) of AUV Urashima have revealed ultra-high resolution topographic features and subsurface structures of the mounds and adjacent areas during the JAMSTEC YK10-08 cruise, July 2010. AUV Urashima ran over the spur and knoll at 50m to 80m above seafloor at a cruising speed of 2.4 knots. MBES and SSS mosaics demonstrate two types of mounds. One is a low swell with smooth surface and weak reflectance, while the other is characterized by rough and uneven topographic features with strong SSS images due to incrustation by methane-induced carbonate concretions and gas hydrates. SBP provides clear stratigraphic and structural relations down to 50mbsf to 80mbsf and recognizes three stratigraphic units as I: upper massive unit (5-10m thick), II: middle evenly bedded unit (15-25m thick) and III: lower slightly bedded unit (> 15-25m thick). Gas chimneys grow up toward the seafloor through Units III, II, and I. When the ceiling of gas chimney stays within Unit III or II, the mound above the chimney is either low swell or nearly flat, while the swell grows up higher when the ceiling reaches to Unit I or the seafloor. Eventually, the ceiling breaks through the seafloor and protrudes to form GH mound up to 40m to 50m high, and then start to decay probably due to mechanical collapse and chemical dissolution of gas hydrates. The ceiling of gas chimneys is often represented by high amplitude, uneven

  5. Deep-Water Acoustic Anomalies from Methane Hydrate in the Bering Sea

    Science.gov (United States)

    Wood, Warren T.; Barth, Ginger A.; Scholl, David W.; Lebedeva-Ivanova, Nina

    2015-01-01

    A recent expedition to the central Bering Sea, one of the most remote locations in the world, has yielded observations confirming gas and gas hydrates in this deep ocean basin. Significant sound speed anomalies found using inversion of pre-stack seismic data are observed in association with variable seismic amplitude anomalies in the thick sediment column. The anomalously low sound speeds below the inferred base of methane hydrate stability indicate the presence of potentially large quantities of gas-phase methane associated with each velocity-amplitude anomaly (VAMP). The data acquired are of such high quality that quantitative estimates of the concentrations of gas hydrates in the upper few hundred meters of sediment are also possible, and analyses are under way to make these estimates. Several VAMPs were specifically targeted in this survey; others were crossed incidentally. Indications of many dozens or hundreds of these features exist throughout the portion of the Bering Sea relevant to the U.S. extended continental shelf (ECS) consistent with the United Nations Convention on the Law of the Sea. 

  6. Impact of Compound Hydrate Dynamics on Phase Boundary Changes

    Science.gov (United States)

    Osegovic, J. P.; Max, M. D.

    2006-12-01

    Compound hydrate reactions are affected by the local concentration of hydrate forming materials (HFM). The relationship between HFM composition and the phase boundary is as significant as temperature and pressure. Selective uptake and sequestration of preferred hydrate formers (PF) has wide ranging implications for the state and potential use of natural hydrate formation, including impact on climate. Rising mineralizing fluids of hydrate formers (such as those that occur on Earth and are postulated to exist elsewhere in the solar system) will sequester PF before methane, resulting in a positive relationship between depth and BTU content as ethane and propane are removed before methane. In industrial settings the role of preferred formers can separate gases. When depressurizing gas hydrate to release the stored gas, the hydrate initial composition will set the decomposition phase boundary because the supporting solution takes on the composition of the hydrate phase. In other settings where hydrate is formed, transported, and then dissociated, similar effects can control the process. The behavior of compound hydrate systems can primarily fit into three categories: 1) In classically closed systems, all the material that can form hydrate is isolated, such as in a sealed laboratory vessel. In such systems, formation and decomposition are reversible processes with observed hysteresis related to mass or heat transfer limitations, or the order and magnitude in which individual hydrate forming gases are taken up from the mixture and subsequently released. 2) Kinetically closed systems are exposed to a solution mass flow across a hydrate mass. These systems can have multiple P-T phase boundaries based on the local conditions at each face of the hydrate mass. A portion of hydrate that is exposed to fresh mineralizing solution will contain more preferred hydrate formers than another portion that is exposed to a partially depleted solution. Examples of kinetically closed

  7. Sagan numbers

    OpenAIRE

    Mendonça, J. Ricardo G.

    2012-01-01

    We define a new class of numbers based on the first occurrence of certain patterns of zeros and ones in the expansion of irracional numbers in a given basis and call them Sagan numbers, since they were first mentioned, in a special case, by the North-american astronomer Carl E. Sagan in his science-fiction novel "Contact." Sagan numbers hold connections with a wealth of mathematical ideas. We describe some properties of the newly defined numbers and indicate directions for further amusement.

  8. Protein Hydration Thermodynamics: The Influence of Flexibility and Salt on Hydrophobin II Hydration.

    Science.gov (United States)

    Remsing, Richard C; Xi, Erte; Patel, Amish J

    2018-04-05

    The solubility of proteins and other macromolecular solutes plays an important role in numerous biological, chemical, and medicinal processes. An important determinant of protein solubility is the solvation free energy of the protein, which quantifies the overall strength of the interactions between the protein and the aqueous solution that surrounds it. Here we present an all-atom explicit-solvent computational framework for the rapid estimation of protein solvation free energies. Using this framework, we estimate the hydration free energy of hydrophobin II, an amphiphilic fungal protein, in a computationally efficient manner. We further explore how the protein hydration free energy is influenced by enhancing flexibility and by the addition of sodium chloride, and find that it increases in both cases, making protein hydration less favorable.

  9. Partial Thickness Rotator Cuff Tears: Current Concepts

    Science.gov (United States)

    Matthewson, Graeme; Beach, Cara J.; Nelson, Atiba A.; Woodmass, Jarret M.; Ono, Yohei; Boorman, Richard S.; Lo, Ian K. Y.; Thornton, Gail M.

    2015-01-01

    Partial thickness rotator cuff tears are a common cause of pain in the adult shoulder. Despite their high prevalence, the diagnosis and treatment of partial thickness rotator cuff tears remains controversial. While recent studies have helped to elucidate the anatomy and natural history of disease progression, the optimal treatment, both nonoperative and operative, is unclear. Although the advent of arthroscopy has improved the accuracy of the diagnosis of partial thickness rotator cuff tears, the number of surgical techniques used to repair these tears has also increased. While multiple repair techniques have been described, there is currently no significant clinical evidence supporting more complex surgical techniques over standard rotator cuff repair. Further research is required to determine the clinical indications for surgical and nonsurgical management, when formal rotator cuff repair is specifically indicated and when biologic adjunctive therapy may be utilized. PMID:26171251

  10. Partial Thickness Rotator Cuff Tears: Current Concepts

    Directory of Open Access Journals (Sweden)

    Graeme Matthewson

    2015-01-01

    Full Text Available Partial thickness rotator cuff tears are a common cause of pain in the adult shoulder. Despite their high prevalence, the diagnosis and treatment of partial thickness rotator cuff tears remains controversial. While recent studies have helped to elucidate the anatomy and natural history of disease progression, the optimal treatment, both nonoperative and operative, is unclear. Although the advent of arthroscopy has improved the accuracy of the diagnosis of partial thickness rotator cuff tears, the number of surgical techniques used to repair these tears has also increased. While multiple repair techniques have been described, there is currently no significant clinical evidence supporting more complex surgical techniques over standard rotator cuff repair. Further research is required to determine the clinical indications for surgical and nonsurgical management, when formal rotator cuff repair is specifically indicated and when biologic adjunctive therapy may be utilized.

  11. Indian continental margin gas hydrate prospects : results of the Indian National Gas Hydrate Program (NGHP) expedition 01

    Energy Technology Data Exchange (ETDEWEB)

    Collett, T [United States Geological Survey, Denver, CO (United States); Riedel, M. [McGill Univ., Montreal, PQ (Canada). Dept. of Earth and Planetary Sciences; Cochran, J.R. [Columbia Univ., Palisades, NY (United States). Lamont Doherty Earth Observatory; Boswell, R. [United States Dept. of Energy, Morgantown, WV (United States). National Energy Technology Lab; Kumar, P. [Pushpendra Kumar Oil and Natural Gas Corp. Ltd., Mumbai (India). Inst. of Engineering and Ocean Technology; Sathe, A.V. [Oil and Natural Gas Corp. Ltd., Uttaranchal (India). KDM Inst. of Petroleum Exploration

    2008-07-01

    The geologic occurrence of gas hydrate deposits along the continental margins of India were investigated in the first expedition of the Indian National Gas Hydrate Program (NGHP). The objective was to determine the regional context and characteristics of the gas hydrate deposits through scientific ocean drilling, logging, and analytical activities. A research drill ship was the platform for the drilling operation. The geological and geophysical studies revealed 2 geologically distinct areas with inferred gas hydrate occurrences, notably the passive continental margins of the Indian Peninsula and along the Andaman convergent margin. The NGHP Expedition 01 focused on understanding the geologic and geochemical controls on the occurrence of gas hydrate in these 2 diverse settings. The study established the presence of gas hydrates in Krishna-Godavari, Mahanadi and Andaman basins. Site 10 in the Krishna-Godavari Basin was discovered to be the one of the richest gas hydrate accumulations yet documented, while site 17 in the Andaman Sea had the thickest and deepest gas hydrate stability zone yet known. The existence of a fully-developed gas hydrate system in the Mahanadi Basin was also discovered. Most of the gas hydrate occurrences discovered during this expedition appeared to contain mostly methane which was generated by microbial processes. However, there was also evidence of a thermal origin for a portion of the gas within the hydrates of the Mahanadi Basin and the Andaman offshore area. Gas hydrate in the Krishna-Godavari Basin appeared to be closely associated with large scale structural features, in which the flux of gas through local fracture systems, generated by the regional stress regime, controlled the occurrence of gas hydrate. 3 refs., 1 tab., 2 figs.

  12. Heavy ion beam measurement of the hydration of cementitious materials

    International Nuclear Information System (INIS)

    Livingston, R.A.; Schweitzer, J.S.; Spillane, T.; Zickefoose, J.; Rolfs, C.; Becker, H.-W.; Kubsky, S.; Castellote, M.; Viedma, P.G. de; Cheung, J.

    2008-01-01

    Full text: The setting and development of strength of Portland cement concrete depends upon the reaction of water with various phases in the Portland cement including dicalcium silicate (C 2 S), tricalcium silicate (C 3 S) and tricalcium aluminate (C 3 A). The early age hydration reaction and setting time are determined by surface layers on the cement grains that form a region that is only a few 100 nm thick. This has been difficult to observe with conventional methods. Ion beam techniques have been used to investigate these layers in detail at the Tandem Accelerator facility of the University of the Ruhr in Bochum, Germany. The primary method has been Nuclear Resonance Reaction Analysis (NRRA) involving the 1 H( 15 N,αγ) 12 C reaction to measure the hydrogen depth profile. This technique has an H detection sensitivity of about 10 ppm and an H-depth resolution of a few nm at the surface.. Freshly cleaved mica is used as a calibration standard for conversion of gamma-ray counts to H concentration. The beam energy to depth conversion factor is obtained by numerical simulation using the Monte Carlo code TRIM. NRRA with the 1 H( 19 F, αγ) 16 O reaction has also been used to measure the hydrogen depth profile. Some samples were implanted with a 131 Xe layer in order to measure the depth profile of other significant elements such as calcium with Rutherford Backscattering (RBS), and also to measure the erosion of the surface layers

  13. The mechanism of vapor phase hydration of calcium oxide: implications for CO2 capture.

    Science.gov (United States)

    Kudłacz, Krzysztof; Rodriguez-Navarro, Carlos

    2014-10-21

    Lime-based sorbents are used for fuel- and flue-gas capture, thereby representing an economic and effective way to reduce CO2 emissions. Their use involves cyclic carbonation/calcination which results in a significant conversion reduction with increasing number of cycles. To reactivate spent CaO, vapor phase hydration is typically performed. However, little is known about the ultimate mechanism of such a hydration process. Here, we show that the vapor phase hydration of CaO formed after calcination of calcite (CaCO3) single crystals is a pseudomorphic, topotactic process, which progresses via an intermediate disordered phase prior to the final formation of oriented Ca(OH)2 nanocrystals. The strong structural control during this solid-state phase transition implies that the microstructural features of the CaO parent phase predetermine the final structural and physicochemical (reactivity and attrition) features of the product hydroxide. The higher molar volume of the product can create an impervious shell around unreacted CaO, thereby limiting the efficiency of the reactivation process. However, in the case of compact, sintered CaO structures, volume expansion cannot be accommodated in the reduced pore volume, and stress generation leads to pervasive cracking. This favors complete hydration but also detrimental attrition. Implications of these results in carbon capture and storage (CCS) are discussed.

  14. Synthesis of New Hydrated Geranylphenols and in Vitro Antifungal Activity against Botrytis cinerea

    Science.gov (United States)

    Soto, Mauricio; Espinoza, Luis; Chávez, María I.; Díaz, Katy; Olea, Andrés F.; Taborga, Lautaro

    2016-01-01

    Geranylated hydroquinones and other geranylated compounds isolated from Aplydium species have shown interesting biological activities. This fact has prompted a number of studies where geranylated phenol derivatives have been synthesized in order to assay their bioactivities. In this work, we report the synthesis of a series of new hydrated geranylphenols using two different synthetic approaches and their inhibitory effects on the mycelial growth of Botrytis cinerea. Five new hydrated geranylphenols were obtained by direct coupling reaction between geraniol and phenol in dioxane/water and using BF3·Et2O as the catalyst or by the reaction of a geranylated phenol with BF3·Et2O. Two new geranylated quinones were also obtained. The synthesis and structural elucidation of all new compounds is presented. All hydrated geranylphenols efficiently inhibit the mycelial growth of B. cinerea. Their activity is higher than that observed for non-hydrated compounds. These results indicate that structural modification on the geranyl chain brings about an enhancement of the inhibition effect of geranylated phenol derivatives. PMID:27271604

  15. Focus on the Development of Natural Gas Hydrate in China

    Directory of Open Access Journals (Sweden)

    Zhongfu Tan

    2016-05-01

    Full Text Available Natural gas hydrate, also known as combustible ice, and mainly composed of methane, is identified as a potential clean energy for the 21st century. Due to its large reserves, gas hydrate can ease problems caused by energy resource shortage and has gained attention around the world. In this paper, we focus on the exploration and development of gas hydrate as well as discussing its status and future development trend in China and abroad. We then analyze its opportunities and challenges in China from four aspects, resource, technology, economy and policy, with five forces model and Politics Economics Society Technology method. The results show China has abundance gas hydrate resource; however, backward technologies and inadequate investment have seriously hindered the future development of gas hydrate; thus, China should establish relevant cooperation framework and intuitional arrangement to attract more investment as well as breaking through technical difficulties to commercialization gas hydrate as soon as possible.

  16. Raman studies of methane-ethane hydrate metastability.

    Science.gov (United States)

    Ohno, Hiroshi; Strobel, Timothy A; Dec, Steven F; Sloan, E Dendy; Koh, Carolyn A

    2009-03-05

    The interconversion of methane-ethane hydrate from metastable to stable structures was studied using Raman spectroscopy. sI and sII hydrates were synthesized from methane-ethane gas mixtures of 65% or 93% methane in ethane and water, both with and without the kinetic hydrate inhibitor, poly(N-vinylcaprolactam). The observed faster structural conversion rate in the higher methane concentration atmosphere can be explained in terms of the differences in driving force (difference in chemical potential of water in sI and sII hydrates) and kinetics (mass transfer of gas and water rearrangement). The kinetic hydrate inhibitor increased the conversion rate at 65% methane in ethane (sI is thermodynamically stable) but retards the rate at 93% methane in ethane (sII is thermodynamically stable), implying there is a complex interaction between the polymer, water, and hydrate guests at crystal surfaces.

  17. Thermal conductivity measurements in unsaturated hydrate-bearing sediments

    Science.gov (United States)

    Dai, Sheng; Cha, Jong-Ho; Rosenbaum, Eilis J.; Zhang, Wu; Seol, Yongkoo

    2015-08-01

    Current database on the thermal properties of hydrate-bearing sediments remains limited and has not been able to capture their consequential changes during gas production where vigorous phase changes occur in this unsaturated system. This study uses the transient plane source (TPS) technique to measure the thermal conductivity of methane hydrate-bearing sediments with various hydrate/water/gas saturations. We propose a simplified method to obtain thermal properties from single-sided TPS signatures. Results reveal that both volume fraction and distribution of the pore constituents govern the thermal conductivity of unsaturated specimens. Thermal conductivity hysteresis is observed due to water redistribution and fabric change caused by hydrate formation and dissociation. Measured thermal conductivity increases evidently when hydrate saturation Sh > 30-40%, shifting upward from the geometric mean model prediction to a Pythagorean mixing model. These observations envisage a significant drop in sediment thermal conductivity when residual hydrate/water saturation falls below ~40%, hindering further gas production.

  18. Natural gas storage in hydrates with the presence of promoters

    International Nuclear Information System (INIS)

    Sun Zhigao; Wang Ruzhu; Ma Rongsheng; Guo Kaihua; Fan Shuanshi

    2003-01-01

    Hydrate technology is being developed for the storage and transport of natural gas. Micellar surfectant solutions were found to increase the gas hydrate formation rate and storage capacity. An anionic surfactant, a nonionic surfactant, their mixtures and cyclopentane were used to improve the hydrate formation of a synthetic natural gas (methane=92.05 mol%, ethane=4.96 mol%, propane=2.99 mol%) in a quiescent system in this work. The effect of an anionic surfactant (sodium dodecyl sulfate) on natural gas storage in hydrates is more pronounced compared to the effect of a nonionic surfactant (dodecyl polysaccharide glycoside). Cyclopentane could reduce hydrate formation induction time but could not improve the hydrate formation rate and storage capacity

  19. Gas hydrates distribution in the Shenhu area, northern South China Sea: comparisons between the eight drilling sites with gashydrate petroleum system

    Energy Technology Data Exchange (ETDEWEB)

    Su, M.; Yang, R.; Wang, H.; Sha, Z.; Liang, J.; Wu, N.; Qiao, S.; Cong, X.

    2016-07-01

    The results of the first marine gas hydrate drilling expedition of Guangzhou Marine Geological Survey (GMGS-1) in northern continental slope of the South China Sea revealed a variable distribution of gas hydrates in the Shenhu area. In this study, comparisons between the eight sites with gas-hydrate petroleum system were used to analyze and re-examine hydrate potential. In the Shenhu gas hydrate drilling area, all the sites were located in a suitable low-temperature, high-pressure environment. Biogenic and thermogenic gases contributed to the formation of hydrates. Gas chimneys and some small-scale faults (or micro-scale fractures) compose the migration pathways for gas-bearing fluids. Between these sites, there are three key differences: the seafloor temperatures and pressures; geothermal gradient and sedimentary conditions. Variations of seafloor temperatures and pressures related to water depths and geothermal gradient would lead to changes in the thickness of gas hydrate stability zones. Although the lithology and grain size of the sediments were similar, two distinct sedimentary units were identified for the first time through seismic interpretation, analysis of deep-water sedimentary processes, and the Cm pattern (plotted one-percentile and median values from grain-size analyses), implying the heterogeneous sedimentary conditions above Bottom Simulating Reflectors (BSRs). Based on the analyses of forming mechanisms and sedimentary processes, these two fine-grained sedimentary units have different physical properties. Fine-grained turbidites (Unit I) with thin-bedded chaotic reflectors at the bottom acted as the host rocks for hydrates; whereas, finegrained sediments related to soft-sediment deformation (Unit II) characterized by thick continuous reflectors at the top would serve as regional homogeneous caprocks. Low-flux methane that migrated upwards along chimneys could be enriched preferentially in fine-grained turbidites, resulting in the formation of

  20. Eulerian numbers

    CERN Document Server

    Petersen, T Kyle

    2015-01-01

    This text presents the Eulerian numbers in the context of modern enumerative, algebraic, and geometric combinatorics. The book first studies Eulerian numbers from a purely combinatorial point of view, then embarks on a tour of how these numbers arise in the study of hyperplane arrangements, polytopes, and simplicial complexes. Some topics include a thorough discussion of gamma-nonnegativity and real-rootedness for Eulerian polynomials, as well as the weak order and the shard intersection order of the symmetric group. The book also includes a parallel story of Catalan combinatorics, wherein the Eulerian numbers are replaced with Narayana numbers. Again there is a progression from combinatorics to geometry, including discussion of the associahedron and the lattice of noncrossing partitions. The final chapters discuss how both the Eulerian and Narayana numbers have analogues in any finite Coxeter group, with many of the same enumerative and geometric properties. There are four supplemental chapters throughout, ...

  1. Obsidian hydration profiles measured by sputter-induced optical emission.

    Science.gov (United States)

    Tsong, I S; Houser, C A; Yusef, N A; Messier, R F; White, W B; Michels, J W

    1978-07-28

    The variation of concentrations of hydrogen, sodium, potassium, lithium, calcium, magnesium, silicon, and aluminum as a function of depth in the hydration layer of obsidian artifacts has been determined by sputter-induced optical emission. The surface hydration is accompanied by dealkalization, and there is a buildup of alkaline earths, calcium and magnesium in the outermost layers. These results have clarified the phenomena underlying the obsidian hydration dating technique.

  2. Characteristics of Methane Hydrate Formation in Artificial and Natural Media

    OpenAIRE

    Peng Zhang; Qingbai Wu; Yuzhong Yang

    2013-01-01

    The formation of methane hydrate in two significantly different media was investigated, using silica gel as an artificial medium and loess as a natural medium. The methane hydrate formation was observed through the depletion of water in the matrix, measured via the matrix potential and the relationship between the matrix potential and the water content was determined using established equations. The velocity of methane hydrate nucleation slowed over the course of the reaction, as it relied on...

  3. Small angle neutron scattering from hydrated cement pastes

    International Nuclear Information System (INIS)

    Sabine, T.M.; Bertram, W.K.; Aldridge, L.P.

    1996-01-01

    Small angle neutron scattering (SANS) was used to study the microstructure of hydrating cement made with, and without silica fume. Some significant differences were found between the SANS spectra of pastes made from OPC (ordinary Portland cement) and DSP (made with silica fume and superplasticiser). The SANS spectra are interpreted in terms of scattering from simple particles. Particle growth was monitored during hydration and it was found that the growth correlated with the heat of hydration of the cement

  4. Nuclear Well Log Properties of Natural Gas Hydrate Reservoirs

    Science.gov (United States)

    Burchwell, A.; Cook, A.

    2015-12-01

    Characterizing gas hydrate in a reservoir typically involves a full suite of geophysical well logs. The most common method involves using resistivity measurements to quantify the decrease in electrically conductive water when replaced with gas hydrate. Compressional velocity measurements are also used because the gas hydrate significantly strengthens the moduli of the sediment. At many gas hydrate sites, nuclear well logs, which include the photoelectric effect, formation sigma, carbon/oxygen ratio and neutron porosity, are also collected but often not used. In fact, the nuclear response of a gas hydrate reservoir is not known. In this research we will focus on the nuclear log response in gas hydrate reservoirs at the Mallik Field at the Mackenzie Delta, Northwest Territories, Canada, and the Gas Hydrate Joint Industry Project Leg 2 sites in the northern Gulf of Mexico. Nuclear logs may add increased robustness to the investigation into the properties of gas hydrates and some types of logs may offer an opportunity to distinguish between gas hydrate and permafrost. For example, a true formation sigma log measures the thermal neutron capture cross section of a formation and pore constituents; it is especially sensitive to hydrogen and chlorine in the pore space. Chlorine has a high absorption potential, and is used to determine the amount of saline water within pore spaces. Gas hydrate offers a difference in elemental composition compared to water-saturated intervals. Thus, in permafrost areas, the carbon/oxygen ratio may vary between gas hydrate and permafrost, due to the increase of carbon in gas hydrate accumulations. At the Mallik site, we observe a hydrate-bearing sand (1085-1107 m) above a water-bearing sand (1107-1140 m), which was confirmed through core samples and mud gas analysis. We observe a decrease in the photoelectric absorption of ~0.5 barnes/e-, as well as an increase in the formation sigma readings of ~5 capture units in the water-bearing sand as

  5. Impact of welan gum on tricalcium aluminate–gypsum hydration

    International Nuclear Information System (INIS)

    Ma Lei; Zhao Qinglin; Yao Chukang; Zhou Mingkai

    2012-01-01

    The retarding effect of welan gum on tricalcium aluminate–gypsum hydration, as a partial system of ordinary Portland cement (OPC) hydration, was investigated with several methods. The tricalcium aluminate–gypsum hydration behavior in the presence or absence of welan gum was researched by field emission gun scanning electron microscopy, X-ray diffraction and zeta potential analysis. Meanwhile, we studied the surface electrochemical properties and adsorption characteristics of welan gum by utilizing a zeta potential analyzer and UV–VIS absorption spectrophotometer. By adding welan gum, the morphology change of ettringite and retardation of hydration stages in tricalcium aluminate–gypsum system was observed. Moreover, we detected the adsorption behavior and zeta potential inversion of tricalcium aluminate and ettringite, as well as a rapid decrease in the zeta potential of tricalcium aluminate–gypsum system. The reduction on nucleation rate of ettringite and hydration activity of C 3 A was also demonstrated. Thus, through the adsorption effect, welan gum induces a retarding behavior in tricalcium aluminate–gypsum hydration. Highlights: ► Adsorption characteristics of welan gum on C 3 A and ettringite have been studied. ► C 3 A–gypsum hydration behavior and the hydration products are examined in L/S = 3. ► Welan gum retards the process of C 3 A–gypsum hydration. ► The addition of welan gum changes the nucleation growth of ettringite.

  6. Geomechanical Performance of Hydrate-Bearing Sediment in Offshore Environments

    Energy Technology Data Exchange (ETDEWEB)

    Stephen Holditch; Tad Patzek; Jonny Rutqvist; George Moridis; Richard Plumb

    2008-03-31

    The objective of this multi-year, multi-institutional research project was to develop the knowledge base and quantitative predictive capability for the description of geomechanical performance of hydrate-bearing sediments (hereafter referred to as HBS) in oceanic environments. The focus was on the determination of the envelope of hydrate stability under conditions typical of those related to the construction and operation of offshore platforms. We have developed a robust numerical simulator of hydrate behavior in geologic media by coupling a reservoir model with a commercial geomechanical code. We also investigated the geomechanical behavior of oceanic HBS using pore-scale models (conceptual and mathematical) of fluid flow, stress analysis, and damage propagation. The objective of the UC Berkeley work was to develop a grain-scale model of hydrate-bearing sediments. Hydrate dissociation alters the strength of HBS. In particular, transformation of hydrate clusters into gas and liquid water weakens the skeleton and, simultaneously, reduces the effective stress by increasing the pore pressure. The large-scale objective of the study is evaluation of geomechanical stability of offshore oil and gas production infrastructure. At Lawrence Berkeley National Laboratory (LBNL), we have developed the numerical model TOUGH + Hydrate + FLAC3D to evaluate how the formation and disassociation of hydrates in seafloor sediments affects seafloor stability. Several technical papers were published using results from this model. LBNL also developed laboratory equipment and methods to produce realistic laboratory samples of sediments containing gas hydrates so that mechanical properties could be measured in the laboratory. These properties are required to run TOUGH + Hydrate + FLAC3D to evaluate seafloor stability issues. At Texas A&M University we performed a detailed literature review to determine what gas hydrate formation properties had been measured and reported in the literature. We

  7. Hydration of Portoguese cements, measurement and modelling of chemical shrinkage

    DEFF Research Database (Denmark)

    Maia, Lino; Geiker, Mette Rica; Figueiras, Joaquim A.

    2008-01-01

    form of the dispersion model. The development of hydration varied between the investigated cements; based on the measured data the degree of hydration after 24 h hydration at 20 C varied between 40 and 50%. This should be taken into account when comparing properties of concrete made from the different......Development of cement hydration was studied by measuring the chemical shrinkage of pastes. Five types of Portuguese Portland cement were used in cement pastes with . Chemical shrinkage was measured by gravimetry and dilatometry. In gravimeters results were recorded automatically during at least...

  8. Ethylene Separation via Hydrate Formation in W/O Emulsions

    Directory of Open Access Journals (Sweden)

    Yong Pan

    2015-05-01

    Full Text Available An hybrid absorption-hydration method was adopted to recover C2H4 from C2H4/CH4 binary gas mixtures and the hydrate formation conditions of C2H4/CH4 mixtures was studied experimentally in diesel in water (w/o emulsions. Span 20 at a concentration of 1.0 wt% in the aqueous phase was added to form water in diesel emulsions before hydrate formation and then hydrate in diesel slurry was separated after hydrate formation. The influences of initial gas-liquid volume ratio (53–142, pressure (3.4–5.4 MPa, temperature (274.15–278.15 K, water cuts (10–30 vol%, and the mole fraction of C2H4 in feed gas (13.19–80.44 mol% upon the C2H4 separation efficiency were systematically investigated. The experimental results show that ethylene can be enriched in hydrate slurry phase with high separation factor (S and recovery ratio (R. Most hydrate formation finished in 20 min, after that, the hydrate formation rate became very slow. The conclusion is useful for determining the suitable operation conditions when adopting an absorption-hydration method to separate C2H4/CH4.

  9. Methane Production and Carbon Capture by Hydrate Swapping

    DEFF Research Database (Denmark)

    Mu, Liang; von Solms, Nicolas

    2017-01-01

    There are essentially two different approaches to producing methane from natural gas hydrate reservoirs, either bring the hydrate out of its thermodynamic stability region or expose the hydrate to a substance that will form a more stable hydrate structure, forcing an in situ swapping of the trapped...... experimental runs were performed to examine the influence of operating conditions on methane production by CO2/(CO2 + N2) injection in the temperature range of 274.15–277.15 K and 7.039–10.107 MPa pressure. Our results show that the use of the (CO2 + N2) binary gas mixture is advantageous compared to the use...

  10. HYDRATION AND MICROSTRUCTURE OF BLENDED CEMENT WITH SODIUM POLYSTYRENE SULFONATE

    Directory of Open Access Journals (Sweden)

    Weifeng Li

    2017-03-01

    Full Text Available Polystyrene foamed plastic wastes are a kind of environmental pollutant. It could be recycled in cement industry as a chemical agent. In this paper, the effects of sodium polystyrene sulfonate (SPS on the hydration and microstructure of blended cement were investigated by calorimetry, X-ray diffraction (XRD, scanning electron microscopy (SEM and mercury intrusion porosimetry (MIP. SPS slightly delayed the hydration of alite and decreased its hydration degree. SPS did not change the phase compositions during hydration. SPS changed the morphology of ettringite (AFt and decreased the pore volumes and the sizes of pores.

  11. Effects of various vehicles on skin hydration in vivo.

    Science.gov (United States)

    Wiedersberg, S; Leopold, C S; Guy, R H

    2009-01-01

    The stratum corneum, the outermost layer of the skin, regulates the passive loss of water to the environment. Furthermore, it is well accepted that drug penetration is influenced by skin hydration, which may be manipulated by the application of moisturizing or oleaginous vehicles. Measurements of transepidermal water loss (TEWL), and of skin hydration using a corneometer, were used to assess the effect of different vehicles on stratum corneum barrier function in vivo in human volunteers. A microemulsion significantly increased skin hydration relative to a reference vehicle based on medium chain triglycerides; in contrast, Transcutol(R) lowered skin hydration. TEWL measurements confirmed these observations. Copyright 2009 S. Karger AG, Basel.

  12. Thick-to-Thin Filament Surface Distance Modulates Cross-Bridge Kinetics in Drosophila Flight Muscle

    Energy Technology Data Exchange (ETDEWEB)

    Tanner, Bertrand C.W.; Farman, Gerrie P.; Irving, Thomas C.; Maughan, David W.; Palmer, Bradley M.; Miller, Mark S. (IIT); (Vermont); (BU)

    2012-09-19

    The demembranated (skinned) muscle fiber preparation is widely used to investigate muscle contraction because the intracellular ionic conditions can be precisely controlled. However, plasma membrane removal results in a loss of osmotic regulation, causing abnormal hydration of the myofilament lattice and its proteins. We investigated the structural and functional consequences of varied myofilament lattice spacing and protein hydration on cross-bridge rates of force development and detachment in Drosophila melanogaster indirect flight muscle, using x-ray diffraction to compare the lattice spacing of dissected, osmotically compressed skinned fibers to native muscle fibers in living flies. Osmolytes of different sizes and exclusion properties (Dextran T-500 and T-10) were used to differentially alter lattice spacing and protein hydration. At in vivo lattice spacing, cross-bridge attachment time (t{sub on}) increased with higher osmotic pressures, consistent with a reduced cross-bridge detachment rate as myofilament protein hydration decreased. In contrast, in the swollen lattice, t{sub on} decreased with higher osmotic pressures. These divergent responses were reconciled using a structural model that predicts t{sub on} varies inversely with thick-to-thin filament surface distance, suggesting that cross-bridge rates of force development and detachment are modulated more by myofilament lattice geometry than protein hydration. Generalizing these findings, our results suggest that cross-bridge cycling rates slow as thick-to-thin filament surface distance decreases with sarcomere lengthening, and likewise, cross-bridge cycling rates increase during sarcomere shortening. Together, these structural changes may provide a mechanism for altering cross-bridge performance throughout a contraction-relaxation cycle.

  13. Transfinite Numbers

    Indian Academy of Sciences (India)

    Transfinite Numbers. What is Infinity? S M Srivastava. In a series of revolutionary articles written during the last quarter of the nineteenth century, the great Ger- man mathematician Georg Cantor removed the age-old mistrust of infinity and created an exceptionally beau- tiful and useful theory of transfinite numbers. This is.

  14. Static and dynamic through thickness lamina properties of thick laminates

    NARCIS (Netherlands)

    Lahuerta, F.; Nijssen, R.P.L.; Van der Meer, F.P.; Sluys, L.J.

    2015-01-01

    Thick laminates are increasingly present in large composites structures such as wind turbine blades. Different factors are suspected to be involved in the decreased static and dynamic performance of thick laminates. These include the effect of self-heating, the scaling effect, and the manufacturing

  15. A consistent and verifiable macroscopic model for the dissolution of liquid CO2 in water under hydrate forming conditions

    International Nuclear Information System (INIS)

    Radhakrishnan, R.; Demurov, A.; Trout, B.L.; Herzog, H.

    2003-01-01

    Direct injection of liquid CO 2 into the ocean has been proposed as one method to reduce the emission levels of CO 2 into the atmosphere. When liquid CO 2 is injected (normally as droplets) at ocean depths >500 m, a solid interfacial region between the CO 2 and the water is observed to form. This region consists of hydrate clathrates and hinders the rate of dissolution of CO 2 . It is, therefore, expected to have a significant impact on the injection of liquid CO 2 into the ocean. Up until now, no consistent and predictive model for the shrinking of droplets of CO 2 under hydrate forming conditions has been proposed. This is because all models proposed to date have had too many unknowns. By computing rates of the physical and chemical processes in hydrates via molecular dynamics simulations, we have been able to determine independently some of these unknowns. We then propose the most reasonable model and use it to make independent predictions of the rates of mass transfer and thickness of the hydrate region. These predictions are compared to measurements, and implications to the rates of shrinkage of CO 2 droplets under varying flow conditions are discussed. (author)

  16. Overview of the science activities for the 2002 Mallik gas hydrate production research well program, Mackenzie Delta, N.W.T., Canada

    Science.gov (United States)

    Dallimore, S. R.; Collett, T. S.; Uchida, T.; Weber, M.

    2003-04-01

    With the completion of scientific studies undertaken as part of the 1998 Mallik 2L-38 gas hydrate research well, an international research site was established for the study of Arctic natural gas hydrates in the Mackenzie Delta of northwestern Canada. Quantitative well log analysis and core studies reveal multiple gas hydrate layers from 890 m to 1106 m depth, exceeding 110 m in total thickness. High gas hydrate saturation values, which in some cases exceed 80% of the pore volume, establish the Mallik gas hydrate field as one of the most concentrated gas hydrate reservoirs in the world. Beginning in December 2001 and continuing to the middle of March 2002, two 1188 m deep science observation wells were drilled and instrumented and a 1166 m deep production research well program was carried out. The program participants include 8 partners; The Geological Survey of Canada (GSC), The Japan National Oil Corporation (JNOC), GeoForschungsZentrum Potsdam (GFZ), United States Geological Survey (USGS), United States Department of the Energy (USDOE), India Ministry of Petroleum and Natural Gas (MOPNG)/Gas Authority of India (GAIL) and the Chevron-BP-Burlington joint venture group. In addition the project has been accepted as part of the International Scientific Continental Drilling Program. The Geological Survey of Canada is coordinating the science program for the project and JAPEX Canada Ltd. acted as the designated operator for the fieldwork. Primary objectives of the research program are to advance fundamental geological, geophysical and geochemical studies of the Mallik gas hydrate field and to undertake advanced production testing of a concentrated gas hydrate reservoir. Full-scale field experiments in the production well monitored the physical behavior of the hydrate deposits in response to depressurization and thermal stimulation. The observation wells facilitated cross-hole tomography and vertical seismic profile experiments (before and after production) as well as

  17. Hydrated electron: a destroyer of perfluorinated carboxylates?

    International Nuclear Information System (INIS)

    Huang Li; Dong Wenbo; Hou Huiqi

    2006-01-01

    As a class, perfluorinated carboxylate (PFCA) was ranked among the most prominent organohalogen contaminants in environment with respect to thermal, chemical and biological inertness. Hydrated electron (e aq - ), a highly reactive and strongly reductive species, has been reported to readily decompose perfluoroaromatic compounds via intermolecular electron transfer process in aqueous solution. Question then arose: what would happen if perfluorinated carboxylates encountered with hydrated electron? Original laboratory trial on the interaction between F(CF 2 ) n COO - (n=1, 3, 7) and hydrated electron was attempted by using laser flash photolysis technique in this research work. Abundant hydrated electron (e aq - ) could be produced by photolysis of 1.25 x 10 -4 M K 4 Fe(CN) 6 in nitrogen saturated water. In the presence of F(CF 2 ) n COO - (n=1, 3, 7), the decay of e aq - was observed to enhance dramatically, indicating e aq - was able to attack PFCAs. On addition of perfluorinated carboxylates, the loss of e aq - was mainly due to the following channels. By mixing the solution of K 4 Fe(CN) 6 with excess K 3 Fe(CN) 6 and PFCAs, e aq - turned to decayed corresponding to mixed first- and second-order kinetics. Rate constants for the reactions of e aq - with PFCAs could be then easily determined by monitoring the decay of e aq - absorption at 690 nm. Since perfluorinated carboxylates were salts, the influence of ionic strength on k 3 was examined systematically by carrying out experiments of varying ionic strength ranging from 0.009 up to 0.102 M by adding NaClO 4 . In this manner, the second order rate constants for e-aq with CF 3 COO - , C 3 F 7 COO - , C 7 F 15 COO - were derived to be (1.9±0.2) x 10 6 M -1 S -1 (μ=0), (7.1±0.2) x 10 6 M -1 S -1 (μ=0) and (1.7±0.5) x10 7 M -1 S -1 (μ=0.009 M) respectively. Apparently, the length of F(CF 2 ) n group exerted substantial influence on the rate constant. Further study on byproducts analysis by ion chromatography

  18. Correlations between skin hydration parameters and corneocyte-derived parameters to characterize skin conditions.

    Science.gov (United States)

    Masaki, Hitoshi; Yamashita, Yuki; Kyotani, Daiki; Honda, Tatsuya; Takano, Kenichi; Tamura, Toshiyasu; Mizutani, Taeko; Okano, Yuri

    2018-03-30

    Skin hydration is generally assessed using the parameters of skin surface water content (SWC) and trans-epidermal water loss (TEWL). To date, few studies have characterized skin conditions using correlations between skin hydration parameters and corneocyte parameters. The parameters SWC and TEWL allow the classification of skin conditions into four distinct Groups. The purpose of this study was to assess the characteristics of skin conditions classified by SWC and TEWL for correlations with parameters from corneocytes. A human volunteer test was conducted that measured SWC and TEWL. As corneocyte-derived parameters, the size and thick abrasion ratios, the ratio of sulfhydryl groups and disulfide bonds (SH/SS) and CP levels were analyzed. Volunteers were classified by their median SWC and TEWL values into 4 Groups: Group I (high SWC/low TEWL), Group II (high SWC/high TEWL), Group III (low SWC/low TEWL), and Group IV (low SWC/high TEWL). Group IV showed a significantly smaller size of corneocytes. Groups III and IV had significantly higher thick abrasion ratios and CP levels. Group I had a significantly lower SH/SS value. The SWC/TEWL value showed a decline in order from Group I to Group IV. Groups classified by their SWC and TEWL values showed characteristic skin conditions. We propose that the SWC and TEWL ratio is a comprehensive parameter to assess skin conditions. © 2018 Wiley Periodicals, Inc.

  19. Life Origination Hydrate Hypothesis (LOH-Hypothesis

    Directory of Open Access Journals (Sweden)

    Victor Ostrovskii

    2012-01-01

    Full Text Available The paper develops the Life Origination Hydrate Hypothesis (LOH-hypothesis, according to which living-matter simplest elements (LMSEs, which are N-bases, riboses, nucleosides, nucleotides, DNA- and RNA-like molecules, amino-acids, and proto-cells repeatedly originated on the basis of thermodynamically controlled, natural, and inevitable processes governed by universal physical and chemical laws from CH4, niters, and phosphates under the Earth's surface or seabed within the crystal cavities of the honeycomb methane-hydrate structure at low temperatures; the chemical processes passed slowly through all successive chemical steps in the direction that is determined by a gradual decrease in the Gibbs free energy of reacting systems. The hypothesis formulation method is based on the thermodynamic directedness of natural movement and consists ofan attempt to mentally backtrack on the progression of nature and thus reveal principal milestones alongits route. The changes in Gibbs free energy are estimated for different steps of the living-matter origination process; special attention is paid to the processes of proto-cell formation. Just the occurrence of the gas-hydrate periodic honeycomb matrix filled with LMSEs almost completely in its final state accounts for size limitation in the DNA functional groups and the nonrandom location of N-bases in the DNA chains. The slowness of the low-temperature chemical transformations and their “thermodynamic front” guide the gross process of living matter origination and its successive steps. It is shown that the hypothesis is thermodynamically justified and testable and that many observed natural phenomena count in its favor.

  20. In situ non-destructive measurement of biofilm thickness and topology in an interferometric optical microscope.

    Science.gov (United States)

    Larimer, Curtis; Suter, Jonathan D; Bonheyo, George; Addleman, Raymond Shane

    2016-06-01

    Biofilms are ubiquitous and impact the environment, human health, dental hygiene, and a wide range of industrial processes. Biofilms are difficult to characterize when fully hydrated, especially in a non-destructive manner, because of their soft structure and water-like bulk properties. Herein a method of measuring and monitoring the thickness and topology of live biofilms of using white light interferometry is described. Using this technique, surface morphology, surface roughness, and biofilm thickness were measured over time without while the biofilm continued to grow. The thickness and surface topology of a P. putida biofilm were monitored growing from initial colonization to a mature biofilm. Measured thickness followed expected trends for bacterial growth. Surface roughness also increased over time and was a leading indicator of biofilm growth. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. A DFT-based comparative equilibrium study of thermal dehydration and hydrolysis of CaCl2 hydrates and MgCl2 hydrates for seasonal heat storage

    NARCIS (Netherlands)

    Pathak, A.D.; Gaastra-Nedea, S.V.; Zondag, H.A.; Rindt, C.C.M.; Smeulders, D.M.J.

    2016-01-01

    Salt hydrates store solar energy in chemical form via a reversible dehydration–hydration reaction. However, as a side reaction to dehydration, hydrolysis (HCl formation) may occur in chloride based salt hydrates (specially in MgCl2 hydrates), affecting the durability of the storage system. The

  2. Suspension hydration of C3S [tricalcium silicate] at constant pH. II. Effect of previously formed hydrates and of additives

    NARCIS (Netherlands)

    McCurdy, K.G.; Stein, H.N.

    1973-01-01

    A retardation shown by the hydration of C3S at pH=11.5 can be prevented if before the addition of C3S there are present hydrate particles in the aqueous medium. These hydrate particles probably have the composition CSHn. This indicates a hydrate CSHn, precipitated from solution, as the retarding

  3. Sodium bicarbonate-based hydration prevents contrast-induced nephropathy: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Tamhane Umesh

    2009-05-01

    Full Text Available Abstract Background Contrast-induced nephropathy is the leading cause of in-hospital acute renal failure. This side effect of contrast agents leads to increased morbidity, mortality, and health costs. Ensuring adequate hydration prior to contrast exposure is highly effective at preventing this complication, although the optimal hydration strategy to prevent contrast-induced nephropathy still remains an unresolved issue. Former meta-analyses and several recent studies have shown conflicting results regarding the protective effect of sodium bicarbonate. The objective of this study was to assess the effectiveness of normal saline versus sodium bicarbonate for prevention of contrast-induced nephropathy. Methods The study searched MEDLINE, EMBASE, Cochrane databases, International Pharmaceutical Abstracts database, ISI Web of Science (until 15 December 2008, and conference proceedings for randomized controlled trials that compared normal saline with sodium bicarbonate-based hydration regimen regarding contrast-induced nephropathy. Random-effects models were used to calculate summary odds ratios. Results A total of 17 trials including 2,633 subjects were pooled. Pre-procedural hydration with sodium bicarbonate was associated with a significant decrease in the rate of contrast-induced nephropathy (odds ratios 0.52; 95% confidence interval 0.34–0.80, P = 0.003. Number needed to treat to prevent one case of contrast-induced nephropathy was 16 (95% confidence interval 10–34. No significant differences in the rates of post-procedure hemodialysis (P = 0.20 or death (P = 0.53 was observed. Conclusion Sodium bicarbonate-based hydration was found to be superior to normal saline in prevention of contrast-induced nephropathy in this updated meta-analysis.

  4. Chocolate Numbers

    OpenAIRE

    Ji, Caleb; Khovanova, Tanya; Park, Robin; Song, Angela

    2015-01-01

    In this paper, we consider a game played on a rectangular $m \\times n$ gridded chocolate bar. Each move, a player breaks the bar along a grid line. Each move after that consists of taking any piece of chocolate and breaking it again along existing grid lines, until just $mn$ individual squares remain. This paper enumerates the number of ways to break an $m \\times n$ bar, which we call chocolate numbers, and introduces four new sequences related to these numbers. Using various techniques, we p...

  5. Number theory

    CERN Document Server

    Andrews, George E

    1994-01-01

    Although mathematics majors are usually conversant with number theory by the time they have completed a course in abstract algebra, other undergraduates, especially those in education and the liberal arts, often need a more basic introduction to the topic.In this book the author solves the problem of maintaining the interest of students at both levels by offering a combinatorial approach to elementary number theory. In studying number theory from such a perspective, mathematics majors are spared repetition and provided with new insights, while other students benefit from the consequent simpl

  6. Withholding hydration and nutrition in newborns.

    Science.gov (United States)

    Porta, Nicolas; Frader, Joel

    2007-01-01

    In the twenty-first century, decisions to withhold or withdraw life-supporting measures commonly precede death in the neonatal intensive care unit without major ethical controversy. However, caregivers often feel much greater turmoil with regard to stopping medical hydration and nutrition than they do when considering discontinuation of mechanical ventilation or circulatory support. Nevertheless, forgoing medical fluids and food represents a morally acceptable option as part of a carefully developed palliative care plan considering the infant's prognosis and the burdens of continued treatment. Decisions to stop any form of life support should focus on the clinical circumstances, not the means used to sustain life.

  7. Well log characterization of natural gas-hydrates

    Science.gov (United States)

    Collett, Timothy S.; Lee, Myung W.

    2012-01-01

    In the last 25 years there have been significant advancements in the use of well-logging tools to acquire detailed information on the occurrence of gas hydrates in nature: whereas wireline electrical resistivity and acoustic logs were formerly used to identify gas-hydrate occurrences in wells drilled in Arctic permafrost environments, more advanced wireline and logging-while-drilling (LWD) tools are now routinely used to examine the petrophysical nature of gas-hydrate reservoirs and the distribution and concentration of gas hydrates within various complex reservoir systems. Resistivity- and acoustic-logging tools are the most widely used for estimating the gas-hydrate content (i.e., reservoir saturations) in various sediment types and geologic settings. Recent integrated sediment coring and well-log studies have confirmed that electrical-resistivity and acoustic-velocity data can yield accurate gas-hydrate saturations in sediment grain-supported (isotropic) systems such as sand reservoirs, but more advanced log-analysis models are required to characterize gas hydrate in fractured (anisotropic) reservoir systems. New well-logging tools designed to make directionally oriented acoustic and propagation-resistivity log measurements provide the data needed to analyze the acoustic and electrical anisotropic properties of both highly interbedded and fracture-dominated gas-hydrate reservoirs. Advancements in nuclear magnetic resonance (NMR) logging and wireline formation testing (WFT) also allow for the characterization of gas hydrate at the pore scale. Integrated NMR and formation testing studies from northern Canada and Alaska have yielded valuable insight into how gas hydrates are physically distributed in sediments and the occurrence and nature of pore fluids(i.e., free water along with clay- and capillary-bound water) in gas-hydrate-bearing reservoirs. Information on the distribution of gas hydrate at the pore scale has provided invaluable insight on the mechanisms

  8. Investigating the Metastability of Clathrate Hydrates for Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Carolyn Ann [Colorado School of Mines, Golden, CO (United States)

    2014-11-18

    Important breakthrough discoveries have been achieved from the DOE award on the key processes controlling the synthesis and structure-property relations of clathrate hydrates, which are critical to the development of clathrate hydrates as energy storage materials. Key achievements include: (i) the discovery of key clathrate hydrate building blocks (stable and metastable) leading to clathrate hydrate nucleation and growth; (ii) development of a rapid clathrate hydrate synthesis route via a seeding mechanism; (iii) synthesis-structure relations of H2 + CH4/CO2 binary hydrates to control thermodynamic requirements for energy storage and sequestration applications; (iv) discovery of a new metastable phase present during clathrate hydrate structural transitions. The success of our research to-date is demonstrated by the significant papers we have published in high impact journals, including Science, Angewandte Chemie, J. Am. Chem. Soc. Intellectual Merits of Project Accomplishments: The intellectual merits of the project accomplishments are significant and transformative, in which the fundamental coupled computational and experimental program has provided new and critical understanding on the key processes controlling the nucleation, growth, and thermodynamics of clathrate hydrates containing hydrogen, methane, carbon dioxide, and other guest molecules for energy storage. Key examples of the intellectual merits of the accomplishments include: the first discovery of the nucleation pathways and dominant stable and metastable structures leading to clathrate hydrate formation; the discovery and experimental confirmation of new metastable clathrate hydrate structures; the development of new synthesis methods for controlling clathrate hydrate formation and enclathration of molecular hydrogen. Broader Impacts of Project Accomplishments: The molecular investigations performed in this project on the synthesis (nucleation & growth)-structure-stability relations of clathrate

  9. Free energy landscape and molecular pathways of gas hydrate nucleation

    International Nuclear Information System (INIS)

    Bi, Yuanfei; Porras, Anna; Li, Tianshu

    2016-01-01

    Despite the significance of gas hydrates in diverse areas, a quantitative knowledge of hydrate formation at a molecular level is missing. The impediment to acquiring this understanding is primarily attributed to the stochastic nature and ultra-fine scales of nucleation events, posing a great challenge for both experiment and simulation to explore hydrate nucleation. Here we employ advanced molecular simulation methods, including forward flux sampling (FFS), p B histogram analysis, and backward flux sampling, to overcome the limit of direct molecular simulation for exploring both the free energy landscape and molecular pathways of hydrate nucleation. First we test the half-cage order parameter (H-COP) which we developed for driving FFS, through conducting the p B histogram analysis. Our results indeed show that H-COP describes well the reaction coordinates of hydrate nucleation. Through the verified order parameter, we then directly compute the free energy landscape for hydrate nucleation by combining both forward and backward flux sampling. The calculated stationary distribution density, which is obtained independently of nucleation theory, is found to fit well against the classical nucleation theory (CNT). Subsequent analysis of the obtained large ensemble of hydrate nucleation trajectories show that although on average, hydrate formation is facilitated by a two-step like mechanism involving a gradual transition from an amorphous to a crystalline structure, there also exist nucleation pathways where hydrate crystallizes directly, without going through the amorphous stage. The CNT-like free energy profile and the structural diversity suggest the existence of multiple active transition pathways for hydrate nucleation, and possibly also imply the near degeneracy in their free energy profiles among different pathways. Our results thus bring a new perspective to the long standing question of how hydrates crystallize.

  10. Free energy landscape and molecular pathways of gas hydrate nucleation.

    Science.gov (United States)

    Bi, Yuanfei; Porras, Anna; Li, Tianshu

    2016-12-07

    Despite the significance of gas hydrates in diverse areas, a quantitative knowledge of hydrate formation at a molecular level is missing. The impediment to acquiring this understanding is primarily attributed to the stochastic nature and ultra-fine scales of nucleation events, posing a great challenge for both experiment and simulation to explore hydrate nucleation. Here we employ advanced molecular simulation methods, including forward flux sampling (FFS), p B histogram analysis, and backward flux sampling, to overcome the limit of direct molecular simulation for exploring both the free energy landscape and molecular pathways of hydrate nucleation. First we test the half-cage order parameter (H-COP) which we developed for driving FFS, through conducting the p B histogram analysis. Our results indeed show that H-COP describes well the reaction coordinates of hydrate nucleation. Through the verified order parameter, we then directly compute the free energy landscape for hydrate nucleation by combining both forward and backward flux sampling. The calculated stationary distribution density, which is obtained independently of nucleation theory, is found to fit well against the classical nucleation theory (CNT). Subsequent analysis of the obtained large ensemble of hydrate nucleation trajectories show that although on average, hydrate formation is facilitated by a two-step like mechanism involving a gradual transition from an amorphous to a crystalline structure, there also exist nucleation pathways where hydrate crystallizes directly, without going through the amorphous stage. The CNT-like free energy profile and the structural diversity suggest the existence of multiple active transition pathways for hydrate nucleation, and possibly also imply the near degeneracy in their free energy profiles among different pathways. Our results thus bring a new perspective to the long standing question of how hydrates crystallize.

  11. Free energy landscape and molecular pathways of gas hydrate nucleation

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Yuanfei; Porras, Anna; Li, Tianshu, E-mail: tsli@gwu.edu [Department of Civil and Environmental Engineering, George Washington University, Washington DC 20052 (United States)

    2016-12-07

    Despite the significance of gas hydrates in diverse areas, a quantitative knowledge of hydrate formation at a molecular level is missing. The impediment to acquiring this understanding is primarily attributed to the stochastic nature and ultra-fine scales of nucleation events, posing a great challenge for both experiment and simulation to explore hydrate nucleation. Here we employ advanced molecular simulation methods, including forward flux sampling (FFS), p{sub B} histogram analysis, and backward flux sampling, to overcome the limit of direct molecular simulation for exploring both the free energy landscape and molecular pathways of hydrate nucleation. First we test the half-cage order parameter (H-COP) which we developed for driving FFS, through conducting the p{sub B} histogram analysis. Our results indeed show that H-COP describes well the reaction coordinates of hydrate nucleation. Through the verified order parameter, we then directly compute the free energy landscape for hydrate nucleation by combining both forward and backward flux sampling. The calculated stationary distribution density, which is obtained independently of nucleation theory, is found to fit well against the classical nucleation theory (CNT). Subsequent analysis of the obtained large ensemble of hydrate nucleation trajectories show that although on average, hydrate formation is facilitated by a two-step like mechanism involving a gradual transition from an amorphous to a crystalline structure, there also exist nucleation pathways where hydrate crystallizes directly, without going through the amorphous stage. The CNT-like free energy profile and the structural diversity suggest the existence of multiple active transition pathways for hydrate nucleation, and possibly also imply the near degeneracy in their free energy profiles among different pathways. Our results thus bring a new perspective to the long standing question of how hydrates crystallize.

  12. Behaviour of gas production from type 3 hydrate reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Pooladi-Darvish, M. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering]|[Fekete Associates Inc., Calgary, AB (Canada); Zatsepina, O. [Calgary Univ., AB (Canada). Dept. of Chemical and Petroleum Engineering; Hong, H. [Fekete Associates Inc., Calgary, AB (Canada)

    2008-07-01

    The possible role of gas hydrates as a potential energy resource was discussed with particular reference to methods for estimating the rate of gas production from hydrate reservoirs under different operating conditions. This paper presented several numerical simulations studies of gas production from type 3 hydrate reservoirs in 1-D and 2-D geometries. Type 3 reservoirs include gas production from hydrate-reservoirs that lie totally within the hydrate stability zone and are sandwiched by impermeable layers on top and bottom. The purpose of this study was to better understand hydrate decomposition by depressurization. The study questioned whether 1-D modeling of type 3 hydrate reservoirs is a reasonable approximation. It also determined whether gas rate increases or decreases with time. The important reservoir characteristics for determining the rate of gas production were identified. Last, the study determined how competition between fluid and heat flow affects hydrate decomposition. This paper also described the relation and interaction between the heat and fluid flow mechanisms in depressurization of type 3 hydrate reservoirs. All results of 1-D and 2-D numerical simulation and analyses were generated using the STARS simulator. It was shown that the rate of gas production depends on the initial pressure/temperature conditions and permeability of the hydrate bearing formation. A high peak rate may be achieved under favourable conditions, but this peak rate is obtained after an initial period where the rate of gas production increases with time. The heat transfer in the direction perpendicular to the direction of fluid flow is significant, requiring 2D modeling. The hydraulic diffusivity is low because of the low permeability of hydrate-bearing formations. This could result in competition between heat and fluid flow, thereby influencing the behaviour of decomposition. 6 refs., 3 tabs., 12 figs.

  13. Nice numbers

    CERN Document Server

    Barnes, John

    2016-01-01

    In this intriguing book, John Barnes takes us on a journey through aspects of numbers much as he took us on a geometrical journey in Gems of Geometry. Similarly originating from a series of lectures for adult students at Reading and Oxford University, this book touches a variety of amusing and fascinating topics regarding numbers and their uses both ancient and modern. The author intrigues and challenges his audience with both fundamental number topics such as prime numbers and cryptography, and themes of daily needs and pleasures such as counting one's assets, keeping track of time, and enjoying music. Puzzles and exercises at the end of each lecture offer additional inspiration, and numerous illustrations accompany the reader. Furthermore, a number of appendices provides in-depth insights into diverse topics such as Pascal’s triangle, the Rubik cube, Mersenne’s curious keyboards, and many others. A theme running through is the thought of what is our favourite number. Written in an engaging and witty sty...

  14. Optimum target thickness for polarimeters

    International Nuclear Information System (INIS)

    Sitnik, I.M.

    2003-01-01

    Polarimeters with thick targets are a tool to measure the proton polarization. But the question about the optimum target thickness is still the subject of discussion. An attempt to calculate the most common parameters concerning this problem, in a few GeV region, is made

  15. Nasogastric Hydration in Infants with Bronchiolitis Less Than 2 Months of Age.

    Science.gov (United States)

    Oakley, Ed; Bata, Sonny; Rengasamy, Sharmila; Krieser, David; Cheek, John; Jachno, Kim; Babl, Franz E

    2016-11-01

    To determine whether nasogastric hydration can be used in infants less than 2 months of age with bronchiolitis, and characterize the adverse events profile of these infants compared with infants given intravenous (IV) fluid hydration. A descriptive retrospective cohort study of children with bronchiolitis under 2 months of age admitted for hydration at 3 centers over 3 bronchiolitis seasons was done. We determined type of hydration (nasogastric vs IV fluid hydration) and adverse events, intensive care unit admission, and respiratory support. Of 491 infants under 2 months of age admitted with bronchiolitis, 211 (43%) received nonoral hydration: 146 (69%) via nasogastric hydration and 65 (31%) via IV fluid hydration. Adverse events occurred in 27.4% (nasogastric hydration) and 23.1% (IV fluid hydration), difference of 4.3%; 95%CI (-8.2 to 16.9), P = .51. The majority of adverse events were desaturations (21.9% nasogastric hydration vs 21.5% IV fluid hydration, difference 0.4%; [-11.7 to 12.4], P = .95). There were no pulmonary aspirations in either group. Apneas and bradycardias were similar in each group. IV fluid hydration use was positively associated with intensive care unit admission (38.5% IV fluid hydration vs 19.9% nasogastric hydration; difference 18.6%, [5.1-32.1], P = .004); and use of ventilation support (27.7% IV fluid hydration vs 15.1% nasogastric hydration; difference 12.6 [0.3-23], P = .03). Fewer infants changed from nasogastric hydration to IV fluid hydration than from IV fluid hydration to nasogastric hydration (12.3% vs 47.7%; difference -35.4% [-49 to -22], P hydration can be used in the majority of young infants admitted with bronchiolitis. Nasogastric hydration and IV fluid hydration had similar rates of complications. Copyright © 2016 Elsevier Inc. All rights reserved.

  16. Hydration of vegetable oils for high-grade Diesel fuel components; Hydrierung von Pflanzenoelen zu hochwertigen Dieselkraftstoffkomponenten

    Energy Technology Data Exchange (ETDEWEB)

    Endisch, M.; Olschar, M.; Kuchling, T. [TU Bergakademie Freiberg (Germany); Balfanz, U. [BP AG, Global Fuels Technology, Bochum (Germany)

    2008-07-01

    The legally regulated admixture of biogenic fuel components for diesel fuels are actually realized in Germany by an admixture of vegetable oil methylester (e.g. from rapeseed oil). The paper describes the hydration of vegetable oils as alternative to this procedure. Infrared and {sup 13}NMR spectroscopy were used to analyse the reaction kinetics for rapeseed, soy been and palm oil hydration. Experimental results of investigations under operational conditions using a continuous test facility and different vegetable oils identified the possibilities of this technology. The technology allows the high-yield production of diesel fuel components with certain numbers higher than average.

  17. Nutrition Status Parameters and Hydration Status by Bioelectrical Impedance Vector Analysis Were Associated With Lung Function Impairment in Children and Adolescents With Cystic Fibrosis.

    Science.gov (United States)

    Hauschild, Daniela Barbieri; Barbosa, Eliana; Moreira, Emilia Addison Machado; Ludwig Neto, Norberto; Platt, Vanessa Borges; Piacentini Filho, Eduardo; Wazlawik, Elisabeth; Moreno, Yara Maria Franco

    2016-06-01

    (1) To compare nutrition and hydration status between a group of children/adolescents with cystic fibrosis (CFG; n = 46; median age, 8.5 years) and a control group without cystic fibrosis (CG). (2) To examine the association of nutrition and hydration status with lung function in the CFG. A cross-sectional study. Nutrition screening, anthropometric parameters, and bioelectrical impedance analysis (BIA) were assessed. The z scores for body mass index for age, height for age, mid upper arm circumference, triceps and subscapular skinfold thickness, mid upper arm muscle area, resistance/height, and reactance/height were calculated. Bioelectrical impedance vector analysis was conducted. Forced expiratory volume in 1 second hydration status were associated with lung function. © 2016 American Society for Parenteral and Enteral Nutrition.

  18. Control and management of the chemical risk linked with hydrazine hydrate storage, unloading and injection across French nuclear fleet

    International Nuclear Information System (INIS)

    Spahic, Mersiha; Dzemidzic Aida; Dijoux, Michel; Pages, Danielle; Rigal, Jean-Francois; Boize, Magali

    2012-09-01

    Across the EDF nuclear fleet, the chemical risk linked with hydrazine hydrate storage, unloading and injection has received much attention in the past decades. Since 1997, continuous investigation into the substitution of dangerous and carcinogenic chemicals has been conducted and regularly updated by EDF. As a downstream user of hydrazine hydrate, EDF is concerned by REACH legislation, in force since 1 June 2007. As part of the compliance process with REACH, EDF provided its hydrazine hydrate suppliers with information regarding the uses of the chemical. This was done by the end of 2008, as per REACH deadline. On the other hand, EDF contributed throughout European Chemicals Agency consultation phase by submitting data relating to hydrazine hydrate uses across nuclear sites. The absence of a suitable hydrazine hydrate replacement product, able to satisfy the entirety of technical requirements, entails rigorous arrangements to be implemented in order to segregate the zones where use of hydrazine is made and therefore eradicate the risk to personnel regarding hydrazine effects. Consequently, a number of engineering changes and modifications are to be carried out on the chemical injection systems of 58 French nuclear power plants over the next few years as part of the EDF Hydrazine Fleet Programme. (authors)

  19. A unified approach for description of gas hydrate formation kinetics in the presence of kinetic promoters in gas hydrate converters

    International Nuclear Information System (INIS)

    ZareNezhad, Bahman; Varaminian, Farshad

    2013-01-01

    Highlights: • A unified kinetic model for description of promoted and non-promoted gas hydrate formation processes is presented. • Effects of impeller speed, promoter concentration and different kinetic promoters are investigated. • A unique region of gas hydrate formation is identified regarding gas hydrate formation processes. • The proposed model is useful for understanding the behavior of gas hydrate formation processes and design of GTH converters. - Abstract: The kinetic promoters have found wide applications in enhancing the rate of energy conversion and storage via gas hydrate formation processes. Effects of different kinetic promoters such as anionic surfactants sodium dodecyl sulfate (SDS), dodecylbenzene sulfonic acid (DBSA), and sodium dodecyl benzene sulfonate (SDBS); cationic surfactants, Cetyl trimethyl ammonium bromide (CTAB), dodecyl trimethyl ammonium bromide (DTAB) and non-ionic surfactants, alkylpolyglucoside (APG), dodecyl polysaccharide glycoside (DPG), TritonX-100 (TX100) on methane (CH 4 ), ethane (C 2 H 6 ) and propane (C 3 H 8 ) gas hydrate formation processes are investigated in this work. A macroscopic kinetic model based on the time variations of reaction chemical potential is also presented for global description of gas hydrate formation processes. Experimental gas hydrate formation data are employed to validate the proposed kinetic model. Effects of promoter’s concentrations and agitation intensities on the gas consumption profiles are also investigated. A universal correlation and a unified kinetic map have been proposed for macroscopic description of gas hydrate formation kinetics in the presence or absence of kinetic promoters. According to the presented unified kinetic map, a unique region of gas hydrate formation is identified for the first time. For negligible amounts of kinetic promoters, the presented region disappears and approaches to a unique path at high agitation intensities. The presented unified approach is

  20. Number names and number understanding

    DEFF Research Database (Denmark)

    Ejersbo, Lisser Rye; Misfeldt, Morten

    2014-01-01

    This paper concerns the results from the first year of a three-year research project involving the relationship between Danish number names and their corresponding digits in the canonical base 10 system. The project aims to develop a system to help the students’ understanding of the base 10 syste...... the Danish number names are more complicated than in other languages. Keywords: A research project in grade 0 and 1th in a Danish school, Base-10 system, two-digit number names, semiotic, cognitive perspectives....

  1. Prospects of gas hydrate presence in the Chukchi sea

    Directory of Open Access Journals (Sweden)

    Т. В. Матвеева

    2017-08-01

    Full Text Available The purpose of this study is to forecast the scale and distribution character of gas hydrate stability zone in the Chukchi Sea under simulated natural conditions and basing on these results to estimate resource potential of gas hydrates within this area. Three types of stability zone have been identified. A forecast map of gas hydrate environment and potentially gas hydrate-bearing water areas in the Chukchi Sea has been plotted to a scale of 1:5 000 000. Mapping of gas hydrate stability zone allowed to give a justified forecast based on currently available data on geologic, fluid dynamic, cryogenic, geothermal and pressure-temperature conditions of gas hydrate formation in the Chukchi Sea. It is the first forecast of such kind that focuses on formation conditions for hydrates of various types and compositions in the Arctic seas offshore Russia. Potential amount of gas, stored beneath the Chukchi Sea in the form of hydrates, is estimated based on mapping of their stability zone and falls into the interval of 7·1011-11.8·1013 m3.

  2. Exploring the solid-form landscape of pharmaceutical hydrates

    DEFF Research Database (Denmark)

    Raijada, Dharaben Kaushikkumar; Bond, Andrew; Larsen, Flemming Hofmann

    2013-01-01

    To understand the transformation pathways amongst anhydrate/hydrate solid forms of sodium naproxen and to highlight the importance of a polymorphic dihydrate within this context.......To understand the transformation pathways amongst anhydrate/hydrate solid forms of sodium naproxen and to highlight the importance of a polymorphic dihydrate within this context....

  3. Hydration behaviour of synthetic saponite at variable relative humidity

    Indian Academy of Sciences (India)

    Hydration behaviour of synthetic saponite was examined by X-ray powder diffraction simulation at various relative humidities (RH). The basal spacing of the Ca-saponite increased stepwise with increase in RH. The (00) reflections observed reflect single or dual hydration states of smectite. Quasi-rational, intermediate, or ...

  4. The effect of stereochemistry on carbohydrate hydration in aqueous solutions

    NARCIS (Netherlands)

    Galema, Saskia Alexandra

    1992-01-01

    Although-carbohydrates are widely used, not much is known about the stereochemical aspects of hydration of carbohydrates. For D-aldohexoses, for example, there are eight different stereoisomers. Just how the hydroxy topology of a carbohydrate molecule influences the hydration behaviour in water is

  5. Spectroscopic determination of optimal hydration time of zircon surface

    Energy Technology Data Exchange (ETDEWEB)

    Ordonez R, E. [ININ, Departamento de Quimica, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico); Garcia R, G. [Instituto Tecnologico de Toluca, Division de Estudios del Posgrado, Av. Tecnologico s/n, Ex-Rancho La Virgen, 52140 Metepec, Estado de Mexico (Mexico); Garcia G, N., E-mail: eduardo.ordonez@inin.gob.m [Universidad Autonoma del Estado de Mexico, Facultad de Quimica, Av. Colon y Av. Tollocan, 50180 Toluca, Estado de Mexico (Mexico)

    2010-07-01

    When a mineral surface is immersed in an aqueous solution, it develops and electric charge produced by the amphoteric dissociation of hydroxyl groups created by the hydration of the solid surface. This is one influential surface property. The complete hydration process takes a time which is specific for each mineral species. The knowledge of the aqueous solution contact time for complete surface hydration is mandatory for further surface phenomena studies. This study deals with the optimal hydration time of the raw zircon (ZrSiO{sub 4}) surface comparing the classical potentiometric titrations with a fluorescence spectroscopy technique. The latter is easy and rea liable as it demands only one sample batch to determine the optimal time to ensure a total hydration of the zircon surface. The analytical results of neutron activation analysis showed the presence of trace quantities of Dy{sup 3+}, Eu{sup 3+} and Er{sup 3} in the bulk of zircon. The Dy{sup 3+} is structured in the zircon crystalline lattice and undergoes the same chemical reactions as zircon. Furthermore, the Dy{sup 3+} has a good fluorescent response whose intensity is enhanced by hydration molecules. The results show that, according to the potentiometric analysis, the hydration process for each batch (at least 8 sample batches) takes around 2 h, while the spectrometric method indicates only 5 minutes from only one batch. Both methods showed that the zircon surface have a 16 h optimal hydration time. (Author)

  6. Spectroscopic determination of optimal hydration time of zircon surface

    International Nuclear Information System (INIS)

    Ordonez R, E.; Garcia R, G.; Garcia G, N.

    2010-01-01

    When a mineral surface is immersed in an aqueous solution, it develops and electric charge produced by the amphoteric dissociation of hydroxyl groups created by the hydration of the solid surface. This is one influential surface property. The complete hydration process takes a time which is specific for each mineral species. The knowledge of the aqueous solution contact time for complete surface hydration is mandatory for further surface phenomena studies. This study deals with the optimal hydration time of the raw zircon (ZrSiO 4 ) surface comparing the classical potentiometric titrations with a fluorescence spectroscopy technique. The latter is easy and rea liable as it demands only one sample batch to determine the optimal time to ensure a total hydration of the zircon surface. The analytical results of neutron activation analysis showed the presence of trace quantities of Dy 3+ , Eu 3+ and Er 3 in the bulk of zircon. The Dy 3+ is structured in the zircon crystalline lattice and undergoes the same chemical reactions as zircon. Furthermore, the Dy 3+ has a good fluorescent response whose intensity is enhanced by hydration molecules. The results show that, according to the potentiometric analysis, the hydration process for each batch (at least 8 sample batches) takes around 2 h, while the spectrometric method indicates only 5 minutes from only one batch. Both methods showed that the zircon surface have a 16 h optimal hydration time. (Author)

  7. Evaluation of Nutritional Status and Hydration in Patients on Chronic ...

    African Journals Online (AJOL)

    Background: Nutrition and hydration of the dialysis patients have major influences on the outcomes of chronic hemodialysis. Purpose: To characterize the states of nutrition and hydration in patients on chronic hemodialysis at Jos University Teaching Hospital (JUTH) and to evaluate the usefulness of measurements by ...

  8. Phase equilibrium condition of marine carbon dioxide hydrate

    International Nuclear Information System (INIS)

    Sun, Shi-Cai; Liu, Chang-Ling; Ye, Yu-Guang

    2013-01-01

    Highlights: ► CO 2 hydrate phase equilibrium was studied in simulated marine sediments. ► CO 2 hydrate equilibrium temperature in NaCl and submarine pore water was depressed. ► Coarse-grained silica sand does not affect CO 2 hydrate phase equilibrium. ► The relationship between equilibrium temperature and freezing point was discussed. - Abstract: The phase equilibrium of ocean carbon dioxide hydrate should be understood for ocean storage of carbon dioxide. In this paper, the isochoric multi-step heating dissociation method was employed to investigate the phase equilibrium of carbon dioxide hydrate in a variety of systems (NaCl solution, submarine pore water, silica sand + NaCl solution mixture). The experimental results show that the depression in the phase equilibrium temperature of carbon dioxide hydrate in NaCl solution is caused mainly by Cl − ion. The relationship between the equilibrium temperature and freezing point in NaCl solution was discussed. The phase equilibrium temperature of carbon dioxide hydrate in submarine pore water is shifted by −1.1 K to lower temperature region than that in pure water. However, the phase equilibrium temperature of carbon dioxide hydrate in mixture samples of coarsed-grained silica sand and NaCl solution is in agreement with that in NaCl solution with corresponding concentrations. The relationship between the equilibrium temperature and freezing point in mixture samples was also discussed.

  9. Unexpected Hydration of a Triple Bond During DNA Synthesis

    DEFF Research Database (Denmark)

    Fatthalla, Maha I.; Pedersen, Erik B.

    2016-01-01

    acidic conditions, polarizes the triple bond in the intercalator and this makes hydration of the triple bond possible during the DNA synthesis and an oligonucleotide with 1-(indol-3-yl)-2-(pyren-1-yl)ethanone as the intercalator is formed. Insertion of the unhydrated and hydrated linker systems gave...

  10. Solubility data for cement hydrate phases (25oC)

    International Nuclear Information System (INIS)

    Atkins, M.; Glasser, F.P.; Kindness, A.; Macphee, D.E.

    1991-05-01

    Solubility measurements were performed on most of the more thermodynamically-stable cement hydrate phases, at 25 o C. The results for each hydrate phase are summarised in the form of datasheets. Solubility properties are discussed, and where possible a K sp value is calculated. The data are compared with the data in the literature. (author)

  11. Potential natural gas hydrates resources in Indian Offshore areas

    Digital Repository Service at National Institute of Oceanography (India)

    Sethi, A.K.; Sathe, A.V.; Ramana, M.V.

    (geophysical proxies of gas hydrates). A qualitative map prepared based on the inferred BSRs brought out a deepwater area of about 80,000 sq.km unto 3000 m isobath as favourable for gas hydrate occurrence. Methodology for reprocessing of seismic data...

  12. Gas hydrate inhibition by perturbation of liquid water structure

    Science.gov (United States)

    Sa, Jeong-Hoon; Kwak, Gye-Hoon; Han, Kunwoo; Ahn, Docheon; Lee, Kun-Hong

    2015-06-01

    Natural gas hydrates are icy crystalline materials that contain hydrocarbons, which are the primary energy source for this civilization. The abundance of naturally occurring gas hydrates leads to a growing interest in exploitation. Despite their potential as energy resources and in industrial applications, there is insufficient understanding of hydrate kinetics, which hinders the utilization of these invaluable resources. Perturbation of liquid water structure by solutes has been proposed to be a key process in hydrate inhibition, but this hypothesis remains unproven. Here, we report the direct observation of the perturbation of the liquid water structure induced by amino acids using polarized Raman spectroscopy, and its influence on gas hydrate nucleation and growth kinetics. Amino acids with hydrophilic and/or electrically charged side chains disrupted the water structure and thus provided effective hydrate inhibition. The strong correlation between the extent of perturbation by amino acids and their inhibition performance constitutes convincing evidence for the perturbation inhibition mechanism. The present findings bring the practical applications of gas hydrates significantly closer, and provide a new perspective on the freezing and melting phenomena of naturally occurring gas hydrates.

  13. Putting the Deep Biosphere and Gas Hydrates on the Map

    Science.gov (United States)

    Sikorski, Janelle J.; Briggs, Brandon R.

    2016-01-01

    Microbial processes in the deep biosphere affect marine sediments, such as the formation of gas hydrate deposits. Gas hydrate deposits offer a large source of natural gas with the potential to augment energy reserves and affect climate and seafloor stability. Despite the significant interdependence between life and geology in the ocean, coverage…

  14. Funny Numbers

    Directory of Open Access Journals (Sweden)

    Theodore M. Porter

    2012-12-01

    Full Text Available The struggle over cure rate measures in nineteenth-century asylums provides an exemplary instance of how, when used for official assessments of institutions, these numbers become sites of contestation. The evasion of goals and corruption of measures tends to make these numbers “funny” in the sense of becoming dis-honest, while the mismatch between boring, technical appearances and cunning backstage manipulations supplies dark humor. The dangers are evident in recent efforts to decentralize the functions of governments and corporations using incen-tives based on quantified targets.

  15. Transcendental numbers

    CERN Document Server

    Murty, M Ram

    2014-01-01

    This book provides an introduction to the topic of transcendental numbers for upper-level undergraduate and graduate students. The text is constructed to support a full course on the subject, including descriptions of both relevant theorems and their applications. While the first part of the book focuses on introducing key concepts, the second part presents more complex material, including applications of Baker’s theorem, Schanuel’s conjecture, and Schneider’s theorem. These later chapters may be of interest to researchers interested in examining the relationship between transcendence and L-functions. Readers of this text should possess basic knowledge of complex analysis and elementary algebraic number theory.

  16. NMR Studies of Protein Hydration and Protein-Ligand Interactions

    Science.gov (United States)

    Chong, Yuan

    Water on the surface of a protein is called hydration water. Hydration water is known to play a crucial role in a variety of biological processes including protein folding, enzymatic activation, and drug binding. Although the significance of hydration water has been recognized, the underlying mechanism remains far from being understood. This dissertation employs a unique in-situ nuclear magnetic resonance (NMR) technique to study the mechanism of protein hydration and the role of hydration in alcohol-protein interactions. Water isotherms in proteins are measured at different temperatures via the in-situ NMR technique. Water is found to interact differently with hydrophilic and hydrophobic groups on the protein. Water adsorption on hydrophilic groups is hardly affected by the temperature, while water adsorption on hydrophobic groups strongly depends on the temperature around 10 C, below which the adsorption is substantially reduced. This effect is induced by the dramatic decrease in the protein flexibility below 10 C. Furthermore, nanosecond to microsecond protein dynamics and the free energy, enthalpy, and entropy of protein hydration are studied as a function of hydration level and temperature. A crossover at 10 C in protein dynamics and thermodynamics is revealed. The effect of water at hydrophilic groups on protein dynamics and thermodynamics shows little temperature dependence, whereas water at hydrophobic groups has stronger effect above 10 C. In addition, I investigate the role of water in alcohol binding to the protein using the in-situ NMR detection. The isotherms of alcohols are first measured on dry proteins, then on proteins with a series of controlled hydration levels. The free energy, enthalpy, and entropy of alcohol binding are also determined. Two distinct types of alcohol binding are identified. On the one hand, alcohols can directly bind to a few specific sites on the protein. This type of binding is independent of temperature and can be

  17. Modeling the kinetics of hydrates formation using phase field method under similar conditions of petroleum pipelines; Modelagem da cinetica de formacao de hidratos utilizando o Modelo do Campo de Fase em condicoes similares a dutos de petroleo

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Mabelle Biancardi; Castro, Jose Adilson de; Silva, Alexandre Jose da [Universidade Federal Fluminense (UFF), Volta Redonda, RJ (Brazil). Programa de Pos-Graduacao em Engenharia Metalurgica], e-mails: mabelle@metal.eeimvr.uff.br; adilson@metal.eeimvr.uff.br; ajs@metal.eeimvr.uff.br

    2008-10-15

    Natural hydrates are crystalline compounds that are ice-like formed under oil extraction transportation and processing. This paper deals with the kinetics of hydrate formation by using the phase field approach coupled with the transport equation of energy. The kinetic parameters of the hydrate formation were obtained by adjusting the proposed model to experimental results in similar conditions of oil extraction. The effect of thermal and nucleation conditions were investigated while the rate of formation and morphology were obtained by numerical computation. Model results of kinetics growth and morphology presented good agreement with the experimental ones. Simulation results indicated that super-cooling and pressure were decisive parameters for hydrates growth, morphology and interface thickness. (author)

  18. Theoretical description of biomolecular hydration - Application to A-DNA

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, A.E.; Hummer, G. [Los Alamos National Laboratory, NM (United States); Soumpasis, D.M. [Max Planck Inst. for Biophysical Chemistry, Goettingen (Germany)

    1994-12-31

    The local density of water molecules around a biomolecule is constructed from calculated two- and three-points correlation functions of polar solvents in water using a Potential-of-Mean-Force (PMF) expansion. As a simple approximation, the hydration of all polar (including charged) groups in a biomolecule is represented by the hydration of water oxygen in bulk water, and the effect of non-polar groups on hydration are neglected, except for excluded volume effects. Pair and triplet correlation functions are calculated by molecular dynamics simulations. We present calculations of the structural hydration for ideal A-DNA molecules with sequences [d(CG){sub 5}]{sub 2} and [d(C{sub 5}G{sub 5})]{sub 2}. We find that this method can accurately reproduce the hydration patterns of A-DNA observed in neutron diffraction experiments on oriented DNA fibers.

  19. Seismic-Scale Rock Physics of Methane Hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Amos Nur

    2009-01-08

    We quantify natural methane hydrate reservoirs by generating synthetic seismic traces and comparing them to real seismic data: if the synthetic matches the observed data, then the reservoir properties and conditions used in synthetic modeling might be the same as the actual, in-situ reservoir conditions. This approach is model-based: it uses rock physics equations that link the porosity and mineralogy of the host sediment, pressure, and hydrate saturation, and the resulting elastic-wave velocity and density. One result of such seismic forward modeling is a catalogue of seismic reflections of methane hydrate which can serve as a field guide to hydrate identification from real seismic data. We verify this approach using field data from known hydrate deposits.

  20. Hydration of Portland cement with additions of calcium sulfoaluminates

    International Nuclear Information System (INIS)

    Le Saoût, Gwenn; Lothenbach, Barbara; Hori, Akihiro; Higuchi, Takayuki; Winnefeld, Frank

    2013-01-01

    The effect of mineral additions based on calcium aluminates on the hydration mechanism of ordinary Portland cement (OPC) was investigated using isothermal calorimetry, thermal analysis, X-ray diffraction, scanning electron microscopy, solid state nuclear magnetic resonance and pore solution analysis. Results show that the addition of a calcium sulfoaluminate cement (CSA) to the OPC does not affect the hydration mechanism of alite but controls the aluminate dissolution. In the second blend investigated, a rapid setting cement, the amorphous calcium aluminate reacts very fast to ettringite. The release of aluminum ions strongly retards the hydration of alite but the C–S–H has a similar composition as in OPC with no additional Al to Si substitution. As in CSA–OPC, the aluminate hydration is controlled by the availability of sulfates. The coupling of thermodynamic modeling with the kinetic equations predicts the amount of hydrates and pore solution compositions as a function of time and validates the model in these systems.

  1. Thermal Stability and Proton Conductivity of Rare Earth Orthophosphate Hydrates

    DEFF Research Database (Denmark)

    Anfimova, Tatiana; Li, Qingfeng; Jensen, Jens Oluf

    2014-01-01

    as the rhabdophane structure is preserved. The bound hydrate water is accommodated in the rhabdophane structure and is stable at temperatures of up to 650 oC. The thermal stability of the hydrate water and the phosphate structure are of significance for the proton conductivity. The LaPO4·0.6H2O and NdPO4•0.5H2O......Hydrated orthophosphate powders of three rare earth metals, lanthanum, neodymium and gadolinium, were prepared and studied as potential proton conducting materials for intermediate temperature electrochemical applications. The phosphates undergo a transformation from the rhabdophane structure...... to the monazite structure upon dehydration. The thermal stability of the hydrate is studied and found to contain water of two types, physically adsorbed and structurally bound hydrate water. The adsorbed water is correlated to the specific surface area and can be reversibly recovered when dehydrated as long...

  2. Water Dynamics in the Hydration Shells of Biomolecules

    Science.gov (United States)

    2017-01-01

    The structure and function of biomolecules are strongly influenced by their hydration shells. Structural fluctuations and molecular excitations of hydrating water molecules cover a broad range in space and time, from individual water molecules to larger pools and from femtosecond to microsecond time scales. Recent progress in theory and molecular dynamics simulations as well as in ultrafast vibrational spectroscopy has led to new and detailed insight into fluctuations of water structure, elementary water motions, electric fields at hydrated biointerfaces, and processes of vibrational relaxation and energy dissipation. Here, we review recent advances in both theory and experiment, focusing on hydrated DNA, proteins, and phospholipids, and compare dynamics in the hydration shells to bulk water. PMID:28248491

  3. Theoretical description of biomolecular hydration - Application to A-DNA

    International Nuclear Information System (INIS)

    Garcia, A.E.; Hummer, G.; Soumpasis, D.M.

    1994-01-01

    The local density of water molecules around a biomolecule is constructed from calculated two- and three-points correlation functions of polar solvents in water using a Potential-of-Mean-Force (PMF) expansion. As a simple approximation, the hydration of all polar (including charged) groups in a biomolecule is represented by the hydration of water oxygen in bulk water, and the effect of non-polar groups on hydration are neglected, except for excluded volume effects. Pair and triplet correlation functions are calculated by molecular dynamics simulations. We present calculations of the structural hydration for ideal A-DNA molecules with sequences [d(CG) 5 ] 2 and [d(C 5 G 5 )] 2 . We find that this method can accurately reproduce the hydration patterns of A-DNA observed in neutron diffraction experiments on oriented DNA fibers

  4. Transfinite Numbers

    Indian Academy of Sciences (India)

    this is a characteristic difference between finite and infinite sets and created an immensely useful branch of mathematics based on this idea which had a great impact on the whole of mathe- matics. For example, the question of what is a number (finite or infinite) is almost a philosophical one. However Cantor's work turned it ...

  5. India National Gas Hydrate Program Expedition 02 Technical Contributions

    Science.gov (United States)

    Collett, T. S.; Kumar, P.; Shukla, K. M.; Nagalingam, J.; Lall, M. V.; Yamada, Y.; Schultheiss, P. J.; Holland, M.; Waite, W. F.

    2017-12-01

    The National Gas Hydrate Program Expedition 02 (NGHP-02) was conducted from 3-March-2015 to 28-July-2015 off the eastern coast of India. The primary objective of this expedition was the exploration and discovery of highly saturated gas hydrate occurrences in sand reservoirs that would be targets of future production testing. The first 2 months of the expedition were dedicated to logging while drilling (LWD) operations with a total of 25 holes being drilled and logged. The next 3 months were dedicated to coring operations at 10 of the most promising sites. NGHP-02 downhole logging, coring and formation pressure testing have confirmed the presence of large, highly saturated, gas hydrate accumulations in coarse-grained sand-rich depositional systems throughout the Krishna-Godavari Basin within the regions defined during NGHP-02 as Area-B, Area-C, and Area-E. The nature of the discovered gas hydrate occurrences closely matched pre-drill predictions, confirming the project developed depositional models for the sand-rich depositional facies in the Krishna-Godavari and Mahanadi Basins. The existence of a fully developed gas hydrate petroleum system was established in Area-C of the Krishna-Godavari Basin with the discovery of a large slope-basin interconnected depositional system, including a sand-rich, gas-hydrate-bearing channel-levee prospect at Sites NGHP-02-08 and -09. The acquisition of closely spaced LWD and core holes in the Area-B L1 Block gas hydrate accumulation have provided one of the most complete three-dimensional petrophysical-based views of any known gas hydrate reservoir system in the world. It was concluded that Area-B and Area-C in the area of the greater Krishna-Godavari Basin contain important world-class gas hydrate accumulations and represent ideal sites for consideration of future gas hydrate production testing.

  6. Skin Hydration Assessment through Modern Non-Invasive Bioengineering Technologies.

    Science.gov (United States)

    Constantin, Maria-Magdalena; Poenaru, Elena; Poenaru, Calin; Constantin, Traian

    2014-03-01

    Non-invasive bioengineering technologies continuously discovered and developed in recent decades provide a significant input to research development and remarkably contribute to the improvement of medical education and care to our patients. Assessing skin hydration by using the capacitance method for a group of patients with allergic contact dermatitis versus healthy subjects, before and after applying a moisturiser (assessing the immediate and long-term effectiveness of hydration). For both groups, but especially for the patients with dry skin, there was a clear improvement of hydration, statistically significant after applying the moisturiser. In the case of the patients with allergic contact dermatitis, hydration was at a maximum immediately after the first application, and then maintained an increased level after 7 and 28 days, respectively. In the healthy subjects, the increase in hydration was lower, but progressive. The moisturiser determined an increase in hydration for all age groups, but those who showed the most obvious effect were the young adults (18-29 years old) with an increase of 19.9%.The maintenance effect of hydration lasted for 28 days, while the improvement was important for allergic skin (17.1%) and significant for healthy skin (10.9%). The assessment of epidermal hydration performed by using the corneometer showed very good hydration of the stratum corneum for both groups studied, with immediate and long-term effect. This study also showed that the degree of skin hydration was inversely proportional with age. The corneometer is easy to use, efficient and widely utilised in international studies for measurements in healthy or pathological conditions, for quantitative assessment of the effectiveness of various preparations intended for application to the skin surface, under well-controlled and standardised conditions.

  7. Reflective terahertz (THz) imaging: system calibration using hydration phantoms

    Science.gov (United States)

    Bajwa, Neha; Garritano, James; Lee, Yoon Kyung; Tewari, Priyamvada; Sung, Shijun; Maccabi, Ashkan; Nowroozi, Bryan; Babakhanian, Meghedi; Sanghvi, Sajan; Singh, Rahul; Grundfest, Warren; Taylor, Zachary

    2013-02-01

    Terahertz (THz) hydration sensing continues to gain traction in the medical imaging community due to its unparalleled sensitivity to tissue water content. Rapid and accurate detection of fluid shifts following induction of thermal skin burns as well as remote corneal hydration sensing have been previously demonstrated in vivo using reflective, pulsed THz imaging. The hydration contrast sensing capabilities of this technology were recently confirmed in a parallel 7 Tesla Magnetic Resonance (MR) imaging study, in which burn areas are associated with increases in local mobile water content. Successful clinical translation of THz sensing, however, still requires quantitative assessments of system performance measurements, specifically hydration concentration sensitivity, with tissue substitutes. This research aims to calibrate the sensitivity of a novel, reflective THz system to tissue water content through the use of hydration phantoms for quantitative comparisons of THz hydration imagery.Gelatin phantoms were identified as an appropriate tissue-mimicking model for reflective THz applications, and gel composition, comprising mixtures of water and protein, was varied between 83% to 95% hydration, a physiologically relevant range. A comparison of four series of gelatin phantom studies demonstrated a positive linear relationship between THz reflectivity and water concentration, with statistically significant hydration sensitivities (p hydration). The THz-phantom interaction is simulated with a three-layer model using the Transfer Matrix Method with agreement in hydration trends. Having demonstrated the ability to accurately and noninvasively measure water content in tissue equivalent targets with high sensitivity, reflective THz imaging is explored as a potential tool for early detection and intervention of corneal pathologies.

  8. An effect of surface properties on detachment of adhered solid to cooling surface for formation of clathrate hydrate slurry

    Science.gov (United States)

    Daitoku, Tadafumi; Utaka, Yoshio

    In air-conditioning systems, it is desirable that the liquid-solid phase change temperature of a cool energy storage material is approximately 10 °C from the perspective of improving coefficient of performance (COP). Moreover, a thermal storage material that forms slurry can realize large heat capacity of working fluids. Since the solid that adheres to the heat transfer surface forms a thermal resistance layer and remarkably reduces the rate of cold storage, it is important to avoid the adhesion of a thick solid layer on the surface so as to realize efficient energy storage. Considering a harvest type cooling unit, the force required for removing the solid phase from the heat transfer surface was studied. Tetra-n-butylammonium Bromide (TBAB) clathrate hydrate was used as a cold storage material. The effect of the heat transfer surface properties on the scraping force for detachment of adhered solid of TBAB hydrate to the heat transfer surface was examined experimentally.

  9. Ultrasonic sound speed of hydrating calcium sulphate hemihydrate; part 2, the correlation of sound velocity to hydration degree

    NARCIS (Netherlands)

    de Korte, A.C.J.; Brouwers, Jos; Fischer, H.B; Matthes, C.; Beuthan, C.

    2011-01-01

    In this article the sound velocity through a mix is correlated to the hydration degree of the mix. Models are presented predicting the sound velocity through fresh slurries and hardened products. These two states correspond to the starting and finishing point of the hydration process. The present

  10. Ultrasonic sound speed of hydrating calcium sulphate hemihydrate; Part 2, The correlation of sound velocity to hydration degree

    NARCIS (Netherlands)

    Korte, de A.C.J.; Brouwers, H.J.H.; Fischer, H.B.; Mattes, Chr.; Beutha, C.

    2011-01-01

    In this article the sound velocity through a mix is correlated to the hydration degree of the mix. Models are presented predicting the sound velocity through fresh slurries and hardened products. These two states correspond to the starting and finishing point of the hydration process. The present

  11. Geologic implications of gas hydrates in the offshore of India: Results of the National Gas Hydrate Program Expedition 01

    Digital Repository Service at National Institute of Oceanography (India)

    Collett, T.S.; Boswell, R.; Cochran, J.R.; Kumar, P.; Lall, M.; Mazumdar, A.; Ramana, M.V.; Ramprasad, T.; Riedel, M.; Sain, K.; Sathe, A.V.; Vishwanath, K.; NGHP Expedition 01 Scientific Party

    in Japan (Tsujii et al., 2009) and in the Gulf of Mexico (Boswell et al., 2012a) and the pace of gas-hydrate energy-assessment projects continues to accelerate. Beyond a future energy resource, gas hydrates may in some cases represent a significant...

  12. A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy

    International Nuclear Information System (INIS)

    Andersen, Morten Daugaard; Jakobsen, Hans J.; Skibsted, Jorgen

    2006-01-01

    Recent 27 Al MAS NMR studies of hydrated Portland cements and calcium-silicate-hydrate (C-S-H) phases have shown a resonance from Al in octahedral coordination, which cannot be assigned to the well-known aluminate species in hydrated Portland cements. This resonance, which exhibits the isotropic chemical shift δ iso = 5.0 ppm and the quadrupole product parameter P Q = 1.2 MHz, has been characterized in detail by 27 Al MAS and 27 Al{ 1 H} CP/MAS NMR for different hydrated white Portland cements and C-S-H phases. These experiments demonstrate that the resonance originates from an amorphous or disordered aluminate hydrate which contains Al(OH) 6 3- or O x Al(OH) 6-x (3+x)- units. The formation of the new aluminate hydrate is related to the formation of C-S-H at ambient temperatures, however, it decomposes by thermal treatment at temperatures of 70-90 o C. From the experiments in this work it is proposed that the new aluminate hydrate is either an amorphous/disordered aluminate hydroxide or a calcium aluminate hydrate, produced as a separate phase or as a nanostructured surface precipitate on the C-S-H phase. Finally, the possibilities of Al 3+ for Ca 2+ substitution in the principal layers and interlayers of the C-S-H structure are discussed

  13. Mount Elbert Gas Hydrate Stratigraphic Test Well, Alaska North Slope: Coring operations, core sedimentology, and lithostratigraphy

    Science.gov (United States)

    Rose, K.; Boswell, R.; Collett, T.

    2011-01-01

    In February 2007, BP Exploration (Alaska), the U.S. Department of Energy, and the U.S. Geological Survey completed the BPXA-DOE-USGS Mount Elbert Gas Hydrate Stratigraphic Test Well (Mount Elbert well) in the Milne Point Unit on the Alaska North Slope. The program achieved its primary goals of validating the pre-drill estimates of gas hydrate occurrence and thickness based on 3-D seismic interpretations and wireline log correlations and collecting a comprehensive suite of logging, coring, and pressure testing data. The upper section of the Mount Elbert well was drilled through the base of ice-bearing permafrost to a casing point of 594??m (1950??ft), approximately 15??m (50??ft) above the top of the targeted reservoir interval. The lower portion of the well was continuously cored from 606??m (1987??ft) to 760??m (2494??ft) and drilled to a total depth of 914??m. Ice-bearing permafrost extends to a depth of roughly 536??m and the base of gas hydrate stability is interpreted to extend to a depth of 870??m. Coring through the targeted gas hydrate bearing reservoirs was completed using a wireline-retrievable system. The coring program achieved 85% recovery of 7.6??cm (3??in) diameter core through 154??m (504??ft) of the hole. An onsite team processed the cores, collecting and preserving approximately 250 sub-samples for analyses of pore water geochemistry, microbiology, gas chemistry, petrophysical analysis, and thermal and physical properties. Eleven samples were immediately transferred to either methane-charged pressure vessels or liquid nitrogen for future study of the preserved gas hydrate. Additional offsite sampling, analyses, and detailed description of the cores were also conducted. Based on this work, one lithostratigraphic unit with eight subunits was identified across the cored interval. Subunits II and Va comprise the majority of the reservoir facies and are dominantly very fine to fine, moderately sorted, quartz, feldspar, and lithic fragment-bearing to

  14. Spectroscopic study of trivalent rare earth ions in calcium nitrate hydrate melt

    International Nuclear Information System (INIS)

    Fujii, Toshiyuki; Asano, Hideki; Kimura, Takaumi; Yamamoto, Takeshi; Uehara, Akihiro; Yamana, Hajimu

    2006-01-01

    Influence of the water content to chemical status of trivalent rare earth ions in calcium nitrate hydrate melt was studied by spectroscopic techniques. Fluorescence spectrometry for Eu(III) in Ca(NO 3 ) 2 .RH 2 O and electronic absorption spectrometry for Nd(III) in Ca(NO 3 ) 2 .RH 2 O were performed for analyzing the changing coordination symmetries through the changes in their hypersensitive transitions. Raman spectroscopic study and EXAFS study were performed for Y(NO 3 ) 3 solutions and Y(III) in Ca(NO 3 ) 2 .RH 2 O for analyzing the oxygen bonding to Y(III). Luminescence lifetime study of Eu(III) and Dy(III) in Ca(NO 3 ) 2 .RH 2 O was performed for evaluating the hydration number changes. Results of these spectroscopic studies indicated that, with the decrease of water content (R), the hydration number decreases while the interaction between trivalent rare earth ion and nitrate ion increases. It was also revealed that the symmetry of the coordination sphere gets distorted gradually by this interaction

  15. Fluid flow and methane occurrences in the Disko Bugt area offshore West Greenland: indications for gas hydrates?

    Science.gov (United States)

    Nielsen, Tove; Laier, Troels; Kuijpers, Antoon; Rasmussen, Tine L.; Mikkelsen, Naja E.; Nørgård-Pedersen, Niels

    2014-12-01

    The present study is the first to directly address the issue of gas hydrates offshore West Greenland, where numerous occurrences of shallow hydrocarbons have been documented in the vicinity of Disko Bugt (Bay). Furthermore, decomposing gas hydrate has been implied to explain seabed features in this climate-sensitive area. The study is based on archive data and new (2011, 2012) shallow seismic and sediment core data. Archive seismic records crossing an elongated depression (20×35 km large, 575 m deep) on the inner shelf west of Disko Bugt (Bay) show a bottom simulating reflector (BSR) within faulted Mesozoic strata, consistent with the occurrence of gas hydrates. Moreover, the more recently acquired shallow seismic data reveal gas/fluid-related features in the overlying sediments, and geochemical data point to methane migration from a deeper-lying petroleum system. By contrast, hydrocarbon signatures within faulted Mesozoic strata below the strait known as the Vaigat can be inferred on archive seismics, but no BSR was visible. New seismic data provide evidence of various gas/fluid-releasing features in the overlying sediments. Flares were detected by the echo-sounder in July 2012, and cores contained ikaite and showed gas-releasing cracks and bubbles, all pointing to ongoing methane seepage in the strait. Observed seabed mounds also sustain gas seepages. For areas where crystalline bedrock is covered only by Pleistocene-Holocene deposits, methane was found only in the Egedesminde Dyb (Trough). There was a strong increase in methane concentration with depth, but no free gas. This is likely due to the formation of gas hydrate and the limited thickness of the sediment infill. Seabed depressions off Ilulissat Isfjord (Icefjord) previously inferred to express ongoing gas release from decomposing gas hydrate show no evidence of gas seepage, and are more likely a result of neo-tectonism.

  16. Geochemistry and microbiology at gas hydrate and mud volcano sites in the black sea

    Science.gov (United States)

    Drews, M.; Schmaljohann, R.; Wallmann, K.

    2003-04-01

    We present geochemical and microbiological results which were obtained from sediments at gas hydrate and mud volcano sites in the Sorokin Trough (northern Black Sea, south east of the Crimean peninsula) at water depths of about 1800 to 2100 m during the METEOR cruise 52-1. The surface near sub-bottom accumulations of gas hydrates (occuring at depths of several meters or less beneath the sea floor) in the Black Sea are associated with numerous mud volcanos. At stations we investigated gas hydrates occurred below 10 cm to 100 cm with a significant influence on the sediment biochemistry. Analyses revealed high methane concentrations, anoxic and sulfidic conditions, a steep sulfate gradient, carbonate precipitation, and high anaerobic methane oxidation rates. In proximity of the so called Odessa mud volcano one investigated sampling station showed maximum methane oxidation rates in the depth horizon of a firm 2 cm thick carbonate crust layer, adhered to by a bacterial mat. This observation is taken to indicate that the bacteria are causing or mediating the crust formation by their anaerobic methane oxidation metabolism. The station was further characterised by two layers of gas hydrate fragments and lenses below 1 m depth. A 2 to 4 cm thick carbonate crust with attached bacterial mat from a Yalta mud vulcano sample (2124 m water depth) was investigated under the scanning electron microscope. The stiff gelatinous mat showed a dense and morphologically uniform population of rod shaped bacteria with only a few nests of coccoid cells. Purified mat material exhibited anaerobic methane oxidation activity. These mats resemble the type previously found in the shallow NW methane seep area of the Black Sea, where it covers carbonate chimneys. Samples from two sites atop the summit of the active but flat-topped Dvurechenskii mud volcano were characterised by very high methane oxidation rates (up to 563 nmol/cm3/d) at the sediment surface. Strong pore water gradients of chloride

  17. Evaluation of the Gas Production Potential of Marine HydrateDeposits in the Ulleung Basin of the Korean East Sea

    Energy Technology Data Exchange (ETDEWEB)

    Moridis, George J.; Reagan, Matthew T.; Kim, Se-Joon; Seol,Yongkoo; Zhang, Keni

    2007-11-16

    Although significant hydrate deposits are known to exist in the Ulleung Basin of the Korean East Sea, their survey and evaluation as a possible energy resource has not yet been completed. However, it is possible to develop preliminary estimates of their production potential based on the limited data that are currently available. These include the elevation and thickness of the Hydrate-Bearing Layer (HBL), the water depth, and the water temperature at the sea floor. Based on this information, we developed estimates of the local geothermal gradient that bracket its true value. Reasonable estimates of the initial pressure distribution in the HBL can be obtained because it follows closely the hydrostatic. Other critical information needs include the hydrate saturation, and the intrinsic permeabilities of the system formations. These are treated as variables, and sensitivity analysis provides an estimate of their effect on production. Based on the geology of similar deposits, it is unlikely that Ulleung Basin accumulations belong to Class 1 (involving a HBL underlain by a mobile gas zone). If Class 4 (disperse, low saturation accumulations) deposits are involved, they are not likely to have production potential. The most likely scenarios include Class 2 (HBL underlain by a zone of mobile water) or Class 3 (involving only an HBL) accumulations. Assuming nearly impermeable confining boundaries, this numerical study indicates that large production rates (several MMSCFD) are attainable from both Class 2 and Class 3 deposits using conventional technology. The sensitivity analysis demonstrates the dependence of production on the well design, the production rate, the intrinsic permeability of the HBL, the initial pressure, temperature and hydrate saturation, as well as on the thickness of the water zone (Class 2). The study also demonstrates that the presence of confining boundaries is indispensable for the commercially viable production of gas from these deposits.

  18. Methane Recycling During Burial of Methane Hydrate-Bearing Sediments

    Science.gov (United States)

    You, K.; Flemings, P. B.

    2017-12-01

    We quantitatively investigate the integral processes of methane hydrate formation from local microbial methane generation, burial of methane hydrate with sedimentation, and methane recycling at the base of the hydrate stability zone (BHSZ) with a multiphase multicomponent numerical model. Methane recycling happens in cycles, and there is not a steady state. Each cycle starts with free gas accumulation from hydrate dissociation below the BHSZ. This free gas flows upward under buoyancy, elevates the hydrate saturation and capillary entry pressure at the BHSZ, and this prevents more free gas flowing in. Later as this layer with elevated hydrate saturation is buried and dissociated, the large amount of free gas newly released and accumulated below rapidly intrudes into the hydrate stability zone, drives rapid hydrate formation and creates three-phase (gas, liquid and hydrate) equilibrium above the BHSZ. The gas front retreats to below the BHSZ until all the free gas is depleted. The shallowest depth that the free gas reaches in one cycle moves toward seafloor as more and more methane is accumulated to the BHSZ with time. More methane is stored above the BHSZ in the form of concentrated hydrate in sediments with relatively uniform pore throat, and/or with greater compressibility. It is more difficult to initiate methane recycling in passive continental margins where the sedimentation rate is low, and in sediments with low organic matter content and/or methanogenesis reaction rate. The presence of a permeable layer can store methane for significant periods of time without recycling. In a 2D system where the seafloor dips rapidly, the updip gas flow along the BHSZ transports more methane toward topographic highs where methane gas and elevated hydrate saturation intrude deeper into the hydrate stability zone within one cycle. This could lead to intermittent gas venting at seafloor at the topographic highs. This study provides insights on many phenomenon associated with

  19. Manufacture of Methane Hydrate using Carbon Nano Tubes

    International Nuclear Information System (INIS)

    Park, Sung Seek

    2010-02-01

    Methane hydrate is formed by physical binding between water molecule and gas such as methane, ethane, propane, or carbon dioxide, etc., which is captured in the cavities of water molecule under the specific temperature and pressure. More than 99% of naturally produced methane hydrate consists of methane, and is widely dispersed in the continental slope and continental Shelf of the Pacific and the Atlantic, the Antarctica etc. The reserve of fossil fuel is 500 billion carbon ton and the reserve of methane is 360 million carbon ton. The reserve of gas hydrate is more than 1 trillion carbon ton, which is twice the fossil fuel. Therefore, natural gas hydrate as a kind of gas hydrate is expected to replace fossil fuel as new energy source of 21st century. Also 1 m 3 hydrate of pure methane can be decomposed to the maximum of 216 m 3 methane at standard condition. If these characteristics of hydrate are reversely utilized, natural gas is fixed into water in the form of hydrate solid. Therefore, the hydrate is considered to be a great way to transport and store natural gas in large quantity. Especially the transportation cost is known to be 18∼25% less than the liquefied transportation. However, when natural gas hydrate is artificially formed, its reaction time may be too long and the gas consumption in water becomes relatively low, because the reaction rate between water and gas is low. Therefore, for the practical purpose in the application, the present investigation focuses on the rapid production of hydrates and increases gas consumption by adding MWCNT and NaCl into pure water. The results show that the equilibrium pressure in seawater is more higher than that in pure water, and methane hydrate could be formed rapidly during pressurization if the subcooling is maintained at 9K or above in seawater and 8K or above in pure water, respectively. Also, amount of consumed gas volume in pure water is more higher that in seawater at the same experimental conditions

  20. Flash crystallization kinetics of methane (sI) hydrate in a thermoelectrically-cooled microreactor.

    Science.gov (United States)

    Chen, Weiqi; Pinho, Bruno; Hartman, Ryan L

    2017-09-12

    The crystallization kinetics of methane (sI) hydrate were investigated in a thermoelectrically-cooled microreactor with in situ Raman spectroscopy. Step-wise and precise control of the temperature allowed acquisition of reproducible data within minutes, while the nucleation of methane hydrates can take up to 24 h in traditional batch reactors. The propagation rates of methane hydrate (from 3.1-196.3 μm s -1 ) at the gas-liquid interface were measured for different Reynolds' numbers (0.7-68.9), pressures (30.0-80.9 bar), and sub-cooling temperatures (1.0-4.0 K). The precise measurement of the propagation rates and their subsequent analyses revealed a transition from mixed heat-transfer-crystallization-rate-limited to mixed heat-transfer-mass-transfer-crystallization-rate-limited kinetics. A theoretical model, based on heat transfer, mass transfer, and intrinsic crystallization kinetics, was derived for the first time to understand the non-linear relationship between the propagation rate and sub-cooling temperature. The molecular diffusivity of methane within a stagnant film (ahead of the propagation front) was discovered to follow Stokes-Einstein, while calculated Hatta (0.50-0.68), Lewis (128-207), and beta (0.79-116) numbers also confirmed that the diffusive flux influences crystal growth. Understanding methane hydrate crystal growth is important to the atmospheric, oceanic, and planetary sciences and to energy production, storage, and transportation. Our discoveries could someday advance the science of other multiphase, high-pressure, and sub-cooled crystallizations.

  1. Effects of Geomechanical Mechanism on the Gas Production Behavior: A Simulation Study of Class-3 Type Four-Way-Closure Ridge Hydrate Deposit Offshore Southwestern Taiwan

    Science.gov (United States)

    Wu, Cheng-Yueh; Chiu, Yung-Cheng; Huang, Yi-Jyun; Hsieh, Bieng-Zih

    2017-04-01

    geophysical studies and the geo-mechanical data were analogized from Japan's hydrate production case. The first step for the geological modelling was to digitize the structure map of FWC Ridge and built a grid system for the reservoir. The formation parameters, such as formation thickness, porosity and permeability, the phase behavior parameters, rock-fluid parameters, initial conditions (including formation pressure, temperature and hydrate saturation), geo-mechanical parameters were assigned into each grid. In this case we used a horizontal well with specific operating conditions to produce water and dissociated gas from the reservoir. The sensitivity analyses on geological and geo-mechanical parameters were conducted in this study. The case of different pressure drop showed that the recovery factor (RF) was 2.50%, 13.50% and 20.47% when the pressure drop of 60%, 70% and 75% from the initial reservoir pressure was used respectively. Based on the case of pressure drop of 75% (from the initial reservoir pressure), the RF was 35.13%, 25.9%, 20.47% and 16.65% when the initial hydrate saturation of 30%, 40%, 50% and 60% was assumed respectively. The greater formation permeability, the better gas recovery. The capillary pressure had a minor affection on the gas production in this case study. The best well location was at the upper layer because of the gravity effect. For the effects of the geo-mechanics, we observed that the rock mechanisms had impacts on the final cumulative gas production. The larger the Young's Modulus and the smaller the Poisson's Ratio, the smaller the subsidence on the seabed. Our simulation results showed that the seabed subsidence in FWC Ridge was about 1 meter during the production period.

  2. Corneal thickness: measurement and implications.

    Science.gov (United States)

    Ehlers, Niels; Hjortdal, Jesper

    2004-03-01

    The thickness of the cornea was reported in more than 100-year-old textbooks on physiological optics (Helmholtz, Gullstrand). Physiological interest was revived in the 1950s by David Maurice, and over the next 50 years, this 'simple' biological parameter has been studied extensively. Several techniques for its measurement have been described and physiological and clinical significance have been studied. In this review, the different methods and techniques of measurement are briefly presented (optical, ultrasound). While the corneal thickness of many animals are the same over a considerable part of the surface, in the human cornea anterior and posterior curvature are not concentric giving rise to a problem of definition. Based on this the precision and accuracy of determining the central corneal thickness are discussed. Changes in corneal thickness reflects changes in function of the boundary layers, in particular the endothelial barrier. The absolute value of thickness is of importance for the estimation of IOP but also in diagnosis of corneal and systemic disorders. Finally it is discussed to what extent the thickness is a biometric parameter of significance, e.g. in the progression of myopia or in the development of retinal detachment.

  3. Moessbauer study of hydrated iron sulfates

    International Nuclear Information System (INIS)

    Araujo, S.I.; Danon, J.; Iannarella, L.

    1991-01-01

    The hydrated iron sulfates amarantite Fe(SO sub(4))(OH).3H sub(2)O, copiapite (Mg,Al)Fe sup(3+) sub(4)(SO sub(4)) sub(6)(OH) sub(2).20H sub(2)O and ungemachite K sub(3)Na sub(9)Fe(SO sub(4)) sub(6)(OH) sub(3).9H sub(2)O were studied by Moessbauer Spectroscopy (MS) in connection with Differential Scanning Calorimetry (DSC). The effect of the dehydration on the hyperfine parameters at the Fe sites was investigated. For amarantite, the Moessbauer spectrum remained practically unchanged, while the Fe sup(3+) quadrupole splittings for copiapite and ungemachite increased. The Fe sup(2+) quadrupole splitting of ungemachite was also unchanged. We have found out the anisotropy of the recoiless absorption probability for the sup(57)Fe Moessbauer gamma ray in amarantite. The three minerals were found to be highly hygroscopic after the dehydration consequent of the DSC measurements. (author)

  4. DNA under Force: Mechanics, Electrostatics, and Hydration

    Directory of Open Access Journals (Sweden)

    Jingqiang Li

    2015-02-01

    Full Text Available Quantifying the basic intra- and inter-molecular forces of DNA has helped us to better understand and further predict the behavior of DNA. Single molecule technique elucidates the mechanics of DNA under applied external forces, sometimes under extreme forces. On the other hand, ensemble studies of DNA molecular force allow us to extend our understanding of DNA molecules under other forces such as electrostatic and hydration forces. Using a variety of techniques, we can have a comprehensive understanding of DNA molecular forces, which is crucial in unraveling the complex DNA functions in living cells as well as in designing a system that utilizes the unique properties of DNA in nanotechnology.

  5. Irradiation effects in hydrated zirconium molybdate

    Energy Technology Data Exchange (ETDEWEB)

    Fourdrin, C., E-mail: chloe.fourdrin@polytechnique.edu [CEA Saclay, DEN/DANS/DPC/SECR/LSRM, 91 191 Gif-sur-Yvette (France); CEA Saclay, DSM/IRAMIS/SIS2M-UMR 3299/Lrad, 91 191 Gif-sur-Yvette (France); Esnouf, S. [CEA Saclay, DSM/IRAMIS/SIS2M-UMR 3299/Lrad, 91 191 Gif-sur-Yvette (France); Dauvois, V. [CEA Saclay, DEN/DANS/DPC/SECR/LSRM, 91 191 Gif-sur-Yvette (France); Renault, J.-P. [CEA Saclay, DSM/IRAMIS/SIS2M-UMR 3299/Lrad, 91 191 Gif-sur-Yvette (France); Venault, L. [CEN Valrho, DEN/DRCP/SCPS/LC2A, 30 207 Bagnols-sur-Ceze (France); Tabarant, M. [CEA Saclay, DEN/DANS/DPC/LRSI, 91 191 Gif-sur-Yvette (France); Durand, D. [CEA Saclay, DEN/DANS/DPC/SECR/LSRM, 91 191 Gif-sur-Yvette (France); Cheniere, A. [CEA Saclay, DEN/DANS/DPC/LRSI, 91 191 Gif-sur-Yvette (France); Lamouroux-Lucas, C. [CEA Saclay, DEN/DANS/DPC/SECR/LSRM, 91 191 Gif-sur-Yvette (France); Cochin, F. [AREVA NC Tour, AREVA, 92 084 Paris La Defense cedex (France)

    2012-07-15

    Hydrated zirconium molybdate is a precipitate formed during the process of spent nuclear fuel dissolution. In order to study the radiation stability of this material, we performed gamma and electron irradiation in a dose range of 10-100 kGy. XRD patterns showed that the crystalline structure is not affected by irradiation. However, the yellow original sample exhibits a blue-grey color after exposure. The resulting samples were analyzed by means of EPR and diffuse reflectance spectroscopy. Two sites for trapped electrons were evidenced leading to a d{sup 1} configuration responsible for the observed coloration. Moreover, a third defect corresponding to a hole trapped on oxygen was observed after electron irradiation at low temperature.

  6. Dehydration of hydrated low-temperature tar

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, T

    1949-01-01

    Yoshida examined the mechanism of the dehydration of hydrated low-temperature tar with a microscope. The tar containing free carbon and coal dust is so stable that the removal of the above substances and water by a physical method is very difficult. Addition of light oil produced by fractionation of low-temperature tar facilitates the operations. Yoshida tried using the separate acid, neutral, and basic components of the light oil; the acid oil proved to be most effective. For many reasons it is convenient to use light oil as it is. In this method the quantity of light oil required is 2 to 3 times that of tar. But in supplementing the centrifugal method, the quantity of light oil needed might be only half the amount of tar.

  7. Characterizing heterogeneous dynamics at hydrated electrode surfaces

    Science.gov (United States)

    Willard, Adam P.; Limmer, David T.; Madden, Paul A.; Chandler, David

    2013-05-01

    In models of Pt 111 and Pt 100 surfaces in water, motions of molecules in the first hydration layer are spatially and temporally correlated. To interpret these collective motions, we apply quantitative measures of dynamic heterogeneity that are standard tools for considering glassy systems. Specifically, we carry out an analysis in terms of mobility fields and distributions of persistence times and exchange times. In so doing, we show that dynamics in these systems is facilitated by transient disorder in frustrated two-dimensional hydrogen bonding networks. The frustration is the result of unfavorable geometry imposed by strong metal-water bonding. The geometry depends upon the structure of the underlying metal surface. Dynamic heterogeneity of water on the Pt 111 surface is therefore qualitatively different than that for water on the Pt 100 surface. In both cases, statistics of this ad-layer dynamic heterogeneity responds asymmetrically to applied voltage.

  8. Characterizing heterogeneous dynamics at hydrated electrode surfaces.

    Science.gov (United States)

    Willard, Adam P; Limmer, David T; Madden, Paul A; Chandler, David

    2013-05-14

    In models of Pt 111 and Pt 100 surfaces in water, motions of molecules in the first hydration layer are spatially and temporally correlated. To interpret these collective motions, we apply quantitative measures of dynamic heterogeneity that are standard tools for considering glassy systems. Specifically, we carry out an analysis in terms of mobility fields and distributions of persistence times and exchange times. In so doing, we show that dynamics in these systems is facilitated by transient disorder in frustrated two-dimensional hydrogen bonding networks. The frustration is the result of unfavorable geometry imposed by strong metal-water bonding. The geometry depends upon the structure of the underlying metal surface. Dynamic heterogeneity of water on the Pt 111 surface is therefore qualitatively different than that for water on the Pt 100 surface. In both cases, statistics of this ad-layer dynamic heterogeneity responds asymmetrically to applied voltage.

  9. High-pressure structures of methane hydrate

    International Nuclear Information System (INIS)

    Hirai, H; Uchihara, Y; Fujihisa, H; Sakashita, M; Katoh, E; Aoki, K; Yamamoto, Y; Nagashima, K; Yagi, T

    2002-01-01

    Three high-pressure structures of methane hydrate, a hexagonal structure (str. A) and two orthorhombic structures (str. B and str. C), were found by in situ x-ray diffractometry and Raman spectroscopy. The well-known structure I (str. I) decomposed into str. A and fluid at 0.8 GPa. Str. A transformed into str. B at 1.6 GPa, and str. B further transformed into str. C at 2.1 GPa which survived above 7.8 GPa. The fluid solidified as ice VI at 1.4 GPa, and the ice VI transformed to ice VII at 2.1 GPa. The bulk moduli, K 0 , for str. I, str. A, and str. C were calculated to be 7.4, 9.8, and 25.0 GPa, respectively

  10. Hydration Structure of the Quaternary Ammonium Cations

    KAUST Repository

    Babiaczyk, Wojtek Iwo

    2010-11-25

    Two indicators of the hydropathicity of small solutes are introduced and tested by molecular dynamics simulations. These indicators are defined as probabilities of the orientation of water molecules\\' dipoles and hydrogen bond vectors, conditional on a generalized distance from the solute suitable for arbitrarily shaped molecules. Using conditional probabilities, it is possible to distinguish features of the distributions in close proximity of the solute. These regions contain the most significant information on the hydration structure but cannot be adequately represented by using, as is usually done, joint distance-angle probability densities. Our calculations show that using our indicators a relative hydropathicity scale for the interesting test set of the quaternary ammonium cations can be roughly determined. © 2010 American Chemical Society.

  11. Beta ray backscattering studies for thickness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Singh, M; Sharma, K K [Punjabi Univ., Patiala (India). Nuclear Science Labs.

    1979-01-01

    Back-scattering of beta rays from /sup 204/Tl (Esub(..beta..)max = 740 keV) and /sup 90/Sr-/sup 90/Y (Esub(..beta..)max =550 and 2250 keV) has been studied in an improved reflection geometry, using annular sources, from a number of elemental targets with Z values ranging from 13 to 82. Source to target and target to detector geometry factors are 0.0225 and 0.0282 respectively. Values of saturation back scattering thickness obtained in the two cases are 72 +- 10 and 190 +- 40 mg/cm/sup 2/ respectively. It is observed that the intensity of back scattered radiation varies linearly with thickness upto a value of 12 +- 2 mg/cm/sup 2/ in /sup 204/Tl and 17 +- 3 mg/cm/sup 2/ in /sup 90/Sr-/sup 90/Y.

  12. Influence of Physical Activity and Ambient Temperature on Hydration: The European Hydration Research Study (EHRS

    Directory of Open Access Journals (Sweden)

    Ricardo Mora-Rodriguez

    2016-04-01

    Full Text Available This study explored the effects of physical activity (PA and ambient temperature on water turnover and hydration status. Five-hundred seventy three healthy men and women (aged 20–60 years from Spain, Greece and Germany self-reported PA, registered all food and beverage intake, and collected 24-h urine during seven consecutive days. Fasting blood samples were collected at the onset and end of the study. Food moisture was assessed using nutritional software to account for all water intake which was subtracted from daily urine volume to allow calculation of non-renal water loss (i.e., mostly sweating. Hydration status was assessed by urine and blood osmolality. A negative association was seen between ambient temperature and PA (r = −0.277; p < 0.001. Lower PA with high temperatures did not prevent increased non-renal water losses (i.e., sweating and elevated urine and blood osmolality (r = 0.218 to 0.163 all p < 0.001. When summer and winter data were combined PA was negatively associated with urine osmolality (r = −0.153; p = 0.001. Our data suggest that environmental heat acts to reduce voluntary PA but this is not sufficient to prevent moderate dehydration (increased osmolality. On the other hand, increased PA is associated with improved hydration status (i.e., lower urine and blood osmolality.

  13. Balancing Accuracy and Computational Efficiency for Ternary Gas Hydrate Systems

    Science.gov (United States)

    White, M. D.

    2011-12-01

    Geologic accumulations of natural gas hydrates hold vast organic carbon reserves, which have the potential of meeting global energy needs for decades. Estimates of vast amounts of global natural gas hydrate deposits make them an attractive unconventional energy resource. As with other unconventional energy resources, the challenge is to economically produce the natural gas fuel. The gas hydrate challenge is principally technical. Meeting that challenge will require innovation, but more importantly, scientific research to understand the resource and its characteristics in porous media. Producing natural gas from gas hydrate deposits requires releasing CH4 from solid gas hydrate. The conventional way to release CH4 is to dissociate the hydrate by changing the pressure and temperature conditions to those where the hydrate is unstable. The guest-molecule exchange technology releases CH4 by replacing it with a more thermodynamically stable molecule (e.g., CO2, N2). This technology has three advantageous: 1) it sequesters greenhouse gas, 2) it releases energy via an exothermic reaction, and 3) it retains the hydraulic and mechanical stability of the hydrate reservoir. Numerical simulation of the production of gas hydrates from geologic deposits requires accounting for coupled processes: multifluid flow, mobile and immobile phase appearances and disappearances, heat transfer, and multicomponent thermodynamics. The ternary gas hydrate system comprises five components (i.e., H2O, CH4, CO2, N2, and salt) and the potential for six phases (i.e., aqueous, liquid CO2, gas, hydrate, ice, and precipitated salt). The equation of state for ternary hydrate systems has three requirements: 1) phase occurrence, 2) phase composition, and 3) phase properties. Numerical simulation of the production of geologic accumulations of gas hydrates have historically suffered from relatively slow execution times, compared with other multifluid, porous media systems, due to strong nonlinearities and

  14. Precise structural analysis of methane hydrate by neutron diffraction

    International Nuclear Information System (INIS)

    Igawa, Naoki; Hoshikawa, Akinori; Ishii, Yoshinobu

    2006-01-01

    Methane hydrate has attracted great interest as an energy resource to replace natural gas since this material is deposited in the seafloor and the deposits are estimated to exceed those of natural gas. Understanding the physical proprieties, such as the temperature dependence of the crystal structure, helps to specify the optimum environmental temperature and pressure during drilling, transport, and storage of methane hydrate. Clathrate hydrates consisted of encaging atomic and/or molecular species as a guest and host water formed by a hydrogen bonding. Although many studies on the clathrate hydrate including methane hydrate were reported, no detailed crystallographic property has yet been cleared. We focused on the motion of methane in the clathrate hydrate by the neutron diffraction. The crystal structure of the methane hydrate was analyzed by the applying the combination of the Rietveld refinement and the maximum entropy method (MEM) to neutron powder diffraction. Temperature dependence of the scattering-length density distribution maps revealed that the motion of methane molecules differs between the shapes of dodecahedron and tetrakaidecahedron. (author)

  15. CLATHRATE HYDRATES FORMATION IN SHORT-PERIOD COMETS

    International Nuclear Information System (INIS)

    Marboeuf, Ulysse; Mousis, Olivier; Petit, Jean-Marc; Schmitt, Bernard

    2010-01-01

    The initial composition of current models of cometary nuclei is only based on two forms of ice: crystalline ice for long-period comets and amorphous ice for short-period comets. A third form of ice, i.e., clathrate hydrate, could exist within the short-period cometary nuclei, but the area of formation of this crystalline structure in these objects has never been studied. Here, we show that the thermodynamic conditions in the interior of short-period comets allow the existence of clathrate hydrates in Halley-type comets. We show that their existence is viable in the Jupiter family comets only when the equilibrium pressure of CO clathrate hydrate is at least 1 order of magnitude lower than the usually assumed theoretical value. We calculate that the amount of volatiles that could be trapped in the clathrate hydrate layer may be orders of magnitude greater than the daily amount of gas released at the surface of the nucleus at perihelion. The formation and the destruction of the clathrate hydrate cages could then explain the diversity of composition of volatiles observed in comets, as well as some pre-perihelion outbursts. We finally show that the potential clathrate hydrate layer in comet 67P/Churyumov-Gerasimenko would, unfortunately, be deep inside the nucleus, out of reach of the Rosetta lander. However, such a clathrate hydrate layer would show up by the gas composition of the coma.

  16. Experimental setting for assessing mechanical strength of gas hydrate pellet

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, S.J.; Choi, J.H.; Koh, B.H. [Dongguk Univ., Phil-dong, Chung-gu, Seoul (Korea, Republic of). Dept. of Mechanical Engineering

    2008-07-01

    Due to the constant increase in global demand for clean energy, natural gas production from stranded medium and small size gas wells has drawn significant interest. Because the ocean transport of natural gas in the form of solid hydrate pellets (NGHP) has been estimated to be economically feasible, several efforts have been made to develop a total NGHP ocean transport chain. The investigation of mechanical strength of solid-form hydrate pellet has been an important task in fully exploiting the benefit of gas hydrate in the perspective of mass transportation and storage. This paper provided the results of a preliminary study regarding the assessment of mechanical properties of the gas hydrate pellet. The preliminary study suggested some of the key issues regarding formation and strength of gas hydrate pellets. Instead of utilizing the gas hydrate pellet, the study focused on a preliminary test setup for developing the ice pellet which was readily applied to the gas hydrate pellet in the future. The paper described the pelletization of ice powder as well as the experimental setup. Several photographs were illustrated, including samples of ice pellets; compression test for ice pellet using air press and load cell; and the initiation of crack in the cross section of an ice pellet. It was found that mechanical strength, especially, compression strength was not significantly affected by different level of press-forming force up to a certain level. 4 refs., 1 tab., 4 figs.

  17. The effect of hydrate promoters on gas uptake.

    Science.gov (United States)

    Xu, Chun-Gang; Yu, Yi-Song; Ding, Ya-Long; Cai, Jing; Li, Xiao-Sen

    2017-08-16

    Gas hydrate technology is considered as a promising technology in the fields of gas storage and transportation, gas separation and purification, seawater desalination, and phase-change thermal energy storage. However, to date, the technology is still not commercially used mainly due to the low gas hydrate formation rate and the low gas uptake. In this study, the effect of hydrate promoters on gas uptake was systematically studied and analyzed based on hydrate-based CH 4 storage and CO 2 capture from CO 2 /H 2 gas mixture experiments. Raman spectroscopy, Fourier transform infrared spectroscopy (FTIR) and gas chromatography (GC) were employed to analyze the microstructures and gas compositions. The results indicate that the effect of the hydrate promoter on the gas uptake depends on the physical and chemical properties of the promoter and gas. A strong polar ionic promoter is not helpful towards obtaining the ideal gas uptake because a dense hydrate layer is easily formed at the gas-liquid interface, which hinders gas diffusion from the gas phase to the bulk solution. For a weak polar or non-polar promoter, the gas uptake depends on the dissolution characteristics among the different substances in the system. The lower the mutual solubility among the substances co-existing in the system, the higher the independence among the substances in the system; this is so that each phase has an equal chance to occupy the hydrate cages without or with small interactions, finally leading to a relatively high gas uptake.

  18. Influence of limestone on the hydration of Portland cements

    International Nuclear Information System (INIS)

    Lothenbach, Barbara; Le Saout, Gwenn; Gallucci, Emmanuel; Scrivener, Karen

    2008-01-01

    The influence of the presence of limestone on the hydration of Portland cement was investigated. Blending of Portland cement with limestone was found to influence the hydrate assemblage of the hydrated cement. Thermodynamic calculations as well as experimental observations indicated that in the presence of limestone, monocarbonate instead of monosulfate was stable. Thermodynamic modelling showed that the stabilisation of monocarbonate in the presence of limestone indirectly stabilised ettringite leading to a corresponding increase of the total volume of the hydrate phase and a decrease of porosity. The measured difference in porosity between the 'limestone-free' cement, which contained less than 0.3% CO 2 , and a cement containing 4% limestone, however, was much smaller than calculated. Coupling of thermodynamic modelling with a set of kinetic equations which described the dissolution of the clinker, predicted quantitatively the amount of hydrates. The quantities of ettringite, portlandite and amorphous phase as determined by TGA and XRD agreed well with the calculated amounts of these phases after different periods of time. The findings in this paper show that changes in the bulk composition of hydrating cements can be followed by coupled thermodynamic models. Comparison between experimental and modelled data helps to understand in more detail the dominating processes during cement hydration

  19. Characteristics of Methane Hydrate Formation in Artificial and Natural Media

    Directory of Open Access Journals (Sweden)

    Qingbai Wu

    2013-03-01

    Full Text Available The formation of methane hydrate in two significantly different media was investigated, using silica gel as an artificial medium and loess as a natural medium. The methane hydrate formation was observed through the depletion of water in the matrix, measured via the matrix potential and the relationship between the matrix potential and the water content was determined using established equations. The velocity of methane hydrate nucleation slowed over the course of the reaction, as it relied on water transfer to the hydrate surfaces with lower Gibbs free energy after nucleation. Significant differences in the reactions in the two types of media arose from differences in the water retention capacity and lithology of media due to the internal surface area and pore size distributions. Compared with methane hydrate formation in silica gel, the reaction in loess was much slower and formed far less methane hydrate. The results of this study will advance the understanding of how the properties of the environment affect the formation of gas hydrates in nature.

  20. Structural and hydration properties of amorphous tricalcium silicate

    International Nuclear Information System (INIS)

    Mori, K.; Fukunaga, T.; Shiraishi, Y.; Iwase, K.; Xu, Q.; Oishi, K.; Yatsuyanagi, K.; Yonemura, M.; Itoh, K.; Sugiyama, M.; Ishigaki, T.; Kamiyama, T.; Kawai, M.

    2006-01-01

    Mechanical milling was carried out to synthesize amorphous tricalcium silicate (Ca 3 SiO 5 ) sample, where Ca 3 SiO 5 is the most principal component of Portland cement. The partial phase transformation from the crystalline to the amorphous state was observed by X-ray and neutron diffractions. Moreover, it was found that the structural distortion on the Ca-O correlation exists in the milled Ca 3 SiO 5 . The hydration of the milled Ca 3 SiO 5 with D 2 O proceeds as follows: the formation of hydration products such as Ca(OD) 2 rapidly occurs in the early hydration stage, and then proceeds slowly after about 15 h. The induction time for the hydration of the milled Ca 3 SiO 5 is approximately one half shorter than that for the hydration of the unmilled one. This result means that the mechanical milling brings about the chemical activity of Ca 3 SiO 5 for hydration, and may be particularly useful for increasing the reactivity in the early hydration stage

  1. Electrochemical stability of ionic clathrate hydrates and their structural consideration

    International Nuclear Information System (INIS)

    Lee, Wonhee; Lim, Dongwook; Lee, Huen

    2013-01-01

    Although electrochemical stability is an essential factor in relation to the potential applications of ionic clathrate hydrates to solid electrolytes, most studies regarding the proton conductors have focused on their ionic conductivity and thermal stability. Solid electrolytes in various electrochemical devices have to endure the applied potentials; thus, we examined the linear sweep voltammograms of various tetraalkylammonium hydroxide hydrates in order to shed light on the trend of electrochemical stability depending on the hydrate structure. We revealed that the electrochemical stability of Me 4 NOH hydrates is mainly affected by both their ionic concentration and cage occupancy. In particular, the true clathrate structures of β-Me 4 NOH hydrates are more electrochemically stable than their α-forms that possess partially broken hydrogen bonds. We also observed that the binary THF–Pr 4 NOH and pure Bu 4 NOH clathrate hydrates exhibit greater electrochemical stability than those of pure Me 4 NOH hydrates having lower or similar ionic concentrations. These results are considered to arise from the fact that each of the Pr 4 N + and Bu 4 N + ions occupies an extended space comprising four cages, which leads to stabilization of the larger unit, whereas a Me 4 N + ion is completely included only in one cage

  2. Ab initio modelling of methane hydrate thermophysical properties.

    Science.gov (United States)

    Jendi, Z M; Servio, P; Rey, A D

    2016-04-21

    The key thermophysical properties of methane hydrate were determined using ab initio modelling. Using density functional theory, the second-order elastic constants, heat capacity, compressibility, and thermal expansion coefficient were calculated. A wide and relevant range of pressure-temperature conditions were considered, and the structures were assessed for stability using the mean square displacement and radial distribution functions. Methane hydrate was found to be elastically isotropic with a linear dependence of the bulk modulus on pressure. Equally significant, multi-body interactions were found to be important in hydrates, and water-water interactions appear to strongly influence compressibility like in ice Ih. While the heat capacity of hydrate was found to be higher than that of ice, the thermal expansion coefficient was significantly lower, most likely due to the lower rigidity of hydrates. The mean square displacement gave important insight into stability, heat capacity, and elastic moduli, and the radial distribution functions further confirmed stability. The presented results provide a much needed atomistic thermoelastic characterization of methane hydrates and are essential input for the large-scale applications of hydrate detection and production.

  3. Influence of Lithium Carbonate on C3A Hydration

    Directory of Open Access Journals (Sweden)

    Weiwei Han

    2018-01-01

    Full Text Available Lithium salts, known to ameliorate the effects of alkali-silica reaction, can make significant effects on cement setting. However, the mechanism of effects on cement hydration, especially the hydration of C3A which is critical for initial setting time of cement, is rarely reported. In this study, the development of pH value of pore solution, conductivity, thermodynamics, and mineralogical composition during hydration of C3A with or without Li2CO3 are investigated. The results demonstrate that Li2CO3 promotes C3A hydration through high alkalinity, due to higher activity of lithium ion than that of calcium ion in the solution and carbonation of C3A hydration products resulted from Li2CO3. Li2CO3 favors the C3A hydration in C3A-CaSO4·2H2O-Ca(OH2-H2O hydration system and affects the mineralogical variation of the ettringite phase(s.

  4. A New Approach to Modeling Densities and Equilibria of Ice and Gas Hydrate Phases

    Science.gov (United States)

    Zyvoloski, G.; Lucia, A.; Lewis, K. C.

    2011-12-01

    The Gi