WorldWideScience

Sample records for thickness direction strain

  1. Dynamic tensile stress–strain characteristics of carbon/epoxy laminated composites in through-thickness direction

    Directory of Open Access Journals (Sweden)

    Nakai Kenji

    2015-01-01

    Full Text Available The effect of strain rate up to approximately ε̇ = 102/s on the tensile stress–strain properties of unidirectional and cross-ply carbon/epoxy laminated composites in the through-thickness direction is investigated. Waisted cylindrical specimens machined out of the laminated composites in the through-thickness direction are used in both static and dynamic tests. The dynamic tensile stress–strain curves up to fracture are determined using the split Hopkinson bar (SHB. The low and intermediate strain-rate tensile stress–strain relations up to fracture are measured on an Instron 5500R testing machine. It is demonstrated that the ultimate tensile strength and absorbed energy up to fracture increase significantly, while the fracture strain decreases slightly with increasing strain rate. Macro- and micro-scopic examinations reveal a marked difference in the fracture surfaces between the static and dynamic tension specimens.

  2. Stresses and strains in thick perforated orthotropic plates

    Science.gov (United States)

    A. Alshaya; John Hunt; R. Rowlands

    2016-01-01

    Stress and strain concentrations and in-plane and out-of-plane stress constraint factors associated with a circular hole in thick, loaded orthotropic composite plates are determined by three-dimensional finite element method. The plate has essentially infinite in-plane geometry but finite thickness. Results for Sitka Spruce wood are emphasized, although some for carbon...

  3. XRD measurement of mean thickness, thickness distribution and strain for illite and illite-smectite crystallites by the Bertaut-Warren-Averbach technique

    Science.gov (United States)

    Drits, Victor A.; Eberl, Dennis D.; Środoń, Jan

    1998-01-01

    A modified version of the Bertaut-Warren-Averbach (BWA) technique (Bertaut 1949, 1950; Warren and Averbach 1950) has been developed to measure coherent scattering domain (CSD) sizes and strains in minerals by analysis of X-ray diffraction (XRD) data. This method is used to measure CSD thickness distributions for calculated and experimental XRD patterns of illites and illite-smectites (I-S). The method almost exactly recovers CSD thickness distributions for calculated illite XRD patterns. Natural I-S samples contain swelling layers that lead to nonperiodic structures in the c* direction and to XRD peaks that are broadened and made asymmetric by mixed layering. Therefore, these peaks cannot be analyzed by the BWA method. These difficulties are overcome by K-saturation and heating prior to X-ray analysis in order to form 10-Å periodic structures. BWA analysis yields the thickness distribution of mixed-layer crystals (coherently diffracting stacks of fundamental illite particles). For most I-S samples, CSD thickness distributions can be approximated by lognormal functions. Mixed-layer crystal mean thickness and expandability then can be used to calculate fundamental illite particle mean thickness. Analyses of the dehydrated, K-saturated samples indicate that basal XRD reflections are broadened by symmetrical strain that may be related to local variations in smectite interlayers caused by dehydration, and that the standard deviation of the strain increases regularly with expandability. The 001 and 002 reflections are affected only slightly by this strain and therefore are suited for CSD thickness analysis. Mean mixed-layer crystal thicknesses for dehydrated I-S measured by the BWA method are very close to those measured by an integral peak width method.

  4. Direct stamping of silver nanoparticles toward residue-free thick electrode

    Directory of Open Access Journals (Sweden)

    Jiseok Kim, Kevin Wubs, Byeong-Soo Bae and Woo Soo Kim

    2012-01-01

    Full Text Available Direct stamping of functional materials has been developed for cost-effective and process-effective manufacturing of nano/micro patterns. However, there remain several challenging issues like the perfect removal of the residual layer and realization of high aspect ratio. We have demonstrated facile fabrication of flexible strain sensors that have microscale thick interdigitated capacitors with no residual layer by a simple direct stamping with silver nanoparticles (AgNPs. Polyurethane (PU prepolymer was utilized as an adhesive layer to transfer AgNPs more efficiently during the separation step of the flexible stamp from directly stamped AgNPs. Scanning electron microscopy images and energy dispersive x-ray spectroscopy analysis revealed residue-free transfer of microscale thick interdigitated electrodes onto two different flexible substrates (elastomeric and brittle for the application to highly sensitive strain sensors.

  5. Variation of Drying Strains between Tangential and Radial Directions in Asian White Birch

    Directory of Open Access Journals (Sweden)

    Zongying Fu

    2016-03-01

    Full Text Available In this study, wood disks of 30 mm in thickness cut from white birch (Betula platyphylla Suk logs were dried at a constant temperature (40 °C. The drying strains including practical shrinkage strain, elastic strain, viscoelastic creep strain and mechano-sorptive creep were measured both tangentially and radially. The effects of moisture content and radial position on each strain were also discussed qualitatively. Overall, the difference of the practical shrinkage strain between the tangential and radial directions was proportional to the distance from the pith. The tangential elastic strain and viscoelastic creep strain were higher than these strains in a radial direction, and they all decreased with the decrease of moisture content. Additionally, there were opposite mechano-sorptive creep between tangential and radial directions.

  6. Thickness-Dependent Strain Effect on the Deformation of the Graphene-Encapsulated Au Nanoparticles

    Directory of Open Access Journals (Sweden)

    Shuangli Ye

    2014-01-01

    Full Text Available The strain effect on graphene-encapsulated Au nanoparticles is investigated. A finite-element calculation is performed to simulate the strain distribution and morphology of the monolayer and multilayer graphene-encapsulated Au nanoparticles, respectively. It can be found that the inhomogeneous strain and deformation are enhanced with the increasing shrinkage of the graphene shell. Moreover, the strain distribution and deformation are very sensitive to the layer number of the graphene shell. Especially, the inhomogeneous strain at the interface between the graphene shell and encapsulated Au nanoparticles is strongly tuned by the graphene thickness. For the mono- and bilayer graphene-encapsulated Au nanoparticles, the dramatic shape transformation can be observed. However, with increasing the graphene thickness further, there is hardly deformation for the encapsulated Au nanoparticles. These simulated results indicate that the strain and deformation can be designed by the graphene layer thickness, which provides an opportunity to engineer the structure and morphology of the graphene-encapsulated nanoparticles.

  7. Effects of strain and thickness on the electronic and optical behaviors of two-dimensional hexagonal gallium nitride

    Science.gov (United States)

    Behzad, Somayeh

    2017-06-01

    The full potential linearized augmented plane wave (FP-LAPW) method within the framework of density functional theory has been used to study effects of strain and thickness on the electronic and optical properties of two-dimensional GaN. The band gap of monolayer and bilayer GaN under compressive in-plane strain change from indirect to direct with bond length shortening. Also, the semiconductor to semimetal transition occurs for monolayer and bilayer GaN under in-plane tensile strain with bond length elongation. It is found that the tensile and compressive strains cause the red and blue shifts in the optical spectra, respectively, for both monolayer and bilayer GaN. Applying the perpendicular strain on the bilayer GaN by decreasing the inter layer distance leads to the shift of valence band maximum towards the Γ point in the band structure and shift of peak positions and variation of peak intensities in ε2(ω) spectrum. The results show that the n-layer GaN has an indirect band gap for n < 16. The results suggest that monolayer and multilayer GaN are good candidates for application in optoelectronics and flexible electronics.

  8. Role of experimental resolution in measurements of critical layer thickness for strained-layer epitaxy

    International Nuclear Information System (INIS)

    Fritz, I.J.

    1987-01-01

    Experimental measurements of critical layer thicknesses (CLT's) in strained-layer epitaxy are considered. Finite experimental resolution can have a major effect on measured CLT's and can easily lead to spurious results. The theoretical approach to critical layer thicknesses of J. W. Matthews [J. Vac. Sci. Technol. 12, 126 (1975)] has been modified in a straightforward way to predict the apparent critical thickness for an experiment with finite resolution in lattice parameter. The theory has also been modified to account for the general empirical result that fewer misfit dislocations are generated than predicted by equilibrium calculation. The resulting expression is fit to recent x-ray diffraction data on InGaAs/GaAs and SiGe/Si. The results suggest that CLT's in these systems may not be significantly larger than predicted by equilibrium theory, in agreement with high-resolution measurements

  9. Effect of aggregate type, casting, thickness and curing condition on restrained strain of mass concrete

    Directory of Open Access Journals (Sweden)

    Pongsak Choktaweekarn

    2010-08-01

    Full Text Available In this paper, a three-dimensional finite element analysis is used for computing temperature and restrained strain inmass concrete. The model takes into account time, material properties, and mix proportion dependent behavior of concrete.The hydration heat and thermal properties used in the finite element analysis are obtained from our previously proposedadiabatic temperature rise model and are used as the input in the analysis. The analysis was done by varying size of massconcrete (especially thickness and the casting method in order to explain their effect on temperature and restrained strain inmass concrete. The casting methods used in the analysis are continuous and discontinuous casting. The discontinuouscasting consists of layer casting and block casting. Different types of aggregate were used in the analysis for studying theeffect of thermal properties of aggregate on temperature and restrained strain in mass concrete. Different conditions of curing(insulation and normal curing were also studied and compared. It was found from the analytical results that the maximumtemperature increases with the increase of the thickness of structure. The use of layer casting is more effective for thermalcracking control of mass concrete. The insulation curing method is preferable for mass concrete. Aggregate with low coefficientof thermal expansion is beneficial to reduce the restrained strain.

  10. Influence of strain on the growth of thick InGaN layers

    International Nuclear Information System (INIS)

    Stellmach, J.; Leyer, M.; Pristovsek, M.; Kneissl, M.

    2008-01-01

    The growth of high quality InGaN alloys is critical for a number of various optoelectronic device applications like LEDs and laser diodes. Nevertheless, the exact growth mechanisms of InGaN with high indium content is still not fully understood. In the present study the growth of thick InGaN layers was systematically investigated. InGaN films with thicknesses between ∝35 nm and ∝200 nm were grown on GaN templates with metal-organic vapour phase epitaxy (MOVPE). The group III partial pressures of 1.1 Pa for TMGa, 0.45 Pa for TMIn and the V/III-ratio of 1600 were kept constant. The growth temperature was varied between 750 C and 800 C. The growth of InGaN layer was characterized by in-situ spectroscopic ellipsometry (SE). Up to temperatures of 790 C structural analysis by XRD showed two strained layers with different indium content. The formation of the layer structure was investigated by varying the growth times at 770 C. In the first 500 s (35 nm) a rough (rms=9 nm) and pseudomorphically strained InGaN layer with low indium content (4%) is formed. Between 500 s and 1000 s this strained layer becomes smoother (rms=3.4 nm). For thicknesses beyond the In content increases (8% at 84 nm) and reaches 11% at 200 nm. We propose that the transition from a first layer with a low indium content to a second layer with an higher indium content is due to a gradual release of strain

  11. Increasing the critical thickness of InGaAs quantum wells using strain-relief technologies

    Science.gov (United States)

    Jones, Andrew Marquis

    The advantages of optical communication through silica fiber have made long-distance electrical communication through copper wire obsolete. The two windows of operation for long-haul optical communication are centered around the wavelengths of 1.3 mum and 1.55 mum, which have minimal amounts of signal attenuation and dispersion. Benefits of optical communications within these windows include low system costs, high bandwidth, and high system reliability which have encouraged the development of emitters and receivers at these relatively long wavelengths. Long-wavelength semiconductor lasers are typically fabricated on InP substrates, but their performance suffers greatly with increases in operating temperature. Laser diodes on GaAs substrates are not as sensitive to operating temperature due to quantum-well active regions with relative deep potential barriers, but critical thickness limits the wavelength ceiling to 1.1 mum. Strain-relief technologies are currently being investigated to enable long-wavelength lasers with deeper potential wells leading to a corresponding increase in characteristic temperatures. Having a larger lattice constant than GaAs enables ternary InGaAs substrates to increase the 1.1-mum wavelength ceiling. Extending this ceiling to one of the optical communication windows could enable high-characteristic-temperature, long-wavelength lasers. Broad-area and buried-heterostructure lasers have demonstrated the potential of ternary substrates to increase characteristic temperatures and emission wavelengths. Wavelengths as long as 1.15 mum and characteristic temperatures as high as 145 K have been achieved. Reduced-area metalorganic chemical vapor deposition involves the deposition of strained materials on isolated islands. Due to the discontinuous nature of reduced-area epitaxy, strained materials are allowed to expand near the mesa edges, decreasing the overall strain in the structure. Laser diodes using this technology have been successfully

  12. Conduction gap in graphene strain junctions: direction dependence

    International Nuclear Information System (INIS)

    Nguyen, M Chung; Nguyen, V Hung; Dollfus, P; Nguyen, Huy-Viet

    2014-01-01

    It has been shown in a recent study (Nguyen et al 2014 Nanotechnology 25 165201) that unstrained/strained graphene junctions are promising candidates to improve the performance of graphene transistors which is usually hindered by the gapless nature of graphene. Although the energy bandgap of strained graphene still remains zero, the shift of Dirac points in the k-space due to strain-induced deformation of graphene lattice can lead to the appearance of a finite conduction gap of several hundred meV in strained junctions with a strain of only a few per cent. However, since it depends essentially on the magnitude of the Dirac point shift, this conduction gap strongly depends on the direction of applied strain and the transport direction. In this work, a systematic study of conduction-gap properties with respect to these quantities is presented and the results are carefully analyzed. Our study provides useful information for further investigations to exploit graphene-strained junctions in electronic applications and strain sensors. (paper)

  13. Critical thickness and strain relaxation in molecular beam epitaxy-grown SrTiO3 films

    International Nuclear Information System (INIS)

    Wang, Tianqi; Ganguly, Koustav; Marshall, Patrick; Xu, Peng; Jalan, Bharat

    2013-01-01

    We report on the study of the critical thickness and the strain relaxation in epitaxial SrTiO 3 film grown on (La 0.3 Sr 0.7 )(Al 0.65 Ta 0.35 )O 3 (001) (LSAT) substrate using the hybrid molecular beam epitaxy approach. No change in the film's lattice parameter (both the in-plane and the out-of-plane) was observed up to a film thickness of 180 nm, which is in sharp contrast to the theoretical critical thickness of ∼12 nm calculated using the equilibrium theory of strain relaxation. For film thicknesses greater than 180 nm, the out-of-plane lattice parameter was found to decrease hyperbolically in an excellent agreement with the relaxation via forming misfit dislocations. Possible mechanisms are discussed by which the elastic strain energy can be accommodated prior to forming misfit dislocations leading to such anomalously large critical thickness

  14. In situ measurement using FBGs of process-induced strains during curing of thick glass/epoxy laminate plate

    DEFF Research Database (Denmark)

    Nielsen, Michael Wenani; Schmidt, Jacob Wittrup; Hattel, Jesper Henri

    2012-01-01

    For large composite structures, such as wind turbine blades, thick laminates are required to withstand large in-service loads. During the manufacture of thick laminates, one of the challenges met is avoiding process-induced shape distortions and residual stresses. In this paper, embedded fibre...... Bragg grating sensors are used to monitor process-induced strains during vacuum infusion of a thick glass/epoxy laminate. The measured strains are compared with predictions from a cure hardening instantaneous linear elastic (CHILE) thermomechanical numerical model where different mechanical boundary...... conditions are employed. The accuracy of the CHILE model in predicting process-induced internal strains, in what is essentially a viscoelastic boundary value problem, is investigated. A parametric study is furthermore performed to reveal the effect of increasing the laminate thickness. The numerical model...

  15. An analytical method for calculating stresses and strains of ATF cladding based on thick walled theory

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Hyun; Kim, Hak Sung [Hanyang University, Seoul (Korea, Republic of); Kim, Hyo Chan; Yang, Yong Sik; In, Wang kee [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In this paper, an analytical method based on thick walled theory has been studied to calculate stress and strain of ATF cladding. In order to prescribe boundary conditions of the analytical method, two algorithms were employed which are called subroutine 'Cladf' and 'Couple' of FRACAS, respectively. To evaluate the developed method, equivalent model using finite element method was established and stress components of the method were compared with those of equivalent FE model. One of promising ATF concepts is the coated cladding, which take advantages such as high melting point, a high neutron economy, and low tritium permeation rate. To evaluate the mechanical behavior and performance of the coated cladding, we need to develop the specified model to simulate the ATF behaviors in the reactor. In particular, the model for simulation of stress and strain for the coated cladding should be developed because the previous model, which is 'FRACAS', is for one body model. The FRACAS module employs the analytical method based on thin walled theory. According to thin-walled theory, radial stress is defined as zero but this assumption is not suitable for ATF cladding because value of the radial stress is not negligible in the case of ATF cladding. Recently, a structural model for multi-layered ceramic cylinders based on thick-walled theory was developed. Also, FE-based numerical simulation such as BISON has been developed to evaluate fuel performance. An analytical method that calculates stress components of ATF cladding was developed in this study. Thick-walled theory was used to derive equations for calculating stress and strain. To solve for these equations, boundary and loading conditions were obtained by subroutine 'Cladf' and 'Couple' and applied to the analytical method. To evaluate the developed method, equivalent FE model was established and its results were compared to those of analytical model. Based on the

  16. Dielectric oil-based polymer actuator for improved thickness strain and breakdown voltage

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Min Sung; Yamamoto, Akio [Dept. of Precision Engineering, School of Engineering, The University of Tokyo, Tokyo (Japan)

    2016-09-15

    Dielectric elastomer actuators (DEAs) have been increasingly investigated as alternative actuators to conventional ones. However, DEAs suffer from high rates of premature failure. Therefore, this study proposes a dielectric oil-based polymer actuator, also called a Dielectric liquid actuator (DLA), to compensate for the drawbacks of DEAs. DLA was experimentally compared with conventional DEAs. Results showed that DLA successfully prevented thermal runaway at defects in the electrode and excessive thinning of the film, resulting in increased breakdown voltage. Consequently, premature failure was inhibited, and the performance was improved. The breakdown voltages of DLA and DEA were 6000 and 2000 V, respectively, and their maximum thickness strains were 49.5% and 37.5%, respectively.

  17. Dielectric oil-based polymer actuator for improved thickness strain and breakdown voltage

    International Nuclear Information System (INIS)

    Cho, Min Sung; Yamamoto, Akio

    2016-01-01

    Dielectric elastomer actuators (DEAs) have been increasingly investigated as alternative actuators to conventional ones. However, DEAs suffer from high rates of premature failure. Therefore, this study proposes a dielectric oil-based polymer actuator, also called a Dielectric liquid actuator (DLA), to compensate for the drawbacks of DEAs. DLA was experimentally compared with conventional DEAs. Results showed that DLA successfully prevented thermal runaway at defects in the electrode and excessive thinning of the film, resulting in increased breakdown voltage. Consequently, premature failure was inhibited, and the performance was improved. The breakdown voltages of DLA and DEA were 6000 and 2000 V, respectively, and their maximum thickness strains were 49.5% and 37.5%, respectively

  18. Misfit strain-film thickness phase diagrams and related electromechanical properties of epitaxial ultra-thin lead zirconate titanate films

    Energy Technology Data Exchange (ETDEWEB)

    Qiu, Q.Y.; Mahjoub, R. [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia); Alpay, S.P. [Materials Science and Engineering Program and Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States); Nagarajan, V., E-mail: nagarajan@unsw.edu.au [School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052 (Australia)

    2010-02-15

    The phase stability of ultra-thin (0 0 1) oriented ferroelectric PbZr{sub 1-x}Ti{sub x}O{sub 3} (PZT) epitaxial thin films as a function of the film composition, film thickness, and the misfit strain is analyzed using a non-linear Landau-Ginzburg-Devonshire thermodynamic model taking into account the electrical and mechanical boundary conditions. The theoretical formalism incorporates the role of the depolarization field as well as the possibility of the relaxation of in-plane strains via the formation of microstructural features such as misfit dislocations at the growth temperature and ferroelastic polydomain patterns below the paraelectric-ferroelectric phase transformation temperature. Film thickness-misfit strain phase diagrams are developed for PZT films with four different compositions (x = 1, 0.9, 0.8 and 0.7) as a function of the film thickness. The results show that the so-called rotational r-phase appears in a very narrow range of misfit strain and thickness of the film. Furthermore, the in-plane and out-of-plane dielectric permittivities {epsilon}{sub 11} and {epsilon}{sub 33}, as well as the out-of-plane piezoelectric coefficients d{sub 33} for the PZT thin films, are computed as a function of misfit strain, taking into account substrate-induced clamping. The model reveals that previously predicted ultrahigh piezoelectric coefficients due to misfit-strain-induced phase transitions are practically achievable only in an extremely narrow range of film thickness, composition and misfit strain parameter space. We also show that the dielectric and piezoelectric properties of epitaxial ferroelectric films can be tailored through strain engineering and microstructural optimization.

  19. Stress and strain provide positional and directional cues in development.

    Directory of Open Access Journals (Sweden)

    Behruz Bozorg

    2014-01-01

    Full Text Available The morphogenesis of organs necessarily involves mechanical interactions and changes in mechanical properties of a tissue. A long standing question is how such changes are directed on a cellular scale while being coordinated at a tissular scale. Growing evidence suggests that mechanical cues are participating in the control of growth and morphogenesis during development. We introduce a mechanical model that represents the deposition of cellulose fibers in primary plant walls. In the model both the degree of material anisotropy and the anisotropy direction are regulated by stress anisotropy. We show that the finite element shell model and the simpler triangular biquadratic springs approach provide equally adequate descriptions of cell mechanics in tissue pressure simulations of the epidermis. In a growing organ, where circumferentially organized fibers act as a main controller of longitudinal growth, we show that the fiber direction can be correlated with both the maximal stress direction and the direction orthogonal to the maximal strain direction. However, when dynamic updates of the fiber direction are introduced, the mechanical stress provides a robust directional cue for the circumferential organization of the fibers, whereas the orthogonal to maximal strain model leads to an unstable situation where the fibers reorient longitudinally. Our investigation of the more complex shape and growth patterns in the shoot apical meristem where new organs are initiated shows that a stress based feedback on fiber directions is capable of reproducing the main features of in vivo cellulose fiber directions, deformations and material properties in different regions of the shoot. In particular, we show that this purely mechanical model can create radially distinct regions such that cells expand slowly and isotropically in the central zone while cells at the periphery expand more quickly and in the radial direction, which is a well established growth pattern

  20. Stress and strain provide positional and directional cues in development.

    Science.gov (United States)

    Bozorg, Behruz; Krupinski, Pawel; Jönsson, Henrik

    2014-01-01

    The morphogenesis of organs necessarily involves mechanical interactions and changes in mechanical properties of a tissue. A long standing question is how such changes are directed on a cellular scale while being coordinated at a tissular scale. Growing evidence suggests that mechanical cues are participating in the control of growth and morphogenesis during development. We introduce a mechanical model that represents the deposition of cellulose fibers in primary plant walls. In the model both the degree of material anisotropy and the anisotropy direction are regulated by stress anisotropy. We show that the finite element shell model and the simpler triangular biquadratic springs approach provide equally adequate descriptions of cell mechanics in tissue pressure simulations of the epidermis. In a growing organ, where circumferentially organized fibers act as a main controller of longitudinal growth, we show that the fiber direction can be correlated with both the maximal stress direction and the direction orthogonal to the maximal strain direction. However, when dynamic updates of the fiber direction are introduced, the mechanical stress provides a robust directional cue for the circumferential organization of the fibers, whereas the orthogonal to maximal strain model leads to an unstable situation where the fibers reorient longitudinally. Our investigation of the more complex shape and growth patterns in the shoot apical meristem where new organs are initiated shows that a stress based feedback on fiber directions is capable of reproducing the main features of in vivo cellulose fiber directions, deformations and material properties in different regions of the shoot. In particular, we show that this purely mechanical model can create radially distinct regions such that cells expand slowly and isotropically in the central zone while cells at the periphery expand more quickly and in the radial direction, which is a well established growth pattern in the meristem.

  1. Vibrational modes and strain in GaN/AlN quantum dot stacks: dependence on spacer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Fresneda, J.; Cros, A.; Llorens, J.M.; Garcia-Cristobal, A.; Cantarero, A. [Institut de Ciencia del Materials, Universitat de Valencia, 46071 Valencia (Spain); Amstatt, B.; Bellet-Amalric, E.; Daudin, B. [CEA-CNRS Group, Nanophysique et Semiconducteurs, DRFMC/SP2M/PSC, CEA-Grenoble, 17 rue des Martyrs, 38054 Grenoble cedex 9 (France)

    2007-06-15

    We have investigated the influence of spacer thickness on the vibrational and strain characteristics of GaN/AlN quantum dot multilayers (QD). The Raman shift corresponding to the E{sub 2h} vibrational mode related to the QDs has been analyzed for AlN thicknesses ranging from 4.4 nm to 13 nm, while the amount of GaN deposited in each layer remained constant from sample to sample. It is shown that there is a rapid blue shift of the GaN vibrational mode with spacer thickness when its value is smaller than 7 nm while it remains almost constant for thicker spacers. A rapid increase of the Raman line-width in the thicker samples is also observed. The experimental behavior is discussed in comparison with the results of a theoretical model for the strain in the QDs. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. Method and apparatus for ultrasonic characterization through the thickness direction of a moving web

    Science.gov (United States)

    Jackson, Theodore; Hall, Maclin S.

    2001-01-01

    A method and apparatus for determining the caliper and/or the ultrasonic transit time through the thickness direction of a moving web of material using ultrasonic pulses generated by a rotatable wheel ultrasound apparatus. The apparatus includes a first liquid-filled tire and either a second liquid-filled tire forming a nip or a rotatable cylinder that supports a thin moving web of material such as a moving web of paper and forms a nip with the first liquid-filled tire. The components of ultrasonic transit time through the tires and fluid held within the tires may be resolved and separately employed to determine the separate contributions of the two tire thicknesses and the two fluid paths to the total path length that lies between two ultrasonic transducer surfaces contained within the tires in support of caliper measurements. The present invention provides the benefit of obtaining a transit time and caliper measurement at any point in time as a specimen passes through the nip of rotating tires and eliminates inaccuracies arising from nonuniform tire circumferential thickness by accurately retaining point-to-point specimen transit time and caliper variation information, rather than an average obtained through one or more tire rotations. Morever, ultrasonic transit time through the thickness direction of a moving web may be determined independent of small variations in the wheel axle spacing, tire thickness, and liquid and tire temperatures.

  3. Synthesis of thick diamond films by direct current hot-cathode plasma chemical vapour deposition

    CERN Document Server

    Jin Zeng Sun; Bai Yi Zhen; Lu Xian Yi

    2002-01-01

    The method of direct current hot-cathode plasma chemical vapour deposition has been established. A long-time stable glow discharge at large discharge current and high gas pressure has been achieved by using a hot cathode in the temperature range from 1100 degree C to 1500 degree C and non-symmetrical configuration of the poles, in which the diameter of the cathode is larger than that of anode. High-quality thick diamond films, with a diameter of 40-50 mm and thickness of 0.5-4.2 mm, have been synthesized by this method. Transparent thick diamond films were grown over a range of growth rates between 5-10 mu m/h. Most of the thick diamond films have thermal conductivities of 10-12 W/K centre dot cm. The thick diamond films with high thermal conductivity can be used as a heat sink of semiconducting laser diode array and as a heat spreading and isolation substrate of multichip modules. The performance can be obviously improved

  4. Ion Diffusion-Directed Assembly Approach to Ultrafast Coating of Graphene Oxide Thick Multilayers.

    Science.gov (United States)

    Zhao, Xiaoli; Gao, Weiwei; Yao, Weiquan; Jiang, Yanqiu; Xu, Zhen; Gao, Chao

    2017-10-24

    The layer-by-layer (LbL) assembly approach has been widely used to fabricate multilayer coatings on substrates with multiple cycles, whereas it is hard to access thick films efficiently. Here, we developed an ion diffusion-directed assembly (IDDA) strategy to rapidly make multilayer thick coatings in one step on arbitrary substrates. To achieve multifunctional coatings, graphene oxide (GO) and metallic ions were selected as the typical building blocks and diffusion director in IDDA, respectively. With diffusion of metallic ions from substrate to negatively charged GO dispersion spontaneously (i.e., from high-concentration region to low-concentration region), GO was assembled onto the substrate sheet-by-sheet via sol-gel transformation. Because metallic ions with size of subnanometers can diffuse directionally and freely in the aqueous dispersion, GO was coated on the substrate efficiently, giving rise to films with desired thickness up to 10 μm per cycle. The IDDA approach shows three main merits: (1) high efficiency with a μm-scale coating rate; (2) controllability over thickness and evenness; and (3) generality for substrates of plastics, metals and ceramics with any shapes and morphologies. With these merits, IDDA strategy was utilized in the efficient fabrication of functional graphene coatings that exhibit outstanding performance as supercapacitors, electromagnetic interference shielding textiles, and anticorrosion coatings. This IDDA approach can be extended to other building blocks including polymers and colloidal nanoparticles, promising for the scalable production and application of multifunctional coatings.

  5. Thickness dependent properties of CMR Manganite thin films on lattice mismatched substrates: Distinguishing Strain and Interface Effects

    Science.gov (United States)

    Davidson, Anthony, III; Kolagani, Rajeswari; Bacharova, Ellisaveta; Yong, Grace; Smolyaninova, Vera; Schaefer, David; Mundle, Rajeh

    2007-03-01

    Epitaxial thin films of CMR manganite materials have been known to show thickness dependent electrical and magnetic properties on lattice mismatched substrates. Below a critical thickness, insulator-metal transition is suppressed. These effects have been largely attributed to the role of bi-axial lattice mismatch strain. Our recent results of epitaxial thin films of La0.67Ca0.33MnO3 (LCMO) on two substrates with varying degrees of compressive lattice mismatch indicate that, in addition to the effect of lattice mismatch strain, the thickness dependence of the properties are influenced by other factors possibly related to the nature of the film substrate interface and defects such as twin boundaries. We have compared the properties of LCMO films on (100) oriented LaAlO3 and (001) oriented NdCaAlO4 both of which induce compressive bi-axial strain. Interestingly, the suppression of the insulator-metal transition is less in films on NCAO which has a larger lattice mismatch. We will present results correlating the electrical and magneto transport properties with the structure and morphology of the films.

  6. Neutron methods for the direct determination of the magnetic induction in thick films

    Energy Technology Data Exchange (ETDEWEB)

    Kozhevnikov, S.V., E-mail: kozhevn@nf.jinr.ru [Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, 141980 Dubna (Russian Federation); Ott, F. [CEA, IRAMIS, Laboratoire Léon Brillouin, F-91191 Gif sur Yvette (France); CNRS, IRAMIS, Laboratoire Léon Brillouin, F-91191 Gif sur Yvette (France); Radu, F. [Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein Strasse 15, D-12489 Berlin (Germany)

    2016-03-15

    We review different neutron methods which allow extracting directly the value of the magnetic induction in thick films: Larmor precession, Zeeman spatial beam-splitting and neutron spin resonance. Resulting parameters obtained by the neutron methods and standard magnetometry technique are presented and compared. The possibilities and specificities of the neutron methods are discussed. - Highlights: • We present neutron methods for investigations of the thick magnetic films. • It is the methods for the direct determination of the magnetic induction. • Magnetic induction in bulk, at single interface and in a single domain. • It is Larmor precession, Zeeman spatial beam-splitting and neutron spin resonance. • These methods are complementary to polarized neutron reflectometry.

  7. Influence of ceramic dental crown coating substrate thickness ratio on strain energy release rate

    Science.gov (United States)

    Khasnulhadi, K.; Daud, R.; Mat, F.; Noor, S. N. F. M.; Basaruddin, K. S.; Sulaiman, M. H.

    2017-10-01

    This paper presents the analysis of coating substrate thickness ratio effect on the crown coating fracture behaviour. The bi-layer material is examined under four point bending with pre-crack at the bottom of the core material by using finite element. Three different coating thickness of core/substrate was tested which is 1:1, 1:2 and 2:1. The fracture parameters are analysed based on bilayer and homogenous elastic interaction. The result shows that the ratio thickness of core/veneer provided a significant effect on energy release rate.

  8. Influence of strain and metal thickness on metal-MoS₂ contacts.

    Science.gov (United States)

    Saidi, Wissam A

    2014-09-07

    MoS2 and other transition metal dichalcogenides are considered as potential materials in many applications including future electronics. A prerequisite for these applications is to understand the nature of the MoS2 contact with different metals. We use semi-local density functional theory in conjunction with dispersion corrections to study the heterostructures composed of Pd and Pt monolayers with (111) orientation grown pseudomorphically on MoS2(001). The interface properties are mapped as a function of the number of deposited overlayers, as well as a function of tensile and compressive strains. Although we show that the dependence of the contacts on strain can be fully explained using the d-band model, we find that their evolution with the number of deposited metal layers is markedly different between Pd and Pt, and at variance with the d-band model. Specifically, the Pt/MoS2 heterostructures show an anomalous large stability with the deposition of two metal monolayers for all investigated strains, while Pd/MoS2 exhibits a similar behavior only for compressive strains. It is shown that the results can be rationalized by accounting for second-nearest-neighbor effect that couples MoS2 with the subsurface metal layers. The underpinnings of this behavior are attributed to the larger polarizability and cohesive energy of Pt compared to Pd, that leads to a larger charge-response in the subsurface layers.

  9. Influence of strain and metal thickness on metal-MoS{sub 2} contacts

    Energy Technology Data Exchange (ETDEWEB)

    Saidi, Wissam A., E-mail: alsaidi@pitt.edu [Department of Mechanical Engineering and Materials Science, University of Pittsburgh, Pittsburgh, Pennsylvania 15261 (United States)

    2014-09-07

    MoS{sub 2} and other transition metal dichalcogenides are considered as potential materials in many applications including future electronics. A prerequisite for these applications is to understand the nature of the MoS{sub 2} contact with different metals. We use semi-local density functional theory in conjunction with dispersion corrections to study the heterostructures composed of Pd and Pt monolayers with (111) orientation grown pseudomorphically on MoS{sub 2}(001). The interface properties are mapped as a function of the number of deposited overlayers, as well as a function of tensile and compressive strains. Although we show that the dependence of the contacts on strain can be fully explained using the d-band model, we find that their evolution with the number of deposited metal layers is markedly different between Pd and Pt, and at variance with the d-band model. Specifically, the Pt/MoS{sub 2} heterostructures show an anomalous large stability with the deposition of two metal monolayers for all investigated strains, while Pd/MoS{sub 2} exhibits a similar behavior only for compressive strains. It is shown that the results can be rationalized by accounting for second-nearest-neighbor effect that couples MoS{sub 2} with the subsurface metal layers. The underpinnings of this behavior are attributed to the larger polarizability and cohesive energy of Pt compared to Pd, that leads to a larger charge-response in the subsurface layers.

  10. Thickness and strain effects on the thermoelectric transport in nanostructured Bi2Se3

    KAUST Repository

    Saeed, Yasir

    2014-01-23

    The structural stability, electronic structure, and thermal transport properties of one to six quintuple layers (QLs) of Bi2Se3 are investigated by van der Waals density functional theory and semi-classical Boltzmann theory. The bandgap amounts to 0.41 eV for a single QL and reduces to 0.23 eV when the number of QLs increases to six. A single QL has a significantly higher thermoelectric figure of merit (0.27) than the bulk material (0.10), which can be further enhanced to 0.30 by introducing 2.5% compressive strain. Positive phonon frequencies under strain indicate that the structural stability is maintained.

  11. Thickness and strain effects on the thermoelectric transport in nanostructured Bi2Se3

    KAUST Repository

    Saeed, Yasir; Schwingenschlö gl, Udo; Singh, Nirpendra

    2014-01-01

    The structural stability, electronic structure, and thermal transport properties of one to six quintuple layers (QLs) of Bi2Se3 are investigated by van der Waals density functional theory and semi-classical Boltzmann theory. The bandgap amounts to 0.41 eV for a single QL and reduces to 0.23 eV when the number of QLs increases to six. A single QL has a significantly higher thermoelectric figure of merit (0.27) than the bulk material (0.10), which can be further enhanced to 0.30 by introducing 2.5% compressive strain. Positive phonon frequencies under strain indicate that the structural stability is maintained.

  12. Direct strain energy harvesting in automobile tires using piezoelectric PZT-polymer composites

    NARCIS (Netherlands)

    Ende, D.A. van den; Wiel, H.J. van de; Groen, W.A.; Zwaag, S. van der

    2012-01-01

    Direct piezoelectric strain energy harvesting can be used to power wireless autonomous sensors in environments where low frequency, high strains are present, such as in automobile tires during operation. However, these high strains place stringent demands on the materials with respect to mechanical

  13. Direct strain energy harvesting in automobile tires using piezoelectric PZT–polymer composites

    NARCIS (Netherlands)

    Van den Ende, D.A.; Van de Wiel, H.J.; Groen, W.A.; Van der Zwaag, S.

    2011-01-01

    Direct piezoelectric strain energy harvesting can be used to power wireless autonomous sensors in environments where low frequency, high strains are present, such as in automobile tires during operation. However, these high strains place stringent demands on the materials with respect to mechanical

  14. Performance Analysis and Experimental Validation of the Direct Strain Imaging Method

    Science.gov (United States)

    Athanasios Iliopoulos; John G. Michopoulos; John C. Hermanson

    2013-01-01

    Direct Strain Imaging accomplishes full field measurement of the strain tensor on the surface of a deforming body, by utilizing arbitrarily oriented engineering strain measurements originating from digital imaging. In this paper an evaluation of the method’s performance with respect to its operating parameter space is presented along with a preliminary...

  15. Image Quality Enhancement Using the Direction and Thickness of Vein Lines for Finger-Vein Recognition

    Directory of Open Access Journals (Sweden)

    Young Ho Park

    2012-10-01

    Full Text Available On the basis of the increased emphasis placed on the protection of privacy, biometric recognition systems using physical or behavioural characteristics such as fingerprints, facial characteristics, iris and finger-vein patterns or the voice have been introduced in applications including door access control, personal certification, Internet banking and ATM machines. Among these, finger-vein recognition is advantageous in that it involves the use of inexpensive and small devices that are difficult to counterfeit. In general, finger-vein recognition systems capture images by using near infrared (NIR illumination in conjunction with a camera. However, such systems can face operational difficulties, since the scattering of light from the skin can make capturing a clear image difficult. To solve this problem, we proposed new image quality enhancement method that measures the direction and thickness of vein lines. This effort represents novel research in four respects. First, since vein lines are detected in input images based on eight directional profiles of a grey image instead of binarized images, the detection error owing to the non-uniform illumination of the finger area can be reduced. Second, our method adaptively determines a Gabor filter for the optimal direction and width on the basis of the estimated direction and thickness of a detected vein line. Third, by applying this optimized Gabor filter, a clear vein image can be obtained. Finally, the further processing of the morphological operation is applied in the Gabor filtered image and the resulting image is combined with the original one, through which finger-vein image of a higher quality is obtained. Experimental results from application of our proposed image enhancement method show that the equal error rate (EER of finger-vein recognition decreases to approximately 0.4% in the case of a local binary pattern-based recognition and to approximately 0.3% in the case of a wavelet transform

  16. Variations of retinal nerve fiber layer thickness and ganglion cell-inner plexiform layer thickness according to the torsion direction of optic disc.

    Science.gov (United States)

    Lee, Kang Hoon; Kim, Chan Yun; Kim, Na Rae

    2014-02-20

    To examine the relationship between the optic disc torsion and peripapillary retinal nerve fiber layer (RNFL) thickness through a comparison with the macular ganglion cell inner plexiform layer complex (GCIPL) thickness measured by Cirrus optical coherence tomography (OCT). Ninety-four eyes of 94 subjects with optic disc torsion and 114 eyes of 114 subjects without optic disc torsion were enrolled prospectively. The participants underwent fundus photography and OCT imaging in peripapillary RNFL mode and macular GCIPL mode. The participants were divided into groups according to the presence or absence of optic disc torsion. The eyes with optic disc torsion were further divided into supranasal torsion and inferotemporal torsion groups according to the direction of optic disc torsion. The mean RNFL and GCIPL thicknesses for the quadrants and subsectors were compared. The superior and inferior peak locations of the RNFL were also measured according to the torsion direction. The temporal RNFL thickness was significantly thicker in inferotemporal torsion, whereas the GCIPL thickness at all segments was unaffected. The inferotemporal optic torsion had more temporally positioned superior peak locations of the RNFL than the nontorsion and supranasal-torted optic disc. Thickening of the temporal RNFL with a temporal shift in the superior peak within the eyes with inferotemporal optic disc torsion can lead to interpretation errors. The ganglion cell analysis algorithm can assist in differentiating eyes with optic disc torsion.

  17. Thickness-controlled direct growth of nanographene and nanographite film on non-catalytic substrates

    Science.gov (United States)

    Du, Lei; Yang, Liu; Hu, Zhiting; Zhang, Jiazhen; Huang, Chunlai; Sun, Liaoxin; Wang, Lin; Wei, Dacheng; Chen, Gang; Lu, Wei

    2018-05-01

    Metal-catalyzed chemical vapor deposition (CVD) has been broadly employed for large-scale production of high-quality graphene. However, a following transfer process to targeted substrates is needed, which is incompatible with current silicon technology. We here report a new CVD approach to form nanographene and nanographite films with accurate thickness control directly on non-catalytic substrates such as silicon dioxide and quartz at 800 °C. The growth time is as short as a few seconds. The approach includes using 9-bis(diethylamino)silylanthracene as the carbon source and an atomic layer deposition (ALD) controlling system. The structure of the formed nanographene and nanographite films were characterized using atomic force microscopy, high resolution transmission electron microscopy, Raman scattering, and x-ray photoemission spectroscopy. The nanographite film exhibits a transmittance higher than 80% at 550 nm and a sheet electrical resistance of 2000 ohms per square at room temperature. A negative temperature-dependence of the resistance of the nanographite film is also observed. Moreover, the thickness of the films can be precisely controlled via the deposition cycles using an ALD system, which promotes great application potential for optoelectronic and thermoelectronic-devices.

  18. Direct Synthesis of 7 nm Thick Zinc(II)-Benzimidazole-Acetate Metal-Organic Framework Nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Feng; Kumar, Prashant; Xu, Wenqian; Mkhoyan, K. Andre; Tsapatsis, Michael

    2018-01-09

    Two-dimensional metal-organic frameworks (MOFs) are promising candidates for high performance gas sepa-ration membranes. Currently, MOF nanosheets are mostly fabricated through delamination of layered MOFs, which often re-sults in a low yield of intact free-standing nanosheets. In this work, we present a direct synthesis method for zinc(II)-benzimidazole-acetate (Zn(Bim)OAc) MOF nanosheets. The obtained nanosheets have a lateral dimension of 600 nm when synthesized at room temperature. By adjusting the synthesis temperature, the morphology of obtained nanosheets can be readily tuned from nanosheets to nanobelts. A thickness of 7 nm is determined for Zn(Bim)OAc using high-angle annular dark-field scanning transmission electron microscopy, which makes these nanosheets promising building blocks of gas sepa-ration membranes.

  19. Direct measurements of the velocity and thickness of ''explosively'' propagating buried molten layers in amorphous silicon

    International Nuclear Information System (INIS)

    Lowndes, D.H.; Jellison, G.E. Jr.; Pennycook, S.J.; Withrow, S.P.; Mashburn, D.N.

    1986-01-01

    Simultaneous infrared (1152 nm) and visible (633 nm) reflectivity measurements with nanosecond resolution were used to study the initial formation and subsequent motion of pulsed KrF laser-induced ''explosively'' propagating buried molten layers in ion implantation-amorphized silicon. The buried layer velocity decreases with depth below the surface, but increases with KrF laser energy density; a maximum velocity of about 14 m/s was observed, implying an undercooling-velocity relationship of approx. 14 K/(m/s). Z-contrast scanning transmission electron microscopy was used to form a direct chemical image of implanted Cu ions transported by the buried layer and showed that the final buried layer thickness was <15 nm

  20. Semi-exact solution of non-uniform thickness and density rotating disks. Part II: Elastic strain hardening solution

    International Nuclear Information System (INIS)

    Hojjati, M.H.; Jafari, S.

    2009-01-01

    Analytical solutions for the elastic-plastic stress distribution in rotating annular disks with uniform and variable thicknesses and densities are obtained under plane stress assumption. The solution employs a technique called the homotopy perturbation method. A numerical solution of the governing differential equation is also presented based on the Runge-Kutta's method for both elastic and plastic regimes. The analysis is based on Tresca's yield criterion, its associated flow rule and linear strain hardening. The results of the two methods are compared and generally show good agreement. It is shown that, depending on the boundary conditions used, the plastic core may contain one, two or three different plastic regions governed by different mathematical forms of the yield criterion. Four different stages of elastic-plastic deformation occur. The expansion of these plastic regions with increasing angular velocity is obtained together with the distributions of stress and displacement

  1. Effects of stress on the oxide layer thickness and post-oxidation creep strain of zircaloy-4

    International Nuclear Information System (INIS)

    Lim, Sang Ho; Yoon, Young Ku

    1986-01-01

    Effects of compressive stress generated in the oxide layer and its subsequent relief on oxidation rate and post-oxidation creep characteristics of zircaloy-4 were investigated by oxidation studies in steam with and without applied tensile stress and by creep testing at 700 deg C in high purity argon. The thickness of oxide layer increased with the magnitude of tensile stress applied during oxidation at 650 deg C in steam whereas similar phenomenon was not observed during oxidation at 800 deg C. Zircaloy-4 specimens oxidized at 600 deg C in steam without applied stress exhibited higher creep strain than that shown by unoxidized specimens when creep-tested in argon. Zircaloy-4 specimens oxidized at 600 deg C steam under the applied stress of 8.53MPa and oxidized at 800 deg C under the applied stress of 0 and 8.53MPa exhibited lower strain than that shown by unoxidized specimen. The above experimental results were accounted for on the basis of interactions among applied stress during oxidation, compressive stress generated in the oxide layer and elasticity of zircaloy-4 matrix. (Author)

  2. Micromechanical modeling of stress-induced strain in polycrystalline Ni–Mn–Ga by directional solidification

    International Nuclear Information System (INIS)

    Zhu, Yuping; Shi, Tao; Teng, Yao

    2015-01-01

    Highlights: • A micromechanical model of directional solidification Ni–Mn–Ga is developed. • The stress–strain curves in different directions are tested. • The martensite Young’s moduli in different directions are predicted. • The macro reorientation strains in different directions are investigated. - Abstract: Polycrystalline ferromagnetic shape memory alloy Ni–Mn–Ga produced by directional solidification possess unique properties. Its compressive stress–strain behaviors in loading–unloading cycle show nonlinear and anisotropic. Based on the self-consistent theory and thermodynamics principle, a micromechanical constitutive model of polycrystalline Ni–Mn–Ga by directional solidification is developed considering the generating mechanism of the macroscopic strain and anisotropy. Then, the stress induced strains at different angles to solidification direction are calculated, and the results agree well with the experimental data. The predictive curves of martensite Young’s modulus and macro reorientation strain in different directions are investigated. It may provide theoretical guidance for the design and use of ferromagnetic shape memory alloy

  3. Effect of Processing Parameters on Thickness of Columnar Structured Silicon Wafers Directly Grown from Silicon Melts

    Directory of Open Access Journals (Sweden)

    Jin-Seok Lee

    2012-01-01

    Full Text Available In order to obtain optimum growth conditions for desired thickness and more effective silicon feedstock usage, effects of processing parameters such as preheated substrate temperatures, time intervals, moving velocity of substrates, and Ar gas blowing rates on silicon ribbon thickness were investigated in the horizontal growth process. Most of the parameters strongly affected in the control of ribbon thickness with columnar grain structure depended on the solidification rate. The thickness of the silicon ribbon decreased with an increasing substrate temperature, decreasing time interval, and increasing moving velocity of the substrate. However, the blowing of Ar gas onto a liquid layer existing on the surface of solidified ribbon contributed to achieving smooth surface roughness but did not closely affect the change of ribbon thickness in the case of a blowing rate of ≥0.65 Nm3/h because the thickness of the solidified layer was already determined by the exit height of the reservoir.

  4. Development of a piping thickness monitoring system using equipotential switching direct current potential drop method

    International Nuclear Information System (INIS)

    Kyung Ha, Ryu; Na Young, Lee; Il Soon, Hwang

    2007-01-01

    As nuclear power plants age, low alloy steel piping undergoes wall thickness reduction due to Flow Accelerated Corrosion (FAC). Persisting pipe rupture accidents prompted thinned pipe management programs. As a consequence extensive inspection activities are made based on the Ultrasonic Technique (UT). As the inspection points increase, time is needed to cover required inspection areas. In this paper, we present the Wide Range Monitoring (WiRM) concept with Equipotential Switching Direct Current Potential Drop (ES-DCPD) method by which FAC-active areas can be screened for detailed UT inspections. To apply ES-DCPD, we developed an electric resistance network model and electric field model based on Finite Element Analysis (FEA) to verify its feasibility. Experimentally we measured DCPD of the pipe elbow and confirmed the validity using UT inspections. For a more realistic validation test, we designed a high temperature flow test loop with environmental parameters turned for FAC simulation in the laboratory. Using electrochemical monitoring of water chemistry and local flow velocity prediction by computational fluid dynamic model, FAC rate is estimated. Based on the FAC prediction model and the simulation loop test, we plan to demonstrate the applicability of ES-DCPD in the PWR secondary environment. (authors)

  5. Direct bandgap silicon: tensile-strained silicon nanocrystals

    Czech Academy of Sciences Publication Activity Database

    Kůsová, Kateřina; Hapala, Prokop; Valenta, J.; Jelínek, Pavel; Cibulka, Ondřej; Ondič, Lukáš; Pelant, Ivan

    2014-01-01

    Roč. 1, č. 2 (2014), "1300042-1"-"1300042-9" ISSN 2196-7350 R&D Projects: GA ČR(CZ) GBP108/12/G108; GA ČR GPP204/12/P235; GA ČR GAP204/10/0952 Institutional support: RVO:68378271 Keywords : silicon nanocrystals * badstructure * light emission * direct bandgap * surface capping Subject RIV: BM - Solid Matter Physics ; Magnetism

  6. The Influence of Forming Directions and Strain Rate on Dynamic Shear Properties of Aerial Aluminum Alloy

    Directory of Open Access Journals (Sweden)

    Ying Meng

    2018-03-01

    Full Text Available Dynamic shear properties under high strain rate are an important basis for studying the dynamic mechanical properties and microscopic mechanisms of materials. Dynamic impact shear tests of aerial aluminum alloy 7050-T7451 in rolling direction (RD, transverse direction (TD and normal direction (ND were performed at a range of strain rates from 2.5 × 104 s−1 to 4.5 × 104 s−1 by High Split Hopkinson Pressure Bar (SHPB. The influence of different forming directions and strain rates on the dynamic shear properties of material and the microstructure evolution under dynamic shear were emphatically analyzed. The results showed that aluminum alloy 7050-T7451 had a certain strain rate sensitivity and positive strain rate strengthening effect, and also the material had no obvious strain strengthening effect. Different forming directions had a great influence on dynamic shear properties. The shear stress in ND was the largest, followed by that in RD, and the lowest was that in TD. The microstructure observation showed that the size and orientation of the grain structure were different in three directions, which led to the preferred orientation of the material. All of those were the main reasons for the difference of dynamic shear properties of the material.

  7. Ultrasensitive tunability of the direct bandgap of 2D InSe flakes via strain engineering

    Science.gov (United States)

    Li, Yang; Wang, Tianmeng; Wu, Meng; Cao, Ting; Chen, Yanwen; Sankar, Raman; Ulaganathan, Rajesh K.; Chou, Fangcheng; Wetzel, Christian; Xu, Cheng-Yan; Louie, Steven G.; Shi, Su-Fei

    2018-04-01

    InSe, a member of the layered materials family, is a superior electronic and optical material which retains a direct bandgap feature from the bulk to atomically thin few-layers and high electronic mobility down to a single layer limit. We, for the first time, exploit strain to drastically modify the bandgap of two-dimensional (2D) InSe nanoflakes. We demonstrated that we could decrease the bandgap of a few-layer InSe flake by 160 meV through applying an in-plane uniaxial tensile strain to 1.06% and increase the bandgap by 79 meV through applying an in-plane uniaxial compressive strain to 0.62%, as evidenced by photoluminescence (PL) spectroscopy. The large reversible bandgap change of ~239 meV arises from a large bandgap change rate (bandgap strain coefficient) of few-layer InSe in response to strain, ~154 meV/% for uniaxial tensile strain and ~140 meV/% for uniaxial compressive strain, representing the most pronounced uniaxial strain-induced bandgap strain coefficient experimentally reported in 2D materials. We developed a theoretical understanding of the strain-induced bandgap change through first-principles DFT and GW calculations. We also confirmed the bandgap change by photoconductivity measurements using excitation light with different photon energies. The highly tunable bandgap of InSe in the infrared regime should enable a wide range of applications, including electro-mechanical, piezoelectric and optoelectronic devices.

  8. Tuning metal-insulator behavior in LaTiO3/SrTiO3 heterostructures integrated directly on Si(100) through control of atomic layer thickness

    Science.gov (United States)

    Ahmadi-Majlan, Kamyar; Chen, Tongjie; Lim, Zheng Hui; Conlin, Patrick; Hensley, Ricky; Chrysler, Matthew; Su, Dong; Chen, Hanghui; Kumah, Divine P.; Ngai, Joseph H.

    2018-05-01

    We present electrical and structural characterization of epitaxial LaTiO3/SrTiO3 heterostructures integrated directly on Si(100). By reducing the thicknesses of the heterostructures, an enhancement in carrier-carrier scattering is observed in the Fermi liquid behavior, followed by a metal to insulator transition in the electrical transport. The insulating behavior is described by activated transport, and its onset occurs near an occupation of 1 electron per Ti site within the SrTiO3, providing evidence for a Mott driven transition. We also discuss the role that structure and gradients in strain could play in enhancing the carrier density. The manipulation of Mott metal-insulator behavior in oxides grown directly on Si opens the pathway to harnessing strongly correlated phenomena in device technologies.

  9. Direct evidence of strain transfer for InAs island growth on compliant Si substrates

    Energy Technology Data Exchange (ETDEWEB)

    Marçal, L. A. B.; Magalhães-Paniago, R.; Malachias, Angelo, E-mail: angeloms@fisica.ufmg.br [Universidade Federal de Minas Gerais, Av. Antonio Carlos 6627, CEP 31270-901, Belo Horizonte (Brazil); Richard, M.-I. [European Synchrotron (ESRF), ID01 beamline, CS 40220, 38043 Grenoble Cedex 9 (France); Aix-Marseille University, IM2NP-CNRS, Faculté des Sciences de St Jérôme, 13397 Marseille (France); Cavallo, F. [Center for High Technology Materials, University of New Mexico, 1313 Goddard St., Albuquerque, New Mexico 87106 (United States); University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States); Lagally, M. G. [University of Wisconsin-Madison, 1500 Engineering Drive, Madison, Wisconsin 53706 (United States); Schmidt, O. G. [Institute for Integrative Nanosciences, IFW-Dresden, D-01171 Dresden (Germany); Schülli, T. Ü. [European Synchrotron (ESRF), ID01 beamline, CS 40220, 38043 Grenoble Cedex 9 (France); Deneke, Ch. [Laboratório Nacional de Nanotecnologia (LNNano/CNPEM), C.P. 6192, CEP 13083-970, Campinas (Brazil)

    2015-04-13

    Semiconductor heteroepitaxy on top of thin compliant layers has been explored as a path to make inorganic electronics mechanically flexible as well as to integrate materials that cannot be grown directly on rigid substrates. Here, we show direct evidences of strain transfer for InAs islands on freestanding Si thin films (7 nm). Synchrotron X-ray diffraction measurements using a beam size of 300 × 700 nm{sup 2} can directly probe the strain status of the compliant substrate underneath deposited islands. Using a recently developed diffraction mapping technique, three-dimensional reciprocal space maps were reconstructed around the Si (004) peak for specific illuminated positions of the sample. The strain retrieved was analyzed using continuous elasticity theory via Finite-element simulations. The comparison of experiment and simulations yields the amount of strain from the InAs islands, which is transferred to the compliant Si thin film.

  10. THE STRESS-STRAIN STATE OF AN INFINITELY LONG ELASTIC ARRAYS OF DIFFERENT WIDTHS AND LIMITED THICKNESS ON THE HARD GROUND WHEN THEY HAVE FLAT DEFORMATION

    Directory of Open Access Journals (Sweden)

    I. K. Badalakha

    2009-12-01

    Full Text Available The article presents the results of solving several problems of a flat deformation of elastic infinitely long massifs of different width and limited thickness. Various cases of conditions at the massif/base contact. The relationships between stressed and strained states previously suggested by the author, which differ from the generalized Hooke’s law, are used in the solutions.

  11. Change in muscle thickness under contracting conditions following return to sports after a hamstring muscle strain injury—A pilot study

    Directory of Open Access Journals (Sweden)

    Yasuharu Nagano

    2015-04-01

    Full Text Available The purpose of this study was to measure the change in hamstring muscle thickness between contracting and relaxing conditions following a return to sports after a hamstring muscle strain and thereby evaluate muscle function. Six male track and field sprinters participated in this study. All had experienced a prior hamstring strain injury that required a minimum of 2 weeks away from sport participation. Transverse plane scans were performed at the following four points on the affected and unaffected sides under contracting and relaxing conditions: proximal biceps femoris long head, proximal semitendinosus, middle biceps femoris long head, and middle semitendinosus. The results demonstrated an increase in the thickness of the middle biceps femoris long head and middle semitendinosus regions on the unaffected side with contraction, whereas the affected side did not show a significant increase. The proximal semitendinosus muscle thickness was increased with contraction on both the unaffected and the affected sides. By contrast, the proximal biceps femoris muscle thickness did not show a significant increase on both sides. The results of this study show that evaluation of muscle thickness during contraction may be useful for assessing the change in muscle function after a hamstring muscle strain injury.

  12. Effects of tibial plateau angle and spacer thickness applied during in vitro canine total knee replacement on three-dimensional kinematics and collateral ligament strain.

    Science.gov (United States)

    Baker, Katherine M; Foutz, Timothy L; Johnsen, Kyle J; Budsberg, Steven C

    2014-09-01

    To quantify the 3-D kinematics and collateral ligament strain of stifle joints in cadaveric canine limbs before and after cranial cruciate ligament transection followed by total knee replacement (TKR) involving various tibial plateau angles and spacer thicknesses. 6 hemi-pelvises collected from clinically normal nonchondrodystrophic dogs (weight range, 25 to 35 kg). Hemi-pelvises were mounted on a modified Oxford knee rig that allowed 6 degrees of freedom of the stifle joint but prevented mechanical movement of the hip and tarsal joints. Kinematics and collateral ligament strain were measured continuously while stifle joints were flexed. Data were again collected after cranial cruciate ligament transection and TKR with combinations of 3 plateau angles (0°, 4°, and 8°) and spacer thicknesses (5, 7, and 9 mm). Presurgical (ie, normal) stifle joint rotations were comparable to those previously documented for live dogs. After TKR, kinematics recorded for the 8°, 5-mm implant most closely resembled those of unaltered stifle joints. Decreasing the plateau angle and increasing spacer thickness altered stifle joint adduction, internal rotation, and medial translation. Medial collateral ligament strain was minimal in unaltered stifle joints and was unaffected by TKR. Lateral collateral ligament strain decreased with steeper plateau angles but returned to a presurgical level at the flattest plateau angle. Among the constructs tested, greatest normalization of canine stifle joint kinematics in vitro was achieved with the steepest plateau angle paired with the thinnest spacer. Furthermore, results indicated that strain to the collateral ligaments was not negatively affected by TKR.

  13. Critical thickness and strain relaxation in high-misfit heteroepitaxial systems: PbTe1-xSex on PbSe (001)

    International Nuclear Information System (INIS)

    Wiesauer, Karin; Springholz, G.

    2004-01-01

    Strain relaxation and misfit dislocation formation is investigated for the high-misfit PbTe 1-x Se x /PbSe (001) heteroepitaxial system in which the lattice mismatch varies from 0% to 5.5%. Because a two-dimensional (2D) layer growth prevails for all PbTe 1-x Se x ternary compositions, the lattice mismatch is relaxed purely by misfit dislocations. In addition, it is found that strain relaxation is not hindered by dislocation kinetics. Therefore, this material combination is an ideal model system for testing the equilibrium Frank-van der Merwe and Matthews-Blakeslee strain relaxation models. In our experiments, we find significantly lower values of the critical layer thickness as compared to the model predictions. This discrepancy is caused by the inappropriate description of the dislocation self-energies when the layer thickness becomes comparable to the dislocation core radius. To resolve this problem, a modified expression for the dislocation self-energy is proposed. The resulting theoretical critical thicknesses are in excellent agreement with the experimental data. In addition, a remarkable universal scaling behavior is found for the strain relaxation data. This underlines the breakdown of the current strain relaxation models

  14. Engineering of nearly strain-free ZnO films on Si(1 1 1) by tuning AlN buffer thickness

    International Nuclear Information System (INIS)

    Venkatachalapathy, Vishnukanthan; Galeckas, Augustinas; Lee, In-Hwan; Kuznetsov, Andrej Yu.

    2012-01-01

    ZnO properties were investigated as a function of AlN buffer layer thickness (0–100 nm) in ZnO/AlN/Si(1 1 1) structures grown by metal organic vapor phase epitaxy. A significant improvement of ZnO film crystallinity by tuning AlN buffer thickness was confirmed by x-ray diffraction, topography and photoluminescence measurements. An optimal AlN buffer layer thickness of 50 nm is defined, which allows for growth of nearly strain-free ZnO films. The presence of free excitons at 10 K suggests high crystal quality for all ZnO samples grown on AlN/Si(1 1 1) templates. The intensities of neutral and ionized donor bound exciton lines are found to correlate with the in-plane and out-of-plane strain in the films, respectively.

  15. Engineering of nearly strain-free ZnO films on Si(1 1 1) by tuning AlN buffer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Venkatachalapathy, Vishnukanthan, E-mail: vishnukanthan.venkatachalapathy@smn.uio.no [Department of Physics/Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1048 Blindern, NO-0316 Oslo (Norway); Galeckas, Augustinas [Department of Physics/Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1048 Blindern, NO-0316 Oslo (Norway); Lee, In-Hwan [School of Advanced Materials Engineering, Research Centre for Advanced Materials Development (RCAMD), Chonbuk National University, Jeonju 561-756 (Korea, Republic of); Kuznetsov, Andrej Yu. [Department of Physics/Centre for Materials Science and Nanotechnology, University of Oslo, P.O. Box 1048 Blindern, NO-0316 Oslo (Norway)

    2012-05-15

    ZnO properties were investigated as a function of AlN buffer layer thickness (0-100 nm) in ZnO/AlN/Si(1 1 1) structures grown by metal organic vapor phase epitaxy. A significant improvement of ZnO film crystallinity by tuning AlN buffer thickness was confirmed by x-ray diffraction, topography and photoluminescence measurements. An optimal AlN buffer layer thickness of 50 nm is defined, which allows for growth of nearly strain-free ZnO films. The presence of free excitons at 10 K suggests high crystal quality for all ZnO samples grown on AlN/Si(1 1 1) templates. The intensities of neutral and ionized donor bound exciton lines are found to correlate with the in-plane and out-of-plane strain in the films, respectively.

  16. Analysis of residual transverse stresses in a thick UD glass/polyester pultruded profile using hole drilling with strain gage and digital image correlation

    Science.gov (United States)

    Yuksel, Onur; Baran, Ismet; Ersoy, Nuri; Akkerman, Remko

    2018-05-01

    Process induced stresses inherently exist in fiber reinforced polymer composites particularly in thick parts due to the presence of non-uniform cure, shrinkage and thermal expansion/contraction during manufacturing. In order to increase the reliability and the performance of the composite materials, process models are developed to predict the residual stress formation. The accuracy of the process models is dependent on the geometrical (micro to macro), material and process parameters as well as the numerical implementation. Therefore, in order to have reliable process modelling framework, there is a need for validation and if necessary calibration of the developed models. This study focuses on measurement of the transverse residual stresses in a relatively thick pultruded profile (20×20 mm) made of glass/polyester. Process-induced residual stresses in the middle of the profile are examined with different techniques which have never been applied for transverse residual stresses in thick unidirectional composites. Hole drilling method with strain gage and digital image correlation are employed. Strain values measured from measurements are used in a finite element model (FEM) to simulate the hole drilling process and predict the residual stress level. The measured released strain is found to be approximately 180 μm/m from the strain gage. The tensile residual stress at the core of the profile is estimated approximately as 7-10 MPa. Proposed methods and measured values in this study will enable validation and calibration of the process models based on the residual stresses.

  17. Measurement of illite particle thickness using a direct Fourier transform of small-angle X-ray scattering data

    Science.gov (United States)

    Shang, Chao; Rice, James A.; Eberl, Dennis D.; Lin, Jar-Shyong

    2003-01-01

    It has been suggested that interstratified illite-smectite (I-S) minerals are composed of aggregates of fundamental particles. Many attempts have been made to measure the thickness of such fundamental particles, but each of the methods used suffers from its own limitations and uncertainties. Small-angle X-ray scattering (SAXS) can be used to measure the thickness of particles that scatter X-rays coherently. We used SAXS to study suspensions of Na-rectorite and other illites with varying proportions of smectite. The scattering intensity (I) was recorded as a function of the scattering vector, q = (4 /) sin(/2), where  is the X-ray wavelength and  is the scattering angle. The experimental data were treated with a direct Fourier transform to obtain the pair distance distribution function (PDDF) that was then used to determine the thickness of illite particles. The Guinier and Porod extrapolations were used to obtain the scattering intensity beyond the experimental q, and the effects of such extrapolations on the PDDF were examined. The thickness of independent rectorite particles (used as a reference mineral) is 18.3 Å. The SAXS results are compared with those obtained by X-ray diffraction peak broadening methods. It was found that the power-law exponent (α) obtained by fitting the data in the region of q = 0.1-0.6 nm-1 to the power law (I = I0q-α) is a linear function of illite particle thickness. Therefore, illite particle thickness could be predicted by the linear relationship as long as the thickness is within the limit where α <4.0.

  18. A novel asymptotic expansion homogenization analysis for 3-D composite with relieved periodicity in the thickness direction

    KAUST Repository

    Nasution, Muhammad Ridlo Erdata

    2014-06-01

    A new asymptotic expansion homogenization analysis is proposed to analyze 3-D composite in which thermomechanical and finite thickness effects are considered. Finite thickness effect is captured by relieving periodic boundary condition at the top and bottom of unit-cell surfaces. The mathematical treatment yields that only 2-D periodicity (i.e. in in-plane directions) is taken into account. A unit-cell representing the whole thickness of 3-D composite is built to facilitate the present method. The equivalent in-plane thermomechanical properties of 3-D orthogonal interlock composites are calculated by present method, and the results are compared with those obtained by standard homogenization method (with 3-D periodicity). Young\\'s modulus and Poisson\\'s ratio obtained by present method are also compared with experiments whereby a good agreement is particularly found for the Young\\'s modulus. Localization analysis is carried out to evaluate the stress responses within the unit-cell of 3-D composites for two cases: thermal and biaxial tensile loading. Standard finite element (FE) analysis is also performed to validate the stress responses obtained by localization analysis. It is found that present method results are in a good agreement with standard FE analysis. This fact emphasizes that relieving periodicity in the thickness direction is necessary to accurately simulate the real free-traction condition in 3-D composite. © 2014 Elsevier Ltd.

  19. A novel asymptotic expansion homogenization analysis for 3-D composite with relieved periodicity in the thickness direction

    KAUST Repository

    Nasution, Muhammad Ridlo Erdata; Watanabe, Naoyuki; Kondo, Atsushi; Yudhanto, Arief

    2014-01-01

    A new asymptotic expansion homogenization analysis is proposed to analyze 3-D composite in which thermomechanical and finite thickness effects are considered. Finite thickness effect is captured by relieving periodic boundary condition at the top and bottom of unit-cell surfaces. The mathematical treatment yields that only 2-D periodicity (i.e. in in-plane directions) is taken into account. A unit-cell representing the whole thickness of 3-D composite is built to facilitate the present method. The equivalent in-plane thermomechanical properties of 3-D orthogonal interlock composites are calculated by present method, and the results are compared with those obtained by standard homogenization method (with 3-D periodicity). Young's modulus and Poisson's ratio obtained by present method are also compared with experiments whereby a good agreement is particularly found for the Young's modulus. Localization analysis is carried out to evaluate the stress responses within the unit-cell of 3-D composites for two cases: thermal and biaxial tensile loading. Standard finite element (FE) analysis is also performed to validate the stress responses obtained by localization analysis. It is found that present method results are in a good agreement with standard FE analysis. This fact emphasizes that relieving periodicity in the thickness direction is necessary to accurately simulate the real free-traction condition in 3-D composite. © 2014 Elsevier Ltd.

  20. Comparison of Measured Residual Stress in an Extra Thick Multi-pass Weld Using Neutron Diffraction Method and Inherent Strain Method

    International Nuclear Information System (INIS)

    Park, JeongUng; An, GyuBaek; Woo, Wan Chuck

    2015-01-01

    With the increase of large-scale containership, a large amount of high-strength steels with extra thick plates is being extensively used. The welding stress existing in the extra thick welded plates has a significant effect on the integrity of the component in terms of brittle fracture and fatigue behavior. It has been reported that welding residual stress distribution in an extra thick plate can affect the propagation path of the crack. Therefore, it is important to measure the distribution of welding residual stresses for the reliable design of the welded structures. So far various researches have been carried out for the determination of residual stresses on the surface of steels. In this paper, the total residual stresses in the 70 mm thick multipass FACW butt joint were measured by integrating initial stress into ISM. Concretely, two methods named as initial stress integrated ISM and initial inherent strain integrated ISM were employed to determine the total residual stresses. Furthermore, the distributions of residual stresses were compared with the results of the Neutron Diffraction Method(NDM). In order to measure the three dimensional residual stresses in the welded joint with initial stresses existing before welding, initial stress integrated ISM and initial inherent strain integrated ISM were developed. The residual stresses in 70 mm-thick butt joint by flux cored arc welding were carried out with a good accuracy using the two developed methods. The residual stresses in welded joint using both initial stress integrated ISM and initial inherent strain integrated ISM agreed well with the results measured by Neutron Diffraction Method. This suggests that the integrated ISM is a reliable method for residual stress measurement if initial stress existed

  1. Dependence on the growth direction of the strain in AlGaSb alloys

    Energy Technology Data Exchange (ETDEWEB)

    Rojas-Lopez, M; Delgado-Macuil, R; Gayou, V L; Orduna-Diaz, A [CIBA-Tlaxcala, IPN, Tlaxcala, Tlax. (Mexico); Momox-Beristain, E [FC-BUAP, Puebla, Pue. (Mexico); Salazar-Hernandez, B [CIICAp-UAEM, Cuernavaca, Mor. (Mexico); Rodriguez, A G, E-mail: marlonrl@yahoo.com.m [IICO-UASLP, San Luis Potosi, S.L.P. (Mexico)

    2009-05-01

    High resolution x-ray diffraction profiles were obtained from Al{sub x}Ga{sub 1-x}Sb layers grown on (001) and (111) GaSb substrates. The out of plane lattice parameter, was estimated directly from the symmetrical diffractions for (001) and (111) alloys. These results show that all the layers are strained, and those grown on (001) GaSb are slightly more strained than the corresponding layers grown on (111) GaSb. This difference is explained by the dependence of the strain ratio on growth direction. The out of plane lattice parameter as a function of Al content is higher than the corresponding bulk lattice parameter of Al{sub x}Ga{sub 1-x}Sb layers obtained with Vegard's law. Also, the perpendicular and the in-plane lattice parameter expected for pseudomorphic alloys, was estimated from the strain ratios, assuming an elastic deformation and using the EDX alloy composition to interpolate the elastic constants C{sub ij}. This estimation also shows that almost all the layers are fully strained.

  2. Experimental Determination and Numerical Modelling of Process Induced Strains and Residual Stresses in Thick Glass/Epoxy Laminate

    DEFF Research Database (Denmark)

    Nielsen, Michael Wenani; Hattel, Jesper Henri; Løgstrup Andersen, Tom

    2012-01-01

    dependency on temperature and cure degree. Model predictions are compared to experimentally determined in-situ strains, determined using FBG sensors. It was found that both models offer good approximations of internal strain build-up. A general shortcoming is the lack of capturing rate-dependent effects...

  3. Development of nondestructive hybrid measuring method for three-dimensional residual stress distribution of thick welded joint. Hybrid measuring method of inherent strain method and neutron diffraction method

    International Nuclear Information System (INIS)

    Nakacho, Keiji; Kasahara, Norifumi; Tamura, Ryota

    2012-01-01

    The measuring methods of the residual stress are classified into destructive one and nondestructive one. The inherent strain method (ISM) is destructive one. The neutron diffraction method (NDM) is nondestructive one. But the measurable depth is limited within about 20 mm and the method cannot measure the weld zone, without destruction of the object. So, in this study, the hybrid measuring method has been developed, by combining the ISM and the NDM. The theory of the hybrid method is the same as the ISM. In the analysis, the strains measured by the NDM without destruction are used. This hybrid measuring method is a true nondestructive measuring method for a thick welded joint. The applicability of the hybrid method has been verified by simulation, using a butt welded joint of thick pipes. In the simulation, the reliable order of the strains measured by the present NDM is very important, and was considered as 10 micro. The measurable regions by the present NDM were assumed. Under the above conditions, the data (the residual elastic strains assumed to be measured by the NDM) were made, and used in the ISM. As a result of such simulation, it has been cleared that the estimated residual stress has very high accuracy, if enough data are used. The required number of data is less than the ISM. (author)

  4. Cyclic stress at mHz frequencies aligns fibroblasts in direction of zero strain.

    Directory of Open Access Journals (Sweden)

    Uta Faust

    Full Text Available Recognition of external mechanical signals is vital for mammalian cells. Cyclic stretch, e.g. around blood vessels, is one such signal that induces cell reorientation from parallel to almost perpendicular to the direction of stretch. Here, we present quantitative analyses of both, cell and cytoskeletal reorientation of umbilical cord fibroblasts. Cyclic strain of preset amplitudes was applied at mHz frequencies. Elastomeric chambers were specifically designed and characterized to distinguish between zero strain and minimal stress directions and to allow accurate theoretical modeling. Reorientation was only induced when the applied stretch exceeded a specific amplitude, suggesting a non-linear response. However, on very soft substrates no mechanoresponse occurs even for high strain. For all stretch amplitudes, the angular distributions of reoriented cells are in very good agreement with a theory modeling stretched cells as active force dipoles. Cyclic stretch increases the number of stress fibers and the coupling to adhesions. We show that changes in cell shape follow cytoskeletal reorientation with a significant temporal delay. Our data identify the importance of environmental stiffness for cell reorientation, here in direction of zero strain. These in vitro experiments on cultured cells argue for the necessity of rather stiff environmental conditions to induce cellular reorientation in mammalian tissues.

  5. A direct current potential drop method for evaluating oxide film thickness formed in high-temperature water

    International Nuclear Information System (INIS)

    Anzai, Hideya; Ishibashi, Ryo; Saka, Masumi

    2016-01-01

    To establish an evaluation technique for oxide film thickness in-situ, the applicability of a four-point-probe direct current potential drop method is discussed in this study. Several samples of JIS SUS316L stainless steel with different oxide film thickness were prepared after immersing them in oxygenated pure water at 288°C for different periods. The oxide film thickness was measured by cross sectional observation using a transmission electron microscope. Potential drop on the oxide surface was measured every second during an acquisition period of about 20 s while a constant current was being injected into the sample simultaneously. This kind of measurement was repeatedly carried out at several arbitrary contact positions on the surface of the same sample. The measurement results showed that the potential drop slightly changed during the acquisition period and the tendency varied at the different contact positions. Multiple measurements at different contact positions revealed that the tendency could be categorized into two general types: the decreasing potential drop and the increasing potential drop, defined by the overall trend of the potential drop during the acquisition time. It was found that the ratio of contact positions with a decreasing potential drop tendency to all the contact positions of measurement tended to increase as applied current increased. This tendency depended on the oxide film thickness. The threshold value of applied current was found to correlate well with the oxide film thickness when the occurrence rate of decreasing potential drop ranged from 70 to 90% showing the best correlation at 70%. (author)

  6. Direct coordinate-free derivation of the compatibility equation for finite strains

    Science.gov (United States)

    Ryzhak, E. I.

    2014-07-01

    The compatibility equation for the Cauchy-Green tensor field (squared tensor of pure extensionwith respect to the reference configuration) is directly derived from the well-known relation expressing this tensor via the vector field determining the mapping (transformation) of the reference configuration into the actual one. The derivation is based on the use of the apparatus of coordinatefree tensor calculus and does not apply any notions and relations of Riemannian geometry at all. The method is illustrated by deriving the well-known compatibility equation for small strains. It is shown that when the obtained compatibility equation for finite strains is linearized, it becomes the compatibility equation for small strains which indirectly confirms its correctness.

  7. New strain measurement method at axial tensile test of thin films through direct imaging

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Jong-Eun [Department of Automotive Engineering, Seoul National Uinversity of Technolgy, 172 Gongneung-2 Dong, Nowon-Gu, Seoul (Korea, Republic of); Park, Jun-Hyub [Department of Mechatronics Engineering, College of Engineering, Tongmyong University, 535, Yongdang-Dong, Nam-Gu, Busan 608-711 (Korea, Republic of); Kang, Dong-Joong [School of Mechanical Eng., Pusan National University, Jangjeon-dong, Geumjeong-gu, Busan 609-735 (Korea, Republic of)], E-mail: jhyubpark@korea.com

    2008-09-07

    This paper proposes a new method for measuring strain during a tensile test of the specimen with micrometre size through direct imaging. A specimen was newly designed for adoption of direct imaging which was the main contribution of the proposed system. The structure of the specimen has eight indicators that make it possible to adopt direct imaging and it is fabricated using the same process of microelectromechanical system (MEMS) devices to guarantee the feasibility of the tensile test. We implemented a system for non-contact in situ measurement of strain with the specimen, the image-based displacement measurement system. Extension of the gauge length in the specimen could be found robustly by computing the positions of the eight rectangular-shape indicators on the image. Also, for an easy setup procedure, the region of interest was found automatically through the analysis of the edge projection profile along the horizontal direction. To gain confidence in the reliability of the system, the tensile test for the Al-3%Ti thin film was performed, which is widely used as a material in MEMS devices. Tensile tests were performed and displacements were measured using the proposed method and also the capacitance type displacement sensor for comparison. It is demonstrated that the new strain measurement system can be effectively used in the tensile test of the specimen at microscale with easy setup and better accuracy.

  8. Direct observation of strain in InAs quantum dots and cap layer during molecular beam epitaxial growth using in situ X-ray diffraction

    International Nuclear Information System (INIS)

    Shimomura, Kenichi; Ohshita, Yoshio; Kamiya, Itaru; Suzuki, Hidetoshi; Sasaki, Takuo; Takahasi, Masamitu

    2015-01-01

    Direct measurements on the growth of InAs quantum dots (QDs) and various cap layers during molecular beam epitaxy are performed by in situ X-ray diffraction (XRD). The evolution of strain induced both in the QDs and cap layers during capping is discussed based on the XRD intensity transients obtained at various lattice constants. Transients with different features are observed from those obtained during InGaAs and GaAs capping. The difference observed is attributed to In-Ga intermixing between the QDs and the cap layer under limited supply of In. Photoluminescence (PL) wavelength can be tuned by controlling the intermixing, which affects both the strain induced in the QDs and the barrier heights. The PL wavelength also varies with the cap layer thickness. A large redshift occurs by reducing the cap thickness. The in situ XRD observation reveals that this is a result of reduced strain. We demonstrate how such information about strain can be applied for designing and preparing novel device structures

  9. Direct observation of strain in InAs quantum dots and cap layer during molecular beam epitaxial growth using in situ X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Shimomura, Kenichi; Ohshita, Yoshio; Kamiya, Itaru, E-mail: kamiya@toyota-ti.ac.jp [Toyota Technological Institute, 2-12-1 Hisakata, Tempaku, Nagoya 468-8511 (Japan); Suzuki, Hidetoshi [Faculty of Engineering, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki 889-2192 (Japan); Sasaki, Takuo; Takahasi, Masamitu [Quantum Beam Science Center, Japan Atomic Energy Agency, Koto 1-1-1, Sayo-cho, Hyogo 679-5148 (Japan)

    2015-11-14

    Direct measurements on the growth of InAs quantum dots (QDs) and various cap layers during molecular beam epitaxy are performed by in situ X-ray diffraction (XRD). The evolution of strain induced both in the QDs and cap layers during capping is discussed based on the XRD intensity transients obtained at various lattice constants. Transients with different features are observed from those obtained during InGaAs and GaAs capping. The difference observed is attributed to In-Ga intermixing between the QDs and the cap layer under limited supply of In. Photoluminescence (PL) wavelength can be tuned by controlling the intermixing, which affects both the strain induced in the QDs and the barrier heights. The PL wavelength also varies with the cap layer thickness. A large redshift occurs by reducing the cap thickness. The in situ XRD observation reveals that this is a result of reduced strain. We demonstrate how such information about strain can be applied for designing and preparing novel device structures.

  10. Direct measurement of conformational strain energy in protofilaments curling outward from disassembling microtubule tips.

    Science.gov (United States)

    Driver, Jonathan W; Geyer, Elisabeth A; Bailey, Megan E; Rice, Luke M; Asbury, Charles L

    2017-06-19

    Disassembling microtubules can generate movement independently of motor enzymes, especially at kinetochores where they drive chromosome motility. A popular explanation is the 'conformational wave' model, in which protofilaments pull on the kinetochore as they curl outward from a disassembling tip. But whether protofilaments can work efficiently via this spring-like mechanism has been unclear. By modifying a previous assay to use recombinant tubulin and feedback-controlled laser trapping, we directly demonstrate the spring-like elasticity of curling protofilaments. Measuring their mechanical work output suggests they carry ~25% of the energy of GTP hydrolysis as bending strain, enabling them to drive movement with efficiency similar to conventional motors. Surprisingly, a β-tubulin mutant that dramatically slows disassembly has no effect on work output, indicating an uncoupling of disassembly speed from protofilament strain. These results show the wave mechanism can make a major contribution to kinetochore motility and establish a direct approach for measuring tubulin mechano-chemistry.

  11. MoO3 Thickness, Thermal Annealing and Solvent Annealing Effects on Inverted and Direct Polymer Photovoltaic Solar Cells

    Directory of Open Access Journals (Sweden)

    Guillaume Wantz

    2012-11-01

    Full Text Available Several parameters of the fabrication process of inverted polymer bulk heterojunction solar cells based on titanium oxide as an electron selective layer and molybdenum oxide as a hole selective layer were tested in order to achieve efficient organic photovoltaic solar cells. Thermal annealing treatment is a common process to achieve optimum morphology, but it proved to be damageable for the performance of this kind of inverted solar cells. We demonstrate using Auger analysis combined with argon etching that diffusion of species occurs from the MoO3/Ag top layers into the active layer upon thermal annealing. In order to achieve efficient devices, the morphology of the bulk heterojunction was then manipulated using the solvent annealing technique as an alternative to thermal annealing. The influence of the MoO3 thickness was studied on inverted, as well as direct, structure. It appeared that only 1 nm-thick MoO3 is enough to exhibit highly efficient devices (PCE = 3.8% and that increasing the thickness up to 15 nm does not change the device performance. 

  12. Effect of the thickness of the anode electrode catalyst layers on the performance in direct methanol fuel cells

    Science.gov (United States)

    Glass, Dean E.; Olah, George A.; Prakash, G. K. Surya

    2017-06-01

    For the large scale fuel cell manufacture, the catalyst loading and layer thickness are critical factors affecting the performance and cost of membrane electrode assemblies (MEAs). The influence of catalyst layer thicknesses at the anode of a PEM based direct methanol fuel cell (DMFC) has been investigated. Catalysts were applied with the drawdown method with varied thicknesses ranging from 1 mil to 8 mils (1 mil = 25.4 μm) with a Pt/Ru anode loading of 0.25 mg cm-2 to 2.0 mg cm-2. The MEAs with the thicker individual layers (8 mils and 4 mils) performed better overall compared to the those with the thinner layers (1 mil and painted). The peak power densities for the different loading levels followed an exponential decrease of Pt/Ru utilization at the higher loading levels. The highest power density achieved was 49 mW cm-2 with the 4 mil layers at 2.0 mg cm-2 catalyst loading whereas the highest normalized power density was 116 mW mg-1 with the 8 mil layers at 0.25 mg cm-2 loading. The 8 mil drawdowns displayed a 50% and 23% increase in normalized power density compared to the 1 mil drawdowns at 0.25 mg cm-2 and 0.5 mg cm-2 loadings, respectively.

  13. Strain-free GaN thick films grown on single crystalline ZnO buffer layer with in situ lift-off technique

    International Nuclear Information System (INIS)

    Lee, S. W.; Minegishi, T.; Lee, W. H.; Goto, H.; Lee, H. J.; Lee, S. H.; Lee, Hyo-Jong; Ha, J. S.; Goto, T.; Hanada, T.; Cho, M. W.; Yao, T.

    2007-01-01

    Strain-free freestanding GaN layers were prepared by in situ lift-off process using a ZnO buffer as a sacrificing layer. Thin Zn-polar ZnO layers were deposited on c-plane sapphire substrates, which was followed by the growth of Ga-polar GaN layers both by molecular beam epitaxy (MBE). The MBE-grown GaN layer acted as a protecting layer against decomposition of the ZnO layer and as a seeding layer for GaN growth. The ZnO layer was completely in situ etched off during growth of thick GaN layers at low temperature by hydride vapor phase epitaxy. Hence freestanding GaN layers were obtained for the consecutive growth of high-temperature GaN thick layers. The lattice constants of freestanding GaN agree with those of strain-free GaN bulk. Extensive microphotoluminescence study indicates that strain-free states extend throughout the high-temperature grown GaN layers

  14. Direct and vicarious violent victimization and juvenile delinquency: an application of general strain theory.

    Science.gov (United States)

    Lin, Wen-Hsu; Cochran, John K; Mieczkowski, Thomas

    2011-01-01

    Using a national probability sample of adolescents (12–17), this study applies general strain theory to how violent victimization, vicarious violent victimization, and dual violent victimization affect juvenile violent/property crime and drug use. In addition, the mediating effect and moderating effect of depression, low social control, and delinquent peer association on the victimization–delinquency relationship is also examined. Based on SEM analyses and contingency tables, the results indicate that all three types of violent victimization have significant and positive direct effects on violent/property crime and drug use. In addition, the expected mediating effects and moderating effects are also found. Limitations and future directions are discussed.

  15. Some elevated temperature tensile and strain-controlled fatigue properties for a 9%Cr1Mo steel heat treated to simulate thick section material

    International Nuclear Information System (INIS)

    Sanderson, S.J.; Jacques, S.

    Current interest has been expressed in the usage of thick section 9%Cr1%Mo steel, particularly for UK Commercial Demonstration Fast Reactor (CDFR) steam generator tubeplates. This paper presents the results of some preliminary mechanical property test work on a single cast of the steel, heat treated to simulate heavy ruling sections encompassing thicknesses likely to be met in the CDFR context. The microstructures of the simulated thick section material were found to remain predominantly as tempered martensite even at the slowest transformation cooling rates used (50 deg. C/h). The effect of microstructure is reflected in the elevated temperature proof stress, tensile strength and strain-controlled fatigue endurance which were found to be comparable with the properties established for thin section normalised and tempered 9%Cr1%Mo steel. These results are extremely encouraging and, taken in conjunction with the results from other simulation work on this material, further demonstrate the potential of thick section 9%Cr1%Mo steel. (author)

  16. Mathematical Model of Stress-Strain State of Curved Tube of Non-Circular Cross-Section with Account of Technological Wall Thickness Variation

    Science.gov (United States)

    Pirogov, S. P.; Ustinov, N. N.; Smolin, N. I.

    2018-05-01

    A mathematical model of the stress-strain state of a curved tube of a non-circular cross-section is presented, taking into account the technological wall thickness variation. On the basis of the semi-membrane shell theory, a system of linear differential equations describing the deformation of a tube under the effect of pressure is obtained. To solve the boundary value problem, the method of shooting is applied. The adequacy of the proposed mathematical model is verified by comparison with the experimental data and the results of the calculation of tubes by the energy method.

  17. Direct strain energy harvesting in automobile tires using piezoelectric PZT–polymer composites

    International Nuclear Information System (INIS)

    Van den Ende, D A; Van de Wiel, H J; Groen, W A; Van der Zwaag, S

    2012-01-01

    Direct piezoelectric strain energy harvesting can be used to power wireless autonomous sensors in environments where low frequency, high strains are present, such as in automobile tires during operation. However, these high strains place stringent demands on the materials with respect to mechanical failure or depolarization, especially at elevated temperatures. In this work, three kinds of ceramic–polymer composite piezoelectric materials were evaluated and compared against state-of-the-art piezoelectric materials. The new composites are unstructured and structured composites containing granular lead zirconate titanate (PZT) particles or PZT fibers in a polyurethane matrix. The composites were used to build energy harvesting patches which were attached to a tire and tested under simulated rolling conditions. The energy density of the piezoelectric ceramic–polymer composite materials is initially not as high as that of the reference materials (a macro-fiber composite and a polyvinylidene fluoride polymer). However, the area normalized power output of the composites after temperature and strain cycling is comparable to that of the reference devices because the piezoelectric ceramic–polymer composites did not degrade during operation. (paper)

  18. Three dimensional Free Vibration and Transient Analysis of Two Directional Functionally Graded Thick Cylindrical Panels Under Impact Loading

    Directory of Open Access Journals (Sweden)

    Hassan Zafarmand

    Full Text Available AbstractIn this paper three dimensional free vibration and transient response of a cylindrical panel made of two directional functionally graded materials (2D-FGMs based on three dimensional equations of elasticity and subjected to internal impact loading is considered. Material properties vary through both radial and axial directions continuously. The 3D graded finite element method (GFEM based on Rayleigh-Ritz energy formulation and Newmark direct integration method has been applied to solve the equations in space and time domains. The fundamental normalized natural frequency, time history of displacements and stresses in three directions and velocity of radial stress wave propagation for various values of span angel of cylindrical panel and different power law exponents have been investigated. The present results show that using 2D-FGMs leads to a more flexible design than conventional 1D-FGMs. The GFEM solution have been compared with the results of an FG thick hollow cylinder and an FG curved panel, where a good agreement between them is observed.

  19. Performance evaluation of compounding and directional beamforming techniques for carotid strain imaging using plane wave transmissions

    DEFF Research Database (Denmark)

    Hansen, Hendrik H.G.; Stuart, Matthias Bo; Villagómez Hoyos, Carlos Armando

    2014-01-01

    Carotid strain imaging in 3D is not possible with conventional focused imaging, because the frame rate is too low. Plane wave ultrasound provides sufficiently high frame rates, albeit at t he cost of image quality, especially in the off - axis direction due to the lack of focusing . Multiple...... techniques have been developed to cope with the low off - axis image quality when performing 2D (and in future 3D) motion estimation: cross correlation with directional beamforming (with or without RF (coherent) compounding) and displacement compounding. This study compares the precision of these techniques...... with RF compounding and 2D displacement compounding with θ = ~20 ° per formed equally and best with a relative root - mean - squared error of ~2% with respect to the analytical solution . The mean and standard deviation of the estimated motion direction for 2D displacement compounding with θ = 20 ° was 0...

  20. Directly Printable Flexible Strain Sensors for Bending and Contact Feedback of Soft Actuators

    Directory of Open Access Journals (Sweden)

    Khaled Elgeneidy

    2018-02-01

    Full Text Available This paper presents a fully printable sensorized bending actuator that can be calibrated to provide reliable bending feedback and simple contact detection. A soft bending actuator following a pleated morphology, as well as a flexible resistive strain sensor, were directly 3D printed using easily accessible FDM printer hardware with a dual-extrusion tool head. The flexible sensor was directly welded to the bending actuator’s body and systematically tested to characterize and evaluate its response under variable input pressure. A signal conditioning circuit was developed to enhance the quality of the sensory feedback, and flexible conductive threads were used for wiring. The sensorized actuator’s response was then calibrated using a vision system to convert the sensory readings to real bending angle values. The empirical relationship was derived using linear regression and validated at untrained input conditions to evaluate its accuracy. Furthermore, the sensorized actuator was tested in a constrained setup that prevents bending, to evaluate the potential of using the same sensor for simple contact detection by comparing the constrained and free-bending responses at the same input pressures. The results of this work demonstrated how a dual-extrusion FDM printing process can be tuned to directly print highly customizable flexible strain sensors that were able to provide reliable bending feedback and basic contact detection. The addition of such sensing capability to bending actuators enhances their functionality and reliability for applications such as controlled soft grasping, flexible wearables, and haptic devices.

  1. Biaxial direct tensile tests in a large range of strain rates. Results on a ferritic nuclear steel

    Energy Technology Data Exchange (ETDEWEB)

    Albertini, C.; Labibes, K.; Montagnani, M.; Pizzinato, E.V.; Solomos, G.; Viaccoz, B. [Commission of the European Communities, Ispra (Italy). Joint Research Centre

    2000-09-01

    Constitutive equations are usually calibrated only trough the experimental results obtained by means of unixial tests because of the lack of adequate biaxial experimental data especially at high strain rate conditions. These data are however important for the validation of analytical models and also for the predictions of mechanical behaviour of real structures subjected to multiaxial loading by numerical simulations. In this paper some developments are shown concerning biaxial cruciform specimens and different experimental machines allowing biaxial tests in a large range of strain rates. This experimental campaign has also allowed study of the influence of changing the strain paths. Diagrams of equivalent stress versus straining direction and also equivalent plastic fracture strain versus straining direction are shown. (orig.)

  2. Effect of pervaporation plate thickness on the rate of methanol evaporation in a passive vapor-feed direct methanol fuel cell

    Science.gov (United States)

    Fauzi, N. F. I.; Hasran, U. A.; Kamarudin, S. K.

    2015-09-01

    In a passive vapor-feed direct methanol fuel cell (DMFC), methanol vapor is typically obtained using a pervaporation plate in a process by which liquid methanol contained in the fuel reservoir undergoes a phase change to vapor in the anodic vapor chamber. This work investigates the effect of pervaporation plate thickness on the rate of methanol evaporation using a three-dimensional simulation model developed by varying the plate thickness. A. The rate of methanol evaporation was measured using Darcy's law. The rate of methanol evaporation was found to be inversely proportional to the plate thickness, where the decrease in thickness inevitably lowers the resistance along the plate and consequently increases the methanol transport through the plate. This shows that the plate thickness has a significant influence on the rate of methanol evaporation and thereby plays an important role in improving the performance of the passive vapor-feed direct methanol fuel cell.

  3. Effect of pervaporation plate thickness on the rate of methanol evaporation in a passive vapor-feed direct methanol fuel cell

    International Nuclear Information System (INIS)

    Fauzi, N F I; Hasran, U A; Kamarudin, S K

    2015-01-01

    In a passive vapor-feed direct methanol fuel cell (DMFC), methanol vapor is typically obtained using a pervaporation plate in a process by which liquid methanol contained in the fuel reservoir undergoes a phase change to vapor in the anodic vapor chamber. This work investigates the effect of pervaporation plate thickness on the rate of methanol evaporation using a three-dimensional simulation model developed by varying the plate thickness. A. The rate of methanol evaporation was measured using Darcy's law. The rate of methanol evaporation was found to be inversely proportional to the plate thickness, where the decrease in thickness inevitably lowers the resistance along the plate and consequently increases the methanol transport through the plate. This shows that the plate thickness has a significant influence on the rate of methanol evaporation and thereby plays an important role in improving the performance of the passive vapor-feed direct methanol fuel cell. (paper)

  4. Direct Strain and Slope and Slope Measurement Using 2D DSPSI

    International Nuclear Information System (INIS)

    Dandach, W.; Molimard, J.; Picart, P.

    2011-01-01

    Large variety of optical full-field measurement techniques are being developed and applied to solve mechanical problems. Since each technique possesses its own merits, it is important to know the capabilities and limitations of such techniques. Among these optical full-field methods, interferometry techniques take an important place. They are based on illumination with coherent light (laser). In shearing interferometry the difference of the out of-plane displacement in two neighboring object points is directly measured. Since object displacement does not result in interferometry fringes, the method is suited for localization of strain concentrations and is indeed used in industry for this purpose. DSPSI possesses the advantage over conventional out-of-plane displacement-sensitive interferometry, that only a single difference of the unwrapped phase map is required to obtain flexural strains, thereby relieving problems with noise and reduction in the field of view. A first work in this domain (DSPSI) [1] was made in 1973, later recent studies emerged to provide a quantitative system of measurements [2]. This work aims to present the results of strain and slope measurements using digital speckle pattern shearing interferometry (DSPSI). (author)

  5. Effect of axial tibial torque direction on ACL relative strain and strain rate in an in vitro simulated pivot landing.

    Science.gov (United States)

    Oh, Youkeun K; Kreinbrink, Jennifer L; Wojtys, Edward M; Ashton-Miller, James A

    2012-04-01

    Anterior cruciate ligament (ACL) injuries most frequently occur under the large loads associated with a unipedal jump landing involving a cutting or pivoting maneuver. We tested the hypotheses that internal tibial torque would increase the anteromedial (AM) bundle ACL relative strain and strain rate more than would the corresponding external tibial torque under the large impulsive loads associated with such landing maneuvers. Twelve cadaveric female knees [mean (SD) age: 65.0 (10.5) years] were tested. Pretensioned quadriceps, hamstring, and gastrocnemius muscle-tendon unit forces maintained an initial knee flexion angle of 15°. A compound impulsive test load (compression, flexion moment, and internal or external tibial torque) was applied to the distal tibia while recording the 3D knee loads and tibofemoral kinematics. AM-ACL relative strain was measured using a 3 mm DVRT. In this repeated measures experiment, the Wilcoxon signed-rank test was used to test the null hypotheses with p < 0.05 considered significant. The mean (±SD) peak AM-ACL relative strains were 5.4 ± 3.7% and 3.1 ± 2.8% under internal and external tibial torque, respectively. The corresponding mean (± SD) peak AM-ACL strain rates reached 254.4 ± 160.1%/s and 179.4 ± 109.9%/s, respectively. The hypotheses were supported in that the normalized mean peak AM-ACL relative strain and strain rate were 70 and 42% greater under internal than under external tibial torque, respectively (p = 0.023, p = 0.041). We conclude that internal tibial torque is a potent stressor of the ACL because it induces a considerably (70%) larger peak strain in the AM-ACL than does a corresponding external tibial torque. Copyright © 2011 Orthopaedic Research Society.

  6. Complete Genome Sequence of the Goatpox Virus Strain Gorgan Obtained Directly from a Commercial Live Attenuated Vaccine

    Science.gov (United States)

    Mathijs, Elisabeth; Vandenbussche, Frank; Haegeman, Andy; Al-Majali, Ahmad; De Clercq, Kris

    2016-01-01

    This is a report of the complete genome sequence of the goatpox virus strain Gorgan, which was obtained directly from a commercial live attenuated vaccine (Caprivac, Jordan Bio-Industries Centre). PMID:27738031

  7. Reusable bi-directional 3ω sensor to measure thermal conductivity of 100-μm thick biological tissues

    Science.gov (United States)

    Lubner, Sean D.; Choi, Jeunghwan; Wehmeyer, Geoff; Waag, Bastian; Mishra, Vivek; Natesan, Harishankar; Bischof, John C.; Dames, Chris

    2015-01-01

    Accurate knowledge of the thermal conductivity (k) of biological tissues is important for cryopreservation, thermal ablation, and cryosurgery. Here, we adapt the 3ω method—widely used for rigid, inorganic solids—as a reusable sensor to measure k of soft biological samples two orders of magnitude thinner than conventional tissue characterization methods. Analytical and numerical studies quantify the error of the commonly used "boundary mismatch approximation" of the bi-directional 3ω geometry, confirm that the generalized slope method is exact in the low-frequency limit, and bound its error for finite frequencies. The bi-directional 3ω measurement device is validated using control experiments to within ±2% (liquid water, standard deviation) and ±5% (ice). Measurements of mouse liver cover a temperature ranging from -69 °C to +33 °C. The liver results are independent of sample thicknesses from 3 mm down to 100 μm and agree with available literature for non-mouse liver to within the measurement scatter.

  8. Direct amplification, sequencing and profiling of Chlamydia trachomatis strains in single and mixed infection clinical samples.

    Directory of Open Access Journals (Sweden)

    Sandeep J Joseph

    Full Text Available Sequencing bacterial genomes from DNA isolated directly from clinical samples offers the promise of rapid and precise acquisition of informative genetic information. In the case of Chlamydia trachomatis, direct sequencing is particularly desirable because it obviates the requirement for culture in mammalian cells, saving time, cost and the possibility of missing low abundance strains. In this proof of concept study, we developed methodology that would allow genome-scale direct sequencing, using a multiplexed microdroplet PCR enrichment technology to amplify a 100 kb region of the C. trachomatis genome with 500 1.1-1.3 kb overlapping amplicons (5-fold amplicon redundancy. We integrated comparative genomic data into a pipeline to preferentially select conserved sites for amplicon design. The 100 kb target region could be amplified from clinical samples, including remnants from diagnostics tests, originating from the cervix, urethra and urine, For rapid analysis of these data, we developed a framework for whole-genome based genotyping called binstrain. We used binstrain to estimate the proportion of SNPs originating from 14 C. trachomatis reference serotype genomes in each sample. Direct DNA sequencing methods such as the one described here may have an important role in understanding the biology of C. trachomatis mixed infections and the natural genetic variation of the species within clinically relevant ecological niches.

  9. Band structure of Si/Ge core-shell nanowires along the [110] direction modulated by external uniaxial strain

    International Nuclear Information System (INIS)

    Peng Xihong; Tang Fu; Logan, Paul

    2011-01-01

    Strain modulated electronic properties of Si/Ge core-shell nanowires along the [110] direction were reported, on the basis of first principles density-functional theory calculations. In particular, the energy dispersion relationship of the conduction/valence band was explored in detail. At the Γ point, the energy levels of both bands are significantly altered by applied uniaxial strain, which results in an evident change of the band gap. In contrast, for the K vectors far away from Γ, the variation of the conduction/valence band with strain is much reduced. In addition, with a sufficient tensile strain (∼1%), the valence band edge shifts away from Γ, which indicates that the band gap of the Si/Ge core-shell nanowires experiences a transition from direct to indirect. Our studies further showed that effective masses of charge carriers can also be tuned using the external uniaxial strain. The effective mass of the hole increases dramatically with tensile strain, while strain shows a minimal effect on tuning the effective mass of the electron. Finally, the relation between strain and the conduction/valence band edge is discussed thoroughly in terms of site-projected wavefunction characters.

  10. Directed evolution of Oenococcus oeni strains for more efficient malolactic fermentation in a multi-stressor wine environment.

    Science.gov (United States)

    Jiang, Jiao; Sumby, Krista M; Sundstrom, Joanna F; Grbin, Paul R; Jiranek, Vladimir

    2018-08-01

    High concentrations of ethanol, low pH, the presence of sulfur dioxide and some polyphenols have been reported to inhibit Oenococcus oeni growth, thereby negatively affecting malolactic fermentation (MLF) of wine. In order to generate superior O. oeni strains that can conduct more efficient MLF, despite these multiple stressors, a continuous culture approach was designed to directly evolve an existing ethanol tolerant O. oeni strain, A90. The strain was grown for ∼350 generations in a red wine-like environment with increasing levels of stressors. Three strains were selected from screening experiments based on their completion of fermentation in a synthetic wine/wine blend with 15.1% (v/v) ethanol, 26 mg/L SO 2 at pH 3.35 within 160 h, while the parent strain fermented no more than two thirds of l-malic acid in this medium. These superior strains also fermented faster and/or had a larger population in four different wines. A reduced or equivalent amount of the undesirable volatile, acetic acid, was produced by the optimised strains compared to a commercial strain in Mouvedre and Merlot wines. These findings demonstrate the feasibility of using directed evolution as a tool to generate more efficient MLF starters tailored for wines with multiple stressors. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. In situ diagnostic of water distribution in thickness direction of MEA by neutron imaging. Focused on characteristics of water distribution in gas diffusion layer

    International Nuclear Information System (INIS)

    Tasaki, Yutaka; Ichikawa, Yasushi; Kobo, Norio; Shinohara, Kazuhiko; Boillat, Pierre; Kramer, Denis; Scherer, Gunther G.; Lehmann, Eberhard H.

    2008-01-01

    The mass transfer characteristics of gas diffusion layer (GDL) are closely related to cell performance in PEFC. In this study, In situ diagnostic of water distribution in thickness direction of MEA by Neutron Imaging has been carried out for three MEAs with different GDLs on cathode side as well as I-V characteristics. It was confirmed that this method is useful for analyzing water distribution in thickness direction of MEA. The relationship between I-V characteristics and liquid water distribution has been studied. (author)

  12. Potential of direct metal deposition technology for manufacturing thick functionally graded coatings and parts for reactors components

    International Nuclear Information System (INIS)

    Thivillon, L.; Bertrand, Ph.; Laget, B.; Smurov, I.

    2009-01-01

    Direct metal deposition (DMD) is an automated 3D deposition process arising from laser cladding technology with co-axial powder injection to refine or refurbish parts. Recently DMD has been extended to manufacture large-size near-net-shape components. When applied for manufacturing new parts (or their refinement), DMD can provide tailored thermal properties, high corrosion resistance, tailored tribology, multifunctional performance and cost savings due to smart material combinations. In repair (refurbishment) operations, DMD can be applied for parts with a wide variety of geometries and sizes. In contrast to the current tool repair techniques such as tungsten inert gas (TIG), metal inert gas (MIG) and plasma welding, laser cladding technology by DMD offers a well-controlled heat-treated zone due to the high energy density of the laser beam. In addition, this technology may be used for preventative maintenance and design changes/up-grading. One of the advantages of DMD is the possibility to build functionally graded coatings (from 1 mm thickness and higher) and 3D multi-material objects (for example, 100 mm-sized monolithic rectangular) in a single-step manufacturing cycle by using up to 4-channel powder feeder. Approved materials are: Fe (including stainless steel), Ni and Co alloys, (Cu,Ni 10%), WC compounds, TiC compounds. The developed coatings/parts are characterized by low porosity (<1%), fine microstructure, and their microhardness is close to the benchmark value of wrought alloys after thermal treatment (Co-based alloy Stellite, Inox 316L, stainless steel 17-4PH). The intended applications concern cooling elements with complex geometry, friction joints under high temperature and load, light-weight mechanical support structures, hermetic joints, tubes with complex geometry, and tailored inside and outside surface properties, etc

  13. Potential of direct metal deposition technology for manufacturing thick functionally graded coatings and parts for reactors components

    Energy Technology Data Exchange (ETDEWEB)

    Thivillon, L.; Bertrand, Ph.; Laget, B. [Ecole Nationale d' Ingenieurs de Saint-Etienne (ENISE), DIPI Laboratory, 58 rue Jean Parot, 42023 Saint-Etienne cedex 2 (France); Smurov, I. [Ecole Nationale d' Ingenieurs de Saint-Etienne (ENISE), DIPI Laboratory, 58 rue Jean Parot, 42023 Saint-Etienne cedex 2 (France)], E-mail: smurov@enise.fr

    2009-03-31

    Direct metal deposition (DMD) is an automated 3D deposition process arising from laser cladding technology with co-axial powder injection to refine or refurbish parts. Recently DMD has been extended to manufacture large-size near-net-shape components. When applied for manufacturing new parts (or their refinement), DMD can provide tailored thermal properties, high corrosion resistance, tailored tribology, multifunctional performance and cost savings due to smart material combinations. In repair (refurbishment) operations, DMD can be applied for parts with a wide variety of geometries and sizes. In contrast to the current tool repair techniques such as tungsten inert gas (TIG), metal inert gas (MIG) and plasma welding, laser cladding technology by DMD offers a well-controlled heat-treated zone due to the high energy density of the laser beam. In addition, this technology may be used for preventative maintenance and design changes/up-grading. One of the advantages of DMD is the possibility to build functionally graded coatings (from 1 mm thickness and higher) and 3D multi-material objects (for example, 100 mm-sized monolithic rectangular) in a single-step manufacturing cycle by using up to 4-channel powder feeder. Approved materials are: Fe (including stainless steel), Ni and Co alloys, (Cu,Ni 10%), WC compounds, TiC compounds. The developed coatings/parts are characterized by low porosity (<1%), fine microstructure, and their microhardness is close to the benchmark value of wrought alloys after thermal treatment (Co-based alloy Stellite, Inox 316L, stainless steel 17-4PH). The intended applications concern cooling elements with complex geometry, friction joints under high temperature and load, light-weight mechanical support structures, hermetic joints, tubes with complex geometry, and tailored inside and outside surface properties, etc.

  14. Potential of direct metal deposition technology for manufacturing thick functionally graded coatings and parts for reactors components

    Science.gov (United States)

    Thivillon, L.; Bertrand, Ph.; Laget, B.; Smurov, I.

    2009-03-01

    Direct metal deposition (DMD) is an automated 3D deposition process arising from laser cladding technology with co-axial powder injection to refine or refurbish parts. Recently DMD has been extended to manufacture large-size near-net-shape components. When applied for manufacturing new parts (or their refinement), DMD can provide tailored thermal properties, high corrosion resistance, tailored tribology, multifunctional performance and cost savings due to smart material combinations. In repair (refurbishment) operations, DMD can be applied for parts with a wide variety of geometries and sizes. In contrast to the current tool repair techniques such as tungsten inert gas (TIG), metal inert gas (MIG) and plasma welding, laser cladding technology by DMD offers a well-controlled heat-treated zone due to the high energy density of the laser beam. In addition, this technology may be used for preventative maintenance and design changes/up-grading. One of the advantages of DMD is the possibility to build functionally graded coatings (from 1 mm thickness and higher) and 3D multi-material objects (for example, 100 mm-sized monolithic rectangular) in a single-step manufacturing cycle by using up to 4-channel powder feeder. Approved materials are: Fe (including stainless steel), Ni and Co alloys, (Cu,Ni 10%), WC compounds, TiC compounds. The developed coatings/parts are characterized by low porosity (<1%), fine microstructure, and their microhardness is close to the benchmark value of wrought alloys after thermal treatment (Co-based alloy Stellite, Inox 316L, stainless steel 17-4PH). The intended applications concern cooling elements with complex geometry, friction joints under high temperature and load, light-weight mechanical support structures, hermetic joints, tubes with complex geometry, and tailored inside and outside surface properties, etc.

  15. Polycrystalline Ba0.6Sr0.4TiO3 thin films on r-plane sapphire: Effect of film thickness on strain and dielectric properties

    Science.gov (United States)

    Fardin, E. A.; Holland, A. S.; Ghorbani, K.; Akdogan, E. K.; Simon, W. K.; Safari, A.; Wang, J. Y.

    2006-10-01

    Polycrystalline Ba0.6Sr0.4TiO3 (BST) films grown on r-plane sapphire exhibit strong variation of in-plane strain over the thickness range of 25-400nm. At a critical thickness of ˜200nm, the films are strain relieved; in thinner films, the strain is tensile, while compressive strain was observed in the 400nm film. Microwave properties of the films were measured from 1to20GHz by the interdigital capacitor method. A capacitance tunability of 64% was observed in the 200nm film, while thinner films showed improved Q factor. These results demonstrate the possibility of incorporating frequency agile BST-based devices into the silicon on sapphire process.

  16. Direct fabrication of integrated 3D Au nanobox arrays by sidewall deposition with controllable heights and thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Nam-Goo; Lee, Bong Kuk; Kanki, Teruo; Lee, Hea Yeon; Kawai, Tomoji; Tanaka, Hidekazu, E-mail: h-tanaka@sanken.osaka-u.ac.j [Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047 (Japan)

    2009-09-30

    This paper provides a unique strategy for controlling integrated hollow nanostructure arrays such as boxes or pillars at the nanometer scale. The key merit of this technique is that it can overcome resolution limits by sidewall deposition and deposit various materials using a sputtering method. The sputtering method can be replaced by other dry deposition techniques such as pulsed laser deposition (PLD) for complex functional materials. Furthermore, it can produce low-cost large-area fabrication and high reproducibility using the NIL (nanoimprint lithograph) process. The fabrication method consists of a sequence of bilayer spin-coating, UV-NIL, RIE (reactive ion etching), sputtering, ion milling and piranha cleaning processes. By changing the deposition time and molds, various thicknesses and shapes can be fabricated, respectively. Furthermore, the fabricated Au box nanostructure has a bending zone of the top layer and a {approx}17 nm undercut of the bottom layer as observed by SEM (scanning electron microscope). The sidewall thickness was changed from 12 to 61 nm by controlling the deposition time, and was investigated to understand the relationship with blanket thicknesses and geometric effects. The calculated sidewall thickness matched well with experimental results. Using smaller hole-patterned molds, integrated nanobox arrays, with inner squares measuring {approx}160 nm, and nanopillar arrays, with inside pores measuring {approx}65 nm, were fabricated under the same conditions.

  17. Direct linear measurement of root dentin thickness and dentin volume changes with post space preparation: A cone-beam computed tomography study

    Directory of Open Access Journals (Sweden)

    Shoeb Yakub Shaikh

    2018-01-01

    Full Text Available Aim: The purpose of the present study was direct linear measurement of dentin thickness and dentin volume changes for post space preparation with cone-beam computed tomography (CBCT. Materials and Methods: Ten maxillary central incisors were scanned, before and after root canal and post space preparation, with Orthophos XG three-dimensional hybrid unit. Thirteen axial section scans of each tooth from orifice to apex and dentin thickness for buccal, lingual, mesial, and distal were measured using proprietary measuring tool and thereafter subjected to statistical analysis. Furthermore, dentin volume was evaluated using ITK-SNAP software. Results: There was statistically significant difference between the dentin thickness in pre- and postinstrumentation (paired t-test and also between different groups (one-way ANOVA. In the shortest post length of 4.5mm the post space preparation resulted in 2.17% loss of hard tissue volume, where as 11mm longest post length post space preparation resulted in >40% loss of hard tissue volume. Conclusion: CBCT axial section scan for direct measurements of root dentin thickness can be guideline before and after post space preparation for selection of drill length and diameter.

  18. Multishell structure formation in Ni nanowire under uniaxial strain along <0 0 1> crystallographic direction: A molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang Li, E-mail: wanglihxf@sdu.edu.c [School of Mechanical and Electrical Engineering, Shandong University at Weihai, 180 Wenhuaxi Road, Weihai 264209 (China); Peng Chuanxiao [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Gong Jianhong [School of Mechanical and Electrical Engineering, Shandong University at Weihai, 180 Wenhuaxi Road, Weihai 264209 (China)

    2010-04-01

    Molecular dynamics simulations based upon embedded-atom-method potential are employed to explore the fracture behavior of Ni nanowire along <0 0 1> crystallographic direction at temperature of 300 K. We find the formation of (5,5) multishell structure (MS), which is transformed from (6,5) MS at the necking region of nanowire under the strain rate of 0.02%ps{sup -1}. A reorientation transformation from <0 0 1> to <1 1 0> is first detected before formation of (6,5) MS. The formed (5,5) MS is more stable and can be tensioned longer as lower strain rate is loaded.

  19. Direct delignification of untreated bark chips with mixed cultures of bacteria. [Bacillus and Cellulomonas strains

    Energy Technology Data Exchange (ETDEWEB)

    Deschamps, A M; Gillie, J P; Lebeault, J M

    1981-01-01

    Delignification of pine bark chips was observed after about 35 days when they were the sole carbon source in mixed liquid cultures of cellulolytic and lignin degrading strains of Bacillus and Cellulomonas. No delignification was observed in pure cultures. Free tannins liberated from the chips were also degraded in most of the cultures. The necessity of combining a cellulolytic and lignin degrading bacterial strain to obtain delignification is discussed. (Refs. 25).

  20. THE STUDY OF DIRECTED FERMENTATION PROCESS USING STRAINS OF LACTIC ACID BACTERIA FOR OBTAINING VEGETABLE PRODUCTS OF STABLE QUALITY

    Directory of Open Access Journals (Sweden)

    V. V. Kondratenko

    2016-01-01

    Full Text Available The objective of the research was to study the process of directed fermentation of whitehead cabbage variety ‘Slava’, using strains of lactic acid bacteria and their consortium with the degree of their mutual influence. As strains of lactic acid bacteria, we have chosen the following: VCR 536 Lactobacillus casei, Lactobacillus plantarum VKM V-578. To obtain comparable results, all experiments were performed on model mediums. For the first time we studied the dynamics of changes in quality indicators at the process of directed fermentation using strains of lactic acid bacteria (LAB including their consortiums. The mathematical model developed adequately describes the degree of destruction of glucose and fructose in the fermentation process. The raw material was undergone to homogenization and sterilization with the aim to create optimal conditionsfor the development of the target microorganisms and to detect the degree of  restruction of fructose and glucose by different strains of microorganisms. The mathematical model developed adequately described the degree of destruction of fructose and glucose in the treatment process. The use of a consortium of lactic acid bacteria (L. plantarum+L. casei to this culture medium is shown to be impractical. The addition of fructose in quantity 0.5% to weight of the model medium enabled to intensify significantly the process of white cabbage fermentation.

  1. Thickness dependence of the strain, band gap and transport properties of epitaxial In{sub 2}O{sub 3} thin films grown on Y-stabilised ZrO{sub 2}(111)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, K H L; Oropeza, F E; Egdell, R G [Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Mansfield Road, Oxford OX1 3TA (United Kingdom); Lazarov, V K [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Veal, T D; McConville, C F [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Walsh, A, E-mail: Russell.egdell@chem.ox.ac.uk [Department of Chemistry, Kathleen Lonsdale Materials Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ (United Kingdom)

    2011-08-24

    Epitaxial films of In{sub 2}O{sub 3} have been grown on Y-stabilised ZrO{sub 2}(111) substrates by molecular beam epitaxy over a range of thicknesses between 35 and 420 nm. The thinnest films are strained, but display a 'cross-hatch' morphology associated with a network of misfit dislocations which allow partial accommodation of the lattice mismatch. With increasing thickness a 'dewetting' process occurs and the films break up into micron sized mesas, which coalesce into continuous films at the highest coverages. The changes in morphology are accompanied by a progressive release of strain and an increase in carrier mobility to a maximum value of 73 cm{sup 2} V{sup -1} s{sup -1}. The optical band gap in strained ultrathin films is found to be smaller than for thicker films. Modelling of the system, using a combination of classical pair-wise potentials and ab initio density functional theory, provides a microscopic description of the elastic contributions to the strained epitaxial growth, as well as the electronic effects that give rise to the observed band gap changes. The band gap increase induced by the uniaxial compression is offset by the band gap reduction associated with the epitaxial tensile strain.

  2. A novel multivariate approach using science-based calibration for direct coating thickness determination in real-time NIR process monitoring.

    Science.gov (United States)

    Möltgen, C-V; Herdling, T; Reich, G

    2013-11-01

    This study demonstrates an approach, using science-based calibration (SBC), for direct coating thickness determination on heart-shaped tablets in real-time. Near-Infrared (NIR) spectra were collected during four full industrial pan coating operations. The tablets were coated with a thin hydroxypropyl methylcellulose (HPMC) film up to a film thickness of 28 μm. The application of SBC permits the calibration of the NIR spectral data without using costly determined reference values. This is due to the fact that SBC combines classical methods to estimate the coating signal and statistical methods for the noise estimation. The approach enabled the use of NIR for the measurement of the film thickness increase from around 8 to 28 μm of four independent batches in real-time. The developed model provided a spectroscopic limit of detection for the coating thickness of 0.64 ± 0.03 μm root-mean square (RMS). In the commonly used statistical methods for calibration, such as Partial Least Squares (PLS), sufficiently varying reference values are needed for calibration. For thin non-functional coatings this is a challenge because the quality of the model depends on the accuracy of the selected calibration standards. The obvious and simple approach of SBC eliminates many of the problems associated with the conventional statistical methods and offers an alternative for multivariate calibration. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. SU-E-T-271: Direct Measurement of Tenth Value Layer Thicknesses for High Density Concretes with a Clinical Machine

    Energy Technology Data Exchange (ETDEWEB)

    Tanny, S; Parsai, E [University of Toledo Medical Center, Toledo, OH (United States); Harrell, D; Noller, J [Shielding Construction Solutions, Inc, Tuscon, AZ (United States); Chopra, M [Unviersal Minerals International, Inc, Tuscon, AZ (United States)

    2015-06-15

    Purpose: Use of high density concrete for radiation shielding is increasing, trading cost for space savings associated with the reduced tenth value layer (TVL). Precise information on the attenuation properties of high-density concretes is not readily present in the literature. A simple approximation is to scale the TVLs from NCRP 151 according relative increase in density. Here we present measured TVLs for heavy concretes of various densities using a built-in shielding test port. Methods: Concrete densities tested range from 2.35 g cc{sup −1} (147 pcf) to 5.6 g cc{sup −1} (350 pcf). Measurements were taken using 6MV, 6FFF, and 10FFF on a Varian Truebeam linear accelerator. Field sizes of 4x4, 9x9 and 30x30 cm{sup 2} were measured. A PTW 31013 Farmer chamber with a buildup cap was positioned 5.5 m from isocenter along the beam CAX. Concrete thicknesses were incremented in 5 cm intervals. Comparison TVLs were determined by scaling the NCRP 151 TVLs by the density ratio between the sample and standard density. Results: The trend from the first to equilibrium TVL was an increase in thickness, compared with MC modeling, which predicted a decrease. Measured TVLs for 6 MV were reduced by as much as 8.9 cm for TVL{sub 1} and 3.4 cm for TVL{sub E} compared to values scaled from NCRP 151. There was 1–3 mm difference in TVL between measurements done at 4x4 versus 30x30 cm{sup 2}. TVL{sub 1} for 6FFF was 1.1 cm smaller than TVL{sub 1} for 6MV, but TVL{sub E} was consistent to within 4 mm. TVL{sub 1} and TVL{sub E} for 10FFF were reduced by 8.8 and 3.7 cm from scaled NCRP values, respectively. Conclusions: We have measured the TVL thicknesses for various concretes. Simple density scaling of the values in NCRP 151 is a conservatively safe approximation, but actual TVLs may be reduced enough to eliminate some of the expense of installation. Daniel Harrell and Jim Noller are employees of Shielding Construction Solutions, Inc, the shielding construction company that built

  4. SU-E-T-271: Direct Measurement of Tenth Value Layer Thicknesses for High Density Concretes with a Clinical Machine

    International Nuclear Information System (INIS)

    Tanny, S; Parsai, E; Harrell, D; Noller, J; Chopra, M

    2015-01-01

    Purpose: Use of high density concrete for radiation shielding is increasing, trading cost for space savings associated with the reduced tenth value layer (TVL). Precise information on the attenuation properties of high-density concretes is not readily present in the literature. A simple approximation is to scale the TVLs from NCRP 151 according relative increase in density. Here we present measured TVLs for heavy concretes of various densities using a built-in shielding test port. Methods: Concrete densities tested range from 2.35 g cc −1 (147 pcf) to 5.6 g cc −1 (350 pcf). Measurements were taken using 6MV, 6FFF, and 10FFF on a Varian Truebeam linear accelerator. Field sizes of 4x4, 9x9 and 30x30 cm 2 were measured. A PTW 31013 Farmer chamber with a buildup cap was positioned 5.5 m from isocenter along the beam CAX. Concrete thicknesses were incremented in 5 cm intervals. Comparison TVLs were determined by scaling the NCRP 151 TVLs by the density ratio between the sample and standard density. Results: The trend from the first to equilibrium TVL was an increase in thickness, compared with MC modeling, which predicted a decrease. Measured TVLs for 6 MV were reduced by as much as 8.9 cm for TVL 1 and 3.4 cm for TVL E compared to values scaled from NCRP 151. There was 1–3 mm difference in TVL between measurements done at 4x4 versus 30x30 cm 2 . TVL 1 for 6FFF was 1.1 cm smaller than TVL 1 for 6MV, but TVL E was consistent to within 4 mm. TVL 1 and TVL E for 10FFF were reduced by 8.8 and 3.7 cm from scaled NCRP values, respectively. Conclusions: We have measured the TVL thicknesses for various concretes. Simple density scaling of the values in NCRP 151 is a conservatively safe approximation, but actual TVLs may be reduced enough to eliminate some of the expense of installation. Daniel Harrell and Jim Noller are employees of Shielding Construction Solutions, Inc, the shielding construction company that built the vault discussed in this abstract. Manjit Chopra is

  5. Direct assessment of tensile stress-crack opening behavior of Strain Hardening Cementitious Composites (SHCC)

    DEFF Research Database (Denmark)

    Pereira, Eduardo B.; Fischer, Gregor; Barros, Joaquim A.O.

    2012-01-01

    -deformation behavior of these materials is therefore of great importance and is frequently carried out by characterizing the material tensile stress–strain behavior. In this paper an alternative approach to evaluate the tensile performance of SHCC is investigated. The behavior of the material in tension is studied...

  6. Genotyping of Leptospira directly in urine samples of cattle demonstrates a diversity of species and strains in Brazil.

    Science.gov (United States)

    Hamond, C; Pestana, C P; Medeiros, M A; Lilenbaum, W

    2016-01-01

    The aim of this study was to identify Leptospira in urine samples of cattle by direct sequencing of the secY gene. The validity of this approach was assessed using ten Leptospira strains obtained from cattle in Brazil and 77 DNA samples previously extracted from cattle urine, that were positive by PCR for the genus-specific lipL32 gene of Leptospira. Direct sequencing identified 24 (31·1%) interpretable secY sequences and these were identical to those obtained from direct DNA sequencing of the urine samples from which they were recovered. Phylogenetic analyses identified four species: L. interrogans, L. borgpetersenii, L. noguchii, and L. santarosai with the most prevalent genotypes being associated with L. borgpetersenii. While direct sequencing cannot, as yet, replace culturing of leptospires, it is a valid additional tool for epidemiological studies. An unexpected finding from this study was the genetic diversity of Leptospira infecting Brazilian cattle.

  7. On the influence of cloud fraction diurnal cycle and sub-grid cloud optical thickness variability on all-sky direct aerosol radiative forcing

    International Nuclear Information System (INIS)

    Min, Min; Zhang, Zhibo

    2014-01-01

    The objective of this study is to understand how cloud fraction diurnal cycle and sub-grid cloud optical thickness variability influence the all-sky direct aerosol radiative forcing (DARF). We focus on the southeast Atlantic region where transported smoke is often observed above low-level water clouds during burning seasons. We use the CALIOP observations to derive the optical properties of aerosols. We developed two diurnal cloud fraction variation models. One is based on sinusoidal fitting of MODIS observations from Terra and Aqua satellites. The other is based on high-temporal frequency diurnal cloud fraction observations from SEVIRI on board of geostationary satellite. Both models indicate a strong cloud fraction diurnal cycle over the southeast Atlantic region. Sensitivity studies indicate that using a constant cloud fraction corresponding to Aqua local equatorial crossing time (1:30 PM) generally leads to an underestimated (less positive) diurnal mean DARF even if solar diurnal variation is considered. Using cloud fraction corresponding to Terra local equatorial crossing time (10:30 AM) generally leads overestimation. The biases are a typically around 10–20%, but up to more than 50%. The influence of sub-grid cloud optical thickness variability on DARF is studied utilizing the cloud optical thickness histogram available in MODIS Level-3 daily data. Similar to previous studies, we found the above-cloud smoke in the southeast Atlantic region has a strong warming effect at the top of the atmosphere. However, because of the plane-parallel albedo bias the warming effect of above-cloud smoke could be significantly overestimated if the grid-mean, instead of the full histogram, of cloud optical thickness is used in the computation. This bias generally increases with increasing above-cloud aerosol optical thickness and sub-grid cloud optical thickness inhomogeneity. Our results suggest that the cloud diurnal cycle and sub-grid cloud variability are important factors

  8. Relationship of endometrial thickness detected by transvaginal sonography with the results of endometrial biopsy & hysteroscopic directed biopsy in post menopausal bleeding

    Directory of Open Access Journals (Sweden)

    Vahid Dastjerdi M

    2008-05-01

    Full Text Available Background: Post-menopausal hemorrhage is one of the most common complains in gynecologic clinics. More than 60% of these cases have abnormal findings in diagnostic work ups. There is contraversy about the best diagnostic method for evaluating post-menopausal hemorrhage. The aim of this study was to evaluate the results of Trans-Vaginal Ultrasonography and compare its result to ones derived from direct endometrial biopsy and Hysteroscopy findings.Methods: In a cross-sectional study, menopausal women who attended the outpatient clinic of Arash Hospital, Tehran University of medical Sciences, from April 2005 to March 2006 with the complain of hemorrhage were evaluated. In all of these patients, after getting informed consent, Trans-Vaginal Ultrasonography, Dilatation and Curettage and Hysteroscopy were performed.Results: The total number of 90 women was recruited to the study with the age range of 41-80 years. The mean age of participants was 53.84 ± 6 years and 4.3 ± 5.1 years had passed from their menopause. The mean thickness of endometrium, measured by Trans Vaginal ultrasonography was 6.25 ± 3.7 millimeter. In the biopsy derived specimens, the most finding pathological presentation was atrophy (48.9% and the Proliferative endometrium had the second prevalence (36.7%. Atrophy (44.4% and Proliferative endometrium (33.3% were the most prevalent finding in Hysteroscopy. There was a significant difference in endometrial thickness between groups of different pathological findings. A significant difference in endometrial thickness was also seen between groups with different Hysteroscopic finding. By grouping the data according to endometrial thickness, it became evident that endometrial thickness can predict the outcome of endometrial biopsy and Hysteroscopic finding efficiently. We used ROC curves to find the best grouping threshold for endometrial thickness to achieve the best sensitivity and specificity.Conclusion: Measuring the endometrial

  9. Direct determination of elastic strains and dislocation densities in individual subgrains in deformation structures

    DEFF Research Database (Denmark)

    Jakobsen, Bo; Poulsen, Henning Friis; Lienert, U.

    2007-01-01

    A novel synchrotron-based technique "high angular resolution 3DXRD" is presented in detail, and applied to the characterization of oxygen-free, high-conductivity copper at a tensile deformation of 2%. The position and shape in reciprocal space of 14 peaks originating from deeply embedded individual...... subgrains is reported. From this dataset the density of redundant dislocations in the individual subgrains is inferred to be below 12 × 1012 m-2 on average. It is found that the subgrains on average experience a reduction in strain of 0.9 × 10-4 with respect to the mean elastic strain of the full grain...

  10. Influence of strain hardening and thickness changes occurring in press forming process; Seikeiji no kako koka/itaatsu henka no buzai akkai tokusei ni oyobosu eikyo bunseki

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, M; Hirota, K [Mazda Motor Corp., Hiroshima (Japan); Nakazawa, Y [Sumitomo Metal Industries Ltd., Osaka (Japan)

    1997-10-01

    Most components of the body structure are produced by press forming. This process make a uniform metal sheet into a component that have various material characteristics and thickness. This paper describes the estimation method of material characteristics and thickness changes based on the measured Vickers hardness, and the influence of these changes on the crush performance by using FE analysis. 4 refs., 12 figs., 2 tabs.

  11. Direct ethanol production from lignocellulosic sugars and sugarcane bagasse by a recombinant Trichoderma reesei strain HJ48.

    Science.gov (United States)

    Huang, Jun; Chen, Dong; Wei, Yutuo; Wang, Qingyan; Li, Zhenchong; Chen, Ying; Huang, Ribo

    2014-01-01

    Trichoderma reesei can be considered as a candidate for consolidated bioprocessing (CBP) microorganism. However, its ethanol yield needs to be improved significantly. Here the ethanol production of T. reesei CICC 40360 was improved by genome shuffling while simultaneously enhancing the ethanol resistance. The initial mutant population was generated by nitrosoguanidine treatment of the spores, and an improved population producing more than fivefold ethanol than wild type was obtained by genome shuffling. The results show that the shuffled strain HJ48 can efficiently convert lignocellulosic sugars to ethanol under aerobic conditions. Furthermore, it was able to produce ethanol directly from sugarcane bagasse, demonstrating that the shuffled strain HJ48 is a suitable microorganism for consolidated bioprocessing.

  12. Direct sequencing for rapid detection of multidrug resistant Mycobacterium tuberculosis strains in Morocco.

    Science.gov (United States)

    Zakham, Fathiah; Chaoui, Imane; Echchaoui, Amina Hadbae; Chetioui, Fouad; Elmessaoudi, My Driss; Ennaji, My Mustapha; Abid, Mohammed; Mzibri, Mohammed El

    2013-01-01

    Tuberculosis (TB) is a major public health problem with high mortality and morbidity rates, especially in low-income countries. Disturbingly, the emergence of multidrug resistant (MDR) and extensively drug resistant (XDR) TB cases has worsened the situation, raising concerns of a future epidemic of virtually untreatable TB. Indeed, the rapid diagnosis of MDR TB is a critical issue for TB management. This study is an attempt to establish a rapid diagnosis of MDR TB by sequencing the target fragments of the rpoB gene which linked to resistance against rifampicin and the katG gene and inhA promoter region, which are associated with resistance to isoniazid. For this purpose, 133 sputum samples of TB patients from Morocco were enrolled in this study. One hundred samples were collected from new cases, and the remaining 33 were from previously treated patients (drug relapse or failure, chronic cases) and did not respond to anti-TB drugs after a sufficient duration of treatment. All samples were subjected to rpoB, katG and pinhA mutation analysis by polymerase chain reaction and DNA sequencing. Molecular analysis showed that seven strains were isoniazid-monoresistant and 17 were rifampicin-monoresistant. MDR TB strains were identified in nine cases (6.8%). Among them, eight were traditionally diagnosed as critical cases, comprising four chronic and four drug-relapse cases. The last strain was isolated from a new case. The most recorded mutation in the rpoB gene was the substitution TCG > TTG at codon 531 (Ser531 Leu), accounting for 46.15%. Significantly, the only mutation found in the katG gene was at codon 315 (AGC to ACC) with a Ser315Thr amino acid change. Only one sample harbored mutation in the inhA promoter region and was a point mutation at the -15p position (C > T). The polymerase chain reaction sequencing approach is an accurate and rapid method for detection of drug-resistant TB in clinical specimens, and could be of great interest in the management of TB in

  13. Coaxial printing method for directly writing stretchable cable as strain sensor

    International Nuclear Information System (INIS)

    Yan, Hai-liang; Chen, Yan-qiu; Deng, Yong-qiang; Zhang, Li-long; Lau, Woon-ming; Mei, Jun; Liu, Yu; Hong, Xiao; Hui, David; Yan, Hui

    2016-01-01

    Through applying the liquid metal and elastomer as the core and shell materials, respectively, a coaxial printing method is being developed in this work for preparing a stretchable and conductive cable. When liquid metal alloy eutectic Gallium-Indium is embedded into the elastomer matrix under optimized control, the cable demonstrates well–posed extreme mechanic performance, under stretching for more than 350%. Under developed compression test, the fabricated cable also demonstrates the ability for recovering original properties due to the high flowability of the liquid metal and super elasticity of the elastomeric shell. The written cable presents high cycling reliability regarding its stretchability and conductivity, two properties which can be clearly predicted in theoretical calculation. This work can be further investigated as a strain sensor for monitoring motion status including frequency and amplitude of a curved object, with extensive applications in wearable devices, soft robots, electronic skins, and wireless communication.

  14. Direct sequencing for rapid detection of multidrug resistant Mycobacterium tuberculosis strains in Morocco

    Directory of Open Access Journals (Sweden)

    Zakham F

    2013-11-01

    Full Text Available Fathiah Zakham,1,4 Imane Chaoui,1 Amina Hadbae Echchaoui,2 Fouad Chetioui,3 My Driss Elmessaoudi,3 My Mustapha Ennaji,4 Mohammed Abid,2 Mohammed El Mzibri11Unité de Biologie et Recherché Médicale, Centre National de l'Energie, des Sciences et des Techniques Nucléaires (CNESTEN, Rabat, 2Laboratoire de Génétique Mycobacterienne, Institut Pasteur, Tangier, 3Laboratoire de Tuberculose Institut Pasteur, Casablanca, 4Laboratoire de Microbiologie, Hygiène et Virologie, Faculté des Sciences et Techniques, Mohammedia, MoroccoBackground: Tuberculosis (TB is a major public health problem with high mortality and morbidity rates, especially in low-income countries. Disturbingly, the emergence of multidrug resistant (MDR and extensively drug resistant (XDR TB cases has worsened the situation, raising concerns of a future epidemic of virtually untreatable TB. Indeed, the rapid diagnosis of MDR TB is a critical issue for TB management. This study is an attempt to establish a rapid diagnosis of MDR TB by sequencing the target fragments of the rpoB gene which linked to resistance against rifampicin and the katG gene and inhA promoter region, which are associated with resistance to isoniazid.Methods: For this purpose, 133 sputum samples of TB patients from Morocco were enrolled in this study. One hundred samples were collected from new cases, and the remaining 33 were from previously treated patients (drug relapse or failure, chronic cases and did not respond to anti-TB drugs after a sufficient duration of treatment. All samples were subjected to rpoB, katG and pinhA mutation analysis by polymerase chain reaction and DNA sequencing.Results: Molecular analysis showed that seven strains were isoniazid-monoresistant and 17 were rifampicin-monoresistant. MDR TB strains were identified in nine cases (6.8%. Among them, eight were traditionally diagnosed as critical cases, comprising four chronic and four drug-relapse cases. The last strain was isolated from a

  15. Coaxial printing method for directly writing stretchable cable as strain sensor

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Hai-liang [College of Material Science and Engineering, Beijing University of Technology, 100124 Beijing (China); Chengdu Green Energy and Green Manufacturing Technology R& D Center, 610299 Chengdu (China); Chen, Yan-qiu, E-mail: yu.liu@vip.163.com, E-mail: cyqleaf@qq.com, E-mail: hyan@but.ac.cn; Deng, Yong-qiang; Zhang, Li-long; Lau, Woon-ming; Mei, Jun; Liu, Yu, E-mail: yu.liu@vip.163.com, E-mail: cyqleaf@qq.com, E-mail: hyan@but.ac.cn [Chengdu Green Energy and Green Manufacturing Technology R& D Center, 610299 Chengdu (China); Hong, Xiao [Chengdu Green Energy and Green Manufacturing Technology R& D Center, 610299 Chengdu (China); College of Computer Science, Sichuan University, Chengdu 610207 (China); Hui, David [Department of Mechanical Engineering, University of New Orleans, New Orleans, Louisiana 70148 (United States); Yan, Hui, E-mail: yu.liu@vip.163.com, E-mail: cyqleaf@qq.com, E-mail: hyan@but.ac.cn [College of Material Science and Engineering, Beijing University of Technology, 100124 Beijing (China)

    2016-08-22

    Through applying the liquid metal and elastomer as the core and shell materials, respectively, a coaxial printing method is being developed in this work for preparing a stretchable and conductive cable. When liquid metal alloy eutectic Gallium-Indium is embedded into the elastomer matrix under optimized control, the cable demonstrates well–posed extreme mechanic performance, under stretching for more than 350%. Under developed compression test, the fabricated cable also demonstrates the ability for recovering original properties due to the high flowability of the liquid metal and super elasticity of the elastomeric shell. The written cable presents high cycling reliability regarding its stretchability and conductivity, two properties which can be clearly predicted in theoretical calculation. This work can be further investigated as a strain sensor for monitoring motion status including frequency and amplitude of a curved object, with extensive applications in wearable devices, soft robots, electronic skins, and wireless communication.

  16. Direct linkage of mitochondrial genome variation to risk factors for type 2 diabetes in conplastic strains

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Hyakukoku, M.; Houštěk, Josef; Zídek, Václav; Landa, Vladimír; Mlejnek, Petr; Mikšík, Ivan; Mothejzíková-Dudová, Kristýna; Pecina, Petr; Vrbacký, Marek; Drahota, Zdeněk; Vojtíšková, Alena; Mráček, Tomáš; Kazdová, L.; Oliyarnyk, O.; Wang, Ji.; Ho, Ch.; Qi, N.; Sugimoto, K.; Kurtz, T.

    2007-01-01

    Roč. 17, č. 9 (2007), s. 1319-1326 ISSN 1088-9051 R&D Projects: GA MŠk(CZ) 1M0520; GA ČR(CZ) GA301/06/0028; GA ČR GA303/07/0781 Grant - others:GA UK(CZ) 24/2005; GA UK(CZ) 26/2005; National Institutes of Health(US) HL35018; National Institutes of Health(US) HL56028; National Institutes of Health(US) HL63709; EURATOOLS(XE) LSHG-CT-2005-019015 Institutional research plan: CEZ:AV0Z50110509 Source of funding: R - rámcový projekt EK Keywords : mitochondrial genome * conplastic strains * risk factors for type 2 diabetes Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 11.224, year: 2007

  17. Direct production of feruloyl oligosaccharides and hemicellulase inducement and distribution in a newly isolated Aureobasidium pullulans strain.

    Science.gov (United States)

    Yu, Xiao-hong; Gu, Zhen-xin

    2014-02-01

    Studies were carried out to screen and identify strains that are able to directly produce ferulic oligosaccharides (FOs) from wheat bran (WB). The inducement and distribution of hemicellulases from strain 2012, which was identified as a non-melanin secreting strain of Aureobasidium pullulans (A. pullulans), were also determined. In a 60 g/L WB solution, A. pullulans could produce 545 nmol/L FOs, 64.12 IU/mL xylanase and 0.14 IU/mL ferulic acid esterase (FAE). A. pullulans was cultivated in media with WB, glucose, xylose, sucrose, lactose or xylan as the carbon source, and hemicellulases were mainly induced by xylan and WB and inhibited by glucose and sucrose. Xylanase and FAE were mainly present in the culture filtrate, xylosidase in the hyphal filaments and arabinofuranosidase was a membrane-bound enzyme. The yield of FOs was positively correlated to the hemicellulases activity, and significantly positively (P < 0.05) correlated to the xylanase activity (r = 0.992).

  18. TU-F-18C-02: Increasing Amorphous Selenium Thickness in Direct Conversion Flat-Panel Imagers for Contrast-Enhanced Dual-Energy Breast Imaging

    International Nuclear Information System (INIS)

    Scaduto, DA; Hu, Y-H; Zhao, W

    2014-01-01

    Purpose: Contrast-enhanced (CE) breast imaging using iodinated contrast agents requires imaging with x-ray spectra at energies greater than those used in mammography. Optimizing amorphous selenium (a-Se) flat panel imagers (FPI) for this higher energy range may increase lesion conspicuity. Methods: We compare imaging performance of a conventional FPI with 200 μm a-Se conversion layer to a prototype FPI with 300 μm a-Se layer. Both detectors are evaluated in a Siemens MAMMOMAT Inspiration prototype digital breast tomosynthesis (DBT) system using low-energy (W/Rh 28 kVp) and high-energy (W/Cu 49 kVp) x-ray spectra. Detectability of iodinated lesions in dual-energy images is evaluated using an iodine contrast phantom. Effects of beam obliquity are investigated in projection and reconstructed images using different reconstruction methods. The ideal observer signal-to-noise ratio is used as a figure-of-merit to predict the optimal a-Se thickness for CE lesion detectability without compromising conventional full-field digital mammography (FFDM) and DBT performance. Results: Increasing a-Se thickness from 200 μm to 300 μm preserves imaging performance at typical mammographic energies (e.g. W/Rh 28 kVp), and improves the detective quantum efficiency (DQE) for high energy (W/Cu 49 kVp) by 30%. While the more penetrating high-energy x-ray photons increase geometric blur due to beam obliquity in the FPI with thicker a-Se layer, the effect on lesion detectability in FBP reconstructions is negligible due to the reconstruction filters employed. Ideal observer SNR for CE objects shows improvements in in-plane detectability with increasing a-Se thicknesses, though small lesion detectability begins to degrade in oblique projections for a-Se thickness above 500 μm. Conclusion: Increasing a-Se thickness in direct conversion FPI from 200 μm to 300 μm improves lesion detectability in CE breast imaging with virtually no cost to conventional FFDM and DBT. This work was partially

  19. Strain direction dependency of martensitic transformation in austenitic stainless steels: The effect of gamma-texture

    NARCIS (Netherlands)

    Hilkhuijsen, P.; Geijselaers, Hubertus J.M.; Bor, Teunis Cornelis; Perdahcioglu, Emin Semih; van den Boogaard, Antonius H.; Akkerman, Remko

    2013-01-01

    Uniaxial tensile tests on both a non-textured and a highly textured, fully austenitic stainless steel were performed in both the rolling and the transverse directions. Both materials show mechanically induced phase transformation from the austenitic FCC to the martensitic BCC phase. Differences in

  20. Strain-induced Weyl and Dirac states and direct-indirect gap transitions in group-V materials

    Science.gov (United States)

    Moynihan, Glenn; Sanvito, Stefano; O'Regan, David D.

    2017-12-01

    We perform comprehensive density-functional theory calculations on strained two-dimensional phosphorus (P), arsenic (As) and antimony (Sb) in the monolayer, bilayer, and bulk α-phase, from which we compute the key mechanical and electronic properties of these materials. Specifically, we compute their electronic band structures, band gaps, and charge-carrier effective masses, and identify the qualitative electronic and structural transitions that may occur. Moreover, we compute the elastic properties such as the Young’s modulus Y; shear modulus G; bulk modulus B ; and Poisson ratio ν and present their isotropic averages of as well as their dependence on the in-plane orientation, for which the relevant expressions are derived. We predict strain-induced Dirac states in the monolayers of As and Sb and the bilayers of P, As, and Sb, as well as the possible existence of Weyl states in the bulk phases of P and As. These phases are predicted to support charge velocities up to 106 m {{\\text{s}}-1} and, in some highly anisotropic cases, permit one-dimensional ballistic conductivity in the puckered direction. We also predict numerous band gap transitions for moderate in-plane stresses. Our results contribute to the mounting evidence for the utility of these materials, made possible by their broad range in tuneable properties, and facilitate the directed exploration of their potential application in next-generation electronics.

  1. Temperature and direction dependence of internal strain and texture evolution during deformation of uranium

    Energy Technology Data Exchange (ETDEWEB)

    Brown, D.W., E-mail: dbrown@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bourke, M.A.M.; Clausen, B.; Korzekwa, D.R.; Korzekwa, R.C.; McCabe, R.J.; Sisneros, T.A.; Teter, D.F. [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2009-06-25

    Depleted uranium is of current programmatic interest at Los Alamos National Lab due to its high density and nuclear applications. At room temperature, depleted uranium displays an orthorhombic crystal structure with highly anisotropic mechanical and thermal properties. For instance, the coefficient of thermal expansion is roughly 20 x 10{sup -6} deg. C{sup -1} in the a and c directions, but near zero or slightly negative in the b direction. The innate anisotropy combined with thermo-mechanical processing during manufacture results in spatially varying residual stresses and crystallographic texture, which can cause distortion, and failure in completed parts, effectively wasting resources. This paper focuses on the development of residual stresses and textures during deformation at room and elevated temperatures with an eye on the future development of computational polycrystalline plasticity models based on the known micro-mechanical deformation mechanisms of the material.

  2. Stretchable Complementary Split Ring Resonator (CSRR-Based Radio Frequency (RF Sensor for Strain Direction and Level Detection

    Directory of Open Access Journals (Sweden)

    Seunghyun Eom

    2016-10-01

    Full Text Available In this paper, we proposed a stretchable radio frequency (RF sensor to detect strain direction and level. The stretchable sensor is composed of two complementary split ring resonators (CSRR with microfluidic channels. In order to achieve stretchability, liquid metal (eutectic gallium-indium, EGaIn and Ecoflex substrate are used. Microfluidic channels are built by Ecoflex elastomer and microfluidic channel frames. A three-dimensional (3D printer is used for fabrication of microfluidic channel frames. Two CSRR resonators are designed to resonate 2.03 GHz and 3.68 GHz. When the proposed sensor is stretched from 0 to 8 mm along the +x direction, the resonant frequency is shifted from 3.68 GHz to 3.13 GHz. When the proposed sensor is stretched from 0 to 8 mm along the −x direction, the resonant frequency is shifted from 2.03 GHz to 1.78 GHz. Therefore, we can detect stretched length and direction from independent variation of two resonant frequencies.

  3. Direct measurement of wall slip and slip layer thickness of non-Brownian hard-sphere suspensions in rectangular channel flows

    Science.gov (United States)

    Jesinghausen, Steffen; Weiffen, Rene; Schmid, Hans-Joachim

    2016-09-01

    Wall slip is a long-known phenomenon in the field of rheology. Nevertheless, the origin and the evolution are not completely clear yet. Regarding suspensions, the effect becomes even more complicated, because different mechanisms like pure slip or slip due to particle migration have to be taken into account. Furthermore, suspensions themselves show many flow anomalies and the isolation of slip is complicated. In order to develop working physical models, further insight is necessary. In this work, we measured experimentally the wall slip velocities of different highly filled suspensions in a rectangular slit die directly with respect to the particle concentration and the particle size. The slip velocities were obtained using a particle image velocimetry (PIV) system. The suspensions consisting of a castor oil-cinnamon oil blend and PMMA particles were matched in terms of refractive indexes to appear transparent. Hereby, possible optical path lengths larger than 15 mm were achieved. The slip velocities were found to be in a quadratic relation to the wall shear stress. Furthermore, the overall flow rate as well as the particle concentration has a direct influence on the slip. Concerning the shear stress, there seem to be two regions of slip with different physical characteristics. Furthermore, we estimated the slip layer thickness directly from the velocity profiles and propose a new interpretation. The PIV technique is used to investigate the viscosity and implicit the concentration profile in the slit die. It is shown that the particle migration process is quite fast.

  4. Study of the effect of varying core diameter, shell thickness and strain velocity on the tensile properties of single crystals of Cu-Ag core-shell nanowire using molecular dynamics simulations

    Science.gov (United States)

    Sarkar, Jit; Das, D. K.

    2018-01-01

    Core-shell type nanostructures show exceptional properties due to their unique structure having a central solid core of one type and an outer thin shell of another type which draw immense attention among researchers. In this study, molecular dynamics simulations are carried out on single crystals of copper-silver core-shell nanowires having wire diameter ranging from 9 to 30 nm with varying core diameter, shell thickness, and strain velocity. The tensile properties like yield strength, ultimate tensile strength, and Young's modulus are studied and correlated by varying one parameter at a time and keeping the other two parameters constant. The results obtained for a fixed wire size and different strain velocities were extrapolated to calculate the tensile properties like yield strength and Young's modulus at standard strain rate of 1 mm/min. The results show ultra-high tensile properties of copper-silver core-shell nanowires, several times than that of bulk copper and silver. These copper-silver core-shell nanowires can be used as a reinforcing agent in bulk metal matrix for developing ultra-high strength nanocomposites.

  5. The effect of multi-directional nanocomposite materials on the vibrational response of thick shell panels with finite length and rested on two-parameter elastic foundations

    Science.gov (United States)

    Tahouneh, Vahid; Naei, Mohammad Hasan

    2016-03-01

    The main purpose of this paper is to investigate the effect of bidirectional continuously graded nanocomposite materials on free vibration of thick shell panels rested on elastic foundations. The elastic foundation is considered as a Pasternak model after adding a shear layer to the Winkler model. The panels reinforced by randomly oriented straight single-walled carbon nanotubes are considered. The volume fractions of SWCNTs are assumed to be graded not only in the radial direction, but also in axial direction of the curved panel. This study presents a 2-D six-parameter power-law distribution for CNTs volume fraction of 2-D continuously graded nanocomposite that gives designers a powerful tool for flexible designing of structures under multi-functional requirements. The benefit of using generalized power-law distribution is to illustrate and present useful results arising from symmetric, asymmetric and classic profiles. The material properties are determined in terms of local volume fractions and material properties by Mori-Tanaka scheme. The 2-D differential quadrature method as an efficient numerical tool is used to discretize governing equations and to implement boundary conditions. The fast rate of convergence of the method is shown and results are compared against existing results in literature. Some new results for natural frequencies of the shell are prepared, which include the effects of elastic coefficients of foundation, boundary conditions, material and geometrical parameters. The interesting results indicate that a graded nanocomposite volume fraction in two directions has a higher capability to reduce the natural frequency than conventional 1-D functionally graded nanocomposite materials.

  6. Thick Toenails

    Science.gov (United States)

    ... in individuals with nail fungus (onychomycosis), psoriasis and hypothyroidism. Those who have problems with the thickness of their toenails should consult a foot and ankle surgeon for proper diagnosis and treatment. Find an ACFAS Physician Search Search Tools Find ...

  7. Vibration of Elastic Functionally Graded Thick Rings

    Directory of Open Access Journals (Sweden)

    Guang-Hui Xu

    2017-01-01

    Full Text Available The free vibration behaviors of functionally graded rings were investigated theoretically. The material graded in the thickness direction according to the power law rule and the rings were assumed to be in plane stress and plane strain states. Based on the first-order shear deformation theory and the kinetic relation of von Kárman type, the frequency equation for free vibration of functionally graded ring was derived. The derived results were verified by those in literatures which reveals that the present theory can be appropriate to predict the free vibration characteristics for quite thick rings with the radius-to-thickness ratio from 60 down to 2.09. Comparison between the plane stress case and the plane strain case indicates a slight difference. Meanwhile, the effects of the structural dimensional parameters and the material inhomogeneous parameter are examined. It is interesting that the value of the logarithmic form of vibration frequency is inversely proportional to the logarithmic form of the radius-to-thickness ratio or the mean radius.

  8. Tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge

    Energy Technology Data Exchange (ETDEWEB)

    Inaoka, Takeshi, E-mail: inaoka@phys.u-ryukyu.ac.jp; Furukawa, Takuro; Toma, Ryo; Yanagisawa, Susumu [Department of Physics and Earth Sciences, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213 (Japan)

    2015-09-14

    By means of a hybrid density-functional method, we investigate the tensile-strain effect of inducing the indirect-to-direct band-gap transition and reducing the band-gap energy of Ge. We consider [001], [111], and [110] uniaxial tensility and (001), (111), and (110) biaxial tensility. Under the condition of no normal stress, we determine both normal compression and internal strain, namely, relative displacement of two atoms in the primitive unit cell, by minimizing the total energy. We identify those strain types which can induce the band-gap transition, and evaluate the critical strain coefficient where the gap transition occurs. Either normal compression or internal strain operates unfavorably to induce the gap transition, which raises the critical strain coefficient or even blocks the transition. We also examine how each type of tensile strain decreases the band-gap energy, depending on its orientation. Our analysis clearly shows that synergistic operation of strain orientation and band anisotropy has a great influence on the gap transition and the gap energy.

  9. Modelling of Mechanical Behavior at High Strain Rate of Ti-6al-4v Manufactured By Means of Direct Metal Laser Sintering Technique

    Science.gov (United States)

    Iannitti, Gianluca; Bonora, Nicola; Gentile, Domenico; Ruggiero, Andrew; Testa, Gabriel; Gubbioni, Simone

    2017-06-01

    In this work, the mechanical behavior of Ti-6Al-4V obtained by additive manufacturing technique was investigated, also considering the build direction. Dog-bone shaped specimens and Taylor cylinders were machined from rods manufactured by means of the EOSSINT M2 80 machine, based on Direct Metal Laser Sintering technique. Tensile tests were performed at strain rate ranging from 5E-4 s-1 to 1000 s-1 using an Instron electromechanical machine for quasistatic tests and a Direct-Tension Split Hopkinson Bar for dynamic tests. The mechanical strength of the material was described by a Johnson-Cook model modified to account for stress saturation occurring at high strain. Taylor cylinder tests and their corresponding numerical simulations were carried out in order to validate the constitutive model under a complex deformation path, high strain rates, and high temperatures.

  10. Microstructural analysis in the depth direction of a heteroepitaxial AlN thick film grown on a trench-patterned template by nanobeam X-ray diffraction

    Science.gov (United States)

    Shida, K.; Takeuchi, S.; Tohei, T.; Miyake, H.; Hiramatsu, K.; Sumitani, K.; Imai, Y.; Kimura, S.; Sakai, A.

    2018-04-01

    This work quantitatively assessed the three-dimensional distribution of crystal lattice distortions in an epitaxial AlN thick film grown on a trench-patterned template, using nanobeam X-ray diffraction. Position-dependent ω-2θ-φ mapping clearly demonstrated local tilting, spacing and twisting of lattice planes as well as fluctuations in these phenomena on a sub-micrometer scale comparable to the pitch of the trench-and-terrace patterning. Analysis of the crystal lattice distortion in the depth direction was performed using a newly developed method in which the X-ray nanobeam diffracted from the sample surface to specific depths can be selectively detected by employing a Pt wire profiler. This technique generated depth-resolved ω-2θ-φ maps confirming that fluctuations in lattice plane tilting and spacing greatly depend on the dislocation distribution and the history of the AlN epitaxial growth on the trench-patterned structure. It was also found that both fluctuations were reduced on approaching the AlN surface and, in particular, were sharply reduced at specific depths in the terrace regions. These sharp reductions are attributed to the formation of sacrificial zones with degraded crystal quality around the trenches and possibly lead to raising the crystal quality near the surface of the AlN film.

  11. Critical thickness for strain relaxation of Ge{sub 1−x}Sn{sub x} (x ≤ 0.17) grown by molecular beam epitaxy on Ge(001)

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Zhou, Qian; Dong, Yuan; Yeo, Yee-Chia, E-mail: yeo@ieee.org [Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576 (Singapore); Tok, Eng Soon [Department of Physics, National University of Singapore, Singapore 117551 (Singapore)

    2015-06-08

    We investigated the critical thickness (h{sub c}) for plastic relaxation of Ge{sub 1−x}Sn{sub x} grown by molecular beam epitaxy. Ge{sub 1−x}Sn{sub x} films with various Sn mole fraction x (x ≤ 0.17) and different thicknesses were grown on Ge(001). The strain relaxation of Ge{sub 1−x}Sn{sub x} films and the h{sub c} were investigated by high-resolution x-ray diffraction and reciprocal space mapping. It demonstrates that the measured h{sub c} values of Ge{sub 1−x}Sn{sub x} layers are as much as an order of magnitude larger than that predicted by the Matthews and Blakeslee (M-B) model. The People and Bean (P-B) model was also used to predict the h{sub c} values in Ge{sub 1−x}Sn{sub x}/Ge system. The measured h{sub c} values for various Sn content follow the trend, but slightly larger than that predicted by the P-B model.

  12. Cyclic Tensile Strain Can Play a Role in Directing both Intramembranous and Endochondral Ossification of Mesenchymal Stem Cells

    Directory of Open Access Journals (Sweden)

    Simon F. Carroll

    2017-11-01

    Full Text Available Successfully regenerating damaged or diseased bone and other joint tissues will require a detailed understanding of how joint specific environmental cues regulate the fate of progenitor cells that are recruited or delivered to the site of injury. The goal of this study was to explore the role of cyclic tensile strain (CTS in regulating the initiation of mesenchymal stem cell/multipotent stromal cell (MSC differentiation, and specifically their progression along the endochondral pathway. To this end, we first explored the influence of CTS on the differentiation of MSCs in the absence of any specific growth factor, and secondly, we examined the influence of the long-term application of this mechanical stimulus on markers of endochondral ossification in MSCs maintained in chondrogenic culture conditions. A custom bioreactor was developed to apply uniaxial tensile deformation to bone marrow-derived MSCs encapsulated within physiological relevant 3D fibrin hydrogels. Mechanical loading, applied in the absence of soluble differentiation factors, was found to enhance the expression of both tenogenic (COL1A1 and osteogenic markers (BMP2, RUNX2, and ALPL, while suppressing markers of adipogenesis. No evidence of chondrogenesis was observed, suggesting that CTS can play a role in initiating direct intramembranous ossification. During long-term culture in the presence of a chondrogenic growth factor, CTS was shown to induce MSC re-organization and alignment, increase proteoglycan and collagen production, and to enhance the expression of markers associated with endochondral ossification (BMP2, RUNX2, ALPL, OPN, and COL10A1 in a strain magnitude-dependent manner. Taken together, these findings indicate that tensile loading may play a key role in promoting both intramembranous and endochondral ossification of MSCs in a context-dependent manner. In both cases, this loading-induced promotion of osteogenesis was correlated with an increase in the expression of

  13. Influence of flow direction and flow rate on the initial adhesion of seven Listeria monocytogenes strains to fine polished stainless steel

    DEFF Research Database (Denmark)

    Skovager, Anne; Whitehead, Kathryn; Siegumfeldt, Henrik

    2012-01-01

    The effects of flow direction and shear stress on the adhesion of different strains of Listeria monocytogenes to fine polished stainless steel under liquid flow conditions were investigated. Furthermore, the relationship between cell surface properties and cell size and the initial adhesion rate...... (IAR) was studied. A method, including fluorescence microscopy and a flow perfusion system, was developed and used to examine the real-time initial cell adhesion of different L. monocytogenes species in situ to opaque surfaces under flow conditions. The results demonstrated that shear stress...... was the determining factor for the initial adhesion of L. monocytogenes under flow conditions. The flow direction in relation to the orientation of surface features (the scratches) could be disregarded. IARs were dependent on the shear stress and strain type. The strain EGDe, which had the lowest IAR, had the largest...

  14. A novel rapid direct haemagglutination-inhibition assay for measurements of humoral immune response against non-haemagglutinating Fowlpox virus strains in vaccinated chickens.

    Science.gov (United States)

    Wambura, Philemon N; Mzula, Alexanda

    2017-10-01

    Fowlpox (FP) is a serious disease in chickens caused by Fowlpox virus (FPV). One method currently used to control FPV is vaccination followed by confirmation that antibody titres are protective using the indirect haemagglutination assay (IHA). The direct haemagglutination inhibition (HI) assay is not done because most FPV strains do not agglutinate chicken red blood cells (RBCs). A novel FPV strain TPV-1 which agglutinates chicken RBCs was discovered recently and enabled a direct HI assay to be conducted using homologous sera. This study is therefore aimed at assessing the direct HI assay using a recently discovered novel haemagglutinating FPV strain TPV-1 in chickens vaccinated with a commercial vaccine containing a non-haemagglutinating FPV.Chicks vaccinated with FPV at 1 day-old had antibody geometric mean titres (GMT) of log 2 3.7 at 7 days after vaccination and log 2 8.0 at 28 days after vaccination when tested in the direct HI. Chickens vaccinated at 6 weeks-old had antibody geometric mean titres (GMT) of log 2 5.0 at 7 days after vaccination and log 2 8.4 at 28 days after vaccination when tested in the direct HI. The GMT recorded 28 days after vaccination was slightly higher in chickens vaccinated at 6-week-old than in chicks vaccinated at one-day-old. However, this difference was not significant (P > 0.05). All vaccinated chickens showed "takes". No antibody response to FPV and "takes" were detected in unvaccinated chickens (GMT 0.05). These findings indicate that a simple and rapid direct HI assay using the FPV TPV-1 strain as antigen may be used to measure antibody levels in chickens vaccinated with non-haemagglutinating strains of FPV, and that the titres are comparable to those obtained by indirect IHA.

  15. Measurement of the residual stress distribution in a thick pre-stretched aluminum plate

    Science.gov (United States)

    Yuan, S. X.; Li, X. Q.; M, S.; Zhang, Y. C.; Gong, Y. D.

    2008-12-01

    Thick pre-stretched aluminum alloy plates are widely used in aircraft, while machining distortion caused by initial residual stress release in thick plates is a common and serious problem. To reduce the distortion, the residual stress distribution in thick plate must be measured. According to the characteristics of the thick pre-stretched aluminum alloy plate, based the elastic mechanical theory, this article deduces the modified layer-removal strain method adapting two different strain situations, which are caused by tensile and compressive stress. To validate this method, the residual stresses distribution along the thick direction of plate 2D70T351 is measured by this method, it is shown that the new method deduced in this paper is simple and accurate, and is very useful in engineering.

  16. Buckling Response of Thick Functionally Graded Plates

    Directory of Open Access Journals (Sweden)

    BOUAZZA MOKHTAR

    2014-11-01

    Full Text Available In this paper, the buckling of a functionally graded plate is studied by using first order shear deformation theory (FSDT. The material properties of the plate are assumed to be graded continuously in the direction of thickness. The variation of the material properties follows a simple power-law distribution in terms of the volume fractions of constituents. The von Karman strains are used to construct the equilibrium equations of the plates subjected to two types of thermal loading, linear temperature rise and gradient through the thickness are considered. The governing equations are reduced to linear differential equation with boundary conditions yielding a simple solution procedure. In addition, the effects of temperature field, volume fraction distributions, and system geometric parameters are investigated. The results are compared with the results of the no shear deformation theory (classic plate theory, CPT.

  17. Role of scaffold network in controlling strain and functionalities of nanocomposite films.

    Science.gov (United States)

    Chen, Aiping; Hu, Jia-Mian; Lu, Ping; Yang, Tiannan; Zhang, Wenrui; Li, Leigang; Ahmed, Towfiq; Enriquez, Erik; Weigand, Marcus; Su, Qing; Wang, Haiyan; Zhu, Jian-Xin; MacManus-Driscoll, Judith L; Chen, Long-Qing; Yarotski, Dmitry; Jia, Quanxi

    2016-06-01

    Strain is a novel approach to manipulating functionalities in correlated complex oxides. However, significant epitaxial strain can only be achieved in ultrathin layers. We show that, under direct lattice matching framework, large and uniform vertical strain up to 2% can be achieved to significantly modify the magnetic anisotropy, magnetism, and magnetotransport properties in heteroepitaxial nanoscaffold films, over a few hundred nanometers in thickness. Comprehensive designing principles of large vertical strain have been proposed. Phase-field simulations not only reveal the strain distribution but also suggest that the ultimate strain is related to the vertical interfacial area and interfacial dislocation density. By changing the nanoscaffold density and dimension, the strain and the magnetic properties can be tuned. The established correlation among the vertical interface-strain-properties in nanoscaffold films can consequently be used to tune other functionalities in a broad range of complex oxide films far beyond critical thickness.

  18. Highly effective strain-induced band-engineering of (111) oriented, direct-gap GeSn crystallized on amorphous SiO{sub 2} layers

    Energy Technology Data Exchange (ETDEWEB)

    Li, Haofeng; Wang, Xiaoxin; Liu, Jifeng, E-mail: Jifeng.Liu@dartmouth.edu [Thayer School of Engineering, Dartmouth College, 14 Engineering Drive, Hanover, New Hampshire 03755 (United States)

    2016-03-07

    We demonstrate highly effective strain-induced band-engineering of (111) oriented direct-gap Ge{sub 1−x}Sn{sub x} thin films (0.074 < x < 0.085) crystallized on amorphous SiO{sub 2} towards 3D photonic integration. Due to a much smaller Poisson's ratio for (111) vs. (100) orientation, 0.44% thermally induced biaxial tensile strain reduces the direct-gap by 0.125 eV towards enhanced direct-gap semiconductor properties, twice as effective as the tensile strain in Ge(100) films. Correspondingly, the optical response is extended to λ = 2.8 μm. A dilatational deformation potential of a = −12.8 ± 0.8 eV is derived. These GeSn films also demonstrate high thermal stability, offering both excellent direct-gap optoelectronic properties and fabrication/operation robustness for integrated photonics.

  19. Prediction of crack growth direction by Strain Energy Sih's Theory on specimens SEN under tension-compression biaxial loading employing Genetic Algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez-MartInez R; Lugo-Gonzalez E; Urriolagoitia-Calderon G; Urriolagoitia-Sosa G; Hernandez-Gomez L H; Romero-Angeles B; Torres-San Miguel Ch, E-mail: rrodriguezm@ipn.mx, E-mail: urrio332@hotmail.com, E-mail: guiurri@hotmail.com, E-mail: luishector56@hotmail.com, E-mail: romerobeatriz98@hotmail.com, E-mail: napor@hotmail.com [INSTITUTO POLITECNICO NACIONAL Seccion de Estudios de Posgrado e Investigacion (SEPI), Escuela Superior de Ingenieria Mecanica y Electrica (ESIME), Edificio 5. 2do Piso, Unidad Profesional Adolfo Lopez Mateos ' Zacatenco' Col. Lindavista, C.P. 07738, Mexico, D.F. (Mexico)

    2011-07-19

    Crack growth direction has been studied in many ways. Particularly Sih's strain energy theory predicts that a fracture under a three-dimensional state of stress spreads in direction of the minimum strain energy density. In this work a study for angle of fracture growth was made, considering a biaxial stress state at the crack tip on SEN specimens. The stress state applied on a tension-compression SEN specimen is biaxial one on crack tip, as it can observed in figure 1. A solution method proposed to obtain a mathematical model considering genetic algorithms, which have demonstrated great capacity for the solution of many engineering problems. From the model given by Sih one can deduce the density of strain energy stored for unit of volume at the crack tip as dW = [1/2E({sigma}{sup 2}{sub x} + {sigma}{sup 2}{sub y}) - {nu}/E({sigma}{sub x}{sigma}{sub y})]dV (1). From equation (1) a mathematical deduction to solve in terms of {theta} of this case was developed employing Genetic Algorithms, where {theta} is a crack propagation direction in plane x-y. Steel and aluminium mechanical properties to modelled specimens were employed, because they are two of materials but used in engineering design. Obtained results show stable zones of fracture propagation but only in a range of applied loading.

  20. Prediction of crack growth direction by Strain Energy Sih's Theory on specimens SEN under tension-compression biaxial loading employing Genetic Algorithms

    International Nuclear Information System (INIS)

    Rodriguez-MartInez R; Lugo-Gonzalez E; Urriolagoitia-Calderon G; Urriolagoitia-Sosa G; Hernandez-Gomez L H; Romero-Angeles B; Torres-San Miguel Ch

    2011-01-01

    Crack growth direction has been studied in many ways. Particularly Sih's strain energy theory predicts that a fracture under a three-dimensional state of stress spreads in direction of the minimum strain energy density. In this work a study for angle of fracture growth was made, considering a biaxial stress state at the crack tip on SEN specimens. The stress state applied on a tension-compression SEN specimen is biaxial one on crack tip, as it can observed in figure 1. A solution method proposed to obtain a mathematical model considering genetic algorithms, which have demonstrated great capacity for the solution of many engineering problems. From the model given by Sih one can deduce the density of strain energy stored for unit of volume at the crack tip as dW = [1/2E(σ 2 x + σ 2 y ) - ν/E(σ x σy)]dV (1). From equation (1) a mathematical deduction to solve in terms of θ of this case was developed employing Genetic Algorithms, where θ is a crack propagation direction in plane x-y. Steel and aluminium mechanical properties to modelled specimens were employed, because they are two of materials but used in engineering design. Obtained results show stable zones of fracture propagation but only in a range of applied loading.

  1. Mechanical and tribological properties of polymer-derived Si/C/N sub-millimetre thick miniaturized components fabricated by direct casting

    OpenAIRE

    Bakumov Vadym; Blugan Gurdial; Roos Sigfried; Graule Thomas J.; Fakhfouri Vahid; Grossenbacher Jonas; Gullo Maurizio Rosario; Kiefer Thomas C.; Brugger Juergen; Parlinska Magdalena; Kuebler Jakob

    2012-01-01

    The utilization of silicon based polymers as a source of amorphous non oxide ceramics obtained upon pyrolytic treatment of them is increasingly gaining attention in research and is currently expanding into the field of commercial products. This work is focused on the near net shaped fabrication mechanical and tribological properties of a polymer derived Si/C/N system. Small sub millimetre thick ceramic test discs and bars were fabricated by casting of polysilazane and/or polycarbosilane precu...

  2. Direct comparison of cardiac magnetic resonance feature tracking and 2D/3D echocardiography speckle tracking for evaluation of global left ventricular strain.

    Science.gov (United States)

    Obokata, Masaru; Nagata, Yasufumi; Wu, Victor Chien-Chia; Kado, Yuichiro; Kurabayashi, Masahiko; Otsuji, Yutaka; Takeuchi, Masaaki

    2016-05-01

    Cardiac magnetic resonance (CMR) feature tracking (FT) with steady-state free precession (SSFP) has advantages over traditional myocardial tagging to analyse left ventricular (LV) strain. However, direct comparisons of CMRFT and 2D/3D echocardiography speckle tracking (2/3DEST) for measurement of LV strain are limited. The aim of this study was to investigate the feasibility and reliability of CMRFT and 2D/3DEST for measurement of global LV strain. We enrolled 106 patients who agreed to undergo both CMR and 2D/3DE on the same day. SSFP images at multiple short-axis and three apical views were acquired. 2DE images from three levels of short-axis, three apical views, and 3D full-volume datasets were also acquired. Strain data were expressed as absolute values. Feasibility was highest in CMRFT, followed by 2DEST and 3DEST. Analysis time was shortest in 3DEST, followed by CMRFT and 2DEST. There was good global longitudinal strain (GLS) correlation between CMRFT and 2D/3DEST (r = 0.83 and 0.87, respectively) with the limit of agreement (LOA) ranged from ±3.6 to ±4.9%. Excellent global circumferential strain (GCS) correlation between CMRFT and 2D/3DEST was observed (r = 0.90 and 0.88) with LOA of ±6.8-8.5%. Global radial strain showed fair correlations (r = 0.69 and 0.82, respectively) with LOA ranged from ±12.4 to ±16.3%. CMRFT GCS showed least observer variability with highest intra-class correlation. Although not interchangeable, the high GLS and GCS correlation between CMRFT and 2D/3DEST makes CMRFT a useful modality for quantification of global LV strain in patients, especially those with suboptimal echo image quality. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  3. High-resolution vector magnetometry: Piezo-spin-polarization effect and in-plane strain-induced dominating uniaxial magnetic anisotropy in a 200-nm-thick Ni thin film

    Science.gov (United States)

    Benito, L.

    2018-04-01

    Owing to its high-sensitivity, reliability, fast, versatile and cost-effective operation, vibrating sample magnetometers (VSM) are massively popular characterization instruments at Magnetism laboratories worldwide. Nevertheless, the inherent appearance of synchronous noise represents a major drawback, which critically limits the fine probing of nanometer-sized media. I here report on an innovative approach to eliminate synchronous noise in VSM. This consists of fitting engineered mechanical devices that absorbs vibration energy, dissipating that into heat. Complementarily, a novel transversal pick-up coil system is also presented and analyzed; this detection system has been engineered to enhance the noise-to-signal ratio and optimized for measuring small size thin film samples. The implementation of a combined mechanical and electromagnetic approach enables to notably enhance the VSM performance, achieving a sensitivity better than 1 ×10-6 emu and a resolution below 5 ×10-8 emu, so that the magnetization vector in nanostructured media can be accurately mapped out down to cryogenic temperatures. I lastly show precision magnetometry measurements carried out in an epitaxial (0 0 1)-oriented 200 nm-thick Ni thin film. The analysis reveals the arising of an in-plane dominating strain-induced uniaxial magnetic anisotropy, K2ef = - 6.455kJ m - 3 , and a stunning piezo-spin-polarization effect resulting in a remarkable 10% modulation of the magnetization vector, ∼ 27 emu/cm3, with respect to the cubic lattice axes. Both effects are attributed to the likely existence of an orthorhombic lattice distortion, i.e.εxx -εyy ≈ - 2 ×10-3 . This categorical link enables to assign the observed anisotropic spin-polarization in the Ni overlayer to a two-ion magnetoelastic coupling effect.

  4. Direct comparison of the electrical properties in metal/oxide/nitride/oxide/silicon and metal/aluminum oxide/nitride/oxide/silicon capacitors with equivalent oxide thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    An, Ho-Myoung; Seo, Yu Jeong; Kim, Hee Dong; Kim, Kyoung Chan; Kim, Jong-Guk [School of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Cho, Won-Ju; Koh, Jung-Hyuk [Department of Electronic Materials Engineering, Kwangwoon University, Seoul 139-701 (Korea, Republic of); Sung, Yun Mo [Department of Materials and Science Engineering, Korea University, Seoul 136-713 (Korea, Republic of); Kim, Tae Geun, E-mail: tgkim1@korea.ac.k [School of Electrical Engineering, Korea University, Seoul 136-713 (Korea, Republic of)

    2009-07-31

    We examine the electrical properties of metal/oxide/nitride/oxide/silicon (MONOS) capacitors with two different blocking oxides, SiO{sub 2} and Al{sub 2}O{sub 3}, under the influence of the same electric field. The thickness of the Al{sub 2}O{sub 3} layer is set to 150 A, which is electrically equivalent to a thickness of the SiO{sub 2} layer of 65 A, in the MONOS structure for this purpose. The capacitor with the Al{sub 2}O{sub 3} blocking layer shows a larger capacitance-voltage memory window of 8.6 V, lower program voltage of 7 V, faster program/erase speeds of 10 ms/1 {mu}s, lower leakage current of 100 pA and longer data retention than the one with the SiO{sub 2} blocking layer does. These improvements are attributed to the suppression of the carrier transport to the gate electrode afforded by the use of an Al{sub 2}O{sub 3} blocking layer physically thicker than the SiO{sub 2} one, as well as the effective charge-trapping by Al{sub 2}O{sub 3} at the deep energy levels in the nitride layer.

  5. Next-generation site-directed transgenesis in the malaria vector mosquito Anopheles gambiae: self-docking strains expressing germline-specific phiC31 integrase.

    Directory of Open Access Journals (Sweden)

    Janet M Meredith

    Full Text Available Diseases transmitted by mosquitoes have a devastating impact on global health and the situation is complicated due to difficulties with both existing control measures and the impact of climate change. Genetically modified mosquitoes that are refractory to disease transmission are seen as having great potential in the delivery of novel control strategies. The Streptomyces phage phiC31 integrase system has been successfully adapted for site-directed transgene integration in a range of insects, thus overcoming many limitations due to size constraints and random integration associated with transposon-mediated transformation. Using this technology, we previously published the first site-directed transformation of Anopheles gambiae, the principal vector of human malaria. Mosquitoes were initially engineered to incorporate the phiC31 docking site at a defined genomic location. A second phase of genetic modification then achieved site-directed integration of an anti-malarial effector gene. In the current publication we report improved efficiency and utility of the phiC31 integrase system following the generation of Anopheles gambiae self-docking strains. Four independent strains, with docking sites at known locations on three different chromosome arms, were engineered to express integrase under control of the regulatory regions of the nanos gene from Anopheles gambiae. The resulting protein accumulates in the posterior oocyte to provide integrase activity at the site of germline development. Two self-docking strains, exhibiting significantly different levels of integrase expression, were assessed for site-directed transgene integration and found to demonstrate greatly improved survival and efficiency of transformation. In the fight against malaria, it is imperative to establish a broad repertoire of both anti-malarial effector genes and tissue-specific promoters to regulate their expression, enabling those offering maximum effect with minimum fitness

  6. Electromodulation spectroscopy of direct optical transitions in Ge{sub 1−x}Sn{sub x} layers under hydrostatic pressure and built-in strain

    Energy Technology Data Exchange (ETDEWEB)

    Dybała, F.; Żelazna, K.; Maczko, H.; Gladysiewicz, M.; Misiewicz, J.; Kudrawiec, R., E-mail: robert.kudrawiec@pwr.wroc.pl [Faculty of Fundamental Problems of Technology, Wroclaw University of Technology, Wybrzeze Wyspianskiego 27, 50-370 Wrocław (Poland); Lin, H.; Chen, R.; Shang, C.; Huo, Y.; Kamins, T. I.; Harris, J. S. [Solid State and Photonics Laboratory, Stanford University, Stanford, California 94305-4075 (United States)

    2016-06-07

    Unstrained Ge{sub 1−x}Sn{sub x} layers of various Sn concentration (1.5%, 3%, 6% Sn) and Ge{sub 0.97}Sn{sub 0.03} layers with built-in compressive (ε = −0.5%) and tensile (ε = 0.3%) strain are grown by molecular beam epitaxy and studied by electromodulation spectroscopy (i.e., contactless electroreflectance and photoreflectance (PR)). In order to obtain unstrained GeSn layers and layers with different built-in in-plane strains, virtual InGaAs substrates of different compositions are grown prior to the deposition of GeSn layers. For unstrained Ge{sub 1−x}Sn{sub x} layers, the pressure coefficient for the direct band gap transition is determined from PR measurements at various hydrostatic pressures to be 12.2 ± 0.2 meV/kbar, which is very close to the pressure coefficient for the direct band gap transition in Ge (12.9 meV/kbar). This suggests that the hydrostatic deformation potentials typical of Ge can be applied to describe the pressure-induced changes in the electronic band structure of Ge{sub 1−x}Sn{sub x} alloys with low Sn concentrations. The same conclusion is derived for the uniaxial deformation potential, which describes the splitting between heavy-hole (HH) and light-hole (LH) bands as well as the strain-related shift of the spin-orbit (SO) split-off band. It is observed that the HH, LH, and SO related transitions shift due to compressive and tensile strain according to the Bir-Pikus theory. The dispersions of HH, LH, and SO bands are calculated for compressive and tensile strained Ge{sub 0.97}Sn{sub 0.03} with the 8-band kp Hamiltonian including strain effects, and the mixing of HH and LH bands is discussed. In addition, the dispersion of the electronic band structure is calculated for unstrained Ge{sub 1−x}Sn{sub x} layers (3% and 6% Sn) at high hydrostatic pressure with the 8-band kp Hamiltonian, and the pressure-induced changes in the electronic band structure are discussed.

  7. Generation of a Homozygous Transgenic Rat Strain Stably Expressing a Calcium Sensor Protein for Direct Examination of Calcium Signaling.

    Science.gov (United States)

    Szebényi, Kornélia; Füredi, András; Kolacsek, Orsolya; Pergel, Enikő; Bősze, Zsuzsanna; Bender, Balázs; Vajdovich, Péter; Tóvári, József; Homolya, László; Szakács, Gergely; Héja, László; Enyedi, Ágnes; Sarkadi, Balázs; Apáti, Ágota; Orbán, Tamás I

    2015-08-03

    In drug discovery, prediction of selectivity and toxicity require the evaluation of cellular calcium homeostasis. The rat is a preferred laboratory animal for pharmacology and toxicology studies, while currently no calcium indicator protein expressing rat model is available. We established a transgenic rat strain stably expressing the GCaMP2 fluorescent calcium sensor by a transposon-based methodology. Zygotes were co-injected with mRNA of transposase and a CAG-GCaMP2 expressing construct, and animals with one transgene copy were pre-selected by measuring fluorescence in blood cells. A homozygous rat strain was generated with high sensor protein expression in the heart, kidney, liver, and blood cells. No pathological alterations were found in these animals, and fluorescence measurements in cardiac tissue slices and primary cultures demonstrated the applicability of this system for studying calcium signaling. We show here that the GCaMP2 expressing rat cardiomyocytes allow the prediction of cardiotoxic drug side-effects, and provide evidence for the role of Na(+)/Ca(2+) exchanger and its beneficial pharmacological modulation in cardiac reperfusion. Our data indicate that drug-induced alterations and pathological processes can be followed by using this rat model, suggesting that transgenic rats expressing a calcium-sensitive protein provide a valuable system for pharmacological and toxicological studies.

  8. Detection of partial-thickness supraspinatus tendon tears: is a single direct MR arthrography series in ABER position as accurate as conventional MR arthrography?

    International Nuclear Information System (INIS)

    Schreinemachers, Saskia A.; Hulst, Victor P.M. van der; Woude, Henk-Jan van der; Willems, W.J.; Bipat, Shandra

    2009-01-01

    The purpose of this study was to retrospectively evaluate sensitivity and specificity of a single magnetic resonance (MR) arthrography series in abduction external rotation (ABER) position compared with conventional MR arthrography for detection of supraspinatus tendon tears, with arthroscopy as gold standard, and to assess interobserver variability. Institutional review board approval was obtained; informed consent was waived. MR arthrograms of 250 patients (170 men and 80 women; mean age, 36 years) were retrospectively and independently evaluated by three observers. Oblique coronal T1-weighted fat-suppressed images, proton density, and T2-weighted images and axial T1-weighted images and oblique sagittal T1-weighted fat-suppressed images were analyzed to detect supraspinatus tendon tears. Separately, a single T1-weighted fat-suppressed oblique axial series in ABER position was evaluated. Both protocols were scored randomly without knowledge of patients' clinical history and arthroscopy results. Tears were subclassified, based on articular surface integrity and extension (Lee classification). Interobserver agreement was assessed by kappa statistics for all patients. Ninety-two of 250 patients underwent arthroscopy; sensitivity and specificity of ABER and conventional MR arthrography were calculated and compared using paired McNemar test. Weighted kappa values of ABER and conventional MR arthrography were 0.48-0.65 and 0.60-0.67, respectively. According to arthroscopy, 69 of 92 patients had an intact cuff, and 23 patients had a cuff tear (16 partial thickness and seven full thickness). There were no statistically significant differences between ABER and conventional MR arthrography regarding sensitivity (48-61% and 52-70%, respectively) and specificity (80-94% and 91-95%). Sensitivity and specificity of a single T1-weighted series in ABER position and conventional MR arthrography are comparable for assessment of rotator cuff tears. (orig.)

  9. Detection of partial-thickness supraspinatus tendon tears: is a single direct MR arthrography series in ABER position as accurate as conventional MR arthrography?

    Energy Technology Data Exchange (ETDEWEB)

    Schreinemachers, Saskia A. [Onze Lieve Vrouwe Gasthuis, Department of Radiology, Amsterdam (Netherlands); Onze Lieve Vrouwe Gasthuis, Amsterdam (Netherlands); Hulst, Victor P.M. van der; Woude, Henk-Jan van der [Onze Lieve Vrouwe Gasthuis, Department of Radiology, Amsterdam (Netherlands); Willems, W.J. [Onze Lieve Vrouwe Gasthuis, Orthopaedic Surgery, Amsterdam (Netherlands); Bipat, Shandra [University of Amsterdam (NL). Department of Radiology, Academic Medical Center (Netherlands)

    2009-10-15

    The purpose of this study was to retrospectively evaluate sensitivity and specificity of a single magnetic resonance (MR) arthrography series in abduction external rotation (ABER) position compared with conventional MR arthrography for detection of supraspinatus tendon tears, with arthroscopy as gold standard, and to assess interobserver variability. Institutional review board approval was obtained; informed consent was waived. MR arthrograms of 250 patients (170 men and 80 women; mean age, 36 years) were retrospectively and independently evaluated by three observers. Oblique coronal T1-weighted fat-suppressed images, proton density, and T2-weighted images and axial T1-weighted images and oblique sagittal T1-weighted fat-suppressed images were analyzed to detect supraspinatus tendon tears. Separately, a single T1-weighted fat-suppressed oblique axial series in ABER position was evaluated. Both protocols were scored randomly without knowledge of patients' clinical history and arthroscopy results. Tears were subclassified, based on articular surface integrity and extension (Lee classification). Interobserver agreement was assessed by kappa statistics for all patients. Ninety-two of 250 patients underwent arthroscopy; sensitivity and specificity of ABER and conventional MR arthrography were calculated and compared using paired McNemar test. Weighted kappa values of ABER and conventional MR arthrography were 0.48-0.65 and 0.60-0.67, respectively. According to arthroscopy, 69 of 92 patients had an intact cuff, and 23 patients had a cuff tear (16 partial thickness and seven full thickness). There were no statistically significant differences between ABER and conventional MR arthrography regarding sensitivity (48-61% and 52-70%, respectively) and specificity (80-94% and 91-95%). Sensitivity and specificity of a single T1-weighted series in ABER position and conventional MR arthrography are comparable for assessment of rotator cuff tears. (orig.)

  10. Evaluation of Strain-Life Fatigue Curve Estimation Methods and Their Application to a Direct-Quenched High-Strength Steel

    Science.gov (United States)

    Dabiri, M.; Ghafouri, M.; Rohani Raftar, H. R.; Björk, T.

    2018-03-01

    Methods to estimate the strain-life curve, which were divided into three categories: simple approximations, artificial neural network-based approaches and continuum damage mechanics models, were examined, and their accuracy was assessed in strain-life evaluation of a direct-quenched high-strength steel. All the prediction methods claim to be able to perform low-cycle fatigue analysis using available or easily obtainable material properties, thus eliminating the need for costly and time-consuming fatigue tests. Simple approximations were able to estimate the strain-life curve with satisfactory accuracy using only monotonic properties. The tested neural network-based model, although yielding acceptable results for the material in question, was found to be overly sensitive to the data sets used for training and showed an inconsistency in estimation of the fatigue life and fatigue properties. The studied continuum damage-based model was able to produce a curve detecting early stages of crack initiation. This model requires more experimental data for calibration than approaches using simple approximations. As a result of the different theories underlying the analyzed methods, the different approaches have different strengths and weaknesses. However, it was found that the group of parametric equations categorized as simple approximations are the easiest for practical use, with their applicability having already been verified for a broad range of materials.

  11. Detection of rifampin resistance patterns in Mycobacterium tuberculosis strains isolated in Iran by polymerase chain reaction-single-strand conformation polymorphism and direct sequencing methods

    Directory of Open Access Journals (Sweden)

    Bahram Nasr Isfahani

    2006-09-01

    Full Text Available Mutations in the rpoB locus confer conformational changes leading to defective binding of rifampin (RIF to rpoB and consequently resistance in Mycobacterium tuberculosis. Polymerase chain reaction-single-strand conformation polymorphism (PCR-SSCP was established as a rapid screening test for the detection of mutations in the rpoB gene, and direct sequencing has been unambiguously applied to characterize mutations. A total of 37 of Iranian isolates of M. tuberculosis, 16 sensitive and 21 resistant to RIF, were used in this study. A 193-bp region of the rpoB gene was amplified and PCR-SSCP patterns were determined by electrophoresis in 10% acrylamide gel and silver staining. Also, 21 samples of 193-bp rpoB amplicons with different PCR-SSCP patterns from RIFr and 10 from RIFs were sequenced. Seven distinguishable PCR-SSCP patterns were recognized in the 21 Iranian RIFr strains, while 15 out of 16 RIFs isolates demonstrated PCR-SSCP banding patterns similar to that of sensitive standard strain H37Rv. However one of the sensitive isolates demonstrated a different pattern. There were seen six different mutations in the amplified region of rpoB gene: codon 516(GAC/GTC, 523(GGG/GGT, 526(CAC/TAC, 531(TCG/TTG, 511(CTG/TTG, and 512(AGC/TCG. This study demonstrated the high specificity (93.8% and sensitivity (95.2% of PCR-SSCP method for detection of mutation in rpoB gene; 85.7% of RIFr strains showed a single mutation and 14.3% had no mutations. Three strains showed mutations caused polymorphism. Our data support the common notion that rifampin resistance genotypes are generally present mutations in codons 531 and 526, most frequently found in M. tuberculosis populations regardless of geographic origin.

  12. Direct transmission electron microscopy observations of martensitic transformations in Ni-rich NiTi single crystals during in situ cooling and straining

    International Nuclear Information System (INIS)

    Kroeger, A.; Dziaszyk, S.; Frenzel, J.; Somsen, Ch.; Dlouhy, A.; Eggeler, G.

    2008-01-01

    We investigate martensitic transformations using transmission electron microscopy (TEM) in compression aged Ni-rich NiTi single crystals with one family of Ni 4 Ti 3 precipitates. Small cylinders from a Ni-rich NiTi single crystal with a Ni content of 51.0 at.% were compression aged at 550 deg. C in the [1 1 1] B2 direction for different aging times. Differential scanning calorimetry (DSC) investigations show that a three-step martensitic transformation (three DSC peaks on cooling from the high temperature regime) can be observed for aging times of 4 ks. In situ cooling TEM investigations reveal that the first peak on cooling is associated with a transformation from B2 to R-phase, starting from all precipitate/matrix interfaces. On further cooling, the B19'-phase appears and grows along precipitate/matrix interfaces (second step). With further decreasing temperature, the remaining R-phase between the precipitates transforms to B19' (third peak). In situ TEM straining experiments of B2 above the martensitic start temperature reveal that first some microstructural regions directly transform in microscopic burst like events from B2 to B19'. On further straining, the B19'-phase grows along precipitate/matrix interfaces. However, no formation of R-phase precedes the formation of stress-induced B19'

  13. Intrarenal octreotide treatment prevents sodium retention in liver cirrhotic rats: evidence for direct effects within the thick ascending limb of Henle's loop

    DEFF Research Database (Denmark)

    Jonassen, Thomas; Christensen, Sten; Marcussen, Niels

    2006-01-01

    not affect the abundance of NCKK2 within the outer medulla. Together with the histological findings, these results indicate that IROA reduces the total number of NKCC2 within the outer medulla. In conclusion, the results indicate a direct intrarenal effect of octreotide on TAL function and morphology......We have previously shown that systemic treatment with the somatostatin analog octreotide has marked beneficial effects on renal function in rats with liver cirrhosis induced by common bile duct ligation (CBL; Jonassen TEN, Christensen S, Sørensen AM, Marcussen N, Flyvbjerg A, Andreasen F......, and Petersen JS. Hepatology 29: 1387-1395, 1999). In the present study, we tested the hypothesis that octreotide has a direct effect on renal tubular function. Rats (CBL or Sham-CBL) were intrarenally treated with low-dose octreotide in a long-acting release formulation, which had no systemic actions (100...

  14. Variation in the strain anisotropy of Zircaloy with temperature and strain

    International Nuclear Information System (INIS)

    Hindle, E.D.; Worswick, D.

    1984-04-01

    Strain anisotropy was investigated at temperatures in the range 293 to 1117K in circular tensile specimens prepared from rolled Zircaloy-2 plate so that their tensile axes were parallel to and transverse to the rolling direction. The strain anisotropy factor for both types of specimen increased markedly in the high alpha phase region above 923K reaching a maximum at circa 1070K. Above this temperature in the alpha-plus-beta phase region the strain anisotropy decreased rapidly as the proportion of beta phase increased and was almost non-existent at 1173K. The strain anisotropy was markedly strain dependent, particularly in the high alpha phase region. The study was extended to Zircaloy-4 pressurized water reactor (PWR) 17 x 17 type fuel rod tubing specimens which were strained under biaxial conditions using cooling conditions which promoted uniform diametral strain over most of their lengths (circa 250 mm). In these circumstances the strain anisotropy is manifest by a reduction in length. Measurement of this change along with that in diameter and wall thickness produced data from which the strain anisotropy factor was calculated. The results, although influenced by additional factors discussed in the paper, were similar to those observed in the uniaxial Zircaloy-2 tensile tests. (author)

  15. Measurement of the through thickness compression of a battery separator

    Science.gov (United States)

    Yan, Shutian; Huang, Xiaosong; Xiao, Xinran

    2018-04-01

    The mechanical integrity of the separator is critical to the reliable operation of a battery. Due to its minimal thickness, compression experiments with a single/a few layers of separator are difficult to perform. In this work, a capacitance based displacement set-up has been developed for the measurement of the through thickness direction (TTD) compression stress-strain behavior of the separator and the investigation of its interaction with the electrode. The experiments were performed for a stack of two layers of Celgard 2400 separator, NMC cathode, and separator/NMC cathode/separator stack in both dry and wet (i.e. submersed in dimethyl carbonate DMC) conditions. The experimental results reveal that the separator compression modulus can be significantly affected by the presence of DMC. The iso-stress based rule of mixtures was used to compute the compressive stress-strain curve for the stack from that of the separator and NMC layer. The computed curve agreed with the experimental curve reasonably well up to about 0.16 strain but deviated significantly to a softer response at higher strains. The results suggest that, in the stack, the TTD compressive deformation of the separator is influenced by the NMC cathode.

  16. Thick brane solutions

    International Nuclear Information System (INIS)

    Dzhunushaliev, Vladimir; Minamitsuji, Masato; Folomeev, Vladimir

    2010-01-01

    This paper gives a comprehensive review on thick brane solutions and related topics. Such models have attracted much attention from many aspects since the birth of the brane world scenario. In many works, it has been usually assumed that a brane is an infinitely thin object; however, in more general situations, one can no longer assume this. It is also widely considered that more fundamental theories such as string theory would have a minimal length scale. Many multidimensional field theories coupled to gravitation have exact solutions of gravitating topological defects, which can represent our brane world. The inclusion of brane thickness can realize a variety of possible brane world models. Given our understanding, the known solutions can be classified into topologically non-trivial solutions and trivial ones. The former class contains solutions of a single scalar (domain walls), multi-scalar, gauge-Higgs (vortices), Weyl gravity and so on. As an example of the latter class, we consider solutions of two interacting scalar fields. Approaches to obtain cosmological equations in the thick brane world are reviewed. Solutions with spatially extended branes (S-branes) and those with an extra time-like direction are also discussed.

  17. Direct Write Processing of Multi-micron Thickness Copper Nano-particle Paste on Flexible Substrates with 532 nm Laser Wavelength

    Science.gov (United States)

    Lopez-Espiricueta, Dunia; Fearon, Eamonn; Edwardson, Stuart; Dearden, Geoffrey

    The Laser Assisted Direct Write (LA-DW) method has been implemented in the development of different markets and material processing, recently also used for creating Printed Circuit Boards (PCB) or electrical circuitry. The process consists in the deposition of metallic nano-particle (NP) inks, which are afterwards cured or sintered by laser irradiation, thus creating conductive pathways; advantages are speed, accuracy and the protection of the heat affected zone (HAZ). This research will study the behaviour of the heat dissipation relatively within the Nano-particle Copper paste after being irradiated with 1064 nm and 532 nm wavelengths, research will be developed on different widths and depths deposited onto flat surfaces such as flexible PET. Comparisons to be made between resistivity results obtained from different wavelengths.

  18. Micropipet manipulation of lipid membranes: Direct measurement of the material properties of a cohesive structure that is only two molecules thick

    Science.gov (United States)

    Needham, David

    1993-01-01

    The objectives are to demonstrate how we can make direct measurements of the mechanical properties of a special structure in biology, namely the lipid bilayer membrane, using a micromanipulation technique, and how these properties compare and contrast with 'more traditional' technological/engineering materials. Given that the investment in equipment and expertise to carry out these experiments is probably beyond the scope of most teaching labs, the described experiment is not intended as one that can actually be demonstrated in a student laboratory class. The intention behind presenting this work is to begin to raise awareness in the Material Science community about the material properties of biological material that form a new (to us) category of soft engineering materials that have dimensions on the nanoscale.

  19. Effect of the Strain Rate on the Tensile Properties of the AZ31 Magnesium Alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Seunghun; Park, Jiyoun; Choi, Ildong [Korea Maritime University, Busan (Korea, Republic of); Park, Sung Hyuk [Korea Institute of Materials Science, Changwon (Korea, Republic of)

    2013-10-15

    The effect of the strain rate at a range of 10‒4 ⁓ 3 × 10{sup 2}s{sup -}1 on the tensile characteristics of a rolled AZ31 magnesium alloy was studied. The normal tensile specimens were tested using a high rate hydraulic testing machine. Specimens were machined from four sheets with different thicknesses, 1, 1.5, 2 and 3 mm, along three directions, 0°, 45°, and 90° to the rolling direction. The results revealed that all the specimens had a positive strain rate sensitivity of strength, that is, the strength increased with increasing strain rate. This is the same tendency as other automotive steels have. Our results suggest that the AZ31 magnesium alloy has better collision characteristics at high strain rates because of improved strength with an increasing strain rate. Ductility decreased with an increasing strain rate with a strain rate under 1 s{sup -}1, but it increased with an increasing strain rate over 1 s{sup -}1. The mechanical properties of the AZ31 magnesium alloy depend on the different microstructures according to the thickness. Two and 3 mm thickness specimens with a coarse and non-uniform grain structure exhibited worse mechanical properties while the 1.5 mm thickness specimens with a fine and uniform grain structure had better mechanical properties. Specimens machined at 0° and 45° to the rolling direction had higher absorbed energy than that of the 90° specimen. Thus, we demonstrate it is necessary to choose materials with proper thickness and machining direction for use in automotive applications.

  20. Effect of the Strain Rate on the Tensile Properties of the AZ31 Magnesium Alloy

    International Nuclear Information System (INIS)

    Jeong, Seunghun; Park, Jiyoun; Choi, Ildong; Park, Sung Hyuk

    2013-01-01

    The effect of the strain rate at a range of 10‒4 ⁓ 3 × 10"2s"-1 on the tensile characteristics of a rolled AZ31 magnesium alloy was studied. The normal tensile specimens were tested using a high rate hydraulic testing machine. Specimens were machined from four sheets with different thicknesses, 1, 1.5, 2 and 3 mm, along three directions, 0°, 45°, and 90° to the rolling direction. The results revealed that all the specimens had a positive strain rate sensitivity of strength, that is, the strength increased with increasing strain rate. This is the same tendency as other automotive steels have. Our results suggest that the AZ31 magnesium alloy has better collision characteristics at high strain rates because of improved strength with an increasing strain rate. Ductility decreased with an increasing strain rate with a strain rate under 1 s"-1, but it increased with an increasing strain rate over 1 s"-1. The mechanical properties of the AZ31 magnesium alloy depend on the different microstructures according to the thickness. Two and 3 mm thickness specimens with a coarse and non-uniform grain structure exhibited worse mechanical properties while the 1.5 mm thickness specimens with a fine and uniform grain structure had better mechanical properties. Specimens machined at 0° and 45° to the rolling direction had higher absorbed energy than that of the 90° specimen. Thus, we demonstrate it is necessary to choose materials with proper thickness and machining direction for use in automotive applications.

  1. Direct restoration modalities of fractured central maxillary incisors: A multi-levels validated finite elements analysis with in vivo strain measurements.

    Science.gov (United States)

    Davide, Apicella; Raffaella, Aversa; Marco, Tatullo; Michele, Simeone; Syed, Jamaluddin; Massimo, Marrelli; Marco, Ferrari; Antonio, Apicella

    2015-12-01

    To quantify the influence of fracture geometry and restorative materials rigidity on the stress intensity and distribution of restored fractured central maxillary incisors (CMI) with particular investigation of the adhesive interfaces. Ancillary objectives are to present an innovative technology to measure the in vivo strain state of sound maxillary incisors and to present the collected data. A validation experimental biomechanics approach has been associated to finite element analysis. FEA models consisted of CMI, periodontal ligament and the corresponding alveolar bone process. Three models were created representing different orientation of the fracture planes. Three different angulations of the fracture plane in buccal-palatal direction were modeled: the fracture plane perpendicular to the long axis in the buccal-palatal direction (0°); the fracture plane inclined bucco-palatally in apical-coronal direction (-30°); the fracture plane inclined palatal-buccally in apical-coronal direction (+30°). First set of computing runs was performed for in vivo FE-model validation purposes. In the second part, a 50N force was applied on the buccal aspect of the CMI models. Ten patients were selected and subjected to the strain measurement of CMI under controlled loading conditions. The main differences were noticed in the middle and incisal thirds of incisors crowns, due to the presence of the incisal portion restoration. The stress intensity in -30° models is increased in the enamel structure close to the restoration, due to a thinning of the remaining natural tissues. The rigidity of the restoring material slightly reduces such phenomenon. -30° model exhibits the higher interfacial stress in the adhesive layer with respect to +30° and 0° models. The lower stress intensity was noticed in the 0° models, restoration material rigidity did not influenced the interfacial stress state in 0° models. On the contrary, material rigidity influenced the interfacial stress state

  2. Direct Index Method of Beam Damage Location Detection Based on Difference Theory of Strain Modal Shapes and the Genetic Algorithms Application

    Directory of Open Access Journals (Sweden)

    Bao Zhenming

    2012-01-01

    Full Text Available Structural damage identification is to determine the structure health status and analyze the test results. The three key problems to be solved are as follows: the existence of damage in structure, to detect the damage location, and to confirm the damage degree or damage form. Damage generally changes the structure physical properties (i.e., stiffness, mass, and damping corresponding with the modal characteristics of the structure (i.e., natural frequencies, modal shapes, and modal damping. The research results show that strain mode can be more sensitive and effective for local damage. The direct index method of damage location detection is based on difference theory, without the modal parameter of the original structure. FEM numerical simulation to partial crack with different degree is done. The criteria of damage location detection can be obtained by strain mode difference curve through cubic spline interpolation. Also the genetic algorithm box in Matlab is used. It has been possible to identify the damage to a reasonable level of accuracy.

  3. Unbiased Strain-Typing of Arbovirus Directly from Mosquitoes Using Nanopore Sequencing: A Field-forward Biosurveillance Protocol.

    Science.gov (United States)

    Russell, Joseph A; Campos, Brittany; Stone, Jennifer; Blosser, Erik M; Burkett-Cadena, Nathan; Jacobs, Jonathan L

    2018-04-03

    The future of infectious disease surveillance and outbreak response is trending towards smaller hand-held solutions for point-of-need pathogen detection. Here, samples of Culex cedecei mosquitoes collected in Southern Florida, USA were tested for Venezuelan Equine Encephalitis Virus (VEEV), a previously-weaponized arthropod-borne RNA-virus capable of causing acute and fatal encephalitis in animal and human hosts. A single 20-mosquito pool tested positive for VEEV by quantitative reverse transcription polymerase chain reaction (RT-qPCR) on the Biomeme two3. The virus-positive sample was subjected to unbiased metatranscriptome sequencing on the Oxford Nanopore MinION and shown to contain Everglades Virus (EVEV), an alphavirus in the VEEV serocomplex. Our results demonstrate, for the first time, the use of unbiased sequence-based detection and subtyping of a high-consequence biothreat pathogen directly from an environmental sample using field-forward protocols. The development and validation of methods designed for field-based diagnostic metagenomics and pathogen discovery, such as those suitable for use in mobile "pocket laboratories", will address a growing demand for public health teams to carry out their mission where it is most urgent: at the point-of-need.

  4. A new discrete Kirchhoff-Mindlin element based on Mindlin-Reissner plate theory and assumed shear strain fields. I - An extended DKT element for thick-plate bending analysis. II - An extended DKQ element for thick-plate bending analysis

    Science.gov (United States)

    Katili, Irwan

    1993-06-01

    A new three-node nine-degree-of-freedom triangular plate bending element is proposed which is valid for the analysis of both thick and thin plates. The element, called the discrete Kirchhoff-Mindlin triangle (DKMT), has a proper rank, passes the patch test for thin and thick plates in an arbitrary mesh, and is free of shear locking. As an extension of the DKMT element, a four-node element with 3 degrees of freedom per node is developed. The element, referred to as DKMQ (discrete Kirchhoff-Mindlin quadrilateral) is found to provide good results for both thin and thick plates without any compatibility problems.

  5. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and {beta}-glucosidase

    Energy Technology Data Exchange (ETDEWEB)

    Apiwatanapiwat, Waraporn; Rugthaworn, Prapassorn [Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki (Japan). Post-Harvest Science and Technology Div.; Kasetsart Univ., Bangkok (Thailand). Nanotechnology and Biotechnology Div.; Murata, Yoshinori; Kosugi, Akihiko; Arai, Takamitsu; Mori, Yutaka [Japan International Research Center for Agricultural Sciences (JIRCAS), Tsukuba, Ibaraki (Japan). Post-Harvest Science and Technology Div.; Yamada, Ryosuke; Kondo, Akihiko [Kobe Univ. (Japan). Dept. of Chemical Science and Engineering

    2011-04-15

    In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying {alpha}-amylase ({alpha}-AM), glucoamylase, endoglucanase, cellobiohydrase, and {beta}-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley {beta}-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes. (orig.)

  6. Direct ethanol production from cassava pulp using a surface-engineered yeast strain co-displaying two amylases, two cellulases, and β-glucosidase.

    Science.gov (United States)

    Apiwatanapiwat, Waraporn; Murata, Yoshinori; Kosugi, Akihiko; Yamada, Ryosuke; Kondo, Akihiko; Arai, Takamitsu; Rugthaworn, Prapassorn; Mori, Yutaka

    2011-04-01

    In order to develop a method for producing fuel ethanol from cassava pulp using cell surface engineering (arming) technology, an arming yeast co-displaying α-amylase (α-AM), glucoamylase, endoglucanase, cellobiohydrase, and β-glucosidase on the surface of the yeast cells was constructed. The novel yeast strain, possessing the activities of all enzymes, was able to produce ethanol directly from soluble starch, barley β-glucan, and acid-treated Avicel. Cassava is a major crop in Southeast Asia and used mainly for starch production. In the starch manufacturing process, large amounts of solid wastes, called cassava pulp, are produced. The major components of cassava pulp are starch (approximately 60%) and cellulose fiber (approximately 30%). We attempted simultaneous saccharification and ethanol fermentation of cassava pulp with this arming yeast. During fermentation, ethanol concentration increased as the starch and cellulose fiber substrates contained in the cassava pulp decreased. The results clearly showed that the arming yeast was able to produce ethanol directly from cassava pulp without addition of any hydrolytic enzymes.

  7. Thick-Big Descriptions

    DEFF Research Database (Denmark)

    Lai, Signe Sophus

    The paper discusses the rewards and challenges of employing commercial audience measurements data – gathered by media industries for profitmaking purposes – in ethnographic research on the Internet in everyday life. It questions claims to the objectivity of big data (Anderson 2008), the assumption...... communication systems, language and behavior appear as texts, outputs, and discourses (data to be ‘found’) – big data then documents things that in earlier research required interviews and observations (data to be ‘made’) (Jensen 2014). However, web-measurement enterprises build audiences according...... to a commercial logic (boyd & Crawford 2011) and is as such directed by motives that call for specific types of sellable user data and specific segmentation strategies. In combining big data and ‘thick descriptions’ (Geertz 1973) scholars need to question how ethnographic fieldwork might map the ‘data not seen...

  8. Direct bacterial loop-mediated isothermal amplification detection on the pathogenic features of the nosocomial pathogen - Methicillin resistant Staphylococcus aureus strains with respiratory origins.

    Science.gov (United States)

    Lin, Qun; Xu, Pusheng; Li, Jiaowu; Chen, Yin; Feng, Jieyi

    2017-08-01

    Loop-mediated isothermal amplification based detection assays using bacterial culture or colony for direct detection of methicillin resistant Staphylococcus aureus(MRSA) had been developed and evaluated, followed by its extensive application on a large scale of clinical MRSA isolated from respiratory origins, including nasal swabs and sputums. Six primers, including outer primers, inner primers and loop primers, were specifically designed for recognizing eight distinct sequences on four targets: 16SrRNA, femA, mecA and orfX. Twenty-seven reference strains were used to develop, evaluate and optimize this assay. Then, a total of 532 clinical MRSA isolates were employed for each detected targets. And the results were determined through both visual observation of the color change by naked eye and electrophoresis. The specific of each primer had been confirmed, and the optimal amplification was obtained under 65 °C for 40 min. The limit of detections (LOD) of bacteria culture LAMP assays were determined to be 10 4  CFU/ml for 16S rRNA, femA, as well as orfX and 10 5  CFU/ml for mecA, respectively. The established novel assays on MRSA detection may provide new strategies for rapid detection of foodborne pathogens. Copyright © 2017. Published by Elsevier Ltd.

  9. Directional RNA deep sequencing sheds new light on the transcriptional response of Anabaena sp. strain PCC 7120 to combined-nitrogen deprivation

    Directory of Open Access Journals (Sweden)

    Head Steven R

    2011-06-01

    Full Text Available Abstract Background Cyanobacteria are potential sources of renewable chemicals and biofuels and serve as model organisms for bacterial photosynthesis, nitrogen fixation, and responses to environmental changes. Anabaena (Nostoc sp. strain PCC 7120 (hereafter Anabaena is a multicellular filamentous cyanobacterium that can "fix" atmospheric nitrogen into ammonia when grown in the absence of a source of combined nitrogen. Because the nitrogenase enzyme is oxygen sensitive, Anabaena forms specialized cells called heterocysts that create a microoxic environment for nitrogen fixation. We have employed directional RNA-seq to map the Anabaena transcriptome during vegetative cell growth and in response to combined-nitrogen deprivation, which induces filaments to undergo heterocyst development. Our data provide an unprecedented view of transcriptional changes in Anabaena filaments during the induction of heterocyst development and transition to diazotrophic growth. Results Using the Illumina short read platform and a directional RNA-seq protocol, we obtained deep sequencing data for RNA extracted from filaments at 0, 6, 12, and 21 hours after the removal of combined nitrogen. The RNA-seq data provided information on transcript abundance and boundaries for the entire transcriptome. From these data, we detected novel antisense transcripts within the UTRs (untranslated regions and coding regions of key genes involved in heterocyst development, suggesting that antisense RNAs may be important regulators of the nitrogen response. In addition, many 5' UTRs were longer than anticipated, sometimes extending into upstream open reading frames (ORFs, and operons often showed complex structure and regulation. Finally, many genes that had not been previously identified as being involved in heterocyst development showed regulation, providing new candidates for future studies in this model organism. Conclusions Directional RNA-seq data were obtained that provide

  10. A study of strain in thin epitaxial films of yttrium silicide on Si(111)

    Science.gov (United States)

    Siegal, Michelle F.; Martínez-Miranda, L. J.; Santiago-Avilés, J. J.; Graham, W. R.; Siegal, M. P.

    1994-02-01

    We present the results of an x-ray diffraction analysis of epitaxial yttrium silicide films grown on Si(111), with thicknesses ranging from 14 to 100 Å. The macroscopic strain along the out-of-plane direction for films containing pits or pinholes follows the trend observed previously in films of thicknesses up to 510 Å. The out-of-plane lattice parameter decreases linearly with film thickness. We show preliminary evidence that pinhole-free films do not follow the above trend, and that strain in these films has the opposite sign than in films with pinholes. Finally, our results also indicate that the mode of growth, coupled to the interfacial thermal properties of the films, affects the observed value for the strain in the films.

  11. A study of strain in thin epitaxial films of yttrium silicide on Si(111)

    International Nuclear Information System (INIS)

    Siegal, M.F.; Martinez-Miranda, L.J.; Santiago-Aviles, J.J.; Graham, W.R.; Siegal, M.P.

    1994-01-01

    We present the results of an x-ray diffraction analysis of epitaxial yttrium silicide films grown on Si(111), with thicknesses ranging from 14 to 100 A. The macroscopic strain along the out-of-plane direction for films containing pits or pinholes follows the trend observed previously in films of thicknesses up to 510 A. The out-of-plane lattice parameter decreases linearly with film thickness. We show preliminary evidence that pinhole-free films do not follow the above trend, and that strain in these films has the opposite sign than in films with pinholes. Finally, our results also indicate that the mode of growth, coupled to the interfacial thermal properties of the films, affects the observed value for the strain in the films

  12. A strain gauge

    DEFF Research Database (Denmark)

    2016-01-01

    The invention relates to a strain gauge of a carrier layer and a meandering measurement grid positioned on the carrier layer, wherein the strain gauge comprises two reinforcement members positioned on the carrier layer at opposite ends of the measurement grid in the axial direction....... The reinforcement members are each placed within a certain axial distance to the measurement grid with the axial distance being equal to or smaller than a factor times the grid spacing. The invention further relates to a multi-axial strain gauge such as a bi-axial strain gauge or a strain gauge rosette where each...... of the strain gauges comprises reinforcement members. The invention further relates to a method for manufacturing a strain gauge as mentioned above....

  13. Tungsten thick coatings for plasma facing components

    International Nuclear Information System (INIS)

    Riccardi, B.; Pizzuto, A.; Orsini, A.; Libera, S.; Visca, E.; Bertamini, L.; Casadei, F.; Severini, E.; Montanari, R.; Litunovsky, N.

    1998-01-01

    The aim of the R and D activity was to realize thick W coatings on CuCrZr hollow bars and to test the mock ups with respect to thermal fatigue. Eight mock ups provided of 4 mm thick W coating were finally manufactured. The bonding integrity between coating and substrate was checked by means of an Ultrasonic apparatus. Characterisation of coatings was performed in order to assess microstructure, impurity content, density, tensile strength, adhesion strength, thermal conductivity and thermal expansion coefficient. Macroscopic residual strain measurements were performed by means of 'hole drilling' technique. The activities performed demonstrated the feasibility of thick Tungsten coatings on geometries with more complex residual strain distribution. These coatings are reliable armour of medium heat flux plasma facing component. (author)

  14. Dual beam x-ray thickness gauge

    International Nuclear Information System (INIS)

    Allport, J.J.

    1977-01-01

    The apparatus and method for continuous measurement of thickness of a sheet at a rolling mill or the like without contacting the sheet are described. A system directing radiation through the sheet in two energy bands and providing a measure of change in composition of the material as it passes the thickness gauging station is included. A system providing for changing the absorption coefficient of the material in the thickness measurement as a function of the change in composition so that the measured thickness is substantially independent of variations in composition is described

  15. Lead Thickness Measurements

    International Nuclear Information System (INIS)

    Rucinski, R.

    1998-01-01

    The preshower lead thickness applied to the outside of D-Zero's superconducting solenoid vacuum shell was measured at the time of application. This engineering documents those thickness measurements. The lead was ordered in sheets 0.09375-inch and 0.0625-inch thick. The tolerance on thickness was specified to be +/- 0.003-inch. The sheets all were within that thickness tolerance. The nomenclature for each sheet was designated 1T, 1B, 2T, 2B where the numeral designates it's location in the wrap and 'T' or 'B' is short for 'top' or 'bottom' half of the solenoid. Micrometer measurements were taken at six locations around the perimeter of each sheet. The width,length, and weight of each piece was then measured. Using an assumed pure lead density of 0.40974 lb/in 3 , an average sheet thickness was calculated and compared to the perimeter thickness measurements. In every case, the calculated average thickness was a few mils thinner than the perimeter measurements. The ratio was constant, 0.98. This discrepancy is likely due to the assumed pure lead density. It is not felt that the perimeter is thicker than the center regions. The data suggests that the physical thickness of the sheets is uniform to +/- 0.0015-inch.

  16. Thickness dependent ferromagnetism in thermally decomposed NiO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ravikumar, Patta; Kisan, Bhagaban; Perumal, Alagarsamy, E-mail: perumal@iitg.ernet.in

    2016-11-15

    We report the effects of film thickness, annealing temperature and annealing environments on thermal decomposition behavior and resulting magnetic properties of NiO (t=50–300 nm) thin films. All the NiO films were prepared directly on thermally oxidized Si at ambient temperature using magnetron sputtering technique and post annealed at different temperatures (T{sub A}) under vacuum and oxygen atmospheres. As-deposited films exhibit face centered cubic structure with large lattice constant due to strain induced during sputtering process. With increasing T{sub A}, the lattice constant decreases due to the release of strain and thickness dependent thermal decomposition reaction of NiO into Ni has been observed for the NiO films annealed at 500 °C under vacuum condition. As a result, the antiferromagnetic nature of the as-deposited NiO films transforms into ferromagnetic one with dominant thickness dependent ferromagnetic behavior at room temperature. In addition, the existence of both Ni and NiO phases in the annealed NiO films shows noticeable exchange bias under field cooling condition. The behavior of thermal decomposition was not observed for the NiO films annealed under oxygen condition which results in no detectable change in the magnetic properties. The observed results are discussed on the basis of thickness dependent thermal decomposition in NiO films with increasing T{sub A} and changing annealing conditions. - Highlights: • Preparation of highly strained single layer NiO films with different thicknesses. • Study the effects of annealing under different environments on crystal structure. • Understanding the origin of thickness dependent thermal decomposition reaction. • Investigate the role of thermal decomposition reaction on the magnetic properties. • Study the interaction between NiO and Ni phases on the exchange bias mechanism.

  17. Strain and stress tensors of rolled uranium plate by Rietveld refinement of TOF neutron-diffraction data

    International Nuclear Information System (INIS)

    Balzar, D.; Popa, N.C.; Vogel, S.

    2010-01-01

    We report the complete macroscopic average strain and stress tensors for a cold-rolled uranium plate, based on the neutron TOF measurements. Both tensors were determined by the least-squares refinement of the interplanar spacings of 19 Bragg reflections. Based on the pole figures, as determined by GSAS, a triclinic sample symmetry of the uranium plate was assumed. Strain and stress are tensile in both the transverse and rolling directions and very small in the normal direction (through the thickness of the plate). Shear strain and stress components are compressive and of significant magnitude.

  18. Characteristics of the thick, compound refractive lens

    International Nuclear Information System (INIS)

    Pantell, Richard H.; Feinstein, Joseph; Beguiristain, H. Raul; Piestrup, Melvin A.; Gary, Charles K.; Cremer, Jay T.

    2003-01-01

    A compound refractive lens (CRL), consisting of a series of N closely spaced lens elements each of which contributes a small fraction of the total focusing, can be used to focus x rays or neutrons. The thickness of a CRL can be comparable to its focal length, whereupon a thick-lens analysis must be performed. In contrast with the conventional optical lens, where the ray inside the lens follows a straight line, the ray inside the CRL is continually changing direction because of the multiple refracting surfaces. Thus the matrix representation for the thick CRL is quite different from that for the thick optical lens. Principal planes can be defined such that the thick-lens matrix can be converted to that of a thin lens. For a thick lens the focal length is greater than for a thin lens with the same lens curvature, but this lengthening effect is less for the CRL than for the conventional optical lens

  19. Education and "Thick" Epistemology

    Science.gov (United States)

    Kotzee, Ben

    2011-01-01

    In this essay Ben Kotzee addresses the implications of Bernard Williams's distinction between "thick" and "thin" concepts in ethics for epistemology and for education. Kotzee holds that, as in the case of ethics, one may distinguish between "thick" and "thin" concepts of epistemology and, further, that this distinction points to the importance of…

  20. Thick film hydrogen sensor

    Science.gov (United States)

    Hoffheins, Barbara S.; Lauf, Robert J.

    1995-01-01

    A thick film hydrogen sensor element includes an essentially inert, electrically-insulating substrate having deposited thereon a thick film metallization forming at least two resistors. The metallization is a sintered composition of Pd and a sinterable binder such as glass frit. An essentially inert, electrically insulating, hydrogen impermeable passivation layer covers at least one of the resistors.

  1. Thickness dependence of magnetic anisotropy and domains in amorphous Co{sub 40}Fe{sub 40}B{sub 20} thin films grown on PET flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Zhenhua, E-mail: tangzhenhua1988@163.com [Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Ni, Hao [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); College of science, China university of petroleum, Qingdao, Shandong 266580 China (China); Lu, Biao [Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Zheng, Ming [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China); Huang, Yong-An [Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Lu, Sheng-Guo, E-mail: sglu@gdut.edu.cn [Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006 (China); Tang, Minghua [Key Laboratory of Low Dimensional Materials and Application Technology, Ministry of Education (Xiangtan University), Xiangtan, Hunan 411105 (China); Gao, Ju [Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong (China)

    2017-03-15

    The amorphous Co{sub 40}Fe{sub 40}B{sub 20} (CoFeB) films (5–200 nm in thickness) were grown on flexible polyethylene terephthalate (PET) substrates using the DC magnetron-sputtering method. The thickness dependence of structural and magnetic properties of flexible CoFeB thin films was investigated in detail. The in-plane uniaxial magnetic anisotropy induced by strain as a function of thickness was obtained in flexible CoFeB thin films, and a critical thickness of ~150 nm for in-plane magnetic anisotropy was observed. Moreover, the domains and the uniaxial anisotropy as a function of angular direction of applied magnetic field were characterized. The results show potential for designing CoFeB-based flexible spintronic devices in which the physical parameters could be tailored by controlling the thickness of the thin film. - Graphical abstract: The in-plane uniaxial magnetic anisotropy induced by strain as a function of thickness was obtained in flexible CoFeB thin films, and a critical thickness of ~150 nm for in-plane magnetic anisotropy was observed. Moreover, the domains and the uniaxial anisotropy as a function of angular direction of applied magnetic field were characterized. - Highlights: • The thickness effect on the magnetic properties in amorphous CoFeB thin films grown on flexible substrates was investigated. • The in-plane uniaxial magnetic anisotropy induced by strains was observed. • A critical thickness of ~ 150 nm for the flexible CoFeB thin film on PET substrate was obtained.

  2. Direct investigations on strain-induced cold crystallization behavior and structure evolutions in amorphous poly(lactic acid) with SAXS and WAXS measurements

    DEFF Research Database (Denmark)

    Zhou, Chengbo; Li, Hongfei; Zhang, Wenyang

    2016-01-01

    scanning calorimetry (DSC) measurements. The data obtained from the stretched samples within 70-90 degrees C showed that all of the formed crystals are disordered alpha' form with more compact chain packing than that of the cold crystallization. Upon stretching at 70 degrees C, the mesocrystal appears......Strain-induced cold crystallization behavior and structure evolution of amorphous poly(lactic acid) (PLA) stretched within 70-90 degrees C were investigated via in situ synchrotron small-angle X-ray scattering (SAXS) and wide-angle X-ray scattering (WAXS) measurements as well as differential...... in strain-induced crystallization behavior of amorphous PLA within 70-90 degrees C can be attributed to the competition between chain orientation caused by stretching and chain relaxation. It was proposed that the strain-induced mesocrystal/crystal and the lamellae are formed from the mesophase originally...

  3. Bacillus halodurans Strain C125 Encodes and Synthesizes Enzymes from Both Known Pathways To Form dUMP Directly from Cytosine Deoxyribonucleotides

    DEFF Research Database (Denmark)

    Oehlenschlæger, Christian Berg; Løvgreen, Monika Nøhr; Reinauer, Eva

    2015-01-01

    Analysis of the genome of Bacillus halodurans strain C125 indicated that two pathways leading from a cytosine deoxyribonucleotide to dUMP, used for dTMP synthesis, were encoded by the genome of the bacterium. The genes that were responsible, the comEB gene and the dcdB gene, encoding dCMP deaminase...

  4. Asymmetric, compressive, SiGe epilayers on Si grown by lateral liquid-phase epitaxy utilizing a distinction between dislocation nucleation and glide critical thicknesses

    Science.gov (United States)

    O'Reilly, Andrew J.; Quitoriano, Nathaniel

    2018-01-01

    Uniaxially strained Si1-xGex channels have been proposed as a solution for high mobility channels in next-generation MOSFETS to ensure continued device improvement as the benefits from further miniaturisation are diminishing. Previously proposed techniques to deposit uniaxially strained Si1-xGex epilayers on Si (0 0 1) substrates require multiple deposition steps and only yielded thin strips of uniaxially strained films. A lateral liquid-phase epitaxy (LLPE) technique was developed to deposit a blanket epilayer of asymmetrically strained Si97.4Ge2.6 on Si in a single step, where the epilayer was fully strained in the growth direction and 31% strain-relaxed in the orthogonal direction. The LLPE technique promoted the glide of misfit dislocations, which nucleated in a region with an orthogonal misfit dislocation network, into a region where the dislocation nucleation was inhibited. This created an array of parallel misfit dislocations which were the source of the asymmetric strain. By observing the thicknesses at which the dislocation network transitions from orthogonal to parallel and at which point dislocation glide is exhausted, the separate critical thicknesses for dislocation nucleation and dislocation glide can be determined.

  5. Ocean Sediment Thickness Contours

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Ocean sediment thickness contours in 200 meter intervals for water depths ranging from 0 - 18,000 meters. These contours were derived from a global sediment...

  6. Strain localization band width evolution by electronic speckle pattern interferometry strain rate measurement

    Energy Technology Data Exchange (ETDEWEB)

    Guelorget, Bruno [Institut Charles Delaunay-LASMIS, Universite de technologie de Troyes, FRE CNRS 2848, 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)], E-mail: bruno.guelorget@utt.fr; Francois, Manuel; Montay, Guillaume [Institut Charles Delaunay-LASMIS, Universite de technologie de Troyes, FRE CNRS 2848, 12 rue Marie Curie, B.P. 2060, 10010 Troyes Cedex (France)

    2009-04-15

    In this paper, electronic speckle pattern interferometry strain rate measurements are used to quantify the width of the strain localization band, which occurs when a sheet specimen is submitted to tension. It is shown that the width of this band decreases with increasing strain. Just before fracture, this measured width is about five times wider than the shear band and the initial sheet thickness.

  7. Monitoring production target thickness

    International Nuclear Information System (INIS)

    Oothoudt, M.A.

    1993-01-01

    Pion and muon production targets at the Clinton P. Anderson Meson Physics Facility consist of rotating graphite wheels. The previous target thickness monitoring Procedure scanned the target across a reduced intensity beam to determine beam center. The fractional loss in current across the centered target gave a measure of target thickness. This procedure, however, required interruption of beam delivery to experiments and frequently indicated a different fractional loss than at normal beam currents. The new monitoring Procedure compares integrated ups and downs toroid current monitor readings. The current monitors are read once per minute and the integral of readings are logged once per eight-hour shift. Changes in the upstream to downstream fractional difference provide a nonintrusive continuous measurement of target thickness under nominal operational conditions. Target scans are now done only when new targets are installed or when unexplained changes in the current monitor data are observed

  8. Influence of anisotropic strain relaxation on the magnetoresistance properties of epitaxial Fe3O4 (110) films

    Science.gov (United States)

    Sofin, R. G. S.; Wu, Han-Chun; Ramos, R.; Arora, S. K.; Shvets, I. V.

    2015-11-01

    We studied Fe3O4 (110) films grown epitaxially on MgO (110) substrates using oxygen plasma assisted molecular beam epitaxy. The films with thickness of 30-200 nm showed anisotropic in-plane partial strain relaxation. Magneto resistance (MR) measurements with current and magnetic field along ⟨001⟩ direction showed higher MR compared to ⟨1 ¯ 10 ⟩ direction. Maximum value of MR was measured at Verwey transition temperature for both directions. We explain the observed anisotropy in the MR on the basis of the effects of anisotropic misfit strain, and the difference between the density of antiferromagnetically coupled antiphase boundaries formed along ⟨001⟩ and ⟨1 ¯ 10 ⟩ crystallographic directions, suggesting the dependence of spin polarisation on the anisotropic strain relaxation along the said crystallographic directions.

  9. Coating thickness measurement

    International Nuclear Information System (INIS)

    1976-12-01

    The standard specifies measurements of the coating thickness, which make use of beta backscattering and/or x-ray fluorescence. For commonly used combinations of coating material and base material the appropriate measuring ranges and radionuclides to be used are given for continuous as well as for discontinuous measurements

  10. Molecular cloning of a Bangladeshi strain of very virulent infectious bursal disease virus of chickens and its adaptation in tissue culture by site-directed mutagenesis

    International Nuclear Information System (INIS)

    Islam, M.R.; Raue, R.; Mueller, H.

    2005-01-01

    Full-length cDNA of both genome segments of a Bangladeshi strain of very virulent infectious bursal disease virus (BD 3/99) were cloned in plasmid vectors along with the T7 promoter tagged to the 5'-ends. Mutations were introduced in the cloned cDNA to bring about two amino acid exchanges (Q253H and A284T) in the capsid protein VP2. Transfection of primary chicken embryo fibroblast cells with RNA transcribed in vitro from the full-length cDNA resulted in the formation of mutant infectious virus particles that grow in tissue culture. The pathogenicity of this molecularly-cloned, tissue-culture- adapted virus (BD-3tc) was tested in commercial chickens. The parental wild-type strain, BD 3/99, was included for comparison. The subclinical course of the disease and delayed bursal atrophy in BD-3tc-inoculated birds suggested that these amino acid substitutions made BD-3tc partially attenuated. (author)

  11. Improving deformation models by discounting transient signals in geodetic data: 2. Geodetic data, stress directions, and long-term strain rates in Italy

    Science.gov (United States)

    Carafa, Michele M. C.; Bird, Peter

    2016-07-01

    The lithosphere of Italy is exposed to a number of different short-term strain transients, including but not limited to landslides, postseismic relaxation, and volcanic inflation/deflation. These transients affect GPS velocities and complicate the assessment of the long-term tectonic component of the surface deformation. In a companion paper we present a method for anticipating the principal patterns of nontectonic, short-term strains and building this information into the covariance matrix of the geodetic velocities. In this work we apply this method to Italian GPS velocities to build an augmented covariance matrix that characterizes all expected discrepancies between short- and long-term velocities. We find that formal uncertainties usually reported for GPS measurements are smaller than the variability of the same benchmarks across a geologic time span. Furthermore, we include in our modeling the azimuths of most compressive horizontal principal stresses (SHmax) because GPS data cannot resolve the active kinematics of coastal and offshore areas. We find that the final tectonic model can be made relatively insensitive to short-term interfering processes if the augmented covariance matrix and SHmax data records are used in the objective function. This results in a preferred neotectonic model that is also in closer agreement with independent geologic and seismological constraints and has the advantage of reducing short-term biases in forecasts of long-term seismicity.

  12. Effect of shear strain on the deflection of a clamped magnetostrictive film-substrate system

    International Nuclear Information System (INIS)

    Ming Zhenghui; Ming Li; Bo Zou; Xia Luo

    2011-01-01

    The effect of in-plane shear strain of a clamped bimorph on the deflection produced by magnetization of the film is investigated. The deflection is found by minimizing the Gibbs free energy with respect to four parameters, strains and curvatures along x and y directions at the interface, by assuming that the curvature in the y direction varies as a function of aspect ratio w/l along x. A set of standard linear equations of four parameters are obtained and the deflection is expressed in terms of the four parameters by solving the equations using Cramer rules. The inconsistencies pointed out by previous authors are also reviewed. For actuators made of thick and short clamped film-substrate system, the in-plane shear deformation should not be omitted. The present calculation model can give a relatively simple and accurate prediction of deflection for thick and short specimens of aspect ratio w/l<10, which supports the results obtained by finite element modeling. - Highlights: → We model the deflection of a thick magnetostrictive film-substrate cantilever plate. → Total stress along z from magnetic field is not zero without external force. → Effect of in-plane shear strain in calculating deflection examined. → Analytical solution of deflection obtained by assuming a curvature function. → Shear strain for short cantilever film-substrate plate considered.

  13. Identification of an Actual Strain-Induced Effect on Fast Ion Conduction in a Thin-Film Electrolyte.

    Science.gov (United States)

    Ahn, Junsung; Jang, Ho Won; Ji, Hoil; Kim, Hyoungchul; Yoon, Kyung Joong; Son, Ji-Won; Kim, Byung-Kook; Lee, Hae-Weon; Lee, Jong-Ho

    2018-05-09

    Strain-induced fast ion conduction has been a research area of interest for nanoscale energy conversion and storage systems. However, because of significant discrepancies in the interpretation of strain effects, there remains a lack of understanding of how fast ionic transport can be achieved by strain effects and how strain can be controlled in a nanoscale system. In this study, we investigated strain effects on the ionic conductivity of Gd 0.2 Ce 0.8 O 1.9-δ (100) thin films under well controlled experimental conditions, in which errors due to the external environment could not intervene during the conductivity measurement. In order to avoid any interference from perpendicular-to-surface defects, such as grain boundaries, the ionic conductivity was measured in the out-of-plane direction by electrochemical impedance spectroscopy analysis. With varying film thickness, we found that a thicker film has a lower activation energy of ionic conduction. In addition, careful strain analysis using both reciprocal space mapping and strain mapping in transmission electron microscopy shows that a thicker film has a higher tensile strain than a thinner film. Furthermore, the tensile strain of thicker film was mostly developed near a grain boundary, which indicates that intrinsic strain is dominant rather than epitaxial or thermal strain during thin-film deposition and growth via the Volmer-Weber (island) growth mode.

  14. Coating thickness measuring device

    International Nuclear Information System (INIS)

    Joffe, B.B.; Sawyer, B.E.; Spongr, J.J.

    1984-01-01

    A device especially adapted for measuring the thickness of coatings on small, complexly-shaped parts, such as, for example, electronic connectors, electronic contacts, or the like. The device includes a source of beta radiation and a radiation detector whereby backscatter of the radiation from the coated part can be detected and the thickness of the coating ascertained. The radiation source and detector are positioned in overlying relationship to the coated part and a microscope is provided to accurately position the device with respect to the part. Means are provided to control the rate of descent of the radiation source and radiation detector from its suspended position to its operating position and the resulting impact it makes with the coated part to thereby promote uniformity of readings from operator to operator, and also to avoid excessive impact with the part, thereby improving accuracy of measurement and eliminating damage to the parts

  15. Thick melanoma in Tuscany.

    Science.gov (United States)

    Chiarugi, Alessandra; Nardini, Paolo; Borgognoni, Lorenzo; Brandani, Paola; Gerlini, Gianni; Rubegni, Pietro; Lamberti, Arianna; Salvini, Camilla; Lo Scocco, Giovanni; Cecchi, Roberto; Sirna, Riccardo; Lorenzi, Stefano; Gattai, Riccardo; Battistini, Silvio; Crocetti, Emanuele

    2017-03-14

    The epidemiologic trends of cutaneous melanoma are similar in several countries with a Western-type life style, where there is a progressive increasing incidence and a low but not decreasing mor- tality, or somewhere an increase too, especially in the older age groups. Also in Tuscany there is a steady rise in incidence with prevalence of in situ and invasive thin melanomas, with also an increase of thick melanomas. It is necessary to reduce the frequency of thick melanomas to reduce specific mortality. The objective of the current survey has been to compare, in the Tuscany population, by a case- case study, thin and thick melanoma cases, trying to find out those personal and tumour characteristics which may help to customize preventive interventions. RESULTS The results confirmed the age and the lower edu- cation level are associated with a later detection. The habit to perform skin self-examination is resulted protec- tive forward thick melanoma and also the diagnosis by a doctor. The elements emerging from the survey allow to hypothesize a group of subjects resulting at higher risk for a late diagnosis, aged over 50 and carrier of a fewer constitutional and environmental risk factors: few total and few atypical nevi, and lower sun exposure and burning. It is assumable that a part of people did not be reached from messages of prevention because does not recognize oneself in the categories of people at risk for skin cancers described in educational cam- paigns. If we want to obtain better results on diagnosis of skin melanoma we have to think a new strategy. At least to think over the educational messages discriminating people more at risk of incidence of melanoma from people more at risk to die from melanoma, and to renewed active involvement of the Gen- eral Practitioners .

  16. X-ray reciprocal space mapping of dislocation-mediated strain relaxation during InGaAs/GaAs(001) epitaxial growth

    International Nuclear Information System (INIS)

    Sasaki, Takuo; Ohshita, Yoshio; Kamiya, Itaru; Yamaguchi, Masafumi; Suzuki, Hidetoshi; Takahasi, Masamitu

    2011-01-01

    Dislocation-mediated strain relaxation during lattice-mismatched InGaAs/GaAs(001) heteroepitaxy was studied through in situ x-ray reciprocal space mapping (in situ RSM). At the synchrotron radiation facility SPring-8, a hybrid system of molecular beam epitaxy and x-ray diffractometry with a two-dimensional detector enabled us to perform in situ RSM at high-speed and high-resolution. Using this experimental setup, four results in terms of film properties were simultaneously extracted as functions of film thickness. These were the lattice constants, the diffraction broadenings along in-plane and out-of-plane directions, and the diffuse scattering. Based on correlations among these results, the strain relaxation processes were classified into four thickness ranges with different dislocation behavior. In addition, the existence of transition regimes between the thickness ranges was identified. Finally, the dominant dislocation behavior corresponding to each of the four thickness ranges and transition regimes was noted.

  17. Symmetry analysis of strain, electric and magnetic fields in the Bi2Se3-class of topological insulators

    DEFF Research Database (Denmark)

    Brems, Mathias Rosdahl; Paaske, Jens; Lunde, Anders Mathias

    2018-01-01

    velocity. The spin-momentum locking of strained Bi2Se3 is shown to be modified. Hence, strain control can be used to manipulate the spin degree of freedom via the spin–orbit coupling. We show that for a thin film of Bi2Se3 the SS band gap induced by coupling between the opposite surfaces changes opposite...... to the bulk band gap under strain. Tuning the SS band gap by strain, gives new possibilities for the experimental investigation of the thickness dependent gap and optimization of optical properties relevant for, e.g., photodetector and energy harvesting applications. We finally derive analytical expressions...... analytically the effects of strain on the electronic structure of Bi2Se3. For the most experimentally relevant surface termination we analytically derive the surface state (SS) spectrum, revealing an anisotropic Dirac cone with elliptical constant energy contours giving rise to a direction-dependent group...

  18. Full reflector thickness and isolation thickness on neutron transport

    International Nuclear Information System (INIS)

    Sakai, Tomohiro; Naito, Yoshitaka; Komuro, Yuichi.

    1988-08-01

    A method to determine ''full reflector thickness'' and ''isolation thickness'', which is utilized for criticality safety evaluation on nuclear fuel facilities, was proposed in this paper. Firstly, a calculation was tryed to obtain the two kinds of thicknesses from the result of criticality calculations for a specific case. Then, two simple equations which calculates the two kinds of thicknesses were made from the relation between reflector (or isolator) thickness and k eff , and one-group diffusion theory. Finally, we proposed a new method to determine the thicknesses. From the method we proposed, ''full reflector thickness'' and ''isolation thickness'' can be obtain using the equations and migration length of the reflector (or isolator) and infinite and effective multiplication factor of the fuel. (author)

  19. Wind-tunnel investigation of longitudinal and lateral-directional stability and control characteristics of a 0.237-scale model of a remotely piloted research vehicle with a thick, high-aspect-ratio supercritical wing

    Science.gov (United States)

    Byrdsong, T. A.; Brooks, C. W., Jr.

    1980-01-01

    A 0.237-scale model of a remotely piloted research vehicle equipped with a thick, high-aspect-ratio supercritical wing was tested in the Langley 8-foot transonic tunnel to provide experimental data for a prediction of the static stability and control characteristics of the research vehicle as well as to provide an estimate of vehicle flight characteristics for a computer simulation program used in the planning and execution of specific flight-research mission. Data were obtained at a Reynolds number of 16.5 x 10 to the 6th power per meter for Mach numbers up to 0.92. The results indicate regions of longitudinal instability; however, an adequate margin of longitudinal stability exists at a selected cruise condition. Satisfactory effectiveness of pitch, roll, and yaw control was also demonstrated.

  20. Rapid Measurement of Nanoparticle Thickness Profiles

    International Nuclear Information System (INIS)

    Katz-Boon, Hadas; Rossouw, Chris J.; Dwyer, Christian; Etheridge, Joanne

    2013-01-01

    A method to measure the thickness of a single-crystal nanoparticle in the direction parallel to the incident beam from annular dark field scanning transmission electron microscope (ADF-STEM) images is reported, providing a map of thickness versus position across the nanoparticle—a ‘thickness profile’ image. The method is rapid and hence suitable for surveying large numbers of nanoparticles. The method measures the intensity scattered to a characterised ADF detector and compares this to the incident beam intensity, to obtain a normalized ADF image. The normalised intensity is then converted to thickness via dynamical ADF image simulations. The method is accurate within 10% and the precision is dominated primarily by ‘shot noise’. Merits and limitations of this method are discussed. A method to calibrate the response function of the ADF detector without external equipment is also described, which is applicable to the entire range of gain and background settings. -- Highlights: ► A method is developed to convert ADF-STEM images to ‘thickness profile’ images. ► It is applicable in particles survey, facets determination and discrete tomography. ► A method to calibrate the response of the ADF detector is described. ► The response in analysed across a range of conditions. ► Dynamical ADF image simulations are presented, demonstrating intensity vs. thickness dependence.

  1. Maximizing Tensile Strain in Germanium Nanomembranes for Enhanced Optoelectronic Properties

    Science.gov (United States)

    Sanchez Perez, Jose Roberto

    Silicon, germanium, and their alloys, which provide the leading materials platform of microelectronics, are extremely inefficient light emitters because of their indirect fundamental energy band gap. This basic materials property has so far hindered the development of group-IV photonic-active devices, including light emitters and diode lasers, thereby significantly limiting our ability to integrate electronic and photonic functionalities at the chip level. Theoretical studies have predicted that tensile strain in Ge lowers the direct energy band gap relative to the indirect one, and that, with sufficient strain, Ge becomes direct-band gap, thus enabling facile interband light emission and the fabrication of Group IV lasers. It has, however, not been possible to impart sufficient strain to Ge to reach the direct-band gap goal, because bulk Ge fractures at much lower strains. Here it is shown that very thin sheets of Ge(001), called nanomembranes (NMs), can be used to overcome this materials limitation. Germanium nanomembranes (NMs) in the range of thicknesses from 20nm to 100nm were fabricated and then transferred and mounted to a flexible substrate [a polyimide (PI) sheet]. An apparatus was developed to stress the PI/NM combination and provide for in-situ Raman measurements of the strain as a function of applied stress. This arrangement allowed for the introduction of sufficient biaxial tensile strain (>1.7%) to transform Ge to a direct-band gap material, as determined by photoluminescence (PL) measurements and theory. Appropriate shifts in the emission spectrum and increases in PL intensities were observed. The advance in this work was nanomembrane fabrication technology; i.e., making thin enough Ge sheets to accept sufficiently high levels of strain without fracture. It was of interest to determine if the strain at which fracture ultimately does occur can be raised, by evaluating factors that initiate fracture. Attempts to assess the effect of free edges (enchant

  2. Strain Anomalies during an Earthquake Sequence in the South Iceland Seismic Zone

    Science.gov (United States)

    Arnadottir, T.; Haines, A. J.; Geirsson, H.; Hreinsdottir, S.

    2017-12-01

    The South Iceland Seismic Zone (SISZ) accommodates E-W translation due to oblique spreading between the North American/Hreppar microplate and Eurasian plate, in South Iceland. Strain is released in the SISZ during earthquake sequences that last days to years, at average intervals of 80-100 years. The SISZ is currently in the midst of an earthquake sequence that started with two M6.5 earthquakes in June 2000, and continued with two M6 earthquakes in May 2008. Estimates of geometric strain accumulation, and seismic strain release in these events indicate that they released at most only half of the strain accumulated since the last earthquake cycle in 1896-1912. Annual GPS campaigns and continuous measurements during 2001-2015 were used to calculate station velocities and strain rates from a new method using the vertical derivatives of horizontal stress (VDoHS). This new method allows higher resolution of strain rates than other (older) approaches, as the strain rates are estimated by integrating VDoHS rates obtained by inversion rather than differentiating interpolated GPS velocities. Estimating the strain rates for eight 1-2 year intervals indicates temporal and spatial variation of strain rates in the SISZ. In addition to earthquake faulting, the strain rates in the SISZ are influenced by anthropogenic signals due to geothermal exploitation, and magma movements in neighboring volcanoes - Hekla and Eyjafjallajökull. Subtle signals of post-seismic strain rate changes are seen following the June 2000 M6.5 main shocks, but interestingly, much larger strain rate variations are observed after the two May 2008 M6 main shocks. A prominent strain anomaly is evident in the epicentral area prior to the May 2008 earthquake sequence. The strain signal persists over at least 4 years in the epicentral area, leading up to the M6 main shocks. The strain is primarily extension in ESE-WNW direction (sub-parallel to the direction of plate spreading), but overall shear across the N

  3. Self-Poling of BiFeO3 Thick Films.

    Science.gov (United States)

    Khomyakova, Evgeniya; Sadl, Matej; Ursic, Hana; Daniels, John; Malic, Barbara; Bencan, Andreja; Damjanovic, Dragan; Rojac, Tadej

    2016-08-03

    Bismuth ferrite (BiFeO3) is difficult to pole because of the combination of its high coercive field and high electrical conductivity. This problem is particularly pronounced in thick films. The poling, however, must be performed to achieve a large macroscopic piezoelectric response. This study presents evidence of a prominent and reproducible self-poling effect in few-tens-of-micrometer-thick BiFeO3 films. Direct and converse piezoelectric measurements confirmed that the as-sintered BiFeO3 thick films yield d33 values of up to ∼20 pC/N. It was observed that a significant self-poling effect only appears in cases when the films are heated and cooled through the ferroelectric-paraelectric phase transition (Curie temperature TC ∼ 820 °C). These self-poled films exhibit a microstructure with randomly oriented columnar grains. The presence of a compressive strain gradient across the film thickness cooled from above the TC was experimentally confirmed and is suggested to be responsible for the self-poling effect. Finally, the macroscopic d33 response of the self-poled BiFeO3 film was characterized as a function of the driving-field frequency and amplitude.

  4. Radioactive thickness gauge (1962)

    International Nuclear Information System (INIS)

    Guizerix, J.

    1962-01-01

    The author describes a thickness gauge in which the scintillating crystal detector alternately 'sees' a radioactive source through the material which is to be measured and then a control source of the same material; the radiations are separated in time by an absorbing valve whose sections are alternately full and hollow. The currents corresponding to the two sources are separated beyond the photomultiplier tube by a detector synchronized with the rotation of the valve. The quotient of these two currents is then obtained with a standard recording potentiometer. It is found that the average value of the response which is in the form G = f(I 1 /I 2 ) is not affected by decay of the radioactive sources, and that it is little influenced by variations of high tension, temperature, or properties of the air in the source detector interval. The performance of the gauge is given. (author) [fr

  5. Disentangling The Thick Concept Argument

    DEFF Research Database (Denmark)

    Blomberg, Olle

    2007-01-01

    Critics argue that non-cognitivism cannot adequately account for the existence and nature of some thick moral concepts. They use the existence of thick concepts as a lever in an argument against non-cognitivism, here called the Thick Concept Argument (TCA). While TCA is frequently invoked...

  6. A strain-isolation design for stretchable electronics

    Science.gov (United States)

    Wu, Jian; Li, Ming; Chen, Wei-Qiu; Kim, Dae-Hyeong; Kim, Yun-Soung; Huang, Yong-Gang; Hwang, Keh-Chih; Kang, Zhan; Rogers, John A.

    2010-12-01

    Stretchable electronics represents a direction of recent development in next-generation semiconductor devices. Such systems have the potential to offer the performance of conventional wafer-based technologies, but they can be stretched like a rubber band, twisted like a rope, bent over a pencil, and folded like a piece of paper. Isolating the active devices from strains associated with such deformations is an important aspect of design. One strategy involves the shielding of the electronics from deformation of the substrate through insertion of a compliant adhesive layer. This paper establishes a simple, analytical model and validates the results by the finite element method. The results show that a relatively thick, compliant adhesive is effective to reduce the strain in the electronics, as is a relatively short film.

  7. HCV Drug Resistance Challenges in Japan: The Role of Pre-Existing Variants and Emerging Resistant Strains in Direct Acting Antiviral Therapy

    Directory of Open Access Journals (Sweden)

    Kazuaki Chayama

    2015-10-01

    Full Text Available Sustained virological response (SVR rates have increased dramatically following the approval of direct acting antiviral (DAA therapies. While individual DAAs have a low barrier to resistance, most patients can be successfully treated using DAA combination therapy. However, DAAs are vulnerable to drug resistance, and resistance-associated variants (RAVs may occur naturally prior to DAA therapy or may emerge following drug exposure. While most RAVs are quickly lost in the absence of DAAs, compensatory mutations may reinforce fitness. However, the presence of RAVs does not necessarily preclude successful treatment. Although developments in hepatitis C virus (HCV therapy in Asia have largely paralleled those in the United States, Japan’s July 2014 approval of asunaprevir plus daclatasvir combination therapy as the first all-oral interferon-free therapy was not repeated in the United States. Instead, two different combination therapies were approved: sofosbuvir/ledipasvir and paritaprevir/ritonavir/ombitasvir/dasabuvir. This divergence in treatment approaches may lead to differences in resistance challenges faced by Japan and the US. However, the recent approval of sofosbuvir plus ledipasvir in Japan and the recent submissions of petitions for approval of paritaprevir/ritonavir plus ombitasvir suggest a trend towards a new consensus on emerging DAA regimens.

  8. Bioaugmentation on decolorization of C.I. Direct Blue 71 by using genetically engineered strain Escherichia coli JM109 (pGEX-AZR)

    International Nuclear Information System (INIS)

    Jin Ruofei; Yang Hua; Zhang Aili; Wang Jing; Liu Guangfei

    2009-01-01

    The study showed that Escherichia coli JM109 (pGEX-AZR), the genetically engineered microorganism (GEM) with higher ability to decolorize azo dyes, bioaugmented successfully the dye wastewater bio-treatment systems to enhance C.I. Direct Blue 71 (DB 71) decolorization. The control and bioaugmented reactors failed at a around pH 5.0. However, the bioaugmented one succeeded at around pH 9.0, the influent DB 71 concentration was 150 mg/L, DB 71 concentration was decreased to 27.4 mg/L in 12 h. The 1-3% NaCl concentration of bioaugmented reactors had no definite influence on decolorization, DB 71 concentration was decreased to 12.6 mg/L in 12 h. GEM was added into anaerobic sequencing batch reactors (AnSBRs) to enhance DB 71 decolorization. Continuous operations of the control and bioaugmented AnSBRs showed that E. coli JM109 (pGEX-AZR) could bioaugment decolorization. The concentrations of activated sludge and GEM were still more than 2.80 g/L and 1.5 x 10 6 cells/mL, respectively, in the bioaugmented AnSBR. All the microbial communities changed indistinctively with time. The microbial community structures of the control AnSBR were similar to those of the bioaugmented one

  9. Bioaugmentation on decolorization of C.I. Direct Blue 71 by using genetically engineered strain Escherichia coli JM109 (pGEX-AZR)

    Energy Technology Data Exchange (ETDEWEB)

    Jin Ruofei; Yang Hua; Zhang Aili; Wang Jing [School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116023 (China); Liu Guangfei [School of Environmental and Biological Science and Technology, Dalian University of Technology, Dalian 116023 (China)], E-mail: guangfeiliu@yahoo.com.cn

    2009-04-30

    The study showed that Escherichia coli JM109 (pGEX-AZR), the genetically engineered microorganism (GEM) with higher ability to decolorize azo dyes, bioaugmented successfully the dye wastewater bio-treatment systems to enhance C.I. Direct Blue 71 (DB 71) decolorization. The control and bioaugmented reactors failed at a around pH 5.0. However, the bioaugmented one succeeded at around pH 9.0, the influent DB 71 concentration was 150 mg/L, DB 71 concentration was decreased to 27.4 mg/L in 12 h. The 1-3% NaCl concentration of bioaugmented reactors had no definite influence on decolorization, DB 71 concentration was decreased to 12.6 mg/L in 12 h. GEM was added into anaerobic sequencing batch reactors (AnSBRs) to enhance DB 71 decolorization. Continuous operations of the control and bioaugmented AnSBRs showed that E. coli JM109 (pGEX-AZR) could bioaugment decolorization. The concentrations of activated sludge and GEM were still more than 2.80 g/L and 1.5 x 10{sup 6} cells/mL, respectively, in the bioaugmented AnSBR. All the microbial communities changed indistinctively with time. The microbial community structures of the control AnSBR were similar to those of the bioaugmented one.

  10. METALLICITY GRADIENTS OF THICK DISK DWARF STARS

    Energy Technology Data Exchange (ETDEWEB)

    Carrell, Kenneth; Chen Yuqin; Zhao Gang, E-mail: carrell@nao.cas.cn [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China)

    2012-12-01

    We examine the metallicity distribution of the Galactic thick disk using F, G, and K dwarf stars selected from the Sloan Digital Sky Survey, Data Release 8. Using the large sample of dwarf stars with proper motions and spectroscopically determined stellar parameters, metallicity gradients in the radial direction for various heights above the Galactic plane and in the vertical direction for various radial distances from the Galaxy center have been found. In particular, we find a vertical metallicity gradient of -0.113 {+-} 0.010 (-0.125 {+-} 0.008) dex kpc{sup -1} using an isochrone (photometric) distance determination in the range 1 kpc <|Z| < 3 kpc, which is the vertical height range most consistent with the thick disk of our Galaxy. In the radial direction, we find metallicity gradients between +0.02 and +0.03 dex kpc{sup -1} for bins in the vertical direction between 1 kpc <|Z| < 3 kpc. Both of these results agree with similar values determined from other populations of stars, but this is the first time a radial metallicity gradient for the thick disk has been found at these vertical heights. We are also able to separate thin and thick disk stars based on kinematic and spatial probabilities in the vertical height range where there is significant overlap of these two populations. This should aid further studies of the metallicity gradients of the disk for vertical heights lower than those studied here but above the solar neighborhood. Metallicity gradients in the thin and thick disks are important probes into possible formation scenarios for our Galaxy and a consistent picture is beginning to emerge from results using large spectroscopic surveys, such as the ones presented here.

  11. Hydrogen production from microbial strains

    Science.gov (United States)

    Harwood, Caroline S; Rey, Federico E

    2012-09-18

    The present invention is directed to a method of screening microbe strains capable of generating hydrogen. This method involves inoculating one or more microbes in a sample containing cell culture medium to form an inoculated culture medium. The inoculated culture medium is then incubated under hydrogen producing conditions. Once incubating causes the inoculated culture medium to produce hydrogen, microbes in the culture medium are identified as candidate microbe strains capable of generating hydrogen. Methods of producing hydrogen using one or more of the microbial strains identified as well as the hydrogen producing strains themselves are also disclosed.

  12. Analysis of heterogeneities in strain and microstructure in aluminum alloy and magnesium processed by high-pressure torsion

    Energy Technology Data Exchange (ETDEWEB)

    Panda, Subrata, E-mail: subrata.panda@univ-lorraine.fr [Université de Lorraine, Laboratory of Excellence on Design of Alloy Metals for low-mass Structures (DAMAS), Ile du Saulcy, Metz F-57045 (France); Université de Lorraine, Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3 UMR 7239), Ile du Saulcy, Metz F-57045 (France); Toth, Laszlo S., E-mail: laszlo.toth@univ-lorraine.fr [Université de Lorraine, Laboratory of Excellence on Design of Alloy Metals for low-mass Structures (DAMAS), Ile du Saulcy, Metz F-57045 (France); Université de Lorraine, Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3 UMR 7239), Ile du Saulcy, Metz F-57045 (France); Fundenberger, Jean-Jacques, E-mail: jean-jacques.fundenberger@univ-lorraine.fr [Université de Lorraine, Laboratory of Excellence on Design of Alloy Metals for low-mass Structures (DAMAS), Ile du Saulcy, Metz F-57045 (France); Université de Lorraine, Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3 UMR 7239), Ile du Saulcy, Metz F-57045 (France); Perroud, Olivier, E-mail: olivier.perroud@univ-lorraine.fr [Université de Lorraine, Laboratory of Excellence on Design of Alloy Metals for low-mass Structures (DAMAS), Ile du Saulcy, Metz F-57045 (France); Université de Lorraine, Laboratoire d' Etude des Microstructures et de Mécanique des Matériaux (LEM3 UMR 7239), Ile du Saulcy, Metz F-57045 (France); and others

    2017-01-15

    Two distinct bulk light metals were opted to study the shear strain evolution and associated heterogeneities in texture/microstructure development during torsional straining by high pressure torsion (HPT): a face centered cubic Al alloy (A5086) and a hexagonal commercial purity Mg. Relatively thick disk samples - four times thicker than usually employed in HPT process - were processed to 180° and 270° rotations. With the help of X-ray tomography, the shear strain gradients were examined in the axial direction. The results showed strongly localized shear deformation in the middle plane of the disks in both materials. These gradients involved strong heterogeneities in texture, microstructure and associated hardness, in particular through the thickness direction at the periphery of the disk where the interplay between significant strain hardening and possible dynamic recrystallization could occur. - Highlights: •HPT processing was conducted on bulk specimens thicker than the usual thin-disks. •The Al alloy (A5086) and commercial purity magnesium samples were compared. •Distributions of strain and microhardness were evaluated in the radial and axial direction. •Plastic deformation is highly localized in the middle plane at outer edge in both materials. •Different DRX rates governed the differences in microstructure and hardening behavior.

  13. Strain-dependent magnetism and electrical conductivity of La1-xSrxCoO3

    International Nuclear Information System (INIS)

    Zeneli, Orkidia

    2011-01-01

    In this work, the effects of epitaxial strain and film thickness on the lattice structure, microstructure, magnetization and electrical conduction of La 1-x Sr x CoO 3 (LSCO) (x=0.18 and 0.30) thin films have been studied using thickness-dependent film series on several types of single-crystalline substrates. Alternatively, the direct effect of strain has been probed using a piezoelectric substrate. La 0.7 Sr 0.3 CoO 3 is a ferromagnetic metal, whereas La 0.82 Sr 0.18 CoO 3 is at the phase boundary between the ferromagnetic metal and an insulating spin glass phase. Epitaxial biaxial strain in La 1-x Sr x CoO 3 (x=0.18-0.3) films is known to reduce the ferromagnetic double exchange interactions. It has further been suggested for the control of the crystal field splitting of the Co ions which may be utilized to manipulate the spin state. The LSCO (x = 0.18 and 0.30) films have been grown by pulsed laser deposition (PLD) on substrates of LaAlO 3 , SrTiO 3 , (PbMg 1/3 Nb 2/3 O 3 ) 0.72 (PbTiO 3 ) 0.28 (PMN-PT) and (LaAlO 3 ) 0.3 (Sr 2 TaAlO 6 ) 0.7 (LSAT), which provide different strain states and, in the case of PMN-PT, a reversibly controllable strain. Thickness-dependent series of La 0.82 Sr 0.18 CoO 3 on SrTiO 3 and LaAlO 3 as well as of La 0.7 Sr 0.3 CoO 3 on LSAT have been studied. The lattice parameters of the epitaxially grown films were determined from X-ray diffraction measurements (Bragg-Brentano method and reciprocal space mapping). Large tensile strains of 2% can be achieved in thicker films of up to 100 nm. On the other hand, the films under larger tensile strain have cracks and reveal ordered superstructures in HRTEM images which are tentatively attributed to ordered oxygen vacancies. The Curie temperature and the magnetic moment of the x=0.18 films increases towards larger film thickness in qualitative agreement with the joined effects of strain relaxation and finite thickness on magnetic ordering. In order to separate the direct strain effect from the

  14. A structural strain method for low-cycle fatigue evaluation of welded components

    International Nuclear Information System (INIS)

    Dong, P.; Pei, X.; Xing, S.; Kim, M.H.

    2014-01-01

    In this paper, a new structural strain method is presented to extend the early structural stress based master S–N curve method to low cycle fatigue regime in which plastic deformation can be significant while an elastic core is still present. The method is formulated by taking advantage of elastically calculated mesh-insensitive structural stresses based on nodal forces available from finite element solutions. The structural strain definition is consistent with classical plate and shell theory in which a linear through-thickness deformation field is assumed a priori in both elastic or elastic–plastic regimes. With considerations of both yield and equilibrium conditions, the resulting structural strains are analytically solved if assuming elastic and perfectly plastic material behavior. The formulation can be readily extended to strain-hardening materials for which structural strains can be numerically calculated with ease. The method is shown effective in correlating low-cycle fatigue test data of various sources documented in the literature into a single narrow scatter band which is remarkable consistent with the scatter band of the existing master S–N curve adopted ASME B and PV Code since 2007. With this new method, some of the inconsistencies of the pseudo-elastic structural stress procedure in 2007 ASME Div 2 Code can now be eliminated, such as its use of Neuber's rule in approximating structural strain beyond yield. More importantly, both low cycle and high cycle fatigue behaviors can now be treated in a unified manner. The earlier mesh-insensitive structural stress based master S–N curve method can now be viewed as an application of the structural strain method in high cycle regime, in which structural strains are linearly related to traction-based structural stresses according to Hooke's law. In low-cycle regime, the structural strain method characterizes fatigue damage directly in terms of structural strains that satisfy linear through-thickness

  15. DNA-microarrays identification of Streptococcus mutans genes associated with biofilm thickness

    Directory of Open Access Journals (Sweden)

    Feldman Mark

    2008-12-01

    Full Text Available Abstract Background A biofilm is a complex community of microorganisms that develop on surfaces in diverse environments. The thickness of the biofilm plays a crucial role in the physiology of the immobilized bacteria. The most cariogenic bacteria, mutans streptococci, are common inhabitants of a dental biofilm community. In this study, DNA-microarray analysis was used to identify differentially expressed genes associated with the thickness of S. mutans biofilms. Results Comparative transcriptome analyses indicated that expression of 29 genes was differentially altered in 400- vs. 100-microns depth and 39 genes in 200- vs. 100-microns biofilms. Only 10 S. mutans genes showed differential expression in both 400- vs. 100-microns and 200- vs. 100-microns biofilms. All of these genes were upregulated. As sucrose is a predominant factor in oral biofilm development, its influence was evaluated on selected genes expression in the various depths of biofilms. The presence of sucrose did not noticeably change the regulation of these genes in 400- vs. 100-microns and/or 200- vs. 100-microns biofilms tested by real-time RT-PCR. Furthermore, we analyzed the expression profile of selected biofilm thickness associated genes in the luxS- mutant strain. The expression of those genes was not radically changed in the mutant strain compared to wild-type bacteria in planktonic condition. Only slight downregulation was recorded in SMU.2146c, SMU.574, SMU.609, and SMU.987 genes expression in luxS- bacteria in biofilm vs. planktonic environments. Conclusion These findings reveal genes associated with the thickness of biofilms of S. mutans. Expression of these genes is apparently not regulated directly by luxS and is not necessarily influenced by the presence of sucrose in the growth media.

  16. Lateral Interactions in Monolayer Thick Mercury Films

    Science.gov (United States)

    Kime, Yolanda Jan

    An understanding of lateral adatom-adatom interactions is often an important part of understanding electronic structure and adsorption energetics in monolayer thick films. In this dissertation I use angle-resolved photoemission and thermal desorption spectroscopies to explore the relationship between the adatom-adatom interaction and other characteristics of the adlayer, such as electronic structure, defects, or coexistent structural phases in the adlayer. Since Hg binds weakly to many substrates, the lateral interactions are often a major contribution to the dynamics of the overlayer. Hg adlayer systems are thus ideal for probing lateral interactions. The electronic structures of Hg adlayers on Ag(100), Cu(100), and Cu_3Au(100) are studied with angle-resolved ultraviolet photoemission. The Hg atomic 5d_{5/2} electronic band is observed to split into two levels following adsorption onto some surfaces. The energetic splitting of the Hg 5d_{5/2} level is found to be directly correlated to the adlayer homogeneous strain energy. The existence of the split off level also depends on the order or disorder of the Hg adlayer. The energetics of Hg adsorption on Cu(100) are probed using thermal desorption spectroscopy. Two different ordered adlayer structures are observed for Hg adsorption on Cu(100) at 200 K. Under some adsorption conditions and over a range of exposures, the two phases are seen to coexist on the surface prior to the thermal desorption process. A phase transition from the more dense to the less dense phase is observed to occur during the thermal desorption process. Inherent differences in defect densities are responsible for the observed differences between lateral interactions measured previously with equilibrium (atom beam scattering) and as measured by the non-equilibrium (thermal desorption) technique reported here. Theoretical and experimental evidence for an indirect through-metal interaction between adatoms is also discussed. Although through

  17. Thickness dependence of voltage-driven magnetization switching in FeCo/PI/piezoelectric actuator heterostructures

    Science.gov (United States)

    Cui, B. S.; Guo, X. B.; Wu, K.; Li, D.; Zuo, Y. L.; Xi, L.

    2016-03-01

    Strain mediated magnetization switching of ferromagnetic/substrate/piezoelectric actuator heterostructures has become a hot issue due to the advantage of low-power consumption. In this work, Fe65Co35 thin films were deposited on a flexible polyamides (PI) substrate, which has quite low Young’s module (~4 GPa for PI as compared to ~180 GPa for Si) and benefits from complete transfer of the strain from the piezoelectric actuator to magnetic thin films. A complete 90° transition of the magnetic easy axis was realized in 50 nm thick FeCo films under the voltage of 70 V, while a less than 90° rotation angle of the magnetic easy axis direction was observed in other samples, which was ascribed to the distribution of the anisotropy field and/or the orthogonal misalignment between stress induced anisotropy and original uniaxial anisotropy. A model considering two uniaxial anisotropies with orthogonal arrangement was used to quantitatively understand the observed results and the linear-like voltage dependent anisotropy field, especially for 10 nm FeCo films, in which the switching mechanism along the easy axis direction can be explained by the domain wall depinning model. It indicates that the magnetic domain-wall movement velocity may be controlled by strain through tuning the energy barrier of the pinning in heterostructures. Moreover, voltage-driven 90° magnetization switching with low-power consumption was achieved in this work.

  18. Thickness dependence of voltage-driven magnetization switching in FeCo/PI/piezoelectric actuator heterostructures

    International Nuclear Information System (INIS)

    Cui, B S; Guo, X B; Wu, K; Li, D; Zuo, Y L; Xi, L

    2016-01-01

    Strain mediated magnetization switching of ferromagnetic/substrate/piezoelectric actuator heterostructures has become a hot issue due to the advantage of low-power consumption. In this work, Fe 65 Co 35 thin films were deposited on a flexible polyamides (PI) substrate, which has quite low Young’s module (∼4 GPa for PI as compared to ∼180 GPa for Si) and benefits from complete transfer of the strain from the piezoelectric actuator to magnetic thin films. A complete 90° transition of the magnetic easy axis was realized in 50 nm thick FeCo films under the voltage of 70 V, while a less than 90° rotation angle of the magnetic easy axis direction was observed in other samples, which was ascribed to the distribution of the anisotropy field and/or the orthogonal misalignment between stress induced anisotropy and original uniaxial anisotropy. A model considering two uniaxial anisotropies with orthogonal arrangement was used to quantitatively understand the observed results and the linear-like voltage dependent anisotropy field, especially for 10 nm FeCo films, in which the switching mechanism along the easy axis direction can be explained by the domain wall depinning model. It indicates that the magnetic domain-wall movement velocity may be controlled by strain through tuning the energy barrier of the pinning in heterostructures. Moreover, voltage-driven 90° magnetization switching with low-power consumption was achieved in this work. (paper)

  19. Anisotropic strain relaxation in (Ba0.6Sr0.4)TiO3 epitaxial thin films

    Science.gov (United States)

    Simon, W. K.; Akdogan, E. K.; Safari, A.

    2005-05-01

    We have studied the evolution of anisotropic epitaxial strains in ⟨110⟩-oriented (Ba0.60Sr0.40)TiO3 paraelectric (m3m) thin films grown on orthorhombic (mm2) ⟨100⟩-oriented NdGaO3 by high-resolution x-ray diffractometry. All the six independent components of the three-dimensional strain tensor were measured in films with 25-1200-nm thickness, from which the principal stresses and strains were obtained. Pole figure analysis indicated that the epitaxial relations are [001]m3m‖[001]mm2 and [1¯10]m3m‖[010]mm2 in the plane of the film, and [110]m3m‖[100]mm2 along the growth direction. The dislocation system responsible for strain relief along [001] has been determined to be ∣b ∣(001)=3/4∣b∣. Strain relief along the [1¯10] direction, on the other hand, has been determined to be due to a coupled mechanism given by ∣b∣(1¯10)=∣b∣ and ∣b∣(1¯10)=√3 /4∣b∣. Critical thicknesses, as determined from nonlinear regression using the Matthews-Blakeslee equation, for misfit dislocation formation along [001] and [1¯10] direction were found to be 5 and 7 nm, respectively. The residual strain energy density was calculated as ˜2.9×106J/m3 at 25 nm, which was found to relax an order of magnitude by 200 nm. At 200 nm, the linear dislocation density along [001] and [1¯10] are ˜6.5×105 and ˜6×105cm-1, respectively. For films thicker than 600 nm, additional strain relief occurred through surface undulations, indicating that this secondary strain-relief mechanism is a volume effect that sets in upon cooling from the growth temperature.

  20. Nondestructive testing technology for measurement coatings thickness on material

    International Nuclear Information System (INIS)

    Yang Mingtai; Wu Lunqiang; Zhang Lianping

    2008-01-01

    The principle, applicability range, advantage and disadvantage of electromagnetic, eddy current method, β backscatter method and XRF methods for nondestructive testing coating thickness of material have been reviewed. The relevant apparatus and manufacturers have been summarized. And the application and developmental direction of manufacturers for nondestructive testing coatings thickness has been foreshowed. (authors)

  1. Contact problems of a rectangular block on an elastic layer of finite thickness: Part II: The thick layer

    NARCIS (Netherlands)

    Alblas, J.B.; Kuipers, M.

    1970-01-01

    We consider a layer of finite thickness loaded in plane strain by a stamp with a straight horizontal base, which is smooth and rigid. The stamp is pressed vertically into the layer and is slightly rotated by an external moment load subsequently. Two cases are considered successively: the lower side

  2. Strain transfer through film-substrate interface and surface curvature evolution during a tensile test

    Science.gov (United States)

    He, Wei; Han, Meidong; Goudeau, Philippe; Bourhis, Eric Le; Renault, Pierre-Olivier; Wang, Shibin; Li, Lin-an

    2018-03-01

    Uniaxial tensile tests on polyimide-supported thin metal films are performed to respectively study the macroscopic strain transfer through an interface and the surface curvature evolution. With a dual digital image correlation (DIC) system, the strains of the film and the substrate can be simultaneously measured in situ during the tensile test. For the true strains below 2% (far beyond the films' elastic limit), a complete longitudinal strain transfer is present irrespective of the film thickness, residual stresses and microstructure. By means of an optical surface profiler, the three-dimensional (3D) topography of film surface can be obtained during straining. As expected, the profile of the specimen center remains almost flat in the tensile direction. Nevertheless, a relatively significant curvature evolution (of the same order with the initial curvature induced by residual stresses) is observed along the transverse direction as a result of a Poisson's ratio mismatch between the film and the substrate. Furthermore, finite element method (FEM) has been performed to simulate the curvature evolution considering the geometric nonlinearity and the perfect strain transfer at the interface, which agrees well with the experimental results.

  3. Conduction band structure and electron mobility in uniaxially strained Si via externally applied strain in nanomembranes

    Energy Technology Data Exchange (ETDEWEB)

    Chen Feng [Xi' an Jiaotong University, Xi' an, Shaanxi 710049 (China); Euaruksakul, Chanan; Himpsel, F J; Lagally, Max G [University of Wisconsin-Madison, Madison, WI 53706 (United States); Liu Zheng; Liu Feng, E-mail: lagally@engr.wisc.edu [University of Utah, Salt Lake City, UT 84112 (United States)

    2011-08-17

    Strain changes the band structure of semiconductors. We use x-ray absorption spectroscopy to study the change in the density of conduction band (CB) states when silicon is uniaxially strained along the [1 0 0] and [1 1 0] directions. High stress can be applied to silicon nanomembranes, because their thinness allows high levels of strain without fracture. Strain-induced changes in both the sixfold degenerate {Delta} valleys and the eightfold degenerate L valleys are determined quantitatively. The uniaxial deformation potentials of both {Delta} and L valleys are directly extracted using a strain tensor appropriate to the boundary conditions, i.e., confinement in the plane in the direction orthogonal to the straining direction, which correspond to those of strained CMOS in commercial applications. The experimentally determined deformation potentials match the theoretical predictions well. We predict electron mobility enhancement created by strain-induced CB modifications.

  4. Self-heating forecasting for thick laminate specimens in fatigue

    Science.gov (United States)

    Lahuerta, F.; Westphal, T.; Nijssen, R. P. L.

    2014-12-01

    Thick laminate sections can be found from the tip to the root in most common wind turbine blade designs. Obtaining accurate and reliable design data for thick laminates is subject of investigations, which include experiments on thick laminate coupons. Due to the poor thermal conductivity properties of composites and the material self-heating that occurs during the fatigue loading, high temperature gradients may appear through the laminate thickness. In the case of thick laminates in high load regimes, the core temperature might influence the mechanical properties, leading to premature failures. In the present work a method to forecast the self-heating of thick laminates in fatigue loading is presented. The mechanical loading is related with the laminate self-heating, via the cyclic strain energy and the energy loss ratio. Based on this internal volumetric heat load a thermal model is built and solved to obtain the temperature distribution in the transient state. Based on experimental measurements of the energy loss factor for 10mm thick coupons, the method is described and the resulting predictions are compared with experimental surface temperature measurements on 10 and 30mm UD thick laminate specimens.

  5. Continuous thickness control of extruded pipes with assistance of microcomputers

    International Nuclear Information System (INIS)

    Breil, J.

    1983-06-01

    Because of economic and quality securing reasons a constant wall thickness of extruded pipes in circumference and extrusion direction is an important production aim. Therefore a microcomputer controlled system was developed, which controls die centering with electric motors. The control of wall thickness distribution; was realized with two conceptions: a dead time subjected control with a rotating on line wall thickness measuring instrument and an adaptive control with sensors in the pipe die. With a PI-algorithm excentricities of 30% of the wall thickness could be controlled below a trigger level of 2% within three dead times. (orig.) [de

  6. Static and dynamic through thickness lamina properties of thick laminates

    NARCIS (Netherlands)

    Lahuerta, F.; Nijssen, R.P.L.; Van der Meer, F.P.; Sluys, L.J.

    2015-01-01

    Thick laminates are increasingly present in large composites structures such as wind turbine blades. Different factors are suspected to be involved in the decreased static and dynamic performance of thick laminates. These include the effect of self-heating, the scaling effect, and the manufacturing

  7. Neutron Diffraction Residual Strain Tensor Measurements Within The Phase IA Weld Mock-up Plate P-5

    Energy Technology Data Exchange (ETDEWEB)

    Hubbard, Camden R [ORNL

    2011-09-01

    Oak Ridge National Laboratory (ORNL) has worked with NRC and EPRI to apply neutron and X-ray diffraction methods to characterize the residual stresses in a number of dissimilar metal weld mockups and samples. The design of the Phase IA specimens aimed to enable stress measurements by several methods and computational modeling of the weld residual stresses. The partial groove in the 304L stainless steel plate was filled with weld beads of Alloy 82. A summary of the weld conditions for each plate is provided in Table 1. The plates were constrained along the long edges during and after welding by bolts with spring-loaded washers attached to the 1-inch thick Al backing plate. The purpose was to avoid stress relief due to bending of the welded stainless steel plate. The neutron diffraction method was one of the methods selected by EPRI for non-destructive through thickness strain and stress measurement. Four different plates (P-3 to P-6) were studied by neutron diffraction strain mapping, representing four different welding conditions. Through thickness neutron diffraction strain mappings at NRSF2 for the four plates and associated strain-free d-zero specimens involved measurement along seven lines across the weld and at six to seven depths. The mountings of each plate for neutron diffraction measurements were such that the diffraction vector was parallel to each of the three primary orthogonal directions of the plate: two in-plane directions, longitudinal and transverse, and the direction normal to the plate (shown in left figure within Table 1). From the three orthogonal strains for each location, the residual stresses along the three plate directions were calculated. The principal axes of the strain and stress tensors, however, need not necessarily align with the plate coordinate system. To explore this, plate P-5 was selected for examination of the possibility that the principal axes of strain are not along the sample coordinate system axes. If adequate data could

  8. Increased endometrial thickness in women with hypertension.

    Science.gov (United States)

    Bornstein, J; Auslender, R; Goldstein, S; Kohan, R; Stolar, Z; Abramovici, H

    2000-09-01

    We noticed an increase in endometrial thickness in women with hypertension who were treated with a combination of medications, including beta-blockers. The purpose of this study was to examine whether the endometrium of hypertensive women is thicker than that of healthy women and to determine whether endometrial thickening in hypertensive women is directly related to the antihypertensive beta-blocker treatment. We compared 3 groups of postmenopausal patients as follows: (1) women with a history of essential hypertension treated with a combination of medications, including beta-blockers; (2) women with a history of hypertension treated with a combination of medications that did not include beta-blockers; and (3) healthy women without hypertension. All patients were interviewed and examined, blood tests were performed, and endometrial thickness in the anterior-posterior diameter was measured by vaginal ultrasonography. Among the exclusion criteria were diabetes or an abnormal fasting blood glucose level, obesity, hormonal medication or replacement hormonal therapy during the previous 6 months, and a history of hormonal disturbances, infertility, or polycystic ovary syndrome. Of 45 hypertensive women enrolled in the study, 22 were treated with a beta-blocker combination medication and 23 were treated with other antihypertensive medications. They were compared with 25 healthy women. There was no statistically significant difference in endometrial thickness between women treated with medications, including beta-blockers, and those who were treated with other hypotensive agents. Twenty percent of women with hypertension and none of the healthy women had endometrium >5 mm thick (P infinity). Twenty percent of hypertensive postmenopausal women were found to have increased endometrial thickness. However, we were unable to substantiate an association between the type of treatment administered, whether beta-blockers were included, and the increase in endometrial thickness.

  9. Observation of in-plane asymmetric strain relaxation during crystal growth and growth interruption in InGaAs/GaAs(001)

    International Nuclear Information System (INIS)

    Sasaki, Takuo; Shimomura, Kenichi; Kamiya, Itaru; Ohshita, Yoshio; Yamaguchi, Masafumi; Suzuki, Hidetoshi; Takahasi, Masamitu

    2012-01-01

    In-plane asymmetric strain relaxation in lattice-mismatched InGaAs/GaAs(001) heteroepitaxy is studied by in situ three-dimensional X-ray reciprocal space mapping. Repeating crystal growth and growth interruptions during measurements allows us to investigate whether the strain relaxation is limited at a certain thickness or saturated. We find that the degree of relaxation during growth interruption depends on both the film thickness and the in-plane directions. Significant lattice relaxation is observed in rapid relaxation regimes during interruption. This is a clear indication that relaxation is kinetically limited. In addition, relaxation along the [110] direction can saturate more readily than that along the [1-bar10] direction. We discuss this result in terms of the interaction between orthogonally aligned dislocations. (author)

  10. Loess Thickness Variations Across the Loess Plateau of China

    Science.gov (United States)

    Zhu, Yuanjun; Jia, Xiaoxu; Shao, Mingan

    2018-01-01

    The soil thickness is very important for investigating and modeling soil-water processes, especially on the Loess Plateau of China with its deep loess deposit and limited water resources. A digital elevation map (DEM) of the Loess Plateau and neighborhood analysis in ArcGIS software were used to generate a map of loess thickness, which was then validated by 162 observations across the plateau. The generated loess thickness map has a high resolution of 100 m × 100 m. The map indicates that loess is thick in the central part of the plateau and becomes gradually shallower in the southeast and northwest directions. The areas near mountains and river basins have the shallowest loess deposit. The mean loess thickness is the deepest in the zones with 400-600-mm precipitation and decreases gradually as precipitation varies beyond this range. Our validation indicates that the map just slightly overestimates loess thickness and is reliable. The loess thickness is mostly between 0 and 350 m in the Loess Plateau region. The calculated mean loess thickness is 105.7 m, with the calibrated value being 92.2 m over the plateau exclusive of the mountain areas. Our findings provide very basic data of loess thickness and demonstrate great progress in mapping the loess thickness distribution for the plateau, which are valuable for a better study of soil-water processes and for more accurate estimations of soil water, carbon, and solute reservoirs in the Loess Plateau of China.

  11. Optimum target thickness for polarimeters

    International Nuclear Information System (INIS)

    Sitnik, I.M.

    2003-01-01

    Polarimeters with thick targets are a tool to measure the proton polarization. But the question about the optimum target thickness is still the subject of discussion. An attempt to calculate the most common parameters concerning this problem, in a few GeV region, is made

  12. Möbius semiconductor nanostructures and deformation potential strain effects

    DEFF Research Database (Denmark)

    Lassen, Benny; Willatzen, Morten; Gravesen, Jens

    2011-01-01

    A discussion of Möbius nanostructures is presented with focus on (1) the accuracy of the approximate differential-geometry formalism by Gravesen and Willatzen and (2) to assess the influence of bending-induced strain on Schrödinger equation eigenstates in semiconductor Möbius structures....... The differential-geometry model assumed complete confinement of a quantum-mechanical particle to a zero-thickness Möbius structure where the shape was computed based on minimization of elastic bending energy only and imposing the relevant boundary conditions. In the latter work, while bending was accounted...... for in finding the shape of the Möbius structure it was, for simplicity, neglected altogether in determining the direct strain influence on electronic eigenstates. However, as is well-known, deformation-potential strain effects In many semiconductor materials can lead to important changes in not only the energy...

  13. Welding deformation analysis based on improved equivalent strain method to cover external constraint during cooling stage

    Directory of Open Access Journals (Sweden)

    Tae-Jun Kim

    2015-09-01

    Full Text Available In the present study, external restraints imposed normal to the plate during the cooling stage were determined to be effective for reduction of the angular distortion of butt-welded or fillet-welded plate. A welding analysis model under external force during the cooling stage was idealized as a prismatic member subjected to pure bending. The external restraint was represented by vertical force on both sides of the work piece and bending stress forms in the transverse direction. The additional bending stress distribution across the plate thickness was reflected in the improved inherent strain model, and a set of inherent strain charts with different levels of bending stress were newly calculated. From an elastic linear FE analysis using the inherent strain values taken from the chart and comparing them with those from a 3D thermal elasto-plastic FE analysis, welding deformation can be calculated.

  14. Residual stress measurements in thick structural weldments by means of neutron diffraction

    International Nuclear Information System (INIS)

    Ohms, C.; Youtsos, A.G.; Idsert, P. v.d.; Timke, T.

    2000-01-01

    Welding residual stresses in large structural components are a major concern with respect to their performance and lifetime. In large structures reasonable thermal stress relief treatment is usually impossible due to the component size. On the other hand, prediction of welding stresses by numerical modelling has not yet proven to be generally reliable, while the experimental determination of such stresses remains a demanding task. At the high flux reactor (HFR), Petten, a new residual stress diffractometer has been installed recently capable of handling of components up to 1000 kg - the large component neutron diffraction facility (LCNDF). It has facilitated residual stress measurements in two large welded components, of which results are presented here. The first component represents a bi-metallic weld in form of a pipe of 25 mm wall thickness. Three dimensional measurements of residual stress are discussed in detail. The second specimen is a 66 mm wall thickness austenitic steel nuclear piping weld. Results on relief of strain within the weld through post weld heat treatment (PWHT) are presented. Additionally results obtained earlier at former CRNL (CAN) on a section of a thick nuclear piping weld are presented in order to illustrate the variation in the reference lattice parameter trough the weld and the heat affected zone (HAZ). These results clearly show the necessity to determine the reference parameters for each location in all measurement directions by means of measurements in small coupons free of macro-stresses. (orig.)

  15. Symmetry analysis of strain, electric and magnetic fields in the Bi2Se3-class of topological insulators

    Science.gov (United States)

    Rosdahl Brems, Mathias; Paaske, Jens; Lunde, Anders Mathias; Willatzen, Morten

    2018-05-01

    Based on group theoretical arguments we derive the most general Hamiltonian for the Bi2Se3-class of materials including terms to third order in the wave vector, first order in electric and magnetic fields, first order in strain and first order in both strain and wave vector. We determine analytically the effects of strain on the electronic structure of Bi2Se3. For the most experimentally relevant surface termination we analytically derive the surface state (SS) spectrum, revealing an anisotropic Dirac cone with elliptical constant energy contours giving rise to a direction-dependent group velocity. The spin-momentum locking of strained Bi2Se3 is shown to be modified. Hence, strain control can be used to manipulate the spin degree of freedom via the spin–orbit coupling. We show that for a thin film of Bi2Se3 the SS band gap induced by coupling between the opposite surfaces changes opposite to the bulk band gap under strain. Tuning the SS band gap by strain, gives new possibilities for the experimental investigation of the thickness dependent gap and optimization of optical properties relevant for, e.g., photodetector and energy harvesting applications. We finally derive analytical expressions for the effective mass tensor of the Bi2Se3 class of materials as a function of strain and electric field.

  16. Magnetism and Raman Spectroscopy of Pristine and Hydrogenated TaSe2 Monolayer tuned by Tensile and Pure Shear Strain

    Science.gov (United States)

    Chowdhury, Sugata; Simpson, Jeffrey; Einstein, T. L.; Walker, Angela R. Hight

    2D-materials with controllable optical, electronic and magnetic properties are desirable for novel nanodevices. Here we studied these properties for both pristine and hydrogenated TaSe2 (TaSe2-H) monolayer (ML) in the framework of DFT using the PAW method. We considered uniaxial and biaxial tensile strain, as well as shear strain along the basal planes in the range between 1% and 16%. Previous theoretical works (e.g.) considered only symmetrical biaxial tensile. Pristine ML is ferromagnetic for uniaxial tensile strain along ◯ or ŷ. For tensile strain in ŷ, the calculated magnetic moments of the Ta atoms are twice those for the same strain in ◯. Under pure shear strain (expansion along ŷ and compression along ◯), a pristine ML is ferromagnetic, but becomes non-magnetic when the strain directions are interchanged. Due to carrier-mediated double-exchange, the pristine ML is ferromagnetic when the Se-Ta-Se bond angle is < 82° and the ML thickness is < 3.25Å. We find that all Raman-active phonon modes show obvious red-shifting due to bond elongation and the E2 modes degeneracy is lifted as strain increases. For a TaSe2-H ML, the same trends were observed. Results show the ability to tune the properties of 2D-materials.

  17. Strain fluctuations and elastic constants

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, M.; Rahman, A.

    1982-03-01

    It is shown that the elastic strain fluctuations are a direct measure of elastic compliances in a general anisotropic medium; depending on the ensemble in which the fluctuation is measured either the isothermal or the adiabatic compliances are obtained. These fluctuations can now be calculated in a constant enthalpy and pressure, and hence, constant entropy, ensemble due to recent develpments in the molecular dynamics techniques. A calculation for a Ni single crystal under uniform uniaxial 100 tensile or compressive load is presented as an illustration of the relationships derived between various strain fluctuations and the elastic modulii. The Born stability criteria and the behavior of strain fluctuations are shown to be related.

  18. Method of working thick beds

    Energy Technology Data Exchange (ETDEWEB)

    Giezynski, A; Bialasik, A; Krawiec, A; Wylenzek, A

    1981-12-30

    The patented method of working thick coal beds in layers consists of creating in the collapsed rocks or from the fill material a bearing rock plate by strengthening these rocks with a hardening composition made of wastes of raw material, resin and water injected into the rock through wells. The difference in the suggestion is that through boreholes drilled in the lower part of the rock roofing on a previously calculated network, a solution is regularly injected which consists of dust wastes obtained in electric filters during production of clinker from mineral raw material in a quantity of 60-70% by volume, wastes of open-hearth production in a quantity of 15-20% and natural sand in a quantity of 15-20%, and water in a quantity of 35-55% of the volume of mineral components. In the second variant, the injected compostion contains: wastes from production of clinker 55-57%, open-hearth wastes 20-23%, natural sand 12-14%, asbestos fine particles 7-8% and water 38-45% of the volume of mineral components. In addition, the difference is that in the boreholes drilled in the coal block directly under the roofing, a composition is injected which consists of natural sand and catalyst in the form of powder and individually supplied liquid synthetic resin in a quantity of 3-5% by weight in relation to the sand. The hardening time with normal temperature is 1-1.5 h, after which strength is reached of 80 kg-f/cm/sup 2/.

  19. Critical thickness of high structural quality SrTiO3 films grown on orthorhombic (101) DyScO3

    International Nuclear Information System (INIS)

    Biegalski, M. D.; Trolier-McKinstry, S.; Schlom, D. G.; Fong, D. D.; Eastman, J. A.; Fuoss, P. H.; Streiffer, S. K.; Heeg, T.; Schubert, J.; Tian, W.; Nelson, C. T.; Pan, X. Q.; Hawley, M. E.; Bernhagen, M.; Reiche, P.; Uecker, R.

    2008-01-01

    Strained epitaxial SrTiO 3 films were grown on orthorhombic (101) DyScO 3 substrates by reactive molecular-beam epitaxy. The epitaxy of this substrate/film combination is cube on cube with a pseudocubic out-of-plane (001) orientation. The strain state and structural perfection of films with thicknesses ranging from 50 to 1000 A were examined using x-ray scattering. The critical thickness at which misfit dislocations was introduced was between 350 and 500 A. These films have the narrowest rocking curves (full width at half maximum) ever reported for any heteroepitaxial oxide film (0.0018 deg.). Only a modest amount of relaxation is seen in films exceeding the critical thicknesses even after postdeposition annealing at 700 deg. C in 1 atm of oxygen. The dependence of strain relaxation on crystallographic direction is attributed to the anisotropy of the substrate. These SrTiO 3 films show structural quality more typical of semiconductors such as GaAs and silicon than perovskite materials; their structural relaxation behavior also shows similarity to that of compound semiconductor films

  20. Critical thickness of high structural quality SrTiO{sub 3} films grown on orthorhombic (101) DyScO{sub 3}.

    Energy Technology Data Exchange (ETDEWEB)

    Biegalski, M. D.; Trolier-McKinstry, S.; Nelson, C. T.; Schlom, D. G.; Fong, D. D.; Eastman, J. A.; Fuoss, P. H.; Streiffer, S. K.; Heeg, T.; Schubert, J.; Tian, W.; Pan, X. Q.; Hawley, M. E.; Bernhagen, M.; Reiche, P.; Uecker, R.; Pennsylvania State Univ.; Forschungszentrum Julich; Univ. Michigan; LANL; Max-Born-Strabe

    2008-12-01

    Strained epitaxial SrTiO{sub 3} films were grown on orthorhombic (101) DyScO{sub 3} substrates by reactive molecular-beam epitaxy. The epitaxy of this substrate/film combination is cube on cube with a pseudocubic out-of-plane (001) orientation. The strain state and structural perfection of films with thicknesses ranging from 50 to 1000 {angstrom} were examined using x-ray scattering. The critical thickness at which misfit dislocations was introduced was between 350 and 500 {angstrom}. These films have the narrowest rocking curves (full width at half maximum) ever reported for any heteroepitaxial oxide film (0.0018{sup o}). Only a modest amount of relaxation is seen in films exceeding the critical thicknesses even after postdeposition annealing at 700 C in 1 atm of oxygen. The dependence of strain relaxation on crystallographic direction is attributed to the anisotropy of the substrate. These SrTiO{sub 3} films show structural quality more typical of semiconductors such as GaAs and silicon than perovskite materials; their structural relaxation behavior also shows similarity to that of compound semiconductor films.

  1. Effect of misfit strains on fourth and sixth order permittivity in (Ba0.60,Sr0.40)TiO3 films on orthorhombic substrates

    Science.gov (United States)

    Simon, W. K.; Akdogan, E. K.; Safari, A.; Bellotti, J.

    2006-03-01

    The in-plane dielectric response of [110] oriented Ba0.60Sr0.40TiO3 epitaxial films grown on [100] NdGaO3 is used to determine the field induced polarization at 10GHz. The nonlinear polarization curve is used to determine the linear and nonlinear permittivity terms for the in-plane principal directions, [001] and [1¯10]. Studied films are in the thickness range of 75-1200nm, and clearly show the influences that drive tunability down with increasing residual strain. The variation of the tunability, along the [001] direction, proves to be less sensitive to residual strain then the [1¯10] direction, although [1¯10] is capable of greater tunability at low residual strains.

  2. Corneal thickness: measurement and implications.

    Science.gov (United States)

    Ehlers, Niels; Hjortdal, Jesper

    2004-03-01

    The thickness of the cornea was reported in more than 100-year-old textbooks on physiological optics (Helmholtz, Gullstrand). Physiological interest was revived in the 1950s by David Maurice, and over the next 50 years, this 'simple' biological parameter has been studied extensively. Several techniques for its measurement have been described and physiological and clinical significance have been studied. In this review, the different methods and techniques of measurement are briefly presented (optical, ultrasound). While the corneal thickness of many animals are the same over a considerable part of the surface, in the human cornea anterior and posterior curvature are not concentric giving rise to a problem of definition. Based on this the precision and accuracy of determining the central corneal thickness are discussed. Changes in corneal thickness reflects changes in function of the boundary layers, in particular the endothelial barrier. The absolute value of thickness is of importance for the estimation of IOP but also in diagnosis of corneal and systemic disorders. Finally it is discussed to what extent the thickness is a biometric parameter of significance, e.g. in the progression of myopia or in the development of retinal detachment.

  3. Cutting work in thick section cryomicrotomy.

    Science.gov (United States)

    Saubermann, A J; Riley, W D; Beeuwkes, R

    1977-09-01

    The forces during cryosectioning were measured using miniature strain gauges attached to a load cell fitted to the drive arm of the Porter-Blum MT-2 cryomicrotome. Work was calculated and the data normalized to a standard (1 mm X 1 mm X 0.5 micrometer) section. Thermal energy generated was also calculated. Five parameters were studied: cutting angle, thickness, temperature, hardness, and block shape. Force patterns could be divided into three major groups thought to represent cutting (Type I), large fracture planes greater than 10 micrometer in length (Type II), and small fracture planes less than 10 micrometer in length (Type III). Type I and Type II produced satisfactory sections. Work in cutting ranged from an average of 78.4 muJ to 568.8 muJ. Cutting angle and temperature had the greatest effect on sectioning. Heat generated would be sufficient to cause through-section melting for 0.5 micrometer thick sections assuming the worst possible case, namely that all heat went into the section without loss. Presence of a Type II pattern (large fracture pattern) is thought to be presumptive evidence against thawing.

  4. Strain-induced changes to the electronic structure of germanium

    KAUST Repository

    Tahini, H. A.

    2012-04-17

    Density functional theory calculations (DFT) are used to investigate the strain-induced changes to the electronic structure of biaxially strained (parallel to the (001), (110) and (111) planes) and uniaxially strained (along the [001], [110] and [111] directions) germanium (Ge). It is calculated that a moderate uniaxial strain parallel to the [111] direction can efficiently transform Ge to a direct bandgap material with a bandgap energy useful for technological applications. © 2012 IOP Publishing Ltd.

  5. Strain-induced changes to the electronic structure of germanium

    KAUST Repository

    Tahini, H. A.; Chroneos, Alexander I.; Grimes, Robin W.; Schwingenschlö gl, Udo; Dimoulas, Athanasios Dimoulas

    2012-01-01

    Density functional theory calculations (DFT) are used to investigate the strain-induced changes to the electronic structure of biaxially strained (parallel to the (001), (110) and (111) planes) and uniaxially strained (along the [001], [110] and [111] directions) germanium (Ge). It is calculated that a moderate uniaxial strain parallel to the [111] direction can efficiently transform Ge to a direct bandgap material with a bandgap energy useful for technological applications. © 2012 IOP Publishing Ltd.

  6. TOSGAGETM-8000A series X-ray thickness gauge

    International Nuclear Information System (INIS)

    Obara, Satoshi

    2009-01-01

    X-ray thickness gauges are widely used for online measurement of the thickness of plates in a steel roiling line. As the thickness of the steel has a direct effect on the yield rate of the rolling line, thickness gauge measurement data are necessary for accuracy and reliability. In recent years, there have also been increasing requirements for rapid delivery, flexible interface specifications, and low cost. To meet these market requirements. Toshiba has developed the TOSGAGE TM -8000A series X-ray thickness gauge, which is the first release of a new series of measuring instruments for rolling applications with a new interface and employing an industrial computer for data processing. (author)

  7. Tunable gaps and enhanced mobilities in strain-engineered silicane

    International Nuclear Information System (INIS)

    Restrepo, Oscar D.; Mishra, Rohan; Windl, Wolfgang; Goldberger, Joshua E.

    2014-01-01

    The recent demonstration of single-atom thick, sp 3 -hybridized group 14 analogues of graphene enables the creation of materials with electronic structures that are manipulated by the nature of the covalently bound substituents above and below the sheet. These analogues can be electronically derived from isolated (111) layers of the bulk diamond lattice. Here, we perform systematic Density Functional Theory calculations to understand how the band dispersions, effective masses, and band gaps change as the bulk silicon (111) layers are continuously separated from each other until they are electronically isolated, and then passivated with hydrogen. High-level calculations based on HSE06 hybrid functionals were performed on each endpoint to compare directly with experimental values. We find that the change in the electronic structure due to variations in the Si-H bond length, Si-Si-Si bond angle, and most significantly the Si-Si bond length can tune the nature of the band gap from indirect to direct with dramatic effects on the transport properties. First-principles calculations of the phonon-limited electron mobility predict a value of 464 cm 2 /Vs for relaxed indirect band gap Si-H monolayers at room temperature. However, for 1.6% tensile strain, the band gap becomes direct, which increases the mobility significantly (8 551 cm 2 /Vs at 4% tensile strain). In total, this analysis of Si-based monolayers suggests that strain can change the nature of the band gap from indirect to direct and increase the electron mobility more than 18-fold

  8. Triaxial MEMS accelerometer with screen printed PZT thick film

    DEFF Research Database (Denmark)

    Hindrichsen, Christian Carstensen; Almind, Ninia Sejersen; Brodersen, Simon Hedegaard

    2010-01-01

    . In this work integration of a screen printed piezoelectric PZT thick film with silicon MEMS technology is shown. A high bandwidth triaxial accelerometer has been designed, fabricated and characterized. The voltage sensitivity is 0.31 mV/g in the vertical direction, 0.062 mV/g in the horizontal direction...

  9. Dark field electron holography for strain measurement

    Energy Technology Data Exchange (ETDEWEB)

    Beche, A., E-mail: armand.beche@fei.com [CEA-Grenoble, INAC/SP2M/LEMMA, F-38054 Grenoble (France); Rouviere, J.L. [CEA-Grenoble, INAC/SP2M/LEMMA, F-38054 Grenoble (France); Barnes, J.P.; Cooper, D. [CEA-LETI, Minatec Campus, F-38054 Grenoble (France)

    2011-02-15

    Dark field electron holography is a new TEM-based technique for measuring strain with nanometer scale resolution. Here we present the procedure to align a transmission electron microscope and obtain dark field holograms as well as the theoretical background necessary to reconstruct strain maps from holograms. A series of experimental parameters such as biprism voltage, sample thickness, exposure time, tilt angle and choice of diffracted beam are then investigated on a silicon-germanium layer epitaxially embedded in a silicon matrix in order to obtain optimal dark field holograms over a large field of view with good spatial resolution and strain sensitivity. -- Research Highlights: {yields} Step by step explanation of the dark field electron holography technique. {yields} Presentation of the theoretical equations to obtain quantitative strain map. {yields} Description of experimental parameters influencing dark field holography results. {yields} Quantitative strain measurement on a SiGe layer embedded in a silicon matrix.

  10. Retinal sensitivity and choroidal thickness in high myopia.

    Science.gov (United States)

    Zaben, Ahmad; Zapata, Miguel Á; Garcia-Arumi, Jose

    2015-03-01

    To estimate the association between choroidal thickness in the macular area and retinal sensitivity in eyes with high myopia. This investigation was a transversal study of patients with high myopia, all of whom had their retinal sensitivity measured with macular integrity assessment microperimetry. The choroidal thicknesses in the macular area were then measured by optical coherence tomography, and statistical correlations between their functionality and the anatomical structuralism, as assessed by both types of measurements, were analyzed. Ninety-six eyes from 77 patients with high myopia were studied. The patients had a mean age ± standard deviation of 38.9 ± 13.2 years, with spherical equivalent values ranging from -6.00 diopter to -20.00 diopter (8.74 ± 2.73 diopter). The mean central choroidal thickness was 159.00 ± 50.57. The mean choroidal thickness was directly correlated with sensitivity (r = 0.306; P = 0.004) and visual acuity but indirectly correlated with the spherical equivalent values and patient age. The mean sensitivity was not significantly correlated with the macular foveal thickness (r = -0.174; P = 0.101) or with the overall macular thickness (r = 0.103; P = 0.334); furthermore, the mean sensitivity was significantly correlated with visual acuity (r = 0.431; P < 0.001) and the spherical equivalent values (r = -0.306; P = 0.003). Retinal sensitivity in highly myopic eyes is directly correlated with choroidal thickness and does not seem to be associated with retinal thickness. Thus, in patients with high myopia, accurate measurements of choroidal thickness may provide more accurate information about this pathologic condition because choroidal thickness correlates to a greater degree with the functional parameters, patient age, and spherical equivalent values.

  11. Relaxation of Thick-Walled Cylinders and Spheres

    DEFF Research Database (Denmark)

    Saabye Ottosen, N.

    1982-01-01

    Using the nonlinear creep law proposed by Soderberg, (1936) closed-form solutions are derived for the relaxation of incompressible thick-walled spheres and cylinders in plane strain. These solutions involve series expressions which, however, converge very quickly. By simply ignoring these series...... expressions, extremely simple approximate solutions are obtained. Despite their simplicity these approximations possess an accuracy that is superior to approximations currently in use. Finally, several physical aspects related to the relaxation of cylinders and spheres are discussed...

  12. Strain-dependent diffusion behavior of H within tungsten

    International Nuclear Information System (INIS)

    Ding, Wenyi; He, Haiyan; Liu, Changsong; Ding, Rui; Chen, Junling; Pan, Bicai

    2014-01-01

    The diffusion behaviors of H in tungsten, a promising material serving as the first wall facing the plasma in nuclear reactors, under either biaxial strain or isotropic strain are theoretically studied. We find that under the isotropic strain, an individual H atom may diffuse along all pathways, and under the biaxial strain, it preferably migrates along the direction perpendicular to the loaded strain. Moreover, in the case of either the isotropic or the biaxial strain, the loaded compressive strain weakens the diffusion of H, while the loaded tensile strain enhances the diffusion of H in bulk W.

  13. Strain-dependent diffusion behavior of H within tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Ding, Wenyi; He, Haiyan [Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Liu, Changsong [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, P.O. Box 1129, Hefei 230031 (China); Ding, Rui; Chen, Junling [Institute of Plasma Physics, Chinese Academy of Sciences, Hefei 230031 (China); Pan, Bicai, E-mail: bcpan@ustc.edu.cn [Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026 (China); Hefei National Laboratory for Physical Science at Microscale, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2014-06-15

    The diffusion behaviors of H in tungsten, a promising material serving as the first wall facing the plasma in nuclear reactors, under either biaxial strain or isotropic strain are theoretically studied. We find that under the isotropic strain, an individual H atom may diffuse along all pathways, and under the biaxial strain, it preferably migrates along the direction perpendicular to the loaded strain. Moreover, in the case of either the isotropic or the biaxial strain, the loaded compressive strain weakens the diffusion of H, while the loaded tensile strain enhances the diffusion of H in bulk W.

  14. Precision of hyaline cartilage thickness measurements

    Energy Technology Data Exchange (ETDEWEB)

    Jonsson, K.; Buckwalter, K.; Helvie, M.; Niklason, L.; Martel, W. (Univ. of Michigan Hospitals, Ann Arbor, MI (United States). Dept. of Radiology)

    1992-05-01

    Measurement of cartilage thickness in vivo is an important indicator of the status of a joint as the various degenerative and inflammatory arthritides directly affect the condition of the cartilage. In order to assess the precision of thickness measurements of hyaline articular cartilage, we undertook a pilot study using MR imaging, plain radiography, and ultrasonography (US). We measured the cartilage of the hip and knee joints in 10 persons (4 healthy volunteers and 6 patients). The joints in each patient were examined on two separate occasions using each modality. In the hips a swell as the knee joints, the most precise measuring method was plain film radiography. For radiographs of the knees obtained in the standing position, the coefficient of variation was 6.5%; in the hips this figure was 6.34%. US of the knees and MR imaging of the hips were the second best modalities in the measurement of cartilage thickness. In addition, MR imaging enabled the most complete visualization of the joint cartilage. (orig.).

  15. Structural integrity of whipping pipes following a postulated circumferential break - a contribution to determining strain levels acceptable under faulted conditions

    International Nuclear Information System (INIS)

    Charalambus, B.; Labes, M.

    1993-01-01

    It is postulated that a break of a thin-walled pipe does not cause a subsequent break in the pipe in the vicinity of a plastic hinge even when the wall is weakened by a 60 circumferential crack of a depth of 30% of the wall thickness on the tension side. This pipe behavior is the result of plastic buckling in the compression side and applies to pipes of diameter-to-thickness ratio larger than 20. For this type of pipe, the axial strains decrease with increasing diameter-to-thickness ratio in the tension side. As the pipe is only loaded in one direction, there is no cyclic behavior that can trigger a subsequent break. (orig.)

  16. Are galaxy discs optically thick?

    International Nuclear Information System (INIS)

    Disney, Michael; Davies, Jonathan; Phillipps, Steven

    1989-01-01

    We re-examine the classical optical evidence for the low optical depths traditionally assigned to spiral discs and argue that it is highly model-dependent and unconvincing. In particular, layered models with a physically thin but optically thick dust layer behave like optically thin discs. The opposite hypotheses, that such discs are optically thick is then examined in the light of modern evidence. We find it to be consistent with the near-infrared and IRAS observations, with the surface brightnesses, with the HI and CO column densities and with the Hα measurements. (author)

  17. Misfit strain relaxation in (Ba0.60Sr0.40)TiO3 epitaxial thin films on orthorhombic NdGaO3 substrates

    Science.gov (United States)

    Simon, W. K.; Akdogan, E. K.; Safari, A.

    2006-07-01

    Strain relaxation in (Ba0.60Sr0.40)TiO3 (BST) thin films on ⟨110⟩ orthorhombic NdGaO3 substrates is investigated by x-ray diffractometry. Pole figure analysis indicates a [010]BST∥[1¯10]NGO and [001]BST∥[001]NGO in-plane and [100]BST∥[100]NGO out-of-plane epitaxial relationship. The residual strains are relaxed at h ˜200nm, and for h >600nm, films are essentially strain free. Two independent dislocations mechanisms operate to relieve the anisotropic misfit strains along the principal directions. The critical thickness for misfit dislocation formation along [001] and [010] are 11 and 15nm, respectively. Stress analysis indicates deviation from linear elasticity for h <200. The films with 10

  18. [Endoscopic full-thickness resection].

    Science.gov (United States)

    Meier, B; Schmidt, A; Caca, K

    2016-08-01

    Conventional endoscopic resection techniques such as endoscopic mucosal resection (EMR) or endoscopic submucosal dissection (ESD) are powerful tools for the treatment of gastrointestinal (GI) neoplasms. However, those techniques are limited to the superficial layers of the GI wall (mucosa and submucosa). Lesions without lifting sign (usually arising from deeper layers) or lesions in difficult anatomic positions (appendix, diverticulum) are difficult - if not impossible - to resect using conventional techniques, due to the increased risk of complications. For larger lesions (>2 cm), ESD appears to be superior to the conventional techniques because of the en bloc resection, but the procedure is technically challenging, time consuming, and associated with complications even in experienced hands. Since the development of the over-the-scope clips (OTSC), complications like bleeding or perforation can be endoscopically better managed. In recent years, different endoscopic full-thickness resection techniques came to the focus of interventional endoscopy. Since September 2014, the full-thickness resection device (FTRD) has the CE marking in Europe for full-thickness resection in the lower GI tract. Technically the device is based on the OTSC system and combines OTSC application and snare polypectomy in one step. This study shows all full-thickness resection techniques currently available, but clearly focuses on the experience with the FTRD in the lower GI tract.

  19. Gammatography of thick lead vessels

    International Nuclear Information System (INIS)

    Raghunath, V.M.; Bhatnagar, P.K.; Sundaram, V.M.

    1979-01-01

    Radiography, scintillation and GM counting and dose measurements using ionisation chamber equipment are commonly used for detecting flaws/voids in materials. The first method is mostly used for steel vessels and to a lesser extent thin lead vessels also and is essentially qualitative. Dose measuring techniques are used for very thick and large lead vessels for which high strength radioactive sources are required, with its inherent handling problems. For vessels of intermediate thicknesses, it is ideal to use a small strength source and a GM or scintillation counter assembly. At the Reactor Research Centre, Kalpakkam, such a system was used for checking three lead vessels of thicknesses varying from 38mm to 65mm. The tolerances specified were +- 4% variation in lead thickness. The measurements also revealed the non concentricity of one vessel which had a thickness varying from 38mm to 44mm. The second vessel was patently non-concentric and the dimensional variation was truly reproduced in the measurements. A third vessel was fabricated with careful control of dimensions and the measurements exhibited good concentricity. Small deviations were observed, attributable to imperfect bondings between steel and lead. This technique has the following advantages: (a) weaker sources used result in less handling problems reducing the personnel exposures considerably; (b) the sensitivity of the instrument is quite good because of better statistics; (c) the time required for scanning a small vessel is more, but a judicious use of a scintillometer for initial fast scan will help in reducing the total scanning time; (d) this method can take advantage of the dimensional variations themselves to get the calibration and to estimate the deviations from specified tolerances. (auth.)

  20. Thick resist for MEMS processing

    Science.gov (United States)

    Brown, Joe; Hamel, Clifford

    2001-11-01

    The need for technical innovation is always present in today's economy. Microfabrication methods have evolved in support of the demand for smaller and faster integrated circuits with price performance improvements always in the scope of the manufacturing design engineer. The dispersion of processing technology spans well beyond IC fabrication today with batch fabrication and wafer scale processing lending advantages to MEMES applications from biotechnology to consumer electronics from oil exploration to aerospace. Today the demand for innovative processing techniques that enable technology is apparent where only a few years ago appeared too costly or not reliable. In high volume applications where yield and cost improvements are measured in fractions of a percent it is imperative to have process technologies that produce consistent results. Only a few years ago thick resist coatings were limited to thickness less than 20 microns. Factors such as uniformity, edge bead and multiple coatings made high volume production impossible. New developments in photoresist formulation combined with advanced coating equipment techniques that closely controls process parameters have enable thick photoresist coatings of 70 microns with acceptable uniformity and edge bead in one pass. Packaging of microelectronic and micromechanical devices is often a significant cost factor and a reliability issue for high volume low cost production. Technologies such as flip- chip assembly provide a solution for cost and reliability improvements over wire bond techniques. The processing for such technology demands dimensional control and presents a significant cost savings if it were compatible with mainstream technologies. Thick photoresist layers, with good sidewall control would allow wafer-bumping technologies to penetrate the barriers to yield and production where costs for technology are the overriding issue. Single pass processing is paramount to the manufacturability of packaging

  1. Strain localisation in mechanically layered rocks beneath detachment zones: insights from numerical modelling

    Directory of Open Access Journals (Sweden)

    L. Le Pourhiet

    2013-04-01

    Full Text Available We have designed a series of fully dynamic numerical simulations aimed at assessing how the orientation of mechanical layering in rocks controls the orientation of shear bands and the depth of penetration of strain in the footwall of detachment zones. Two parametric studies are presented. In the first one, the influence of stratification orientation on the occurrence and mode of strain localisation is tested by varying initial dip of inherited layering in the footwall with regard to the orientation of simple shear applied at the rigid boundary simulating a rigid hanging wall, all scaling and rheological parameter kept constant. It appears that when Mohr–Coulomb plasticity is being used, shear bands are found to localise only when the layering is being stretched. This corresponds to early deformational stages for inital layering dipping in the same direction as the shear is applied, and to later stages for intial layering dipping towards the opposite direction of shear. In all the cases, localisation of the strain after only γ=1 requires plastic yielding to be activated in the strong layer. The second parametric study shows that results are length-scale independent and that orientation of shear bands is not sensitive to the viscosity contrast or the strain rate. However, decreasing or increasing strain rate is shown to reduce the capacity of the shear zone to localise strain. In the later case, the strain pattern resembles a mylonitic band but the rheology is shown to be effectively linear. Based on the results, a conceptual model for strain localisation under detachment faults is presented. In the early stages, strain localisation occurs at slow rates by viscous shear instabilities but as the layered media is exhumed, the temperature drops and the strong layers start yielding plastically, forming shear bands and localising strain at the top of the shear zone. Once strain localisation has occured, the deformation in the shear band becomes

  2. Porosity of porcine bladder acellular matrix: impact of ACM thickness.

    Science.gov (United States)

    Farhat, Walid; Chen, Jun; Erdeljan, Petar; Shemtov, Oren; Courtman, David; Khoury, Antoine; Yeger, Herman

    2003-12-01

    The objectives of this study are to examine the porosity of bladder acellular matrix (ACM) using deionized (DI) water as the model fluid and dextran as the indicator macromolecule, and to correlate the porosity to the ACM thickness. Porcine urinary bladders from pigs weighing 20-50 kg were sequentially extracted in detergent containing solutions, and to modify the ACM thickness, stretched bladders were acellularized in the same manner. Luminal and abluminal ACM specimens were subjected to fixed static DI water pressure (10 cm); and water passing through the specimens was collected at specific time interval. While for the macromolecule porosity testing, the diffusion rate and direction of 10,000 MW fluoroescein-labeled dextrans across the ACM specimens mounted in Ussing's chambers were measured. Both experiments were repeated on the thin stretched ACM. In both ACM types, the fluid porosity in both directions did not decrease with increased test duration (3 h); in addition, the abluminal surface was more porous to fluid than the luminal surface. On the other hand, when comparing thin to thick ACM, the porosity in either direction was higher in the thick ACM. Macromolecule porosity, as measured by absorbance, was higher for the abluminal thick ACM than the luminal side, but this characteristic was reversed in the thin ACM. Comparing thin to thick ACM, the luminal side in the thin ACM was more porous to dextran than in the thick ACM, but this characteristic was reversed for the abluminal side. The porcine bladder ACM possesses directional porosity and acellularizing stretched urinary bladders may increase structural density and alter fluid and macromolecule porosity. Copyright 2003 Wiley Periodicals, Inc. J Biomed Mater Res 67A: 970-974, 2003

  3. Correlation between choroidal thickness and macular hole

    Directory of Open Access Journals (Sweden)

    Li-Li Wang

    2018-01-01

    Full Text Available AIM:To explore the correlation between choroidal thickness and macular hole, and to provide a theoretical basis for diagnosis and treatment of macular hole. METHODS: This study included 40 cases of monocular idiopathic macular hole patients who were treated in ophthalmology of our hospital from June 2015 to June 2016 and 40 cases of healthy people. Sicked eyes of idiopathic macular hole patients(40 eyeswere set as the Group A, uninjured side eyes(40 eyeswere set as the Group B, eyes of 40 cases of healthy people(40 normal eyeswere set as the Group C. Choroidal thickness of macular fovea, macular fovea 1mm, 3mm at 9 points, 4 directions in the upper, lower, nasal and temporal regions were measured through coherent optical tomography of enhanced deep imaging(enhanced depth image optical coherence tomography, EDI-OCT. They were recorded as SFCT, SCT1mm, SCT3mm, ICT1mm, ICT3mm, NCT1mm, NCT3mm, TCT1mm, TCT3mm, and correlation analysis between SFCT and age was analyzed. RESULTS: Average SFCT of Group A, B had no significant difference, data of the Group C was significantly higher than those of the Group A, B, there was statistical significance(P1mm, SCT3mm, ICT1mm, ICT3mm, NCT1mm, NCT3mm, TCT1mm, TCT3mm of the Group A, B had no significant difference(P>0.05, and choroidal thickness at each point of the Group C was significantly higher than that of Group A and B, there was statistical significance(Pr=-0.065, P=0.148; r=-0.057, P=0.658, SFCT of the Group C was negatively correlated with age(r=-0.343, P=0.041. CONCLUSION: The pathogenesis of idiopathic macular hole may be related to the sharp decrease of choroidal thickness, choroidal thickness of uninjured side eyes reduces more sharply than normal population and choroidal vascular metabolism reduces may be pathogenic.

  4. Critical thickness of atomically ordered III-V alloys

    Energy Technology Data Exchange (ETDEWEB)

    France, R. M.; McMahon, W. E.; Guthrey, H. L. [National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, Colorado 80401 (United States)

    2015-10-12

    The critical thickness model is modified with a general boundary energy that describes the change in bulk energy as a dislocation regularly alters the atomic structure of an ordered material. The model is evaluated for dislocations gliding through CuPt-ordered GaInP and GaInAs, where the boundary energy is negative and the boundary is stable. With ordering present, the critical thickness is significantly lowered and remains finite as the mismatch strain approaches zero. The reduction in critical thickness is most significant when the order parameter is greatest and the amount of misfit energy is low. The modified model is experimentally validated for low-misfit GaInP epilayers with varying order parameters using in situ wafer curvature and ex situ cathodoluminescence. With strong ordering, relaxation begins at a lower thickness and occurs at a greater rate, which is consistent with a lower critical thickness and increased glide force. Thus, atomic ordering is an important consideration for the stability of lattice-mismatched devices.

  5. Tattoo-Like Strain Gauges Based on Silicon Nano-Membranes

    Science.gov (United States)

    Lu, Nanshu

    2012-02-01

    This talk reports the in vivo measurement of tissue deformation through adhesive-free, conformable lamination of a tattoo-like elastic strain gauge consisted of piezoresistive silicon nano-membranes strategically integrated with tissue-like elastomeric substrates. The mechanical deformation in soft tissues cannot yet be directly quantified due to the lack of enabling tools. While stiff strain gauges for structural health monitoring have long existed, biological tissues are soft, curvilinear and highly deformable in contrast to civil or aerospace structures. An ultra-thin, ultra-soft, tattoo-like strain gauge that can conform to the convoluted surface of human body and stay attached during locomotion will be able to directly quantify tissue deformation without affecting the mechanical behavior of the tissue. While single crystalline silicon is known to have the highest gauge factor and best elastic response, it is intrinsically stiff and brittle. To achieve strain gauges with high compliance, high stretchability and reasonable sensitivity, single crystalline silicon nano-membranes will be transfer-printed onto polymeric support through carefully engineered stamps. The thickness and length of the Si strip will be chosen according to theoretical and numerical mechanics analysis which takes into account for the tradeoff between stretchability and sensitivity.

  6. Strain engineering on transmission carriers of monolayer phosphorene.

    Science.gov (United States)

    Zhang, Wei; Li, Feng; Hu, Junsong; Zhang, Ping; Yin, Jiuren; Tang, Xianqiong; Jiang, Yong; Wu, Bozhao; Ding, Yanhuai

    2017-11-22

    The effects of uniaxial strain on the structure, band gap and transmission carriers of monolayer phosphorene were investigated by first-principles calculations. The strain induced semiconductor-metal as well as direct-indirect transitions were studied in monolayer phosphorene. The position of CBM which belonged to indirect gap shifts along the direction of the applied strain. We have concluded the change rules of the carrier effective mass when plane strains are applied. In band structure, the sudden decrease of band gap or the new formation of CBM (VBM) causes the unexpected change in carrier effective mass. The effects of zigzag and armchair strain on the effective electron mass in phosphorene are different. The strain along zigzag direction has effects on the electrons effective mass along both zigzag and armchair direction. By contrast, armchair-direction strain seems to affect only on the free electron mass along zigzag direction. For the holes, the effective masses along zigzag direction are largely affected by plane strains while the effective mass along armchair direction exhibits independence in strain processing. The carrier density of monolayer phosphorene at 300 K is calculated about [Formula: see text] cm -2 , which is greatly influenced by the temperature and strain. Strain engineering is an efficient method to improve the carrier density in phosphorene.

  7. MOCVD growth of GaN layer on InN interlayer and relaxation of residual strain

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Keon-Hun; Park, Sung Hyun; Kim, Jong Hack; Kim, Nam Hyuk; Kim, Min Hwa [Department of Materials Science and Engineering, Seoul National University, Seoul, 151-742 (Korea, Republic of); Na, Hyunseok [Department of Advanced Materials Science and Engineering, Daejin University, Pocheon, 487-711 (Korea, Republic of); Yoon, Euijoon, E-mail: eyoon@snu.ac.k [Department of Materials Science and Engineering, Seoul National University, Seoul, 151-742 (Korea, Republic of); Department of Nano Science and Technology, Graduate School of Convergence Science and Technology, Seoul National University, Suwon 433-270 (Korea, Republic of)

    2010-09-01

    100 nm InN layer was grown on sapphire c-plane using a metal-organic chemical vapor deposition (MOCVD) system. Low temperature (LT) GaN layer was grown on InN layer to protect InN layer from direct exposure to hydrogen flow during high temperature (HT) GaN growth and/or abrupt decomposition. Subsequently, thick HT GaN layer (2.5 {mu}m thick) was grown at 1000 {sup o}C on LT GaN/InN/sapphire template. Microstructure of epilayer-substrate interface was investigated by transmission electron microscopy (TEM). From the high angle annular dark field TEM image, the growth of columnar structured LT GaN and HT GaN with good crystallinity was observed. Though thickness of InN interlayer is assumed to be about 100 nm based on growth rate, it was not clearly shown in TEM image due to the InN decomposition. The lattice parameters of GaN layers were measured by XRD measurement, which shows that InN interlayer reduces the compressive strain in GaN layer. The relaxation of compressive strain in GaN layer was also confirmed by photoluminescence (PL) measurement. As shown in the PL spectra, red shift of GaN band edge peak was observed, which indicates the reduction of compressive strain in GaN epilayer.

  8. Thickness effect on the microstructure, morphology and optoelectronic properties of ZnS films

    International Nuclear Information System (INIS)

    Prathap, P; Revathi, N; Subbaiah, Y P Venkata; Reddy, K T Ramakrishna

    2008-01-01

    Thin films of ZnS with thicknesses ranging from 100 to 600 nm have been deposited on glass substrates by close spaced thermal evaporation. All the films were grown at the same deposition conditions except the deposition time. The effect of thickness on the physical properties of ZnS films has been studied. The experimental results indicated that the thickness affects the structure, lattice strain, surface morphology and optoelectronic properties of ZnS films significantly. The films deposited at a thickness of 100 nm showed hexagonal structure whereas films of thickness 300 nm or more showed cubic structure. However, coexistence of both cubic and hexagonal structures was observed in the films of 200 nm thickness. The surface roughness of the films showed an increasing trend at higher thicknesses of the films. A blue-shift in the energy band gap along with an intense UV emission band was observed with the decrease of film thickness, which are ascribed to the quantum confinement effect. The behaviour of optical constants such as refractive index and extinction coefficient were analysed. The variation of refractive index and extinction coefficient with thickness was explained on the basis of the contribution from the packing density of the layers. The electrical resistivity as well as the activation energy were evaluated and found to decrease with the increase of film thickness. The thickness had a significant influence on the optical band gap as well as the luminescence intensity

  9. Measurement of the thickness of thin films by backscattered protons

    International Nuclear Information System (INIS)

    Samaniego, L.E.Q.

    1976-07-01

    The method of backscattered protons has been used to measure the thickness of thin films. A monoenergetic beam of protons is directed on the film to be measured and the backscattered protons are detected with a particle detector. The film thickness is calculated from the energy spectrum of the protons. In the case of films consisting of several layers of elements with well separated atomic masses, it is possible to separate the spectra of protons scattered from the different elements, permitting a measurement of the thicknesses of the different layers. The method consists of calculating the energy loss of the protons throughout their trajectory, from the point of incidence on the film to the final detection. Thicknesses were measured for the following film combinations: gold on mylar, chromium on mylar, gold on chromium on mylar, and pure mylar. (Author) [pt

  10. Accurate thickness measurement of graphene

    International Nuclear Information System (INIS)

    Shearer, Cameron J; Slattery, Ashley D; Stapleton, Andrew J; Shapter, Joseph G; Gibson, Christopher T

    2016-01-01

    Graphene has emerged as a material with a vast variety of applications. The electronic, optical and mechanical properties of graphene are strongly influenced by the number of layers present in a sample. As a result, the dimensional characterization of graphene films is crucial, especially with the continued development of new synthesis methods and applications. A number of techniques exist to determine the thickness of graphene films including optical contrast, Raman scattering and scanning probe microscopy techniques. Atomic force microscopy (AFM), in particular, is used extensively since it provides three-dimensional images that enable the measurement of the lateral dimensions of graphene films as well as the thickness, and by extension the number of layers present. However, in the literature AFM has proven to be inaccurate with a wide range of measured values for single layer graphene thickness reported (between 0.4 and 1.7 nm). This discrepancy has been attributed to tip-surface interactions, image feedback settings and surface chemistry. In this work, we use standard and carbon nanotube modified AFM probes and a relatively new AFM imaging mode known as PeakForce tapping mode to establish a protocol that will allow users to accurately determine the thickness of graphene films. In particular, the error in measuring the first layer is reduced from 0.1–1.3 nm to 0.1–0.3 nm. Furthermore, in the process we establish that the graphene-substrate adsorbate layer and imaging force, in particular the pressure the tip exerts on the surface, are crucial components in the accurate measurement of graphene using AFM. These findings can be applied to other 2D materials. (paper)

  11. Soliton models for thick branes

    International Nuclear Information System (INIS)

    Peyravi, Marzieh; Riazi, Nematollah; Lobo, Francisco S.N.

    2016-01-01

    In this work, we present new soliton solutions for thick branes in 4+1 dimensions. In particular, we consider brane models based on the sine-Gordon (SG), φ 4 and φ 6 scalar fields, which have broken Z 2 symmetry in some cases and are responsible for supporting and stabilizing the thick branes. The origin of the symmetry breaking in these models resides in the fact that the modified scalar field potential may have non-degenerate vacua. These vacua determine the cosmological constant on both sides of the brane. We also study the geodesic equations along the fifth dimension, in order to explore the particle motion in the neighborhood of the brane. Furthermore, we examine the stability of the thick branes, by determining the sign of the w 2 term in the expansion of the potential for the resulting Schroedinger-like equation, where w is the five-dimensional coordinate. It turns out that the φ 4 brane is stable, while there are unstable modes for certain ranges of the model parameters in the SG and φ 6 branes. (orig.)

  12. Soliton models for thick branes

    Energy Technology Data Exchange (ETDEWEB)

    Peyravi, Marzieh [Ferdowsi University of Mashhad, Department of Physics, School of Sciences, Mashhad (Iran, Islamic Republic of); Riazi, Nematollah [Shahid Beheshti University, Physics Department, Tehran (Iran, Islamic Republic of); Lobo, Francisco S.N. [Faculdade de Ciencias da Universidade de Lisboa, Instituto de Astrofisica e Ciencias do Espaco, Lisbon (Portugal)

    2016-05-15

    In this work, we present new soliton solutions for thick branes in 4+1 dimensions. In particular, we consider brane models based on the sine-Gordon (SG), φ{sup 4} and φ{sup 6} scalar fields, which have broken Z{sub 2} symmetry in some cases and are responsible for supporting and stabilizing the thick branes. The origin of the symmetry breaking in these models resides in the fact that the modified scalar field potential may have non-degenerate vacua. These vacua determine the cosmological constant on both sides of the brane. We also study the geodesic equations along the fifth dimension, in order to explore the particle motion in the neighborhood of the brane. Furthermore, we examine the stability of the thick branes, by determining the sign of the w{sup 2} term in the expansion of the potential for the resulting Schroedinger-like equation, where w is the five-dimensional coordinate. It turns out that the φ{sup 4} brane is stable, while there are unstable modes for certain ranges of the model parameters in the SG and φ{sup 6} branes. (orig.)

  13. Tailoring the strain in Si nano-structures for defect-free epitaxial Ge over growth.

    Science.gov (United States)

    Zaumseil, P; Yamamoto, Y; Schubert, M A; Capellini, G; Skibitzki, O; Zoellner, M H; Schroeder, T

    2015-09-04

    We investigate the structural properties and strain state of Ge nano-structures selectively grown on Si pillars of about 60 nm diameter with different SiGe buffer layers. A matrix of TEOS SiO2 surrounding the Si nano-pillars causes a tensile strain in the top part at the growth temperature of the buffer that reduces the misfit and supports defect-free initial growth. Elastic relaxation plays the dominant role in the further increase of the buffer thickness and subsequent Ge deposition. This method leads to Ge nanostructures on Si that are free from misfit dislocations and other structural defects, which is not the case for direct Ge deposition on these pillar structures. The Ge content of the SiGe buffer is thereby not a critical parameter; it may vary over a relatively wide range.

  14. Strain profile and polarization enhancement in Ba0.5Sr0.5TiO3 thin films

    International Nuclear Information System (INIS)

    Amir, F.Z.; Donner, W.; Aspelmeyer, M.; Noheda, B.; Xi, X.X.; Moss, S.C.

    2012-01-01

    The sensitivity of spontaneous polarization to epitaxial strain for both 10 and 50 nm thick Ba 0.5 Sr 0.5 TiO 3 (BSTO) ferroelectric thin films has been studied. Crystal truncation rod (CTR) profiles in the 00L directions at different wavelengths, and grazing incidence diffraction (GID) in the 0K0 direction on a single crystal have been recorded. Modeling of the CTR data gives a detailed picture of the strain and provides clear evidence of the film out-of-plane expansion at the surface, an increase of the polarization, as well as a contraction at the interface. GID data confirm the fitting of the CTR, showing an in-plane expansion of the BSTO film at the interface and a contraction at the surface. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  15. Axisymmetric vibrations of thick shells of revolution

    International Nuclear Information System (INIS)

    Suzuki, Katsuyoshi; Kosawada, Tadashi; Takahashi, Shin

    1983-01-01

    Axisymmetric shells of revolution are used for chemical plants, nuclear power plants, aircrafts, structures and so on, and the elucidation of their free vibration is important for the design. In this study, the axisymmetric vibration of a barrel-shaped shell was analyzed by the modified thick shell theory. The Lagrangian during one period of the vibration of a shell of revolution was determined, and from its stopping condition, the vibration equations and the boundary conditions were derived. The vibration equations were analyzed strictly by using the series solution. Moreover, the basic equations for the strain of a shell and others were based on those of Love. As the examples of numerical calculation, the natural frequency and vibration mode of the symmetrical shells of revolution fixed at both ends and supported at both ends were determined, and their characteristics were clarified. By comparing the results of this study with the results by thin shell theory, the effects of shearing deformation and rotary inertia on the natural frequency and vibration mode were clarified. The theoretical analysis and the numerical calculation are described. The effects of shearing deformation and rotary inertia on the natural frequency became larger in the higher order vibration. The vibration mode did not much change in both theories. (Kako, I.)

  16. Thick or Thin Ice Shell on Europa?

    Science.gov (United States)

    2007-01-01

    Scientists are all but certain that Europa has an ocean underneath its icy surface, but they do not know how thick this ice might be. This artist concept illustrates two possible cut-away views through Europa's ice shell. In both, heat escapes, possibly volcanically, from Europa's rocky mantle and is carried upward by buoyant oceanic currents. If the heat from below is intense and the ice shell is thin enough (left), the ice shell can directly melt, causing what are called 'chaos' on Europa, regions of what appear to be broken, rotated and tilted ice blocks. On the other hand, if the ice shell is sufficiently thick (right), the less intense interior heat will be transferred to the warmer ice at the bottom of the shell, and additional heat is generated by tidal squeezing of the warmer ice. This warmer ice will slowly rise, flowing as glaciers do on Earth, and the slow but steady motion may also disrupt the extremely cold, brittle ice at the surface. Europa is no larger than Earth's moon, and its internal heating stems from its eccentric orbit about Jupiter, seen in the distance. As tides raised by Jupiter in Europa's ocean rise and fall, they may cause cracking, additional heating and even venting of water vapor into the airless sky above Europa's icy surface. (Artwork by Michael Carroll.)

  17. Tensile strain mapping in flat germanium membranes

    International Nuclear Information System (INIS)

    Rhead, S. D.; Halpin, J. E.; Myronov, M.; Patchett, D. H.; Allred, P. S.; Wilson, N. R.; Leadley, D. R.; Shah, V. A.; Kachkanov, V.; Dolbnya, I. P.; Reparaz, J. S.; Sotomayor Torres, C. M.

    2014-01-01

    Scanning X-ray micro-diffraction has been used as a non-destructive probe of the local crystalline quality of a thin suspended germanium (Ge) membrane. A series of reciprocal space maps were obtained with ∼4 μm spatial resolution, from which detailed information on the strain distribution, thickness, and crystalline tilt of the membrane was obtained. We are able to detect a systematic strain variation across the membranes, but show that this is negligible in the context of using the membranes as platforms for further growth. In addition, we show evidence that the interface and surface quality is improved by suspending the Ge

  18. Tensile strain mapping in flat germanium membranes

    Energy Technology Data Exchange (ETDEWEB)

    Rhead, S. D., E-mail: S.Rhead@warwick.ac.uk; Halpin, J. E.; Myronov, M.; Patchett, D. H.; Allred, P. S.; Wilson, N. R.; Leadley, D. R. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Shah, V. A. [Department of Physics, University of Warwick, Coventry, CV4 7AL (United Kingdom); Department of Engineering, University of Warwick, Coventry, CV4 7AL (United Kingdom); Kachkanov, V.; Dolbnya, I. P. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire, OX11 0DE (United Kingdom); Reparaz, J. S. [ICN2 - Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain); Sotomayor Torres, C. M. [ICN2 - Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain)

    2014-04-28

    Scanning X-ray micro-diffraction has been used as a non-destructive probe of the local crystalline quality of a thin suspended germanium (Ge) membrane. A series of reciprocal space maps were obtained with ∼4 μm spatial resolution, from which detailed information on the strain distribution, thickness, and crystalline tilt of the membrane was obtained. We are able to detect a systematic strain variation across the membranes, but show that this is negligible in the context of using the membranes as platforms for further growth. In addition, we show evidence that the interface and surface quality is improved by suspending the Ge.

  19. The crustal thickness of Australia

    Science.gov (United States)

    Clitheroe, G.; Gudmundsson, O.; Kennett, B.L.N.

    2000-01-01

    We investigate the crustal structure of the Australian continent using the temporary broadband stations of the Skippy and Kimba projects and permanent broadband stations. We isolate near-receiver information, in the form of crustal P-to-S conversions, using the receiver function technique. Stacked receiver functions are inverted for S velocity structure using a Genetic Algorithm approach to Receiver Function Inversion (GARFI). From the resulting velocity models we are able to determine the Moho depth and to classify the width of the crust-mantle transition for 65 broadband stations. Using these results and 51 independent estimates of crustal thickness from refraction and reflection profiles, we present a new, improved, map of Moho depth for the Australian continent. The thinnest crust (25 km) occurs in the Archean Yilgarn Craton in Western Australia; the thickest crust (61 km) occurs in Proterozoic central Australia. The average crustal thickness is 38.8 km (standard deviation 6.2 km). Interpolation error estimates are made using kriging and fall into the range 2.5-7.0 km. We find generally good agreement between the depth to the seismologically defined Moho and xenolith-derived estimates of crustal thickness beneath northeastern Australia. However, beneath the Lachlan Fold Belt the estimates are not in agreement, and it is possible that the two techniques are mapping differing parts of a broad Moho transition zone. The Archean cratons of Western Australia appear to have remained largely stable since cratonization, reflected in only slight variation of Moho depth. The largely Proterozoic center of Australia shows relatively thicker crust overall as well as major Moho offsets. We see evidence of the margin of the contact between the Precambrian craton and the Tasman Orogen, referred to as the Tasman Line. Copyright 2000 by the American Geophysical Union.

  20. Effect of Thickness Stress in Stretch-Bending

    NARCIS (Netherlands)

    van den Boogaard, Antonius H.; Emmens, W.C.; Huetink, Han; Barlat, F; Moon, Y.H.; Lee, M.G.

    2010-01-01

    In any situation where a strip is pulled over a curved tool, locally a contact stress acts on the strip in thickness direction. This contact stress changes the stress state in the material, which will influence the deformation. One effect is that the yield stress in the plane of the strip is

  1. Measuring coating thicknesses on continuously moving material

    International Nuclear Information System (INIS)

    Holler, J.H.; Stanton, W.B.; Spongr, J.J.; Joffe, B.B.; Raffelsberger, P.W.; Tiebor, J.E.

    1982-01-01

    A method and apparatus using radiation techniques for measuring coating thicknesses on continuously moving strip material without altering a predetermined path along which it travels. A shuttle carrying a measuring probe having a radioactive isotope source and a detection device is provided for reciprocation along a preselected segment of the path of the strip. The shuttle and the probe are releasably engaged with the strip and carried thereby for synchronous movement therewith in the forward direction during a measurement cycle, and are disengaged from the strip when no measurement is being made, the movement of the shuttle then being controlled by an independent drive mechanism, shown as a belt drive, which reciprocates the shuttle along the rails. A belt drives it forward more slowly than the strip, which then engages the shuttle to pull it at strip speed, allowed by a pulley clutch. (author)

  2. On thick domain walls in general relativity

    Science.gov (United States)

    Goetz, Guenter; Noetzold, Dirk

    1989-01-01

    Planar scalar field configurations in general relativity differ considerably from those in flat space. It is shown that static domain walls of finite thickness in curved space-time do not possess a reflection symmetry. At infinity, the space-time tends to the Taub vacuum on one side of the wall and to the Minkowski vacuum (Rindler space-time) on the other. Massive test particles are always accelerated towards the Minkowski side, i.e., domain walls are attractive on the Taub side, but repulsive on the Minkowski side (Taub-vacuum cleaner). It is also proved that the pressure in all directions is always negative. Finally, a brief comment is made concerning the possibility of infinite, i.e., bigger than horizon size, domain walls in our universe. All of the results are independent of the form of the potential V(phi) greater than or equal to 0 of the scalar field phi.

  3. Evolution of microstructure, strain and physical properties in oxide nanocomposite films.

    Science.gov (United States)

    Chen, Aiping; Weigand, Marcus; Bi, Zhenxing; Zhang, Wenrui; Lü, Xuejie; Dowden, Paul; MacManus-Driscoll, Judith L; Wang, Haiyan; Jia, Quanxi

    2014-06-24

    We, using LSMO:ZnO nanocomposite films as a model system, have studied the effect of film thickness on the physical properties of nanocomposites. It shows that strain, microstructure, as well as magnetoresistance strongly rely on film thickness. The magnetotransport properties have been fitted by a modified parallel connection channel model, which is in agreement with the microstructure evolution as a function of film thickness in nanocomposite films on sapphire substrates. The strain analysis indicates that the variation of physical properties in nanocomposite films on LAO is dominated by strain effect. These results confirm the critical role of film thickness on microstructures, strain states, and functionalities. It further shows that one can use film thickness as a key parameter to design nanocomposites with optimum functionalities.

  4. Estimation of sand dune thickness using a vertical velocity profile

    International Nuclear Information System (INIS)

    Al-Shuhail, Abdullatif A.

    2004-01-01

    Previous field and mathematical studies have shown that sand dunes may have vertical velocity profiles (i.e. continuous increase of velocity with depth). Therefore, computing the dunes thickness using conventional seismic refraction methods that assume a vertically homogeneous layer will likely produce some errors. The purpose of this study is to quantify the effect of the vertical velocity profile in a sand dune on the process of thickness estimation using seismic refraction data. First, the time distance (T-X) data of the direct wave in the dune is calculated using a vertical velocity profile, V (z), derived from Hertz-Mindlin contact theory. Then the thickness is estimated from the calculated T-X data, intercept time and velocity of the refractor at the dune's base assuming a constant velocity in the dune. The error in the estimated thickness due to the constant-velocity assumption increases with increasing thickness and decreasing porosity of the dune. For sand dunes with porosities greater than 0.2 and thickness less than 200 meter, the error is less than 15%. (author)

  5. Strain hardening rate sensitivity and strain rate sensitivity in TWIP steels

    Energy Technology Data Exchange (ETDEWEB)

    Bintu, Alexandra [TEMA, Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 (Portugal); Vincze, Gabriela, E-mail: gvincze@ua.pt [TEMA, Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 (Portugal); Picu, Catalin R. [Department of Mechanical, Aerospace and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180 (United States); Lopes, Augusto B. [CICECO, Department of Materials and Ceramic Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 (Portugal); Grácio, Jose J. [TEMA, Department of Mechanical Engineering, University of Aveiro, Campus Universitário de Santiago, 3810-193 (Portugal); Barlat, Frederic [Materials Mechanics Laboratory, Graduate Institute of Ferrous Technology, Pohang University of Science and Technology, Pohang 790-784 (Korea, Republic of)

    2015-04-01

    TWIP steels are materials with very high strength and exceptional strain hardening capability, parameters leading to large energy absorption before failure. However, TWIP steels also exhibit reduced (often negative) strain rate sensitivity (SRS) which limits the post-necking deformation. In this study we demonstrate for an austenitic TWIP steel with 18% Mn a strong dependence of the twinning rate on the strain rate, which results in negative strain hardening rate sensitivity (SHRS). The instantaneous component of SHRS is large and negative, while its transient is close to zero. The SRS is observed to decrease with strain, becoming negative for larger strains. Direct observations of the strain rate dependence of the twinning rate are made using electron microscopy and electron backscatter diffraction, which substantiate the proposed mechanism for the observed negative SHRS.

  6. Strain hardening rate sensitivity and strain rate sensitivity in TWIP steels

    International Nuclear Information System (INIS)

    Bintu, Alexandra; Vincze, Gabriela; Picu, Catalin R.; Lopes, Augusto B.; Grácio, Jose J.; Barlat, Frederic

    2015-01-01

    TWIP steels are materials with very high strength and exceptional strain hardening capability, parameters leading to large energy absorption before failure. However, TWIP steels also exhibit reduced (often negative) strain rate sensitivity (SRS) which limits the post-necking deformation. In this study we demonstrate for an austenitic TWIP steel with 18% Mn a strong dependence of the twinning rate on the strain rate, which results in negative strain hardening rate sensitivity (SHRS). The instantaneous component of SHRS is large and negative, while its transient is close to zero. The SRS is observed to decrease with strain, becoming negative for larger strains. Direct observations of the strain rate dependence of the twinning rate are made using electron microscopy and electron backscatter diffraction, which substantiate the proposed mechanism for the observed negative SHRS

  7. Life Stress, Strain, and Deviance Across Schools: Testing the Contextual Version of General Strain Theory in China.

    Science.gov (United States)

    Zhang, Jinwu; Liu, Jianhong; Wang, Xin; Zou, Anquan

    2017-08-01

    General Strain Theory delineates different types of strain and intervening processes from strain to deviance and crime. In addition to explaining individual strain-crime relationship, a contextualized version of general strain theory, which is called the Macro General Strain Theory, has been used to analyze how aggregate variables influence aggregate and individual deviance and crime. Using a sample of 1,852 students (Level 1) nested in 52 schools (Level 2), the current study tests the Macro General Strain Theory using Chinese data. The results revealed that aggregate life stress and strain have influences on aggregate and individual deviance, and reinforce the individual stress-deviance association. The current study contributes by providing the first Macro General Strain Theory test based on Chinese data and offering empirical evidence for the multilevel intervening processes from strain to deviance. Limitations and future research directions are discussed.

  8. Strain-Modulated Epitaxy

    National Research Council Canada - National Science Library

    Brown, April

    1999-01-01

    Strain-Modulated Epitaxy (SME) is a novel approach, invented at Georgia Tech, to utilize subsurface stressors to control strain and therefore material properties and growth kinetics in the material above the stressors...

  9. Hamstring strain - aftercare

    Science.gov (United States)

    Pulled hamstring muscle; Sprain - hamstring ... There are 3 levels of hamstring strains: Grade 1 -- mild muscle strain or pull Grade 2 -- partial muscle tear Grade 3 -- complete muscle tear Recovery time depends ...

  10. New positron annihilation spectroscopy techniques for thick materials

    International Nuclear Information System (INIS)

    Selim, F.A.; Wells, D.P.; Harmon, J.F.; Kwofie, J.; Erikson, G.; Roney, T.

    2003-01-01

    The Idaho Accelerator Center (IAC) has developed new techniques for positron annihilation spectroscopy (PAS) by using highly penetrating γ-rays to create positrons inside the material via pair production. Two sources of γ-rays have been employed. Bremsstrahlung beams from small-electron linacs (6 MeV) were used to generate positrons inside the material to perform Doppler-broadening spectroscopy. A 2 MeV proton beam was used to obtain coincident γ-rays from 27 Al target and enable lifetime and Doppler-broadening spectroscopy. This technique successfully measured stress/strain in thick samples, and showed promise to extend PAS into a variety of applications

  11. Thickly Syndetical Sensitivity of Topological Dynamical System

    Directory of Open Access Journals (Sweden)

    Heng Liu

    2014-01-01

    Full Text Available Consider the surjective continuous map f:X→X, where X is a compact metric space. In this paper we give several stronger versions of sensitivity, such as thick sensitivity, syndetic sensitivity, thickly syndetic sensitivity, and strong sensitivity. We establish the following. (1 If (X,f is minimal and sensitive, then (X,f is syndetically sensitive. (2 Weak mixing implies thick sensitivity. (3 If (X,f is minimal and weakly mixing, then it is thickly syndetically sensitive. (4 If (X,f is a nonminimal M-system, then it is thickly syndetically sensitive. Devaney chaos implies thickly periodic sensitivity. (5 We give a syndetically sensitive system which is not thickly sensitive. (6 We give thickly syndetically sensitive examples but not cofinitely sensitive ones.

  12. three dimensional photoelastic investigations on thick rectangular

    African Journals Online (AJOL)

    user

    1983-09-01

    Sep 1, 1983 ... Thick rectangular plates are investigated by means of three-dimensional photoelasticity ... a thin plate theory and a higher order thick plate theory. 1. ..... number of fringes lest the accuracy of the results will be considerably.

  13. Non-contact radiation thickness gauge

    International Nuclear Information System (INIS)

    Tsujii, T.; Okino, T.

    1983-01-01

    A noncontact thickness gauge system for measuring the thickness of a material comprising a source of radiation, a detector for detecting the amount of radiation transmitted through the material which is a function of the absorptance and thickness of the material, a memory for storing the output signals of the detector and curve-defining parameters for a plurality of quadratic calibration curves which correspond to respective thickness ranges, and a processor for processing the signals and curve defining parameters to determine the thickness of the material. Measurements are made after precalibration to obtain calibration curves and these are stored in the memory, providing signals representative of a nominal thickness and an alloy compensation coefficient for the material. The calibration curve corresponding to a particular thickness range is selected and the curve compensated for drift; the material is inserted into the radiation path and the detector output signal processed with the compensated calibration curve to determine the thickness of the material. (author)

  14. Finite Difference Solution of Elastic-Plastic Thin Rotating Annular Disk with Exponentially Variable Thickness and Exponentially Variable Density

    Directory of Open Access Journals (Sweden)

    Sanjeev Sharma

    2013-01-01

    Full Text Available Elastic-plastic stresses, strains, and displacements have been obtained for a thin rotating annular disk with exponentially variable thickness and exponentially variable density with nonlinear strain hardening material by finite difference method using Von-Mises' yield criterion. Results have been computed numerically and depicted graphically. From the numerical results, it can be concluded that disk whose thickness decreases radially and density increases radially is on the safer side of design as compared to the disk with exponentially varying thickness and exponentially varying density as well as to flat disk.

  15. Biological assay of attenuated strain NADL-2 and virulent strain NADL-8 of porcine parvovirus.

    Science.gov (United States)

    Mengeling, W L; Pejsak, Z; Paul, P S

    1984-11-01

    Attenuated strain NADL-2 and virulent strain NADL-8 of porcine parvovirus (PPV) were titrated in vivo and in vitro under similar conditions to provide a better understanding of some of the factors involved in virulence of PPV in causing maternal reproductive failure of swine. Both strains cause fetal death when they are injected directly into fetal fluids, but only strain NADL-8 does so when administered to pregnant swine. The strains were tested for their hemagglutinating activity (HA), median cell culture infective dose (CCID50), median fetal infective dose (FID50), and median fetal lethal dose (FLD50). The FID50 and FLD50 were determined by injecting virus directly into the amniotic fluid of fetuses in utero at 44 +/- 2 days of gestation and collecting the fetuses 15 +/- 1 days later. Both strains had an HA titer of 64, suggesting that there is a similar number of virions in stock preparations. However, other measurements differed markedly. The CCID50, FID50, and FLD50 were 10(5.5), 10(3.5), and 10(0.5), respectively, for strain NADL-2, and 10(4.5), 10(7.7), and 10(6.3), respectively, for strain NADL-8. Collectively, the values indicate that more than 10,000 times as much strain NADL-2 would need to reach the conceptus transplacentally to establish infection. These observations may help to explain the different consequences of oronasal exposure of pregnant swine to these strains of PPV.

  16. Methodology to measure strains at high temperatures using electrical strain gages with free filaments

    International Nuclear Information System (INIS)

    Atanazio Filho, Nelson N.; Gomes, Paulo T. Vida; Scaldaferri, Denis H.B.; Silva, Luiz L. da; Rabello, Emerson G.; Mansur, Tanius R.

    2013-01-01

    An experimental methodology used for strains measuring at high temperatures is show in this work. In order to do the measurements, it was used electric strain gages with loose filaments attached to a stainless steel 304 beam with specific cements. The beam has triangular shape and a constant thickness, so the strain is the same along its length. Unless the beam surface be carefully prepared, the strain gage attachment is not efficient. The showed results are for temperatures ranging from 20 deg C to 300 deg C, but the experimental methodology could be used to measure strains at a temperature up to 900 deg C. Analytical calculations based on solid mechanics were used to verify the strain gage electrical installation and the measured strains. At a first moment, beam deformations as a temperature function were plotted. After that, beam deformations with different weighs were plotted as a temperature function. The results shown allowed concluding that the experimental methodology is trustable to measure strains at temperatures up to 300 deg C. (author)

  17. Autonomous Sea-Ice Thickness Survey

    Science.gov (United States)

    2016-06-01

    the conductivity of an infinitely thick slab of sea ice. Ice thickness, Hice, is then obtained by subtracting the height of the ...Thickness Survey of Sea Ice Runway” ERDC/CRREL SR-16-4 ii Abstract We conducted an autonomous survey of sea -ice thickness using the Polar rover Yeti...efficiency relative to manual surveys routinely con- ducted to assess the safety of roads and runways constructed on the sea ice. Yeti executed the

  18. In-situ strain monitoring in liquid containers of LNG transporting carriers

    Science.gov (United States)

    Oh, Min-Cheol; Seo, Jun-Kyu; Kim, Kyung-Jo; Lee, Sang-Min; Kim, Myung-Hyun

    2008-08-01

    Liquefied natural gas (LNG) transport carriers are exposed to a risk by the repeated bump in the LNG container during the vessel traveling over the wave in ocean. The liquid inside the container, especially when it was not fully contained, make a strong bump onto the insulation panel of the tank wall. The insulation panel consists of several layers of thick polyurethane foam (PUF) to maintain the LNG below the cryogenic temperature, -162°C. Due to the repeated shock on the PUF, a crack could be developed on the tank wall causing a tremendous disaster for LNG carriers. To prevent the accidental crack on the tank, a continuous monitoring of the strain imposed on the PUF is recommended. In this work, a fiber-optic Bragg grating was imbedded inside the PUF for monitoring the strain parallel to the impact direction. The optical fiber sensor with a small diameter of 125 μm was suitable to be inserted in the PUF through a small hole drilled after the PUF was cured. In-situ monitoring of the strain producing the change of Bragg reflection wavelength, a high speed wavelength interrogation method was employed by using an arrayed waveguide grating. By dropping a heavy mass on the PUF, we measured the strain imposed on the insulation panel.

  19. doped ZnO thick film resistors

    Indian Academy of Sciences (India)

    The characterization and ethanol gas sensing properties of pure and doped ZnO thick films were investigated. Thick films of pure zinc oxide were prepared by the screen printing technique. Pure zinc oxide was almost insensitive to ethanol. Thick films of Al2O3 (1 wt%) doped ZnO were observed to be highly sensitive to ...

  20. Macular thickness and volume in the elderly

    DEFF Research Database (Denmark)

    Subhi, Yousif; Forshaw, Thomas; Sørensen, Torben Lykke

    2016-01-01

    manifests in the macula of the elderly focusing on clinical relevant measures that are thicknesses and volumes of different macular areas. Ageing seems to increase center point foveal thickness. Ageing does not seem to change the center subfield thickness significantly. Ageing decreases the inner and outer...

  1. Strain relaxation of germanium-tin (GeSn) fins

    Science.gov (United States)

    Kang, Yuye; Huang, Yi-Chiau; Lee, Kwang Hong; Bao, Shuyu; Wang, Wei; Lei, Dian; Masudy-Panah, Saeid; Dong, Yuan; Wu, Ying; Xu, Shengqiang; Tan, Chuan Seng; Gong, Xiao; Yeo, Yee-Chia

    2018-02-01

    Strain relaxation of biaxially strained Ge1-xSnx layer when it is patterned into Ge1-xSnx fin structures is studied. Ge1-xSnx-on-insulator (GeSnOI) substrate was realized using a direct wafer bonding (DWB) technique and Ge1-xSnx fin structures were formed by electron beam lithography (EBL) patterning and dry etching. The strain in the Ge1-xSnx fins having fin widths (WFin) ranging from 1 μm down to 80 nm was characterized using micro-Raman spectroscopy. Raman measurements show that the strain relaxation increases with decreasing WFin. Finite element (FE) simulation shows that the strain component in the transverse direction relaxes with decreasing WFin, while the strain component along the fin direction remains unchanged. For various Ge1-xSnx fin widths, transverse strain relaxation was further extracted using micro-Raman spectroscopy, which is consistent with the simulation results.

  2. Buckling Optimization of Thick Stiffened Cylindrical Shell

    Directory of Open Access Journals (Sweden)

    Qasim Hassan Bader

    2016-03-01

    Full Text Available In this work the critical pressure due to buckling was calculated numerically by using ANSYS15 for both stiffened and un-stiffened cylinder for various locations and installing types , strengthening of the cylinder causes a more significant increase in buckling pressures than non reinforced cylinder . The optimum design of structure was done by using the ASYS15 program; in this step the number of design variables 21 DVs. These variables are Independent variables that directly affect. The design variables represented the thickness of the cylinder and( height and width of 10 stiffeners. State variables (SVs, these variables are dependent variables that change as a result of changing the DVs and are necessary to constrain the design. The objective function is the one variable in the optimization that needs to be minimized. In this case the state variable is critical pressure (CP and the objective function is the total (volume of the structure. The optimum weight of the structure with reasonable required conditions for multi types of structure was found. The result shows the best location of stiffener at internal side with circumferential direction. In this case the critical pressure can be increased about 18.6% and the total weight of the structure decreases to 15.8%.

  3. Spontaneous orientation-tuning driven by the strain variation in self-assembled ZnO-SrRuO3 heteroepitaxy

    International Nuclear Information System (INIS)

    Zhu, Yuanmin; Liu, Ruirui; Zhan, Qian; Chang, Wei Sea; Yu, Rong; Wei, Tzu-Chiao; He, Jr-Hau; Chu, Ying-Hao

    2015-01-01

    Heteroepitaxial ZnO and SrRuO 3 were grown on SrTiO 3 (111) substrates and formed a self-assembled wurtzite-perovskite nanostructure. Spontaneous orientation-tuning of the SrRuO 3 pillars was observed, with the growth direction changing from [111] SRO to [011] SRO as the film thickness increased, which is attributed to a misfit strain transition from the biaxial strain imposed by the SrTiO 3 substrate to the vertical strain provided by the ZnO matrix. The [011]-SrRuO 3 and [0001]-ZnO combination presents a favorable matching in the nanocomposite films, resulting in higher charge carrier mobility. This vertically integrated configuration and regulation on the crystallographic orientations are expected to be employed in designing multi-functional nanocomposite systems for applications in electronic devices

  4. Spontaneous orientation-tuning driven by the strain variation in self-assembled ZnO-SrRuO3 heteroepitaxy

    KAUST Repository

    Zhu, Yuanmin; Chang, Wei Sea; Yu, Rong; Liu, Ruirui; Wei, Tzu-Chiao; He, Jr-Hau; Chu, Ying-Hao; Zhan, Qian

    2015-01-01

    Heteroepitaxial ZnO and SrRuO3 were grown on SrTiO3 (111) substrates and formed a self-assembled wurtzite-perovskite nanostructure. Spontaneous orientation-tuning of the SrRuO3 pillars was observed, with the growth direction changing from [111]SRO to [011]SRO as the film thickness increased, which is attributed to a misfit strain transition from the biaxial strain imposed by the SrTiO3 substrate to the vertical strain provided by the ZnO matrix. The [011]-SrRuO3 and [0001]-ZnO combination presents a favorable matching in the nanocomposite films, resulting in higher charge carrier mobility. This vertically integrated configuration and regulation on the crystallographic orientations are expected to be employed in designing multi-functional nanocomposite systems for applications in electronic devices.

  5. Spontaneous orientation-tuning driven by the strain variation in self-assembled ZnO-SrRuO3 heteroepitaxy

    KAUST Repository

    Zhu, Yuanmin

    2015-11-09

    Heteroepitaxial ZnO and SrRuO3 were grown on SrTiO3 (111) substrates and formed a self-assembled wurtzite-perovskite nanostructure. Spontaneous orientation-tuning of the SrRuO3 pillars was observed, with the growth direction changing from [111]SRO to [011]SRO as the film thickness increased, which is attributed to a misfit strain transition from the biaxial strain imposed by the SrTiO3 substrate to the vertical strain provided by the ZnO matrix. The [011]-SrRuO3 and [0001]-ZnO combination presents a favorable matching in the nanocomposite films, resulting in higher charge carrier mobility. This vertically integrated configuration and regulation on the crystallographic orientations are expected to be employed in designing multi-functional nanocomposite systems for applications in electronic devices.

  6. Spontaneous orientation-tuning driven by the strain variation in self-assembled ZnO-SrRuO{sub 3} heteroepitaxy

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Yuanmin; Liu, Ruirui; Zhan, Qian, E-mail: qzhan@mater.ustb.edu.cn [Department of Material Physics and Chemistry, University of Science and Technology Beijing, Beijing 100083 (China); Chang, Wei Sea [School of Engineering, Monash University Malaysia, Bandar Sunway, Selangor 47500 (Malaysia); Yu, Rong [National Center for Electron Microscopy in Beijing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084 (China); Wei, Tzu-Chiao [Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan (China); He, Jr-Hau [Electrical Engineering Program, King Abdullah University of Science & Technology (Saudi Arabia); Chu, Ying-Hao [Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 30010, Taiwan (China); Institute of Physics, Academia Sinica, Taipei 105, Taiwan (China)

    2015-11-09

    Heteroepitaxial ZnO and SrRuO{sub 3} were grown on SrTiO{sub 3} (111) substrates and formed a self-assembled wurtzite-perovskite nanostructure. Spontaneous orientation-tuning of the SrRuO{sub 3} pillars was observed, with the growth direction changing from [111]{sub SRO} to [011]{sub SRO} as the film thickness increased, which is attributed to a misfit strain transition from the biaxial strain imposed by the SrTiO{sub 3} substrate to the vertical strain provided by the ZnO matrix. The [011]-SrRuO{sub 3} and [0001]-ZnO combination presents a favorable matching in the nanocomposite films, resulting in higher charge carrier mobility. This vertically integrated configuration and regulation on the crystallographic orientations are expected to be employed in designing multi-functional nanocomposite systems for applications in electronic devices.

  7. Thickness and roughness measurements of nano thin films by interference

    Directory of Open Access Journals (Sweden)

    A Sabzalipour

    2011-06-01

    Full Text Available In the standard optical interference fringes approach, by measuring shift of the interference fringes due to step edge of thin film on substrate, thickness of the layer has already been measured. In order to improve the measurement precision of this popular method, the interference fringes intensity curve was extracted and analyzed before and after the step preparation. By this method, one can measure a few nanometers films thickness. In addition, using the interference fringes intensity curve and its fluctuations, the roughness of surface is measured within a few nanometers accuracy. Comparison of our results with some direct methods of thickness and roughness measurements, i.e. using surface profilemeter and atomic force microscopy confirms the accuracy of the suggested improvements.

  8. Strain-enhanced optical absorbance of topological insulator films

    DEFF Research Database (Denmark)

    Brems, Mathias Rosdahl; Paaske, Jens; Lunde, Anders Mathias

    2018-01-01

    Topological insulator films are promising materials for optoelectronics due to a strong optical absorption and a thickness-dependent band gap of the topological surface states. They are superior candidates for photodetector applications in the THz-infrared spectrum, with a potential performance...... thickness, the surface-state band gap, and thereby the optical absorption, can be effectively tuned by the application of uniaxial strain epsilon(zz), leading to a divergent band-edge absorbance for epsilon(zz) greater than or similar to 6%. Shear strain breaks the crystal symmetry and leads...

  9. Intelligent processing for thick composites

    Science.gov (United States)

    Shin, Daniel Dong-Ok

    2000-10-01

    Manufacturing thick composite parts are associated with adverse curing conditions such as large in-plane temperature gradient and exotherms. The condition is further aggravated because the manufacturer's cycle and the existing cure control systems do not adequately counter such affects. In response, the forecast-based thermal control system is developed to have better cure control for thick composites. Accurate cure kinetic model is crucial for correctly identifying the amount of heat generated for composite process simulation. A new technique for identifying cure parameters for Hercules AS4/3502 prepreg is presented by normalizing the DSC data. The cure kinetics is based on an autocatalytic model for the proposed method, which uses dynamic and isothermal DSC data to determine its parameters. Existing models are also used to determine kinetic parameters but rendered inadequate because of the material's temperature dependent final degree of cure. The model predictions determined from the new technique showed good agreement to both isothermal and dynamic DSC data. The final degree of cure was also in good agreement with experimental data. A realistic cure simulation model including bleeder ply analysis and compaction is validated with Hercules AS4/3501-6 based laminates. The nonsymmetrical temperature distribution resulting from the presence of bleeder plies agreed well to the model prediction. Some of the discrepancies in the predicted compaction behavior were attributed to inaccurate viscosity and permeability models. The temperature prediction was quite good for the 3cm laminate. The validated process simulation model along with cure kinetics model for AS4/3502 prepreg were integrated into the thermal control system. The 3cm Hercules AS4/3501-6 and AS4/3502 laminate were fabricated. The resulting cure cycles satisfied all imposed requirements by minimizing exotherms and temperature gradient. Although the duration of the cure cycles increased, such phenomena was

  10. Pseudomagnetic fields and triaxial strain in graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen; Jauho, Antti-Pekka

    2016-01-01

    Pseudomagnetic fields, which can result from nonuniform strain distributions, have received much attention in graphene systems due to the possibility of mimicking real magnetic fields with magnitudes of greater than 100 T. We examine systems with such strains confined to finite regions ("pseudoma......Pseudomagnetic fields, which can result from nonuniform strain distributions, have received much attention in graphene systems due to the possibility of mimicking real magnetic fields with magnitudes of greater than 100 T. We examine systems with such strains confined to finite regions......-binding calculations of single pseudomagnetic dots in extended graphene sheets confirm these predictions, and are also used to study the effect of rotating the strain direction with respect to the underlying graphene lattice, and varying the size of the pseudomagnetic dot....

  11. Strain-controlled nonvolatile magnetization switching

    Science.gov (United States)

    Geprägs, S.; Brandlmaier, A.; Brandt, M. S.; Gross, R.; Goennenwein, S. T. B.

    2014-11-01

    We investigate different approaches towards a nonvolatile switching of the remanent magnetization in single-crystalline ferromagnets at room temperature via elastic strain using ferromagnetic thin film/piezoelectric actuator hybrids. The piezoelectric actuator induces a voltage-controllable strain along different crystalline directions of the ferromagnetic thin film, resulting in modifications of its magnetization by converse magnetoelastic effects. We quantify the magnetization changes in the hybrids via ferromagnetic resonance spectroscopy and superconducting quantum interference device magnetometry. These measurements demonstrate a significant strain-induced change of the magnetization, limited by an inefficient strain transfer and domain formation in the particular system studied. To overcome these obstacles, we address practicable engineering concepts and use a model to demonstrate that a strain-controlled, nonvolatile magnetization switching should be possible in appropriately engineered ferromagnetic/piezoelectric actuator hybrids.

  12. Thin dielectric film thickness determination by advanced transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diebold, A.C.; Foran, B.; Kisielowski, C.; Muller, D.; Pennycook, S.; Principe, E.; Stemmer, S.

    2003-09-01

    High Resolution Transmission Electron Microscopy (HR-TEM) has been used as the ultimate method of thickness measurement for thin films. The appearance of phase contrast interference patterns in HR-TEM images has long been confused as the appearance of a crystal lattice by non-specialists. Relatively easy to interpret crystal lattice images are now directly observed with the introduction of annular dark field detectors for scanning TEM (STEM). With the recent development of reliable lattice image processing software that creates crystal structure images from phase contrast data, HR-TEM can also provide crystal lattice images. The resolution of both methods was steadily improved reaching now into the sub Angstrom region. Improvements in electron lens and image analysis software are increasing the spatial resolution of both methods. Optimum resolution for STEM requires that the probe beam be highly localized. In STEM, beam localization is enhanced by selection of the correct aperture. When STEM measurement is done using a highly localized probe beam, HR-TEM and STEM measurement of the thickness of silicon oxynitride films agree within experimental error. In this paper, the optimum conditions for HR-TEM and STEM measurement are discussed along with a method for repeatable film thickness determination. The impact of sample thickness is also discussed. The key result in this paper is the proposal of a reproducible method for film thickness determination.

  13. Rat Strain Ontology: structured controlled vocabulary designed to facilitate access to strain data at RGD.

    Science.gov (United States)

    Nigam, Rajni; Munzenmaier, Diane H; Worthey, Elizabeth A; Dwinell, Melinda R; Shimoyama, Mary; Jacob, Howard J

    2013-11-22

    The Rat Genome Database (RGD) ( http://rgd.mcw.edu/) is the premier site for comprehensive data on the different strains of the laboratory rat (Rattus norvegicus). The strain data are collected from various publications, direct submissions from individual researchers, and rat providers worldwide. Rat strain, substrain designation and nomenclature follow the Guidelines for Nomenclature of Mouse and Rat Strains, instituted by the International Committee on Standardized Genetic Nomenclature for Mice. While symbols and names aid in identifying strains correctly, the flat nature of this information prohibits easy search and retrieval, as well as other data mining functions. In order to improve these functionalities, particularly in ontology-based tools, the Rat Strain Ontology (RS) was developed. The Rat Strain Ontology (RS) reflects the breeding history, parental background, and genetic manipulation of rat strains. This controlled vocabulary organizes strains by type: inbred, outbred, chromosome altered, congenic, mutant and so on. In addition, under the chromosome altered category, strains are organized by chromosome, and further by type of manipulations, such as mutant or congenic. This allows users to easily retrieve strains of interest with modifications in specific genomic regions. The ontology was developed using the Open Biological and Biomedical Ontology (OBO) file format, and is organized on the Directed Acyclic Graph (DAG) structure. Rat Strain Ontology IDs are included as part of the strain report (RS: ######). As rat researchers are often unaware of the number of substrains or altered strains within a breeding line, this vocabulary now provides an easy way to retrieve all substrains and accompanying information. Its usefulness is particularly evident in tools such as the PhenoMiner at RGD, where users can now easily retrieve phenotype measurement data for related strains, strains with similar backgrounds or those with similar introgressed regions. This

  14. Three-dimensional primate molar enamel thickness.

    Science.gov (United States)

    Olejniczak, Anthony J; Tafforeau, Paul; Feeney, Robin N M; Martin, Lawrence B

    2008-02-01

    Molar enamel thickness has played an important role in the taxonomic, phylogenetic, and dietary assessments of fossil primate teeth for nearly 90 years. Despite the frequency with which enamel thickness is discussed in paleoanthropological discourse, methods used to attain information about enamel thickness are destructive and record information from only a single plane of section. Such semidestructive planar methods limit sample sizes and ignore dimensional data that may be culled from the entire length of a tooth. In light of recently developed techniques to investigate enamel thickness in 3D and the frequent use of enamel thickness in dietary and phylogenetic interpretations of living and fossil primates, the study presented here aims to produce and make available to other researchers a database of 3D enamel thickness measurements of primate molars (n=182 molars). The 3D enamel thickness measurements reported here generally agree with 2D studies. Hominoids show a broad range of relative enamel thicknesses, and cercopithecoids have relatively thicker enamel than ceboids, which in turn have relatively thicker enamel than strepsirrhine primates, on average. Past studies performed using 2D sections appear to have accurately diagnosed the 3D relative enamel thickness condition in great apes and humans: Gorilla has the relatively thinnest enamel, Pan has relatively thinner enamel than Pongo, and Homo has the relatively thickest enamel. Although the data set presented here has some taxonomic gaps, it may serve as a useful reference for researchers investigating enamel thickness in fossil taxa and studies of primate gnathic biology.

  15. Estimation of creep life of thick welded joints using a simple model. Creep characteristics in thick welded joint and their improvements. 2

    International Nuclear Information System (INIS)

    Nakacho, Keiji; Yamazaki, Masayoshi

    2001-01-01

    The information of the creep behavior of the thick welded joint is very important to secure the safety of the elevated temperature vessels like the nuclear reactors. The creep behavior of the thick welded point is very complex, thence it is difficult to practice the experiment or the theoretical analysis. A simple accurate model for theoretical analysis was developed in the first study. The simple model is constructed of several one-dimensional finite elements which can analyze three-dimensional creep behavior under a assumption. The model is easy to treat, and needs only a little labor and computation time to simulate the creep curve and local strain of the thick welded joint. In this second study, the capability of the model is expanded to estimate the creep life of the thick welded joint. New model can easily estimate the time of the rupture of the thick welded joint. It is verified comparing the result with the experimental one that the model can accurately predict the creep life. The histories of the local strains to the rupture time may be observed in the simulation by using the model. The information will be useful to improve the creep characteristics of the joints. (author)

  16. Three dimensional strained semiconductors

    Science.gov (United States)

    Voss, Lars; Conway, Adam; Nikolic, Rebecca J.; Leao, Cedric Rocha; Shao, Qinghui

    2016-11-08

    In one embodiment, an apparatus includes a three dimensional structure comprising a semiconductor material, and at least one thin film in contact with at least one exterior surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the three dimensional structure. In another embodiment, a method includes forming a three dimensional structure comprising a semiconductor material, and depositing at least one thin film on at least one surface of the three dimensional structure for inducing a strain in the structure, the thin film being characterized as providing at least one of: an induced strain of at least 0.05%, and an induced strain in at least 5% of a volume of the structure.

  17. Mems-based pzt/pzt bimorph thick film vibration energy harvester

    DEFF Research Database (Denmark)

    Xu, Ruichao; Lei, Anders; Dahl-Petersen, Christian

    2011-01-01

    We describe fabrication and characterization of a significantly improved version of a MEMS-based PZT/PZT thick film bimorph vibration energy harvester with an integrated silicon proof mass. The main advantage of bimorph vibration energy harvesters is that strain energy is not lost in mechanical...... support materials since only PZT is strained, and thus it has a potential for significantly higher output power. An improved process scheme for the energy harvester resulted in a robust fabrication process with a record high fabrication yield of 98.6%. Moreover, the robust fabrication process allowed...... a high pressure treatment of the screen printed PZT thick films prior to sintering, improving the PZT thick film performance and harvester power output reaches 37.1 μW at 1 g....

  18. Strain measurement technique

    International Nuclear Information System (INIS)

    1987-01-01

    The 10 contributions are concerned with selected areas of application, such as strain measurements in wood, rubber/metal compounds, sets of strain measurements on buildings, reinforced concrete structures without gaps, pipes buried in the ground and measurements of pressure fluctuations. To increase the availability and safety of plant, stress analyses were made on gas turbine rotors with HT-DMS or capacitive HT-DMS (high temperature strain measurements). (DG) [de

  19. Direct investigation of (sub-) surface preparation artifacts in GaAs based materials by FIB sectioning

    Energy Technology Data Exchange (ETDEWEB)

    Belz, Jürgen; Beyer, Andreas; Torunski, Torsten; Stolz, Wolfgang; Volz, Kerstin

    2016-04-15

    The introduction of preparation artifacts is almost inevitable when producing samples for (scanning) transmission electron microscopy ((S)TEM). These artifacts can be divided in extrinsic artifacts like damage processes and intrinsic artifacts caused by the deviations from the volume strain state in thin elastically strained material systems. The reduction and estimation of those effects is of great importance for the quantitative analysis of (S)TEM images. Thus, optimized ion beam preparation conditions are investigated for high quality samples. Therefore, the surface topology is investigated directly with atomic force microscopy (AFM) on the actual TEM samples. Additionally, the sectioning of those samples by a focused ion beam (FIB) is used to investigate the damage depth profile directly in the TEM. The AFM measurements show good quantitative agreement of sample height modulation due to strain relaxation to finite elements simulations. Strong indications of (sub-) surface damage by ion beams are observed. Their influence on high angle annular dark field (HAADF) imaging is estimated with focus on thickness determination by absolute intensity methods. Data consolidation of AFM and TEM measurements reveals a 3.5 nm surface amorphization, negligible surface roughness on the scale of angstroms and a sub-surface damage profile in the range of up to 8.0 nm in crystalline gallium arsenide (GaAs) and GaAs-based ternary alloys. A correction scheme for thickness evaluation of absolute HAADF intensities is proposed and applied for GaAs based materials. - Highlights: • The damage by Ar-ion milling during TEM sample preparation is investigated directly. • After FIB sectioning damage and deep disorder of c-GaAs is seen in cross-section. • The influence of such disorder on conventional ADF measurements is estimated. • A correction for HAADF measurements is proposed with focus on thickness estimations.

  20. Strained Silicon Photonics

    Directory of Open Access Journals (Sweden)

    Ralf B. Wehrspohn

    2012-05-01

    Full Text Available A review of recent progress in the field of strained silicon photonics is presented. The application of strain to waveguide and photonic crystal structures can be used to alter the linear and nonlinear optical properties of these devices. Here, methods for the fabrication of strained devices are summarized and recent examples of linear and nonlinear optical devices are discussed. Furthermore, the relation between strain and the enhancement of the second order nonlinear susceptibility is investigated, which may enable the construction of optically active photonic devices made of silicon.

  1. Growth optimization for thick crack-free GaN layers on sapphire with HVPE

    Energy Technology Data Exchange (ETDEWEB)

    Richter, E.; Hennig, Ch.; Kissel, H.; Sonia, G.; Zeimer, U.; Weyers, M. [Ferdinand-Braun-Institut fuer Hoechstfrequenztechnik, 12489 Berlin (Germany)

    2005-05-01

    Conditions for optimized growth of thick GaN layers with crack-free surfaces by HVPE are reported. It was found that a 1:1 mixture of H{sub 2}/N{sub 2} as carrier gas leads to the lowest density of cracks in the surface. Crack formation also depends on the properties of the GaN/sapphire templates used. Best results have been obtained for 5 {mu}m thick GaN/sapphire templates grown by MOVPE with medium compressive strain {epsilon}{sub zz} of about 0.05%. But there is no simple dependence of the crack formation on the strain status of the starting layer indicating that the HVPE growth of GaN can itself introduce strong tensile strain. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  2. The influence of lay-up and thickness on composite impact damage and compression strength

    Science.gov (United States)

    Guynn, E. G.; Obrien, T. K.

    1985-01-01

    The effects of composite stacking sequence, thickness, and percentage of zero-degree plies on the size, shape, and distribution of delamination through the laminate thickness and on residual compression strength following impact were studied. Graphite/epoxy laminates were impacted with an 0.5 inch diameter aluminum sphere at a specific low or high velocity. Impact damage was measured nondestructively by ultrasonic C-scans and X-radiography and destructively by the deply technique, and compression strength tests were performed. It was found that differences in compression failure strain due to stacking sequence were small, while laminates with very low percentages of zero-degree plies had similar failure loads but higher failure strains than laminates with higher percentages of zero-degree plies. Failure strain did not correlate with planar impact damage area, and delaminations in impact regions were associated with matrix cracking.

  3. Analysis of Shrinkage on Thick Plate Part using Genetic Algorithm

    Directory of Open Access Journals (Sweden)

    Najihah S.N.

    2016-01-01

    Full Text Available Injection moulding is the most widely used processes in manufacturing plastic products. Since the quality of injection improves plastic parts are mostly influenced by process conditions, the method to determine the optimum process conditions becomes the key to improving the part quality. This paper presents a systematic methodology to analyse the shrinkage of the thick plate part during the injection moulding process. Genetic Algorithm (GA method was proposed to optimise the process parameters that would result in optimal solutions of optimisation goals. Using the GA, the shrinkage of the thick plate part was improved by 39.1% in parallel direction and 17.21% in the normal direction of melt flow.

  4. Graph Treewidth and Geometric Thickness Parameters

    OpenAIRE

    Dujmović, Vida; Wood, David R.

    2005-01-01

    Consider a drawing of a graph $G$ in the plane such that crossing edges are coloured differently. The minimum number of colours, taken over all drawings of $G$, is the classical graph parameter "thickness". By restricting the edges to be straight, we obtain the "geometric thickness". By further restricting the vertices to be in convex position, we obtain the "book thickness". This paper studies the relationship between these parameters and treewidth. Our first main result states that for grap...

  5. Localizing gravity on exotic thick 3-branes

    International Nuclear Information System (INIS)

    Castillo-Felisola, Oscar; Melfo, Alejandra; Pantoja, Nelson; Ramirez, Alba

    2004-01-01

    We consider localization of gravity on thick branes with a nontrivial structure. Double walls that generalize the thick Randall-Sundrum solution, and asymmetric walls that arise from a Z 2 symmetric scalar potential, are considered. We present a new asymmetric solution: a thick brane interpolating between two AdS 5 spacetimes with different cosmological constants, which can be derived from a 'fake supergravity' superpotential, and show that it is possible to confine gravity on such branes

  6. Does cement mantle thickness really matter?

    OpenAIRE

    Caruana, J.

    2008-01-01

    The thickness of the cement mantle around the femoral component of total hip replacements is a contributing factor to aseptic loosening and revision. Nevertheless, various designs of stems and surgical tooling lead to cement mantles of differing thicknesses. This thesis is concerned with variability in cement thickness around the Stanmore Hip, due to surgical approach, broach size and stem orientation, and its effects on stress and cracking in the cement. The extent to which cement mantle thi...

  7. Radiation transmission pipe thickness measurement system

    International Nuclear Information System (INIS)

    Higashi, Yasuhiko

    2010-01-01

    Fuji Electric Systems can be measured from the outer insulation of the transmission Characteristics and radiation detection equipment had been developed that can measure pipe wall thinning in plant and running, the recruitment of another three-beam calculation method by pipe thickness measurement system was developed to measure the thickness of the pipe side. This equipment has been possible to measure the thickness of the circumferential profile of the pipe attachment by adopting automatic rotation. (author)

  8. Strain profile and polarization enhancement in Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Amir, F.Z. [Physics Department, St John' s University, 8000 Utopia Pkwy, Jamaica, NY 11439 (United States); Donner, W. [Institute of Materials Science, Darmstadt University of Technology, Petersenstr. 23, 64287 Darmstadt (Germany); Aspelmeyer, M. [Vienna Center for Quantum Science and Technology, Faculty of Physics, University of Vienna, Boltzmanngasse 5, 1090 Vienna (Austria); Noheda, B. [Department of Chemical Physics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, 9747 AG Groningen (Netherlands); Xi, X.X. [Physics Department, College of Science and Technology, Temple University, 1900 N.13th Street, Philadelphia, PA 19122 (United States); Moss, S.C. [Department of Physics, University of Houston, 617 Science and Research Building 1, Houston, Texas 77204-5005 (United States)

    2012-11-15

    The sensitivity of spontaneous polarization to epitaxial strain for both 10 and 50 nm thick Ba{sub 0.5}Sr{sub 0.5}TiO{sub 3} (BSTO) ferroelectric thin films has been studied. Crystal truncation rod (CTR) profiles in the 00L directions at different wavelengths, and grazing incidence diffraction (GID) in the 0K0 direction on a single crystal have been recorded. Modeling of the CTR data gives a detailed picture of the strain and provides clear evidence of the film out-of-plane expansion at the surface, an increase of the polarization, as well as a contraction at the interface. GID data confirm the fitting of the CTR, showing an in-plane expansion of the BSTO film at the interface and a contraction at the surface. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Card controlled beta backscatter thickness measuring instrument

    International Nuclear Information System (INIS)

    Schlesinger, J.

    1978-01-01

    An improved beta backscatter instrument for the nondestructive measurement of the thickness of thin coatings on a substrate is described. Included therein is the utilization of a bank of memory stored data representative of isotope, substrate, coating material and thickness range characteristics in association with a control card having predetermined indicia thereon selectively representative of a particular isotope, substrate material, coating material and thickness range for conditioning electronic circuit means by memory stored data selected in accord with the predetermined indicia on a control card for converting backscattered beta particle counts into indicia of coating thickness

  10. Uncertainties in thick-target PIXE analysis

    International Nuclear Information System (INIS)

    Campbell, J.L.; Cookson, J.A.; Paul, H.

    1983-01-01

    Thick-target PIXE analysis insolves uncertainties arising from the calculation of thick-target X-ray production in addition to the usual PIXE uncertainties. The calculation demands knowledge of ionization cross-sections, stopping powers and photon attenuation coefficients. Information on these is reviewed critically and a computational method is used to estimate the uncertainties transmitted from this data base into results of thick-target PIXE analyses with reference to particular specimen types using beams of 2-3 MeV protons. A detailed assessment of the accuracy of thick-target PIXE is presented. (orig.)

  11. Cladding Attachment Over Thick Exterior Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States); Eng, P. [Building Science Corporation, Somerville, MA (United States); Lepage, R. [Building Science Corporation, Somerville, MA (United States)

    2014-01-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1. What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2. Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3. What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?

  12. Effect of Glass Thickness on Performance of Flat Plate Solar Collectors for Fruits Drying

    Directory of Open Access Journals (Sweden)

    Ramadhani Bakari

    2014-01-01

    Full Text Available This study aimed at investigating the effect of thickness of glazing material on the performance of flat plate solar collectors. Performance of solar collector is affected by glaze transmittance, absorptance, and reflectance which results into major heat losses in the system. Four solar collector models with different glass thicknesses were designed, constructed, and experimentally tested for their performances. Collectors were both oriented to northsouth direction and tilted to an angle of 10° with the ground toward north direction. The area of each collector model was 0.72 m2 with a depth of 0.15 m. Low iron (extra clear glass of thicknesses 3 mm, 4 mm, 5 mm, and 6 mm was used as glazing materials. As a control, all collector performances were analysed and compared using a glass of 5 mm thickness and then with glass of different thickness. The results showed that change in glass thickness results into variation in collector efficiency. Collector with 4 mm glass thick gave the best efficiency of 35.4% compared to 27.8% for 6 mm glass thick. However, the use of glass of 4 mm thick needs precautions in handling and during placement to the collector to avoid extra costs due to breakage.

  13. Microstructure and strain distribution in freestanding Si membrane strained by Si{sub x}N{sub y} deposition

    Energy Technology Data Exchange (ETDEWEB)

    Gao Hongye, E-mail: qgaohongye@msn.com [Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Ikeda, Ken-ichi; Hata, Satoshi; Nakashima, Hideharu [Faculty of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan); Wang Dong; Nakashima, Hiroshi [Art, Science and Technology Center for Cooperative Research, Kyushu University, 6-1 Kasuga-koen, Kasuga, Fukuoka 816-8580 (Japan)

    2010-09-25

    Research highlights: {yields} Strain is introduced by deposition of amorphous Si{sub x}N{sub y} to improve the carrier mobility for a relatively large-size freestanding semiconductor film, which can be used for the fabrication of relatively large devices such like a bipolar junction transistor. However, standard Raman spectroscopy and X-ray diffraction cannot provide sufficient lateral resolution to the strain in a relatively long (x {mu}m in length) and thin (x nm in thickness) freestanding semiconductor film. {yields} In present research, strain in a bridge-shaped freestanding Si membrane (FSSM) was measured by convergent-beam electron diffraction (CBED) and finite element method (FEM). Compressive strain distribution was shown in three dimensions (3D) in FSSM, where no threading dislocation or stacking fault was found. Relaxation of the strain in FSSM in 3D was discussed based on a comparison of the strain magnitudes in FSSM as measured by CBED and FEM. - Abstract: Strain in a bridge-shaped freestanding Si membrane (FSSM) induced by depositing an amorphous Si{sub x}N{sub y} layer was measured by convergent-beam electron diffraction (CBED). CBED results show that the strain magnitude depends negatively on the FSSM thickness. FEM is a supplement of the result of CBED due to the relaxation of TEM samples during fabricating. The FEM analysis results ascertain the strain property in three dimensions, and show that the strain magnitude depends negatively on the length of FSSM, and the magnitude of the compressive strain in FSSM increases as the position is closer to the upper Si/Si{sub x}N{sub y} interface.

  14. A strain gauge

    DEFF Research Database (Denmark)

    2017-01-01

    The invention relates to a strain gauge of a carrier layer and a meandering measurement grid (101) positioned on the carrier layer, wherein the measurement grid comprises a number of measurement grid sections placed side by side with gaps in between, and a number of end loops (106) interconnecting...... relates to a method for manufacturing a strain gauge as mentioned above....

  15. Effects of particles thickness and veneer reiforced layer in the properties of oriented strand boards OSB

    Directory of Open Access Journals (Sweden)

    Setsuo Iwakiri

    2009-03-01

    Full Text Available This work evaluated the effects of particle thickness and veneer reinforced layer on the physical and mechanicalproperties of OSB made of Pinus taeda L. The boards were manufactured with particle thickness of 0.4, 0.7 and 1.0 mm and phenolformaldehyderesin in the proportion of 6% of solid content. To the veneer reinforced layer was used veneer from Pinus taeda with 2.0mm of thickness. The increase in the slenderness (length/thickness ratio of thins particles, results in the higher values of MOE andMOR in the cross direction. The increase in the particles thickness contributed to higher values of the board internal bond. Thedifferent particles thickness did not clearly affected on the physical properties of OSB. The veneer reinforced layer results in the higheraverage values of MOE and MOR in the cross direction. All of the results of MOE and MOR obtained for boards with differentthickness attend tominimum values required per CSA 0437 (CSA, 1993. For the internal bond, the results were satisfactory to boardsmanufactured with particles thickness of 0.7 and 1.0 mm. According to the results the main conclusions were: (i The increase in theparticles thickness contributed to lower values of MOE and MOR, and higher values of the board internal bond; (ii the veneerreinforced layer increased MOE and MOR values in the cross direction.

  16. Magnetic resonance studies of the Mg acceptor in thick free-standing and thin-film GaN

    Science.gov (United States)

    Zvanut, Mary Ellen

    Mg, the only effective p-type dopant for the nitrides, substitutes for Ga and forms an acceptor with a defect level of about 0.16 eV. The magnetic resonance of such a center should be highly anisotropic, yet early work employing both optically detected magnetic resonance (ODMR) and electron paramagnetic resonance (EPR) spectroscopies revealed a defect with a nearly isotropic g-tensor. The results were attributed to crystal fields caused by compensation and/or strain typical of the heteroepitaxially grown films. The theory was supported by observation of the expected highly anisotropic ODMR signature in homoepitaxially grown films in which dislocation-induced non-uniform strain and compensation are reduced. The talk will review EPR measurements of thin films and describe new work which takes advantage of the recently available thick free-standing GaN:Mg substrates grown by hydride vapor phase epitaxy (HVPE) and high nitrogen pressure solution growth (HNPS). Interestingly, the films and HVPE substrates exhibit characteristically different types of EPR signals, and no EPR response could be induced in the HNPS substrates, with or without illumination. In the heteroepitaxial films, a curious angular dependent line-shape is observed in addition to the nearly isotropic g-tensor characteristic of the Mg-related acceptor. On the other hand, the free-standing HVPE crystals reveal a clear signature of a highly anisotropic shallow acceptor center. Comparison with SIMS measurements implies a direct relation to the Mg impurity, and frequency-dependent EPR studies demonstrate the influence of the anisotropic crystal fields. Overall, the measurements of the thick free-standing crystals show that the Mg acceptor is strongly affected by the local environment. The ODMR was performed by Evan Glaser, NRL and the free-standing Mg-doped HVPE crystals were grown by Jacob Leach, Kyma Tech. The work at UAB is supported by NSF Grant No. DMR-1308446.

  17. Probabilistic analysis of structures involving random stress-strain behavior

    Science.gov (United States)

    Millwater, H. R.; Thacker, B. H.; Harren, S. V.

    1991-01-01

    The present methodology for analysis of structures with random stress strain behavior characterizes the uniaxial stress-strain curve in terms of (1) elastic modulus, (2) engineering stress at initial yield, (3) initial plastic-hardening slope, (4) engineering stress at point of ultimate load, and (5) engineering strain at point of ultimate load. The methodology is incorporated into the Numerical Evaluation of Stochastic Structures Under Stress code for probabilistic structural analysis. The illustrative problem of a thick cylinder under internal pressure, where both the internal pressure and the stress-strain curve are random, is addressed by means of the code. The response value is the cumulative distribution function of the equivalent plastic strain at the inner radius.

  18. Nanoscale strain engineering of graphene and graphene-based devices

    Institute of Scientific and Technical Information of China (English)

    N-C Yeh; C-C Hsu; M L Teague; J-Q Wang; D A Boyd; C-C Chen

    2016-01-01

    Structural distortions in nano-materials can induce dramatic changes in their electronic properties. This situation is well manifested in graphene, a two-dimensional honeycomb structure of carbon atoms with only one atomic layer thickness. In particular, strained graphene can result in both charging effects and pseudo-magnetic fields, so that controlled strain on a perfect graphene lattice can be tailored to yield desirable electronic properties. Here, we describe the theoretical foundation for strain-engineering of the electronic properties of graphene, and then provide experimental evidence for strain-induced pseudo-magnetic fields and charging effects in monolayer graphene. We further demonstrate the feasibility of nano-scale strain engineering for graphene-based devices by means of theoretical simula-tions and nano-fabrication technology.

  19. Contribution to the study of slab thickness

    International Nuclear Information System (INIS)

    Moraitis, G.A.; Rorris, G.P.

    1978-01-01

    A method is proposed for calculating the time-independent values of the equivalent slab thickness of the ionosphere, defined as the ratio of the total electron content to the corresponding maximum electron density of the F region. Periodic variations of slab thickness are studied and are correlated to relative changes in exospheric temperature, deduced from the OGO-6 model

  20. Eggshell thickness in mourning dove populations

    Science.gov (United States)

    Kreitzer, J.F.

    1971-01-01

    Eggs (n = 452) of the mourning dove (Zenaidura macroura) were collected from 9 states in 1969 and 11 states in 1970, and shell thickness was compared with that of eggs (n = 97) collected from 24 states during the years 1861 to 1935. Mean shell thickness did not differ significantly in the test groups.

  1. Applications of precision ultrasonic thickness gauging

    International Nuclear Information System (INIS)

    Fowler, K.A.; Elfbaum, G.M.; Husarek, V.; Castel, J.G.

    1976-01-01

    Pulse-echo ultrasonic thickness gauging is now recognized as an accurate method of measuring thickness of a product from one side when the velocity of ultrasound in the material is known. The advantages and present limitation of this gauging technique are presented, together with several applications of industrial interest [fr

  2. Skull thickness in patients with clefts

    DEFF Research Database (Denmark)

    Arntsen, T; Kjaer, I; Sonnesen, L

    2010-01-01

    The purpose was to analyze skull thickness in incomplete cleft lip (CL), cleft palate (CP), and combined cleft lip and palate (UCLP).......The purpose was to analyze skull thickness in incomplete cleft lip (CL), cleft palate (CP), and combined cleft lip and palate (UCLP)....

  3. Some properties of Cerenkov radiation due to the finite thickness of the radiator

    International Nuclear Information System (INIS)

    Kobzev, A.P.; Frank, I.M.

    1981-01-01

    The properties of Cerenkov radiation are analyzed for a small radiator thickness. It is shown that the directionality of the radiation, its threshold properties, and also the dependence on the electron energy and radiator thickness differ substantially from the well known characteristics of Cerenkov radiation corresponding to the case of an unlimited particle trajectory in an extended medium. We have experimentally studied the directionality and energy characteristics of radiation excited by electrons in a mica target of thickness 12 400 A at wavelength 4000 A. The experimental results are in good agreement with the calculations

  4. Impact of diversity of colonizing strains on strategies for sampling Escherichia coli from fecal specimens.

    Science.gov (United States)

    Lautenbach, Ebbing; Bilker, Warren B; Tolomeo, Pam; Maslow, Joel N

    2008-09-01

    Of 49 subjects, 21 were colonized with more than one strain of Escherichia coli and 12 subjects had at least one strain present in fewer than 20% of colonies. The ability to accurately characterize E. coli strain diversity is directly related to the number of colonies sampled and the underlying prevalence of the strain.

  5. Strain relaxation studies of the Fe3O4/MgO (100) heteroepitaxial system grown by magnetron sputtering

    International Nuclear Information System (INIS)

    Balakrishnan, K; Arora, S K; Shvets, I V

    2004-01-01

    Detailed strain relaxation studies of epitaxial magnetite, Fe 3 O 4 , films on MgO(100) substrates grown by magnetron sputtering reveal the accommodation of strain up to 600 nm thickness, a thickness far above the critical thickness (t c ) predicted by theoretical models. The results are in agreement with the suggestion that the excess strain in Fe 3 O 4 /MgO (100) heteroepitaxy is accommodated by the presence of antiphase boundaries. The compressive strain generated by the antiphase boundaries compensates for the tensile strain within the growth islands, allowing the film to remain fully coherent with the substrate. Contrary to earlier findings, magnetization decreases with an increase in the film thickness. This vindicates the view that the structure of the antiphase boundaries depends on the growth conditions

  6. Resolution of axial shear strain elastography

    International Nuclear Information System (INIS)

    Thitaikumar, Arun; Righetti, Raffaella; Krouskop, Thomas A; Ophir, Jonathan

    2006-01-01

    The technique of mapping the local axial component of the shear strain due to quasi-static axial compression is defined as axial shear strain elastography. In this paper, the spatial resolution of axial shear strain elastography is investigated through simulations, using an elastically stiff cylindrical lesion embedded in a homogeneously softer background. Resolution was defined as the smallest size of the inclusion for which the strain value at the inclusion/background interface was greater than the average of the axial shear strain values at the interface and inside the inclusion. The resolution was measured from the axial shear strain profile oriented at 45 0 to the axis of beam propagation, due to the absence of axial shear strain along the normal directions. The effects of the ultrasound system parameters such as bandwidth, beamwidth and transducer element pitch along with signal processing parameters such as correlation window length (W) and axial shift (ΔW) on the estimated resolution were investigated. The results show that the resolution (at 45 0 orientation) is determined by the bandwidth and the beamwidth. However, the upper bound on the resolution is limited by the larger of the beamwidth and the window length, which is scaled inversely to the bandwidth. The results also show that the resolution is proportional to the pitch and not significantly affected by the axial window shift

  7. Thickness-Dependent Surfactant Behavior in Trilayer Polymer Films

    Science.gov (United States)

    Sun, Yan; Shull, Kenneth; Wang, Jin

    2010-03-01

    The ability for thin liquid films to wet and remain thermodynamically stable on top of one another is a fundamental challenge in developing high quality paints, coatings, adhesives, and other industrial products. Since intermolecular interactions and interfacial energies dominate in the film thickness regime from tens to hundreds of nanometers, it is desirable to tune these long-range and short-range forces in a simple, controllable manner. Starting from an unstable model homopolymer bilayer (poly(styrene)/poly(4-vinylpyridine)), we demonstrate that sandwiching an additional homopolymer layer (poly(4-bromostyrene)) between the two layers can provide needed surfactancy. As the thickness of this center layer is increased, the full trilayer transitions from unstable (thin) to stable (moderate) to unstable (thick). We experimentally show using x-ray standing waves generated via total external reflection (TER-XSW), atomic force microscopy (AFM), and time-of-flight secondary ion mass spectroscopy (ToF-SIMS) that this behavior can be directly attributed to the autophobic dewetting phenomenon, in which the surfactant layer is thin enough to remain stable but thick enough to shield the neighboring layers, highlighting a general approach to stabilizing multilayer systems.

  8. Surgical Management of the Thick-Skinned Nose.

    Science.gov (United States)

    Davis, Richard E; Hrisomalos, Emily N

    2018-02-01

    When executed properly, open structure rhinoplasty can dramatically improve the consistency, durability, and quality of the cosmetic surgical outcome. Moreover, in expert hands, dramatic transformations in skeletal architecture can be accomplished with minimal risk and unparalleled control, all while preserving nasal airway function. While skeletal enhancements have become increasingly more controlled and precise, the outer skin-soft tissue envelope (SSTE) often presents a formidable obstacle to a satisfactory cosmetic result. In noses with unusually thick skin, excessive skin volume and characteristically hostile healing responses frequently combine to obscure or sometimes even negate cosmetic skeletal modifications and taint the surgical outcome. For this challenging patient subgroup, care must be taken to optimize the SSTE using a graduated treatment strategy directed at minimizing skin thickness and controlling unfavorable healing responses. When appropriate efforts are implemented to manage thick nasal skin, cosmetic outcomes are often substantially improved, sometimes even negating the ill-effects of thick skin altogether. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  9. NMR studies of interfaces, strain and anisotropy in Co/Cu multilayers

    International Nuclear Information System (INIS)

    Thomson, T.; Riedi, P.C.

    1999-01-01

    59 Co NMR studies of multilayers are able to give three direct pieces of information: (i) the crystal phase of Co, fcc (217.4 MHz), hcp (220-228 MHz) and in exotic cases bcc (198 MHz) for films measured at T= 4.2 K, (ii) the nature of the interfaces from low frequency satellite lines, and (iii) the strain state deduced from small changes in the line positions. Extensive studies of Co/Cu multilayer interfacial structures as a function of deposition technique, layer thickness, substrate/buffer layer structure and annealing temperature have been undertaken. This work has shed new light on the relationship between interfacial structure and magnetoresistance and in particular has demonstrated that flat, atomic scale, interfaces lead to greater magnetoresistance. The difference between the Co and Cu lattice constant results in an extensive, tensile in-plane strain developing in Co layers provided that some epitaxial registry is present. Information on strain effects can be obtained from the position and width of the NMR lines. The magnetic anisotropy field can be determined by measuring the field dependence of the enhancement effect due to electronic magnetisation. This provides unique insight into the distribution of magnetic anisotropy within the Co layers, as the enhancement can be investigated independently for each NMR line and, hence, provides environment specific information on magnetic anisotropy at the interfaces and in the interior of the layers

  10. Strain and texture evolution of ED-rotated cubes during quasi-static and dynamic tensile testing of Al-Mg-Si-profiles in the as-extruded T1-temper condition

    International Nuclear Information System (INIS)

    Mathiesen, R.H.; Forbord, B.; Mardalen, J.; Furu, T.; Lange, H.I.

    2007-01-01

    High-energy synchrotron X-ray diffraction has been used to study through-thickness deformation response in extruded Al-Mg-Si-profiles during tensile testing, in terms of micro- and mesoscopic distributions and dynamical evolution of elastic strains and grain rotations. Local averaging with analysis at intermediate length scales reveals strongly inhomogeneous through-profile elastic strains, caused by the presence of three distinct microstructure regions and the compatibility relations that apply at their interfaces. Variations in elastic strains at characteristic microstructure lengths are found to be large; typically 1σ Gaussian spreads for the different ε ij -components of the elastic strain tensor are minimal and of the order 1.0 x 10 -3 in the central profile region at low stresses. The spread increases with the tensile loads, but even more dramatically with decreasing distance to the surfaces where maximum 1σ spreads up to 6-7 x 10 -3 are encountered. The evolution and distribution of certain texture components have been analysed, showing grain rotations to be a non-negligible part of the deformation response that activates at quite modest plastic deformations. Inhomogeneous strain response at local and intermediate length scales together with the strain and texture component relations that apply across the microstructure region boundaries are found to be decisive to surface roughening. All together, the results point in the direction that strain and texture evolution should be considered together in order to provide a more complete description of microstructure mechanics in metals

  11. Development of design method of thick rubber bearings for three-dimensional base isolation

    International Nuclear Information System (INIS)

    Yabana, Shuichi; Matuda, Akihiro

    2000-01-01

    Thick rubber bearings as 3-dimensional base isolators have been developed to reduce both horizontal and vertical seismic loads especially for equipment in Fast Breeder Reactors. In this report, a design method of thick rubber bearings is presented. To consider nonlinearity of vertical stiffness affected by vertical stress in the design of thick rubber bearings, Lindley's evaluation method of vertical stiffness is modified as an explicit form of vertical stress. We confirm that the presented method is efficient for design of the thick rubber bearings from comparing between test results and predicted values. Furthermore, rubber bearing tests are conducted with 1/3 scale models to evaluate mechanical properties of thick rubber bearings including ultimate limits. In the tests, horizontal and vertical characteristics of 1/3 scale model are compared with those of 1/6 scale model to discuss scale effect of test specimen. Ultimate limits such as failure shear strain of thick rubber bearings are obtained under various loading conditions. From the test results, we confirm that full scale thick rubber bearing to satisfy requirements is feasible. (author)

  12. Asymmetric transmission of acoustic waves in a layer thickness distribution gradient structure using metamaterials

    Directory of Open Access Journals (Sweden)

    Jung-San Chen

    2016-09-01

    Full Text Available This research presents an innovative asymmetric transmission design using alternate layers of water and metamaterial with complex mass density. The directional transmission behavior of acoustic waves is observed numerically inside the composite structure with gradient layer thickness distribution and the rectifying performance of the present design is evaluated. The layer thickness distributions with arithmetic and geometric gradients are considered and the effect of gradient thickness on asymmetric wave propagation is systematically investigated using finite element simulation. The numerical results indicate that the maximum pressure density and transmission through the proposed structure are significantly influenced by the wave propagation direction over a wide range of audible frequencies. Tailoring the thickness of the layered structure enables the manipulation of asymmetric wave propagation within the desired frequency range. In conclusion, the proposed design offers a new possibility for developing directional-dependent acoustic devices.

  13. Study on the ionization chamber for thickness measurement

    International Nuclear Information System (INIS)

    Xue Shili; Miao Qiangwen

    1988-01-01

    The principle, construction and performances of ionization chambers for measuring the thickness of metal and nonmetal materials are introduced. With them the thickness of thin materials (thickness ranging from 10 to 6000 g/m 2 ), the surface layer thickness of composed materials and the thickness of steel plate (thickness ranging from 0 to 32 kg/m 2 ) are measured effectively

  14. Dynamic scattering theory for dark-field electron holography of 3D strain fields.

    Science.gov (United States)

    Lubk, Axel; Javon, Elsa; Cherkashin, Nikolay; Reboh, Shay; Gatel, Christophe; Hÿtch, Martin

    2014-01-01

    Dark-field electron holography maps strain in crystal lattices into reconstructed phases over large fields of view. Here we investigate the details of the lattice strain-reconstructed phase relationship by applying dynamic scattering theory both analytically and numerically. We develop efficient analytic linear projection rules for 3D strain fields, facilitating a straight-forward calculation of reconstructed phases from 3D strained materials. They are used in the following to quantify the influence of various experimental parameters like strain magnitude, specimen thickness, excitation error and surface relaxation. © 2013 Elsevier B.V. All rights reserved.

  15. Axial strain in GaAs/InAs core-shell nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Biermanns, Andreas; Pietsch, Ullrich [Universitaet Siegen, Festkoerperphysik, 57068 Siegen (Germany); Rieger, Torsten; Gruetzmacher, Detlev; Ion Lepsa, Mihail [Peter Gruenberg Institute (PGI-9), Forschungszentrum, 52425 Juelich (Germany); JARA-Fundamentals of Future Information Technology, 52425 Juelich (Germany); Bussone, Genziana [Universitaet Siegen, Festkoerperphysik, 57068 Siegen (Germany); ESRF, 6 rue Jules Horowitz, BP220, F-38043 Grenoble Cedex (France)

    2013-01-28

    We study the axial strain relaxation in GaAs/InAs core-shell nanowire heterostructures grown by molecular beam epitaxy. Besides a gradual strain relaxation of the shell material, we find a significant strain in the GaAs core, increasing with shell thickness. This strain is explained by a saturation of the dislocation density at the core-shell interface. Independent measurements of core and shell lattice parameters by x-ray diffraction reveal a relaxation of 93% in a 35 nm thick InAs shell surrounding cores of 80 nm diameter. The compressive strain of -0.5% compared to bulk InAs is accompanied by a tensile strain up to 0.9% in the GaAs core.

  16. Translucency of dental ceramics with different thicknesses.

    Science.gov (United States)

    Wang, Fu; Takahashi, Hidekazu; Iwasaki, Naohiko

    2013-07-01

    The increased use of esthetic restorations requires an improved understanding of the translucent characteristics of ceramic materials. Ceramic translucency has been considered to be dependent on composition and thickness, but less information is available about the translucent characteristics of these materials, especially at different thicknesses. The purpose of this study was to investigate the relationship between translucency and the thickness of different dental ceramics. Six disk-shaped specimens of 8 glass ceramics (IPS e.max Press HO, MO, LT, HT, IPS e.max CAD LT, MO, AvanteZ Dentin, and Trans) and 5 specimens of 5 zirconia ceramics (Cercon Base, Zenotec Zr Bridge, Lava Standard, Lava Standard FS3, and Lava Plus High Translucency) were prepared following the manufacturers' instructions and ground to a predetermined thickness with a grinding machine. A spectrophotometer was used to measure the translucency parameters (TP) of the glass ceramics, which ranged from 2.0 to 0.6 mm, and of the zirconia ceramics, which ranged from 1.0 to 0.4 mm. The relationship between the thickness and TP of each material was evaluated using a regression analysis (α=.05). The TP values of the glass ceramics ranged from 2.2 to 25.3 and the zirconia ceramics from 5.5 to 15.1. There was an increase in the TP with a decrease in thickness, but the amount of change was material dependent. An exponential relationship with statistical significance (Pceramics and zirconia ceramics. The translucency of dental ceramics was significantly influenced by both material and thickness. The translucency of all materials increased exponentially as the thickness decreased. All of the zirconia ceramics evaluated in the present study showed some degree of translucency, which was less sensitive to thickness compared to that of the glass ceramics. Copyright © 2013 The Editorial Council of the Journal of Prosthetic Dentistry. Published by Mosby, Inc. All rights reserved.

  17. Mechanical Properties of Additively Manufactured Thick Honeycombs

    Directory of Open Access Journals (Sweden)

    Reza Hedayati

    2016-07-01

    Full Text Available Honeycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding the mechanical behavior of more complex 3D tessellated structures such as porous biomaterials. In this paper, we study the mechanical behavior of thick honeycombs made using additive manufacturing techniques that allow for fabrication of honeycombs with arbitrary and precisely controlled thickness. Thick honeycombs with different wall thicknesses were produced from polylactic acid (PLA using fused deposition modelling, i.e., an additive manufacturing technique. The samples were mechanically tested in-plane under compression to determine their mechanical properties. We also obtained exact analytical solutions for the stiffness matrix of thick hexagonal honeycombs using both Euler-Bernoulli and Timoshenko beam theories. The stiffness matrix was then used to derive analytical relationships that describe the elastic modulus, yield stress, and Poisson’s ratio of thick honeycombs. Finite element models were also built for computational analysis of the mechanical behavior of thick honeycombs under compression. The mechanical properties obtained using our analytical relationships were compared with experimental observations and computational results as well as with analytical solutions available in the literature. It was found that the analytical solutions presented here are in good agreement with experimental and computational results even for very thick honeycombs, whereas the analytical solutions available in the literature show a large deviation from experimental observation, computational results, and our analytical solutions.

  18. Probing the Optical Properties and Strain-Tuning of Ultrathin Mo1- xW xTe2.

    Science.gov (United States)

    Aslan, Ozgur Burak; Datye, Isha M; Mleczko, Michal J; Sze Cheung, Karen; Krylyuk, Sergiy; Bruma, Alina; Kalish, Irina; Davydov, Albert V; Pop, Eric; Heinz, Tony F

    2018-04-11

    Ultrathin transition metal dichalcogenides (TMDCs) have recently been extensively investigated to understand their electronic and optical properties. Here we study ultrathin Mo 0.91 W 0.09 Te 2 , a semiconducting alloy of MoTe 2 , using Raman, photoluminescence (PL), and optical absorption spectroscopy. Mo 0.91 W 0.09 Te 2 transitions from an indirect to a direct optical band gap in the limit of monolayer thickness, exhibiting an optical gap of 1.10 eV, very close to its MoTe 2 counterpart. We apply tensile strain, for the first time, to monolayer MoTe 2 and Mo 0.91 W 0.09 Te 2 to tune the band structure of these materials; we observe that their optical band gaps decrease by 70 meV at 2.3% uniaxial strain. The spectral widths of the PL peaks decrease with increasing strain, which we attribute to weaker exciton-phonon intervalley scattering. Strained MoTe 2 and Mo 0.91 W 0.09 Te 2 extend the range of band gaps of TMDC monolayers further into the near-infrared, an important attribute for potential applications in optoelectronics.

  19. Internally Mounting Strain Gages

    Science.gov (United States)

    Jett, J. R., Jr.

    1984-01-01

    Technique for mounting strain gages inside bolt or cylinder simultaneously inserts gage, attached dowel segment, and length of expandable tubing. Expandable tubing holds gage in place while adhesive cures, assuring even distribution of pressure on gage and area gaged.

  20. Running Title: Strained Yoghurts

    African Journals Online (AJOL)

    USER

    2012-09-27

    Sep 27, 2012 ... ever, the traditional method of producing strained yoghurt ... Food market studies have the essential function of providing ..... Communication No: 2001/21. ... fermented foods and beverages of Turkey. Crit. Rev. Food. Sci. Nutr.

  1. Film thickness determination by grazing incidence diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Battiston, G A; Gerbasi, R [CNR, Padua (Italy). Istituto di Chimica e Tecnologie Inorganiche e dei Materiali Avanzati

    1996-09-01

    Thin films deposited via MOCVD (Metal Organic Chemical Vapour Deposition) are layers in the thickness range of a few manometers to about ten micrometers. An understanding of the physics and chemistry of films is necessary for a better comprehension of the phenomena involved in the film deposition procedure and its optimisation. Together with the crystalline phase a parameter that must be determined is the thickness of the layer. In this work the authors present a method for the measurement of the film thickness. This procedure, based on diffraction intensity absorption of the X-rays, both incident and diffracted in passing through the layers, resulted quite simple, rapid and non-destructive.

  2. Residual stress analysis in thick uranium films

    International Nuclear Information System (INIS)

    Hodge, A.M.; Foreman, R.J.; Gallegos, G.F.

    2005-01-01

    Residual stress analysis was performed on thick, 1-25 μm, depleted uranium (DU) films deposited on an Al substrate by magnetron sputtering. Two distinct characterization techniques were used to measure substrate curvature before and after deposition. Stress evaluation was performed using the Benabdi/Roche equation, which is based on beam theory of a bi-layer material. The residual stress evolution was studied as a function of coating thickness and applied negative bias voltage (0, -200, -300 V). The stresses developed were always compressive; however, increasing the coating thickness and applying a bias voltage presented a trend towards more tensile stresses and thus an overall reduction of residual stresses

  3. Film thickness determination by grazing incidence diffraction

    International Nuclear Information System (INIS)

    Battiston, G. A.; Gerbasi, R.

    1996-01-01

    Thin films deposited via MOCVD (Metal Organic Chemical Vapour Deposition) are layers in the thickness range of a few manometers to about ten micrometers. An understanding of the physics and chemistry of films is necessary for a better comprehension of the phenomena involved in the film deposition procedure and its optimisation. Together with the crystalline phase a parameter that must be determined is the thickness of the layer. In this work the authors present a method for the measurement of the film thickness. This procedure, based on diffraction intensity absorption of the X-rays, both incident and diffracted in passing through the layers, resulted quite simple, rapid and non-destructive

  4. Turbine airfoil with outer wall thickness indicators

    Science.gov (United States)

    Marra, John J; James, Allister W; Merrill, Gary B

    2013-08-06

    A turbine airfoil usable in a turbine engine and including a depth indicator for determining outer wall blade thickness. The airfoil may include an outer wall having a plurality of grooves in the outer surface of the outer wall. The grooves may have a depth that represents a desired outer surface and wall thickness of the outer wall. The material forming an outer surface of the outer wall may be removed to be flush with an innermost point in each groove, thereby reducing the wall thickness and increasing efficiency. The plurality of grooves may be positioned in a radially outer region of the airfoil proximate to the tip.

  5. Direct observation of crystal texture by neutron diffraction topography

    International Nuclear Information System (INIS)

    Tomimitsu, Hiroshi

    1982-02-01

    This document reports the development and the applications of the neutron diffraction topography (NDT), which have been carried out at JAERI in these 10 years. This describes how the substructure of Cu-5%Ge single crystal of large-scale (3 cm in diameter and 10 cm in length) was revealed by the NDT-observation. It was discovered that the specimen crystal was made up from the layer-substructures parallel to (001) and to the [110] growth direction, and that each (001) layer-substructure mentioned above was further subdivided into the central thin sublayer parallel to (001) and thick plates of [100] and [010] directions, attached symmetrically to both sides of the central (001) sublayer with regular intervals. The model of the substructure described above was supported by the calculation of the diffraction intensities. The model of the layer-substructure described above, on the other hand, suggested a simple mechanism of crystal growth of the specimen. This document also reports the NDT-observation of the three-dimensional distribution of the lattice strains within a hot-pressed Ge single crystal, and the equal thickness fringes and the coherent boundaries of a twinned Si crystal. The powerfulness and the reliability of the NDT-technique were thus demonstrated. (author)

  6. Characterization of plastic strains and crystallographic properties surrounding defects in steam generator tubes by orientation imaging microscopy

    International Nuclear Information System (INIS)

    Lehockey, E.M.; Brennenstuhl, A.M.

    2002-01-01

    Orientation Imaging Microscopy (OIM) has become a valuable technique for characterizing grain boundary structure, texture, and grain size distribution, which govern material susceptibility to degenerative effects (e.g. IGSCC). Methods recently developed, by Kinectrics, have extended OIM capabilities toward mapping and quantifying residual plastic strains in materials. OIM is applied in the present work to characterize the distribution of plastic strains, that accumulate in CANDU steam generator tubing during installation and service potentially undermining the performance, reliability, and fitness-for-service of these components. Plastic strain that evolves in response to roller-expansion was characterized in simulated roll joints constructed from Alloy 600 tubing. Results underscore the effect of over-rolling in generating intense gradients with broad variations in strain that extend significant distances through the wall thickness. Of greater relevance is the orientation of these gradients in the transverse direction, relative to the tube axis and potential for the development of abnormal grain growth during post-expansion heat treatments. The magnitude and distribution of strain measured by OIM are remarkably consistent with Finite Element Analysis (FEA) predictions offering compelling evidence as to the reliability of the OIM technique. OIM offers superior resolution than can be practically achieved with FEA having particular relevance in identifying highly localized concentrations of strain surrounding metallurgical defects that can serve as precursors to stress-related degenerative effects (e.g. IGSCC). The spatial distribution of residual plastic strain was also characterized within the context of localized texture, and grain size morphology surrounding (OD) 'pits' and indentations found in ex-service Monel 400 and Alloy 800 SG tubes, respectively. An absence of strain surrounding these surface defects suggests their propensity for promoting more deleterious

  7. Through thickness property variations in a thick plate AA7050 friction stir welded joint

    International Nuclear Information System (INIS)

    Canaday, Clinton T.; Moore, Matthew A.; Tang, Wei; Reynolds, A.P.

    2013-01-01

    In this study, moderately thick (32 mm) AA7050 plates were joined by friction stir welding (FSW). Various methods were used to characterize the welded joints, including nugget grain size measurements at different locations through the thickness, micro-hardness indentation through nugget, thermo-mechanically affected zone (TMAZ), and heat affected zone (HAZ) at different cross section heights, and residual stress measurement using the cut compliance method with full thickness and partial thickness specimens. All testing results are consistent with the presence of a strong gradient in peak temperature through the plate thickness during FSW.

  8. A study on creep properties of laminated rubber bearings. Pt. 1. Creep properties and numerical simulations of thick rubber bearings

    International Nuclear Information System (INIS)

    Matsuda, Akihiro; Yabana, Shuichi

    2000-01-01

    In this report, to evaluate creep properties and effects of creep deformation on mechanical properties of thick rubber bearings for three-dimensional isolation system, we show results of compression creep test for rubber bearings of various rubber materials and shapes and development of numerical simulation method. Creep properties of thick rubber bearings were obtained from compression creep tests. The creep strain shows steady creep that have logarithmic relationships between strain and time and accelerated creep that have linear relationships. We make numerical model of a rubber material with nonlinear viscoelastic constitutional equations. Mechanical properties after creep loading test are simulated with enough accuracy. (author)

  9. Strain effect on the phase diagram of Ba-122

    Energy Technology Data Exchange (ETDEWEB)

    Iida, Kazumasa [IFW Dresden (Germany); Nagoya University (Japan); Grinenko, Vadim; Kurth, Fritz; Efremov, Dmitriy; Drechsler, Stefan-Ludwig; Engelmann, Jan; Aswartham, Saicharan; Wurmehl, Sabine; Moench, Ingolf; Huehne, Ruben [IFW Dresden (Germany); Langer, Marco; Erbe, Manuela; Haenisch, Jens; Holzapfel, Bernhard [IFW Dresden (Germany); Karlsruhe Institute of Technology (KIT) (Germany); Ichinose, Ataru; Tsukada, Ichiro [Central Research Institute of Electric Power Industry, Nagasaka (Japan); Ahrens, Eike [TU Dresden (Germany); Ikuta, Hiroshi [Nagoya University (Japan)

    2015-07-01

    Thin films offer a possibility for tuning superconducting (SC) properties without external pressure or chemical doping. In-plane strain controls the Neel temperature of the antiferromagnetic (AF) transition and the SC transition temperature or even induce superconductivity in the parent compound. We studied the electronic and magnetic properties of Co, Ru, and P doped Ba-122 thin films in different strain states. We have found that the strain shifts nearly rigidly the whole phase diagram including the AF region and the SC dome in the direction of higher or lower substitution levels depending on the direction of strain (i.e. compressive or tensile). In particular, we found that the strain affects the band structure similarly as Co doping despite that the crystal structure changes differently. As a result tensile or compressive strain acts as additional el or h doping, respectively.

  10. Flexible piezotronic strain sensor.

    Science.gov (United States)

    Zhou, Jun; Gu, Yudong; Fei, Peng; Mai, Wenjie; Gao, Yifan; Yang, Rusen; Bao, Gang; Wang, Zhong Lin

    2008-09-01

    Strain sensors based on individual ZnO piezoelectric fine-wires (PFWs; nanowires, microwires) have been fabricated by a simple, reliable, and cost-effective technique. The electromechanical sensor device consists of a single electrically connected PFW that is placed on the outer surface of a flexible polystyrene (PS) substrate and bonded at its two ends. The entire device is fully packaged by a polydimethylsiloxane (PDMS) thin layer. The PFW has Schottky contacts at its two ends but with distinctly different barrier heights. The I- V characteristic is highly sensitive to strain mainly due to the change in Schottky barrier height (SBH), which scales linear with strain. The change in SBH is suggested owing to the strain induced band structure change and piezoelectric effect. The experimental data can be well-described by the thermionic emission-diffusion model. A gauge factor of as high as 1250 has been demonstrated, which is 25% higher than the best gauge factor demonstrated for carbon nanotubes. The strain sensor developed here has applications in strain and stress measurements in cell biology, biomedical sciences, MEMS devices, structure monitoring, and more.

  11. Dynamical x-ray diffraction studies of interfacial strain in superlattices grown by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Vandenberg, J.M.; Chu, S.N.G.; Hamm, R.A.; Panish, M.B.; Ritter, D.; Mancrander, A.T.

    1992-01-01

    This paper reports on dynamical X-ray diffraction studies that have been carried out for lattice-matched InGaAs/InP superlattices grown by modified molecular beam epitaxy (MBE) techniques. The (400) X-ray satellite pattern, which is predominantly affected by the strain modulation, was analyzed. The strain and thickness of the actual layers including the presence of strained interfacial regions were determined

  12. Thick epitaxial CdTe films grown by close space sublimation on Ge substrates

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Q; Haliday, D P; Tanner, B K; Brinkman, A W [Department of Physics, University of Durham. Science Site, Durham, DH1 3LE (United Kingdom); Cantwell, B J; Mullins, J T; Basu, A [Durham Scientific Crystals Ltd., NetPark, Thomas Wright Way, Sedgefield, County Durham, TS21 3FD (United Kingdom)], E-mail: Q.Z.Jiang@durham.ac.uk

    2009-01-07

    This paper reports, for the first time, the successful growth of 200 {mu}m thick CdTe films on mis-oriented Ge(1 0 0) substrates by a cost-effective optimized close space sublimation method. It is found that, as the thickness increases to a few hundred micrometres, subgrains are formed probably as a result of the large density of dislocations and strain within the initial interfacial layers. The films are of high quality (x-ray rocking curve width {approx}100 arcsec) and high resistance ({approx}10{sup 9} {omega} cm), and are thus candidates for x-ray and {gamma}-ray detectors. (fast track communication)

  13. Flexoelectricity induced increase of critical thickness in epitaxial ferroelectric thin films

    International Nuclear Information System (INIS)

    Zhou Hao; Hong Jiawang; Zhang Yihui; Li Faxin; Pei Yongmao; Fang Daining

    2012-01-01

    Flexoelectricity describes the coupling between polarization and strain/stress gradients in insulating crystals. In this paper, using the Landau-Ginsburg-Devonshire phenomenological approach, we found that flexoelectricity could increase the theoretical critical thickness in epitaxial BaTiO 3 thin films, below which the switchable spontaneous polarization vanishes. This increase is remarkable in tensile films while trivial in compressive films due to the electrostriction caused decrease of potential barrier, which can be easily destroyed by the flexoelectricity, between the ferroelectric state and the paraelectric state in tensile films. In addition, the films are still in a uni-polar state even below the critical thickness due to the flexoelectric effect.

  14. Reflectance dependence of polytetrafluoroethylene on thickness for xenon scintillation light

    Energy Technology Data Exchange (ETDEWEB)

    Haefner, J.; Neff, A.; Arthurs, M.; Batista, E.; Morton, D.; Okunawo, M.; Pushkin, K.; Sander, A. [Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States); Stephenson, S. [Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States); University of California Davis, Department of Physics, One Shields Ave., Davis, CA 95616 (United States); Wang, Y. [Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States); Lorenzon, W., E-mail: lorenzon@umich.edu [Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2017-06-01

    Many rare event searches including dark matter direct detection and neutrinoless double beta decay experiments take advantage of the high VUV reflective surfaces made from polytetrafluoroethylene (PTFE) reflector materials to achieve high light collection efficiency in their detectors. As the detectors have grown in size over the past decade, there has also been an increased need for ever thinner detector walls without significant loss in reflectance to reduce dead volumes around active noble liquids, outgassing, and potential backgrounds. We report on the experimental results to measure the dependence of the reflectance on thickness of two PTFE samples at wavelengths near 178 nm. No change in reflectance was observed as the wall thickness of a cylindrically shaped PTFE vessel immersed in liquid xenon was varied between 1 mm to 9.5 mm.

  15. Attempt to produce both thick and thinned flowing superfluid films

    International Nuclear Information System (INIS)

    Kwoh, D.S.W.; Goodstein, D.L.

    1977-01-01

    As discussed in the preceding paper by Graham, a controversy has arisen over conflicting reports of whether a superfluid film becomes thinned when it is set into motion. We have performed an experiment designed to reproduce as nearly as possible two previous measurements giving opposite results. Our experiment is also designed to test directly a theory proposed by Goodstein and Saffman which would have reconciled the apparently contradictory observations. We are unable to reproduce the thick-film result, finding kinetic thinning in all cases, even where the Goodstein--Saffman theory would lead us to expect a thick film. We conclude, in agreement with Graham, that the film is always thinned when it flows, and that the theory is therefore unnecessary

  16. Dynamic-speckle profilometer for online measurements of coating thickness

    Energy Technology Data Exchange (ETDEWEB)

    Kamshilin, A A [Laboratory of Optical Sensor Technology, Department of Physics, University of Kuopio, PO Box 1627, FIN-70211 Kuopio (Finland); Semenov, D V [Laboratory of Optical Sensor Technology, Department of Physics, University of Kuopio, PO Box 1627, FIN-70211 Kuopio (Finland); Nippolainen, E [Laboratory of Optical Sensor Technology, Department of Physics, University of Kuopio, PO Box 1627, FIN-70211 Kuopio (Finland); Miridonov, S [Optics Department, CICESE, Carr. Tijuana-Ensenada km 107, C.P. 22860, A.P. 360, Ensenada, B.C. (Mexico)

    2007-10-15

    Online control of thickness of as-deposited coatings is of great importance because it directly affects the quality of protective coatings. We present a novel approach that enables online, real-time and non-contact measurements thickness of thermally sprayed coatings. The proposed technique uses dynamic speckles generated by rapidly deflecting laser beam. Within 10 ms the system can scan 500 times a small area of the deposited layer thus resulting in measurement accuracy of 5 microns irrespectively of the layer roughness. In comparison with traditional optical triangulation technique of distance measurements, our system has following advantages: (i) much simpler optical scheme that includes conventional photodiode to measure the scattered light, (ii) much simpler electronics for real-time data processing, (iii) much higher speed of measurements.

  17. Dynamic-speckle profilometer for online measurements of coating thickness

    International Nuclear Information System (INIS)

    Kamshilin, A A; Semenov, D V; Nippolainen, E; Miridonov, S

    2007-01-01

    Online control of thickness of as-deposited coatings is of great importance because it directly affects the quality of protective coatings. We present a novel approach that enables online, real-time and non-contact measurements thickness of thermally sprayed coatings. The proposed technique uses dynamic speckles generated by rapidly deflecting laser beam. Within 10 ms the system can scan 500 times a small area of the deposited layer thus resulting in measurement accuracy of 5 microns irrespectively of the layer roughness. In comparison with traditional optical triangulation technique of distance measurements, our system has following advantages: (i) much simpler optical scheme that includes conventional photodiode to measure the scattered light, (ii) much simpler electronics for real-time data processing, (iii) much higher speed of measurements

  18. Oxide thickness measurement for monitoring fuel performance at high burnup

    International Nuclear Information System (INIS)

    Jaeger, M.A.; Van Swam, L.F.P.; Brueck-Neufeld, K.

    1991-01-01

    For on-site monitoring of the fuel performance at high burnup, Advanced Nuclear Fuels uses the linear scan eddy current method to determine the oxide thickness of irradiated Zircaloy fuel cans. Direct digital data acquisition methods are employed to collect the data on magnetic storage media. This field-proven methodology allows oxide thickness measurements and rapid interpretation of the data during the reactor outages and makes it possible to immediately reinsert the assemblies for the next operating cycle. The accuracy of the poolside measurements and data acquisition/interpretation techniques have been verified through hot cell metallographic measurements of rods previously measured in the fuel pool. The accumulated data provide a valuable database against which oxide growth models have been benchmarked and allow for effective monitoring of fuel performance. (orig.) [de

  19. THICK-DISK EVOLUTION INDUCED BY THE GROWTH OF AN EMBEDDED THIN DISK

    International Nuclear Information System (INIS)

    Villalobos, Alvaro; Helmi, Amina; Kazantzidis, Stelios

    2010-01-01

    We perform collisionless N-body simulations to investigate the evolution of the structural and kinematical properties of simulated thick disks induced by the growth of an embedded thin disk. The thick disks used in the present study originate from cosmologically common 5:1 encounters between initially thin primary disk galaxies and infalling satellites. The growing thin disks are modeled as static gravitational potentials and we explore a variety of growing-disk parameters that are likely to influence the response of thick disks. We find that the final thick-disk properties depend strongly on the total mass and radial scale length of the growing thin disk, and much less sensitively on its growth timescale and vertical scale height as well as the initial sense of thick-disk rotation. Overall, the growth of an embedded thin disk can cause a substantial contraction in both the radial and vertical direction, resulting in a significant decrease in the scale lengths and scale heights of thick disks. Kinematically, a growing thin disk can induce a notable increase in the mean rotation and velocity dispersions of thick-disk stars. We conclude that the reformation of a thin disk via gas accretion may play a significant role in setting the structure and kinematics of thick disks, and thus it is an important ingredient in models of thick-disk formation.

  20. Graphene spin diode: Strain-modulated spin rectification

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yunhua; Wang, B., E-mail: stslyl@mail.sysu.edu.cn, E-mail: wangbiao@mail.sysu.edu.cn [Sino-French Institute of Nuclear Engineering and Technology, School of Physics and Engineering, State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275 (China); Liu, Yulan, E-mail: stslyl@mail.sysu.edu.cn, E-mail: wangbiao@mail.sysu.edu.cn [School of Engineering, Sun Yat-sen University, Guangzhou 510275 (China)

    2014-08-04

    Strain effects on spin transport in a ferromagnetic/strained/normal graphene junction are explored theoretically. It is shown that the spin-resolved Fermi energy range can be controlled by the armchair direction strain because the strain-induced pseudomagnetic field suppresses the current. The spin rectification effect for the bias reversal occurs because of a combination of ferromagnetic exchange splitting and the broken spatial symmetry of the junction. In addition, the spin rectification performance can be tuned remarkably by manipulation of the strains. In view of this strain-modulated spin rectification effect, we propose that the graphene-based ferromagnetic/strained/normal junction can be used as a tunable spin diode.

  1. Model SH intelligent instrument for thickness measuring

    International Nuclear Information System (INIS)

    Liu Juntao; Jia Weizhuang; Zhao Yunlong

    1995-01-01

    The authors introduce Model SH Intelligent Instrument for thickness measuring by using principle of beta back-scattering and its application range, features, principle of operation, system design, calibration and specifications

  2. Greenland Radar Ice Sheet Thickness Measurements

    Data.gov (United States)

    National Aeronautics and Space Administration — Two 150-MHz coherent radar depth sounders were developed and flown over the Greenland ice sheet to obtain ice thickness measurements in support of PARCA...

  3. Fabrication of thick superconducting films by decantation

    Directory of Open Access Journals (Sweden)

    Julián Betancourt M.

    1991-07-01

    Full Text Available We have found superconducting behavior in thick films fabricated by decantation. In this paper we present the experimental method and results obtained using commercial copper substrates.

  4. APPLIED ORIGAMI. Origami of thick panels.

    Science.gov (United States)

    Chen, Yan; Peng, Rui; You, Zhong

    2015-07-24

    Origami patterns, including the rigid origami patterns in which flat inflexible sheets are joined by creases, are primarily created for zero-thickness sheets. In order to apply them to fold structures such as roofs, solar panels, and space mirrors, for which thickness cannot be disregarded, various methods have been suggested. However, they generally involve adding materials to or offsetting panels away from the idealized sheet without altering the kinematic model used to simulate folding. We develop a comprehensive kinematic synthesis for rigid origami of thick panels that differs from the existing kinematic model but is capable of reproducing motions identical to that of zero-thickness origami. The approach, proven to be effective for typical origami, can be readily applied to fold real engineering structures. Copyright © 2015, American Association for the Advancement of Science.

  5. Russian River Ice Thickness and Duration

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set consists of river ice thickness measurements, and beginning and ending dates for river freeze-up events from fifty stations in northern Russia. The...

  6. Central corneal thickness among glaucoma patients attending ...

    African Journals Online (AJOL)

    AAU_CHS

    ocular pressure measurement and is different among different ethnic population and subtypes of glaucoma. The central corneal thickness of different subtypes of glaucoma at Menelik II Hospital ... Intraocular pressure is a key element in the.

  7. Eddy current technologies for thick metal structures

    International Nuclear Information System (INIS)

    Takagi, Toshiyuki; Endo, Hisashi

    2004-01-01

    One of approach of an eddy current testing (ECT) for thick metal structures is introduced. The detection limit of ECT is capable of enlarging thick more than 10 mm, which is ordinarily about 5 mm, by the design of probe. On the basis of results of numerical analysis, the defect detection in thick and shape is evaluated by the distribution of experimental ECT signals. The problems of ECT for thick metal structures and measures, approach to probe design, the specifications of probe, evaluation of experimental results and defect detection are described. By ECT fast simulator, good slit sharp is simulated in the case of 10 and 20 mm of EDM slit length and 5, 10 and 15 mm of slit height. (S.Y.)

  8. investigating water absorption and thickness swelling tendencies

    African Journals Online (AJOL)

    HOD

    In addition, G30E (30% reinforced glass fibre in the epoxy composite) was more resilient to moisture ... determine its suitability as per its water absorption and thickness ... lower thermal conductivity and low density as outlined in the Tables.

  9. Arctic Sea Ice Freeboard and Thickness

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides measurements of sea ice freeboard and sea ice thickness for the Arctic region. The data were derived from measurements made by from the Ice,...

  10. Effects of hydrostatic strain on eigenstates of Möbius strips

    DEFF Research Database (Denmark)

    Lassen, Benny; Willatzen, Morten; Gravesen, Jens

    2011-01-01

    In this paper we theoretically investigate the allowed energies and associate wave-functions for Möbius strips with varying thicknesses. We show that the induced strain in fabricating these Möbius strips will have an pronounced impact on the energies and wave-functions for thick strips, while f...... for thin strips the impact of strain is negligible. We furthermore, show that a simpler strain free approximate theory base on differential geometry is in excellent agreement with detailed finite element calculations. © 2011 IEEE....

  11. Measuring autogenous strain of concrete with corrugated moulds

    DEFF Research Database (Denmark)

    Tian, Qian; Jensen, Ole Mejlhede

    2008-01-01

    A reliable technique to quantify autogenous strain is a prerequisite to numerical modeling in stress calculations for high performance concrete. The introducing of a special kind of corrugated tube mould helps to transforming volume strain measurement into liner strain measurement in horizontal...... direction for fluid concrete, which not only realizes the continuous monitoring of the autogenous shrinkage since casting, but also effectively eliminates the disturbance resulting from gravity, temperature variation and mould restraint on measuring results. Based on this measuring technique, this paper...

  12. Rifting Thick Lithosphere - Canning Basin, Western Australia

    Science.gov (United States)

    Czarnota, Karol; White, Nicky

    2016-04-01

    The subsidence histories and architecture of most, but not all, rift basins are elegantly explained by extension of ~120 km thick lithosphere followed by thermal re-thickening of the lithospheric mantle to its pre-rift thickness. Although this well-established model underpins most basin analysis, it is unclear whether the model explains the subsidence of rift basins developed over substantially thick lithosphere (as imaged by seismic tomography beneath substantial portions of the continents). The Canning Basin of Western Australia is an example where a rift basin putatively overlies lithosphere ≥180 km thick, imaged using shear wave tomography. Subsidence modelling in this study shows that the entire subsidence history of the account for the observed subsidence, at standard crustal densities, the lithospheric mantle is required to be depleted in density by 50-70 kg m-3, which is in line with estimates derived from modelling rare-earth element concentrations of the ~20 Ma lamproites and global isostatic considerations. Together, these results suggest that thick lithosphere thinned to > 120 km is thermally stable and is not accompanied by post-rift thermal subsidence driven by thermal re-thickening of the lithospheric mantle. Our results show that variations in lithospheric thickness place a fundamental control on basin architecture. The discrepancy between estimates of lithospheric thickness derived from subsidence data for the western Canning Basin and those derived from shear wave tomography suggests that the latter technique currently is limited in its ability to resolve lithospheric thickness variations at horizontal half-wavelength scales of <300 km.

  13. Phase Space Exchange in Thick Wedge Absorbers

    Energy Technology Data Exchange (ETDEWEB)

    Neuffer, David [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2017-01-01

    The problem of phase space exchange in wedge absorbers with ionization cooling is discussed. The wedge absorber exchanges transverse and longitudinal phase space by introducing a position-dependent energy loss. In this paper we note that the wedges used with ionization cooling are relatively thick, so that single wedges cause relatively large changes in beam phase space. Calculation methods adapted to such “thick wedge” cases are presented, and beam phase-space transformations through such wedges are discussed.

  14. Geologic thickness data: Candidate repository horizons

    International Nuclear Information System (INIS)

    Cross, R.W.; Fairchild, K.R.

    1985-01-01

    This data package contains information on the thickness of the Umtanum, McCoy Canyon, Cohassett, and Rocky Coulee flows and their intraflow structures in 20 boreholes and 2 surface sections in the Pasco Basin. Thickness data are for total flow, flow top, entablature, and colonnade (or just flow top and dense interior in some cases). Summary figures which contain descriptions and footages are included

  15. Preparation of tantalum targets of known thicknesses

    International Nuclear Information System (INIS)

    Alexander, J.R.; Wirth, H.L.

    1985-01-01

    A series of carbon-backed tantalum targets were produced in a heavy ion sputtering system with a Penning ion source. The target thicknesses were then measured using the alpha-ray energy loss method. The resulting tabulated measurements were reproducible and make possible the production of carbon-backed tantalum targets with pre-determined thicknesses ranging from 20 μg/cm 2 to 1 mg/cm 2 . (orig.)

  16. X-ray study of strain relaxation in heteroepitaxial AlGaAs layers annealed under high hydrostatic pressure

    International Nuclear Information System (INIS)

    Bak-Misiuk, J.; Adamczewska, J.; Kozanecki, A.; Kuritsyn, D.; Glukhanyuk, W.; Trela, J.; Misiuk, A.; Reginski, K.; Wierzchowski, W.; Wieteska, K.

    2002-01-01

    The effect of treatment at up to 1270 K under hydrostatic argon pressure, up to 1.2 GPa, on strain relaxation of AlGaAs layers was investigated by X-ray diffraction and related methods. The 1.5 μm thick AlGaAs layers were grown by molecular beam epitaxy method on 001 oriented semi-insulating GaAs substrate at 950 K. An increase of intensity of X-ray diffuse scattering, originating from hydrostatic pressure-induced misfit dislocations, was observed for all treated samples. For the samples treated at 920 K during 1 h under 0.6 GPa, the diffuse scattering was confined to the [110] crystallographic direction, perpendicular to the direction of dislocations. For the samples treated at 1.2 GPa, a different behaviour is observed, namely the diffuse scattering extends along all azimuthal directions, indicating that dislocations are created in both [110] and [1 - 10] directions. The change of strain after the treatment was most pronounced for the samples treated at 1.2 GPa for 1 h at 920 K. (author)

  17. Structure, surface morphology and electrical properties of evaporated Ni thin films: Effect of substrates, thickness and Cu underlayer

    International Nuclear Information System (INIS)

    Hemmous, M.; Layadi, A.; Guittoum, A.; Souami, N.; Mebarki, M.; Menni, N.

    2014-01-01

    Series of Ni thin films have been deposited by thermal evaporation onto glass, Si(111), Cu, mica and Al 2 O 3 substrates with and without a Cu underlayer. The Ni thicknesses, t, are in the 4 to 163 nm range. The Cu underlayer has also been evaporated with a Cu thickness equal to 27, 52 and 90 nm. The effects of substrate, the Ni thickness and the Cu underlayer on the structural and electrical properties of Ni are investigated. Rutherford Backscattering Spectroscopy was used to probe the Ni/Substrate and Ni–Cu underlayer interfaces and to measure both Ni and Cu thicknesses. The texture, the strain and the grain size values were derived from X-ray diffraction experiments. The surface morphology is studied by means of a Scanning Electron Microscope. The electrical resistivity is measured by the four point probe. The Ni films grow with the <111> texture on all substrates. The Ni grain sizes D increase with increasing thickness for the glass, Si and mica substrates and decrease for the Cu one. The strain ε is positive for low thickness, decreases in magnitude and becomes negative as t increases. With the Cu underlayer, the growth mode goes through two phases: first, the stress (grain size) increases (decreases) up to a critical thickness t Cr , then stress is relieved and grain size increases. All these results will be discussed and correlated. - Highlights: • The structural and electrical properties of evaporated Ni thin films are studied. • The effect of thickness, substrates and Cu underlayer is investigated. • Texture, grain size, strain and surface morphology are discussed. • Growth modes are described as a function of Ni thickness

  18. Mechanical and electronic properties of monolayer and bilayer phosphorene under uniaxial and isotropic strains.

    Science.gov (United States)

    Hu, Ting; Han, Yang; Dong, Jinming

    2014-11-14

    The mechanical and electronic properties of both the monolayer and bilayer phosphorenes under either isotropic or uniaxial strain have been systematically investigated using first-principles calculations. It is interesting to find that: 1) Under a large enough isotropic tensile strain, the monolayer phosphorene would lose its pucker structure and transform into a flat hexagonal plane, while two inner sublayers of the bilayer phosphorene could be bonded due to its interlayer distance contraction. 2) Under the uniaxial tensile strain along a zigzag direction, the pucker distance of each layer in the bilayer phosphorene can exhibit a specific negative Poisson's ratio. 3) The electronic properties of both the monolayer and bilayer phosphorenes are sensitive to the magnitude and direction of the applied strains. Their band gaps decrease more rapidly under isotropic compressive strain than under uniaxial strain. Also, their direct-indirect band gap transitions happen at the larger isotropic tensile strains compared with that under uniaxial strain. 4) Under the isotropic compressive strain, the bilayer phosphorene exhibits a transition from a direct-gap semiconductor to a metal. In contrast, the monolayer phosphorene initially has the direct-indirect transition and then transitions to a metal. However, under isotropic tensile strain, both the bilayer and monolayer phosphorene show the direct-indirect transition and, finally, the transition to a metal. Our numerical results may open new potential applications of phosphorene in nanoelectronics and nanomechanical devices by external isotropic strain or uniaxial strain along different directions.

  19. Elastic stability of thick auxetic plates

    International Nuclear Information System (INIS)

    Lim, Teik-Cheng

    2014-01-01

    Auxetic materials and structures exhibit a negative Poisson’s ratio while thick plates encounter shear deformation, which is not accounted for in classical plate theory. This paper investigates the effect of a negative Poisson’s ratio on thick plates that are subjected to buckling loads, taking into consideration the shear deformation using Mindlin plate theory. Using a highly accurate shear correction factor that allows for the effect of Poisson’s ratio, the elastic stability of circular and square plates are evaluated in terms of dimensionless parameters, namely the Mindlin-to-Kirchhoff critical buckling load ratio and Mindlin critical buckling load factors. Results for thick square plates reveal that both parameters increase as the Poisson’s ratio becomes more negative. In the case of thick circular plates, the Mindlin-to-Kirchhoff critical buckling load ratios and the Mindlin critical buckling load factors increase and decrease, respectively, as the Poisson’s ratio becomes more negative. The results obtained herein show that thick auxetic plates behave as thin conventional plates, and therefore suggest that the classical plate theory can be used to evaluate the elastic stability of thick plates if the Poisson’s ratio of the plate material is sufficiently negative. The results also suggest that materials with highly negative Poisson’s ratios are recommended for square plates, but not circular plates, that are subjected to buckling loads. (paper)

  20. Effectiveness of dispersants on thick oil slicks

    International Nuclear Information System (INIS)

    Ross, S.; Belore, R.

    1993-01-01

    Experiments were conducted to determine the relationship between dispersant effectiveness and oil slick thickness, and thereby determine the optimum time for applying dispersant onto spilled oil at sea. Tests were completed at a lab-scale level by varying the three parameters of oil type, dispersant application, and oil thickness. The tests were intended to be comparative only. The primary oils used were Alberta sweet mix blend and Hibernia B-27 crude. The dispersant, Corexit 9527, was applied either premixed with the oil, dropwise in one application, or dropwise in multiple applications to simulate a multi-hit aircraft operation. The apparatus used in the experiment was an oscillating hoop tank, with oil-containing rings used to obtain and maintain uniform slick thickness. The results indicate that the effectiveness potential of a chemical dispersant does not decrease as slick thickness increases. In fact, results of the tests involving Hibernia oil suggest that oils that tend to herd easily would be treated more effectively if dispersant were applied when the oil was relatively thick (1 mm or greater) to avoid herding problems. The oil slicks premixed with dispersant did not disperse well in the thick oil tests, not because of dispersant-oil interaction problems but because of reduced mixing energy. 6 refs., 4 figs., 1 tab

  1. Strength-toughness requirements for thick walled high pressure vessels

    International Nuclear Information System (INIS)

    Kapp, J.A.

    1990-01-01

    The strength and toughness requirements of materials for use in high pressure vessels has been the subject of some discussion in the meetings of the Materials Task Group of the Special Working Group High Pressure Vessels. A fracture mechanics analysis has been performed to theoretically establish the required toughness for a high pressure vessel. This paper reports that the analysis performed is based on the validity requirement for plane strain fracture of fracture toughness test specimens. This is that at the fracture event, the crack length, uncracked ligament, and vessel length must each be greater than fifty times the crack tip plastic zone size for brittle fracture to occur. For high pressure piping applications, the limiting physical dimension is the uncracked ligament, as it can be assumed that the other dimensions are always greater than fifty times the crack tip plastic zone. To perform the fracture mechanics analysis several parameters must be known: these include vessel dimensions, material strength, degree of autofrettage, and design pressure. Results of the analysis show, remarkably, that the effects of radius ratio, pressure and degree of autofrettage can be ignored when establishing strength and toughness requirements for code purposes. The only parameters that enter into the calculation are yield strength, toughness and vessel thickness. The final results can easily be represented as a graph of yield strength against toughness on which several curves, one for each vessel thickness, are plotted

  2. Controllable spin-charge transport in strained graphene nanoribbon devices

    Energy Technology Data Exchange (ETDEWEB)

    Diniz, Ginetom S., E-mail: ginetom@gmail.com; Guassi, Marcos R. [Institute of Physics, University of Brasília, 70919-970, Brasília-DF (Brazil); Qu, Fanyao [Institute of Physics, University of Brasília, 70919-970, Brasília-DF (Brazil); Department of Physics, The University of Texas at Austin, Austin, Texas 78712 (United States)

    2014-09-21

    We theoretically investigate the spin-charge transport in two-terminal device of graphene nanoribbons in the presence of a uniform uniaxial strain, spin-orbit coupling, exchange field, and smooth staggered potential. We show that the direction of applied strain can efficiently tune strain-strength induced oscillation of band-gap of armchair graphene nanoribbon (AGNR). It is also found that electronic conductance in both AGNR and zigzag graphene nanoribbon (ZGNR) oscillates with Rashba spin-orbit coupling akin to the Datta-Das field effect transistor. Two distinct strain response regimes of electronic conductance as function of spin-orbit couplings magnitude are found. In the regime of small strain, conductance of ZGNR presents stronger strain dependence along the longitudinal direction of strain. Whereas for high values of strain shows larger effect for the transversal direction. Furthermore, the local density of states shows that depending on the smoothness of the staggered potential, the edge states of AGNR can either emerge or be suppressed. These emerging states can be determined experimentally by either spatially scanning tunneling microscope or by scanning tunneling spectroscopy. Our findings open up new paradigms of manipulation and control of strained graphene based nanostructure for application on novel topological quantum devices.

  3. Lattice strain measurements on sandstones under load using neutron diffraction

    Science.gov (United States)

    Frischbutter, A.; Neov, D.; Scheffzük, Ch.; Vrána, M.; Walther, K.

    2000-11-01

    Neutron diffraction methods (both time-of-flight- and angle-dispersive diffraction) are applied to intracrystalline strain measurements on geological samples undergoing uniaxial increasing compressional load. The experiments were carried out on Cretaceous sandstones from the Elbezone (East Germany), consisting of >95% quartz which are bedded but without crystallographic preferred orientation of quartz. From the stress-strain relation the Young's modulus for our quartz sample was determined to be (72.2±2.9) GPa using results of the neutron time-of-flight method. The influence of different kinds of bedding in sandstones (laminated and convolute bedding) could be determined. We observed differences of factor 2 (convolute bedding) and 3 (laminated bedding) for the elastic stiffness, determined with angle dispersive neutron diffraction (crystallographic strain) and with strain gauges (mechanical strain). The data indicate which geological conditions may influence the stress-strain behaviour of geological materials. The influence of bedding on the stress-strain behaviour of a laminated bedded sandstone was indicated by direct residual stress measurements using neutron time-of-flight diffraction. The measurements were carried out six days after unloading the sample. Residual strain was measured for three positions from the centre to the periphery and within two radial directions of the cylinder. We observed that residual strain changes from extension to compression in a different manner for two perpendicular directions of the bedding plane.

  4. Strain-controlled electrocatalysis on multimetallic nanomaterials

    Science.gov (United States)

    Luo, Mingchuan; Guo, Shaojun

    2017-11-01

    Electrocatalysis is crucial for the development of clean and renewable energy technologies, which may reduce our reliance on fossil fuels. Multimetallic nanomaterials serve as state-of-the-art electrocatalysts as a consequence of their unique physico-chemical properties. One method of enhancing the electrocatalytic performance of multimetallic nanomaterials is to tune or control the surface strain of the nanomaterials, and tremendous progress has been made in this area in the past decade. In this Review, we summarize advances in the introduction, tuning and quantification of strain in multimetallic nanocrystals to achieve more efficient energy conversion by electrocatalysis. First, we introduce the concept of strain and its correlation with other key physico-chemical properties. Then, using the electrocatalytic reduction of oxygen as a model reaction, we discuss the underlying mechanisms behind the strain-adsorption-reactivity relationship based on combined classical theories and models. We describe how this knowledge can be harnessed to design multimetallic nanocrystals with optimized strain to increase the efficiency of oxygen reduction. In particular, we highlight the unexpectedly beneficial (and previously overlooked) role of tensile strain from multimetallic nanocrystals in improving electrocatalysis. We conclude by outlining the challenges and offering our perspectives on the research directions in this burgeoning field.

  5. Cardiac biplane strain imaging: initial in vivo experience.

    NARCIS (Netherlands)

    Lopata, R.G.P.; Nillesen, M.M.; Verrijp, C.N.; Singh, S.K.; Lammens, M.M.Y.; Laak, J.A.W.M. van der; Wetten, H.B. van; Thijssen, J.M.; Kapusta, L.; Korte, C.L. de

    2010-01-01

    In this study, first we propose a biplane strain imaging method using a commercial ultrasound system, yielding estimation of the strain in three orthogonal directions. Secondly, an animal model of a child's heart was introduced that is suitable to simulate congenital heart disease and was used to

  6. Family Conflict as a Mediator of Caregiver Strain

    Science.gov (United States)

    Scharlach, Andrew; Li, Wei; Dalvi, Tapashi B.

    2006-01-01

    The present study used structural equation modeling to examine the potential mediating effect of family conflict on caregiver strain in a randomly drawn household sample of 650 adults with primary care responsibility for an adult age 50 or older with a mental disability. Caregiver strain was directly influenced by the conflict, disagreements, and…

  7. Thick filament mechano-sensing is a calcium-independent regulatory mechanism in skeletal muscle.

    Science.gov (United States)

    Fusi, L; Brunello, E; Yan, Z; Irving, M

    2016-10-31

    Recent X-ray diffraction studies on actively contracting fibres from skeletal muscle showed that the number of myosin motors available to interact with actin-containing thin filaments is controlled by the stress in the myosin-containing thick filaments. Those results suggested that thick filament mechano-sensing might constitute a novel regulatory mechanism in striated muscles that acts independently of the well-known thin filament-mediated calcium signalling pathway. Here we test that hypothesis using probes attached to the myosin regulatory light chain in demembranated muscle fibres. We show that both the extent and kinetics of thick filament activation depend on thick filament stress but are independent of intracellular calcium concentration in the physiological range. These results establish direct control of myosin motors by thick filament mechano-sensing as a general regulatory mechanism in skeletal muscle that is independent of the canonical calcium signalling pathway.

  8. Quantitative description of a high Jc Nb-Ti superconductor during its final optimization strain. I. Microstructure, Tc, Hc2, and resistivity

    International Nuclear Information System (INIS)

    Meingast, C.; Lee, P.J.; Larbalestier, D.C.

    1989-01-01

    A most important step in the critical current density (J c ) optimization of Nb-Ti is the large final drawing strain, in which α-Ti precipitates, initially approximately equiaxed and 100--200 nm in diameter, are drawn into ribbons, whose thickness (1--2 nm) is less than the superconducting coherence length [ξ (4.2 K)∼5 nm]. Using transmission electron microscopy, the precipitate thickness, spacing, cross-sectional area, and circumference were measured over the whole final drawing strain range. Each of these parameters was found to have a simple power dependence on the wire diameter. T c , H c2 , and the resistivity (ρ n ) were also change considerably during the refinement of the precipitates. Directly after precipitation, T c increased, and (dH c2 /dT) T c and ρ n were reduced from the single-phase values. Drawing the wire returned these parameters to their single-phase values, as the precipitate thickness was reduced to less than ξ. This observation explains a long-standing peculiarity in this system, namely that the optimum H c2 of high J c conductors occurs for a composition close to Nb 46 wt.% Ti, even when the precipitation of 18 vol % of α-Ti shifts the matrix composition to a Nb-rich composition of theoretically lower H c2

  9. Sampling supraglacial debris thickness using terrestrial photogrammetry

    Science.gov (United States)

    Nicholson, Lindsey; Mertes, Jordan

    2017-04-01

    The melt rate of debris-covered ice differs to that of clean ice primarily as a function of debris thickness. The spatial distribution of supraglacial debris thickness must therefore be known in order to understand how it is likely to impact glacier behaviour, and meltwater contribution to local hydrological resources and global sea level rise. However, practical means of determining debris cover thickness remain elusive. In this study we explore the utility of terrestrial photogrammetry to produce high resolution, scaled and texturized digital terrain models of debris cover exposures above ice cliffs as a means of quantifying and characterizing debris thickness. Two Nikon D5000 DSLRs with Tamron 100mm lenses were used to photograph a sample area of the Ngozumpa glacier in the Khumbu Himal of Nepal in April 2016. A Structure from Motion workflow using Agisoft Photoscan software was used to generate a surface models with <10cm resolution. A Trimble Geo7X differential GPS with Zephyr antenna, along with a local base station, was used to precisely measure marked ground control points to scale the photogrammetric surface model. Measurements of debris thickness along the exposed cliffline were made from this scaled model, assuming that the ice surface at the debris-ice boundary is horizontal, and these data are compared to 50 manual point measurements along the same clifftops. We conclude that sufficiently high resolution photogrammetry, with precise scaling information, provides a useful means to determine debris thickness at clifftop exposures. The resolution of the possible measurements depends on image resolution, the accuracy of the ground control points and the computational capacity to generate centimetre scale surface models. Application of such techniques to sufficiently high resolution imagery from UAV-borne cameras may offer a powerful means of determining debris thickness distribution patterns over debris covered glacier termini.

  10. Choroidal thickness in traumatic optic neuropathy.

    Science.gov (United States)

    Lee, Ju-Yeun; Eo, Doo-Ri; Park, Kyung-Ah; Oh, Sei Yeul

    2017-12-01

    To examine the choroidal thickness in patients with indirect traumatic optic neuropathy (TON) Methods: Patients with unilateral traumatic optic neuropathy over a period of 4 years were included in this study. Horizontal and vertical enhanced-depth imaging (EDI) from spectral-domain optical coherence tomography (SD-OCT) scans of the fovea were obtained in patients with unilateral TON within 2 weeks of injury. The main outcome measure was the choroidal thickness at nine locations. The choroidal thickness was compared between affected and unaffected eyes in the TON group, and the mean difference in the choroidal thickness in both eyes was compared between TON and control groups. A total of 16 patients and 20 control subjects were included. The choroidal thickness at horizontal, vertical and average subfoveal, inner temporal, and outer inferior locations was significantly thicker (13-23%) in affected eyes than in unaffected fellow eyes (p = 0.042, 0.046, 0.024, 0.013, 0.018, and 0.027, respectively). The mean difference value between choroidal thickness measurements in both eyes was significantly larger in the TON group than in the control group at the horizontal, vertical and average subfoveal, inner temporal, inner nasal, inner superior, inner inferior, and outer superior locations (p = 0.001, 0.011,  0.05). Eyes affected by TON showed a regionally thicker choroid than unaffected fellow eye. This thick choroid might be due to impaired blood circulation and vascular remodeling of the optic nerve head and choroid. These results help to better understand the pathophysiology of TON.

  11. Thickness filters for gradient based multi-material and thickness optimization of laminated composite structures

    DEFF Research Database (Denmark)

    Sørensen, Rene; Lund, Erik

    2015-01-01

    This paper presents a new gradient based method for performing discrete material and thickness optimization of laminated composite structures. The novelty in the new method lies in the application of so-called casting constraints, or thickness filters in this context, to control the thickness...... variation throughout the laminate. The filters replace the layerwise density variables with a single continuous through-the-thickness design variable. Consequently, the filters eliminate the need for having explicit constraints for preventing intermediate void through the thickness of the laminate....... Therefore, the filters reduce both the number of constraints and design variables in the optimization problem. Based upon a continuous approximation of a unit step function, the thickness filters are capable of projecting discrete 0/1 values to the underlying layerwise or ”physical” density variables which...

  12. A new attempt of measurement film thickness by x-ray diffractometry

    International Nuclear Information System (INIS)

    Kosaka, Masao; Kobayashi, Hideo

    1987-01-01

    In order to make film thickness measurements independent from the property or the structure of the film materials or the substrate, it is needed to adopt instead of directly utilizing the X-ray diffraction intensity, or attenuation information obtained from the substrate or film material, other new methods for measurement. Among the information obtained by X-ray diffraction, if intensity is excluded, others are F.W.H.M. and diffraction angle, only. If it is possible to investigate the film thickness dependency of the diffraction angle, it should be possible to measure the film thickness by diffraction angle. However, since diffraction angle has no film thickness dependency, it cannot be used directly for measurement. However, if we consider the principle of the X-ray diffractometer method, although it may be very slight, the substrate will be eccentric from the revolving center of the goniometer on account of the thickness of the film. If eccentricity occurs, this will cause changes in the diffraction angle. If we set the radius of the goniometer as R, diffraction angle θ, and the eccentricity from the revolving center of the specimen surface X, the deflection angle Δ2θ of 2θ may be expressed by Δ2θ = -2X · COSθ/R Thus, if X is caused by the film thickness, and by measuring the Δ2θ, it will be possible to measure the film thickness. As a result of the experiment, it was found that X-ray diffraction method can be used for the measurement of the film thickness of a few microns or above by utilizing the eccentricity caused by the film thickness. Especially it has the advantage of being able to measure thick films that X-rays will not penetrate, without being influenced by the chemical structure of the film or the substrates. (author)

  13. Residual Strain Characteristics of Nickel-coated FBG Sensors

    International Nuclear Information System (INIS)

    Cho, Won-Jae; Hwang, A-Reum; Kim, Sang-Woo

    2017-01-01

    A metal-coated FBG (fiber Bragg grating) sensor has a memory effect, which can recall the maximum strains experienced by the structure. In this study, a nickel-coated FBG sensor was fabricated through electroless (i.e., chemical plating) and electroplating. A thickness of approximately 43 μm of a nickel layer was achieved. Then, we conducted cyclic loading tests for the fabricated nickel-coated FBG sensors to verify their capability to produce residual strains. The results revealed that the residual strain induced by the nickel coating linearly increased with an increase in the maximum strain experienced by the sensor. Therefore, we verified that a nickel-coated FBG sensor has a memory effect. The fabrication methods and the results of the cycle loading test will provide basic information and guidelines in the design of a nickel-coated FBG sensor when it is applied in the development of structural health monitoring techniques.

  14. Residual Strain Characteristics of Nickel-coated FBG Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Won-Jae; Hwang, A-Reum; Kim, Sang-Woo [Hankyong National Univ., Ansung (Korea, Republic of)

    2017-07-15

    A metal-coated FBG (fiber Bragg grating) sensor has a memory effect, which can recall the maximum strains experienced by the structure. In this study, a nickel-coated FBG sensor was fabricated through electroless (i.e., chemical plating) and electroplating. A thickness of approximately 43 μm of a nickel layer was achieved. Then, we conducted cyclic loading tests for the fabricated nickel-coated FBG sensors to verify their capability to produce residual strains. The results revealed that the residual strain induced by the nickel coating linearly increased with an increase in the maximum strain experienced by the sensor. Therefore, we verified that a nickel-coated FBG sensor has a memory effect. The fabrication methods and the results of the cycle loading test will provide basic information and guidelines in the design of a nickel-coated FBG sensor when it is applied in the development of structural health monitoring techniques.

  15. Strain engineering of perovskite thin films using a single substrate

    International Nuclear Information System (INIS)

    Janolin, P-E; Guiblin, N; Dkhil, B; Anokhin, A S; Mukhortov, V M; Golovko, Yu I; Gui, Z; Bellaiche, L; Ravy, S; El Marssi, M; Yuzyuk, Yu I

    2014-01-01

    Combining temperature-dependent x-ray diffraction, Raman spectroscopy and first-principles-based effective Hamiltonian calculations, we show that varying the thickness of (Ba 0.8 Sr 0.2 )TiO 3 (BST) thin films deposited on the same single substrate (namely, MgO) enables us to change not only the magnitude but also the sign of the misfit strain. Such previously overlooked control of the strain allows several properties of these films (e.g. Curie temperature, symmetry of ferroelectric phases, dielectric response) to be tuned and even optimized. Surprisingly, such desired control of the strain (and of the resulting properties) originates from an effect that is commonly believed to be detrimental to functionalities of films, namely the existence of misfit dislocations. The present study therefore provides a novel route to strain engineering, as well as leading us to revisit common beliefs. (fast track communication)

  16. Anisotropic nature of radially strained metal tubes

    Science.gov (United States)

    Strickland, Julie N.

    Metal pipes are sometimes swaged by a metal cone to enlarge them, which increases the strain in the material. The amount of strain is important because it affects the burst and collapse strength. Burst strength is the amount of internal pressure that a pipe can withstand before failure, while collapse strength is the amount of external pressure that a pipe can withstand before failure. If the burst or collapse strengths are exceeded, the pipe may fracture, causing critical failure. Such an event could cost the owners and their customers millions of dollars in clean up, repair, and lost time, in addition to the potential environmental damage. Therefore, a reliable way of estimating the burst and collapse strength of strained pipe is desired and valuable. The sponsor currently rates strained pipes using the properties of raw steel, because those properties are easily measured (for example, yield strength). In the past, the engineers assumed that the metal would be work-hardened when swaged, so that yield strength would increase. However, swaging introduces anisotropic strain, which may decrease the yield strength. This study measured the yield strength of strained material in the transverse and axial direction and compared them to raw material, to determine the amount of anisotropy. This information will be used to more accurately determine burst and collapse ratings for strained pipes. More accurate ratings mean safer products, which will minimize risk for the sponsor's customers. Since the strained metal has a higher yield strength than the raw material, using the raw yield strength to calculate burst and collapse ratings is a conservative method. The metal has even higher yield strength after strain aging, which indicates that the stresses are relieved. Even with the 12% anisotropy in the strained and 9% anisotropy in the strain aged specimens, the raw yield strengths are lower and therefore more conservative. I recommend that the sponsor continue using the raw

  17. A methodology to obtain strain indicators under deep drawing multiaxial stresses. Application to DC-05 electro galvanized steel (UNE in ISO 10130)

    International Nuclear Information System (INIS)

    Miguel, V.; Catalayud, A.; Ferrer, C.

    2007-01-01

    In this work a methodology to investigate deep drawing quality steel sheets deformation tendency under multiaxial deep drawing stresses has been proposed. the method consists in assaying a sheet in a wedge die in order to order to introduce a pure shear estate in the material 0 degree centigree, 45 degree centigree and 90 degree centigree rolling directions are selected in the assays, and transversal strain is the variable considered in them. a strain coefficient 0/% has been defined in order to evaluate thickness variations in the test. almost no changes in thickness have been registered and this indicates that strain carried out in the test is similar to that taking place in deep drawing. The stress necessary for practice a certain plastic deformation is obtained too and a potential function between them is formulated. Indicators presented in this work are compared to anisotropy and strength coefficients obtained in normalized tensile tests. these results allow us to justify the steel behaviour in the cup deep drawing processes related to ear forming. (Author) 11 refs

  18. Strain field due to self-interstitial impurity in Ni

    Indian Academy of Sciences (India)

    The embedded-atom method have been applied to study the strain field ... coordinates which are essentially the Fourier inverses of the direct space ..... stiffness, low coefficient of thermal expansion and chemical compatibility in a variety of.

  19. Thermal and mechanical stresses in a functionally graded thick sphere

    International Nuclear Information System (INIS)

    Eslami, M.R.; Babaei, M.H.; Poultangari, R.

    2005-01-01

    In this paper, a general solution for the one-dimensional steady-state thermal and mechanical stresses in a hollow thick sphere made of functionally graded material is presented. The temperature distribution is assumed to be a function of radius, with general thermal and mechanical boundary conditions on the inside and outside surfaces of the sphere. The material properties, except Poisson's ratio, are assumed to vary along the radius r according to a power law function. The analytical solution of the heat conduction equation and the Navier equation lead to the temperature profile, radial displacement, radial stress, and hoop stress as a function of radial direction

  20. A database of worldwide glacier thickness observations

    DEFF Research Database (Denmark)

    Gärtner-Roer, I.; Naegeli, K.; Huss, M.

    2014-01-01

    One of the grand challenges in glacier research is to assess the total ice volume and its global distribution. Over the past few decades the compilation of a world glacier inventory has been well-advanced both in institutional set-up and in spatial coverage. The inventory is restricted to glacier...... the different estimation approaches. This initial database of glacier and ice caps thickness will hopefully be further enlarged and intensively used for a better understanding of the global glacier ice volume and its distribution....... surface observations. However, although thickness has been observed on many glaciers and ice caps around the globe, it has not yet been published in the shape of a readily available database. Here, we present a standardized database of glacier thickness observations compiled by an extensive literature...... review and from airborne data extracted from NASA's Operation IceBridge. This database contains ice thickness observations from roughly 1100 glaciers and ice caps including 550 glacier-wide estimates and 750,000 point observations. A comparison of these observational ice thicknesses with results from...

  1. Uncertainty estimation of ultrasonic thickness measurement

    International Nuclear Information System (INIS)

    Yassir Yassen, Abdul Razak Daud; Mohammad Pauzi Ismail; Abdul Aziz Jemain

    2009-01-01

    The most important factor that should be taken into consideration when selecting ultrasonic thickness measurement technique is its reliability. Only when the uncertainty of a measurement results is known, it may be judged if the result is adequate for intended purpose. The objective of this study is to model the ultrasonic thickness measurement function, to identify the most contributing input uncertainty components, and to estimate the uncertainty of the ultrasonic thickness measurement results. We assumed that there are five error sources significantly contribute to the final error, these sources are calibration velocity, transit time, zero offset, measurement repeatability and resolution, by applying the propagation of uncertainty law to the model function, a combined uncertainty of the ultrasonic thickness measurement was obtained. In this study the modeling function of ultrasonic thickness measurement was derived. By using this model the estimation of the uncertainty of the final output result was found to be reliable. It was also found that the most contributing input uncertainty components are calibration velocity, transit time linearity and zero offset. (author)

  2. Model-independent determination of the strain distribution for a SiGe/Si superlattice using X-ray diffractometry data

    International Nuclear Information System (INIS)

    Nikulin, A.Y.; Stevenson, A.W.; Hashizume, H.

    1996-01-01

    The strain distribution in a Si 0.9 Ge 0.l/Si superlattice is determined from x-ray diffractometry data with a 25 Angstroms depth resolution. A logarithmic dispersion relation is used to determine the phase of the structure factor with information available a priori on the sample structure. Phase information is obtained from the observed reflection intensity via a logarithmic Hilbert transform and the a priori information is used to select the zeros to be included in the solution. The reconstructed lattice strain profile clearly resolves SiGe and Si layers of 90 - 160 Angstroms thickness alternately stacked on a silicon substrate. The SiGe layer is found to have a lattice spacing in the surface-normal direction significantly smaller than predicted by Vegard's law. The result is supported by very good agreement of the simulated rocking curve profile with the observation. 18 refs., 1 tab., 5 figs

  3. Development of a noise filter for radiation thickness gagemeter

    International Nuclear Information System (INIS)

    Jee, C. W.; Kim, Y. T.; Lee, H. H.

    1995-01-01

    The objective of this study is to develop a filter which attenuates sensor noises of radiation thickness gagemeters of the fifth stand of TCM No. 1 in Pohang steel works. The thickness control loop for the fifth stand is modelled as a system for filter design, where the system input is the speed control input and the system output is the gagemeter output. In the design of a filter, the system is described by an ARMAX(AutoRegressive Moving-Average with auXiliary input) model. The parameters of this model are then estimated by using a recursive least square method. Secondly, the ARMAX model, the estimated system, is transformed into an observer canonical state space form. Thirdly, Kalman filtering is applied to obtain optimal estimates of the state and hence those of thickness measurements of steel strips. In addition, a separate low pass filter is designed, which is directly applicable to the gagemeter outputs. Finally, the designed filter algorithms are implemented and tested on a VMEbus board computer under VxWorks real-time operating system. (author)

  4. Sea-Ice Thickness Monitoring from Sensor Equipped Inuit Sleds

    Science.gov (United States)

    Rodwell, Shane; Jones, Bryn; Wilkinson, Jeremy

    2013-04-01

    A novel instrumentation package capable of measuring sea-ice thickness autonomously has been designed for long-term deployment upon the dog drawn sleds of the indigenous peoples of the Arctic. The device features a range of sensors that have been integrated with an electromagnetic induction device. These include a global positioning system, temperature sensor, tilt meter and accelerometer. Taken together, this system is able to provide accurate (+/-5cm) measurements of ice thickness with spatio-temporal resolution ranging from 1m to 5m every second. Autonomous data transmission capability is provided via GSM, inspired by the fact that many of the coastal communities in Greenland possess modern cell-phone infrastructure, enabling an inexpensive means of data-retrieval. Such data is essential in quantifying the sea-ice mass balance; given that existing satellite based systems are unable to measure ice-thickness directly. Field-campaign results from a prototype device, deployed in the North West of Greenland during three consecutive seasons, have demonstrated successful proof-of-concept when compared to data provided by ice mass balance (IMB) stations provided at fixed positions along the route of the sled. This project highlights not only the use of novel polar technology, but how opportunistic deployment using an existing roving platform (Inuit sledges) can provide economical, yet highly valuable, data for instrumentation development.

  5. Strain induced ionic conductivity enhancement in epitaxial Ce0.9Gd0.1O22d

    DEFF Research Database (Denmark)

    Kant, K. Mohan; Esposito, Vincenzo; Pryds, Nini

    2012-01-01

    -plane ionic conductivity in CGO epitaxial thin films. The ionic conductivity is found to increase with decrease in buffer layer thickness. The tailored ionic conductivity enhancement is explained in terms of close relationships among epitaxy, strain, and ionic conductivity....

  6. Radiography of large-volume thick-walled structures using transportable high-energy sources

    International Nuclear Information System (INIS)

    Vanek, J.; Gross, E.

    1994-01-01

    Carried by a Renault Saviem truck, the ORION 4 MeV linear accelerator manufactured by the French company CGR MeV proved to be well suited for quality control of welded joints of heavy thick-walled facilities performed directly in the manufacturing plant halls or at the construction sites, as well as for radiographic testing of steel and concrete structures. The operating principles and parameters of the accelerator are given. Steel up to 200 mm thick and concrete up to 550 mm thick can be inspected. Dosimetric data show that the use of the accelerator is radiologically safe. (Z.S.). 2 figs., 5 refs

  7. The Distribution of Macular Thickness and Its Determinants in a Healthy Population.

    Science.gov (United States)

    Hashemi, Hassan; Khabazkhoob, Mehdi; Yekta, AbbasAli; Emamian, Mohammad Hassan; Nabovati, Payam; Fotouhi, Akbar

    2017-10-01

    To determine the distribution of macular thickness in a healthy Iranian population aged 45-69 years and its association with certain determinants. All participants underwent optometric examinations including measurement of uncorrected and corrected visual acuity, objective refraction by retinoscopy, and subjective refraction. Subsequently, all participants underwent slit-lamp biomicroscopy followed by fundus examination through direct and indirect ophthalmoscopy, and optical coherence tomography (OCT) imaging under pupil dilation. Mean central macular thickness was 255.4 µm (95% confidence interval, CI, 254.5-256.3 µm), average inner macular thickness was 316.5 µm (95% CI 315.9-317.1 µm), average outer macular thickness was 275.3 µm (95% CI 274.8-275.8 µm), and overall average thickness was 278.6 µm (95% CI 278.1-279.1 µm). A linear multiple regression model showed that all indexes were significantly larger in male participants (p < 0.001). Central macular thickness increased with age (coef = 0.25, p < 0.001) while overall, inner and outer macular thickness decreased with age (coef = -0.18, -0.15, -0.19, respectively, all p < 0.001). Central and inner macular thickness had a positive correlation (coef = 3.8, 2.6, respectively, both p < 0.001) and outer macular thickness had a negative correlation (coef = -1.6, p < 0.001) with axial length. Age, sex, refractive error, axial length, and keratometry were found to be associated with macular thickness. These factors should be taken into account when interpreting macular thickness measurements with spectral-domain OCT.

  8. Effect of strain field on displacement cascade in tungsten studied by molecular dynamics simulation

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Gao, N., E-mail: ning.gao@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Wang, Z.G., E-mail: zhgwang@impcas.ac.cn [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); Gao, X. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); He, W.H. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Cui, M.H.; Pang, L.L.; Zhu, Y.B. [Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

    2016-10-01

    Using atomistic methods, the coupling effect of strain field and displacement cascade in body-centered cubic (BCC) tungsten is directly simulated by molecular dynamics (MD) simulations at different temperatures. The values of the hydrostatic and uniaxial (parallel or perpendicular to primary knock-on atom (PKA) direction) strains are from −2% to 2% and the temperature is from 100 to 1000 K. Because of the annealing effect, the influence of strain on radiation damage at low temperature has been proved to be more significant than that at high temperature. When the cascade proceeds under the hydrostatic strain, the Frenkel Pair (FP) production, the fraction of defect in cluster and the average size of the defect cluster, all increase at tensile state and decrease at compressive state. When the cascade is under uniaxial strain, the effect of strain parallel to PKA direction is less than the effect of hydrostatic strain, while the effect of strain perpendicular to PKA direction can be negligible. Under the uniaxial strain along 〈1 1 1〉 direction, the SIA and SIA cluster is observed to orientate along the strain direction at tensile state and the uniaxial compressive strain with direction perpendicular to 〈1 1 1〉 has led to the similar preferred nucleation. All these results indicate that under irradiation, the tensile state should be avoided for materials used in nuclear power plants.

  9. Studies on Drosophila radiosensitivity strains

    International Nuclear Information System (INIS)

    Varentsova, E.R.; Sharygin, V.I.; Khromykh, Yu.U.

    1985-01-01

    Fertility of radiosensitive mutant drosophila female strain rad (2) 201 61 after irradiation and frequency of dominant lethal mutations (DLM), induced by γ-radiation for 0-5 h and 5-7 days, are investigated. It is shown, that oocytes of the mutant strain are more radiosensitive as compared with cells of mongrel flies as to criterion of DLM appearance over the period of maturing. Early oocytes of stages 2-7 are the most sensitive, i.e. at the stages, corresponding to the manifestation of previously established recombination-defective properties of mutations rad (2) 201 61 . It is also sown, that doses of γ-rays, exceeding 10 Gy produce a strong sterilizing effect on mutant females due to destruction and resorption of egg chambers, irradiated at the stages of previtellogenetic growth of oocytes. In females, carrying mutation of radiosensitivity there is no direct correlation betwen sensitivity of oocytes proper to DLM induction and sensitivity of egg folleicles to resorbing effect of γ-rays. The ways of possible involvement of mutant locus studied into genetic processes in various specialized cells of drosophila

  10. Thick film heater for sensor application

    International Nuclear Information System (INIS)

    Milewski, J; Borecki, M; Kalenik, J; Król, K

    2014-01-01

    A thick film microheater was elaborated. The microheater is intended for fast heating of small volume samples under measurement in optical based system. Thermal analysis of microheater was carried out using finite element method (FEM) for heat transfer calculation as a function of time and space. A nodal heat transfer function was calculated in classical form including all basics mechanisms of heat exchange – heat conduction, convection and radiation were considered. Work focuses on the influence of some construction parameters (ex. length, thermal conductivity of substrate, substrate thickness) on microheater performance. The results show that application of thin substrate of low thermal conductivity and low thickness for miroheater construction and resistor of optimum dimensions leads to significant power consumption decrease and increase of overall optical measurement system performance.

  11. Reliability Criteria for Thick Bonding Wire.

    Science.gov (United States)

    Dagdelen, Turker; Abdel-Rahman, Eihab; Yavuz, Mustafa

    2018-04-17

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  12. Reliability Criteria for Thick Bonding Wire

    Directory of Open Access Journals (Sweden)

    Turker Dagdelen

    2018-04-01

    Full Text Available Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al and aluminum coated copper (CucorAl wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire.

  13. Partial Thickness Rotator Cuff Tears: Current Concepts

    Science.gov (United States)

    Matthewson, Graeme; Beach, Cara J.; Nelson, Atiba A.; Woodmass, Jarret M.; Ono, Yohei; Boorman, Richard S.; Lo, Ian K. Y.; Thornton, Gail M.

    2015-01-01

    Partial thickness rotator cuff tears are a common cause of pain in the adult shoulder. Despite their high prevalence, the diagnosis and treatment of partial thickness rotator cuff tears remains controversial. While recent studies have helped to elucidate the anatomy and natural history of disease progression, the optimal treatment, both nonoperative and operative, is unclear. Although the advent of arthroscopy has improved the accuracy of the diagnosis of partial thickness rotator cuff tears, the number of surgical techniques used to repair these tears has also increased. While multiple repair techniques have been described, there is currently no significant clinical evidence supporting more complex surgical techniques over standard rotator cuff repair. Further research is required to determine the clinical indications for surgical and nonsurgical management, when formal rotator cuff repair is specifically indicated and when biologic adjunctive therapy may be utilized. PMID:26171251

  14. Partial Thickness Rotator Cuff Tears: Current Concepts

    Directory of Open Access Journals (Sweden)

    Graeme Matthewson

    2015-01-01

    Full Text Available Partial thickness rotator cuff tears are a common cause of pain in the adult shoulder. Despite their high prevalence, the diagnosis and treatment of partial thickness rotator cuff tears remains controversial. While recent studies have helped to elucidate the anatomy and natural history of disease progression, the optimal treatment, both nonoperative and operative, is unclear. Although the advent of arthroscopy has improved the accuracy of the diagnosis of partial thickness rotator cuff tears, the number of surgical techniques used to repair these tears has also increased. While multiple repair techniques have been described, there is currently no significant clinical evidence supporting more complex surgical techniques over standard rotator cuff repair. Further research is required to determine the clinical indications for surgical and nonsurgical management, when formal rotator cuff repair is specifically indicated and when biologic adjunctive therapy may be utilized.

  15. Reliability Criteria for Thick Bonding Wire

    Science.gov (United States)

    Yavuz, Mustafa

    2018-01-01

    Bonding wire is one of the main interconnection techniques. Thick bonding wire is widely used in power modules and other high power applications. This study examined the case for extending the use of traditional thin wire reliability criteria, namely wire flexure and aspect ratio, to thick wires. Eleven aluminum (Al) and aluminum coated copper (CucorAl) wire samples with diameter 300 μm were tested experimentally. The wire response was measured using a novel non-contact method. High fidelity FEM models of the wire were developed and validated. We found that wire flexure is not correlated to its stress state or fatigue life. On the other hand, aspect ratio is a consistent criterion of thick wire fatigue life. Increasing the wire aspect ratio lowers its critical stress and increases its fatigue life. Moreover, we found that CucorAl wire has superior performance and longer fatigue life than Al wire. PMID:29673194

  16. Analysis of tensile strain enhancement in Ge nano-belts on an insulator surrounded by dielectrics

    International Nuclear Information System (INIS)

    Lu Wei-Fang; Li Cheng; Huang Shi-Hao; Lin Guang-Yang; Wang Chen; Yan Guang-Ming; Huang Wei; Lai Hong-Kai; Chen Song-Yan

    2013-01-01

    Ge nano-belts with large tensile strain are considered as one of the promising materials for high carrier mobility metal—oxide—semiconductor transistors and efficient photonic devices. In this paper, we design the Ge nano-belts on an insulator surrounded by Si 3 N 4 or SiO 2 for improving their tensile strain and simulate the strain profiles by using the finite difference time domain (FDTD) method. The width and thickness parameters of Ge nano-belts on an insulator, which have great effects on the strain profile, are optimized. A large uniaxial tensile strain of 1.16% in 50-nm width and 12-nm thickness Ge nano-belts with the sidewalls protected by Si 3 N 4 is achieved after thermal treatments, which would significantly tailor the band gap structures of Ge-nanobelts to realize the high performance devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  17. Strains and Sprains

    Science.gov (United States)

    ... lot of pressure on a muscle or you push it too far, such as when lifting a heavy object. Strains may be more likely to happen if you haven't warmed up first to get blood circulating to the muscles. They're also common for someone returning to a sport after the off-season. That first time playing ...

  18. Impact of thickness on the structural properties of high tin content GeSn layers

    Science.gov (United States)

    Aubin, J.; Hartmann, J. M.; Gassenq, A.; Milord, L.; Pauc, N.; Reboud, V.; Calvo, V.

    2017-09-01

    We have grown various thicknesses of GeSn layers in a 200 mm industrial Reduced Pressure - Chemical Vapor Deposition cluster tool using digermane (Ge2H6) and tin tetrachloride (SnCl4). The growth pressure (100 Torr) and the F(Ge2H6)/F(SnCl4) mass-flow ratio were kept constant, and incorporation of tin in the range of 10-15% was achieved with a reduction in temperature: 325 °C for 10% to 301 °C for 15% of Sn. The layers were grown on 2.5 μm thick Ge Strain Relaxed Buffers, themselves on Si(0 0 1) substrates. We used X-ray Diffraction, Atomic Force Microscopy, Raman spectroscopy and Scanning Electron Microscopy to measure the Sn concentration, the strain state, the surface roughness and thickness as a function of growth duration. A dramatic degradation of the film was seen when the Sn concentration and layer thickness were too high resulting in rough/milky surfaces and significant Sn segregation.

  19. Aluminum-thin-film packaged fiber Bragg grating probes for monitoring the maximum tensile strain of composite materials.

    Science.gov (United States)

    Im, Jooeun; Kim, Mihyun; Choi, Ki-Sun; Hwang, Tae-Kyung; Kwon, Il-Bum

    2014-06-10

    In this paper, new fiber Bragg grating (FBG) sensor probes are designed to intermittently detect the maximum tensile strain of composite materials, so as to evaluate the structural health status. This probe is fabricated by two thin Al films bonded to an FBG optical fiber and two supporting brackets, which are fixed on the surface of composite materials. The residual strain of the Al packaged FBG sensor probe is induced by the strain of composite materials. This residual strain can indicate the maximum strain of composite materials. Two types of sensor probes are prepared-one is an FBG with 18 μm thick Al films, and the other is an FBG with 36 μm thick Al films-to compare the thickness effect on the detection sensitivity. These sensor probes are bonded on the surfaces of carbon fiber reinforced plastics composite specimens. In order to determine the strain sensitivity between the residual strain of the FBG sensor probe and the maximum strain of the composite specimen, tensile tests are performed by universal testing machine, under the loading-unloading test condition. The strain sensitivities of the probes, which have the Al thicknesses of 18 and 36 μm, are determined as 0.13 and 0.23, respectively.

  20. ASSESSMENT OF LENS THICKNESS IN ANGLE CLOSURE DISEASE

    Directory of Open Access Journals (Sweden)

    Nishat Sultana Khayoom

    2016-08-01

    Full Text Available BACKGROUND Anterior chamber depth and lens thickness have been considered as important biometric determinants in primary angle-closure glaucoma. Patients with primary narrow angle may be classified as a primary angle closure suspect (PACS, or as having primary angle closure (PAC or primary angle closure glaucoma (PACG. 23.9% of patients with primary angle closure disease are in India, which highlights the importance of understanding the disease, its natural history, and its underlying pathophysiology, so that we may try to establish effective methods of treatment and preventative measures to delay, or even arrest, disease progression, thereby reducing visual morbidity. AIM To determine the lens thickness using A-scan biometry and its significance in various stages of angle closure disease. MATERIALS AND METHODS Patients attending outpatient department at Minto Ophthalmic Hospital between October 2013 to May 2015 were screened for angle closure disease and subsequently evaluated at glaucoma department. In our study, lens thickness showed a direct correlation with shallowing of the anterior chamber by determining the LT/ ACD ratio. A decrease in anterior chamber depth is proportional to the narrowing of the angle which contributes to the progression of the angle closure disease from just apposition to occlusion enhancing the risk for optic nerve damage and visual field loss. Hence, if the lens thickness values are assessed earlier in the disease process, appropriate intervention can be planned. CONCLUSION Determination of lens changes along with anterior chamber depth and axial length morphometrically can aid in early detection of angle closure. The role of lens extraction for PACG is a subject of increased interest. Lens extraction promotes the benefits of anatomical opening of the angle, IOP reduction and improved vision. This potential intervention may be one among the armamentarium of approaches for PACG. Among the current treatment modalities

  1. Morphogenesis and Biomechanics of Engineered Skin Cultured Under Uniaxial Strain.

    Science.gov (United States)

    Blackstone, Britani N; Powell, Heather M

    2012-04-01

    Split-thickness autograft is the standard wound treatment for full-thickness burns. In large burns, sparse availability of uninjured skin prevents rapid closure of the wound, resulting in increased scar tissue formation or mortality. Tissue-engineered skin (ES) offers promise when autografts are not available. ES, constructed from a polymeric scaffold and skin cells, has been shown to reduce donor site area required to permanently close wounds, mortality, and morbidity from scarring but cannot restore all skin functions. Current generations of ES are orders of magnitude weaker than normal human skin, leading to difficulty in surgical application, greater susceptibility to mechanical damage during fabrication and application, and less elasticity and strength once engrafted. Previous studies to improve ES biomechanics focus on altering the scaffolding material, which resulted in modest improvements but often inhibited proper skin development. As the skin is naturally under static strain, adding these mechanical cues to the culture environment is hypothesized to improve ES biomechanics. ES was cultured under applied static strains ranging from 0% to 40% strain for a total of 10 days. Strain magnitudes of 10% and 20% strain resulted in significantly stronger ES than unstrained controls, showed upregulation of many genes encoding structural extracellular matrix proteins, and exhibited increased epidermal cell proliferation and differentiation. Enhanced biomechanical properties of ES can allow for facile surgical application and less damage during dressing changes. These findings suggest that mechanical cues play a significant role in skin development and should be further explored.

  2. Glue Film Thickness Measurements by Spectral Reflectance

    International Nuclear Information System (INIS)

    Marshall, B.R.

    2010-01-01

    Spectral reflectance was used to determine the thickness of thin glue layers in a study of the effect of the glue on radiance and reflectance measurements of shocked-tin substrates attached to lithium fluoride windows. Measurements based on profilometry of the components were found to be inaccurate due to flatness variations and deformation of the tin substrate under pressure during the gluing process. The accuracy of the spectral reflectance measurements were estimated to be ±0.5 (micro)m, which was sufficient to demonstrate a convincing correlation between glue thickness and shock-generated light.

  3. Terahertz Mapping of Microstructure and Thickness Variations

    Science.gov (United States)

    Roth, Donald J.; Seebo, Jeffrey P.; Winfree, William P.

    2010-01-01

    A noncontact method has been devised for mapping or imaging spatial variations in the thickness and microstructure of a layer of a dielectric material. The method involves (1) placement of the dielectric material on a metal substrate, (2) through-the-thickness pulse-echo measurements by use of electromagnetic waves in the terahertz frequency range with a raster scan in a plane parallel to the substrate surface that do not require coupling of any kind, and (3) appropriate processing of the digitized measurement data.

  4. Glue Film Thickness Measurements by Spectral Reflectance

    Energy Technology Data Exchange (ETDEWEB)

    B. R. Marshall

    2010-09-20

    Spectral reflectance was used to determine the thickness of thin glue layers in a study of the effect of the glue on radiance and reflectance measurements of shocked-tin substrates attached to lithium fluoride windows. Measurements based on profilometry of the components were found to be inaccurate due to flatness variations and deformation of the tin substrate under pressure during the gluing process. The accuracy of the spectral reflectance measurements were estimated to be ±0.5 μm, which was sufficient to demonstrate a convincing correlation between glue thickness and shock-generated light.

  5. Geologic thickness data: Candidate repository horizons

    International Nuclear Information System (INIS)

    Cross, R.W.; Fairchild, K.R.

    1985-01-01

    This data package contains information on the thickness of the Umtanum, McCoy Canyon, Cohassett, and Rocky Coulee flows and their intraflow structures in 20 boreholes and 2 surface sections in the Pasco Basin. Thickness data are for total flow, flow top, entablature, and colonnade (or just flow top and dense interior in some cases). Summary figures which contain descriptions and footages are included. SD-BWI-DP-011, Rev. 2 replaces SD-BWI-DP-011, Rev. A-0 in its entirety. (Rev. A-0 replaced Rev. 0-0.) 5 refs

  6. Hot rolling of thick uranium molybdenum alloys

    Science.gov (United States)

    DeMint, Amy L.; Gooch, Jack G.

    2015-11-17

    Disclosed herein are processes for hot rolling billets of uranium that have been alloyed with about ten weight percent molybdenum to produce cold-rollable sheets that are about one hundred mils thick. In certain embodiments, the billets have a thickness of about 7/8 inch or greater. Disclosed processes typically involve a rolling schedule that includes a light rolling pass and at least one medium rolling pass. Processes may also include reheating the rolling stock and using one or more heavy rolling passes, and may include an annealing step.

  7. Compressive strength of thick composite panels

    DEFF Research Database (Denmark)

    Branner, Kim; Berring, Peter

    2011-01-01

    The aim of this study is to investigate how much the compressive strength of thick composite panels is reduced due to delaminations and to investigate under which conditions a delamination will grow. Understanding of this is essential in order to move forward the design limits used in the structu......The aim of this study is to investigate how much the compressive strength of thick composite panels is reduced due to delaminations and to investigate under which conditions a delamination will grow. Understanding of this is essential in order to move forward the design limits used...

  8. Process simulations for manufacturing of thick composites

    Science.gov (United States)

    Kempner, Evan A.

    The availability of manufacturing simulations for composites can significantly reduce the costs associated with process development. Simulations provide a tool for evaluating the effect of processing conditions on the quality of parts produced without requiring numerous experiments. This is especially significant in parts that have troublesome features such as large thickness. The development of simulations for thick walled composites has been approached by examining the mechanics of resin flow and fiber deformation during processing, applying these evaluations to develop simulations, and evaluating the simulation with experimental results. A unified analysis is developed to describe the three-dimensional resin flow and fiber preform deformation during processing regardless of the manufacturing process used. It is shown how the generic governing evaluations in the unified analysis can be applied to autoclave molding, compression molding, pultrusion, filament winding, and resin transfer molding. A comparison is provided with earlier models derived individually for these processes. The evaluations described for autoclave curing were used to produce a one-dimensional cure simulation for autoclave curing of thick composites. The simulation consists of an analysis for heat transfer and resin flow in the composite as well as bleeder plies used to absorb resin removed from the part. Experiments were performed in a hot press to approximate curing in an autoclave. Graphite/epoxy laminates of 3 cm and 5 cm thickness were cured while monitoring temperatures at several points inside the laminate and thickness. The simulation predicted temperatures fairly closely, but difficulties were encountered in correlation of thickness results. This simulation was also used to study the effects of prepreg aging on processing of thick composites. An investigation was also performed on filament winding with prepreg tow. Cylinders were wound of approximately 12 mm thickness with pressure

  9. Contact problems of a rectangular block on an elastic layer of finite thickness. Part I: The thin layer

    NARCIS (Netherlands)

    Alblas, J.B.; Kuipers, M.

    1969-01-01

    We consider a layer of finite thickness loaded in plane strain by a stamp with a straight horizontal base, which is smooth and rigid. The stamp is pressed vertically into the layer and is slightly rotated by an external moment load subsequently. Two cases are considered successively: the lower side

  10. Carotid intima-media thickness and elastic properties of aortas in normotensive children of hypertensive parents.

    Science.gov (United States)

    Yildirim, Ali; Kosger, Pelin; Ozdemir, Gokmen; Sahin, Fezan Mutlu; Ucar, Birsen; Kilic, Zubeyir

    2015-09-01

    A significant correlation between hypertension history and high blood pressure has been observed with regard to age, race and gender. Investigating carotid intima-media thickness and aortic stiffness prior to the development of hypertension in children of hypertensive parents enabled us to evaluate these patients for subclinical atherosclerosis. We compared carotid intima-media thickness, aortic strain, distensibility, stiffness indices and elastic modulus in 67 normotensive children whose parents had a diagnosis of essential hypertension and 39 normotensive children with no parental history of hypertension. Although there were no significant differences between the two groups in terms of systolic blood pressure, diastolic blood pressure, average blood pressure and pulse pressure (P>0.05), systolic blood pressures were higher among patients 15 years and older in the study group. No significant differences were noted between the control and study groups regarding interventricular septal thickness, left-ventricular posterior wall thickness, left-ventricular systolic and diastolic diameter and aortic annulus diameter (P>0.05). The left atrium diameter was larger in the study group compared with that in the control group, mainly because of the values of the 15-year-old and older children (P=0.01). The mean, maximum and minimum values of carotid intima-media thickness were significantly different in the study group compared with the control group among all age groups (Pchildren of hypertensive parents compared with the control group (P=0.014, P=0.001, respectively). Although there were no differences between the study and control groups regarding aortic strain, aortic distensibility, elastic modulus and stiffness indices (P>0.05), aortic distensibility was lower, and aortic stiffness indices were higher among children 15 years and older in the study group. An increase in the carotid intima-media thickness in all age groups and a decrease in aortic elastic properties in

  11. Analytical stiffness matrices with Green-Lagrange strain measure

    DEFF Research Database (Denmark)

    Pedersen, Pauli

    2005-01-01

    Separating the dependence on material and stress/strain state from the dependence on initial geometry, we obtain analytical secant and tangent stiffness matrices. For the case of a linear displacement triangle with uniform thickness and uniform constitutive behaviour closed-form results are listed...... a solution based on Green-Lagrange strain measure. The approach is especially useful in design optimization, because analytical sensitivity analysis then can be performed. The case of a three node triangular ring element for axisymmetric analysis involves small modifications and extension to four node...

  12. Strain Relaxation and Vacancy Creation in Thin Platinum Films

    International Nuclear Information System (INIS)

    Gruber, W.; Chakravarty, S.; Schmidt, H.; Baehtz, C.; Leitenberger, W.; Bruns, M.; Kobler, A.; Kuebel, C.

    2011-01-01

    Synchrotron based combined in situ x-ray diffractometry and reflectometry is used to investigate the role of vacancies for the relaxation of residual stress in thin metallic Pt films. From the experimentally determined relative changes of the lattice parameter a and of the film thickness L the modification of vacancy concentration and residual strain was derived as a function of annealing time at 130 deg. C. The results indicate that relaxation of strain resulting from compressive stress is accompanied by the creation of vacancies at the free film surface. This proves experimentally the postulated dominant role of vacancies for stress relaxation in thin metal films close to room temperature.

  13. Cells as strain-cued automata

    Science.gov (United States)

    Cox, Brian N.; Snead, Malcolm L.

    2016-02-01

    We argue in favor of representing living cells as automata and review demonstrations that autonomous cells can form patterns by responding to local variations in the strain fields that arise from their individual or collective motions. An autonomous cell's response to strain stimuli is assumed to be effected by internally-generated, internally-powered forces, which generally move the cell in directions other than those implied by external energy gradients. Evidence of cells acting as strain-cued automata have been inferred from patterns observed in nature and from experiments conducted in vitro. Simulations that mimic particular cases of pattern forming share the idealization that cells are assumed to pass information among themselves solely via mechanical boundary conditions, i.e., the tractions and displacements present at their membranes. This assumption opens three mechanisms for pattern formation in large cell populations: wavelike behavior, kinematic feedback in cell motility that can lead to sliding and rotational patterns, and directed migration during invasions. Wavelike behavior among ameloblast cells during amelogenesis (the formation of dental enamel) has been inferred from enamel microstructure, while strain waves in populations of epithelial cells have been observed in vitro. One hypothesized kinematic feedback mechanism, "enhanced shear motility", accounts successfully for the spontaneous formation of layered patterns during amelogenesis in the mouse incisor. Directed migration is exemplified by a theory of invader cells that sense and respond to the strains they themselves create in the host population as they invade it: analysis shows that the strain fields contain positional information that could aid the formation of cell network structures, stabilizing the slender geometry of branches and helping govern the frequency of branch bifurcation and branch coalescence (the formation of closed networks). In simulations of pattern formation in

  14. Strain engineering of WS2, WSe2, and WTe2

    KAUST Repository

    Amin, Bin

    2014-01-01

    We perform first-principles calculations to investigate the structural, electronic, and vibrational properties of WS2, WSe2, and WTe2 monolayers, taking into account the strong spin orbit coupling. A transition from a direct to an indirect band gap is achieved for compressive strain of 1% for WS2, 1.5% for WSe2, and 2% for WTe 2, while the nature of the band gap remains direct in the case of tensile strain. The size of the band gap passes through a maximum under compressive strain and decreases monotonically under tensile strain. A strong spin splitting is found for the valence band in all three compounds, which is further enhanced by tensile strain. The mobility of the electrons grows along the series WS2 < WSe2 < WTe2. This journal is © the Partner Organisations 2014.

  15. Strain-induced friction anisotropy between graphene and molecular liquids

    Science.gov (United States)

    Liao, Meng; To, Quy-Dong; Léonard, Céline; Monchiet, Vincent; Vo, Van-Hoang

    2017-01-01

    In this paper, we study the friction behavior of molecular liquids with anisotropically strained graphene. Due to the changes of lattice and the potential energy surface, the friction is orientation dependent and can be computed by tensorial Green-Kubo formula. Simple quantitative estimations are also proposed for the zero-time response and agree reasonably well with the molecular dynamics results. From simulations, we can obtain the information of structures, dynamics of the system, and study the influence of strain and molecular shapes on the anisotropy degree. It is found that unilateral strain can increase friction in all directions but the strain direction is privileged. Numerical evidences also show that nonspherical molecules are more sensitive to strain and give rise to more pronounced anisotropy effects.

  16. The NRL 2011 Airborne Sea-Ice Thickness Campaign

    Science.gov (United States)

    Brozena, J. M.; Gardner, J. M.; Liang, R.; Ball, D.; Richter-Menge, J.

    2011-12-01

    In March of 2011, the US Naval Research Laboratory (NRL) performed a study focused on the estimation of sea-ice thickness from airborne radar, laser and photogrammetric sensors. The study was funded by ONR to take advantage of the Navy's ICEX2011 ice-camp /submarine exercise, and to serve as a lead-in year for NRL's five year basic research program on the measurement and modeling of sea-ice scheduled to take place from 2012-2017. Researchers from the Army Cold Regions Research and Engineering Laboratory (CRREL) and NRL worked with the Navy Arctic Submarine Lab (ASL) to emplace a 9 km-long ground-truth line near the ice-camp (see Richter-Menge et al., this session) along which ice and snow thickness were directly measured. Additionally, US Navy submarines collected ice draft measurements under the groundtruth line. Repeat passes directly over the ground-truth line were flown and a grid surrounding the line was also flown to collect altimeter, LiDAR and Photogrammetry data. Five CRYOSAT-2 satellite tracks were underflown, as well, coincident with satellite passage. Estimates of sea ice thickness are calculated assuming local hydrostatic balance, and require the densities of water, ice and snow, snow depth, and freeboard (defined as the elevation of sea ice, plus accumulated snow, above local sea level). Snow thickness is estimated from the difference between LiDAR and radar altimeter profiles, the latter of which is assumed to penetrate any snow cover. The concepts we used to estimate ice thickness are similar to those employed in NASA ICEBRIDGE sea-ice thickness estimation. Airborne sensors used for our experiment were a Reigl Q-560 scanning topographic LiDAR, a pulse-limited (2 nS), 10 GHz radar altimeter and an Applanix DSS-439 digital photogrammetric camera (for lead identification). Flights were conducted on a Twin Otter aircraft from Pt. Barrow, AK, and averaged ~ 5 hours in duration. It is challenging to directly compare results from the swath LiDAR with the

  17. Free-Standing Organic Transistors and Circuits with Sub-Micron Thicknesses

    Science.gov (United States)

    Fukuda, Kenjiro; Sekine, Tomohito; Shiwaku, Rei; Morimoto, Takuya; Kumaki, Daisuke; Tokito, Shizuo

    2016-01-01

    The realization of wearable electronic devices with extremely thin and flexible form factors has been a major technological challenge. While substrates typically limit the thickness of thin-film electronic devices, they are usually necessary for their fabrication and functionality. Here we report on ultra-thin organic transistors and integrated circuits using device components whose substrates that have been removed. The fabricated organic circuits with total device thicknesses down to 350 nm have electrical performance levels close to those fabricated on conventional flexible substrates. Moreover, they exhibit excellent mechanical robustness, whereby their static and dynamic electrical characteristics do not change even under 50% compressive strain. Tests using systematically applied compressive strains reveal that these free-standing organic transistors possess anisotropic mechanical stability, and a strain model for a multilayer stack can be used to describe the strain in this sort of ultra-thin device. These results show the feasibility of ultimate-thin organic electronic devices using free-standing constructions. PMID:27278828

  18. Strain in the mesoscale kinetic Monte Carlo model for sintering

    DEFF Research Database (Denmark)

    Bjørk, Rasmus; Frandsen, Henrik Lund; Tikare, V.

    2014-01-01

    anisotropic strains for homogeneous powder compacts with aspect ratios different from unity. It is shown that the line direction biases shrinkage strains in proportion the compact dimension aspect ratios. A new algorithm that corrects this bias in strains is proposed; the direction for collapsing the column...... densification by vacancy annihilation removes an isolated pore site at a grain boundary and collapses a column of sites extending from the vacancy to the surface of sintering compact, through the center of mass of the nearest grain. Using this algorithm, the existing published kMC models are shown to produce...

  19. Thickness determination of large-area films of yttria-stabilized zirconia produced by pulsed laser deposition

    DEFF Research Database (Denmark)

    Pryds, N.; Christensen, Bo Toftmann; Bilde-Sørensen, Jørgen

    2006-01-01

    of the attenuation for various values of film thickness with the program CASINO. These results have been compared with direct measurements in the SEM of the film thickness on a cross-section on one of the wafers. The results of these measurements demonstrate the ability of this technique to accurately determine...

  20. 241-SY-101 strain concentration factor development via nonlinear analysis. Volume 1 of 1

    International Nuclear Information System (INIS)

    1997-01-01

    The 241-SY-101 waste storage tank at the Hanford-Site has been known to accumulate and release significant quantities of hydrogen gas. An analysis was performed to assess the tank's structural integrity when subjected to postulated hydrogen deflagration loads. The analysis addressed many nonlinearities and appealed to a strain-based failure criteria. The model used to predict the global response of the tank was not refined enough to confidently predict local peak strains. Strain concentration factors were applied at structural discontinuities that were based on steel-lined reinforced-concrete containment studies. The discontinuities included large penetrations, small penetrations, springline geometries, stud/liner connections, and the 1/2 inch to 3/8 inch liner thickness transition. The only tank specific strain concentration factor applied in the evaluation was for the 1/2 inch to 3/8 inch liner thickness change in the dome. Review of the tank drawings reveals the possibility that a 4 inches Sch. 40 pipe penetrates the dome thickness transition region. It is not obvious how to combine the strain concentration factors for a small penetration with that of a thickness transition to arrive at a composite strain concentration factor. It is the goal of this effort to make an approximate determination of the relative significance of the 4 inch penetration and the 1/2 inch to 3/8 inch thickness transition in the 241-SY-101 dome geometry. This is accomplished by performing a parametric study with three general finite-element models. The first represents the thickness transition only, the second represents a 4 inch penetration only, and the third combines the thickness transition with a penetration model

  1. Fatigue behavior of thick composite single lap joints

    Energy Technology Data Exchange (ETDEWEB)

    Tang, J.H.; Sridhar, I.; Srikanth, N. [Nanyang Technological Univ., Singapore (Singapore)

    2012-07-01

    In consideration of bondline thickness variability, in bonded joints where thick adherend is adopted, relative thick adhesive layer (2-5 mm) is preferable. This paper aims to give some insight in fatigue strength of adhesively bonded structures involving thick adherend coupled with thick adhesive layer. Single lap joints with nominal adherend thickness of 8 mm and two different nominal thicknesses (2.5 mm and 5.5 mm) were made and tested under fatigue loading. The failure mode exhibits always a tendency for interfacial initiation, followed by interlaminar separation. Fatigue strength for higher adhesive thickness is found to be lower. (Author)

  2. Methods for determining the wall thickness variation of tubular heaters used in thermalhydraulic studies

    International Nuclear Information System (INIS)

    Cubizolles, G.; Garnier, J.; Groeneveld, D.; Tanase, A.

    2009-01-01

    Fuel bundle simulators used in thermalhydraulic studies typically consist of bundles of directly heated tubes. It is usually assumed that the heater tubes have a uniform circumferential heat flux distribution. In practice, this heat flux distribution is never exactly uniform because of wall thickness variations and bore eccentricity. Ignoring the non-uniformity in wall thickness can lead to under-estimating the local heat transfer coefficients. During nucleate boiling tests in a 5x5 PWR-type bundle subassembly at CEA-Grenoble, a sinusoidal temperature distribution was observed around the inside circumference of the heater rods. These heater rods were equipped with high-accuracy sliding thermocouple probes that permit the detailed measurement of the internal wall temperature distribution, both axially and circumferentially. The sinusoidal temperature distribution strongly suggests a variation in wall thickness. A methodology was subsequently derived to determine the circumferential wall thickness variation. The method is based on the principle that for directly heated fuel-element simulators, the nucleate boiling wall superheat at high pressures is nearly uniform around the heater rod circumference. The results show wall thickness variations of up to ±4% which was confirmed by subsequent ultrasonic wall-thickness measurements performed after bundle disassembly. Non-uniformities in circumferential temperature distributions were also observed during parallel thermalhydraulic tests at the University of Ottawa (UofO) on an electrically heated tube cooled internally by R-134a and equipped with fixed thermocouples on the outside. From the measured wall temperatures and knowledge of the inside heat transfer coefficient or wall temperature distribution, the variations in wall thickness and surface heat flux to the coolant were evaluated by solving conduction equations using three separate sets of data (1) single phase heat transfer data, (2) nucleate boiling data, and (3

  3. Ellipsometry measurements of thickness of oxide and water layers on spherical and flat silicon surfaces

    International Nuclear Information System (INIS)

    Kenny, M.J.; Netterfield, R.; Wielunski, L.S.

    1998-01-01

    Full text: Ellipsometry has been used to measure the thickness of oxide layers on single crystal silicon surfaces, both flat and spherical and also to measure the extent of adsorption of moisture on the surface as a function of partial water vapour pressure. The measurements form part of an international collaborative project to make a precise determination of the Avogadro constant (ΔN A /N A -8 ) which will then be used to obtain an absolute definition of the kilogram, rather than one in terms of an artefact. Typically the native oxide layer on a cleaned silicon wafer is about 2 nm thick. On a polished sphere this oxide layer is typically 8 to 10 nm thick, the increased thickness being attributed to parameters related to the polishing process. Ellipsometry measurements on an 89 mm diameter polished silicon sphere at both VUW and CSIRO indicated a SiO 2 layer at 7 to 10 nm thick. It was observed that this thickness varied regularly. The crystal orientation of the sphere was determined using electron patterns generated from an electron microscope and the oxide layer was then measured through 180 arcs of great circles along (110) and (100) planes. It was observed that the thickness varied systematically with orientation. The minimum thickness was 7.4 nm at the axis (softest direction in silicon) and the greatest thickness was 9.5 nm at the axis (hardest direction in silicon). This is similar to an orientation dependent cubic pattern which has been observed to be superimposed on polished silicon spheres. At VUW, the sphere was placed in an evacuated bell jar and the ellipsometry signal was observed as the water vapour pressure was progressively increased up to saturation. The amount of water vapour adsorbed at saturation was one or two monolayers, indicating that the sphere does not wet

  4. Design and Testing of the Strain Transducer for Measuring Deformations of Pipelines Operating in the Mining-deformable Ground Environment

    Directory of Open Access Journals (Sweden)

    Gawedzki Waclaw

    2015-10-01

    Full Text Available Design and laboratory test results of the strain transducer intended for monitoring and assessing stress states of pipelines sited in mining areas are presented in this paper. This transducer allows measuring strains of pipelines subjected to external forces - being the mining operations effect. Pipeline strains can have a direct influence on a tightness loss and penetration of the transported fluid into the environment. The original strain gauge transducer was proposed for performing measurements of strains. It allows measuring circumferential strains and determining the value and direction of the main longitudinal strain. This strain is determined on the basis of measuring component longitudinal strains originating from axial forces and the resultant bending moment. The main purpose of investigations was the experimental verification of the possibility of applying the strain transducer for measuring strains of polyethylene pipelines. The obtained results of the transducer subjected to influences of tensile and compression forces are presented and tests of relaxation properties of polyethylene are performed.

  5. Percolation effect in thick film superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Sali, R.; Harsanyi, G. [Technical Univ. of Budapest (Hungary)

    1994-12-31

    A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to high T{sub c} and advantageous current density properties the base of the paste was chosen to be of Bi(Pb)SrCaCuO system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density at the boiling temperature of the liquid He- was between 200-300 A/cm{sup 2}. The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency and the losses were determined. Finally, some fundamental advantages and problems of the process were discussed.

  6. Aluminum oxide film thickness and emittance

    International Nuclear Information System (INIS)

    Thomas, J.K.; Ondrejcin, R.S.

    1991-11-01

    Aluminum reactor components which are not actively cooled could be subjected to high temperatures due to gamma heating after the core coolant level dropped during the ECS phase of a hypothetical LOCA event. Radiative heat transfer is the dominant heat transfer process in this scenario and therefore the emittance of these components is of interest. Of particular interest are the safety rod thimbles and Mark 60B blanket assemblies; for the K Reactor, these components have been exposed to low temperature (< 55 degrees C) moderator for about a year. The average moderator temperature was assumed to be 30 degrees C. The Al oxide film thickness at this temperature, after one year of exposure, is predicted to be 6.4 μm ± 10%; insensitive to exposure time. Dehydration of the film during the gamma heating accident would result in a film thickness of 6.0 μm ± 11%. Total hemispherical emittance is predicted to be 0.69 at 96 degrees C, decreasing to 0.45 at 600 degrees C. Some phenomena which would tend to yield thicker oxide films in the reactor environment relative to those obtained under experimental conditions were neglected and the predicted film thickness values are therefore conservative. The emittance values predicted for a given film thickness are also conservative. The conservativisms inherent in the predicted emittance are particularly relevant for uncertainty analysis of temperatures generated using these values

  7. Thick Slice and Thin Slice Teaching Evaluations

    Science.gov (United States)

    Tom, Gail; Tong, Stephanie Tom; Hesse, Charles

    2010-01-01

    Student-based teaching evaluations are an integral component to institutions of higher education. Previous work on student-based teaching evaluations suggest that evaluations of instructors based upon "thin slice" 30-s video clips of them in the classroom correlate strongly with their end of the term "thick slice" student evaluations. This study's…

  8. Determination of the Optimum Thickness of Approximately ...

    African Journals Online (AJOL)

    In an attempt to conserve the world's scarce energy and material resources, a balance between the cost of heating a material and the optimum thickness of the material becomes vey essential. One of such materials is the local cast aluminium pot commonly used as cooking ware in Nigeria. This paper therefore sets up a ...

  9. Percolation effect in thick film superconductors

    International Nuclear Information System (INIS)

    Sali, R.; Harsanyi, G.

    1994-01-01

    A thick film superconductor paste has been developed to study the properties of granulated superconductor materials, to observe the percolation effect and to confirm the theory of the conducting mechanism in the superconducting thick films. This paste was also applied to make a superconducting planar transformer. Due to high T c and advantageous current density properties the base of the paste was chosen to be of Bi(Pb)SrCaCuO system. For contacts a conventional Ag/Pt paste was used. The critical temperature of the samples were between 110 K and 115 K depending on the printed layer thickness. The critical current density at the boiling temperature of the liquid He- was between 200-300 A/cm 2 . The R(T) and V(I) functions were measured with different parameters. The results of the measurements have confirmed the theory of conducting mechanism in the material. The percolation structure model has been built and described. As an application, a superconducting planar thick film transformer was planned and produced. Ten windings of the transformer were printed on one side of the alumina substrate and one winding was printed on the other side. The coupling between the two sides was possible through the substrate. The samples did not need special drying and firing parameters. After the preparation, the properties of the transformer were measured. The efficiency and the losses were determined. Finally, some fundamental advantages and problems of the process were discussed

  10. Crustal thickness controlled by plate tectonics

    DEFF Research Database (Denmark)

    Artemieva, Irina M.; Meissner, Rolf

    2012-01-01

    /gabbro–eclogite phase transition in crustal evolution and the links between lithosphere recycling, mafic magmatism, and crustal underplating. We advocate that plate tectonics processes, togetherwith basalt/gabbro–eclogite transition, limit crustal thickness worldwide by providing effective mechanisms of crustal...

  11. Factors Influencing Endometrial Thickness in Postmenopausal Women

    African Journals Online (AJOL)

    Background: Cut‑off values for endometrial thickness (ET) in asymptomatic postmenopausal woman have been standardized. However, there are no comprehensive studies to document how various factors can influence the ET after the age of menopause. Aim: To study the various factors influencing the ET in ...

  12. Quality assurance in thick-walled weldments

    International Nuclear Information System (INIS)

    Straub, H.

    1978-01-01

    Some guidelines are given here for judging the magnitude of flaws in welded thick-walled components (such as nuclear reactor vessels). The actually critical defect sizes are analysed, taking into account the residual stresses after welding and after annealing also. Various procedures for repairing such work are then indicated. (Auth.)

  13. Mechanical properties of additively manufactured thick honeycombs

    NARCIS (Netherlands)

    Hedayati, R.; Sadighi, M.; Mohammadi-Aghdam, M; Zadpoor, A.A.

    2016-01-01

    Honeycombs resemble the structure of a number of natural and biological materials such as cancellous bone, wood, and cork. Thick honeycomb could be also used for energy absorption applications. Moreover, studying the mechanical behavior of honeycombs under in-plane loading could help understanding

  14. Thickness dependence of nanofilm elastic modulus

    Czech Academy of Sciences Publication Activity Database

    Fedorchenko, Alexander I.; Wang, A. B.; Cheng, H.H.

    2009-01-01

    Roč. 94, č. 15 (2009), s. 152111-152113 ISSN 0003-6951 Institutional research plan: CEZ:AV0Z20760514 Keywords : nanofilm * elastic modulus * thickness dependence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.554, year: 2009 http://link.aip.org/link/?APPLAB/94/152111/1

  15. A piezoelectric transducer for measurement of dynamic strain in pipes

    Energy Technology Data Exchange (ETDEWEB)

    Lannes, Daniel P.; Gama, Antonio L. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Dept. de Engenharia Mecanica

    2009-07-01

    This work presents a new strain transducer developed mainly for the inspection and evaluation of piping systems with excessive vibration. Vibration is one of the most common causes of piping failures. These failures could be avoided if the vibration problems were identified and quickly evaluated. Procedures for evaluation of piping vibration are usually based on pipe velocity or displacement. Although simple and fast, these procedures do not provide precise information on the risk of piping fatigue failure. Through the measurement of pipe dynamic strains the risk of failure due to vibration can be determined more accurately. The measurement of strain is usually performed using the conventional strain gauge method. Although efficient and accurate, the implementation of the conventional strain gauge technique may become a difficult task in certain industrial scenarios. Motivated by the need of a simple and rapid method for pipe dynamic strain measurement, a piezoelectric dynamic strain transducer was developed. This work presents a description of the piezoelectric strain transducer and the preliminary results of pipe strain measurements. The transducer can be applied directly to the pipe through magnetic bases allowing for the quick measurement of the dynamic strains in many points of the pipe. The transducer signal can be read with the same commercial data collectors used for accelerometers. (author)

  16. Plastic strain caused by contraction of pores in polycrystalline graphites

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Yoda, Shinichi; Konishi, Takashi.

    1989-01-01

    The effects of porosity on mechanical properties and deformation behavior of four isotropic polycrystalline graphites were studied. The pore size distributions of the graphites were measured using a conventional mercury penetration technique. The average pore radius of ISO-88 graphite was about one-tenth of that of ISEM-1, IG-11 or IG-15 graphites. Young's modulus of the graphites decreased with increasing porosity. The stress-strain curve of each graphite was measured in its lateral and axial directions. Young's modulus of graphite decreased with increasing load. The plastic strain at a given compressive load was calculated from the stress-strain curve and the initial gradient of the unloading curve at the load. The ratio of lateral plastic strain to axial plastic strain for the graphites was less than 0.5, indicating that the volume of the graphites decreased during compressive loading. By assuming that the volume change was caused by contraction of pores, plastic strain associated with contraction of pores was calculated from the axial plastic strain and lateral plastic strain by slips along the basal planes. The plastic strain increased with increasing axial plastic strain and porosity of graphite. (author)

  17. Strain and crystalline defects in epitaxial GaN layers studied by high-resolution X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Chierchia, Rosa

    2007-07-01

    This thesis treats strain and dislocations in MOVPE GaN layers. The mosaic structure of metalorganic vapour phase epitaxy (MOVPE)-grown GaN layers was studied in dependence on the grain diameter utilizing high-resolution XRD. Different models for the defect structure were analyzed, the edge type TD densities were calculated under the assumption that the dislocations are not randomly distributed but localized at the grain boundaries. Moreover, in situ measurements have shown that the layers are under tension in the c-plane when a nucleation layer is used. The second part of this thesis treats a particular approach to reduce dislocations in MOVPE GaN layers, i.e. maskless pendeo epitaxial growth of MOVPE GAN layers. FE simulations assuming the strain to be completely induced during cooling of the structures after growth agree only partly with experimental data. The strain state of single layers and stripes of GaN grown on SiC was studied to exploit the evolution of the strain in the different phases of the PE growth. The biaxial compressive stress, due to the lattice mismatch between the GaN layer and the AlN nucleation layer is plastically relieved before overgrowth. Temperature dependent measurements show a linear reduction of the wing tilt with increasing temperature varying from sample to sample. Bent TDs have been observed in TEM images of maskless PE samples. Stress induced from the mismatch between the AlN buffer layer and the GaN also contributes to the remaining part of the wing tilt not relieved thermally. It has to be noted that the rest tilt value varies from sample to sample at the growth temperature. In fact some of the data indicate that the wing tilt decreases with increasing V/III ratio. In the last Chapter the application of X-ray techniques for the analysis of strain and composition in layers of inhomogeneous composition is explored. In the first part of the Chapter the strain state and the Al content of AlGaN buffer layers grown directly on (0001

  18. Modeling and characterization of through-the-thickness properties of 3D woven composites

    Science.gov (United States)

    Hartranft, Dru; Pravizi-Majidi, Azar; Chou, Tsu-Wei

    1995-01-01

    The through-the-thickness properties of three-dimensionally (3D) woven carbon/epoxy composites have been studied. The investigation aimed at the evaluation and development of test methodologies for the property characterization in the thickness direction, and the establishment of fiber architectures were studied: layer-to-layer Angle Interlock, through-the-thickness Orthogonal woven preform with surface pile was also designed and manufactured for the fabrication of tensile test coupons with integrated grips. All the preforms were infiltrated by the resin transfer molding technique. The microstructures of the composites were characterized along the warp and fill (weft) directions to determine the degree of yarn undulations, yarn cross-sectional shapes, and microstructural dimensions. These parameters were correlated to the fiber architecture. Specimens were designed and tested for the direct measurement of the through-the-thickness tensile, compressive and shear properties of the composites. Design optimization was conducted through the analysis of the stress fields within the specimen coupled with experimental verification. The experimentally-derived elastic properties in the thickness direction compared well with analytical predictions obtained from a volume averaging model.

  19. Strain engineering of Dirac cones in graphyne

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Gaoxue; Kumar, Ashok; Pandey, Ravindra, E-mail: pandey@mtu.edu [Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States); Si, Mingsu [Key Laboratory for Magnetism and Magnetic Materials of the Ministry of Education, Lanzhou University, Lanzhou 730000 (China)

    2014-05-26

    6,6,12-graphyne, one of the two-dimensional carbon allotropes with the rectangular lattice structure, has two kinds of non-equivalent anisotropic Dirac cones in the first Brillouin zone. We show that Dirac cones can be tuned independently by the uniaxial compressive strain applied to graphyne, which induces n-type and p-type self-doping effect, by shifting the energy of the Dirac cones in the opposite directions. On the other hand, application of the tensile strain results into a transition from gapless to finite gap system for the monolayer. For the AB-stacked bilayer, the results predict tunability of Dirac-cones by in-plane strains as well as the strain applied perpendicular to the plane. The group velocities of the Dirac cones show enhancement in the resistance anisotropy for bilayer relative to the case of monolayer. Such tunable and direction-dependent electronic properties predicted for 6,6,12-graphyne make it to be competitive for the next-generation electronic devices at nanoscale.

  20. Nearshore sediment thickness, Fire Island, New York

    Science.gov (United States)

    Locker, Stanley D.; Miselis, Jennifer L.; Buster, Noreen A.; Hapke, Cheryl J.; Wadman, Heidi M.; McNinch, Jesse E.; Forde, Arnell S.; Stalk, Chelsea A.

    2017-04-03

    Investigations of coastal change at Fire Island, New York (N.Y.), sought to characterize sediment budgets and determine geologic framework controls on coastal processes. Nearshore sediment thickness is critical for assessing coastal system sediment availability, but it is largely unquantified due to the difficulty of conducting geological or geophysical surveys across the nearshore. This study used an amphibious vessel to acquire chirp subbottom profiles. These profiles were used to characterize nearshore geology and provide an assessment of nearshore sediment volume. Two resulting sediment-thickness maps are provided: total Holocene sediment thickness and the thickness of the active shoreface. The Holocene sediment section represents deposition above the maximum flooding surface that is related to the most recent marine transgression. The active shoreface section is the uppermost Holocene sediment, which is interpreted to represent the portion of the shoreface thought to contribute to present and future coastal behavior. The sediment distribution patterns correspond to previously defined zones of erosion, accretion, and stability along the island, demonstrating the importance of sediment availability in the coastal response to storms and seasonal variability. The eastern zone has a thin nearshore sediment thickness, except for an ebb-tidal deposit at the wilderness breach caused by Hurricane Sandy. Thicker sediment is found along a central zone that includes shoreface-attached sand ridges, which is consistent with a stable or accretional coastline in this area. The thickest overall Holocene section is found in the western zone of the study, where a thicker lower section of Holocene sediment appears related to the westward migration of Fire Island Inlet over several hundred years.

  1. Strains in general relativity

    International Nuclear Information System (INIS)

    Bini, Donato; Felice, Fernando de; Geralico, Andrea

    2006-01-01

    The definition of relative accelerations and strains among a set of comoving particles is studied in connection with the geometric properties of the frame adapted to a 'fiducial observer'. We find that a relativistically complete and correct definition of strains must take into account the transport law of the chosen spatial triad along the observer's congruence. We use special congruences of (accelerated) test particles in some familiar spacetimes to elucidate such a point. The celebrated idea of Szekeres' compass of inertia, arising when studying geodesic deviation among a set of free-falling particles, is here generalized to the case of accelerated particles. In doing so we have naturally contributed to the theory of relativistic gravity gradiometer. Moreover, our analysis was made in an observer-dependent form, a fact that would be very useful when thinking about general relativistic tests on space stations orbiting compact objects like black holes and also in other interesting gravitational situations

  2. Effect of thickness on optical properties of thermally evaporated SnS films

    International Nuclear Information System (INIS)

    Selim, M.S.; Gouda, M.E.; El-Shaarawy, M.G.; Salem, A.M.; Abd El-Ghany, W.A.

    2013-01-01

    The effect of film thickness on the structure and optical properties of thermally evaporated SnS film has been studied. SnS films with different thicknesses in the range 152–585 nm were deposited onto clean glass substrates at room temperature. X-ray diffraction study revealed that SnS films of thickness ≥ 283 nm are crystalline, whereas films of lower thickness exhibit poor crystalline with more amorphous background. The crystalline nature of the lower film thickness has been confirmed using transmission electron microscope and the corresponding electron diffraction pattern. The thicker film samples showed nearly stoichiometric chemical composition; however, thinner samples are deficient in S and rich in Sn. The optical property of the deposited films has been investigated in the wavelength range 350–2500 nm. The refractive index increases notably with increasing film thickness. The refractive index for the investigated film thicknesses are adequately described by the effective-single-oscillator model. The static refractive index and the static dielectric constant have been calculated. Analysis of the optical absorption coefficient revealed the presence of direct optical transition and the corresponding band gap values were found to decrease as the film thickness increases. - Highlights: ► X-ray diffraction was used to study the structure of SnS films. ► Transmission electron microscope confirms the crystalline state of SnS films. ► The refractive index increases notably with increasing the film thickness. ► The optical band gap of SnS films decreases with increasing film thickness

  3. Creep characteristics in thick welded joints and their improvements. 2. Applicability of a simple model for creep analysis of thick welded joints

    International Nuclear Information System (INIS)

    Nakacho, Keiji; Ueda, Yukio; Kinugawa, Junichi; Yamazaki, Masayoshi

    1997-01-01

    Reliable predictions of the creep behavior of thick welded joints are very important to secure the safety of elevated temperature vessels like nuclear reactors. Creep behavior is very complex, thus it is difficult to perform the experiment and conduct the theoretical analysis. A simple accurate model for theoretical analysis was developed in the first report. The simple model is constructed of seven one-dimensional finite elements which can analyze not only one-dimensional stress creep behavior but also the three-dimensional situation. The simple model is verified by comparing the analyzed results with the experimental ones in this report. The model is easy to treat, and needs only a little labor and computation time to predict the creep curve and the local strain for a thick welded joint. (author)

  4. Strain Induced Adatom Correlations

    OpenAIRE

    Kappus, Wolfgang

    2012-01-01

    A Born-Green-Yvon type model for adatom density correlations is combined with a model for adatom interactions mediated by the strain in elastic anisotropic substrates. The resulting nonlinear integral equation is solved numerically for coverages from zero to a limit given by stability constraints. W, Nb, Ta and Au surfaces are taken as examples to show the effects of different elastic anisotropy regions. Results of the calculation are shown by appropriate plots and discussed. A mapping to sup...

  5. Ratchetting strain prediction

    International Nuclear Information System (INIS)

    Noban, Mohammad; Jahed, Hamid

    2007-01-01

    A time-efficient method for predicting ratchetting strain is proposed. The ratchetting strain at any cycle is determined by finding the ratchetting rate at only a few cycles. This determination is done by first defining the trajectory of the origin of stress in the deviatoric stress space and then incorporating this moving origin into a cyclic plasticity model. It is shown that at the beginning of the loading, the starting point of this trajectory coincides with the initial stress origin and approaches the mean stress, displaying a power-law relationship with the number of loading cycles. The method of obtaining this trajectory from a standard uniaxial asymmetric cyclic loading is presented. Ratchetting rates are calculated with the help of this trajectory and through the use of a constitutive cyclic plasticity model which incorporates deviatoric stresses and back stresses that are measured with respect to this moving frame. The proposed model is used to predict the ratchetting strain of two types of steels under single- and multi-step loadings. Results obtained agree well with the available experimental measurements

  6. A method for thickness determination of thin films of amalgamable metals by total-reflection X-ray fluorescence

    International Nuclear Information System (INIS)

    Bennun, L.; Greaves, E.D.; Barros, H.; Diaz-Valdes, J.

    2009-01-01

    A method for thickness determination of thin amalgamable metallic films by total-reflection X-ray fluorescence (TXRF) is presented. The peak's intensity in TXRF spectra are directly related to the surface density of the sample, i.e. to its thickness in a homogeneous film. Performing a traditional TXRF analysis on a thin film of an amalgamated metal, and determining the relative peak intensity of a specific metal line, the layer thickness can be precisely obtained. In the case of gold thickness determination, mercury and gold peaks overlap, hence we have developed a general data processing scheme to achieve the most precise results.

  7. Thickness evaluation using a new relationship between film density and penetrated thickness in radiography

    International Nuclear Information System (INIS)

    Lee, Sung Sik; Kim, Young H.

    2005-01-01

    In order to improve the accuracies in the thickness evaluation using radiography, a new relationship between film density and penetrated thickness has been proposed, and experimental verification of the proposed relationship was carried out by using the X- and γ-ray radiographs of two carbon steel step wedges. A new parameter, the logarithmic gradient of film density, was defined in order to express the characteristics of the radiographic film for wider range of film density. A new relationship between the film density and the penetrated thickness were formulated using the logarithmic gradient of the film density. In experiment, the logarithmic gradient of the film density was independent on both the exposure and the film density and measured for the radiographic film used in the present work from the slope of the fitting lines for the same penetrated thickness. Experimental results verifies the accuracy of the proposed relationship between film density and the penetrated thickness for the range of film density from 1.0 to 3.5. The thickness can be more accurately determined by using the proposed relationship and the parameters determined by experiment. It is also found that the γ-ray having simple energy spectrum is more appropriate radiation source for the evaluation of the thickness from the film density of the radiograph

  8. Choroidal thickness in Malaysian eyes with full-thickness macular holes

    Directory of Open Access Journals (Sweden)

    Chew Y Tan

    2018-02-01

    Full Text Available AIM: To compare choroidal thickness at the macula in eyes with unilateral idiopathic full-thickness macular holes(FTMHwith that of unaffected fellow eyes, and eyes of normal control patients.METHODS: Cross-sectional study. Thirty patients with unilateral idiopathic FTMH and thirty age, sex, and race-matched controls were recruited. Axial lengths were measured using laser interferometry. Enhanced depth imaging optical coherence tomography images were obtained using Heidelberg spectral-domain optical coherence tomography. Choroidal thickness was measured at the fovea, and at 1 mm and 2 mm nasally, temporally, superiorly and inferiorly from the center of the fovea. Statistical analysis was performed using independent and paired t-tests, chi-square tests, and Pearson correlation tests(PRESULTS: The mean subfoveal choroidal thickness was 201.0±44.0 μm in the FTMH group, 225.3±51.4 μm in the fellow eye group and 262.3±70.3 μm in the control group. The choroid was thinner in FTMH eyes at all locations when compared to control eyes(PPP>0.05. Choroidal thickness was generally highest subfoveally and lowest nasally. Subfoveal choroidal thickness was negatively correlated with age(r=-0.278, P=0.032, and axial length(r=-0.328, P=0.011.CONCLUSION: Choroidal thickness is lower in both eyes of patients with unilateral FTMH compared to healthy control eyes.

  9. Direct Democracy

    DEFF Research Database (Denmark)

    Beramendi, Virginia; Ellis, Andrew; Kaufman, Bruno

    While many books on direct democracy have a regional or national approach, or simply focus on one of the many mechanisms associated with direct democracy, this Handbook delves into a global comparison of direct democracy mechanisms, including referendums, citizens' initiatives, agenda initiatives...... learned. In addition, the uniquely comprehensive world survey outlines direct democracy provisions in 214 countries and territories and indicates which, if any, of these provisions are used by each country or territory at both the national and sub-national levels. Furthermore, the world survey includes...

  10. Strain measurement based battery testing

    Science.gov (United States)

    Xu, Jeff Qiang; Steiber, Joe; Wall, Craig M.; Smith, Robert; Ng, Cheuk

    2017-05-23

    A method and system for strain-based estimation of the state of health of a battery, from an initial state to an aged state, is provided. A strain gauge is applied to the battery. A first strain measurement is performed on the battery, using the strain gauge, at a selected charge capacity of the battery and at the initial state of the battery. A second strain measurement is performed on the battery, using the strain gauge, at the selected charge capacity of the battery and at the aged state of the battery. The capacity degradation of the battery is estimated as the difference between the first and second strain measurements divided by the first strain measurement.

  11. X-ray diffraction from thin films : Size/strain analysis and whole pattern fitting

    Energy Technology Data Exchange (ETDEWEB)

    Scardi, P [Trento Univ. (Italy). Dept. of Materials Engineering

    1996-09-01

    Line Profile Analysis (LPA) and whole pattern fitting may be used with success for the characterization of thin films from XRD data collected with the traditional Bragg-Brentano geometry. The size/strain analysis was conducted by an integrated procedure of profile modelling-assisted Fourier analysis, in order to measure the content of lattice imperfections and crystalline domain size along the growth direction in heteroepitaxial thin films. The microstructure of these films is typical of several PVD processes for the production of highly textured and low-defect thin crystalline layers. The same analysis could be conducted on random thin films as well, and in this case it is possible to determine an average crystallite size and shape. As will be shown in the paper, structural and microstructural parameters obtained by these methods may be correlated with thin film properties of technological interest. The whole pattern analysis may be used to obtain the information contained in a wide region of the diffraction pattern. This approach, currently used for the quantitative analysis of phase mixtures in traditional powder samples, was modified to account both for the size/strain effects, according to a simplified LPA, and for the structure of thin films and multi-layer systems. In this way, a detailed analysis based on a structural model for the present phases can be performed considering the real geometry of these samples. In particular, the quantitative phase analysis could be conducted in terms of layer thickness instead of volume or weight fractions.

  12. X-ray diffraction from thin films : Size/strain analysis and whole pattern fitting

    International Nuclear Information System (INIS)

    Scardi, P.

    1996-01-01

    Line Profile Analysis (LPA) and whole pattern fitting may be used with success for the characterization of thin films from XRD data collected with the traditional Bragg-Brentano geometry. The size/strain analysis was conducted by an integrated procedure of profile modelling-assisted Fourier analysis, in order to measure the content of lattice imperfections and crystalline domain size along the growth direction in heteroepitaxial thin films. The microstructure of these films is typical of several PVD processes for the production of highly textured and low-defect thin crystalline layers. The same analysis could be conducted on random thin films as well, and in this case it is possible to determine an average crystallite size and shape. As will be shown in the paper, structural and microstructural parameters obtained by these methods may be correlated with thin film properties of technological interest. The whole pattern analysis may be used to obtain the information contained in a wide region of the diffraction pattern. This approach, currently used for the quantitative analysis of phase mixtures in traditional powder samples, was modified to account both for the size/strain effects, according to a simplified LPA, and for the structure of thin films and multi-layer systems. In this way, a detailed analysis based on a structural model for the present phases can be performed considering the real geometry of these samples. In particular, the quantitative phase analysis could be conducted in terms of layer thickness instead of volume or weight fractions

  13. Mechanical and electrical strain response of a piezoelectric auxetic PZT lattice structure

    Science.gov (United States)

    Fey, Tobias; Eichhorn, Franziska; Han, Guifang; Ebert, Kathrin; Wegener, Moritz; Roosen, Andreas; Kakimoto, Ken-ichi; Greil, Peter

    2016-01-01

    A two-dimensional auxetic lattice structure was fabricated from a PZT piezoceramic. Tape casted and sintered sheets with a thickness of 530 μm were laser cut into inverted honeycomb lattice structure with re-entrant cell geometry (θ = -25°) and poling direction oriented perpendicular to the lattice plane. The in-plane strain response upon applying an uniaxial compression load as well as an electric field perpendicular to the lattice plane were analyzed by a 2D image data detection analysis. The auxetic lattice structure exhibits orthotropic deformation behavior with a negative in-plane Poisson’s ratio of -2.05. Compared to PZT bulk material the piezoelectric auxetic lattice revealed a strain amplification by a factor of 30-70. Effective transversal coupling coefficients {{d}al}31 of the PZT lattice exceeding 4 × 103 pm V-1 were determined which result in an effective hydrostatic coefficient {{d}al}h 66 times larger than that of bulk PZT.

  14. Mandibular thickness measurements in young dentate adults.

    Science.gov (United States)

    Beaty, Narlin B; Le, Thomas T

    2009-09-01

    To measure thicknesses in clinical landmark areas of the dentate mandibles of young men and women. Using standard radiologic software, we obtained mean (SD) thickness measurements at the inferior or posterior borders of the mandible at the following 7 surgically useful sites: (1) the symphysis, (2) a point halfway between the symphysis and the mental nerve, (3) the mental nerve, (4) a point halfway between the mental nerve and the facial artery notch, (5) the facial artery notch, (6) the angle vertex, and (7) the ramus-condylar neck border. University hospital. A total of 150 dentate men and 75 dentate women aged 18 to 30 years who had undergone computed tomography of the head and neck region during the period of December 20, 2006 to February 20, 2007. Thicknesses of 7 mandibular sites. Mean (SD) thicknesses at the 7 mandibular sites were as follows: symphysis, 14.03 (1.53) mm for men and 13.21 (1.46) mm for women; halfway between the symphysis and the mental nerve, 11.17 (1.37) mm for men and 10.00 (1.08) mm for women; mental nerve, 9.48 (1.28) mm for men and 8.72 (1.00) mm for women; halfway between the mental nerve and the facial artery notch, 10.33 (1.24) mm for men and 9.45 (0.92) mm for women; facial artery notch, 7.27 (0.82) mm for men and 7.10 (0.88) mm for women; angle vertex, 5.42 (0.90) mm for men and 5.39 (0.66) mm for women; and ramus-condylar neck border, 5.90 (0.86) mm for men and 5.85 (0.71) mm for women. Clinical landmark areas in young dentate mandibles have mean thicknesses with limited SDs. The thickness measurements obtained at the sites in this study provide practical reference information for mandibular reconstruction and bicortical screw length estimation.

  15. Nickel--chromium strain gages for cryogenic stress analysis of superconducting structures in high magnetic fields

    International Nuclear Information System (INIS)

    Anon.

    1977-01-01

    Magnetoresistance measurements of strain gages were made. The magnitude and variation of the magnetoresistance of a large number of strain gages were measured for the following conditions: (1) dc magnetic fields up to 12 T, (2) three orthogonal field directions, (3) increasing and decreasing fields, (4) a wide range of strain levels, and (5) liquid helium temperature

  16. SEA ICE THICKNESS MEASUREMENT BY GROUND PENETRATING RADAR FOR GROUND TRUTH OF MICROWAVE REMOTE SENSING DATA

    Directory of Open Access Journals (Sweden)

    M. Matsumoto

    2018-04-01

    Full Text Available Observation of sea ice thickness is one of key issues to understand regional effect of global warming. One of approaches to monitor sea ice in large area is microwave remote sensing data analysis. However, ground truth must be necessary to discuss the effectivity of this kind of approach. The conventional method to acquire ground truth of ice thickness is drilling ice layer and directly measuring the thickness by a ruler. However, this method is destructive, time-consuming and limited spatial resolution. Although there are several methods to acquire ice thickness in non-destructive way, ground penetrating radar (GPR can be effective solution because it can discriminate snow-ice and ice-sea water interface. In this paper, we carried out GPR measurement in Lake Saroma for relatively large area (200 m by 300 m, approximately aiming to obtain grand truth for remote sensing data. GPR survey was conducted at 5 locations in the area. The direct measurement was also conducted simultaneously in order to calibrate GPR data for thickness estimation and to validate the result. Although GPR Bscan image obtained from 600MHz contains the reflection which may come from a structure under snow, the origin of the reflection is not obvious. Therefore, further analysis and interpretation of the GPR image, such as numerical simulation, additional signal processing and use of 200 MHz antenna, are required to move on thickness estimation.

  17. Sea Ice Thickness Measurement by Ground Penetrating Radar for Ground Truth of Microwave Remote Sensing Data

    Science.gov (United States)

    Matsumoto, M.; Yoshimura, M.; Naoki, K.; Cho, K.; Wakabayashi, H.

    2018-04-01

    Observation of sea ice thickness is one of key issues to understand regional effect of global warming. One of approaches to monitor sea ice in large area is microwave remote sensing data analysis. However, ground truth must be necessary to discuss the effectivity of this kind of approach. The conventional method to acquire ground truth of ice thickness is drilling ice layer and directly measuring the thickness by a ruler. However, this method is destructive, time-consuming and limited spatial resolution. Although there are several methods to acquire ice thickness in non-destructive way, ground penetrating radar (GPR) can be effective solution because it can discriminate snow-ice and ice-sea water interface. In this paper, we carried out GPR measurement in Lake Saroma for relatively large area (200 m by 300 m, approximately) aiming to obtain grand truth for remote sensing data. GPR survey was conducted at 5 locations in the area. The direct measurement was also conducted simultaneously in order to calibrate GPR data for thickness estimation and to validate the result. Although GPR Bscan image obtained from 600MHz contains the reflection which may come from a structure under snow, the origin of the reflection is not obvious. Therefore, further analysis and interpretation of the GPR image, such as numerical simulation, additional signal processing and use of 200 MHz antenna, are required to move on thickness estimation.

  18. Studies on Drosophila radiosensitive strains

    International Nuclear Information System (INIS)

    Varentsova, E.P.; Zakharov, I.A.

    1976-01-01

    45 of radiosensitive strains of Drosophila melanogaster were isolated by Curly/Lobe technique after EMS treatment of Livadia population males. The lethality of non-Curly late larvae after gamma-irradiation (4000r) characterized radiosensitivity strains. Most of them exhibited higher frequency of the spontaneous dominant lethals (up to 69%). The males of 6 strains were semi-sterile. 5 of these strains exhibited higher frequency of X-chromosome non-disjunction

  19. Thickness-dependent nonlinear optical properties of CsPbBr3 perovskite nanosheets.

    Science.gov (United States)

    Zhang, Jun; Jiang, Tian; Zheng, Xin; Shen, Chao; Cheng, Xiang'ai

    2017-09-01

    Halide perovskite has attracted significant attention because of excellent optical properties. Here, we study the optical properties of CsPbBr 3 perovskite nanosheets and observe that the nonlinear optical properties can be tuned by the thickness. The photoluminescence (PL) properties and nonlinear absorption effects induced by saturation absorption (SA) and two-photon absorption (TPA) in CsPbBr 3 nanosheets with different thicknesses (from 104.6 to 195.4 nm) have been studied. The PL intensity increases nearly three times with changing from the thinnest one to the thinnest under the same excitation condition. Moreover, the same phenomenon takes place no matter when SA or TPA effects happen. The PL lifetime (τ) varies inversely with the thickness. When SA happens, τ decreases from 11.54 to 9.43 ns while when TPA happens new decay channels emerge with the increase of the thickness. Besides, both saturation intensity (I sat ) and the modulation depth are proportional to the thickness (I sat rises from 3.12 to 4.79  GW/cm 2 , the modulation depth increases from 18.6% to 32.3%), while the TPA coefficient (β) is inversely proportional with the thickness (decreases from 10.94 to 4.73  cm/GW). In addition, quantum yields and thicknesses are in the direct ratio. This Letter advocates great promise for nonlinear optical property related photonics devices.

  20. A search for strain gradients in gold thin films on substrates using x-ray diffraction

    International Nuclear Information System (INIS)

    Leung, O. S.; Munkholm, A.; Brennan, S.; Nix, W. D.

    2000-01-01

    The high strengths of gold thin films on silicon substrates have been studied with particular reference to the possible effect of strain gradients. Wafer curvature/thermal cycling measurements have been used to study the strengths of unpassivated, oxide-free gold films ranging in thickness from 0.1 to 2.5 μm. Films thinner than about 1 μm in thickness appear to be weakened by diffusional relaxation effects near the free surface and are not good candidates for the study of strain gradient plasticity. Our search for plastically induced strain gradients was thus limited to thicker films with correspondingly larger grain sizes. Three related x-ray diffraction techniques have been used to investigate the elastic strains in these films. The standard d hkl vs sin2 Ψ technique has been used to find the average strain through the thickness of the films. The results are consistent with wafer curvature measurements. We have also measured a number of d hkl 's as a function of penetration depth to construct depth-dependent d hkl vs sin2 Ψ plots. These data show that the residual elastic strain is essentially independent of depth in the film. Finally, a new technique for sample rotation has been used to measure the d hkl 's for a fixed set of grains in the film as a function of penetration depth. Again, no detectable gradient in strain has been observed. These results show that the high strengths of unpassivated gold films relative to the strength of bulk gold cannot be rationalized on the basis of strain gradients through the film thickness. However, a sharp gradient in strain close to the film substrate interface cannot be ruled out. (c) 2000 American Institute of Physics