WorldWideScience

Sample records for thickness dependent nano-crystallization

  1. X-ray yields from high-energy heavy ions channeled through a crystal: their crystal thickness and projectile dependences

    International Nuclear Information System (INIS)

    Kondo, C.; Takabayashi, Y.; Muranaka, T.; Masugi, S.; Azuma, T.; Komaki, K.; Hatakeyama, A.; Yamazaki, Y.; Takada, E.; Murakami, T.

    2005-01-01

    X-rays emitted from Ar 17+ , Fe 24+ and Kr 35+ ions of about 400 MeV/u transmitting through a thin Si crystal of about 20 μm thickness have been measured in a planar channeling condition and compared with those in a random incident condition. We have found that the X-ray yield from Ar 17+ ions is larger for the channeling condition than for the random incidence, while those from Fe 24+ and Kr 35+ ions are rather smaller. Such tendencies are explained by considering the projectile dependences of excitation and ionization probabilities together with X-ray emission rates. A crude simulation has qualitatively reproduced these experimental results. When the crystal thickness is small, the X-ray yield is smaller in the channeling condition than in the random incident condition, because excitation is depressed. However, for thicker crystals, the X-ray yield is larger, since the survived population of projectile-bound electrons is larger due to small ionization probabilities under the channeling condition. This inversion occurs at a specific crystal thickness depending on projectile species. Whether the thickness of the used crystal is smaller or larger than the inversion thickness determines enhancement or depression of the X-ray yield in the channeling condition

  2. Electroluminescence dependence on the organic thickness in ZnO nano rods/Alq3 heterostructure devices.

    Science.gov (United States)

    Kan, Pengzhi; Wang, Yongsheng; Zhao, Suling; Xu, Zheng; Wang, Dawei

    2011-04-01

    ZnO nanorods are synthesised by a hydrothermal method on ITO glass. Their crystallization and morphology are detected by XRD and SEM, respectively. The results show that the ZnO nanorod array has grown primarily along a direction aligned perpendicular to the ITO substrate. The average height and diameter of the nanorods is about 130 nm and 30 nm, respectively. Then ZnO nano rods/Alq3 heterostructure LEDs are prepared by thermal evaporation of Alq3 molecules. The thicknesses of the Alq3 layers are 130 nm, 150 nm, 170 nm and 190 nm, respectively. The electroluminescence of the devices is detected under different DC bias voltages. The exciton emission of Alq3 is detected in all devices. When the thickness of Alq3 is 130 nm, the UV electroluminescence of ZnO is around 382 nm, and defect emissions around 670 nm and 740 nm are detected. Defect emissions of ZnO nanorods are prominent. When the thickness of Alq3 increases to over 170 nm, it is difficult to observe defect emissions from the ZnO nano rods. In such devices, the exciton emission of Alq3 is more prominent than other emissions under different bias voltage.

  3. Controlled synthesis of thorium and uranium oxide nano-crystals

    International Nuclear Information System (INIS)

    Hudry, Damien; Apostolidis, Christos; Walter, Olaf; Gouder, Thomas; Courtois, Eglantine; Kubel, Christian; Meyer, Daniel

    2013-01-01

    Very little is known about the size and shape effects on the properties of actinide compounds. As a consequence, the controlled synthesis of well-defined actinide-based nano-crystals constitutes a fundamental step before studying their corresponding properties. In this paper, we report on the non-aqueous surfactant-assisted synthesis of thorium and uranium oxide nano-crystals. The final characteristics of thorium and uranium oxide nano-crystals can be easily tuned by controlling a few experimental parameters such as the nature of the actinide precursor and the composition of the organic system (e.g., the chemical nature of the surfactants and their relative concentrations). Additionally, the influence of these parameters on the outcome of the synthesis is highly dependent on the nature of the actinide element (thorium versus uranium). By using optimised experimental conditions, monodisperse isotropic uranium oxide nano-crystals with different sizes (4.5 and 10.7 nm) as well as branched nano-crystals (overall size ca. 5 nm), nano-dots (ca. 4 nm) and nano-rods (with ultra-small diameters of 1 nm) of thorium oxide were synthesised. (authors)

  4. The effect of oxide shell thickness on the structural, electronic, and optical properties of Si-SiO{sub 2} core-shell nano-crystals: A (time dependent)density functional theory study

    Energy Technology Data Exchange (ETDEWEB)

    Nazemi, Sanaz, E-mail: s.nazemi@ut.ac.ir, E-mail: pourfath@ut.ac.ir; Soleimani, Ebrahim Asl [School of Electrical and Computer Engineering, University of Tehran, Tehran 14395-515 (Iran, Islamic Republic of); Pourfath, Mahdi, E-mail: s.nazemi@ut.ac.ir, E-mail: pourfath@ut.ac.ir [School of Electrical and Computer Engineering, University of Tehran, Tehran 14395-515 (Iran, Islamic Republic of); Institute for Microelectronics, Technische Universität Wien, Wien A-1040 (Austria); Kosina, Hans [Institute for Microelectronics, Technische Universität Wien, Wien A-1040 (Austria)

    2016-04-14

    Due to their tunable properties, silicon nano-crystals (NC) are currently being investigated. Quantum confinement can generally be employed for size-dependent band-gap tuning at dimensions smaller than the Bohr radius (∼5 nm for silicon). At the nano-meter scale, however, increased surface-to-volume ratio makes the surface effects dominant. Specifically, in Si-SiO{sub 2} core-shell semiconductor NCs the interfacial transition layer causes peculiar electronic and optical properties, because of the co-existence of intermediate oxidation states of silicon (Si{sup n+}, n = 0–4). Due to the presence of the many factors involved, a comprehensive understanding of the optical properties of these NCs has not yet been achieved. In this work, Si-SiO{sub 2} NCs with a diameter of 1.1 nm and covered by amorphous oxide shells with thicknesses between 2.5 and 4.75 Å are comprehensively studied, employing density functional theory calculations. It is shown that with increased oxide shell thickness, the low-energy part of the optical transition spectrum of the NC is red shifted and attenuated. Moreover, the absorption coefficient is increased in the high-energy part of the spectrum which corresponds to SiO{sub 2} transitions. Structural examinations indicate a larger compressive stress on the central silicon cluster with a thicker oxide shell. Examination of the local density of states reveals the migration of frontier molecular orbitals from the oxide shell into the silicon core with the increase of silica shell thickness. The optical and electrical properties are explained through the analysis of the density of states and the spatial distribution of silicon sub-oxide species.

  5. Thickness-dependent photovoltaic effects in miscut Nb-doped SrTiO3 single crystals

    International Nuclear Information System (INIS)

    Yue Zengji; Zhao Kun; Zhao Songqing; Lu Zhiqing; Li Xiaoming; Ni Hao; Wang Aijun

    2010-01-01

    The photovoltaic effects of Nb-doped SrTiO 3 single crystals with different thicknesses were investigated under the illumination of ultraviolet pulsed lasers. The peak photovoltage increased and then decreased quickly with the decrease in crystal thickness, and a maximum photovoltage occurred for the 180 μm-thick crystal. The photovoltaic response time decreased monotonically with decreasing crystal thickness. The present results suggested the promising potential of reducing crystal thickness in high sensitivity detectors with fast response.

  6. Crystallization in nano-confinement seeded by a nanocrystal—A molecular dynamics study

    KAUST Repository

    Pan, Heng; Grigoropoulos, Costas

    2014-01-01

    Seeded crystallization and solidification in nanoscale confinement volumes have become an important and complex topic. Due to the complexity and limitations in observing nanoscale crystallization, computer simulation can provide valuable details for supporting and interpreting experimental observations. In this article, seeded crystallization from nano-confined liquid, as represented by the crystallization of a suspended gold nano-droplet seeded by a pre-existing gold nanocrystal seed, was investigated using molecular dynamics simulations in canonical (NVT) ensemble. We found that the crystallization temperature depends on nano-confinement volume, crystal orientation, and seed size as explained by classical two-sphere model and Gibbs-Thomson effect. © 2014 AIP Publishing LLC.

  7. Crystallization in nano-confinement seeded by a nanocrystal—A molecular dynamics study

    KAUST Repository

    Pan, Heng

    2014-03-14

    Seeded crystallization and solidification in nanoscale confinement volumes have become an important and complex topic. Due to the complexity and limitations in observing nanoscale crystallization, computer simulation can provide valuable details for supporting and interpreting experimental observations. In this article, seeded crystallization from nano-confined liquid, as represented by the crystallization of a suspended gold nano-droplet seeded by a pre-existing gold nanocrystal seed, was investigated using molecular dynamics simulations in canonical (NVT) ensemble. We found that the crystallization temperature depends on nano-confinement volume, crystal orientation, and seed size as explained by classical two-sphere model and Gibbs-Thomson effect. © 2014 AIP Publishing LLC.

  8. Gelatin Nano-coating for Inhibiting Surface Crystallization of Amorphous Drugs.

    Science.gov (United States)

    Teerakapibal, Rattavut; Gui, Yue; Yu, Lian

    2018-01-05

    Inhibit the fast surface crystallization of amorphous drugs with gelatin nano-coatings. The free surface of amorphous films of indomethacin or nifedipine was coated by a gelatin solution (type A or B) and dried. The coating's effect on surface crystallization was evaluated. Coating thickness was estimated from mass change after coating. For indomethacin (weak acid, pK a  = 4.5), a gelatin coating of either type deposited at pH 5 and 10 inhibited its fast surface crystal growth. The coating thickness was 20 ± 10 nm. A gelatin coating deposited at pH 3, however, provided no protective effect. These results suggest that an effective gelatin coating does not require that the drug and the polymer have opposite charges. The ineffective pH 3 coating might reflect the poor wetting of indomethacin's neutral, hydrophobic surface by the coating solution. For nifedipine (weak base, pK a  = 2.6), a gelatin coating of either type deposited at pH 5 inhibited its fast surface crystal growth. Gelatin nano-coatings can be conveniently applied to amorphous drugs from solution to inhibit fast surface crystallization. Unlike strong polyelectrolyte coatings, a protective gelatin coating does not require strict pairing of opposite charges. This could make gelatin coating a versatile, pharmaceutically acceptable coating for stabilizing amorphous drugs.

  9. Synthesis of self-assembled Ge nano crystals employing reactive RF sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez H, A. [Universidad Autonoma del Estado de Hidalgo, Escuela Superior de Apan, Calle Ejido de Chimalpa Tlalayote s/n, Col. Chimalpa, Apan, Hidalgo (Mexico); Hernandez H, L. A. [IPN, Escuela Superior de Fisica y Matematicas, San Pedro Zacatenco, 07730 Ciudad de Mexico (Mexico); Monroy, B. M.; Santana R, G. [UNAM, Instituto de Investigaciones en Materiales, Apdo. Postal 70-360, 04510 Ciudad de Mexico (Mexico); Santoyo S, J.; Gallardo H, S. [IPN, Centro de Investigacion y de Estudios Avanzados, Departamento de Fisica, Apdo. Postal 14740, 07300 Ciudad de Mexico (Mexico); Marquez H, A. [Universidad de Guanajuato, Campus Irapuato-Salamanca, Departamento de Ingenieria Agricola, Km. 9 Carretera Irapuato-Silao, 36500 Irapuato, Guanajuato (Mexico); Mani G, P. G.; Melendez L, M. [Universidad Autonoma de Ciudad Juarez, Instituto de Ingenieria y Tecnologia, Departamento de Fisica y Matematicas, 32310 Ciudad Juarez, Chihuahua (Mexico)

    2016-11-01

    This work presents the results of a simple methodology able to control crystal size, dispersion and spatial distribution of germanium nano crystals (Ge-NCs). It takes advantage of a self-assembled process taken place during the deposit of the system SiO{sub 2}/Ge/SiO{sub 2} by reactive RF sputtering. Nanoparticles formation is controlled mainly by the roughness of the first SiO{sub 2} layer buy the ulterior interaction of the interlayer with the top layer also play a role. Structural quality of germanium nano crystals increases with roughness and the interlayer thickness. The tetragonal phase of germanium is produced and its crystallographic quality improves with interlayer thickness and oxygen partial pressure. Room temperature photoluminescence emission without a post growth thermal annealing process indicates that our methodology produces a low density of non-radiative traps. The surface topography of SiO{sub 2} reference samples was carried out by atomic force microscopy. The crystallographic properties of the samples were studied by grazing incidence X-ray diffraction at 1.5 degrees carried out in a Siemens D-5000 system employing the Cu Kα wavelength. (Author)

  10. Oxide nano crystals for in vivo imaging

    International Nuclear Information System (INIS)

    Heinrich, E.

    2005-01-01

    For small animal, fluorescence imaging is complementary with other techniques such as nuclear imaging (PET, SPECT). In vivo imaging studies imply the development of new luminescent probes, with a better sensitivity and a better biological targeting. These markers must filled biological and optical conditions. Our goal is to study new doped lanthanides oxide nano-crystals, their properties, their functionalization and their ability to target biological molecules. Characterizations of Y 2 O 3 :Eu and Y 2 SiO 5 :Eu nano-crystals (light diffusion, spectrometry, microscopy) allowed the determination of their size, their fluorescence properties but also their photo-bleaching. Means of stabilization of the nanoparticles were also studied in order to decrease their aggregation. Gd 2 O 3 :Eu nano-crystals were as well excited by X rays. Nano-crystals of Y 2 SiO 5 :Eu were functionalized, and organic ligands grafting evidenced by fluorescence and NMR. The functionalized nano-crystals could then recognized biological targets (streptavidin-biotin) and be incubated in the presence of HeLa cells. This report deals with the properties of these nano-crystals and their ability to meet the optical and biological conditions required for the application of in vivo imaging. (author)

  11. Nano crystals for Electronic and Optoelectronic Applications

    International Nuclear Information System (INIS)

    Zhu, T.; Cloutier, S.G.; Ivanov, I; Knappenberger Jr, K.L.; Robel, I.; Zhang, F

    2012-01-01

    Electronic and optoelectronic devices, from computers and smart cell phones to solar cells, have become a part of our life. Currently, devices with featured circuits of 45 nm in size can be fabricated for commercial use. However, further development based on traditional semiconductor is hindered by the increasing thermal issues and the manufacturing cost. During the last decade, nano crystals have been widely adopted in various electronic and optoelectronic applications. They provide alternative options in terms of ease of processing, low cost, better flexibility, and superior electronic/optoelectronic properties. By taking advantage of solution-processing, self-assembly, and surface engineering, nano crystals could serve as new building blocks for low-cost manufacturing of flexible and large area devices. Tunable electronic structures combined with small exciton binding energy, high luminescence efficiency, and low thermal conductivity make nano crystals extremely attractive for FET, memory device, solar cell, solid-state lighting/display, photodetector, and lasing applications. Efforts to harness the nano crystal quantum tunability have led to the successful demonstration of many prototype devices, raising the public awareness to the wide range of solutions that nano technology can provide for an efficient energy economy. This special issue aims to provide the readers with the latest achievements of nano crystals in electronic and optoelectronic applications, including the synthesis and engineering of nano crystals towards the applications and the corresponding device fabrication, characterization and computer modeling.

  12. Nano-crystallization of steel wire and its wear behavior

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Y.H. [School of Electromechanical Engineering, Xian University of Architecture and Technology, Xian 716000 (China) and School of Materials Science and Engineering, Northwestern Polytecnical University, Xian 710072 (China)], E-mail: xuyunhua@vip.163.com; Peng, J.H. [School of Electromechanical Engineering, Xian University of Architecture and Technology, Xian 716000 (China); Fang, L. [State Key Laboratory for Mechanical Behavior of Materials, Xian Jiaotong University, Xian 710049 (China)

    2008-06-15

    As carbon steel wire is widely used in civil engineering and industry, it is quite important to increase its strength. In the present paper, a severe cold drawing approach is applied to increase strength and is shown to produce nano grains. With increasing true strain, the tensile strength increases continuously and the cementite flake thickness decreases correspondingly. It is observed by transmission electron microscopy that a significant amount of cementite flakes have been fragmented and dissolved at true strains. Finally, the grains are transformed to nano-sized crystals. Additionally, the cold drawn nano-sized steel wire has been knitted and filled with polyurethane to produce a composite material. Three-body abrasive wear tests show that the wear resistance of the test material is even better than that of high-Cr white cast irons.

  13. Nano-crystallization of steel wire and its wear behavior

    International Nuclear Information System (INIS)

    Xu, Y.H.; Peng, J.H.; Fang, L.

    2008-01-01

    As carbon steel wire is widely used in civil engineering and industry, it is quite important to increase its strength. In the present paper, a severe cold drawing approach is applied to increase strength and is shown to produce nano grains. With increasing true strain, the tensile strength increases continuously and the cementite flake thickness decreases correspondingly. It is observed by transmission electron microscopy that a significant amount of cementite flakes have been fragmented and dissolved at true strains. Finally, the grains are transformed to nano-sized crystals. Additionally, the cold drawn nano-sized steel wire has been knitted and filled with polyurethane to produce a composite material. Three-body abrasive wear tests show that the wear resistance of the test material is even better than that of high-Cr white cast irons

  14. Crystallization kinetics of Ga metallic nano-droplets under As flux

    International Nuclear Information System (INIS)

    Bietti, S; Somaschini, C; Sanguinetti, S

    2013-01-01

    We present an experimental investigation of the crystallization dynamics of Ga nano-droplets under As flux. The transformation of the metallic Ga contained in the droplets into a GaAs nano-island proceeds by increasing the size of a tiny ring of GaAs which is formed just after the Ga deposition at the rim of a droplet. The GaAs crystallization rate depends linearly on the liquid–solid interface area. The maximum growth rate is set by the As flux impinging on the droplet, thus showing an efficient As incorporation and transport despite the predicted low solubility of the As in metallic Ga at the crystallization temperatures. (paper)

  15. Nano crystals-Related Synthesis, Assembly, and Energy Applications 2012

    International Nuclear Information System (INIS)

    Zou, B.; Yu, W.W.; Seo, J.; Zhu, T.; Hu, M.Z.

    2012-01-01

    During the past decades, nano crystals have attracted broad attention due to their unique shape- and size-dependent physical and chemical properties that differ drastically from their bulk counterparts. Hitherto, much effort has been dedicated to achieving rational controlling over the morphology, assembly, and related energy applications of the nano materials. Therefore, the ability to manipulate the morphology, size, and size distribution of inorganic nano materials is still an important goal in modern materials physics and chemistry. Especially, the world's demand for energy supply is causing a dramatic escalation of social and political unrest. Likewise, the environmental impact of the global climate change due to the combustion of fossil fuel is becoming increasingly alarming. These problems compel us to search for effective routes to build devices that can supply sustainable energy, with not only high efficiency but also environmental friendship. One of ways to relieve the energy crisis is to exploit devices based on renewable energy sources, such as solar energy and water power. Aiming at this exploration, the primary stage requires the design of appropriate strategies for the synthesis of high-quality nano crystals with respect to size uniformity and superior electrochemical performances. As a consequence, we organize the current special issue for Journal of Nano materials to provide the authors with a platform and readers with the latest achievements of nano crystals-related synthesis, assembly, and energy applications.

  16. Orientation acoustic radiation of electrons in silicon thick crystal

    International Nuclear Information System (INIS)

    Alejnik, A.N.; Afanas'ev, S.G.; Vorob'ev, S.A.; Zabaev, V.N.; Il'in, S.I.; Kalinin, B.N.; Potylitsyn, A.P.

    1989-01-01

    Results of measuring orientation acoustic radiation of 900 and 500 MeV electrons during their movement along crystallographic axis in thick silicon crystal (h=20 mm thickness) are presented for the first time. Analysis of obtained results shows that dynamic mechanism describes rather completely the main regularities of orientation dependence of the amplitude of acoustic signal occuring under electron motion near crystallographic axis of the crystal. Phenomena of orientation acoustic radiation can be also used for investigation of solid bodies. Orientation both of thin and rather thick monocrystals can be conducted on the basis of dynamic mechanism of elastic wave excitation in crystals

  17. Dose dependence of nano-hardness of 6H-SiC crystal under irradiation with inert gas ions

    Science.gov (United States)

    Yang, Yitao; Zhang, Chonghong; Su, Changhao; Ding, Zhaonan; Song, Yin

    2018-05-01

    Single crystal 6H-SiC was irradiated by inert gas ions (He, Ne, Kr and Xe ions) to various damage levels at room temperature. Nano-indentation test was performed to investigate the hardness change behavior with damage. The depth profile of nano-hardness for 6H-SiC decreased with increasing depth for both the pristine and irradiated samples, which was known as indentation size effect (ISE). Nix-Gao model was proposed to determine an asymptotic value of nano-hardness by taking account of ISE for both the pristine and irradiated samples. In this study, nano-hardness of the irradiated samples showed a strong dependence on damage level and showed a weak dependence on ions species. From the dependence of hardness on damage, it was found that the change of hardness demonstrated three distinguishable stages with damage: (I) The hardness increased with damage from 0 to 0.2 dpa and achieved a maximum of hardening fraction ∼20% at 0.2 dpa. The increase of hardness in this damage range was contributed to defects produced by ion irradiation, which can be described well by Taylor relation. (II) The hardness reduced rapidly with large decrement in the damage range from 0.2 to 0.5 dpa, which was considered to be from the covalent bond breaking. (III) The hardness reduced with small decrement in the damage range from 0.5 to 2.2 dpa, which was induced by extension of the amorphous layer around damage peak.

  18. Nano crystals-Related Synthesis, Assembly, and Energy Applications

    International Nuclear Information System (INIS)

    Dai, Q.; Hu, M.Z.; Yu, B.Z.; William, W.; Seo, J.

    2011-01-01

    Fundamental material properties have been dramatically altered in the nano scale regime because of quantum confinement effect. The unique size-tunable functionalities of nano materials make them involved in an extensive variety of energy applications, such as light-emitting diodes and solar cells. These applications have been demonstrated to cut energy consumption. In response to the ever-growing energy demands as well as the concerns of global warming, researchers are actively placing their enormous emphasis on the exploration of energy savings. During this exploration, the primary stage requires the design of appropriate strategies for the synthesis of high-quality nano crystals in terms of size uniformity and superior optical/electronic properties. Especially, there is a need to seek green-chemistry approaches for the synthesis of environmentally benign and user-friendly nano crystals. Another recent area of focus is the use of individual nano crystals as building blocks for self-assembly, providing new opportunities to improve the nano crystal performance

  19. Zinc Oxide Nano crystals Synthesized by Quenching Technique

    International Nuclear Information System (INIS)

    Norhayati Abu Bakar; Akrajas Ali Umar; Muhamad Mat Salleh; Muhammad Yahya

    2011-01-01

    This paper reports an attempt to synthesize non toxic zinc oxide (ZnO) nano crystals using a simple quenching technique. The hot zinc oxide powder was quenched in hexane solution to obtain ZnO nano crystals. As the result, diameter size of the synthesized ZnO is 200 nm. It was also exhibited a good crystalline with wurtzite phase. The nano crystals properties of ZnO were revealed from good absorbance and green luminescence under UV exposure. This may be related with oxygen vacancy ionization during the annealing process. (author)

  20. Direct Identification of Atomic-Like Electronic Levels in InAs Nano crystal Quantum Dots

    International Nuclear Information System (INIS)

    Millo, O.; Katz, D.

    1999-01-01

    The size dependent level structure of InAs nano crystals in the range 2-7 nm in diameter is investigated using both tunneling and optical spectroscopies. The tunneling measurements are performed using a cryogenic scanning tunneling microscope on individual nano crystals that, are attached to a gold substrate via dithiol molecules. The tunneling I-V characteristics manifest an interplay between single electron charging and quantum size effects. We are able to directly identify quantum confined states of isolated InAs nano crystals having s and p symmetries. These states are observed in the I-V curves as two and six-fold single electron charging multiplets. Excellent agreement is found between the strongly allowed optical transitions [1] and the spacing of levels detected in the tunneling experiment. This correlation provides new information on the quantum-dot level structure, from which we conclude that the top-most valence band state has both s and p characteristics. The interplay between level structure singles electron charging of the nano crystals obeys an atomic-like Aufbau sequential electron level occupation

  1. Characterization of boundary layer thickness of nano fluid ZrO_2 on natural convection process

    International Nuclear Information System (INIS)

    V-Indriati Sri Wardhani; Henky P Rahardjo

    2015-01-01

    Cooling system is highly influenced by the process of convection heat transfer from the heat source to the cooling fluid. The cooling fluid usually used conventional fluid such as water. Cooling system performance can be improved by using fluids other than water such as nano fluid that is made from a mixture of water and nano-sized particles. Researchers at BATAN Bandung have made nano fluid ZrO_2 from local materials, as well as experimental equipment for studying the thermohydraulic characteristics of nano fluid as the cooling fluid. In this study, thermohydraulic characteristics of nano fluid ZrO_2 are observed through experimentation. Nano fluid ZrO_2 is made from a mixture of water with ZrO_2 nano-sized particles of 10-7-10-9 nm whose concentration is 1 g/liter. This nano fluid is used as coolant in the cooling process of natural convection. The natural convection process depends on the temperature difference between heat source and the cooling fluid, which occur in the thermal boundary layer. Therefore it is necessary to study the thermal boundary layer thickness of nano fluid ZrO_2, which is also able to determine the local velocity. Experimentations are done with several variation of the heater power and then the temperature are measured at several horizontal points to see the distribution of the temperatures. The temperature distribution measurement results can be used to determine the boundary layer thickness and flow rate. It is obtained that thermal boundary layer thickness and velocity of nano fluid ZrO_2 is not much different from the conventional fluid water. (author)

  2. Thorium/uranium mixed oxide nano-crystals: Synthesis, structural characterization and magnetic properties

    International Nuclear Information System (INIS)

    Hudry, Damien; Griveau, Jean-Christophe; Apostolidis, Christos; Colineau, Eric; Rasmussen, Gert; Walter, Olaf; Wang, Di; Venkata Sai Kiran Chakravadhaluna; Courtois, Eglantine; Kubel, Christian

    2014-01-01

    One of the primary aims of the actinide community within nano-science is to develop a good understanding similar to what is currently the case for stable elements. As a consequence, efficient, reliable and versatile synthesis techniques dedicated to the formation of new actinide-based nano-objects (e.g., nano-crystals) are necessary. Hence, a 'library' dedicated to the preparation of various actinide based nano-scale building blocks is currently being developed. Nano-scale building blocks with tunable sizes, shapes and compositions are of prime importance. So far, the non-aqueous synthesis method in highly coordinating organic media is the only approach which has demonstrated the capability to provide size and shape control of actinide-based nano-crystals (both for thorium and uranium, and recently extended to neptunium and plutonium). In this paper, we demonstrate that the non-aqueous approach is also well adapted to control the chemical composition of the nano-crystals obtained when mixing two different actinides. Indeed, the controlled hot co-injection of thorium acetylacetonate and uranyl acetate (together with additional capping agents) into benzyl ether can be used to synthesize thorium/uranium mixed oxide nano-crystals covering the full compositional spectrum. Additionally, we found that both size and shape are modified as a function of the thorium/uranium ratio. Finally, the magnetic properties of the different thorium/uranium mixed oxide nano-crystals were investigated. Contrary to several reports, we did not observe any ferromagnetic behavior. As a consequence, ferromagnetism cannot be described as a universal feature of nano-crystals of non-magnetic oxides as recently claimed in the literature. (authors)

  3. Angular dependence of dose sensitivity of nanoDot optically stimulated luminescent dosimeters in different radiation geometries

    Energy Technology Data Exchange (ETDEWEB)

    Jursinic, Paul A., E-mail: pjursinic@wmcc.org [West Michigan Cancer Center, 200 North Park Street, Kalamazoo, Michigan 49007 (United States)

    2015-10-15

    Purpose: A type of in vivo dosimeter, an optically stimulated luminescent dosimeter, OSLD, may have dose sensitivity that depends on the angle of incidence of radiation. This work measures how angular dependence of a nanoDot changes with the geometry of the phantom in which irradiation occurs and with the intrinsic structure of the nanoDot. Methods: The OSLDs used in this work were nanoDot dosimeters (Landauer, Inc., Glenwood, IL), which were read with a MicroStar reader (Landauer, Inc., Glenwood, IL). Dose to the OSLDs was delivered by 6 MV x-rays. NanoDots with various intrinsic sensitivities were irradiated in numerous phantoms that had geometric shapes of cylinders, rectangles, and a cube. Results: No angular dependence was seen in cylindrical phantoms, cubic phantoms, or rectangular phantoms with a thickness to width ratio of 0.3 or 1.5. An angular dependence of 1% was observed in rectangular phantoms with a thickness to width of 0.433–0.633. A group of nanoDots had sensitive layers with mass density of 2.42–2.58 g/cm{sup 3} and relative sensitivity of 0.92–1.09 and no difference in their angular dependence. Within experimental uncertainty, nanoDot measurements agree with a parallel-plate ion chamber at a depth of maximum dose. Conclusions: When irradiated in cylindrical, rectangular, and cubic phantoms, nanoDots show a maximum angular dependence of 1% or less at an incidence angle of 90°. For a sample of 78 new nanoDots, the range of their relative intrinsic sensitivity is 0.92–1.09. For a sample of ten nanoDots, on average, the mass in the sensitive layer is 73.1% Al{sub 2}O{sub 3}:C and 26.9% polyester. The mass density of the sensitive layer of a nanoDot disc is between 2.42 and 2.58 g/cm{sup 3}. The angular dependence is not related to Al{sub 2}O{sub 3}:C loading of the nanoDot disc. The nanoDot at the depth of maximum dose has no more angular dependence than a parallel-plate ion chamber.

  4. Ion beam assisted synthesis of nano-crystals in glasses (silver and lead chalcogenides)

    International Nuclear Information System (INIS)

    Espiau de Lamaestre, R.

    2005-04-01

    This work deals with the interest in ion beams for controlling nano-crystals synthesis in glasses. We show two different ways to reach this aim, insisting on importance of redox phenomena induced by the penetration and implantation of ions in glasses. We first show that we can use the great energy density deposited by the ions to tailor reducing conditions, favorable to metallic nano-crystal precipitation. In particular, we show that microscopic mechanism of radiation induced silver precipitation in glasses are analogous to the ones of classical photography. Ion beams can also be used to overcome supersaturation of elements in a given matrix. In this work, we synthesized lead chalcogenide nano-crystals (PbS, PbSe, PbTe) whose optical properties are interesting for telecommunication applications. We demonstrate the influence of complex chalcogenide chemistry in oxide glasses, and its relationship with the observed loss of growth control when nano-crystals are synthesized by sequential implantation of Pb and S in pure silica. As a consequence of this understanding, we demonstrate a novel and controlled synthesis of PbS nano-crystals, consisting in implanting sulfur into a Pb-containing glass, before annealing. Choice of glass composition provides a better control of precipitation physico-chemistry, whereas the use of implantation allows high nano-crystal volume fractions to be reached. Our study of IR emission properties of these nano-crystals shows a very high excitation cross section, and evidence for a 'dark exciton' emitting level. (author)

  5. Nano dots and nano crystals detectors applications and questions

    International Nuclear Information System (INIS)

    Paltiel, Y.; Shusterman, S.; Naaman, R.; Aqua, T.; Banin, U.; Aharoni, A.

    2006-01-01

    Full Text: Nano technology is in the center of attention in the last decade. In our work we are using nano dots, nano crystals and quantum wells to study and fabricate infrared devices. In this study we aim to develop an accurate narrow band infrared sensor that will use quantum mechanics at room temperature. The sensor is based on a FET like structure, in which the current is very sensitive to potential changes on its surface. We have shown that this configuration provides flexibility and variability in operation bandgap and response. However, the relations between the quantum and the macroscopic world are not trivial and the coupling between worlds influences the transport, noise, and optical measurements. In this talk we will show some of the infrared devices we are studying, and try to present the rich physics and relations that combine between the two worlds

  6. Formation of nano-hydroxyapatite crystal in situ in chitosan-pectin polyelectrolyte complex network

    International Nuclear Information System (INIS)

    Li Junjie; Zhu Dunwan; Yin Jianwei; Liu Yuxi; Yao Fanglian; Yao Kangde

    2010-01-01

    Hydroxyapatite (HA)/polysaccharide composites have been widely used in bone tissue engineering due to their chemical similarity to natural bone. Polymer matrix-mediated synthesis of nano-hydroxyapatite is one of the simplest models for biomimetic. In this article, the nano-hydroxyapatite/chitosan-pectin (nHCP) composites were prepared through in situ mineralization of hydroxyapatite in chitosan-pectin polyelectrolyte complex (PEC) network. The formation processes of nHCP were investigated by X-ray diffraction (XRD) analysis. The interactions between nHA crystal and chitosan-pectin PEC networks were studied using Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). The morphology and structure of nHA crystal were characterized by XRD and Transmission Electron Microscope (TEM). Results suggested that the interfacial interactions between nano-hydroxyapatite crystal and chitosan-pectin PEC network assist the site specific nucleation and growth of nHA nanoparticles. The nHA crystals grow along the c-axis. In this process, pH value is the main factor to control the nucleation and growth of nHA crystal in chitosan-pectin PEC networks, because both the interactions' strength between nHA crystal and chitosan-pectin and diffusion rate of inorganic ions depend on the pH value of the reaction system. Apart from the pH value, the chitosan/pectin ratio and [Ca 2+ ] also take important effects on the formation of nHA crystal. An effective way to control the size of nHA crystal is to adjust the content of pectin and [Ca 2+ ]. It is interesting that the Zeta potential of nHCP composites is about - 30 mV when the chitosan/pectin ratio ≤ 1:1, and the dispersion solution of nHCP composites has higher stability, which provides the possibility to prepare 3D porous scaffolds with nHCP for bone tissue engineering.

  7. Formation of nano-hydroxyapatite crystal in situ in chitosan-pectin polyelectrolyte complex network

    Energy Technology Data Exchange (ETDEWEB)

    Li Junjie [Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 (China); Research Institute of Polymeric Materials, Tianjin University, Tianjin, 300072 (China); Zhu Dunwan [Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300072 (China); Yin Jianwei; Liu Yuxi [Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 (China); Yao Fanglian, E-mail: yaofanglian@tju.edu.cn [Department of Polymer Science and Key Laboratory of Systems Bioengineering of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 (China); Yao Kangde [Research Institute of Polymeric Materials, Tianjin University, Tianjin, 300072 (China)

    2010-07-20

    Hydroxyapatite (HA)/polysaccharide composites have been widely used in bone tissue engineering due to their chemical similarity to natural bone. Polymer matrix-mediated synthesis of nano-hydroxyapatite is one of the simplest models for biomimetic. In this article, the nano-hydroxyapatite/chitosan-pectin (nHCP) composites were prepared through in situ mineralization of hydroxyapatite in chitosan-pectin polyelectrolyte complex (PEC) network. The formation processes of nHCP were investigated by X-ray diffraction (XRD) analysis. The interactions between nHA crystal and chitosan-pectin PEC networks were studied using Fourier Transform Infrared Spectroscopy (FTIR) and Differential Scanning Calorimetry (DSC). The morphology and structure of nHA crystal were characterized by XRD and Transmission Electron Microscope (TEM). Results suggested that the interfacial interactions between nano-hydroxyapatite crystal and chitosan-pectin PEC network assist the site specific nucleation and growth of nHA nanoparticles. The nHA crystals grow along the c-axis. In this process, pH value is the main factor to control the nucleation and growth of nHA crystal in chitosan-pectin PEC networks, because both the interactions' strength between nHA crystal and chitosan-pectin and diffusion rate of inorganic ions depend on the pH value of the reaction system. Apart from the pH value, the chitosan/pectin ratio and [Ca{sup 2+}] also take important effects on the formation of nHA crystal. An effective way to control the size of nHA crystal is to adjust the content of pectin and [Ca{sup 2+}]. It is interesting that the Zeta potential of nHCP composites is about - 30 mV when the chitosan/pectin ratio {<=} 1:1, and the dispersion solution of nHCP composites has higher stability, which provides the possibility to prepare 3D porous scaffolds with nHCP for bone tissue engineering.

  8. Thickness-dependence of optical constants for Ta2O5 ultrathin films

    International Nuclear Information System (INIS)

    Zhang, Dong-Xu; Zheng, Yu-Xiang; Cai, Qing-Yuan; Lin, Wei; Wu, Kang-Ning; Mao, Peng-Hui; Zhang, Rong-Jun; Zhao, Hai-bin; Chen, Liang-Yao

    2012-01-01

    An effective method for determining the optical constants of Ta 2 O 5 thin films deposited on crystal silicon (c-Si) using spectroscopic ellipsometry (SE) measurement with a two-film model (ambient-oxide-interlayer-substrate) was presented. Ta 2 O 5 thin films with thickness range of 1-400 nm have been prepared by the electron beam evaporation (EBE) method. We find that the refractive indices of Ta 2 O 5 ultrathin films less than 40 nm drop with the decreasing thickness, while the other ones are close to those of bulk Ta 2 O 5 . This phenomenon was due to the existence of an interfacial oxide region and the surface roughness of the film, which was confirmed by the measurement of atomic force microscopy (AFM). Optical properties of ultrathin film varying with the thickness are useful for the design and manufacture of nano-scaled thin-film devices. (orig.)

  9. Thickness-dependence of optical constants for Ta2O5 ultrathin films

    Science.gov (United States)

    Zhang, Dong-Xu; Zheng, Yu-Xiang; Cai, Qing-Yuan; Lin, Wei; Wu, Kang-Ning; Mao, Peng-Hui; Zhang, Rong-Jun; Zhao, Hai-bin; Chen, Liang-Yao

    2012-09-01

    An effective method for determining the optical constants of Ta2O5 thin films deposited on crystal silicon (c-Si) using spectroscopic ellipsometry (SE) measurement with a two-film model (ambient-oxide-interlayer-substrate) was presented. Ta2O5 thin films with thickness range of 1-400 nm have been prepared by the electron beam evaporation (EBE) method. We find that the refractive indices of Ta2O5 ultrathin films less than 40 nm drop with the decreasing thickness, while the other ones are close to those of bulk Ta2O5. This phenomenon was due to the existence of an interfacial oxide region and the surface roughness of the film, which was confirmed by the measurement of atomic force microscopy (AFM). Optical properties of ultrathin film varying with the thickness are useful for the design and manufacture of nano-scaled thin-film devices.

  10. Crystal-Size-Dependent Structural Transitions in Nanoporous Crystals: Adsorption-Induced Transitions in ZIF-8

    KAUST Repository

    Zhang, Chen

    2014-09-04

    © 2014 American Chemical Society. Understanding the crystal-size dependence of both guest adsorption and structural transitions of nanoporous solids is crucial to the development of these materials. We find that nano-sized metal-organic framework (MOF) crystals have significantly different guest adsorption properties compared to the bulk material. A new methodology is developed to simulate the adsorption and transition behavior of entire MOF nanoparticles. Our simulations predict that the transition pressure significantly increases with decreasing particle size, in agreement with crystal-size-dependent experimental measurements of the N2-ZIF-8 system. We also propose a simple core-shell model to examine this effect on length scales that are inaccessible to simulations and again find good agreement with experiments. This study is the first to examine particle size effects on structural transitions in ZIFs and provides a thermodynamic framework for understanding the underlying mechanism.

  11. Enhancement of the fluorescence intensity of DNA intercalators using nano-imprinted 2-dimensional photonic crystal

    International Nuclear Information System (INIS)

    Endo, Tatsuro; Ueda, China; Hisamoto, Hideaki; Kajita, Hiroshi; Okuda, Norimichi; Tanaka, Satoru

    2013-01-01

    We have fabricated polymer-based 2-dimensional photonic crystals that play a key role in enhancing the fluorescence of DNA intercalators. Highly ordered 2-dimensional photonic crystals possessing triangle-shaped and nm-sized hole arrays were fabricated on a 100 μm thick polymer film using nano-imprint lithography. Samples of double-stranded DNAs (sizes: 4361 and 48502 bp; concentration: 1 pM to 10 nM) were adsorbed on the surface of the 2-dimensional photonic crystal by electrostatic interactions and then treated with intercalators. It is found that the fluorescence intensity of the intercalator is enhanced by a factor of up to 10 compared to the enhancement in the absence of the 2-dimensional photonic crystal. Fluorescence intensity increases with increasing length and concentration of the DNAs. If the 2-dimensional photonic crystal is used as a Bragg reflection mirror, the enhancement of fluorescence intensity can be easily observed using a conventional spectrofluorometer. These results suggest that the printed photonic crystal offers a great potential for highly sensitive intercalator-based fluorescent detection of DNAs. (author)

  12. General Space-Confined On-Substrate Fabrication of Thickness-Adjustable Hybrid Perovskite Single-Crystalline Thin Films.

    Science.gov (United States)

    Chen, Yao-Xuan; Ge, Qian-Qing; Shi, Yang; Liu, Jie; Xue, Ding-Jiang; Ma, Jing-Yuan; Ding, Jie; Yan, Hui-Juan; Hu, Jin-Song; Wan, Li-Jun

    2016-12-21

    Organic-inorganic hybrid perovskite single-crystalline thin films (SCTFs) are promising for enhancing photoelectric device performance due to high carrier mobility, long diffusion length, and carrier lifetime. However, bulk perovskite single crystals available today are not suitable for practical device application due to the unfavorable thickness. Herein, we report a facile space-confined solution-processed strategy to on-substrate grow various hybrid perovskite SCTFs in a size of submillimeter with adjustable thicknesses from nano- to micrometers. These SCTFs exhibit photoelectric properties comparable to bulk single crystals with low defect density and good air stability. The clear thickness-dependent colors allow fast visual selection of SCTFs with a suitable thickness for specific device application. The present substrate-independent growth of perovskite SCTFs opens up opportunities for on-chip fabrication of diverse high-performance devices.

  13. Size dependent compressibility of nano-ceria: Minimum near 33 nm

    International Nuclear Information System (INIS)

    Rodenbough, Philip P.; Song, Junhua; Chan, Siu-Wai; Walker, David; Clark, Simon M.; Kalkan, Bora

    2015-01-01

    We report the crystallite-size-dependency of the compressibility of nanoceria under hydrostatic pressure for a wide variety of crystallite diameters and comment on the size-based trends indicating an extremum near 33 nm. Uniform nano-crystals of ceria were synthesized by basic precipitation from cerium (III) nitrate. Size-control was achieved by adjusting mixing time and, for larger particles, a subsequent annealing temperature. The nano-crystals were characterized by transmission electron microscopy and standard ambient x-ray diffraction (XRD). Compressibility, or its reciprocal, bulk modulus, was measured with high-pressure XRD at LBL-ALS, using helium, neon, or argon as the pressure-transmitting medium for all samples. As crystallite size decreased below 100 nm, the bulk modulus first increased, and then decreased, achieving a maximum near a crystallite diameter of 33 nm. We review earlier work and examine several possible explanations for the peaking of bulk modulus at an intermediate crystallite size

  14. Size dependent compressibility of nano-ceria: Minimum near 33 nm

    Energy Technology Data Exchange (ETDEWEB)

    Rodenbough, Philip P. [Department of Applied Physics and Applied Mathematics, Materials Science and Engineering Program, Columbia University, New York, New York 10027 (United States); Chemistry Department, Columbia University, New York, New York 10027 (United States); Song, Junhua; Chan, Siu-Wai, E-mail: sc174@columbia.edu [Department of Applied Physics and Applied Mathematics, Materials Science and Engineering Program, Columbia University, New York, New York 10027 (United States); Walker, David [Department of Earth and Environmental Sciences, Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York 10964 (United States); Clark, Simon M. [ARC Center of Excellence for Core to Crust Fluid Systems and Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2019, Australia and The Bragg Institute, Australian Nuclear Science and Technology Organisation, Kirrawee DC, New South Wales 2232 (Australia); Kalkan, Bora [Department of Physics Engineering, Hacettepe University, 06800 Beytepe, Ankara (Turkey)

    2015-04-20

    We report the crystallite-size-dependency of the compressibility of nanoceria under hydrostatic pressure for a wide variety of crystallite diameters and comment on the size-based trends indicating an extremum near 33 nm. Uniform nano-crystals of ceria were synthesized by basic precipitation from cerium (III) nitrate. Size-control was achieved by adjusting mixing time and, for larger particles, a subsequent annealing temperature. The nano-crystals were characterized by transmission electron microscopy and standard ambient x-ray diffraction (XRD). Compressibility, or its reciprocal, bulk modulus, was measured with high-pressure XRD at LBL-ALS, using helium, neon, or argon as the pressure-transmitting medium for all samples. As crystallite size decreased below 100 nm, the bulk modulus first increased, and then decreased, achieving a maximum near a crystallite diameter of 33 nm. We review earlier work and examine several possible explanations for the peaking of bulk modulus at an intermediate crystallite size.

  15. Investigation of the correlation between dielectric function, thickness and morphology of nano-granular ZnO very thin films

    Energy Technology Data Exchange (ETDEWEB)

    Gilliot, Mickaël, E-mail: mickael.gilliot@univ-reims.fr [Laboratoire d' Ingénierie et Sciences des Matériaux, Université de Reims Champagne-Ardenne (France); Hadjadj, Aomar [Laboratoire d' Ingénierie et Sciences des Matériaux, Université de Reims Champagne-Ardenne (France); Martin, Jérôme [Laboratoire de Nanotechnologie et d' Instrumentation Optique, Université de Technologie de Troyes (France)

    2015-12-31

    Thin nano-granular ZnO layers were prepared using a sol–gel synthesis and spin-coating deposition process with a thickness ranging between 20 and 120 nm. The complex dielectric function (ϵ) of the ZnO film was determined from spectroscopic ellipsometry measurements. Up to a critical thickness close to 60 nm, the magnitude of both the real and the imaginary parts of ϵ rapidly increases and then slowly tends to values closer to the bulk ZnO material. This trend suggests a drastic change in the film porosity at both sides of this critical thickness, due to the pre-heating and post-crystallization processes, as confirmed by additional characterization of the structure and the morphology of the ZnO films. - Highlights: • c-Axis oriented ZnO thin films were grown with different morphological states. • The morphology and structures are controlled by controlling the thickness. • The optical properties are correlated to morphological evolution. • Two growth behaviors and property evolutions are identified around a critical thickness.

  16. Role of surface on the size-dependent mechanical properties of copper nano-wire under tensile load: A molecular dynamics simulation

    Science.gov (United States)

    Liu, Wei-Ting; Hsiao, Chun-I.; Hsu, Wen-Dung

    2014-01-01

    In this study we have used atomistic simulations to investigate the role of surface on the size-dependent mechanical properties of nano-wires. In particular, we have performed computational investigation on single crystal face-centered cubic copper nano-wires with diameters ranging from 2 to 20 nm. The wire axis for all the nano-wires are considered along the [0 0 1] direction. Characterization of the initial optimized structures revealed clear differences in interatomic spacing, stress, and potential energy in all the nano-wires. The mechanical properties with respect to wire diameter are evaluated by applying tension along the [0 0 1] direction until yielding. We have discussed the stress-strain relationships, Young's modulus, and the variation in potential energy from surface to the center of the wire for all the cases. Our results indicate that the mechanical response (including yield strain, Young's modulus, and resilience) is directly related to the proportion of surface to bulk type atoms present in each nano-wire. Thus the size-dependent mechanical properties of single crystal copper nano-wire within elastic region are attributed to the surface to volume ratio (surface effect). Using the calculated response, we have formulated a mathematical relationship, which predicts the nonlinear correlation between the mechanical properties and the diameter of the wire.

  17. The crystallization kinetic model of nano-CaCO3 in CO2-ammonia-phosphogypsum three-phase reaction system

    Science.gov (United States)

    Liu, Hao; Lan, Peiqiang; Lu, Shangqing; Wu, Sufang

    2018-06-01

    Phosphogypsum (PG) as a low-cost calcium resource was used to prepare nano-CaCO3 in a three-phase system by reactions. Based on the population balance equation, nano-CaCO3 crystal nucleation and growth model in the gas (CO2)-liquid (NH3·H2O)-solid (CaSO4) three-phase system was established. The crystallization kinetic model of nano-CaCO3 in CO2-NH3·H2O-CaSO4 reactions system was experimental developed over an optimized temperature range of 20-40 °C and CO2 flow rate range of 138-251 ml/min as rCaCO3 =kn 32 πM2γ3/3R3ρ2T3 (C -C∗)0.8/[ ln (C /C∗) ]3 + πρ/3M kg3 kn(C -C∗) 2t3 , where nano-CaCO3 nucleation rate constant was kn = 6.24 ×1019 exp(-15940/RT) and nano-CaCO3 growth rate constant was kg = 0.79 exp(-47650/RT) respectively. Research indicated that nucleation rates and growth rates both increased with the increasing of temperature and CO32- ion concentration. And crystal growth was dependent on temperature more than that of nucleation process because the activation energy of CaCO3 growth was bigger than that of CaCO3 nucleation. Decreasing the reaction temperature and CO2 flow rate was more beneficial for producing nano-size CaCO3 because of the lower CaCO3 growth rates. The deduced kinetic equation could briefly predict the average particle sizes of nano-CaCO3.

  18. Crystal habit dependent quantum confined photoluminescence of zinc oxide nanostructures

    International Nuclear Information System (INIS)

    Arellano, Ian Harvey J.; Payawan, Leon Jr. M.; Sarmago, Roland V.

    2008-01-01

    Diverse zinc oxide crystal habits namely wire, rods, tubes, whiskers and tetrapods were synthesized via hydrothermal and carbothermal reduction routes. A vapor current induced regionalization in the carbothermal synthesis lead to the isolation of these crystal habits for characterization. The surface morphology of the nanostructures was analyzed via field emission scanning electron microscopy (FESEM). The morphology and crystallinity of the as-synthesized nanostructure architectural motifs were related to their photoluminescence (PL). The photoluminescence at 157 nm was taken using F2 excimer laser and a crystal habit dependent response was observed. X-ray diffraction (XRD) analyses were conducted to deduce the degree of crystallinity showing results consistent with the excitonic emission at the band edge and visible emission at the electron-hole recombination sites. The presence of minimal crystal defects which gave the green emission was supported by energy dispersive spectroscopy (EDS) data. Transmission spectroscopy for the tetrapods exhibited an interesting PL reduction associated with high-energy deep traps in the nanostructures. Furthermore, some intensity dependent characteristics were deduced indicating quantum confined properties of these nano structures. (author)

  19. Functional Smart Dispersed Liquid Crystals for Nano- and Biophotonic Applications: Nanoparticles-Assisted Optical Bioimaging

    Directory of Open Access Journals (Sweden)

    N. V. Kamanina

    2016-01-01

    Full Text Available Functional nematic liquid crystal structures doped with nano- and bioobjects have been investigated. The self-assembling features and the photorefractive parameters of the structured liquid crystals have been comparatively studied via microscopy and laser techniques. Fullerene, quantum dots, carbon nanotubes, DNA, and erythrocytes have been considered as the effective nano- and biosensitizers of the LC mesophase. The holographic recording technique based on four-wave mixing of the laser beams has been used to investigate the laser-induced change of the refractive index in the nano- and bioobjects-doped liquid crystal cells. The special accent has been given to novel nanostructured relief with vertically aligned carbon nanotubes at the interface: solid substrate-liquid crystal mesophase. It has been shown that this nanostructured relief influences the orienting ability of the liquid crystal molecules with good advantage. As a result, it provokes the orientation of the DNA. The modified functional liquid crystal materials have been proposed as the perspective systems for both the photonics and biology as well as the medical applications.

  20. Preparation and characterization of functionalized cellulose nano crystals with methyl adipoyl chloride used to prepare chitosan grafting nano composite

    International Nuclear Information System (INIS)

    Mesquita, Joao Paulo de; Teixeira, Ivo F.; Donnici, Claudio L.; Pereira, Fabiano V.

    2011-01-01

    Cellulose nano crystals (CNCs) were prepared from eucalyptus pulp and functionalized with methyl adipoyl chloride. The nano materials were characterized by different techniques including FTIR, 1H NMR and XRD which showed that the functionalization occurs only on the surface of the nano structures without change in crystalline structure of the nanoparticles. The new-functionalized CNCs were used as reinforcement in the preparation of a nano composite with chitosan, through the formation of a covalent bond between the nano filler and matrix. Preliminary results of mechanical tests indicate an improvement in tensile strength and increase in deformation of chitosan. (author)

  1. Flow-induced crystallization of a nano composite of poly(butylene adipate-co-terephthalate)/montmorillonite

    International Nuclear Information System (INIS)

    Bonel, Alan B.; Rego, Bruna T.; Beatrice, Cesar A.G.; Marini, Juliano; Bretas, Rosario E.S.

    2011-01-01

    Poly(butylene adipate-co-terephthalate) (PBAT) with 5wt% of an organically modified montmorillonite with polar surfactant was prepared by melt blending in a co-rotational twin-screw extruder at 160 degree C. 100rpm and 1 kg/h. Both pure polymer and nano composite were characterized by wide measurements. The study of the flow-induced crystallization was also done by rheological measurements, monitoring the viscosity as a function of time. The nano clay's lamellas were intercalated in the polymer m loss moduli of the nano composite, at low frequencies, showed that the particles of the nano clay were well dispersed and distributed thru the PBAT matrix. Finally, the presence of the nano clay's particles reduced the induction tim crystals growth, due to the strong interactions with the PBAT chains. (author)

  2. Controllable preparation of copper phthalocyanine single crystal nano column and its chlorine gas sensing properties

    Directory of Open Access Journals (Sweden)

    Jianhong Zhao

    2016-09-01

    Full Text Available The unsubstituted copper phthalocyanine (CuPc single crystal nano columns were fabricated for the first time as chlorine (Cl2 gas sensors in this paper. The nano columns of CuPc have been prepared on different substrates via template-free physical vapor deposition (PVD approach. The growth mechanism of CuPc nano column on quartz was explored and the same condition used on other substrates including glass, sapphire (C-plane, M-plane, R-plane, Si and SiO2/Si came to a same conclusion, which confirmed that the aligned growth of CuPc nano column is not substrate-dependent. And then the CuPc nano column with special morphology was integrated as in-situ sensor device which exhibits high sensitivity and selectivity towards Cl2 at room temperature with a minimum detection limit as low as 0.08 ppm. The response of sensor was found to increase linearly (26∼659% with the increase for Cl2 within concentration range (0.08∼4.0ppm. These results clearly demonstrate the great potential of the nano column growth and device integration approach for sensor device.

  3. Optimization of plasma parameters for the production of silicon nano-crystals

    CERN Document Server

    Chaabane, N; Vach, H; Cabarrocas, P R I

    2003-01-01

    We use silane-hydrogen plasmas to synthesize silicon nano-crystals in the gas phase and thermophoresis to collect them onto a cooled substrate. To distinguish between nano-crystals formed in the plasma and those grown on the substrate, as a result of surface and subsurface reactions, we have simultaneously deposited films on a conventional substrate heated at 250 deg. C and on a second substrate cooled down to 90 deg. C. A series of samples deposited at various discharge pressures, in the range of 400 mTorr to 1.2 Torr, have been characterized by Raman spectroscopy and ellipsometry. At low pressure (400-500 mTorr), the films are amorphous on the cold substrate and micro-crystalline on the hot one. As pressure increases, gas phase reactions lead to the formation of nano-crystalline particles which are attracted by the cold substrate due to thermophoresis. Consequently, we obtain nano-crystalline silicon thin films on the cold substrate and amorphous thin films on the heated one in the pressure range of 600-900...

  4. METHOD FOR MANUFACTURING A SINGLE CRYSTAL NANO-WIRE

    NARCIS (Netherlands)

    Van Den Berg, Albert; Bomer, Johan; Carlen Edwin, Thomas; Chen, Songyue; Kraaijenhagen Roderik, Adriaan; Pinedo Herbert, Michael

    2012-01-01

    A method for manufacturing a single crystal nano-structure includes providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing parts of the stress layer to

  5. METHOD FOR MANUFACTURING A SINGLE CRYSTAL NANO-WIRE.

    NARCIS (Netherlands)

    Van Den Berg, Albert; Bomer, Johan; Carlen Edwin, Thomas; Chen, Songyue; Kraaijenhagen Roderik, Adriaan; Pinedo Herbert, Michael

    2011-01-01

    A method for manufacturing a single crystal nano-structure is provided comprising the steps of providing a device layer with a 100 structure on a substrate; providing a stress layer onto the device layer; patterning the stress layer along the 110 direction of the device layer; selectively removing

  6. Conjugate heat transfer in a porous cavity filled with nano-fluids and heated by a triangular thick wall

    International Nuclear Information System (INIS)

    Chamkha, Ali J.; Ismael, Muneer A.

    2013-01-01

    The conjugate natural convection-conduction heat transfer in a square domain composed of nano-fluids filled porous cavity heated by a triangular solid wall is studied under steady-state conditions. The vertical and horizontal walls of the triangular solid wall are kept isothermal and at the same hot temperature Th. The other boundaries surrounding the porous cavity are kept adiabatic except the right vertical wall where it is kept isothermally at the lower temperature T c . Equations governing the heat transfer in the triangular wall and heat and nano-fluid flow, based on the Darcy model, in the nano-fluid-saturated porous medium together with the derived relation of the interface temperature are solved numerically using the over-successive relaxation finite-difference method. A temperature independent nano-fluids properties model is adopted. Three nano-particle types dispersed in one base fluid (water) are investigated. The investigated parameters are the nano-particles volume fraction φ (0-0.2), Rayleigh number Ra (10-1000), solid wall to base-fluid saturated porous medium thermal conductivity ratio K ro (0.44, 1, 23.8), and the triangular wall thickness D (0.1-1). The results are presented in the conventional form; contours of streamlines and isotherms and the local and average Nusselt numbers. At a very low Rayleigh number Ra = 10, a significant enhancement in heat transfer within the porous cavity with φ is observed. Otherwise, the heat transfer may be enhanced or deteriorated with φ depending on the wall thickness D and the Rayleigh number Ra. At high Rayleigh numbers and low conductivity ratios, critical values of D, regardless of 4, are observed and accounted. (authors)

  7. Extraction and characterization of cellulose nano whiskers from balsa wood

    International Nuclear Information System (INIS)

    Morelli, Carolina L.; Bretas, Rosario E.S.; Marconcini, Jose M.; Pereira, Fabiano V.; Branciforti, Marcia C.

    2011-01-01

    In this study cellulose nano whiskers were obtained from balsa wood. For this purpose, fibers of balsa wood were subjected to hydrolysis reactions for lignin and hemi cellulose digestion and acquisition of nano-scale cellulose. Cellulose nano crystals obtained had medium length and thickness of 176 nm and 7 nm respectively. Infrared spectroscopy and x-ray diffraction showed that the process used for extracting nano whiskers could digest nearly all the lignin and hemi cellulose from the balsa fiber and still preserve the aspect ratio and crystallinity, satisfactory enough for future application in polymer nano composites. Thermogravimetry showed that the onset temperature of thermal degradation of cellulose nano crystals (226 degree C) was higher than the temperature of the balsa fiber (215 degree C), allowing its use in molding processes with many polymers from the molten state.(author)

  8. Effect of nonlinear crystal thickness on the parameters of the autocorrelator of femtosecond light pulses

    International Nuclear Information System (INIS)

    Masalov, Anatolii V; Chudnovsky, Aleksandr V

    2004-01-01

    It is shown that the finite thickness of the second-harmonic crystal distorts the results of measurements in nonlinear autocorrelators intended for measuring the durations and fields of femtosecond light pulses mainly due to dispersive broadening (or compression) of the pulses being measured, as well as due to the group velocity mismatch between the fundamental and sum-frequency pulses. The refractive index dispersion of the crystal, scaled by half its thickness, distorts the pulse duration to a certain extent depending on its initial chirp and thus determines the width of the energy distribution recorded in the autocorrelator. As the crystal thickness increases, the group velocity mismatch leads to a transformation of the recorded distribution from the correlation function of intensity to the squared modulus of the field correlation function. In the case of Gaussian pulses, such a transformation does not affect significantly the recorded distribution. Errors of pulse duration measurements are estimated. (nonlinear optical phenomena)

  9. Study on the Effect of Heat Treatment on Physical Properties of Poplar and Beech Woods Impregnated with Nano-Copper and Nano-Silver

    Directory of Open Access Journals (Sweden)

    Hassan Siahposht

    2012-06-01

    Full Text Available Present study conducted to review effects of heat treatment on weight loss, water adsorption, and thickness swelling of poplar (Populus nigra and beech (Fagus oreintalis woods impregnated with nano-copper and nano-silver. Specimens werepressur (2.5 bar impregnated with 400 PPM water-based solution of nano-copper and nano-silver particles in a pressure vessel. For heat treatment, nano-cupper,  nano-silver impregnated and control specimens, were heat treated at 145°C temperature for 24 hours. Water absorption and thickness swelling decreased in heat treated and nano-heat treated specimens and this decrease in specimens impregnated with nano-copper and nano-silver was more obvious than in heat treated control specimens. The reasons were the degradation in crystal sections of celluloses chains and the ink variation of wood polymers. On the other hand, a comparison between heat treated and nano- heat treated specimens has shown weight loss further in nano-heat treated specimens. This shows that retent nano-copper and nano-silver by impregnation facilitates heat transfer in wood; and it may increase the process of degradation and pyrolysis of wood structures in inner parts of specimens.

  10. Crystallization of high-strength nano-scale leucite glass-ceramics.

    Science.gov (United States)

    Theocharopoulos, A; Chen, X; Wilson, R M; Hill, R; Cattell, M J

    2013-11-01

    Fine-grained, high strength, translucent leucite dental glass-ceramics are synthesized via controlled crystallization of finely milled glass powders. The objectives of this study were to utilize high speed planetary milling of an aluminosilicate glass for controlled surface crystallization of nano-scale leucite glass-ceramics and to test the biaxial flexural strength. An aluminosilicate glass was synthesized, attritor or planetary milled and heat-treated. Glasses and glass-ceramics were characterized using particle size analysis, X-ray diffraction and scanning electron microscopy. Experimental (fine and nanoscale) and commercial (Ceramco-3, IPS Empress Esthetic) leucite glass-ceramics were tested using the biaxial flexural strength (BFS) test. Gaussian and Weibull statistics were applied. Experimental planetary milled glass-ceramics showed an increased leucite crystal number and nano-scale median crystal sizes (0.048-0.055 μm(2)) as a result of glass particle size reduction and heat treatments. Experimental materials had significantly (p0.05) strength difference. All other groups' mean BFS and characteristic strengths were found to be significantly different (pglass-ceramics with high flexural strength. These materials may help to reduce problems associated with brittle fracture of all-ceramic restorations and give reduced enamel wear. Copyright © 2013 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  11. Potential dependence of surface crystal structure of iron passive films in borate buffer solution

    International Nuclear Information System (INIS)

    Deng, Huihua; Nanjo, Hiroshi; Qian, Pu; Santosa, Arifin; Ishikawa, Ikuo; Kurata, Yoshiaki

    2007-01-01

    The effect of passivation potential on surface crystal structure, apparent thickness and passivity of oxide films formed on pure iron prepared by plasma sputter deposition was investigated. The crystallinity was improved with passivation potential and the width of atomically flat terraces was expanded to 6 nm when passivating at 750 mV for 15 min, as observed by ex situ scanning tunneling microscopy (STM) after aging in air (<30% RH). Apparent thickness and passivity are linearly dependent on passivation potential. The former weakly depends on passivation duration, the latter strongly depends on passivation duration. This is well explained by the correlation between crystal structure and passivity

  12. Nano sized bismuth oxy chloride by metal organic chemical vapour deposition

    Energy Technology Data Exchange (ETDEWEB)

    Jagdale, Pravin, E-mail: pravin.jagdale@polito.it [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy); Castellino, Micaela [Center for Space Human Robotics, Istituto Italiano di Tecnologia, Corso Trento 21, 10129 Torino (Italy); Marrec, Françoise [Laboratory of Condensed Matter Physics, University of Picardie Jules Verne (UPJV), Amiens 80039 (France); Rodil, Sandra E. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexicom (UNAM), Mexico D.F. 04510 (Mexico); Tagliaferro, Alberto [Department of Applied Science and Technology (DISAT), Politecnico di Torino, 10129 (Italy)

    2014-06-01

    Metal organic chemical vapour deposition (MOCVD) method was used to prepare thin films of bismuth based nano particles starting from bismuth salts. Nano sized bismuth oxy chloride (BiOCl) crystals were synthesized from solution containing bismuth chloride (BiCl{sub 3}) in acetone (CH{sub 3}-CO-CH{sub 3}). Self-assembly of nano sized BiOCl crystals were observed on the surface of silicon, fused silica, copper, carbon nanotubes and aluminium substrates. Various synthesis parameters and their significant impact onto the formation of self-assembled nano-crystalline BiOCl were investigated. BiOCl nano particles were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray spectroscopy and Micro-Raman spectroscopy. These analyses confirm that bismuth nanometer-sized crystal structures showing a single tetragonal phase were indeed bismuth oxy chloride (BiOCl) square platelets 18–250 nm thick and a few micrometres wide.

  13. Radiation at planar channeling of relativistic electrons in thick crystals

    International Nuclear Information System (INIS)

    Baier, V.N.; Katkov, V.M.; Strakhovenko, V.M.

    1983-01-01

    The distribution kinetics with respect to the transverse energy at electron channeling is discussed. The asymptotic expressions for the radiation intensity into a given collimator at electron channeling in thick crystals are derived. An optimal thickness at which the radiation output is maximal is found. The spectral distribution of the radiation intensity is analysed for the case of a single diamond crystal. (author)

  14. Synthesis and characterization of lithium fluoride nano crystals doped with silver

    International Nuclear Information System (INIS)

    Rosario M, B. R.; Ramirez C, G.; Encarnacion E, E. K.; Sosa A, M. A.

    2017-10-01

    Thermoluminescence (Tl) is the emission of light by certain materials to be heated below its incandescence temperature, having previously been exposed to an exciting agent such as ionizing radiation. Lithium fluoride (LiF) is the thermoluminescent material used in the manufacture of Tl-100 dosimeters. What morphological characteristics (size, crystallinity) do the nano crystals of pure lithium fluoride (LiF) have when doped with silver (Ag) by the precipitation method? The objective of this study was to synthesize and characterize the LiF nano crystals doped with silver (Ag) in concentrations of 0.02, 0.04, 0.06, 0.08, 0.1 and 0.2%. The samples were synthesized using as reagents; distilled water, ammonium fluoride (NH 4 F), lithium chloride (LiCl), silver nitrate (AgNO 3 ); and materials such as: 0.1 mg precision balance, spatulas, test piece, magnetic stirrer, beaker, volumetric flask, burette, burette clamp, key and magnetic stirring wand. In the characterization process we used and X-ray diffractometer (XRD) with which we obtained the X-ray diffraction spectrum with well-defined peaks that are characteristic of LiF. Using the Scherrer equation we calculate the sizes of nano crystals. This study demonstrates that is possible to synthesize LiF using new dopant materials. (Author)

  15. Resonant frequency function of thickness-shear vibrations of rectangular crystal plates.

    Science.gov (United States)

    Wang, Ji; Yang, Lijun; Pan, Qiaoqiao; Chao, Min-Chiang; Du, Jianke

    2011-05-01

    The resonant frequencies of thickness-shear vibrations of quartz crystal plates in rectangular and circular shapes are always required in the design and manufacturing of quartz crystal resonators. As the size of quartz crystal resonators shrinks, for rectangular plates we must consider effects of both length and width for the precise calculation of resonant frequency. Starting from the three-dimensional equations of wave propagation in finite crystal plates and the general expression of vibration modes, we obtained the relations between frequency and wavenumbers. By satisfying the major boundary conditions of the dominant thickness-shear mode, three wavenumber solutions are obtained and the frequency equation is constructed. It is shown the resonant frequency of thickness-shear mode is a second-order polynomial of aspect ratios. This conforms to known results in the simplest form and is applicable to further analytical and experimental studies of the frequency equation of quartz crystal resonators.

  16. Thickness dependent ferromagnetism in thermally decomposed NiO thin films

    Energy Technology Data Exchange (ETDEWEB)

    Ravikumar, Patta; Kisan, Bhagaban; Perumal, Alagarsamy, E-mail: perumal@iitg.ernet.in

    2016-11-15

    We report the effects of film thickness, annealing temperature and annealing environments on thermal decomposition behavior and resulting magnetic properties of NiO (t=50–300 nm) thin films. All the NiO films were prepared directly on thermally oxidized Si at ambient temperature using magnetron sputtering technique and post annealed at different temperatures (T{sub A}) under vacuum and oxygen atmospheres. As-deposited films exhibit face centered cubic structure with large lattice constant due to strain induced during sputtering process. With increasing T{sub A}, the lattice constant decreases due to the release of strain and thickness dependent thermal decomposition reaction of NiO into Ni has been observed for the NiO films annealed at 500 °C under vacuum condition. As a result, the antiferromagnetic nature of the as-deposited NiO films transforms into ferromagnetic one with dominant thickness dependent ferromagnetic behavior at room temperature. In addition, the existence of both Ni and NiO phases in the annealed NiO films shows noticeable exchange bias under field cooling condition. The behavior of thermal decomposition was not observed for the NiO films annealed under oxygen condition which results in no detectable change in the magnetic properties. The observed results are discussed on the basis of thickness dependent thermal decomposition in NiO films with increasing T{sub A} and changing annealing conditions. - Highlights: • Preparation of highly strained single layer NiO films with different thicknesses. • Study the effects of annealing under different environments on crystal structure. • Understanding the origin of thickness dependent thermal decomposition reaction. • Investigate the role of thermal decomposition reaction on the magnetic properties. • Study the interaction between NiO and Ni phases on the exchange bias mechanism.

  17. Optical Properties and Surface Morphology of Nano-composite PMMA: TiO2 Thin Films

    International Nuclear Information System (INIS)

    Lyly Nyl Ismail; Ahmad Fairoz Aziz; Habibah Zulkefle

    2011-01-01

    There are two nano-composite PMMA: TiO 2 solutions were prepared in this research. First solution is nano-composite PMMA commercially available TiO 2 nanopowder and the second solution is nano-composite PMMA with self-prepared TiO 2 powder. The self-prepared TiO 2 powder is obtained by preparing the TiO 2 sol-gel. Solvo thermal method were used to dry the TiO 2 sol-gel and obtained TiO 2 crystal. Ball millers were used to grind the TiO 2 crystal in order to obtained nano sized powder. Triton-X was used as surfactant to stabilizer the composite between PMMA: TiO 2 . Besides comparing the nano-composite solution, we also studied the effect of the thin films thickness on the optical properties and surface morphology of the thin films. The thin films were deposited by sol-gel spin coating method on glass substrates. The optical properties and surface characterization were measured with UV-VIS spectrometer equipment and atomic force microscopy (AFM). The result showed that nano-composite PMMA with self prepared TiO 2 give high optical transparency than nano-composite PMMA with commercially available TiO 2 nano powder. The results also indicate as the thickness is increased the optical transparency are decreased. Both AFM images showed that the agglomerations of TiO 2 particles are occurred on the thin films and the surface roughness is increased when the thickness is increased. High agglomeration particles exist in the AFM images for nano-composite PMMA: TiO 2 with TiO 2 nano powder compare to the other nano-composite solution. (author)

  18. Size characterisation of noble-metal nano-crystals formed in sapphire by ion irradiation and subsequent thermal annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mota-Santiago, Pablo-Ernesto [Instituto de Fisica, Universidad Nacional Autonoma de Mexico A.P. 20-364 01000 Mexico D.F. (Mexico); Crespo-Sosa, Alejandro, E-mail: crespo@fisica.unam.mx [Instituto de Fisica, Universidad Nacional Autonoma de Mexico A.P. 20-364 01000 Mexico D.F. (Mexico); Jimenez-Hernandez, Jose-Luis; Silva-Pereyra, Hector-Gabriel; Reyes-Esqueda, Jorge-Alejandro; Oliver, Alicia [Instituto de Fisica, Universidad Nacional Autonoma de Mexico A.P. 20-364 01000 Mexico D.F. (Mexico)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Systematic study on the formation of Ag and Au nano-particles in Al{sub 2}O{sub 3}. Black-Right-Pointing-Pointer Annealing in a reducing atmosphere, below the metal melting point is more suitable. Black-Right-Pointing-Pointer Au nano-particles grow up to 15 nm and Ag nano-particles up to 45 nm in radius. Black-Right-Pointing-Pointer Ostwald ripening is the mechanism responsible for the formation of large nanoparticles. Black-Right-Pointing-Pointer Optical properties of metallic nano-particles in Al{sub 2}O{sub 3} can be related to their size. - Abstract: Metallic nano-particles embedded in transparent dielectrics are very important for new technological applications because of their unique optical properties. These properties depend strongly on the size and shape of the nano-particles. In order to achieve the synthesis of metallic nano-particles it has been used the technique of ion implantation. This is a very common technique because it allows the control of the depth and concentration of the metallic ions inside the sample, limited mostly by straggling, without introducing other contaminant agents. The purpose of this work was to measure the size of the nano-particles grown under different conditions in Sapphire and its size evolution during the growth process. To achieve this goal, {alpha}-Al{sub 2}O{sub 3} single crystals were implanted with Ag or Au ions at room temperature with different fluences (from 2 Multiplication-Sign 10{sup 16} ions/cm{sup 2} to 8 Multiplication-Sign 10{sup 16} ions/cm{sup 2}). Afterwards, the samples were annealed at different temperatures (from 600 Degree-Sign C to 1100 Degree-Sign C) in oxidising, reducing, Ar or N{sub 2} atmospheres. We measured the ion depth profile by Rutherford Backscattering Spectroscopy (RBS) and the nano-crystals size distribution by using two methods, the surface plasmon resonance in the optical extinction spectrum and the Transmission Electron Microscopy (TEM).

  19. Relative approach to nano-film topography and magnetic characteristics: a study of their interdependence in a Ni/Au system

    International Nuclear Information System (INIS)

    Ebothé, Jean

    2014-01-01

    The present study investigates the influence of surface features on the magnetic properties of thin films by taking into account the role of the surface roughness (σ) /film thickness (d) ratio. Examination of the ratio from microscopic down to mesoscopic d values is then undertaken in connection with the evolution of the films' magnetic properties (p). The double dependence of p on d and σ expected from a real nano-film, emerged into a new relative approach to film characteristics, associated with the described (σ/d) ratio. A direct and consistent link between surface roughness and magnetic properties is established with no film surface treatment. This results in a revisited analytical treatment adapted for the study of nano-structured and mesoscopic-scale films. Application to the topography and magnetic properties of nano-crystallized Ni electrodeposits 60 < d < 1200 nm thick and grown on Au substrate, led to the identification of their Bloch-type acting magnetic structures. (papers)

  20. Effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit

    Directory of Open Access Journals (Sweden)

    Peng Xi

    2018-05-01

    Full Text Available Objective: Observing the effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit. Method: We prepared boiling water scalded rabbits with deep II degree scald models and applied high, medium and low doses of nano-silver hydrogel coating film for different time and area. Then we compared the difference of burned paper weight before administration and after administration model burns, burn local skin irritation points infection, skin crusting and scabs from the time, and the impact of local skin tissue morphology. Result: Rabbits deep II degree burn model successful modeling; on day 12, 18, high, medium and low doses of nano-silver hydrogel coating film significantly reduced skin irritation of rabbits infected with the integral value (P < 0.01, P < 0.05; high, medium and low doses of nano-silver hydrogel coating film group significantly decreased skin irritation, infection integral value (P < 0.01, P < 0.05; high, medium and low doses of nano-silver hydrogel coating film significantly reduced film rabbits’ scalded skin crusting time (P < 0.01, significantly shortened the rabbit skin burns from the scab time (P < 0.01, and significantly improved the treatment of skin diseases in rabbits scald model change (P < 0.01, P < 0.05. Conclusion: The nano-silver hydrogel coating film on the deep partial thickness burns has a significant therapeutic effect; external use has a significant role in wound healing. Keywords: Nano-silver hydrogel coating film, Deep degree burns, Topical, Rabbits

  1. Nano-crystalline thin and nano-particulate thick TiO2 layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    International Nuclear Information System (INIS)

    Das, P.; Sengupta, D.; Kasinadhuni, U.; Mondal, B.; Mukherjee, K.

    2015-01-01

    Highlights: • Thin TiO 2 layer is deposited on conducting substrate using sol–gel based dip coating. • TiO 2 nano-particles are synthesized using hydrothermal route. • Thick TiO 2 particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO 2 passivation layer is introduced between the mesoporous TiO 2 nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effect of passivation layer, other two DSSCs are also developed separately using TiO 2 nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO 2 compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO 2 layer in between the mesoporous TiO 2 nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons

  2. Studies of x-ray localization and thickness dependence in atomic-scale elemental mapping by STEM energy-dispersive x-ray spectroscopy using single-frame scanning method.

    Science.gov (United States)

    Lu, Ping; Moya, Jaime M; Yuan, Renliang; Zuo, Jian Min

    2018-03-01

    The delocalization of x-ray signals limits the spatial resolution in atomic-scale elemental mapping by scanning transmission electron microscopy (STEM) using energy-dispersive x-ray spectroscopy (EDS). In this study, using a SrTiO 3 [001] single crystal, we show that the x-ray localization to atomic columns is strongly dependent on crystal thickness, and a thin crystal is critical for improving the spatial resolution in atomic-scale EDS mapping. A single-frame scanning technique is used in this study instead of the multiple-frame technique to avoid peak broadening due to tracking error. The strong thickness dependence is realized by measuring the full width at half maxima (FWHM) as well as the peak-to-valley (P/V) ratio of the EDS profiles for Ti K and Sr K + L, obtained at several crystal thicknesses. A FWHM of about 0.16 nm and a P/V ratio of greater than 7.0 are obtained for Ti K for a crystal thickness of less than 20 nm. With increasing crystal thickness, the FWHM and P/V ratio increases and decreases, respectively, indicating the advantage of using a thin crystal for high-resolution EDS mapping. Published by Elsevier B.V.

  3. Effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit.

    Science.gov (United States)

    Xi, Peng; Li, Yan; Ge, Xiaojin; Liu, Dandan; Miao, Mingsan

    2018-05-01

    Observing the effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit. We prepared boiling water scalded rabbits with deep II degree scald models and applied high, medium and low doses of nano-silver hydrogel coating film for different time and area. Then we compared the difference of burned paper weight before administration and after administration model burns, burn local skin irritation points infection, skin crusting and scabs from the time, and the impact of local skin tissue morphology. Rabbits deep II degree burn model successful modeling; on day 12, 18, high, medium and low doses of nano-silver hydrogel coating film significantly reduced skin irritation of rabbits infected with the integral value ( P  film group significantly decreased skin irritation, infection integral value ( P  film significantly reduced film rabbits' scalded skin crusting time ( P  film on the deep partial thickness burns has a significant therapeutic effect; external use has a significant role in wound healing.

  4. Shape-dependent electronic properties of blue phosphorene nano-flakes

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, Pradeep; Swaroop, Ram; Kumar, Ashok, E-mail: ashok@cup.ac.in [Center for Physical Sciences, School of Basic and Applied Sciences, Central University of Punjab, Bathinda-151001 (India)

    2016-05-06

    In recent year’s considerable attention has been given to the first principles method for modifying and controlling electronic properties of nano-materials. We performed DFT-based calculations on the electronic properties of zigzag-edged nano-flakes of blue phosphorene with three possible shapes namely rectangular, triangular and hexagonal. We observed that HOMO-LUMO gap of zigzag phosphorene nano-flakes with different shapes is ∼2.9 eV with H-passivations and ∼0.7 – 1.2 eV in pristine cases. Electronic properties of blue phosphorene nano-flakes show the strong dependence on their shape. We observed that distributions of molecular orbitals were strongly affected by the different shapes. Zigzag edged considered nanostructures are non-magnetic and semiconducting in nature. The shape dependent electronic properties may find applications in tunable nano-electronics.

  5. Synthesis of NaCl Single Crystals with Defined Morphologies as Templates for Fabricating Hollow Nano/micro-structures

    DEFF Research Database (Denmark)

    Wang, B.B.; Jin, P.; Yue, Yuanzheng

    2015-01-01

    . These naturally abundant NaCl single crystal templates are water-soluble, environmentally-friendly and uniform in both geometry and size, and hence are ideal for preparing high quality hollow nano/micro structures. The new approach may have the potential to replace the conventional hard or soft template...... approaches. Furthermore, this work has revealed the formation mechanism of nano/micron NaCl crystals with different sizes and geometries....

  6. Synthesis and thermal characterization of CdS nano crystals in previously formed template of maleic anhydride-octene 1-vinyl butyl terpolymer

    International Nuclear Information System (INIS)

    Akbarov, O.H; Mammadova, R.E; Malikov, E.Y.

    2008-01-01

    Full text: Nano crystals have dimensions in the range 10100 nm. Crystals in this size range possess unique properties, which enable scientists to manufacture materials and devices capable of performing unimaginable tasks. For that reason synthesis of this semiconductor nano crystals is expedient. Many useful methods have been used for preparing sulphide semiconductor nano crystals, such as colloidal chemistry method, sol-gel method, inverse micelle method, in situ synthesis and assemble on polymer template. The most significant method is in situ synthesis and assemble of sulphide semiconductor nano crystals on polymer. Compared with other methods, the stability of nanoparticles is improved by the protection and confinement of the copolymer. Because of confinement and protection effects of template environmental risk is prevented in this method. On the base of this principles in situ synthesis of CdS nano crystals in maleic anhydride-octene 1-vinyl butyl terpolymer was realized in this scientific work. First of all in specific condition maleic anhydride, octene 1, and vinyl butyl ether were polymerized to form a terpolymer as the result of radical ter polymerization. In second step CdS nano crystals were synthesized in N,N-dimethylformamide solution of maleic anhydride-octene 1-vinyl butyl terpolymer through the reaction of thiourea with cadmium chloride. In this process CdCI 2 x 2.5H 2 O was dissolved in N,N-dimethylformamide solution of previously formed terpolymer and was heated in 90 0 C temperature for 4 hours with vigorous stirring. Then desired amount of thiourea in N,N-dimethylformamide was quickly injected into the reaction flask using a syringe. The reaction continued for another 1 hour, and a yellow clear solution was obtained, which indicated the formation of CdS nano crystals

  7. Carbon nano tubes embedded in polymer nano fibers

    International Nuclear Information System (INIS)

    Dror, Y.; Kedem, S.; Khalfin, R.L.; Paz, Y.; Cohenl, Y.; Salalha, Y.; Yarin, A.L.; Zussman, A.

    2004-01-01

    Full Text: The electro spinning process was used successfully to embed Multi-walled carbon nano tubes (MWCNTs) and single-walled carbon nano tubes (SWCNTs) in a matrix of poly(ethylene oxide) (PEO) forming composite nano fibers. Initial dispersion of SWCNTs in water was achieved by the use of an amphphilic alternating copolymer of styrene and sodium maleate. MWNT dispersion was achieved by ionic and nonionic surfactants. The distribution and conformation of the nano tubes in the nano fibers were studied by transmission electron microscopy (TEM). Oxygen plasma etching was used to expose the nano tubes within the nano fibers to facilitate direct observation. Nano tube alignment within the nano fibers was shown to depend strongly on the quality of the initial dispersions. Well-dispersed and separated nano tubes were embedded in a straight and aligned form while entangled non-separated nano tubes were incorporated as dense aggregates. X-ray diffraction demonstrated a high degree of orientation of the PEO crystals in the electro spun nano fibers with embedded SWCNTs, whereas incorporation of MVCNTs had a detrimental effect on the polymer orientation. Composite polymer nano fibers containing dispersed phases of nanometric TiO 2 particles and MWCNTs were also prepared electro spinning. In this case, the polymer matrix was poly(acrylonitrile) (PAN). The morphology and possible applications of these composite nano fibers will be discussed

  8. Long-term water absorption and thickness swelling and determine their characteristics in wood flour/polypropylene/Nano SiO2 nanocomposite

    Directory of Open Access Journals (Sweden)

    Saeed Ismaeilimoghadam

    2016-09-01

    Full Text Available The objective of this study was to investigate the effect of nano SiO2 on long-term water absorption and thickness swelling, humidity coefficient diffusion and thickness swelling rate of wood plastic composite. For this purpose, 60% wood flour, 40% polypropylene, 2 per hundred compound (phc MAPP in internal mixer (HAAKE were mixed. Nano SiO2 with 0, 1, 3 and 5 (phc ratios as a reinforcing was used too. Finally test samples were fabricated by using the injection molding machine. Then long-term water absorption and thickness swelling for 1848 hours according to the ASTM standard on the samples were measured. Humidity coefficient diffusion and thickness swelling rate for closer look long-term water absorption and thickness swelling behavior in wood plastic nanocomposite were calculated too. For ensure to the formation of hydrogen bonds between hydroxyl grope of SiO2 nanoparticles with hydroxyl grope of wood flour form Fourier transform infrared (FTIR spectroscopy tests was used. The results showed that water absorption behavior of nanocomposite is according to Fick's law, in addition with increasing to SiO2 nanoparticles, long-term water absorption and thickness swelling and humidity coefficient diffusion in wood plastic nanocomposite decreased. The results of infrared spectroscopy showed that hydrogen bond between the nano SiO2 and wood flour confirmed. Statistical analysis showed that after 1848 hours of immersion, nano SiO2 showed a significant effect at a confidence level of 99% on water absorption and thickness swelling, so the sample with 5% silica nanoparticles was chosen as the best treatment.

  9. Nano-crystalline thin and nano-particulate thick TiO{sub 2} layer: Cost effective sequential deposition and study on dye sensitized solar cell characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Das, P.; Sengupta, D. [Centre for Advanced Materials Processing, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 West Bengal (India); CSIR-Central Mechanical Engineering Research Institute, Academy of Scientific and Innovative Research (AcSIR), Durgapur, 713209 West Bengal (India); Kasinadhuni, U. [Department of Engineering Physics, Bengal College of Engineering and Technology, Durgapur, West Bengal (India); Mondal, B. [Centre for Advanced Materials Processing, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 West Bengal (India); Mukherjee, K., E-mail: kalisadhanm@yahoo.com [Centre for Advanced Materials Processing, CSIR-Central Mechanical Engineering Research Institute, Durgapur, 713209 West Bengal (India)

    2015-06-15

    Highlights: • Thin TiO{sub 2} layer is deposited on conducting substrate using sol–gel based dip coating. • TiO{sub 2} nano-particles are synthesized using hydrothermal route. • Thick TiO{sub 2} particulate layer is deposited on prepared thin layer. • Dye sensitized solar cells are made using thin and thick layer based photo-anode. • Introduction of thin layer in particulate photo-anode improves the cell efficiency. - Abstract: A compact thin TiO{sub 2} passivation layer is introduced between the mesoporous TiO{sub 2} nano-particulate layer and the conducting glass substrate to prepare photo-anode for dye-sensitized solar cell (DSSC). In order to understand the effect of passivation layer, other two DSSCs are also developed separately using TiO{sub 2} nano-particulate and compact thin film based photo-anodes. Nano-particles are prepared using hydrothermal synthesis route and the compact passivation layer is prepared by simply dip coating the precursor sol prepared through wet chemical route. The TiO{sub 2} compact layer and the nano-particles are characterised in terms of their micro-structural features and phase formation behavior. It is found that introduction of a compact TiO{sub 2} layer in between the mesoporous TiO{sub 2} nano-particulate layer and the conducting substrate improves the solar to electric conversion efficiency of the fabricated cell. The dense thin passivation layer is supposed to enhance the photo-excited electron transfer and prevent the recombination of photo-excited electrons.

  10. Exploring electronic structure of one-atom thick polycrystalline graphene films: A nano angle resolved photoemission study

    Science.gov (United States)

    Avila, José; Razado, Ivy; Lorcy, Stéphane; Fleurier, Romain; Pichonat, Emmanuelle; Vignaud, Dominique; Wallart, Xavier; Asensio, María C.

    2013-01-01

    The ability to produce large, continuous and defect free films of graphene is presently a major challenge for multiple applications. Even though the scalability of graphene films is closely associated to a manifest polycrystalline character, only a few numbers of experiments have explored so far the electronic structure down to single graphene grains. Here we report a high resolution angle and lateral resolved photoelectron spectroscopy (nano-ARPES) study of one-atom thick graphene films on thin copper foils synthesized by chemical vapor deposition. Our results show the robustness of the Dirac relativistic-like electronic spectrum as a function of the size, shape and orientation of the single-crystal pristine grains in the graphene films investigated. Moreover, by mapping grain by grain the electronic dynamics of this unique Dirac system, we show that the single-grain gap-size is 80% smaller than the multi-grain gap recently reported by classical ARPES. PMID:23942471

  11. Specific features of the temperature dependence of the exciton absorption integral in CdS crystals

    International Nuclear Information System (INIS)

    Novikov, A.B.; Solov'ev, L.E.; Talalaev, V.G.

    1986-01-01

    Cadmium sulfide crystals 0.4-2 μm thick in the 4.2-120 K temperature range are investigated experimentally. The shape of the first exciton absorption line in CdS and dependence of integral exciton absorption factor (IEAF) on the quenching constant j are calculated. Rapid growth of the absorption factor in the maximum of the absorption line and decrease of halfwidth of the factor are shown to take place with j increase. The calculation has disclosed that the Bouguer law is observed excluding negligible IEAF oscillations at variation of crystal thickness. Non-monotonous temperature dependence of IEAF is disclosed in some investigated samples; it, obviously, testifies to non-monotonous temperature dependence of j. Depolarization of the absorption line of high-energy exciton states with n=2 and n=3 is discovered in some samples for the first time

  12. Study on Size-Dependent Young’s Modulus of a Silicon Nano beam by Molecular Dynamics Simulation

    International Nuclear Information System (INIS)

    Yu, H.; Sun, C.; Zhang, W.W.; Lei, S.Y.; Huang, K.A.

    2013-01-01

    Young’s modulus of a silicon nano beam with a rectangular cross-section is studied by molecular dynamics method. Dynamic simulations are performed for doubly clamped silicon nano beams with lengths ranging from 4.888 to 12.491 nm and cross-sections ranging from 1.22 nm ×1.22 nm to 3.39 nm × 3.39 nm. The results show that Young’s moduli of such small silicon nano beams are much higher than the value of Young’s modulus for bulk silicon. Moreover, the resonant frequency and Young’s modulus of the Si nano beam are strongly dependent not only on the size of the nano beam but also on surface effects. Young’s modulus increases significantly with the decreasing of the thickness of the silicon nano beam. This result qualitatively agrees with one of the conclusions based on a semi continuum model, in which the surface relaxation and the surface tension were taken into consideration. The impacts of the surface reconstruction with (2 ×1) dimmers on the resonant frequency and Young’s modulus are studied in this paper too. It is shown that the surface reconstruction makes the silicon nano beam stiffer than the one without the surface reconstruction, resulting in a higher resonant frequency and a larger Young’s modulus

  13. Effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit

    OpenAIRE

    Peng Xi; Yan Li; Xiaojin Ge; Dandan Liu; Mingsan Miao

    2018-01-01

    Objective: Observing the effect of nano-silver hydrogel coating film on deep partial thickness scald model of rabbit. Method: We prepared boiling water scalded rabbits with deep II degree scald models and applied high, medium and low doses of nano-silver hydrogel coating film for different time and area. Then we compared the difference of burned paper weight before administration and after administration model burns, burn local skin irritation points infection, skin crusting and scabs from th...

  14. Thickness dependent structural ordering, degradation and metastability in polysilane thin films: A photoluminescence study on representative σ-conjugated polymers

    International Nuclear Information System (INIS)

    Urbánek, Pavel; Kuřitka, Ivo

    2015-01-01

    We present a fundamental experimental study based on the fluorescence investigation of thin σ-conjugated polymer films, where the dependence of optoelectrical properties and UV degradation on film thickness ranging from nano- to microscale was studied. Such extensive and detailed study was performed for the first time and observed spectral shifts in emission and excitation spectra and UV degradation retardation point towards the conclusions that there exists a threshold thickness where the material degradation behavior, electron delocalization and structure suddenly change. The development of well aligned polymeric chain structure between the nano- and micrometer thickness (on the mesoscale) was shown responsible for the manifested phenomena. The material thicker than critical 500 nm has extremely small Stokes' shift, maximum extended σ-delocalization along the silicon polymer backbone and exhibits remarkable UV degradation slowdown and self-recovery ability. On the contrary, the electronic properties of thin films below 80 nm resemble those of random coils in solutions. The films of moderate thickness show relatively steep transition between these two modes of structural ordering and resulting properties. Altogether, we consider this complex phenomenon as a consequence of the mesoscale effect, which is an only recently introduced concept in polymer thin films. - Highlights: • Photoluminescence was used as a tool for structural investigation of polysilanes. • Primary study of strong dependence of thin polymer film structure on mesoscale. • A mesoscale effect observed for the first time on sigma conjugated polymers. • Conjugation length is dramatically extended in thicker films than in nanoscale. • Self-recovery effect was shown to be dependent on the mesoscale as well.

  15. Preparation of silver nano-particles immobilized onto chitin nano-crystals and their application to cellulose paper for imparting antimicrobial activity.

    Science.gov (United States)

    Li, Zhihan; Zhang, Ming; Cheng, Dong; Yang, Rendang

    2016-10-20

    Immobilized silver nano-particles (Ag NPs) possess excellent antimicrobial properties due to their unique surface characteristics. In this paper, immobilized silver nano-particles were synthesized in the presence of chitin nano-crystals (CNC) based on the Tollens mechanism (reduction of silver ion by aldehydes in the chitosan oligosaccharides (COS)) under microwave-assisted conditions. The prepared Ag NPs-loaded CNC nano-composites were then applied onto the paper surface via coating for the preparation of antibacterial paper. Fourier transform infrared (FT-IR) and X-ray diffraction (XRD) results confirmed that the Ag NPs were immobilized onto the CNC. The transmission electron microscope (TEM) and scanning electron microscopy (SEM) results further revealed that the spherical Ag NPs (5-12nm) were well dispersed on the surface of CNC. The coated paper made from the Ag NPs-loaded CNC nano-composites exhibited a high effectiveness of the antibacterial activity against E. coli or S. aureus. Copyright © 2016 Elsevier Ltd. All rights reserved.

  16. Core-shell architectures as nano-size transporters

    International Nuclear Information System (INIS)

    Adeli, M.; Zarnegar, Z.; Kabiri, R.; Salimi, F.; Dadkah, A.

    2006-01-01

    Core-shell architectures containing poly (ethylene imine) (PEI) as a core and poly (lactide) (PLA) as arms were prepared. PEI was used as macro initiator for ring opening polymerization of lactide. PEI-PLA core-shell architectures were able to encapsulate guest molecules. Size of the core-shell architectures was between 10- 100 nm, hence they can be considered as nano carriers to transport the guest molecules. Transport capacity of nano carriers depends on their nano-environments and type of self-assembly in solvent. In solid state nano carriers self-assemble as long structures with nano-size diameter or they form network structures. Aggregations type depends on the concentration of nano carriers in solution. Effect of the shell thickness and aggregation type on the release rate are also investigated

  17. On the variation in the electrical properties and ac conductivity of through-thickness nano-porous anodic alumina with temperature

    International Nuclear Information System (INIS)

    Tahir, Mahmood; Mehmood, Mazhar; Nadeem, Muhammad; Waheed, Abdul; Tanvir, Muhammad Tauseef

    2013-01-01

    The electrical response of self-organized through-thickness anodic alumina with hexagonal arrangement of cylindrical pores has been studied as a function of temperature. Mechanically stable thick porous anodic alumina was prepared, by through-thickness anodic oxidation of aluminum sheet in sulfuric acid, with extremely high aspect ratio pores exhibiting fairly uniform diameter and interpore distance. It was observed that the electrical properties of through-thickness anodic alumina are very sensitive to minute changes in temperature and the role of surface conductivity in governing its electrical response cannot be overlooked. At high frequencies, intrinsic dielectric response of anodic alumina was dominant. The frequency-dependent conductivity behavior at low and intermediate frequencies was explained on the basis of correlated barrier hopping (CBH) and quantum mechanical tunneling (QMT) models, respectively. Experimental data was modeled using an equivalent circuit consisting of Debye circuit, for bulk alumina, parallel to surface conduction path. The surface conduction was primarily based on two circuits in series, each with a parallel arrangement of a resistor and a constant phase element. This suggested heterogeneity in alumina pore surface, possibly related with islands of physisorbed water separated by the regions of chemisorbed water. Temperature dependence of some circuit elements has been analyzed to express different charge migration phenomena occurring in nano-porous anodic alumina

  18. Type-I frequency-doubling characteristics of high-power, ultrafast fiber laser in thick BIBO crystal.

    Science.gov (United States)

    Chaitanya N, Apurv; Aadhi, A; Singh, R P; Samanta, G K

    2014-09-15

    We report on experimental realization of optimum focusing condition for type-I second-harmonic generation (SHG) of high-power, ultrafast laser in "thick" nonlinear crystal. Using single-pass, frequency doubling of a 5 W Yb-fiber laser of pulse width ~260 fs at repetition rate of 78 MHz in a 5-mm-long bismuth triborate (BIBO) crystal we observed that the optimum focusing condition is more dependent on the birefringence of the crystal than its group-velocity mismatch (GVM). A theoretical fit to our experimental results reveals that even in the presence of GVM, the optimum focusing condition matches the theoretical model of Boyd and Kleinman, predicted for continuous-wave and long-pulse SHG. Using a focusing factor of ξ=1.16 close to the estimated optimum value of ξ=1.72 for our experimental conditions, we generated 2.25 W of green radiation of pulse width 176 fs with single-pass conversion efficiency as high as 46.5%. Our study also verifies the effect of pulse narrowing and broadening of angular phase-matching bandwidth of SHG at tighter focusing. This study signifies the advantage of SHG in "thick" crystal in controlling SH-pulse width by changing the focusing lens while accessing high conversion efficiency and broad angular phase-matching bandwidth.

  19. The structure and properties of vacancies in Si nano-crystals calculated by real space pseudopotential methods

    International Nuclear Information System (INIS)

    Beckman, S.P.; Chelikowsky, James R.

    2007-01-01

    The structure and properties of vacancies in a 2 nm Si nano-crystal are studied using a real space density functional theory/pseudopotential method. It is observed that a vacancy's electronic properties and energy of formation are directly related to the local symmetry of the vacancy site. The formation energy for vacancies and Frenkel pair are calculated. It is found that both defects have lower energy in smaller crystals. In a 2 nm nano-crystal the energy to form a Frenkel pair is 1.7 eV and the energy to form a vacancy is no larger than 2.3 eV. The energy barrier for vacancy diffusion is examined via a nudged elastic band algorithm

  20. Self-assembled hybrid materials based on conjugated polymers and semiconductors nano-crystals for plastic solar cells

    International Nuclear Information System (INIS)

    Girolamo, J. de

    2007-11-01

    This work is devoted to the elaboration of self-assembled hybrid materials based on poly(3- hexyl-thiophene) and CdSe nano-crystals for photovoltaic applications. For that, complementary molecular recognition units were introduced as side chain groups on the polymer and at the nano-crystals' surface. Diamino-pyrimidine groups were introduced by post-functionalization of a precursor copolymer, namely poly(3-hexyl-thiophene-co-3- bromo-hexyl-thiophene) whereas thymine groups were introduced at the nano-crystals' surface by a ligand exchange reaction with 1-(6-mercapto-hexyl)thymine. However, due to their different solubility, the mixing of the two components by solution processes is difficult. A 'one-pot' procedure was developed, but this method led to insoluble aggregates without control of the hybrid composition. To overcome the solubility problem, the layer-by-layer method was used to prepare the films. This method allows a precise control of the deposition process. Experimental parameters were tested in order to evaluate their impact on the resulting film. The films morphology was investigated by microscopy and X-Ray diffraction techniques. These analyses reveal an interpenetrated structure of nano-crystals within the polymer matrix rather than a multilayered structure. Electrochemical and spectro electrochemical studies were performed on the hybrid material deposited by the LBL process. Finally the materials were tested in a solar cell configuration and the I=f(V) curves reveals a clear photovoltaic behaviour. (author)

  1. Conformity Check of Thickness to the Crystal Plate λ/4(λ/2

    Directory of Open Access Journals (Sweden)

    Alexander Syuy

    2013-01-01

    Full Text Available This work demonstrates that if crystal plates are identical in thickness in the direction of radiation, the intensity at the output of the polarizer-crystal-crystal-analyzer system equals zero. This means that it is possible to control the difference in thickness between the reference crystal plate (e.g., plates of λ/4 or λ/2 and the examined plate by the intensity of the transmitted radiation. Further, it shows that if nonmonochromatic radiation is used, then the spectrum of radiation at the output is determined by the relative orientation of the optical elements and their sizes. The paper gives the theoretical model for calculations of profile of spectra for the number of important cases of orientation of elements.

  2. The effect of crystallization pressure on macromolecular structure, phase evolution, and fracture resistance of nano-calcium carbonate-reinforced high density polyethylene

    International Nuclear Information System (INIS)

    Yuan, Q.; Yang, Y.; Chen, J.; Ramuni, V.; Misra, R.D.K.; Bertrand, K.J.

    2010-01-01

    We describe here phase evolution and structural changes that are induced when high density polyethylene (HDPE) containing dispersion of nano-calcium carbonate is isothermally crystallized in the pressure range of 0.1-100 MPa. To delineate and separate the effects of applied crystallization pressure from nanoparticle effects, a relative comparison is made between neat HDPE and HDPE containing nano-calcium carbonate under similar experimental conditions. X-ray diffraction studies point toward the evolution of monoclinic phase at high crystallization pressure together with the commonly observed orthorhombic phase of HDPE. Furthermore, the nucleation of monoclinic phase is promoted by nanoparticles even at low crystallization pressure. The equilibrium melting point is insignificantly influenced on the addition of nanoparticle, such that the crystallization pressure has no obvious effect. The strong thermodynamic interaction between nano-calcium carbonate and HDPE is supported by the shift in glass transition temperature and changes in the modification of absorption bands of HDPE in Fourier transform infrared (FTIR) spectrum. Furthermore, the reinforcement of HDPE with nano-calcium carbonate increases impact strength and alters the micromechanism from crazing-tearing in polyethylene to fibrillated fracture in polymer nanocomposite, such that the fibrillation increases with crystallization pressure.

  3. Effect of alkali ions (Na+, K+, Cs+) on reaction mechanism of CZTS nano-particles synthesis

    Science.gov (United States)

    Kumar, Suresh; Altosaar, Mare; Grossberg, Maarja; Mikli, Valdek

    2018-04-01

    The control of morphology, elemental composition and phase composition of Cu2ZnSnS4 (CZTS) nano-crystals depends on the control of complex formation and surface stabilization of nano-particles in solution-based synthesis in oleylamine. At temperatures ≥280 °C, the control of nano-crystal's morphology and homogenous growth is difficult because of fast poly-nuclear growth occurring at higher temperatures. In the present work the effect of oleylamine complex formation with different alkali ions (Na+, K+ and Cs+) on nano-crystals growth at synthesis temperature of 280 °C was studied. It was found that nano-powders synthesized in the presence of Na+ and K+ ions showed the formation of crystals of different sizes - small nano-particles (18 nm-30 nm), large aggregated crystals (few nm to 1 μm) and large single crystals (1 μm - 4 μm). The presence of Cs+ ions in the nano-powder synthesis in oleylamine-metal precursor-CsOH solution promoted growth of nano-crystals of homogenous size. It is proposed that the formed oleylamine-Cs complexes a) enhance the formation and stabilization of oleylamine-metal (Cu, Zn and Sn) complexes before the injection of sulphur precursor into the oleylamine-metal precursor solution and b) after addition of sulphur stabilize the fast nucleated nano-particles and promote diffusion limited growth.

  4. Crystal engineering of giant molecules based on perylene diimide conjugated polyhedral oligomeric silsesquioxane nano-atom

    Science.gov (United States)

    Ren, He

    Molecular architectures and topologies are found contributing to the formation of supramolecular structures of giant molecules. Dr. Cheng's research group developed a diverse of giant molecules via precisely controlled chemistry synthetic routes. These giant molecules can be categorized into several different families, namely giant surfactants, giant shape amphiphiles and giant polyhedron. By analyzing the hierarchical structures of these carefully designed and precisely synthesized giant molecules, the structural factors which affect, or even dominates, in some cases, the formation of supramolecular structures are revealed in these intensive researches. The results will further contribute to the understanding of dependence of supramolecular structures on molecular designs as well as molecular topology, and providing a practical solution to the scaling up of microscopic molecular functionalities to macroscopic material properties. Molecular Nano Particles (MNPs), including fullerene (C60), POSS, Polyoxometalate (POM) and proteins etc., is defined and applied as a specific type of building blocks in the design and synthesis of giant molecules. The persistence in shape and symmetry is considered as one of the major properties of MNPs. This persistence will support the construction of giant molecules for further supramolecular structures' study by introducing specific shapes, or precisely located side groups which will facilitate self-assembling behaviors with pre-programmed secondary interactions. Dictating material physical properties by its chemical composition is an attractive yet currently failed approach in the study of materials. However, the pursuit of determining material properties by microscopic molecular level properties is never seized, and found its solution when the idea of crystal engineering is raised: should each atom in the material is located exactly where it is designed to be and is properly bonded, the property of the material is hence determined

  5. Comparison of functional parameters of CsI:Tl crystals and thick films

    International Nuclear Information System (INIS)

    Fedorov, A.; Gektin, A.; Lebedynskiy, A.; Mateychenko, P.; Shkoropatenko, A.

    2013-01-01

    500 mkm thick CsI:Tl columnar films can be produced using thermal evaporation in vacuum by sublimation of the same bulk crystal. Comparison of afterglow and radiation stability of deposited CsI:Tl films with source crystal was the aim of current work. It is shown that the afterglow in the films is always below its level in initial single crystal. It was ascertained that the annealing atmospheres influence the processes leading to the activator depletion of the films during the thermal processing. -- Highlights: ► Thick CsI:Tl columnar films were obtained by thermal evaporation in vacuum. ► Radiation stability of such CsI:Tl films appears to be better than that of crystal. ► CsI:Tl film parameters can be modified by annealing in different atmospheres

  6. Nano size crystals of goethite, α-FeOOH: Synthesis and thermal transformation

    International Nuclear Information System (INIS)

    Christensen, Axel Norlund; Jensen, Torben R.; Bahl, Christian R.H.; DiMasi, Elaine

    2007-01-01

    An aqueous suspension of amorphous iron(III) hydroxide was kept at room temperature (298 K) for 23 years. During this period of time the pH of the liquid phase changed from 4.3 to 2.85, and nano size crystals of goethite, α-FeOOH crystallised from the amorphous iron(III) hydroxide. Transmission electron microscopy (TEM) investigations, Moessbauer spectra, and powder X-ray diffraction using Co Kα radiation showed that the only iron containing crystalline phase present in the recovered product was α-FeOOH. The size of these nano particles range from 10 to 100 nm measured by TEM. The thermal decomposition of α-FeOOH was investigated by time-resolved in situ synchrotron radiation powder X-ray diffraction and the data showed that the sample of α-FeOOH transformed to α-Fe 2 O 3 in the temperature range 444-584 K. A quantitative phase analysis shows the increase in scattered X-ray intensity from α-Fe 2 O 3 to follow the decrease of intensity from α-FeOOH in agreement with the topotactic phase transition. - Graphical abstract: Nano size crystals of goethite, α-FeOOH formed from amorphous iron(III) hydroxide after 23 years, and transforms faster to α-Fe 2 O 3 upon heating

  7. Temperature driven structural-memory-effects in carbon nanotubes filled with Fe3C nano crystals

    Science.gov (United States)

    Boi, Filippo S.; Zhang, Xiaotian; Corrias, Anna

    2018-02-01

    We report the observation of novel temperature-driven structural-memory-effects in carbon nanotubes (CNTs) filled with Fe3C nano-crystals. These structural-transitions were measured by means of temperature (T) dependent x-ray diffraction (XRD) in the T-range from 298 K to 12 K. A clear reversible 2θ-shift in the 002-peak of the graphitic-CNTs-walls is found with the decrease of the temperature. As determined by Rietveld refinement, such 2θ-shift translates in a not previously reported decrease in the value of the CNT graphitic c-axis with the decrease of the temperature (from 298 K to 12 K). Also, a clear reversible 2θ-shift in the 031 and 131 diffraction-peaks of Fe3C is observed within the same T-range. Rietveld refinements confirm the existence of such memory-effect and also reveal a gradual decrease of the 010-axis of Fe3C with the decrease of the temperature. These observations imply that the observed structural-memory-effect is a characteristic of CNTs when Fe3C is the encapsulated ferromagnet. The generality of such memory-effects was further confirmed by additional measurements performed on other types of CNTs characterized by continuous Fe3C-filling. XRD measurements in the T-range from 298 K to 673 K revealed also an unusual reversible decrease of the Fe3C-peak intensities with the increase of the temperature. These observations can have important implications on the magnetic data recording applications of these nanostructures by helping in better understanding the unusual temperature-dependent magnetic instabilities of iron-based nano-crystals which have been recently reported in literature.

  8. Anomalous temperature dependence of layer spacing of de Vries liquid crystals: Compensation model

    Energy Technology Data Exchange (ETDEWEB)

    Merkel, K. [Central Mining Institute, Katowice 40-166 (Poland); Kocot, A. [Institute of Physics, Silesian University, Katowice 40-007 (Poland); Vij, J. K., E-mail: jvij@tcd.ie [Department of Electronic and Electrical Engineering, Trinity College, The University of Dublin, Dublin 2 (Ireland); Stevenson, P. J.; Panov, A.; Rodriguez, D. [School of Chemistry and Chemical Engineering, Queens University Belfast, Belfast BT7 1NN, Northern Ireland (United Kingdom)

    2016-06-13

    Smectic liquid crystals that exhibit temperature independent layer thickness offer technological advantages for their use in displays and photonic devices. The dependence of the layer spacing in SmA and SmC phases of de Vries liquid crystals is found to exhibit distinct features. On entering the SmC phase, the layer thickness initially decreases below SmA to SmC (T{sub A–C}) transition temperature but increases anomalously with reducing temperature despite the molecular tilt increasing. This anomalous observation is being explained quantitatively. Results of IR spectroscopy show that layer shrinkage is caused by tilt of the mesogen's rigid core, whereas the expansion is caused by the chains getting more ordered with reducing temperature. This mutual compensation arising from molecular fragments contributing to the layer thickness differs from the previous models. The orientational order parameter of the rigid core of the mesogen provides direct evidence for de Vries cone model in the SmA phase for the two compounds investigated.

  9. Nano Ag-Doped In2O3 Thick Film: A Low-Temperature H2S Gas Sensor

    Directory of Open Access Journals (Sweden)

    D. N. Chavan

    2011-01-01

    Full Text Available Thick films of AR grade In2O3 were prepared by standard screen-printing technique. The gas sensing performances of thick films were tested for various gases. It showed maximum sensitivity to ethanol vapour at 350°C for 80 ppm concentration. To improve the sensitivity and selectivity of the film towards a particular gas, In2O3 sensors were surface-modified by dipping them in a solution of 2% nanosilver for different intervals of time. Obtained results indicated that spherical nano-Ag grains are highly dispersed on the surface of In2O3sensor. The surface area of the nano-Ag/ In2O3 sensor is several times larger than that of pure In2O3 sensor. In comparison with pure In2O3 sensor, all of the nano-Ag-doped sensors showed better sensing performance in respect of response, selectivity, and optimum operating temperature. The surface-modified (30 min In2O3 sensor showed larger sensitivity to H2S gas (10 ppm at 100°C. Nano silver on the surface of the film shifts the reactivity of film from ethanol vapour to H2S gas. A systematic study of gas sensing performance of the sensor indicates the key role played by the nano silver species on the surface. The sensitivity, selectivity, response, and recovery time of the sensor were measured and presented.

  10. The thickness of native oxides on aluminum alloys and single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Evertsson, J., E-mail: jonas.evertsson@sljus.lu.se [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Bertram, F. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Zhang, F. [KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Drottning Kristinas Vg 51, 100 44 Stockholm (Sweden); Rullik, L.; Merte, L.R.; Shipilin, M. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Soldemo, M.; Ahmadi, S. [KTH Royal Institute of Technology, ICT, Material Physics, 16440 Kista (Sweden); Vinogradov, N.; Carlà, F. [ESRF, B.P. 220, 38043 Grenoble (France); Weissenrieder, J.; Göthelid, M. [KTH Royal Institute of Technology, ICT, Material Physics, 16440 Kista (Sweden); Pan, J. [KTH Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, Drottning Kristinas Vg 51, 100 44 Stockholm (Sweden); Mikkelsen, A. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden); Nilsson, J.-O. [Sapa Technology, Kanalgatan 1, 612 31 Finspång (Sweden); Lundgren, E. [Division of Synchrotron Radiation Research, Lund University, Box 118, 221 00 Lund (Sweden)

    2015-09-15

    Highlights: • We have determined the native oxide film thickness on several Al samples. • The results obtained from XRR and XPS show excellent agreement. • The results obtained from EIS show consistently thinner oxide films. • The oxides on the alloys are thicker than the oxides on the single crystals. - Abstract: We present results from measurements of the native oxide film thickness on four different industrial aluminum alloys and three different aluminum single crystals. The thicknesses were determined using X-ray reflectivity, X-ray photoelectron spectroscopy, and electrochemical impedance spectroscopy. In addition, atomic force microscopy was used for micro-structural studies of the oxide surfaces. The reflectivity measurements were performed in ultra-high vacuum, vacuum, ambient, nitrogen and liquid water conditions. The results obtained using X-ray reflectivity and X-ray photoelectron spectroscopy demonstrate good agreement. However, the oxide thicknesses determined from the electrochemical impedance spectroscopy show a larger discrepancy from the above two methods. In the present contribution the reasons for this discrepancy are discussed. We also address the effect of the substrate type and the presence of water on the resultant oxide thickness.

  11. Sodium chloride crystallization from thin liquid sheets, thick layers, and sessile drops in microgravity

    Science.gov (United States)

    Fontana, Pietro; Pettit, Donald; Cristoforetti, Samantha

    2015-10-01

    Crystallization from aqueous sodium chloride solutions as thin liquid sheets, 0.2-0.7 mm thick, with two free surfaces supported by a wire frame, thick liquid layers, 4-6 mm thick, with two free surfaces supported by metal frame, and hemispherical sessile drops, 20-32 mm diameter, supported by a flat polycarbonate surface or an initially flat gelatin film, were carried out under microgravity on the International Space Station (ISS). Different crystal morphologies resulted based on the fluid geometry: tabular hoppers, hopper cubes, circular [111]-oriented crystals, and dendrites. The addition of polyethylene glycol (PEG-3350) inhibited the hopper growth resulting in flat-faced surfaces. In sessile drops, 1-4 mm tabular hopper crystals formed on the free surface and moved to the fixed contact line at the support (polycarbonate or gelatin) self-assembling into a shell. Ring formation created by sessile drop evaporation to dryness was observed but with crystals 100 times larger than particles in terrestrially formed coffee rings. No hopper pyramids formed. By choosing solution geometries offered by microgravity, we found it was possible to selectively grow crystals of preferred morphologies.

  12. Acoustic study of nano-crystal embedded PbO–P2O5 glass

    Indian Academy of Sciences (India)

    Unknown

    Keywords. Glasses; acoustical properties; nanostructured materials; glass ceramic. 1. Introduction. During the last two decades, studies of different physical properties of nano-crystal embedded glass matrix have attracted attention of technologists as well as scientists for fabrication of glass ceramic through controlled crysta-.

  13. Optical properties study of nano-composite filled D shape photonic crystal fibre

    Directory of Open Access Journals (Sweden)

    R. Udaiyakumar

    2018-06-01

    Full Text Available With the nano-composite materials gaining momentum in the optical field, a new nano-composite filled D shape Photonic Crystal Fiber (PCF is designed and the various optical properties are investigated with help of Finite Element Method. In the proposed structure the D-shape PCF is made up of silica with embedded silver nanoparticles and air holes are distributed along the fibre. The designed fibre shows various optical properties such as dispersion, birefringence, beat length and loss with respect to wavelength and compared with different filling factor like 0.1, 0.3 and 0.5. From our estimation and comparative analysis, it has been proved that the fibre loss has been decreased with increasing filling factor. Further this also showed flat dispersion at maximum filling factor. Keywords: Nanoparticles, Nano-composite, Dispersion, Birefringence, Beat length

  14. Detrital illite crystals identified from crystallite thickness measurements in siliciclastic sediments

    Science.gov (United States)

    Aldega, L.; Eberl, D.D.

    2005-01-01

    Illite crystals in siliciclastic sediments are heterogeneous assemblages of detrital material coming from various source rocks and, at paleotemperatures >70 ??C, of superimposed diagenetic modification in the parent sediment. We distinguished the relative proportions of 2M1 detrital illite and possible diagenetic 1Md + 1M illite by a combined analysis of crystal-size distribution and illite polytype quantification. We found that the proportions of 1Md + 1M and 2M1 illite could be determined from crystallite thickness measurements (BWA method, using the MudMaster program) by unmixing measured crystallite thickness distributions using theoretical and calculated log-normal and/or asymptotic distributions. The end-member components that we used to unmix the measured distributions were three asymptotic-shaped distributions (assumed to be the diagenetic component of the mixture, the 1Md + 1M polytypes) calculated using the Galoper program (Phase A was simulated using 500 crystals per cycle of nucleation and growth, Phase B = 333/cycle, and Phase C = 250/ cycle), and one theoretical log-normal distribution (Phase D, assumed to approximate the detrital 2M1 component of the mixture). In addition, quantitative polytype analysis was carried out using the RockJock software for comparison. The two techniques gave comparable results (r2 = 0.93), which indicates that the unmixing method permits one to calculate the proportion of illite polytypes and, therefore, the proportion of 2M1 detrital illite, from crystallite thickness measurements. The overall illite crystallite thicknesses in the samples were found to be a function of the relative proportions of thick 2M1 and thin 1Md + 1M illite. The percentage of illite layers in I-S mixed layers correlates with the mean crystallite thickness of the 1Md + 1M polytypes, indicating that these polytypes, rather than the 2M1 polytype, participate in I-S mixed layering.

  15. Extraction and characterization of cellulose nano whiskers from balsa wood; Extracao e caracterizacao de nanocristais de celulose obtidos da madeira balsa

    Energy Technology Data Exchange (ETDEWEB)

    Morelli, Carolina L.; Bretas, Rosario E.S., E-mail: bretas@ufscar.br [Universidade Federal de Sao Carlos - UFSCar, Sao Carlos, SP (Brazil); Marconcini, Jose M. [Embrapa Instrumentacao, Sao Carlos, SP (Brazil); Pereira, Fabiano V. [Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG (Brazil); Branciforti, Marcia C. [Universidade de Sao Paulo - USP, Sao Carlos, SP (Brazil)

    2011-07-01

    In this study cellulose nano whiskers were obtained from balsa wood. For this purpose, fibers of balsa wood were subjected to hydrolysis reactions for lignin and hemi cellulose digestion and acquisition of nano-scale cellulose. Cellulose nano crystals obtained had medium length and thickness of 176 nm and 7 nm respectively. Infrared spectroscopy and x-ray diffraction showed that the process used for extracting nano whiskers could digest nearly all the lignin and hemi cellulose from the balsa fiber and still preserve the aspect ratio and crystallinity, satisfactory enough for future application in polymer nano composites. Thermogravimetry showed that the onset temperature of thermal degradation of cellulose nano crystals (226 degree C) was higher than the temperature of the balsa fiber (215 degree C), allowing its use in molding processes with many polymers from the molten state.(author)

  16. The effects of surface bond relaxation on electronic structure of Sb{sub 2}Te{sub 3} nano-films by first-principles calculation

    Energy Technology Data Exchange (ETDEWEB)

    Li, C., E-mail: canli1983@gmail.com; Zhao, Y. F.; Fu, C. X.; Gong, Y. Y. [Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University (China); Chi, B. Q. [College of Modem Science and Technology, Jiliang University, Hangzhou, 310018 (China); Sun, C. Q. [Center for Coordination Bond Engineering, School of Materials Science and Engineering, China Jiliang University (China); School of Electrical and Electronic Engineering, Nanyang Technological University, 639798 (Singapore)

    2014-10-15

    The effects of vertical compressive stress on Sb{sub 2}Te{sub 3} nano-films have been investigated by the first principles calculation, including stability, electronic structure, crystal structure, and bond order. It is found that the band gap of nano-film is sensitive to the stress in Sb{sub 2}Te{sub 3} nano-film and the critical thickness increases under compressive stress. The band gap and band order of Sb{sub 2}Te{sub 3} film has been affected collectively by the surface and internal crystal structures, the contraction ratio between surface bond length of nano-film and the corresponding bond length of bulk decides the band order of Sb{sub 2}Te{sub 3} film.

  17. Nano-Fiber Reinforced Enhancements in Composite Polymer Matrices

    Science.gov (United States)

    Chamis, Christos C.

    2009-01-01

    Nano-fibers are used to reinforce polymer matrices to enhance the matrix dependent properties that are subsequently used in conventional structural composites. A quasi isotropic configuration is used in arranging like nano-fibers through the thickness to ascertain equiaxial enhanced matrix behavior. The nano-fiber volume ratios are used to obtain the enhanced matrix strength properties for 0.01,0.03, and 0.05 nano-fiber volume rates. These enhanced nano-fiber matrices are used with conventional fiber volume ratios of 0.3 and 0.5 to obtain the composite properties. Results show that nano-fiber enhanced matrices of higher than 0.3 nano-fiber volume ratio are degrading the composite properties.

  18. Wall thickness dependence of the scaling law for ferroic stripe domains

    International Nuclear Information System (INIS)

    Catalan, G; Scott, J F; Schilling, A; Gregg, J M

    2007-01-01

    The periodicity of 180 0 stripe domains as a function of crystal thickness scales with the width of the domain walls, both for ferroelectric and for ferromagnetic materials. Here we derive an analytical expression for the generalized ferroic scaling factor and use this to calculate the domain wall thickness and gradient coefficients (exchange constants) in some ferroelectric and ferromagnetic materials. We then use these to discuss some of the wider implications for the physics of ferroelectric nanodevices and periodically poled photonic crystals. (fast track communication)

  19. Nucleation and crystallization behaviors of nano-crystalline lithium–mica glass–ceramic prepared via sol–gel method

    Energy Technology Data Exchange (ETDEWEB)

    Tohidifar, M.R. [Department of Materials Science and Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Alizadeh, P., E-mail: p-alizadeh@modares.ac.ir [Department of Materials Science and Engineering, Tarbiat Modares University, P.O. Box 14115-143, Tehran (Iran, Islamic Republic of); Riello, P. [Department of Molecular Sciences and Nanosystems, University of Ca’Foscari, Venice (Italy)

    2012-06-15

    Graphical abstract: The effects of nucleation and crystallization treatments on nano-crystalline lithium–mica glass–ceramic, synthesized by sol–gel technique, were investigated. It was found that MgF{sub 2} crystals act as nuclei centers for the mica crystallization so that a large quantity of mica crystallites was obtained following nucleation process. The crystallization activation energy for both the un-nucleated and nucleated samples was measured as 400.2 and 229.6 kJ mol{sup −1}, respectively. The calculated Avrami exponents demonstrated that the growth mechanism of mica crystallites changes from the needle-like to three-dimensional growth with applying the appropriate nucleation treatment ▪. Highlights: ► Crystallization temperature shifts to 625 from 680 °C following nucleation process. ► Activation energy of crystallization for the nucleated specimen is 229.6 kJ mol{sup −1}. ► Crystallization activation energy for the un-nucleated specimen is 400.2 kJ mol{sup −1}. ► Needle-like growth is predominant growth mechanism for un-nucleated sample. ► Three-dimensional growth is predominant growth mechanism for nucleated sample. -- Abstract: The paper investigates the effects of nucleation and crystallization treatments on nano-crystalline lithium–mica glass–ceramics, taking the composition LiMg{sub 3}AlSi{sub 3(1+x)}O{sub 10+6x}F{sub 2} (x = 0.5) and 8 mass% MgF{sub 2} synthesized by sol–gel technique. Here, X-ray diffraction, thermal analysis and transmission electron microscopy were used to assess the structural evolutions of as-synthesized nano-crystalline lithium–mica glass–ceramics. It was found that MgF{sub 2} crystals perform as nuclei centers for the mica crystallization hence; a large quantity of mica crystallites obtained following the nucleation process at 400 °C for 12 h. For both the un-nucleated and nucleated samples, the crystallization activation energy was measured as 400.2 and 229.6 kJ mol{sup −1

  20. Amorphous Silicon-Germanium Films with Embedded Nano crystals for Thermal Detectors with Very High Sensitivity

    International Nuclear Information System (INIS)

    Calleja, C.; Torres, A.; Rosales-Quintero, P.; Moreno, M.

    2016-01-01

    We have optimized the deposition conditions of amorphous silicon-germanium films with embedded nano crystals in a plasma enhanced chemical vapor deposition (PECVD) reactor, working at a standard frequency of 13.56 MHz. The objective was to produce films with very large Temperature Coefficient of Resistance (TCR), which is a signature of the sensitivity in thermal detectors (micro bolometers). Morphological, electrical, and optical characterization were performed in the films, and we found optimal conditions for obtaining films with very high values of thermal coefficient of resistance (TCR = 7.9%K -1 ). Our results show that amorphous silicon-germanium films with embedded nano crystals can be used as thermo sensitive films in high performance infrared focal plane arrays (IRFPAs) used in commercial thermal cameras.

  1. Interfacial engineering of two-dimensional nano-structured materials by atomic layer deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhuiykov, Serge, E-mail: serge.zhuiykov@ugent.be [Ghent University Global Campus, Department of Applied Analytical & Physical Chemistry, Faculty of Bioscience Engineering, 119 Songdomunhwa-ro, Yeonsu-Gu, Incheon 406-840 (Korea, Republic of); Kawaguchi, Toshikazu [Global Station for Food, Land and Water Resources, Global Institution for Collaborative Research and Education, Hokkaido University, N10W5 Kita-ku, Sapporo, Hokkaido 060-0810 (Japan); Graduate School of Environmental Science, Hokkaido University, N10W5 Kita-ku, Sapporo, Hokkaido 060-0810 (Japan); Hai, Zhenyin; Karbalaei Akbari, Mohammad; Heynderickx, Philippe M. [Ghent University Global Campus, Department of Applied Analytical & Physical Chemistry, Faculty of Bioscience Engineering, 119 Songdomunhwa-ro, Yeonsu-Gu, Incheon 406-840 (Korea, Republic of)

    2017-01-15

    Highlights: • Advantages of atomic layer deposition technology (ALD) for two-dimensional nano-crystals. • Conformation of ALD technique and chemistry of precursors. • ALD of semiconductor oxide thin films. • Ultra-thin (∼1.47 nm thick) ALD-developed tungsten oxide nano-crystals on large area. - Abstract: Atomic Layer Deposition (ALD) is an enabling technology which provides coating and material features with significant advantages compared to other existing techniques for depositing precise nanometer-thin two-dimensional (2D) nanostructures. It is a cyclic process which relies on sequential self-terminating reactions between gas phase precursor molecules and a solid surface. ALD is especially advantageous when the film quality or thickness is critical, offering ultra-high aspect ratios. ALD provides digital thickness control to the atomic level by depositing film one atomic layer at a time, as well as pinhole-free films even over a very large and complex areas. Digital control extends to sandwiches, hetero-structures, nano-laminates, metal oxides, graded index layers and doping, and it is perfect for conformal coating and challenging 2D electrodes for various functional devices. The technique’s capabilities are presented on the example of ALD-developed ultra-thin 2D tungsten oxide (WO{sub 3}) over the large area of standard 4” Si substrates. The discussed advantages of ALD enable and endorse the employment of this technique for the development of hetero-nanostructure 2D semiconductors with unique properties.

  2. Fabrication of three-dimensional MIS nano-capacitor based on nano-imprinted single crystal silicon nanowire arrays

    KAUST Repository

    Zhai, Yujia

    2012-11-26

    We report fabrication of single crystalline silicon nanowire based-three-dimensional MIS nano-capacitors for potential analog and mixed signal applications. The array of nanowires is patterned by Step and Flash Imprint Lithography (S-FIL). Deep silicon etching (DSE) is used to form the nanowires with high aspect ratio, increase the electrode area and thus significantly enhance the capacitance. High-! dielectric is deposited by highly conformal atomic layer deposition (ALD) Al2O3 over the Si nanowires, and sputtered metal TaN serves as the electrode. Electrical measurements of fabricated capacitors show the expected increase of capacitance with greater nanowire height and decreasing dielectric thickness, consistent with calculations. Leakage current and time-dependent dielectric breakdown (TDDB) are also measured and compared with planar MIS capacitors. In view of greater interest in 3D transistor architectures, such as FinFETs, 3D high density MIS capacitors offer an attractive device technology for analog and mixed signal applications. - See more at: http://www.eurekaselect.com/105099/article#sthash.EzeJxk6j.dpuf

  3. Fabrication of three-dimensional MIS nano-capacitor based on nano-imprinted single crystal silicon nanowire arrays

    KAUST Repository

    Zhai, Yujia; Palard, Marylene; Mathew, Leo; Hussain, Muhammad Mustafa; Willson, Grant Grant; Tutuc, Emanuel; Banerjee, Sanjay Kumar

    2012-01-01

    We report fabrication of single crystalline silicon nanowire based-three-dimensional MIS nano-capacitors for potential analog and mixed signal applications. The array of nanowires is patterned by Step and Flash Imprint Lithography (S-FIL). Deep silicon etching (DSE) is used to form the nanowires with high aspect ratio, increase the electrode area and thus significantly enhance the capacitance. High-! dielectric is deposited by highly conformal atomic layer deposition (ALD) Al2O3 over the Si nanowires, and sputtered metal TaN serves as the electrode. Electrical measurements of fabricated capacitors show the expected increase of capacitance with greater nanowire height and decreasing dielectric thickness, consistent with calculations. Leakage current and time-dependent dielectric breakdown (TDDB) are also measured and compared with planar MIS capacitors. In view of greater interest in 3D transistor architectures, such as FinFETs, 3D high density MIS capacitors offer an attractive device technology for analog and mixed signal applications. - See more at: http://www.eurekaselect.com/105099/article#sthash.EzeJxk6j.dpuf

  4. Controlling morphology and crystallite size of Cu(In0.7Ga0.3)Se2 nano-crystals synthesized using a heating-up method

    International Nuclear Information System (INIS)

    Hsu, Wei-Hsiang; Hsiang, Hsing-I; Chia, Chih-Ta; Yen, Fu-Su

    2013-01-01

    CuIn 0.7 Ga 0.3 Se 2 (CIGS) nano-crystals were successfully synthesized via a heating-up process. The non-coordinating solvent (1-octadecene) and selenium/cations ratio effects on the crystalline phase and crystallite size of CIGS nano-crystallites were investigated. It was observed that the CIGS nano-crystallite morphology changed from sheet into spherical shape as the amount of 1-octadecene addition was increased. CIGS nano-crystals were obtained in 9–20 nm sizes as the selenium/cations ratio increased. These results suggest that the monomer reactivity in the solution can be adjusted by changing the solvent type and selenium/cations ratio, hence affecting the crystallite size and distribution. - Graphical abstract: CuIn 0.7 Ga 0.3 Se 2 (CIGS) nano-crystals were successfully synthesized via a heating-up process in this study. The super-saturation in the solution can be adjusted by changing the OLA/ODE ratio and selenium/cation ratio.

  5. Liquid Crystal Mediated Nano-assembled Gold Micro-shells

    Science.gov (United States)

    Quint, Makiko; Sarang, Som; Quint, David; Huang, Kerwyn; Gopinathan, Ajay; Hirst, Linda; Ghosh, Sayantani

    We have created 3D nano-assenbled micro-shell by using thermotropic liquid crystal (LC), 4-Cyano-4'-pentylbiphenyl (5CB), doped with mesogen-functionalized gold nanoparticles (AuNPs). The assembly process is driven by the isotropic-nematic phase transition dynamics. We uniformly disperse the functionalized AuNPs into isotropic liquid crystal matrix and the mixture is cooled from the isotropic to the nematic phase. During the phase transition, the separation of LC-AuNP rich isotropic and ordered 5CB rich domains cause the functionalized AuNPs to move into the shrinking isotropic regions. The mesogenic ligands are locally crystalized during this process, which leads to the formation of a spherical shell with a densely packed wall of AuNPs. These micro-shells are capable of encapsulating fluorescence dye without visible leakages for several months. Additionally, they demonstrate strong localized surface plasmon resonance, which leads to localized heating on optical excitation. This photothermal effect disrupts the structure, releasing contents within seconds. Our results exhibiting the capture and optically regulated release of encapsulated substances is a novel platform that combines drug-delivery and photothermal therapy in one versatile and multifunctional unit. This work is supported by the NSF Grants No. DMR-1056860, ECC-1227034, and a University of California Merced Faculty Mentor Fellowship.

  6. Effects of flexible substrate thickness on Al-induced crystallization of amorphous Ge thin films

    Energy Technology Data Exchange (ETDEWEB)

    Oya, Naoki [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Toko, Kaoru, E-mail: toko@bk.tsukuba.ac.jp [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan); Saitoh, Noriyuki; Yoshizawa, Noriko [Electron Microscope Facility, TIA, AIST, 16-1 Onogawa, Tsukuba 305-8569 (Japan); Suemasu, Takashi [Institute of Applied Physics, University of Tsukuba, Tsukuba, Ibaraki 305-8573 (Japan)

    2015-05-29

    Amorphous germanium (a-Ge) thin films were directly crystallized on flexible plastic substrates at 325 °C using Al-induced crystallization. The thickness of the plastic substrate strongly influenced the crystal quality of the resulting polycrystalline Ge layers. Using a thicker substrate lowered the stress on the a-Ge layer during annealing, which increased the grain size and fraction of (111)-oriented grains within the Ge layer. Employing a 125-μm-thick substrate led to 95% (111)-oriented Ge with grains having an average size of 100 μm. Transmission electron microscopy demonstrated that the Ge grains had a low-defect density. Production of high-quality Ge films on plastic substrates allows for the possibility for developing Ge-based electronic and optical devices on inexpensive flexible substrates. - Highlights: • Polycrystalline Ge thin films are directly formed on flexible plastic substrates. • Al-induced crystallization allows the low-temperature growth (325 °C) of amorphous Ge. • The substrate bending during annealing strongly influences the crystal quality of poly-Ge. • A thick substrate (125 μm) leads to 95% (111)-oriented Ge with grains 100 μm in size.

  7. Apparent temperature versus true temperature of silicon crystals as a function of their thickness using infrared measurements

    International Nuclear Information System (INIS)

    Smither, R.K.; Fernandez, P.B.

    1993-01-01

    The very high intensity x-ray beams that will be present at the Advanced Photon Source and other third generation synchrotron sources will require that the first optical element in the beamline and, possibly, the second optical element as well, be cooled to remove the heat deposited by the x-ray beam. In many of the beamlines this heat will be in the 1 to 5 kW range, and any failure of the cooling system will require a quick response from safety control circuits to shut off the beam before damage is done to the optical element. In many cases, this first optical element will be a silicon diffraction crystal. Viewing the surface of objects subjected to high heat fluxes with an infrared camera or infrared sensor has proved to be a very effective method for monitoring the magnitude and distribution of surface temperatures on the object. This approach has been quite useful in studies of cooling silicon crystals in monochromators subject to high heat loads. The main drawback to this method is that single crystals of silicon are partially transparent to the infrared radiation monitored in most infrared cameras. This means that the infrared radiation emitted from the surface contains a component that comes from the interior of the crystal and that the intensity of the emitted radiation and thus the apparent temperature of the surface of the crystal depends on the thickness of the crystal and the kind of coating on the back (and/or the front) of the crystal. The apparent temperature of the crystal increases as the crystal is made thicker. A series of experiments were performed at Argonne National Laboratory to calibrate the apparent surface temperature of the crystal as measured with an infrared camera as a function of the crystal thickness and the type of coating (if any) on the back side of the crystal. A number of examples are given for data taken in synchrotron experiments with high intensity x-ray beams

  8. Control of Partial Coalescence of Self-Assembled Metal Nano-Particles across Lyotropic Liquid Crystals Templates towards Long Range Meso-Porous Metal Frameworks Design

    Directory of Open Access Journals (Sweden)

    Ludovic F. Dumée

    2015-10-01

    Full Text Available The formation of purely metallic meso-porous metal thin films by partial interface coalescence of self-assembled metal nano-particles across aqueous solutions of Pluronics triblock lyotropic liquid crystals is demonstrated for the first time. Small angle X-ray scattering was used to study the influence of the thin film composition and processing conditions on the ordered structures. The structural characteristics of the meso-structures formed demonstrated to primarily rely on the lyotropic liquid crystal properties while the nature of the metal nano-particles used as well as the their diameters were found to affect the ordered structure formation. The impact of the annealing temperature on the nano-particle coalescence and efficiency at removing the templating lyotropic liquid crystals was also analysed. It is demonstrated that the lyotropic liquid crystal is rendered slightly less thermally stable, upon mixing with metal nano-particles and that low annealing temperatures are sufficient to form purely metallic frameworks with average pore size distributions smaller than 500 nm and porosity around 45% with potential application in sensing, catalysis, nanoscale heat exchange, and molecular separation.

  9. Calibration of the apparent temperature of silicon single crystals as a function of their true temperature and their thickness as determined by infrared measurements

    International Nuclear Information System (INIS)

    Smither, R.K.; Fernandez, P.B.

    1993-09-01

    Viewing the surface of objects subjected to high heat fluxes with an infrared camera or infrared sensor has proved to be a very effective method for monitoring the magnitude and distribution of surface temperature on the object. This approach has been quite useful in studies of cooling silicon crystals in monochromators subject to high heat loads. The main drawback to this method is that single crystals of silicon are partially transparent to the infrared radiation monitored in most infrared cameras. This means that the infrared radiation emitted from the surface contains a component that comes from the interior of the crystal and that the intensity of the emitted radiation and thus the apparent temperature of the surface of the crystal depends on the thickness of the crystal and the kind of coating on the back (and/or the front) of the crystal. The apparent temperature of the crystal increases as the crystal is made thicker. A series of experiments were performed at Argonne National Laboratory to calibrate the apparent surface temperature of the crystal as measured with an infrared camera as a function of the crystal thickness and the type of coating (if any) on the back side of the crystal. A good reflecting surface on the back side of the crystal increases the apparent temperature of the crystal and simulates the response of a crystal twice the thickness. These measurements make it possible to interpret the infrared signals from cooled silicon crystals used in past high heat load experiments. A number of examples are given for data taken in synchrotron experiments with high intensity x-ray beams

  10. Decrease of FIB-induced lateral damage for diamond tool used in nano cutting

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wei [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072 (China); Xu, Zongwei, E-mail: zongweixu@163.com [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072 (China); Fang, Fengzhou, E-mail: fzfang@gmail.com [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072 (China); Liu, Bing; Xiao, Yinjing; Chen, Jinping [State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology, Tianjin University, Tianjin 300072 (China); Wang, Xibin [School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081 (China); Liu, Hongzhong [State Key Laboratory for Manufacturing Systems Engineering, Xi’an Jiaotong University, Xi’an 710049 (China)

    2014-07-01

    Highlights: • We mainly aim to characterize and decrease the FIB-induced damage on diamond tool. • Raman and XPS methods were used to characterize the nanoscale FIB-induced damage. • Lower energy FIB can effectively lessen the FIB-induced damage on diamond tool. • The diamond tools’ performance was greatly improved after FIB process optimization. • 6 nm chip thickness of copper was achieved by diamond tool with 22 nm edge radius. - Abstract: Diamond cutting tools with nanometric edge radius used in ultra-precision machining can be fabricated by focused ion beam (FIB) technology. However, due to the nanoscale effects, the diamond tools performance and the cutting edge lifetime in nano cutting would be degraded because of the FIB-induced nanoscale lateral damage. In this study, the methods of how to effectively characterize and decrease the FIB-induced lateral damage for diamond tool are intensively studied. Based on the performance optimization diamond machining tools, the controllable chip thickness of less than 10 nm was achieved on a single-crystal copper in nano cutting. In addition, the ratio of minimum thickness of chip (MTC) to tool edge radius of around 0.3–0.4 in nano cutting is achieved. Methods for decreasing the FIB-induced damage on diamond tools and adding coolant during the nano cutting are very beneficial in improving the research of nano cutting and MTC. The nano cutting experiments based on the sharp and high performance of diamond tools would validate the nano cutting mechanisms that many molecular dynamic simulation studies have put forward and provide new findings for nano cutting.

  11. Nano Size Crystals of Geothite, alpha-FeOOH: Synthesis and Thermal Transformation

    Energy Technology Data Exchange (ETDEWEB)

    Christensen,A.; Jensen, T.; Bahl, C.; DiMasi, E.

    2007-01-01

    An aqueous suspension of amorphous iron(III) hydroxide was kept at room temperature (298 K) for 23 years. During this period of time the pH of the liquid phase changed from 4.3 to 2.85, and nano size crystals of goethite, {alpha}-FeOOH crystallized from the amorphous iron(III) hydroxide. Transmission electron microscopy (TEM) investigations, Moessbauer spectra, and powder X-ray diffraction using Co K{alpha} radiation showed that the only iron containing crystalline phase present in the recovered product was {alpha}-FeOOH. The size of these nano particles range from 10 to 100 nm measured by TEM. The thermal decomposition of {alpha}-FeOOH was investigated by time-resolved in situ synchrotron radiation powder X-ray diffraction and the data showed that the sample of {alpha}-FeOOH transformed to {alpha}-Fe{sub 2}O{sub 3} in the temperature range 444--584 K. A quantitative phase analysis shows the increase in scattered X-ray intensity from {alpha}-Fe{sub 2}O{sub 3} to follow the decrease of intensity from {alpha}-FeOOH in agreement with the topotactic phase transition.

  12. Grain size and lattice parameter's influence on band gap of SnS thin nano-crystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, Yashika [Department of Electronics, S.G.T.B. Khalsa College, University of Delhi, Delhi 110007 (India); Department of Electronic Science, University of Delhi-South Campus, New Delhi 110021 (India); Arun, P., E-mail: arunp92@physics.du.ac.in [Department of Electronics, S.G.T.B. Khalsa College, University of Delhi, Delhi 110007 (India); Naudi, A.A.; Walz, M.V. [Facultad de Ingeniería, Universidad Nacional de Entre Ríos, 3101 Oro Verde (Argentina); Albanesi, E.A. [Facultad de Ingeniería, Universidad Nacional de Entre Ríos, 3101 Oro Verde (Argentina); Instituto de Física del Litoral (CONICET-UNL), Guemes 3450, 3000 Santa Fe (Argentina)

    2016-08-01

    Tin sulphide nano-crystalline thin films were fabricated on glass and Indium Tin Oxide (ITO) substrates by thermal evaporation method. The crystal structure orientation of the films was found to be dependent on the substrate. Residual stress existed in the films due to these orientations. This stress led to variation in lattice parameter. The nano-crystalline grain size was also found to vary with film thickness. A plot of band-gap with grain size or with lattice parameter showed the existence of a family of curves. This implied that band-gap of SnS films in the preview of the present study depends on two parameters, lattice parameter and grain size. The band-gap relation with grain size is well known in the nano regime. Experimental data fitted well with this relation for the given lattice constants. The manuscript uses theoretical structure calculations for different lattice constants and shows that the experimental data follows the trend. Thus, confirming that the band gap has a two variable dependency. - Highlights: • Tin sulphide films are grown on glass and ITO substrates. • Both substrates give differently oriented films. • The band-gap is found to depend on grain size and lattice parameter. • Using data from literature, E{sub g} is shown to be two parameter function. • Theoretical structure calculations are used to verify results.

  13. FY 1999 report on the results of the development of technology of super metal. Development of nano/amorphous structure control materials; 1999 nendo super metal no gijutsu kaihatsu seika hokokusho. Nano amorphous kozo seigyo gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    For the purpose of reducing the amount of energy consumption of transportation equipment such as automobiles, the development is made of innovative metal materials enabling the weight reduction of members relatively on the basis of simple chemical components and by making more substantial improvement of characteristics such as strength and toughness than in the existing metals. For it, the following R and D are conducted in which nano crystal structure and non-equilibrium phase structure such as amorphous are controlled to the limits: 1) particle micro-dispersion technology; 2) high speed super plastic formation technology; 3) high density energy utilization control technology; 4) control cooling technology. In 1), study was made of alloy components and effects of the creation process which are needed for achievement of the nano level of crystal grain. In 2), conditions of vapor deposition and production in high speed particle deposition method are optimally selected, and amorphous and nano crystal structures can easily be produced. In 3), high corrosion-resistant amorphous alloy bulk materials with 5mm thickness and 10mm diameter were successfully trially manufactured. In 4), a bulk amorphous specimen with 10mm outer diameter, 6mm inner diameter and 1mm thickness which was fabricated in the forging method indicated favorable magnetic properties. A method to make a specimen which is more stable is being studied. (NEDO)

  14. Enhanced ductility of surface nano-crystallized materials by modulating grain size gradient

    International Nuclear Information System (INIS)

    Li, Jianjun; Soh, A K

    2012-01-01

    Surface nano-crystallized (SNC) materials with a graded grain size distribution on their surfaces have been attracting increasing scientific interest over the past few decades due to their good synergy of high strength and high ductility. However, to date most of the existing studies have focused on the individual contribution of three different aspects, i.e. grain size gradient (GSG), work-hardened region and surface compressive residual stresses, which were induced by surface severe plastic deformation processes, to the improved strength of SNC materials as compared with that of their coarse grained (CG) counterparts. And the ductility of these materials has hardly been studied. In this study, a combination of theoretical analysis and finite element simulations was used to investigate the role of GSG in tuning the ductility of SNC materials. It was found that the ductility of an SNC material can be comparable to that of its CG counterpart, while it simultaneously possessed a much higher strength than its CG core if the optimal GSG thickness and grain size of the topmost phase were adopted. A design map that can be used as a guideline for fabrication of SNC materials was also plotted. Our predictions were also compared with the corresponding experimental results. (paper)

  15. Optical properties study of nano-composite filled D shape photonic crystal fibre

    Science.gov (United States)

    Udaiyakumar, R.; Mohamed Junaid, K. A.; Janani, T.; Maheswar, R.; Yupapin, P.; Amiri, I. S.

    2018-06-01

    With the nano-composite materials gaining momentum in the optical field, a new nano-composite filled D shape Photonic Crystal Fiber (PCF) is designed and the various optical properties are investigated with help of Finite Element Method. In the proposed structure the D-shape PCF is made up of silica with embedded silver nanoparticles and air holes are distributed along the fibre. The designed fibre shows various optical properties such as dispersion, birefringence, beat length and loss with respect to wavelength and compared with different filling factor like 0.1, 0.3 and 0.5. From our estimation and comparative analysis, it has been proved that the fibre loss has been decreased with increasing filling factor. Further this also showed flat dispersion at maximum filling factor.

  16. Simple down conversion nano-crystal coatings for enhancing Silicon-solar cells efficiency

    Directory of Open Access Journals (Sweden)

    Gur Mittelman

    2016-09-01

    Full Text Available Utilizing self-assembled nano-structured coatings on top of existing solar cells has thepotential to increase the total quantum efficiency of the cell using a simple and cheap process. In ourwork we have exploited the controlled absorption of nano-crystal with different band gaps to realizedown conversion artificial antennas that self-assembled on the device surface. The UV sun light isconverted to the visible light enhancing the solar cell performance in two complementary routes; a.protecting the solar cell and coatings from the UV illumination and therefore reducing the UVradiation damage. b. enhancing the total external quantum efficiency of the cell by one percent. Thisis achieved using a simple cheap process that can be adjusted to many different solar cells.

  17. Thermal formation of mesoporous single-crystal Co3O4 nano-needles and their lithium storage properties

    KAUST Repository

    Lou, Xiong Wen; Deng, Da; Lee, Jim Yang; Archer, Lynden A.

    2008-01-01

    In this work, we report the simple solid-state formation of mesoporous Co3O4 nano-needles with a 3D single-crystalline framework. The synthesis is based on controlled thermal oxidative decomposition and re-crystallization of precursor β-Co(OH)2 nano-needles. Importantly, after thermal treatment, the needle-like morphology can be completely preserved, despite the fact that there is a large volume contraction accompanying the process: β-Co(OH)2 → Co3O 4. Because of the intrinsic crystal contraction, a highly mesoporous structure with high specific surface area has been simultaneously created. The textual properties can be easily tailored by varying the annealing temperature between 200-400 °C. Interestingly, thermal re-crystallization at higher temperatures leads to the formation of a perfect 3D single-crystalline framework. Thus derived mesoporous Co3O4 nano-needles serve as a good model system for the study of lithium storage properties. The optimized sample manifests very low initial irreversible loss (21%), ultrahigh capacity, and excellent cycling performance. For example, a reversible capacity of 1079 mA h g-1 can be maintained after 50 cycles. The superior electrochemical performance and ease of synthesis may suggest their practical use in lithium-ion batteries. © The Royal Society of Chemistry 2008.

  18. Nano-cracks in a synthetic graphite composite for nuclear applications

    Science.gov (United States)

    Liu, Dong; Cherns, David

    2018-05-01

    Mrozowski nano-cracks in nuclear graphite were studied by transmission electron microscopy and selected area diffraction. The material consisted of single crystal platelets typically 1-2 nm thick and stacked with large relative rotations around the c-axis; individual platelets had both hexagonal and cubic stacking order. The lattice spacing of the (0002) planes was about 3% larger at the platelet boundaries which were the source of a high fraction of the nano-cracks. Tilting experiments demonstrated that these cracks were empty, and not, as often suggested, filled by amorphous material. In addition to conventional Mrozowski cracks, a new type of nano-crack is reported, which originates from the termination of a graphite platelet due to crystallographic requirements. Both types are crucial to understanding the evolution of macro-scale graphite properties with neutron irradiation.

  19. Crystallization behavior and mechanical properties of nano-CaCO3/β-nucleated ethylene-propylene random copolymer composites

    Directory of Open Access Journals (Sweden)

    W. H. Ruan

    2012-09-01

    Full Text Available To provide ethylene-propylene random copolymer (PPR with balanced mechanical properties, β-nucleating agent and CaCO3 nanoparticles are incorporated into PPR matrix by melt blending. It is found that crystallization rate and relative content of β-crystal increase with the addition of β-nucleating agent together with nanoparticles. Size of PPR spherulite is greatly reduced, and a specific morphology appears, in which α-crystal lamella is grown upon the β-nucleus. The results suggest that both β-nucleating agent and nano-CaCO3 have heterogeneous nucleation and synergistic effects on β-nucleation of PPR. Mechanical characterization shows that mechanical properties of PPR can be tuned by incorporation of β-nucleating agent and nano-CaCO3 particles. Under suitable compositions, low temperature impact strength and high temperature creep resistance of PPR, the bottlenecks of application of such material, can be simultaneously improved without sacrificing the Youngs’modulus and tensile strength.

  20. Spin-dependent hot electron transport and nano-scale magnetic imaging of metal/Si structures

    International Nuclear Information System (INIS)

    Kaidatzis, A.

    2008-10-01

    In this work, we experimentally study spin-dependent hot electron transport through metallic multilayers (ML), containing single magnetic layers or 'spin-valve' (SV) tri layers. For this purpose, we have set up a ballistic electron emission microscope (BEEM), a three terminal extension of scanning tunnelling microscopy on metal/semiconductor structures. The implementation of the BEEM requirements into the sample fabrication is described in detail. Using BEEM, the hot electron transmission through the ML's was systematically measured in the energy range 1-2 eV above the Fermi level. By varying the magnetic layer thickness, the spin-dependent hot electron attenuation lengths were deduced. For the materials studied (Co and NiFe), they were compared to calculations and other determinations in the literature. For sub-monolayer thickness, a non uniform morphology was observed, with large transmission variations over sub-nano-metric distances. This effect is not yet fully understood. In the imaging mode, the magnetic configurations of SV's were studied under field, focusing on 360 degrees domain walls in Co layers. The effects of the applied field intensity and direction on the DW structure were studied. The results were compared quantitatively to micro-magnetic calculations, with an excellent agreement. From this, it can be shown that the BEEM magnetic resolution is better than 50 nm. (author)

  1. Controlling morphology and crystallite size of Cu(In{sub 0.7}Ga{sub 0.3})Se{sub 2} nano-crystals synthesized using a heating-up method

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Wei-Hsiang [Department of Resources Engineering, Particulate Materials Research Center, National Cheng Kung University, Tainan, 70101 Taiwan (China); Hsiang, Hsing-I, E-mail: hsingi@mail.ncku.edu.tw [Department of Resources Engineering, Particulate Materials Research Center, National Cheng Kung University, Tainan, 70101 Taiwan (China); Chia, Chih-Ta [Department of Physics, National Taiwan Normal University, Taipei, 116 Taiwan (China); Yen, Fu-Su [Department of Resources Engineering, Particulate Materials Research Center, National Cheng Kung University, Tainan, 70101 Taiwan (China)

    2013-12-15

    CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2}(CIGS) nano-crystals were successfully synthesized via a heating-up process. The non-coordinating solvent (1-octadecene) and selenium/cations ratio effects on the crystalline phase and crystallite size of CIGS nano-crystallites were investigated. It was observed that the CIGS nano-crystallite morphology changed from sheet into spherical shape as the amount of 1-octadecene addition was increased. CIGS nano-crystals were obtained in 9–20 nm sizes as the selenium/cations ratio increased. These results suggest that the monomer reactivity in the solution can be adjusted by changing the solvent type and selenium/cations ratio, hence affecting the crystallite size and distribution. - Graphical abstract: CuIn{sub 0.7}Ga{sub 0.3}Se{sub 2}(CIGS) nano-crystals were successfully synthesized via a heating-up process in this study. The super-saturation in the solution can be adjusted by changing the OLA/ODE ratio and selenium/cation ratio.

  2. Ion beam assisted synthesis of nano-crystals in glasses (silver and lead chalcogenides); Synthese assistee par faisceau d'ions d'agregats dans les verres (argent et chalcogenures de plomb)

    Energy Technology Data Exchange (ETDEWEB)

    Espiau de Lamaestre, R

    2005-04-15

    This work deals with the interest in ion beams for controlling nano-crystals synthesis in glasses. We show two different ways to reach this aim, insisting on importance of redox phenomena induced by the penetration and implantation of ions in glasses. We first show that we can use the great energy density deposited by the ions to tailor reducing conditions, favorable to metallic nano-crystal precipitation. In particular, we show that microscopic mechanism of radiation induced silver precipitation in glasses are analogous to the ones of classical photography. Ion beams can also be used to overcome supersaturation of elements in a given matrix. In this work, we synthesized lead chalcogenide nano-crystals (PbS, PbSe, PbTe) whose optical properties are interesting for telecommunication applications. We demonstrate the influence of complex chalcogenide chemistry in oxide glasses, and its relationship with the observed loss of growth control when nano-crystals are synthesized by sequential implantation of Pb and S in pure silica. As a consequence of this understanding, we demonstrate a novel and controlled synthesis of PbS nano-crystals, consisting in implanting sulfur into a Pb-containing glass, before annealing. Choice of glass composition provides a better control of precipitation physico-chemistry, whereas the use of implantation allows high nano-crystal volume fractions to be reached. Our study of IR emission properties of these nano-crystals shows a very high excitation cross section, and evidence for a 'dark exciton' emitting level. (author)

  3. Anomalous passage of ultrarelativistic electrons in thick single crystals in axial channeling

    International Nuclear Information System (INIS)

    Khokonov, M.K.; Telegin, V.I.

    1983-01-01

    The dynamics of ultrarelativistic axially channeled electrons in thick crystals is studied. It is revealed that a certain fraction of initial electrons have anomalously large dechanneling depths. It is shown also that the dechanneling depth in heavy and light crystals are comparable. In some cases, the number of channeled electrons can strongly increase at the expense of quasi-channeled electrons. The problem of quasichanneling is also considered. (author)

  4. Anomalous passage of ultrarelativistic electrons in thick single crystals in axial channeling

    Energy Technology Data Exchange (ETDEWEB)

    Khokonov, M.K. (Moskovskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Yadernoj Fiziki); Telegin, V.I. (Gosudarstvennyj Komitet po Ispol' zovaniyu Atomnoj Ehnergii SSSR, Moscow. Inst. Atomnoj Ehnergii)

    1983-07-01

    The dynamics of ultrarelativistic axially channeled electrons in thick crystals is studied. It is revealed that a certain fraction of initial electrons have anomalously large dechanneling depths. It is shown also that the dechanneling depth in heavy and light crystals are comparable. In some cases, the number of channeled electrons can strongly increase at the expense of quasi-channeled electrons. The problem of quasi-channeling is also considered.

  5. Investigation on structural aspects of ZnO nano-crystal using radio-active ion beam and PAC

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Bichitra Nandi, E-mail: bichitra.ganguly@saha.ac.in [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Dutta, Sreetama; Roy, Soma [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Röder, Jens [Physics Department, ISOLDE/CERN, Geneva (Switzerland); Physical Chemistry, RWTH-Aachen, Aachen (Germany); Johnston, Karl [Physics Department, ISOLDE/CERN, Geneva (Switzerland); Experimental Physics, University of the Saarland, Saarbrücken (Germany); Martin, Manfred [Physical Chemistry, RWTH-Aachen, Aachen (Germany)

    2015-11-01

    Nano-crystalline ZnO has been studied with perturbed angular correlation using {sup 111m}Cd, implanted at ISOLDE/CERN and X-ray diffraction using Rietveld analysis. The data show a gradual increase in the crystal size and stress for a sample annealed at 600 °C, and reaching nearly properties of standard ZnO with tempering at 1000 °C. The perturbed angular correlation data show a broad frequency distribution at low annealing temperatures and small particle sizes, whereas at high annealing temperature and larger crystal sizes, results similar to bulk ZnO have been obtained. The ZnO nano-crystalline samples were initially prepared through a wet chemical route, have been examined by Fourier Transform Infrared Spectroscopy (FT-IR) and chemical purity has been confirmed with Energy Dispersive X-ray (EDAX) analysis as well as Transmission Electron Microscopy (TEM).

  6. Rate constants and mechanisms for the crystallization of Al nano-goethite under environmentally relevant conditions

    Science.gov (United States)

    Bazilevskaya, Ekaterina; Archibald, Douglas D.; Martínez, Carmen Enid

    2012-07-01

    Mobile inorganic and organic nanocolloidal particles originate-from and interact-with bulk solid phases in soil and sediment environments, and as such, they contribute to the dynamic properties of environmental systems. In particular, ferrihydrite and (nano)goethite are the most abundant of nanocolloidal Fe oxy(hydr)oxides in these environments. We therefore investigated the ferrihydrite to goethite phase transformation using experimental reaction conditions that mimicked environmental conditions where the formation of nanocolloidal Fe oxy(hydr)oxides may occur: slow titration of dilute solutions to pH 5 at 25 °C with and without 2 mol% Al. Subsequently, the rate constants from 54-d nano-goethite aging/crystallization experiments at 50 °C were determined using aliquots pulled for vibrational spectroscopy (including multivariate curve resolution, MCR, analyses of infrared spectra) and synchrotron-based X-ray diffraction (XRD). We also present a mechanistic model that accounts for the nano-goethite crystallization observed by the aforementioned techniques, and particle structural characteristics observed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). In contrast to the common assumption that metastable ferrihydrite precipitates first, before it transforms to goethite, the presence of characteristic infrared bands in freshly synthesized nanoparticle suspensions indicate goethite can precipitate directly from solution under environmentally relevant conditions: low Fe concentration, ambient temperature, and pH maintained at 5. However, the presence of 2 mol% Al prevented direct goethite precipitation. Rate constants obtained by fitting the contributions from the MCR-derived goethite-like component to the OH-stretching region were (7.4 ± 1.1) × 10-7 s-1 for 0% Al and (4.2 ± 0.4) × 10-7 s-1 for 2 mol% Al suspensions. Rate constants derived from intensities of OH-bending infrared vibrations (795 and 895 cm-1) showed similar values

  7. Effects of nano-structured photonic crystals on light extraction enhancement of nitride light-emitting diodes

    International Nuclear Information System (INIS)

    Wu, G.M.; Yen, C.C.; Chien, H.W.; Lu, H.C.; Chang, T.W.; Nee, T.E.

    2011-01-01

    The light extraction efficiency of an InGaN/GaN light-emitting diode (LED) can be enhanced by incorporating nano-structured photonic crystals inside the LED structure. We employed plane wave expansion (PWE) method and finite difference time domain (FDTD) method to reveal the optical confinement effects with the relevant parameters. The results showed that band-gap modulation could increase the efficiency for light extraction at the lattice constant of 200 nm and depth of 200 nm for the 468-nm LED. Focused ion beam (FIB) using Ga created the desired nano-structured patterns. The LED device micro-PL (photoluminescence) results have demonstrated that the triangular photonic crystal arrays could increase the peak illumination intensity by 58%. The peak wavelength remained unchanged. The integrated area under the illumination peak was increased by 75%. As the patterned area ratio was increased to 85%, the peak intensity enhancement was further improved to 91%, and the integrated area was achieved at 106%.

  8. Influence of Parameters of a Printing Plate on Photoluminescence of Nano photonic Printed Elements of Novel Packaging

    International Nuclear Information System (INIS)

    Sarapulova, O.; Sherstiuk, V.

    2015-01-01

    In order to produce nano photonic elements for smart packaging, we investigated the influence of the parameters of screen and offset gravure printing plates on features of printed application of coatings with nano photonic components and on parameters of their photoluminescence. To determine the dependence of luminescence intensity on the thickness of solid coating, we carried out the formation of nano photonic solid surfaces by means of screen printing with different layer thickness on polypropylene film. The obtained analytical dependencies were used to confirm the explanation of the processes that occur during the fabrication of nano photonic coverings with offset gravure printing plates. As a result of experimental studies, it was determined that the different character of the dependency of total luminescence intensity of nano photonic elements from the percentage of a pad is explained by the use of different types of offset gravure printing plates, where the size of raster points remains constant in one case and changes in the other case, while the depth of the printing elements accordingly changes or remains constant. To obtain nano photonic areas with predetermined photo luminescent properties, the influence of investigated factors on changes of photo luminescent properties of nano photonic printed surfaces should be taken into consideration

  9. Purification and crystallization of Bacillus subtilis NrnA, a novel enzyme involved in nanoRNA degradation

    Energy Technology Data Exchange (ETDEWEB)

    Nelersa, Claudiu M.; Schmier, Brad J.; Malhotra, Arun (Miami-MED)

    2012-05-08

    The final step in RNA degradation is the hydrolysis of RNA fragments five nucleotides or less in length (nanoRNA) to mononucleotides. In Escherichia coli this step is carried out by oligoribonuclease (Orn), a DEDD-family exoribonuclease that is conserved throughout eukaryotes. However, many bacteria lack Orn homologs, and an unrelated DHH-family phosphoesterase, NrnA, has recently been identified as one of the enzymes responsible for nanoRNA degradation in Bacillus subtilis. To understand its mechanism of action, B. subtilis NrnA was purified and crystallized at room temperature using the hanging-drop vapor-diffusion method with PEG 4000, PEG 3350 or PEG MME 2000 as precipitant. The crystals belonged to the primitive monoclinic space group P2{sub 1}, with unit-cell parameters a = 50.62, b = 121.3, c = 123.4 {angstrom}, {alpha} = 90, {beta} = 91.31, {gamma} = 90{sup o}.

  10. Electrical Crystallization Mechanism and Interface Characteristics of Nano wire Zn O/Al Structures Fabricated by the Solution Method

    International Nuclear Information System (INIS)

    Tseng, Y.W.; Hung, F.Y.; Lui, T.Sh.; Chen, Y.T.; Xiao, R.S.; Chen, K.J.

    2012-01-01

    Both solution nano wire Zn O and sputtered Al thin film on SiO 2 as the wire-film structure and the Al film were a conductive channel for electrical-induced crystallization (EIC). Direct current (DC) raised the temperature of the Al film and improved the crystallization of the nano structure. The effects of EIC not only induced Al atomic interface diffusion, but also doped Al on the roots of Zn O wires to form aluminum doped zinc oxide (AZO)/Zn O wires. The Al doping concentration and the distance of the Zn O wire increased with increasing the electrical duration. Also, the electrical current-induced temperature was ∼211 degree C (solid-state doped process) and so could be applied to low-temperature optoelectronic devices.

  11. Lead sulfide nano crystal preparation and characterization

    International Nuclear Information System (INIS)

    Sasani Ghamsari, M.

    1999-01-01

    Nanometer sized semiconductor particles have attracted much attention duo to their novel electronic and optical optical proportion, originating from quantum confinement. Pb S is one of the most important semiconductor material. In this project Pb S semiconductor nano crystal is synthesized in order to decrease particle size and study the modifications of their optical properties in relation to their size. The synthesis is carried out by using the technique of colloid chemistry. In this method we use lead nitrate extra pure and H2 S gas which is solved in the water. EDTA is used for controlling of particle size. A fast evolution of the optical absorption spectrum will be noticed following synthesis. Immediately after the synthesis reaction. The sample, exhibit a structured absorption spectrum with well defined excitonic peak in 240 nm theoretical relations is that shown this peak belong to 5 A particles. X-ray diffraction is used to establish the identity, phase and the size of these clusters

  12. Neutron production with a pyroelectric double-crystal assembly without nano-tip

    International Nuclear Information System (INIS)

    Tornow, W.; Corse, W.; Crimi, S.; Fox, J.

    2010-01-01

    Two cylindrical LiTaO 3 crystals facing each other's deuterated circular face were exposed to deuterium gas at an ambient pressure of a few mTorr. With a distance of about 4 cm between the z + and z - cut crystal faces, neutrons were produced via the 2 H(d,n) 3 He fusion reaction upon the heating and cooling of the crystals. The 2.5 MeV neutrons were detected with organic liquid scintillation detectors equipped with neutron-gamma pulse-shape discrimination electronics to reject pulses generated by the intense X-ray flux. During the cooling phase of naked crystals, deuterium ion-beam (D 2 + ) energies of up to 400 keV were obtained as deduced from the associated electron bremsstrahlung end-point energy. The highest electron-beam energy observed during the heating phase was 360 keV. With a layer of deuterated polyethylene evaporated on the front face of the crystals, the maximal energies were about 10% lower. In contrast to earlier studies, an electric-field enhancing nano-tip was not employed. Neutron yields up to 500 per thermal cycle were observed, resulting in a total neutron production yield of about 1.6x10 4 neutrons per thermal cycle. Our approach has the potential of being substantially improved by reducing the frequency of the discharges we are currently experiencing with our geometry, which was not designed for the unprecedented high potentials produced in the presentwork.

  13. Fabrication of high-aspect-ratio nano structures using a nano x-ray shadow mask

    International Nuclear Information System (INIS)

    Kim, Yong Chul; Lee, Seung S

    2008-01-01

    This paper describes a novel method for the fabrication of high-aspect-ratio nano structures (HAR-nano structures) using a nano x-ray shadow mask and deep x-ray lithography (DXRL). The nano x-ray shadow mask is fabricated by depositing an x-ray absorber layer (Au, 3 µm) onto the back side of a nano shadow mask. The nano shadow mask is produced with nano-sized apertures whose dimensions are reduced to several tens of nanometers by the accumulation of low-stress silicon nitride (Si x N y ) using the LPCVD process on the shadow mask. A shadow mask containing apertures with a size of 1 µm is fabricated on a bulk micromachined Si x N y membrane. The thickness of an absorber layer must be in the range of several tens of micrometers in order to obtain a contrast of more than 100 for the conventional DXRL process at the Pohang Light Source (PLS). However, a 3 µm thick absorber layer can provide a sufficient contrast if the modified DXRL of the central beam-stop method is used, which blocks high-energy x-rays. A nano shadow mask with 30 nm sized apertures is fabricated and a nano x-ray shadow mask with 250 nm sized apertures is fabricated by depositing a 3 µm thick absorber layer on a nano shadow mask with 500 nm sized apertures. HAR-nano structures (circles with a diameter of 420 nm and lines with a width of 274 nm) with aspect ratios of over 10:1 on a 3.2 µm SU-8 are successfully fabricated by using the nano x-ray shadow mask and the central beam-stop method

  14. Study of Gel Growth Cobalt (II Oxalate Crystals as Precursor of Co3O4 Nano Particles

    Directory of Open Access Journals (Sweden)

    Yuniar Ponco Prananto

    2013-03-01

    Full Text Available Crystal growth of cobalt (II oxalate in silica gel at room temperature as precursor of Co3O4 nano particles has been studied. Specifically, this project is focusing on the use of two different reaction tube types toward crystallization of cobalt (II oxalate in gel. The gel was prepared at pH 5 by reacting sodium metasilicate solution with dilute nitric acid (for U-tube and oxalic acid (for straight tube, with gelling time of 4 days and crystal growth time of 8 (for straight tube and 12 (for U-tube weeks. Result shows that pink crystalline powder was directly formed using straight tube method. The use of different solvents in straight tube method affects crystallization and could delay direct precipitation of the product. In contrast, bigger and better shape of red block crystal was yielded from U-tube method; however, longer growth time was needed. FTIR studies suggest that both growth method produces identical compound of hydrated cobalt (II oxalate. © 2013 BCREC UNDIP. All rights reservedReceived: 25th October 2012; Revised: 30th November 2012; Accepted: 5th December 2012[How to Cite: Y.P. Prananto, M.M. Khunur, D.T. Wahyuni, R.A. Shobirin, Y.R. Nata, E. Riskah, (2013. Study of Gel Growth Cobalt (II Oxalate Crystals as Precursor of Co3O4 Nano Particles. Bulletin of Chemical Reaction Engineering & Catalysis, 7 (3: 198-204. (doi:10.9767/bcrec.7.3.4066.198-204][Permalink/DOI: http://dx.doi.org/10.9767/bcrec.7.3.4066.198-204 ] View in  |

  15. Study on Crystallographic Orientation Effect on Surface Generation of Aluminum in Nano-cutting.

    Science.gov (United States)

    Xu, Feifei; Fang, Fengzhou; Zhu, Yuanqing; Zhang, Xiaodong

    2017-12-01

    The material characteristics such as size effect are one of the most important factors that could not be neglected in cutting the material at nanoscale. The effects of anisotropic nature of single crystal materials in nano-cutting are investigated employing the molecular dynamics simulation. Results show that the size effect of the plastic deformation is based on different plastic carriers, such as the twin, stacking faults, and dislocations. The minimum uncut chip thickness is dependent on cutting direction, where even a negative value is obtained when the cutting direction is {110}. It also determines the material deformation and removal mechanism (e.g., shearing, extruding, and rubbing mechanism) with a decrease in uncut chip thickness. When material is deformed by shearing, the primary shearing zone expands from the stagnation point or the tip of stagnation zone. When a material is deformed by extruding and rubbing, the primary deformation zone almost parallels to the cutting direction and expands from the bottom of the cutting edge merging with the tertiary deformation zone. The generated surface quality relates to the crystallographic orientation and the minimum uncut chip thickness. The cutting directions of {110}, {110}, and {111}, whose minimum uncut chip thickness is relatively small, have better surface qualities compared to the other cutting direction.

  16. Seismic slip on clay nano-foliation

    Science.gov (United States)

    Aretusini, S.; Pluemper, O.; Passelègue, F. X.; Spagnuolo, E.; Di Toro, G.

    2017-12-01

    Deformation processes active at seismic slip rates (ca. 1 m/s) on smectite-rich slipping zones are not well understood, although they likely control the mechanical behaviour of: i) subduction zone faults affected by tsunamigenic earthquakes (e.g. Japan Trench affected by Tohoku-Oki 2011 earthquake), ii) plate-boundary faults (e.g. San Andreas Fault), and iii) landslide decollements (e.g. 1963 Vajont landslide). Here we present a set of rotary experiments performed on water-dampened 2 mm thick clay-rich (70% wt. smectite and 30% wt. opal) gouge layers sheared at slip rates V ranging from 0.01 to 1.3 m/s, for 3 m of displacement under 5 MPa normal stress. Microstructural analyses were conducted on pre- and post-sheared gouges using focused ion beam scanning electron and transmission electron microscopy. All sheared gouges were slip weakening in the first 0.1 m of displacement, with friction coefficient decreasing from 0.3-0.45 to 0.5-0.15. Then, with progressive slip, gouges evolved to slip-strengthening (final friction coefficient of 0.35-0.48) at V ≤0.1 m/s and slip-neutral (final friction of 0.05) at V=1.3 m/s. Despite the large difference in the imposed slip rate and frictional behaviour, the slipping zone always consisted of a nano-foliation defined by sub-micrometric smectite crystals wrapping opal grains. The nano-foliated layer thickness decreased from 1.5 mm at V≤0.1 m/s to 0.15 mm at V=1.3 m/s. The presence of a similar nano-foliation in all the smectite-rich wet gouges suggests the activation of similar deformation processes, dominated by frictional slip on grain boundary and basal planes. The variation of deformed thickness with slip rate shows that dynamic weakening, occurring only at seismic slip rates, is controlled by strain localization.

  17. Motion of channeling particles in a bent crystal

    International Nuclear Information System (INIS)

    Avakian, A.R.; Harutyunian, A.S.; Hovanessian, A.G.; Shahinian, S.M.; Yang, C.

    1990-01-01

    The motion of high-energy charged particles in a bent crystal is investigated in the approximation of the model of continuous potential of crystallographic planes and with account of incoherent scattering on the atoms of media. Angular distribution of charged particle beams is investigated at the exit of the bent region of the crystal in dependence with the maximum deflection angle and energy of particles. The dependence of the fraction of channeling particles on crystal thickness, crystal curvature and particle energy is found in a simple model approximation. The influence of crystal curvature on incoherent scattering of particles in the crystal is analyzed. The concept of an optimal thickness for the maximum number of particles deflected at a given angle is considered. 8 refs.; 8 figs

  18. Time-dependent deformation of polymer network in polymer-stabilized cholesteric liquid crystals (Conference Presentation)

    Science.gov (United States)

    Lee, Kyung Min; Tondiglia, Vincent P.; Bunning, Timothy J.; White, Timothy J.

    2017-02-01

    Recently, we reported direct current (DC) field controllable electro-optic (EO) responses of negative dielectric anisotropy polymer stabilized cholesteric liquid crystals (PSCLCs). A potential mechanism is: Ions in the liquid crystal mixtures are trapped in/on the polymer network during the fast photopolymerization process, and the movement of ions by the application of the DC field distorts polymer network toward the negative electrode, inducing pitch variation through the cell thickness, i.e., pitch compression on the negative electrode side and pitch expansion on positive electrode side. As the DC voltage is directly applied to a target voltage, charged polymer network is deformed and the reflection band is tuned. Interestingly, the polymer network deforms further (red shift of reflection band) with time when constantly applied DC voltage, illustrating DC field induced time dependent deformation of polymer network (creep-like behavior). This time dependent reflection band changes in PSCLCs are investigated by varying the several factors, such as type and concentration of photoinitiators, liquid crystal monomer content, and curing condition (UV intensity and curing time). In addition, simple linear viscoelastic spring-dashpot models, such as 2-parameter Kelvin and 3-parameter linear models, are used to investigate the time-dependent viscoelastic behaviors of polymer networks in PSCLC.

  19. High quality single crystal Ge nano-membranes for opto-electronic integrated circuitry

    Energy Technology Data Exchange (ETDEWEB)

    Shah, V. A., E-mail: vishal.shah@warwick.ac.uk; Gammon, P. M. [Department of Engineering, The University of Warwick, Coventry CV4 7AL (United Kingdom); Department of Physics, The University of Warwick, Coventry CV4 7AL (United Kingdom); Rhead, S. D.; Halpin, J. E.; Trushkevych, O.; Wilson, N. R.; Myronov, M.; Edwards, R. S.; Patchett, D. H.; Allred, P. S.; Prest, M. J.; Whall, T. E.; Parker, E. H. C.; Leadley, D. R. [Department of Physics, The University of Warwick, Coventry CV4 7AL (United Kingdom); Chávez-Ángel, E. [ICN2-Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain); Department of Physics, UAB, 08193 Bellaterra (Barcelona) (Spain); Shchepetov, A.; Prunnila, M. [VTT Technical Research Centre of Finland, P.O. Box 1000, FI-02044 VTT, Espoo (Finland); Kachkanov, V.; Dolbnya, I. P. [Diamond Light Source, Harwell Science and Innovation Campus, Didcot, Oxfordshire OX11 0DE (United Kingdom); Reparaz, J. S. [ICN2-Institut Catala de Nanociencia i Nanotecnologia, Campus UAB, 08193 Bellaterra (Barcelona) (Spain); and others

    2014-04-14

    A thin, flat, and single crystal germanium membrane would be an ideal platform on which to mount sensors or integrate photonic and electronic devices, using standard silicon processing technology. We present a fabrication technique compatible with integrated-circuit wafer scale processing to produce membranes of thickness between 60 nm and 800 nm, with large areas of up to 3.5 mm{sup 2}. We show how the optical properties change with thickness, including appearance of Fabry-Pérot type interference in thin membranes. The membranes have low Q-factors, which allow the platforms to counteract distortion during agitation and movement. Finally, we report on the physical characteristics showing sub-nm roughness and a homogenous strain profile throughout the freestanding layer, making the single crystal Ge membrane an excellent platform for further epitaxial growth or deposition of materials.

  20. High quality single crystal Ge nano-membranes for opto-electronic integrated circuitry

    International Nuclear Information System (INIS)

    Shah, V. A.; Gammon, P. M.; Rhead, S. D.; Halpin, J. E.; Trushkevych, O.; Wilson, N. R.; Myronov, M.; Edwards, R. S.; Patchett, D. H.; Allred, P. S.; Prest, M. J.; Whall, T. E.; Parker, E. H. C.; Leadley, D. R.; Chávez-Ángel, E.; Shchepetov, A.; Prunnila, M.; Kachkanov, V.; Dolbnya, I. P.; Reparaz, J. S.

    2014-01-01

    A thin, flat, and single crystal germanium membrane would be an ideal platform on which to mount sensors or integrate photonic and electronic devices, using standard silicon processing technology. We present a fabrication technique compatible with integrated-circuit wafer scale processing to produce membranes of thickness between 60 nm and 800 nm, with large areas of up to 3.5 mm 2 . We show how the optical properties change with thickness, including appearance of Fabry-Pérot type interference in thin membranes. The membranes have low Q-factors, which allow the platforms to counteract distortion during agitation and movement. Finally, we report on the physical characteristics showing sub-nm roughness and a homogenous strain profile throughout the freestanding layer, making the single crystal Ge membrane an excellent platform for further epitaxial growth or deposition of materials

  1. Thickness dependence of dynamic and static magnetic properties of pulsed laser deposited La{sub 0.7}Sr{sub 0.3}MnO{sub 3} films on SrTiO{sub 3}(001)

    Energy Technology Data Exchange (ETDEWEB)

    Monsen, Åsmund [Department of Physics, NTNU, 7491 Trondheim (Norway); Boschker, Jos E. [Department of Electronics and Telecommunications, NTNU, 7491 Trondheim (Norway); Macià, Ferran [Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Wells, Justin W. [Department of Physics, NTNU, 7491 Trondheim (Norway); Nordblad, Per [Department of Engineering Sciences, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Kent, Andrew D. [Department of Physics, New York University, 4 Washington Place, New York, NY 10003 (United States); Mathieu, Roland [Department of Engineering Sciences, Uppsala University, Box 534, SE-751 21 Uppsala (Sweden); Tybell, Thomas [Department of Electronics and Telecommunications, NTNU, 7491 Trondheim (Norway); Wahlström, Erik, E-mail: erik.wahlstrom@ntnu.no [Department of Physics, NTNU, 7491 Trondheim (Norway)

    2014-11-15

    We present a comprehensive study of the thickness dependence of static and magneto-dynamic magnetic properties of La{sub 0.7}Sr{sub 0.3}MnO{sub 3}. Epitaxial pulsed laser deposited La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3}(001) thin films in the range from 3 unit cell (uc) to 40 uc (1.2–16 nm) have been investigated through ferromagnetic resonance (FMR) spectroscopy and SQUID magnetometry at variable temperature. Magnetodynamically, three different thickness, d, regimes are identified: 20 uc ≲d uc where the system is bulk like, a transition region 8 uc ≤d≲20 uc where the FMR linewidth and the position depend on thickness and d=6 uc which displays significantly altered magnetodynamic properties, while still displaying bulk magnetization. Magnetization and FMR measurements are consistent with a nonmagnetic volume corresponding to ∼4 uc. We observe a reduction of Curie temperature (T{sub C}) with decreasing thickness, which is coherent with a mean field model description. The reduced ordering temperature also accounts for the thickness dependence of the magnetic anisotropy constants and resonance fields. The damping of the system is strongly thickness dependent, and is for thin films dominated by thickness dependent anisotropies, yielding both a strong two-magnon scattering close to T{sub c} and a low temperature broadening. For the bulk like samples a large part of the broadening can be linked to spread in magnetic anisotropies attributed to crystal imperfections/domain boundaries of the bulk like film. - Highlights: • Thickness dependent magnetodynamic anisotropy constants and line-widths have been measured. • For thicknesses >8nm the films are bulk-like. • Thin film line-widths are dominated by surface/interface imperfections. • Thick film line-widths are dominated by crystal imperfections/domain boundaries.

  2. Fabrication of Photonic Crystal Structures on Flexible Organic Light-Emitting Diodes by Using Nano-Imprint and PDMS Mold

    Directory of Open Access Journals (Sweden)

    Ho Ting-Lin

    2016-01-01

    Full Text Available In this paper, nanoimprint lithography was used to create a photonic crystals structure film in organic light-emitting diode (OLED component, and then compare the efficiency of components whether with nanostructure or not. By using two different kinds of mold, such as silicon mold and PDMS mold, the nano structures in PMMA (molecular weight of 350K were fabricated. Nanostructures in period of 403.53nm with silicon mold and nano structures in period of 385.64nm with PDMS mold as photonic crystal films were fabricated and were integrated into OLED. In experimental results, the OLED without photonic crystal films (with packing behaves 193.3cd/m2 for luminous intensity, 3.481cd/A for lightening efficiency (ηL and 0.781 lm/W for lightening power (ηP where V is 14V and I is 5.5537mA; the OLED with photonic crystal films (with packing behaves 241.6cd/m2 for luminous intensity, 4.173cd/A for lightening efficiency (ηL and 0.936 lm/W for lightening power (ηP where voltage of 14V and current (I of 5.7891mA, which shows that the latter perform is well.

  3. Analysis about diamond tool wear in nano-metric cutting of single crystal silicon using molecular dynamics method

    Science.gov (United States)

    Wang, Zhiguo; Liang, Yingchun; Chen, Mingjun; Tong, Zhen; Chen, Jiaxuan

    2010-10-01

    Tool wear not only changes its geometry accuracy and integrity, but also decrease machining precision and surface integrity of workpiece that affect using performance and service life of workpiece in ultra-precision machining. Scholars made a lot of experimental researches and stimulant analyses, but there is a great difference on the wear mechanism, especially on the nano-scale wear mechanism. In this paper, the three-dimensional simulation model is built to simulate nano-metric cutting of a single crystal silicon with a non-rigid right-angle diamond tool with 0 rake angle and 0 clearance angle by the molecular dynamics (MD) simulation approach, which is used to investigate the diamond tool wear during the nano-metric cutting process. A Tersoff potential is employed for the interaction between carbon-carbon atoms, silicon-silicon atoms and carbon-silicon atoms. The tool gets the high alternating shear stress, the tool wear firstly presents at the cutting edge where intension is low. At the corner the tool is splitted along the {1 1 1} crystal plane, which forms the tipping. The wear at the flank face is the structure transformation of diamond that the diamond structure transforms into the sheet graphite structure. Owing to the tool wear the cutting force increases.

  4. Effect of film thickness on morphological evolution in dewetting and crystallization of polystyrene/poly(ε-caprolactone) blend films.

    Science.gov (United States)

    Ma, Meng; He, Zhoukun; Yang, Jinghui; Chen, Feng; Wang, Ke; Zhang, Qin; Deng, Hua; Fu, Qiang

    2011-11-01

    In this Article, the morphological evolution in the blend thin film of polystyrene (PS)/poly(ε-caprolactone) (PCL) was investigated via mainly AFM. It was found that an enriched two-layer structure with PS at the upper layer and PCL at the bottom layer was formed during spinning coating. By changing the solution concentration, different kinds of crystal morphologies, such as finger-like, dendritic, and spherulitic-like, could be obtained at the bottom PCL layer. These different initial states led to the morphological evolution processes to be quite different from each other, so the phase separation, dewetting, and crystalline morphology of PS/PCL blend films as a function of time were studied. It was interesting to find that the morphological evolution of PS at the upper layer was largely dependent on the film thickness. For the ultrathin (15 nm) blend film, a liquid-solid/liquid-liquid dewetting-wetting process was observed, forming ribbons that rupture into discrete circular PS islands on voronoi finger-like PCL crystal. For the thick (30 nm) blend film, the liquid-liquid dewetting of the upper PS layer from the underlying adsorbed PCL layer was found, forming interconnected rim structures that rupture into discrete circular PS islands embedded in the single lamellar PCL dendritic crystal due to Rayleigh instability. For the thicker (60 nm) blend film, a two-step liquid-liquid dewetting process with regular holes decorated with dendritic PCL crystal at early annealing stage and small holes decorated with spherulite-like PCL crystal among the early dewetting holes at later annealing stage was observed. The mechanism of this unusual morphological evolution process was discussed on the basis of the entropy effect and annealing-induced phase separation.

  5. Neutron production with a pyroelectric double-crystal assembly without nano-tip

    Energy Technology Data Exchange (ETDEWEB)

    Tornow, W., E-mail: tornow@tunl.duke.ed [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Corse, W. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States); Crimi, S. [Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458 (United States); Fox, J. [Department of Physics, Duke University and Triangle Universities Nuclear Laboratory, Durham, NC 27708-0308 (United States)

    2010-12-21

    Two cylindrical LiTaO{sub 3} crystals facing each other's deuterated circular face were exposed to deuterium gas at an ambient pressure of a few mTorr. With a distance of about 4 cm between the z{sup +} and z{sup -} cut crystal faces, neutrons were produced via the {sup 2}H(d,n){sup 3}He fusion reaction upon the heating and cooling of the crystals. The 2.5 MeV neutrons were detected with organic liquid scintillation detectors equipped with neutron-gamma pulse-shape discrimination electronics to reject pulses generated by the intense X-ray flux. During the cooling phase of naked crystals, deuterium ion-beam (D{sub 2}{sup +}) energies of up to 400 keV were obtained as deduced from the associated electron bremsstrahlung end-point energy. The highest electron-beam energy observed during the heating phase was 360 keV. With a layer of deuterated polyethylene evaporated on the front face of the crystals, the maximal energies were about 10% lower. In contrast to earlier studies, an electric-field enhancing nano-tip was not employed. Neutron yields up to 500 per thermal cycle were observed, resulting in a total neutron production yield of about 1.6x10{sup 4} neutrons per thermal cycle. Our approach has the potential of being substantially improved by reducing the frequency of the discharges we are currently experiencing with our geometry, which was not designed for the unprecedented high potentials produced in the presentwork.

  6. Preparation and characterization of functionalized cellulose nano crystals with methyl adipoyl chloride used to prepare chitosan grafting nano composite; Preparacao e caracterizacao de nanocristais de celulose funcionalizados com CMA utilizados na preparacao de nanocomposito de quitosana reticulado

    Energy Technology Data Exchange (ETDEWEB)

    Mesquita, Joao Paulo de; Teixeira, Ivo F; Donnici, Claudio L; Pereira, Fabiano V [Universidade Federal de Minas Gerais - UFMG, Belo Horizonte, MG (Brazil)

    2011-07-01

    Cellulose nano crystals (CNCs) were prepared from eucalyptus pulp and functionalized with methyl adipoyl chloride. The nano materials were characterized by different techniques including FTIR, 1H NMR and XRD which showed that the functionalization occurs only on the surface of the nano structures without change in crystalline structure of the nanoparticles. The new-functionalized CNCs were used as reinforcement in the preparation of a nano composite with chitosan, through the formation of a covalent bond between the nano filler and matrix. Preliminary results of mechanical tests indicate an improvement in tensile strength and increase in deformation of chitosan. (author)

  7. Thickness dependence of nanofilm elastic modulus

    Czech Academy of Sciences Publication Activity Database

    Fedorchenko, Alexander I.; Wang, A. B.; Cheng, H.H.

    2009-01-01

    Roč. 94, č. 15 (2009), s. 152111-152113 ISSN 0003-6951 Institutional research plan: CEZ:AV0Z20760514 Keywords : nanofilm * elastic modulus * thickness dependence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.554, year: 2009 http://link.aip.org/link/?APPLAB/94/152111/1

  8. AFM of metallic nano-particles and nano-structures in heavily irradiated NaCl

    OpenAIRE

    Gaynutdinov, R; Vainshtein, DI; Hak, SJ; Tolstikhina, A; Den Hartog, HW

    2003-01-01

    AFM investigations are reported for heavily, electron irradiated NaCl crystals in ultra high vacuum (UHV) in the non-contact mode-with an UHV AFM/STM Omicron system. To avoid chemical reactions between the radiolytic Na and oxygen and water, the irradiated samples were cleaved and prepared for the experiments in UHV At the surface of freshly cleaved samples, we have observed sodium nano-precipitates with shapes, which depend on the irradiation dose and the volume fraction of the radiolytic Na...

  9. Fabrication and analysis of single-crystal KTiOPO₄ films with thicknesses in the micrometer range.

    Science.gov (United States)

    Ma, Changdong; Lu, Fei; Xu, Bo; Fan, Ranran

    2016-02-01

    Single-crystal potassium titanyl phosphate (KTiOPO4, KTP) films with thicknesses less than 5 μm are obtained by using helium (He) implantation combined with ion-beam-enhanced etching. A heavily damaged layer created by a 4×10(16)  cm(-2) fluence of 2 MeV He implantation is removed by means of wet chemical etching in hydrofluoric acid (HF). Thus, free-standing films of KTP with thicknesses in the range of 3-5 μm are obtained. The etching rate can be adjusted over a wide range by choosing temperature and HF concentration, as well as annealing conditions. Sharp etching edges and the smooth surface of the film indicate that a high selective-etching rate is achieved in the damaged layer, and the remaining part of the crystal is undamaged. X-ray and Raman-scattering results prove that KTP films have good single-crystal properties.

  10. Development of a Quartz Crystal Microbalance Sensor Modified by Nano-Structured Polyaniline for Detecting the Plasticizer in Gaseous State

    Directory of Open Access Journals (Sweden)

    Hui XU

    2014-01-01

    Full Text Available A quartz crystal microbalance (QCM modified by a film of nano-structured polyaniline (nano-PANI is developed as a gas sensor for detecting the presence of the plasticizer, such as dibutyl phthalate (DBP in the ambient. Nano-PANI is prepared using a non-template method and the films are deposited using physical coating method. Scanning electron microscopy is used to characterize the nano-PANI film. The sensor response towards DBP is tested in a sealed gas chamber. The QCM resonant frequency shift is measured due to the absorption of DBP with different concentration ranging from 0.04 to 1.2 ppm. The experiment results show that the variation of the frequency is a linear function of DBP concentration and the sensitivity up to 54 Hz/ppm could be achieved by using the researched nano-PANI on QCM. To investigate the selectivity, the potential interfering analytes such as acetone, ethanol, acetaldehyde and formaldehyde are tested. And the mechanism hypothesis of the nano-PANI sensitive to the plasticizer is analyzed.

  11. Probing properties, stability, and performances of hierarchical meso-porous materials with nano-scale interfaces

    International Nuclear Information System (INIS)

    Baldinozzi, Gianguido; Gosset, Dominique; Simeone, David; Muller, Guillaume; Laberty-Robert, Christel; Sanchez, Clement

    2012-01-01

    Nano-crystals growth mechanism embedded into meso-porous thin films has been determined directly from grazing incidence X-ray diffraction data. We have shown, for the first time, that surface capillary forces control the growth mechanism of nano-crystals into these nano-architectures. Moreover, these data allow an estimation of the surface tension of the nano-crystals organized into a 3-D nano-architecture. The analysis of the variations in the strain field of these nano-crystals gives information on the evolution of the microstructure of these meso-porous films, that is, the contacts among nano-crystals. This work represents the first application of grazing incidence X-ray for understanding stability and performances of meso-porous thin films. This approach can be used to understand the structural stability of these nano-architectures at high temperature. (authors)

  12. Self-assembled GaN nano-column grown on Si(111) substrate using Au+Ga alloy seeding method by metalorganic chemical vapor deposition

    International Nuclear Information System (INIS)

    Shim, Byung-Young; Ko, Eun-A; Song, Jae-Chul; Kang, Dong-Hun; Kim, Dong-Wook; Lee, In-Hwan; Kannappan, Santhakumar; Lee, Cheul-Ro

    2007-01-01

    Single-crystal GaN nano-column arrays were grown on Au-coated silicon (111) substrate by Au-Ga alloy seeding method using metalorganic chemical vapor deposition (MOCVD). The nano-column arrays were studied as a function of growth parameters and Au thin film thickness. The diameter and length of the as-grown nano-column vary from 100 to 500 nm and 4 to 6 μm, respectively. The surface morphology and optical properties of the nano-columns were investigated using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDX), cathodoluminescence (CL) and photoluminescence (PL). The Au+Ga alloy droplets were found to be uniformly distributed on silicon surface. Further, SEM image reveals a vertical growth and cylindrical in shape GaN nano-column. The chemical composition of the nano-column, which composed of gallium and nitrogen ions, was estimated by EDX. CL reveals a strong band edge emission from the GaN nano-column. PL spectra show a peak at 365.7 nm with a full-width half maximum (FWHM) of 65 meV which indicates good optical quality GaN nano-column with low dislocation density. Our results suggest that single crystal GaN nano-column can be grown on Au+Ga alloy on silicon substrate with a low dislocation density for better device performances. (author)

  13. Propeller-Shaped ZnO Nano structures Obtained by Chemical Vapor Deposition: Photoluminescence and Photo catalytic Properties

    International Nuclear Information System (INIS)

    Wang, S.L.; Zhu, H.W.; Li, P.G.; Tang, W.H.

    2012-01-01

    Propeller-shaped and flower-shaped ZnO nano structures on Si substrates were prepared by a one-step chemical vapor deposition technique. The propeller-shaped ZnO nano structure consists of a set of axial nano rod (50 nm in tip, 80 nm in root and 1μm in length), surrounded by radial-oriented nano ribbons (20-30 nm in thickness and 1.5μm in length). The morphology of flower-shaped ZnO nano structure is similar to that of propeller-shaped ZnO, except the shape of leaves. These nano rods leaves (30?nm in diameter and 1-1.5μm in length) are aligned in a radial way and pointed toward a common center. The flower-shaped ZnO nano structures show sharper and stronger UV emission at 378 nm than the propeller-shaped ZnO, indicating a better crystal quality and fewer structural defects in flower-shaped ZnO. In comparison with flower-shaped ZnO nano structures, the propeller-shaped ZnO nano structures exhibited a higher photo catalytic property for the photo catalytic degradation of Rhodamine B under UV-light illumination.

  14. Stimulated transformation in nano-layered composites with Se0.6Te0.4

    International Nuclear Information System (INIS)

    Malyovanik, M.; Shipljak, M.; Cheresnya, V.; Ivan, I.; Csik, A.; Kokenyesi, S.; Debrecen Univ.

    2005-01-01

    - and thermo-stimulated crystallization of nanometer thick Se 0.6 Te 0.4 films embedded into SiO x matrix in the form of nano-multilayer structure were measured with optical transmission and electrical conductivity change. It was found, that the as-prepared Se 0.6 Te 0.4 /SiO x structure contains crystallites which in a considerable extent determine the transformation due to the grain growth limited process. Illumination essentially enhances crystallization both in the single Se 0.6 Te 0.4 layer and in the Se 0.6 Te 0.4 /SiO x structure, making the process more nucleation-dependent and fast what results in the higher efficiency of the stimulated transformation and optical recording in such a nano-layered structure. Photo- and thermo-stimulated interdiffusion prevail in Se 0.6 Te 0.4 /As 2 S 3 nano-layered structure what results in efficient intermixing of the adjacent nanometer thick layers, in photo- and thermally induced bleaching and in the change of electrical conductivity due to the formation of the solid solution of chalcogenide components. (author)

  15. Flow-induced crystallization of a nano composite of poly(butylene adipate-co-terephthalate)/montmorillonite; Cinetica de cristalizacao induzida por fluxo de nanocomposito de poli(butileno adipato-co-tereftalato)/montmorilonita

    Energy Technology Data Exchange (ETDEWEB)

    Bonel, Alan B [Universidade Federal de Sao Carlos. UFSCar, Departamento de Engenharia de Materiais DEMa, SP (Brazil); Rego, Bruna T; Beatrice, Cesar A.G.; Marini, Juliano; Bretas, Rosario E.S., E-mail: bretas@ufscar.br [Universidade Federal de Sao Carlos. UFSCar, Programa de Pos-Graduacao em Ciencia e Engenharia de Materiais, SP (Brazil)

    2011-07-01

    Poly(butylene adipate-co-terephthalate) (PBAT) with 5wt% of an organically modified montmorillonite with polar surfactant was prepared by melt blending in a co-rotational twin-screw extruder at 160 degree C. 100rpm and 1 kg/h. Both pure polymer and nano composite were characterized by wide measurements. The study of the flow-induced crystallization was also done by rheological measurements, monitoring the viscosity as a function of time. The nano clay's lamellas were intercalated in the polymer m loss moduli of the nano composite, at low frequencies, showed that the particles of the nano clay were well dispersed and distributed thru the PBAT matrix. Finally, the presence of the nano clay's particles reduced the induction tim crystals growth, due to the strong interactions with the PBAT chains. (author)

  16. Dislocations and Plastic Deformation in MgO Crystals: A Review

    Directory of Open Access Journals (Sweden)

    Jonathan Amodeo

    2018-05-01

    Full Text Available This review paper focuses on dislocations and plastic deformation in magnesium oxide crystals. MgO is an archetype ionic ceramic with refractory properties which is of interest in several fields of applications such as ceramic materials fabrication, nano-scale engineering and Earth sciences. In its bulk single crystal shape, MgO can deform up to few percent plastic strain due to dislocation plasticity processes that strongly depend on external parameters such as pressure, temperature, strain rate, or crystal size. This review describes how a combined approach of macro-mechanical tests, multi-scale modeling, nano-mechanical tests, and high pressure experiments and simulations have progressively helped to improve our understanding of MgO mechanical behavior and elementary dislocation-based processes under stress.

  17. Nano size crystals of goethite, α-FeOOH: Synthesis and thermal transformation

    Science.gov (United States)

    Christensen, Axel Nørlund; Jensen, Torben R.; Bahl, Christian R. H.; DiMasi, Elaine

    2007-04-01

    An aqueous suspension of amorphous iron(III) hydroxide was kept at room temperature (298 K) for 23 years. During this period of time the pH of the liquid phase changed from 4.3 to 2.85, and nano size crystals of goethite, α-FeOOH crystallised from the amorphous iron(III) hydroxide. Transmission electron microscopy (TEM) investigations, Mössbauer spectra, and powder X-ray diffraction using Co K α radiation showed that the only iron containing crystalline phase present in the recovered product was α-FeOOH. The size of these nano particles range from 10 to 100 nm measured by TEM. The thermal decomposition of α-FeOOH was investigated by time-resolved in situ synchrotron radiation powder X-ray diffraction and the data showed that the sample of α-FeOOH transformed to α-Fe 2O 3 in the temperature range 444-584 K. A quantitative phase analysis shows the increase in scattered X-ray intensity from α-Fe 2O 3 to follow the decrease of intensity from α-FeOOH in agreement with the topotactic phase transition.

  18. Impact of metal nano layer thickness on tunneling oxide and memory performance of core-shell iridium-oxide nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Banerjee, W.; Maikap, S. [Thin Film Nano Tech. Lab., Department of Electronic Engineering, Chang Gung University, Tao-Yuan, Taiwan 333, Taiwan (China); Tien, T.-C. [Material Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan 310, Taiwan (China); Li, W.-C.; Yang, J.-R. [Department of Materials Science and Engineering, National Taiwan University, Taipei 106, Taiwan (China)

    2011-10-01

    The impact of iridium-oxide (IrO{sub x}) nano layer thickness on the tunneling oxide and memory performance of IrO{sub x} metal nanocrystals in an n-Si/SiO{sub 2}/Al{sub 2}O{sub 3}/IrO{sub x}/Al{sub 2}O{sub 3}/IrO{sub x} structure has been investigated. A thinner (1.5 nm) IrO{sub x} nano layer has shown better memory performance than that of a thicker one (2.5 nm). Core-shell IrO{sub x} nanocrystals with a small average diameter of 2.4 nm and a high density of {approx}2 x 10{sup 12}/cm{sup 2} have been observed by scanning transmission electron microscopy. The IrO{sub x} nanocrystals are confirmed by x-ray photoelectron spectroscopy. A large memory window of 3.0 V at a sweeping gate voltage of {+-}5 V and 7.2 V at a sweeping gate voltage of {+-} 8 V has been observed for the 1.5 nm-thick IrO{sub x} nano layer memory capacitors with a small equivalent oxide thickness of 8 nm. The electrons and holes are trapped in the core and annular regions of the IrO{sub x} nanocrystals, respectively, which is explained by Gibbs free energy. High electron and hole-trapping densities are found to be 1.5 x 10{sup 13}/cm{sup 2} and 2 x 10{sup 13}/cm{sup 2}, respectively, due to the small size and high-density of IrO{sub x} nanocrystals. Excellent program/erase endurance of >10{sup 6} cycles and good retention of 10{sup 4} s with a good memory window of >1.2 V under a small operation voltage of {+-} 5 V are obtained. A large memory size of >10 Tbit/sq. in. can be designed by using the IrO{sub x} nanocrystals. This study is not only important for the IrO{sub x} nanocrystal charge-trapping memory investigation but it will also help to design future metal nanocrystal flash memory.

  19. Impact of metal nano layer thickness on tunneling oxide and memory performance of core-shell iridium-oxide nanocrystals

    International Nuclear Information System (INIS)

    Banerjee, W.; Maikap, S.; Tien, T.-C.; Li, W.-C.; Yang, J.-R.

    2011-01-01

    The impact of iridium-oxide (IrO x ) nano layer thickness on the tunneling oxide and memory performance of IrO x metal nanocrystals in an n-Si/SiO 2 /Al 2 O 3 /IrO x /Al 2 O 3 /IrO x structure has been investigated. A thinner (1.5 nm) IrO x nano layer has shown better memory performance than that of a thicker one (2.5 nm). Core-shell IrO x nanocrystals with a small average diameter of 2.4 nm and a high density of ∼2 x 10 12 /cm 2 have been observed by scanning transmission electron microscopy. The IrO x nanocrystals are confirmed by x-ray photoelectron spectroscopy. A large memory window of 3.0 V at a sweeping gate voltage of ±5 V and 7.2 V at a sweeping gate voltage of ± 8 V has been observed for the 1.5 nm-thick IrO x nano layer memory capacitors with a small equivalent oxide thickness of 8 nm. The electrons and holes are trapped in the core and annular regions of the IrO x nanocrystals, respectively, which is explained by Gibbs free energy. High electron and hole-trapping densities are found to be 1.5 x 10 13 /cm 2 and 2 x 10 13 /cm 2 , respectively, due to the small size and high-density of IrO x nanocrystals. Excellent program/erase endurance of >10 6 cycles and good retention of 10 4 s with a good memory window of >1.2 V under a small operation voltage of ± 5 V are obtained. A large memory size of >10 Tbit/sq. in. can be designed by using the IrO x nanocrystals. This study is not only important for the IrO x nanocrystal charge-trapping memory investigation but it will also help to design future metal nanocrystal flash memory.

  20. Self-Assembled Polymeric Ionic Liquid-Functionalized Cellulose Nano-crystals: Constructing 3D Ion-conducting Channels Within Ionic Liquid-based Composite Polymer Electrolytes.

    Science.gov (United States)

    Shi, Qing Xuan; Xia, Qing; Xiang, Xiao; Ye, Yun Sheng; Peng, Hai Yan; Xue, Zhi Gang; Xie, Xiao Lin; Mai, Yiu-Wing

    2017-09-04

    Composite polymeric and ionic liquid (IL) electrolytes are some of the most promising electrolyte systems for safer battery technology. Although much effort has been directed towards enhancing the transport properties of polymer electrolytes (PEs) through nanoscopic modification by incorporating nano-fillers, it is still difficult to construct ideal ion conducting networks. Here, a novel class of three-dimensional self-assembled polymeric ionic liquid (PIL)-functionalized cellulose nano-crystals (CNC) confining ILs in surface-grafted PIL polymer chains, able to form colloidal crystal polymer electrolytes (CCPE), is reported. The high-strength CNC nano-fibers, decorated with PIL polymer chains, can spontaneously form three-dimensional interpenetrating nano-network scaffolds capable of supporting electrolytes with continuously connected ion conducting networks with IL being concentrated in conducting domains. These new CCPE have exceptional ionic conductivities, low activation energies (close to bulk IL electrolyte with dissolved Li salt), high Li + transport numbers, low interface resistances and improved interface compatibilities. Furthermore, the CCPE displays good electrochemical properties and a good battery performance. This approach offers a route to leak-free, non-flammable and high ionic conductivity solid-state PE in energy conversion devices. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Filtering properties of Thue-Morse nano-photonic crystals containing high-temperature superconductor

    Science.gov (United States)

    Talebzadeh, Robabeh; Bavaghar, Mehrdad

    2018-05-01

    In this paper, we introduced new design of quasi-periodic layered structures by choosing order two of ternary Thue-Morse structure. We considered Superconductor-dielectric photonic crystal with mirror symmetric as (ABSSAB)N(BASSBA)N composed of two kinds of nano-scale dielectric layers (A and B) and high-temperature superconductor layers where N is the number of period. This structure is assumed to be the free space. By using the transfer matrix method and the two fluid model, we theoretically study the transmission spectrum of ternary Thue-Morse superconducting photonic crystals with mirror symmetry and introduce this structure as a narrow optical filter. We showed that transmission peak so-called defect mode appears itself inside the transmission spectrum of suggested structure as same as defective layered structure. Also, we analyzed the influence of various related parameters such as the operating temperature of superconductor layer on position of defect mode. The redshift of defect mode with increasing the operating temperature was observed.

  2. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit.

    Science.gov (United States)

    Huang, Bevin; Clark, Genevieve; Navarro-Moratalla, Efrén; Klein, Dahlia R; Cheng, Ran; Seyler, Kyle L; Zhong, Ding; Schmidgall, Emma; McGuire, Michael A; Cobden, David H; Yao, Wang; Xiao, Di; Jarillo-Herrero, Pablo; Xu, Xiaodong

    2017-06-07

    Since the discovery of graphene, the family of two-dimensional materials has grown, displaying a broad range of electronic properties. Recent additions include semiconductors with spin-valley coupling, Ising superconductors that can be tuned into a quantum metal, possible Mott insulators with tunable charge-density waves, and topological semimetals with edge transport. However, no two-dimensional crystal with intrinsic magnetism has yet been discovered; such a crystal would be useful in many technologies from sensing to data storage. Theoretically, magnetic order is prohibited in the two-dimensional isotropic Heisenberg model at finite temperatures by the Mermin-Wagner theorem. Magnetic anisotropy removes this restriction, however, and enables, for instance, the occurrence of two-dimensional Ising ferromagnetism. Here we use magneto-optical Kerr effect microscopy to demonstrate that monolayer chromium triiodide (CrI 3 ) is an Ising ferromagnet with out-of-plane spin orientation. Its Curie temperature of 45 kelvin is only slightly lower than that of the bulk crystal, 61 kelvin, which is consistent with a weak interlayer coupling. Moreover, our studies suggest a layer-dependent magnetic phase, highlighting thickness-dependent physical properties typical of van der Waals crystals. Remarkably, bilayer CrI 3 displays suppressed magnetization with a metamagnetic effect, whereas in trilayer CrI 3 the interlayer ferromagnetism observed in the bulk crystal is restored. This work creates opportunities for studying magnetism by harnessing the unusual features of atomically thin materials, such as electrical control for realizing magnetoelectronics, and van der Waals engineering to produce interface phenomena.

  3. X-ray specular reflection and fluorescence study of nano-films

    International Nuclear Information System (INIS)

    Zheludeva, S.; Novikova, N.

    2001-01-01

    The techniques that combine the advantages of high-resolution structure sensitive x-ray methods with spectroscopic selectivity of data obtained are shown to be extremely promising for characterization of organic and inorganic nano films and nano structures. Fluorescence yield angular dependences exited by complicated evanescent wave / x-ray standing wave pattern at total reflection and glancing incidence can be used to detect structure position of different ions in organic systems and alien interfacial layers in inorganic multilayers;, to get information about interdiffusion at the interfaces of Langmuir- Blodgett (L-B) films and artificial inorganic - x-ray mirrors; to study ion permeation through L-B nano structures - models of biomembrans; to obtain nano - film thickness and density; to get precisely the parameters of small d-space multilayer mirrors, ets

  4. Development and Stability Evaluation of Liquid Crystal-Based Formulations Containing Glycolic Plant Extracts and Nano-Actives

    Directory of Open Access Journals (Sweden)

    Andreza Rodrigues Ueoka

    2018-03-01

    Full Text Available Emulsions are of great use in cosmetic formulations due to their stability. The aim of this work was to develop and assess organoleptic, physicochemical, and microscopic properties of four auto-emulsifiable oil-in-water formulations. Such formulations were developed containing 4.0% cetearyl alcohol, dicetyl phosphate, and ceteth-10 phosphate (Formulation A, nano-actives obtained from safflower, coconut, and clove oils (Formulation B; a mixture of glycolic extracts from Centella asiatica leaves, Aesculus hippocastanum seeds, and Hamamelis virginiana leaves (Formulation C; association between the nano-actives and glycolic extracts described above (Formulation D. The formulations were trialed for 90 days under the normal stability test. The developed formulations were considered all stable and homogeneous, with liquid crystals possibly being formed. Organoleptic parameters and pH of Formulations A and B remained unchanged, but the color of Formulations C and D changed due to the natural color of the glycolic extracts used. It can be concluded that the formation of liquid crystals increased the stability of the formulations, and future tests should be carried out in order to assess the rheological properties and hydration potential of the developed formulations.

  5. Photolithography of thick photoresist coating for electrically controlled liquid crystal photonic bandgap fibre devices

    DEFF Research Database (Denmark)

    Wei, Lei; Khomtchenko, Elena; Alkeskjold, Thomas Tanggaard

    2009-01-01

    Thick photoresist coating for electrode patterning in an anisotropically etched V-groove is investigated for electrically controlled liquid crystal photonic bandgap fibre devices. The photoresist step coverage at the convex corners is compared with and without soft baking after photoresist spin...

  6. Photon emission by electrons and positrons traversing thin single crystal

    International Nuclear Information System (INIS)

    Ol'chak, A.S.

    1984-01-01

    Radiation emission by planar channeled particles (electrons, positrons) in a thin single crystal of thickness L is considered. It is shown that for L approximately πb/THETAsub(L) (b is the lattice constant, THETA sub(L) the Lindhard angle) besides the main spontaneous channeling maxima there exist auxiliary interference maxima, the positions of all the maxima depending on L. The dependence of the radiation spectral intensity on crystal thickness is discussed

  7. Angular dependence of the nanoDot OSL dosimeter

    International Nuclear Information System (INIS)

    Kerns, James R.; Kry, Stephen F.; Sahoo, Narayan; Followill, David S.; Ibbott, Geoffrey S.

    2011-01-01

    Purpose: Optically stimulated luminescent detectors (OSLDs) are quickly gaining popularity as passive dosimeters, with applications in medicine for linac output calibration verification, brachytherapy source verification, treatment plan quality assurance, and clinical dose measurements. With such wide applications, these dosimeters must be characterized for numerous factors affecting their response. The most abundant commercial OSLD is the InLight/OSL system from Landauer, Inc. The purpose of this study was to examine the angular dependence of the nanoDot dosimeter, which is part of the InLight system. Methods: Relative dosimeter response data were taken at several angles in 6 and 18 MV photon beams, as well as a clinical proton beam. These measurements were done within a phantom at a depth beyond the build-up region. To verify the observed angular dependence, additional measurements were conducted as well as Monte Carlo simulations in MCNPX. Results: When irradiated with the incident photon beams parallel to the plane of the dosimeter, the nanoDot response was 4% lower at 6 MV and 3% lower at 18 MV than the response when irradiated with the incident beam normal to the plane of the dosimeter. Monte Carlo simulations at 6 MV showed similar results to the experimental values. Examination of the results in Monte Carlo suggests the cause as partial volume irradiation. In a clinical proton beam, no angular dependence was found. Conclusions: A nontrivial angular response of this OSLD was observed in photon beams. This factor may need to be accounted for when evaluating doses from photon beams incident from a variety of directions.

  8. Controlling charge-density-wave states in nano-thick crystals of 1T-TaS2

    NARCIS (Netherlands)

    Yoshida, Masaro; Zhang, Yijin; Ye, Jianting; Suzuki, Ryuji; Imai, Yasuhiko; Kimura, Shigeru; Fujiwara, Akihiko; Iwasa, Yoshihiro

    2014-01-01

    Two-dimensional crystals, especially graphene and transition metal dichalcogenides (TMDs), are attracting growing interests because they provide an ideal platform for novel and unconventional electronic band structures derived by thinning. The thinning may also affect collective phenomena of

  9. Subsurface defects structural evolution in nano-cutting of single crystal copper

    International Nuclear Information System (INIS)

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Sun, Yazhou; Guo, Yongbo; Liang, Yingchun

    2015-01-01

    Highlights: • An innovative analysis method is adopted to analyze nano-cutting process accurately. • A characteristic SFT and stair-rod dislocation are found in subsurface defect layer. • The formation mechanism of stair-rod dislocation is investigated. • The local atomic structure of subsurface defects is introduced. - Abstract: In this work, molecular dynamics simulation is performed to study the subsurface defects structural distribution and its evolution during nano-cutting process of single crystal copper. The formation mechanism of chip and machined surface is interviewed by analyzing the dislocation evolution and atomic migration. The centro-symmetry parameter and spherical harmonics method are adopted to characterize the distribution and evolution of the subsurface defect structures and local atomic structures. The results show that stacking faults, dislocation loops, “V-shaped” dislocation loops, and plenty of point defects are formed during the machined surface being formed in shear-slip zone. In subsurface damage layers, stair-rod dislocation, stacking fault tetrahedra, atomic cluster defect, and vacancy defect are formed. And the formation mechanism of stair-rod dislocation is investigated by atomic-scale structure evolution. The local atomic structures of subsurface defects are icosahedrons, hexagonal close packed, body-centered cubic, and defect face center cubic, and the variations of local atomic structures are investigated

  10. Subsurface defects structural evolution in nano-cutting of single crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Quanlong [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Bai, Qingshun [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Chen, Jiaxuan, E-mail: wangquanlong0@hit.edu.cn [Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Sun, Yazhou [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Guo, Yongbo [Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Liang, Yingchun [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-07-30

    Highlights: • An innovative analysis method is adopted to analyze nano-cutting process accurately. • A characteristic SFT and stair-rod dislocation are found in subsurface defect layer. • The formation mechanism of stair-rod dislocation is investigated. • The local atomic structure of subsurface defects is introduced. - Abstract: In this work, molecular dynamics simulation is performed to study the subsurface defects structural distribution and its evolution during nano-cutting process of single crystal copper. The formation mechanism of chip and machined surface is interviewed by analyzing the dislocation evolution and atomic migration. The centro-symmetry parameter and spherical harmonics method are adopted to characterize the distribution and evolution of the subsurface defect structures and local atomic structures. The results show that stacking faults, dislocation loops, “V-shaped” dislocation loops, and plenty of point defects are formed during the machined surface being formed in shear-slip zone. In subsurface damage layers, stair-rod dislocation, stacking fault tetrahedra, atomic cluster defect, and vacancy defect are formed. And the formation mechanism of stair-rod dislocation is investigated by atomic-scale structure evolution. The local atomic structures of subsurface defects are icosahedrons, hexagonal close packed, body-centered cubic, and defect face center cubic, and the variations of local atomic structures are investigated.

  11. Organic photovoltaic effects depending on CuPc layer thickness

    International Nuclear Information System (INIS)

    Hur, Sung Woo; Kim, Tae Wan; Chung, Dong Hoe; Oh, Hyun Seok; Kim, Chung Hyeok; Lee, Joon Ung; Park, Jong Wook

    2004-01-01

    Organic photovoltaic effects were studied in device structures of ITO/CuPc/Al and ITO/CuPc/C 60 /BCP/Al by varying the CuPc layer thickness. Since the exciton diffusion length is relatively short in organic semiconductors, a study on the thickness-dependent photovoltaic effects is important. The thickness of the CuPc layer was varied from 10 nm to 50 nm. We found that the optimum CuPc layer thickness was around 40 nm from the analysis of the current density-voltage characteristics in an ITO/CuPc/Al photovoltaic cell. The efficiency of the device shows that the multi-layered heterojunction structure is more appropriate for photovoltaic cells.

  12. Thickness-dependent appearance of ferromagnetism in Pd(100) ultrathin films

    Science.gov (United States)

    Sakuragi, S.; Sakai, T.; Urata, S.; Aihara, S.; Shinto, A.; Kageshima, H.; Sawada, M.; Namatame, H.; Taniguchi, M.; Sato, T.

    2014-08-01

    We report the appearance of ferromagnetism in thin films of Pd(100), which depends on film thickness in the range of 3-5 nm on SrTiO3(100) substrates. X-ray magnetic circular dichroism measurement shows the intrinsic nature of ferromagnetism in Pd(100) films. The spontaneous magnetization in Pd(100) films, corresponding to is 0.61μB/atom, is comparable to Ni, and it changes in an oscillatory manner depending on film thickness, where the period quantitatively agrees with the theoretical prediction based on the two-dimensional quantum well in the film. This indicates that the discrete electronic states in the quantum well shift to Fermi energy to satisfy the condition for ferromagnetism (Stoner criterion) at a specific film thickness.

  13. The Thickness Dependence of Optical Constants of Ultrathin Iron Films

    International Nuclear Information System (INIS)

    Gao Shang; Lian Jie; Wang Xiao; Li Ping; Sun Xiao-Fen; Li Qing-Hao

    2013-01-01

    Ultrathin iron films with different thicknesses from 7.1 to 51.7 nm are deposited by magnetron sputtering and covered by tantalum layers protecting them from being oxidized. These ultrathin iron films are studied by spectroscopic ellipsometry and transmittance measurement. An extra tantalum film is deposited under the same sputtering conditions and its optical constants and film thickness are obtained by a combination of ellipsometry and transmission measurement. After introducing these obtained optical constants and film thickness into the tantalum-iron film, the optical constants and film thicknesses of ultrathin iron films with different thicknesses are obtained. The results show that combining ellipsometry and transmission measurement improves the uniqueness of the obtained film thickness. The optical constants of ultrathin iron films depend strongly on film thicknesses. There is a broad absorption peak at about 370 nm and it shifts to 410 nm with film thickness decreasing

  14. Bloch walls in a nickel single crystal

    International Nuclear Information System (INIS)

    Peters, J.; Treimer, W.

    2001-01-01

    We present a consistent theory for the dependence of the magnetic structure in bulk samples on external static magnetic fields and corresponding experimental results. We applied the theory of micromagnetism to this crystal and calculated the Bloch wall thickness as a function of external magnetic fields. The theoretical results agree well with the experimental data, so that the Bloch wall thickness of a 71 deg. nickel single crystal was definitely determined with some hundred of nanometer

  15. Nano structured materials studied by coherent X-ray diffraction

    International Nuclear Information System (INIS)

    Gulden, Johannes

    2013-03-01

    Structure determination with X-rays in crystallography is a rapidly evolving field. Crystallographic methods for structure determination are based on the assumptions about the crystallinity of the sample. It is vital to understand the structure of possible defects in the crystal, because they can influence the structure determination. All conventional methods to characterize defects require a modelling through simulated data. No direct methods exist to image the core of defects in crystals. Here a new method is proposed, which will enable to visualize the individual scatterers around and at defects in crystals. The method is based on coherent X-ray scattering. X-rays are perfectly suited since they can penetrate thick samples and buried structures can be investigated Recent developments increased the coherent flux of X-Ray sources such as synchrotrons by orders of magnitude. As a result, the use of the coherent properties of X-rays is emerging as a new aspect of X-ray science. New upcoming and operating X-ray laser sources will accelerate this trend. One new method which has the capacity to recover structural information from the coherently scattered photons is Coherent X-ray Diffraction Imaging (CXDI). The main focus of this thesis is the investigation of the structure and the dynamics of colloidal crystals. Colloidal crystals can be used as a model for atomic crystals in order to understand the growth and defect structure. Despite the large interest in these structures, many details are still unknown.Therefore, it is vital to develop new approaches to measure the core of defects in colloidal crystals. After an introduction into the basics of the field of coherent X-ray scattering, this thesis introduces a novel method, Small Angle Bragg Coherent Diffractive Imaging, (SAB-CDI). This new measurement technique which besides the relevance to colloidal crystals can be applied to a large variety of nano structured materials. To verify the experimental possibilities the

  16. Nano structured materials studied by coherent X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Gulden, Johannes

    2013-03-15

    Structure determination with X-rays in crystallography is a rapidly evolving field. Crystallographic methods for structure determination are based on the assumptions about the crystallinity of the sample. It is vital to understand the structure of possible defects in the crystal, because they can influence the structure determination. All conventional methods to characterize defects require a modelling through simulated data. No direct methods exist to image the core of defects in crystals. Here a new method is proposed, which will enable to visualize the individual scatterers around and at defects in crystals. The method is based on coherent X-ray scattering. X-rays are perfectly suited since they can penetrate thick samples and buried structures can be investigated Recent developments increased the coherent flux of X-Ray sources such as synchrotrons by orders of magnitude. As a result, the use of the coherent properties of X-rays is emerging as a new aspect of X-ray science. New upcoming and operating X-ray laser sources will accelerate this trend. One new method which has the capacity to recover structural information from the coherently scattered photons is Coherent X-ray Diffraction Imaging (CXDI). The main focus of this thesis is the investigation of the structure and the dynamics of colloidal crystals. Colloidal crystals can be used as a model for atomic crystals in order to understand the growth and defect structure. Despite the large interest in these structures, many details are still unknown.Therefore, it is vital to develop new approaches to measure the core of defects in colloidal crystals. After an introduction into the basics of the field of coherent X-ray scattering, this thesis introduces a novel method, Small Angle Bragg Coherent Diffractive Imaging, (SAB-CDI). This new measurement technique which besides the relevance to colloidal crystals can be applied to a large variety of nano structured materials. To verify the experimental possibilities the

  17. Prunus cerasifera Ehrh. fabricated ZnO nano falcates and its photocatalytic and dose dependent in vitro bio-activity

    Directory of Open Access Journals (Sweden)

    Jaffri Shaan Bibi

    2018-03-01

    Full Text Available Zinc oxide nano falcates of sickle shape have been synthesized from Prunus cerasifera pomological extract as a reducing cum stabilizing agent via novel, biomimetic and non-toxic route. Zinc oxide nano falcates were analyzed via ultraviolet spectroscopy, Fourier transform infrared analysis, X-ray powder diffraction, scanning electron microscopy and atomic force microscopy. Highly stable zinc oxide nano falcates synthesized at 200°C and 400°C calcination temperatures expressed intense UV-vis peak at 398 nm. Phenolic and amino groups were revealed by FTIR in pomological extract. Wurtzite crystalline structure of zinc oxide nano falcates was confirmed by XRD with average crystal size of 4.93 nm. SEM sizes ranged between 72.11-120 nm and 56.57-107.70 nm, respectively and shown higher polydispersity levels for two calcination temperatures. Augmented photocatalytic degradation of methyl red and bromophenol blue under direct solar irradiance shown pseudo first order kinetics (R2= 0.99 and 0.96. Furthermore, biomedical and agriculturally important pathogenic strains i.e., Xanthomanas axonopodis pv. citri and Pseudomonas syringae, Aspergillus niger, Aspergillus flavus, Aspergillus fumigatus, Aspergillus terreus, Penicillium chrysogenum, Fusarium solani and Lasiodiplodia theobromae were remarkably inhibited. Enhanced photocatalytic and antimicrobial activity reveals zinc oxide nano falcates promising prospects in nano bioremediation of polluted water and conversion into green nano pesticides.

  18. Ultrafast demagnetisation dependence on film thickness: A TDDFT calculation

    Science.gov (United States)

    Singh, N.; Sharma, S.

    2018-04-01

    Ferromagnetic materials when subjected to intense laser pulses leads to reduction of their magnetisation on an ultrafast scale. Here, we perform an ab-initio calculation to study the behavior of ultrafast demagnetisation as a function of film thickness for Nickel as compared to the bulk of the material. In thin films surface formation results in amplification of demagnetisation with the percentage of demagnetisation depending upon the film thickness.

  19. NANO-MULTILAYERS WITH HIGH PERPENDICULAR ANISOTROPY FOR MAGNETIC RECORDING

    Institute of Scientific and Technical Information of China (English)

    T. Yang; B.H. Li; K. Kang; T. Suzuki

    2003-01-01

    (FePt/Ag)n nano-multilayers were deposited on MgO (100) single crystal with laser ablation and then subjected to annealing. FePt L1o grains with (001) texture and thus a large perpendicular magnetic anisotropy constant Ku of the order of 106J/m3 were formed. A thick Ag layer is found to be favorable for decreasing the dispersion of the easy axis for magnetization. The measurement of time decay of magnetization gave rise to a small activation volume of the order of 10-25 m3, showing the promising of being the recording medium for future high density perpendicular recording.

  20. Thickness-dependent resistance switching in Cr-doped SrTiO3

    Science.gov (United States)

    Kim, TaeKwang; Du, Hyewon; Kim, Minchang; Seo, Sunae; Hwang, Inrok; Kim, Yeonsoo; Jeon, Jihoon; Lee, Sangik; Park, Baeho

    2012-09-01

    The thickness-dependent bipolar resistance-switching behavior was investigated for epitaxiallygrown Cr-doped SrTiO3 (Cr-STO). All the pristine devices of different thickness showed polarity-independent symmetric current-voltage characteristic and the same space-charge-limited conduction mechanism. However, after a forming process, the resultant conduction and switching phenomena were significantly different depending on the thickness of Cr-STO. The forming process itself was highly influenced by resistance value of each pristine device. Based on our results, we suggest that the resistance-switching mechanism in Cr-STO depends not only on the insulating material's composition or the contact metal as previously reported but also on the initial resistance level determined by the geometry and the quality of the insulating material. The bipolar resistance-switching behaviors in oxide materials of different thicknesses exhibit mixed bulk and interface switching. This indicates that efforts in resistance-based memory research should be focused on scalability or process method to control a given oxide material in addition to material type and device structure.

  1. Superconducting nano-striplines as quantum detectors

    International Nuclear Information System (INIS)

    Casaburi, A.; Ejrnaes, M.; Mattioli, F.; Gaggero, A.; Leoni, R.; Martucciello, N.; Pagano, S.; Ohkubo, M.; Cristiano, R.

    2011-01-01

    The recent progress in the nanofabrication of superconducting films opens the road toward detectors with highly improved performances. This is the case for superconducting nano-striplines where the thickness and the width are pushed down to the extreme limits to realize detectors with unprecedented sensitivity and ultra fast response time. In this way quantum detectors for single photons at telecommunication wavelengths and for macromolecules such as proteins can be realized. As is often the case in applied nanotechnology, it is a challenge to make devices with the necessary macroscopic dimensions that are needed to interface present technologies, while maintaining the performance improvements. For nano-stripline detectors, both the fast temporal response and the device sensitivity is generally degraded when the area is increased. Here, we present how such detectors can be scaled up to macroscopic dimensions without losing the performance of the nano-structured active elements by using an innovative configuration. In order to realize ultrathin superconducting film the nano-layer is growth with a careful setup of the deposition technique which guarantees high quality and thickness uniformity at the nano-scale size. The active nano-strips are defined with the state-of-the-art electron beam nanolithography to achieve a highly uniform linewidth. We present working detectors based on nano-strips with thicknesses 9–40 nm and widths of 100–1000 nm which exhibit unprecedented speed and area coverage (40 × 40 μm 2 for single photon detectors and 1 × 1 mm 2 for single molecule detectors) based on niobium nitride thus enabling practical use of this nanotechnology.

  2. Aligned Layers of Silver Nano-Fibers

    Directory of Open Access Journals (Sweden)

    Andrii B. Golovin

    2012-02-01

    Full Text Available We describe a new dichroic polarizers made by ordering silver nano-fibers to aligned layers. The aligned layers consist of nano-fibers and self-assembled molecular aggregates of lyotropic liquid crystals. Unidirectional alignment of the layers is achieved by means of mechanical shearing. Aligned layers of silver nano-fibers are partially transparent to a linearly polarized electromagnetic radiation. The unidirectional alignment and density of the silver nano-fibers determine degree of polarization of transmitted light. The aligned layers of silver nano-fibers might be used in optics, microwave applications, and organic electronics.

  3. Design and fabrication of single-crystal GaN nano-bridge on homogeneous substrate for nanoindentation

    Science.gov (United States)

    Hung, Shang-Chao

    2014-12-01

    This study reports a simple method to design and fabricate a freestanding GaN nano-bridge over a homogeneous short column as supporting leg. Test samples were fabricated from MOCVD-grown single-crystal GaN films over sapphire substrate using a FIB milling to leave freestanding short spans. We also investigated the nanoindentation characteristics and the corresponding nanoscopic mechanism of the GaN nano-bridge and its short column with a conical indenter inside transmission electron microscopy. The stress-strain mechanical properties and Young's modulus have also been examined and calculated as 108 GPa ± 4.8 % by the strain energy method. The significant slope switch of the L- D curve corresponds to the transition from the single-point bending indentation to the surface stretching indentation and has been interpreted with the evolution of TEM images. This freestanding fabrication and test have key advantages to characterize nanoscale behavior of one-dimensional bridge structure and greater ease of sample preparation over other micro-fabrication techniques.

  4. Thickness dependence of effective critical exponents in three-dimensional Ising plates

    International Nuclear Information System (INIS)

    Marques, M.I.; Gonzalo, J.A.

    2000-01-01

    Phase transitions in ising plates of equal area and different thickness have been studied by the Monte Carlo approach. The evolution of the critical temperature and of the effective critical exponents with the thickness of the lattice has been numerically determined. The thickness dependence of the maximum value of the effective critical exponents is well described by an exponential decay towards the respective three-dimensional value. (author)

  5. Crystallization peculiarities in metallic glasses

    International Nuclear Information System (INIS)

    Serebryakov, A.V.; Abrosimova, G.E.; Aronin, A.S.

    1985-01-01

    Methods of X-ray electron microscopy and X-ray diffraction analysis were used to investigate the peculiarities of crystallization of amorphous metallic Fe-B and Fe-Si-B alloys related to sufficient change of volume when passing from amorphous to crystalline state and the effect of sample prehistory on its thermal stability and crystallization kinetics. The dependence of morphology of crystalline phases formed during crystallization of amorphous Fe-B alloys on sample thickness was revealed and investigated. The model explaining this dependence was suggested. The observed differences are related, according to the model, with different diffusion ways of ''poles'' - elementary carriers of empty volume to their sinks

  6. Tool wear of a single-crystal diamond tool in nano-groove machining of a quartz glass plate

    International Nuclear Information System (INIS)

    Yoshino, Masahiko; Nakajima, Satoshi; Terano, Motoki

    2015-01-01

    Tool wear characteristics of a diamond tool in ductile mode machining are presented in this paper. Nano-groove machining of a quartz glass plate was conducted to examine the tool wear rate of a single-crystal diamond tool. Effects of lubrication on the tool wear rate were also evaluated. A numerical simulation technique was developed to evaluate the tool temperature and normal stress acting on the wear surface. From the simulation results it was found that the tool temperature does not increase during the machining experiment. It is also demonstrated that tool wear is attributed to the abrasive wear mechanism, but the effect of the adhesion wear mechanism is minor in nano-groove machining. It is found that the tool wear rate is reduced by using water or kerosene as a lubricant. (paper)

  7. Synthesis and photophysical properties of pyrene-functionalized nano-SiO{sub 2} hybrids in solutions and doped-PMMA thin films

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Wen-Jie; He, Wen-Li; Yu, Hong-Yu [Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433 (China); Huang, Hong-Xiang [State Key Laboratory of Molecular Engineering of Polymers, Fudan University, 220 Handan Road, Shanghai 200433 (China); Chen, Meng [Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433 (China); Qian, Dong-Jin, E-mail: djqian@fudan.edu.cn [Department of Chemistry, Fudan University, 220 Handan Road, Shanghai 200433 (China)

    2017-01-15

    Luminescent pyrene-functionalized nano-SiO{sub 2} (nano-SiO{sub 2}Pyr) hybrids were synthesized and characterized using thermogravimetry, infrared, UV–vis absorption and, X-ray photoelectron spectroscopy, as well as field emission transmission electron microscopy (FETEM). The organic substituents immobilized on the nano-SiO{sub 2}Pyr hybrids accounted for approximately 10% of the total weight. Polyethylene glycol 200 (PEG200) was found to be the most suitable solvent to suspend the nano-SiO{sub 2}Pyr hybrids compared to other commonly used organic solvents. FETEM images indicated an average SiO{sub 2} nanoparticle diameter of approximately 12 nm and a 1- to 2-nm thick organic species functionalization layer. Several emission peaks were recorded at wavelengths of 380–580 nm and were designated as emissions arising from either the monomer or excimer of the pyrene substituents. Excimer formation was concentration and solvent polarity dependent, with higher concentrations and a stronger solvent polarity benefiting excimer formation. Further, nano-SiO{sub 2}Pyr hybrids were doped in poly(methyl methacrylate) (PMMA) thin films; fluorescence spectra indicated that the excimer could be formed almost exclusively from neighboring nano-SiO{sub 2}Pyr hybrids. Time-resolved fluorescence decays revealed that the emission lifetimes of nano-SiO{sub 2}Pyr monomers and excimers were approximately 190 ns and 65–100 ns in the PEG200 solution, respectively, which was shortened to 0.45 ns to tens of ns in doped PMMA thin films, depending on the nano-hybrid concentration. Thus, the present study not only provides a method to prepare luminescent nano-materials but also a route to investigate excimer formation in solutions and thin films. - Highlights: • Luminescent pyrene-functionalized nano-SiO{sub 2}Pyr hybrids were prepared. • A 1- to 2- nm thick organic functionalization layer on nano-SiO{sub 2} was observed. • Formation of pyrene excimer was concentration and solvent

  8. About mobility thickness dependence in molecularly doped polymers

    Science.gov (United States)

    Tyutnev, A. P.; Weiss, D. S.; Saenko, V. S.; Pozhidaev, E. D.

    2017-09-01

    We have investigated the dependence of hole mobility on thickness in free-standing films of bisphenol-A-polycarbonate (PC) doped with 30 wt% p-diethylaminobenzaldehyde diphenylhydrazone (DEH). Carrier generation in a time-of-flight (TOF) experiment was achieved through direct ionization of dopant molecules by electron impact using an electron gun supplying pulses of monoenergetic electrons in the range of 2-50 keV. The position of dopant ionization depends upon the electron energy and three TOF variants have been recently developed and used in this study. We have found that the hole mobility generally decreased with increasing film thickness with concomitant acceleration of the post-flight current decay indicating that the transport process approaches the steady-state regime, this process happening slightly faster than our model predicts. Numerical calculations have been compared with experimental data. The results are discussed in detail. The way to reconcile ostensibly contradictory interpretations of our results and those commonly reported in literature relying on photo injection technique has been proposed.

  9. Modeling of a piezoelectric/piezomagnetic nano energy harvester based on two dimensional theory

    Science.gov (United States)

    Yan, Zhi

    2018-01-01

    This work presents a two dimensional theory for a piezoelectric/piezomagnetic bilayer nanoplate in coupled extensional and flexural vibrations with both flexoelectric and surface effects. The magneto-electro-elastic (MEE) coupling equations are derived from three-dimensional equations and Kirchhoff plate theory. Based on the developed theory, a piezoelectric/piezomagnetic nano energy harvester is proposed, which can generate electricity under time-harmonic applied magnetic field. The approximate solutions for the mechanical responses and voltage of the energy harvester are obtained using the weighted residual method. Results show that the properties of the proposed energy harvester are size-dependent due to the flexoelectric and surface effects, and such effects are more pronounced when the bilayer thickness is reduced to dozens of nanometers. It is also found that the magnetoelectric coupling coefficient and power density of the energy harvester are sensitive to the load resistance, the thickness fraction of the piezoelectric or the piezomagnetic layer and damping ratios. Moreover, results indicate that the flexoelectric effect could be made use to build a dielectric/piezomagnetic nano energy harvester. This work provides modeling techniques and numerical methods for investigating the size-dependent properties of MEE nanoplate-based energy harvester and could be helpful for designing nano energy harvesters using the principle of flexoelectricity.

  10. Top-down fabrication of vertical silicon nano-rings based on Poisson diffraction

    International Nuclear Information System (INIS)

    Ai Yujie; Huang Ru; Hao Zhihua; Wang Runsheng; Liu Changze; Fan Chunhui; Wang Yangyuan

    2011-01-01

    Vertical Si nano-rings with a uniform thickness of about 100 nm have been fabricated by conventional optical photolithography with a low cost based on Poisson diffraction. Moreover, the roughness of the Si nano-rings can be effectively reduced by sacrificial oxidation. In order to increase the density of the nano-rings, coaxial twin Si nano-rings have been fabricated by the Poisson diffraction method combined with the spacer technique. The thickness of both the inner and outer Si nano-rings is about 60 nm, and the gap between the twin nano-rings is about 100 nm.

  11. Effective lifetime of minority carriers in black silicon nano-textured by cones and pyramids

    DEFF Research Database (Denmark)

    Onyshchenko, V.F.; Karachevtseva, L.A.; Lytvynenko, O.O.

    2017-01-01

    We calculated the dependence of effective lifetime of minority carriers in black silicon nano-textured by cones and pyramids on the diameter of the cone base, the side of the pyramid base, the height of cone and pyramid. The numerical calculation shows that n-type polished plate of single crystal...

  12. Self-aligned periodic Ni nano dots embedded in nano-oxide layer

    International Nuclear Information System (INIS)

    Doi, M.; Izumi, M.; Kawasaki, S.; Miyake, K.; Sahashi, M.

    2007-01-01

    The Ni nano constriction dots embedded in the Ta-nano-oxide layer (NOL) was prepared by the ion beam sputtering (IBS) method. After the various conditions of the oxidations, the structural analyses of the NOL were performed by RHEED, AES and in situ STM/AFM observations. From the current image of the conductive AFM for NOL, the periodically aligned metallic dots with the size around 5-10 nm were successfully observed. The mechanism of the formation of the self-organized aligned Ni nano constriction dots is discussed from the standpoint of the grain size, the crystal orientation, the preferred oxidation of Ta at the diffused interface

  13. Sensing the facet orientation in silver nano-plates using scanning Kelvin probe microscopy in air

    Energy Technology Data Exchange (ETDEWEB)

    Abdellatif, M.H. [Department of Nanostructures, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Physics Department, National Research Center, Elbehoos st., 12622, Dokki, Giza (Egypt); Salerno, M., E-mail: marco.salerno@iit.it [Department of Nanophysics, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Polovitsyn, Anatolii [Department of Nanochemistry, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); Dipartimentodi Fisica, Università di Genova, via Dodecaneso 33, I-16146 Genova (Italy); Marras, Sergio [Department of Nanochemistry, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy); De Angelis, Francesco [Department of Nanostructures, Istituto Italiano di Tecnologia, via Morego 30, I-16163 Genova (Italy)

    2017-05-01

    Highlights: • The surface potential of drop cast nanocrystals was measured by SKPM in ambient air. • The nanocrystal facet work function was derived by theory. • By comparing theory and experiment we distinguished the nanocrystal facets. • Nanocrystal facet control is of practical interest for optoelectronic devices. - Abstract: The work function of nano-materials is important for a full characterization of their electronic properties. Because the band alignment, band bending and electronic noise are very sensitive to work function fluctuations, the dependence of the work function of nano-scale crystals on facet orientation can be a critical issue in optimizing optoelectronic devices based on these materials. We used scanning Kelvin probe microscopy to assess the local work function on samples of silver nano-plates at sub-micrometric spatial resolution. With the appropriate choice of the substrate and based on statistical analysis, it was possible to distinguish the surface potential of the different facets of silver nano-plates even if the measurements were done in ambient conditions without the use of vacuum. A phenomenological model was used to calculate the differences of facet work function of the silver nano-plates and the corresponding shift in Fermi level. This theoretical prediction and the experimentally observed difference in surface potential on the silver nano-plates were in good agreement. Our results show the possibility to sense the nano-crystal facets by appropriate choice of the substrate in ambient conditions.

  14. Sensing the facet orientation in silver nano-plates using scanning Kelvin probe microscopy in air

    International Nuclear Information System (INIS)

    Abdellatif, M.H.; Salerno, M.; Polovitsyn, Anatolii; Marras, Sergio; De Angelis, Francesco

    2017-01-01

    Highlights: • The surface potential of drop cast nanocrystals was measured by SKPM in ambient air. • The nanocrystal facet work function was derived by theory. • By comparing theory and experiment we distinguished the nanocrystal facets. • Nanocrystal facet control is of practical interest for optoelectronic devices. - Abstract: The work function of nano-materials is important for a full characterization of their electronic properties. Because the band alignment, band bending and electronic noise are very sensitive to work function fluctuations, the dependence of the work function of nano-scale crystals on facet orientation can be a critical issue in optimizing optoelectronic devices based on these materials. We used scanning Kelvin probe microscopy to assess the local work function on samples of silver nano-plates at sub-micrometric spatial resolution. With the appropriate choice of the substrate and based on statistical analysis, it was possible to distinguish the surface potential of the different facets of silver nano-plates even if the measurements were done in ambient conditions without the use of vacuum. A phenomenological model was used to calculate the differences of facet work function of the silver nano-plates and the corresponding shift in Fermi level. This theoretical prediction and the experimentally observed difference in surface potential on the silver nano-plates were in good agreement. Our results show the possibility to sense the nano-crystal facets by appropriate choice of the substrate in ambient conditions.

  15. Temperature-dependent μ-Raman investigation of struvite crystals.

    Science.gov (United States)

    Prywer, Jolanta; Kasprowicz, D; Runka, T

    2016-04-05

    The effect of temperature on the vibrational properties of struvite crystals grown from silica gels was systematically studied by μ-Raman spectroscopy. The time-dependent Raman spectra recorded in the process of long time annealing of struvite crystal at 353 K do not indicate structural changes in the struvite crystal with the time of annealing. The temperature-dependent Raman spectra recorded in the range 298-423 K reveal a phase transition in struvite at about 368 K. Above this characteristic temperature, some of bands assigned to vibrations of the PO4 and NH4 tetrahedra and water molecules observed in the Raman spectra in low temperatures (orthorhombic phase) change their spectral parameters or disappear, which indicates a transition to a higher symmetry structure of struvite in the range of high temperatures. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Temperature- and thickness-dependent elastic moduli of polymer thin films

    Directory of Open Access Journals (Sweden)

    Ao Zhimin

    2011-01-01

    Full Text Available Abstract The mechanical properties of polymer ultrathin films are usually different from those of their counterparts in bulk. Understanding the effect of thickness on the mechanical properties of these films is crucial for their applications. However, it is a great challenge to measure their elastic modulus experimentally with in situ heating. In this study, a thermodynamic model for temperature- (T and thickness (h-dependent elastic moduli of polymer thin films Ef(T,h is developed with verification by the reported experimental data on polystyrene (PS thin films. For the PS thin films on a passivated substrate, Ef(T,h decreases with the decreasing film thickness, when h is less than 60 nm at ambient temperature. However, the onset thickness (h*, at which thickness Ef(T,h deviates from the bulk value, can be modulated by T. h* becomes larger at higher T because of the depression of the quenching depth, which determines the thickness of the surface layer δ.

  17. Controllable synthesis and tunable luminescence of glass ceramic containing Mn2+:ZnAl2O4 and Pr3+:YF3 nano-crystals

    International Nuclear Information System (INIS)

    Yu, Yunlong; Li, Xiaoyan

    2016-01-01

    Highlights: • Glass ceramic containing ZnAl 2 O 4 and YF 3 nano-crystals is fabricated. • Mn 2+ and Pr 3+ are selectively incorporated into ZnAl 2 O 4 and YF 3 , respectively. • The luminescence color can be tuned by adjusting the excitation wavelength. - Abstract: Glass ceramic containing spinel ZnAl 2 O 4 :Mn 2+ and orthorhombic YF 3 :Pr 3+ nano-crystals has been successfully prepared by a melt-quenching technique. X-ray diffraction and transmission electron microscopy demonstrated that two nano-phases, i.e. ZnAl 2 O 4 and YF 3 , were homogeneously distributed among the glass matrix. Importantly, the selective incorporation of Pr 3+ ions into the Y 3+ nine-fold coordinated sites of YF 3 and the segregation of Mn 2+ dopants in the Zn 2+ tetrahedral sites of ZnAl 2 O 4 were confirmed based on the excitation/emission spectra and the crystal field calculation. Under blue light excitation, both Pr 3+ and Mn 2+ in the glass ceramic can be simultaneously excited, and emit red and green luminescence, respectively, owing to the suppression of energy transfer between them. The luminescence color of the obtained glass ceramic can be easily tuned by adjusting the excitation wavelength. These results indicate the potential application of the glass ceramic as converting phosphor to generate white-light after coupling with the blue LED chip.

  18. Vibration analysis of orthotropic circular and elliptical nano-plates embedded in elastic medium based on nonlocal Mindlin plate theory and using Galerkin method

    International Nuclear Information System (INIS)

    Anjomshoa, Amin; Tahani, Masoud

    2016-01-01

    In the present study a continuum model based on the nonlocal elasticity theory is developed for free vibration analysis of embedded ortho tropic thick circular and elliptical nano-plates rested on an elastic foundation. The elastic foundation is considered to behave like a Pasternak type of foundations. Governing equations for vibrating nano-plate are derived according to the Mindlin plate theory in which the effects of shear deformations of nano-plate are also included. The Galerkin method is then employed to obtain the size dependent natural frequencies of nano-plate. The solution procedure considers the entire nano-plate as a single super-continuum element. Effect of nonlocal parameter, lengths of nano-plate, aspect ratio, mode number, material properties, thickness and foundation on circular frequencies are investigated. It is seen that the nonlocal frequencies of the nano-plate are smaller in comparison to those from the classical theory and this is more pronounced for small lengths and higher vibration modes. It is also found that as the aspect ratio increases or the nanoplate becomes more elliptical, the small scale effect on natural frequencies increases. Further, it is observed that the elastic foundation decreases the influence of nonlocal parameter on the results. Since the effect of shear deformations plays an important role in vibration analysis and design of nano-plates, by predicting smaller values for fundamental frequencies, the study of these nano-structures using thick plate theories such as Mindlin plate theory is essential.

  19. The Effect of Thickness on the Physical Properties of Fe2O3 Thin Films Prepared by DC Magnetron Sputtering

    Directory of Open Access Journals (Sweden)

    Baha'a A. Al-Hilli

    2017-11-01

    Full Text Available The objective of this study is to assess the influence of nano-particle Fe2O3 thin film thickness on some physical properties which were prepared by magnetron DC- sputtering on glass substrate at room temperature. The structure was tested with X-Ray diffraction and it was to be amorphous and to become single crystal with recognized peak in (003 after annealing at temperature 500oC. The physical properties as a function of deposition parameters and then film thickness were studied. The optical properties such as absorbance, energy gap and some optical constants are measured and found that of about (3eV energy gap.

  20. Surface Nano crystallization of 3Cr13 Stainless Steel Induced by High-Current Pulsed Electron Beam Irradiation

    International Nuclear Information System (INIS)

    Han, Z.; Zou, H.; Wang, Z.; Ji, I.; Cai, J.; Guan, Q.

    2013-01-01

    The nanocrystalline surface was produced on 3Cr13 martensite stainless steel surface using high-current pulsed electron beam (HCPEB) technique. The structures of the nano crystallized surface were characterized by X-ray diffraction and electron microscopy. Two nano structures consisting of fine austenite grains (50-150 nm) and very fine carbides precipitates are formed in melted surface layer after multiple bombardments via dissolution of carbides and crater eruption. It is demonstrated that the dissolution of the carbides and the formation of the supersaturated Fe (C) solid solution play a determining role on the microstructure evolution. Additionally, the formation of fine austenite structure is closely related to the thermal stresses induced by the HCPEB irradiation. The effects of both high carbon content and high value of stresses increase the stability of the austenite, which leads to the complete suppression of martensitic transformation.

  1. Improved crystallization of the coxsackievirus B3 RNA-dependent RNA polymerase

    Energy Technology Data Exchange (ETDEWEB)

    Jabafi, Ilham; Selisko, Barbara; Coutard, Bruno; De Palma, Armando M.; Neyts, Johan; Egloff, Marie-Pierre; Grisel, Sacha; Dalle, Karen; Campanacci, Valerie; Spinelli, Silvia; Cambillau, Christian; Canard, Bruno; Gruez, Arnaud, E-mail: arnaud.gruez@maem.uhp-nancy.fr [Centre National de la Recherche Scientifique and Universités d’Aix-Marseille I et II, UMR 6098, Architecture et Fonction des Macromolécules Biologiques, Ecole Supérieure d’Ingénieurs de Luminy-Case 925, 163 Avenue de Luminy, 13288 Marseille CEDEX 9 (France)

    2007-06-01

    The first crystal of a coxsackievirus RNA-dependent RNA polymerase is reported. The Picornaviridae virus family contains a large number of human pathogens such as poliovirus, hepatitis A virus and rhinoviruses. Amongst the viruses belonging to the genus Enterovirus, several serotypes of coxsackievirus coexist for which neither vaccine nor therapy is available. Coxsackievirus B3 is involved in the development of acute myocarditis and dilated cardiomyopathy and is thought to be an important cause of sudden death in young adults. Here, the first crystal of a coxsackievirus RNA-dependent RNA polymerase is reported. Standard crystallization methods yielded crystals that were poorly suited to X-ray diffraction studies, with one axis being completely disordered. Crystallization was improved by testing crystallization solutions from commercial screens as additives. This approach yielded crystals that diffracted to 2.1 Å resolution and that were suitable for structure determination.

  2. Improved crystallization of the coxsackievirus B3 RNA-dependent RNA polymerase

    International Nuclear Information System (INIS)

    Jabafi, Ilham; Selisko, Barbara; Coutard, Bruno; De Palma, Armando M.; Neyts, Johan; Egloff, Marie-Pierre; Grisel, Sacha; Dalle, Karen; Campanacci, Valerie; Spinelli, Silvia; Cambillau, Christian; Canard, Bruno; Gruez, Arnaud

    2007-01-01

    The first crystal of a coxsackievirus RNA-dependent RNA polymerase is reported. The Picornaviridae virus family contains a large number of human pathogens such as poliovirus, hepatitis A virus and rhinoviruses. Amongst the viruses belonging to the genus Enterovirus, several serotypes of coxsackievirus coexist for which neither vaccine nor therapy is available. Coxsackievirus B3 is involved in the development of acute myocarditis and dilated cardiomyopathy and is thought to be an important cause of sudden death in young adults. Here, the first crystal of a coxsackievirus RNA-dependent RNA polymerase is reported. Standard crystallization methods yielded crystals that were poorly suited to X-ray diffraction studies, with one axis being completely disordered. Crystallization was improved by testing crystallization solutions from commercial screens as additives. This approach yielded crystals that diffracted to 2.1 Å resolution and that were suitable for structure determination

  3. Control of liquid crystal molecular orientation using ultrasound vibration

    Energy Technology Data Exchange (ETDEWEB)

    Taniguchi, Satoki [Faculty of Life and Medical Sciences, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Wave Electronics Research Center, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Koyama, Daisuke; Matsukawa, Mami [Wave Electronics Research Center, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Shimizu, Yuki; Emoto, Akira [Faculty of Science and Engineering, Doshisha University, 1-3 Tataramiyakodani, Kyotanabe, Kyoto 610-0321 (Japan); Nakamura, Kentaro [Precision and Intelligence Laboratory, Tokyo Institute of Technology, 4259-R2-26, Nagatsuta-cho, Midori-ku, Yokohama 226-8503 (Japan)

    2016-03-07

    We propose a technique to control the orientation of nematic liquid crystals using ultrasound and investigate the optical characteristics of the oriented samples. An ultrasonic liquid crystal cell with a thickness of 5–25 μm and two ultrasonic lead zirconate titanate transducers was fabricated. By exciting the ultrasonic transducers, the flexural vibration modes were generated on the cell. An acoustic radiation force to the liquid crystal layer was generated, changing the molecular orientation and thus the light transmission. By modulating the ultrasonic driving frequency and voltage, the spatial distribution of the molecular orientation of the liquid crystals could be controlled. The distribution of the transmitted light intensity depends on the thickness of the liquid crystal layer because the acoustic field in the liquid crystal layer is changed by the orientational film.

  4. PEG-b-PCL polymeric nano-micelle inhibits vascular angiogenesis by activating p53-dependent apoptosis in zebrafish.

    Science.gov (United States)

    Zhou, Tian; Dong, Qinglei; Shen, Yang; Wu, Wei; Wu, Haide; Luo, Xianglin; Liao, Xiaoling; Wang, Guixue

    Micro/nanoparticles could cause adverse effects on cardiovascular system and increase the risk for cardiovascular disease-related events. Nanoparticles prepared from poly(ethylene glycol) (PEG)- b -poly( ε -caprolactone) (PCL), namely PEG- b -PCL, a widely studied biodegradable copolymer, are promising carriers for the drug delivery systems. However, it is unknown whether polymeric PEG- b -PCL nano-micelles give rise to potential complications of the cardiovascular system. Zebrafish were used as an in vivo model to evaluate the effects of PEG- b -PCL nano-micelle on cardiovascular development. The results showed that PEG- b -PCL nano-micelle caused embryo mortality as well as embryonic and larval malformations in a dose-dependent manner. To determine PEG- b -PCL nano-micelle effects on embryonic angiogenesis, a critical process in zebrafish cardiovascular development, growth of intersegmental vessels (ISVs) and caudal vessels (CVs) in flk1-GFP transgenic zebrafish embryos using fluorescent stereomicroscopy were examined. The expression of fetal liver kinase 1 (flk1), an angiogenic factor, by real-time quantitative polymerase chain reaction (qPCR) and in situ whole-mount hybridization were also analyzed. PEG- b -PCL nano-micelle decreased growth of ISVs and CVs, as well as reduced flk1 expression in a concentration-dependent manner. Parallel to the inhibitory effects on angiogenesis, PEG- b -PCL nano-micelle exposure upregulated p53 pro-apoptotic pathway and induced cellular apoptosis in angiogenic regions by qPCR and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assay. This study further showed that inhibiting p53 activity, either by pharmacological inhibitor or RNA interference, could abrogate the apoptosis and angiogenic defects caused by PEG- b -PCL nano-micelles, indicating that PEG- b -PCL nano-micelle inhibits angiogenesis by activating p53-mediated apoptosis. This study indicates that polymeric PEG- b -PCL nano-micelle could

  5. Connection between the growth rate distribution and the size dependent crystal growth

    Science.gov (United States)

    Mitrović, M. M.; Žekić, A. A.; IIić, Z. Z.

    2002-07-01

    The results of investigations of the connection between the growth rate dispersions and the size dependent crystal growth of potassium dihydrogen phosphate (KDP), Rochelle salt (RS) and sodium chlorate (SC) are presented. A possible way out of the existing confusion in the size dependent crystal growth investigations is suggested. It is shown that the size independent growth exists if the crystals belonging to one growth rate distribution maximum are considered separately. The investigations suggest possible reason for the observed distribution maxima widths, and the high data scattering on the growth rate versus the crystal size dependence.

  6. Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films

    Energy Technology Data Exchange (ETDEWEB)

    Krishna, H; Favazza, C [Department of Physics, Washington University in St Louis, MO 63130 (United States); Sachan, R; Strader, J; Kalyanaraman, R [Department of Material Science and Engineering, University of Tennessee, Knoxville, TN 37996 (United States); Khenner, M, E-mail: ramki@utk.edu [Department of Mathematics, Western Kentucky University, Bowling Green, KY 42101 (United States)

    2010-04-16

    We show here that the morphological pathway of spontaneous dewetting of ultrathin Ag films on SiO{sub 2} under nanosecond laser melting is dependent on film thickness. For films with thickness h of 2 nm {<=} h {<=} 9.5 nm, the morphology during the intermediate stages of dewetting consisted of bicontinuous structures. For films with 11.5 nm {<=} h {<=} 20 nm, the intermediate stages consisted of regularly sized holes. Measurement of the characteristic length scales for different stages of dewetting as a function of film thickness showed a systematic increase, which is consistent with the spinodal dewetting instability over the entire thickness range investigated. This change in morphology with thickness is consistent with observations made previously for polymer films (Sharma and Khanna 1998 Phys. Rev. Lett. 81 3463-6; Seemann et al 2001 J. Phys.: Condens. Matter 13 4925-38). Based on the behavior of free energy curvature that incorporates intermolecular forces, we have estimated the morphological transition thickness for the intermolecular forces for Ag on SiO{sub 2}. The theory predictions agree well with observations for Ag. These results show that it is possible to form a variety of complex Ag nanomorphologies in a consistent manner, which could be useful in optical applications of Ag surfaces, such as in surface enhanced Raman sensing.

  7. A Monte Carlo study of the energy dependence of Al2O3: C crystals for real-time in vivo dosimetry in mammography

    DEFF Research Database (Denmark)

    Aznar, M.C.; Medin, J.; Hemdal, B.

    2005-01-01

    large energy dependence in low-energy X-ray beams can be expected. In the present work, the energy dependence of Al2O3:C crystals was modelled with the Monte Carlo code EGSnre using three types of X-ray spectra. The results obtained (5.6-7.3%) agree with a previously determined experimental result (9...... to the thickness of the light-protective material, and a somewhat larger effect from reducing the diameter of the crystal. The outcome of this study can be used to improve the future design of the RL/OSI. dosimetry system for use in mammography....

  8. Oxidation of nano-reinforced polyolefins

    International Nuclear Information System (INIS)

    Gutierrez Castro, G.G.

    2010-11-01

    Nano-composite materials attract search due to their improvements on barrier properties by incorporating low level of nano-filler of 5%w. Nowadays, organically modified montmorillonite (MMT-O) is the most used filler due to its high aspect ratio which permits stronger clay/polymer interactions. If nano-reinforced materials are highly performing, the ways in which clay presence affects polyolefin durability have not being subject of a rigorous study, thus they are not yet clear. Our goal was to examine unstabilized clay polypropylene and unstabilized clay polyethylene nano composites to get a better comprehension of the clay effects on their thermo-oxidation process under low temperatures. The effects induced by a dual physic-chemical nature of the clay were explored. The problem was tackled from both experimental and theoretical point of views for degradation process not controlled and controlled by oxygen diffusion (homogenous and heterogeneous respectively). It seems that MMT-O speeds up oxidation. This phenomenon was modeled by adding a catalytic reaction between metallic particles initially present in the MMT-O and hydroperoxide groups (main responsible of oxidation). Regarding the oxygen permeability two situations were confronted: for the clay polypropylene system a decrease of 45% of oxygen permeability was measured. On the other hand, no variation was found for the polyethylene case. This effect was attributed to the fact that polyethylene nano-composite reached a blend morphology less developed than those of the polypropylene nano-composite. Kinetics and oxidation products profiles across the sample thickness were simulated for both systems by coupling oxidation reactions with oxygen diffusion equations. For the polyethylene case, the effects induced by oxidation on molar mass and crystalline morphology were also simulated. Finally, based on a structure-property relationship, simulations of mechanic modulus profiles were performed for the heterogeneous

  9. Resonant Photonic States in Coupled Heterostructure Photonic Crystal Waveguides

    Directory of Open Access Journals (Sweden)

    Sabarinathan J

    2010-01-01

    Full Text Available Abstract In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors.

  10. Temperature effect on phase states of quartz nano-crystals in silicon single crystal

    International Nuclear Information System (INIS)

    Kalanov, M.U.; Ibragimova, E.M.; Khamraeva, R.N.; Rustamova, V.M.; Ummatov, Kh.D.

    2006-01-01

    Full text: Oxygen penetrates into the silicon lattice up to the concentration of 2·10 18 cm -3 in the course of growing [1]. By the author's opinion at a low oxygen content the formation of solid solution is possible in the local defect places of the silicon single crystal lattice due to the difference in effective ion radius of oxygen and silicon (r O 0.176 and r Si = 0.065 nm). Upon reaching some critical content (∼ 10 17 cm -3 ), it becomes favorable energetically for oxygen ions to form precipitates (SiO x ) and finally a dielectric layer (stoichiometric inclusions of SiO 2 ). It was shown later that depending on the growth conditions, indeed the quartz crystal inclusions are formed in the silicon single crystals at an amount of 0.3 /0.5 wt. % [2]. However the authors did not study a phase state of the quartz inclusions. Therefore the aim of this work was to study a phase state of the quartz inclusions in silicon crystal at various temperatures. We examined the silicon single crystals grown by Czochralski technique, which were cut in (111) plane in the form of disk of 20 mm diameter and 1.5 thickness and had hole conductivity with the specific resistance ρ o ≅ 1/10 Ohm cm. The dislocation density was N D ≅ 10 1 /10 3 cm -2 , the concentrations of oxygen and boron were N 0 ≅ 2/ 4·10 17 cm -3 and N B ≅ 3*10 15 cm -3 . Structure was analyzed at the set-up DRON-UM1 with high temperature supply UVD-2000 ( CuK = 0.1542 nm) at the temperatures of 300, 1173 and 1573 K measured with platinum-platinum-rhodium thermocouple. The high temperature diffraction spectrum measured at 1573 K in the angle range (2Θ≅10/70 d egree ) there is only one main structure reflection (111) with a high intensity and d/n ≅ 0.3136 nm (2 Θ≅ 28.5 d egree ) from the matrix lattice of silicon single crystal. The weak line at 2 Θ≅ 25.5 d egree ( d/n≅0.3136 nm) is β component of the main reflection (111), and the weak structure peak at 2Θ≅59 d egree ( d/n≅ 0.1568 nm

  11. Weakening of thickness dependence of J{sub C} in YBa{sub 2}Cu{sub 3}O{sub 7-δ} films using a titanium-added MOD precursor solution

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.L., E-mail: zhanghuiliang@mail.iee.ac.cn [Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); School of Science, Hebei University of Engineering, Handan 056038 (China); Ding, F.Z., E-mail: dingfazhu@mail.iee.ac.cn [Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Gu, H.W., E-mail: guhw@mail.iee.ac.cn [Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Dong, Z.B. [Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Qu, F.; Zhang, H.; Shang, H.J. [Key Laboratory of Applied Superconductivity, Institute of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190 (China)

    2017-04-15

    Highlights: • The thickness dependence of J{sub C} in YBCO film was weakened by introducing BaTiO{sub 3} nanoparticles into YBCO matrix. • The high I{sub C} value of 430 MA/cm-width was obtained in the BaTiO{sub 3}-doped YBCO film prepared by the MOD method. • The YBCO composite thick film prepared by using the precursor solution with polyethyleneglycol shows a compact and smooth surface. - Abstract: BaTiO{sub 3} (BTO)-doped YBa{sub 2}Cu{sub 3}O{sub 7-δ} (YBCO) films were prepared by the metal-organic deposition method using a precursor solution with titanium ion. These YBCO films were deposited on (00l)-oriented LaAlO{sub 3} single-crystal substrates using an automated dip coater. The thickness dependence of critical current density (J{sub C}) in the BTO-doped YBCO films was investigated. The J{sub C} value of the YBCO composite film was reduced from 6.3 to 4.6 MA/cm{sup 2} with increasing film thickness from 450 to 930 nm in self-filed at 77 K, which arose mainly from degradation of texture and roughening of the film. However, relative to undoped YBCO thick films, J{sub C} values of the YBCO composite thick films were greatly improved, and more importantly, the reduction in J{sub C} with increasing film thickness was hindered, especially in a high magnetic field. This result indicated that the introduction of BTO nanoparticles as pinning centers into YBCO matrix weakened the thickness dependence of J{sub C}.

  12. Bone-repair properties of biodegradable hydroxyapatite nano-rod superstructures

    Science.gov (United States)

    D'Elía, Noelia L.; Mathieu, Colleen; Hoemann, Caroline D.; Laiuppa, Juan A.; Santillán, Graciela E.; Messina, Paula V.

    2015-11-01

    Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures for the in vitro conditions of bone-repair. Experiments are underway to investigate the effects of the material microstructure, surface roughness and hydrophilicity on their osseo-integration, osteo-conduction and osteo-induction abilities. Materials were tested in the presence of both, rat primary osteoblasts and rabbit mesenchymal stem cells. The following aspects are discussed: (i) cytotoxicity and material degradation; (ii) rat osteoblast spreading, proliferation and differentiation; and (iii) rabbit mesenchymal stem cell adhesion on nano-HAp and nano-HAp/collagen type I coatings. We effectively prepared a material based on biomimetic HAp nano-rods displaying the appropriate surface topography, hydrophilicity and degradation properties to induce the in vitro desired cellular responses for bone bonding and healing. Cells seeded on the selected material readily attached, proliferated and differentiated, as confirmed by cell viability, mitochondrial metabolic activity, alkaline phosphatase (ALP) activity and cytoskeletal integrity analysis by immunofluorescence localization of alpha-smooth muscle actin (α-SMA) protein. These results highlight the influence of material's surface characteristics to determine their tissue regeneration potential and their future use in engineering osteogenic scaffolds for orthopedic implants.Nano-hydroxyapatite (nano-HAp) materials show an analogous chemical composition to the biogenic mineral components of calcified tissues and depending on their topography they may mimic the specific arrangement of the crystals in bone. In this work, we have evaluated the potential of four synthesized nano-HAp superstructures

  13. The photovoltaic efficiency of the fabrication of copolymer P3HT:PCBM on different thickness nano-anatase titania as solar cell

    Science.gov (United States)

    Lazim, Haidar Gazy; Ajeel, Khalid I.; Badran, Hussain A.

    2015-06-01

    Organic solar cells based on (3-hexylthiophene):[6,6]-phenyl C61-butyric acid methylester (P3HT:PCBM) bulk heterojunction (BHJ) with an inverted structure have been fabricated using nano-anatase crystalline titanium dioxide (TiO2) as their electron transport layer, which was prepared on the indium tin oxide coated glass (ITO-glass), silicon wafer and glass substrates by sol-gel method at different spin speed by using spin-coating (1000, 2000 and 3000 rpm) for nano-thin film 58, 75 and 90 nm respectively. The effect of thickness on the surface morphology and optical properties of TiO2 layer were investigated by atomic force microscopy (AFM), X-ray diffraction and UV-visible spectrophotometer. The optical band gap of the films has been found to be in the range 3.63-3.96 eV for allowed direct transition and to be in the range 3.23-3.69 eV for forbidden direct transition to the different TiO2 thickness. The samples were examined to feature current and voltages darkness and light extraction efficiency of the solar cell where they were getting the highest open-circuit voltage, Voc, and power conversion efficiency were 0.66% and 0.39% fabricated with 90 nm respectively.

  14. Radiation induced nano structures

    International Nuclear Information System (INIS)

    Ibragimova, E.M.; Kalanov, M.U.; Khakimov, Z.

    2006-01-01

    Full text: Nanometer-size silicon clusters have been attracting much attention due to their technological importance, in particular, as promising building blocks for nano electronic and nano photonic systems. Particularly, silicon wires are of great of interest since they have potential for use in one-dimensional quantum wire high-speed field effect transistors and light-emitting devices with extremely low power consumption. Carbon and metal nano structures are studied very intensely due to wide possible applications. Radiation material sciences have been dealing with sub-micron objects for a long time. Under interaction of high energy particles and ionizing radiation with solids by elastic and inelastic mechanisms, at first point defects are created, then they form clusters, column defects, disordered regions (amorphous colloids) and finally precipitates of another crystal phase in the matrix. Such irradiation induced evolution of structure defects and phase transformations was observed by X-diffraction techniques in dielectric crystals of quartz and corundum, which exist in and crystal modifications. If there is no polymorphism, like in alkali halide crystals, then due to radiolysis halogen atoms are evaporated from the surface that results in non-stoichiometry or accumulated in the pores formed by metal vacancies in the sub-surface layer. Nano-pores are created by intensive high energy particles irradiation at first chaotically and then they are ordered and in part filled by inert gas. It is well-known mechanism of radiation induced swelling and embrittlement of metals and alloys, which is undesirable for construction materials for nuclear reactors. Possible solution of this problem may come from nano-structured materials, where there is neither swelling nor embrittlement at gas absorption due to very low density of the structure, while strength keeps high. This review considers experimental observations of radiation induced nano-inclusions in insulating

  15. Mass production of polymer nano-wires filled with metal nano-particles.

    Science.gov (United States)

    Lomadze, Nino; Kopyshev, Alexey; Bargheer, Matias; Wollgarten, Markus; Santer, Svetlana

    2017-08-17

    Despite the ongoing progress in nanotechnology and its applications, the development of strategies for connecting nano-scale systems to micro- or macroscale elements is hampered by the lack of structural components that have both, nano- and macroscale dimensions. The production of nano-scale wires with macroscale length is one of the most interesting challenges here. There are a lot of strategies to fabricate long nanoscopic stripes made of metals, polymers or ceramics but none is suitable for mass production of ordered and dense arrangements of wires at large numbers. In this paper, we report on a technique for producing arrays of ordered, flexible and free-standing polymer nano-wires filled with different types of nano-particles. The process utilizes the strong response of photosensitive polymer brushes to irradiation with UV-interference patterns, resulting in a substantial mass redistribution of the polymer material along with local rupturing of polymer chains. The chains can wind up in wires of nano-scale thickness and a length of up to several centimeters. When dispersing nano-particles within the film, the final arrangement is similar to a core-shell geometry with mainly nano-particles found in the core region and the polymer forming a dielectric jacket.

  16. On the Size Dependence of Molar and Specific Properties of Independent Nano-phases and Those in Contact with Other Phases

    Science.gov (United States)

    Kaptay, George

    2018-05-01

    Nano-materials are materials with at least one nano-phase. A nano-phase is a phase with at least one of its dimensions below 100 nm. It is shown here that nano-phases have at least 1% of their atoms along their surface layer. The ratio of surface atoms is proportional to the specific surface area of the phase, defined as the ratio of its surface area to its volume. Each specific/molar property has its bulk value and its surface value for the given phase, being always different, as the energetic states of the atoms in the bulk and in the surface layer of a phase are different. The average specific/molar property of a nano-phase is modeled here as a linear combination of the bulk and surface values of the same property, scaled with the ratio of the surface atoms. That makes the performance of all nano-phases proportional to their specific surface area. As the characteristic size of the nano-phase is inversely proportional to its specific surface area, all specific/molar properties of nano-phases are inversely proportional to the characteristic size of the phase. This is applied to the size dependence of the molar Gibbs energy of the nano-phase, which appears to be in agreement with the thermodynamics of Gibbs. This agreement proves the general validity of the present model on the size dependence of the specific/molar properties of independent nano-phases. It is shown that the properties of nano-phases are different for independent nano-phases (surrounded only by their equilibrium vapor phase) and for nano-phases in multi-phase situations, such as a liquid nano-droplet in the sessile drop configuration.

  17. Pulsed Laser Interactions with Silicon Nano structures in Emitter Formation

    International Nuclear Information System (INIS)

    Huat, V.L.C.; Leong, C.S.; Kamaruzzaman Sopian, Saleem Hussain Zaidi

    2015-01-01

    Silicon wafer thinning is now approaching fundamental limits for wafer thickness owing to thermal expansion mismatch between Al and Si, reduced yields in wet-chemical processing as a result of fragility, and reduced optical absorption. An alternate manufacturing approach is needed to eliminate current manufacturing issues. In recent years, pulsed lasers have become readily available and costs have been significantly reduced. Pulsed laser interactions with silicon, in terms of micromachining, diffusions, and edge isolation, are well known, and have become industrial manufacturing tools. In this paper, pulsed laser interactions with silicon nano structures were identified as the most desirable solution for the fundamental limitations discussed above. Silicon nano structures have the capability for extremely high absorption that significantly reduces requirements for laser power, as well as thermal shock to the thinner wafer. Laser-assisted crystallization, in the presence of doping materials, leads to nano structure profiles that are highly desirable for sunlight absorption. The objective of this paper is the replacement of high temperature POCl_3 diffusion by laser-assisted phosphorus layers. With these improvements, complete low-temperature processing of thinner wafers was achievable with 3.7 % efficiency. Two-dimensional laser scanning was proved to be able to form uniformly annealed surfaces with higher fill factor and open-circuit voltage. (author)

  18. Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films.

    Science.gov (United States)

    Krishna, H; Sachan, R; Strader, J; Favazza, C; Khenner, M; Kalyanaraman, R

    2010-04-16

    We show here that the morphological pathway of spontaneous dewetting of ultrathin Ag films on SiO2 under nanosecond laser melting is dependent on film thickness. For films with thickness h of 2 nm < or = h < or = 9.5 nm, the morphology during the intermediate stages of dewetting consisted of bicontinuous structures. For films with 11.5 nm < or = h < or = 20 nm, the intermediate stages consisted of regularly sized holes. Measurement of the characteristic length scales for different stages of dewetting as a function of film thickness showed a systematic increase, which is consistent with the spinodal dewetting instability over the entire thickness range investigated. This change in morphology with thickness is consistent with observations made previously for polymer films (Sharma and Khanna 1998 Phys. Rev. Lett. 81 3463-6; Seemann et al 2001 J. Phys.: Condens. Matter 13 4925-38). Based on the behavior of free energy curvature that incorporates intermolecular forces, we have estimated the morphological transition thickness for the intermolecular forces for Ag on SiO2. The theory predictions agree well with observations for Ag. These results show that it is possible to form a variety of complex Ag nanomorphologies in a consistent manner, which could be useful in optical applications of Ag surfaces, such as in surface enhanced Raman sensing.

  19. Growth and time dependent alignment of KCl crystals in Hemoglobin LB monolayer

    International Nuclear Information System (INIS)

    Mahato, Mrityunjoy; Pal, Prabir; Tah, Bidisha; Kamilya, Tapanendu; Talapatra, G.B.

    2012-01-01

    Nature and organism often use the biomineralization technique to build up various highly regular structures such as bone, teeth, kidney stone etc., and recently this becomes the strategy to design and synthesis of novel biocomposite materials. We report here the controlled crystallization of KCl in Langmuir and Langmuir Blodgett (LB) monolayer of Hemoglobin (Hb) at ambient condition. The nucleation and growth of KCl crystals in Hb monolayer has temporal and KCl concentration dependency. The growth of KCl crystals in LB film of Hb has distinct behavior in the alignment of crystals from linear to fractal like structures depending on growth time. The crystallographic identity of the biomineralized KCl crystal is confirmed from HR-TEM, XRD, and from powder diffraction simulation. Our results substantiated that the template of Langmuir monolayer of proteins plays a crucial role in biomineralization as well as in designing and synthesizing of novel biocomposite materials. Highlights: ► Biomineralization of KCl crystal has been studied in Hemoglobin LB film. ► KCl crystal growth is time and concentration of KCl dependent. ► The alignment of KCl crystal growth is fractal nature with time. ► The unfolding of Hb and evaporation factor has some role in crystallization and fractal growth.

  20. Photodegradation of luminescence in organic-ligand-capped Eu3+:LaF3 nano-particles

    International Nuclear Information System (INIS)

    King, Gavin G. G.; Taylor, Luke R.; Longdell, Jevon J.; Clarke, David J.; Quilty, J. W.

    2014-01-01

    The luminescence from europium doped lanthanum trifluoride (Eu 3+ :LaF 3 ) nano-crystals can be greatly enhanced by capping with β-diketonate organic ligands. Here, we report on photo-stability measurements for the case of nano-crystals capped with thenoyltrifluroacetone (TTA) and compared with those capped with an inactive ligand, oleic acid. With exposure to UV pump light, we observed significant decrease in fluorescence and change in emission spectrum of the TTA-capped nano-particles whilst the fluorescence lifetime remained approximately constant. After a dose of order 70 kJ cm −2 , the luminescence level was similar to that of oleic acid capped nano-crystals. We discuss possible mechanisms

  1. XFEL OSCILLATOR SIMULATION INCLUDING ANGLE-DEPENDENT CRYSTAL REFLECTIVITY

    International Nuclear Information System (INIS)

    Fawley, William; Lindberg, Ryan; Kim, K.-J.; Shvyd'ko, Yuri

    2010-01-01

    The oscillator package within the GINGER FEL simulation code has now been extended to include angle-dependent reflectivity properties of Bragg crystals. Previously, the package was modified to include frequencydependent reflectivity in order to model x-ray FEL oscillators from start-up from shot noise through to saturation. We present a summary of the algorithms used for modeling the crystal reflectivity and radiation propagation outside the undulator, discussing various numerical issues relevant to the domain of high Fresnel number and efficient Hankel transforms. We give some sample XFEL-O simulation results obtained with the angle-dependent reflectivity model, with particular attention directed to the longitudinal and transverse coherence of the radiation output.

  2. Growth temperature dependence of flux pinning properties in ErBa2Cu3Oy thin films with nano-rods

    International Nuclear Information System (INIS)

    Haruta, M.; Sueyoshi, T.; Fujiyoshi, T.; Mukaida, M.; Kai, H.; Matsumoto, K.; Mele, P.; Maeda, T.; Horii, S.

    2011-01-01

    Nano-rods were introduced into ErBa 2 Cu 3 O y thin films to improve J c . Pinning properties depended on the growth temperature of the films. Morphology of nano-rods was affected by the growth temperature. The growth temperature is important to achieve high in-field J c 's. Irreversibility lines and distributions of local critical current density (J cl ) based on the percolation transition model were affected by the growth temperature (T s ) in 3.5 wt.%-BaNb 2 O 6 -doped ErBa 2 Cu 3 O y thin films. The vortex-Bose-glass-like state appeared by the introduction of nano-rods, and this vortex state was affected by T s . The shape and width of the J cl distribution strongly depended on T s . These results are probably caused by variations of the density and the growth direction for nano-rods reflecting T s . The growth temperature is an important factor to achieve higher critical current properties under magnetic fields for coated conductors of rare-earth-based cuprates with nano-rods.

  3. Extraction and Characterization of Nano cellulose from Coconut Fiber

    International Nuclear Information System (INIS)

    Nor Liyana Ahmad; Ishak Ahmad

    2013-01-01

    Coconut husk fibers has been modified by some chemical treatments to extract cellulose nano crystals (CNC), which are alkali treatment, bleaching and acid hydrolysis using concentrated sulphuric acid. The effect of the treatments on the coconut husk fibers has been analysed using Fourier transform infrared (FTIR) and X-Ray diffraction (XRD). Meanwhile, the morphology observation and thermal stability of the fiber have been analysed by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA) respectively. The analyses show that the chemical modification could eliminate some of the lignin and hemicelluloses of the fiber. Nano cellulose extracted from acid hydrolysis has been analysed using transmission electron microscopy (TEM) to define the size of extracted nano cellulose. The cellulose nano crystals from coconut fibre has the average diameter and length in the range 13.7±6.2 nm and 172.3±8.4 nm, respectively. The obtained nano cellulose may have the potential applications in the fields of biomedical, oil adsorption, membrane, pharmaceutical and bio composites. (author)

  4. Nano-Hydroxyapatite Thick Film Gas Sensors

    International Nuclear Information System (INIS)

    Khairnar, Rajendra S.; Mene, Ravindra U.; Munde, Shivaji G.; Mahabole, Megha P.

    2011-01-01

    In the present work pure and metal ions (Co and Fe) doped hydroxyapatite (HAp) thick films have been successfully utilized to improve the structural, morphological and gas sensing properties. Nanocrystalline HAp powder is synthesized by wet chemical precipitation route, and ion exchange process is employed for addition of Co and Fe ions in HAp matrix. Moreover, swift heavy ion irradiation (SHI) technique is used to modify the surface of pure and metal ion exchanged HAp with various ion fluence. The structural investigation of pure and metal ion exchanged HAp thick films are carried out using X-ray diffraction and the presence of functional group is observed by means FTIR spectroscopy. Furthermore, surface morphology is visualized by means of SEM and AFM analysis. CO gas sensing study is carried out for, pure and metal ions doped, HAp thick films with detail investigation on operating temperature, response/recovery time and gas uptake capacity. The surface modifications of sensor matrix by SHI enhance the gas response, response/recovery and gas uptake capacity. The significant observation is here to note that, addition of Co and Fe in HAp matrix and surface modification by SHI improves the sensing properties of HAp films drastically resulting in gas sensing at relatively lower temperatures.

  5. Review of Recent Progress of Plasmonic Materials and Nano-Structures for Surface-Enhanced Raman Scattering

    Directory of Open Access Journals (Sweden)

    Alan X. Wang

    2015-05-01

    Full Text Available Surface-enhanced Raman scattering (SERS has demonstrated single-molecule sensitivity and is becoming intensively investigated due to its significant potential in chemical and biomedical applications. SERS sensing is highly dependent on the substrate, where excitation of the localized surface plasmons (LSPs enhances the Raman scattering signals of proximate analyte molecules. This paper reviews research progress of SERS substrates based on both plasmonic materials and nano-photonic structures. We first discuss basic plasmonic materials, such as metallic nanoparticles and nano-rods prepared by conventional bottom-up chemical synthesis processes. Then, we review rationally-designed plasmonic nano-structures created by top-down approaches or fine-controlled synthesis with high-density hot-spots to provide large SERS enhancement factors (EFs. Finally, we discuss the research progress of hybrid SERS substrates through the integration of plasmonic nano-structures with other nano-photonic devices, such as photonic crystals, bio-enabled nanomaterials, guided-wave systems, micro-fluidics and graphene.

  6. The gas-sensing properties of thick film sensors based on nano-ZnFe2O4 prepared by hydrothermal method

    International Nuclear Information System (INIS)

    Chu Xiangfeng; Jiang Dongli; Zheng Chenmou

    2006-01-01

    ZnFe 2 O 4 sensors were fabricated from nano-ZnFe 2 O 4 powders prepared by hydrothermal method and their gas-sensing properties were investigated. It was found that the phase composition of the product and the gas-sensing properties greatly depend on the reaction pH value and the reaction temperature. Nano-ZnFe 2 O 4 powders could be obtained at a pH of 8-10 and the sensor based on the nano-ZnFe 2 O 4 powder prepared at 220 deg. C exhibited the best performance, characterized by high sensitivity to low concentrations of C 2 H 5 OH at 180 deg. C, especially, the sensitivity to 100 ppm C 2 H 5 OH was as high as 76

  7. Characterization on the coatings of Ni-base alloy with nano- and micron-size Sm2O3 addition prepared by laser deposition

    International Nuclear Information System (INIS)

    Zhang Shihong; Li Mingxi; Yoon, Jae Hong; Cho, Tong Yul

    2008-01-01

    The coating materials are the powder mixture of micron-size Ni-base alloy powders with both 1.5 wt.% micron-size and nano-size Sm 2 O 3 powders, which are prepared on Q235 steel plate by 2.0 kW CO 2 laser deposition. The results indicate that with rare earth oxide Sm 2 O 3 addition, the width of planar crystallization is smaller than that of the Ni-base alloy coatings. Micron- and nano-Sm 2 O 3 /Ni-base alloy coatings have similar microstructure showing the primary phase of γ-Ni dendrite and eutectic containing γ-Ni and Cr 23 C 6 phases. However, compared to micron-Sm 2 O 3 /Ni-base alloy, preferred orientation of γ-Ni dendrite of nano-Sm 2 O 3 /Ni-base alloy is weakened. Planar crystal of several-μm thickness is first grown and then dendrite growth is observed at 1.5% micron-Sm 2 O 3 /Ni-base alloy coating whereas equiaxed dendrite is grown at 1.5% nano-Sm 2 O 3 /Ni-base alloy coating. Hardness and wear resistance of the coating improves with decreasing Sm 2 O 3 size from micron to nano. The improvement on tribological property of nano-Sm 2 O 3 /Ni-base alloy over micron-Sm 2 O 3 /Ni-base alloy coatings can be attributed to the better resistance of equiaxed dendrite to adhesion interactions during the wear process. In 6 M HNO 3 solution, the corrosion resistance is greatly improved with nano-Sm 2 O 3 addition since the decrease of corrosion ratio along grain-boundary in nano-Sm 2 O 3 /Ni-base alloy coating contributes to harmonization of corrosion potential

  8. Strengthening of the RAFMS RUSFER-EK181 through nano structuring surface layers

    Energy Technology Data Exchange (ETDEWEB)

    Panin, A.; Melnikova, E.A. [Tomsk State Univ., lnstitute of Strength Physics and Materials Science, SB, RAS (Russian Federation); Chernov, V.M. [Bochvar Institute of Inorganic Materials, Moscow (Russian Federation); Leontieva-Smirnova, M.V. [A.A. Bochvar Research Institute of Inorganic Materials, Moscow (Russian Federation)

    2007-07-01

    Full text of publication follows: Surface nano-structuring increases yield point and strength of the reduced activation ferritic-martensitic steel (RAFMS ) RUSREF - EK181. Ultrasonic impact treatment was used to produce a nano-structure within the surface layers of the specimens. Using scanning tunnelling microscope reveals a new mechanism of mesoscale-level plastic deformation of nano-structured surface layers of the RAFMS RUSREF - EK181 as doubled spirals of localised-plastic deformation meso-bands. A linear dependence of their sizes on thickness of strengthened layer was obtained. The effect of localised deformation meso-bands on macro-mechanical properties of a material was demonstrated. A certain combination of thermal and mechanical treatment as well as optimum proportion of nano-structured surface layer thickness to thickness of a whole specimen are necessary to achieve maximum strength values. Tests performed at high temperatures in the range from 20 to 700 deg. C shows efficiency of the surface hardening of the RAFMS RUSREF - EK181. The effect of nano-structured surface layer on the character of plastic deformation and mechanical properties of the RAFMS RUSREF - EK181 was considered in the framework of a multilevel model in which loss of shear stability and generation of structural defects occur self-consistently at various scale levels such as nano-, micro-, meso-, and macro-Chessboard like distribution of stresses and misfit deformations was theoretical and experimentally shown to appear at the 'nano-structured surface layer - bulk of material' interface. Zones of compressive normal stresses alternates with zones of tensile normal stresses as on a chessboard. Plastic shear can generate only within local zones of tensile normal stresses. Critical meso-volume of non-equilibrium states required for local structure-phase transformation can be formed within these zones. Whereas within the zones of compressive normal stresses acting from both

  9. Charge Distribution Dependency on Gap Thickness of CMS Endcap RPC

    CERN Document Server

    Park, Sung K.; Lee, Kyongsei

    2016-01-01

    We report a systematic study of charge distribution dependency of CMS Resistive Plate Chamber (RPC) on gap thickness. Prototypes of double-gap RPCs with six different gap thickness ranging from from 1.0 to 2.0 mm in 0.2-mm steps have been built with 2-mm-thick phenolic high-pressure-laminated plates. The efficiencies of the six gaps are measured as a function of the effective high voltages. We report that the strength of the electric fields of the gap is decreased as the gap thickness is increased. The distributions of charges in six gaps are measured. The space charge effect is seen in the charge distribution at the higher voltages. The logistic function is used to fit the charge distribution data. Smaller charges can be produced within smaller gas gap. But the digitization threshold should be also lowered to utilize these smaller charges.

  10. Conductivity of laser printed copper structures limited by nano-crystal grain size and amorphous metal droplet shell

    International Nuclear Information System (INIS)

    Winter, Shoshana; Zenou, Michael; Kotler, Zvi

    2016-01-01

    We present a study of the morphology and electrical properties of copper structures which are printed by laser induced forward transfer from bulk copper. The percentage of voids and the oxidation levels are too low to account for the high resistivities (∼4 to 14 times the resistivity of bulk monocrystalline copper) of these structures. Transmission electron microscope (TEM) images of slices cut from the printed areas using a focused ion beam (FIB) show nano-sized crystal structures with grain sizes that are smaller than the electron free path length. Scattering from such grain boundaries causes a significant increase in the resistivity and can explain the measured resistivities of the structures. The TEM images also show a nano-amorphous layer (∼5 nm) at the droplet boundaries which also contributes to the overall resistivity. Such morphological characteristics are best explained by the ultrafast cooling rate of the molten copper droplets during printing. (paper)

  11. Rapid Synthesis and Characterization of Nano sodalite Synthesized using Rice Husk Ash

    International Nuclear Information System (INIS)

    Siti Haslina Ahmad Rusmili; Zainab Ramli

    2012-01-01

    Rice husk ash (RHA) which contains more than 90 percent silica is proven to be an active silica source in zeolite synthesis. In this study, nano sodalite has been successfully synthesized hydrothermally at 60 degree Celsius using RHA as silica source in alkaline medium at various crystallization times. Commercial fumed silica was used as comparison for the silica source. Analysis by XRD has shown that pure nano sodalite was formed in 3 hours and stable up to more than 24 hours when using RHA as silica source. On the other hand, fumed silica produced pure nano sodalite only at 4 hours while a mixture of zeolites was observed outside this time range. FESEM shows a worm-like morphology of nano sodalite in the size range of 50-100 nm while FTIR shows the formation of aluminosilicates bonds. Analysis on the dissolved silica in the gel reaction mixture demonstrates the decreasing mass of silica after prolong time of crystallization which indicates the consumption of the dissolved silica in crystal growth of nano sodalite. This study shows that RHA is a better silica source in stabilizing the nano sodalite phase in oxide gel reaction mixture as compared to fumed silica. (author)

  12. Giant piezoresistance of p-type nano-thick silicon induced by interface electron trapping instead of 2D quantum confinement

    International Nuclear Information System (INIS)

    Yang Yongliang; Li Xinxin

    2011-01-01

    The p-type silicon giant piezoresistive coefficient is measured in top-down fabricated nano-thickness single-crystalline-silicon strain-gauge resistors with a macro-cantilever bending experiment. For relatively thicker samples, the variation of piezoresistive coefficient in terms of silicon thickness obeys the reported 2D quantum confinement effect. For ultra-thin samples, however, the variation deviates from the quantum-effect prediction but increases the value by at least one order of magnitude (compared to the conventional piezoresistance of bulk silicon) and the value can change its sign (e.g. from positive to negative). A stress-enhanced Si/SiO 2 interface electron-trapping effect model is proposed to explain the 'abnormal' giant piezoresistance that should be originated from the carrier-concentration change effect instead of the conventional equivalent mobility change effect for bulk silicon piezoresistors. An interface state modification experiment gives preliminary proof of our analysis.

  13. Thickness-Dependent Dielectric Constant of Few-Layer In 2 Se 3 Nanoflakes

    KAUST Repository

    Wu, Di

    2015-11-17

    © 2015 American Chemical Society. The dielectric constant or relative permittivity (εr) of a dielectric material, which describes how the net electric field in the medium is reduced with respect to the external field, is a parameter of critical importance for charging and screening in electronic devices. Such a fundamental material property is intimately related to not only the polarizability of individual atoms but also the specific atomic arrangement in the crystal lattice. In this Letter, we present both experimental and theoretical investigations on the dielectric constant of few-layer In2Se3 nanoflakes grown on mica substrates by van der Waals epitaxy. A nondestructive microwave impedance microscope is employed to simultaneously quantify the number of layers and local electrical properties. The measured εr increases monotonically as a function of the thickness and saturates to the bulk value at around 6-8 quintuple layers. The same trend of layer-dependent dielectric constant is also revealed by first-principles calculations. Our results of the dielectric response, being ubiquitously applicable to layered 2D semiconductors, are expected to be significant for this vibrant research field.

  14. The photovoltaic efficiency of the fabrication of copolymer P3HT:PCBM on different thickness nano-anatase titania as solar cell.

    Science.gov (United States)

    Lazim, Haidar Gazy; Ajeel, Khalid I; Badran, Hussain A

    2015-06-15

    Organic solar cells based on (3-hexylthiophene):[6,6]-phenyl C61-butyric acid methylester (P3HT:PCBM) bulk heterojunction (BHJ) with an inverted structure have been fabricated using nano-anatase crystalline titanium dioxide (TiO2) as their electron transport layer, which was prepared on the indium tin oxide coated glass (ITO-glass), silicon wafer and glass substrates by sol-gel method at different spin speed by using spin-coating (1000, 2000 and 3,000 rpm) for nano-thin film 58, 75 and 90 nm respectively. The effect of thickness on the surface morphology and optical properties of TiO2 layer were investigated by atomic force microscopy (AFM), X-ray diffraction and UV-visible spectrophotometer. The optical band gap of the films has been found to be in the range 3.63-3.96 eV for allowed direct transition and to be in the range 3.23-3.69 eV for forbidden direct transition to the different TiO2 thickness. The samples were examined to feature current and voltages darkness and light extraction efficiency of the solar cell where they were getting the highest open-circuit voltage, Voc, and power conversion efficiency were 0.66% and 0.39% fabricated with 90 nm respectively. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. A study of angle dependent surface plasmon polaritons in nano-hole array structures

    Energy Technology Data Exchange (ETDEWEB)

    Balakrishnan, Shankar [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Lawson Health Research Institute, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Najiminaini, Mohamadreza; Carson, Jeffrey J. L. [Lawson Health Research Institute, St. Joseph' s Health Care, London, Ontario N6A 4V2 (Canada); Department of Medical Biophysics, University of Western Ontario, London, Ontario N6A 3K7 (Canada); Singh, Mahi R. [Department of Physics and Astronomy, University of Western Ontario, London, Ontario N6A 3K7 (Canada)

    2016-07-21

    We report that the light-matter interaction in metallic nano-hole array structures possess a subwavelength hole radius and periodicity. The transmission coefficient for nano-hole array structures was measured for different angles of incidence of light. Each measured transmission spectrum had several peaks due to surface plasmon polaritons. A theory of the transmission coefficient was developed based on the quantum density matrix method. It was found that the location of the surface plasmon polariton and the heights of the spectral peaks were dependent on the angle of incidence of light. Good agreement was observed between the experimental and theoretical results. This property of these structures has opened up new possibilities for sensing applications.

  16. The adsorption features between insecticidal crystal protein and nano-Mg(OH)2.

    Science.gov (United States)

    Pan, Xiaohong; Xu, Zhangyan; Zheng, Yilin; Huang, Tengzhou; Li, Lan; Chen, Zhi; Rao, Wenhua; Chen, Saili; Hong, Xianxian; Guan, Xiong

    2017-12-01

    Nano-Mg(OH) 2 , with low biological toxicity, is an ideal nano-carrier for insecticidal protein to improve the bioactivity. In this work, the adsorption features of insecticidal protein by nano-Mg(OH) 2 have been studied. The adsorption capacity could reach as high as 136 mg g -1 , and the adsorption isotherm had been fitted with Langmuir and Freundlich models. Moreover, the adsorption kinetics followed a pseudo-first or -second order rate model, and the adsorption was spontaneous and an exothermic process. However, high temperatures are not suitable for adsorption, which implies that the temperature would be a critical factor during the adsorption process. In addition, FT-IR confirmed that the protein was adsorbed on the nano-Mg(OH) 2 , zeta potential analysis suggested that insecticidal protein was loaded onto the nano-Mg(OH) 2 not by electrostatic adsorption but maybe by intermolecular forces, and circular dichroism spectroscopy of Cry11Aa protein before and after loading with nano-Mg(OH) 2 was changed. The study applied the adsorption information between Cry11Aa and nano-Mg(OH) 2 , which would be useful in the practical application of nano-Mg(OH) 2 as a nano-carrier.

  17. Size dependence of adsorption kinetics of nano-MgO: a theoretical and experimental study

    International Nuclear Information System (INIS)

    Wang, Shuting; Wen, Yanzhen; Cui, Zixiang; Xue, Yongqiang

    2016-01-01

    Nanoparticles present tremendous differences in adsorption kinetics compared with corresponding bulk particles which have great influences on the applications of nanoparticles. A size-dependent adsorption kinetic theory was proposed, the relations between adsorption kinetic parameters, respectively, and particle size of nano-adsorbent were derived theoretically, and the influence mechanism of particle size on the adsorption kinetic parameters was discussed. In experiment, nanoscale magnesium oxide (nano-MgO) with different diameters between 11.5 and 41.4 nm with narrow size distribution and low agglomeration were prepared, and the kinetic parameters of adsorption of benzene on nano-MgO in aqueous solution were obtained. Then the influence regularities of the particle size on the adsorption kinetic parameters were obtained. The experimental results are consistent with the nano-adsorption kinetic theory. With particle size decreasing, the adsorption rate constant increases; the adsorption activation energy and the adsorption pre-exponential factor decrease. Furthermore, the logarithm of adsorption rate constant, the adsorption activation energy, and the logarithm of adsorption pre-exponential factor are linearly related to the reciprocal of particle diameter, respectively. The mechanism of particle size influence on the kinetic parameters is that the activation energy is influenced by the molar surface enthalpy of nano-adsorbent, the pre-exponential factor by the molar surface entropy, and the rate constant by both the molar surface enthalpy and the molar surface entropy

  18. Rb2Na(NO33: A Congruently Melting UV-NLO Crystal with a Very Strong Second-Harmonic Generation Response

    Directory of Open Access Journals (Sweden)

    Guohong Zou

    2016-04-01

    Full Text Available Crystals of congruently melting noncentrosymmetric (NCS mixed alkali metal nitrate, Rb2Na(NO33, have been grown through solid state reactions. The material possesses layers with NaO8 hexagonal bipyramids and NO3 triangular units. Rb+ cations are residing in the interlayer space. Each NaO8 hexagonal bipyramid shares its corners and edges with two and three NO3 units, respectively, in order to fulfill a highly dense stacking in the unit cell. The NaO8 groups share their six oxygen atoms in equatorial positions with three different NO3 groups to generate a NaO6-NO3 layer with a parallel alignment. The optimized arrangement of the NO3 groups and their high density in the structure together produce a strong second-harmonic generation (SHG response. Powder SHG measurements indicate that Rb2Na(NO33 has a strong SHG efficiency of five times that of KH2PO4 (KDP and is type I phase-matchable. The calculated average nonlinear optical (NLO susceptibility of Rb2Na(NO33 turns out to be the largest value among the NLO materials composed of only [NO3]− anion. In addition, Rb2Na(NO33 exhibits a wide transparency region ranging from UV to near IR, which suggests that the compound is a promising NLO material.

  19. Quantum Dot/Liquid Crystal Nanocomposites in Photonic Devices

    Directory of Open Access Journals (Sweden)

    Andrea L. Rodarte

    2015-07-01

    Full Text Available Quantum dot/liquid crystal nano-composites are promising new materials for a variety of applications in energy harvesting, displays and photonics including the liquid crystal laser. To realize many applications, however, we need to control and stabilize nano-particle dispersion in different liquid crystal host phases and understand how the particles behave in an anisotropic fluid. An ideal system will allow for the controlled assembly of either well-defined nano-particle clusters or a uniform particle distribution. In this paper, we investigate mesogen-functionalized quantum dots for dispersion in cholesteric liquid crystal. These nanoparticles are known to assemble into dense stable packings in the nematic phase, and such structures, when localized in the liquid crystal defects, can potentially enhance the coupling between particles and a cholesteric cavity. Controlling the dispersion and assembly of quantum dots using mesogenic surface ligands, we demonstrate how resonant fluid photonic cavities can result from the co-assembly of luminescent nanoparticles in the presence of cholesteric liquid crystalline ordering.

  20. Effect of Specimen Thickness on the Creep Response of a Single Crystal Superalloy (Preprint)

    Science.gov (United States)

    2012-01-01

    uncoated specimens of René N5 single crystal super - alloy at a test temperature of 980◦C. In their work coated samples showed higher thickness debit...using a field emission gun (FEI Nova 230) scanning electron microscope (FEGSEM) in order to determine the local texture and microstructural changes, if...shows the presence of damage such as micro-cracks. The internal crack shown in Fig. 7a probably depicts the inter-linkage of big shrinkage pores and

  1. Crystallization kinetics of a-Se, part 4: thin films

    Science.gov (United States)

    Svoboda, Roman; Gutwirth, Jan; Málek, Jiří

    2014-09-01

    Differential scanning calorimetry was used to study the crystallization behaviour of selenium thin films in dependence on film thickness and deposition rate. In the current work, which is the fourth in a sequence of articles dealing with crystallization kinetics of a-Se, the non-isothermal crystallization kinetics was described in terms of the Johnson-Mehl-Avrami nucleation-growth model. Two-dimensional crystallite growth, consistent with the idea of sterically restricted crystallization in a thin layer, was confirmed for all data. It was found that neither the film thickness (tested within the 100-2350 nm range) nor the deposition rate appears to have any significant influence on the crystallization kinetics. However, the higher amount of intrinsic defects possibly produced by a higher deposition rate seems to accelerate the crystallization, shifting it towards lower temperatures. Very good correlation between the results obtained for thin films and those for fine powders was found. Based on the obtained results, interpretations of relevant literature data were made.

  2. Electromagnetic and thermal properties of three-dimensional printed multilayered nano-carbon/poly(lactic) acid structures

    International Nuclear Information System (INIS)

    Paddubskaya, A.; Valynets, N.; Batrakov, K.; Kuzhir, P.; Maksimenko, S.; Kotsilkova, R.; Velichkova, H.; Petrova, I.; Biró, I.; Kertész, K.; Márk, G. I.; Horváth, Z. E.; Biró, L. P.

    2016-01-01

    A new type of light-weight material produced by 3D printing consisting of nano-carbon doped polymer layer followed by a dielectric polymer layer is proposed. We performed temperature dependent characterization and measured the electromagnetic (EM) response of the samples in the GHz and THz range. The temperature dependent structural characteristics, crystallization, and melting were observed to be strongly affected by the presence and the number of nano-carbon doped layers in the sandwich structure. The electromagnetic measurements show a great potential of such a type of periodic material for electromagnetic compatibility applications in microwave frequency range. Sandwich structures containing only two nano-carbon layers already become not transparent to the microwaves, giving an electromagnetic interference shielding efficiency at the level of 8–15 dB. A sandwich consisting of one nano-carbon doped and one polymer layer is opaque for THz radiation, because of 80% of absorption. These studies serve as a basis for design and realization of specific optimal geometries of meta-surface type with the 3D printing technique, in order to reach a high level of electromagnetic interference shielding performance for real world EM cloaking and EM ecology applications.

  3. Electromagnetic and thermal properties of three-dimensional printed multilayered nano-carbon/poly(lactic) acid structures

    Energy Technology Data Exchange (ETDEWEB)

    Paddubskaya, A. [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, 220030 Minsk (Belarus); Center for Physical Sciences and Technology, A. Goštauto 11, LT-01108 Vilnius (Lithuania); Valynets, N.; Batrakov, K. [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, 220030 Minsk (Belarus); Kuzhir, P., E-mail: polina.kuzhir@gmail.com; Maksimenko, S. [Research Institute for Nuclear Problems, Belarusian State University, Bobruiskaya Str. 11, 220030 Minsk (Belarus); Tomsk State University, Tomsk 634050 (Russian Federation); Kotsilkova, R.; Velichkova, H.; Petrova, I. [Open Laboratory on Experimental Micro and Nano Mechanics, Institute of Mechanics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 4, Sofia (Bulgaria); Biró, I. [3D Wishes, Bíró u. 44/a/2, Érd (Hungary); Kertész, K.; Márk, G. I.; Horváth, Z. E.; Biró, L. P. [Institute of Technical Physics and Materials Science, Centre for Energy Research, PO Box 49, 1525 Budapest (Hungary)

    2016-04-07

    A new type of light-weight material produced by 3D printing consisting of nano-carbon doped polymer layer followed by a dielectric polymer layer is proposed. We performed temperature dependent characterization and measured the electromagnetic (EM) response of the samples in the GHz and THz range. The temperature dependent structural characteristics, crystallization, and melting were observed to be strongly affected by the presence and the number of nano-carbon doped layers in the sandwich structure. The electromagnetic measurements show a great potential of such a type of periodic material for electromagnetic compatibility applications in microwave frequency range. Sandwich structures containing only two nano-carbon layers already become not transparent to the microwaves, giving an electromagnetic interference shielding efficiency at the level of 8–15 dB. A sandwich consisting of one nano-carbon doped and one polymer layer is opaque for THz radiation, because of 80% of absorption. These studies serve as a basis for design and realization of specific optimal geometries of meta-surface type with the 3D printing technique, in order to reach a high level of electromagnetic interference shielding performance for real world EM cloaking and EM ecology applications.

  4. Results on the Coherent Interaction of High Energy Electrons and Photons in Oriented Single Crystals

    CERN Document Server

    Apyan, A.; Badelek, B.; Ballestrero, S.; Biino, C.; Birol, I.; Cenci, P.; Connell, S.H.; Eichblatt, S.; Fonseca, T.; Freund, A.; Gorini, B.; Groess, R.; Ispirian, K.; Ketel, T.J.; Kononets, Yu.V.; Lopez, A.; Mangiarotti, A.; van Rens, B.; Sellschop, J.P.F.; Shieh, M.; Sona, P.; Strakhovenko, V.; Uggerhoj, E.; Uggerhj, Ulrik Ingerslev; Unel, G.; Velasco, M.; Vilakazi, Z.Z.; Wessely, O.; Kononets, Yu.V.

    2005-01-01

    The CERN-NA-59 experiment examined a wide range of electromagnetic processes for multi-GeV electrons and photons interacting with oriented single crystals. The various types of crystals and their orientations were used for producing photon beams and for converting and measuring their polarisation. The radiation emitted by 178 GeV unpolarised electrons incident on a 1.5 cm thick Si crystal oriented in the Coherent Bremsstrahlung (CB) and the String-of-Strings (SOS) modes was used to obtain multi-GeV linearly polarised photon beams. A new crystal polarimetry technique was established for measuring the linear polarisation of the photon beam. The polarimeter is based on the dependence of the Coherent Pair Production (CPP) cross section in oriented single crystals on the direction of the photon polarisation with respect to the crystal plane. Both a 1 mm thick single crystal of Germanium and a 4 mm thick multi-tile set of synthetic Diamond crystals were used as analyzers of the linear polarisation. A birefringence ...

  5. Image quality dependence on thickness of sliced rat kidney taken by a simplest DEI construction

    International Nuclear Information System (INIS)

    Li Gang; Chen Zhihua; Wu Ziyu; Ando, M.; Pan Lin; Wang, J.Y.; Jiang, X.M.

    2005-01-01

    The excised rat kidney slices were investigated using a simplified diffraction-enhanced imaging (DEI) configuration with only two crystals: the first one working as monochromator and the second one working as analyzer in the Bragg geometry that was developed at Beijing Synchrotron Radiation Facility (BSRF). Many fine anatomic structures of the sliced rat kidneys with thickness of 2mm and 120μm can be distinguished clearly in the DEI images that were obtained at the shoulder of a rocking curve. The authors would like to emphasize that the thick and thin slices DEI provides very different images; in the thick sample only the structure with the big density gradient or that near the surface where X-ray comes out can be distinguished, while in the thin ones some fine structures, which can not be distinguished at the thick sample under the same condition, can be seen very clearly. The reason related with the counteraction of δ(x,y,z) gradient in the integral process along the X-ray path inside the thick sample is discussed

  6. Image quality dependence on thickness of sliced rat kidney taken by a simplest DEI construction

    Energy Technology Data Exchange (ETDEWEB)

    Li Gang [Institute of High Energy Physics, Chinese Academy of Science, Yuquan Rd. No 19, Beijing 100039 (China)]. E-mail: lig@ihep.ac.cn; Chen Zhihua [China-Japan Friendship Institute of Clinical Medical Science, Yinghua Rd., Beijing 100029 (China); Wu Ziyu [Institute of High Energy Physics, Chinese Academy of Science, Yuquan Rd. No 19, Beijing 100039 (China); Ando, M. [Photon Factory, KEK, Oho 1-1, Tsukuba, Ibaraki 305-0801 (Japan); Pan Lin [China-Japan Friendship Institute of Clinical Medical Science, Yinghua Rd., Beijing 100029 (China); Wang, J.Y. [Institute of High Energy Physics, Chinese Academy of Science, Yuquan Rd. No 19, Beijing 100039 (China); Jiang, X.M. [Institute of High Energy Physics, Chinese Academy of Science, Yuquan Rd. No 19, Beijing 100039 (China)

    2005-08-11

    The excised rat kidney slices were investigated using a simplified diffraction-enhanced imaging (DEI) configuration with only two crystals: the first one working as monochromator and the second one working as analyzer in the Bragg geometry that was developed at Beijing Synchrotron Radiation Facility (BSRF). Many fine anatomic structures of the sliced rat kidneys with thickness of 2mm and 120{mu}m can be distinguished clearly in the DEI images that were obtained at the shoulder of a rocking curve. The authors would like to emphasize that the thick and thin slices DEI provides very different images; in the thick sample only the structure with the big density gradient or that near the surface where X-ray comes out can be distinguished, while in the thin ones some fine structures, which can not be distinguished at the thick sample under the same condition, can be seen very clearly. The reason related with the counteraction of {delta}(x,y,z) gradient in the integral process along the X-ray path inside the thick sample is discussed.

  7. Thickness-dependent enhancement of damping in C o2FeAl /β -Ta thin films

    Science.gov (United States)

    Akansel, Serkan; Kumar, Ankit; Behera, Nilamani; Husain, Sajid; Brucas, Rimantas; Chaudhary, Sujeet; Svedlindh, Peter

    2018-04-01

    In the present work C o2FeAl (CFA) thin films were deposited by ion beam sputtering on Si (100) substrates at the optimized deposition temperature of 300 °C. A series of CFA films with different thicknesses (tCFA), 8, 10, 12, 14, 16, 18, and 20 nm, were prepared and all samples were capped with a 5-nm-thick β-Ta layer. The thickness-dependent static and dynamic properties of the films were studied by SQUID magnetometry, in-plane as well as out-of-plane broadband vector network analyzer-ferromagnetic resonance (FMR) measurements, and angle-dependent cavity FMR measurements. The saturation magnetization and the coercive field were found to be weakly thickness dependent and lie in the range 900-950 kA/m and 0.53-0.87 kA/m, respectively. The effective damping parameter (αeff) extracted from in-plane and out-of-plane FMR results reveals a 1/tCFA dependence, the values for the in-plane αeff being larger due to two-magnon scattering (TMS). The origin of the αeff thickness dependence is spin pumping into the nonmagnetic β-Ta layer and in the case of the in-plane αeff, also a thickness-dependent TMS contribution. From the out-of-plane FMR results, it was possible to disentangle the different contributions to αeff and to the extract values for the intrinsic Gilbert damping (αG) and the effective spin-mixing conductance (geff↑↓) of the CFA/ β-Ta interface, yielding αG=(1.1 ±0.2 ) ×10-3 and geff↑↓=(2.90 ±0.10 ) ×1019m-2 .

  8. Temperature dependence of photonic crystals based on thermoresponsive magnetic fluids

    International Nuclear Information System (INIS)

    Pu Shengli; Bai Xuekun; Wang Lunwei

    2011-01-01

    The influence mechanisms of temperature on the band gap properties of the magnetic fluids based photonic crystals are elaborated. A method has been developed to obtain the temperature-dependent structure information (A sol /A) from the existing experimental data and then two critical parameters, i.e. the structure ratio (d/a) and the refractive index contrast (Δn) of the magnetic fluids photonic crystals are deduced for band diagram calculations. The temperature-dependent band gaps are gained for z-even and z-odd modes. Band diagram calculations display that the mid frequencies and positions of the existing forbidden bands are not very sensitive to the temperature, while the number of the forbidden bands at certain strengths of magnetic field may change with the temperature variation. The results presented in this work give a guideline for designing the potential photonic devices based on the temperature characteristics of the magnetic fluids based photonic crystals and are helpful for improving their quality. - Highlights: → Mechanisms of temperature dependence of magnetic fluids based photonic crystals are elaborated. → Properties of existing forbidden bands have relatively fine temperature stability. → Disappearance of existing forbidden band is found for some magnetic fields. → Emergence of new forbidden band with temperature is found for some magnetic fields.

  9. Advances in optoplasmonic sensors – combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles

    Directory of Open Access Journals (Sweden)

    Xavier Jolly

    2018-01-01

    Full Text Available Nanophotonic device building blocks, such as optical nano/microcavities and plasmonic nanostructures, lie at the forefront of sensing and spectrometry of trace biological and chemical substances. A new class of nanophotonic architecture has emerged by combining optically resonant dielectric nano/microcavities with plasmonically resonant metal nanostructures to enable detection at the nanoscale with extraordinary sensitivity. Initial demonstrations include single-molecule detection and even single-ion sensing. The coupled photonic-plasmonic resonator system promises a leap forward in the nanoscale analysis of physical, chemical, and biological entities. These optoplasmonic sensor structures could be the centrepiece of miniaturised analytical laboratories, on a chip, with detection capabilities that are beyond the current state of the art. In this paper, we review this burgeoning field of optoplasmonic biosensors. We first focus on the state of the art in nanoplasmonic sensor structures, high quality factor optical microcavities, and photonic crystals separately before proceeding to an outline of the most recent advances in hybrid sensor systems. We discuss the physics of this modality in brief and each of its underlying parts, then the prospects as well as challenges when integrating dielectric nano/microcavities with metal nanostructures. In Section 5, we hint to possible future applications of optoplasmonic sensing platforms which offer many degrees of freedom towards biomedical diagnostics at the level of single molecules.

  10. Adsorption of polyethylene glycol (PEG) onto cellulose nano-crystals to improve its dispersity.

    Science.gov (United States)

    Cheng, Dong; Wen, Yangbing; Wang, Lijuan; An, Xingye; Zhu, Xuhai; Ni, Yonghao

    2015-06-05

    In this work, the adsorption of polyethylene glycol (PEG) onto cellulose nano-crystals (CNC) was investigated for preparing re-dispersible dried CNC. Results showed that the re-dispersity of CNC in water can be significantly enhanced using a PEG1000 dosage of 5wt% (based on the dry weight of CNC). The elemental analysis confirmed the adsorption of PEG onto the CNC surface. Transmission electron microscopy (TEM) was used to characterize the dry powder and indicated that the irreversible agglomeration of CNC after drying was essentially eliminated based on the PEG adsorption concept. Thermo-gravimetric analysis (TGA) and X-ray diffraction (XRD) suggested that CNC crystallinity and thermal stability were not affected by the adsorption of PEG. Thus, the adsorption of PEG has great potential for producing re-dispersible powder CNC. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Kinetics of sub-spinodal dewetting of thin films of thickness dependent viscosity.

    Science.gov (United States)

    Kotni, Tirumala Rao; Khanna, Rajesh; Sarkar, Jayati

    2017-05-04

    An alternative explanation of the time varying and very low growth exponents in dewetting of polymer films like polystyrene films is presented based on non-linear simulations. The kinetics of these films is explored within the framework of experimentally observed thickness dependent viscosity. These films exhibit sub-spinodal dewetting via formation of satellite holes in between primary dewetted holes under favorable conditions of excess intermolecular forces and film thicknesses. We find that conditions responsible for sub-spinodal dewetting concurrently lead to remarkable changes in the kinetics of dewetting of even primary holes. For example, the radius of the hole grows in time with a power-law growth exponent sequence of [Formula: see text], in contrast to the usual  ∼4/5. This is due to the cumulative effect of reduced rim mobility due to thickness dependent viscosity and hindrance created by satellite holes.

  12. Crystallization of silicon films of submicron thickness by blue-multi-laser-diode annealing

    Energy Technology Data Exchange (ETDEWEB)

    Mugiraneza, Jean de Dieu; Shirai, Katsuya; Suzuki, Toshiharu; Okada, Tatsuya; Noguchi, Takashi [University of the Ryukyus, Okinawa (Japan); Matsushima, Hideki; Hashimoto, Takao; Ogino, Yoshiaki; Sahota, Eiji [Hitachi Computer Peripherals Co. Ltd, Kanagawa (Japan)

    2012-01-15

    Blue-Multi-Laser-Diode Annealing (BLDA) was performed in the continuous wave (CW) mode on Si films as thick as 0.5 {mu}m and 1 {mu}m deposited by rf sputtering. As a result of controlling the laser power from 4.0 to 4.8 W, a whole Si layer of 0.5 {mu}m in thickness was completely crystallized and consisted of a columnar structure of fine grains beneath a partially melted Si surface owing to the high temperature gradient along the depth in the Si layer. After additional hydrogenation in a furnace ambient, the ratio of the photo/dark current under AM 1.5 illumination distinctly improved to 6 times higher than that of as-deposited condition. The BLDA is expected to be applied to thin-film solar cells and/or to thin film transistor (TFT) photo-sensor systems on panels as a new low-temperature poly-silicon (LTPS) fabrication technique.

  13. Macrodefect-free, large, and thick GaN bulk crystals for high-quality 2–6 in. GaN substrates by hydride vapor phase epitaxy with hardness control

    Science.gov (United States)

    Fujikura, Hajime; Konno, Taichiro; Suzuki, Takayuki; Kitamura, Toshio; Fujimoto, Tetsuji; Yoshida, Takehiro

    2018-06-01

    On the basis of a novel crystal hardness control, we successfully realized macrodefect-free, large (2–6 in.) and thick +c-oriented GaN bulk crystals by hydride vapor phase epitaxy. Without the hardness control, the introduction of macrodefects including inversion domains and/or basal-plane dislocations seemed to be indispensable to avoid crystal fracture in GaN growth with millimeter thickness. However, the presence of these macrodefects tended to limit the applicability of the GaN substrate to practical devices. The present technology markedly increased the GaN crystal hardness from below 20 to 22 GPa, thus increasing the available growth thickness from below 1 mm to over 6 mm even without macrodefect introduction. The 2 and 4 in. GaN wafers fabricated from these crystals had extremely low dislocation densities in the low- to mid-105 cm‑2 range and low off-angle variations (2 in.: <0.1° 4 in.: ∼0.2°). The realization of such high-quality 6 in. wafers is also expected.

  14. Charge distribution dependency on gap thickness of CMS endcap RPC

    CERN Document Server

    Park, Sung Keun

    2016-01-01

    We present a systematic study of charge distribution dependency of CMS Resistive Plate Chamber (RPC) on gap thickness.Prototypes of double-gap with five different gap thickness from 1.8mm to 1.0mm in 0.2mm steps have been built with 2mm thick phenolic high-pressure-laminated (HPL) plates. The charges of cosmic-muon signals induced on the detector strips are measured as a function of time using two four-channel 400-MHz fresh ADCs. In addition, the arrival time of the muons and the strip cluster sizes are measured by digitizing the signal using a 32-channel voltage-mode front-end-electronics and a 400-MHz 64-channel multi-hit TDC. The gain and the input impedance of the front-end-electronics were 200mV/mV and 20 Ohm, respectively.

  15. Rapid thermal melted TiO2 nano-particles into ZnO nano-rod and its application for dye sensitized solar cells

    International Nuclear Information System (INIS)

    Chao, Ching-Hsun; Chang, Chi-Lung; Chan, Chien-Hung; Lien, Shui-Yang; Weng, Ko-Wei; Yao, Kuo-Shan

    2010-01-01

    TiO 2 nano-particles with an anchored ZnO nano-rod structure were synthesized using the hydrothermal method to grow ZnO nano-rods and coated TiO 2 nano-particles on ZnO nano-rods using the rapid thermal annealing method on ITO conducting glass pre-coated with nano porous TiO 2 film. The XRD study showed that there was little difference in crystal composition for various types of TiO 2 nano-particles anchored to ZnO nano-rods. The as-prepared architecture was characterized using field-emission scanning electron microscopy (FE-SEM). Films with TiO 2 nano-particles anchored to ZnO nano-rods were used as electrode materials to fabricate dye sensitized solar cells (DSSCs). The best solar energy conversion efficiency of 2.397% was obtained by modified electrode material, under AM 1.5 illumination, achieved up to J sc = 15.382 mA/cm 2 , V oc = 0.479 V and fill factor = 32.8%.

  16. The Electronic Properties and L3 XANES of Au and Nano-Au

    International Nuclear Information System (INIS)

    Yiu, Y.M.; Zhang, P.; Sham, T.K.

    2004-01-01

    The electronic properties of Au crystal and nano Au have been investigated by theory and experiment. Molecularly capped nano-Au was synthesized using the two-phase method. Au nano-particles have been characterized by X-Ray Diffraction (XRD) and Transmission Electron Microscopy (TEM). They retain the fcc crystal structure. Their sizes have been determined to be in a range from 5.5 nm to 1.7 nm. The L3 X-ray Absorption Near Edge Structure (XANES) of nano-Au and Au foil have been recorded using synchrotron radiation, and examined by theoretical calculation based on the first principles. Both theory and experiment show that the nano-Au particles have essentially all the Au L3 XANES features of bulk Au in the near edge region with less pronounced resonance peaks. It is also shown that nano Au exhibits lower 4f binding energy than bulk Au in good agreement with quantum confined Au systems reported previously.

  17. Numerical modeling of the thickness dependence of zinc die-cast materials

    Science.gov (United States)

    Page, Maria Angeles Martinez; Ruf, Matthias; Hartmann, Stefan

    2017-11-01

    Zinc die casting alloys show varying material properties over the thickness in their final solid state, which causes a change in the mechanical response for specimens with different thicknesses. In this article, we propose a modeling concept to account for the varying porosity in the constitutive modeling. The material properties are effectively incorporated by combining a partial differential equation describing the distribution of the pores by a structural parameter with the Mori-Tanaka approach for linear elasticity. The distribution of the porosity is determined by polished cut images, for which the procedure is explained in detail. Finite element simulations of the coupled system incorporating the thickness dependence show the applicability of this approach.

  18. Self-assembled hybrid materials based on conjugated polymers and semiconductors nano-crystals for plastic solar cells; Architectures hybrides auto-assemblees a base de systemes polyconjugues et de nanocristaux de semi-conducteurs pour le photovoltaique plastique

    Energy Technology Data Exchange (ETDEWEB)

    Girolamo, J. de

    2007-11-15

    This work is devoted to the elaboration of self-assembled hybrid materials based on poly(3- hexyl-thiophene) and CdSe nano-crystals for photovoltaic applications. For that, complementary molecular recognition units were introduced as side chain groups on the polymer and at the nano-crystals' surface. Diamino-pyrimidine groups were introduced by post-functionalization of a precursor copolymer, namely poly(3-hexyl-thiophene-co-3- bromo-hexyl-thiophene) whereas thymine groups were introduced at the nano-crystals' surface by a ligand exchange reaction with 1-(6-mercapto-hexyl)thymine. However, due to their different solubility, the mixing of the two components by solution processes is difficult. A 'one-pot' procedure was developed, but this method led to insoluble aggregates without control of the hybrid composition. To overcome the solubility problem, the layer-by-layer method was used to prepare the films. This method allows a precise control of the deposition process. Experimental parameters were tested in order to evaluate their impact on the resulting film. The films morphology was investigated by microscopy and X-Ray diffraction techniques. These analyses reveal an interpenetrated structure of nano-crystals within the polymer matrix rather than a multilayered structure. Electrochemical and spectro electrochemical studies were performed on the hybrid material deposited by the LBL process. Finally the materials were tested in a solar cell configuration and the I=f(V) curves reveals a clear photovoltaic behaviour. (author)

  19. Synthesis and structural characterization of nano-hydroxyapatite biomaterials prepared by microwave processing

    Science.gov (United States)

    Ramli, Rosmamuhamadani; Arawi, Ainaa Zafirah Omar; Talari, Mahesh Kumar; Mahat, Mohd Muzamir; Jais, Umi Sarah

    2012-07-01

    Synthetic hydroxyapatite, (HA, Ca10(PO4)6(OH)2), is an attractive and widely utilized bio-ceramic material for orthopedic and dental implants because of its close resemblance of native tooth and bone crystal structure. Synthetic HA exhibits excellent osteoconductive properties. Osteoconductivity means the ability to provide the appropriate scaffold or template for bone formation. Calcium phosphate biomaterials [(HA), tri-calcium phosphate (TCP) and biphasic calcium phosphate (HA/TCP)] with appropriate three-dimensional geometry are able to bind and concentrate endogenous bone morphogenetic proteins in circulation, and may become osteoinductive and can be effective carriers of bone cell seeds. This HA can be used in bio-implants as well as drug delivery application due to the unique properties of HA. Biomaterials synthesized from the natural species like mussel shells have additional benefits such as high purity, less expensive and high bio compatibility. In this project, HA-nanoparticles of different crystallite size were prepared by microwave synthesis of precursors. High purity CaO was extracted from the natural mussel shells for the synthesis of nano HA. Dried nano HA powders were analyzed using X-Ray Diffraction (XRD) technique for the determination of crystal structure and impurity content. Scanning Electron Microscopic (SEM) investigation was employed for the morphological investigation of nano HA powders. From the results obtained, it was concluded that by altering the irradiation time, nano HA powders of different crystallite sizes and morphologies could be produced. Crystallite sizes calculated from the XRD patterns are found to be in the range of 10-55 nm depending on the irradiation time.

  20. Nano-fibrin stabilized CaSO4 crystals incorporated injectable chitin composite hydrogel for enhanced angiogenesis & osteogenesis.

    Science.gov (United States)

    Arun Kumar, R; Sivashanmugam, A; Deepthi, S; Bumgardner, Joel D; Nair, Shantikumar V; Jayakumar, R

    2016-04-20

    Calcium sulfate (CaSO4), an excellent biodegradable bone forming agent that is an ideal choice as additive in gels, however, its disadvantage being poor gel rheology and angiogenesis. Here, we have synthesized chitin-CaSO4-nano-fibrin based injectable gel system which shows improved rheology and angiogenic potential. Rheological studies showed that the composite gel was a shear thinning gel with elastic modulus of 15.4±0.275kPa; a 1.67 fold increase over chitin control. SEM and XRD analyses revealed the effect of nano-fibrin (nFibrin) in transforming CaSO4 crystal shape from needle to hexagonal. It also masked the retarding effect of CaSO4 towards in vitro early cell attachment and angiogenesis using rabbit adipose derived mesenchymal stem cells (rASCs) and HUVECs, respectively. rASCs osteogenesis was confirmed by spectrophotometric endpoint assay, which showed 6-fold early increase in alkaline phosphatase levels and immuno-cytochemistry analysis. These in vitro results highlight the potential of injectable chitin-CaSO4-nFibrin gel for osteo-regeneration via enhanced angiogenesis. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. Direct growth of self-crystallized graphene and graphite nanoballs with Ni vapor-assisted growth: from controllable growth to material characterization.

    Science.gov (United States)

    Yen, Wen-Chun; Chen, Yu-Ze; Yeh, Chao-Hui; He, Jr-Hau; Chiu, Po-Wen; Chueh, Yu-Lun

    2014-05-09

    A directly self-crystallized graphene layer with transfer-free process on arbitrary insulator by Ni vapor-assisted growth at growth temperatures between 950 to 1100 °C via conventional chemical vapor deposition (CVD) system was developed and demonstrated. Domain sizes of graphene were confirmed by Raman spectra from ~12 nm at growth temperature of 1000 °C to ~32 nm at growth temperature of 1100 °C, respectively. Furthermore, the thickness of the graphene is controllable, depending on deposition time and growth temperature. By increasing growth pressure, the growth of graphite nano-balls was preferred rather than graphene growth. The detailed formation mechanisms of graphene and graphite nanoballs were proposed and investigated in detail. Optical and electrical properties of graphene layer were measured. The direct growth of the carbon-based materials with free of the transfer process provides a promising application at nanoelectronics.

  2. Out-of-plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nano-flakes

    KAUST Repository

    Zhou, Yu

    2017-08-25

    Piezoelectric and ferroelectric properties in the two dimensional (2D) limit are highly desired for nanoelectronic, electromechanical, and optoelectronic applications. Here we report the first experimental evidence of out-of-plane piezoelectricity and ferroelectricity in van der Waals layered α-In2Se3 nano-flakes. The non-centrosymmetric R3m symmetry of the α-In2Se3 samples is confirmed by scanning transmission electron microscopy, second-harmonic generation, and Raman spectroscopy measurements. Domains with opposite polarizations are visualized by piezo-response force microscopy. Single-point poling experiments suggest that the polarization is potentially switchable for α-In2Se3 nano-flakes with thicknesses down to ~ 10 nm. The piezotronic effect is demonstrated in two-terminal devices, where the Schottky barrier can be modulated by the strain-induced piezopotential. Our work on polar α-In2Se3, one of the model 2D piezoelectrics and ferroelectrics with simple crystal structures, shows its great potential in electronic and photonic applications.

  3. Out-of-plane Piezoelectricity and Ferroelectricity in Layered α-In2Se3 Nano-flakes

    KAUST Repository

    Zhou, Yu; Wu, Di; Zhu, Yihan; Cho, Yujin; He, Qing; Yang, Xiao; Herrera, Kevin; Chu, Zhaodong; Han, Yu; Downer, Mike; Peng, Hailin; Lai, Keji

    2017-01-01

    Piezoelectric and ferroelectric properties in the two dimensional (2D) limit are highly desired for nanoelectronic, electromechanical, and optoelectronic applications. Here we report the first experimental evidence of out-of-plane piezoelectricity and ferroelectricity in van der Waals layered α-In2Se3 nano-flakes. The non-centrosymmetric R3m symmetry of the α-In2Se3 samples is confirmed by scanning transmission electron microscopy, second-harmonic generation, and Raman spectroscopy measurements. Domains with opposite polarizations are visualized by piezo-response force microscopy. Single-point poling experiments suggest that the polarization is potentially switchable for α-In2Se3 nano-flakes with thicknesses down to ~ 10 nm. The piezotronic effect is demonstrated in two-terminal devices, where the Schottky barrier can be modulated by the strain-induced piezopotential. Our work on polar α-In2Se3, one of the model 2D piezoelectrics and ferroelectrics with simple crystal structures, shows its great potential in electronic and photonic applications.

  4. LITERATURE SURVEY FOR FRACTIONAL CRYSTALLIZATION STUDY

    International Nuclear Information System (INIS)

    PERSON, J.C.

    2004-01-01

    The literature survey for the fractional crystallization study of material from tank 241-S-112 is completed, fulfilling the requirements of the Test Plan for Tank 241-S-112 Fractional Crystallization Study (Herting 2003). Crystallization involves the formation of one or more solid phases from a fluid phase or an amorphous solid phase. It is applied extensively in the chemical industry, both as a purification process and a separation process. The main advantage of crystallization over distillation is the production of substances with a very high purity, at a low level of energy consumption, and at relatively mild process conditions. Crystallization is one of the older operations in the chemical industry; therefore, practical experience can usually be used for the design and operation of industrial crystallizers. In addition, advances in the understanding of crystallization kinetics can be useful in the control, design, and scale-up of industrial crystallizers. Research work is currently underway; e.g., the CrysCODE (Crystallizer Control and Design) project, littu://www.aui.tudelft.nl/uroiect/Cn/scode/crvscode.htm, at the Delft University of Technology, with the goal of improving the performance and controllability of industrial crystallizers by means of better control and improved design methodologies. Recent developments in fluid dynamics and reactor technology (e.g., compartment approaches) have led to a better understanding of processes and scale-up phenomena. The ultimate aim of such research is to develop a knowledge-based design frame for optimization of industrial crystallization units. Development work is in progress on a rigorous design analysis model for the description of the crystallization process as a function of the reactor geometry, crystallization kinetics, and operating conditions. One modeling effort is aimed at improving the predictive crystallizer model by implementing a population balance equation that depends on two variables: the size and

  5. Nano-sized magnetic instabilities in Fe/NiO/Fe(001) epitaxial thin films

    Energy Technology Data Exchange (ETDEWEB)

    Brambilla, A [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy); Biagioni, P [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy); Rougemaille, N [National Center for Electron Microscopy, Lawrence Berkeley National Lab, Berkeley, CA 94720 (United States); Schmid, A K [National Center for Electron Microscopy, Lawrence Berkeley National Lab, Berkeley, CA 94720 (United States); Lanzara, A [Department of Physics, University of California at Berkeley, Berkeley, CA 94720 (United States); Duo, L [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy); Ciccacci, F [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy); Finazzi, M [Dipartimento di Fisica-Politecnico di Milano, P.za Leonardo da Vinci 32, 20133 Milan (Italy)

    2006-10-25

    We report on a magnetic imaging study of the Fe/NiO/Fe(001) trilayer structure, by means of X-ray photoemission electron microscopy (XPEEM) and spin-polarised low-energy electron microscopy (SPLEEM). Two different magnetic couplings between the Fe layers are observed depending on the NiO thickness being greater or smaller than a critical value. Very small magnetic domains and domain walls are observed in the top Fe layer. They are dramatically smaller than those observed in the Fe substrate, and have a convoluted topology. Furthermore they seem to be unstable with respect to an applied magnetic field for any NiO thickness except that corresponding to the transition between the different coupling regimes. The phenomenology of such magnetic nano-structures and the dependence of the magnetic behaviour of the layered structure on the NiO spacer thickness are discussed on the basis of the experimental results and of state-of-the-art theoretical models.

  6. Nano-sized magnetic instabilities in Fe/NiO/Fe(001) epitaxial thin films

    International Nuclear Information System (INIS)

    Brambilla, A.; Biagioni, P.; Rougemaille, N.; Schmid, A.K.; Lanzara, A.; Duo, L.; Ciccacci, F.; Finazzi, M.

    2006-01-01

    We report on a magnetic imaging study of the Fe/NiO/Fe(001) trilayer structure, by means of X-ray photoemission electron microscopy (XPEEM) and spin-polarised low-energy electron microscopy (SPLEEM). Two different magnetic couplings between the Fe layers are observed depending on the NiO thickness being greater or smaller than a critical value. Very small magnetic domains and domain walls are observed in the top Fe layer. They are dramatically smaller than those observed in the Fe substrate, and have a convoluted topology. Furthermore they seem to be unstable with respect to an applied magnetic field for any NiO thickness except that corresponding to the transition between the different coupling regimes. The phenomenology of such magnetic nano-structures and the dependence of the magnetic behaviour of the layered structure on the NiO spacer thickness are discussed on the basis of the experimental results and of state-of-the-art theoretical models

  7. A study of manufacturing tubes with nano/ultrafine grain structure by stagger spinning

    International Nuclear Information System (INIS)

    Xia, Qinxiang; Xiao, Gangfeng; Long, Hui; Cheng, Xiuquan; Yang, Baojian

    2014-01-01

    Highlights: • Proposing a method of manufacturing tubes with nano/ultrafine crystal. • Obtaining the refined ferritic grains with an size of 500 nm after stagger spinning. • Obtaining the equiaxial ferritic grains with an size of 600 nm after annealing. - Abstract: A new method of manufacturing tubes with nano/ultrafine grain structure by stagger spinning and recrystallization annealing is proposed in this study. Two methods of the stagger spinning process are developed, the corresponding macroforming quality, microstructural evolution and mechanical properties of the spun tubes made of ASTM 1020 steel are analysed. The results reveal that a good surface smoothness and an improved spin-formability of spun parts can be obtained by the process combining of 3-pass spinning followed by a 580 °C × 0.5 h static recrystallization and 2-pass spinning with a 580 °C × 1 h static recrystallization annealing under the severe thinning ratio of wall thickness reduction. The ferritic grains with an average initial size of 50 μm are refined to 500 nm after stagger spinning under the 87% thinning ratio of wall thickness reduction. The equiaxial ferritic grains with an average size of 600 nm are generated through re-nucleation and grain growth by subsequent recrystallization annealing at 580 °C for 1 h heat preservation. The tensile strength of spun tubes has been founded to be proportional to the reciprocal of layer spacing of pearlite (LSP), and the elongation is inversely proportional to the reciprocal of LSP. This study shows that the developed method of stagger power spinning has the potential to be used to manufacture bulk metal components with nano/ultrafine grain structure

  8. Intermediate layer thickness dependence on switching field distribution in perpendicular recording media

    International Nuclear Information System (INIS)

    Sbiaa, R.; Gandhi, R.; Srinivasan, K.; Piramanayagam, S.N.; Seoh, R.M.

    2009-01-01

    The effect of intermediate layer (IL) thickness on crystallographic texture and magnetic properties of CoCrPtSiO 2 granular perpendicular recording media was investigated with switching field distribution (SFD) as the focus. Even though the c-axis orientation of the Co-based recording layer (RL) broadens with the reduction of IL thickness, the SFD becomes narrower. This result demonstrates that the intrinsic SFD is not directly dependent on c-axis orientation of the recording layer but instead dependent on the magnitude of exchange coupling. It is thus possible to have a medium with thin IL and narrow SFD. This is desirable for bit-patterned media (BPM), where highly exchange-coupled grains are required.

  9. Thermal transport in phononic crystals: The role of zone folding effect

    Science.gov (United States)

    Dechaumphai, Edward; Chen, Renkun

    2012-04-01

    Recent experiments [Yu et al., Nature Nanotech 5, 718 (2010); Tang et al., Nano Lett. 10, 4279 (2010); Hopkins etal., Nano Lett. 11, 107(2011)] on silicon based nanoscale phononic crystals demonstrated substantially reduced thermal conductivity compared to bulk Si, which cannot be explained by incoherent phonon boundary scattering within the Boltzmann Transport Equation (BTE). In this paper, partial coherent treatment of phonons, where phonons are regarded as either wave or particles depending on their frequencies, was considered. Phonons with mean free path smaller than the characteristic size of phononic crystals are treated as particles and the transport in this regime is modeled by BTE with phonon boundary scattering taken into account. On the other hand, phonons with mean free path longer than the characteristic size are treated as waves. In this regime, phonon dispersion relations are computed using the Finite Difference Time Domain (FDTD) method and are found to be modified due to the zone folding effect. The new phonon spectra are then used to compute phonon group velocity and density of states for thermal conductivity modeling. Our partial coherent model agrees well with the recent experimental results on in-plane thermal conductivity of phononic crystals. Our study highlights the importance of zone folding effect on thermal transport in phononic crystals.

  10. Raster-scanning serial protein crystallography using micro- and nano-focused synchrotron beams

    Energy Technology Data Exchange (ETDEWEB)

    Coquelle, Nicolas [Université Grenoble Alpes, IBS, 38044 Grenoble (France); CNRS, IBS, 38044 Grenoble (France); CEA, IBS, 38044 Grenoble (France); Brewster, Aaron S. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Kapp, Ulrike; Shilova, Anastasya; Weinhausen, Britta [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France); Burghammer, Manfred, E-mail: burgham@esrf.fr [European Synchrotron Radiation Facility, BP 220, 38043 Grenoble (France); Ghent University, Ghent B-9000 (Belgium); Colletier, Jacques-Philippe, E-mail: burgham@esrf.fr [Université Grenoble Alpes, IBS, 38044 Grenoble (France); CNRS, IBS, 38044 Grenoble (France); CEA, IBS, 38044 Grenoble (France)

    2015-05-01

    A raster scanning serial protein crystallography approach is presented, that consumes as low ∼200–700 nl of sedimented crystals. New serial data pre-analysis software, NanoPeakCell, is introduced. High-resolution structural information was obtained from lysozyme microcrystals (20 µm in the largest dimension) using raster-scanning serial protein crystallography on micro- and nano-focused beamlines at the ESRF. Data were collected at room temperature (RT) from crystals sandwiched between two silicon nitride wafers, thereby preventing their drying, while limiting background scattering and sample consumption. In order to identify crystal hits, new multi-processing and GUI-driven Python-based pre-analysis software was developed, named NanoPeakCell, that was able to read data from a variety of crystallographic image formats. Further data processing was carried out using CrystFEL, and the resultant structures were refined to 1.7 Å resolution. The data demonstrate the feasibility of RT raster-scanning serial micro- and nano-protein crystallography at synchrotrons and validate it as an alternative approach for the collection of high-resolution structural data from micro-sized crystals. Advantages of the proposed approach are its thriftiness, its handling-free nature, the reduced amount of sample required, the adjustable hit rate, the high indexing rate and the minimization of background scattering.

  11. Influence of cutting parameters on the depth of subsurface deformed layer in nano-cutting process of single crystal copper.

    Science.gov (United States)

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Su, Hao; Wang, Zhiguo; Xie, Wenkun

    2015-12-01

    Large-scale molecular dynamics simulation is performed to study the nano-cutting process of single crystal copper realized by single-point diamond cutting tool in this paper. The centro-symmetry parameter is adopted to characterize the subsurface deformed layers and the distribution and evolution of the subsurface defect structures. Three-dimensional visualization and measurement technology are used to measure the depth of the subsurface deformed layers. The influence of cutting speed, cutting depth, cutting direction, and crystallographic orientation on the depth of subsurface deformed layers is systematically investigated. The results show that a lot of defect structures are formed in the subsurface of workpiece during nano-cutting process, for instance, stair-rod dislocations, stacking fault tetrahedron, atomic clusters, vacancy defects, point defects. In the process of nano-cutting, the depth of subsurface deformed layers increases with the cutting distance at the beginning, then decreases at stable cutting process, and basically remains unchanged when the cutting distance reaches up to 24 nm. The depth of subsurface deformed layers decreases with the increase in cutting speed between 50 and 300 m/s. The depth of subsurface deformed layer increases with cutting depth, proportionally, and basically remains unchanged when the cutting depth reaches over 6 nm.

  12. Probing the formation of silicon nano-crystals (Si-ncs) using variable energy positron annihilation spectroscopy

    Science.gov (United States)

    Knights, A. P.; Bradley, J. D. B.; Hulko, O.; Stevanovic, D. V.; Edwards, C. J.; Kallis, A.; Coleman, P. G.; Crowe, I. F.; Halsall, M. P.; Gwilliam, R. M.

    2011-01-01

    We describe preliminary results from studies of the formation of silicon nano-crystals (Si-ncs) embedded in stoichiometric, thermally grown SiO2 using Variable Energy Positron Annihilation Spectroscopy (VEPAS). We show that the VEPAS technique is able to monitor the introduction of structural damage. In SiO2 through the high dose Si+ ion implantation required to introduce excess silicon as a precursor to Si-nc formation. VEPAS is also able to characterize the rate of the removal of this damage with high temperature annealing, showing strong correlation with photoluminescence. Finally, VEPAS is shown to be able to selectively probe the interface between Si-ncs and the host oxide. Introduction of hydrogen at these interfaces suppresses the trapping of positrons at the interfaces.

  13. Morphological characterization of tungsten trioxide nano powders synthesized by Sol-Gel modified Pechini's method

    International Nuclear Information System (INIS)

    Ghasemi, Leila; Jafari, Hassan

    2017-01-01

    Sol-gel modified Pechini's method was used to prepare WO 3 nano powders using dicarboxylic acid and polyethylene glycol as the chelating agent and polymeric source, respectively. WO 3 powders were first prepared by calcination of resin precursor at 550 deg C under various initial concentrations of metal ion (12.5-50 mmol), acid (125-500 mmol), a complexing agent (32-262 mmol), and polyethylene glycol (1-16.5 mmol) in the air atmosphere. The products were characterized using X-ray powder diffraction, field emission scanning electron microscopy, and energy dispersive spectroscopy. The results revealed that the WO 3 nano powders prepared with different amounts of chelating agent and polyethylene glycol, crystallized in monoclinic phase. The nano powders were impurity-free due to the presence of the complexing agent and polyethylene glycol as carbon sources. Morphological evolution indicated that the nano powders evolved from rod-like to regular and spherical shapes, depending on complexing agent and polyethylene glycol amounts. Nano powders with an average particle size of approximately 58 nm and a narrow size distribution were obtained. (author)

  14. Morphological characterization of tungsten trioxide nano powders synthesized by Sol-Gel modified Pechini's method

    Energy Technology Data Exchange (ETDEWEB)

    Ghasemi, Leila; Jafari, Hassan, E-mail: jafari_h@yahoo.com [Department of Materials Engineering, Faculty of Mechanical Engineering, Shahid Rajaee Teacher Training University, Tehran (Iran, Islamic Republic of)

    2017-11-15

    Sol-gel modified Pechini's method was used to prepare WO{sub 3} nano powders using dicarboxylic acid and polyethylene glycol as the chelating agent and polymeric source, respectively. WO{sub 3} powders were first prepared by calcination of resin precursor at 550 deg C under various initial concentrations of metal ion (12.5-50 mmol), acid (125-500 mmol), a complexing agent (32-262 mmol), and polyethylene glycol (1-16.5 mmol) in the air atmosphere. The products were characterized using X-ray powder diffraction, field emission scanning electron microscopy, and energy dispersive spectroscopy. The results revealed that the WO{sub 3} nano powders prepared with different amounts of chelating agent and polyethylene glycol, crystallized in monoclinic phase. The nano powders were impurity-free due to the presence of the complexing agent and polyethylene glycol as carbon sources. Morphological evolution indicated that the nano powders evolved from rod-like to regular and spherical shapes, depending on complexing agent and polyethylene glycol amounts. Nano powders with an average particle size of approximately 58 nm and a narrow size distribution were obtained. (author)

  15. Improvement of the thickness distribution of a quartz crystal wafer by numerically controlled plasma chemical vaporization machining

    International Nuclear Information System (INIS)

    Shibahara, Masafumi; Yamamura, Kazuya; Sano, Yasuhisa; Sugiyama, Tsuyoshi; Endo, Katsuyoshi; Mori, Yuzo

    2005-01-01

    To improve the thickness uniformity of thin quartz crystal wafer, a new machining process that utilizes an atmospheric pressure plasma was developed. In an atmospheric pressure plasma process, since the kinetic energy of ions that impinge to the wafer surface is small and the density of the reactive species is large, high-efficiency machining without damage is realized, and the thickness distribution is corrected by numerically controlled scanning of the quartz wafer to the localized high-density plasma. By using our developed machining process, the thickness distribution of an AT cut wafer was improved from 174 nm [peak to valley (p-v)] to 67 nm (p-v) within 94 s. Since there are no unwanted spurious modes in the machined quartz wafer, it was proved that the developed machining method has a high machining efficiency without any damage

  16. Model for thickness dependence of radiation charging in MOS structures

    Science.gov (United States)

    Viswanathan, C. R.; Maserjian, J.

    1976-01-01

    The model considers charge buildup in MOS structures due to hole trapping in the oxide and the creation of sheet charge at the silicon interface. The contribution of hole trapping causes the flatband voltage to increase with thickness in a manner in which square and cube dependences are limiting cases. Experimental measurements on samples covering a 200 - 1000 A range of oxide thickness are consistent with the model, using independently obtained values of hole-trapping parameters. An important finding of our experimental results is that a negative interface charge contribution due to surface states created during irradiation compensates most of the positive charge in the oxide at flatband. The tendency of the surface states to 'track' the positive charge buildup in the oxide, for all thicknesses, applies both in creation during irradiation and in annihilation during annealing. An explanation is proposed based on the common defect origin of hole traps and potential surface states.

  17. Study of unexplained hard photon production by electrons channelled in a crystal

    CERN Multimedia

    2002-01-01

    Our preceding experiment (NA33) designed to study the pair creation process in the interaction of high energy $\\gamma$ with a crystal in alignment conditions had revealed the existence of an unexpected peak in the radiation of 150 GeV e$^{-}$ beam for E$_{\\gamma}$/E$_{e^{-}} \\simeq$ 0.85 incident along the axis of a 185 $\\mu$m. Ge crystal and the photon multiplicity for the peak events has been measured to be M $\\simeq$ 5.7.\\\\ In NA42, in a 76 $\\mu$m crystal of the same crystallographic quality, the peak nearly disappears, and the photon multiplicity at x = 0.85 is only M $\\simeq$ 2.0. \\\\ The thickness dependence of the effect shows that the extrapolated multiplicity in the peak in a very thin crystal tends to unity. The high energy radiation peak emitted by axially channeled electrons in a thick crystal is then interpreted by the radiation cooling mechanism. \\\\ The extrapolation to zero thickness of these results will allow us to extract from the data the single $\\gamma$ radiation spectrum. The comparison o...

  18. Synthesis of nano-sized PbSe from octeno-1,2,3-selenadiazole

    International Nuclear Information System (INIS)

    Khanna, P.K.; Singh, Narendra; Charan, Shobhit; Viswanath, A.K.; Patil, K.R.

    2007-01-01

    Reaction between trioctylphosphine selenide (TOPSe), generated from an organo-selenium compound, i.e. octeno-1,2,3-selenadiazole in tri-octylphosphine (TOP), and lead acetate has resulted formation of PbSe nano-crystals (cubes). TOPSe generated from the current method is first of its kind approach and is a novel concept. Characteristic absorption bands between 1.8-2.1 μm in near infra-red spectrum (NIR) are observed from sonicated PbSe crystals. X-ray diffraction (XRD) pattern revealed rock-salt crystal structure of PbSe with crystallite size of less than 10 nm. Observations made by scanning electron microscopy (SEM) revealed well-defined particles of the cubical crystals. XPS analysis showed that nano-crystals of PbSe were prone to air-oxidation due to 'not-so-efficient' capping

  19. Orientation and thickness dependence of magnetization at the interfacesof highly spin-polarized manganite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Chopdekar, Rajesh V.; Arenholz, Elke; Suzuki, Y.

    2008-08-18

    We have probed the nature of magnetism at the surface of (001), (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films. The spin polarization of La{sub 0.7}Sr{sub 0.3}MnO{sub 3} thin films is not intrinsically suppressed at all surfaces and interfaces but is highly sensitive to both the epitaxial strain state as well as the substrate orientation. Through the use of soft x-ray spectroscopy, the magnetic properties of (001), (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interfaces have been investigated and compared to bulk magnetometry and resistivity measurements. The magnetization of (110) and (111)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interfaces are more bulk-like as a function of thickness whereas the magnetization at the (001)-oriented La{sub 0.7}Sr{sub 0.3}MnO{sub 3}/SrTiO{sub 3} interface is suppressed significantly below a layer thickness of 20 nm. Such findings are correlated with the biaxial strain state of the La{sub 0.7}Sr{sub 0.3}MnO{sub 3} films; for a given film thickness it is the tetragonal distortion of (001) La{sub 0.7}Sr{sub 0.3}MnO{sub 3} that severely impacts the magnetization, whereas the trigonal distortion for (111)-oriented films and monoclinic distortion for (110)-oriented films have less of an impact. These observations provide evidence that surface magnetization and thus spin polarization depends strongly on the crystal surface orientation as well as epitaxial strain.

  20. Dependence of thermal conductivity in micro to nano silica

    Indian Academy of Sciences (India)

    This work presents the measurement of thermal conductivity of nano-silica particles using needle probe method. The validation test of thermal probe was conducted on ice and THF hydrates using our experimental set up and the results are satisfactory when compared with the literature data. The nano silica used in this ...

  1. Stress-induced formation mechanism of stacking fault tetrahedra in nano-cutting of single crystal copper

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Quanlong [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Bai, Qingshun [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Chen, Jiaxuan, E-mail: wangquanlong0@hit.edu.cn [Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Guo, Yongbo [Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xie, Wenkun [School of Mechatronics Engineering, Harbin Institute of Technology, Harbin 150001 (China); Center for Precision Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2015-11-15

    Graphical abstract: In this paper, molecular dynamics simulation is performed to study the distribution of dislocation defects and local atomic crystal structure of single crystal copper. The stress distribution is investigated which is calculated by virial stress and analyzed by static pressure. The results are shown in (a)–(d). It is indicated that the compressive stress mainly spreads over the shear-slip zone, and the tensile stress is consisted in flank friction zone, shown in (a). The high tensile stress in subsurface is the source of stress, shown in (b). By the driven action of the stress source, the initial stair-rod dislocation nucleates. Then the dislocation climbs along four {1 1 1} planes under the stress driven action, shown in (d). Finally, the SFT is formed by the interaction of the compressive stress and the tensile stress which come from the shear-slip zone and friction zone, respectively. Besides, stair-rod dislocation, stacking faults and dislocation loop are also nucleated in the subsurface, shown in (c). Dislocation distribution, local atomic crystal structure state and stress-induced formation process of SFT by atomic. - Highlights: • A novel defect structure “stress-induced stacking fault tetrahedra” is revealed. • Atomic structural evolution and stress state distribution of the SFT are studied. • The stress-induced formation mechanism of the SFT is proposed. - Abstract: Stacking fault tetrahedra commonly existed in subsurface of deformed face center cubic metals, has great influence on machining precision and surface roughness in nano-cutting. Here we report, a stacking fault tetrahedra is formed in subsurface of workpiece during nano-cutting. The variation of cutting force and subsurface defects distribution are studied by using molecular dynamics simulation. The stress distribution is investigated which is calculated by virial stress and analyzed by static compression. The result shows that the cutting force has a rapidly

  2. Stress-induced formation mechanism of stacking fault tetrahedra in nano-cutting of single crystal copper

    International Nuclear Information System (INIS)

    Wang, Quanlong; Bai, Qingshun; Chen, Jiaxuan; Guo, Yongbo; Xie, Wenkun

    2015-01-01

    Graphical abstract: In this paper, molecular dynamics simulation is performed to study the distribution of dislocation defects and local atomic crystal structure of single crystal copper. The stress distribution is investigated which is calculated by virial stress and analyzed by static pressure. The results are shown in (a)–(d). It is indicated that the compressive stress mainly spreads over the shear-slip zone, and the tensile stress is consisted in flank friction zone, shown in (a). The high tensile stress in subsurface is the source of stress, shown in (b). By the driven action of the stress source, the initial stair-rod dislocation nucleates. Then the dislocation climbs along four {1 1 1} planes under the stress driven action, shown in (d). Finally, the SFT is formed by the interaction of the compressive stress and the tensile stress which come from the shear-slip zone and friction zone, respectively. Besides, stair-rod dislocation, stacking faults and dislocation loop are also nucleated in the subsurface, shown in (c). Dislocation distribution, local atomic crystal structure state and stress-induced formation process of SFT by atomic. - Highlights: • A novel defect structure “stress-induced stacking fault tetrahedra” is revealed. • Atomic structural evolution and stress state distribution of the SFT are studied. • The stress-induced formation mechanism of the SFT is proposed. - Abstract: Stacking fault tetrahedra commonly existed in subsurface of deformed face center cubic metals, has great influence on machining precision and surface roughness in nano-cutting. Here we report, a stacking fault tetrahedra is formed in subsurface of workpiece during nano-cutting. The variation of cutting force and subsurface defects distribution are studied by using molecular dynamics simulation. The stress distribution is investigated which is calculated by virial stress and analyzed by static compression. The result shows that the cutting force has a rapidly

  3. Heat treatment and thickness-dependent electrical study of Se{sub 50}Te{sub 20}S{sub 30} thin film

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Elrahman, M.I.; Hafiz, M.M.; Qasem, Ammar; Abdel-Rahim, M.A. [Assiut University, Physics Department, Faculty of Science, Assiut (Egypt)

    2016-08-15

    Chalcogenide Se{sub 50}Te{sub 20}S{sub 30} thin film of different thickness was deposited using thermal evaporation technique. The thermogram of the chalcogenide bulk Se{sub 50}Te{sub 20}S{sub 30} was obtained using a differential scanning calorimetry (DSC) with heating rate of 7.5 K/min. The glass transition temperature T{sub g}, crystallization temperature T{sub c} and peak crystallization temperature T{sub p} were identified. The X-ray diffraction (XRD) examination indicates the amorphous nature of the as-deposited film and polycrystalline structure of the thermal annealed ones. The dark electrical resistivity (ρ) measurements were taken in temperature range (300-500 K) and thickness range (200-450 nm). Analysis of the electrical resistivity results revealed two types of conduction mechanisms: conduction due to extended states in the temperature range (T > T{sub c}) and variable range hopping in the temperature range (T < T{sub c}). The effect of the heat treatment and thickness on the density of localized states at the Fermi level N(E{sub F}) and hopping parameters were studied. (orig.)

  4. Study on the coherence degree of magnetization reversal in Permalloy single-domain nano-ellipses

    Energy Technology Data Exchange (ETDEWEB)

    Júnior, D.S. Vieira [Departamento Acadêmico de Matemática, Física, e Estatística, Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais – Campus Rio Pomba, Rio Pomba, Minas Gerais 36180-000 (Brazil); Leonel, S.A. [Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-330 (Brazil); Toscano, D., E-mail: danilotoscano@fisica.ufjf.br [Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-330 (Brazil); Sato, F.; Coura, P.Z.; Dias, R.A. [Departamento de Física, Laboratório de Simulação Computacional, Universidade Federal de Juiz de Fora, Juiz de Fora, Minas Gerais 36036-330 (Brazil)

    2017-03-15

    Numerical simulations have been performed to study the magnetization reversal in Permalloy nano-ellipses, under combined in-plane magnetic fields along the longitudinal and the transverse directions. We have considered nano-ellipses with two different aspect ratios and five thicknesses: 220×80×t nm{sup 3} and 70×50×t nm{sup 3}, where t ranging from 5 to 25 nm in steps of 5 nm. We found that the mechanism of magnetization reversal is not only dependent on the parameters of the magnetic field pulse but also related to the ellipse dimensions. It is known that the reversal time is related to the mechanism behind the magnetization reversal. In particular, ultrafast magnetization reversals occur by coherent rotation, when applying a field oriented mainly perpendicular to the initial magnetization. In order to evaluate the degree of coherence of the magnetization reversal we have introduced a quantity called “coherence index”. Besides complementing the previous studies by including the effect of the thickness on the magnetization reversal, our results indicate that it is possible to obtain magnetization reversals with high degree of coherence in small nano-ellipses by adjusting the geometric factors of the ellipse and the parameters of the magnetic field pulse simultaneously. - Highlights: • Magnetization reversals in single-domain nano-ellipses were investigated. • A parameter to evaluate the degree of coherence of the magnetization reversal was proposed. • A higher coherence index indicates a complete, coherent, rotation of the magnetization.

  5. Experimental observation of energy dependence of saturation thickness of multiply scattered gamma photons

    International Nuclear Information System (INIS)

    Singh, Manpreet; Singh, Gurvinderjit; Singh, Bhajan; Sandhu, B.S.

    2008-01-01

    The gamma photons continue to soften in energy as the number of scatterings increases in the target having finite dimensions both in depth and lateral dimensions. The number of multiply scattered photons increases with an increase in target thickness, and saturates at a particular value of the target thickness known as saturation thickness (depth). The present measurements are carried out to study the energy dependence of saturation thickness of multiply scattered gamma photons from targets of various thicknesses. The scattered photons are detected by a properly shielded NaI(Tl) gamma ray detector placed at 90 deg. to the incident beam. We observe that the saturation thickness increases with increasing incident gamma photon energy. Monte Carlo calculations based upon the package developed by Bauer and Pattison [Compton scattering experiments at the HMI (1981), HMI-B 364, pp. 1-106] support the present experimental results

  6. Determination of the Temperature Dependence of Heat Capacity for Some Molecular Crystals of Nitro Compounds

    Science.gov (United States)

    Kovalev, Yu. M.; Kuropatenko, V. F.

    2018-05-01

    An analysis of the existing approximations used for describing the dependence of heat capacity at a constant volume on the temperature of a molecular crystal has been carried out. It is shown that the considered Debye and Einstein approximations do not enable one to adequately describe the dependence of heat capacity at a constant volume on the temperature of the molecular crystals of nitro compounds. This inference requires the development of special approximations that would describe both low-frequency and high-frequency parts of the vibrational spectra of molecular crystals. This work presents a universal dependence allowing one to describe the dependence of heat capacity at a constant volume on temperature for a number of molecular crystals of nitro compounds.

  7. NanoFIBrication of a two-dimensional phononic crystal in a free standing membrane.

    Energy Technology Data Exchange (ETDEWEB)

    Leseman, Zayd C. (University of New Mexico, Albuquerque, NM); Goettler, Drew F. (University of New Mexico, Albuquerque, NM); Su, Mehmet F. (University of New Mexico, Albuquerque, NM); El-Kady, Ihab Fathy; Olsson, Roy H., III

    2010-06-01

    A two-dimensional phononic crystal (PnC) that can operate in the GHz range is created in a freestanding silicon substrate using NanoFIBrication (using a focused ion beam (FIB) to fabricate nanostructures). First, a simple cubic 6.75 x 6.75 ?m array of vias with 150 nm spacing is generated. After patterning the vias, they are backfilled with void-free tungsten scatterers. Each via has a diameter of 48 nm. Numerical calculations predict this 2D PnC will generate a band gap near 22 GHz. A protective layer of chromium on top of the thin (100 nm) silicon membrane confines the surface damage to the chromium, which can be removed at a later time. Inspection of the underside of the membrane shows the vias flaring out at the exit, which we are dubbing the 'trumpet effect'. The trumpet effect is explained by modeling the lateral damage in a freestanding membrane.

  8. Investigation of the channeling of light ions through gold crystals having thicknesses of several hundreds of angstroms from 0.5 to 2 MeV

    International Nuclear Information System (INIS)

    Poizat, J.C.; Remillieux, J.

    A technique to obtain a few hundred A thick self-supporting gold crystal is described. These crystals have been used to perform three channeling experiments with 0.5 to 2 MeV light ions: i) The wide angle scattering probability as a function of the distance from the crystal surface was studied for a beam of particles incident in planar and axial directions. ii) The influence of channeling on the light emission from crystal-excited atomic beams was investigated. iii) A strong channeling effect was found on the probability of transmission of a molecular beam of H 2 + ions through a thin crystal

  9. Investigation of optical properties and electronic transitions in bulk and nano-microribbons of molybdenum trioxide

    International Nuclear Information System (INIS)

    Lupan, O; Mishra, Y K; Adelung, R; Trofim, V; Cretu, V; Stamov, I; Syrbu, N N; Tiginyanu, I

    2014-01-01

    In this work, we report on crystalline quality and optical characteristics of molybdenum trioxide (MoO 3 ) bulk and nano-microribbons grown by rapid thermal oxidation (RTO). The developed RTO procedure allows one to synthesize highly crystalline (α-phase) bulk and nano-microribbons of MoO 3 . For R–Γ indirect transitions in bulk single crystals of MoO 3 , it has been found that the width of the bandgap along the E‖c polarization, associated with transitions R v1 –Γ c1 , is lower than the width of the band gap in polarization E ⊥ c, associated with transitions R v2 –Γ c2 . This result is indicative of splitting of the absorption edge due to α-MoO 3 structural anisotropy. Studies of the polarization dependence of the absorption in nano-microribbons (d ≈ 15–500 nm) demonstrated that the energy gap corresponding to R v1 –X c1 (E‖c) transition is smaller than that of R v2 –X c2 (E ⊥ c) transition. Similar dependence has been found for the R–Y indirect transitions. The results of the investigation of the reflectance spectra in the energy range from 3 to 6 eV are shown. By using the Kramers–Kronig method, the optical functions were derived from the reflection spectra of nano-microribbons, and the polarization dependence of direct energy transitions at the point R in the Brillouin zone are determined. The alternation in splitting caused by polarization of the absorption edge related to indirect transitions due to polarization opens new prospects for the design and fabricating interesting optoelectronic devices based on α-MoO 3 bulk and nano-microribbons with characteristics dependent on the polarization of light waves. (paper)

  10. Synthesis of Silica Nanoparticles by Sol-Gel: Size-Dependent Properties, Surface Modification, and Applications in Silica-Polymer Nano composites-A Review

    International Nuclear Information System (INIS)

    Ismail, A.R.; Vejayakumaran, P.

    2012-01-01

    Application of silica nanoparticles as fillers in the preparation of nano composite of polymers has drawn much attention, due to the increased demand for new materials with improved thermal, mechanical, physical, and chemical properties. Recent developments in the synthesis of monodispersed, narrow-size distribution of nanoparticles by sol-gel method provide significant boost to development of silica-polymer nano composites. This paper is written by emphasizing on the synthesis of silica nanoparticles, characterization on size-dependent properties, and surface modification for the preparation of homogeneous nano composites, generally by sol-gel technique. The effect of nano silica on the properties of various types of silica-polymer composites is also summarized.

  11. Monte Carlo simulations of magnetic and thermodynamic properties for different nanostructure geometries

    Energy Technology Data Exchange (ETDEWEB)

    Konstantinova, Elena, E-mail: elena.konst@ifsudestemg.edu.br; Sales, José Antonio de

    2014-10-01

    Creation of magnetic nanodevices leads, in particular, to a growing interest in theoretical investigation of different types of magnetic nanostructures. The purpose of our work is to consider how the properties of such nanomaterials depend on their geometry and on the crystal structure. We report on the Monte Carlo simulation of magnetic nanostructures of different geometric forms, which are based on simple cubic and body-centered cubic cells. The magnetization of spin, magnetic susceptibility and specific heat are investigated for nano-disks, nano-bars and nano-balls of different magnitudes. The combination of dipole and Heisenberg-model interaction are considered for the ferromagnetic case. It is shown that magnetic and thermodynamic properties of nanostructures strongly depend on their geometry. The structures with a body-centered cubic unit cell manifest stronger dependence on size and geometric form. In this case one can interpret the results as an effective reduction of dimension from 3D to 2D for decreasing size of the compound. - Highlights: • Thermodynamic properties of nano-balls are dependent on their size. • Magnetic properties of nano-bars depend on their thickness. • The hysteresis loop is dependent on the geometry of the nanostructure.

  12. High transmittance optical films based on quantum dot doped nanoscale polymer dispersed liquid crystals

    Science.gov (United States)

    Gandhi, Sahil Sandesh; Chien, Liang-Chy

    2016-04-01

    We propose a simple way to fabricate highly transparent nanoscale polymer dispersed liquid crystal (nano-PDLC) films between glass substrates and investigate their incident angle dependent optical transmittance properties with both collimated and Lambertian intensity distribution light sources. We also demonstrate that doping nano-PDLC films with 0.1% InP/ZnS core/shell quantum dots (QD) results in a higher optical transmittance. This work lays the foundation for such nanostructured composites to potentially serve as roll-to-roll coatable light extraction or brightness enhancement films in emissive display applications, superior to complex nanocorrugation techniques proposed in the past.

  13. Method of producing nano-scaled inorganic platelets

    Science.gov (United States)

    Zhamu, Aruna; Jang, Bor Z.

    2012-11-13

    The present invention provides a method of exfoliating a layered material (e.g., transition metal dichalcogenide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites.

  14. Characterization on the coatings of Ni-base alloy with nano- and micron-size Sm{sub 2}O{sub 3} addition prepared by laser deposition

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Shihong [School of Materials Science and Engineering, Anhui University of Technology, Maanshan City, Anhui Province 243002 (China); School of Nano and Advanced Materials Engineering, Changwon National University, 9, Sarim-Dong, Changwon, Gyeongnam 641-773 (Korea, Republic of)], E-mail: zsh10110903@hotmail.com; Li Mingxi [School of Materials Science and Engineering, Anhui University of Technology, Maanshan City, Anhui Province 243002 (China); Yoon, Jae Hong; Cho, Tong Yul [School of Nano and Advanced Materials Engineering, Changwon National University, 9, Sarim-Dong, Changwon, Gyeongnam 641-773 (Korea, Republic of)

    2008-12-01

    The coating materials are the powder mixture of micron-size Ni-base alloy powders with both 1.5 wt.% micron-size and nano-size Sm{sub 2}O{sub 3} powders, which are prepared on Q235 steel plate by 2.0 kW CO{sub 2} laser deposition. The results indicate that with rare earth oxide Sm{sub 2}O{sub 3} addition, the width of planar crystallization is smaller than that of the Ni-base alloy coatings. Micron- and nano-Sm{sub 2}O{sub 3}/Ni-base alloy coatings have similar microstructure showing the primary phase of {gamma}-Ni dendrite and eutectic containing {gamma}-Ni and Cr{sub 23}C{sub 6} phases. However, compared to micron-Sm{sub 2}O{sub 3}/Ni-base alloy, preferred orientation of {gamma}-Ni dendrite of nano-Sm{sub 2}O{sub 3}/Ni-base alloy is weakened. Planar crystal of several-{mu}m thickness is first grown and then dendrite growth is observed at 1.5% micron-Sm{sub 2}O{sub 3}/Ni-base alloy coating whereas equiaxed dendrite is grown at 1.5% nano-Sm{sub 2}O{sub 3}/Ni-base alloy coating. Hardness and wear resistance of the coating improves with decreasing Sm{sub 2}O{sub 3} size from micron to nano. The improvement on tribological property of nano-Sm{sub 2}O{sub 3}/Ni-base alloy over micron-Sm{sub 2}O{sub 3}/Ni-base alloy coatings can be attributed to the better resistance of equiaxed dendrite to adhesion interactions during the wear process. In 6 M HNO{sub 3} solution, the corrosion resistance is greatly improved with nano-Sm{sub 2}O{sub 3} addition since the decrease of corrosion ratio along grain-boundary in nano-Sm{sub 2}O{sub 3}/Ni-base alloy coating contributes to harmonization of corrosion potential.

  15. Dependence of magnetization on crystal fields and exchange interactions in magnetite

    Energy Technology Data Exchange (ETDEWEB)

    Ouaissa, Mohamed, E-mail: m.ouaissa@yahoo.fr [Laboratoire de Génie Physique et Environnement, Faculté des Sciences, Université Ibn Tofail, Campus Universitaire BP 133, Kénitra 14000 (Morocco); Benyoussef, Abdelilah [Laboratory of Magnetism and Physics of High Energy, Faculty of Science, Mohammed V-Agdal University, Rabat (Morocco); Abo, Gavin S. [Department of Electrical and Computer Engineering and MINT Center, The University of Alabama, Tuscaloosa, AL 35487 (United States); Ouaissa, Samia; Hafid, Mustapha [Laboratoire de Génie Physique et Environnement, Faculté des Sciences, Université Ibn Tofail, Campus Universitaire BP 133, Kénitra 14000 (Morocco); Belaiche, Mohammed [Laboratoire de Magnétisme, Matériaux Magnétiques, Microonde et Céramique, Ecole Normale Supérieure, Université Mohammed V-Agdal, B.P. 9235, Océan, Rabat (Morocco)

    2015-11-15

    In this work, we study the magnetization of magnetite (Fe{sub 3}O{sub 4}) with different exchange interactions and crystal fields using variational method based on the Bogoliubov inequality for the Gibbs free energy within the mean field theory. The magnetic behavior was investigated in the absence and presence of crystal fields. The investigations also revealed that the transition temperature depends on the crystal fields of the octahedral and tetrahedral sites. Magnetite exhibits ferrimagnetic phase with second order transition to paramagnetic phase at 850 K. This result is confirmed using the mean field theory within the Heisenberg model. Important factors that can affect the magnetic behavior of the system are exchange interactions and crystal field. Indeed, a new magnetic behavior was observed depending on these parameters. A first order phase transition from ferrimagnetic to ferromagnetic was found at low temperature, and a second order transition from ferromagnetic to paramagnetic was observed at high temperature. - Highlights: • Magnetization of magnetite versus temperature was studied by mean field theory. • The critical temperature of magnetite (Fe{sub 3}O{sub 4}) was approximately obtained. • Effect of sublattice crystal fields on the magnetization of Fe{sub 3}O{sub 4} was investigated.

  16. Direct growth of self-crystallized graphene and graphite nanoballs with Ni vapor-assisted growth: From controllable growth to material characterization

    Science.gov (United States)

    Yen, Wen-Chun; Chen, Yu-Ze; Yeh, Chao-Hui; He, Jr-Hau; Chiu, Po-Wen; Chueh, Yu-Lun

    2014-01-01

    A directly self-crystallized graphene layer with transfer-free process on arbitrary insulator by Ni vapor-assisted growth at growth temperatures between 950 to 1100°C via conventional chemical vapor deposition (CVD) system was developed and demonstrated. Domain sizes of graphene were confirmed by Raman spectra from ~12 nm at growth temperature of 1000°C to ~32 nm at growth temperature of 1100°C, respectively. Furthermore, the thickness of the graphene is controllable, depending on deposition time and growth temperature. By increasing growth pressure, the growth of graphite nano-balls was preferred rather than graphene growth. The detailed formation mechanisms of graphene and graphite nanoballs were proposed and investigated in detail. Optical and electrical properties of graphene layer were measured. The direct growth of the carbon-based materials with free of the transfer process provides a promising application at nanoelectronics. PMID:24810224

  17. Size dependence of non-magnetic thickness in YIG nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Niyaifar, M., E-mail: md.niyaifar@gmail.com; Mohammadpour, H.; Dorafshani, M.; Hasanpour, A.

    2016-07-01

    This study is focused on particle size dependence of structural and magnetic properties in yttrium iron garnet (Y{sub 3}Fe{sub 5}O{sub 12}) nanoparticles. A series of YIG samples with different particle size were produced by varying the annealing temperatures. The X-ray analysis revealed an inverse correlation between lattice parameter and the crystallite size. The normal distribution is used for fitting the particles size distribution which is extracted from scanning electron micrographs. Also, by using the results of vibrating sample magnetometer, the magnetic diameter was calculated based on Langevin model in order to investigate the variation of dead layer thickness. Furthermore, the observed line broadening in Mössbauer spectra confirmed the increase of non-magnetic thickness due to the reduction of particle size. - Highlights: • Pure phase Y{sub 3}Fe{sub 5}O{sub 12} nanoparticles are fabricated in different particle size by a thermal treatment. • The size effect on magnetic properties is studied with a core/shell (magnetic/nonmagnetic) model. • The logarithmic variation of (dead layer thickness)/(particle size) ratio with the particle size is investigated. • The results of Mossbauer are explained based on the correlation between lattice constant and particle size variation.

  18. H2 uptake in the Li-dispersed silica nano-tubes

    International Nuclear Information System (INIS)

    Jin Bae Lee; Soon Chang Lee; Sang Moon Lee; Hae Jin Kim

    2006-01-01

    Highly ordered Li-dispersed silica nano-tubes were prepared by sol-gel template method for hydrogen storage. Isolated Li-dispersed silica nano-tubes can be easily obtained by removing the AAO template with 2M NaOH. From the XRD study, the Li-dispersed silica nano-tubes showed the amorphous phase with silica frameworks. The uniform length and diameter of Li-dispersed silica nano-tubes could be examined with the electron microscopy studies. The wall thickness and diameter of nano-tubes are about 50-60 nm and 200-400 nm, respectively. The obtained Li-dispersed silica nano-tubes have the hydrogen adsorption capacity 2.25 wt% at 77 K under 47 atm. (authors)

  19. Evaluation of dose dependent antimicrobial activity of self-assembled chitosan, nano silver and chitosan-nano silver composite against several pathogens.

    Science.gov (United States)

    Tareq, Foysal Kabir; Fayzunnesa, Mst; Kabir, Md Shahariar; Nuzat, Musrat

    2018-01-01

    The aim of this investigation to preparation of silver nanoparticles organized chitosan nano polymer, which effective against microbial and pathogens, when apply to liquid medium and edible food products surface, will rescue the growth of microbes. Self-assembly approach used to synthesis of silver nanoparticles and silver nanoparticles organized chitosan nano polymer. Silver nanoparticles and silver nanoparticles organized chitosan nano polymer and film characterized using Ultra-violate visible spectrometer (UV-vis), X-ray diffraction (X-ray), and Scanning electronic microscope (SEM). The crystalline structured protein capped nano silver successfully synthesized at range of 12 nm-29 nm and organized into chitosan nano polymer. Antimicrobial ingredient in liquid medium and food product surface provide to rescue oxidative change and growth of microorganism to provide higher safety. The silver nanoparticles organized chitosan nano polymer caused the death of microorganism. The materials in nano scale synthesized successfully using self-assembly method, which showed good antimicrobial properties. Copyright © 2017 Elsevier Ltd. All rights reserved.

  20. Incorporation of self-organised gold nano crystals in YBa{sub 2}Cu{sub 3}O{sub 7-{delta}} thin films: Modification of superconducting properties

    Energy Technology Data Exchange (ETDEWEB)

    Katzer, Christian; Michalowski, Peter; Westerhausen, Markus; Koch, Stefanie; Schmidl, Frank; Seidel, Paul [Institut fuer Festkoerperphysik, Friedrich-Schiller-Universitaet Jena, Helmholtzweg 5, 07743 Jena (Germany); Treiber, Sebastian [Max-Planck-Institut fuer Intelligente Systeme, Heisenbergstrasse 3, 70569 Stuttgart (Germany); Albrecht, Joachim [Hochschule Aalen, Beethovenstrasse 1, 73430 Aalen (Germany)

    2012-07-01

    Using pulsed laser deposition we are able to fabricate and examine Yttrium-Barium-Copper-Oxide (YBCO) thin films of high quality. A particular point of interest thereby is the influence of a pre-deposited gold layer with a well-defined film thickness. During the growth of the YBCO thin film the intermediate gold layer self assembles into crystalline nano particles, which modify the growth conditions and hence the physical properties of the growing YBCO. We report on the modification of structural and superconducting properties of our YBCO thin films (such as rocking curve widths, critical temperature T{sub c} and critical current density j{sub c}) comparing conventional to Au added YBCO. The temperature dependence of the critical current density thereby was determined using transport measurements as well as magneto-optical measurements. Furthermore investigations of the flux noise of our gold modified YBCO films are presented.

  1. Nano-thick calcium oxide armed titanium: boosts bone cells against methicillin-resistant Staphylococcus aureus.

    Science.gov (United States)

    Cao, Huiliang; Qin, Hui; Zhao, Yaochao; Jin, Guodong; Lu, Tao; Meng, Fanhao; Zhang, Xianlong; Liu, Xuanyong

    2016-02-22

    Since the use of systemic antibiotics for preventing acute biomaterial-associated infections (BAIs) may build up bacterial resistance and result in huge medical costs and unpredictable mortality, new precaution strategies are required. Here, it demonstrated that titanium armed with a nano-thick calcium oxide layer was effective on averting methicillin-resistant Staphylococcus aureus (MRSA) infections in rabbits. The calcium oxide layer was constructed by, firstly, injecting of metallic calcium into titanium via a plasma immersion ion implantation process, and then transforming the outer most surface into oxide by exposing to the atmosphere. Although the calcium oxide armed titanium had a relative low reduction rate (~74%) in growth of MRSA in vitro, it could markedly promote the osteogenic differentiation of bone marrow stem cells (BMSCs), restore local bone integration against the challenge of MRSA, and decrease the incidence of MRSA infection with a rate of 100% (compared to the titanium control). This study demonstrated for the first time that calcium, as one of the major elements in a human body, could be engineered to avert MRSA infections, which is promising as a safe precaution of disinfection for implantable biomedical devices.

  2. Nano-thick calcium oxide armed titanium: boosts bone cells against methicillin-resistant Staphylococcus aureus

    Science.gov (United States)

    Cao, Huiliang; Qin, Hui; Zhao, Yaochao; Jin, Guodong; Lu, Tao; Meng, Fanhao; Zhang, Xianlong; Liu, Xuanyong

    2016-02-01

    Since the use of systemic antibiotics for preventing acute biomaterial-associated infections (BAIs) may build up bacterial resistance and result in huge medical costs and unpredictable mortality, new precaution strategies are required. Here, it demonstrated that titanium armed with a nano-thick calcium oxide layer was effective on averting methicillin-resistant Staphylococcus aureus (MRSA) infections in rabbits. The calcium oxide layer was constructed by, firstly, injecting of metallic calcium into titanium via a plasma immersion ion implantation process, and then transforming the outer most surface into oxide by exposing to the atmosphere. Although the calcium oxide armed titanium had a relative low reduction rate (~74%) in growth of MRSA in vitro, it could markedly promote the osteogenic differentiation of bone marrow stem cells (BMSCs), restore local bone integration against the challenge of MRSA, and decrease the incidence of MRSA infection with a rate of 100% (compared to the titanium control). This study demonstrated for the first time that calcium, as one of the major elements in a human body, could be engineered to avert MRSA infections, which is promising as a safe precaution of disinfection for implantable biomedical devices.

  3. Elastic (stress-strain) halo associated with ion-induced nano-tracks in lithium niobate: role of crystal anisotropy

    International Nuclear Information System (INIS)

    Rivera, A; Garcia, G; Olivares, J; Crespillo, M L; Agulló-López, F

    2011-01-01

    The elastic strain/stress fields (halo) around a compressed amorphous nano-track (core) caused by a single high-energy ion impact on LiNbO 3 are calculated. A method is developed to approximately account for the effects of crystal anisotropy of LiNbO 3 (symmetry 3m) on the stress fields for tracks oriented along the crystal axes (X, Y or Z). It only considers the zero-order (axial) harmonic contribution to the displacement field in the perpendicular plane and uses effective Poisson moduli for each particular orientation. The anisotropy is relatively small; however, it accounts for some differential features obtained for irradiations along the crystallographic axes X, Y and Z. In particular, the irradiation-induced disorder (including halo) and the associated surface swelling appear to be higher for irradiations along the X- or Y-axis in comparison with those along the Z-axis. Other irradiation effects can be explained by the model, e.g. fracture patterns or the morphology of pores after chemical etching of tracks. Moreover, it offers interesting predictions on the effect of irradiation on lattice parameters.

  4. Film thickness dependence of phase separation and dewetting behaviors in PMMA/SAN blend films.

    Science.gov (United States)

    You, Jichun; Liao, Yonggui; Men, Yongfeng; Shi, Tongfei; An, Lijia

    2010-09-21

    Film thickness dependence of complex behaviors coupled by phase separation and dewetting in blend [poly(methyl methacrylate) (PMMA) and poly(styrene-ran-acrylonitrile) (SAN)] films on silicon oxide substrate at 175 °C was investigated by grazing incidence ultrasmall-angle X-ray scattering (GIUSAX) and in situ atomic force microscopy (AFM). It was found that the dewetting pathway was under the control of the parameter U(q0)/E, which described the initial amplitude of the surface undulation and original thickness of film, respectively. Furthermore, our results showed that interplay between phase separation and dewetting depended crucially on film thickness. Three mechanisms including dewetting-phase separation/wetting, dewetting/wetting-phase separation, and phase separation/wetting-pseudodewetting were discussed in detail. In conclusion, it is relative rates of phase separation and dewetting that dominate the interplay between them.

  5. Effect of Ultrasonic Nano-Crystal Surface Modification (UNSM) on the Passivation Behavior of Aged 316L Stainless Steel.

    Science.gov (United States)

    Kim, Ki-Tae; Lee, Jung-Hee; Kim, Young-Sik

    2017-06-27

    Stainless steels have good corrosion resistance in many environments but welding or aging can decrease their resistance. This work focused on the effect of aging time and ultrasonic nano-crystal surface modification on the passivation behavior of 316L stainless steel. In the case of slightly sensitized 316L stainless steel, increasing the aging time drastically decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film, even though aging did not form chromium carbide and a chromium depletion zone. This behavior is due to the micro-galvanic corrosion between the matrix and carbon segregated area, and this shows the importance of carbon segregation in grain boundaries to the pitting corrosion resistance of stainless steel, in addition to the formation of the chromium depletion zone. UNSM (Ultrasonic Nano Crystal Surface Modification)-treatment to the slightly sensitized 316L stainless steel increased the pitting potential, decreased the passive current density, and increased the resistance of the passive film. However, in the case of heavily sensitized 316L stainless steel, UNSM-treatment decreased the pitting potential, increased the passive current density, and decreased the resistance of the passive film. This behavior is due to the dual effects of the UNSM-treatment. That is, the UNSM-treatment reduced the carbon segregation, regardless of whether the stainless steel 316L was slightly or heavily sensitized. However, since this treatment made mechanical flaws in the outer surface in the case of the heavily sensitized stainless steel, UNSM-treatment may eliminate chromium carbide, and this flaw can be a pitting initiation site, and therefore decrease the pitting corrosion resistance.

  6. Thickness Dependent Optical Properties of Sol-gel based MgF2 – TiO2 Thin Films

    Directory of Open Access Journals (Sweden)

    Siddarth Krishnaraja Achar

    2018-04-01

    Full Text Available MgF2 – TiO2 thin films were prepared by cost effective solgel technique onto glass substrates and optical parameters were determined by envelope technique. Thin films were characterized by optical transmission spectroscopy in the spectral range 290 – 1000 nm. The refractive index, extinction coefficient, Optical thickness and band gap dependency on thickness were evaluated. Thickness dependency of thin films showed direct allowed transition with band gap of 3.66 to 3.73 eV.

  7. Nano and micro reoriented domains and their relation with the crystal structure in the new ferroelectric boracite Zn3B7O13Br

    International Nuclear Information System (INIS)

    Campa-Molina, J; Ulloa-Godinez, S; Barrera, A; Bucio, L; Mata, J

    2006-01-01

    A new zinc brome boracite Zn 3 B 7 O 13 Br has been grown by a chemical transport reaction in closed quartz ampoules at 920 K. The crystal structure was characterized by Rietveld refinement. Ferroelectric nano and micro reorientable domains were found in this material using polarizing optical microscopy (PLM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Chemical analysis was performed with x-ray energy dispersive spectroscopy (EDX). In the crystal, a new structure transition at 586 K from orthorhombic (Pca 2 1 ) to cubic cell (F4-bar3c) has been found. This transition was corroborated by differential scanning calorimetry (DSC)

  8. Nano and micro reoriented domains and their relation with the crystal structure in the new ferroelectric boracite Zn3B7O13Br

    Science.gov (United States)

    Campa-Molina, J.; Ulloa-Godínez, S.; Barrera, A.; Bucio, L.; Mata, J.

    2006-05-01

    A new zinc brome boracite Zn3B7O13Br has been grown by a chemical transport reaction in closed quartz ampoules at 920 K. The crystal structure was characterized by Rietveld refinement. Ferroelectric nano and micro reorientable domains were found in this material using polarizing optical microscopy (PLM), scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Chemical analysis was performed with x-ray energy dispersive spectroscopy (EDX). In the crystal, a new structure transition at 586 K from orthorhombic (Pca 21) to cubic cell (F\\overline 4 3c ) has been found. This transition was corroborated by differential scanning calorimetry (DSC).

  9. Ionic liquid-assisted hydrothermal synthesis and excitation wavelength-dependent luminescence of YBO3:Eu3+ nano-/micro-crystals

    International Nuclear Information System (INIS)

    Tian, Yue; Tian, Bining; Chen, Baojiu; Cui, Cai’e; Huang, Ping; Wang, Lei; Hua, Ruinian

    2014-01-01

    Graphical abstract: Three dimensional (3D) architectures YBO 3 :Eu 3+ phosphors were prepared via ionic liquid assisted hydrothermal process. The pH values and ionic liquid play an important role on the morphology of products. Excitation wavelength-dependent luminescent behavior was found in the as-prepared tyre-like YBO 3 :Eu 3+ microspheres. Highlights: • YBO 3 :Eu 3+ phosphors were prepared via ionic liquid assisted hydrothermal process. • pH values and ionic liquid play an important role on the morphology of products. • Excitation wavelength-dependent luminescent behavior was found. -- Abstract: Three dimensional (3D) architectures YBO 3 :Eu 3+ phosphors were prepared via ionic liquid-assisted hydrothermal process and characterized by X-ray diffraction (XRD), field emission scanning electron microscope (FE-SEM) and photoluminescence (PL). The pH value and ionic liquid play an important role in the control of morphology of products. By comparing with the corresponding bulk, the tyre-like YBO 3 :5 mol%Eu 3+ microspheres demonstrate a red shift of the charge transfer band (CTB), appearance of a long excitation tail at the long wavelength side of the CTB and high improved chromaticity. Two Eu 3+ environments in the tyre-like sample, namely interior and outside Eu 3+ , were found by selective excitation under the different wavelength light. Finally, fluorescent decays and Judd–Ofelt (J–O) theory were utilized to analyze the local crystal environments around Eu 3+ ions in the tyre-like and bulk phosphors

  10. Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems

    CERN Document Server

    Nepomnyashchy, Alexander A

    2006-01-01

    Nano-science and nano-technology are rapidly developing scientific and technological areas that deal with physical, chemical and biological processes that occur on nano-meter scale – one millionth of a millimeter. Self-organization and pattern formation play crucial role on nano-scales and promise new, effective routes to control various nano-scales processes. This book contains lecture notes written by the lecturers of the NATO Advanced Study Institute "Self-Assembly, Pattern Formation and Growth Phenomena in Nano-Systems" that took place in St Etienne de Tinee, France, in the fall 2004. They give examples of self-organization phenomena on micro- and nano-scale as well as examples of the interplay between phenomena on nano- and macro-scales leading to complex behavior in various physical, chemical and biological systems. They discuss such fascinating nano-scale self-organization phenomena as self-assembly of quantum dots in thin solid films, pattern formation in liquid crystals caused by light, self-organi...

  11. Reflectance dependence of polytetrafluoroethylene on thickness for xenon scintillation light

    Energy Technology Data Exchange (ETDEWEB)

    Haefner, J.; Neff, A.; Arthurs, M.; Batista, E.; Morton, D.; Okunawo, M.; Pushkin, K.; Sander, A. [Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States); Stephenson, S. [Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States); University of California Davis, Department of Physics, One Shields Ave., Davis, CA 95616 (United States); Wang, Y. [Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States); Lorenzon, W., E-mail: lorenzon@umich.edu [Randall Laboratory of Physics, University of Michigan, Ann Arbor, MI 48109-1040 (United States)

    2017-06-01

    Many rare event searches including dark matter direct detection and neutrinoless double beta decay experiments take advantage of the high VUV reflective surfaces made from polytetrafluoroethylene (PTFE) reflector materials to achieve high light collection efficiency in their detectors. As the detectors have grown in size over the past decade, there has also been an increased need for ever thinner detector walls without significant loss in reflectance to reduce dead volumes around active noble liquids, outgassing, and potential backgrounds. We report on the experimental results to measure the dependence of the reflectance on thickness of two PTFE samples at wavelengths near 178 nm. No change in reflectance was observed as the wall thickness of a cylindrically shaped PTFE vessel immersed in liquid xenon was varied between 1 mm to 9.5 mm.

  12. Electron-beam-irradiation-induced crystallization of amorphous solid phase change materials

    Science.gov (United States)

    Zhou, Dong; Wu, Liangcai; Wen, Lin; Ma, Liya; Zhang, Xingyao; Li, Yudong; Guo, Qi; Song, Zhitang

    2018-04-01

    The electron-beam-irradiation-induced crystallization of phase change materials in a nano sized area was studied by in situ transmission electron microscopy and selected area electron diffraction. Amorphous phase change materials changed to a polycrystalline state after being irradiated with a 200 kV electron beam for a long time. The results indicate that the crystallization temperature strongly depends on the difference in the heteronuclear bond enthalpy of the phase change materials. The selected area electron diffraction patterns reveal that Ge2Sb2Te5 is a nucleation-dominated material, when Si2Sb2Te3 and Ti0.5Sb2Te3 are growth-dominated materials.

  13. Thickness dependence of Hall mobility of HWE grown PbTe films

    International Nuclear Information System (INIS)

    Vaya, P.R.; Majhi, J.; Gopalam, B.S.V.; Dattatreyan, C.

    1985-01-01

    Thin epitaxial n-PbTe films of various thicknesses are grown on KCl substrates by hot wall epitaxy (HWE) technique. The X-ray, SEM and TEM studies of these films revealed their single crystalline nature. The Hall mobility (μ/sub H/) of these films is measured by Van der Pauw technique and compared with the numerically calculated values of PbTe. It is observed that μ/sub H/ very strongly depends on thickness for thin films but becomes independent of film thickness beyond 5 μm approaching its bulk value. The constant value of Hall coefficient in the temperature range 77 to 300 K show the extrinsic nature of these films. It is also noticed that the rate of increase of mobility with decreasing temperature becomes higher with film thickness. The diffused scattering mobility due to the size effect is calculated and compared with experimental data. A large discrepancy observed between these two is explained on the basis of the residual mobility contribution. The residual mobility is attributed to overall scattering due to grain boundaries, dislocations, defects, cleavage steps, and other surface effects. (author)

  14. Fast-switching optically isotropic liquid crystal nano-droplets with improved depolarization and Kerr effect by doping high k nanoparticles.

    Science.gov (United States)

    Kim, Byeonggon; Kim, Hyun Gyu; Shim, Gyu-Yeop; Park, Ji-Sub; Joo, Kyung-Il; Lee, Dong-Jin; Lee, Joun-Ho; Baek, Ji-Ho; Kim, Byeong Koo; Choi, Yoonseuk; Kim, Hak-Rin

    2018-01-10

    We proposed and analyzed an optically isotropic nano-droplet liquid crystal (LC) doped with high k nanoparticles (NPs), exhibiting enhanced Kerr effects, which could be operated with reduced driving voltages. For enhancing the contrast ratio together with the light efficiencies, the LC droplet sizes were adjusted to be shorter than the wavelength of visible light to reduce depolarization effects by optical scattering of the LC droplets. Based on the optical analysis of the depolarization effects, the influence of the relationship between the LC droplet size and the NP doping ratio on the Kerr effect change was investigated.

  15. Optical power limiting and transmitting properties of cadmium iodide single crystals: Temperature dependence

    Energy Technology Data Exchange (ETDEWEB)

    Miah, M. Idrish, E-mail: m.miah@griffith.edu.a [Nanoscale Science and Technology Centre, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)] [Biomolecular and Physical Sciences, Griffith University, Nathan, Brisbane, QLD 4111 (Australia)] [Department of Physics, University of Chittagong, Chittagong 4331 (Bangladesh)

    2009-09-14

    Optical limiting properties of the single crystals of cadmium iodide are investigated using ns laser pulses. It is found that the transmissions in the crystals increase with increasing temperature. However, they limit the transmissions at high input powers. The limiting power is found to be higher at higher temperature. From the measured transmission data, the photon absorption coefficients are estimated. The temperature dependence of the coefficients shows a decrease in magnitude with increasing temperature. This might be due to the temperature-dependent bandgap shift of the material. The results demonstrate that the cadmium iodide single crystals are promising materials for applications in optical power limiting devices.

  16. Optical power limiting and transmitting properties of cadmium iodide single crystals: Temperature dependence

    International Nuclear Information System (INIS)

    Miah, M. Idrish

    2009-01-01

    Optical limiting properties of the single crystals of cadmium iodide are investigated using ns laser pulses. It is found that the transmissions in the crystals increase with increasing temperature. However, they limit the transmissions at high input powers. The limiting power is found to be higher at higher temperature. From the measured transmission data, the photon absorption coefficients are estimated. The temperature dependence of the coefficients shows a decrease in magnitude with increasing temperature. This might be due to the temperature-dependent bandgap shift of the material. The results demonstrate that the cadmium iodide single crystals are promising materials for applications in optical power limiting devices.

  17. Rapid Measurement of Nanoparticle Thickness Profiles

    International Nuclear Information System (INIS)

    Katz-Boon, Hadas; Rossouw, Chris J.; Dwyer, Christian; Etheridge, Joanne

    2013-01-01

    A method to measure the thickness of a single-crystal nanoparticle in the direction parallel to the incident beam from annular dark field scanning transmission electron microscope (ADF-STEM) images is reported, providing a map of thickness versus position across the nanoparticle—a ‘thickness profile’ image. The method is rapid and hence suitable for surveying large numbers of nanoparticles. The method measures the intensity scattered to a characterised ADF detector and compares this to the incident beam intensity, to obtain a normalized ADF image. The normalised intensity is then converted to thickness via dynamical ADF image simulations. The method is accurate within 10% and the precision is dominated primarily by ‘shot noise’. Merits and limitations of this method are discussed. A method to calibrate the response function of the ADF detector without external equipment is also described, which is applicable to the entire range of gain and background settings. -- Highlights: ► A method is developed to convert ADF-STEM images to ‘thickness profile’ images. ► It is applicable in particles survey, facets determination and discrete tomography. ► A method to calibrate the response of the ADF detector is described. ► The response in analysed across a range of conditions. ► Dynamical ADF image simulations are presented, demonstrating intensity vs. thickness dependence.

  18. Nano-silver mediated polymerization of pyrrole: synthesis and gas sensing properties of polypyrrole (PPy)/Ag nano-composite.

    Science.gov (United States)

    Kate, Kunal H; Damkale, Shubhangi R; Khanna, P K; Jain, G H

    2011-09-01

    Thermal polymerization of pyrrole was performed using silver nitrate as source of silver ions followed by its conversion to Polypyrrole (PPy)/Ag nano-comoposites without using any external oxidizing agent or solvent. The formation of PPy was monitored by UV-Visible absorption spectroscopy showing a band at approximately 464 nm. XRD measurement confirmed characteristic peaks for face centered cubic (fcc) silver and presence of PPy at 2 theta of approximately 23 degrees suggesting the formation of PPy/Ag nanocomposite. Transmission electron microscopy (TEM) images showed non-aggregated spherical Ag nano-particles of about 5-10 nm. PPy/Ag thick film acts as a NH3 sensor at 100 degrees C, a H2S sensor at 250 degrees C and CO2 sensor at 350 degrees C. The thick films showed capability to recognize various gases at different operating temperature.

  19. Temperature-dependent ordering phenomena in single crystals of germanium antimony tellurides

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Philipp [Faculty of Chemistry and Mineralogy, Leipzig University, Scharnhorststr. 20, 04275 Leipzig (Germany); Schneider, Matthias N. [Department of Chemistry, LMU Munich, Butenandtstr. 5-13 (D), 81377 Munich (Germany); Oeckler, Oliver, E-mail: oliver.oeckler@gmx.de [Faculty of Chemistry and Mineralogy, Leipzig University, Scharnhorststr. 20, 04275 Leipzig (Germany)

    2015-07-15

    The temperature-dependent behavior of quenched single-crystalline (GeTe){sub n}Sb{sub 2}Te{sub 3} (n~2.8, n~5 and n~11) was investigated by semiquantitative modeling of diffuse X-ray scattering. The structure at room temperature exhibits trigonal twin domains, each comprising a stacking-disordered sequence of distorted rocksalt-type slabs with variable thicknesses. Ge and Sb share the cation position and vacancies are partially ordered in defect layers (van der Waals gaps) between the slabs. The average structure determined with resonant diffraction data corresponds to a rocksalt-type structure whose cation position is split along the stacking direction. Upon heating, cation ordering leads to a metastable superstructure of the rocksalt type at ~400 °C, which transforms to a rocksalt-type high-temperature phase with randomly distributed cations and vacancies at ~500 °C; this structure was also refined using resonant diffraction. Cooling at high or intermediate rates does not yield the long-range ordered phase, but directly leads to the twinned disordered phase. - Graphical abstract: Development of the diffraction patterns of (GeTe){sub ~11}Sb{sub 2}Te{sub 3} upon heating; the insets symbolically sketch the real structure at the corresponding temperatures. - Highlights: • The structure of disordered (GeTe){sub n}Sb{sub 2}Te{sub 3} is described as a function of temperature. • Structural changes are tracked by modeling diffuse X-ray scattering. • Quenched crystals exhibit distorted NaCl-type slabs with different thicknesses. • Vacancy ordering upon heating leads to a metastable superstructure of the NaCl type. • Further heating leads to an undistorted disordered NaCl-type high-temperature phase.

  20. Significance of size dependent and material structure coupling on the characteristics and performance of nanocrystalline micro/nano gyroscopes

    Science.gov (United States)

    Larkin, K.; Ghommem, M.; Abdelkefi, A.

    2018-05-01

    Capacitive-based sensing microelectromechanical (MEMS) and nanoelectromechanical (NEMS) gyroscopes have significant advantages over conventional gyroscopes, such as low power consumption, batch fabrication, and possible integration with electronic circuits. However, inadequacies in the modeling of these inertial sensors have presented issues of reliability and functionality of micro-/nano-scale gyroscopes. In this work, a micromechanical model is developed to represent the unique microstructure of nanocrystalline materials and simulate the response of micro-/nano-gyroscope comprising an electrostatically-actuated cantilever beam with a tip mass at the free end. Couple stress and surface elasticity theories are integrated into the classical Euler-Bernoulli beam model in order to derive a size-dependent model. This model is then used to investigate the influence of size-dependent effects on the static pull-in instability, the natural frequencies and the performance output of gyroscopes as the scale decreases from micro-to nano-scale. The simulation results show significant changes in the static pull-in voltage and the natural frequency as the scale of the system is decreased. However, the differential frequency between the two vibration modes of the gyroscope is observed to drastically decrease as the size of the gyroscope is reduced. As such, the frequency-based operation mode may not be an efficient strategy for nano-gyroscopes. The results show that a strong coupling between the surface elasticity and material structure takes place when smaller grain sizes and higher void percentages are considered.

  1. Effect of antimony nano-scale surface-structures on a GaSb/AlAsSb distributed Bragg reflector

    International Nuclear Information System (INIS)

    Husaini, S.; Shima, D.; Ahirwar, P.; Rotter, T. J.; Hains, C. P.; Dang, T.; Bedford, R. G.; Balakrishnan, G.

    2013-01-01

    Effects of antimony crystallization on the surface of GaSb during low temperature molecular beam epitaxy growth are investigated. The geometry of these structures is studied via transmission electron and atomic force microscopies, which show the surface metal forms triangular-shaped, elongated nano-wires with a structured orientation composed entirely of crystalline antimony. By depositing antimony on a GaSb/AlAsSb distributed Bragg reflector, the field is localized within the antimony layer. Polarization dependent transmission measurements are carried out on these nano-structures deposited on a GaSb/AlAsSb distributed Bragg reflector. It is shown that the antimony-based structures at the surface favor transmission of light polarized perpendicular to the wires.

  2. Intelligent micro reactors. ''Nano firms''

    International Nuclear Information System (INIS)

    Pileni, M.P.; CEA Centre d'Etudes de Saclay, 91 - Gif-sur-Yvette

    1998-01-01

    A new synthesis method of CdS has been carried out. It is based on the use of inverse micellar systems. These micellae have an important property which is used here: when two droplets collide, they can join during a short moment and divide again, creating two new droplets identical to the first ones but which have indeed mixed their respective contents. The mixture of two inverse micellae (each containing a reagent) can lead to a chemical reaction, reduction or co-precipitation. Semi-conductor crystals of CdS have thus been synthesized. They are nano crystals. Their size is indeed limited because the droplets size limit the crystals growth which stabilize and stay inside the droplet. (O.M.)

  3. Influence of Thickness of Multilayered Nano-Structured Coatings Ti-TiN-(TiCrAlN and Zr-ZrN-(ZrCrNbAlN on Tool Life of Metal Cutting Tools at Various Cutting Speeds

    Directory of Open Access Journals (Sweden)

    Alexey Vereschaka

    2018-01-01

    Full Text Available This paper considers the influence of thickness of multilayered nano-structured coatings Ti-TiN-(TiCrAlN and Zr-ZrN-(ZrCrNbAlN on tool life of metal cutting tools at various cutting speeds (vc = 250, 300, 350 and 400 m·min−1. The paper investigates the basic mechanical parameters of coatings and the mechanism of coating failure in scratch testing depending on thickness of coating. Cutting tests were conducted in longitudinal turning of steel C45 with tools with the coatings under study of various thicknesses (3, 5, and 7 µm, with an uncoated tool and with a tool with a “reference” coating of TiAlN. The relationship of “cutting speed vc—tool life T” was built and investigated; and the mechanisms were found to determine the selection of the optimum coating thickness at various cutting speeds. Advantages of cutting tools with these coatings are especially obvious at high cutting speeds (in particular, vc = 400 m·min−1. If at lower cutting speeds, the longest tool life is shown by tools with thicker coatings (of about 7 μm, then with an increase in cutting speed (especially at vc = 400 m·min−1 the longest tool life is shown by tools with thinner coating (of about 3 μm.

  4. Optical and Structural Characterizations of GaN Nano structures

    International Nuclear Information System (INIS)

    Shekari, L.; Abu Hassan, H.; Thahab, S.M.

    2011-01-01

    We have grown wurtzite GaN nano wires (NWs) on polished silicon (Si) either with or without Au as catalyst, using commercial GaN powder by thermal evaporation in an atmosphere of argon (Ar) gas. Structural and optical characterizations were performed using high resolution X-ray diffraction (HR-XRD), scanning electron microscopy (SEM), photoluminescence (PL) and energy-dispersive X-ray spectroscopy (EDX) spectroscopy. Results indicate that the nano wires are of single-crystal hexagonal GaN and the nano wires on Si with Au catalyst are more oriented than those without Au catalyst; and using catalyst make the NWs grow much faster and quite well-ordered. The compositional quality of the grown nano wires on the substrates are mostly same, however the nano wires on the Au coated silicon are of low density, while the nano wires on the Si are of high density. (author)

  5. Thermal Stress Behavior of Micro- and Nano-Size Aluminum Films

    International Nuclear Information System (INIS)

    Hanabusa, T.; Kusaka, K.; Nishida, M.

    2008-01-01

    In-situ observation of thermal stresses in thin films deposited on silicon substrate was made by X-ray and synchrotron radiation. Specimens prepared in this experiment were micro- and nano-size thin aluminum films with and without passivation film. The thickness of the film was 1 micrometer for micro-size films and 10, 20 and 50 nanometer for nano-size films. The stress measurement in micro-size films was made by X-ray radiation whereas the measurement of nano-size films was made by synchrotron radiation. Residual stress measurement revealed tensile stresses in all as-deposited films. Thermal stresses were measured in a series of heating- and cooling-stage. Thermal stress behavior of micro-size films revealed hysteresis loop during a heating and cooling process. The width of a hysteresis loop was larger in passivated film that unpassivated film. No hysteresis loops were observed in nano-size films with SiO 2 passivation. Strengthning mechanism in thin films was discussed on a passivation film and a film thickness

  6. Synthesis of nano-textured biocompatible scaffolds from chicken eggshells

    International Nuclear Information System (INIS)

    Asghar, Waseem; Ilyas, Azhar; Sankaran, Jeyantt; Wan Yuan; Iqbal, Samir M; Kim, Young-Tae

    2012-01-01

    Cell adhesion, morphology and growth are influenced by surface topography at nano and micrometer scales. Nano-textured surfaces are prepared using photolithography, plasma etching and long polymer chemical etching which are cost prohibitive and require specialized equipment. This article demonstrates a simple approach to synthesize nano-textured scaffolds from chicken eggshells. Varieties of pattern are made on the eggshells like micro-needle forests and nanopores, giving very uniform nano-textures to the surfaces. The surfaces are characterized for chemical composition and crystal phase. The novel patterns are transferred to PDMS surfaces and the nano-textured PDMS surfaces are used to study the effect of texturing on human fibroblast cell growth and attachment. The effects of surface topographies, along with laminin coating on cell cultures, are also studied. We find an exciting phenomenon that the initial seeding density of the fibroblast cells affects the influence of the nano-texturing on cell growth. These nano-textured surfaces give 16 times more fibroblast growth when compared to flat PDMS surfaces. The novel nano-textured patterns also double the laminin adsorption on PDMS. (paper)

  7. Epitaxial growth of 100-μm thick M-type hexaferrite crystals on wide bandgap semiconductor GaN/Al{sub 2}O{sub 3} substrates

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Bolin; Su, Zhijuan; Bennett, Steve; Chen, Yajie, E-mail: y.chen@neu.edu; Harris, Vincent G. [Center for Microwave Magnetic Materials and Integrated Circuits and Department of Electrical and Computer Engineering, Northeastern University, Boston, Massachusetts 02115 (United States)

    2014-05-07

    Thick barium hexaferrite BaFe{sub 12}O{sub 19} (BaM) films having thicknesses of ∼100 μm were epitaxially grown on GaN/Al{sub 2}O{sub 3} substrates from a molten-salt solution by vaporizing the solvent. X-ray diffraction measurement verified the growth of BaM (001) textured growth of thick films. Saturation magnetization, 4πM{sub s}, was measured for as-grown films to be 4.6 ± 0.2 kG and ferromagnetic resonance measurements revealed a microwave linewidth of ∼100 Oe at X-band. Scanning electron microscopy indicated clear hexagonal crystals distributed on the semiconductor substrate. These results demonstrate feasibility of growing M-type hexaferrite crystal films on wide bandgap semiconductor substrates by using a simple powder melting method. It also presents a potential pathway for the integration of ferrite microwave passive devices with active semiconductor circuit elements creating system-on-a-wafer architectures.

  8. Temperature dependence of copper diffusion in different thickness amorphous tungsten/tungsten nitride layer

    Science.gov (United States)

    Asgary, Somayeh; Hantehzadeh, Mohammad Reza; Ghoranneviss, Mahmood

    2017-11-01

    The amorphous W/WN films with various thickness (10, 30 and 40 nm) and excellent thermal stability were successfully prepared on SiO2/Si substrate with evaporation and reactive evaporation method. The W/WN bilayer has technological importance because of its low resistivity, high melting point, and good diffusion barrier properties between Cu and Si. The thermal stability was evaluated by X-ray diffractometer (XRD) and Scanning Electron Microscope (SEM). In annealing process, the amorphous W/WN barrier crystallized and this phenomenon is supposed to be the start of Cu atoms diffusion through W/WN barrier into Si. With occurrence of the high-resistive Cu3Si phase, the W/WN loses its function as a diffusion barrier. The primary mode of Cu diffusion is the diffusion through grain boundaries that form during heat treatments. The amorphous structure with optimum thickness is the key factor to achieve a superior diffusion barrier characteristic. The results show that the failure temperature increased by increasing the W/WN film thickness from 10 to 30 nm but it did not change by increasing the W/WN film thickness from 30 to 40 nm. It is found that the 10 and 40 nm W/WN films are good diffusion barriers at least up to 800°C while the 30 nm W/WN film shows superior properties as a diffusion barrier, but loses its function as a diffusion barrier at about 900°C (that is 100°C higher than for 10 and 40 nm W/WN films).

  9. Dependence of conductivity on thickness within the variable-range hopping regime for Coulomb glasses

    Directory of Open Access Journals (Sweden)

    M. Caravaca

    Full Text Available In this paper, we provide some computational evidence concerning the dependence of conductivity on the system thickness for Coulomb glasses. We also verify the Efros–Shklovskii law and deal with the calculation of its characteristic parameter as a function of the thickness. Our results strengthen the link between theoretical and experimental fields. Keywords: Coulomb glass, Conductivity, Density of states, Efros–Shklovskii law

  10. Film-thickness dependence of structure formation in ultra-thin polymer blend films

    CERN Document Server

    Gutmann, J S; Stamm, M

    2002-01-01

    We investigated the film-thickness dependence of structure formation in ultra-thin polymer blend films prepared from solution. As a model system we used binary blends of statistical poly(styrene-co-p-bromostyrene) copolymers of different degrees of bromination. Ultra-thin-film samples differing in miscibility and film thickness were prepared via spin coating of common toluene solutions onto silicon (100) substrates. The resulting morphologies were investigated with scanning force microscopy, reflectometry and grazing-incidence scattering techniques using both X-rays and neutrons in order to obtain a picture of the sample structure at and below the sample surface. (orig.)

  11. Preparation of Nd-Fe-B/α-Fe nano-composite thick-film magnets on various substrates using PLD with high laser energy density above 10 J/cm2

    Science.gov (United States)

    Nakano, M.; Kondo, H.; Yamashita, A.; Yanai, T.; Itakura, M.; Fukunaga, H.

    2018-05-01

    PLD (Pulsed Laser Deposition) method with high laser energy density (LED) above 10 J/cm2 followed by a flash annealing enabled us to obtain isotropic nano-composite thick-film magnets with (BH)max ≧ 80 kJ/m3 on polycrystalline Ta substrates. We also have demonstrated that a dispersed structure composed of α-Fe together with Nd2Fe14B phases with the average grain diameter of approximately 20 nm could be formed on the Ta substrates. In this study, we tried to enhance the (BH)max value by controlling the microstructure due to the usage of different metal based substrates with each high melting point such as Ti, Nb, and W. Although it was difficult to vary the microstructure and to improve the magnetic properties of the films deposited on the substrates, we confirmed that isotropic thick-film magnets with (BH)max ≧ 80 kJ/m3 based on the nano-dispersed α-Fe and Nd2Fe14B phases could be obtained on various metal substrates with totally different polycrystalline structure. On the other hand, the use of a glass substrate lead to the deterioration of magnetic properties of a film prepared using the same preparation process.

  12. Intergranular Corrosion of 316L Stainless Steel by Aging and UNSM (Ultrasonic Nano-crystal Surface Modification) treatment

    International Nuclear Information System (INIS)

    Lee, J. H.; Kim, Y. S.

    2015-01-01

    Austenitic stainless steels have been widely used in many engineering fields because of their high corrosion resistance and good mechanical properties. However, welding or aging treatment may induce intergranular corrosion, stress corrosion cracking, pitting, etc. Since these types of corrosion are closely related to the formation of chromium carbide in grain boundaries, the alloys are controlled using methods such as lowering the carbon content, solution heat treatment, alloying of stabilization elements, and grain boundary engineering. This work focused on the effects of aging and UNSM (Ultrasonic Nano-crystal Surface Modification) on the intergranular corrosion of commercial 316L stainless steel and the results are discussed on the basis of the sensitization by chromium carbide formation and carbon segregation, residual stress, grain refinement, and grain boundary engineering

  13. Adsorption phenomena and anchoring energy in nematic liquid crystals

    CERN Document Server

    Barbero, Giovanni

    2005-01-01

    Despite the large quantity of phenomenological information concerning the bulk properties of nematic phase liquid crystals, little is understood about the origin of the surface energy, particularly the surface, interfacial, and anchoring properties of liquid crystals that affect the performance of liquid crystal devices. Self-contained and unique, Adsorption Phenomena and Anchoring Energy in Nematic Liquid Crystals provides an account of new and established results spanning three decades of research into the problems of anchoring energy and adsorption phenomena in liquid crystals.The book contains a detailed discussion of the origin and possible sources of anchoring energy in nematic liquid crystals, emphasizing the dielectric contribution to the anchoring energy in particular. Beginning with fundamental surface and anchoring properties of liquid crystals and the definition of the nematic phase, the authors explain how selective ion adsorption, dielectric energy density, thickness dependence, and bias voltage...

  14. Use of thick HgI2 detectors as intelligent spectrometers

    International Nuclear Information System (INIS)

    Olmos, P.; Garcia-Belmonte, G.; Perez, J.M.; Diaz, J.C.

    1990-01-01

    Mercuric iodide is a very attractive material to detect ionizing radiation due to its high stopping power and wide energy gap, which allows the use of a small and compact detector at room temperature. However, the spectroscopic performances of these detectors are poor in comparisons with other more popular semiconductors with better transport characteristics. This effect becomes dramatic when thick crystals are used. The partial charge-collection method is reported to be the most suitable one for enhancing the energy resolution achieved with thick detectors. A Monte Carlo simulation of the behavior of the model and its dependence with crystals and electronic parameters is presented, giving operating rules that optimize the system performance in each situation. Specially designed hardware has been developed to extract the maximum information of the charge pulse produced by photon-detector interaction, according with the results of the simulation. As a final step, an automatic isotope-identification process, based on the use of neutral networks, is performed, the identification being the true output of the whole system. Due to the strong dependence of this output on the free hardware parameters, an adaptive network is designed to act on these parameters in such a way that the system converges automatically to the best identification. (orig.)

  15. Influence of hydroxyapatite coating thickness and powder particle size on corrosion performance of MA8M magnesium alloy

    Energy Technology Data Exchange (ETDEWEB)

    Sonmez, S. [Hakkari University, Dept. of Biomedical Eng., 30000 Hakkari (Turkey); Aksakal, B., E-mail: baksakal@yildiz.edu.tr [Yildiz Technical University, Chemical Metallurgy Faculty, Dept. of Metall and Mater Eng., Istanbul (Turkey); Dikici, B. [Yuzuncu Yil University, Dept. of Mechanical Eng., 65080 Van (Turkey)

    2014-05-01

    Graphical abstract: The corrosion resistance of magnesium alloys is the primary concern in biomedical applications. Micron and nano-scale hydroxyapatite (HA) was coated successfully on MA8M magnesium alloy substrates by using a sol–gel deposition. In this study, the effects of coating thicknesses and HA powder particle sizes on the adhesion strength and corrosion behavior were investigated. Potentiodynamic polarization tests were performed in a Ringer solution. The coatings before and after corrosion tests were characterized by adhesion tests, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analysis. The micro-scale-HA coated Mg substrates were more corrosion resistant than the nano-scale-HA coatings. The anodic activity of the micro-scale-HA coatings increased with increased coating thickness and the corrosion resistance of Mg substrates decreased. Corrosion susceptibilities of the nano-scale-HA coated samples were affected inversely. The coated film provided good barrier characteristics and achieved good corrosion protection for Mg substrates when compared to substrates without coatings. For micro-scale-HA coatings, anodic and cathodic activities were more intense for thicker films. When HA coatings are compared to nano-scale HA coatings, the micro-scale-HA coatings produced better current density values. Overall, as shown in Fig. 1, the best corrosion behavior of the Mg alloys was achieved using micro-scale HA powders at 30 μm coating thickness. - Highlights: • Nano and micro-scale-HA coatings provided good anti-corrosion performance compared to the uncoated ones. • The micro-scale-HA coated Mg substrates were more corrosion resistant than the nano-scale-HA coatings. • The best corrosion behavior was achieved for the micro-scale HA powders at 30 μm coating thickness. • Anodic activity decrease and cathodic activity increase with increasing film thickness. - Abstract: To improve the corrosion resistance of MA8M magnesium alloy, sol

  16. Thickness dependence of magnetization reversal mechanism in perpendicularly magnetized L1{sub 0} FePt films

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Mei; Wang, Xin, E-mail: xinwang@uestc.edu.cn; Lu, Haipeng; Zhang, Li; Deng, Longjiang; Xie, Jianliang

    2017-04-15

    We have studied the magnetic switching behavior of L1{sub 0}-ordered FePt films with varying thickness. It was found that coercivity is strongly dependent on the film thickness. The obvious variations of the coercivity in the thin films are confirmed by the measurements of structural and magnetic properties. With increasing thickness, the degree of L1{sub 0} chemical ordering increased, while the magnetization reversal process transforms from a pinned two-steps magnetization reversal to a comparatively smooth domain wall motion behavior. Although considering anisotropy, exchange interaction and applied magnetic field, the switching behavior in films is quite complex, the main features of the magnetization reversal mechanism can be understood by performing detailed investigation on the effect of the deposition temperature and the angle of magnetic field. - Highlights: • Series of FePt films with L1{sub 0} phase have been prepared. • We focused on the magnetization reversal mechanism with varying thicknesses. • The angle-dependence of switching process is revealed in the FePt films. • Different switching mechanisms were found by increasing the film thickness.

  17. Strong crystal size effect on deformation twinning

    DEFF Research Database (Denmark)

    Yu, Qian; Shan, Zhi-Wei; Li, Ju

    2010-01-01

    plasticity. Accompanying the transition in deformation mechanism, the maximum flow stress of the submicrometre-sized pillars was observed to saturate at a value close to titanium’s ideal strength9, 10. We develop a ‘stimulated slip’ model to explain the strong size dependence of deformation twinning......Deformation twinning1, 2, 3, 4, 5, 6 in crystals is a highly coherent inelastic shearing process that controls the mechanical behaviour of many materials, but its origin and spatio-temporal features are shrouded in mystery. Using micro-compression and in situ nano-compression experiments, here we...... find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal7, 8, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation...

  18. NanoCrySP technology for generation of drug nanocrystals: translational aspects and business potential.

    Science.gov (United States)

    Shete, Ganesh; Bansal, Arvind Kumar

    2016-08-01

    Drug nanocrystals have rapidly evolved into a mature drug delivery strategy in the last decade, with almost 16 products currently on the market. Several "top-down" technologies are available in the market for generation of nanocrystals. Despite several advantages, very few bottom-up technologies have been explored for commercial purpose. This short communication highlights a novel, bottom-up, spray drying based technology-NanoCrySP-to generate drug nanocrystals. Nanocrystals are generated in the presence of non-polymeric excipients that act as crystallization inducer for the drug. Excipients encourage crystallization of drug by plasticization, primary heterogeneous nucleation, and imparting physical barrier to crystal growth. Nanocrystals have shown significant improvement in dissolution and thereby oral bioavailability. NanoCrySP technology is protected through patents in India, the USA, and the European Union. NanoCrySP can be utilized for (i) pharmaceutical development of new chemical entities, (ii) differentiated products of existing molecules, and (iii) generic drug products. The aggregation of drug nanocrystals generated using NanoCrySP poses significant challenges in the nanocrystal-based product development. Addition of stabilizers either during spray drying or during dissolution has shown beneficial effects.

  19. Dynamic studies of nano-confined polymer thin films

    Science.gov (United States)

    Geng, Kun

    Polymer thin films with the film thickness (h0 ) below 100 nm often exhibit physical properties different from the bulk counterparts. In order to make the best use of polymer thin films in applications, it is important to understand the physical origins of these deviations. In this dissertation, I will investigate how different factors influence dynamic properties of polymer thin films upon nano-confinement, including glass transition temperature (Tg), effective viscosity (etaeff) and self-diffusion coefficient (D ). The first part of this dissertation concerns the impacts of the molecular weight (MW) and tacticity on the Tg's of nano-confined polymer films. Previous experiments showed that the Tg of polymer films could be depressed or increased as h0 decreases. While these observations are usually attributed to the effects of the interfaces, some experiments suggested that MW's and tacticities might also play a role. To understand the effects of these factors, the Tg's of silica-based poly(alpha-methyl styrene) (PalphaMS/SiOx) and poly(methyl methacrylate) (PMMA/SiOx) thin films were studied, and the results suggested that MW's and tacticities influence Tg in nontrivial ways. The second part concerns an effort to resolve the long-standing controversy about the correlation between different dynamics of polymer thin films upon nano-confinement. Firstly, I discuss the experimental results of Tg, D and etaeff of poly(isobutyl methacrylate) films supported by silica (PiBMA/SiOx). Both T g and D were found to be independent of h 0, but etaeff decreased with decreasing h 0. Since both D and etaeff describe transport phenomena known to depend on the local friction coefficient or equivalently the local viscosity, it is questionable why D and etaeff displayed seemingly inconsistent h 0 dependencies. We envisage the different h0 dependencies to be caused by Tg, D and etaeff being different functions of the local T g's (Tg,i) or viscosities (eta i). By assuming a three

  20. The effect of crystalline and shape anisotropy on the magnetic properties of Co and Ni nano wires

    International Nuclear Information System (INIS)

    Golipour, R.; Khayyatian, A.; Ramazani, A.; Almasi Kashi, M.

    2007-01-01

    Co and Ni magnetic nano wires with different diameter and deposition time were fabricated into the alumina template using ac electrodeposition, For Ni nano wires with 30 nm diameter the coercivity initially increased then dropped with deposition time, while it only increased with deposition time for all the other diameters. In general, the results showed that the coercivity reduced with diameter. The maximum coercivity was obtained for the Co nano wire made with 30 nm diameter and 30 s deposition time and further electrodeposition time causes a reduction of the coercivity. The effect of crystal and shape anisotropy on the magnetic properties were investigated and the results revealed that the crystal anisotropy has dominant role on the coercive field of Co nano wires, while there is a competitive effect between both the anisotropies for the Ni nano wires changing the coercivity

  1. Dislocation-free Ge Nano-crystals via Pattern Independent Selective Ge Heteroepitaxy on Si Nano-Tip Wafers.

    Science.gov (United States)

    Niu, Gang; Capellini, Giovanni; Schubert, Markus Andreas; Niermann, Tore; Zaumseil, Peter; Katzer, Jens; Krause, Hans-Michael; Skibitzki, Oliver; Lehmann, Michael; Xie, Ya-Hong; von Känel, Hans; Schroeder, Thomas

    2016-03-04

    The integration of dislocation-free Ge nano-islands was realized via selective molecular beam epitaxy on Si nano-tip patterned substrates. The Si-tip wafers feature a rectangular array of nanometer sized Si tips with (001) facet exposed among a SiO2 matrix. These wafers were fabricated by complementary metal-oxide-semiconductor (CMOS) compatible nanotechnology. Calculations based on nucleation theory predict that the selective growth occurs close to thermodynamic equilibrium, where condensation of Ge adatoms on SiO2 is disfavored due to the extremely short re-evaporation time and diffusion length. The growth selectivity is ensured by the desorption-limited growth regime leading to the observed pattern independence, i.e. the absence of loading effect commonly encountered in chemical vapor deposition. The growth condition of high temperature and low deposition rate is responsible for the observed high crystalline quality of the Ge islands which is also associated with negligible Si-Ge intermixing owing to geometric hindrance by the Si nano-tip approach. Single island as well as area-averaged characterization methods demonstrate that Ge islands are dislocation-free and heteroepitaxial strain is fully relaxed. Such well-ordered high quality Ge islands present a step towards the achievement of materials suitable for optical applications.

  2. Strength and deformation of shocked diamond single crystals: Orientation dependence

    Science.gov (United States)

    Lang, J. M.; Winey, J. M.; Gupta, Y. M.

    2018-03-01

    Understanding and quantifying the strength or elastic limit of diamond single crystals is of considerable scientific and technological importance, and has been a subject of long standing theoretical and experimental interest. To examine the effect of crystalline anisotropy on strength and deformation of shocked diamond single crystals, plate impact experiments were conducted to measure wave profiles at various elastic impact stresses up to ˜120 GPa along [110] and [111] crystal orientations. Using laser interferometry, particle velocity histories and shock velocities in the diamond samples were measured and were compared with similar measurements published previously for shock compression along the [100] direction. Wave profiles for all three orientations showed large elastic wave amplitudes followed by time-dependent inelastic deformation. From the measured wave profiles, the elastic limits were determined under well characterized uniaxial strain loading conditions. The measured elastic wave amplitudes for the [110] and [111] orientations were lower for higher elastic impact stress (stress attained for an elastic diamond response), consistent with the result reported previously for [100] diamond. The maximum resolved shear stress (MRSS) on the {111}⟨110⟩ slip systems was determined for each orientation, revealing significant orientation dependence. The MRSS values for the [100] and [110] orientations (˜33 GPa) are 25%-30% of theoretical estimates; the MRSS value for the [111] orientation is significantly lower (˜23 GPa). Our results demonstrate that the MRSS depends strongly on the stress component normal to the {111} planes or the resolved normal stress (RNS), suggesting that the RNS plays a key role in inhibiting the onset of inelastic deformation. Lower elastic wave amplitudes at higher peak stress and the effect of the RNS are inconsistent with typical dislocation slip mechanisms of inelastic deformation, suggesting instead an inelastic response

  3. Size-dependent nonlinear bending of micro/nano-beams made of nanoporous biomaterials including a refined truncated cube cell

    Science.gov (United States)

    Sahmani, S.; Aghdam, M. M.

    2017-12-01

    Morphology and pore size plays an essential role in the mechanical properties as well as the associated biological capability of a porous structure made of biomaterials. The objective of the current study is to predict the Young's modulus and Poisson's ratio of nanoporous biomaterials including refined truncated cube cells based on a hyperbolic shear deformable beam model. Analytical relationships for the mechanical properties of nanoporous biomaterials are given as a function of the refined cell's dimensions. After that, the size dependency in the nonlinear bending behavior of micro/nano-beams made of such nanoporous biomaterials is analyzed using the nonlocal strain gradient elasticity theory. It is assumed that the micro/nano-beam has one movable end under axial compression in conjunction with a uniform distributed lateral load. The Galerkin method together with an improved perturbation technique is employed to propose explicit analytical expression for nonlocal strain gradient load-deflection curves of the micro/nano-beams made of nanoporous biomaterials subjected to uniform transverse distributed load. It is found that through increment of the pore size, the micro/nano-beam will undergo much more deflection corresponding to a specific distributed load due to the reduction in the stiffness of nanoporous biomaterial. This pattern is more prominent for lower value of applied axial compressive load at the free end of micro/nano-beam.

  4. Environmental risk assessment of engineered nano-SiO2 , nano iron oxides, nano-CeO2 , nano-Al2 O3 , and quantum dots.

    Science.gov (United States)

    Wang, Yan; Nowack, Bernd

    2018-05-01

    Many research studies have endeavored to investigate the ecotoxicological hazards of engineered nanomaterials (ENMs). However, little is known regarding the actual environmental risks of ENMs, combining both hazard and exposure data. The aim of the present study was to quantify the environmental risks for nano-Al 2 O 3 , nano-SiO 2 , nano iron oxides, nano-CeO 2 , and quantum dots by comparing the predicted environmental concentrations (PECs) with the predicted-no-effect concentrations (PNECs). The PEC values of these 5 ENMs in freshwaters in 2020 for northern Europe and southeastern Europe were taken from a published dynamic probabilistic material flow analysis model. The PNEC values were calculated using probabilistic species sensitivity distribution (SSD). The order of the PNEC values was quantum dots nano-CeO 2  nano iron oxides nano-Al 2 O 3  nano-SiO 2 . The risks posed by these 5 ENMs were demonstrated to be in the reverse order: nano-Al 2 O 3  > nano-SiO 2  > nano iron oxides > nano-CeO 2  > quantum dots. However, all risk characterization values are 4 to 8 orders of magnitude lower than 1, and no risk was therefore predicted for any of the investigated ENMs at the estimated release level in 2020. Compared to static models, the dynamic material flow model allowed us to use PEC values based on a more complex parameterization, considering a dynamic input over time and time-dependent release of ENMs. The probabilistic SSD approach makes it possible to include all available data to estimate hazards of ENMs by considering the whole range of variability between studies and material types. The risk-assessment approach is therefore able to handle the uncertainty and variability associated with the collected data. The results of the present study provide a scientific foundation for risk-based regulatory decisions of the investigated ENMs. Environ Toxicol Chem 2018;37:1387-1395. © 2018 SETAC. © 2018 SETAC.

  5. Estimation of average glandular dose depending on the thickness of the breast

    International Nuclear Information System (INIS)

    Real, Jessica V.; Luz, Renata M. da; Fröhlich, Bruna D.; Pertile, Alessandra S.; Silva, Ana Maria Marques da

    2014-01-01

    Breast cancer is the most common type of cancer in women worldwide. Mammography is, to date, the most efficient method for detecting an abnormality in the patient's breast. It is a technique of imaging diagnostic that requires special care because radiographs without adequate quality may lead to a false diagnosis and lead to the need for a repeat examination, increasing the dose of radiation in the patient. This study aimed to evaluate the average glandular dose (AGD), depending on the breast thickness in patients undergoing routine tests, with a digital computer radiography processing system. Analyzed 30 exhibitions in patients aged (65 ± 12) years, in the right and left caudal skull projections, for breasts with thicknesses between 45 mm and 50 mm. The calculated value of the AGD for this track thickness was (1.600 ± 0.009) mGy. The performance of mammography quality control tests was satisfactory and the AGD values obtained for the chosen thickness range is acceptable, since the threshold achievable is 1.6 mGy and the acceptable is 2 mGy. In Brazil, it is only required the input dose calculation in skin for 45 mm breasts. However, the calculation of AGD is required for different thicknesses of the breast, to identify the best mammographic pattern aiming at better image quality at the lowest dose provided the patient

  6. Effect of thickness and composition on the structure and ordering in La-doped intergranular films between Si{sub 3}N{sub 4} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Jiang Yun [Interfacial Molecular Science Laboratory, Department of Materials Science and Engineering, Rutgers University, 607 Taylor Rd., Piscataway, NJ 08855 (United States); Garofalini, Stephen H., E-mail: shg@rutgers.edu [Interfacial Molecular Science Laboratory, Department of Materials Science and Engineering, Rutgers University, 607 Taylor Rd., Piscataway, NJ 08855 (United States)

    2011-08-15

    Molecular dynamics simulations were used to determine the effect of the composition and thickness on the atomistic structure of La-Si-O-N intergranular films (IGFs) between prism and misaligned high-index silicon nitride crystals. Results showed that ordered La adsorption onto the prism-terminated surface is not affected by the orientation of the opposing crystal, although the extent of the ordering away from the interface is affected by IGF thickness. La adsorption at ordered sites 1 and 2 on the prism surface occurred for almost all of the compositions in both 1.8 and 0.6 nm thick IGFs and at sites farther from the prism interface in the thicker IGF, similar to adsorption in triple points. La adsorption on the prism surface occurred at sites precisely the same as seen in high-angle annular dark field scanning transmission electron microscopy studies. Saturation of available sites is affected by the thickness of the IGF, which governs the number of La ions (and N ions) in the IGF, with lower site filling in the thinner IGF. There are clear energy differences for La in the interior of the IGF vs. the interface based on composition and IGF thickness, with the thicker IGF showing greater variation in driving forces for segregation or La incorporation into the IGF. Fracture is affected by both composition and thickness and occurs in the glassy IGF and not in the ordered interfacial regions, consistent with experimentally observed intergranular fracture for La-doped silicon nitride. Segregation of La to the interface affects N distribution within the interior of the IGF, which affects strength.

  7. Supersaturation Control using Analytical Crystal Size Distribution Estimator for Temperature Dependent in Nucleation and Crystal Growth Phenomena

    Science.gov (United States)

    Zahari, Zakirah Mohd; Zubaidah Adnan, Siti; Kanthasamy, Ramesh; Saleh, Suriyati; Samad, Noor Asma Fazli Abdul

    2018-03-01

    The specification of the crystal product is usually given in terms of crystal size distribution (CSD). To this end, optimal cooling strategy is necessary to achieve the CSD. The direct design control involving analytical CSD estimator is one of the approaches that can be used to generate the set-point. However, the effects of temperature on the crystal growth rate are neglected in the estimator. Thus, the temperature dependence on the crystal growth rate needs to be considered in order to provide an accurate set-point. The objective of this work is to extend the analytical CSD estimator where Arrhenius expression is employed to cover the effects of temperature on the growth rate. The application of this work is demonstrated through a potassium sulphate crystallisation process. Based on specified target CSD, the extended estimator is capable of generating the required set-point where a proposed controller successfully maintained the operation at the set-point to achieve the target CSD. Comparison with other cooling strategies shows a reduction up to 18.2% of the total number of undesirable crystals generated from secondary nucleation using linear cooling strategy is achieved.

  8. Crystallization, optimization and preliminary X-ray characterization of a metal-dependent PI-PLC from Streptomyces antibioticus

    International Nuclear Information System (INIS)

    Jackson, Michael R.; Selby, Thomas L.

    2012-01-01

    Crystallization and diffraction analysis of a Ca 2+ -dependent PI-PLC from Streptomyces is reported. Optimization of crystals was completed using a drop-pinning technique and heavy-atom soaks to achieve high-quality diffraction to 1.23 Å. A recombinant metal-dependent phosphatidylinositol-specific phospholipase C (PI-PLC) from Streptomyces antibioticus has been crystallized by the hanging-drop method with and without heavy metals. The native crystals belonged to the orthorhombic space group P222, with unit-cell parameters a = 41.26, b = 51.86, c = 154.78 Å. The X-ray diffraction results showed significant differences in the crystal quality of samples soaked with heavy atoms. Additionally, drop pinning, which increases the surface area of the drops, was also used to improve crystal growth and quality. The combination of heavy-metal soaks and drop pinning was found to be critical for producing high-quality crystals that diffracted to 1.23 Å resolution

  9. Method of producing exfoliated graphite, flexible graphite, and nano-scaled graphene platelets

    Science.gov (United States)

    Zhamu, Aruna; Shi, Jinjun; Guo, Jiusheng; Jang, Bor Z.

    2010-11-02

    The present invention provides a method of exfoliating a layered material (e.g., graphite and graphite oxide) to produce nano-scaled platelets having a thickness smaller than 100 nm, typically smaller than 10 nm. The method comprises (a) dispersing particles of graphite, graphite oxide, or a non-graphite laminar compound in a liquid medium containing therein a surfactant or dispersing agent to obtain a stable suspension or slurry; and (b) exposing the suspension or slurry to ultrasonic waves at an energy level for a sufficient length of time to produce separated nano-scaled platelets. The nano-scaled platelets are candidate reinforcement fillers for polymer nanocomposites. Nano-scaled graphene platelets are much lower-cost alternatives to carbon nano-tubes or carbon nano-fibers.

  10. Nano-resonator frequency response based on strain gradient theory

    International Nuclear Information System (INIS)

    Miandoab, Ehsan Maani; Yousefi-Koma, Aghil; Pishkenari, Hossein Nejat; Fathi, Mohammad

    2014-01-01

    This paper aims to explore the dynamic behaviour of a nano-resonator under ac and dc excitation using strain gradient theory. To achieve this goal, the partial differential equation of nano-beam vibration is first converted to an ordinary differential equation by the Galerkin projection method and the lumped model is derived. Lumped parameters of the nano-resonator, such as linear and nonlinear springs and damper coefficients, are compared with those of classical theory and it is demonstrated that beams with smaller thickness display greater deviation from classical parameters. Stable and unstable equilibrium points based on classic and non-classical theories are also compared. The results show that, regarding the applied dc voltage, the dynamic behaviours expected by classical and non-classical theories are significantly different, such that one theory predicts the un-deformed shape as the stable condition, while the other theory predicts that the beam will experience bi-stability. To obtain the frequency response of the nano-resonator, a general equation including cubic and quadratic nonlinearities in addition to parametric electrostatic excitation terms is derived, and the analytical solution is determined using a second-order multiple scales method. Based on frequency response analysis, the softening and hardening effects given by two theories are investigated and compared, and it is observed that neglecting the size effect can lead to two completely different predictions in the dynamic behaviour of the resonators. The findings of this article can be helpful in the design and characterization of the size-dependent dynamic behaviour of resonators on small scales. (paper)

  11. Evolution of stacking fault tetrahedral and work hardening effect in copper single crystals

    Science.gov (United States)

    Liu, Hai Tao; Zhu, Xiu Fu; Sun, Ya Zhou; Xie, Wen Kun

    2017-11-01

    Stacking fault tetrahedral (SFT), generated in machining of copper single crystal as one type of subsurface defects, has significant influence on the performance of workpiece. In this study, molecular dynamics (MD) simulation is used to investigate the evolution of stacking fault tetrahedral in nano-cutting of copper single crystal. The result shows that SFT is nucleated at the intersection of differently oriented stacking fault (SF) planes and SFT evolves from the preform only containing incomplete surfaces into a solid defect. The evolution of SFT contains several stress fluctuations until the complete formation. Nano-indentation simulation is then employed on the machined workpiece from nano-cutting, through which the interaction between SFT and later-formed dislocations in subsurface is studied. In the meanwhile, force-depth curves obtained from nano-indentation on pristine and machined workpieces are compared to analyze the mechanical properties. By simulation of nano-cutting and nano-indentation, it is verified that SFT is a reason of the work hardening effect.

  12. Thickness dependencies of structural and magnetic properties of cubic and tetragonal Heusler alloy bilayer films

    Science.gov (United States)

    Ranjbar, R.; Suzuki, K. Z.; Sugihara, A.; Ando, Y.; Miyazaki, T.; Mizukami, S.

    2017-07-01

    The thickness dependencies of the structural and magnetic properties for bilayers of cubic Co-based Heusler alloys (CCHAs: Co2FeAl (CFA), Co2FeSi (CFS), Co2MnAl (CMA), and Co2MnSi (CMS)) and D022-MnGa were investigated. Epitaxy of the B2 structure of CCHAs on a MnGa film was achieved; the smallest thickness with the B2 structure was found for 3-nm-thick CMS and CFS. The interfacial exchange coupling (Jex) was antiferromagnetic (AFM) for all of the CCHAs/MnGa bilayers except for unannealed CFA/MnGa samples. A critical thickness (tcrit) at which perpendicular magnetization appears of approximately 4-10 nm for the CMA/MnGa and CMS/MnGa bilayers was observed, whereas this thickness was 1-3 nm for the CFA/MnGa and CFS/MnGa films. The critical thickness for different CCHAs materials is discussed in terms of saturation magnetization (Ms) and the Jex .

  13. Adsorption of 1,2-dichlorobenzene and 1,2,4-trichlorobenzene in nano- and microsized crystals of MIL-101(Cr): static and dynamic gravimetric studies.

    Science.gov (United States)

    Bullot, Laetitia; Vieira-Sellaï, Ludivine; Chaplais, Gérald; Simon-Masseron, Angélique; Daou, Toufic Jean; Patarin, Joël; Fiani, Emmanuel

    2017-12-01

    This work aims to highlight the promising adsorption capacity and kinetic of (poly)chlorobenzene pollutants in the hybrid MIL-101(Cr) type material for technological uses in industrial waste exhaust decontamination. The influence of the MIL-101(Cr) crystal size (nano- and microcrystals) on the adsorption behavior was studied in static and dynamic modes. For this purpose, crystals of MIL-101(Cr) in nano- and micrometric sizes were synthesized and fully characterized. Their sorption properties regarding 1,2-dichlorobenzene were examined using gravimetric method in dynamic (p/p° = 0.5) and static (p/p° = 1) modes at room temperature. 1,2,4-trichlorobenzene adsorption was only performed under static mode because of its too low vapor pressure. 1,2-dichlorobenzene and 1,2,4-trichlorobenzene were used to mimic 2,3-dichlorodibenzo-p-dioxin and 1,2,3,4-tetrachlorodibenzo-p-dioxin, respectively, and more largely dioxin compounds. Adsorptions of these probes were successfully carried out in nano- and microcrystals of MIL-101(Cr). Indeed, in static mode (p/p° = 1) and at room temperature, nanocrystals adsorb 2266 molecules of 1,2-dichlorobenzene and 2093 molecules of 1,2,4-trichlorobenzene per unit cell, whereas microcrystals adsorb 1871 molecules of 1,2-dichlorobenzene and 1631 molecules of 1,2,4-trichlorobenzene per unit cell. In dynamic mode, the 1,2-dichlorobenzene adsorbed amounts are substantially similar to those obtained in static mode. However, the adsorption kinetics are different because of a different scheme of diffusivity of the adsorbate between the two modes. To the best of our knowledge, these adsorption capacities of MIL-101(Cr) as adsorbent for polychlorobenzenes trapping have never been referenced. MIL-101(Cr) appears as a promising material for technological uses in industrial waste exhaust decontamination.

  14. Sample-size resonance, ferromagnetic resonance and magneto-permittivity resonance in multiferroic nano-BiFeO3/paraffin composites at room temperature

    International Nuclear Information System (INIS)

    Wang, Lei; Li, Zhenyu; Jiang, Jia; An, Taiyu; Qin, Hongwei; Hu, Jifan

    2017-01-01

    In the present work, we demonstrate that ferromagnetic resonance and magneto-permittivity resonance can be observed in appropriate microwave frequencies at room temperature for multiferroic nano-BiFeO 3 /paraffin composite sample with an appropriate sample-thickness (such as 2 mm). Ferromagnetic resonance originates from the room-temperature weak ferromagnetism of nano-BiFeO 3 . The observed magneto-permittivity resonance in multiferroic nano-BiFeO 3 is connected with the dynamic magnetoelectric coupling through Dzyaloshinskii–Moriya (DM) magnetoelectric interaction or the combination of magnetostriction and piezoelectric effects. In addition, we experimentally observed the resonance of negative imaginary permeability for nano BiFeO 3 /paraffin toroidal samples with longer sample thicknesses D=3.7 and 4.9 mm. Such resonance of negative imaginary permeability belongs to sample-size resonance. - Highlights: • Nano-BiFeO 3 /paraffin composite shows a ferromagnetic resonance. • Nano-BiFeO 3 /paraffin composite shows a magneto-permittivity resonance. • Resonance of negative imaginary permeability in BiFeO 3 is a sample-size resonance. • Nano-BiFeO 3 /paraffin composite with large thickness shows a sample-size resonance.

  15. Synthesis and photoluminescence enhancement of nano-PAA-ZnCl_2 with controllable dimension and morphology

    International Nuclear Information System (INIS)

    Wu, Jianguo; Wang, Kaige; Zhou, Yukun; Wang, Shuang; Zhang, Chen; Wang, Guiren

    2016-01-01

    Highlights: • One kind of large area nano-PAA-ZnCl_2 composite film is fabricated, its dimension and morphology is controllable. The properties of nano-composite films have been heavily influenced by the concentration of initial ZnCl_2 solution, the depth of nano-PAAM substrate and the growth time of ZnCl_2 crystals. • At room temperature, the nano-PAA-ZnCl_2 film has the same excitation center (335 nm) and emission center (430 nm) as the nano-PAAM substrate, and the PL intensities can be doubly enhanced. • After annealing at 500 °C, the emission peak spectra of the nano-composite films stabilized at 385 nm, 402 nm, and 430 nm. - Abstract: One kind of ZnCl_2 nano-films with controllable dimension and morphology is successfully synthesized on the top surface of nano-porous anodic alumina membrane (nano-PAAM) by self-organized method. The nano-PAA-ZnCl_2 composite films are characterized by field emission scanning electron microscopy, energy dispersive spectrometer, and laser confocal Raman spectroscopy. The results indicate that the concentration of initial ZnCl_2 solution, the depth of nano-PAAM substrate and the growth time of ZnCl_2 crystals have important influences on the properties of nano-composite films. Furthermore, the characteristics of nano-composites such as the photoluminescence (PL) spectra are investigated. Compared with the nano-PAAM substrate, at room temperature, all of the nano-PAA-ZnCl_2 composite films have both the same excitation center (335 nm) and emission center (430 nm), no matter what the nano-composite morphologies being; and the PL intensity of nano-PAA-ZnCl_2 composite films are all enhanced and the maximum enhancement is two times; after annealing at 500 °C, the emission spectra of the nano-composite films stabilized at the 385 nm, 402 nm and 430 nm. The research provides a new, simple, economical and practical technology to fabricate nano-PAA composite films with higher luminousintensity.

  16. Nano-Micro Materials Enabled Thermoelectricity From Window Glasses

    KAUST Repository

    Inayat, Salman Bin

    2012-01-01

    of individual glass strips to form the thickness depth of the glass on subsequent curing of the strips, and c) embedding nano-manufactured thermoelectric pillars, have been implemented for innovative integration of thermoelectric materials into window glasses

  17. The effect of crystal textures on the anodic oxidization of zirconium in a boiling nitric acid solution

    International Nuclear Information System (INIS)

    Kato, Chiaki; Ishijima, Yasuhiro; Ueno, Fumiyoshi; Yamamoto, Masahiro

    2016-01-01

    The effects of crystal textures and the potentials in the anodic oxidation of zirconium in a boiling nitric acid solution were investigated to study the stress corrosion cracking of zirconium in nitric acid solutions. The test specimen was machined such that the specimen surface was parallel to the rolling surface, arranged with a (0002) crystal texture. The potentials applied for the anodic oxidation of zirconium were set at 1.2, 1.4, and 1.5 V against a saturated KCl–Ag/AgCl electrode (SSE) in boiling 6 M HNO_3. The growth of the zirconium oxide film dramatically changed depending on the applied potential at a closed depassivation potential (1.47 V vs. SSE in this study). At 1.5 V, the zirconium oxide film rapidly grows, and its growth exhibits cyclic oxidation kinetics in accordance with a nearly cubic rate law. The zirconium oxide film grows according to the quantity of electric charge and the growth rate does not depend on the crystal texture in the pretransition region before the cyclic oxidation kinetics. However, the growth and cracking under the thick oxide film depend on the crystal texture in the transition region. On the normal direction side, the oxide film thickness decreases on average since some areas of the thick oxide film are separated from the specimen surface owing to the cracks in the thick oxide. On the rolling direction (RD) side, no cracks in the thick oxide film are observed, but cracks are found under the thick oxide film, which deeply propagate in metal matrix along the RD without an external stress. The cracks under the thick oxide film propagate to the center of the oxide layer. The crystal orientation relationship between the oxide layer and the zirconium matrix is (0002)_Z_r//(111)_Z_r_O_2, and the cracks in the oxide layer propagate in the (0002)_Z_r plane in the zirconium matrix. The oxide layer consists of string-like zirconium oxide and zirconium hydride. The string-like zirconium oxide contains orthorhombic ZrO_2 in addition

  18. Template-assisted growth of nano structured functional materials

    International Nuclear Information System (INIS)

    Ying, K.K.; Nur Ubaidah Saidin; Khuan, N.I.; Suhaila Hani Ilias; Foo, C.T.

    2012-01-01

    Template-assisted growth is an important nano electrochemical deposition technique for synthesizing one-dimensional (1-D) nano structures with uniformly well-controlled shapes and sizes. A good template with well-defined dimensions is imperative for realizing this task. Porous anodic alumina (PAA) has been a favorable candidate for this purpose as it can be tailor-made with precise pore geometries, such as pore length and diameter as well as inter-pore distances, via the anodization of pure aluminium. This paper reports the fabrication of PAA templates and electrochemical synthesis of functional nano structures in the form of nano wires using PAA templates as scaffolds. Axial heterostructure and homogeneous nano wires formed by engineering materials configuration via composition and/ or layer thickness variations were fabricated for different functionalities. X-ray diffraction and imaging techniques were used to alucidate the microstructures, morphologies and chemical compositions of the nano wires produced. Due to their large surface area-to-volume ratios, and therefore high sensitivities, these functional nano structures have useful applications as critical components in nano sensor devices and various areas of nano technology. Potential applications include as hydrogen gas sensors in nuclear power plant for monitoring structural integrity of reactor components and containment building, as well as environmental monitoring of air pollution and leakages of toxic gases and chemicals. (Author)

  19. Thermal analyses to assess diffusion kinetics in the nano-sized interspaces between the growing crystals of a glass ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Fotheringham, Ulrich, E-mail: ulrich.fotheringham@schott.com [SCHOTT AG, 55014 Mainz (Germany); Wurth, Roman; Ruessel, Christian [Otto-Schott-Institut, Jena University, Jena (Germany)

    2011-08-10

    Highlights: {yields} Macroscopic, routine laboratory methods of the 'Thermal Analysis' type (DSC, DMA) allow a rough description of the kinetics in the nano-sized interstitial spaces of glass ceramics. {yields} These macroscopic measurements support the idea of a rigid zone around the crystals which builds up during ceramization and is part of a negative feedback loop which finally stops crystal growth and Ostwald ripening within the time window of observation. {yields} Ostwald ripening may be provoked by thermally softening said rigid zone. Under certain conditions, this gives rise to a characteristic peak in the DSC. - Abstract: According to a hypothesis by Ruessel and coworkers, the absence of Ostwald ripening during isothermal crystallization of lithium aluminosilicate (LAS) and other glass ceramics indicates the existence of a kinetic hindrance of atomic reorganization in the interstitial spaces between the crystals. Methods of Thermal Analysis (Differential Scanning Calorimetry (DSC), Dynamic Mechanical Analysis (DMA)) which are sensitive to the local atomic rearrangements in the interstitial spaces (including viscous flow) are applied to find support for the idea of kinetic hindrance and the formation of a core shell structure acting as diffusion barrier. Both the DSC-measured calorimetric glass transition and the DMA-measured viscoelastic properties indicate an increase in the time constants of atomic rearrangements and diffusion by at least two orders of magnitude during ceramization. This fits to the above idea. Based on these findings, thermo analytic studies have been performed in order to find out how Ostwald ripening may be provoked.

  20. Spin-accumulation effect in magnetic nano-bridge

    International Nuclear Information System (INIS)

    Khvalkovskii, A.V.; Zvezdin, A.A.; Zvezdin, K.A.; Pullini, D.; Perlo, P.

    2004-01-01

    Large values of magnetoresistance experimentally observed in magnetic nano-contacts and nano-wires are explained in terms of spin accumulation. The investigation of the spin-accumulation effect in magnetic nano-contacts (Phys. Rev. Lett. 82 (1999) 2923) and nano-bridges (JETP Lett. 75 (10) (2002) 613), which are considered to be very promising for various spintronic applications, is presented. The two-dimensional spin-diffusion problem in a magnetic nano-bridge is solved. Dependences of the specific resistance of the domain wall and of the distribution of non-equilibrium spin density on the nano-bridge geometry and the material parameters are obtained

  1. Orientation dependence of the thermal fatigue of nickel alloy single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Dul' nev, R A; Svetlov, I L; Bychkov, N G; Rybina, T V; Sukhanov, N N

    1988-11-01

    The orientation dependence of the thermal stability and the thermal fatigue fracture characteristics of single crystals of MAR-M200 nickel alloy are investigated experimentally using X-ray diffraction analysis and optical and scanning electron microscopy. It is found that specimens with the 111-line orientation have the highest thermal stability and fatigue strength. Under similar test conditions, the thermal fatigue life of single crystals is shown to be a factor of 1.5-2 higher than that of the directionally solidified and equiaxed alloys. 6 references.

  2. Heteroepitaxy of zinc-blende SiC nano-dots on Si substrate by organometallic ion beam

    International Nuclear Information System (INIS)

    Matsumoto, T.; Kiuchi, M.; Sugimoto, S.; Goto, S.

    2006-01-01

    The self-assembled SiC nano-dots were fabricated on Si(111) substrate at low-temperatures using the organometallic ion beam deposition technique. The single precursor of methylsilicenium ions (SiCH 3 + ) with the energy of 100 eV was deposited on Si(111) substrate at 500, 550 and 600 deg. C. The characteristics of the self-assembled SiC nano-dots were analyzed by reflection high-energy electron diffraction (RHEED), Raman spectroscopy and atomic force microscope (AFM). The RHEED patterns showed that the crystal structure of the SiC nano-dots formed on Si(111) substrate was zinc-blende SiC (3C-SiC) and it was heteroepitaxy. The self-assembled SiC nano-dots were like a dome in shape, and their sizes were the length of 200-300 nm and the height of 10-15 nm. Despite the low-temperature of 500 deg. C as SiC crystallization the heteroepitaxial SiC nano-dots were fabricated on Si(111) substrate using the organometallic ion beam

  3. Cooling and heating of the ion flux on the transmission through crystals

    International Nuclear Information System (INIS)

    Karamyan, S.A.; Gruener, F.; Assmann, W.

    2003-01-01

    Transmission of charged particles through a monocrystalline medium is accompanied by many interesting phenomena, and a new one - redistribution of the isotropic flux - is now studied experimentally and described. The cooling or heating in the transverse momentum coordinate arises as a result of crystal-induced modification of the transmission trajectories. This indicates the violation of the reversibility rule, and cannot be explained within prevailing theory of channeling. The type of image (enhancement or reduction) and its intensity are dependent on the ion and crystal species, on the energy of ions and on the crystal thickness. Such dependencies have been studied experimentally and the mechanism involving the regular sequence of charge-exchange events with the transverse-energy non-conservation is attracted for understanding. The crystal response to ion flux transmission is also reviewed and characterized by the original results

  4. Surface and bulk crystallization of amorphous solid water films: Confirmation of “top-down” crystallization

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Chunqing; Smith, R. Scott; Kay, Bruce D.

    2016-10-01

    The crystallization kinetics of nanoscale amorphous solid water (ASW) films are investigated using temperature-programmed desorption (TPD) and reflection absorption infrared spectroscopy (RAIRS). TPD measurements are used to probe surface crystallization and RAIRS measurements are used to probe bulk crystallization. Isothermal TPD results show that surface crystallization is independent of the film thickness (from 100 to 1000 ML). Conversely, the RAIRS measurements show that the bulk crystallization time increases linearly with increasing film thickness. These results suggest that nucleation and crystallization begin at the ASW/vacuum interface and then the crystallization growth front propagates linearly into the bulk. This mechanism was confirmed by selective placement of an isotopic layer (5% D2O in H2O) at various positions in an ASW (H2O) film. In this case, the closer the isotopic layer was to the vacuum interface, the earlier the isotopic layer crystallized. These experiments provide direct evidence to confirm that ASW crystallization in vacuum proceeds by a “top-down” crystallization mechanism.

  5. Time-dependent Bragg diffraction and short-pulse reflection by one-dimensional photonic crystals

    International Nuclear Information System (INIS)

    André, Jean-Michel; Jonnard, Philippe

    2015-01-01

    The time-dependence of the Bragg diffraction by one-dimensional photonic crystals and its influence on the short pulse reflection are studied in the framework of the coupled-wave theory. The indicial response of the photonic crystal is calculated and it appears that it presents a time-delay effect with a transient time conditioned by the extinction length. A numerical simulation is presented for a Bragg mirror in the x-ray domain and a pulse envelope modelled by a sine-squared shape. The potential consequences of the time-delay effect in time-dependent optics of short-pulses are emphasized. (paper)

  6. Crystal morphology variation in inkjet-printed organic materials

    Science.gov (United States)

    Ihnen, Andrew C.; Petrock, Anne M.; Chou, Tsengming; Samuels, Phillip J.; Fuchs, Brian E.; Lee, Woo Y.

    2011-11-01

    The recent commercialization of piezoelectric-based drop-on-demand inkjet printers provides an additive processing platform for producing and micropatterning organic crystal structures. We report an inkjet printing approach where macro- and nano-scale energetic composites composed of cyclotrimethylenetrinitramine (RDX) crystals dispersed in a cellulose acetate butyrate (CAB) matrix are produced by direct phase transformation from organic solvent-based all-liquid inks. The characterization of printed composites illustrates distinct morphological changes dependent on ink deposition parameters. When 10 pL ink droplets rapidly formed a liquid pool, a coffee ring structure containing dendritic RDX crystals was produced. By increasing the substrate temperature, and consequently the evaporation rate of the pooled ink, the coffee ring structure was mitigated and shorter dendrites from up to ∼1 to 0.2 mm with closer arm spacing from ∼15 to 1 μm were produced. When the nucleation and growth of RDX and CAB were confined within the evaporating droplets, a granular structure containing nanoscale RDX crystals was produced. The results suggest that evaporation rate and microfluidic droplet confinement can effectively be used to tailor the morphology of inkjet-printed energetic composites.

  7. Thickness-Dependent Bioelectrochemical and Energy Applications of Thickness-Controlled Meso-Macroporous Antimony-Doped Tin Oxide

    Directory of Open Access Journals (Sweden)

    Daniel Mieritz

    2018-04-01

    Full Text Available Coatings of hierarchically meso-macroporous antimony-doped tin oxide (ATO enable interfacing adsorbed species, such as biomacromolecules, with an electronic circuit. The coating thickness is a limiting factor for the surface coverage of adsorbates, that are electrochemically addressable. To overcome this challenge, a carbon black-based templating method was developed by studying the composition of the template system, and finding the right conditions for self-standing templates, preventing the reaction mixture from flowing out of the mask. The thicknesses of as-fabricated coatings were measured using stylus profilometry to establish a relationship between the mask thickness and the coating thickness. Cyclic voltammetry was performed on coatings with adsorbed cytochrome c to check whether the entire coating thickness was electrochemically addressable. Further, bacterial photosynthetic reaction centers were incorporated into the coatings, and photocurrent with respect to coating thickness was studied. The template mixture required enough of both carbon black and polymer, roughly 7% carbon black and 6% poly(ethylene glycol. Coatings were fabricated with thicknesses approaching 30 µm, and thickness was shown to be controllable up to at least 15 µm. Under the experimental conditions, photocurrent was found to increase linearly with the coating thickness, up to around 12 µm, above which were diminished gains.

  8. Thickness and roughness measurements of nano thin films by interference

    Directory of Open Access Journals (Sweden)

    A Sabzalipour

    2011-06-01

    Full Text Available In the standard optical interference fringes approach, by measuring shift of the interference fringes due to step edge of thin film on substrate, thickness of the layer has already been measured. In order to improve the measurement precision of this popular method, the interference fringes intensity curve was extracted and analyzed before and after the step preparation. By this method, one can measure a few nanometers films thickness. In addition, using the interference fringes intensity curve and its fluctuations, the roughness of surface is measured within a few nanometers accuracy. Comparison of our results with some direct methods of thickness and roughness measurements, i.e. using surface profilemeter and atomic force microscopy confirms the accuracy of the suggested improvements.

  9. Formation of different micro-morphologies from VO2 and ZnO crystallization using macro-porous silicon substrates

    Science.gov (United States)

    Salazar-Kuri, U.; Antúnez, E. E.; Estevez, J. O.; Olive-Méndez, Sion F.; Silva-González, N. R.; Agarwal, V.

    2017-05-01

    Square-shaped macropores produced by electrochemical anodization of n- and p-type Si wafers have been used as centers of nucleation to crystallize VO2 and ZnO. Substrate roughness dependent formation of different morphologies is revealed in the form of squared particles, spheres, bars and ribbons in the case of VO2 and hexagonal piles and spheres in the case of ZnO, have been observed.The presence of nano-/micro-metric crystals was studied through field emission scanning electron microscopy and energy dispersive X-ray spectroscopy mapping. Crystal structure of metal oxides was confirmed by micro-Raman spectroscopy. The growth of the different morphologies has been explained in terms of the surface free energy of a bare Si/SiO2 substrate and its modification originated from the roughness of the surface and of the walls of the porous substrates. This energy plays a crucial role on the minimization of the required energy to induce heterogeneous nucleation and crystal growth. Present work strengthens and provides an experimental evidence of roughness dependent metal oxide crystal growth with well-defined habits from pore corners and rough sides of the pore walls, similar to already reported protein crystals.

  10. Crystal structure mediates mode of cell death in TiO2 nanotoxicity

    International Nuclear Information System (INIS)

    Braydich-Stolle, Laura K.; Schaeublin, Nicole M.; Murdock, Richard C.; Jiang, Jingkun; Biswas, Pratim; Schlager, John J.; Hussain, Saber M.

    2009-01-01

    Certain properties that nanoparticles possess differentiate them from their bulk counterparts, and these characteristics must be evaluated prior to nanoparticle studies and include: size, shape, dispersion, physical and chemical properties, surface area, and surface chemistry. Early nanotoxicity studies evaluating TiO 2 have yielded conflicting data which identify either size or crystal structure as the mediating property for nano-TiO 2 toxicity. However, it is important to note that none of these studies examined size with the crystal structure composition controlled for or examined crystal structure while controlling the nanoparticle size. The goal of this study was to evaluate the role of size and crystal structure in TiO 2 nanotoxicity while controlling for as many other nanoproperties as possible using the HEL-30 mouse keratinocyte cell line as a model for dermal exposure. In the size-dependent studies, all the nanoparticles are 100% anatase, and aggregate sizes were determined in order to take into account the effect of agglomeration on size-dependent toxicity. In addition, varying crystal structures were assessed while the size of the nanoparticles was controlled. We were able to identify that both size and crystal structure contribute to cytotoxicity and that the mechanism of cell death varies based on crystal structure. The 100% anatase TiO 2 nanoparticles, regardless of size, induced cell necrosis, while the rutile TiO 2 nanoparticles initiated apoptosis through formation of reactive oxygen species (ROS).

  11. New developments on size-dependent growth applied to the crystallization of sucrose

    Science.gov (United States)

    Martins, P. M.; Rocha, F.

    2007-12-01

    The effect of crystal size on the growth rate of sucrose (C 12H 22O 11) at 40 °C is investigated from a theoretical and an experimental point of view. Based on new perspectives resulting from the recently introduced spiral nucleation model [P.M. Martins, F. Rocha, Surf. Sci. 601 (2007) 3400], crystal growth rates are expressed in terms of mass deposition per time and crystal volume units. This alternative definition is demonstrated to be size-independent over the considered supersaturation range. The conventional overall growth rate expressed per surface area units is found to be linearly dependent on crystal size. The advantages of the "volumetric" growth rate concept are discussed. Sucrose dissolution rates were measured under reciprocal conditions of the growth experiments in order to investigate the two-way effect of crystal size on mass transfer rates and on the integration kinetics. Both effects are adequately described by combining a well-established diffusion-integration model and the spiral nucleation mechanism.

  12. Sample-size resonance, ferromagnetic resonance and magneto-permittivity resonance in multiferroic nano-BiFeO{sub 3}/paraffin composites at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lei; Li, Zhenyu; Jiang, Jia; An, Taiyu; Qin, Hongwei; Hu, Jifan, E-mail: hujf@sdu.edu.cn

    2017-01-01

    In the present work, we demonstrate that ferromagnetic resonance and magneto-permittivity resonance can be observed in appropriate microwave frequencies at room temperature for multiferroic nano-BiFeO{sub 3}/paraffin composite sample with an appropriate sample-thickness (such as 2 mm). Ferromagnetic resonance originates from the room-temperature weak ferromagnetism of nano-BiFeO{sub 3}. The observed magneto-permittivity resonance in multiferroic nano-BiFeO{sub 3} is connected with the dynamic magnetoelectric coupling through Dzyaloshinskii–Moriya (DM) magnetoelectric interaction or the combination of magnetostriction and piezoelectric effects. In addition, we experimentally observed the resonance of negative imaginary permeability for nano BiFeO{sub 3}/paraffin toroidal samples with longer sample thicknesses D=3.7 and 4.9 mm. Such resonance of negative imaginary permeability belongs to sample-size resonance. - Highlights: • Nano-BiFeO{sub 3}/paraffin composite shows a ferromagnetic resonance. • Nano-BiFeO{sub 3}/paraffin composite shows a magneto-permittivity resonance. • Resonance of negative imaginary permeability in BiFeO{sub 3} is a sample-size resonance. • Nano-BiFeO{sub 3}/paraffin composite with large thickness shows a sample-size resonance.

  13. Facile and controllable construction of vanadium pentoxide@conducting polymer core/shell nanostructures and their thickness-dependent synergistic energy storage properties

    International Nuclear Information System (INIS)

    Tong, Zhongqiu; Liu, Shikun; Li, Xingang; Ding, Yanbo; Zhao, Jiupeng; Li, Yao

    2016-01-01

    Graphical abstract: Here, we report a novel approach to prepare metal oxide@conducting polymer core/shell hybrids with controlled shell thickness and morphology, and the influence of PANI shell thickness on the electrochemical performance of V 2 O 5 @PANI core/shell hybrids is systematically investigated. Thickness-dependent synergistic electron transport, Li-ion diffusion distance, and shell mechanical strength mechanisms are proposed. - Highlights: • Thickness- and morphology-controlled V 2 O 5 /PANI core/shell hybrid nanofibers are fabricated. • The enhancement of energy storage performance of core/shell hybrids varies with the shell thickness. • Thickness-dependent synergistic electron transport, Li-ion diffusion distances, and shell mechanical strength mechanisms are proposed. - Abstract: Thickness- and morphology-controlled vanadium pentoxide/polyaniline (V 2 O 5 /PANI) core/shell hybrid nanofibers are fabricated by electropolymerization of PANI on V 2 O 5 nanofibers for enhanced energy storage. By simply adjusting the electrodeposition time, the thickness of the PANI shells can be controlled from 5 nm to 47 nm, and the morphology can be changed from coaxial to branched. The influence of shell thickness on the improved Li-ion storage performance of the V 2 O 5 /PANI core/shell nanofibers is systematically investigated, and this enhancement of charge capability and cycling stability strongly varies with the shell thickness. Thickness-dependent synergistic electron transport, Li-ion diffusion distances, and shell mechanical strength mechanisms are also proposed. These results provide meaningful references for developing new functional core/shell materials and high-performance energy storage composite materials.

  14. Crystal Nucleation and Crystal Growth and Mass Transfer in Internally Mixed Sucrose/NaNO3 Particles.

    Science.gov (United States)

    Ji, Zhi-Ru; Zhang, Yun; Pang, Shu-Feng; Zhang, Yun-Hong

    2017-10-19

    Secondary organic aerosols (SOA) can exist in a glassy or semisolid state under low relative humidity (RH) conditions, in which the particles show nonequilibrium kinetic characteristics with changing ambient RH. Here, we selected internally mixed sucrose/NaNO 3 droplets with organic to inorganic molar ratios (OIRs) of 1:8, 1:4, 1:2, and 1:1 as a proxy for multicomponent ambient aerosols to study crystal nucleation and growth processes and water transport under a highly viscous state with the combination of an RH-controlling system and a vacuum Fourier transform infrared (FTIR) spectrometer. The initial efflorescence RH (ERH) of NaNO 3 decreased from ∼45% for pure NaNO 3 droplets to ∼38.6 and ∼37.9% for the 1:8 and 1:4 sucrose/NaNO 3 droplets, respectively, while no crystallization of NaNO 3 occurred for the 1:2 and 1:1 droplets in the whole RH range. Thus, the addition of sucrose delayed the ERH and even completely inhibited nucleation of NaNO 3 in the mixed droplets. In addition, the crystal growth of NaNO 3 was suppressed in the 1:4 and 1:8 droplets most likely due to the slow diffusion of Na + and NO 3 - ions at low RH. Water uptake/release of sucrose/NaNO 3 particles quickly arrived at equilibrium at high RH, while the hygroscopic process was kinetically controlled under low RH. The half-time ratio between the liquid water content and the RH was used to describe the mass transfer behavior. For the 1:1 droplets, no mass limitation was observed with the ratio approaching to 1 when the RH was higher than 53%. The ratio increased 1 order of magnitude under an ultraviscous state with RH ranging from 53 to 15% and increased a further 1 order of magnitude at RH < 15% under a glassy state.

  15. Mirroring of 400 GeV/c protons by an ultra-thin straight crystal

    International Nuclear Information System (INIS)

    Scandale, W.; Arduini, G.; Butcher, M.; Cerutti, F.; Gilardoni, S.; Lechner, A.; Losito, R.; Masi, A.; Metral, E.; Mirarchi, D.; Montesano, S.; Redaelli, S.; Smirnov, G.; Bagli, E.; Bandiera, L.; Baricordi, S.; Dalpiaz, P.; Germogli, G.; Guidi, V.; Mazzolari, A.

    2014-01-01

    Channeling is the confinement of the trajectory of a charged particle in a crystalline solid. Positively charged particles channeled between crystal planes oscillate with a certain oscillation length, which depends on particle energy. A crystal whose thickness is half the oscillation length for planar channeling may act as a mirror for charged particles. If the incident angle of the particle trajectory with the crystal plane is less than the critical angle for channeling, under-barrier particles undergo half an oscillation and exit the crystal with the reversal of their transverse momentum, i.e., the particles are “mirrored” by the crystal planes. Unlike the traditional scheme relying on millimeter-long curved crystals, particle mirroring enables beam steering in high-energy accelerators via interactions with micrometer-thin straight crystal. The main advantage of mirroring is the interaction with a minimal amount of material along the beam, thereby decreasing unwanted incoherent nuclear interactions. The effectiveness of the mirror effect for ultrarelativistic positive particles has been experimentally proven at external lines of CERN-SPS. The mirroring effect in a 26.5-μm-thick Si crystal has been studied in the experiment with a narrow beam of 400 GeV/c protons at the CERN-SPS. The reflection efficiency for a quasi-parallel beam is larger than 80%

  16. A Diagram of the Structure Evolution of Pb(Zn1/3Nb2/3 O3-9%PbTiO3 Relaxor Ferroelectric Crystals with Excellent Piezoelectric Properties

    Directory of Open Access Journals (Sweden)

    Hua Zhou

    2017-05-01

    Full Text Available Piezoelectric properties are of significant importance to medical ultrasound, actuators, sensors, and countless other device applications. The mechanism of piezoelectric properties can be deeply understood in light of structure evolutions. In this paper, we report a diagram of the structure evolutions of Pb(Zn1/3Nb2/30.91Ti0.09O3 (PZN-9PT crystals with excellent piezoelectric properties among orthorhombic, tetragonal, and cubic phases, with a temperature increasing from room temperature to 220 °C. Through fitting the temperature-dependent XRD curves with Gauss and Lorenz functions, we obtained the evolutions of the content ratio of three kinds of phases (orthorhombic, tetragonal and cubic and the lattice parameters of the PZN-9PT system with the changes of temperature. The XRD fitting results together with Raman and dielectric spectra show that the phase transitions of PZN-9PT are a typical continuous evolution process. Additionally, resonance and anti-resonance spectra show the excellent piezoelectric properties of these crystals, which probably originate from the nano twin domains, as demonstrated by TEM images. Of particular attention is that the thickness electromechanical coupling factor kt is up to 72%.

  17. A novel 2 T P-channel nano-crystal memory for low power/high speed embedded NVM applications

    International Nuclear Information System (INIS)

    Zhang Junyu; Wang Yong; Liu Jing; Zhang Manhong; Xu Zhongguang; Huo Zongliang; Liu Ming

    2012-01-01

    We introduce a novel 2 T P-channel nano-crystal memory structure for low power and high speed embedded non-volatile memory (NVM) applications. By using the band-to-band tunneling-induced hot-electron (BTBTIHE) injection scheme, both high-speed and low power programming can be achieved at the same time. Due to the use of a select transistor, the 'erased states' can be set to below 0 V, so that the periphery HV circuit (high-voltage generating and management) and read-out circuit can be simplified. Good memory cell performance has also been achieved, including a fast program/erase (P/E) speed (a 1.15 V memory window under 10 μs program pulse), an excellent data retention (only 20% charge loss for 10 years). The data shows that the device has strong potential for future embedded NVM applications. (semiconductor devices)

  18. Gold nano-particles fixed on glass

    International Nuclear Information System (INIS)

    Worsch, Christian; Wisniewski, Wolfgang; Kracker, Michael; Rüssel, Christian

    2012-01-01

    Highlights: ► We produced wear resistant gold–ruby coatings on amorphous substrates. ► Thin sputtered gold layers were covered by or embedded in silica coatings. ► Annealing above T g of the substrate glass led to the formation of gold nano particles. ► A 1 1 1-texture of the gold particles is observed via XRD and EBSD. ► EBSD-patterns can be acquired from crystals covered by a thin layer of glass. - Abstract: A simple process for producing wear resistant gold nano-particle coatings on transparent substrates is proposed. Soda-lime-silica glasses were sputtered with gold and subsequently coated with SiO 2 using a combustion chemical vapor deposition technique. Some samples were first coated with silica, sputtered with gold and then coated with a second layer of silica. The samples were annealed for 20 min at either 550 or 600 °C. This resulted in the formation of round, well separated gold nano-particles with sizes from 15 to 200 nm. The color of the coated glass was equivalent to that of gold–ruby glasses. Silica/gold/silica coatings annealed at 600 °C for 20 min were strongly adherent and scratch resistant. X-ray diffraction and electron backscatter diffraction (EBSD) were used to describe the crystal orientations of the embedded particles. The gold particles are preferably oriented with their (1 1 1) planes perpendicular to the surface.

  19. Lubricating graphene with a nanometer-thick perfluoropolyether

    International Nuclear Information System (INIS)

    Kozbial, Andrew; Li, Zhiting; Iasella, Steven; Taylor, Alexander T.; Morganstein, Brittni; Wang, Yongjin; Sun, Jianing; Zhou, Bo; Randall, Nicholas X.; Liu, Haitao; Li, Lei

    2013-01-01

    Due to its atomic thickness (thinness), the wear of graphene in nanoscale devices or as a protective coating is a serious concern. It is highly desirable to develop effective methods to reduce the wear of graphene. In the current paper, the effect of a nano-lubricant, perfluoropolyether, on the wear of graphene on different substrates is investigated. Graphene was synthesized by chemical vapor deposition (CVD) and characterized by Raman spectroscopy. The nano-lubricant is applied on the graphene by dip-coating. The friction and wear of graphene samples are characterized by nanotribometer, AFM, optical microscopy and Raman spectroscopy. The results showed that lubricating silicon/graphene with nano-lubricant reduces the friction but increases the wear. However, lubricating nickel/graphene with nano-lubricant has little effect on the friction but reduce the wear significantly. The underlying mechanism has been discussed on the basis of the graphene–substrate adhesion and the roughness. The current study provides guidance to the future design of graphene-containing devices. - Highlights: • The effect of a nano-lubricant on the friction and wear of CVD graphene was studied. • Lubricating Graphene/Si results in lower friction but higher wear. • Lubricating Ggraphene/Ni results in lower wear but unchanged friction. • The mechanisms were discussed based on the roughness and interfacial adhesion

  20. Synthesis and photoluminescence enhancement of nano-PAA-ZnCl{sub 2} with controllable dimension and morphology

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jianguo [State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069 (China); Physics Department, Northwest University, Xi’an 710069 (China); Wang, Kaige, E-mail: wangkg@nwu.edu.cn [State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069 (China); Zhou, Yukun; Wang, Shuang; Zhang, Chen [State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069 (China); Wang, Guiren [State Key Laboratory of Cultivation Base for Photoelectric Technology and Functional Materials, Laboratory of Optoelectronic Technology of Shaanxi Province, National Center for International Research of Photoelectric Technology & Nano-functional Materials and Application, Institute of Photonics and Photon-Technology, Northwest University, Xi’an 710069 (China); Mechanical Engineering Department & Biomedical Engineering Program, University of South Carolina, Columbia SC 29208 (United States); and others

    2016-12-30

    Highlights: • One kind of large area nano-PAA-ZnCl{sub 2} composite film is fabricated, its dimension and morphology is controllable. The properties of nano-composite films have been heavily influenced by the concentration of initial ZnCl{sub 2} solution, the depth of nano-PAAM substrate and the growth time of ZnCl{sub 2} crystals. • At room temperature, the nano-PAA-ZnCl{sub 2} film has the same excitation center (335 nm) and emission center (430 nm) as the nano-PAAM substrate, and the PL intensities can be doubly enhanced. • After annealing at 500 °C, the emission peak spectra of the nano-composite films stabilized at 385 nm, 402 nm, and 430 nm. - Abstract: One kind of ZnCl{sub 2} nano-films with controllable dimension and morphology is successfully synthesized on the top surface of nano-porous anodic alumina membrane (nano-PAAM) by self-organized method. The nano-PAA-ZnCl{sub 2} composite films are characterized by field emission scanning electron microscopy, energy dispersive spectrometer, and laser confocal Raman spectroscopy. The results indicate that the concentration of initial ZnCl{sub 2} solution, the depth of nano-PAAM substrate and the growth time of ZnCl{sub 2} crystals have important influences on the properties of nano-composite films. Furthermore, the characteristics of nano-composites such as the photoluminescence (PL) spectra are investigated. Compared with the nano-PAAM substrate, at room temperature, all of the nano-PAA-ZnCl{sub 2} composite films have both the same excitation center (335 nm) and emission center (430 nm), no matter what the nano-composite morphologies being; and the PL intensity of nano-PAA-ZnCl{sub 2} composite films are all enhanced and the maximum enhancement is two times; after annealing at 500 °C, the emission spectra of the nano-composite films stabilized at the 385 nm, 402 nm and 430 nm. The research provides a new, simple, economical and practical technology to fabricate nano-PAA composite films with higher

  1. Effect of Nano-Ni Catalyst on the Growth and Characterization of Diamond Films by HFCVD

    Directory of Open Access Journals (Sweden)

    Chien-Chung Teng

    2010-01-01

    Full Text Available Four different catalysts, nanodiamond seed, nano-Ni, diamond powder, and mixture of nano-Ni/diamond powder, were used to activate Si wafers for diamond film growth by hot-filament CVD (HFCVD. Diamond crystals were shown to grow directly on both large diamond powder and small nanodiamond seed, but a better crystallinity of diamond film was observed on the ultrasonicated nanodiamond seeded Si substrate. On the other hand, nano-Ni nanocatalysts seem to promote the formation of amorphous carbon but suppress transpolyacetylene (t-PA phases at the initial growth of diamond films. The subsequent nucleation and growth of diamond crystals on the amorphous carbon layer leads to generation of the spherical diamond particles and clusters prior to coalescence into continuous diamond films based on the CH3 addition mechanism as characterized by XRD, Raman, ATR/FT-IR, XPS, TEM, SEM, and AFM techniques. Moreover, a 36% reduction in surface roughness of diamond film assisted by nano-Ni catalyst is quite significant.

  2. Time and amplitude dependent damping in a single crystal of zirconium

    International Nuclear Information System (INIS)

    Atrens, A.; Ritchie, I.G.; Sprungmann, K.W.; CEA Centre d'Etudes Nucleaires de Grenoble, 38

    1977-01-01

    The amplitude dependent and time dependent damping in a single crystal of zirconium has been investigated in the temperature range ambient to 400 0 C. The results are attributed to a combination of dislocation unpinning and pin rearrangement. After stabilization of the pin distribution by vibration conditioning, followed by a sudden large increase in amplitude, it is shown that the specimen retains a memory of the stabilized state

  3. Temperature fluctuations in a LiNbO 3 melt during crystal growth

    Science.gov (United States)

    Suzuki, Tetsuro

    2004-10-01

    Variations in temperature induced by forced convection on the surface of a LiNbO3 melt during crystal growth have been studied. Temperature measurements on the melt surface of single crystals growing (∅ 50 mm) at rotation rates of 15-40 rpm on an RF-heated Czochralski puller has revealed that the melt surface continuously alternates between a steady and unsteady state of flow. This was attributed to the intermittently turbulent flow mode at intermediate rotation rates. The fluctuation period is thought to depend on the thickness of its boundary layer. The boundary layer varies in thickness due to the melt flow, which stops as the interface moves toward the crystal and resumes once the interface reverts to its former position. By contrast, at above 60 rpm, the melt surface temperature drops without fluctuation, indicating that turbulent flow is dominant at faster rotation rates.

  4. Analysis of tensile strain enhancement in Ge nano-belts on an insulator surrounded by dielectrics

    International Nuclear Information System (INIS)

    Lu Wei-Fang; Li Cheng; Huang Shi-Hao; Lin Guang-Yang; Wang Chen; Yan Guang-Ming; Huang Wei; Lai Hong-Kai; Chen Song-Yan

    2013-01-01

    Ge nano-belts with large tensile strain are considered as one of the promising materials for high carrier mobility metal—oxide—semiconductor transistors and efficient photonic devices. In this paper, we design the Ge nano-belts on an insulator surrounded by Si 3 N 4 or SiO 2 for improving their tensile strain and simulate the strain profiles by using the finite difference time domain (FDTD) method. The width and thickness parameters of Ge nano-belts on an insulator, which have great effects on the strain profile, are optimized. A large uniaxial tensile strain of 1.16% in 50-nm width and 12-nm thickness Ge nano-belts with the sidewalls protected by Si 3 N 4 is achieved after thermal treatments, which would significantly tailor the band gap structures of Ge-nanobelts to realize the high performance devices. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Thickness-Dependent Order-to-Order Transitions of Bolaform-like Giant Surfactant in Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, Chih-Hao; Yue, Kan; Wang, Jing; Dong, Xue-Hui; Xia, Yanfeng; Jiang, Zhang [X-ray; Thomas, Edwin L. [Department; Cheng, Stephen Z. D.

    2017-09-07

    Controlling self-assembled nanostructures in thin films allows the bottom-up fabrication of ordered nanoscale patterns. Here we report the unique thickness-dependent phase behavior in thin films of a bolaform-like giant surfactant, which consists of butyl- and hydroxyl-functionalized polyhedral oligomeric silsesquioxane (BPOSS and DPOSS) cages telechelically located at the chain ends of a polystyrene (PS) chain with 28 repeating monomers on average. In the bulk, BPOSS-PS28-DPOSS forms a double gyroid (DG) phase. Both grazing incidence small angle X-ray scattering and transmission electron microscopy techniques are combined to elucidate the thin film structures. Interestingly, films with thicknesses thinner than 200 nm exhibit an irreversible phase transition from hexagonal perforated layer (HPL) to compressed hexagonally packed cylinders (c-HEX) at 130 °C, while films with thickness larger than 200 nm show an irreversible transition from HPL to DG at 200 °C. The thickness-controlled transition pathway suggests possibilities to obtain diverse patterns via thin film self-assembly.

  6. Thickness dependent formation and properties of GdSi2/Si(100) interfaces

    International Nuclear Information System (INIS)

    Peto, G.; Molnar, G.; Dozsa, L.; Horvath, Z.E.; Horvath, Zs.J.; Zsoldos, E.; Dimitriadis, C.A.; Papadimitriou, L.

    2005-01-01

    Epitaxial and polycrystalline orthorhombic GdSi 2 films were grown on Si(100) substrates by solid phase reaction between Si and Gd films at different thicknesses of the Gd film. The most important property of these GdSi 2 /Si interfaces was defect formation. This was investigated by studying the properties of the Schottky barriers by means of current voltage and capacitance-voltage characteristics, deep level transient spectroscopy by double crystal X-ray diffractometry, and transmission electron microscopy. Epitaxial growth of the silicide layer ensured a relatively low interface defect density (about 10 10 cm -2 ), while the non-epitaxial growth induced defects of a much higher density (about 10 12 cm -2 ). The defects generated during the silicide formation are located within a depth of about 10 nm from the GdSi 2 /Si interface. (orig.)

  7. The Nano-Sized In2O3 Powder Synthesis by Sol-Gel Method

    Institute of Scientific and Technical Information of China (English)

    潘庆谊; 程知萱; 等

    2002-01-01

    Wiwh InCl3·4H2O being used as raw materials,the precursor of nano-sized In2O3 powder was prepared by hydrolysis,peptization and gelation of InCl3·4H2O.After calcination,nano-sized In2O3 powder was obtained.The powder was characterized by thermogravimetric and differential thermal analysis(TG-DTA).X-ray diffractometry(XRD)and transmission electron microscopy(TEM),respectively,Calculation revealed that the mean crystablline size increased with increasing the calcination temperature,but crystal lattice distortion rate decreased with the increasing in the average crystalline size.This indicated that the smaller the particle size,the bigger the crystal lattice distortion,the worse the crystal growing.The activation energies for growth of nano-sized In2O3 were calculated to be 4.75kJ·mol-1 at the calcination temperature up tp 500℃ and 66.40kJ· mol-1 at the calcination temperature over 600℃.TEM photos revealed that the addition of the chemical additive(OP-10)greatly influenced the morphology and size of In2O3 particles.

  8. Temperature-dependent evolution of the wetting layer thickness during Ge deposition on Si(001).

    Science.gov (United States)

    Bergamaschini, R; Brehm, M; Grydlik, M; Fromherz, T; Bauer, G; Montalenti, F

    2011-07-15

    The evolution of the wetting layer (WL) thickness during Ge deposition on Si(001) is analyzed with the help of a rate-equation approach. The combined role of thickness, island volume and shape-dependent chemical potentials is considered. Several experimental observations, such as WL thinning following the pyramid-to-dome transformation, are captured by the model, as directly demonstrated by a close comparison with photoluminescence measurements (PL) on samples grown at three different temperatures. The limitations of the model in describing late stages of growth are critically addressed.

  9. Controlling the volatility of the written optical state in electrochromic DNA liquid crystals

    Science.gov (United States)

    Liu, Kai; Varghese, Justin; Gerasimov, Jennifer Y.; Polyakov, Alexey O.; Shuai, Min; Su, Juanjuan; Chen, Dong; Zajaczkowski, Wojciech; Marcozzi, Alessio; Pisula, Wojciech; Noheda, Beatriz; Palstra, Thomas T. M.; Clark, Noel A.; Herrmann, Andreas

    2016-05-01

    Liquid crystals are widely used in displays for portable electronic information display. To broaden their scope for other applications like smart windows and tags, new material properties such as polarizer-free operation and tunable memory of a written state become important. Here, we describe an anhydrous nanoDNA-surfactant thermotropic liquid crystal system, which exhibits distinctive electrically controlled optical absorption, and temperature-dependent memory. In the liquid crystal isotropic phase, electric field-induced colouration and bleaching have a switching time of seconds. Upon transition to the smectic liquid crystal phase, optical memory of the written state is observed for many hours without applied voltage. The reorientation of the DNA-surfactant lamellar layers plays an important role in preventing colour decay. Thereby, the volatility of optoelectronic state can be controlled simply by changing the phase of the material. This research may pave the way for developing a new generation of DNA-based, phase-modulated, photoelectronic devices.

  10. Effect of Amelogenin Coating of a Nano-Modified Titanium Surface on Bioactivity

    Directory of Open Access Journals (Sweden)

    Chisato Terada

    2018-04-01

    Full Text Available The interactions between implants and host tissues depend on several factors. In particular, a growing body of evidence has demonstrated that the surface texture of an implant influences the response of the surrounding cells. The purpose of this study is to develop new implant materials aiming at the regeneration of periodontal tissues as well as hard tissues by coating nano-modified titanium with amelogenin, which is one of the main proteins contained in Emdogain®. We confirmed by quartz crystal microbalance evaluation that amelogenin is easy to adsorb onto the nano-modified titanium surface as a coating. Scanning electron microscopy, scanning probe microscopy, X-ray photoelectron spectroscopy, and Fourier-transform infrared spectroscopy analyses confirmed that amelogenin coated the nano-modified titanium surface following alkali-treatment. In vitro evaluation using rat bone marrow and periodontal ligament cells revealed that the initial adhesion of both cell types and the induction of hard tissue differentiation such as cementum were improved by amelogenin coating. Additionally, the formation of new bone in implanted surrounding tissues was observed in in vivo evaluation using rat femurs. Together, these results suggest that this material may serve as a new implant material with the potential to play a major role in the advancement of clinical dentistry.

  11. Effect of microscopic structure on deformation in nano-sized copper and Cu/Si interfacial cracking

    Energy Technology Data Exchange (ETDEWEB)

    Sumigawa, Takashi, E-mail: sumigawa@cyber.kues.kyoto-u.ac.jp; Nakano, Takuya; Kitamura, Takayuki

    2013-03-01

    The purpose of this work is to examine the effect of microscopic structure on the mechanical properties of nano-sized components (nano-components). We developed a bending specimen with a substructure that can be observed by means of a transmission electron microscope (TEM). We examined the plastic behavior of a Cu bi-crystal and the Cu/Si interfacial cracking in a nano-component. TEM images indicated that an initial plastic deformation takes place near the interface edge (the junction between the Cu/Si interface and the surface) in the Cu film with a high critical resolved shear stress (400–420 MPa). The deformation developed preferentially in a single grain. Interfacial cracking took place at the intersection between the grain boundary and the Cu/Si interface, where a high stress concentration existed due to deformation mismatch. These results indicate that the characteristic mechanical behavior of a nano-component is governed by the microscopic stress field, which takes into account the crystallographic structure. - Highlights: ► A nano-component specimen including a bi-crystal copper layer was prepared. ► A loading test with in-situ transmission electron microscopy was conducted. ► The plastic and cracking behaviors were governed by microscopic stress. ► Stress defined under continuum assumption was still present in nano-components.

  12. Simulations of the polarisation-dependent Raman intensity of β-carotene in photosystem II crystals

    International Nuclear Information System (INIS)

    Brose, K.; Zouni, A.; Müh, F.; Mroginski, M.A.; Maultzsch, J.

    2013-01-01

    Highlights: • First polarisation-dependent Raman spectroscopy on photosystem II crystals. • Orientation-dependent Raman intensity simulations for di- and monomeric crystals. • Simulations account for all β-carotenes (β-Car) in the unit cell for the first time. • Prediction for identificationy of the β-Car cation in side-path electron transport. - Abstract: In order to clarify possibilities to identify the β-carotene (β-Car) radicals in secondary electron transfer (ET) reactions in the photosystem II core complex (PSIIcc), Raman intensities of all 96 β-Car cofactors in the unit cell of PSIIcc-dimer crystals as a function of polarisation and crystal orientation were simulated based on the 2.9 Å resolution structure. The Raman-active symmetry A g in the C 2h group is assigned to the β-Car modes ν 66 and ν 67 . Simulations are in agreement with experiment for off-resonant excitation at 1064 nm. Resonant measurements at 476 and 532 nm excitation can not be explained, which is attributed to mode mixing in the excited state and the existence of different spectral pools. The identity of the β-Car oxidised in secondary ET can not be resolved by Raman measurements on PSIIcc-dimer crystals. Additional simulations show that similar measurements on PSIIcc-monomer crystals could provide a possible route to solve this issue

  13. Simulations of the polarisation-dependent Raman intensity of β-carotene in photosystem II crystals

    Energy Technology Data Exchange (ETDEWEB)

    Brose, K., E-mail: katharina.brose@gmx.net [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany); Zouni, A. [Institut für Chemie, Max-Volmer-Laboratorium, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin (Germany); Müh, F. [Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Straße 69, 4040 Linz (Austria); Mroginski, M.A. [Institut für Chemie, Max-Volmer-Laboratorium, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin (Germany); Maultzsch, J. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany)

    2013-06-03

    Highlights: • First polarisation-dependent Raman spectroscopy on photosystem II crystals. • Orientation-dependent Raman intensity simulations for di- and monomeric crystals. • Simulations account for all β-carotenes (β-Car) in the unit cell for the first time. • Prediction for identificationy of the β-Car cation in side-path electron transport. - Abstract: In order to clarify possibilities to identify the β-carotene (β-Car) radicals in secondary electron transfer (ET) reactions in the photosystem II core complex (PSIIcc), Raman intensities of all 96 β-Car cofactors in the unit cell of PSIIcc-dimer crystals as a function of polarisation and crystal orientation were simulated based on the 2.9 Å resolution structure. The Raman-active symmetry A{sub g} in the C{sub 2h} group is assigned to the β-Car modes ν{sub 66} and ν{sub 67}. Simulations are in agreement with experiment for off-resonant excitation at 1064 nm. Resonant measurements at 476 and 532 nm excitation can not be explained, which is attributed to mode mixing in the excited state and the existence of different spectral pools. The identity of the β-Car oxidised in secondary ET can not be resolved by Raman measurements on PSIIcc-dimer crystals. Additional simulations show that similar measurements on PSIIcc-monomer crystals could provide a possible route to solve this issue.

  14. Molecular Weight and Crystallization Temperature Effects on Poly(ethylene terephthalate (PET Homopolymers, an Isothermal Crystallization Analysis

    Directory of Open Access Journals (Sweden)

    Leonardo A. Baldenegro-Perez

    2014-02-01

    Full Text Available The isothermal crystallization of poly(ethylene terephthalate (PET homopolymers with different molecular weight was studied in a wide temperature range (140–230 °C using different experimental techniques. Three different morphological regions, labeled r1, r2 and r3, were distinguished as a function of crystallization temperature (Tc. In r1 (low Tc crystallized samples were characterized by a low crystalline degree with a small spherulite texture containing thin crystals. In r2 (intermediate Tc samples showed medium size spherulites composed of two distinct crystalline families (thin and thick crystals. In this temperature range, the crystallization exhibited a maximum value and it was associated with a high content of secondary crystals. In r3 (high Tc, samples presented considerable amorphous zones and regions consisting of oversized spherulites containing only thick crystals. Time-resolved wide-angle X-ray diffraction measurements, using synchrotron radiation, indicated a rapid evolution of the crystalline degree within the second region, in contrast with the quite slow evolution observed in the third region. On the other hand, by small-angle X-ray scattering (SAXS and time-resolved SAXS experiment, it was found that the long period (L as well as the lamellar thickness (lc increase as a function of Tc, corroborating the formation of the thickest crystals in the third region. From all these observations, a morphological model was proposed for each region.

  15. Optical Absorption in Molecular Crystals from Time-Dependent Density Functional Theory

    Science.gov (United States)

    2017-04-23

    Our approach represents a full solid-state calculation, allowing for polarization ef- fects while still capable of capturing inter-molecular dis...AFRL-AFOSR-UK-TR-2017-0030 Optical absorption in molecular crystals from time-dependent density functional theory Leeor Kronik WEIZMANN INSTITUTE OF...from time-dependent density functional theory 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA9550-15-1-0290 5c.  PROGRAM ELEMENT NUMBER 61102F 6. AUTHOR(S

  16. Scattering of ultrarelativistic electrons in ultrathin crystals

    Energy Technology Data Exchange (ETDEWEB)

    Shul' ga, N.F., E-mail: shulga@kipt.kharkov.ua [National Science Center “Kharkov Institute of Physics and Technology”, 1, Akademichna str., Kharkiv, 61108 (Ukraine); Karazin Kharkiv National University, 4, Svobody sq., Kharkiv, 61000 (Ukraine); Shulga, S.N. [National Science Center “Kharkov Institute of Physics and Technology”, 1, Akademichna str., Kharkiv, 61108 (Ukraine); Karazin Kharkiv National University, 4, Svobody sq., Kharkiv, 61000 (Ukraine)

    2017-06-10

    Quantum theory is proposed of high energy electrons scattering in ultrathin crystals. This theory is based upon a special representation of the scattering amplitude in the form of an integral over the surface surrounding the crystal, and on the spectral method of determination of the wave function. The comparison is performed of quantum and classical differential scattering cross-sections in the transitional range of crystal thicknesses, from those at which the channeling phenomenon is not developed up to those at which it is established. It is shown that in this thickness range the quantum scattering cross-section, unlike the classical one, contains sharp peaks corresponding to some specific scattering angles, that is connected with the diffraction of the incident plane wave onto the periodically distributed crystal atomic strings. It is shown that the value of the scattering cross-section in the peaks varies periodically with the change of the target thickness. We note that this must lead to a new interference effect in radiation that is connected with the rearrangement of incident wave packet in transitional area of crystal thicknesses.

  17. Scattering of ultrarelativistic electrons in ultrathin crystals

    Directory of Open Access Journals (Sweden)

    N.F. Shul'ga

    2017-06-01

    Full Text Available Quantum theory is proposed of high energy electrons scattering in ultrathin crystals. This theory is based upon a special representation of the scattering amplitude in the form of an integral over the surface surrounding the crystal, and on the spectral method of determination of the wave function. The comparison is performed of quantum and classical differential scattering cross-sections in the transitional range of crystal thicknesses, from those at which the channeling phenomenon is not developed up to those at which it is established. It is shown that in this thickness range the quantum scattering cross-section, unlike the classical one, contains sharp peaks corresponding to some specific scattering angles, that is connected with the diffraction of the incident plane wave onto the periodically distributed crystal atomic strings. It is shown that the value of the scattering cross-section in the peaks varies periodically with the change of the target thickness. We note that this must lead to a new interference effect in radiation that is connected with the rearrangement of incident wave packet in transitional area of crystal thicknesses.

  18. Advances in spectral conversion for photovoltaics: up-converting Er3+ doped YF3 nano-crystals in transparent glass ceramic

    Science.gov (United States)

    Marques-Hueso, Jose; Chen, Daqin; MacDougall, Sean K. W.; Wang, Yuansheng; Richards, Bryce S.

    2011-09-01

    Up- and down-conversion (UC, DC) constitute two singular routes to achieve improved energy harvesting of sunlight by changing its shape of the solar spectrum. To obtain a significant conversion rate two main challenges have to be overcome: i) the excited lanthanide ions have to emit efficiently, a target which has been better accomplished for DC materials; ii) the absorption in the lanthanide-based UC and DC layers has to be high to ensure a sizeable fraction of photons can be harvested. In this paper, we review such materials and their use as spectral converters for photovoltaics (PV), paying special attention to the UC and DC processes in lanthanide glasses in fluoride matrices. We discuss the challenges that need to be overcome in order to implement these materials in real PV devices. Finally, we will present the synthesis of erbium (Er3+) doped YF3 nano-crystals embedded in transparent glass ceramic (TGC) by melt quenching. This material presents a low phonon energy environment for the Er3+ ions due to the fluoride crystals, while the silica glass provides chemical and mechanical stability to the compound.

  19. Crystal structure mediates mode of cell death in TiO{sub 2} nanotoxicity

    Energy Technology Data Exchange (ETDEWEB)

    Braydich-Stolle, Laura K.; Schaeublin, Nicole M.; Murdock, Richard C. [Wright-Patterson AFB, Applied Biotechnology Branch, Human Effectiveness Directorate, Air Force Research Laboratory (United States); Jiang, Jingkun; Biswas, Pratim [Washington University in St. Louis, Department of Energy, Environmental, and Chemical Engineering (United States); Schlager, John J.; Hussain, Saber M., E-mail: Saber.Hussain@wpafb.af.mi [Wright-Patterson AFB, Applied Biotechnology Branch, Human Effectiveness Directorate, Air Force Research Laboratory (United States)

    2009-08-15

    Certain properties that nanoparticles possess differentiate them from their bulk counterparts, and these characteristics must be evaluated prior to nanoparticle studies and include: size, shape, dispersion, physical and chemical properties, surface area, and surface chemistry. Early nanotoxicity studies evaluating TiO{sub 2} have yielded conflicting data which identify either size or crystal structure as the mediating property for nano-TiO{sub 2} toxicity. However, it is important to note that none of these studies examined size with the crystal structure composition controlled for or examined crystal structure while controlling the nanoparticle size. The goal of this study was to evaluate the role of size and crystal structure in TiO{sub 2} nanotoxicity while controlling for as many other nanoproperties as possible using the HEL-30 mouse keratinocyte cell line as a model for dermal exposure. In the size-dependent studies, all the nanoparticles are 100% anatase, and aggregate sizes were determined in order to take into account the effect of agglomeration on size-dependent toxicity. In addition, varying crystal structures were assessed while the size of the nanoparticles was controlled. We were able to identify that both size and crystal structure contribute to cytotoxicity and that the mechanism of cell death varies based on crystal structure. The 100% anatase TiO{sub 2} nanoparticles, regardless of size, induced cell necrosis, while the rutile TiO{sub 2} nanoparticles initiated apoptosis through formation of reactive oxygen species (ROS).

  20. XRD measurement of mean thickness, thickness distribution and strain for illite and illite-smectite crystallites by the Bertaut-Warren-Averbach technique

    Science.gov (United States)

    Drits, Victor A.; Eberl, Dennis D.; Środoń, Jan

    1998-01-01

    A modified version of the Bertaut-Warren-Averbach (BWA) technique (Bertaut 1949, 1950; Warren and Averbach 1950) has been developed to measure coherent scattering domain (CSD) sizes and strains in minerals by analysis of X-ray diffraction (XRD) data. This method is used to measure CSD thickness distributions for calculated and experimental XRD patterns of illites and illite-smectites (I-S). The method almost exactly recovers CSD thickness distributions for calculated illite XRD patterns. Natural I-S samples contain swelling layers that lead to nonperiodic structures in the c* direction and to XRD peaks that are broadened and made asymmetric by mixed layering. Therefore, these peaks cannot be analyzed by the BWA method. These difficulties are overcome by K-saturation and heating prior to X-ray analysis in order to form 10-Å periodic structures. BWA analysis yields the thickness distribution of mixed-layer crystals (coherently diffracting stacks of fundamental illite particles). For most I-S samples, CSD thickness distributions can be approximated by lognormal functions. Mixed-layer crystal mean thickness and expandability then can be used to calculate fundamental illite particle mean thickness. Analyses of the dehydrated, K-saturated samples indicate that basal XRD reflections are broadened by symmetrical strain that may be related to local variations in smectite interlayers caused by dehydration, and that the standard deviation of the strain increases regularly with expandability. The 001 and 002 reflections are affected only slightly by this strain and therefore are suited for CSD thickness analysis. Mean mixed-layer crystal thicknesses for dehydrated I-S measured by the BWA method are very close to those measured by an integral peak width method.

  1. Formation of silicon Oxide nano thickness on Si (III) with the assistance of Cs

    International Nuclear Information System (INIS)

    Bahari, A.; Bagheri, M.

    2006-01-01

    : The possibility of controlling the growth of a uniform ultra thin oxide on silicon via oxygen dosing at low temperatures, would be a great interest for the projected further development of nano electronics. One way to achieve this is to be able to control the conversion of chemically adsorbed oxygen and retained at room temperature into oxide during subsequent heating. Oxygen is chemisorbed at room temperature on Si(111) surface to saturation ( >100 L O 2 ), and the experimental chamber is then evacuated. This leaves adsorbed oxygen as atomically inserted on Si surface which sits on the back bonds. This surface is then used as a base for further processing which in one case consists of annealing to 600- 700 d eg C and subsequent exposures equivalent to the first step. This is repeated again. As the focus of this work, a series of experiments are done with adsorbed Cs, which assists in retaining oxygen and in transforming the adsorbed oxygen into oxide upon heating. It was found that the oxide formed on the surface at low coverage clusters. Without any external influence, the clusters may be made to coalesce upon further oxygen adsorption at room temperature, and annealing terminates as a continuous monolayer of amorphous oxide on top of a well-ordered silicon substrate. This configuration is inert to further uptake of oxygen. A higher oxide thickness could be obtained with Cs. Also in this case, the oxide growth saturates in an inert oxide Iayer

  2. [Effect of nano-hydroxyapatite to glass ionomer cement].

    Science.gov (United States)

    Mu, Ya-Bing; Zang, Guang-Xiang; Sun, Hong-Chen; Wang, Cheng-Kun

    2007-12-01

    To investigate the mechanical character, microleakage and mineralizing potential of nano-hydroxyapatite (nano-HAP)-added glass ionomer cement(GIC). 8% nano-HAP were incorporated into GIC as composite, and pure GIC as control. Both types of material were used to make 20 cylinders respectively in order to detect three-point flexural strength and compressive strength. Class V cavities were prepared in 120 molars extracted for orthodontic treatment, then were filled by two kinds of material. The microleakage at the composite-dentine interface was observed with confocal laser scanning microscope (CLSM) after stained with 1% rhodamin-B-isothiocyanate for 24 hours. Class V cavities were prepared in the molars of 4 healthy dogs, filled with composite, and the same molars in the other side were filled with GIC as control. The teeth were extracted to observe the mineralizing property with polarimetric microscope in 8 weeks after filling. Three-point flexural strength and compressive of nano-HAP-added GIC were increased compared with pure GIC (P nano-HAP-added GIC, while there was no hydroxyapatite crystals formed at the interface of tooth and pure GIC. 8% nano-HAP-added GIC can tightly fill tooth and have mineralizing potential, and can be used as liner or filling material for prevention.

  3. Nano-cellulose biopolymer based nano-biofilm biomaterial using plant biomass: An innovative plant biomaterial dataset

    Directory of Open Access Journals (Sweden)

    A.B.M. Sharif hossain

    2018-04-01

    Full Text Available The nano-cellulose derived nano-biofilm keeps a magnificent role in medical, biomedical, bioengineering and pharmaceutical industries. Plant biomaterial is naturally organic and biodegradable. This study has been highlighted as one of the strategy introducing biomass based nano-bioplastic (nanobiofilm to solve dependency on petroleum and environment pollution because of non-degradable plastic. The data study was carried out to investigate the nano-biopolymer (nanocellulose based nano-biofilm data from corn leaf biomass coming after bioprocess technology without chemicals. Corn leaf biomass was used to produce biodegradable nano-bioplastic for medical and biomedical and other industrial uses. Data on water absorption, odor, pH, cellulose content, shape and firmness, color coating and tensile strength test have been exhibited under standardization of ASTM (American standard for testing and materials. Moreover, the chemical elements of nanobiofilm like K+, CO3−−, Cl−, Na+ showed standard data using the EN (166. Keywords: Nanocellulose, Nanobiofilm, Nanobioplastic, Biodegradable, Corn leaf

  4. Magnonic crystals for data processing

    International Nuclear Information System (INIS)

    Chumak, A V; Serga, A A; Hillebrands, B

    2017-01-01

    Magnons (the quanta of spin waves) propagating in magnetic materials with wavelengths at the nanometer-scale and carrying information in the form of an angular momentum can be used as data carriers in next-generation, nano-sized low-loss information processing systems. In this respect, artificial magnetic materials with properties periodically varied in space, known as magnonic crystals, are especially promising for controlling and manipulating magnon currents. In this article, different approaches for the realization of static, reconfigurable, and dynamic magnonic crystals are presented along with a variety of novel wave phenomena discovered in these crystals. Special attention is devoted to the utilization of magnonic crystals for processing of analog and digital information. (paper)

  5. Force-free state in a superconducting single crystal and angle-dependent vortex helical instability

    Science.gov (United States)

    del Valle, J.; Gomez, A.; Gonzalez, E. M.; Manas-Valero, S.; Coronado, E.; Vicent, J. L.

    2017-06-01

    Superconducting 2 H -NbS e2 single crystals show intrinsic low pinning values. Therefore, they are ideal materials with which to explore fundamental properties of vortices. (V , I ) characteristics are the experimental data we have used to investigate the dissipation mechanisms in a rectangular-shaped 2 H -NbS e2 single crystal. Particularly, we have studied dissipation behavior with magnetic fields applied in the plane of the crystal and parallel to the injected currents, i.e., in the force-free state where the vortex helical instability governs the vortex dynamics. In this regime, the data follow the elliptic critical state model and the voltage dissipation shows an exponential dependence, V ∝eα (I -IC ∥ ) , IC ∥ being the critical current in the force-free configuration and α a linear temperature-dependent parameter. Moreover, this exponential dependence can be observed for in-plane applied magnetic fields up to 40° off the current direction, which implies that the vortex helical instability plays a role in dissipation even out of the force-free configuration.

  6. Nano-honeycomb structured transparent electrode for enhanced light extraction from organic light-emitting diodes

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Xiao-Bo; Qian, Min; Wang, Zhao-Kui, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn; Liao, Liang-Sheng, E-mail: zkwang@suda.edu.cn, E-mail: lsliao@suda.edu.cn [Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), and Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, Jiangsu 215123 (China)

    2015-06-01

    A universal nano-sphere lithography method has been developed to fabricate nano-structured transparent electrode, such as indium tin oxide (ITO), for light extraction from organic light-emitting diodes (OLEDs). Perforated SiO{sub 2} film made from a monolayer colloidal crystal of polystyrene spheres and tetraethyl orthosilicate sol-gel is used as a template. Ordered nano-honeycomb pits on the ITO electrode surface are obtained by chemical etching. The proposed method can be utilized to form large-area nano-structured ITO electrode. More than two folds' enhancement in both current efficiency and power efficiency has been achieved in a red phosphorescent OLED which was fabricated on the nano-structured ITO substrate.

  7. High-Performance All 2D-Layered Tin Disulfide: Graphene Photodetecting Transistors with Thickness-Controlled Interface Dynamics.

    Science.gov (United States)

    Chang, Ren-Jie; Tan, Haijie; Wang, Xiaochen; Porter, Benjamin; Chen, Tongxin; Sheng, Yuewen; Zhou, Yingqiu; Huang, Hefu; Bhaskaran, Harish; Warner, Jamie H

    2018-04-18

    Tin disulfide crystals with layered two-dimensional (2D) sheets are grown by chemical vapor deposition using a novel precursor approach and integrated into all 2D transistors with graphene (Gr) electrodes. The Gr:SnS 2 :Gr transistors exhibit excellent photodetector response with high detectivity and photoresponsivity. We show that the response of the all 2D photodetectors depends upon charge trapping at the interface and the Schottky barrier modulation. The thickness-dependent SnS 2 measurements in devices reveal a transition from the interface-dominated response for thin crystals to bulklike response for the thicker SnS 2 crystals, showing the sensitivity of devices fabricated using layered materials on the number of layers. These results show that SnS 2 has photosensing performance when combined with Gr electrodes that is comparable to other 2D transition metal dichalcogenides of MoS 2 and WS 2 .

  8. Temperature dependences of photoconductivity of CdHgTe crystals with photoactive inclusions

    International Nuclear Information System (INIS)

    Vlasenko, A.I.; Vlasenko, Z.K.

    1999-01-01

    Temperature dependences of life time τ and spectral characteristics of photoconductivity for Cd x Hg 1-x Te crystals (x = 0.2) with photoactive inclusions are investigated. It is shown that the N-type character of effective lifetime temperature dependences in nonhomogeneous crystals, in particular, its sharp temperature activation in the region of transition from the impurity to the intrinsic conductivity is determined by not the Shockley-Read mechanism, but by the interband impact mechanism with changing effective geometrical sizes of recombination active regions under temperature increase. Within the frames of this model the smoothing of the non-monotone character of the photoconductivity spectral characteristics in the region of fundamental absorption under the heating is explained. The calculation results that are in qualitative agreement with the experimental data are presented [ru

  9. Crystallization and melting behavior of poly(ethylene oxide) and its blend with styrene-based ionomer using time-resolved SAXS/WAXS experiments

    Energy Technology Data Exchange (ETDEWEB)

    Slusarczyk, CzesLaw, E-mail: cslusarczyk@ath.bielsko.pl [Institute of Textile Engineering and Polymer Materials, University of Bielsko-BiaLa, ul. Willowa 2, 43-309 Bielsko-BiaLa (Poland)

    2011-10-15

    Time-resolved synchrotron wide- and small-angle X-ray scattering experiments were used to investigate the crystallization behavior and microstructure development of neat poly(ethylene oxide) (PEO) and its 50/50 blend with ionomer containing 6.4 mol% of sodium acrylate. The apparent lateral crystal sizes D{sub (120)} and D{sub (112)/(004)} were derived from the WAXS profiles. It was found that D{sub (120)} and D{sub (112)/(004)} of PEO in the blend are almost independent of temperature and are smaller when compared to those of neat PEO sample. The evolution of morphological parameters extracted from time-resolved SAXS profiles such as the long period L, the lamellar crystal thickness l{sub C} and the amorphous layer thickness l{sub A}, shows that the crystallization process of neat PEO follows the nucleation theory. The lamellar crystal thickness l{sub C} shows a single linear dependence on inverse supercooling, over the whole temperature range investigated. In contrast, the crystallization process of PEO in the blend (i.e. in the presence of interactions with the ionomer) follows the nucleation theory only in the narrow supercooling range. It was found also that the morphology of the blend consists of a broad population of lamellar crystal thicknesses. During heating lamellae melt in the reversed sequence of their formation.

  10. Thin dielectric film thickness determination by advanced transmission electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Diebold, A.C.; Foran, B.; Kisielowski, C.; Muller, D.; Pennycook, S.; Principe, E.; Stemmer, S.

    2003-09-01

    High Resolution Transmission Electron Microscopy (HR-TEM) has been used as the ultimate method of thickness measurement for thin films. The appearance of phase contrast interference patterns in HR-TEM images has long been confused as the appearance of a crystal lattice by non-specialists. Relatively easy to interpret crystal lattice images are now directly observed with the introduction of annular dark field detectors for scanning TEM (STEM). With the recent development of reliable lattice image processing software that creates crystal structure images from phase contrast data, HR-TEM can also provide crystal lattice images. The resolution of both methods was steadily improved reaching now into the sub Angstrom region. Improvements in electron lens and image analysis software are increasing the spatial resolution of both methods. Optimum resolution for STEM requires that the probe beam be highly localized. In STEM, beam localization is enhanced by selection of the correct aperture. When STEM measurement is done using a highly localized probe beam, HR-TEM and STEM measurement of the thickness of silicon oxynitride films agree within experimental error. In this paper, the optimum conditions for HR-TEM and STEM measurement are discussed along with a method for repeatable film thickness determination. The impact of sample thickness is also discussed. The key result in this paper is the proposal of a reproducible method for film thickness determination.

  11. Design of Double PG Crystal Neutron Diffractometer

    International Nuclear Information System (INIS)

    Adib, M.; Habib, N.; El-Mesiry, M.S.; Fathallah, M.

    2011-01-01

    The design of a diffractometer containing two pyrolytic graphite (PG) crystals to select monochromatic neutrons in the range of wavelengths longer than 0.26 nm is given. The first crystal is high oriented pyrolytic graphite (HOPG) set at glancing angle to reflect monochromatic neutrons with a selected wavelength. The second is a low quality PG crystal filter, set at take-off-angle such that, it transmits the selected monochromatic neutrons and rejects the higher order contaminations accompanying the first order reflection. It was shown that, 2 mm thick of PG crystal having 0.30 FWHM on mosaic spread are the optimum parameters of monochromator PG crystal. While the optimum thickness and mosaic spread of the PG crystal filter were selected to have low contamination factor of higher order reflections. The optimum parameters of the PG filter crystal were calculated using the computer package Graphite recently developed in our laboratory. Calculation shows that, 3 cm thick PG filter (20 on mosaic spread) is sufficient to almost eliminate the higher order contaminations accompanying the main monochromatic neutrons with

  12. Breakdown of Bose-Einstein distribution in photonic crystals.

    Science.gov (United States)

    Lo, Ping-Yuan; Xiong, Heng-Na; Zhang, Wei-Min

    2015-03-30

    In the last two decades, considerable advances have been made in the investigation of nano-photonics in photonic crystals. Previous theoretical investigations of photon dynamics were carried out at zero temperature. Here, we investigate micro/nano cavity photonics in photonic crystals at finite temperature. Due to photonic-band-gap-induced localized long-lived photon dynamics, we discover that cavity photons in photonic crystals do not obey Bose-Einstein statistical distribution. Within the photonic band gap and in the vicinity of the band edge, cavity photons combine the long-lived non-Markovain dynamics with thermal fluctuations together to form photon states that memorize the initial cavity state information. As a result, Bose-Einstein distribution is completely broken down in these regimes, even if the thermal energy is larger or much larger than the cavity detuning energy. In this investigation, a crossover phenomenon from equilibrium to nonequilibrium steady states is also revealed.

  13. Growth of single crystals of BaFe12O19 by solid state crystal growth

    International Nuclear Information System (INIS)

    Fisher, John G.; Sun, Hengyang; Kook, Young-Geun; Kim, Joon-Seong; Le, Phan Gia

    2016-01-01

    Single crystals of BaFe 12 O 19 are grown for the first time by solid state crystal growth. Seed crystals of BaFe 12 O 19 are buried in BaFe 12 O 19 +1 wt% BaCO 3 powder, which are then pressed into pellets containing the seed crystals. During sintering, single crystals of BaFe 12 O 19 up to ∼130 μm thick in the c-axis direction grow on the seed crystals by consuming grains from the surrounding polycrystalline matrix. Scanning electron microscopy-energy dispersive spectroscopy analysis shows that the single crystal and the surrounding polycrystalline matrix have the same chemical composition. Micro-Raman scattering shows the single crystal to have the BaFe 12 O 19 structure. The optimum growth temperature is found to be 1200 °C. The single crystal growth behavior is explained using the mixed control theory of grain growth. - Highlights: • Single crystals of BaFe 12 O 19 are grown by solid state crystal growth. • A single crystal up to ∼130 μm thick (c-axis direction) grows on the seed crystal. • The single crystal and surrounding ceramic matrix have similar composition. • Micro-Raman scattering shows the single crystal has the BaFe 12 O 19 structure.

  14. Microwave assisted synthesis of hydroxyapatite nano strips

    Energy Technology Data Exchange (ETDEWEB)

    Ruban Kumar, A.; Kalainathan, S.; Saral, A.M. [School of Advanced Sciences, VIT University, Vellore 632014, Tamil Nadu (India)

    2010-07-15

    Synthesis of hydroxyapatite (HAP) nano strips was carried out by chemical precipitation method followed by microwave irradiation. The microwave assisted reactions proceed at fast rates. It is found that the presence of the complex reagent EDTA plays an important role in the morphological changes of nanostructure hydroxyapatite. EDTA acts as a hexadentate unit by wrapping itself around the Ca{sup 2+} metal ion with, four oxygen and two nitrogen atoms and forms several five member chelate rings. The relative specific surface energies associated with the facets of the crystal determines the shape of the crystal. Scanning electron microscopy revealed the presence of hydroxyapatite nano strips with the range 50-100 nm in EDTA influenced HAP powders. Fourier transform-infrared spectroscopy (FT-IR) result combined with the X-ray diffraction (XRD) indicates the presence of amorphous hydroxyapatite (HAP) in the as-prepared material. X-ray patterns collected on the powder after heat-treatment at 1100 C for 2 h in air exhibits single phase of HAP. (copyright 2010 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Mechanical design of thin-film diamond crystal mounting apparatus with optimized thermal contact and crystal strain for coherence preservation x-ray optics

    Science.gov (United States)

    Shu, Deming; Shvydko, Yury; Stoupin, Stanislav; Kim, Kwang-Je

    2018-05-08

    A method and mechanical design for a thin-film diamond crystal mounting apparatus for coherence preservation x-ray optics with optimized thermal contact and minimized crystal strain are provided. The novel thin-film diamond crystal mounting apparatus mounts a thin-film diamond crystal supported by a thick chemical vapor deposition (CVD) diamond film spacer with a thickness slightly thicker than the thin-film diamond crystal, and two groups of thin film thermal conductors, such as thin CVD diamond film thermal conductor groups separated by the thick CVD diamond spacer. The two groups of thin CVD film thermal conductors provide thermal conducting interface media with the thin-film diamond crystal. A piezoelectric actuator is integrated into a flexural clamping mechanism generating clamping force from zero to an optimal level.

  16. Nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials incorporating nonlocality and strain gradient size dependency

    Science.gov (United States)

    Sahmani, S.; Aghdam, M. M.

    2018-03-01

    A wide range of biological applications such as drug delivery, biosensors and hemodialysis can be provided by nanoporous biomaterials due to their uniform pore size as well as considerable pore density. In the current study, the size dependency in the nonlinear primary resonance of micro/nano-beams made of nanoporous biomaterials is anticipated. To accomplish this end, a refined truncated cube is introduced to model the lattice structure of nanoporous biomaterial. Accordingly, analytical expressions for the mechanical properties of material are derived as functions of pore size. After that, based upon a nonlocal strain gradient beam model, the size-dependent nonlinear Duffing type equation of motion is constructed. The Galerkin technique together with the multiple time-scales method is employed to obtain the nonlocal strain gradient frequency-response and amplitude-response related to the nonlinear primary resonance of a micro/nano-beam made of the nanoporous biomaterial with different pore sizes. It is indicated that the nonlocality causes to decrease the response amplitudes associated with the both bifurcation points of the jump phenomenon, while the strain gradient size dependency causes to increase them. Also, it is found that increasing the pore size leads to enhance the nonlinearity, so the maximum deflection of response occurs at higher excitation frequency.

  17. TeV/m nano-accelerator: Investigation on feasibility of CNT-channeling acceleration at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Y. M. [Northern Illinois Univ., DeKalb, IL (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Lumpkin, A. H. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Thurman-Keup, R. M. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States)

    2015-03-23

    The development of high gradient acceleration and tight phase-space control of high power beams is a key element for future lepton and hadron colliders since the increasing demands for higher energy and luminosity significantly raise costs of modern HEP facilities. Atomic channels in crystals are known to consist of 10–100 V/Å potential barriers capable of guiding and collimating a high energy beam providing continuously focused acceleration with exceptionally high gradients (TeV/m). However, channels in natural crystals are only angstrom-size and physically vulnerable to high energy interactions, which has prevented crystals from being applied to high power accelerators. Carbon-based nano-crystals such as carbon-nanotubes (CNTs) and graphenes have a large degree of dimensional flexibility and thermo-mechanical strength, which could be suitable for channeling acceleration of MW beams. Nano-channels of the synthetic crystals can accept a few orders of magnitude larger phase-space volume of channeled particles with much higher thermal tolerance than natural crystals. This study presents the current status of CNT-channeling acceleration research at the Advanced Superconducting Test Accelerator (ASTA) in Fermilab.

  18. Frequency-Dependent Properties of Magnetic Nanoparticle Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Majetich, Sara [Carnegie Mellon Univ., Pittsburgh, PA (United States)

    2016-05-17

    In the proposed research program we will investigate the time- and frequency-dependent behavior of ordered nanoparticle assemblies, or nanoparticle crystals. Magnetostatic interactions are long-range and anisotropic, and this leads to complex behavior in nanoparticle assemblies, particularly in the time- and frequency-dependent properties. We hypothesize that the high frequency performance of composite materials has been limited because of the range of relaxation times; if a composite is a dipolar ferromagnet at a particular frequency, it should have the advantages of a single phase material, but without significant eddy current power losses. Arrays of surfactant-coated monodomain magnetic nanoparticles can exhibit long-range magnetic order that is stable over time. The magnetic domain size and location of domain walls is governed not by structural grain boundaries but by the shape of the array, due to the local interaction field. Pores or gaps within an assembly pin domain walls and limit the domain size. Measurements of the magnetic order parameter as a function of temperature showed that domains can exist at high temoerature, and that there is a collective phase transition, just as in an exchange-coupled ferromagnet. Dipolar ferromagnets are not merely of fundamental interest; they provide an interesting alternative to exchange-based ferromagnets. Dipolar ferromagnets made with high moment metallic particles in an insulating matrix could have high permeability without large eddy current losses. Such nanocomposites could someday replace the ferrites now used in phase shifters, isolators, circulators, and filters in microwave communications and radar applications. We will investigate the time- and frequency-dependent behavior of nanoparticle crystals with different magnetic core sizes and different interparticle barrier resistances, and will measure the magnetic and electrical properties in the DC, low frequency (0.1 Hz - 1 kHz), moderate frequency (10 Hz - 500

  19. Determination of reactive oxygen species from ZnO micro-nano structures with shape-dependent photocatalytic activity

    Energy Technology Data Exchange (ETDEWEB)

    He, Weiwei; Zhao, Hongxiao; Jia, Huimin [Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China); Yin, Jun-Jie [Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, College Park, MD 20740 (United States); Zheng, Zhi, E-mail: zhengzhi99999@gmail.com [Key Laboratory of Micro-Nano Materials for Energy Storage and Conversion of Henan Province, Institute of Surface Micro and Nano Materials, Xuchang University, Henan 461000 (China)

    2014-05-01

    Graphical abstract: ZnO micro/nano structures with shape dependent photocatalytic activity were prepared by hydrothermal reaction. The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were identified precisely by electron spin resonance spectroscopy. The type of reactive oxygen species was determined by band gap structure of ZnO. - Highlights: • ZnO micro/nano structures with different morphologies were prepared by solvothermal reaction. • Multi-pod like ZnO structures exhibited superior photocatalytic activity. • The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were characterized precisely by electron spin resonance spectroscopy. • The type of reactive oxygen species was determined by band gap structure of ZnO. - Abstract: ZnO micro/nano structures with different morphologies have been prepared by the changing solvents used during their synthesis by solvothermal reaction. Three typical shapes of ZnO structures including hexagonal, bell bottom like and multi-pod formed and were characterized by scanning electron microscopy and X-ray diffraction. Multi pod like ZnO structures exhibited the highest photocatalytic activity toward degradation of methyl orange. Using electron spin resonance spectroscopy coupled with spin trapping techniques, we demonstrate an effective way to identify precisely the generation of hydroxyl radicals, superoxide and singlet oxygen from the irradiated ZnO multi pod structures. The type of reactive oxygen species formed was predictable from the band gap structure of ZnO. These results indicate that the shape of micro-nano structures significantly affects the photocatalytic activity of ZnO, and demonstrate the value of electron spin resonance spectroscopy for characterizing the type of reactive oxygen species formed during photoexcitation of semiconductors.

  20. Determination of reactive oxygen species from ZnO micro-nano structures with shape-dependent photocatalytic activity

    International Nuclear Information System (INIS)

    He, Weiwei; Zhao, Hongxiao; Jia, Huimin; Yin, Jun-Jie; Zheng, Zhi

    2014-01-01

    Graphical abstract: ZnO micro/nano structures with shape dependent photocatalytic activity were prepared by hydrothermal reaction. The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were identified precisely by electron spin resonance spectroscopy. The type of reactive oxygen species was determined by band gap structure of ZnO. - Highlights: • ZnO micro/nano structures with different morphologies were prepared by solvothermal reaction. • Multi-pod like ZnO structures exhibited superior photocatalytic activity. • The generations of hydroxyl radical, superoxide and singlet oxygen from irradiated ZnO were characterized precisely by electron spin resonance spectroscopy. • The type of reactive oxygen species was determined by band gap structure of ZnO. - Abstract: ZnO micro/nano structures with different morphologies have been prepared by the changing solvents used during their synthesis by solvothermal reaction. Three typical shapes of ZnO structures including hexagonal, bell bottom like and multi-pod formed and were characterized by scanning electron microscopy and X-ray diffraction. Multi pod like ZnO structures exhibited the highest photocatalytic activity toward degradation of methyl orange. Using electron spin resonance spectroscopy coupled with spin trapping techniques, we demonstrate an effective way to identify precisely the generation of hydroxyl radicals, superoxide and singlet oxygen from the irradiated ZnO multi pod structures. The type of reactive oxygen species formed was predictable from the band gap structure of ZnO. These results indicate that the shape of micro-nano structures significantly affects the photocatalytic activity of ZnO, and demonstrate the value of electron spin resonance spectroscopy for characterizing the type of reactive oxygen species formed during photoexcitation of semiconductors

  1. Separation of Rashba and Dresselhaus spin-orbit interactions using crystal direction dependent transport measurements

    International Nuclear Information System (INIS)

    Ho Park, Youn; Kim, Hyung-jun; Chang, Joonyeon; Hee Han, Suk; Eom, Jonghwa; Choi, Heon-Jin; Cheol Koo, Hyun

    2013-01-01

    The Rashba spin-orbit interaction effective field is always in the plane of the two-dimensional electron gas and perpendicular to the carrier wavevector but the direction of the Dresselhaus field depends on the crystal orientation. These two spin-orbit interaction parameters can be determined separately by measuring and analyzing the Shubnikov-de Haas oscillations for various crystal directions. In the InAs quantum well system investigated, the Dresselhaus term is just 5% of the Rashba term. The gate dependence of the oscillation patterns clearly shows that only the Rashba term is modulated by an external electric field

  2. Evolution and Engineering of Precisely Controlled Ge Nanostructures on Scalable Array of Ordered Si Nano-pillars

    Science.gov (United States)

    Wang, Shuguang; Zhou, Tong; Li, Dehui; Zhong, Zhenyang

    2016-06-01

    The scalable array of ordered nano-pillars with precisely controllable quantum nanostructures (QNs) are ideal candidates for the exploration of the fundamental features of cavity quantum electrodynamics. It also has a great potential in the applications of innovative nano-optoelectronic devices for the future quantum communication and integrated photon circuits. Here, we present a synthesis of such hybrid system in combination of the nanosphere lithography and the self-assembly during heteroepitaxy. The precise positioning and controllable evolution of self-assembled Ge QNs, including quantum dot necklace(QDN), QD molecule(QDM) and quantum ring(QR), on Si nano-pillars are readily achieved. Considering the strain relaxation and the non-uniform Ge growth due to the thickness-dependent and anisotropic surface diffusion of adatoms on the pillars, the comprehensive scenario of the Ge growth on Si pillars is discovered. It clarifies the inherent mechanism underlying the controllable growth of the QNs on the pillar. Moreover, it inspires a deliberate two-step growth procedure to engineer the controllable QNs on the pillar. Our results pave a promising avenue to the achievement of desired nano-pillar-QNs system that facilitates the strong light-matter interaction due to both spectra and spatial coupling between the QNs and the cavity modes of a single pillar and the periodic pillars.

  3. Expression, purification, crystallization and preliminary X-ray analysis of an NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Paul R.; Evans, Daniel; Greenwood, Jacqueline A.; Moody, Peter C. E., E-mail: pcem1@leicester.ac.uk [Henry Wellcome Laboratories for Structural Biology, Department of Biochemistry, University of Leicester, Leicester LE1 9HN (United Kingdom)

    2008-08-01

    Glyceraldehyde-3-phosphate dehydrogenase A has been cloned, expressed and purified. Apoprotein crystals have been grown which diffracted to 1.75 Å resolution and belonged to space group P2{sub 1}; holo crystals were grown in the presence of NADP, diffracted to 2.6 Å resolution and belonged to space group P3{sub 2}. The classical glycolytic pathway contains an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, with NADP-dependent forms reserved for photosynthetic organisms and archaea. Here, the cloning, expression, purification, crystallization and preliminary X-ray analysis of an NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori is reported; crystals of the protein were grown both in the presence and the absence of NADP.

  4. Expression, purification, crystallization and preliminary X-ray analysis of an NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori

    International Nuclear Information System (INIS)

    Elliott, Paul R.; Evans, Daniel; Greenwood, Jacqueline A.; Moody, Peter C. E.

    2008-01-01

    Glyceraldehyde-3-phosphate dehydrogenase A has been cloned, expressed and purified. Apoprotein crystals have been grown which diffracted to 1.75 Å resolution and belonged to space group P2 1 ; holo crystals were grown in the presence of NADP, diffracted to 2.6 Å resolution and belonged to space group P3 2 . The classical glycolytic pathway contains an NAD-dependent glyceraldehyde-3-phosphate dehydrogenase, with NADP-dependent forms reserved for photosynthetic organisms and archaea. Here, the cloning, expression, purification, crystallization and preliminary X-ray analysis of an NADP-dependent glyceraldehyde-3-phosphate dehydrogenase from Helicobacter pylori is reported; crystals of the protein were grown both in the presence and the absence of NADP

  5. Melting temperature evolution of non-reorganized crystals. Poly(3-hydroxybutyrate)

    International Nuclear Information System (INIS)

    Righetti, Maria Cristina; Di Lorenzo, Maria Laura

    2011-01-01

    In the present study the correlation between the melting behaviour of poly(3-hydroxybutyrate) (PHB) original, non-reorganized crystals and the crystallinity increase during isothermal crystallization is presented and discussed. Since the reorganization processes modify the melting curve of original crystals, it is necessary to prevent and hinder all the processes that influence and increase the lamellar thickness. PHB exhibits melting/recrystallization on heating, the occurring of lamellar thickening in the solid state being excluded. The first step of the study was the identification of the scanning rate which inhibits PHB recrystallization at sufficiently high T c . For the extrapolated onset and peak temperatures of the main melting endotherm, which is connected to fusion of dominant lamellae, a double dependence on the crystallization time was found. The crystallization time at which T onset and T peak change their trends was found to correspond to the spherulite impingement time, so that the two different dependencies were put in relation with primary and secondary crystallizations respectively. The increase of both T onset and T peak at high crystallization times after spherulite impingement was considered an effect due to crystal superheating and an indication of a stabilization process of the crystalline phase. Such stabilization, which produces an increase of the melting temperature, is probably connected with the volume filling that occurs after spherulite impingement.

  6. A unified nonlocal strain gradient plate model for nonlinear axial instability of functionally graded porous micro/nano-plates reinforced with graphene platelets

    Science.gov (United States)

    Sahmani, Saeid; Aghdam, Mohammad Mohammadi; Rabczuk, Timon

    2018-04-01

    By gradually changing of the porosity across a specific direction, functionally graded porous materials (FGPMs) are produced which can impart desirable mechanical properties. To enhance these properties, it is common to reinforce FGPMs with nanofillers. The main aim of the current study is to investigate the size-dependent nonlinear axial postbuckling characteristics of FGPM micro/nano-plates reinforced with graphene platelets. For this purpose, the theory of nonlocal strain gradient elasticity incorporating the both stiffness reduction and stiffness enhancement mechanisms of size effects is applied to the refined exponential shear deformation plate theory. Three different patterns of porosity dispersion across the plate thickness in conjunction with the uniform one are assumed for FGPM as an open-cell metal foam is utilized associated with the coefficients of the relative density and porosity. With the aid of the virtual work’s principle, the non-classical governing differential equations are constructed. Thereafter, an improved perturbation technique is employed to capture the size dependencies in the nonlinear load-deflection and load-shortening responses of the reinforced FGPM micro/nano-plates with and without initial geometric imperfection. It is indicated that by increasing the value of porosity coefficient, the size-dependent critical buckling loads of reinforced FGPM micro/nano-plates with all types of porosity dispersion pattern reduce, but the associated shortening may increase or decrease which depends on the type of dispersion pattern.

  7. NiCrNx interlayer thickness dependence of spectral performance and environmental durability of protected-silver mirrors

    Science.gov (United States)

    Xu, Xu; Li, Bincheng; He, Wenyan; Wang, Changjun; Wei, Ming

    2018-04-01

    Gemini-style protected-silver mirror (Sub / NiCrNx / Ag / NiCrNx / SiNx / Air) is a suitable choice for optical instruments requiring both long-term environmental durability and high broadband reflectance. Three Gemini-style protected-silver mirrors with NiCrNx interlayer thicknesses between 0.1 and 0.6 nm were prepared by magnetron sputtering, and the dependences of spectral properties and environmental durability of these protected-silver mirrors on the thickness of NiCrNx interlayer between the silver layer and SiNx layer were investigated in-depth. The reflectance, transmittance and total scattering loss measurements, optical microscope, and scanning electron microscope imaging were employed to characterize the spectral properties and surface morphology, and accelerated environmental tests, including humidity test and salt fog test, were applied to investigate the environmental durability. The experimental results showed that both optical and corrosion-resistant properties of protected-silver mirrors were NiCrNx interlayer thickness dependent, and an optimum NiCrNx interlayer thickness should be ˜0.3 nm for Gemini-style protected-silver mirrors to have reasonably both high reflectance in a broadband spectral range from visible to far infrared and good corrosion resistance for long-lifetime applications in harsh environments.

  8. Temperature-dependent Raman spectroscopy studies of the interface coupling effect of monolayer ReSe2 single crystals on Au foils

    Science.gov (United States)

    Jiang, Shaolong; Zhao, Liyun; Shi, Yuping; Xie, Chunyu; Zhang, Na; Zhang, Zhepeng; Huan, Yahuan; Yang, Pengfei; Hong, Min; Zhou, Xiebo; Shi, Jianping; Zhang, Qing; Zhang, Yanfeng

    2018-05-01

    Rhenium diselenide (ReSe2), which bears in-plane anisotropic optical and electrical properties, is of considerable interest for its excellent applications in novel devices, such as polarization-sensitive photodetectors and integrated polarization-controllers. However, great challenges to date in the controllable synthesis of high-quality ReSe2 have hindered its in-depth investigations and practical applications. Herein, we report a feasible synthesis of monolayer single-crystal ReSe2 flakes on the Au foil substrate by using a chemical vapor deposition route. Particularly, we focus on the temperature-dependent Raman spectroscopy investigations of monolayer ReSe2 grown on Au foils, which present concurrent red shifts of Eg-like and Ag-like modes with increasing measurement temperature from 77–290 K. Linear temperature dependences of both modes are revealed and explained from the anharmonic vibration of the ReSe2 lattice. More importantly, the strong interaction of ReSe2 with Au, with respect to that with SiO2/Si, is further confirmed by temperature-dependent Raman characterization. This work is thus proposed to shed light on the optical and thermal properties of such anisotropic two-dimensional three-atom-thick materials.

  9. Ferrimagnetic Tb-Fe Alloy Thin Films: Composition and Thickness Dependence of Magnetic Properties and All-Optical Switching

    Directory of Open Access Journals (Sweden)

    Birgit eHebler

    2016-02-01

    Full Text Available Ferrimagnetic rare earth - transition metal Tb-Fe alloy thin films exhibit a variety of different magnetic properties, which depends strongly on composition and temperature. In this study, first the influence of the film thickness (5 - 85 nm on the sample magnetic properties was investigated in a wide composition range between 15 at.% and 38 at.% of Tb. From our results, we find that the compensation point, remanent magnetization, and magnetic anisotropy of the Tb-Fe films depend not only on the composition but also on the thickness of the magnetic film up to a critical thickness of about 20-30 nm. Beyond this critical thickness, only slight changes in magnetic properties are observed. This behavior can be attributed to a growth-induced modification of the microstructure of the amorphous films, which affects the short range order. As a result, a more collinear alignment of the distributed magnetic moments of Tb along the out-of-plane direction with film thickness is obtained. This increasing contribution of the Tb sublattice magnetization to the total sample magnetization is equivalent to a sample becoming richer in Tb and can be referred to as an effective composition. Furthermore, the possibility of all-optical switching, where the magnetization orientation of Tb-Fe can be reversed solely by circularly polarized laser pulses, was analyzed for a broad range of compositions and film thicknesses and correlated to the underlying magnetic properties.

  10. Efficient and thermally stable red luminescence from nano-sized phosphor of Gd6MoO12:Eu3+

    International Nuclear Information System (INIS)

    Qin, Lin; Wei, Donglei; Huang, Yanlin; Kim, Sun Il; Yu, Young Moon; Seo, Hyo Jin

    2013-01-01

    A novel red-emitting nano-phosphor of Eu 3+ -doped Gd 6 MoO 12 was successfully synthesized by the Pechini method. The crystalline phase was confirmed by X-ray powder diffraction analysis. The morphology of the nano-phosphor was analyzed by scanning electron microscopy, indicating a good crystallization with particles smaller than 500 nm. The luminescence properties such as photoluminescence spectra and decay curves were investigated. The phosphors can be efficiently excited by near-ultraviolet (near-UV) light and exhibit a bright red luminescence around 613 nm ascribed to the forced electric dipole transition 5 D 0 → 7 F 2 of Eu 3+ ions. The thermal stabilities were investigated from the temperature-dependent luminescence decay curves (lifetimes) and spectra intensities. The luminescence properties in relation to applications in white light-emitting diodes (W-LEDs) such as the absolute luminescence quantum efficiency, excitation wavelength, and color coordinates were discussed. The Gd 6 MoO 12 :Eu 3+ nano-phosphor is a promising red-emitting candidate for the fabrication of W-LEDs with near-UV chips

  11. Thickness-dependent piezoelectric behaviour and dielectric properties of lanthanum modified BiFeO3 thin films

    Directory of Open Access Journals (Sweden)

    Glenda Biasotto

    2011-03-01

    Full Text Available Bi0.85La0.15FeO3 (BLFO thin films were deposited on Pt(111/Ti/SiO2 /Si substrates by the soft chemical method. Films with thicknesses ranging from 140 to 280 nm were grown on platinum coated silicon substrates at 500°C for 2 hours. The X-ray diffraction analysis of BLFO films evidenced a hexagonal structure over the entire thickness range investigated. The grain size of the film changes as the number of the layers increases, indicating thickness dependence. It is found that the piezoelectric response is strongly influenced by the film thickness. It is shown that the properties of BiFeO3 thin films, such as lattice parameter, dielectric permittivity, piezoeletric coefficient etc., are functions of misfit strains.

  12. Apparatus for mounting crystal

    Science.gov (United States)

    Longeway, Paul A.

    1985-01-01

    A thickness monitor useful in deposition or etching reactor systems comprising a crystal-controlled oscillator in which the crystal is deposited or etched to change the frequency of the oscillator. The crystal rests within a thermally conductive metallic housing and arranged to be temperature controlled. Electrode contacts are made to the surface primarily by gravity force such that the crystal is substantially free of stress otherwise induced by high temperature.

  13. UV response on dielectric properties of nano nematic liquid crystal

    Directory of Open Access Journals (Sweden)

    Kamal Kumar Pandey

    2018-03-01

    Full Text Available In this work, we investigate the effect of UV light irradiation on the dielectric parameters of nematic liquid crystal (5CB and ZnO nanoparticles dispersed liquid crystal. With addition of nanoparticles in nematic LC are promising new materials for a variety of application in energy harvesting, displays and photonics including the liquid crystal laser. To realize many applications, however we optimize the properties of liquid crystal and understand how the UV light irradiation interact the nanoparticles and LC molecules in dispersed/doped LC. The dielectric permittivity and loss factor have discussed the pure nematic LC and dispersed/doped system after, during and before UV light exposure. The dielectric relaxation spectroscopy was carried out in the frequency range 100 Hz–10 MHz in the nematic mesophase range. Keywords: Dielectric permittivity, Relaxation frequency, Nematic liquid crystal, UV light irradiation

  14. Characterization and photo-chemical applications of nano-ZnO prepared by wet chemical and thermal decomposition methods

    International Nuclear Information System (INIS)

    Mousa, M.A.; Bayoumy, W.A.A.; Khairy, M.

    2013-01-01

    Graphical abstract: - Highlights: • Nano-ZnO particles were synthesized by soft-wet precipitation and dry methods. • ZnO nanoparticle with different morphologies was obtained. • Nano ZnO samples showed a high photocatalytic activity. • ZnO nanoparticle showed strong ultraviolet emission at room temperature. • The samples showed high biological activity depending on their synthetic method. - Abstract: Nano-crystalline ZnO particles were synthesized using two different routes: soft-wet and dry methods. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to identify the particles structures and morphologies, while X-ray diffraction (XRD) was used for verifying the particles crystal structure. The thermal stabilities of the particles were examined through thermal gravimetric analysis technique and their surface areas were calculated using BET method. Moreover, the photocatalytic activities were evaluated using UV–vis spectroscopy and photoluminescence (PL) characterization. The results showed that all the prepared ZnO samples possess a hexagonal wurtzite structure with high purity. Different particle sizes and morphologies of spheres, rods and wires were obtained depending on the preparation method used. Particle sizes obtained by the dry method are smaller than that found by the wet chemical method. The effects of both particle size and morphology on each of surface as well as optical properties, photocatalytic activity, dye/ZnO solar cell efficiency and biological activity have been studied and discussed

  15. Emission-energy dependence of ultrafast P-emission decay in ZnO from bulk to nanofilm

    International Nuclear Information System (INIS)

    Wakaiki, Shuji; Ichida, Hideki; Bamba, Motoaki; Kawase, Toshiki; Kawakami, Masaki; Mizoguchi, Kohji; Kim, DaeGwi; Nakayama, Masaaki; Kanematsu, Yasuo

    2014-01-01

    We have performed time-resolved photoluminescence (PL) spectroscopy for ZnO thin films with thicknesses of 90, 460, and 2800 nm under intense excitation condition. We clearly observed the P emission due to inelastic exciton–exciton scattering. It was found that, in the 460- and 2800-nm thick samples, the decay time of the P emission considerably depends on the detection energy inversely proportional to the group velocity of the polariton in a bulk crystal with each factor of proportionality. In contrast, the energy dependence is less remarkable in the 90-nm thick sample. The decay times are basically shortened with a decrease in the film thickness. The thickness dependence of the P-emission-decay profiles is explained by considering the crossover from the polariton modes in the 2800-nm thick sample (bulk-like film) to the exciton-/photon-like modes in the 90-nm thick sample (nanofilm). - Highlights: • We clearly observed the P-PL dynamics due to inelastic exciton–exciton scattering. • The P-PL decay times are basically shortened with a decrease in the film thickness. • The P-PL decay time depends on the detection energy in the bulk-like sample. • The energy dependence of the P-PL decay time almost disappears in the 90-nm sample. • The thickness dependence is explained by the crossover between exciton and photon

  16. Emission-energy dependence of ultrafast P-emission decay in ZnO from bulk to nanofilm

    Energy Technology Data Exchange (ETDEWEB)

    Wakaiki, Shuji, E-mail: s.wakaiki@mls.eng.osaka-u.ac.jp [Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Ichida, Hideki [Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Science and Technology Entrepreneurship Laboratory, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Bamba, Motoaki [Department of Physics, Graduate School of Science, Osaka University, 1-1 Machikaneyama, Toyonaka, Osaka 560-0043 (Japan); Kawase, Toshiki; Kawakami, Masaki [Department of Applied Physics, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Mizoguchi, Kohji [Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen, Naka-ku, Sakai, Osaka 599-8531 (Japan); Kim, DaeGwi; Nakayama, Masaaki [Department of Applied Physics, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585 (Japan); Kanematsu, Yasuo [Department of Material and Life Science, Division of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan); Science and Technology Entrepreneurship Laboratory, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871 (Japan)

    2014-08-01

    We have performed time-resolved photoluminescence (PL) spectroscopy for ZnO thin films with thicknesses of 90, 460, and 2800 nm under intense excitation condition. We clearly observed the P emission due to inelastic exciton–exciton scattering. It was found that, in the 460- and 2800-nm thick samples, the decay time of the P emission considerably depends on the detection energy inversely proportional to the group velocity of the polariton in a bulk crystal with each factor of proportionality. In contrast, the energy dependence is less remarkable in the 90-nm thick sample. The decay times are basically shortened with a decrease in the film thickness. The thickness dependence of the P-emission-decay profiles is explained by considering the crossover from the polariton modes in the 2800-nm thick sample (bulk-like film) to the exciton-/photon-like modes in the 90-nm thick sample (nanofilm). - Highlights: • We clearly observed the P-PL dynamics due to inelastic exciton–exciton scattering. • The P-PL decay times are basically shortened with a decrease in the film thickness. • The P-PL decay time depends on the detection energy in the bulk-like sample. • The energy dependence of the P-PL decay time almost disappears in the 90-nm sample. • The thickness dependence is explained by the crossover between exciton and photon.

  17. Tungsten nano-tendril growth in the Alcator C-Mod divertor

    International Nuclear Information System (INIS)

    Wright, G.M.; Brunner, D.; Labombard, B.; Lipschultz, B.; Terry, J.L.; Whyte, D.G.; Baldwin, M.J.; Doerner, R.P.

    2012-01-01

    Growth of tungsten nano-tendrils (‘fuzz’) has been observed for the first time in the divertor region of a high-power density tokamak experiment. After 14 consecutive helium L-mode discharges in Alcator C-Mod, the tip of a tungsten Langmuir probe at the outer strike point was fully covered with a layer of nano-tendrils. The thickness of the individual nano-tendrils (50–100 nm) and the depth of the layer (600 ± 150 nm) are consistent with observations from experiments on linear plasma devices. The observation of tungsten fuzz in a tokamak may have important implications for material erosion, dust formation, divertor lifetime and tokamak operations in next-step devices. (letter)

  18. Application of Matrix Projection Exposure Using a Liquid Crystal Display Panel to Fabricate Thick Resist Molds

    Science.gov (United States)

    Fukasawa, Hirotoshi; Horiuchi, Toshiyuki

    2009-08-01

    The patterning characteristics of matrix projection exposure using an analog liquid crystal display (LCD) panel in place of a reticle were investigated, in particular for oblique patterns. In addition, a new method for fabricating practical thick resist molds was developed. At first, an exposure system fabricated in past research was reconstructed. Changes in the illumination optics and the projection lens were the main improvements. Using fly's eye lenses, the illumination light intensity distribution was homogenized. The projection lens was changed from a common camera lens to a higher-grade telecentric lens. In addition, although the same metal halide lamp was used as an exposure light source, the central exposure wavelength was slightly shortened from 480 to 450 nm to obtain higher resist sensitivity while maintaining almost equivalent contrast between black and white. Circular and radial patterns with linewidths of approximately 6 µm were uniformly printed in all directions throughout the exposure field owing to these improvements. The patterns were smoothly printed without accompanying stepwise roughness caused by the cell matrix array. On the bases of these results, a new method of fabricating thick resist molds for electroplating was investigated. It is known that thick resist molds fabricated using the negative resist SU-8 (Micro Chem) are useful because very high aspect patterns are printable and the side walls are perpendicular to the substrate surfaces. However, the most suitable exposure wavelength of SU-8 is 365 nm, and SU-8 is insensitive to light of 450 nm wavelength, which is most appropriate for LCD matrix exposure. For this reason, a novel multilayer resist process was proposed, and micromolds of SU-8 of 50 µm thickness were successfully obtained. As a result, feasibility for fabricating complex resist molds including oblique patterns was demonstrated.

  19. Thermoluminescence properties of micro and nano structure hydroxyapatite after gamma irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Shafaei, Mostafa; Ziaie, Farhood; Hajiloo, Nahid [Nuclear Science and Technology Research Institute, Tehran (Iran, Islamic Republic of). Radiation Application Research School

    2016-12-15

    The goal of this study is to compare the thermoluminescence properties of nano and micro structure hydroxyapatite. Nano structure hydroxyapatite was synthesized via hydrolysis method, while the micro structure one was from Merck Company. X-ray diffraction and fourier transform infrared spectroscopy were used to determine the crystal structure and chemical composition of the hydroxyapatite samples. Particles sizes of each sample were estimated using Scherer equation and transmission electron microscopy system. Thermoluminescence properties of the samples were investigated under gamma irradiation. The glow curves of micro and nano structure samples show a peak at 150 C and 200 C, respectively. Thermoluminescence responses of both the samples were linear in the range of 25 - 1 000 Gy where, nano structure sample show a greater slope and stronger linearity in comparison to the micro sample. The results show that the thermoluminescence response of micro sample faded rapidly in comparison to the nano sample due to the existence of the peak at higher temperature.

  20. Phonon Spectrum Engineering in Rolled-up Micro- and Nano-Architectures

    Directory of Open Access Journals (Sweden)

    Vladimir M. Fomin

    2015-10-01

    Full Text Available We report on a possibility of efficient engineering of the acoustic phonon energy spectrum in multishell tubular structures produced by a novel high-tech method of self-organization of micro- and nano-architectures. The strain-driven roll-up procedure paved the way for novel classes of metamaterials such as single semiconductor radial micro- and nano-crystals and multi-layer spiral micro- and nano-superlattices. The acoustic phonon dispersion is determined by solving the equations of elastodynamics for InAs and GaAs material systems. It is shown that the number of shells is an important control parameter of the phonon dispersion together with the structure dimensions and acoustic impedance mismatch between the superlattice layers. The obtained results suggest that rolled up nano-architectures are promising for thermoelectric applications owing to a possibility of significant reduction of the thermal conductivity without degradation of the electronic transport.

  1. Nanotechnology as a way to overcome the rapid J{sub c} fall with HTS film thickness

    Energy Technology Data Exchange (ETDEWEB)

    Svetchnikov, V L; Flis, V S; Kalenyuk, A A; Kasatkin, A L; Rebikov, A I; Moskaliuk, V O; Pan, V M; Tretiatchenko, C G, E-mail: pan@imp.kiev.u [Institute for Metal Physics, 36 Vernadsky Blvd, Kiev 03142 (Ukraine)

    2010-06-01

    We have carried out a comprehensive study of a relation between the nanostructure and electromagnetic properties of the films prepared by pulse laser deposition on LaAlO{sub 3} substrates using YBCO targets with BaZrO{sub 3} additives. HREM studies revealed that depending on the deposition conditions BZO can precipitate as nanorods normal to the substrate or as BaYZr{sub x}O{sub y} nano-pancakes. BZO nanorods are formed at lower laser power and higher substrate temperature. Their lattice is rotated by 3-4{sup 0} to provide matching with matrix without dislocations. In a contrary, the nano-pancakes are surrounded with a great number of dislocations. Mechanisms of the nanostructure formation have been analyzed. Embedding of a proper kind of nanoparticles into HTS films leads not only to a certain increase of the critical current density J{sub c} but to a substantial weakening of its field and thickness dependences compared with pure YBCO films. Negative curvature of I-V-curves (in double-log scale) for YBCO (BZO) films is an evidence of strong pinning on extended defects, such as nanorods and threading dislocations, and/or collective vortex pinning.

  2. Mechanical properties of the weld line defect in micro injection molding for various nano filled polypropylene composites

    International Nuclear Information System (INIS)

    Xie Lei; Ziegmann, Gerhard

    2011-01-01

    Research highlights: → PP/CNFs and PP/TiO 2 composites with relative high loading fractions (10, 20, 30 and 35 wt%) were fabricated by inner melt mixing process. Micro tensile test samples were formed by injection molding combined with variotherm process for all composites. → The morphological properties of all nano composites were characterized by WXRD, whose results imply the adding nano fillers did not change the crystal form of PP, but the crystallites size and distance between lattices of crystals were changed with various nano fillers and loading fractions. → DSC analysis show that due to the nucleating function of nano fillers, the peak temperature of crystallization was increased and the peak temperature of crystallization melting was decreased by adding the nanofillers. → The flow ability of nano composites was tested by high pressure single capillary rheometer and the results demonstrate that nano fillers increased the viscosity of PP matrix. → Based on these significant information and analysis foundation of the nano filled composites, the micro weld line samples were formed by injection molding process and characterized by tensile test method. From the achieved results, it can be found that in general, for functional nano filled polymer composites, the mechanical property of micro weld lines were obviously influenced by nano fillers' shape and loading fractions. → The E modulus of micro weld line was increased due to loading CNFs in PP matrix, while the elongation of the micro tensile samples with weld line is considerably decreased comparing with those of unfilled PP samples. The detrimental tensile strength of micro weld lines were observed when CNFs contents increasing, except for at a 10 wt%. → For TiO 2 nano particles filled PP, due to the poor dispersion of nano particles, at low loading fraction of 10 wt%, the E modulus and tensile strength of micro weld lines were decreased by filling nano particles, but when the loading fraction

  3. The nano-BIon in nanostructure

    Energy Technology Data Exchange (ETDEWEB)

    Sepehri, Alireza, E-mail: alireza.sepehri@uk.ac.ir [Nano Research Center of the Ferdowsi University, Mashhad (Iran, Islamic Republic of); Faculty of Physics, Shahid Bahonar University, P.O. Box 76175, Kerman (Iran, Islamic Republic of)

    2016-04-01

    Recently, some authors have considered the superconductivity in nano-cubes and shown that by decreasing the size of these systems, superconductivity order parameter increases. In this research, we show that the same result can be obtained in a nano-BIon which is a configuration of two layers of cuprates connected by an electronic tube. This tube is a channel for transporting energy and matter inside a superconductor and acts as a wormhole in this system. This wormhole-like-tube is formed by decreasing the separation distance between layers of nano-cuprate and enhancing the cooper hopping pairing between layers. We estimate the critical temperature of superconductor and find that it depends on the size of nano-BIon and coupling between atoms in a layer. Also, we observe that external magnetic field generates a new tube which causes losing the energy density of nano-BIon between two layers and decreasing critical temperature of superconductor.

  4. Tuning properties of long-period gratings by plasma post-processing of their diamond-like carbon nano-overlays

    International Nuclear Information System (INIS)

    Smietana, M; Koba, M; Mikulic, P; Bock, W J

    2014-01-01

    This work presents an application of reactive ion etching (RIE) for effective tuning of spectral response and the refractive index (RI) sensitivity of diamond-like carbon (DLC) nano-coated long-period gratings (LPGs). When oxygen plasma is applied the technique allows for an efficient and well controlled etching of hard and chemically resistant DLC films deposited on optical fibers. We show that optical properties of DLC, especially its refractive index, strongly depend on thickness of the film when it is thinner than 150 nm. The effect of DLC nano-coating deposition and etching on spectral properties of the LPGs is discussed. We have correlated the DLC properties with the shift of the LPG resonance wavelength and have found that both deposition and etching processes took place less effectively than on the electrode when the LPG sample was held above the electrode in the plasma reactor. An advantage of plasma-based etching is a capability for post-processing of the nano-coated structures with a good precision, as well as cleaning the samples and their re-coating according to requested needs. Moreover, the application of RIE allows for post-fabrication tuning of RI sensitivity of the DLC nano-coated LPGs. (paper)

  5. Tuning properties of long-period gratings by plasma post-processing of their diamond-like carbon nano-overlays

    Science.gov (United States)

    Smietana, M.; Koba, M.; Mikulic, P.; Bock, W. J.

    2014-11-01

    This work presents an application of reactive ion etching (RIE) for effective tuning of spectral response and the refractive index (RI) sensitivity of diamond-like carbon (DLC) nano-coated long-period gratings (LPGs). When oxygen plasma is applied the technique allows for an efficient and well controlled etching of hard and chemically resistant DLC films deposited on optical fibers. We show that optical properties of DLC, especially its refractive index, strongly depend on thickness of the film when it is thinner than 150 nm. The effect of DLC nano-coating deposition and etching on spectral properties of the LPGs is discussed. We have correlated the DLC properties with the shift of the LPG resonance wavelength and have found that both deposition and etching processes took place less effectively than on the electrode when the LPG sample was held above the electrode in the plasma reactor. An advantage of plasma-based etching is a capability for post-processing of the nano-coated structures with a good precision, as well as cleaning the samples and their re-coating according to requested needs. Moreover, the application of RIE allows for post-fabrication tuning of RI sensitivity of the DLC nano-coated LPGs.

  6. Mirror profile optimization for nano-focusing KB mirror

    International Nuclear Information System (INIS)

    Zhang Lin; Baker, Robert; Barrett, Ray; Cloetens, Peter; Dabin, Yves

    2010-01-01

    A KB focusing mirror width profile has been optimized to achieve nano-focusing for the nano-imaging end-station ID22NI at the ESRF. The complete mirror and flexure bender assembly has been modeled in 3D with finite element analysis using ANSYS. Bender stiffness, anticlastic effects and geometrical non-linear effects have been considered. Various points have been studied: anisotropy and crystal orientation, stress in the mirror and bender, actuator resolution and the mirror-bender adhesive bonding... Extremely high performance of the mirror is expected with residual slope error smaller than 0.6 μrad, peak-to-valley, compared to the bent slope of 3000 μrad.

  7. Evolution of the magnesium incorporated amorphous calcium phosphate to nano-crystallized hydroxyapatite in alkaline solution

    Science.gov (United States)

    Zhang, Xiao-Juan; Lin, Dong-Yang; Yan, Xiao-Hui; Wang, Xiao-Xiang

    2011-12-01

    A homogeneous amorphous calcium phosphate (ACP) coating containing magnesium was achieved on titanium substrates by electrochemical deposition (ECD). Its amorphous structure is confirmed by transmission electron microscope (TEM) together with grazing reflection absorption infrared spectroscopy (IR) spectrometer. In the images of high-resolution transmission electron microscope (HRTEM), the ACP spheres are assembled by nano-particles with the diameter of 5-10 nm. In the alkaline environment, nucleation of hydroxyapatite (HAP) occurs on the surfaces of ACP spheres. By consuming the Ca and PO 4 ions inside the ACP spheres, the HAP nuclei grow outward. Confirmed by TEM, the ACP spheres converse to hollow HAP spheres composed of HAP nano-needles. The coating is finally constructed by the HAP nano-needles, which are themselves aggregated by numerous nano-particles.

  8. Manipulation and functionalization of nano-tubes: application to boron nitride nano-tubes

    International Nuclear Information System (INIS)

    Maguer, A.

    2007-01-01

    This PhD work is divided into two parts dealing with boron nitride (BNNT) and carbon nano-tubes. The first part is about synthesis, purification and chemical functionalization of BNNT. Single-walled BNNT are synthesized by LASER ablation of a hBN target. Improving the synthesis parameters first allowed us to limit the byproducts (hBN, boric acid). A specific purification process was then developed in order to enrich the samples in nano-tubes. Purified samples were then used to develop two new chemical functionalization methods. They both involve chemical molecules that present a high affinity towards the BN network. The use of long chain-substituted quinuclidines and borazines actually allowed the solubilization of BNNT in organic media. Purification and functionalization were developed for single-walled BNNT and were successfully applied to multi-walled BNNT. Sensibility of boron to thermic neutrons finally gave birth to a study about covalent functionalization possibilities of the network. The second part of the PhD work deals with separation of carbon nano-tubes depending on their properties. Microwave irradiation of carbon nano-tubes first allowed the enrichment of initially polydisperse samples in large diameter nano-tubes. A second strategy involving selective interaction between one type of tubes and fullerene micelles was finally envisaged to selectively solubilize carbon nano-tubes with specific electronic properties. (author) [fr

  9. Nano-/micro metallic wire synthesis on Si substrate and their characterization

    International Nuclear Information System (INIS)

    Kaur, Jaskiran; Kaur, Harmanmeet; Singh, Surinder; Kanjilal, Dinakar; Chakarvarti, Shiv Kumar

    2014-01-01

    Nano-/micro wires of copper are grown on semiconducting Si substrate using the template method. It involves the irradiation of 8 um thick polymeric layer coated on Si with150 MeV Ni ion beam at a fluence of 2E8. Later, by using the simple technique of electrodeposition, copper nano-/micro wires were grown via template synthesis. Synthesized wires were morphologically characterized using SEM and electrical characterization was carried out by finding I-V plot

  10. Bending force constant of gamma-ray irradiated NaNO2

    International Nuclear Information System (INIS)

    Kwun, S.I.; Allavena, M.

    1976-01-01

    The origin of the new peak appearing near the ν 2 i.r. absorption band of the NO 2 - group in γ-ray irradiated NaNO 2 ferroelectric crystal is explained by using a model which assumes that some of the Na + ions are displaced from their original sites after irradiation, perturbing the vibrational motion of NO 2 - . In this framework, the bending force constant of the perturbed NO 2 - group is calculated using a modified version of the CNDO/2 method, which can take into account the environmental effects on the local crystal site considered. The values of the bending force constant of virginal and irradiated NaNO 2 obtained are 1.19 md/A and 1.27 md/A respectively. The vibrational bending mode of the perturbed NO 2 - groups seems responsible for the additional i.r. absorption band observed experimentally at 835 cm -1 . (author)

  11. Liquid Crystal Colloids

    Science.gov (United States)

    Smalyukh, Ivan I.

    2018-03-01

    Colloids are abundant in nature, science, and technology, with examples ranging from milk to quantum dots and the colloidal atom paradigm. Similarly, liquid crystal ordering is important in contexts ranging from biological membranes to laboratory models of cosmic strings and liquid crystal displays in consumer devices. Some of the most exciting recent developments in both of these soft matter fields emerge at their interface, in the fast-growing research arena of liquid crystal colloids. Mesoscale self-assembly in such systems may lead to artificial materials and to structures with emergent physical behavior arising from patterning of molecular order and nano- or microparticles into precisely controlled configurations. Liquid crystal colloids show exceptional promise for new discovery that may impinge on composite material fabrication, low-dimensional topology, photonics, and so on. Starting from physical underpinnings, I review the state of the art in this fast-growing field, with a focus on its scientific and technological potential.

  12. Nano-structure TiO2 film coating on 316L stainless steel via sol-gel technique for blood compatibility improvement

    Directory of Open Access Journals (Sweden)

    Mohammadreza Foruzanmehr

    2014-04-01

    Full Text Available   Objective(s: Titanium oxides are known to be appropriate hemocompatible materials which are suggested as coatings for blood-contacting devices. Little is known about the influence of nanometric crystal structure, layer thickness, and semiconducting characteristics of TiO2 on blood hemostasis.   Materials and Methods: Having used sol-gel dip coating method in this study, TiO2 thin films were deposited on nano-scale electro-polished stainless steel 316L with 1 to 5 nano-sized layers. Surface morphology and structure of the film were studied with X-ray diffraction and atomic force microscopy. Blood compatibility was also determined by measuring the platelet activation (CD62P expression, platelet adhesion (Scanning Electron Microscopy, and the blood clotting time on these samples. Results: The films were compact and smooth and existed mainly in the form of anatase. By increasing the number of TiO2 thin layer, clotting time greatly extended, and the population of activated platelet and P-selectine expression changed according to the surface characteristics of each layer. Conclusion: The findings revealed that stainless steel 316L coated with nano-structured TiO2 layer improved blood compatibility, in terms of both blood platelet activity and coagulation cascade, which can decrease the thrombogenicity of blood contacting devices which were made from stainless steel.

  13. Size-dependent and tunable crystallization of GeSbTe phase-change nanoparticles

    Science.gov (United States)

    Chen, Bin; Ten Brink, Gert H.; Palasantzas, George; Kooi, Bart J.

    2016-12-01

    Chalcogenide-based nanostructured phase-change materials (PCMs) are considered promising building blocks for non-volatile memory due to their high write and read speeds, high data-storage density, and low power consumption. Top-down fabrication of PCM nanoparticles (NPs), however, often results in damage and deterioration of their useful properties. Gas-phase condensation based on magnetron sputtering offers an attractive and straightforward solution to continuously down-scale the PCMs into sub-lithographic sizes. Here we unprecedentedly present the size dependence of crystallization for Ge2Sb2Te5 (GST) NPs, whose production is currently highly challenging for chemical synthesis or top-down fabrication. Both amorphous and crystalline NPs have been produced with excellent size and composition control with average diameters varying between 8 and 17 nm. The size-dependent crystallization of these NPs was carefully analyzed through in-situ heating in a transmission electron microscope, where the crystallization temperatures (Tc) decrease when the NPs become smaller. Moreover, methane incorporation has been observed as an effective method to enhance the amorphous phase stability of the NPs. This work therefore elucidates that GST NPs synthesized by gas-phase condensation with tailored properties are promising alternatives in designing phase-change memories constrained by optical lithography limitations.

  14. Single Molecule Nano-Metronome

    OpenAIRE

    Buranachai, Chittanon; McKinney, Sean A.; Ha, Taekjip

    2006-01-01

    We constructed a DNA-based nano-mechanical device called the nano-metronome. Our device is made by introducing complementary single stranded overhangs at the two arms of the DNA four-way junction. The ticking rates of this stochastic metronome depend on ion concentrations and can be changed by a set of DNA-based switches to deactivate/reactivate the sticky end. Since the device displays clearly distinguishable responses even with a single basepair difference, it may lead to a single molecule ...

  15. Synthesis of Boron Nano wires, Nano tubes, and Nano sheets

    International Nuclear Information System (INIS)

    Patel, R.B.; Chou, T.; Iqbal, Z.

    2014-01-01

    The synthesis of boron nano wires, nano tubes, and nano sheets using a thermal vapor deposition process is reported. This work confirms previous research and provides a new method capable of synthesizing boron nano materials. The materials were made by using various combinations of MgB 2 , Mg(BH 4 ) 2 , MCM-41, NiB, and Fe wire. Unlike previously reported methods, a nanoparticle catalyst and a silicate substrate are not required for synthesis. Two types of boron nano wires, boron nano tubes, and boron nano sheets were made. Their morphology and chemical composition were determined through the use of scanning electron microscopy, transmission electron microscopy, and electron energy loss spectroscopy. These boron-based materials have potential for electronic and hydrogen storage applications.

  16. Anisotropically Swelling Gels Attained through Axis-Dependent Crosslinking of MOF Crystals.

    Science.gov (United States)

    Ishiwata, Takumi; Kokado, Kenta; Sada, Kazuki

    2017-03-01

    Anisotropically deforming objects have attracted considerable interest for use in molecular machines and artificial muscles. Herein, we focus on a new approach based on the crystal crosslinking of organic ligands in a pillared-layer metal-organic framework (PLMOF). The approach involves the transformation from crosslinked PLMOF to polymer gels through hydrolysis of the coordination bonds between the organic ligands and metal ions, giving a network polymer that exhibits anisotropic swelling. The anisotropic monomer arrangement in the PLMOF underwent axis-dependent crosslinking to yield anisotropically swelling gels. Therefore, the crystal crosslinking of MOFs should be a useful method for creating actuators with designable deformation properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Epitaxial growth of sexi-thiophene and para-hexaphenyl and its implications for the fabrication of self-assembled lasing nano-fibres

    International Nuclear Information System (INIS)

    Simbrunner, Clemens

    2013-01-01

    Over the last few years, epitaxially grown self-assembled organic nano-structures became of increasing interest due to their high potential for implementation within opto-electronic devices. Exemplarily, the epitaxial growth of the rod-like molecules para-hexaphenyl (p-6P) and α-sexi-thiophene (6T) is discussed within this review. Both molecules tend to crystallize in highly asymmetric elongated entities which are also called nano-fibres. It is demonstrated that the obtained needle orientations and morphologies result from a complex interplay between various parameters e.g. substrate surface symmetry, molecular adsorption, crystal structure and contact plane. The interplay and its implications on the fabrication of self-assembled waveguiding nano-fibres and optical resonator structures are discussed and substantiated by a comparison with the reported literature. In further consequence, it is demonstrated that a precise control on the molecular adsorption geometry and the crystal contact plane represents a fundamental key parameter for the fabrication of self-assembled nano-fibres. As both parameters are basically determined by the chosen molecule–substrate material couple, the possible spectrum of molecular building blocks for the fabrication of waveguiding and lasing nano-structures can be predicted by the discussed growth model. A possible expansion of this common valid concept is presented by the utilization of organic–organic heteroepitaxy. Based on the reported p-6P/6T heterostructures which have been fabricated on various substrate surfaces, it is substantiated that the fabrication of organic–organic interfaces can be effectively used to gain control on the molecular adsorption geometry. As the proposed strategy still lacks a precise control of the obtained crystal contact plane, further strategies are discussed which potentially lead to a controlled fabrication of opto-electronic devices based on self-assembled organic nano-structures. (invited review)

  18. Magnetic resonance studies of the Mg acceptor in thick free-standing and thin-film GaN

    Science.gov (United States)

    Zvanut, Mary Ellen

    Mg, the only effective p-type dopant for the nitrides, substitutes for Ga and forms an acceptor with a defect level of about 0.16 eV. The magnetic resonance of such a center should be highly anisotropic, yet early work employing both optically detected magnetic resonance (ODMR) and electron paramagnetic resonance (EPR) spectroscopies revealed a defect with a nearly isotropic g-tensor. The results were attributed to crystal fields caused by compensation and/or strain typical of the heteroepitaxially grown films. The theory was supported by observation of the expected highly anisotropic ODMR signature in homoepitaxially grown films in which dislocation-induced non-uniform strain and compensation are reduced. The talk will review EPR measurements of thin films and describe new work which takes advantage of the recently available thick free-standing GaN:Mg substrates grown by hydride vapor phase epitaxy (HVPE) and high nitrogen pressure solution growth (HNPS). Interestingly, the films and HVPE substrates exhibit characteristically different types of EPR signals, and no EPR response could be induced in the HNPS substrates, with or without illumination. In the heteroepitaxial films, a curious angular dependent line-shape is observed in addition to the nearly isotropic g-tensor characteristic of the Mg-related acceptor. On the other hand, the free-standing HVPE crystals reveal a clear signature of a highly anisotropic shallow acceptor center. Comparison with SIMS measurements implies a direct relation to the Mg impurity, and frequency-dependent EPR studies demonstrate the influence of the anisotropic crystal fields. Overall, the measurements of the thick free-standing crystals show that the Mg acceptor is strongly affected by the local environment. The ODMR was performed by Evan Glaser, NRL and the free-standing Mg-doped HVPE crystals were grown by Jacob Leach, Kyma Tech. The work at UAB is supported by NSF Grant No. DMR-1308446.

  19. Ellipsometry measurements of thickness of oxide and water layers on spherical and flat silicon surfaces

    International Nuclear Information System (INIS)

    Kenny, M.J.; Netterfield, R.; Wielunski, L.S.

    1998-01-01

    Full text: Ellipsometry has been used to measure the thickness of oxide layers on single crystal silicon surfaces, both flat and spherical and also to measure the extent of adsorption of moisture on the surface as a function of partial water vapour pressure. The measurements form part of an international collaborative project to make a precise determination of the Avogadro constant (ΔN A /N A -8 ) which will then be used to obtain an absolute definition of the kilogram, rather than one in terms of an artefact. Typically the native oxide layer on a cleaned silicon wafer is about 2 nm thick. On a polished sphere this oxide layer is typically 8 to 10 nm thick, the increased thickness being attributed to parameters related to the polishing process. Ellipsometry measurements on an 89 mm diameter polished silicon sphere at both VUW and CSIRO indicated a SiO 2 layer at 7 to 10 nm thick. It was observed that this thickness varied regularly. The crystal orientation of the sphere was determined using electron patterns generated from an electron microscope and the oxide layer was then measured through 180 arcs of great circles along (110) and (100) planes. It was observed that the thickness varied systematically with orientation. The minimum thickness was 7.4 nm at the axis (softest direction in silicon) and the greatest thickness was 9.5 nm at the axis (hardest direction in silicon). This is similar to an orientation dependent cubic pattern which has been observed to be superimposed on polished silicon spheres. At VUW, the sphere was placed in an evacuated bell jar and the ellipsometry signal was observed as the water vapour pressure was progressively increased up to saturation. The amount of water vapour adsorbed at saturation was one or two monolayers, indicating that the sphere does not wet

  20. Gas anti-solvent precipitation assisted salt leaching for generation of micro- and nano-porous wall in bio-polymeric 3D scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Flaibani, Marina; Elvassore, Nicola, E-mail: nicola.elvassore@unipd.it

    2012-08-01

    The mass transport through biocompatible and biodegradable polymeric 3D porous scaffolds may be depleted by non-porous impermeable internal walls. As consequence the concentration of metabolites and growth factors within the scaffold may be heterogeneous leading to different cell fate depending on spatial cell location, and in some cases it may compromise cell survival. In this work, we fabricated polymeric scaffolds with micro- and nano-scale porosity by developing a new technique that couples two conventional scaffold production methods: solvent casting-salt leaching and gas antisolvent precipitation. 10-15 w/w solutions of a hyaluronic benzyl esters (HYAFF11) and poly-(lactic acid) (PLA) were used to fill packed beds of 0.177-0.425 mm NaCl crystals. The polymer precipitation in micro and nano-porous structures between the salt crystals was induced by high-pressure gas, then its flushing extracted the residual solvent. The salt was removed by water-wash. Morphological analysis by scanning electron microscopy showed a uniform porosity ({approx} 70%) and a high interconnectivity between porous. The polymeric walls were porous themselves counting for 30% of the total porosity. This wall porosity did not lead to a remarkable change in compressive modulus, deformation, and rupture pressure. Scaffold biocompatibility was tested with murine muscle cell line C2C12 for 4 and 7 days. Viability analysis and histology showed that micro- and nano-porous scaffolds are biocompatible and suitable for 3D cell culture promoting cell adhesion on the polymeric wall and allowing their proliferation in layers. Micro- and nano-scale porosities enhance cell migration and growth in the inner part of the scaffold. - Highlights: Black-Right-Pointing-Pointer Gas anti-solvent precipitation and salt leaching for scaffold fabrication. Black-Right-Pointing-Pointer Hyaluronic benzyl esters (HYAFF11) and poly-(lactic acid) (PLA) sponges. Black-Right-Pointing-Pointer Gas anti-solvent precipitation

  1. Gas anti-solvent precipitation assisted salt leaching for generation of micro- and nano-porous wall in bio-polymeric 3D scaffolds

    International Nuclear Information System (INIS)

    Flaibani, Marina; Elvassore, Nicola

    2012-01-01

    The mass transport through biocompatible and biodegradable polymeric 3D porous scaffolds may be depleted by non-porous impermeable internal walls. As consequence the concentration of metabolites and growth factors within the scaffold may be heterogeneous leading to different cell fate depending on spatial cell location, and in some cases it may compromise cell survival. In this work, we fabricated polymeric scaffolds with micro- and nano-scale porosity by developing a new technique that couples two conventional scaffold production methods: solvent casting-salt leaching and gas antisolvent precipitation. 10–15 w/w solutions of a hyaluronic benzyl esters (HYAFF11) and poly-(lactic acid) (PLA) were used to fill packed beds of 0.177–0.425 mm NaCl crystals. The polymer precipitation in micro and nano-porous structures between the salt crystals was induced by high-pressure gas, then its flushing extracted the residual solvent. The salt was removed by water-wash. Morphological analysis by scanning electron microscopy showed a uniform porosity (∼ 70%) and a high interconnectivity between porous. The polymeric walls were porous themselves counting for 30% of the total porosity. This wall porosity did not lead to a remarkable change in compressive modulus, deformation, and rupture pressure. Scaffold biocompatibility was tested with murine muscle cell line C2C12 for 4 and 7 days. Viability analysis and histology showed that micro- and nano-porous scaffolds are biocompatible and suitable for 3D cell culture promoting cell adhesion on the polymeric wall and allowing their proliferation in layers. Micro- and nano-scale porosities enhance cell migration and growth in the inner part of the scaffold. - Highlights: ► Gas anti-solvent precipitation and salt leaching for scaffold fabrication. ► Hyaluronic benzyl esters (HYAFF11) and poly-(lactic acid) (PLA) sponges. ► Gas anti-solvent precipitation induces nano-porous structures. ► Scaffolds are biocompatible and

  2. Thickness oscillations of the transport properties in n-type Bi{sub 2}Te{sub 3} topological insulator thin films

    Energy Technology Data Exchange (ETDEWEB)

    Rogacheva, E.I., E-mail: rogacheva@kpi.kharkov.ua [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze Street, Kharkov 61002 (Ukraine); Budnik, A.V.; Sipatov, A.Yu.; Nashchekina, O.N. [National Technical University “Kharkov Polytechnic Institute”, 21 Frunze Street, Kharkov 61002 (Ukraine); Fedorov, A.G. [Institute for Single Crystals of NAS of Ukraine, 60 Lenin Prospect, Kharkov 61001 (Ukraine); Dresselhaus, M.S.; Tang, S. [Department of Electrical Engineering and Computer Science and Department of Physics, Massachusetts Institute of Technology, 77 Massachusetts Ave., Cambridge, MA 02139 (United States)

    2015-11-02

    The dependences of the electrical conductivity, Seebeck coefficient and Hall coefficient on the thickness (d = 20–155 nm) of the n-type thin films grown on the glass substrates by the thermal evaporation in vacuum of the n-type Bi{sub 2}Te{sub 3} topological insulator crystals have been measured. It has been established that these dependences have an oscillatory character with a substantial amplitude. The obtained results are interpreted in terms of quantum size effects, taking into account the peculiar properties of the surface layers of the Bi{sub 2}Te{sub 3} films connected with the topological insulator nature of the bismuth telluride. - Highlights: • The thickness dependences of Bi{sub 2}Te{sub 3} thin films kinetic coefficients were obtained. • The dependences have oscillatory character with a substantial undamped amplitude. • The oscillation period increases with decreasing film thickness. • The oscillations are attributed to electron confinement in the film growth direction. • It is suggested that topological surface layer affects quantum processes in films.

  3. Nano-Impact (Fatigue Characterization of As-Deposited Amorphous Nitinol Thin Film

    Directory of Open Access Journals (Sweden)

    Rehan Ahmed

    2012-08-01

    Full Text Available This paper presents nano-impact (low cycle fatigue behavior of as-deposited amorphous nitinol (TiNi thin film deposited on Si wafer. The nitinol film was 3.5 µm thick and was deposited by the sputtering process. Nano-impact tests were conducted to comprehend the localized fatigue performance and failure modes of thin film using a calibrated nano-indenter NanoTest™, equipped with standard diamond Berkovich and conical indenter in the load range of 0.5 mN to 100 mN. Each nano-impact test was conducted for a total of 1000 fatigue cycles. Depth sensing approach was adapted to understand the mechanisms of film failure. Based on the depth-time data and surface observations of films using atomic force microscope, it is concluded that the shape of the indenter test probe is critical in inducing the localized indentation stress and film failure. The measurement technique proposed in this paper can be used to optimize the design of nitinol thin films.

  4. Simple electrodepositing of CoFe/Cu multilayers: Effect of ferromagnetic layer thicknesses

    Energy Technology Data Exchange (ETDEWEB)

    Tekgül, Atakan, E-mail: atakantekgul@gmail.com [Akdeniz University, Physics Department, Science Faculty, TR-07058 Antalya (Turkey); Uludag University, Physics Department, Science and Literature Faculty, TR-16059 Bursa (Turkey); Alper, Mürsel [Uludag University, Physics Department, Science and Literature Faculty, TR-16059 Bursa (Turkey); Kockar, Hakan [Balikesir University, Physics Department, Science and Literature Faculty, TR-10145 Balikesir (Turkey)

    2017-01-01

    The CoFe/Cu magnetic multilayers were produced by changing CoFe ferromagnetic layers from 3 nm to 10 nm using electrodeposition. By now, the thinnest Cu (0.5 nm) layer thicknesses were used to see whether the GMR effect in the multilayers can be obtained or not since the pinning of non-magnetic layer between the ferromagnetic layers is required. For the proper depositions, the cyclic voltammograms was used, and the current–time transients were obtained. The Cu and CoFe layers were deposited at a cathode potential of −0.3 and −1.5 V with respect to saturated calomel electrode, respectively. From the XRD patterns, the multilayers were shown to be fcc crystal structures. For the magnetization measurements, saturation magnetization increases from 160 to 600 kA/m from 3 to 8 nm ferromagnetic layer thicknesses. And, the coercivity values increase until the 8 nm of the CoFe layer thickness. It is seen that the thin Cu layer (fixed at 0.5 nm) and pinholes support the random magnetization orientation and thus all multilayers exhibited the giant magnetoresistance (GMR) effect, and the highest GMR value was observed about 5.5%. And, the variation of GMR field sensitivity was calculated. The results show that the GMR and GMR sensitivity are compatible among the multilayers. The CoFe/Cu magnetic multilayers having GMR properties are used in GMR sensors and hard disk drive of the nano-technological devices. - Highlights: • The much thinner (0.5 nm) Cu layer was used to obtain the GMR effect on the electrodeposited CoFe/Cu multilayers. • All samples exhibited GMR and the maximum GMR value was 5.5%. • The M{sub s} and the H{sub c} changed with increasing magnetic layer thickness.

  5. [Synthesis and characterization of CO-3(2-) doping nano-hydroxyapatite].

    Science.gov (United States)

    Liao, Jian-Guo; Li, Yan-Qun; Duan, Xing-Ze; Liu, Qiong

    2014-11-01

    CO3(2-) doping is an effective method to increase the biological activity of nano-hydroxyapatite (n-HA). In the present study, calcium nitrate and trisodium phosphate were chosen as raw materials, with a certain amount of Na2CO3 as a source of CO-3(2-) ions, to synthesize nano-carbonate hydroxyapatite (n-CHA) slurry by solution precipitation method. The structure and micro-morphology of n-CHA were characterized by transmission electron microscope (TEM), X-ray diffraction (XRD), Fourier transform-infrared spectroscopy (FTIR) and Raman spectroscopy (RS). The results revealed that the synthetic n-HA crystals are acicular in nanometer scale and have a crystal size of 20-30 nm in diameter and 60-80 nm in length, which are similar to natural bone apatite. And the crystallinity of n-CHA crystals decreases to the increment of CO3(2-). Samples with more CO3(2) have composition and structure more similar to the bone apatite. The value of lattice parameters a decreases, value of c increases, and c/a value increases with the increase in the amount of CO3(2-), in accordance with crystal cell parameters change rule of type B replacement. In the AB mixed type (substitution OH- and PO4(3-)) CHA, IR characteristic peak of CO3(2-) out-of-plane bending vibration appears at 872 cm(-1), meanwhile, the asymmetry flexible vibration band is split into band at 1 454 cm(-1) and band at 1 420 cm(-1), while weak CO3(2)-peak appears at 1 540 cm(-1). CO3(2-) Raman peak of symmetric stretching vibration appears at 1 122 cm(-1). CO3(2-) B-type (substitution PO4(3-)) peak appeared at 1 071 cm(-1). Through the calculation of integral area ratio of PO4(3-)/ CO3(2-), OH-/CO3(2-), and PO4(3-)/OH-, low quantity CO3(2-) is B-type and high quantity CO3(2-) is A-type (substitution OH-). The results show that the synthesized apatite crystals are AB hybrid substitued nano-carbonate hydroxyapatite, however B-type replacement is the main substitute mode. Due to similarity inthe shape, size, crystal structure

  6. Nano Mechanical Machining Using AFM Probe

    Science.gov (United States)

    Mostofa, Md. Golam

    and burr formations through intermittent cutting. Combining the AFM probe based machining with vibration-assisted machining enhanced nano mechanical machining processes by improving the accuracy, productivity and surface finishes. In this study, several scratching tests are performed with a single crystal diamond AFM probe to investigate the cutting characteristics and model the ploughing cutting forces. Calibration of the probe for lateral force measurements, which is essential, is also extended through the force balance method. Furthermore, vibration-assisted machining system is developed and applied to fabricate different materials to overcome some of the limitations of the AFM probe based single point nano mechanical machining. The novelty of this study includes the application of vibration-assisted AFM probe based nano scale machining to fabricate micro/nano scale features, calibration of an AFM by considering different factors, and the investigation of the nano scale material removal process from a different perspective.

  7. Mechanism of Crystallization and Implications for Charge Transport in Poly(3-ethylhexylthiophene) Thin Films

    KAUST Repository

    Duong, Duc T.

    2014-04-09

    In this work, crystallization kinetics and aggregate growth of poly(3-ethylhexylthiophene) (P3EHT) thin films are studied as a function of film thickness. X-ray diffraction and optical absorption show that individual aggregates and crystallites grow anisotropically and mostly along only two packing directions: the alkyl stacking and the polymer chain backbone direction. Further, it is also determined that crystallization kinetics is limited by the reorganization of polymer chains and depends strongly on the film thickness and average molecular weight. Time-dependent, field-effect hole mobilities in thin films reveal a percolation threshold for both low and high molecular weight P3EHT. Structural analysis reveals that charge percolation requires bridged aggregates separated by a distance of ≈2-3 nm, which is on the order of the polymer persistence length. These results thus highlight the importance of tie molecules and inter-aggregate distance in supporting charge percolation in semiconducting polymer thin films. The study as a whole also demonstrates that P3EHT is an ideal model system for polythiophenes and should prove to be useful for future investigations into crystallization kinetics. Recrystallization kinetics and its relationship to charge transport in poly(3-ethylhexylthiophene) (P3EHT) thin films are investigated using a combination of grazing incidence X-ray diffraction, optical absorption, and field-effect transistor measurements. These results show that thin film crystallization kinetics is limited by polymer chain reorganization and that charge percolation depends strongly on the edge-to-edge distance between aggregates. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Bridging “green gap” of LEDs: Giant light output enhancement and directional control of LEDs via embedded nano-void photonic crystals

    KAUST Repository

    Tsai, Yu-Lin

    2015-11-23

    Green LEDs do not show the same level of performance as their blue and red cousins, greatly hindering the solid-state lighting development, which is so-called “green gap”. In this work, nano-void photonic crystals (NVPCs) were fabricated to embed within the GaN/InGaN green LEDs by using epitaxial lateral overgrowth (ELO) and nano-sphere lithography techniques. The NVPCs act as an efficient scattering back-reflector to outcouple the guided and downward photons, which not only boosting light extraction efficiency of LEDs with an enhancement of 78% but also collimating the view angle of LEDs from 131.5゜to 114.0゜. This could be because the highly scattering nature of NVPCs which reduce the interference giving rise to Fabry-Perot resonance. Moreover, due to the threading dislocation suppression and strain relief by the NVPCs, the internal quantum efficiency was increased by 25% and droop behavior was reduced from 37.4% to 25.9%. The enhancement of light output power can be achieved as high as 151% at a driving current of 350 mA. Giant light output enhancement and directional control via NVPCs points the way towards a promising avenue of solid-state lighting.

  9. Bridging “green gap” of LEDs: Giant light output enhancement and directional control of LEDs via embedded nano-void photonic crystals

    KAUST Repository

    Tsai, Yu-Lin; Liu, Che-Yu; Krishnan, Chirenjeevi; Lin, Da-Wei; Chu, You-Chen; Chen, Tzu-Pei; Shen, Tien-Lin; Kao, Tsung-Sheng; Charlton, Martin; Yu, Peichen; Lin, Chien-Chung; Kuo, Hao-Chung; He, Jr-Hau

    2015-01-01

    Green LEDs do not show the same level of performance as their blue and red cousins, greatly hindering the solid-state lighting development, which is so-called “green gap”. In this work, nano-void photonic crystals (NVPCs) were fabricated to embed within the GaN/InGaN green LEDs by using epitaxial lateral overgrowth (ELO) and nano-sphere lithography techniques. The NVPCs act as an efficient scattering back-reflector to outcouple the guided and downward photons, which not only boosting light extraction efficiency of LEDs with an enhancement of 78% but also collimating the view angle of LEDs from 131.5゜to 114.0゜. This could be because the highly scattering nature of NVPCs which reduce the interference giving rise to Fabry-Perot resonance. Moreover, due to the threading dislocation suppression and strain relief by the NVPCs, the internal quantum efficiency was increased by 25% and droop behavior was reduced from 37.4% to 25.9%. The enhancement of light output power can be achieved as high as 151% at a driving current of 350 mA. Giant light output enhancement and directional control via NVPCs points the way towards a promising avenue of solid-state lighting.

  10. An experimental and simulation study on build thickness dependent microstructure for electron beam melted Ti–6Al–4V

    Energy Technology Data Exchange (ETDEWEB)

    Tan, Xipeng, E-mail: xptan1985@gmail.com [Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University, HW1-01-05, 2A Nanyang Link, 637372 Singapore (Singapore); Kok, Yihong; Tan, Yu Jun [Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University, HW1-01-05, 2A Nanyang Link, 637372 Singapore (Singapore); Vastola, Guglielmo, E-mail: vastolag@ihpc.a-star.edu.sg [Institute of High Performance Computing, A*Star, 1 Fusionopolis Way, #16-16 Connexis, 138632 Singapore (Singapore); Pei, Qing Xiang; Zhang, Gang; Zhang, Yong-Wei [Institute of High Performance Computing, A*Star, 1 Fusionopolis Way, #16-16 Connexis, 138632 Singapore (Singapore); Tor, Shu Beng; Leong, Kah Fai; Chua, Chee Kai [Singapore Centre for 3D Printing, School of Mechanical & Aerospace Engineering, Nanyang Technological University, HW1-01-05, 2A Nanyang Link, 637372 Singapore (Singapore)

    2015-10-15

    Build thickness dependent microstructure of electron beam melted (EBM{sup ®}) Ti–6Al–4V has been investigated from both experiment and simulation using four block samples with thicknesses of 1, 5, 10 and 20 mm. We observe a mixed microstructure of alternate α/β with some α′ martensite inside the 1 mm-thick sample. By contrast, only the alternate α/β microstructure with both colony and basket-weave morphologies occurs inside the 5 mm-, 10 mm- and 20 mm-thick samples. It is found that β spacing is constantly increased with the build thickness, leading to an obvious decrease in microhardness. Finite element method (FEM) simulations show that cooling rates and thermal profiles during EBM process are favorable for the formation of martensite. Moreover, full-scale FEM simulations reveal that the average temperature inside the samples is higher as the build thickness increases. It suggests that martensitic decomposition is faster in thicker samples, which is in good agreement with the experimental observations. - Highlights: • Build geometry dependent microstructure and microhardness for EBM-built Ti–6Al–4V. • Phase evolution involved in EBM process. • FEM simulation of EBM process. • α′ martensite formation and its identification.

  11. An experimental and simulation study on build thickness dependent microstructure for electron beam melted Ti–6Al–4V

    International Nuclear Information System (INIS)

    Tan, Xipeng; Kok, Yihong; Tan, Yu Jun; Vastola, Guglielmo; Pei, Qing Xiang; Zhang, Gang; Zhang, Yong-Wei; Tor, Shu Beng; Leong, Kah Fai; Chua, Chee Kai

    2015-01-01

    Build thickness dependent microstructure of electron beam melted (EBM ® ) Ti–6Al–4V has been investigated from both experiment and simulation using four block samples with thicknesses of 1, 5, 10 and 20 mm. We observe a mixed microstructure of alternate α/β with some α′ martensite inside the 1 mm-thick sample. By contrast, only the alternate α/β microstructure with both colony and basket-weave morphologies occurs inside the 5 mm-, 10 mm- and 20 mm-thick samples. It is found that β spacing is constantly increased with the build thickness, leading to an obvious decrease in microhardness. Finite element method (FEM) simulations show that cooling rates and thermal profiles during EBM process are favorable for the formation of martensite. Moreover, full-scale FEM simulations reveal that the average temperature inside the samples is higher as the build thickness increases. It suggests that martensitic decomposition is faster in thicker samples, which is in good agreement with the experimental observations. - Highlights: • Build geometry dependent microstructure and microhardness for EBM-built Ti–6Al–4V. • Phase evolution involved in EBM process. • FEM simulation of EBM process. • α′ martensite formation and its identification

  12. Lunar Magma Ocean Crystallization: Constraints from Fractional Crystallization Experiments

    Science.gov (United States)

    Rapp, J. F.; Draper, D. S.

    2015-01-01

    The currently accepted paradigm of lunar formation is that of accretion from the ejecta of a giant impact, followed by crystallization of a global scale magma ocean. This model accounts for the formation of the anorthosite highlands crust, which is globally distributed and old, and the formation of the younger mare basalts which are derived from a source region that has experienced plagioclase extraction. Several attempts at modelling the crystallization of such a lunar magma ocean (LMO) have been made, but our ever-increasing knowledge of the lunar samples and surface have raised as many questions as these models have answered. Geodynamic models of lunar accretion suggest that shortly following accretion the bulk of the lunar mass was hot, likely at least above the solidus]. Models of LMO crystallization that assume a deep magma ocean are therefore geodynamically favorable, but they have been difficult to reconcile with a thick plagioclase-rich crust. A refractory element enriched bulk composition, a shallow magma ocean, or a combination of the two have been suggested as a way to produce enough plagioclase to account for the assumed thickness of the crust. Recently however, geophysical data from the GRAIL mission have indicated that the lunar anorthositic crust is not as thick as was initially estimated, which allows for both a deeper magma ocean and a bulk composition more similar to the terrestrial upper mantle. We report on experimental simulations of the fractional crystallization of a deep (approximately 100km) LMO with a terrestrial upper mantle-like (LPUM) bulk composition. Our experimental results will help to define the composition of the lunar crust and mantle cumulates, and allow us to consider important questions such as source regions of the mare basalts and Mg-suite, the role of mantle overturn after magma ocean crystallization and the nature of KREEP

  13. Crystallographic dependent in-situ CBr4 selective nano-area etching and local regrowth of InP/InGaAs by MOVPE

    DEFF Research Database (Denmark)

    Kuznetsova, Nadezda; Kulkova, Irina; Semenova, Elizaveta

    2014-01-01

    Selective area etching and growth in the metalorganic vapor phase epitaxy (MOVPE) reactor on nano-scale structures have been examined. Using different mask orientations, crystallographic dependent etching of InP can be observed when carbon tetrabromide (CBr4) is used as an etchant. Scanning...

  14. Nano-technology and nano-toxicology.

    Science.gov (United States)

    Maynard, Robert L

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology.

  15. Development of radiation detectors based on KMgF3:Tb nano crystals synthesized by microwave

    International Nuclear Information System (INIS)

    Herrero C, R.; Villicana M, M.; Garcia S, L.; Custodio C, M. A.; Gonzalez M, P. R.; Mendoza A, D.

    2015-10-01

    The development of new thermoluminescent (Tl) materials of the size of KMgF 3 :Tb nano crystals by microwave technique is a new alternative for obtaining new radiation detectors (dosimeters) for environmental dosimetry, personal, clinical, research and industry. This technique requires the preparation of the precursors of magnesium trifluoro acetates Mg(CF 3 COO) 2 and potassium K(CF 3 COO), finally the synthesis of KMgF 3 :Tb is realized via microwave. The synthesis was carried out in a microwave reactor mono wave 300 Anton-Paar. Trifluoro acetates are introduced into the reactor at a ratio of 1:1 mmol under inert atmosphere. The product was collected for centrifugation, washed several times with ethanol and dried at 60 degrees C for 10 h. The KMgF 3 obtained without doping and doped with Tb +3 ions were subjected to heat treatment at high temperatures for different lengths of time for their sensitization, the samples treated at 700 degrees C were those showing better Tl signal to be irradiated with gammas of 60 Co. The characterization of the obtained materials was carried out by X-ray diffraction, scanning electron microscopy and thermogravimetric analysis. (Author)

  16. Event localization in bulk scintillator crystals using coded apertures

    Energy Technology Data Exchange (ETDEWEB)

    Ziock, K.P. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Department of Physics and Astronomy, University of Tennessee, Knoxville, TN (United States); Braverman, J.B. [Department of Physics and Astronomy, University of Tennessee, Knoxville, TN (United States); Fabris, L.; Harrison, M.J.; Hornback, D.; Newby, J. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    2015-06-01

    The localization of radiation interactions in bulk scintillators is generally limited by the size of the light distribution at the readout surface of the crystal/light-pipe system. By finding the centroid of the light spot, which is typically of order centimeters across, practical single-event localization is limited to ~2 mm/cm of crystal thickness. Similar resolution can also be achieved for the depth of interaction by measuring the size of the light spot. Through the use of near-field coded-aperture techniques applied to the scintillation light, light transport simulations show that for 3-cm-thick crystals, more than a five-fold improvement (millimeter spatial resolution) can be achieved both laterally and in event depth. At the core of the technique is the requirement to resolve the shadow from an optical mask placed in the scintillation light path between the crystal and the readout. In this paper, experimental results are presented that demonstrate the overall concept using a 1D shadow mask, a thin-scintillator crystal and a light pipe of varying thickness to emulate a 2.2-cm-thick crystal. Spatial resolutions of ~1 mm in both depth and transverse to the readout face are obtained over most of the crystal depth.

  17. Event localization in bulk scintillator crystals using coded apertures

    International Nuclear Information System (INIS)

    Ziock, K.P.; Braverman, J.B.; Fabris, L.; Harrison, M.J.; Hornback, D.; Newby, J.

    2015-01-01

    The localization of radiation interactions in bulk scintillators is generally limited by the size of the light distribution at the readout surface of the crystal/light-pipe system. By finding the centroid of the light spot, which is typically of order centimeters across, practical single-event localization is limited to ~2 mm/cm of crystal thickness. Similar resolution can also be achieved for the depth of interaction by measuring the size of the light spot. Through the use of near-field coded-aperture techniques applied to the scintillation light, light transport simulations show that for 3-cm-thick crystals, more than a five-fold improvement (millimeter spatial resolution) can be achieved both laterally and in event depth. At the core of the technique is the requirement to resolve the shadow from an optical mask placed in the scintillation light path between the crystal and the readout. In this paper, experimental results are presented that demonstrate the overall concept using a 1D shadow mask, a thin-scintillator crystal and a light pipe of varying thickness to emulate a 2.2-cm-thick crystal. Spatial resolutions of ~1 mm in both depth and transverse to the readout face are obtained over most of the crystal depth

  18. Thickness Dependent on Photocatalytic Activity of Hematite Thin Films

    Directory of Open Access Journals (Sweden)

    Yen-Hua Chen

    2012-01-01

    Full Text Available Hematite (Fe2O3 thin films with different thicknesses are fabricated by the rf magnetron sputtering deposition. The effects of film thicknesses on the photocatalytic activity of hematite films have been investigated. Hematite films possess a polycrystalline hexagonal structure, and the band gap decreases with an increase of film thickness. Moreover, all hematite films exhibit good photocatalytic ability under visible-light irradiation; the photocatalytic activity of hematite films increases with the increasing film thickness. This is because the hematite film with a thicker thickness has a rougher surface, providing more reaction sites for photocatalysis. Another reason is a lower band gap of a hematite film would generate more electron-hole pairs under visible-light illumination to enhance photocatalytic efficiency. Experimental data are well fitted with Langmuir-Hinshelwood kinetic model. The photocatalytic rate constant of hematite films ranges from 0.052 to 0.068 min-1. This suggests that the hematite film is a superior photocatalyst under visible-light irradiation.

  19. Technique for determination of elastic limit of micron band-thick amorphous

    International Nuclear Information System (INIS)

    Zakharov, E.K.; Pol'dyaeva, G.P.; Tret'yakov, B.N.

    1984-01-01

    A method is suggested to determine the elastic limit of micron-thick amorphous band under bending. The elastic limit is determined by bending an amorphous band sample around a series of cylindrical mandrels of gradually decreasing radius. Experimental data on measuring the elastic limit of some amorphous iron base alloys according to the suggested technique are presented. The elastic limit of amorphous alloys is shown to lie in the 3140-4110 MPa range depending on chemical composition, which is about 2-2.5 times higher as compared to high-strength crystal alloys

  20. Zirconia nano-colloids transfer from continuous hydrothermal synthesis to inkjet printing

    DEFF Research Database (Denmark)

    Rosa, Massimo; Gooden, P. N.; Butterworth, S.

    2017-01-01

    Water dispersions of nanometric yttria stabilized zirconia (YSZ) particles synthesized by Continuous Hydrothermal Synthesis are transferred into nano-inks for thin film deposition. YSZ nanoparticles are synthesized in supercritical conditions resulting in highly dispersed crystals of 10 nm in size...

  1. Microstructure characterization and magnetic properties of nano structured materials

    International Nuclear Information System (INIS)

    Sun, X.C.

    2000-01-01

    The present thesis deals with the unique microstructural properties and their novel magnetic properties of core-shell Ni-Ce nano composite particles, carbon encapsulated Fe, Co, and Ni nanoparticles and the nano crystallization behavior of typical ferromagnetic Fe 78 Si 9 B 13 ribbons. These properties have intensively been investigated by high resolution transmission electron microscopy (HREM), X-ray diffraction (XRD), scanning electron microscopy (Sem), X-ray energy dispersive spectroscopy (Eds.); selected area electron diffraction pattern (SAED), Ft-IR, differential scanning calorimeter (DSC). In addition, magnetic moments measurements at different temperatures and applied fields have been performed by transmission Moessbauer spectroscopy, superconducting quantum interference device magnetometer (SQUID), and vibrating sample magnetometer (VSM). The present studies may provide the insights for the better understanding of the correlation between the unique microstructure and novel magnetic properties for several magnetic nano structured materials. (Author)

  2. Solvent annealing induced phase separation and dewetting in PMMA∕SAN blend film: film thickness and solvent dependence.

    Science.gov (United States)

    You, Jichun; Zhang, Shuangshuang; Huang, Gang; Shi, Tongfei; Li, Yongjin

    2013-06-28

    The competition between "dewetting" and "phase separation" behaviors in polymer blend films attracts significant attention in the last decade. The simultaneous phase separation and dewetting in PMMA∕SAN [poly(methyl methacrylate) and poly(styrene-ran-acrylonitrile)] blend ultrathin films upon solvent annealing have been observed for the first time in our previous work. In this work, film thickness and annealing solvent dependence of phase behaviors in this system has been investigated using atomic force microscopy and grazing incidence small-angle X-ray scattering (GISAXS). On one hand, both vertical phase separation and dewetting take place upon selective solvent vapor annealing, leading to the formation of droplet∕mimic-film structures with various sizes (depending on original film thickness). On the other hand, the whole blend film dewets the substrate and produces dispersed droplets on the silicon oxide upon common solvent annealing. GISAXS results demonstrate the phase separation in the big dewetted droplets resulted from the thicker film (39.8 nm). In contrast, no period structure is detected in small droplets from the thinner film (5.1 nm and 9.7 nm). This investigation indicates that dewetting and phase separation in PMMA∕SAN blend film upon solvent annealing depend crucially on the film thickness and the atmosphere during annealing.

  3. Low-temperature molten salt synthesis and characterization of CoWO4 nano-particles

    International Nuclear Information System (INIS)

    Song Zuwei; Ma Junfeng; Sun Huyuan; Sun Yong; Fang Jingrui; Liu Zhengsen; Gao Chang; Liu Ye; Zhao Jingang

    2009-01-01

    CoWO 4 nano-particles were successfully synthesized at a low temperature of 270 deg. C by a molten salt method, and effects of such processing parameters as holding time and salt quantity on the crystallization and development of CoWO 4 crystallites were initially studied. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and photoluminescent spectra techniques (PL), respectively. Experimental results showed that the well-crystallized CoWO 4 nano-particles with ca. 45 nm in diameter could be obtained at 270 deg. C for a holding time of 8 h with 6:1 mass ratio of the salt to CoWO 4 precursor, and XRD analysis evidenced that the as-prepared sample was a pure monoclinic phase of CoWO 4 with wolframite structure. Their PL spectra revealed that the CoWO 4 nano-particles displayed a very strong PL peak at 453 nm with the excitation wavelength of 230 nm, and PL properties of CoWO 4 crystallites relied on their crystalline state, especially on their particle size.

  4. Effect of nano-scaled styrene butadiene rubber based nucleating agent on the thermal, crystallization and physical properties of isotactic polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Petchwattana, Nawadon [Division of Polymer Materials Technology, Faculty of Agricultural Product Innovation and Technology, Srinakharinwirot University, Sukhumvit 23, Wattana, Bangkok 10110 (Thailand); Covavisaruch, Sirijutaratana, E-mail: sirijutaratana.c@chula.ac.th [Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand); Sripanya, Panjapong [Thai Oleochemicals Company Limited (A Subsidiary of PTT Global Chemical Public Company Limited), Mueang Rayong, Rayong 21150 (Thailand)

    2014-01-05

    Highlights: • The effect of a SBR based β-NA on the properties iPP was investigated. • The addition of β-NA led to higher population of nuclei and smaller spherulites. • β to α phase transformation was observed when re-extrusion process was applied. • Impact strength was increased when the β-NA was added from 0.10 to 0.20 wt%. -- Abstract: The influence of a specific nano-scaled styrene butadiene rubber based β-nucleating agent (β-NA) on the properties of isotactic polypropylene (iPP) was investigated in the current research. β-NA was applied at the concentration ranged from 0.05 to 0.50 wt%. Microscopic observation revealed that the neat iPP crystals grew very slowly; they ranged in size from 100 to 200 μm. The addition of β-NA led to higher population of nuclei and smaller spherulites than those found in neat iPP. The addition of only 0.05 wt% β-NA significantly decreased the sizes of the spherulites down to 5 μm; the crystal grew very rapidly, leading to extremely fine morphology. Analysis by X-ray diffraction (XRD) confirmed that iPP/β-NA constituted mainly of β-crystal structure. The transformation of β to α phase was observed upon re-extrusion, it was verified by the lowered fraction of the β-crystalline phase (K{sub β}) although the total degree of crystallinity remained unchanged. A significant improvement in the impact strength of the iPP/β-NA was observed when the β-NA was employed from 0.10 to 0.20 wt%, leading to the formation of tough β-crystals in the β-NA nucleated iPP. The color measurement implied that the iPP nucleated with β-NA was superior in terms of whiteness but it was less transparent, as was evident by the increased haze.

  5. Gas anti-solvent precipitation assisted salt leaching for generation of micro- and nano-porous wall in bio-polymeric 3D scaffolds.

    Science.gov (United States)

    Flaibani, Marina; Elvassore, Nicola

    2012-08-01

    The mass transport through biocompatible and biodegradable polymeric 3D porous scaffolds may be depleted by non-porous impermeable internal walls. As consequence the concentration of metabolites and growth factors within the scaffold may be heterogeneous leading to different cell fate depending on spatial cell location, and in some cases it may compromise cell survival. In this work, we fabricated polymeric scaffolds with micro- and nano-scale porosity by developing a new technique that couples two conventional scaffold production methods: solvent casting-salt leaching and gas antisolvent precipitation. 10-15 w/w solutions of a hyaluronic benzyl esters (HYAFF11) and poly-(lactic acid) (PLA) were used to fill packed beds of 0.177-0.425 mm NaCl crystals. The polymer precipitation in micro and nano-porous structures between the salt crystals was induced by high-pressure gas, then its flushing extracted the residual solvent. The salt was removed by water-wash. Morphological analysis by scanning electron microscopy showed a uniform porosity (~70%) and a high interconnectivity between porous. The polymeric walls were porous themselves counting for 30% of the total porosity. This wall porosity did not lead to a remarkable change in compressive modulus, deformation, and rupture pressure. Scaffold biocompatibility was tested with murine muscle cell line C2C12 for 4 and 7 days. Viability analysis and histology showed that micro- and nano-porous scaffolds are biocompatible and suitable for 3D cell culture promoting cell adhesion on the polymeric wall and allowing their proliferation in layers. Micro- and nano-scale porosities enhance cell migration and growth in the inner part of the scaffold. Copyright © 2012 Elsevier B.V. All rights reserved.

  6. Thickness-Dependent Surfactant Behavior in Trilayer Polymer Films

    Science.gov (United States)

    Sun, Yan; Shull, Kenneth; Wang, Jin

    2010-03-01

    The ability for thin liquid films to wet and remain thermodynamically stable on top of one another is a fundamental challenge in developing high quality paints, coatings, adhesives, and other industrial products. Since intermolecular interactions and interfacial energies dominate in the film thickness regime from tens to hundreds of nanometers, it is desirable to tune these long-range and short-range forces in a simple, controllable manner. Starting from an unstable model homopolymer bilayer (poly(styrene)/poly(4-vinylpyridine)), we demonstrate that sandwiching an additional homopolymer layer (poly(4-bromostyrene)) between the two layers can provide needed surfactancy. As the thickness of this center layer is increased, the full trilayer transitions from unstable (thin) to stable (moderate) to unstable (thick). We experimentally show using x-ray standing waves generated via total external reflection (TER-XSW), atomic force microscopy (AFM), and time-of-flight secondary ion mass spectroscopy (ToF-SIMS) that this behavior can be directly attributed to the autophobic dewetting phenomenon, in which the surfactant layer is thin enough to remain stable but thick enough to shield the neighboring layers, highlighting a general approach to stabilizing multilayer systems.

  7. Modified Unzipping Technique to Prepare Graphene Nano-Sheets

    Science.gov (United States)

    Al-Tamimi, B. H.; Farid, S. B. H.; Chyad, F. A.

    2018-05-01

    Graphene nano-sheets have been prepared via unzipping approach of multiwall carbon nanotubes (MWCNTs). The method includes two chemical-steps, in which a multi-parameter oxidation step is performed to achieve unzipping the carbon nanotubes. Then, a reduction step is carried out to achieve the final graphene nano-sheets. In the oxidation step, the oxidant material was minimized and balanced with longer curing time. This modification is made in order to reduce the oxygen-functional groups at the ends of graphene basal planes, which reduce its electrical conductivity. In addition, a similar adjustment is achieved in the reduction step, i.e. the consumed chemicals is reduced which make the overall process more economic and eco-friendly. The prepared nano-sheets were characterized by atomic force microscopy, scanning electron microscopy, and Raman spectroscopy. The average thickness of the prepared graphene was about 5.23 nm.

  8. Reduced wear of enamel with novel fine and nano-scale leucite glass-ceramics.

    Science.gov (United States)

    Theocharopoulos, Antonios; Chen, Xiaohui; Hill, Robert; Cattell, Michael J

    2013-06-01

    Leucite glass-ceramics used to produce all-ceramic restorations can suffer from brittle fracture and wear the opposing teeth. High strength and fine crystal sized leucite glass-ceramics have recently been reported. The objective of this study is to investigate whether fine and nano-scale leucite glass-ceramics with minimal matrix microcracking are associated with a reduction in in vitro tooth wear. Human molar cusps (n=12) were wear tested using a Bionix-858 testing machine (300,000 simulated masticatory cycles) against experimental fine crystal sized (FS), nano-scale crystal sized (NS) leucite glass-ceramics and a commercial leucite glass-ceramic (Ceramco-3, Dentsply, USA). Wear was imaged using Secondary Electron Imaging (SEI) and quantified using white-light profilometry. Both experimental groups were found to produce significantly (pceramic) loss than the FS group. Increased waviness and damage was observed on the wear surfaces of the Ceramco-3 glass-ceramic disc/tooth group in comparison to the experimental groups. This was also indicated by higher surface roughness values for the Ceramco-3 glass-ceramic disc/tooth group. Fine and nano-sized leucite glass-ceramics produced a reduction in in vitro tooth wear. The high strength low wear materials of this study may help address the many problems associated with tooth enamel wear and restoration failure. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Dependence of magnetic properties on ferromagnetic layer thickness in trilayer Co/Ge/Co films with granular semiconducting spacer

    International Nuclear Information System (INIS)

    Patrin, G.S.; Lee, C.-G.; Turpanov, I.A.; Zharkov, S.M.; Velikanov, D.A.; Maltsev, V.K.; Li, L.A.; Lantsev, V.V.

    2006-01-01

    We have investigated the magnetic properties of trilayer films of Co-Ge-Co. At a fixed thickness of germanium of 3.5 nm, the formation and distribution of metastable amorphous and cubic phases depends on the thickness of the ferromagnetic layer. The portion of the stable hexagonal phase is affected, too. Possible mechanisms for forming the observed magnetic structure are discussed

  10. Parametric investigation of nano-gap thermophotovoltaic energy conversion

    Science.gov (United States)

    Lau, Japheth Z.-J.; Bong, Victor N.-S.; Wong, Basil T.

    2016-03-01

    Nano-gap thermophotovoltaic energy converters have the potential to be excellent generators of electrical power due to the near-field radiative effect which enhances the transfer of energy from one medium to another. However, there is still much to learn about this new form of energy converter. This paper seeks to investigate three parameters that affect the performance of nano-gap thermophotovoltaic devices: the emitter material, the thermophotovoltaic cell material, and the cell thickness. Furthermore, the temperature profiles in insulated thin films (cells exposed to below-band gap near-field radiation) are analysed. It was discovered that an effective emitter material is one that has a high generalised emissivity value and is also able to couple with the TPV cell material through surface polaritons while a cell material's electrical properties and its thickness has heavy bearing on its internal quantum efficiency. In regards to the temperature profile, the heat-flux absorbed causes a rise in temperature across the thin film, but is insufficient to generate a temperature gradient across the film.

  11. Thickness Dependence of Magnetic Relaxation and E-J Characteristics in Superconducting (Gd-Y)-Ba-Cu-O Films with Strong Vortex Pinning

    Energy Technology Data Exchange (ETDEWEB)

    Polat, Ozgur [ORNL; Sinclair IV, John W [ORNL; Zuev, Yuri L [ORNL; Thompson, James R [ORNL; Christen, David K [ORNL; Cook, Sylvester W [ORNL; Kumar, Dhananjay [ORNL; Chen, Y [SuperPower Incorporated, Schenectady, New York; Selvamanickam, V. [SuperPower Incorporated, Schenectady, New York

    2011-01-01

    The dependence of the critical current density Jc on temperature, magnetic field, and film thickness has been investigated in (Gd-Y)BaCu-oxide materials of 0.7, 1.4, and 2.8 m thickness. Generally, the Jc decreases with film thickness at investigated temperatures and magnetic fields. The nature and strength of the pinning centers for vortices have been identified through angular and temperature measurements, respectively. These films do not exhibit c-axis correlated vortex pinning, but do have correlated defects oriented near the ab-planes. For all film thicknesses studied, strong pinning dominates at most temperatures. The vortex dynamics were investigated through magnetic relaxation studies in the temperature range of 5 77 K in 1 T and 3 T applied magnetic fields, H || surface-normal. The creep rate S is thickness dependent at high temperatures, implying that the pinning energy is also thickness dependent. Maley analyses of the relaxation data show an inverse power law variation for the effective pinning energy Ueff ~ (J0/J) . Finally, the electric field-current density (E-J) characteristics were determined over a wide range of dissipation by combining experimental results from transport, swept field magnetometry (VSM), and Superconducting Quantum Interference Device (SQUID) magnetometry. We develop a self-consistent model of the combined experimental results, leading to an estimation of the critical current density Jc0(T) in the absence of flux creep.

  12. Nano technology

    International Nuclear Information System (INIS)

    Lee, In Sik

    2002-03-01

    This book is introduction of nano technology, which describes what nano technology is, alpha and omega of nano technology, the future of Korean nano technology and human being's future and nano technology. The contents of this book are nano period is coming, a engine of creation, what is molecular engineering, a huge nano technology, technique on making small things, nano materials with exorbitant possibility, the key of nano world the most desirable nano technology in bio industry, nano development plan of government, the direction of development for nano technology and children of heart.

  13. Single Molecule Nano-Metronome

    Science.gov (United States)

    Buranachai, Chittanon; McKinney, Sean A.; Ha, Taekjip

    2008-01-01

    We constructed a DNA-based nano-mechanical device called the nano-metronome. Our device is made by introducing complementary single stranded overhangs at the two arms of the DNA four-way junction. The ticking rates of this stochastic metronome depend on ion concentrations and can be changed by a set of DNA-based switches to deactivate/reactivate the sticky end. Since the device displays clearly distinguishable responses even with a single basepair difference, it may lead to a single molecule sensor of minute sequence differences of a target DNA. PMID:16522050

  14. Fluorescent nano-particles for multi-photon thermal sensing

    Energy Technology Data Exchange (ETDEWEB)

    Jaque, D., E-mail: daniel.jaque@uam.es [Fluorescence Imaging Group, Universidad Autonoma de Madrid, Madrid 28049 (Spain); Maestro, L.M.; Escudero, E. [Fluorescence Imaging Group, Universidad Autonoma de Madrid, Madrid 28049 (Spain); Rodriguez, E. Martin; Capobianco, J.A. [Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke St. W., Montreal, QC, Canada H4B 1R6 (Canada); Vetrone, F. [Institut National de la Recherche Scientifique-Energie, Materiaux et Telecommunications, Universite du Quebec, Varennes, QC, Canada J3X 1S2 (Canada); Juarranz de la Fuente, A.; Sanz-Rodriguez, F. [Departamento de Biologia, Facultad de Ciencias, Universidad Autonoma de Madrid, Madrid 28049 (Spain); Iglesias-de la Cruz, M.C. [Departamento de Fisiologia, Facultad de Medicina, Universidad Autonoma de Madrid, C/Arzobispo Morcillo s/n, 29029 Madrid (Spain); Jacinto, C.; Rocha, U. [Grupo de Fotonica e Fluidos Complexos, Instituto de Fisica, Universidade Federal de Alagoas, 57072-970 Maceio, Alagoas (Brazil); Garcia Sole, J. [Fluorescence Imaging Group, Universidad Autonoma de Madrid, Madrid 28049 (Spain)

    2013-01-15

    In this work we report on the ability of Er/Yb co-doped NaYF{sub 4} nano-crystals and CdTe Quantum Dots as two-photon excited fluorescent nano-thermometers. The basic physical phenomena causing the thermal sensitivity of the two-photon excited emission bands have been discussed and the maximum thermal resolution achievable in each case has been estimated. The practical application of both systems for thermal sensing at the micro-scale in biological systems is demonstrated. In particular, they have been used to evaluate the thermal loading induced by tightly focused laser beams in both living cells and fluids. - Highlights: Black-Right-Pointing-Pointer Two-photon-excited optical probes capable of thermal sensing are introduced. Black-Right-Pointing-Pointer The physics at the basis of thermal sensing is identified for each case. Black-Right-Pointing-Pointer Optical nano-thermometers are used to determine laser induced heating in cells and fluids.

  15. Exposure to nano-size titanium dioxide causes oxidative damages in human mesothelial cells: The crystal form rather than size of particle contributes to cytotoxicity.

    Science.gov (United States)

    Hattori, Kenji; Nakadate, Kazuhiko; Morii, Akane; Noguchi, Takumi; Ogasawara, Yuki; Ishii, Kazuyuki

    2017-10-14

    Exposure to nanoparticles such as carbon nanotubes has been shown to cause pleural mesothelioma similar to that caused by asbestos, and has become an environmental health issue. Not only is the percutaneous absorption of nano-size titanium dioxide particles frequently considered problematic, but the possibility of absorption into the body through the pulmonary route is also a concern. Nevertheless, there are few reports of nano-size titanium dioxide particles on respiratory organ exposure and dynamics or on the mechanism of toxicity. In this study, we focused on the morphology as well as the size of titanium dioxide particles. In comparing the effects between nano-size anatase and rutile titanium dioxide on human-derived pleural mesothelial cells, the anatase form was shown to be actively absorbed into cells, producing reactive oxygen species and causing oxidative damage to DNA. In contrast, we showed for the first time that the rutile form is not easily absorbed by cells and, therefore, does not cause oxidative DNA damage and is significantly less damaging to cells. These results suggest that with respect to the toxicity of titanium dioxide particles on human-derived mesothelial cells, the crystal form rather than the particle size has a greater effect on cellular absorption. Also, it was indicated that the difference in absorption is the primary cause of the difference in the toxicity against mesothelial cells. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Development of a synthetic single crystal diamond dosimeter for dose measurement of clinical proton beams

    Science.gov (United States)

    Moignier, Cyril; Tromson, Dominique; de Marzi, Ludovic; Marsolat, Fanny; García Hernández, Juan Carlos; Agelou, Mathieu; Pomorski, Michal; Woo, Romuald; Bourbotte, Jean-Michel; Moignau, Fabien; Lazaro, Delphine; Mazal, Alejandro

    2017-07-01

    The scope of this work was to develop a synthetic single crystal diamond dosimeter (SCDD-Pro) for accurate relative dose measurements of clinical proton beams in water. Monte Carlo simulations were carried out based on the MCNPX code in order to investigate and reduce the dose curve perturbation caused by the SCDD-Pro. In particular, various diamond thicknesses were simulated to evaluate the influence of the active volume thickness (e AV) as well as the influence of the addition of a front silver resin (250 µm in thickness in front of the diamond crystal) on depth-dose curves. The simulations indicated that the diamond crystal alone, with a small e AV of just 5 µm, already affects the dose at Bragg peak position (Bragg peak dose) by more than 2% with respect to the Bragg peak dose deposited in water. The optimal design that resulted from the Monte Carlo simulations consists of a diamond crystal of 1 mm in width and 150 µm in thickness with the front silver resin, enclosed by a water-equivalent packaging. This design leads to a deviation between the Bragg peak dose from the full detector modeling and the Bragg peak dose deposited in water of less than 1.2%. Based on those optimizations, an SCDD-Pro prototype was built and evaluated in broad passive scattering proton beams. The experimental evaluation led to probed SCDD-Pro repeatability, dose rate dependence and linearity, that were better than 0.2%, 0.4% (in the 1.0-5.5 Gy min-1 range) and 0.4% (for dose higher than 0.05 Gy), respectively. The depth-dose curves in the 90-160 MeV energy range, measured with the SCDD-Pro without applying any correction, were in good agreement with those measured using a commercial IBA PPC05 plane-parallel ionization chamber, differing by less than 1.6%. The experimental results confirmed that this SCDD-Pro is suitable for measurements with standard electrometers and that the depth-dose curve perturbation is negligible, with no energy dependence and no significant dose rate

  17. Thickness dependent properties of CMR Manganite thin films on lattice mismatched substrates: Distinguishing Strain and Interface Effects

    Science.gov (United States)

    Davidson, Anthony, III; Kolagani, Rajeswari; Bacharova, Ellisaveta; Yong, Grace; Smolyaninova, Vera; Schaefer, David; Mundle, Rajeh

    2007-03-01

    Epitaxial thin films of CMR manganite materials have been known to show thickness dependent electrical and magnetic properties on lattice mismatched substrates. Below a critical thickness, insulator-metal transition is suppressed. These effects have been largely attributed to the role of bi-axial lattice mismatch strain. Our recent results of epitaxial thin films of La0.67Ca0.33MnO3 (LCMO) on two substrates with varying degrees of compressive lattice mismatch indicate that, in addition to the effect of lattice mismatch strain, the thickness dependence of the properties are influenced by other factors possibly related to the nature of the film substrate interface and defects such as twin boundaries. We have compared the properties of LCMO films on (100) oriented LaAlO3 and (001) oriented NdCaAlO4 both of which induce compressive bi-axial strain. Interestingly, the suppression of the insulator-metal transition is less in films on NCAO which has a larger lattice mismatch. We will present results correlating the electrical and magneto transport properties with the structure and morphology of the films.

  18. Nanostructured MgTiO{sub 3} thick films obtained by electrophoretic deposition from nanopowders prepared by solar PVD

    Energy Technology Data Exchange (ETDEWEB)

    Apostol, Irina [S.C. IPEE Amiral Trading Impex S.A., 115300 Curtea de Arges (Romania); Mahajan, Amit [Department of Materials and Ceramics Engineering, Centre for Research in Ceramics and Composite Materials, CICECO, University of Aveiro, 3810-093 Aveiro (Portugal); Monty, Claude J.A. [CNRS-PROMES Laboratory, 66120 Font Romeu Odeillo (France); Venkata Saravanan, K., E-mail: venketvs@cutn.ac.in [Department of Materials and Ceramics Engineering, Centre for Research in Ceramics and Composite Materials, CICECO, University of Aveiro, 3810-093 Aveiro (Portugal); Department of Physics, School of Basic and Applied Science, Central University of Tamil Nadu, Thiruvarur 61010 (India)

    2015-12-15

    Highlights: • Obtaining nano-crystalline magnesium titanium oxide powders by solar physical vapor deposition (SPVD) process. And using these nano-powders to obtain thick films on conducting substrates by electrophoretic deposition (EPD). • SPVD is a core innovative, original and environmentally friendly process to prepare nano-materials in a powder form. • Sintered thick films exhibited dielectric constant, ε{sub r} ∼18.3 and dielectric loss, tan δ ∼0.0012 at 1 MHz, which is comparable to the values reported earlier. • New contributions to the pool of information on the preparation of nano-structured MgTiO{sub 3} thick films at low temperatures. • A considerable decrease in synthesis temperature of pure MgTiO{sub 3} thick film was observed by the combination of SPVD and EPD. - Abstract: A novel combination of solar physical vapor deposition (SPVD) and electrophoretic deposition (EPD) that was developed to grow MgTiO{sub 3} nanostructured thick films is presented. Obtaining nanostructured MgTiO{sub 3} thick films, which can replace bulk ceramic components, a major trend in electronic industry, is the main objective of this work. The advantage of SPVD is direct synthesis of nanopowders, while EPD is simple, fast and inexpensive technique for preparing thick films. SPVD technique was developed at CNRS-PROMES Laboratory, Odeillo-Font Romeu, France, while the EPD was performed at University of Aveiro – DeMAC/CICECO, Portugal. The nanopowders with an average crystallite size of about 30 nm prepared by SPVD were dispersed in 50 ml of acetone in basic media with addition of triethanolamine. The obtained well-dispersed and stable suspensions were used for carrying out EPD on 25 μm thick platinum foils. After deposition, films with thickness of about 22–25 μm were sintered in air for 15 min at 800, 900 and 1000 °C. The structural and microstructural characterization of the sintered thick films was carried out using XRD and SEM, respectively. The

  19. Experimental investigation on dependency of interparticle distance in Coulomb crystal on various parameters

    OpenAIRE

    Adachi, Satoshi; Takayanagi, Masahiro; 足立 聡; 高柳 昌弘

    2007-01-01

    Dependency of interparticle distance in Coulomb crystal on various parameters such as plasma density, electron temperature, plasma potential and the Debye length are experimentally investigated. From the investigation, it is found that the interparticle distance is proportional to the Debye length.

  20. Nano-viscosity of supercooled liquid measured by fluorescence correlation spectroscopy: Pressure and temperature dependence and the density scaling

    Science.gov (United States)

    Meier, G.; Gapinski, J.; Ratajczyk, M.; Lettinga, M. P.; Hirtz, K.; Banachowicz, E.; Patkowski, A.

    2018-03-01

    The Stokes-Einstein relation allows us to calculate apparent viscosity experienced by tracers in complex media on the basis of measured self-diffusion coefficients. Such defined nano-viscosity values can be obtained through single particle techniques, like fluorescence correlation spectroscopy (FCS) and particle tracking (PT). In order to perform such measurements, as functions of pressure and temperature, a new sample cell was designed and is described in this work. We show that this cell in combination with a long working distance objective of the confocal microscope can be used for successful FCS, PT, and confocal imaging experiments in broad pressure (0.1-100 MPa) and temperature ranges. The temperature and pressure dependent nano-viscosity of a van der Waals liquid obtained from the translational diffusion coefficient measured in this cell by means of FCS obeys the same scaling as the rotational relaxation and macro-viscosity of the system.